WorldWideScience

Sample records for densely welded tuff

  1. Rheomorphism of welded tuffs

    Science.gov (United States)

    Wolff, J. A.; Wright, J. V.

    1981-05-01

    Peralkaline welded tuffs from the islands of Gran Canaria, Canary Islands, and Pantelleria, Italy, show abundant evidence for post-depositional flow. It is demonstrated that rheomorphism, or secondary mass flowage, can occur in welded tuffs of ignimbrite and air-fall origin. The presence of a linear fabric is taken as the diagnostic criterion for the recognition of the process. Deposition on a slope is an essential condition for the development of rheomorphism after compaction and welding. Internal structures produced during rheomorphic flow can be studied by the methods of structural geology and show similar dispositions to comparable features in sedimentary slump sheets. It is shown that secondary flowage can occur in welded tuffs emplaced on gentle slopes, provided that the apparent viscosity of the magma is sufficiently low. Compositional factors favor the development of rheomorphism in densely welded tuffs of peralkaline type.

  2. Estimates of the hydrologic impact of drilling water on core samples taken from partially saturated densely welded tuff

    Energy Technology Data Exchange (ETDEWEB)

    Buscheck, T.A.; Nitao, J.J.

    1987-09-01

    The purpose of this work is to determine the extent to which drill water might be expected to be imbibed by core samples taken from densely welded tuff. In a related experimental study conducted in G-Tunnel, drill water imbibition by the core samples was observed to be minimal. Calculations were carried out with the TOUGH code with the intent of corroborating the imbibition observations. Due to the absence of hydrologic data pertaining directly to G-Tunnel welded tuff, it was necessary to apply data from a similar formation. Because the moisture retention curve was not available for imbibition conditions, the drainage curve was applied to the model. The poor agreement between the observed and calculated imbibition data is attributed primarily to the inappropriateness of the drainage curve. Also significant is the value of absolute permeability (k) assumed in the model. Provided that the semi-log plot of the drainage and imbibition moisture retention curves are parallel within the saturation range of interest, a simple relationship exists between the moisture retention curve, k, and porosity ({phi}) which are assumed in the model and their actual values. If k and {phi} are known, we define the hysteresis factor {lambda} to be the ratio of the imbibition and drainage suction pressures for any saturation within the range of interest. If k and {phi} are unknown, {lambda} also accounts for the uncertainties in their values. Both the experimental and modeling studies show that drill water imbibition by the core has a minimal effect on its saturation state. 22 refs., 6 figs., 2 tabs.

  3. Anisotropy of magnetic susceptibility in welded tuffs: application to a welded-tuff dyke in the tertiary Trans-Pecos Texas volcanic province, USA

    Science.gov (United States)

    Wolff, John A.; Ellwood, Brooks B.; Sachs, Scott D.

    1989-06-01

    Consideration of published anisotropy of magnetic susceptibility (AMS) studies on welded ignimbrites suggests that AMS fabrics are controlled by groundmass microlites distributed within the existing tuff fabric, the sum result of directional fabrics imposed by primary flow lineation, welding, and (if relevant) rheomorphism. AMS is a more sensitive indicator of fabric elements within welded tuffs than conventional methods, and usually yields primary flow azimuth estimates. Detailed study of a single densely welded tuff sample demonstrates that the overall AMS fabric is insensitive to the relative abundances of fiamme, matrix and lithics within individual drilled cores. AMS determinations on a welded-tuff dyke occurring in a choked vent in the Trans-Pecos Texas volcanic field reveals a consistent fabric with a prolate element imbricated with respect to one wall of the dyke, while total magnetic susceptibility and density exhibit axially symmetric variations across the dyke width. The dyke is interpreted to have formed as a result of agglutination of the erupting mixture on a portion of the conduit wall as it failed and slid into the conduit, followed by residual squeezing between the failed block and in situ wallrock. Irrespective of the precise mechanism, widespread occurrence of both welded-tuff dykes and point-welded, aggregate pumices in pyroclastic deposits may imply that lining of conduit walls by agglutionation during explosive volcanic eruptions is a common process.

  4. Magnetic fabric and welding processes in high-grade tuffs

    Science.gov (United States)

    Pioli, L.; Ort, M.; Lanza, R.; Rosi, M.

    2003-04-01

    The welding fabric of tuffs is generally quantified through two main parameters: porosity and fiamme aspect ratio. However, these parameters are not useful for high-grade ignimbrites that display features indicating extensive rheomorphic flow, partial to complete obliteration of primary vitroclastic textures, and syn-depositional welding rather than load-related compaction. In this case, a 3D-microstructural characterization of the rock fabric is a fundamental proxy for the assessment of the dynamics and duration of welding processes. We have investigated the relations between magnetic fabric and welding textures in a rhyolitic, high-grade ignimbrite from the Sulcis volcanic District (SW Sardinia, Italy). The ignimbrite is characterized by dense welding throughout its preserved thickness and by regular lateral and vertical variations of welding, devitrification and vesiculation facies. Field and structural data indicate that syn-depositional welding and non-particulate (NP) flow were extensive and continuous during the emplacement of the ignimbrite. Paleomagnetic measurements of AMS, NRM, and AIRM of samples from the tuff indicate that the magnetic fabric is strain-sensitive and it is not significantly affected by post-depositional, static processes such as devitrification and vapor-phase alteration; in particular, magnetic susceptibility of the rock and the welding texture correlate well in terms of shape and orientation of the anisotropy ellipsoid. The direction of the K1 axis is indicative of the flow direction in the site of measurement. The anisotropy degree (P) increases with increasing welding and foliation (F) and lineation (L) are directly related to the strain facies. Onset of welding increased the degree of anisotropy and foliation; a non particulate, laminar flow stage further deformed the fabric stretching it along the flow direction and thus increasing L. The intensity of L is strictly related to the duration and the effect of simple shear (laminar

  5. Preferential Flow in Fractured Welded Tuffs

    Energy Technology Data Exchange (ETDEWEB)

    Salve, Rohit

    2004-08-15

    To better understand preferential flow in fractured rock, we carried out an in situ field experiment in the Exploratory Studies Facility at Yucca Mountain, Nevada. This experiment involved the release of {approx} 22 m3 of ponded water (at a pressure head of {approx} 0.04 m) over a period of 7 months, directly onto a 12 m2 infiltration plot located on a fractured welded tuff surface. As water was released, changes in moisture content were monitored along horizontal boreholes located in the formation {approx} 19-22 m below. Distinct flow zones, varying in flow velocity, wetted cross-sectional area, and extent of lateral movement, intercepted the monitoring boreholes. There was also evidence of water being diverted above the ceiling of a cavity in the immediate vicinity of the monitoring boreholes. Observations from this field experiment suggest that isolated conduits, each encompassing a large number of fractures, develop within the fractured rock formation to form preferential flow paths that persist if there is a continuous supply of water. In addition, in fractured welded tuffs the propensity for fracture-matrix interactions is significantly greater than that suggested by existing conceptual models,in which flow occurs along a section of fracture surfaces. An overriding conclusion is that field investigations at spatial scales of tens of meters provide data critical to the fundamental understanding of flow in fractured rock.

  6. Infiltration and Seepage Through Fractured Welded Tuff

    Energy Technology Data Exchange (ETDEWEB)

    T.A. Ghezzehei; P.F. Dobson; J.A. Rodriguez; P.J. Cook

    2006-06-20

    The Nopal I mine in Pena Blanca, Chihuahua, Mexico, contains a uranium ore deposit within fractured tuff. Previous mining activities exposed a level ground surface 8 m above an excavated mining adit. In this paper, we report results of ongoing research to understand and model percolation through the fractured tuff and seepage into a mined adit both of which are important processes for the performance of the proposed nuclear waste repository at Yucca Mountain. Travel of water plumes was modeled using one-dimensional numerical and analytical approaches. Most of the hydrologic properly estimates were calculated from mean fracture apertures and fracture density. Based on the modeling results, we presented constraints for the arrival time and temporal pattern of seepage at the adit.

  7. Experimental research on sealing of boreholes, shafts and ramps in welded tuff

    Energy Technology Data Exchange (ETDEWEB)

    Fuenkajorn, K. [Rock Engineering International, Tucson, AZ (United States)

    1996-04-01

    Laboratory and in-situ experiments have been conducted to determine the mechanical and hydraulic performance of cement borehole seals in densely welded Apache Leap tuff. Test results indicate that under saturated conditions, commercial expansive cement can provide good bond strength and adequate hydraulic performance for borehole seal under changing stress conditions. The cement seal should be installed at the intact portion of the opening, and should have a length-to-diameter ratio greater than four. Drying increases borehole plug permeability and decreases mechanical and hydraulic bonds at the plug-rock interface. In-situ testing indicates that installation procedure may significantly affect the cement plug performance.

  8. Investigation of Using Waste Welded Tuff Material as Mineral Filler in Asphalt Concrete

    Directory of Open Access Journals (Sweden)

    Sebnem KARAHANCER

    2016-08-01

    Full Text Available In this paper, the welded tuff waste- known as koyke in Isparta region - was used in the hot mix asphalt (HMA as mineral filler for reduction of the moisture susceptibility of HMA. Optimum binder content was assessed with Marshall Design Method. First of all, welded tuff was substituted as filler with limestone filler in proportion of 50% and 100%. After that Marshall Stability test was performed on specimens. The results showed that the 50% substitution was more effective than the 100% substitution. Therefore, welded tuff was substituted with limestone filler in proportion of 25%, 50%, 65% and 75%. Next, Indirect Tensile Strength test was practiced on the fabricated specimens and the results were assessed. According to the Indirect Tensile Strength results, welded tuff with 65% was given higher strength than the limestone filler. As a result, it has come up that welded tuff can be used as mineral filler in the hot mix asphalt.

  9. Bond strength of cementitious borehole plugs in welded tuff

    Energy Technology Data Exchange (ETDEWEB)

    Akgun, H.; Daemen, J.J.K. [Arizona Univ., Tucson, AZ (USA). Dept. of Mining and Geological Engineering

    1991-02-01

    Axial loads on plugs or seals in an underground repository due to gas, water pressures and temperature changes induced subsequent to waste and plug emplacement lead to shear stresses at the plug/rock contact. Therefore, the bond between the plug and rock is a critical element for the design and effectiveness of plugs in boreholes, shafts or tunnels. This study includes a systematic investigation of the bond strength of cementitious borehole plugs in welded tuff. Analytical and numerical analysis of borehole plug-rock stress transfer mechanics is performed. The interface strength and deformation are studied as a function of Young`s modulus ratio of plug and rock, plug length and rock cylinder outside-to-inside radius ratio. The tensile stresses in and near an axially loaded plug are analyzed. The frictional interface strength of an axially loaded borehole plug, the effect of axial stress and lateral external stress, and thermal effects are also analyzed. Implications for plug design are discussed. The main conclusion is a strong recommendation to design friction plugs in shafts, drifts, tunnels or boreholes with a minimum length to diameter ratio of four. Such a geometrical design will reduce tensile stresses in the plug and in the host rock to a level which should minimize the risk of long-term deterioration caused by excessive tensile stresses. Push-out tests have been used to determine the bond strength by applying an axial load to cement plugs emplaced in boreholes in welded tuff cylinders. A total of 130 push-out tests have been performed as a function of borehole size, plug length, temperature, and degree of saturation of the host tuff. The use of four different borehole radii enables evaluation of size effects. 119 refs., 42 figs., 20 tabs.

  10. Neutron and gamma (density) logging in welded tuff

    Energy Technology Data Exchange (ETDEWEB)

    Lin, W

    1998-09-12

    This Technical Implementation Procedure (TIP) describes the field operation, and the management of data records pertaining to neutron logging and density logging in welded tuff. This procedure applies to all borehole surveys performed in support of Engineered Barrier System Field Tests (EBSFT), including the Earge Block Tests (LBT) and Initial Engineered Barrier System Field Tests (IEBSFT) - WBS 1.2.3.12.4. The purpose of this TIP is to provide guidelines so that other equally trained and qualified personnel can understand how the work is performed or how to repeat the work if needed. The work will be documented by the use of Scientific Notebooks (SNs) as discussed in 033-YMP-QP 3.4. The TIP will provide a set of guidelines which the scientists will take into account in conducting the mea- surements. The use of this TIP does not imply that this is repetitive work that does not require profes- sional judgment.

  11. Neutron and gamma (density) logging in welded tuff

    Energy Technology Data Exchange (ETDEWEB)

    Lin, W

    1998-09-12

    This Technical Implementation Procedure (TIP) describes the field operation, and the management of data records pertaining to neutron logging and density logging in welded tuff. This procedure applies to all borehole surveys performed in support of Engineered Barrier System Field Tests (EBSFT), including the Earge Block Tests (LBT) and Initial Engineered Barrier System Field Tests (IEBSFT) - WBS 1.2.3.12.4. The purpose of this TIP is to provide guidelines so that other equally trained and qualified personnel can understand how the work is performed or how to repeat the work if needed. The work will be documented by the use of Scientific Notebooks (SNs) as discussed in 033-YMP-QP 3.4. The TIP will provide a set of guidelines which the scientists will take into account in conducting the mea- surements. The use of this TIP does not imply that this is repetitive work that does not require profes- sional judgment.

  12. Welded tuff infilling a volcanic vent at Weolseong, Republic of Korea

    Science.gov (United States)

    Reedman, Antony John; Park, Ki Hwa; Merriman, Richard James; Kim, Seon Eok

    1987-06-01

    A plug of parataxitically welded tuff, with an elliptical (700 × 400 m) cross section, crops out in Weolseong district, Republic of Korea. It intrudes late Cretaceous granodiorite and extrusive tuffs of the Chisulryoung Volcanic Formation and displays a steeply inclined welding foliation, concordant with the intrusive contacts, and a subvertical stretching lineation. These fabrics are interpreted as resulting from laminar shearing in a boundary layer during deposition of the tuff by agglutination along the walls of a vent which served as a feeder for extrusive ignimbrites.

  13. Geophysical tomography for imaging water movement in welded tuff

    Energy Technology Data Exchange (ETDEWEB)

    Daily, W.D.; Ramirez, A.L.

    1986-09-01

    Alterant tomography has been evaluated for its ability to delineate in-situ water flow paths in a fractured welded-tuff rock mass. The evaluation involved a field experiment in which tomographs of electromagnetic attenuation factor (or attenuation rate) at 300 MHz were made before, during, and after the introduction to the rock of two different water-based tracers: a plain water and dye solution, and salt water and dye. Alterant tomographs were constructed by subtracting, cell by cell, the attenuation factors derived from measurements before each tracer was added to the rock mass from the attenuation factors derived after each tracer was added. The alterant tomographs were compared with other evidence of water movement in the rock: borescope logs of fractures, and post experiment cores used to locate the dye tracer on the fractured surfaces. These comparisons indicate that alterant tomography is suitable for mapping water flow through fractures and that it may be useful in inferring which of the fractures are hydrologically connected in the image plane. The technique appears to be sensitive enough to delineate flow through a single fracture and to define fractures with a spatial resolution of about 10 cm on an imaging scale of a few meters. 9 refs., 3 figs.

  14. Stochastic Model of Fracture Frequency Heterogeneity in a Welded Tuff EGS reservoir, Snake River Plain, Idaho, USA

    Science.gov (United States)

    Moody, A.; Fairley, J. P., Jr.

    2014-12-01

    In light of recent advancements in reservoir enhancement and injection tests at active geothermal fields, there is interest in investigating the geothermal potential of widespread subsurface welded tuffs related to caldera collapse on the Snake River Plain (SRP). Before considering stimulation strategies, simulating heat extraction from the reservoir under in-situ fracture geometries will give a first-order estimation of extractable heat. With only limited deep boreholes drilled on the SRP, few analyses of the bulk hydrologic properties of the tuffs exist. Acknowledging the importance of the spatial heterogeneity of fractures to the permeability and injectivity of reservoirs hosted in impermeable volcanic units, we present fracture distributions from ICDP hole 5036-2A drilled as a part of Project HOTSPOT. The core documents more than 1200 m of largely homogeneous densely welded tuff hosting an isothermal warm-water reservoir at ~60˚ C. Multiple realizations of a hypothetical reservoir are created using sequential indicator algorithms that honor the observed vertical fracture frequency statistics. Results help form criteria for producing geothermal energy from the SRP.

  15. Electromagnetic experiment to map in situ water in heated welded tuff: Preliminary results

    Energy Technology Data Exchange (ETDEWEB)

    Ramirez, A.L.; Daily, W.D.

    1987-03-16

    An experiment was conducted in Tunnel Complex G at the Nevada Test Site to evaluate geotomography as a possible candidate for in situ monitoring of hydrology in the near field of a heater placed in densely welded tuff. Alterant tomographs of 200 MHz electromagnetic permittivity were made for a vertical and a horizontal plane. After the 1 kilowatt heater was turned on, the tomographs indicated a rapid and strong drying adjacent to the heater. Moisture loss was not symmetric about the heater, but seemed to be strongly influenced by heterogeneity in the rock mass. The linear character of many tomographic features and their spatial correlation with fractures mapped in boreholes are evidence that drying was most rapid along some fractures. When the heater was turned off, an increase in moisture content occurred around the heater and along the dry fractures. However, this process is much slower and the magnitude of the moisture increase much smaller than the changes observed during heating of the rock. The interpretation of the tomographs is preliminary until they can be processed without the restrictive assumption of straight ray paths for the signals through the highly heterogeneous rock mass. 15 refs., 4 figs.

  16. Creep in Topopah Spring Member welded tuff. Yucca Mountain Site Characterization Project

    Energy Technology Data Exchange (ETDEWEB)

    Martin, R.J. III; Boyd, P.J.; Noel, J.S. [New England Research, Inc., White River Junction, VT (United States); Price, R.H. [Sandia National Labs., Albuquerque, NM (United States)

    1995-06-01

    A laboratory investigation has been carried out to determine the effects of elevated temperature and stress on the creep deformation of welded tuffs recovered from Busted Butte in the vicinity of Yucca Mountain, Nevada. Water saturated specimens of tuff from thermal/mechanical unit TSw2 were tested in creep at a confining pressure of 5.0 MPa, a pore pressure of 4.5 MPa, and temperatures of 25 and 250 C. At each stress level the load was held constant for a minimum of 2.5 {times} 10{sup 5} seconds and for as long as 1.8 {times} 10{sup 6} seconds. One specimen was tested at a single stress of 80 MPa and a temperature of 250 C. The sample failed after a short time. Subsequent experiments were initiated with an initial differential stress of 50 or 60 MPa; the stress was then increased in 10 MPa increments until failure. The data showed that creep deformation occurred in the form of time-dependent axial and radial strains, particularly beyond 90% of the unconfined, quasi-static fracture strength. There was little dilatancy associated with the deformation of the welded tuff at stresses below 90% of the fracture strength. Insufficient data have been collected in this preliminary study to determine the relationship between temperature, stress, creep deformation to failure, and total failure time at a fixed creep stress.

  17. Magnetic fabric, welding texture and strain fabric in the Nuraxi Tuff, Sardinia, Italy

    Science.gov (United States)

    Pioli, L.; Lanza, R.; Ort, M.; Rosi, M.

    2008-09-01

    Anisotropy of magnetic susceptibility (AMS) has been used to interpret flow directions in ignimbrites, but no study has demonstrated that the AMS fabric corresponds to the flow fabric. In this paper, we show that the AMS and strain fabric coincide in a high-grade ignimbrite, the Nuraxi Tuff, a Miocene rhyolitic ignimbrite displaying a wide variability of rheomorphic features and a well-defined magnetic fabric. Natural remanent magnetization (NRM) data indicate that the magnetization of the tuff is homogeneous and was acquired at high temperatures by Ti-magnetite crystals. Comparison between the magnetic fabric and the deformation features along a representative section shows that AMS and anisotropy of isothermal remanent magnetization (AIRM) fabric are coaxial with and reproduce the shape of the strain ellipsoid. Magnetic tests and scanning electron microscopy observations indicate that the fabric is due to trails of micrometer-size, pseudo-single domain, magnetically interacting magnetite crystals. Microlites formed along discontinuities such as shard rims and vesicle walls mimicking the petrofabric of the tuff. The fabric was thus acquired after deposition, before late rheomorphic processes, and accurately mimics homogeneous deformation features of the shards during welding processes and mass flow.

  18. In situ formation of welded tuff-like textures in the carapace of a voluminous silicic lava flow, Owyhee County, SW Idaho

    Science.gov (United States)

    Manley, C. R.

    1996-07-01

    The Badlands rhyolite, on the Owyhee Plateau of southwestern Idaho, can be demonstrated to be a large lava flow on the basis of its geometry of large and small flow lobes, its well-exposed near-vent features, and its response to pre-existing topography. However, samples of the dense upper vitrophyre of the unit reveal a range of annealed fragmental textures, including material which closely resembles the compressed, welded glass shards which are characteristic of ignimbrites. Formation of these tuff-like textures involved processes probably common to emplacement of most silicic lava flow units. Decompression upon extrusion causes inflation of pumice at the surface of the lava flow; some of this pumice is subsequently comminuted, producing loose bubble-wall shards, bits of pumice, chips of dense glass, and fragments of phenocrysts. This debris sifts down around loose blocks and into open fractures deeper in the flow, where it can be reheated, compressed, and annealed to varying degrees. The end result is a dense vitrophyre layer (beneath the true upper, non-welded carapace breccia) which can be extremely texturally heterogeneous, with areas of flow-foliated lava occurring very near lava which in many aspects looks like welded ignimbrite, complete with flattened pumices. Identical textures in other silicic units have been cited by previous workers as evidence that those units erupted as pyroclastic flows which then underwent sufficient rheomorphism to create a flow-foliated rock which otherwise appears to be lava. The textures described herein indicate that lava flows can come to mimic rheomorphic ignimbrites, at least at scales ranging from thin sections to outcrops. Voluminous silicic units with scattered fragmental textures, but with otherwise lava-like features, are probably true effusive lava flows.

  19. Laboratory determined suction potential of Topopah Spring tuff at high temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Daily, W.; Lin, Wunan

    1991-01-01

    The purpose of this work is to experimentally determine the capillary suction potential of Topopah Spring tuff from Yucca Mountain, Nye County, Nevada. This data can be used to help characterize the unsaturated hydraulic properties of the densely welded tuff at this site. 7 refs., 4 figs., 1 tab.

  20. The Effects of Variable Welding and Devitrification on the Magnetic Fabric of Ash Flow Tuffs: An AMS and AARM Study of the Oligocene Carpenter Ridge Tuff, San Juan Mountains, Colorado

    Science.gov (United States)

    Mason, S. N.; Geissman, J. W.

    2011-12-01

    Anisotropy of magnetic susceptibility (AMS) data have been shown to be a powerful means of estimating the transport direction, and thus inferred source region, for several large volume, regionally extensive ash-flow tuffs (ignimbrites). Anisotropy of anhysteretic remanent magnetization (AARM) data have, on the other hand, corroborated inferred controls by different assemblages of magnetic particles on magnetic fabrics. For ash-flow tuffs, the effects of variable degrees of welding and subsequent devitrification on the magnetic fabric of these pyroclastic deposits are not well understood. We have collected magnetic fabric data from a continuously exposed sequence of outflow facies of the ca. 27.55 Ma Carpenter Ridge Tuff (CRT), one of the major large volume ash-flow tuffs of the Southern Rocky Mountain Volcanic Field, southwest Colorado, about 3 km east of Buffalo Pass on Colorado Highway 114. The CRT, a compound cooling unit, is of reverse polarity (although there is considerable internal variability in direction through the section) and was sourced from the Bachelor Caldera, southwest of the sample locality. Some 21 total independently oriented samples, as very large oriented blocks, were collected in traverse fashion through most of the lowermost cooling unit of the tuff, and an additional ten block samples were collected from the moderately welded and completely devitrified third cooling unit. At least ten and often 20 to 30 discrete specimens were prepared for analyses from each block. Orientation of AMS principal axes are internally consistent at the oriented sample level and, overall, throughout the section sampled, and imply a west to east transport orientation in this area, consistent with several other sampling sites in the CRT in the northeast part of the Southern Rocky Mountain Volcanic Field. AARM data at the block sample level are usually more dispersed. All of the samples have positive T values, implying strong foliations. The degree of anisotropy (P

  1. Estimates of flow direction for calc-alkaline welded tuffs and paleomagnetic data reliability from anisotropy of magnetic susceptibility measurements: Central San Juan Mountains, southwest Colorado

    Science.gov (United States)

    Ellwood, Brooks B.

    1982-07-01

    Flow directions are estimated from the measurement of the magnetic fabric of 106 samples, collected at 18 sites in four welded tuff units in the central San Juan Mountains of southern Colorado. The estimates assume that the tuffs generally flowed directly away from the extrusive vents and that the lineations of magnetic grains within the tuffs represent the flow direction at individual sites. Errors in the estimation may arise from topographic variation, rheomorphism (post-emplacement mass flow) within the tuff, and other factors. Magnetic lineation is defined as the site mean anisotropy of magnetic susceptibility maximum azimuth. A test on the flow directions for individual units is based on the projection of lineation azimuths and their intersection within or near the known source caldera for the tuff. This test is positive for the four units examined. Paleomagnetic results for these tuffs are probably reliable indicators of the geomagnetic field direction in southwest Colorado, during the time (28.2-26.5 Ma) of emplacement.

  2. Carpenter Ridge Tuff, CO

    Science.gov (United States)

    Bachmann, Olivier; Deering, Chad D.; Lipman, Peter W.; Plummer, Charles

    2014-06-01

    The ~1,000 km3 Carpenter Ridge Tuff (CRT), erupted at 27.55 Ma during the mid-tertiary ignimbrite flare-up in the western USA, is among the largest known strongly zoned ash-flow tuffs. It consists primarily of densely welded crystal-poor rhyolite with a pronounced, highly evolved chemical signature (high Rb/Sr, low Ba, Zr, Eu), but thickly ponded intracaldera CRT is capped by a more crystal-rich, less silicic facies. In the outflow ignimbrite, this upper zone is defined mainly by densely welded crystal-rich juvenile clasts of trachydacite composition, with higher Fe-Ti oxide temperatures, and is characterized by extremely high Ba (to 7,500 ppm), Zr, Sr, and positive Eu anomalies. Rare mafic clasts (51-53 wt% SiO2) with Ba contents to 4,000-5,000 ppm and positive Eu anomalies are also present. Much of the major and trace-element variations in the CRT juvenile clasts can be reproduced via in situ differentiation by interstitial melt extraction from a crystal-rich, upper-crustal mush zone, with the trachydacite, crystal-rich clasts representing the remobilized crystal cumulate left behind by the melt extraction process. Late recharge events, represented by the rare mafic clasts and high-Al amphiboles in some samples, mixed in with parts of the crystal cumulate and generated additional scatter in the whole-rock data. Recharge was important in thermally remobilizing the silicic crystal cumulate by partially melting the near-solidus phases, as supported by: (1) ubiquitous wormy/sieve textures and reverse zoning patterns in feldspars and biotites, (2) absence of quartz in this very silicic unit stored at depths of >4-5 km, and (3) heterogeneous melt compositions in the trachydacite fiamme and mafic clasts, particularly in Ba, indicating local enrichment of this element due mostly to sanidine and biotite melting. The injection of hot, juvenile magma into the upper-crustal cumulate also imparted the observed thermal gradient to the deposits and the mixing overprint that

  3. The one-dimensional compression method for extraction of pore water from unsaturated tuff and effects on pore-water chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Higgins, J.D.; Burger, P.A. [Colorado School of Mines, Golden, CO (United States); Yang, L.C. [Geological Survey, Denver, CO (United States)

    1997-12-31

    Study of the hydrologic system at Yucca Mountain, Nevada, requires extraction of pore-water samples from unsaturated tuff bedrock. Two generations of compression cells have been designed and tested for extracting representative, unaltered pore-water samples from unsaturated tuff cores. The one-dimensional compression cell has a maximum compressive stress rating of 552 MPa. Results from 86 tests show that the minimum degree of saturation for successful extraction of pore water was about 14% for non welded tuff and about 61% for densely welded tuff. The high-pressure, one-dimensional compression cell has a maximum compressive stress rating of 827 MPa. Results from 109 tests show that the minimum degree of saturation for successful extraction of pore water was about 7.5% for non welded tuff and about 34% for densely welded tuff. Geochemical analyses show that, in general, there is a decrease in ion concentration of pore waters as extraction pressures increase. Only small changes in pore-water composition occur during the one-dimensional extraction test.

  4. Compaction and gas loss in welded pyroclastic deposits as revealed by porosity, permeability, and electrical conductivity measurements of the Shevlin Park Tuff

    Science.gov (United States)

    Wright, Heather M.; Cashman, Katharine V.

    2014-01-01

    Pyroclastic flows produced by large volcanic eruptions commonly densify after emplacement. Processes of gas escape, compaction, and welding in pyroclastic-flow deposits are controlled by the physical and thermal properties of constituent material. Through measurements of matrix porosity, permeability, and electrical conductivity, we provide a framework for understanding the evolution of pore structure during these processes. Using data from the Shevlin Park Tuff in central Oregon, United States, and from the literature, we find that over a porosity range of 0%–70%, matrix permeability varies by almost 10 orders of magnitude (from 10–20 to 10–11 m2), with over three orders of magnitude variation at any given porosity. Part of the variation at a given porosity is due to permeability anisotropy, where oriented core samples indicate higher permeabilities parallel to foliation (horizontally) than perpendicular to foliation (vertically). This suggests that pore space is flattened during compaction, creating anisotropic crack-like networks, a geometry that is supported by electrical conductivity measurements. We find that the power law equation: k1 = 1.3 × 10–21 × ϕ5.2 provides the best approximation of dominant horizontal gas loss, where k1 = permeability, and ϕ = porosity. Application of Kozeny-Carman fluid-flow approximations suggests that permeability in the Shevlin Park Tuff is controlled by crack- or disk-like pore apertures with minimum widths of 0.3 and 7.5 μm. We find that matrix permeability limits compaction over short times, but deformation is then controlled by competition among cooling, compaction, water resorption, and permeable gas escape. These competing processes control the potential for development of overpressure (and secondary explosions) and the degree of welding in the deposit, processes that are applicable to viscous densification of volcanic deposits in general. Further, the general relationships among porosity, permeability, and

  5. Geologic character of tuffs in the unsaturated zone at Yucca Mountain, southern Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Scott, R.B.; Spengler, R.W.; Diehl, S.; Lappin, A.R.; Chornack, M.P.

    1982-12-31

    At Yucca Mountain, a potential site for a high-level nuclear waste repository on the Nevada Test Site in southern Nevada, evaluation of the geologic setting and rock physical properties, along with previous regional hydrologic studies, has provided background that can be used for construction of a preliminary conceptual hydrologic model of the unsaturated zone. The 500-m-thick unsaturated portion of Yucca Mountain consists of alternating layers of two contrasting types of tuff. One type consists of highly fractured, densely welded, relatively nonporous but highly transmissive ash-flow tuffs. The other type consists of relatively unfractured, nonwelded, highly porous but relatively nontransmissive, argillic and zeolitic bedded tuffs and ash-flow tuffs. The contrast between these two sets of distinctive physical properties results in a stratified sequence best described as "physical-property stratigraphy" as opposed to traditional petrologic stratigraphy of volcanic rocks. The vast majority of recharge through the unsaturated zone is assumed to be vertical; the dominant migration may occur in fractures of densely welded tuffs and in the matrix of nonwelded tuff, but the mode of fluid flow in these unsaturated systems is undetermined. Limited lateral flow of recharge may occur at horizons where local perched water tables may exist above relatively nontransmissive zeolitized nonwelded tuffs. The pervasive north-northwest-striking fractures may control the direction of lateral flow of recharge, if any, in the unsaturated zone, and certainly that direction coincides closely with the observed southeasterly flow direction in the saturated zone under Yucca Mountain. Empirical evaluation of this conceptual hydrologic model has begun. 41 refs., 18 figs., 2 tabs.

  6. Geologic character of tuffs in the unsaturated zone at Yucca Mountain, southern Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Scott, R.B.; Spengler, R.W.; Diehl, S.; Lappin, A.R.; Chornack, M.P.

    1982-12-31

    At Yucca Mountain, a potential site for a high-level nuclear waste repository on the Nevada Test Site in southern Nevada, evaluation of the geologic setting and rock physical properties, along with previous regional hydrologic studies, has provided background that can be used for construction of a preliminary conceptual hydrologic model of the unsaturated zone. The 500-m-thick unsaturated portion of Yucca Mountain consists of alternating layers of two contrasting types of tuff. One type consists of highly fractured, densely welded, relatively nonporous but highly transmissive ash-flow tuffs. The other type consists of relatively unfractured, nonwelded, highly porous but relatively nontransmissive, argillic and zeolitic bedded tuffs and ash-flow tuffs. The contrast between these two sets of distinctive physical properties results in a stratified sequence best described as "physical-property stratigraphy" as opposed to traditional petrologic stratigraphy of volcanic rocks. The vast majority of recharge through the unsaturated zone is assumed to be vertical; the dominant migration may occur in fractures of densely welded tuffs and in the matrix of nonwelded tuff, but the mode of fluid flow in these unsaturated systems is undetermined. Limited lateral flow of recharge may occur at horizons where local perched water tables may exist above relatively nontransmissive zeolitized nonwelded tuffs. The pervasive north-northwest-striking fractures may control the direction of lateral flow of recharge, if any, in the unsaturated zone, and certainly that direction coincides closely with the observed southeasterly flow direction in the saturated zone under Yucca Mountain. Empirical evaluation of this conceptual hydrologic model has begun. 41 refs., 18 figs., 2 tabs.

  7. Estimation of engineering properties of selected tuffs by using grain/matrix ratio

    Science.gov (United States)

    Korkanç, Mustafa; Solak, Burak

    2016-08-01

    Petrographic properties of rocks substantially affect their physical and mechanical properties. In the present study, for the purpose of examining the relationship between the petrographic and geomechanical properties of pyroclastic rocks, fresh samples were taken from tuffs of different textural properties that have wide distribution in Cappadocia region. Experimental studies were conducted on 20 fresh samples to determine their engineering properties through petrographic examinations. Dry and saturated unit weights, water absorption by weight, effective porosity, capillary water absorption, slake durability index, P-wave velocity, point load index, uniaxial compressive strength and nail penetration index of the samples were determined. Higher geomechanical values were obtained from the samples of Kavak tuffs affected by hydromechanical alteration and by tuffs with high welded rates. On thin sections prepared with the fresh samples, petrographic studies were carried out by using a point counter with a polarizing microscope, and mineral composition, texture, void ratio, volcanic glass presence and state of these fragments within the rock, secondary mineral formation and opaque mineral presence were determined. Grain/matrix ratio (GMR) was calculated by using the ratios of phenocrysts, microlites, volcanic glass, voids and opaque minerals after point counting on thin sections. A potential relationship between the petrographic and geomechanical properties of fresh samples was tried to determine by counting correlation analysis. Such a relationship can be significantly and extensively suggestible for engineering applications. For this purpose, we used the poorly-welded Kavak and densely-welded Kızılkaya tuff samples in our study.

  8. Mechanical excavator performance in Yucca Mountain tuffs

    Energy Technology Data Exchange (ETDEWEB)

    Ozdemir, L. [Colorado School of Mines, Golden, CO (USA); Hansen, F.D. [Sandia National Labs., Albuquerque, NM (USA)

    1991-01-01

    A research effort of four phases is in progress at the Colorado School of Mines. The overall program will evaluate the cutability of welded tuff and other lithologies likely to be excavated at Yucca Mountain in the site characterization process. Several mechanical systems are considered with emphasis given to the tunnel boring machine. The research comprises laboratory testing, linear drag bit and disc cutter tests and potentially large-scale laboratory demonstrations to support potential use of a tunnel boring machine in welded tuff. Preliminary estimates of mechanical excavator performance in Yucca Mountain tuff are presented here. As phases of the research project are completed, well quantified estimates will be made of performance of mechanical excavators in the Yucca Mountain tuffs. 3 refs., 2 tabs.

  9. Ranking welding intensity in pyroclastic deposits

    Science.gov (United States)

    Quane, Steven L.; Russell, James K.

    2005-02-01

    Welding of pyroclastic deposits involves flattening of glassy pyroclasts under a compactional load at temperatures above the glass transition temperature. Progressive welding is recorded by changes in the petrographic (e.g., fabric) and physical (e.g., density) properties of the deposits. Mapping the intensity of welding can be integral to studies of pyroclastic deposits, but making systematic comparisons between deposits can be problematical. Here we develop a scheme for ranking welding intensity in pyroclastic deposits on the basis of petrographic textural observations (e.g., oblateness of pumice lapilli and micro-fabric orientation) and measurements of physical properties, including density, porosity, point load strength and uniaxial compressive strength. Our dataset comprises measurements on 100 samples collected from a single cooling unit of the Bandelier Tuff and parallel measurements on 8 samples of more densely welded deposits. The proposed classification comprises six ranks of welding intensity ranging from unconsolidated (Rank I) to obsidian-like vitrophyre (Rank VI) and should allow for reproducible mapping of subtle variations in welding intensity between different deposits. The application of the ranking scheme is demonstrated by using published physical property data on welded pyroclastic deposits to map the total accumulated strain and to reconstruct their pre-welding thicknesses.

  10. Ranking welding intensity in pyroclastic deposits

    Science.gov (United States)

    Quane, S. L.; Russell, J. K.

    2003-04-01

    Pyroclastic deposits emplaced at high temperatures and having sufficient thickness become welded. The welding process involves sintering, compaction and flattening of hot glassy pyroclastic material and is attended by systematic changes in physical properties. Historically, the terms nonwelded, incipiently welded, partially welded with pumice, partially welded with fiamme, moderately welded and densely welded have been used as field descriptors for welding intensity (e.g., Smith &Bailey, 1966; Smith, 1979; Ross &Smith, 1980; Streck &Grunder, 1995). While using these descriptive words is often effective for delineating variations of welding intensity within a single deposit, their qualitative character does not provide for consistency between field areas or workers, and inhibits accurate comparison between deposits. Hence, there is a need for a universal classification of welding intensity in pyroclastic deposits. Here we develop an objective ranking system. The system recognizes 8 ranks (I to VIII) based on measurements of physical properties and petrographic characteristics. The physical property measurements include both lab and field observations: density, porosity, uniaxial compressive strength, point load strength, fiamme elongation, and foliation/fabric. The values are normalized in order to make the system universal. The rank divisions are adaptations of a rock mass-rating scheme based on rock strength (Hoek &Brown, 1980) and previous divisions of welding degree based on physical properties (e.g., density: Ragan &Sheridan, 1972, Streck &Grunder, 1995; fiamme elongation: Peterson, 1979). Each rank comprises a range of normalized values for each of the physical properties and a corresponding set of petrographic characteristics. Our new ranking system provides a consistent, objective means by which each sample or section of welded tuff can be evaluated, thus providing a much needed uniformity in nomenclature for degree of welding. References: Hoek, E. &Brown, E

  11. Characterization of liquid-water percolation in tuffs in the unsaturated zone, Yucca Mountain, Nye County, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Kume, J.; Rousseau, J.P.

    1989-12-31

    A surface-based borehole investigation currently (1989) is being done to characterize liquid-water percolation in tuffs of Miocene age in the unsaturated zone beneath Yucca Mountain, Nye County, Nevada Active in-situ testing and passive in-situ monitoring will be used in this investigation to estimate the present-day liquid-water percolation (flux). The unsaturated zone consists of a gently dipping sequence of fine-grained, densely fractured, and mostly welded ash-flow tuffs that are interbedded with fine-grained, slightly fractured, non-welded ash-flow and ash-fall tuffs that are partly vitric and zeolitized near the water table. Primary study objectives are to define the water potential field within the unsaturated zone and to determine the in-situ bulk permeability and bulk hydrologic properties of the unsaturated tuffs. Borehole testing will be done to determine the magnitude and spatial distribution of physical and hydrologic properties of the geohydrologic units, and of their water potential fields. The study area of this investigation is restricted to that part of Yucca Mountain that immediately overlies and is within the boundaries of the perimeter drift of a US Department of Energy proposed mined, geologic, high-level radioactive-waste repository. Vertically, the study area extends from near the surface of Yucca Mountain to the underlying water table, about 500 to 750 meters below the ground surface. The average distance between the proposed repository and the underlying water table is about 205 meters.

  12. Preliminary thermal expansion screening data for tuffs

    Energy Technology Data Exchange (ETDEWEB)

    Lappin, A.R.

    1980-03-01

    A major variable in evaluating the potential of silicic tuffs for use in geologic disposal of heat-producing nuclear wastes is thermal expansion. Results of ambient-pressure linear expansion measurements on a group of tuffs that vary treatly in porosity and mineralogy are presente here. Thermal expansion of devitrified welded tuffs is generally linear with increasing temperature and independent of both porosity and heating rate. Mineralogic factors affecting behavior of these tuffs are limited to the presence or absence of cristobalite and altered biotite. The presence of cristobalite results in markedly nonlinear expansion above 200{sup 0}C. If biotite in biotite-hearing rocks alters even slightly to expandable clays, the behavior of these tuffs near the boiling point of water can be dominated by contraction of the expandable phase. Expansion of both high- and low-porosity tuffs containing hydrated silicic glass and/or expandable clays is complex. The behavior of these rocks appears to be completely dominated by dehydration of hydrous phases and, hence, should be critically dependent on fluid pressure. Valid extrapolation of the ambient-pressure results presented here to depths of interest for construction of a nuclear-waste repository will depend on a good understanding of the interaction of dehydration rates and fluid pressures, and of the effects of both micro- and macrofractures on the response of tuff masss.

  13. Ash-flow tuffs of the Galiuro Volcanics in the northern Galiuro Mountains, Pinal County, Arizona

    Science.gov (United States)

    Krieger, Medora Louise Hooper

    1979-01-01

    The upper Oligocene and lower Miocene Galiuro Volcanics in the northern part of the Galiuro Mountains contains two distinctive major ash-flow tuff sheets, the Holy Joe and Aravaipa Members. These major ash-flows illustrate many features of ash-flow geology not generally exposed so completely. The Holy Joe Member, composed of a series of densely welded flows of quartz latite composition that make up a simple cooling unit. is a rare example of a cooling unit that has a vitrophyre at the top as well as at the base. The upper vitrophyre does not represent a cooling break. The Aravaipa Member. a rhyolite, is completely exposed in Aravaipa and other canyons and on Table Mountain. Remarkable exposures along Whitewash Canyon exhibit the complete change from a typical stacked-up interior zonation of an ash flow to a non welded distal margin. Vertical and horizontal changes in welding, crystallization, specific gravity, and lithology are exposed. The ash flow can be divided into six lithologic zones. The Holy Joe and Aravaipa Members of the Galiuro Volcanics are so well exposed and so clearly show characteristic features of ash-flow tuffs that they could be a valuable teaching aid and a source of theses for geology students.

  14. Welding.

    Science.gov (United States)

    Cowan, Earl; And Others

    The curriculum guide for welding instruction contains 16 units presented in six sections. Each unit is divided into the following areas, each of which is color coded: terminal objectives, specific objectives, suggested activities, and instructional materials; information sheet; transparency masters; assignment sheet; test; and test answers. The…

  15. The Hydrogeologic Character of the Lower Tuff Confining Unit and the Oak Springs Butte Confining Unit in the Tuff Pile Area of Central Yucca Flat

    Energy Technology Data Exchange (ETDEWEB)

    Drellack, Jr., Sigmund L.; Prothro, Lance B.; Gonzales, Jose L.; Mercadante, Jennifer M.

    2010-07-30

    The lower tuff confining unit (LTCU) in the Yucca Flat Corrective Action Unit (CAU) consists of a monotonous sequence of pervasively zeolitized volcanic tuff (i.e., mostly bedded with lesser nonwelded to poorly welded tuff; not fractured) (Bechtel Nevada, 2006). The LTCU is an important confining unit beneath Yucca Flat because it separates the alluvial and volcanic aquifers, where many underground nuclear tests were conducted, from the regional lower carbonate aquifer. Recent sub-CAU-scale modeling by Los Alamos National Laboratory in the Tuff Pile area of Yucca Flat (Boryta, et al., in review) includes postulated low-porosity, high-permeability zones (i.e., fractured welded-tuff aquifers) within the LTCU. This scenario indicates that such postulated low-porosity, high-permeability zones could provide fast-path lateral conduits to faults, and eventually to the lower carbonate aquifer. A fractured and faulted lower carbonate aquifer is postulated to provide a flow path(s) for underground test-derived contaminants to potential offsite receptors. The ramifications of such a scenario are obvious for groundwater flow and contaminant migration beneath Yucca Flat. This paper describes the reasoning for not including postulated low-porosity, high-permeability zones within the LTCU in the Tuff Pile area or within the LTCU in the Yucca Flat CAU-scale model. Both observational and analytical data clearly indicate that the LTCU in the Tuff Pile area consists of pervasively zeolitic, nonwelded to poorly welded tuffs that are classified as tuff confining units (i.e., high-porosity, low-permeability). The position regarding the LTCU in the Tuff Pile area is summarized as follows: • The LTCU in the Tuff Pile area consists of a monotonous sequence of predominantly zeolitic nonwelded to poorly welded tuffs, and thus is accurately characterized hydrogeologically as a tuff confining unit (aquitard) in the Yucca Flat-Climax Mine hydrostratigraphic framework model (Bechtel Nevada

  16. Review of the thermal stability and cation exchange properties of the zeolite minerals clinoptilolite, mordenite, and analcime; applications to radioactive waste isolation in silicic tuff

    Energy Technology Data Exchange (ETDEWEB)

    Smyth, J.R.; Caporuscio, F.A.

    1981-06-01

    Silicic tuffs of the southern Great Basin and basalts of the Columbia River Plateau are under investigation as potential host rocks for high- and intermediate-level radioactive wastes. Nonwelded and partially welded tuffs may contain major amounts (> 50%) of the zeolite minerals clinoptilolite, mordenite, and analcime. Densely welded tuffs and some basalt flows may contain clinoptilolite as fracture filling that limits the permeability of these rocks. The cation exchange properties of these zeolite minerals allow them to pose a formidable natural barrier to the migration of cationic species of various radionuclides in aqueous solutions. However, these minerals are unstable at elevated temperatures and at low water-vapor pressures and may break down either by reversible dehydration or by irreversible mineralogical reactions. All the breakdown reactions occurring at increased temperature involve a net volume reduction and evolution of fluids. Thus, they may provide a pathway (shrinkage fractures) and a driving force (fluid pressure) for release of radionuclides to the biosphere. These reactions may be avoided by keeping zeolite-bearing horizons saturated with water and below about 85{sup 0}C. This may restrict allowable gross thermal loadings in waste repositories in volcanic rocks.

  17. Fitful and protracted magma assembly leading to a giant eruption, Youngest Toba Tuff, Indonesia

    Science.gov (United States)

    Reid, Mary R; Vazquez, Jorge A.

    2017-01-01

    The paroxysmal eruption of the 74 ka Youngest Toba Tuff (YTT) of northern Sumatra produced an extraordinary 2800 km3 of non-welded to densely welded ignimbrite and co-ignimbrite ash-fall. We report insights into the duration of YTT magma assembly obtained from ion microprobe U-Th and U-Pb dates, including continuous age spectra over >50% of final zircon growth, for pumices and a welded tuff spanning the compositional range of the YTT. A relatively large subpopulation of zircon crystals nucleated before the penultimate caldera-related eruption at 501 ka, but most zircons yielded interior dates 100-300 ka thereafter. Zircon nucleation and growth was likely episodic and from diverse conditions over protracted time intervals of >100 to >500 ka. Final zircon growth is evident as thin rim plateaus that are in Th/U chemical equilibrium with hosts, and that give crystallization ages within tens of ka of eruption. The longevity and chemical characteristics of the YTT zircons, as well as evidence for intermittent zircon isolation and remobilization associated with magma recharge, is especially favored at the cool and wet eutectoid conditions that characterize at least half of the YTT, wherein heat fluxes could dissolve major phases but have only a minor effect on larger zircon crystals. Repeated magma recharge may have contributed to the development of compositional zoning in the YTT but, considered together with limited allanite, quartz, and other mineral dating and geospeedometry, regular perturbations to the magma reservoir over >400 ka did not lead to eruption until 74 ka ago.

  18. Major element and oxygen isotope geochemistry of vapour-phase garnet from the Topopah Spring Tuff at Yucca Mountain, Nevada, USA

    Science.gov (United States)

    Moscati, Richard J.; Johnson, Craig A.

    2014-01-01

    Twenty vapour-phase garnets were studied in two samples of the Topopah Spring Tuff of the Paintbrush Group from Yucca Mountain, in southern Nevada. The Miocene-age Topopah Spring Tuff is a 350 m thick, devitrified, moderately to densely welded ash-flow tuff that is zoned compositionally from high-silica rhyolite to latite. During cooling of the tuff, escaping vapour produced lithophysae (former gas cavities) lined with an assemblage of tridymite (commonly inverted to cristobalite or quartz), sanidine and locally, hematite and/or garnet. Vapour-phase topaz and economic deposits associated commonly with topaz-bearing rhyolites (characteristically enriched in F) were not found in the Topopah Spring Tuff at Yucca Mountain. Based on their occurrence only in lithophysae, the garnets are not primary igneous phenocrysts, but rather crystals that grew from a F-poor magma-derived vapour trapped during and after emplacement of the tuff. The garnets are euhedral, vitreous, reddish brown, trapezohedral, as large as 2 mm in diameter and fractured. The garnets also contain inclusions of tridymite. Electron microprobe analyses of the garnets reveal that they are almandine-spessartine (48.0 and 47.9 mol.%, respectively), have an average composition of (Fe1.46Mn1.45Mg0.03Ca0.10)(Al1.93Ti0.02)Si3.01O12 and are comparatively homogeneous in Fe and Mn concentrations from core to rim. Composited garnets from each sample site have δ18O values of 7.2 and 7.4‰. The associated quartz (after tridymite) has δ18O values of 17.4 and 17.6‰, values indicative of reaction with later, low-temperature water. Unaltered tridymite from higher in the stratigraphic section has a δ18O of 11.1‰ which, when coupled with the garnet δ18O values in a quartz-garnet fractionation equation, indicates isotopic equilibration (vapour-phase crystallization) at temperatures of ~600°C. This high-temperature mineralization, formed during cooling of the tuffs, is distinct from the later and commonly recognized

  19. Stratigraphy, paleomagnetism, and magnetic fabric of the Toba Tuffs: Constraints on the sources and eruptive styles

    Science.gov (United States)

    Knight, Michael D.; Walker, George P. L.; Ellwood, Brooks B.; Diehl, Jimmy F.

    1986-09-01

    The Toba depression in north central Sumatra is a complex of several overlapping calderas resulting from three major ignimbrite-forming eruptions. Within the depression, the upland masses of Samosir and northern Uluan consist of welded ignimbrite capped by coarse breccia and lacustrine sediment, hitherto interpreted to be two parts of a single resurgent dome. This study has demonstrated that the welded tuffs of Samosir and Uluan have different magnetic polarities and therefore at least two different ignimbrites are present; the Samosir/Uluan massif may consist of parts of two resurgent domes. The first ignimbrite eruption occurred at 0.84 Ma and produced a very thick (>400 m), densely welded unit having a reversed polarity. Anisotropy of magnetic susceptibility (AMS) flow direction and lithic size data indicate that the source lies in the southern part of the Toba depression, and the thick deposit of Uluan is thought to have ponded in a 40-km-wide caldera. The second ignimbrite is normally magnetized. AMS flow direction data indicate two separate source vents, one to the north in the Haranggaol caldera, and another to the south. The thick deposit at Samosir is thought to have ponded in the southern caldera. Coarse sediments then accumulated over Samosir and northern Uluan and were capped by lacustrine deposits. A renewed episode of resurgence then uplifted Samosir Island and possibly the northern part of Uluan. At approximately 0.075 Ma the last and apparently largest ignimbrite eruption occurred from calderas in the north and south parts of the Toba depression. This ignimbrite is mostly nonwelded and normally magnetized. Part of the Uluan dome was destroyed by collapse of the Sibandung caldera and Latung graben and concomitant with renewed subsidence of the Haranggaol and Porsea calderas.

  20. Geohydrology of Bandelier Tuff

    Energy Technology Data Exchange (ETDEWEB)

    Abeele, M.V.; Wheeler, M.L.; Burton, B.W.

    1981-10-01

    The Los Alamos National Laboratory has been disposing of radioactive wastes since 1944. Environmental studies and monitoring for radioactive contamination started concurrently. In this report, only two mechanisms and rates by which the radionuclides can enter the environment are studied in detail: subsurface transport of radionuclides by migrating water, and diffusion of tritiated water (HTO) in the vapor phase. The report also includes a section concerning the influence of moisture on shear strength and possible resulting subsidences occurring in the pit overburdens. Because subsurface transport of radionuclides is influenced by the hydraulic conductivity and this in turn is regulated by the moisture content of any given material, a study was also undertaken involving precipitation, the most important climatic element influencing the geohydrology of any given area. Further work is in progress to correlate HTO emanation to atmospheric and pedological properties, especially including thermal characteristics of the tuff.

  1. Laboratory investigation of constitutive property up-scaling in volcanic tuffs

    Energy Technology Data Exchange (ETDEWEB)

    Tidwell, V.C. [Sandia National Labs., Albuquerque, NM (United States). Geohydrology Dept.

    1996-08-01

    One of the critical issues facing the Yucca Mountain site characterization and performance assessment programs is the manner in which property up-scaling is addressed. Property up-scaling becomes an issue whenever heterogeneous media properties are measured at one scale but applied at another. A research program has been established to challenge current understanding of property up-scaling with the aim of developing and testing improved models that describe up-scaling behavior in a quantitative manner. Up-scaling of constitutive rock properties is investigated through physical experimentation involving the collection of suites of gas-permeability data measured over a range of discrete scales. To date, up-scaling studies have been performed on a series of tuff and sandstone (used as experimental controls) blocks. Samples include a welded, anisotropic tuff (Tiva Canyon Member of the Paintbrush Tuff, upper cliff microstratigraphic unit), and a moderately welded tuff (Tiva Canyon Member of the Paintbrush Tuff, Caprock microstratigraphic unit). A massive fluvial sandstone (Berea Sandstone) was also investigated as a means of evaluating the experimental program and to provide a point of comparison for the tuff data. Because unsaturated flow is of prime interest to the Yucca Mountain Program, scoping studies aimed at investigating the up-scaling of hydraulic properties under various saturated conditions were performed to compliment these studies of intrinsic permeability. These studies focused on matrix sorptivity, a constitutive property quantifying the capillarity of a porous medium. 113 refs.

  2. Voluminous lava-like precursor to a major ash-flow tuff: Low-column pyroclastic eruption of the Pagosa Peak Dacite, San Juan volcanic field, Colorado

    Science.gov (United States)

    Bachmann, Olivier; Dungan, M.A.; Lipman, P.W.

    2000-01-01

    The Pagosa Peak Dacite is an unusual pyroclastic deposit that immediately predated eruption of the enormous Fish Canyon Tuff (~5000 km3) from the La Garita caldera at 28 Ma. The Pagosa Peak Dacite is thick (to 1 km), voluminous (>200 km3), and has a high aspect ratio (1:50) similar to those of silicic lava flows. It contains a high proportion (40-60%) of juvenile clasts (to 3-4 m) emplaced as viscous magma that was less vesiculated than typical pumice. Accidental lithic fragments are absent above the basal 5-10% of the unit. Thick densely welded proximal deposits flowed rheomorphically due to gravitational spreading, despite the very high viscosity of the crystal-rich magma, resulting in a macroscopic appearance similar to flow-layered silicic lava. Although it is a separate depositional unit, the Pagosa Peak Dacite is indistinguishable from the overlying Fish Canyon Tuff in bulk-rock chemistry, phenocryst compositions, and 40Ar/39Ar age. The unusual characteristics of this deposit are interpreted as consequences of eruption by low-column pyroclastic fountaining and lateral transport as dense, poorly inflated pyroclastic flows. The inferred eruptive style may be in part related to synchronous disruption of the southern margin of the Fish Canyon magma chamber by block faulting. The Pagosa Peak eruptive sources are apparently buried in the southern La Garita caldera, where northerly extensions of observed syneruptive faults served as fissure vents. Cumulative vent cross-sections were large, leading to relatively low emission velocities for a given discharge rate. Many successive pyroclastic flows accumulated sufficiently rapidly to weld densely as a cooling unit up to 1000 m thick and to retain heat adequately to permit rheomorphic flow. Explosive potential of the magma may have been reduced by degassing during ascent through fissure conduits, leading to fracture-dominated magma fragmentation at low vesicularity. Subsequent collapse of the 75 x 35 km2 La Garita

  3. Lithostratigraphy of the Calico Hills Formation and Prow Pass Tuff (Crater Flat Group) at Yucca Mountain, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Moyer, T.C.; Geslin, J.K. [Science Applications International Corp., Las Vegas, NV (United States)

    1995-07-01

    Lithostratigraphic relations within the Calico Hills Formation and Prow Pass Tuff (Crater Flat Group) were reconstructed from analysis of core samples and observation of outcrop exposures. The Calico Hills Formation is composed of five nonwelded pyroclastic units (each formed of one or more pyroclastic-flow deposits) that overlie an interval of bedded tuff and a basal volcaniclastic sandstone unit. The Prow Pass Tuff is divided into four pyroclastic units and an underlying interval of bedded tuff. The pyroclastic units of the Prow Pass Tuff are distinguished by the sizes and amounts of their pumice and lithic clasts and their degree of welding. Pyroclastic units of the Prow Pass Tuff are distinguished from those of the Calico Hills Formation by their phenocryst assemblage, chemical composition, and ubiquitous siltstone lithic clasts. Downhole resistivity tends to mirror the content of authigenic minerals, primarily zeolites, in both for-mations and may be useful for recognizing the vitric-zeolite boundary in the study area. Maps of zeolite distribution illustrate that the bedded tuff and basal sandstone units of the Calico Hills Formation are altered over a wider area than the pyroclastic units of both the Calico Hills Formation and the upper Prow Pass Tuff.

  4. Welded Kimberlite?

    Science.gov (United States)

    van Straaten, B. I.; Kopylova, M. G.; Russell, J. K.; Scott Smith, B. H.

    2009-05-01

    Welding of pyroclastic deposits generally involves the sintering of hot glassy vesicular particles and requires the presence of a load and/or high temperatures. Welding can occur on various scales as observed in large welded pyroclastic flows, in small-volume agglutinated spatter rims, or as in coalesced clastogenic lava flows. In all these examples welding occurs mainly by reduction or elimination of porosity within the vesicular clasts and/or inter-clast pore space. The end result of welding in pyroclastic deposits is to produce dense, massive, coherent deposits. Here, we present a possible new end-member of the welding process: welding of non- vesicular pyroclasts in intra-crater kimberlite deposits. Kimberlite melt is a low-viscosity liquid carrying abundant crystals. Because of this, kimberlite eruptions generally produce non-vesicular pyroclasts. During welding, these pyroclast cannot deform by volume reduction to form typical fiamme. As a result, welding and compaction in kimberlites proceeds via the reduction of inter-clast pore space alone. The lack of porous pyroclasts limits the maximum amount of volumetric strain within pyroclastic kimberlite deposits to about 30%. This value is substantially lower than the limiting values for welding of more common felsic pyroclastic flows. The lower limit for volumetric strain in welded kimberlite deposits severely restricts the development of a fabric. In addition, pyroclastic kimberlite deposits commonly feature equant-shaped pyroclasts, and equant-shaped crystals. This, in turn, limits the visibility of the results of compaction and pore space reduction, as there are few deformable markers and elongate rigid markers that are able to record the strain during compaction. These features, together with the low viscosity of kimberlite magma and the stratigraphic position of these kimberlite deposits within the upper reaches of the volcanic conduit, call for careful interpretation of coherent-looking rocks in these

  5. Analysis of Conservative Tracer Tests in the Bullfrog, Tram, and Prow Pass Tuffs, 1996 to 1998, Yucca Mountain, Nye County, Nevada

    Science.gov (United States)

    Umari, Amjad; Fahy, Michael F.; Earle, John D.; Tucci, Patrick

    2008-01-01

    To evaluate the potential for transport of radionuclides in ground water from the proposed high-level nuclear-waste repository at Yucca Mountain, Nevada, conservative (nonsorbing) tracer tests were conducted among three boreholes, known as the C-hole Complex, and values for transport (or flow) porosity, storage (or matrix) porosity, longitudinal dispersivity, and the extent of matrix diffusion were obtained. The C-holes are completed in a sequence of Miocene tuffaceous rock, consisting of nonwelded to densely welded ash-flow tuff with intervals of ash-fall tuff and volcaniclastic rocks, covered by Quaternary alluvium. The lower part of the tuffaceous-rock sequence includes the Prow Pass, Bullfrog, and Tram Tuffs of the Crater Flat Group. The rocks are pervaded by tectonic and cooling fractures. Paleozoic limestone and dolomite underlie the tuffaceous rocks. Four radially convergent and one partially recirculating conservative (nonsorbing) tracer tests were conducted at the C-hole Complex from 1996 to 1998 to establish values for flow porosity, storage porosity, longitudinal dispersivity, and extent of matrix diffusion in the Bullfrog and Tram Tuffs and the Prow Pass Tuff. Tracer tests included (1) injection of iodide into the combined Bullfrog-Tram interval; (2) injection of 2,6 difluorobenzoic acid into the Lower Bullfrog interval; (3) injection of 3-carbamoyl-2-pyridone into the Lower Bullfrog interval; and (4) injection of iodide and 2,4,5 trifluorobenzoic acid, followed by 2,3,4,5 tetrafluorobenzoic acid, into the Prow Pass Tuff. All tracer tests were analyzed by the Moench single- and dual-porosity analytical solutions to the advection-dispersion equation or by superposition of these solutions. Nonlinear regression techniques were used to corroborate tracer solution results, to obtain optimal parameter values from the solutions, and to quantify parameter uncertainty resulting from analyzing two of the three radially convergent conservative tracer tests

  6. Explosive Welding of Pipes

    Science.gov (United States)

    Drennov, Oleg; Drennov, Andrey; Burtseva, Olga

    2013-06-01

    For connection by welding it is suggested to use the explosive welding method. This method is rather new. Nevertheless, it has become commonly used among the technological developments. This method can be advantageous (saving material and physical resources) comparing to its statical analogs (electron-beam welding, argon-arc welding, plasma welding, gas welding, etc.), in particular, in hard-to-reach areas due to their geographic and climatic conditions. Explosive welding of cylindrical surfaces is performed by launching of welded layer along longitudinal axis of construction. During this procedure, it is required to provide reliable resistance against radial convergent strains. The traditional method is application of fillers of pipe cavity, which are dense cylindrical objects having special designs. However, when connecting pipes consecutively in pipelines by explosive welding, removal of the fillers becomes difficult and sometimes impossible. The suggestion is to use water as filler. The principle of non-compressibility of liquid under quasi-dynamic loading is used. In one-dimensional gasdynamic and elastic-plastic calculations we determined non-deformed mass of water (perturbations, which are moving in the axial direction with sound velocity, should not reach the layer end boundaries for 5-7 circulations of shock waves in the radial direction). Linear dimension of the water layer from the zone of pipe coupling along axis in each direction is >= 2R, where R is the internal radius of pipe.

  7. Effect of moisture on tuff stone degradation

    NARCIS (Netherlands)

    Lubelli, B.A.; Nijland, T.G.

    2016-01-01

    Tuff stone elements with a large length/width ratio often suffer damage in the form of cracks parallel to the surface and spalling of the outer layer. The response of tuff to moisture might be a reason for this behaviour. This research aimed at verifying if differential dilation between parts with d

  8. In-situ tuff water migration/heater experiment: experimental plan

    Energy Technology Data Exchange (ETDEWEB)

    Johnstone, J.K.

    1980-08-01

    Tuffs on the Nevada Test Site (NTS) are currently under investigation as a potential isolation medium for heat-producing nuclear wastes. The National Academy of Sciences has concurred in our identification of the potentially large water content ({le}40 vol %) of tuffs as one of the important issues affecting their suitability for a repository. This Experimental Plan describes an in-situ experiment intended as an initial assessment of water generation/migration in response to a thermal input. The experiment will be conducted in the Grouse Canyon Welded Tuff in Tunnel U12g (G-Tunnel) located in the north-central region of the NTS. While the Grouse Canyon Welded Tuff is not a potential repository medium, it has physical, thermal, and mechanical properties very similar to those tuffs currently under consideration and is accessible at depth (400 m below the surface) in an existing facility. Other goals of the experiment are to support computer-code and instrumentation development, and to measure in-situ thermal properties. The experimental array consists of a central electrical heater, 1.2 m long x 10.2 cm diameter, surrounded by three holes for measuring water-migration behavior, two holes for measuring temperature profiles, one hole for measuring thermally induced stress in the rock, and one hole perpendicular to the heater to measure displacement with a laser. This Experimental Plan describes the experimental objectives, the technical issues, the site, the experimental array, thermal and thermomechanical modeling results, the instrumentation, the data-acquisition system, posttest characterization, and the organizational details.

  9. In-situ tuff water migration/heater experiment: experimental plan

    Energy Technology Data Exchange (ETDEWEB)

    Johnstone, J.K.

    1980-08-01

    Tuffs on the Nevada Test Site (NTS) are currently under investigation as a potential isolation medium for heat-producing nuclear wastes. The National Academy of Sciences has concurred in our identification of the potentially large water content ({le}40 vol %) of tuffs as one of the important issues affecting their suitability for a repository. This Experimental Plan describes an in-situ experiment intended as an initial assessment of water generation/migration in response to a thermal input. The experiment will be conducted in the Grouse Canyon Welded Tuff in Tunnel U12g (G-Tunnel) located in the north-central region of the NTS. While the Grouse Canyon Welded Tuff is not a potential repository medium, it has physical, thermal, and mechanical properties very similar to those tuffs currently under consideration and is accessible at depth (400 m below the surface) in an existing facility. Other goals of the experiment are to support computer-code and instrumentation development, and to measure in-situ thermal properties. The experimental array consists of a central electrical heater, 1.2 m long x 10.2 cm diameter, surrounded by three holes for measuring water-migration behavior, two holes for measuring temperature profiles, one hole for measuring thermally induced stress in the rock, and one hole perpendicular to the heater to measure displacement with a laser. This Experimental Plan describes the experimental objectives, the technical issues, the site, the experimental array, thermal and thermomechanical modeling results, the instrumentation, the data-acquisition system, posttest characterization, and the organizational details.

  10. FLUXES FOR MECHANIZED ELECTRIC WELDING,

    Science.gov (United States)

    WELDING FLUXES, WELDING ), (* WELDING , WELDING FLUXES), ARC WELDING , WELDS, STABILITY, POROSITY, WELDING RODS, STEEL, CERAMIC MATERIALS, FLUXES(FUSION), TITANIUM ALLOYS, ALUMINUM ALLOYS, COPPER ALLOYS, ELECTRODEPOSITION

  11. Arsenogoyazite in Cenozoic volcanic tuff at Tabalaopa Basin, Chihuahua, Mexico

    Science.gov (United States)

    Ren, M.; Rodriguez, A.; Goodell, P.

    2012-12-01

    Arsenogoyazite has been identified in Cenozoic volcanic tuff at Tabalaopa Basin, Chihuahua, Mexico. Tabalaopa Basin contains volcanic strata and the unconsolidated Quaternary deposit. Cenozoic volcanic tuff forms the low hill terrene in this area. It is a major reservoir for the City of Chihuahua groundwater. Arsenic anomaly (more than 20 ppb) has been observed at El Mimbre, northeast of the city. The exposed reddish color volcanic rocks are felsic welded tuff and rhyolite. Sanidine, quartz, and biotite phenocrysts show linear distribution within the fine grain matrix. The rocks contain large amount of vesicles which are lineated with the welding bends. White and colorless microsize crystals formed on the well of the cavities and the majority of them are K-feldspar. Quartz, Ti-magnetite, and arsenogoyazite are coexisting with feldspars. The sizes of the crystals in the cavities are 10 to several 10s of micrometers. The arsenic x-ray maps have been collected for the rock sections to locate the arsenic minerals. The crystals in cavities show euhedral shape. Most arsenic containing crystals have a near cubic form with triangle surfaces at some corners. The high resolution field-emission SEM images have been collected to study the symmetry of the crystals. EDS spectra for the high arsenic phases show three major elements As-Al-Sr and also minor amount of P-S-REE-Ca-Fe-Si. Since the arsenic minerals are growing on the wall of the vesicle, it is difficult to perform good electron microprobe analysis. Some primary microprobe data give following results in weight percent: SrO 11.8-13.1, CaO 0.2-0.3, FeO 0.3-0.5, Al2O3 28.6-30.9, La2O3 2.4-2.5, Ce2O3 2.3-.24, SiO2 1.1-3.6, As2O5 32.4-35.2, P2O5 1.7-1.9, SO3 0.8-1.4. This chemistry is similar to the reported arsenogoyazite chemical data. So this high arsenic phase is identified as arsenogoyazite. The arsenic anomaly in groundwater at El Mimbre, Chihuahua should be contributed from this arsenic mineral phase in the strata.

  12. Variability of the physical properties of tuff at Yucca Mountain, NV

    Energy Technology Data Exchange (ETDEWEB)

    Boyd, P.J.; Martin, R.J. III [New England Research, Inc., White River Junction, VT (United States); Price, R.H. [Sandia National Labs., Albuquerque, NM (United States)

    1994-12-31

    Lateral and vertical variabilities in the bulk and mechanical properties of silicic volcanic tuff at the potential nuclear waste repository site in Yucca Mountain, NV have been evaluated. Laboratory measurements have been performed on tuff specimens recovered from boreholes located to support the design of the Exploratory Studies Facility/North Ramp. The data include dry and saturated bulk densities, average grain density, porosity, compressional and shear wave velocities, elastic moduli, and compressional and tensional fracture strengths. Data from eight boreholes aligned in a northwest-southeast direction have been collected under the required quality assurance program. Three boreholes have penetrated the potential repository horizon. The information collected provides for an accurate appraisal of the variability of rock properties in the vicinity of the boreholes. As expected, there is substantial variability in the bulk and mechanical properties of the tuff with depth (lithology). This is due to variations in gross characteristics of the tuffs (e.g., cooling units, mode of deposition, etc.), as well as smaller scale features (welding, porosity, and internal structures) that have developed as a result of depositional and post-depositional mechanisms. An evaluation of the lateral variability in bulk and mechanical properties is somewhat limited, at this time, due to a lack of borehole control to the north and south (parallel to the depositional flow direction). Initial observations indicate that there is minimal lateral variability within lithologic units. There are observable differences however, that can be related to variability in specific properties (e.g., porosity, and internal structures).

  13. Pore-water extraction from unsaturated tuff by triaxial and one-dimensional compression methods, Nevada Test Site, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Mower, T.E. [PRC Environmental Management, Inc., Denver, CO (United States); Higgins, J.D. [Colorado School of Mines, Golden, CO (United States); Yang, In C.; Peters, C.A. [Geological Survey, Denver, CO (United States)

    1994-07-01

    The hydrologic system in the unsaturated tuff at Yucca Mountain, Nevada, is being evaluated for the US Department of Energy by the Yucca Mountain Project Branch of the US Geological Survey as a potential site for a high-level radioactive-waste repository. Part of this investigation includes a hydrochemical study that is being made to assess characteristics of the hydrologic system such as: traveltime, direction of flow, recharge and source relations, and types and magnitudes of chemical reactions in the unsaturated tuff. In addition, this hydrochemical information will be used in the study of the dispersive and corrosive effects of unsaturated-zone water on the radioactive-waste storage canisters. This report describes the design and validation of laboratory experimental procedures for extracting representative samples of uncontaminated pore water from welded and nonwelded, unsaturated tuffs from the Nevada Test Site.

  14. Development of waste packages for tuff

    Energy Technology Data Exchange (ETDEWEB)

    Rothman, A.J.

    1982-09-20

    The objective of this program is to develop nuclear waste packages that meet the Nuclear Regulatory Commission`s requirements for a licensed repository in tuff at the Nevada Test Site. Selected accomplishments for FY82 are: (1) Selection, collection of rock, and characterization of suitable outcrops (for lab experiments); (2) Rock-water interactions (Bullfrog Tuff); (3) Corrosion tests of ferrous metals; (4) Thermal modeling of waste package in host rock; (5) Preliminary fabrication tests of alternate backfills (crushed tuff); (6) Reviewed Westinghouse conceptual waste package designs for tuff and began modification for unsaturated zone; and (7) Waste Package Codes (BARIER and WAPPA) now running on our computer. Brief discussions are presented for rock-water interactions, corrosion tests of ferrous metals, and thermal and radionuclide migration modelling.

  15. Rheology of welding: Field constraints

    Science.gov (United States)

    Russell, K.; Quane, S.

    2003-04-01

    Pyroclastic deposits emplaced at high temperature and having sufficient thickness become welded via sintering, compaction and flattening of hot glassy particles. The welding process is attended by pronounced changes in the physical properties of the deposit and welding intensity can be tracked by measuring the density, porosity, fabric or strength of samples. Ultimately, the intensity of welding reflects the aggregate effects of load and residence time at temperatures above the glass transition temperature (Tg). This results in welding intensity varying with stratigraphic depth; vertical sections through welded ignimbrite deposits commonly show maximum (e.g., density) or minimum (porosity) values in physical properties in the lower half (30--40% above the base) of the unit. Here we explore the extent to which these data, serving as proxies for strain, can be used constrain the rheological properties of the pyroclastic deposit during the welding process. Our data include measurements of density, porosity, fabric and rock strength as a function of stratigraphic position for 4 sections through the Bandelier tuff, New Mexico. These profiles record changes in physical properties and, thus, map the cumulative strain associated with welding as a function of depth (load). We have used simple conductive heat transfer models to estimate cooling curves for each sample. Essentially, these curves provide the residence time within the "welding window" for each sample. The curves are dependent on sample position, thickness of ignimbrite, emplacement temperature and the glass transition temperature of the material. The unknowns in the problem are a number of physical constants in a generalized power-law relationship between strain-rate (ɛ') and stress (σ) for steady-state creep at constant load: ɛ' = A σ^n e[-Q/R T]. Specifically, we adopt an inverse-model approach whereby the observations on the natural material are used to constrain the pre-exponential constant (A), stress

  16. On the physics of unstable infiltration, seepage, and gravity drainage in partially saturated tuffs.

    Science.gov (United States)

    Faybishenko, B; Bodvarsson, G S; Salve, R

    2003-01-01

    To improve understanding of the physics of dynamic instabilities in unsaturated flow processes within the Paintbrush nonwelded unit (PTn) and the middle nonlithophysal portion of the Topopah Spring welded tuff unit (TSw) of Yucca Mountain, we analyzed data from a series of infiltration tests carried out at two sites (Alcove 4 and Alcove 6) in the Exploratory Studies Facility (ESF), using analytical and empirical functions. The analysis of infiltration rates measured at both sites showed three temporal scales of infiltration rate: (1) a macro-scale trend of overall decreasing flow, (2) a meso-scale trend of fast and slow motion exhibiting three-stage variations of the flow rate (decreasing, increasing, and [again] decreasing flow rate, as observed in soils in the presence of entrapped air), and (3) micro-scale (high frequency) fluctuations. Infiltration tests in the nonwelded unit at Alcove 4 indicate that this unit may effectively dampen episodic fast infiltration events; however, well-known Kostyakov, Horton, and Philip equations do not satisfactorily describe the observed trends of the infiltration rate. Instead, a Weibull distribution model can most accurately describe experimentally determined time trends of the infiltration rate. Infiltration tests in highly permeable, fractured, welded tuff at Alcove 6 indicate that the infiltration rate exhibits pulsation, which may have been caused by multiple threshold effects and water-air redistribution between fractures and matrix. The empirical relationships between the extrinsic seepage from fractures, matrix imbibition, and gravity drainage versus the infiltration rate, as well as scaling and self-similarity for the leading edge of the water front are the hallmark of the nonlinear dynamic processes in water flow under episodic infiltration through fractured tuff. Based on the analysis of experimental data, we propose a conceptual model of a dynamic fracture flow and fracture-matrix interaction in fractured tuff

  17. On the physics of unstable infiltration, seepage, and gravity drainage in partially saturated tuffs

    Energy Technology Data Exchange (ETDEWEB)

    Faybishenko, B.; Bodvarsson, G.S.; Salve, R.

    2002-04-01

    To improve understanding of the physics of dynamic instabilities in unsaturated flow processes within the Paintbrush nonwelded unit (PTn) and the middle nonlithophysal portion of the Tonopah Spring welded tuff unit (TSw) of Yucca Mountain, we analyzed data from a series of infiltration tests carried out at two sites (Alcove 4 and Alcove 6) in the Exploratory Studies Facility, using analytical and empirical functions. The analysis of infiltration rates measured at both sites showed three temporal scales of infiltration rate: (1) a macro-scale trend of overall decreasing flow, (2) a meso-scale trend of fast and slow motion exhibiting three-stage variations of the flow rate (decreasing, increasing, and [again] decreasing flow rate, as observed in soils in the presence of entrapped air), and (3) micro-scale (high frequency) fluctuations. Infiltration tests in the nonwelded unit at Alcove 4 indicate that this unit may effectively dampen episodic fast infiltration events; however, well-known Kostyakov, Horton, and Philip equations do not satisfactorily describe the observed trends of the infiltration rate. Instead, a Weibull distribution model can most accurately describe experimentally determined time trends of the infiltration rate. Infiltration tests in highly permeable, fractured, welded tuff at Alcove 6 indicate that the infiltration rate exhibits pulsation, which may have been caused by multiple threshold effects and water-air redistribution between fractures and matrix. The empirical relationships between the extrinsic seepage from fractures, matrix imbibition, and gravity drainage versus the infiltration rate, as well as scaling and self-similarity for the leading edge of the water front are the hallmark of the nonlinear dynamic processes in water flow under episodic infiltration through fractured tuff. Based on the analysis of experimental data, we propose a conceptual model of a dynamic fracture flow and fracture-matrix interaction in fractured tuff

  18. Welding Curriculum.

    Science.gov (United States)

    Alaska State Dept. of Education, Juneau. Div. of Adult and Vocational Education.

    This competency-based curriculum guide is a handbook for the development of welding trade programs. Based on a survey of Alaskan welding employers, it includes all competencies a student should acquire in such a welding program. The handbook stresses the importance of understanding the principles associated with the various elements of welding.…

  19. Advanced Welding Concepts

    Science.gov (United States)

    Ding, Robert J.

    2010-01-01

    Four advanced welding techniques and their use in NASA are briefly reviewed in this poster presentation. The welding techniques reviewed are: Solid State Welding, Friction Stir Welding (FSW), Thermal Stir Welding (TSW) and Ultrasonic Stir Welding.

  20. Anisotropy of the Topopah Spring Member Tuff

    Energy Technology Data Exchange (ETDEWEB)

    Martin, R.J. III; Boyd, P.J.; Haupt, R.W. [New England Research, Inc., White River Junction, VT (United States); Price, R.H. [Sandia National Labs., Albuquerque, NM (United States)

    1992-07-01

    Mechanical properties of the tuffaceous rocks within Yucca Mountain are needed for near and far-field modeling of the potential nuclear waste repository. If the mechanical properties are significantly anisotropic (i.e., direction-dependent), a more complex model is required. Relevant data from tuffs tested in earlier studies indicate that elastic and strength properties are anisotropic. This scoping study confirms the elastic anisotropy and concludes some tuffs are transversely isotropic. An approach for sampling and testing the rock to determine the magnitude of the anisotropy is proposed.

  1. Welding Technician

    Science.gov (United States)

    Smith, Ken

    2009-01-01

    About 95% of all manufactured goods in this country are welded or joined in some way. These welded products range in nature from bicycle handlebars and skyscrapers to bridges and race cars. The author discusses what students need to know about careers for welding technicians--wages, responsibilities, skills needed, career advancement…

  2. Properties of Tuffs, Grout and Other Materials.

    Science.gov (United States)

    1982-01-01

    Samples of tuff as-received have been wrapped in foil and sealed in beeswax in the field. Density and moisture content were determined from small pieces...received" density was deter- mined by weighing the chipped-off test specimen, coating it with wax, and measuring its volume using mercury displacement

  3. Evaluation of some Italian tuffs as compatible replacement stone for Römer tuff in the Netherlands

    NARCIS (Netherlands)

    Nijland, T.G.; Hees, R.P.J. van

    2007-01-01

    Rhenish tuffs from the volcanic Eifel region, Germany, are amongst the most prominent and voluminous natural stones in Dutch monuments. In particular, tuffs from the 11,900 bp Laacher See eruption have been used since Roman times, - hence the name Römer tuff-, and were widely used again in romanesqu

  4. Sorption of lanthanum ions by natural clinoptilolite tuff

    Science.gov (United States)

    Dampilova, B. V.; Zonkhoeva, E. L.

    2013-08-01

    The equilibrium and kinetics of sorption of lanthanum ions on natural clinoptilolite tuff are studied. It is demonstrated that sorption of lanthanum ions from diluted solutions occurs in micropores of clinoptilolite, and from concentrated solutions in the mesoporous structure of tuff. The main capacity of zeolite tuff is found in the secondary porous structure. The sorption of lanthanum ions is limited by diffusion in tuff grains. Lanthanum ions are regularly distributed in the tuff phase and interact with the Brønsted centers of large clinoptilolite cavities.

  5. Dense Breasts

    Science.gov (United States)

    ... also appear white on mammography, they can be hidden by or within dense breast tissue. Other imaging ... understanding of the possible charges you will incur. Web page review process: This Web page is reviewed ...

  6. Resistance welding

    DEFF Research Database (Denmark)

    Bay, Niels; Zhang, Wenqi; Rasmussen, Mogens H.

    2003-01-01

    Resistance welding comprises not only the well known spot welding process but also more complex projection welding operations, where excessive plastic deformation of the weld point may occur. This enables the production of complex geometries and material combinations, which are often not possible...... to weld by traditional spot welding operations. Such joining processes are, however, not simple to develop due to the large number of parameters involved. Development has traditionally been carried out by large experimental investigations, but the development of a numerical programme system has changed...... this enabling prediction of the welding performance in details. The paper describes the programme in short and gives examples on industrial applications. Finally investigations of causes for failure in a complex industrial joint of two dissimilar metals are carried out combining numerical modelling...

  7. Resistance welding

    DEFF Research Database (Denmark)

    Bay, Niels; Zhang, Wenqi; Rasmussen, Mogens H.

    2003-01-01

    this enabling prediction of the welding performance in details. The paper describes the programme in short and gives examples on industrial applications. Finally investigations of causes for failure in a complex industrial joint of two dissimilar metals are carried out combining numerical modelling......Resistance welding comprises not only the well known spot welding process but also more complex projection welding operations, where excessive plastic deformation of the weld point may occur. This enables the production of complex geometries and material combinations, which are often not possible...... to weld by traditional spot welding operations. Such joining processes are, however, not simple to develop due to the large number of parameters involved. Development has traditionally been carried out by large experimental investigations, but the development of a numerical programme system has changed...

  8. Closure development for high-level nuclear waste containers for the tuff repository; Phase 1, Final report

    Energy Technology Data Exchange (ETDEWEB)

    Robitz, E.S. Jr.; McAninch, M.D. Jr.; Edmonds, D.P. [Babcock and Wilcox Co., Lynchburg, VA (USA). Nuclear Power Div.]|[Babcock and Wilcox Co., Alliance, OH (USA). Research and Development Div.

    1990-09-01

    This report summarizes Phase 1 activities for closure development of the high-level nuclear waste package task for the tuff repository. Work was conducted under U.S. Department of Energy (DOE) Contract 9172105, administered through the Lawrence Livermore National Laboratory (LLNL), as part of the Yucca Mountain Project (YMP), funded through the DOE Office of Civilian Radioactive Waste Management (OCRWM). The goal of this phase was to select five closure processes for further evaluation in later phases of the program. A decision tree methodology was utilized to perform an objective evaluation of 15 potential closure processes. Information was gathered via a literature survey, industrial contacts, and discussions with project team members, other experts in the field, and the LLNL waste package task staff. The five processes selected were friction welding, electron beam welding, laser beam welding, gas tungsten arc welding, and plasma arc welding. These are felt to represent the best combination of weldment material properties and process performance in a remote, radioactive environment. Conceptual designs have been generated for these processes to illustrate how they would be implemented in practice. Homopolar resistance welding was included in the Phase 1 analysis, and developments in this process will be monitored via literature in Phases 2 and 3. Work was conducted in accordance with the YMP Quality Assurance Program. 223 refs., 20 figs., 9 tabs.

  9. Soldadura (Welding). Spanish Translations for Welding.

    Science.gov (United States)

    Hohhertz, Durwin

    Thirty transparency masters with Spanish subtitles for key words are provided for a welding/general mechanical repair course. The transparency masters are on such topics as oxyacetylene welding; oxyacetylene welding equipment; welding safety; different types of welds; braze welding; cutting torches; cutting with a torch; protective equipment; arc…

  10. Hydraulic characterization of hydrothermally altered Nopal tuff

    Energy Technology Data Exchange (ETDEWEB)

    Green, R.T.; Meyer-James, K.A. [Southwest Research Institute, San Antonio, TX (United States); Rice, G. [George Rice and Associates, San Antonio, TX (United States)

    1995-07-01

    Understanding the mechanics of variably saturated flow in fractured-porous media is of fundamental importance to evaluating the isolation performance of the proposed high-level radioactive waste repository for the Yucca Mountain site. Developing that understanding must be founded on the analysis and interpretation of laboratory and field data. This report presents an analysis of the unsaturated hydraulic properties of tuff cores from the Pena Blanca natural analog site in Mexico. The basic intent of the analysis was to examine possible trends and relationships between the hydraulic properties and the degree of hydrothermal alteration exhibited by the tuff samples. These data were used in flow simulations to evaluate the significance of a particular conceptual (composite) model and of distinct hydraulic properties on the rate and nature of water flow.

  11. Structure of metal matrix composites with an addition of tuff

    Directory of Open Access Journals (Sweden)

    M. Łach

    2010-07-01

    Full Text Available The article presents preliminary results of tests of metal matrix composites structure which was modified by an addition of powderedvolcanic tuff. Distribution and shape of ceramic particles as well as the quality of the bonding along the tuff- metal matrix interface werestudied. Depth of tuff element diffusion in the matrix as well as diffusion in tuff particles were checked. Micro-hardness and porosity of the composites were also tested. The tuff from Filipowice near the town of Krzeszowice was used for the tests. Powder metallurgy wasapplied to obtain the composites and the matrix materials were copper and 316L steel powders. The tuff was introduced in 2, 5 and 10 %by weight. To remove water from the channels of aluminosilicates, the tuff was baked at 850 oC for 4 hours and then cooled together withthe oven. The tests revealed good quality of the bonding of the tuff particles and the matrix and their even distribution. The addition of tuff improved the hardness of the composites and reduced their porosity which has great significance because of possible applications of this kind of materials in general and copper composites in particular. This gives grounds for further studies on volcanic tuff use in metal composites

  12. Comenditic and pantelleritic ash-flow tuffs from Volcan Las Navajas, Nayarit, Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, S.A.; Hebre, J.A.

    1985-01-01

    Two distinctive ash-flow tuffs occur around the base of Volcan Las Navajas, a Pleistocene trachyte - peralkaline rhyolite center located in the northwestern segment of the Mexican Volcanic belt. The lower ash-flow unit is locally up to 65 m thick, is lithic rich and contains pumice blocks of comenditic rhyolite. The unit is not extensively exposed, and thus its areal extent and volume cannot be determined. Its chemical characteristics and stratigraphic relationship to other products erupted from Las Navajas suggest that it is related to the formation of the older of the two calderas which occur on Las Navajas. Unconformably overlying this unwelded ash-flow is a pantelleritic airfall pumice unit which is locally welded. This airfall unit is conformably overlain by a welded as-flow tuff that contains fiamme of pantelleritic composition (72 %SiO/sub 2/, 8% FeO*, 900 ppm Zr, agpaitic index of 1.7) as well as pumice blocks that show evidence of various degrees of mixing between pantellerite and trachyte. This suggests eruption from a chemically zoned magma chamber. This unit is locally up to 20 m thick, although its top has been removed by erosion. It is found on all sides of Las Navajas except on the south where it may be covered by Volcan Sanganguey, a Pleistocene to Recent calc-alkaline volcano. The welded ash-flow has been dated by K - Ar at 0.2+/-0.1 m.y. Stratigraphically and chemically this ash-flow appears to be related to the formation of younger of the two calderas.

  13. WELDING TORCH

    Science.gov (United States)

    Correy, T.B.

    1961-10-01

    A welding torch into which water and inert gas are piped separately for cooling and for providing a suitable gaseous atmosphere is described. A welding electrode is clamped in the torch by a removable collet sleeve and a removable collet head. Replacement of the sleeve and head with larger or smaller sleeve and head permits a larger or smaller welding electrode to be substituted on the torch. (AEC)

  14. ELECTRIC WELDING EQUIPMENT AND AUTOMATION OF WELDING IN CONSTRUCTION,

    Science.gov (United States)

    WELDING , *ARC WELDING , AUTOMATION, CONSTRUCTION, INDUSTRIES, POWER EQUIPMENT, GENERATORS, POWER TRANSFORMERS, RESISTANCE WELDING , SPOT WELDING , MACHINES, AUTOMATIC, STRUCTURES, WIRING DIAGRAMS, USSR.

  15. Syllabus in Trade Welding.

    Science.gov (United States)

    New York State Education Dept., Albany. Bureau of Secondary Curriculum Development.

    The syllabus outlines material for a course two academic years in length (minimum two and one-half hours daily experience) leading to entry-level occupational ability in several welding trade areas. Fourteen units covering are welding, gas welding, oxyacetylene welding, cutting, nonfusion processes, inert gas shielded-arc welding, welding cast…

  16. High-temperature, large-volume, lavalike ash-flow tuffs without calderas in southwestern Idaho

    Science.gov (United States)

    Ekren, E.B.; McIntyre, David H.; Bennett, Earl H.

    1984-01-01

    Rhyolitic rocks were erupted from vents in and adjacent to the Owyhee Mountains and Owyhee Plateau of southwestern Idaho from 16 m.y. ago to about 10 m.y. ago. They were deposited on a highly irregular surface developed on a variety of basement rocks that include granitic rocks of Cretaceous age, quartz latite and rhyodacite tuffs and lava flows of Eocene age, andesitic and basaltic lava flows of Oligocene age, and latitic and basaltic lava flows of early Miocene age. The rhyolitic rocks are principally welded tuffs that, regardless of their source, have one feature in common-namely internal characteristics indicating en-masse, viscous lavalike flowage. The flowage features commonly include considerable thicknesses of flow breccia at the bases of various cooling units. On the basis of the tabular nature of the rhyolitic deposits, their broad areal extents, and the local preservation of pyroclastic textures at the bases, tops, and distal ends of some of the deposits, we have concluded that the rocks were emplaced as ash flows at extremely high temperatures and that they coalesced to liquids before final emplacement and cooling. Temperatures of l090?C and higher are indicated by iron-titanium oxide compositions. Rhyolites that are about 16 m.y. old are preserved mostly in the downdropped eastern and western flanks of the Silver City Range and they are inferred to have been erupted from the Silver City Range. They rarely contain more than about 2 percent phenocrysts that consist of quartz and subequal amounts of plagioclase and alkali feldspar; commonly, they contain biotite, and they are the only rhyolitic rocks in the area to do so. The several rhyolitic units that are 14 m.y. to about 10 m.y. old contain only pyroxene-principally ferriferous and intermediate pigeonites-as mafic constituents. The rhyolites of the Silver City Range comprise many cooling units, none of which can be traced for great distances. Rocks erupted from the Owyhee Plateau include two sequences

  17. Degraded dryland rehabilitation: boosting seedling survival using zeolitic tuff

    Science.gov (United States)

    Alhamad, Mohammad Noor; Alrbabah, Mohammad; Athamneh, Hana

    2016-04-01

    More than 90% of Jordan is broadly defined as rangelands. Most rangelands are located within the arid zone of the country. Extensive grazing occurs across much of the natural pastures resulting in serious environmental degradation of natural resources in these rangelands. Several programs were carried out for rangeland conservation and rehabilitation in the country. However, these programs face a major challenge of the low survival rate of transplanted shrub seedlings. Seeking innovative approaches to assure healthy establishment of seedling is a big challenge to achieve successful rehabilitation programs. Drought is considered one of the major problems in rehabilitation. Promoting survival and growth, using zeolitic tuff added to planting holes is suggested to be a possible solution. The experiment was conducted on a factorial arrangement within RCBD design. Two shrub species (Atriplex halimus, Atriplex nummularia) were transplanted into holes prepared with three levels of tuff treatments (mulching, mixing and control) under rainfed condition. The result showed insignificant effect of tuff on seedling survival percentage, when mixing tuff with plantation soil or adding tuff as mulch. Also, the two species showed similar survival percentages over two measured dates. However, mixing tuff with soil during hole preparation significantly enhanced seedling heights. Furthers, The Australian atriplex (Atriplex nummularia) species significantly grow higher than Atriplex halimus. The study results suggested that mixing zeoltic tuff with soil during transplantation of seedling is promising in improving the success of rangeland rehabilitation in dry areas in Jordan.

  18. Welding Curtains

    Science.gov (United States)

    1984-01-01

    Concept of transparent welding curtains made of heavy duty vinyl originated with David F. Wilson, President of Wilson Sales Company. In 1968, Wilson's curtains reduced glare of welding arc and blocked ultraviolet radiation. When later research uncovered blue light hazards, Wilson sought improvement of his products. He contracted Dr. Charles G. Miller and James B. Stephens, both of Jet Propulsion Laboratory (JPL), and they agreed to undertake development of a curtain capable of filtering out harmful irradiance, including ultraviolet and blue light and provide protection over a broad range of welding operation. Working on their own time, the JPL pair spent 3 years developing a patented formula that includes light filtering dyes and small particles of zinc oxide. The result was the Wilson Spectra Curtain.

  19. ARc Welding (Industrial Processing Series).

    Science.gov (United States)

    ARC WELDING , *BIBLIOGRAPHIES), (*ARC WELDS, BIBLIOGRAPHIES), ALUMINUM ALLOYS, TITANIUM ALLOYS, CHROMIUM ALLOYS, METAL PLATES, SPOT WELDING , STEEL...INERT GAS WELDING , MARAGING STEELS, MICROSTRUCTURE, HEAT RESISTANT ALLOYS, HEAT RESISTANT METALS, WELDABILITY, MECHANICAL PROPERTIES, MOLYBDENUM ALLOYS, NICKEL ALLOYS, RESISTANCE WELDING

  20. Evaluation of three Italian tuffs (Neapolitan Yellow Tuf, Tufo Romano and Tufo Etrusco) as compatible replacement stone for Römer tuff in Dutch built cultural heritage

    NARCIS (Netherlands)

    Nijland, T.G.; Hees, R.P.J. van; Bolondi, L.

    2010-01-01

    Rhenish tuffs from the volcanic Eifel region in Germany, in particular the so-called Römer tuff, are among the most prominent and voluminous natural stones in Dutch monuments. The Römer tuff has been used since Roman times, and was widely used again in Romanesque (and to a lesser extent Romano-Gothi

  1. Evaluation of three Italian tuffs (Neapolitan Yellow Tuf, Tufo Romano and Tufo Etrusco) as compatible replacement stone for Römer tuff in Dutch built cultural heritage

    NARCIS (Netherlands)

    Nijland, T.G.; Hees, R.P.J. van; Bolondi, L.

    2010-01-01

    Rhenish tuffs from the volcanic Eifel region in Germany, in particular the so-called Römer tuff, are among the most prominent and voluminous natural stones in Dutch monuments. The Römer tuff has been used since Roman times, and was widely used again in Romanesque (and to a lesser extent

  2. Photon Shielding Features of Quarry Tuff

    Directory of Open Access Journals (Sweden)

    Vega-Carrillo Hector Rene

    2017-01-01

    Full Text Available Cantera is a quarry tuff widely used in the building industry; in this work the shielding features of cantera were determined. The shielding characteristics were calculated using XCOM and MCNP5 codes for 0.03, 0.07, 0.1, 0.3, 0.662, 1, 2, and 3 MeV photons. With XCOM the mass interaction coefficients, and the total mass attenuation coefficients, were calculated. With the MCNP5 code a transmission experiment was modelled using a point-like source located 42 cm apart from a point-like detector. Between the source and the detector, cantera pieces with different thickness, ranging from 0 to 40 cm were included. The collided and uncollided photon fluence, the Kerma in air and the Ambient dose equivalent were estimated. With the uncollided fluence the linear attenuation coefficients were determined and compared with those calculated with XCOM. The linear attenuation coefficient for 0.662 MeV photons was compared with the coefficient measured with a NaI(Tl-based γ-ray spectrometer and a 137Cs source.

  3. Photon Shielding Features of Quarry Tuff

    Science.gov (United States)

    Vega-Carrillo, Hector Rene; Hernandez-Adame, Luis; Guzman-Garcia, Karen Arlete; Ortiz-Hernandez, Arturo Agustin; Rodriguez-Rodriguez, Jose Antonio; Juarez-Alvarado, Cesar Antonio

    2017-09-01

    Cantera is a quarry tuff widely used in the building industry; in this work the shielding features of cantera were determined. The shielding characteristics were calculated using XCOM and MCNP5 codes for 0.03, 0.07, 0.1, 0.3, 0.662, 1, 2, and 3 MeV photons. With XCOM the mass interaction coefficients, and the total mass attenuation coefficients, were calculated. With the MCNP5 code a transmission experiment was modelled using a point-like source located 42 cm apart from a point-like detector. Between the source and the detector, cantera pieces with different thickness, ranging from 0 to 40 cm were included. The collided and uncollided photon fluence, the Kerma in air and the Ambient dose equivalent were estimated. With the uncollided fluence the linear attenuation coefficients were determined and compared with those calculated with XCOM. The linear attenuation coefficient for 0.662 MeV photons was compared with the coefficient measured with a NaI(Tl)-based γ-ray spectrometer and a 137Cs source.

  4. Transport properties of Topopah Spring tuff

    Energy Technology Data Exchange (ETDEWEB)

    Lin, W.; Daily, W.

    1984-10-01

    Electrical resistivity, ultrasonic P-waves velocity, and water permeability were measured simultaneously on both intact and fractured Topopah Spring tuff samples at a confining pressure of 5.0 MPa, pore pressures to 2.5 MPa, and temperatures to 140{sup 0}C. The tested samples were subjected to three dehydration and rehydration cycles. The dehydrations were accomplished at a temperature of 140{sup 0}C, and the rehydrations were accomplished at various combinations of temperature and pore pressures so that the wetting fluid was either liquid water, steam or both. The electrical resistivity measurements indicate that for the intact sample, the drying and resaturation took place fairly uniformly throughout the sample. On the other hand, for the fractured sample, the drying and resaturation was spatially quite nonuniform. When samples had been subjected to 5 MPa of confining pressure and 140{sup 0}C for several weeks, a gradual monotonic drift in resistivity was measured (decreasing resistivity when dry; increasing resistivity when wet). This may be the result of either minerological changes or grain boundary movement. In any case, the phenomenon may have important consequences on long term repository performance, and should be studied further. The permeability of the intact sample was independent of temperature, dehydration and rehydration cycles, and time. The permeability of the fractured sample, initially dominated by the fracture, decreased by about one order of magnitude after each dehydration and rehydration cycle. 11 references, 12 figures, 3 tables.

  5. Compositional zoning of the bishop tuff

    Science.gov (United States)

    Hildreth, W.; Wilson, C.J.N.

    2007-01-01

    Compositional data for >400 pumice clasts, organized according to eruptive sequence, crystal content, and texture, provide new perspectives on eruption and pre-eruptive evolution of the >4600 km3 of zoned rhyolitic magma ejected as the BishopTuff during formation of Long Valley caldera. Proportions and compositions of different pumice types are given for each ignimbrite package and for the intercalated plinian pumice-fall layers that erupted synchronously. Although withdrawal of the zoned magma was less systematic than previously realized, the overall sequence displays trends toward greater proportions of less evolved pumice, more crystals (0-5 24 wt %), and higher FeTi-oxide temperatures (714-818??C). No significant hiatus took place during the 6 day eruption of the BishopTuff, nearly all of which issued from an integrated, zoned, unitary reservoir. Shortly before eruption, however, the zoned melt-dominant portion of the chamber was invaded by batches of disparate lower-silica rhyolite magma, poorer in crystals than most of the resident magma but slightly hotter and richer in Ba, Sr, andTi. Interaction with resident magma at the deepest levels tapped promoted growth ofTi-rich rims on quartz, Ba-rich rims on sanidine, and entrapment of near-rim melt inclusions relatively enriched in Ba and CO2.Varied amounts of mingling, even in higher parts of the chamber, led to the dark gray and swirly crystal-poor pumices sparsely present in all ashflow packages. As shown by FeTi-oxide geothermometry, the zoned rhyolitic chamber was hottest where crystal-richest, rendering any model of solidification fronts at the walls or roof unlikely.The main compositional gradient (75-195 ppm Rb; 0.8-2.2 ppm Ta; 71-154 ppm Zr; 0.40-1.73% FeO*) existed in the melt, prior to crystallization of the phenocryst suite observed, which included zircon as much as 100 kyr older than the eruption.The compositions of crystals, though themselves largely unzoned, generally reflect magma temperature and

  6. Welding processes handbook

    CERN Document Server

    Weman, Klas

    2011-01-01

    Offers an introduction to the range of available welding technologies. This title includes chapters on individual techniques that cover principles, equipment, consumables and key quality issues. It includes material on such topics as the basics of electricity in welding, arc physics, and distortion, and the weldability of particular metals.$bThe first edition of Welding processes handbook established itself as a standard introduction and guide to the main welding technologies and their applications. This new edition has been substantially revised and extended to reflect the latest developments. After an initial introduction, the book first reviews gas welding before discussing the fundamentals of arc welding, including arc physics and power sources. It then discusses the range of arc welding techniques including TIG, plasma, MIG/MAG, MMA and submerged arc welding. Further chapters cover a range of other important welding technologies such as resistance and laser welding, as well as the use of welding techniqu...

  7. Friction Stir Welding

    Science.gov (United States)

    Nunes, Arthur C., Jr.

    2008-01-01

    Friction stir welding (FSW) is a solid state welding process invented in 1991 at The Welding Institute in the United Kingdom. A weld is made in the FSW process by translating a rotating pin along a weld seam so as to stir the sides of the seam together. FSW avoids deleterious effects inherent in melting and promises to be an important welding process for any industries where welds of optimal quality are demanded. This article provides an introduction to the FSW process. The chief concern is the physical effect of the tool on the weld metal: how weld seam bonding takes place, what kind of weld structure is generated, potential problems, possible defects for example, and implications for process parameters and tool design. Weld properties are determined by structure, and the structure of friction stir welds is determined by the weld metal flow field in the vicinity of the weld tool. Metal flow in the vicinity of the weld tool is explained through a simple kinematic flow model that decomposes the flow field into three basic component flows: a uniform translation, a rotating solid cylinder, and a ring vortex encircling the tool. The flow components, superposed to construct the flow model, can be related to particular aspects of weld process parameters and tool design; they provide a bridge to an understanding of a complex-at-first-glance weld structure. Torques and forces are also discussed. Some simple mathematical models of structural aspects, torques, and forces are included.

  8. Distortion Control during Welding

    NARCIS (Netherlands)

    Akbari Pazooki, A.M.

    2014-01-01

    The local material expansion and contraction involved in welding result in permanent deformations or instability i.e., welding distortion. Considerable efforts have been made in controlling welding distortion prior to, during or after welding. Thermal Tensioning (TT) describes a group of in-situ met

  9. Introduction to Welding.

    Science.gov (United States)

    Fortney, Clarence; Gregory, Mike

    This curriculum guide provides six units of instruction on basic welding. Addressed in the individual units of instruction are the following topics: employment opportunities for welders, welding safety and first aid, welding tools and equipment, basic metals and metallurgy, basic math and measuring, and procedures for applying for a welding job.…

  10. Laser welding in space

    Science.gov (United States)

    Kaukler, W. F.; Workman, G. L.

    1991-01-01

    Autogenous welds in 304 stainless steel were performed by Nd-YAG laser heating in a simulated space environment. Simulation consists of welding on the NASA KC-135 aircraft to produce the microgravity and by containing the specimen in a vacuum chamber. Experimental results show that the microgravity welds are stronger, harder in the fusion zone, have deeper penetration and have a rougher surface rippling of the weld pool than one-g welds. To perform laser welding in space, a solar-pumped laser concept that significantly increases the laser conversion efficiency and makes welding viable despite the limited power availability of spacecraft is proposed.

  11. Mobility of Metal Tracers in Unsaturated Tuffs of Busted Butte

    Science.gov (United States)

    Groffman, A. R.

    2001-12-01

    A complex tracer mixture was injected continuously for over two years into a 10 m x 10 m x 7 m block of unsaturated tuff as part of the Busted Butte unsaturated-zone tracer test at Yucca Mountain. The test was designed to measure tracer transport within the Topopah Springs and Calico Hills tuffs, units that occur between the potential high-level nuclear waste repository at Yucca Mountain and the water table below. The mixture included nonreactive (Br, I, and fluorinated benzoic acids (FBAs)) and reactive tracers (Li, Ce, Sm, Ni, Co, and Mn). Bromide, I, FBAs, and Li were detected during the test on absorbent pads emplaced in a series of solute collection boreholes located beneath the injectors but the more strongly sorbing metals did not reach the collection boreholes during this period. To determine the distribution and mobility of these metals, tracer constituents were extracted from tuff samples collected during overcoring and mineback of the test block. Tracers were extracted from the tuff samples by leaching with a 5% nitric acid solution for metals and a bicarbonate-carbonate buffer for anions. Results from the overcore sample suite show that metals have migrated through the tuff in the region adjacent to and immediately below the tracer injectors. Consistent with laboratory sorption measurements and observed breakthrough in the collection boreholes, rock analyses showed that Li is the most mobile of the metals. Co and Ni behave similarly, traveling tens of cm from the injection sites, while Sm and Ce moved far less, possibly due to precipitation reactions in addition to sorption. Determination of Mn transport is complicated by high background concentrations in the tuff; additional background samples are currently being evaluated. As expected, our rock analyses show that the nonreactive tracers Br and FBAs have moved beyond the overcore region, corroborating results from collection boreholes.

  12. Pyritic ash-flow tuff, Yucca Mountain, Nevada -- A discussion

    Energy Technology Data Exchange (ETDEWEB)

    Weiss, S.I.; Larson, L.T.; Noble, D.C. [Univ. of Nevada, Reno, NV (United States)

    1994-12-31

    Textural and mineralogic evidence exists for at least one episode of widespread hydrothermal alteration of volcanic rocks deep in Yucca Mountain, Nevada. Despite this evidence, Castor et al. infer that most of the pyrite found in tuffs at Yucca Mountain was introduced as ejecta (lithic fragments) incorporated during the eruptions of the tuffs, rather than by in-situ hydrothermal activity. Their conclusions appear to be based on their observation that most of the pyrite resides in unaltered to variably altered and veined lithic fragments, whereas pyrite-bearing veins are absent in the tuff matrix, titanomagnetite and mafic phenocrysts in the matrix are generally not replaced by pyrite, and feldspar phenocrysts in the pyritic tuff matrix are generally unaltered. Castor et al. dismiss the much smaller quantities of pyrite disseminated in the tuff matrix, including relatively rare pyritized hornblende and biotite grains, as xenolithic as well. The pyritic tuffs belong to large-volume, subalkaline rhyolite ash-flow units (ca. > 150 to 250 km{sup 3} each). The interpretation of Castor et al. has broad implications for the temperature, fO{sub 2} and fS{sub 2} of major ash flow eruptions. Pyrite origin also bears on the nature of past fluid flow and water-rock reactions at Yucca Mountain, which in turn are important factors in assessing the potential for currently undiscovered mineral resources in the area of the proposed nuclear waste repository. We have studied core and cuttings from the same drill holes studied by Castor et al., as well as other drill holes. It is our contention that the inconsistent lateral and stratigraphic distribution of the pyrite, textural features of the pyrite, and phase stability considerations are incompatible with the {open_quotes}lithic{close_quotes} origin of Castor et al., and are more reasonably explained by in-situ formation from hydrothermal fluids containing low, but geochemically significant, concentrations of reduced sulfur.

  13. Biogas cleaning and upgrading with natural zeolites from tuffs.

    Science.gov (United States)

    Paolini, Valerio; Petracchini, Francesco; Guerriero, Ettore; Bencini, Alessandro; Drigo, Serena

    2016-01-01

    CO2 adsorption on synthetic zeolites has become a consolidated approach for biogas upgrading to biomethane. As an alternative to synthetic zeolites, tuff waste from building industry was investigated in this study: indeed, this material is available at a low price and contains a high fraction of natural zeolites. A selective adsorption of CO2 and H2S towards CH4 was confirmed, allowing to obtain a high-purity biomethane (CO2 zeolites from tuffs may successfully be used in a pressure/vacuum swing adsorption process.

  14. Advanced Welding Applications

    Science.gov (United States)

    Ding, Robert J.

    2010-01-01

    Some of the applications of advanced welding techniques are shown in this poster presentation. Included are brief explanations of the use on the Ares I and Ares V launch vehicle and on the Space Shuttle Launch vehicle. Also included are microstructural views from four advanced welding techniques: Variable Polarity Plasma Arc (VPPA) weld (fusion), self-reacting friction stir welding (SR-FSW), conventional FSW, and Tube Socket Weld (TSW) on aluminum.

  15. Uniaxial strength testing of Calico Hills tuff, Yucca Mountain: Preliminary results

    Energy Technology Data Exchange (ETDEWEB)

    Li, Qizhi; Schultz, R.A. [Univ. of Nevada, Reno, NV (United States)

    1994-12-31

    A detailed investigation of the strength properties of Calico Hills tuff was undertaken to further characterize the behavior of this unit. Uniaxial compression test on 47 samples of massive and reworked tuff show a dependence of peak strength and Young`s modulus on the total porosity, and thus on the geologic history of the Calico Hills tuff. Controlled deformation of test specimens documents axial splitting and faulting as failure mechanisms in the post-peak region of these brittle tuffs.

  16. Petrochemical variation of Topopah Spring tuff matrix with depth (stratigraphic level), drill hole USW G-4, Yucca Mountain, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Byers, F.M. Jr.

    1985-12-01

    This study describes and interprets petrochemical variation of the matrix (excluding fractures and large gas cavities) of the Topopah Spring Member of the Paintbrush Tuff. This tuff includes the candidate host rock for a high-level nuclear waste repository at Yucca Mountain on the Nevada Test Site. Cored hole USW G-4, near the site of a potential exploratory shaft at Yucca Mountain, penetrated 359.4 m (1179 ft) of the member within the unsaturated zone. This study shows that petrographic textures and chemistry of the matrix vary systematically within recognizable lithologic subunits related to crystallization (cooling) zones, welding (compaction) zones, and compositional zones (rhyolite versus quartz latite). The methods used for this study include petrographic modal thin section analysis using an automated counter and electron microprobe analysis of the groundmass. Distinctive textural categories are defined, and they can be ranked from finest to coarsest as vitrophyre (glass), cryptocrystalline groundmass, spherulites, granophyre, lithic fragments, and phenocrysts. The two main groundmass compositions are also defined: rhyolite high silica) and quartz latite. The value of these petrochemical studies lies in providing microscopic criteria for recognizing the zonal subunits where they may have greatly limited exposure, as in mined drifts and in core from horizontal drill holes. For example, the lower nonlithophysal zone can be distinguished microscopically from the middle nonlithophysal zone by (1) degree of compaction, (2) amount of quartz, and (3) amount of lithic fragments. The variability between these textural categories should also be considered in designing physical and chemical tests of the Topopah Spring.

  17. Potentiodynamic polarization studies on candidate container alloys for the Tuff Repository

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, N.G.; Beavers, J.A.; Durr, C.L. [Cortest Columbus Technologies, OH (United States)

    1992-01-01

    Cortest Columbus Technologies, Inc. (CC Technologies) is investigating the long-term performance of container materials used for high-level radioactive waste packages. This information is being developed for the Nuclear Regulatory Commission to aid in their assessment of the Department of Energy`s application to construct a geologic repository for disposal of high-level radioactive waste. This report summarizes the results of cyclic-potentiodynamic-polarization (CCP) studies performed on candidate container materials for the Tuff Repository. The CPP technique was used to provide an understanding of how specific variables such as environmental composition, temperature, alloy composition, and welding affect both the general- and localized-corrosion behavior of two copper-base and two Fe-Cr-Ni alloys in simulated repository environments. A statistically-designed test solution matrix was formulated, based on an extensive search of the literature, to evaluate the possible range of environmental species that may occur in the repository over the life of the canister. Forty-two CPP curves were performed with each alloy and the results indicated that several different types of corrosion were possible. The copper-base alloys exhibited unusual CCP behavior in that hysteresis was not always associated with pitting. The effects of temperature on the corrosions behavior were evaluated in two types of tests; isothermal tests at temperatures from 50{degrees}C to 90{degrees}C and heat-transfer tests where the solution was maintained at 50{degrees}C and the specimen was internally heated to 90{degrees}C. In the isothermal test, CPP curves were obtained with each alloy in simulated environments at 50{degrees}C, 75{degrees}C, and 90{degrees}C. The results of these CCP experiments indicated that no systematic trends were evident for the environments tested. Lastly, the effects of welding on the corrosion behavior of the alloys in simulated environments were examined.

  18. Influence of deterministic geologic trends on spatial variability of hydrologic properties in volcanic tuff

    Energy Technology Data Exchange (ETDEWEB)

    Rautman, C.A. [Sandia National Labs., Albuquerque, NM (United States); Flint, A.L. [Geological Survey, Mercury, NV (United States); Chornack, M.P. [Geological Survey, Denver, CO (United States); Istok, J.D. [Oregon State Univ., Corvallis, OR (United States). Dept. of Civil Engineering; Fling, L.E. [Raytheon Services Nevada, Mercury, NV (United States)

    1992-12-31

    Hydrologic properties have been measured on outcrop samples taken from a detailed, two-dimension grid covering a 1.4 km outcrop exposure of the 10-m thick non-welded-to-welded, shardy base microstratigraphic unit of the Tiva Canyon Member of the Miocene Paintbrush Tuff at Yucca Mountain, Nevada. These data allow quantification of spatial trends in rock matrix properties that exist in this important hydrologic unit. Geologic investigation, combined with statistical and geostatistical analyses of the numerical data, indicates that spatial variability of matrix properties is related to deterministic geologic processes that operated throughout the region. Linear vertical trends in hydrologic properties are strongly developed in the shardy base microstratigraphic unit, and they are more accurately modeled using the concept of a thickness-normalized stratigraphic elevation within the unit, rather than absolute elevation. Hydrologic properties appear to be correlated over distances of 0.25 to 0.3 of the unit thickness after removing the deterministic vertical trend. The use of stratigraphic elevation allows scaling of identified trends by unit thickness which may be of particular importance in a basal, topography-blanketing unit such as this one. Horizontal changes in hydrologic properties do not appear to form obvious trends within the limited lateral geographic extent of the ash-flow environment that was examined. Matrix properties appear to be correlated horizontally over distances between 100 and 400 m. The existence and quantitative description of these trends and patterns of vertical spatial continuity should increase confidence in models of hydrologic properties and groundwater flow in this area that may be constructed to support the design of a potential high-level nuclear waste repository at Yucca Mountain.

  19. Dense topological spaces and dense continuity

    Science.gov (United States)

    Aldwoah, Khaled A.

    2013-09-01

    There are several attempts to generalize (or "widen") the concept of topological space. This paper uses equivalence relations to generalize the concept of topological space via the concept of equivalence relations. By the generalization, we can introduce from particular topology on a nonempty set X many new topologies, we call anyone of these new topologies a dense topology. In addition, we formulate some simple properties of dense topologies and study suitable generalizations of the concepts of limit points, closeness and continuity, as well as Jackson, Nörlund and Hahn dense topologies.

  20. Revised ages for tuffs of the Yellowstone Plateau volcanic field: Assignment of the Huckleberry Ridge Tuff to a new geomagnetic polarity event

    Science.gov (United States)

    Lanphere, M.A.; Champion, D.E.; Christiansen, R.L.; Izett, G.A.; Obradovich, J.D.

    2002-01-01

    40Ar/39Ar ages were determined on the three major ash-flow tuffs of the Yellowstone Plateau volcanic field in the region of Yellowstone National Park in order to improve the precision of previously determined ages. Total-fusion and incremental-heating ages of sanidine yielded the following mean ages: Huckleberry Ridge Tuff-2.059 ?? 0.004 Ma; Mesa Falls Tuff-1.285 ?? 0.004 Ma; and Lava Creek Tuff-0.639 ?? 0.002 Ma. The Huckleberry Ridge Tuff has a transitional magnetic direction and has previously been related to the Reunion Normal-Polarity Subchron. Dating of the Reunion event has been reviewed and its ages have been normalized to a common value for mineral standards. The age of the Huckleberry Ridge Tuff is significantly younger than lava flows of the Reunion event on Re??union Island, supporting other evidence for a normal-polarity event younger than the Reunion event.

  1. Welded solar cell interconnection

    Science.gov (United States)

    Stofel, E. J.; Browne, E. R.; Meese, R. A.; Vendura, G. J.

    1982-01-01

    The efficiency of the welding of solar-cell interconnects is compared with the efficiency of soldering such interconnects, and the cases in which welding may be superior are examined. Emphasis is placed on ultrasonic welding; attention is given to the solar-cell welding machine, the application of the welding process to different solar-cell configurations, producibility, and long-life performance of welded interconnects. Much of the present work has been directed toward providing increased confidence in the reliability of welding using conditions approximating those that would occur with large-scale array production. It is concluded that there is as yet insufficient data to determine which of three methods (soldering, parallel gap welding, and ultrasonic welding) provides the longest-duration solar panel life.

  2. Physical properties of ash flow tuff from Yucca Mountain, Nevada

    Science.gov (United States)

    Nelson, Philip H.; Anderson, Lennart A.

    1992-05-01

    The density and porosity of 198 samples of ash flow tuffs from three boreholes at Yucca Mountain, Nevada, are measured and determined. The electrical properties, velocity, and permeability of many of these samples are also determined. Zeolites and clays are found to reduce the grain density, increase the electrical conductivity, reduce the compressional velocity, and reduce the permeability.

  3. Summary of Radionuclide Reactive Transport Experiments in Fractured Tuff and Carbonate Rocks from Yucca Flat, Nevada Test Site

    Energy Technology Data Exchange (ETDEWEB)

    Zavarin, M; Roberts, S; Reimus, P; Johnson, M

    2006-10-11

    In the Yucca Flat basin of the Nevada Test Site (NTS), 747 shaft and tunnel nuclear detonations were conducted primarily within the tuff confining unit (TCU) or the overlying alluvium. The TCU in the Yucca Flat basin is hypothesized to inhibit radionuclide migration to the highly transmissive and regionally extensive lower carbonate aquifer (LCA) due to its wide-spread aerial extent, low permeability, and chemical reactivity. However, fast transport pathways through the TCU by way of fractures may provide a migration path for radionuclides to the LCA. Radionuclide transport in both TCU and the LCA fractures is likely to determine the location of the contaminant boundary for the Yucca Flat/Climax Mine Corrective Action Unit (CAU). Radionuclide transport through the TCU may involve both matrix and fracture flow. However, radionuclide migration over significant distances is likely to be dominated by fracture transport. Transport through the LCA will almost certainly be dominated by fracture flow, as the LCA has a very dense, low porosity matrix with very low permeability. Because of the complex nature of reactive transport in fractures, a stepwise approach to identifying mechanisms controlling radionuclide transport was used. The simplest LLNL experiments included radionuclide transport through synthetic parallel-plate fractured tuff and carbonate cores. These simplified fracture transport experiments isolated matrix diffusion and sorption effects from all other fracture transport processes (fracture lining mineral sorption, heterogeneous flow, etc.). Additional fracture transport complexity was added by performing induced fractured LCA flowthrough experiments (effect of aperture heterogeneity) or iron oxide coated parallel plate TCU flowthrough experiments (effect of fracture lining minerals). Finally naturally fractured tuff and carbonate cores were examined at LLNL and LANL. All tuff and carbonate core used in the experiments was obtained from the USGS Core Library

  4. Permeameter studies of water flow through cement and clay borehole seals in granite, basalt and tuff

    Energy Technology Data Exchange (ETDEWEB)

    South, D.L.; Daemen, J.J.K.

    1986-10-01

    Boreholes near a repository must be sealed to prevent rapid migration of radionuclide-contaminated water to the accessible environment. The objective of this research is to assess the performance of borehole seals under laboratory conditions, particularly with regard to varying stress fields. Flow through a sealed borehole is compared with flow through intact rock. Cement or bentonite seals have been tested in granite, basalt, and welded tuff. The main conclusion is that under laboratory conditions, existing commercial materials can form high quality seals. Triaxial stress changes about a borehole do not significantly affect seal performance if the rock is stiffer than the seal. Temperature but especially moisture variations (drying) significantly degrade the quality of cement seals. Performance partially recovers upon resaturation. A skillfully sealed borehole may be as impermeable as the host rock. Analysis of the influence of relative seal-rock permeabilities shows that a plug with permeability one order of magnitude greater than that of the rock results in a flow increase through the hole and surrounding rock of only 1-1/2 times compared to the undisturbed rock. Since a borehole is only a small part of the total rock mass, the total effect is even less pronounced. The simplest and most effective way to decrease flow through a rock-seal system is to increase the seal length, assuming it can be guaranteed that no dominant by-pass flowpath through the rock exists.

  5. Handbook of Plastic Welding

    DEFF Research Database (Denmark)

    Islam, Aminul

    The purpose of this document is to summarize the information about the laser welding of plastic. Laser welding is a matured process nevertheless laser welding of micro dimensional plastic parts is still a big challenge. This report collects the latest information about the laser welding of plasti...... as a knowledge handbook for laser welding of plastic components. This document should provide the information for all aspects of plastic laser welding and help the design engineers to take all critical issues into consideration from the very beginning of the design phase....

  6. Numerical simulation of air- and water-flow experiments in a block of variably saturated, fractured tuff from Yucca Mountain, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Kwicklis, E.M.; Healy, R.W. [Geological Survey, Denver, CO (United States); Thamir, F. [AMX International, Inc., Denver, CO (United States); Hampson, D. [EQE International, Evergreen, CO (United States)

    1998-11-01

    Numerical models of water movement through variably saturated, fractured tuff have undergone little testing against experimental data collected from relatively well-controlled and characterized experiments. This report used the results of a multistage experiment on a block of variably saturated, fractured, welded tuff and associated core samples to investigate if those results could be explained using models and concepts currently used to simulate water movement in variably saturated, fractured tuff at Yucca Mountain, Nevada, the potential location of a high-level nuclear-waste repository. Aspects of the experiment were modeled with varying degrees of success. Imbibition experiments performed on cores of various lengths and diameters were adequately described by models using independently measured permeabilities and moisture-characteristic curves, provided that permeability reductions resulting from the presence of entrapped air were considered. Entrapped gas limited maximum water saturations during imbibition to approximately 0.70 to 0,80 of the fillable porosity values determined by vacuum saturation. A numerical simulator developed for application to fluid flow problems in fracture networks was used to analyze the results of air-injection tests conducted within the tuff block through 1.25-cm-diameter boreholes. These analyses produced estimates of transmissivity for selected fractures within the block. Transmissivities of other fractures were assigned on the basis of visual similarity to one of the tested fractures. The calibrated model explained 53% of the observed pressure variance at the monitoring boreholes (with the results for six outliers omitted) and 97% of the overall pressure variance (including monitoring and injection boreholes) in the subset of air-injection tests examined.

  7. Distribution and significance of crystalline, perlitic and vesicular textures in the Ordovician Garth Tuff (Wales)

    Science.gov (United States)

    McArthur, A. N.; Cas, R. A. F.; Orton, G. J.

    Diverse spherulitic and granular crystalline fabrics, perlitic textures and fabrics related to the growth and migration of vesicles occur in the Garth Tuff, a largely welded Ordovician ignimbrite. Defining the distribution of such textures helps to constrain the ignimbrite's cooling and degassing history. Suites of spherulitic and perlitic textures closely reflect variation in cooling rates. Seven facies are defined based on the style and intensity of crystallisation: (1) a medium to coarsely crystalline, equigranular facies; (2) an intensely spherulitic facies; (3) a sparsely spherulitic facies; (4) a pectinate facies; (5) a microcrystalline to cryptocrystalline, equigranular facies; (6) a lithophysal facies; and (7) a transitional perlite-pectinate facies. Textural changes from facies 1 to 5 reflect progressively higher cooling rates. Facies 1 occurs in proximal settings in the ignimbrite's core. Facies 2 to 5 successively envelop facies 1, with facies 2 becoming the dominant fabric in the ignimbrite's core in medial settings. Facies 5 is typically developed in the originally glassy perlitic zones at the ignimbrite's welded margins. Crystallisation under hydrous conditions is reflected by second-boiling textures in the sporadically developed lithophysal facies. The seventh facies reflects a subtle interplay between cooling, hydration and crystallisation which locally prevented perlitic fracturing. The distribution of amygdales reflects patterns of volatile migration and entrapment. In the lower levels of the ignimbrite, amygdales occur in irregular concentrations or rare subvertical pipe-like structures. Pipe-like structures attest to fumarolic activity while the ignimbrite was in a rheomorphic state. Amygdales are widespread and evenly distributed in the upper levels of the ignimbrite. However, the top of the welding profile is characterised by a thin, poorly vesiculated, originally vitrophyric horizon that abruptly caps an intense concentration of amygdales

  8. Welded rhyolitic tuffs or “Ignimbrites” in the Pasoemah region, West Palembang, South Sumatra

    NARCIS (Netherlands)

    Westerveld, J.

    1942-01-01

    The Pasoemah region S of the Goemai Mts. in W. Palembang is largely occupied by Quaternary volcanics, which form a sharply dissected plateaulike country, whose surface gradually slopes downward in an ENE direction from ± 1000 m to ± 300 m above sea-level, conformably to the courses of the Selangis a

  9. Modification of rock mass permeability in the zone surrounding a shaft in fractured, welded tuff

    Energy Technology Data Exchange (ETDEWEB)

    Case, J.B.; Kelsall, P.C.

    1987-03-01

    The excavation of a nuclear waste repository at Yucca Mountain, Nevada requires access through shafts and ramps from the ground surface to the repository horizon. To evaluate the need and performance of the sealing subsystem, it is necessary to predict the modifications in the rock immediately surrounding the shaft. The purpose of this study is to develop a model of permeability changes as a function of radial distance from a shaft. The model is based upon analyses which consider modification in rock mass permeability resulting from stress redistribution and blast damage due to excavation around a shaft. Elastic and elastoplastic stress analyses are performed to estimate the stress distribution for a wide range of rock properties and in situ stress conditions. Changes in stress are related to changes in rock mass permeability using stress-permeability relations for fractures obtained from laboratory and field testing. The effects of blast damage are estimated from case histories. The analyses indicate that rock mass permeability is expected to decline rapidly to the undisturbed value with greater permeability changes occurring at or near the shaft wall. For several conditions evaluated, the equivalent permeability of the modified permeability zone, averaged over an annulus one radius wide around the shaft, ranges from 15 to 80 times the undisturbed rock mass permeability. 61 refs., 24 figs., 6 tabs.

  10. Estimation of Fracture Porosity in an Unsaturated Fractured Welded Tuff Using Gas Tracer Testing

    Energy Technology Data Exchange (ETDEWEB)

    B.M. Freifeild

    2001-10-18

    Kinematic fracture porosity is an important hydrologic transport parameter for predicting the potential of rapid contaminant migration through fractured rock. The transport velocity of a solute moving within a fracture network is inversely related to the fracture porosity. Since fracture porosity is often one or two orders of magnitude smaller than matrix porosity, and fracture permeability is often orders of magnitude greater than matrix permeability, solutes may travel significantly faster in the fracture network than in the surrounding matrix. This dissertation introduces a new methodology for conducting gas tracer tests using a field portable mass spectrometer along with analytical tools for estimating fracture porosity using the measured tracer concentration breakthrough curves. Field experiments were conducted at Yucca Mountain, Nevada, consisting of air-permeability transient testing and gas-tracer-transport tests. The experiments were conducted from boreholes drilled within an underground tunnel as part of an investigation of rock mass hydrological behavior. Air-permeability pressure transients, recorded during constant mass flux injections, have been analyzed using a numerical inversion procedure to identify fracture permeability and porosity. Dipole gas tracer tests have also been conducted from the same boreholes used for air-permeability testing. Mass breakthrough data has been analyzed using a random walk particle-tracking model, with a dispersivity that is a function of the advective velocity. The estimated fracture porosity using the tracer test and air-injection test data ranges from .001 to .015. These values are an order of magnitude greater than the values estimated by others using hydraulically estimated fracture apertures. The estimates of porosity made using air-permeability test data are shown to be highly sensitive to formation heterogeneity. Uncertainty analyses performed on the gas tracer test results show high confidence in the parameter estimates made.

  11. Comparing Laser Welding Technologies with Friction Stir Welding for Production of Aluminum Tailor-Welded Blanks

    Energy Technology Data Exchange (ETDEWEB)

    Hovanski, Yuri; Carsley, John; Carlson, Blair; Hartfield-Wunsch, Susan; Pilli, Siva Prasad

    2014-01-15

    A comparison of welding techniques was performed to determine the most effective method for producing aluminum tailor-welded blanks for high volume automotive applications. Aluminum sheet was joined with an emphasis on post weld formability, surface quality and weld speed. Comparative results from several laser based welding techniques along with friction stir welding are presented. The results of this study demonstrate a quantitative comparison of weld methodologies in preparing tailor-welded aluminum stampings for high volume production in the automotive industry. Evaluation of nearly a dozen welding variations ultimately led to down selecting a single process based on post-weld quality and performance.

  12. Coil Welding Aid

    Science.gov (United States)

    Wiesenbach, W. T.; Clark, M. C.

    1983-01-01

    Positioner holds coil inside cylinder during tack welding. Welding aid spaces turns of coil inside cylinder and applies contact pressure while coil is tack-welded to cylinder. Device facilitates fabrication of heat exchangers and other structures by eliminating hand-positioning and clamping of individual coil turns.

  13. Variable polarity arc welding

    Science.gov (United States)

    Bayless, E. O., Jr.

    1991-01-01

    Technological advances generate within themselves dissatisfactions that lead to further advances in a process. A series of advances in welding technology which culminated in the Variable Polarity Plasma Arc (VPPA) Welding Process and an advance instituted to overcome the latest dissatisfactions with the process: automated VPPA welding are described briefly.

  14. Welding Course Curriculum.

    Science.gov (United States)

    Genits, Joseph C.

    This guide is intended for use in helping students gain a fundamental background on the major aspects of the welding trade. The course emphasis is on mastery of the manipulative skills necessary to develop successful welding techniques and on acquisition of an understanding of the specialized tools and equipment used in welding. The first part…

  15. Instructional Guidelines. Welding.

    Science.gov (United States)

    Fordyce, H. L.; Doshier, Dale

    Using the standards of the American Welding Society and the American Society of Mechanical Engineers, this welding instructional guidelines manual presents a course of study in accordance with the current practices in industry. Intended for use in welding programs now practiced within the Federal Prison System, the phases of the program are…

  16. Dense with Sense

    Science.gov (United States)

    Aletras, Anthony H.; Ingkanisorn, W. Patricia; Mancini, Christine; Arai, Andrew E.

    2005-09-01

    Displacement encoding with stimulated echoes (DENSE) with a low encoding strength phase-cycled meta-DENSE readout and a two fold SENSE acceleration ( R = 2) is described. This combination reduces total breath-hold times for increased patient comfort during cardiac regional myocardial contractility studies. Images from phantoms, normal volunteers, and a patient are provided to demonstrate the SENSE-DENSE combination of methods. The overall breath-hold time is halved while preserving strain map quality.

  17. Clinoptilolite zeolitized tuff from Central Alborz Range, North Iran

    Science.gov (United States)

    Taghipour, Batoul

    2010-05-01

    Zeolites are hydrated alumino-silicates of the alkaline and alkaline earth cations, principally sodium, potassium, calcium, and magnesium (Iijima 1980; Hay 1981). Zeolites occur principally in unmetamorphosed sedimentary rocks and are particularly widespread in volcani-clastic strata (Hay, 1978). Clinoptilolite is a natural zeolite of the heulandite group with the simplified formula of (Na, K)6 Si30 Al6 O72 .nH2. It is the most common natural zeolite found mainly in sedimentary rocks of volcanic origin. Alborz zone is one of the important geological divisions in Iran. This zone is restricted to Kopeh dagh zone in North & Central Iranian zone in South and is a region of active deformation within the broad Arabian-Eurasia collision zone (Allen et al. 2003). The zeolitized green tuff belt from Central Alborz which introduce here are made of volcanoclastic sequence of Karaj Formation. This belt is about 40 km long along Alborz Range and is Eocene in age. Zeolites and associated minerals of this altered vitric tuff studied. Zeolitization took place in some beds of Karaj Formations, with average range of 3 to 300 meters thickness. There are several gypsum lenses which interbed with a widespread green tuff succession in the studied area. On the basis of chemical composition these tuffs are in the range of acid to intermediate volcanic rocks. Also magmatic affinity is calc-alkaline and geological setting of the area belongs to volcanic arc granitoid. Petrographic data has shown that various shape and size of shard glass are the main component of tuffs. Based on the field studies, detail microscopy, XRD and electron microprobe analysis (EMPA), the following main minerals are determined: Clinoptilolite+montmorillonite+crystobalite. Clinoptilolite and smectite are predominant minerals in all altered samples. Concerning the Si/Al ratio of 40 point analyses of glass shards the Alborz tuff has clinoptilolite composition. Otherwise the chemical composition of altered shard glass

  18. Effect of welding parameters of Gas Metal Arc welding on weld bead geometry: A Review

    Directory of Open Access Journals (Sweden)

    Pushp Kumar Baghel

    2012-07-01

    Full Text Available Weld quality comprises bead geometry and its microstructure, which influence the mechanical properties of the weld. This brief review illustrates the effect of pulse parameters on weld quality. The responsefactors, namely bead penetration, weld width, reinforcement height, weld penetration shape factor and weld reinforcement form factor as affected by arc voltage, wire feed rate, welding speed, gas flow rate and nozzle-toplate distance has also been analysed

  19. Repository site data report for unsaturated tuff, Yucca Mountain, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Tien, P.L.; Updegraff, C.D.; Siegel, M.D.; Wahi, K.K.; Guzowski, R.V.

    1985-11-01

    The US Department of Energy is currently considering the thick sequences of unsaturated, fractured tuff at Yucca Mountain, on the southwestern boundary of the Nevada Test Site, as a possible candidate host rock for a nuclear-waste repository. Yucca Mountain is in one of the most arid areas in the United States. The site is within the south-central part of the Great Basin section of the Basin and Range physiographic province and is located near a number of silicic calderas of Tertiary age. Although localized zones of seismic activity are common throughout the province, and faults are present at Yucca Mountain, the site itself is basically aseismic. No data are available on the composition of ground water in the unsaturated zone at Yucca Mountain. It has been suggested that the composition is bounded by the compositions of water from wells USW-H3, UE25p-1, J-13, and snow or rain. There are relatively few data available from Yucca Mountain on the moisture content and saturation, hydraulic conductivity, and characteristic curves of the unsaturated zone. The available literature on thermomechanical properties of tuff does not always distinguish between data from the saturated zone and data from the unsaturated zone. Geochemical, hydrologic, and thermomechanical data available on the unsaturated tuffs of Yucca Mountain are tabulated in this report. Where the data are very sparse, they have been supplemented by data from the saturated zone or from areas other than Yucca Mountain. 316 refs., 58 figs., 37 tabs.

  20. Hourglass inclusions: Theory and application to the Bishop rhyolitic tuff

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, A.T. Jr. (Univ. of Chicago, IL (United States))

    Hourglass inclusions are bodies of bubble-bearing glass in volcanic phenocrysts that extend to the crystal rim through a narrow neck. Compared to enclosed inclusions, hourglass inclusions are less devitrified, contain more gas, but contain less dissolved H{sub 2}O, CO{sub 2}, and Cl. A quantitative model of rhyolitic hourglass emptying is developed and applied to Bishop Tuff hourglass inclusions. Those in plinian pumice suggest rapid ascent at 10 m/s consistent with theoretical eruption models. Hourglass inclusions from the Mono ash-flow lobe of the Bishop Tuff suggest (1) initial crystallization of quartz, formation of some enclosed and some hourglass inclusions at approximately 2,400 bars; (2) magma decompression to approximately 1,100 bars for at least a week (duration of eruption for the Bishop Tuff ) while hourglass inclusions further evolved and bubbles of gas attained a 50{mu}m diameter; (3) magma ascent from 1,100 to approximately 700 bars at approximately 1 m/s, consistent with theory for ash-flow-producing (collapsing) eruption columns; (4) entrainment of some crystals that had decompressed to a pressure of 400 bars for several weeks; (5) thermal quenching of hourglass evolution as magmatic foam disrupted into fast-moving spray, erupted, and entrained cold air. Uncertainties are large but can be reduced by future studies of postdepositional cooling, hourglass volatile compositions, temperature, and viscosity to obtain estimates of eruptive and preeruptive magma movement and crystallization rate.

  1. Selenite transport in unsaturated tuff from Yucca Mountain

    Energy Technology Data Exchange (ETDEWEB)

    Conca, J.L. [WSU Tri-Cities, Richland, WA (United States); Triay, I.R. [Los Alamos National Lab., NM (United States)

    1994-12-31

    Direct measurements of unsaturated selenite retardation coefficients and unsaturated hydraulic conductivity were obtained on two tuff samples from Yucca Mountain using the UFA{trademark} technology. The retardation factor for the selenite species was only 2.5 in both Yucca Mountain vitric member at 62.6% saturation and zeolitized nonwelded tuff from G-tunnel at 52.8% saturation with respect to J-13 well water from the Nevada Test Site contaminated with selenium at 1.31 mg/l (ppm). In batch tests on the same material using 1.2 mg/l (ppm), the average K{sub d} was determined to be 13, giving retardation factors higher than the UFA column breakthrough tests by an order of magnitude. The difference could result from preferential flow paths in the UFA column as might occur in the field or differences in residence times between the two types of tests. The unsaturated hydraulic conductivities during the experiments were 2.49 {times} 10{sup {minus}8} cm/s for the Yucca Mountain vitric member and 1.16 {times} 10{sup {minus}8} cm/s for the zeolited nonwelded tuff.

  2. Optically controlled welding system

    Science.gov (United States)

    Gordon, Stephen S. (Inventor)

    1989-01-01

    An optically controlled welding system (10) wherein a welding torch (12) having through-the-torch viewing capabilities is provided with an optical beam splitter (56) to create a transmitted view and a reflective view of a welding operation. These views are converted to digital signals which are then processed and utilized by a computerized robotic welder (15) to make the welding torch responsive thereto. Other features includes an actively cooled electrode holder (26) which minimizes a blocked portion of the view by virtue of being constructed of a single spoke or arm (28) and a weld pool contour detector (14) comprising a laser beam directed onto the weld pool with the position of specular radiation reflected therefrom being characteristic of a penetrated or unpenetrated condition of the weld pool.

  3. Petroleum exploration of shallow marine deposit Carboniferous volcanic tuff reservoir in the western margin of Junggar Basin

    Institute of Scientific and Technical Information of China (English)

    Wang Jianyong; Wang Xuezhong; Ma Liqun

    2013-01-01

    In 2011,petroleum exploration of shallow marine deposits Carboniferous and volcanic tuff reservoir re-alized breakthroughs at Chepaizi slope in the western margin of Junggar Basin. Pai 61 well ,with 855.7 ~949.6 m section,in the conventional test oil obtained 6 t/d industrial oil flow. The surface viscosity is 390 mPa· s (50℃). The marine deposit of Carboniferous are deep oil source rocks and high-quality reservoir. Magma volcanic activity provides the basis for volcanic reservoir development and distribution. The weathering crust and secondary cracks developed volcanic tuff by strong rock weathering and dissolution of organic acids which has become top quality reservoir. Deep Permian oil-gas migrated and accumulated to high parts along Hong-Che fault belt and stratigraphic unconformity stripping. Permian and Triassic volcanic rocks or dense mudstone sedimentary cover as a regional seal for the late Carboniferous oil-gas to save critically. The seismic pre-stack time migration processing technologies for the problem of poor inner structures of Carboniferous were developed. Response of volcanic rock seismic and logging are obvious. The application imaging logging and nuclear magnetic technology achieved the qualitative identification and quantification of fracture description.

  4. Atoms in dense plasmas

    Energy Technology Data Exchange (ETDEWEB)

    More, R.M.

    1986-01-01

    Recent experiments with high-power pulsed lasers have strongly encouraged the development of improved theoretical understanding of highly charged ions in a dense plasma environment. This work examines the theory of dense plasmas with emphasis on general rules which govern matter at extreme high temperature and density. 106 refs., 23 figs.

  5. Quantum dense key distribution

    CERN Document Server

    Degiovanni, I P; Castelletto, S; Rastello, M L; Bovino, F A; Colla, A M; Castagnoli, G C

    2004-01-01

    This paper proposes a new protocol for quantum dense key distribution. This protocol embeds the benefits of a quantum dense coding and a quantum key distribution and is able to generate shared secret keys four times more efficiently than BB84 one. We hereinafter prove the security of this scheme against individual eavesdropping attacks, and we present preliminary experimental results, showing its feasibility.

  6. The behaviour of consolidated volcanic tuffs: weathering mechanisms under simulated laboratory conditions

    OpenAIRE

    Stück, H.; Forgó, L. Z.; Rüdrich, J.; S. Siegesmund; Török, Á.

    2008-01-01

    Five volcanic tuffs ranging from dacitic tuffs of Hungary to rhyolite, phonolite and basaltic tuffs of Germany were consolidated under laboratory conditions. Prior to consolidation an anti-hygro, a hydrous consolidant, which reduces the swelling ability of clay minerals, was applied. The three consolidants, a silicic acid ester (SAE), an elastic silicic acid ester (eSAE) and an acrylate resin (PMMA) were applied on test specimens under vacuum. Petrographic characterisation (polarizing microsc...

  7. Primary and redeposited facies from a large-magnitude, rhyolitic, phreatomagmatic eruption: Cana Creek Tuff, Late Carboniferous, Australia

    Science.gov (United States)

    McPhie, J.

    1986-07-01

    The Cana Creek Tuff is one of four rhyolitic ignimbrite members of the Late Carboniferous Currabubula Formation, a volcanogenic conglomeratic braidplain sequence exposed along the western margin of the New England Orogen in northeastern New South Wales. The source is not exposed but was probably located tens of kilometres to the west of existing outcrops. The medial to distal parts of the tuff average about 70 m in thickness, are widespread (minimum present area ˜ 1400 km 2), and comprise a primary pyroclastic facies (ignimbrite, ash-fall tuff) and a redeposited volcaniclastic facies (sandstone, conglomerate). Both facies are composed of differing proportions of crystal fragments (quartz, plagioclase, K-feldspar), pumiceous clasts (pumice, shards, fine ash), and accidental lithics. The eruption responsible for this unit was explosive and of large magnitude (dense rock equivalent volume about 100 km 3). That it was also phreatomagmatic in character is proposed on the basis of: the intimate association of primary and redeposited facies; the presence of accretionary lapilli both in ignimbrite and in ash-fall tuff; the fine grain size of juvenile pyroclasts; the low grade of the ignimbrite; and the close similarity in facies, composition and magnitude to the deposits from the 20,000y. B.P. phreatomagmatic eruption at Taupo, New Zealand (the Wairakei and parts of the Hinuera Formations). The eruption began and ended from a vent with excess water available, possibly submersed in a caldera lake, and generated volcaniclastic sheet floods and debris flows. The emplacement of the primary pyroclastic facies is correlated with an intervening stage when the water:magma mass ratio was lower. The deposits from a large-magnitude, phreatomagmatic eruption are predicted to show systematic lateral variations in facies. Primary pyroclastic facies predominate near the source although the preserved stratigraphy is an incomplete record because of widespread contemporaneous erosion

  8. Welding arc plasma physics

    Science.gov (United States)

    Cain, Bruce L.

    1990-01-01

    The problems of weld quality control and weld process dependability continue to be relevant issues in modern metal welding technology. These become especially important for NASA missions which may require the assembly or repair of larger orbiting platforms using automatic welding techniques. To extend present welding technologies for such applications, NASA/MSFC's Materials and Processes Lab is developing physical models of the arc welding process with the goal of providing both a basis for improved design of weld control systems, and a better understanding of how arc welding variables influence final weld properties. The physics of the plasma arc discharge is reasonably well established in terms of transport processes occurring in the arc column itself, although recourse to sophisticated numerical treatments is normally required to obtain quantitative results. Unfortunately the rigor of these numerical computations often obscures the physics of the underlying model due to its inherent complexity. In contrast, this work has focused on a relatively simple physical model of the arc discharge to describe the gross features observed in welding arcs. Emphasis was placed of deriving analytic expressions for the voltage along the arc axis as a function of known or measurable arc parameters. The model retains the essential physics for a straight polarity, diffusion dominated free burning arc in argon, with major simplifications of collisionless sheaths and simple energy balances at the electrodes.

  9. VPPA weld model evaluation

    Science.gov (United States)

    McCutcheon, Kimble D.; Gordon, Stephen S.; Thompson, Paul A.

    1992-07-01

    NASA uses the Variable Polarity Plasma Arc Welding (VPPAW) process extensively for fabrication of Space Shuttle External Tanks. This welding process has been in use at NASA since the late 1970's but the physics of the process have never been satisfactorily modeled and understood. In an attempt to advance the level of understanding of VPPAW, Dr. Arthur C. Nunes, Jr., (NASA) has developed a mathematical model of the process. The work described in this report evaluated and used two versions (level-0 and level-1) of Dr. Nunes' model, and a model derived by the University of Alabama at Huntsville (UAH) from Dr. Nunes' level-1 model. Two series of VPPAW experiments were done, using over 400 different combinations of welding parameters. Observations were made of VPPAW process behavior as a function of specific welding parameter changes. Data from these weld experiments was used to evaluate and suggest improvements to Dr. Nunes' model. Experimental data and correlations with the model were used to develop a multi-variable control algorithm for use with a future VPPAW controller. This algorithm is designed to control weld widths (both on the crown and root of the weld) based upon the weld parameters, base metal properties, and real-time observation of the crown width. The algorithm exhibited accuracy comparable to that of the weld width measurements for both aluminum and mild steel welds.

  10. Dual wire welding torch and method

    Science.gov (United States)

    Diez, Fernando Martinez; Stump, Kevin S.; Ludewig, Howard W.; Kilty, Alan L.; Robinson, Matthew M.; Egland, Keith M.

    2009-04-28

    A welding torch includes a nozzle with a first welding wire guide configured to orient a first welding wire in a first welding wire orientation, and a second welding wire guide configured to orient a second welding wire in a second welding wire orientation that is non-coplanar and divergent with respect to the first welding wire orientation. A method of welding includes moving a welding torch with respect to a workpiece joint to be welded. During moving the welding torch, a first welding wire is fed through a first welding wire guide defining a first welding wire orientation and a second welding wire is fed through a second welding wire guide defining a second welding wire orientation that is divergent and non-coplanar with respect to the first welding wire orientation.

  11. Challenges to Resistance Welding

    DEFF Research Database (Denmark)

    Song, Quanfeng

    This report originates from the compulsory defense during my Ph.D. study at the Technical University of Denmark. Resistance welding is an old and well-proven technology. Yet the emergence of more and more new materials, new designs, invention off new joining techniques, and more stringent...... requirement in quality have imposed challenges to the resistance welding. More some research and development have to be done to adapt the old technology to the manufacturing industry of the 21st century. In the 1st part of the report, the challenging factors to the resistance welding are reviewed. Numerical...... simulation of resistance welding has been under development for many years. Yet it is no easy to make simulation results reliable and accurate because of the complexity of resistance welding process. In the 2nd part of the report numerical modeling of resistance welding is reviewed, some critical factors...

  12. Ultrasonic Stir Welding

    Science.gov (United States)

    Nabors, Sammy

    2015-01-01

    NASA Marshall Space Flight Center (MSFC) developed Ultrasonic Stir Welding (USW) to join large pieces of very high-strength metals such as titanium and Inconel. USW, a solid-state weld process, improves current thermal stir welding processes by adding high-power ultrasonic (HPU) energy at 20 kHz frequency. The addition of ultrasonic energy significantly reduces axial, frictional, and shear forces; increases travel rates; and reduces wear on the stir rod, which results in extended stir rod life. The USW process decouples the heating, stirring, and forging elements found in the friction stir welding process allowing for independent control of each process element and, ultimately, greater process control and repeatability. Because of the independent control of USW process elements, closed-loop temperature control can be integrated into the system so that a constant weld nugget temperature can be maintained during welding.

  13. Challenges to Resistance Welding

    DEFF Research Database (Denmark)

    Song, Quanfeng

    This report originates from the compulsory defense during my Ph.D. study at the Technical University of Denmark. Resistance welding is an old and well-proven technology. Yet the emergence of more and more new materials, new designs, invention off new joining techniques, and more stringent...... requirement in quality have imposed challenges to the resistance welding. More some research and development have to be done to adapt the old technology to the manufacturing industry of the 21st century. In the 1st part of the report, the challenging factors to the resistance welding are reviewed. Numerical...... simulation of resistance welding has been under development for many years. Yet it is no easy to make simulation results reliable and accurate because of the complexity of resistance welding process. In the 2nd part of the report numerical modeling of resistance welding is reviewed, some critical factors...

  14. Manganese Content Control in Weld Metal During MAG Welding

    Science.gov (United States)

    Chinakhov, D. A.; Chinakhova, E. D.; Sapozhkov, A. S.

    2016-08-01

    The influence of the welding current and method of gas shielding in MAG welding on the content of manganese is considered in the paper. Results of study of the welded specimens of steels 45 when applying welding wire of different formulas and different types of gas shielding (traditional shielding and double-jet shielding) are given. It is found that in MAG welding the value of the welding current and the speed of the gas flow from the welding nozzle have a considerable impact on the chemical composition of the weld metal. The consumable electrode welding under double-jet gas shielding provides the directed gas-dynamics in the welding area and enables controlling the electrode metal transfer and the chemical composition of a weld.

  15. Evaluation of Pleistocene groundwater flow through fractured tuffs using a U-series disequilibrium approach, Pahute Mesa, Nevada, USA

    Science.gov (United States)

    Paces, James B.; Nichols, Paul J.; Neymark, Leonid A.; Rajaram, Harihar

    2013-01-01

    Groundwater flow through fractured felsic tuffs and lavas at the Nevada National Security Site represents the most likely mechanism for transport of radionuclides away from underground nuclear tests at Pahute Mesa. To help evaluate fracture flow and matrix–water exchange, we have determined U-series isotopic compositions on more than 40 drill core samples from 5 boreholes that represent discrete fracture surfaces, breccia zones, and interiors of unfractured core. The U-series approach relies on the disruption of radioactive secular equilibrium between isotopes in the uranium-series decay chain due to preferential mobilization of 234U relative to 238U, and U relative to Th. Samples from discrete fractures were obtained by milling fracture surfaces containing thin secondary mineral coatings of clays, silica, Fe–Mn oxyhydroxides, and zeolite. Intact core interiors and breccia fragments were sampled in bulk. In addition, profiles of rock matrix extending 15 to 44 mm away from several fractures that show evidence of recent flow were analyzed to investigate the extent of fracture/matrix water exchange. Samples of rock matrix have 234U/238U and 230Th/238U activity ratios (AR) closest to radioactive secular equilibrium indicating only small amounts of groundwater penetrated unfractured matrix. Greater U mobility was observed in welded-tuff matrix with elevated porosity and in zeolitized bedded tuff. Samples of brecciated core were also in secular equilibrium implying a lack of long-range hydraulic connectivity in these cases. Samples of discrete fracture surfaces typically, but not always, were in radioactive disequilibrium. Many fractures had isotopic compositions plotting near the 230Th-234U 1:1 line indicating a steady-state balance between U input and removal along with radioactive decay. Numerical simulations of U-series isotope evolution indicate that 0.5 to 1 million years are required to reach steady-state compositions. Once attained, disequilibrium 234U/238U

  16. Studies of welded joints

    Directory of Open Access Journals (Sweden)

    J. M. Krupa

    2010-07-01

    Full Text Available Studies of a welded joint were described. The joint was made as a result of the reconstruction of a truss and one of the possible means to make a repair. The studies were of a simulation character and were targeted at the detection of welding defects and imperfections thatshould be eliminated in a real structure. A model was designed and on this model the tests and examinations were carried out. The modelwas made under the same conditions as the conditions adopted for repair. It corresponded to the real object in shape and dimensions, and in the proposed technique of welding and welding parameters. The model was composed of five plates joined together with twelve beads.The destructive and non-destructive tests were carried out; the whole structure and the respective welds were also examined visually. Thedefects and imperfections in welds were detected by surface methods of inspection, penetration tests and magnetic particle flaw detection.The model of the welded joint was prepared by destructive methods, a technique that would never be permitted in the case of a realstructure. For the investigations it was necessary to cut out the specimens from the welded joint in direction transverse to the weld run. The specimens were subjected to metallographic examinations and hardness measurements. Additionally, the joint cross-section was examined by destructive testing methods to enable precise determination of the internal defects and imperfections. The surface methods were applied again, this time to determine the severity of welding defects. The analysis has proved that, fabricated under proper conditions and with parameters of the welding process duly observed, the welded joint has good properties and repairs of this type are possible in practice.

  17. Explosive welding of pipes

    Energy Technology Data Exchange (ETDEWEB)

    Drennov, O.; Burtseva, O.; Kitin, A. [Russian Federal Nuclear Center, Sarov (Russian Federation)

    2006-08-15

    Arrangement of pipelines for the transportation of oil and gas is a complicated problem. In this paper it is suggested to use the explosive welding method to weld pipes together. This method is rather new. This method can be advantageous (saving material and physical resources) comparing to its static analogs (electron-beam welding, argon-arc welding, plasma welding, gas welding, etc.), in particular, in hard-to-reach areas due to their geographic and climatic conditions. We suggest to perform explosive welding according to the following scheme: the ends of the 2 pipes are connected, the external surfaces are kept at a similar level. A cylindrical steel layer of diameter larger than the pipe diameter is set around the pipe joint and an explosive charge is placed on its external surface. The basic problem is the elimination of strains and reduction of pipe diameter in the area of the dynamic effect. The suggestion is to use water as filler: the volume of pipes in the area adjacent to the zone of explosive welding is totally filled with water. The principle of non-compressibility of liquid under quasi-dynamic loading is used. In one-dimensional gas dynamic and elastic-plastic calculations we determined non-deformed mass of water. Model experiments with pipes having radii R = 57 mm confirmed results of the calculations and the possibility in principle to weld pipes by explosion with use of water as filler.

  18. Gas arc constriction for plasma arc welding

    Science.gov (United States)

    McGee, William F. (Inventor); Rybicki, Daniel J. (Inventor)

    1994-01-01

    A welding torch for plasma arc welding apparatus has an inert gas applied circumferentially about the arc column externally of the constricting nozzle so as to apply a constricting force on the arc after it has exited the nozzle orifice and downstream of the auxiliary shielding gas. The constricting inert gas is supplied to a plenum chamber about the body of the torch and exits through a series of circumferentially disposed orifices in an annular wall forming a closure at the forward end of the constricting gas plenum chamber. The constricting force of the circumferential gas flow about the arc concentrates and focuses the arc column into a more narrow and dense column of energy after exiting the nozzle orifice so that the arc better retains its energy density prior to contacting the workpiece.

  19. Improved diffusion welding and roll welding of titanium alloys

    Science.gov (United States)

    Holko, K. H.

    1973-01-01

    Auto-vacuum cleaning technique was applied to titanium parts prior to welding. This provides oxide-free welding surfaces. Diffusion welding can be accomplished in as little as five minutes of hot pressing. Roll welding can be accomplished with only ten percent deformation.

  20. The unsaturated hydraulic characteristics of the Bandelier Tuff

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, D.B.; Gallaher, B.M.

    1995-09-01

    This report summarizes the physical and, unsaturated hydraulic properties of the Bandelier Tuff determined from laboratory measurements made on core samples collected at Los Alamos National Laboratory. We fit new van Genuchten-type moisture retention curves to this data, which was categorized according to member of the Bandelier Tuff and subunit of the Tshirege Member. Reasonable consistency was observed for hydraulic properties and retention curves within lithologic units, while distinct differences were observed for those properties between units. With the moisture retention data, we constructed vertical profiles of in situ matric suction and hydraulic head. These profiles give an indication of the likely direction of liquid water movement within the unsaturated zone and allow comparison of core-scale and field-scale estimates of water flow and solute transport parameters. Our core-derived transport velocities are much smaller than values estimated from tritium, Cl, and NO{sub 3} contamination found recently in boreholes. The contaminant tracer-derived transport velocities from Los Alamos Canyon are greater than corederived values found for the Otowi Member, and for Mortandad Canyon, greater than core-derived values for that borehole. The significant difference found for Mortandad Canyon suggests that fracture or other fast-path transport may be important there. The relatively small difference between observed and predicted velocities at Los Alamos Canyon may mean that vadose zone transport there occurs by unsaturated matrix flow.

  1. Colloid Facilitated Transport of Plutonium in Fractured Volcanic Tuff

    Science.gov (United States)

    Kersting, A. B.; Zhao, P.; Walensky, J. R.; Roberts, S. K.; Johnson, M. R.; Zavarin, M.; Ramon, E. C.

    2004-12-01

    The transport of low-solubility radionuclides in a colloidal- or colloidal bound state is frequently suspected or observed. Groundwater contaminated with radionuclides associated with underground nuclear tests was collected from several different well locations at the Nevada Test Site (NTS). In each case, the low-levels of plutonium detected in the groundwater were overwhelmingly (>95percent) associated with the colloidal and not the dissolved fraction of the groundwater. The colloidal fractions consisted of secondary minerals such as clays and zeolites. To better understand the mechanisms controlling the potential colloidal transport of plutonium, colloid-facilitated fracture flow laboratory experiments are being conducted. Pseudocolloids consisting of Pu(IV) sorbed to clinoptilolite were combined with a radionuclide solution cocktail consisting of Np, U, Cs, Sr, Sm and 3H and Re (analog to Tc) tracers in NTS-type synthetic groundwater (4.5mM NaHCO3-). The cocktail was injected into a smooth fracture in a volcanic tuff rock core from the NTS and the effluent analyzed. Autoradiography and secondary ion mass spectrometry will be used to understand the mineral -colloid-radionuclide interactions in the fracture volcanic tuff.

  2. Computerized tomographic analysis of fluid flow in fractured tuff

    Energy Technology Data Exchange (ETDEWEB)

    Felice, C.W.; Sharer, J.C. (Terra Tek, Inc., Salt Lake City, UT (United States)); Springer, E.P. (Los Alamos National Lab., NM (United States))

    1992-01-01

    The purpose of this summary is to demonstrate the usefulness of X-ray computerized tomography to observe fluid flow down a fracture and rock matrix imbibition in a sample of Bandelier tuff. This was accomplished by using a tuff sample 152.4 mm long and 50.8 mm in diameter. A longitudinal fracture was created by cutting the core with a wire saw. The fractured piece was then coupled to its adjacent section to that the fracture was not expected. Water was injected into a dry sample at five flow rates and CT scanning performed at set intervals during the flow. Cross sectional images and longitudinal reconstructions were built and saturation profiles calculated for the sample at each time interval at each flow rate. The results showed that for the test conditions, the fracture was not a primary pathway of fluid flow down the sample. At a slow fluid injection rate into the dry sample, the fluid was imbibed into the rock uniformly down the length of the core. With increasing injection rates, the flow remained uniform over the core cross section through complete saturation.

  3. Environmental effects on corrosion in the Tuff repository

    Energy Technology Data Exchange (ETDEWEB)

    Beavers, J.A.; Thompson, N.G. [Cortest Columbus, Inc., OH (USA)

    1990-02-01

    Cortest Columbus is investigating the long-term performance of container materials used for high-level waste packages as part of the information needed by the Nuclear Regulatory Commission to assess the Department of Energy`s application to construct a geologic repository for high-level radioactive waste. The scope of work consists of employing short-term techniques, to examine a wide range of possible failure modes. Long-term tests are being used to verify and further examine specific failure modes identified as important by the short-term studies. The original focus of the program was on the salt repository but the emphasis was shifted to the Tuff repository. This report summarizes the results of a literature survey performed under Task 1 of the program. The survey focuses on the influence of environmental variables on the corrosion behavior of candidate container materials for the Tuff repository. Environmental variables considered include: radiation, thermal and microbial effects. 80 refs., 44 figs., 44 tabs.

  4. A Review: Welding Of Dissimilar Metal Alloys by Laser Beam Welding & Friction Stir Welding Techniques

    Directory of Open Access Journals (Sweden)

    Ms. Deepika Harwani

    2014-12-01

    Full Text Available Welding of dissimilar metals has attracted attention of the researchers worldwide, owing to its many advantages and challenges. There is no denial in the fact that dissimilar welded joints offer more flexibility in the design and production of the commercial and industrial components. Many welding techniques have been analyzed to join dissimilar metal combinations. The objective of this paper is to review two such techniques – Laser welding and Friction stir welding. Laser beam welding, a high power density and low energy-input process, employs a laser beam to produce welds of dissimilar materials. Friction stir welding, a solid-state joining process, is also successfully used in dissimilar welding applications like aerospace and ship building industries. This paper summarizes the trends and advances of these two welding processes in the field of dissimilar welding. Future aspects of the study are also discussed.

  5. Age and petrology of the Late-Pleistocene brown tuffs on Lipari, Italy

    Science.gov (United States)

    Crisci, G. M.; Delibrias, G.; de Rosa, R.; Mazzuoli, R.; Sheridan, M. F.

    1983-12-01

    Late-Pleistocene volcanic products on Lipari consist mainly of pyroclastic surge deposits (Monte Guardia sequence) and fine-grained brown tuffs. Radiometric age determination on carbon from thin soils at the top of the tuffs indicate that they have several ages of emplacement ranging from more than 35,000 to 16,800 years ago. Chemical and microprobe data on glass and mineral fragments from these tuffs show that they belong to a shoshonite or high-K series. This composition is compatible with an origin related to the magma system of Vulcano, but not with the magma system on Lipari. These tuffs have a widespread distribution on several of the Aeolian islands as well as on the northern part of Sicily. They have features typical of ash-flow tuffs of hydromagmatic origin. We propose that they originated from submarine eruptions from the Vulcanello vent before this volcano emerged above sea level.

  6. Metallography of Battery Resistance Spot Welds

    Science.gov (United States)

    Martinez, J. E.; Johannes, L. B.; Gonzalez, D.; Yayathi, S.; Figuered, J. M.; Darcy, E. C.; Bilc, Z. M.

    2015-01-01

    Li-ion cells provide an energy dense solution for systems that require rechargeable electrical power. However, these cells can undergo thermal runaway, the point at which the cell becomes thermally unstable and results in hot gas, flame, electrolyte leakage, and in some cases explosion. The heat and fire associated with this type of event is generally violent and can subsequently cause damage to the surrounding system or present a dangerous risk to the personnel nearby. The space flight environment is especially sensitive to risks particularly when it involves potential for fire within the habitable volume of the International Space Station (ISS). In larger battery packs such as Robonaut 2 (R2), numerous Li-ion cells are placed in parallel-series configurations to obtain the required stack voltage and desired run-time or to meet specific power requirements. This raises a second and less obvious concern for batteries that undergo certification for space flight use: the joining quality at the resistance spot weld of battery cells to component wires/leads and battery tabs, bus bars or other electronic components and assemblies. Resistance spot welds undergo materials evaluation, visual inspection, conductivity (resistivity) testing, destructive peel testing, and metallurgical examination in accordance with applicable NASA Process Specifications. Welded components are cross-sectioned to ensure they are free of cracks or voids open to any exterior surface. Pore and voids contained within the weld zone but not open to an exterior surface, and are not determined to have sharp notch like characteristics, shall be acceptable. Depending on requirements, some battery cells are constructed of aluminum canisters while others are constructed of steel. Process specific weld schedules must be developed and certified for each possible joining combination. The aluminum canisters' positive terminals were particularly difficult to weld due to a bi-metal strip that comes ultrasonically

  7. Fine welding with lasers.

    Science.gov (United States)

    MacLellan, D

    2008-01-01

    The need for micro joining metallic alloys for surgical instruments, implants and advanced medical devices is driving a rapid increase in the implementation of laser welding technology in research, development and volume production. This article discusses the advantages of this welding method and the types of lasers used in the process.

  8. Simulation of welding

    Institute of Scientific and Technical Information of China (English)

    Chuan-Song WU; Michael RETHMEIER; Christopher SCHWENK

    2011-01-01

    @@ Welding has become the most important materials processing technology in manufacturing, and has critical effects on the quality, reliability and life of products as well as production cost, efficiency and response speed to market.As various kinds of high performance metallic materials are widely used in engineering, there are more demands in manufacturing industry for advanced welding technology.

  9. Vacuum Gas Tungsten Arc Welding

    Science.gov (United States)

    Weeks, J. L.; Todd, D. T.; Wooten, J. R.

    1997-01-01

    A two-year program investigated vacuum gas tungsten arc welding (VGTAW) as a method to modify or improve the weldability of normally difficult-to-weld materials. After a vacuum chamber and GTAW power supply were modified, several difficult-to-weld materials were studied and key parameters developed. Finally, Incoloy 903 weld overlays were produced without microfissures.

  10. Alternating-Polarity Arc Welding

    Science.gov (United States)

    Schwinghamer, R. J.

    1987-01-01

    Brief reversing polarity of welding current greatly improves quality of welds. NASA technical memorandum recounts progress in art of variable-polarity plasma-arc (VPPA) welding, with emphasis on welding of aluminum-alloy tanks. VPPA welders offer important advantages over conventional single-polarity gas/tungsten arc welders.

  11. The effect of welding fixtures on welding distortions

    OpenAIRE

    2007-01-01

    Purpose: of this paper is to examine the effect of welding fixture used to prevent the distortions duringcooling process utilizing a robot controlled gas metal arc welding method on cooling rate and distortions ofwelded structures.Design/methodology/approach: Using a specially designed welding fixture for a welded steel structure, sixdifferent types of AISI 1020 steel specimens are tested in three different welding speeds and two differentcooling conditions either at fixture or without using ...

  12. Modelling dense relational data

    DEFF Research Database (Denmark)

    Herlau, Tue; Mørup, Morten; Schmidt, Mikkel Nørgaard;

    2012-01-01

    Relational modelling classically consider sparse and discrete data. Measures of influence computed pairwise between temporal sources naturally give rise to dense continuous-valued matrices, for instance p-values from Granger causality. Due to asymmetry or lack of positive definiteness they are no......Relational modelling classically consider sparse and discrete data. Measures of influence computed pairwise between temporal sources naturally give rise to dense continuous-valued matrices, for instance p-values from Granger causality. Due to asymmetry or lack of positive definiteness...... they are not naturally suited for kernel K-means. We propose a generative Bayesian model for dense matrices which generalize kernel K-means to consider off-diagonal interactions in matrices of interactions, and demonstrate its ability to detect structure on both artificial data and two real data sets....

  13. Multispot fiber laser welding

    DEFF Research Database (Denmark)

    Schutt Hansen, Klaus

    This dissertation presents work and results achieved in the field of multi beam fiber laser welding. The project has had a practical approach, in which simulations and modelling have been kept at a minimum. Different methods to produce spot patterns with high power single mode fiber lasers have...... been possible to control the welding width in incremental steps by adding more beams in a row. The laser power was used to independently control the keyhole and consequently the depth of fusion. An example of inline repair of a laser weld in butt joint configuration was examined. Zinc powder was placed...... in the weld causing expulsion of the melt pool. Trailing beams were applied to melt additional material and ensure a melt pool. The method showed good results for increasing tolerances to impurities and reduction of scrapped parts from blowouts during laser welding....

  14. Welding method, and welding device for use therein, and method of analysis for evaluating welds

    NARCIS (Netherlands)

    Aendenroomer, A.J.; Den Ouden, G.; Xiao, Y.H.; Brabander, W.A.J.

    1995-01-01

    Described is a method of automatically welding pipes, comprising welding with a pulsation welding current and monitoring, by means of a sensor, the variations occurring in the arc voltage caused by weld pool oscillations. The occurrence of voltage variations with only frequency components below 100

  15. Thermoplastic welding apparatus and method

    Energy Technology Data Exchange (ETDEWEB)

    Matsen, Marc R.; Negley, Mark A.; Geren, William Preston; Miller, Robert James

    2017-03-07

    A thermoplastic welding apparatus includes a thermoplastic welding tool, at least one tooling surface in the thermoplastic welding tool, a magnetic induction coil in the thermoplastic welding tool and generally encircling the at least one tooling surface and at least one smart susceptor in the thermoplastic welding tool at the at least one tooling surface. The magnetic induction coil is adapted to generate a magnetic flux field oriented generally parallel to a plane of the at least one smart susceptor.

  16. Laser forming and welding processes

    CERN Document Server

    Yilbas, Bekir Sami; Shuja, Shahzada Zaman

    2013-01-01

    This book introduces model studies and experimental results associated with laser forming and welding such as laser induced bending, welding of sheet metals, and related practical applications. The book provides insight into the physical processes involved with laser forming and welding. The analytical study covers the formulation of laser induced bending while the model study demonstrates the simulation of bending and welding processes using the finite element method. Analytical and numerical solutions for laser forming and welding problems are provided.

  17. Guidelines for Friction Stir Welding

    Science.gov (United States)

    2011-03-29

    in a large void at the termination point of the weld, the effects the exit hole will have on structural integrity must be considered. The...3.6 Cavity. A void -type discontinuity within a solid-state weld. See Figure 3.4. 3.7 Complex weld joint. A continuous weld...except as affected by corner radii. 3.61 Underfill . A depression resulting when the weld face is below the adjacent parent material surface. See

  18. Influences of post weld heat treatment on tensile properties of friction stir welded AA2519-T87 aluminium alloy joints

    Science.gov (United States)

    Sabari, S. Sree; Balasubramanian, V.; Malarvizhi, S.; Reddy, G. Madusudhan

    2015-12-01

    AA 2519-T87 is an aluminium alloy that principally contains Cu as an alloying element and is a new grade of Al-Cu alloy system. This material is a potential candidate for light combat military vehicles. Fusion welding of this alloy leads to hot cracking, porosity and alloy segregation in the weld metal region. Friction stir welding (FSW) is a solid state joining process which can overcome the above mentioned problems. However, the FSW of age hardenable aluminium alloys results in poor tensile properties in the as-welded condition (AW). Hence, post weld heat treatment (PWHT) is used to enhance deteriorated tensile properties of FSW joints. In this work, the effect of PWHT, namely artificial ageing (AA) and solution treatment (ST) followed by ageing (STA) on the microstructure, tensile properties and microhardness were systematically investigated. The microstructural features of the weld joints were characterised using an optical microscope (OM), scanning electron microscope (SEM) and transmission electron microscope (TEM). The tensile strength and microhardness of the joints were correlated with the grain size, precipitate size, shape and its distribution. From the investigation, it was found that STA treatment is beneficial in enhancing the tensile strength of the FSW joints of AA2519-T87 alloy and this is mainly due to the presence of fine and densely distributed precipitates in the stir zone.

  19. Elucidation of laser welding phenomena and factors affecting weld penetration and welding defects

    Science.gov (United States)

    Katayama, Seiji; Kawahito, Yousuke; Mizutani, Masami

    The behavior and effect of a plasma plume on the weld penetration are greatly different between CO2 laser welding and YAG, disk or fiber laser welding. The effects of the power and the power density on the weld penetration are elucidated. Spattering leading to the formation of underfilled weld beads is controlled by inclining the laser beam. Porosity is formed from bubbles generated from the tip of the keyhole at low welding speed or from the middle part of the keyhole at high laser power density. Cracking easily occurs in pulsed spot welding of aluminum alloys.

  20. Subsurface structure of a maar-diatreme and associated tuff ring from a high-resolution geophysical survey, Rattlesnake Crater, Arizona

    Science.gov (United States)

    Marshall, Anita; Connor, Charles; Kruse, Sarah; Malservisi, Rocco; Richardson, Jacob; Courtland, Leah; Connor, Laura; Wilson, James; Karegar, Makan A.

    2015-10-01

    Geophysical survey techniques including gravity, magnetics, and ground penetrating radar were utilized to study the diatreme and tuff ring at Rattlesnake Crater, a maar in the San Francisco Volcanic Field of northern Arizona. Significant magnetic anomalies (+ 1600 nT) and a positive gravity anomaly (+ 1.4 mGal) are associated with the maar. Joint modeling of magnetic and gravity data indicate that the diatreme that underlies Rattlesnake Crater has volume of 0.8-1 km3, and extends to at least 800 m depth. The modeled diatreme comprises at least two zones of variable density and magnetization, including a low density, highly magnetized unit near the center of the diatreme, interpreted to be a pyroclastic unit emplaced at sufficiently high temperature and containing sufficient juvenile fraction to acquire thermal remanent magnetization. Magnetic anomalies and ground penetrating radar (GPR) imaging demonstrate that the bedded pyroclastic deposits of the tuff ring also carry high magnetization, likely produced by energetic emplacement of hot pyroclastic density currents. GPR profiles on the tuff ring reveal long ( 100 m) wavelength undulations in bedding planes. Elsewhere, comparable bedforms have been interpreted as base surge deposits inflated by air entrainment from eruption column collapse. Interpretation of these geophysical data suggests that Rattlesnake Crater produced highly energetic phreatomagmatic activity that gave way to less explosive activity as the eruption progressed. The positive gravity anomaly associated with the maar crater is interpreted to be caused by coherent bodies within the diatreme and possibly lava ponding on the crater floor. These dense magnetized bodies have excess mass of 2-4 × 1010 kg, and occupy approximately 5% of the diatreme by volume. Magnetic anomalies on the crater floor are elongate NW-SE, suggesting that the eruption may have been triggered by the interaction of ascending magma with water in fractures of this orientation. GPR

  1. Method development and strategy for the characterization of complexly faulted and fractured rhyolitic tuffs, Yucca Mountain, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Karasaki, K. [Lawrence Berkeley Lab., CA (United States); Galloway, D. [Geological Survey, Sacramento, CA (United States)

    1991-06-01

    The planned high-level nuclear waste repository at Yucca Mountain, Nevada, would exist in unsaturated, fractured welded tuff. One possible contaminant pathway to the accessible environment is transport by groundwater infiltrating to the water table and flowing through the saturated zone. Therefore, an effort to characterize the hydrology of the saturated zone is being undertaken in parallel with that of the unsaturated zone. As a part of the saturated zone investigation, there wells-UE-25c{number_sign}1, UE-25c{number_sign}2, and UE-25c{number_sign}3 (hereafter called the c-holes)-were drilled to study hydraulic and transport properties of rock formations underlying the planned waste repository. The location of the c-holes is such that the formations penetrated in the unsaturated zone occur at similar depths and with similar thicknesses as at the planned repository site. In characterizing a highly heterogeneous flow system, several issues emerge. (1) The characterization strategy should allow for the virtual impossibility to enumerate and characterize all heterogeneities. (2) The methodology to characterize the heterogeneous flow system at the scale of the well tests needs to be established. (3) Tools need to be developed for scaling up the information obtained at the well-test scale to the larger scale of the site. In the present paper, the characterization strategy and the methods under development are discussed with the focus on the design and analysis of the field experiments at the c-holes.

  2. Model of Layered Weld Formation Under Narrow Gap Pulse Welding

    Science.gov (United States)

    Krampit, A. G.

    2016-04-01

    The model parameters of narrow gap pulse welding can be divided into input, internal and output ones. The breadth of gap, that is, clearance breadth between upright edges is one of key parameters securing high quality of a weld joint. The paper presents theoretical outcomes for the model of layered weld formation under narrow gap pulse welding. Based on these studies is developed model of processes, which occur in the weld pool under pulse grove welding. It comprises the scheme of liquid metal motion in the weld pool, scheme of fusion with the side edge and in the bottom part, and the scheme of welding current impulse effect on the structure of a weld joint.

  3. Welding processes handbook

    CERN Document Server

    Weman, Klas

    2003-01-01

    Deals with the main commercially significant and commonly used welding processes. This title takes the student or novice welder through the individual steps involved in each process in an easily understood way. It covers many of the requirements referred to in European Standards including EN719, EN 729, EN 729 and EN 287.$bWelding processes handbook is a concise, explanatory guide to the main commercially significant and commonly-used welding processes. It takes the novice welder or student through the individual steps involved in each process in a clear and easily understood way. It is intended to provide an up-to-date reference to the major applications of welding as they are used in industry. The contents have been arranged so that it can be used as a textbook for European welding courses in accordance with guidelines from the European Welding Federation. Welding processes and equipment necessary for each process are described so that they can be applied to all instruction levels required by the EWF and th...

  4. Application of explosive welding to heat exchangers

    Energy Technology Data Exchange (ETDEWEB)

    Arthur, G.

    1983-10-01

    The subject is discussed under the headings: advantages of explosive welding; principle of explosive welding; explosive welding of tubes; metallurgy of explosive welds (micrographs; microhardness); tubular heat exchangers; plugging; sleeving; retubing; construction of new heat exchangers; thermal sleeves.

  5. Subaqueous explosive eruption and welding of pyroclastic deposits.

    Science.gov (United States)

    Kokelaar, P; Busby, C

    1992-07-10

    Silicic tuffs infilling an ancient submarine caldera, at Mineral King in California, show microscopic fabrics indicative of welding of glass shards and pumice at temperatures >500 degrees C. The occurrence indicates that subaqueous explosive eruption and emplacement of pyroclastic materials can occur without substantial admixture of the ambient water, which would cause chilling. Intracaldera progressive aggradation of pumice and ash from a thick, fast-moving pyroclastic flow occurred during a short-lived explosive eruption of approximately 26 cubic kilometers of magma in water >/=150 meters deep. The thickness, high velocity, and abundant fine material of the erupted gas-solids mixture prevented substantial incorporation of ambient water into the flow. Stripping of pyroclasts from upper surfaces of subaqueous pyroclastic flows in general, both above the vent and along any flow path, may be the main process giving rise to buoyant-convective subaqueous eruption columns and attendant fallout deposits.

  6. Thermal stir welding apparatus

    Science.gov (United States)

    Ding, R. Jeffrey (Inventor)

    2011-01-01

    A welding method and apparatus are provided for forming a weld joint between first and second elements of a workpiece. The method includes heating the first and second elements to form an interface of material in a plasticized or melted state interface between the elements. The interface material is then allowed to cool to a plasticized state if previously in a melted state. The interface material, while in the plasticized state, is then mixed, for example, using a grinding/extruding process, to remove any dendritic-type weld microstructures introduced into the interface material during the heating process.

  7. Thermal stir welding process

    Science.gov (United States)

    Ding, R. Jeffrey (Inventor)

    2012-01-01

    A welding method is provided for forming a weld joint between first and second elements of a workpiece. The method includes heating the first and second elements to form an interface of material in a plasticized or melted state interface between the elements. The interface material is then allowed to cool to a plasticized state if previously in a melted state. The interface material, while in the plasticized state, is then mixed, for example, using a grinding/extruding process, to remove any dendritic-type weld microstructures introduced into the interface material during the heating process.

  8. Fusion Welding Research.

    Science.gov (United States)

    2014-09-26

    RD-AlSO 253 FUSION WELDING RESEARCH(U) MASSACHUSETTS INST OF TECH L/I CAMBRIDGE DEPT OF MATERIALS SCIENCE AND ENGINEERING T W EAGAR ET AL. 30 RPR 85...NUMBER 12. GOV’ ACCESSION NO. 3. RECICIE-S CATALOG NUMBER 4. T TL V nd Subtitle) S. P OFRPR PERIOD COVERED 5t h A~nnual Technical Report Fusion Welding ...research S on welding processes. Studies include metal vapors in the arc, development of a high speed infrared temperature monitor, digital signal

  9. Review of Welding Terminology

    Directory of Open Access Journals (Sweden)

    Angelika Petrėtienė

    2011-04-01

    Full Text Available The paper discusses welding terms in accordance with the Lithuanian standard LST EN 1792 „Welding. The multilingual list of welding terms and similar processes”, „The Russian–Lithuanian dictionary of the terms of mechanical engineering technology and welding“ and the examples from postgraduates‘ final works. It analyses the infringement of lexical, word-building and morphological rules. First-year students should already be familiar with the standardized terms of their speciality. More active propagation of the terms should help to avoid terminology mistakes in various scientific spheres.

  10. The magnitude and impact of the Youngest Toba Tuff super-eruption

    Directory of Open Access Journals (Sweden)

    Antonio eCosta

    2014-08-01

    Full Text Available Super-eruptions, orders of magnitude larger than eruptions experienced in historic times, have devastated wide areas by pyroclastic flows, covered continent-size areas by ash fallout, and injected large quantities of aerosols into the stratosphere affecting global climate. The Youngest Toba Tuff (YTT is the largest known super-eruption in the Quaternary. Here we reconstructed the ultra-distal volcanic ash dispersal during this super-eruption using a computational ash dispersal model, which provides insights into the eruption dynamics and the impact of the event. The method uses a 3D time-dependent tephra dispersion model, a set of wind fields, and several tens of thickness measurements of the YTT tephra deposit. Results reveal that the YTT eruption dispersed ~8600 km3 (~3800 km3 dense rock equivalent, DRE of ash, covering ~40 million km2 with more than 5 mm of ash. These new fallout volume estimations indicate that the total volume of the material erupted (including the massive pyroclastic density current, 1500 km3 DRE, deposits on Sumatra was ~5300 km3 DRE. Simulation results indicate that the eruption had a very large mass flow rate and that the umbrella cloud, associated with the eruption plume, spread as an enormous gravity current around the neutral buoyancy level. The YTT tephra forms a key chronostratigraphic marker in the sedimentary sequences, and is particularly useful for constraining the age of the palaeoenvironmental and archaeological records, and synchronizing these archives to investigate temporal relationships. These new constraints on the extent of the YTT deposit are therefore particularly useful for cryptotephra studies that aim to find non-visible tephra layers for these chronological purposes. This method used to constrain volcanological parameters of eruptions in the past provides insights into the dispersal processes, and allows the amount of volatiles released to be estimated which is crucial to assessing the impact of

  11. Welding and rheomorphism reappraised: valley-confined ignimbrites

    Science.gov (United States)

    Branney, M. J.; Barry, T. L.

    2003-04-01

    Some pyroclastic density currents are so hot that the pyroclasts weld rapidly to form a layer of agglutinate that continues to flow in a ductile manner, a process known as rheomorphism. Previous studies of rheomorphic ignimbrites have inferred that folds are orientated with axes perpendicular to the direction of rheomorphic transport. For example, in a seminal study of the Wall Mountain Tuff in Gribbles Run palaeovalley, Colorado, Chapin and Lowell (1979) interpreted an apparently complex pattern of rheomorphic deformation structures as the product of two phases of deformation: (1) pyroclastic flow along the valley caused "primary" welding and folding, with fold axes perpendicular to the valley axis; and (2) already deposited ignimbrite underwent "secondary mass flowage" down local valley sides, producing "secondary" folds with axes parallel to the valley axis. A new structural analysis of the welding fabrics in the Wall Mountain Tuff has revealed the presence of abundant sheath folds, a structure hitherto little reported from pyroclastic rocks. The majority of sheathfold axes lie sub-parallel to the palaeovalley, and sub-parallel to a pervasive valley-parallel elongation lineation. There is no evidence of a second phase of deformation; valley-normal lineations are absent and folds with axes at high angles to the valley axis are markedly curvilinear. We interpret the latter as having developed within the same shearing system as the valley-parallel folds, but they nucleated slightly later and so were less transposed and attenuated. We conclude that the ignimbrite underwent only one deformation event. We then re-visited 10 classic examples of rheomorphic ignimbrites in the USA, Canary Islands and Italy. All exhibited abundant sheath folds. Structural analysis reveals a common pattern of progressive ductile deformation. Folds initiate at various angles to the flow direction and to the elongation lineations, such as prolate fiamme and stretched vesicles. Axial planes

  12. Hybrid laser-arc welding

    DEFF Research Database (Denmark)

    Hybrid laser-arc welding (HLAW) is a combination of laser welding with arc welding that overcomes many of the shortfalls of both processes. This important book gives a comprehensive account of hybrid laser-arc welding technology and applications. The first part of the book reviews...... the characteristics of the process, including the properties of joints produced by hybrid laser-arc welding and ways of assessing weld quality. Part II discusses applications of the process to such metals as magnesium alloys, aluminium and steel as well as the use of hybrid laser-arc welding in such sectors as ship...... building and the automotive industry. With its distinguished editor and international team of contributors, Hybrid laser-arc welding, will be a valuable source of reference for all those using this important welding technology. Professor Flemming Ove Olsen works in the Department of Manufacturing...

  13. Dense Plasma Focus Modeling

    Energy Technology Data Exchange (ETDEWEB)

    Li, Hui [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Li, Shengtai [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Jungman, Gerard [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Hayes-Sterbenz, Anna Catherine [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-08-31

    The mechanisms for pinch formation in Dense Plasma Focus (DPF) devices, with the generation of high-energy ions beams and subsequent neutron production over a relatively short distance, are not fully understood. Here we report on high-fidelity 2D and 3D numerical magnetohydrodynamic (MHD) simulations using the LA-COMPASS code to study the pinch formation dynamics and its associated instabilities and neutron production.

  14. Friction stir welding tool

    Science.gov (United States)

    Tolle; Charles R. , Clark; Denis E. , Barnes; Timothy A.

    2008-04-15

    A friction stir welding tool is described and which includes a shank portion; a shoulder portion which is releasably engageable with the shank portion; and a pin which is releasably engageable with the shoulder portion.

  15. Magnetic Pulse Welding Technology

    Directory of Open Access Journals (Sweden)

    Ahmad K. Jassim

    2011-12-01

    Full Text Available In this paper, the benefits of using Magnetic Pulse machine which is belong to Non-conventional machine instead of conventional machine. Magnetic Pulse Technology is used for joining dissimilar metals, and for forming and cutting metals. It is a non contact technique. Magnetic field is used to generate impact magnetic pressure for welding and forming the work piece by converted the electrical energy to mechanical energy. It is enable us to design previously not possible by welding dissimilar materials and allowing to welds light and stronger materials together. It can be used to weld metallic with non metallic materials to created mechanical lock on ceramics, polymers, rubbers and composites. It is green process; there is no heat, no radiation, no gas, no smoke and sparks, therefore the emissions are negligible.

  16. Explosive Welding with Nitroguanidine.

    Science.gov (United States)

    Sadwin, L D

    1964-03-13

    By using the explosive nitroguanidine, continuous welds can be made between similar and dissimilar metals. Since low detonation pressures are attainable, pressure transfer media are not required between the explosive and the metal surface. The need for either a space or an angle between the metals is eliminated, and very low atmospheric pressures are not required. Successful welds have been made between tantalum and 4140 steel, 3003H14 aluminum and 4140 steel, and 304 stainless steel and 3003H14 aluminum.

  17. Laser Impact Welding

    OpenAIRE

    Daehn, Glenn S.; Lippold, John; Liu, Deijan; Taber, Geoff; Wang, Huimin

    2012-01-01

    Laser impact welding is a solid-state, collision-based welding process. In this process, laser-generated optical energy is converted to kinetic energy through the ablation at the surface and confinement of the gas generated between a flyer and backing plate. The launch of the flyer can be affected by many factors, for example, backing material, ablative layer, and flyer thickness. In this paper, the effect of three backing materials: glass, polycarbonate and cellophane tape, we...

  18. Welding of solid wood

    OpenAIRE

    Ivica Župčić; Goran Mihulja; Andrija Bogner; Ivica Grbac; Ivica @up~i}, Goran Mihulja, Andrija Bogner, Ivica Grbac,; Božidar Hrovat

    2008-01-01

    This paper presents the up-to-date knowledge and results of the application of wood welding techniques at the Faculty of Forestry University of Zagreb. Wood welding technologies have been developed as a new way of bonding timber by using high temperature generatedby friction and pressure. Timber is assembled without any adhesives. During the process the surface layer of timber (lignin), which is in direct contact with its counterpart, melts due to high pressure and temperature, which is usual...

  19. Certification of a weld produced by friction stir welding

    Science.gov (United States)

    Obaditch, Chris; Grant, Glenn J

    2013-10-01

    Methods, devices, and systems for providing certification of friction stir welds are disclosed. A sensor is used to collect information related to a friction stir weld. Data from the sensor is compared to threshold values provided by an extrinsic standard setting organizations using a certification engine. The certification engine subsequently produces a report on the certification status of the weld.

  20. Hydrogen Cracking in Gas Tungsten Arc Welding of an AISI Type 321 Stainless Steel

    Science.gov (United States)

    Rozenak, P.; Unigovski, Ya.; Shneck, R.

    The effects of in situ cathodic charging on the tensile properties and susceptibility to cracking of an AISI type 321 stainless steel, welded by the gas tungsten arc welding (GTAW) process, was studied by various treatments. Appearance of delta-ferrite phase in the as-welded steels in our tested conditions was observed with discontinuous grain boundaries (M23C6) and a dense distribution of metal carbides MC ((Ti, Nb)C), which precipitated in the matrix. Shielding gas rates changes the mechanical properties of the welds. Ultimate tensile strength and ductility are increases with the resistance to the environments related the increase of the supplied shielding inert gas rates. Charged specimens, caused mainly in decreases in the ductility of welded specimens. However, more severe decrease in ductility was obtained after post weld heat treatment (PWHT). The fracture of sensitized specimens was predominantly intergranular, whereas the as-welded specimens exhibited massive transgranular regions. Both types of specimen demonstrated narrow brittle zones at the sides of the fracture surface and ductile micro-void coalescences in the middle. Ferrite δ was form after welding with high density of dislocation structures and stacking faults formation and the thin stacking fault plates with e-martensite phase were typically found in the austenitic matrix after the cathodical charging process.

  1. Self-Reacting Friction Stir Welding for Aluminum Alloy Circumferential Weld Applications

    Science.gov (United States)

    Bjorkman, Gerry; Cantrell, Mark; Carter, Robert

    2003-01-01

    Friction stir welding is an innovative weld process that continues to grow in use, in the commercial, defense, and space sectors. It produces high quality and high strength welds in aluminum alloys. The process consists of a rotating weld pin tool that plasticizes material through friction. The plasticized material is welded by applying a high weld forge force through the weld pin tool against the material during pin tool rotation. The high weld forge force is reacted against an anvil and a stout tool structure. A variation of friction stir welding currently being evaluated is self-reacting friction stir welding. Self-reacting friction stir welding incorporates two opposing shoulders on the crown and root sides of the weld joint. In self-reacting friction stir welding, the weld forge force is reacted against the crown shoulder portion of the weld pin tool by the root shoulder. This eliminates the need for a stout tooling structure to react the high weld forge force required in the typical friction stir weld process. Therefore, the self-reacting feature reduces tooling requirements and, therefore, process implementation costs. This makes the process attractive for aluminum alloy circumferential weld applications. To evaluate the application of self-reacting friction stir welding for aluminum alloy circumferential welding, a feasibility study was performed. The study consisted of performing a fourteen-foot diameter aluminum alloy circumferential demonstration weld using typical fusion weld tooling. To accomplish the demonstration weld, weld and tack weld development were performed and fourteen-foot diameter rings were fabricated. Weld development consisted of weld pin tool selection and the generation of a process map and envelope. Tack weld development evaluated gas tungsten arc welding and friction stir welding for tack welding rings together for circumferential welding. As a result of the study, a successful circumferential demonstration weld was produced leading

  2. Welding defects at friction stir welding

    Directory of Open Access Journals (Sweden)

    P. Podržaj

    2015-04-01

    Full Text Available The paper presents an overview of different types of defects at friction stir welding. In order to explain the reasons for their occurrence a short theoretical background of the process is given first. The main emphasis is on the parameters that influence the process. An energy supply based division of defects into three disjoint groups was used. The occurring defects are demonstrated on various materials.

  3. Welding. Performance Objectives. Intermediate Course.

    Science.gov (United States)

    Vincent, Kenneth

    Several intermediate performance objectives and corresponding criterion measures are listed for each of nine terminal objectives for an intermediate welding course. The materials were developed for a 36-week (3 hours daily) course designed to prepare the student for employment in the field of welding. Electric welding and specialized (TIG & MIG)…

  4. Welding. Performance Objectives. Basic Course.

    Science.gov (United States)

    Vincent, Kenneth

    Several intermediate performance objectives and corresponding criterion measures are listed for each of eight terminal objectives for a basic welding course. The materials were developed for a 36-week (2 hours daily) course developed to teach the fundamentals of welding shop work, to become familiar with the operation of the welding shop…

  5. Surface complexation modeling of americium sorption onto volcanic tuff.

    Science.gov (United States)

    Ding, M; Kelkar, S; Meijer, A

    2014-10-01

    Results of a surface complexation model (SCM) for americium sorption on volcanic rocks (devitrified and zeolitic tuff) are presented. The model was developed using PHREEQC and based on laboratory data for americium sorption on quartz. Available data for sorption of americium on quartz as a function of pH in dilute groundwater can be modeled with two surface reactions involving an americium sulfate and an americium carbonate complex. It was assumed in applying the model to volcanic rocks from Yucca Mountain, that the surface properties of volcanic rocks can be represented by a quartz surface. Using groundwaters compositionally representative of Yucca Mountain, americium sorption distribution coefficient (Kd, L/Kg) values were calculated as function of pH. These Kd values are close to the experimentally determined Kd values for americium sorption on volcanic rocks, decreasing with increasing pH in the pH range from 7 to 9. The surface complexation constants, derived in this study, allow prediction of sorption of americium in a natural complex system, taking into account the inherent uncertainty associated with geochemical conditions that occur along transport pathways.

  6. Warm dense crystallography

    Science.gov (United States)

    Valenza, Ryan A.; Seidler, Gerald T.

    2016-03-01

    The intense femtosecond-scale pulses from x-ray free electron lasers (XFELs) are able to create and interrogate interesting states of matter characterized by long-lived nonequilibrium semicore or core electron occupancies or by the heating of dense phases via the relaxation cascade initiated by the photoelectric effect. We address here the latter case of "warm dense matter" (WDM) and investigate the observable consequences of x-ray heating of the electronic degrees of freedom in crystalline systems. We report temperature-dependent density functional theory calculations for the x-ray diffraction from crystalline LiF, graphite, diamond, and Be. We find testable, strong signatures of condensed-phase effects that emphasize the importance of wide-angle scattering to study nonequilibrium states. These results also suggest that the reorganization of the valence electron density at eV-scale temperatures presents a confounding factor to achieving atomic resolution in macromolecular serial femtosecond crystallography (SFX) studies at XFELs, as performed under the "diffract before destroy" paradigm.

  7. Dense Suspension Splash

    Science.gov (United States)

    Zhang, Wendy; Dodge, Kevin M.; Peters, Ivo R.; Ellowitz, Jake; Klein Schaarsberg, Martin H.; Jaeger, Heinrich M.

    2014-03-01

    Upon impact onto a solid surface at several meters-per-second, a dense suspension plug splashes by ejecting liquid-coated particles. We study the mechanism for splash formation using experiments and a numerical model. In the model, the dense suspension is idealized as a collection of cohesionless, rigid grains with finite surface roughness. The grains also experience lubrication drag as they approach, collide inelastically and rebound away from each other. Simulations using this model reproduce the measured momentum distribution of ejected particles. They also provide direct evidence supporting the conclusion from earlier experiments that inelastic collisions, rather than viscous drag, dominate when the suspension contains macroscopic particles immersed in a low-viscosity solvent such as water. Finally, the simulations reveal two distinct routes for splash formation: a particle can be ejected by a single high momentum-change collision. More surprisingly, a succession of small momentum-change collisions can accumulate to eject a particle outwards. Supported by NSF through its MRSEC program (DMR-0820054) and fluid dynamics program (CBET-1336489).

  8. Dense Axion Stars

    CERN Document Server

    Braaten, Eric; Zhang, Hong

    2015-01-01

    If the dark matter consists of axions, gravity can cause them to coalesce into axion stars, which are stable gravitationally bound Bose-Einstein condensates of axions. In the previously known axion stars, gravity and the attractive force between pairs of axions are balanced by the kinetic pressure.If the axion mass energy is $mc^2= 10^{-4}$ eV, these dilute axion stars have a maximum mass of about $10^{-14} M_\\odot$. We point out that there are also dense axion stars in which gravity is balanced by the mean-field pressure of the axion condensate. We study axion stars using the leading term in a systematically improvable approximation to the effective potential of the nonrelativistic effective field theory for axions. Using the Thomas-Fermi approximation in which the kinetic pressure is neglected, we find a sequence of new branches of axion stars in which gravity is balanced by the mean-field interaction energy of the axion condensate. If $mc^2 = 10^{-4}$ eV, the first branch of these dense axion stars has mas...

  9. Dense Axion Stars

    Science.gov (United States)

    Braaten, Eric; Mohapatra, Abhishek; Zhang, Hong

    2016-09-01

    If the dark matter particles are axions, gravity can cause them to coalesce into axion stars, which are stable gravitationally bound systems of axions. In the previously known solutions for axion stars, gravity and the attractive force between pairs of axions are balanced by the kinetic pressure. The mass of these dilute axion stars cannot exceed a critical mass, which is about 10-14M⊙ if the axion mass is 10-4 eV . We study axion stars using a simple approximation to the effective potential of the nonrelativistic effective field theory for axions. We find a new branch of dense axion stars in which gravity is balanced by the mean-field pressure of the axion Bose-Einstein condensate. The mass on this branch ranges from about 10-20M⊙ to about M⊙ . If a dilute axion star with the critical mass accretes additional axions and collapses, it could produce a bosenova, leaving a dense axion star as the remnant.

  10. Dense Axion Stars

    Science.gov (United States)

    Mohapatra, Abhishek; Braaten, Eric; Zhang, Hong

    2016-03-01

    If the dark matter consists of axions, gravity can cause them to coalesce into axion stars, which are stable gravitationally bound Bose-Einstein condensates of axions. In the previously known axion stars, gravity and the attractive force between pairs of axions are balanced by the kinetic pressure. If the axion mass energy is mc2 =10-4 eV, these dilute axion stars have a maximum mass of about 10-14M⊙ . We point out that there are also dense axion stars in which gravity is balanced by the mean-field pressure of the axion condensate. We study axion stars using the leading term in a systematically improvable approximation to the effective potential of the nonrelativistic effective field theory for axions. Using the Thomas-Fermi approximation in which the kinetic pressure is neglected, we find a sequence of new branches of axion stars in which gravity is balanced by the mean-field interaction energy of the axion condensate. If mc2 =10-4 4 eV, the first branch of these dense axion stars has mass ranging from about 10-11M⊙ toabout M⊙.

  11. DENSE MEDIUM CYCLONE OPTIMIZATON

    Energy Technology Data Exchange (ETDEWEB)

    Gerald H. Luttrell; Chris J. Barbee; Peter J. Bethell; Chris J. Wood

    2005-06-30

    Dense medium cyclones (DMCs) are known to be efficient, high-tonnage devices suitable for upgrading particles in the 50 to 0.5 mm size range. This versatile separator, which uses centrifugal forces to enhance the separation of fine particles that cannot be upgraded in static dense medium separators, can be found in most modern coal plants and in a variety of mineral plants treating iron ore, dolomite, diamonds, potash and lead-zinc ores. Due to the high tonnage, a small increase in DMC efficiency can have a large impact on plant profitability. Unfortunately, the knowledge base required to properly design and operate DMCs has been seriously eroded during the past several decades. In an attempt to correct this problem, a set of engineering tools have been developed to allow producers to improve the efficiency of their DMC circuits. These tools include (1) low-cost density tracers that can be used by plant operators to rapidly assess DMC performance, (2) mathematical process models that can be used to predict the influence of changes in operating and design variables on DMC performance, and (3) an expert advisor system that provides plant operators with a user-friendly interface for evaluating, optimizing and trouble-shooting DMC circuits. The field data required to develop these tools was collected by conducting detailed sampling and evaluation programs at several industrial plant sites. These data were used to demonstrate the technical, economic and environmental benefits that can be realized through the application of these engineering tools.

  12. ON INTELLIGENTIZED TECHNOLOGIES FOR MODERN WELDING MANUFACTURING

    Institute of Scientific and Technical Information of China (English)

    Chen Shanben; Qiu Tao; Lin Tao; Wu Yixiong

    2003-01-01

    A short survey on researching and developing status of intelligent technologies in modem welding manufacturing is given. According to the developing trend of advanced manufacturing technology, a concept on intelligentized welding manufacturing engineering (IWME), is presented for systematization of researching and developing domains on welding automation, intelligentized welding,robotic and flexible welding and advanced welding manufacturing technologies. And key technologies of welding intelligent manufacturing and its developing trend in the future are investigated.

  13. Friction stir welding tool and process for welding dissimilar materials

    Science.gov (United States)

    Hovanski, Yuri; Grant, Glenn J; Jana, Saumyadeep; Mattlin, Karl F

    2013-05-07

    A friction stir welding tool and process for lap welding dissimilar materials are detailed. The invention includes a cutter scribe that penetrates and extrudes a first material of a lap weld stack to a preselected depth and further cuts a second material to provide a beneficial geometry defined by a plurality of mechanically interlocking features. The tool backfills the interlocking features generating a lap weld across the length of the interface between the dissimilar materials that enhances the shear strength of the lap weld.

  14. The behavior of biogenic silica-rich rocks and volcanic tuffs as pozzolanic additives in cement

    Science.gov (United States)

    Fragoulis, Dimitris; Stamatakis, Michael; Anastasatou, Marianthi

    2015-04-01

    Cements currently produced, include a variety of pozzolanic materials, aiming for lower clinker addition and utilization of vast deposits of certain raw materials and/or mining wastes and byproducts. The major naturally occurring pozzolanic materials include glassy tuffs, zeolitic tuffs, diatomites and volcanic lavas rich in glassy phase, such as perlites. Therefore, based on the available raw materials in different locations, the cement composition might vary according to the accessibility of efficient pozzolanic materials. In the present investigation, the behavior of pozzolanic cements produced with representative samples of the aforementioned materials was studied, following the characterization of the implemented pozzolanas with respect to their chemical and mineralogical characteristics. Laboratory cements were produced by co-grinding 75% clinker, 5% gypsum and 20% pozzolana, for the same period of time (45 min). Regarding pozzolanic materials, four different types of pozzolanas were utilized namely, diatomite, perlite, zeolite tuff and glassy tuff. More specifically, two diatomite samples originated from Australia and Greece, with high and low reactive silica content respectively, two perlite samples originated from Turkey and from Milos Island, Greece, with different reactive silica contents, a zeolite tuff sample originated from Turkey and a glassy tuff sample originated from Milos Island, Greece. The above pozzolana samples, which were ground in the laboratory ball mill for cement production performed differently during grinding and that was reflected upon the specific surface area (cm2/gr) values. The perlites and the glassy tuff were the hardest to grind, whereas, the zeolite tuff and the Australian diatomite were the easiest ones. However, the exceedingly high specific surface area of the Australian diatomite renders cement difficult to transport and tricky to use for concrete manufacturing, due to the high water demand of the cement mixture. Regarding

  15. Weld Nugget Temperature Control in Thermal Stir Welding

    Science.gov (United States)

    Ding, R. Jeffrey (Inventor)

    2014-01-01

    A control system for a thermal stir welding system is provided. The control system includes a sensor and a controller. The sensor is coupled to the welding system's containment plate assembly and generates signals indicative of temperature of a region adjacent and parallel to the welding system's stir rod. The controller is coupled to the sensor and generates at least one control signal using the sensor signals indicative of temperature. The controller is also coupled to the welding system such that at least one of rotational speed of the stir rod, heat supplied by the welding system's induction heater, and feed speed of the welding system's weld material feeder are controlled based on the control signal(s).

  16. Weld pool image sensor for pulsed MIG welding

    Institute of Scientific and Technical Information of China (English)

    Liu Pengfei; Sun Zhenguo; Huang Cao; Chen Qiang

    2008-01-01

    Visual image sensor is developed to detect the weld pool images in pulsed MIG welding. An exposure controller, which is composed of the modules of the voltage transforming, the exposure parameters presetting, the complex programmable logic device (CPLD) based logic controlling, exposure signal processing, the arc state detecting, the mechanical iris driving and so on, is designed at first. Then, a visual image sensor consists of an ordinary CCD camera, optical system and exposure controller is established. The exposure synchronic control logic is described with very-high-speed integrated circuit hardware description language (VHDL) and programmed with CPLD, to detect weld pool images at the stage of base current in pulsed MIG welding. Finally, both bead on plate welding and V groove filled welding are carried out, clear and consistent weld pool images are acquired.

  17. Eruption sequence of the Suwanoharu tuff ring in the Pliocene Oyano formation, western Kyushu, Japan

    Science.gov (United States)

    Kosugi, H.; Yokose, H.

    2005-12-01

    Volcanism in the Ariake sea region, west Kyushu, Japan, where is the northern extension of the Okinawa trough, have been active during the last 5 million years, from Pliocene to present Unzen volcano. The region has been subsided with development of the tectonic graben. Pliocene Oyano formation is predominated in shallow marine pyroclastic deposits including some base surge deposits. A series of stratified pyroclastic deposits, which were originated by phreatomagmatic eruption cycles is exposed on a sea cliff and is considered to be a remnant of tuff ring, which is called Suwanoharu tuff ring. Suwanoharu tuff ring is expected to preserve the complete eruption sequence. The sequence is basically alternation of massive white tuff layers and laminated gray coarse to lapilli tuff layers. We can identify seven eruption cycles bounded by the massive white air fall pyroclastic deposits (unit 1- 7). The gray pyroclastic deposits consist of massive dark gray medium tuff, crudely laminated medium to coarse-grained tuff, inversely graded lapilli tuff, cross-bedded lapilli tuff, and lapillistone and are considered to be a base surge deposit. Ascending to the eruption cycles, the thickness of massive white tuff layers is decreasing, but the gray layers are increasing. Representative samples were collected from 42 horizons of the tuff ring sequence and analyzed the bulk rock chemical compositions using XRF and the mineral assemblages using XRD. The bulk rock chemical compositions of the gray layers changes from andesite at the lower horizon to basalt at the upper horizon. On the other hand, massive white tuff layers have almost identical and are andesite. Because the compositions of basal layers are very similar to the silt of the basement rock, the beds in the unit 1 may have been deposited fragmented basement rocks by the first phreatomagmatic eruption. At the upper layers of the first eruption cycle (unit 1), chlorine contents are up to the maximum level (ca. 4%) and the

  18. Spot Welding of Honeycomb Structures

    Science.gov (United States)

    Cohal, V.

    2017-08-01

    Honeycomb structures are used to prepare meals water jet cutting machines for textile. These honeycomb structures are made of stainless steel sheet thickness of 0.1-0.2 mm. Corrugated sheet metal strips are between two gears with special tooth profile. Hexagonal cells for obtaining these strips are welded points between them. Spot welding device is three electrodes in the upper part, which carries three welding points across the width of the strip of corrugated sheet metal. Spot welding device filled with press and advance mechanisms. The paper presents the values of the regime for spot welding.

  19. Fundamental Laser Welding Process Investigations

    DEFF Research Database (Denmark)

    Bagger, Claus; Olsen, Flemming Ove

    1998-01-01

    In a number of systematic laboratory investigations the fundamental behavior of the laser welding process was analyzed by the use of normal video (30 Hz), high speed video (100 and 400 Hz) and photo diodes. Sensors were positioned to monitor the welding process from both the top side and the rear...... side of the specimen.Special attention has been given to the dynamic nature of the laser welding process, especially during unstable welding conditions. In one series of experiments, the stability of the process has been varied by changing the gap distance in lap welding. In another series...

  20. Hybrid laser-arc welding

    DEFF Research Database (Denmark)

    the characteristics of the process, including the properties of joints produced by hybrid laser-arc welding and ways of assessing weld quality. Part II discusses applications of the process to such metals as magnesium alloys, aluminium and steel as well as the use of hybrid laser-arc welding in such sectors as ship...... building and the automotive industry. With its distinguished editor and international team of contributors, Hybrid laser-arc welding, will be a valuable source of reference for all those using this important welding technology. Professor Flemming Ove Olsen works in the Department of Manufacturing...

  1. Numerical simulation of welding

    DEFF Research Database (Denmark)

    Hansen, Jan Langkjær; Thorborg, Jesper

    Aim of project:To analyse and model the transient thermal field from arc welding (SMAW, V-shaped buttweld in 15mm plate) and to some extend the mechanical response due to the thermal field. - To implement this model in a general purpose finite element program such as ABAQUS.The simulation...... stress is also taken into account.Work carried out:With few means it is possible to define a thermal model which describes the thermal field from the welding process in reasonable agreement with reality. Identical results are found with ABAQUS and Rosenthal’s analytical solution of the governing heat...... transfer equation under same conditions. It is relative easy tointroduce boundary conditions such as convection and radiation where not surprisingly the radiation has the greatest influence especially from the high temperature regions in the weld pool and the heat affected zone.Due to the large temperature...

  2. Milestones in welding technology

    Science.gov (United States)

    Dolby, Richard E.

    2013-09-01

    Sir Alan's PhD thesis describes his research into cracking during arc welding of armour steels. Throughout his career, he had a strong interest in defects of all types, how they formed in metallic structures and how the larger ones could be detected and sized by non-destructive techniques. He was also vitally concerned with how defects impacted on the engineering integrity of welded structures, particularly the risk of fracture in nuclear plant. This study presents a view of some of the major milestones in global welding technology that took place over the 60 or more years of Sir Alan's career and highlights those where he had a personal and direct involvement.

  3. New data on the Volcanic Tuff from Petrestii de Jos (Cluj District

    Directory of Open Access Journals (Sweden)

    Bedelean Horea

    2001-04-01

    Full Text Available The present study was carried out on the cineritic interlayers from Petreştii de Jos (closed quarry from Indolului Valley, in order to present their detailed mineralogical-petrographical features. Previous work already noticed the similarity of this tuff level with Dej Tuff Complex in other areas. The studied outcrop consists of a compact volcanic tuff interlayered with marls and tuffaceous clays. The analytical investigations: chemical analyses, X-ray diffraction, IR spectroscopy and electron microscopy reveal the nature of the diagenetic transformations dominated by zeolitization. Besides clinoptilolite, which is the typical zeolite for Dej Tuff from the Transylvanian Depression, our investigation evidenced also the presence of phillipsite. The process was stepwise: during the primary, syngenetic stage K-clinoptilolite formed, while during the late epigenetic stage Ca-phillipsite crystallized; on behalf of the latter one, Ca-clinoptilolite was also generated. It is worth to mention that the highest amounts of zeolites are to be found in the basal horizon, while this amount decreases in the interlayers associated with the marly-clayey levels. From genetic point of view, the lower horizon in the outcrop represents a primary fall-out tuff. The thin interlayers within the upper horizons are resedimented tuffs. The tuff from Petreştii de Jos represents a cheap raw material located in the neighborhood of the industrial area of Turda town. For using it, only a more detailed research and the removal of the vegetal and soil layer on the top would be necessary.

  4. Feldspar dissolution rates in the Topopah Spring Tuff, Yucca Mountain, Nevada

    Science.gov (United States)

    Bryan, C.R.; Helean, K.B.; Marshall, B.D.; Brady, P.V.

    2009-01-01

    Two different field-based methods are used here to calculate feldspar dissolution rates in the Topopah Spring Tuff, the host rock for the proposed nuclear waste repository at Yucca Mountain, Nevada. The center of the tuff is a high silica rhyolite, consisting largely of alkali feldspar (???60 wt%) and quartz polymorphs (???35 wt%) that formed by devitrification of rhyolitic glass as the tuff cooled. First, the abundance of secondary aluminosilicates is used to estimate the cumulative amount of feldspar dissolution over the history of the tuff, and an ambient dissolution rate is calculated by using the estimated thermal history. Second, the feldspar dissolution rate is calculated by using measured Sr isotope compositions for the pore water and rock. Pore waters display systematic changes in Sr isotopic composition with depth that are caused by feldspar dissolution. The range in dissolution rates determined from secondary mineral abundances varies from 10-16 to 10-17 mol s-1 kg tuff-1 with the largest uncertainty being the effect of the early thermal history of the tuff. Dissolution rates based on pore water Sr isotopic data were calculated by treating percolation flux parametrically, and vary from 10-15 to 10-16 mol s-1 kg tuff-1 for percolation fluxes of 15 mm a-1 and 1 mm a-1, respectively. Reconciling the rates from the two methods requires that percolation fluxes at the sampled locations be a few mm a-1 or less. The calculated feldspar dissolution rates are low relative to other measured field-based feldspar dissolution rates, possibly due to the age (12.8 Ma) of the unsaturated system at Yucca Mountain; because oxidizing and organic-poor conditions limit biological activity; and/or because elevated silica concentrations in the pore waters (???50 mg L-1) may inhibit feldspar dissolution. ?? 2009 Elsevier Ltd. All rights reserved.

  5. Hyperons in dense matter

    Energy Technology Data Exchange (ETDEWEB)

    Dapo, Haris

    2009-01-28

    The hyperon-nucleon YN low momentum effective interaction (V{sub low} {sub k}) allows for an extensive study of the behavior of hyperons in dense matter, together with an investigation of effects of the presence of hyperons on dense matter. The first step towards this goal is the construction of the matrix elements for the hyperon-nucleon low momentum potential. In order to assess the different properties of hyperons within these potentials we calculate the hyperon single-particle potentials in the Hartree-Fock approximation for all of the interactions. Their dependence on both momentum and density, is studied. The single-particle potentials are then used to determine the chemical potential of hyperons in neutron stars. For nucleonic properties, the nucleon-nucleon V{sub low} {sub k} can be used with the caveat that the calculation of the ground-state energy of symmetric nuclear matter does not correctly reproduce the properties of matter at saturation. With the nucleon-nucleon V{sub low} {sub k} one is unable to reach the densities needed for the calculation of neutron star masses. To circumvent this problem we use two approaches: in the first one, we parametrize the entire nucleonic sector. In the second one, we replace only the three-body force. The former will enable us to study neutron star masses, and the latter for studying the medium's response to the external probe. In this thesis we take the external probe to be the neutrino. By combining this parametrization with the YN V{sub low} {sub k} potential, we calculate the equation of state of equilibrated matter. Performing the calculation in the Hartree-Fock approximation at zero temperature, the concentrations of all particles are calculated. From these we can ascertain at which densities hyperons appear for a wide range of parameters. Finally, we calculate the masses of neutron stars with these concentrations. For the calculation of the medium's response to an external probe, we replace the three

  6. The mineralogical and physicochemical properties of clinoptilolite tuff: A comparative study and an outlook for its potential use

    Energy Technology Data Exchange (ETDEWEB)

    Nistratova, I.E.; Novikova, V.A.; Marsii, I.M.; Sokolova, A.L. [Institute of Geology of Ore Deposits, Moscow (Russian Federation)

    1995-09-01

    Mineral and chemical composition, petrographical characteristics, mechanical strength, and ion exchange selectivity of clinoptilolite tuff were studied with the aim of estimating its potential use in water treatment.

  7. Recent Corrosion Research Trends in Weld Joints

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hwan Tae; Kil, Sang Cheol [Korea Institute of Science and Technology Information, Seoul (Korea, Republic of); Hwang, Woon Suk [Inha University, Incheon (Korea, Republic of)

    2007-04-15

    The increasing interest in the corrosion properties of weld joints in the corrosive environment is placing stringent demands on the manufacturing techniques and performance requirements, and the manufacture employs the high quality and efficiency welding process to produce welds. Welding plays an important role in the fabrication of chemical plants, nuclear power plant, ship construction, and this has led to an increasing attention to the corrosion resistant weld joints. This paper covers recent technical trends of welding technologies for corrosion resistance properties including the COMPENDEX DB analysis of welding materials, welding process, and welding fabrications

  8. Effects of welding wire composition and welding process on the weld metal toughness of submerged arc welded pipeline steel

    Institute of Scientific and Technical Information of China (English)

    De-liang Ren; Fu-ren Xiao; Peng Tian; Xu Wang; Bo Liao

    2009-01-01

    The effects of alloying elements in welding wires and submerged arc welding process on the microstructures and low-temperature impact toughness of weld metals have been investigated.The results indicate that the optimal contents of alloying elements in welding wires can improve the low-temperature impact toughness of weld metals because the proentectoid ferrite and bainite formations can be suppressed,and the fraction of acicular ferrite increases.However,the contents of alloying elements need to vary along with the welding heat input.With the increase in welding heat input,the contents of alloying elements in welding wires need to be increased accordingly.The microstructures mainly consisting of acicular ferrite can be obtained in weld metals after four-wire submerged arc welding using the wires with a low carbon content and appropriate contents of Mn,Mo,Ti-B,Cu,Ni,and RE,resulting in the high low-temperature impact toughness of weld metals.

  9. Weld penetration and defect control

    Energy Technology Data Exchange (ETDEWEB)

    Chin, B.A.

    1992-05-15

    Highly engineered designs increasingly require the use of improved materials and sophisticated manufacturing techniques. To obtain optimal performance from these engineered products, improved weld properties and joint reliability are a necessarily. This requirement for improved weld performance and reliability has led to the development of high-performance welding systems in which pre-programmed parameters are specified before any welding takes place. These automated systems however lack the ability to compensate for perturbations which arise during the welding process. Hence the need for systems which monitor and control the in-process status of the welding process. This report discusses work carried out on weld penetration indicators and the feasibility of using these indicators for on-line penetration control.

  10. Integrated sensors for robotic laser welding

    NARCIS (Netherlands)

    Iakovou, D.; Aarts, Ronald G.K.M.; Meijer, J.; Beyer, E.; Dausinger, F; Ostendorf, A; Otto, A.

    2005-01-01

    A welding head is under development with integrated sensory systems for robotic laser welding applications. Robotic laser welding requires sensory systems that are capable to accurately guide the welding head over a seam in three-dimensional space and provide information about the welding process as

  11. Infrared-Controlled Welding of Solar Cells

    Science.gov (United States)

    Paulson, R.; Finnell, S. E.; Decker, H. J.; Hodor, J. R.

    1982-01-01

    Proposed apparatus for welding large arrays of solar cells to flexible circuit substrates would sense infrared emission from welding spot. Emission would provide feedback for control of welding heat. Welding platform containing optical fibers moves upward through slots in movable holding fixture to contact solar cells. Fibers pick up infrared radiation from weld area.

  12. Sensor integration for robotic laser welding processes

    NARCIS (Netherlands)

    Iakovou, Dimitrios; Aarts, Ronald; Meijer, Johan

    2005-01-01

    The use of robotic laser welding is increasing among industrial applications, because of its ability to weld objects in three dimensions. Robotic laser welding involves three sub-processes: seam detection and tracking, welding process control, and weld seam inspection. Usually, for each sub-process,

  13. Effect of Gas Tungsten Arc Welding Parameters on Hydrogen-Assisted Cracking of Type 321 Stainless Steel

    Science.gov (United States)

    Rozenak, Paul; Unigovski, Yaakov; Shneck, Roni

    2016-05-01

    The susceptibility of AISI type 321 stainless steel welded by the gas tungsten arc welding (GTAW) process to hydrogen-assisted cracking (HAC) was studied in a tensile test combined with in situ cathodic charging. Specimen charging causes a decrease in ductility of both the as-received and welded specimens. The mechanical properties of welds depend on welding parameters. For example, the ultimate tensile strength and ductility increase with growing shielding gas (argon) rate. More severe decrease in the ductility was obtained after post-weld heat treatment (PWHT). In welded steels, in addition to discontinuous grain boundary carbides (M23C6) and dense distribution of metal carbides MC ((Ti, Nb)C) precipitated in the matrix, the appearance of delta-ferrite phase was observed. The fracture of sensitized specimens was predominantly intergranular, whereas the as-welded specimens exhibited mainly transgranular regions. High-dislocation density regions and stacking faults were found in delta-ferrite formed after welding. Besides, thin stacking fault plates and epsilon-martensite were found in the austenitic matrix after the cathodic charging.

  14. Volcaniclastic facies architecture of a long-lived, nested silicic tuff ring: the Los Loros volcano, Mendoza, Argentina

    Science.gov (United States)

    Németh, Károly; Risso, Corina; Nullo, Francisco

    2010-05-01

    -bedded and having erosional contacts to the underlying pumice fall beds suggest deposition from high particle concentration pyroclastic density currents. This succession is inferred to represent an original pumice ring formation in a braided river network, where external surface and shallow sub-surface water were available to influence the eruption, causing slight phreatomagmatic affinity. This initial volcaniclastic succession is covered by immature, but thick (dm-to-m) pelitic palosoils and/or channel-filling volcanic conglomerates, suggesting a significant time break (tens of thousands of years), erosion and landscape resetting by fluvial networks after the pumice ring was formed. The rejuvenation of the volcanic vent is represented by a thick pyroclastic and lava capping unit. At least three units of trachytic pyroclastic breccias can be separated on the basis of their welding textures and pumice-to-lithic ratios. The gradual transition from stratified trachytic pumiceous beds to welded units indicates that these units are formed from laterally moving pumiceous pyroclastic density currents (e.g. small-volume ignimbrites). The topmost unit of Los Loros is a trachytic lava flow, which is well-preserved in the East. Monomict volcanic conglomerate covers the eastern sector of the lower slopes of Los Loros, suggesting long-lasting alluvial deposition since the volcanism. The eruptive sequence preserved at Los Loros indicates an initial pumice ring formation on an active alluvial plain. The significant time gap between the basal and capping volcanic units suggests a long-lasting inter-eruptive period prior to resumption of volcanic activity, forming small-volume, low aspect ratio trachytic ignimbrites and capping lava flows. Los Loros is a unique volcano in the sense that it "mimics" a tuff ring in its morphology and geometrical parameters; however, its eruptive sequence is more typical to those eruptions associated with large-volume silicic composition volcanoes with

  15. Transport of Radon Gas into a Tunnel at Yucca Mountain-Estimating Large-Scale Fractured Tuff Hydraulic Properties and Implications for the Operation of the Ventilation System

    Energy Technology Data Exchange (ETDEWEB)

    A. Unger; S. Finsterle; G. Bodvarsson

    2003-06-06

    Radon gas concentrations have been monitored as part of the operation of a tunnel (the Exploratory Studies Facility-ESF) at Yucca Mountain to ensure worker safety. The objective of this study was to examine the potential use of the radon data to estimate large-scale formation properties of fractured tuffs. This objective was examined by developing a numerical model, based upon the characteristics of the ESF and the Topopah Spring welded (TSw) tuff unit, capable of predicting radon concentrations for prescribed ventilation conditions. The model was used to address two specific issues. First, it was used to estimate the permeability and porosity of the fractures in the TSw at the length scale of the ESF and extending tens of meters into the TSw, which surrounds the ESF. Second, the model was used to understand the mechanism leading to radon concentrations exceeding a specified level within the ESF. The mechanism controlling radon concentrations in the ESF is a function of atmospheric barometric fluctuations being propagated down the ESF along with ventilated air flow and the slight suction induced by the ventilation exhaust fans at the South Portal of the ESF. These pressure fluctuations are dampened in the TSw fracture continuum according to its permeability and porosity. Consequently, as the barometric pressure in the ESF drops rapidly, formation gases from the TSw are pulled into the ESF, resulting in an increase in radon concentrations. Model calibration to both radon concentrations measured in the ESF and gas-phase pressure fluctuations in the TSw yielded concurrent estimates of TSw fracture permeability and porosity of l x 10{sup -11} m{sup 2} and 0.00034, respectively. The calibrated model was then used as a design tool to predict the effect of adjusting the current ventilation-system operation strategy for reducing the probability of radon gas concentrations exceeding a specified level.

  16. Repair welding process of friction stir welding groove defect

    Institute of Scientific and Technical Information of China (English)

    LIU Hui-jie; ZHANG Hui-jie

    2009-01-01

    The groove defect formed in the friction stir welding dramatically deteriorates weld appearances and mechanical properties of the joints owing to its larger size and penetration. Therefore, the friction stir repair welding was utilized to remove such a groove defect, and the focus was placed on the mechanical properties and microstructural characteristics of the repair joints so as to obtain an optimum repair welding process. The experimental results indicate that the groove defect can be removed by friction stir repair welding, and the offset repair welding process is superior to the symmetrical repair welding process. In the symmetrical repair welding process, a large number of fine cavity defects and an obvious aggregation of hard-brittle phase Al2Cu occur, accordingly the mechanical properties of the repair joint are weakened, and the fracture feature of repair joint is partially brittle and partially plastic. A good-quality repair joint can be obtained by the offset repair welding process, and the repair joint is fractured near the interface between the weld nugget zone and thermal-mechanically affected zone.

  17. Deconvoluting the Friction Stir Weld Process for Optimizing Welds

    Science.gov (United States)

    Schneider, Judy; Nunes, Arthur C.

    2008-01-01

    In the friction stir welding process, the rotating surfaces of the pin and shoulder contact the weld metal and force a rotational flow within the weld metal. Heat, generated by the metal deformation as well as frictional slippage with the contact surface, softens the metal and makes it easier to deform. As in any thermo-mechanical processing of metal, the flow conditions are critical to the quality of the weld. For example, extrusion of metal from under the shoulder of an excessively hot weld may relax local pressure and result in wormhole defects. The trace of the weld joint in the wake of the weld may vary geometrically depending upon the flow streamlines around the tool with some geometry more vulnerable to loss of strength from joint contamination than others. The material flow path around the tool cannot be seen in real time during the weld. By using analytical "tools" based upon the principles of mathematics and physics, a weld model can be created to compute features that can be observed. By comparing the computed observations with actual data, the weld model can be validated or adjusted to get better agreement. Inputs to the model to predict weld structures and properties include: hot working properties ofthe metal, pin tool geometry, travel rate, rotation and plunge force. Since metals record their prior hot working history, the hot working conditions imparted during FSW can be quantified by interpreting the final microstructure. Variations in texture and grain size result from variations in the strain accommodated at a given strain rate and temperature. Microstructural data from a variety of FSWs has been correlated with prior marker studies to contribute to our understanding of the FSW process. Once this stage is reached, the weld modeling process can save significant development costs by reducing costly trial-and-error approaches to obtaining quality welds.

  18. Effect of weld microstructure on weld properties in A-TIG welding of titanium alloy

    Institute of Scientific and Technical Information of China (English)

    刘凤尧; 杨春利; 林三宝; 吴林; 苏生

    2003-01-01

    Conventional TIG welding is known as its low productivity and limited weld depth in a single pass. Activating TIG welding (A-TIG) can greatly improve the penetration when compared with the conventional TIG welding. The effects of five kinds of activating fluxes with single component (NaF, CaF2, AlF3, NaCl or CaCl2) on penetration, microstructure and weld mechanical properties during the TIG welding of titanium alloy Ti-6Al-4V were studied. Compared with the conventional TIG welding, the experimental results show that the fluxes can greatly improve the penetration at the same welding specifications. This is because of the constriction of anode spots and the change of surface tension grads. Among them the effect of flux NaF is the best in the weld tensile strength, and the effect of flux CaF2 on the weld bend intension is the best. The appearance of inferior crystal grains and the structure of trident crystal grains are the main reasons that the performance of weld with fluoride is improved. These experimental results can be used as an aid for selecting suitable activating flux for titanium alloy.

  19. Preliminary survey of tuff distribution in Esmeralda, Nye, and Lincoln Counties, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Smith, G.V.; Pink, T.S.; Lawrence, J.R.; Woodward, L.A.; Keil, K.; Lappin, A.R.

    1981-02-01

    This report inventories the surface distribution of silicic tuffs in Nye, Esmeralda, and Lincoln Counties, NV, based on a review of available literature. The inventory was taken to provide a data base in evaluating tuff sites for the disposal of high-level nuclear waste. Silicic ash-flow tuffs that are about 11 to 34 million years (my) old are widespread in these counties. These rocks are locally deformed by right-lateral movement along Walker Lane and the Las Vegas Shear Zone, and left-lateral movement along a zone from near the Nevada Test Site (NTS) to the Utah border, and are commonly offset by steeply dipping normal faults. The normal faults that bound horsts, grabens, and tilted-fault blocks of the Basin-and-Range Province began to form 30 my ago; some are still active. Tuff distribution is discussed on a regional basis. Tuff thicknesses and alterations, structural complexity, and proximity to recent faulting, recent volcanism, and mineral resources are discussed for each area. Although the literature on which it is based is often incomplete and sketchy, this report is intended to serve as a basis for future, more detailed work that includes initial field inspection, detailed field and laboratory studies, and extrapolations to the subsurface.

  20. A model for the formation of vesiculated tuff by the coalescence of accretionary lapilli

    Science.gov (United States)

    Rosi, Mauro

    1992-07-01

    Observations on phreatomagmatic ash deposits of Phlegraean Fields and Vesuvius supply evidence for the origin of vesiculated tuff in a cool environment. Early deposition by fallout of a matrix-free bed of damp accretionary lapilli is followed by deposition of cohesive mud or a mud rain. The lapilli bed becomes partly or completely transformed into a vesiculated tuff by mud percolation and eventual coalescence of accretionary lapilli with consequent trapping of air originally contained in the interstices. The proposed mechanism accounts for vesiculated tuff formation in distal deposits beyond limits commonly attained by pyroclastic surges. This same mechanism may, nevertheless, also operate in proximal tuff-ring and cone deposits during fallout of phreatomagmatic ash separating bed sets in surge-dominated successions. The sequence of events in the proposed model fits well with the evolution of a cooling phreatomagmatic ash cloud in which early ash aggregation (accretionary lapilli fallout) is followed closely by steam condensation (mud or muddy rainfall). This new model invoking a cool-temperature origin is intended to be complementary to previously proposed theories. Although difficult to assess because of the often complete obliteration of original lapilli, the process is believed to be relatively common in the generasion of vesiculated tuffs within phreatomagmatic deposits.

  1. Geochemistry and Mineralogy of Tuff in Zhongliangshan Mine, Chongqing, Southwestern China

    Directory of Open Access Journals (Sweden)

    Jianhua Zou

    2016-05-01

    Full Text Available Coal-bearing strata that host rare metal deposits are currently a hot issue in the field of coal geology. The purpose of this paper is to illustrate the mineralogy, geochemistry, and potential economic significance of rare metals in the late Permian tuff in Zhongliangshan mine, Chongqing, southwestern China. The methods applied in this study are X-ray fluorescence spectrometry (XRF, inductively coupled mass spectrometry (ICP-MS, X-ray diffraction analysis (XRD plus Siroquant, and scanning electron microscopy in conjunction with an energy-dispersive X-ray spectrometry (SEM-EDX. The results indicate that some trace elements including Li, Be, Sc, V, Cr, Co, Ni, Cu, Zn, Ga, Zr, Nb, Cd, Sb, REE, Hf, Ta, Re, Th, and U are enriched in the tuff from Zhongliangshan mine. The minerals in the tuff mainly include kaolinite, illite, pyrite, anatase, calcite, gypsum, quartz, and traces of minerals such as zircon, florencite, jarosite, and barite. The tuff is of mafic volcanic origin with features of alkali basalt. Some minerals including florencite, gypsum, barite and a portion of anatase and zircon have been derived from hydrothermal solutions. It is suggested that Zhongliangshan tuff is a potential polymetallic ore and the recovery of these valuable elements needs to be further investigated.

  2. Development of Temper Bead Welding Process for Weld Overlay of Dissimilar Welds

    Energy Technology Data Exchange (ETDEWEB)

    Byeon, J. G.; Park, K. S.; Kim, Y. J. [Doosan Heavy Industries and Construction Co., Ltd., Seoul (Korea, Republic of)

    2008-10-15

    In recent years, the dissimilar weld metal used to connect stainless steel piping and low alloy steel or carbon steel components have experienced cracking in nuclear reactor piping systems. The cracking has been observed in several Pressurized Water Reactors in overseas. In Several cases, the cracking was repaired using structural weld overlays, a repair technique that has been in use in the U.S. in Boiling Water Reactors for over twenty years. Although weld overlays have been used primarily as a repair for flawed piping, they can also be applied at locations that have not yet exhibited any cracking, but are considered susceptible to cracking. The purpose of this research is to develop the temper bead weld process for the weld overlay of the dissimilar weld pipe. We developed equipment for the overlay system, applied Procedure Qualification(PQ) for the temper bead welding process.

  3. Fusion Welding Research.

    Science.gov (United States)

    1983-04-30

    of deep surface depresion due to vortex formation is being studied through a mathematical model. I Welding direction (a)e S (b) Figure 27: Schematic...each weldment. Specimens were cleaned in acetone and alcohol to remove grease and * dirt. They were finally cleaned ultrasonically in a detergent

  4. Thermal Stresses in Welding

    DEFF Research Database (Denmark)

    Hansen, Jan Langkjær

    1998-01-01

    Studies of the transient temperature fields and the hereby induced deformations and stressses in a butt-welded mild steel plate modelledrespectively in 2D plane stress state (as well as plane strain state) and in full 3D have been done. The model has been implemented in the generalpurpose FE...

  5. Welding. Student Learning Guide.

    Science.gov (United States)

    Palm Beach County Board of Public Instruction, West Palm Beach, FL.

    This student learning guide contains 30 modules for completing a course in welding. It is designed especially for use in secondary schools in Palm Beach County, Florida. Each module covers one task, and consists of a purpose, performance objective, enabling objectives, learning activities keyed to resources, information sheets, student self-check…

  6. SHADOW: a new welding technique

    Science.gov (United States)

    Kramer, Thorsten; Olowinsky, Alexander M.; Durand, Friedrich

    2002-06-01

    The new welding technique 'SHADOW ' is introduced. SHADOW means the use of a single pulse to generate a quasi continuous weld of several millimeters in length. HET processing time is defined by the pulse duration of the pulsed laser. At present, a state-of-the-art laser is capable of a maximum pulse duration of 20 ms. The variation of the laser power depend on time is a vital capability of the pulsed laser to adapt the energy deposition into the workpiece. Laser beam welds of several watch components were successfully performed. Similar metals like crowns and axes made out of stainless steel have been welded using pulsed laser radiation. Applying a series of about 130 single pulses for the crown-axis combination the total energy accumulates to 19.5 J. The use of the SHADOW welding technique reduces the energy to 2.5 J. While welding dissimilar metals like stainless steel and bras, the SHADOW welding reduces drastically the contamination as well as the distortion. Laser beam welding of copper has a low process reliability due to the high reflection and the high thermal conductivity. SHADOW welds of 3.6 mm length were performed on 250 micrometers thick copper plates with very high reproducibility. As a result, a pilot plant for laser beam welding of copper plates has been set up. The work to be presented has partly been funded by the European Commission in a project under the contract BRPR-CT-0634.

  7. Welding, Bonding and Fastening, 1984

    Science.gov (United States)

    Buckley, J. D. (Editor); Stein, B. A. (Editor)

    1985-01-01

    A compilation of papers presented in a joint NASA, American Society for Metals, The George Washington University, American Welding Soceity, and Society of Manufacturing Engineers conference on Welding, Bonding, and Fastening at Langley Research Center, Hampton, VA, on October 23 to 25, 1984 is given. Papers were presented on technology developed in current research programs relevant to welding, bonding, and fastening of structural materials required in fabricating structures and mechanical systems used in the aerospace, hydrospace, and automotive industries. Topics covered in the conference included equipment, hardware and materials used when welding, brazing, and soldering, mechanical fastening, explosive welding, use of unique selected joining techniques, adhesives bonding, and nondestructive evaluation. A concept of the factory of the future was presented, followed by advanced welding techniques, automated equipment for welding, welding in a cryogenic atmosphere, blind fastening, stress corrosion resistant fasteners, fastening equipment, explosive welding of different configurations and materials, solid-state bonding, electron beam welding, new adhesives, effects of cryogenics on adhesives, and new techniques and equipment for adhesive bonding.

  8. Conductive dense hydrogen

    Science.gov (United States)

    Eremets, M.; Troyan, I.

    2012-12-01

    Hydrogen at ambient pressures and low temperatures forms a molecular crystal which is expected to display metallic properties under megabar pressures. This metal is predicted to be superconducting with a very high critical temperature Tc of 200-400 K. The superconductor may potentially be recovered metastably at ambient pressures, and it may acquire a new quantum state as a metallic superfluid and a superconducting superfluid. Recent experiments performed at low temperatures T 220 GPa, new Raman modes arose, providing evidence for the transformation to a new opaque and electrically conductive phase IV. Above 260 GPa, in the next phase V, hydrogen reflected light well. Its resistance was nearly temperature-independent over a wide temperature range, down to 30 K, indicating that the hydrogen was metallic. Releasing the pressure induced the metallic phase to transform directly into molecular hydrogen with significant hysteresis at 200 GPa and 295 K. These data were published in our paper: M. I. Eremets and I. A. Troyan "Conductive dense hydrogen." Nature Materials 10: 927-931. We will present also new results on hydrogen: phase diagram with phases IV and V determined in P,T domain up to 300 GPa and 350 K. We will also discuss possible structures of phase IV based on our Raman and infrared measurements up to 300 GPa.

  9. Dense Hypervelocity Plasma Jets

    Science.gov (United States)

    Case, Andrew; Witherspoon, F. Douglas; Messer, Sarah; Bomgardner, Richard; Phillips, Michael; van Doren, David; Elton, Raymond; Uzun-Kaymak, Ilker

    2007-11-01

    We are developing high velocity dense plasma jets for fusion and HEDP applications. Traditional coaxial plasma accelerators suffer from the blow-by instability which limits the mass accelerated to high velocity. In the current design blow-by is delayed by a combination of electrode shaping and use of a tailored plasma armature created by injection of a high density plasma at a few eV generated by arrays of capillary discharges or sparkgaps. Experimental data will be presented for a complete 32 injector gun system built for driving rotation in the Maryland MCX experiment, including data on penetration of the plasma jet through a magnetic field. We present spectroscopic measurements of plasma velocity, temperature, and density, as well as total momentum measured using a ballistic pendulum. Measurements are in agreement with each other and with time of flight data from photodiodes and a multichannel PMT. Plasma density is above 10^15 cm-3, velocities range up to about 100 km/s. Preliminary results from a quadrature heterodyne HeNe interferometer are consistent with these results.

  10. Small-scale explosive welding of aluminum

    Science.gov (United States)

    Bement, L. J.

    1972-01-01

    Welding technique uses very small quantities of explosive ribbon to accomplish small-scale lap-welding of aluminum plates. Technique can perform small controlled welding with no length limitations and requires minimal protective shielding.

  11. Comparison of Welding Residual Stresses of Hybrid Laser-Arc Welding and Submerged Arc Welding in Offshore Steel Structures

    DEFF Research Database (Denmark)

    Andreassen, Michael Joachim; Yu, Zhenzhen; Liu, Stephen

    2016-01-01

    induced residual stresses. It is also investigated whether the assumption of residual stresses up to yield strength magnitude are present in welded structures as stated in the design guidelines. The fatigue strength for welded joints is based on this assumption. The two welding methods investigated...... are hybrid laser-arc welding (HLAW) and submerged arc welding (SAW). Both welding methods are applied for a full penetration butt-weld of 10 mm thick plates made of thermomechanically hot-rolled, low-carbon, fine-grain S355ML grade steel used in offshore steel structures. The welding residual stress state...

  12. Mo and Ni Removal from Drinking Water Using Zeolitic Tuff from Jordan

    Directory of Open Access Journals (Sweden)

    Khalil M. Ibrahim

    2016-11-01

    Full Text Available Mo and Ni metals could be hazardous in natural waters. The initial Mo and Ni concentration in the sampled domestic drinking water of north Jordan is 550 and 110 μg/L, respectively. The efficiency of using natural faujasite–phillipsite and phillipsite–chabazite tuffs in removing Mo and Ni from contaminated drinking water was tested. Batch experiments using different weights of the adsorbent were conducted at different contact times to determine the optimum conditions. The maximal uptake capacity of Mo from drinking water was equivalent to 440–420 μg/g adsorbent. The maximum removal efficiency of Mo by faujasite–phillipsite, phillipsite–chabazite, and the modified surfactant phillipsite–chabazite tuffs were 80%, 76%, and 78%, respectively. The proportional relationship between contact time and removal efficiency of Ni from water samples was observed. The maximum removal efficiency of Ni by the zeolitic tuffs is up to 90% compared to the original groundwater sample.

  13. Heavy mesons in dense matter

    NARCIS (Netherlands)

    Tolos, Laura; Gamermann, Daniel; Garcia-Recio, Carmen; Molina, Raquel; Nieves, Juan; Oset, Eulogio; Ramos, Angels; LlanesEstrada, FJ; Pelaez,

    2011-01-01

    Charmed mesons in dense matter are studied within a unitary coupled-channel approach which takes into account Pauli-blocking effects and meson self-energies in a self-consistent manner. We obtain the open-charm meson spectral functions in this dense medium, and discuss their implications on hidden c

  14. Hydraulic Characterization of Overpressured Tuffs in Central Yucca Flat, Nevada Test Site, Nye County, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    K.J. Halford; R.J. Laczniak; D.L. Galloway

    2005-10-07

    A sequence of buried, bedded, air-fall tuffs has been used extensively as a host medium for underground nuclear tests detonated in the central part of Yucca Flat at the Nevada Test Site. Water levels within these bedded tuffs have been elevated hundreds of meters in areas where underground nuclear tests were detonated below the water table. Changes in the ground-water levels within these tuffs and changes in the rate and distribution of land-surface subsidence above these tuffs indicate that pore-fluid pressures have been slowly depressurizing since the cessation of nuclear testing in 1992. Declines in ground-water levels concurrent with regional land subsidence are explained by poroelastic deformation accompanying ground-water flow as fluids pressurized by underground nuclear detonations drain from the host tuffs into the overlying water table and underlying regional carbonate aquifer. A hydraulic conductivity of about 3 x 10-6 m/d and a specific storage of 9 x 10-6 m-1 are estimated using ground-water flow models. Cross-sectional and three-dimensional ground-water flow models were calibrated to measured water levels and to land-subsidence rates measured using Interferometric Synthetic Aperture Radar. Model results are consistent and indicate that about 2 million m3 of ground water flowed from the tuffs to the carbonate rock as a result of pressurization caused by underground nuclear testing. The annual rate of inflow into the carbonate rock averaged about 0.008 m/yr between 1962 and 2005, and declined from 0.005 m/yr in 2005 to 0.0005 m/yr by 2300.

  15. Hydraulic characterization of overpressured tuffs in central Yucca Flat, Nevada Test Site, Nye County, Nevada

    Science.gov (United States)

    Halford, Keith J.; Laczniak, Randell J.; Galloway, Devin L.

    2005-01-01

    A sequence of buried, bedded, air-fall tuffs has been used extensively as a host medium for underground nuclear tests detonated in the central part of Yucca Flat at the Nevada Test Site. Water levels within these bedded tuffs have been elevated hundreds of meters in areas where underground nuclear tests were detonated below the water table. Changes in the ground-water levels within these tuffs and changes in the rate and distribution of land-surface subsidence above these tuffs indicate that pore-fluid pressures have been slowly depressurizing since the cessation of nuclear testing in 1992. Declines in ground-water levels concurrent with regional land subsidence are explained by poroelastic deformation accompanying ground-water flow as fluids pressurized by underground nuclear detonations drain from the host tuffs into the overlying water table and underlying regional carbonate aquifer. A hydraulic conductivity of about 3 x 10-6 m/d and a specific storage of 9 x 10-6 m-1 are estimated using ground-water flow models. Cross-sectional and three-dimensional ground-water flow models were calibrated to measured water levels and to land-subsidence rates measured using Interferometric Synthetic Aperture Radar. Model results are consistent and indicate that about 2 million m3 of ground water flowed from the tuffs to the carbonate rock as a result of pressurization caused by underground nuclear testing. The annual rate of inflow into the carbonate rock averaged about 0.008 m/yr between 1962 and 2005, and declined from 0.005 m/yr in 2005 to 0.0005 m/yr by 2300.

  16. Dynamics of space welding impact and corresponding safety welding study.

    Science.gov (United States)

    Fragomeni, James M; Nunes, Arthur C

    2004-03-01

    This study was undertaken in order to be sure that no hazard would exist from impingement of hot molten metal particle detachments upon an astronauts space suit during any future electron beam welding exercises or experiments. The conditions under which molten metal detachments might occur in a space welding environment were analyzed. The safety issue is important during welding with regards to potential molten metal detachments from the weld pool and cold filler wire during electron beam welding in space. Theoretical models were developed to predict the possibility and size of the molten metal detachment hazards during the electron beam welding exercises at low earth orbit. Some possible ways of obtaining molten metal drop detachments would include an impulse force, or bump, to the weld sample, cut surface, or filler wire. Theoretical models were determined for these detachment concerns from principles of impact and kinetic energies, surface tension, drop geometry, surface energies, and particle dynamics. A weld pool detachment parameter for specifying the conditions for metal weld pool detachment by impact was derived and correlated to the experimental results. The experimental results were for the most part consistent with the theoretical analysis and predictions.

  17. Decay of Rhenish Tuffs in Dutch Monuments. Part 2: Laboratory Experiments as a Basis for the Choice of Restoration Stone

    NARCIS (Netherlands)

    Van Hees, R.P.J.; Brendle, S.; Nijland, T.G.; De Haas, G.J.L.M.; Tolboom, H.J.

    2003-01-01

    Rhenish tuffs (Eifel, Germany), have been used as building material in the Netherlands since Roman times. They were the most important natural building stone in the Netherlands in early medieval times. In addition, tuff was used as raw material for production of trass, that served as a pozzolanic ad

  18. Decay of Rhenish Tuff in Dutch monuments. Part 2 : Laboratory experiments as a basis for the choice of restoration stone

    NARCIS (Netherlands)

    Hees, R.P.J. van; Brendle, S.; Nijland, T.G.; Haas, G.J.L.M. de; Tolboom, H.J.

    2003-01-01

    Rhenish tuffs (Eifel, Getmany), have been used as building material in the Netherlands since Roman times. They were the most important natural building stone in the Netherlands in early medieval times. In addition, tuff was used as raw material for production of trass, that served as a pozzolanic ad

  19. Industrial laser welding evaluation study

    Science.gov (United States)

    Hella, R.; Locke, E.; Ream, S.

    1974-01-01

    High power laser welding was evaluated for fabricating space vehicle boosters. This evaluation was made for 1/4 in. and 1/2 in. aluminum (2219) and 1/4 in. and 1/2 in. D6AC steel. The Avco HPL 10 kW industrial laser was used to perform the evaluation. The objective has been achieved through the completion of the following technical tasks: (1) parameter study to optimize welding and material parameters; (2) preparation of welded panels for MSFC evaluation; and (3) demonstration of the repeatability of laser welding equipment. In addition, the design concept for a laser welding system capable of welding large space vehicle boosters has been developed.

  20. Some geochemical considerations for a potential repository site in tuff at Yucca Mountain, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Erdal, B.R.; Bish, D.L.; Crowe, B.M.; Daniels, W.R.; Ogard, A.E.; Rundberg, R.S.; Vaniman, D.T.; Wolfsberg, K.

    1982-12-31

    The Nevada Nuclear Waste Storage Investigations, which is evaluating potential locations for a high-level waste repository at the Nevada Test Site and environs, is currently focusing its investigations on tuff, principally in Yucca Mountain, as a host rock. This paper discusses some of the geochemical investigations. Particular emphasis is placed on definition of some basic elements and necessary technical approaches for the geochemistry data acquisition and modeling program. Some site-specific tuff geochemical information that is important for site selection and repository performance will be identified and the current status of knowledge will then be discussed.

  1. Hydrothermal convection and mordenite precipitation in the cooling Bishop Tuff, California, USA

    Science.gov (United States)

    Randolph-Flagg, N. G.; Breen, S. J.; Hernandez, A.; Self, S.; Manga, M.

    2014-12-01

    We present field observations of erosional columns in the Bishop Tuff and then use laboratory results and numerical models to argue that these columns are evidence of relict convection in a cooling ignimbrite. Many square kilometers of the Bishop Tuff have evenly-spaced, vertical to semi-vertical erosional columns, a result of hydrothermal alteration. These altered regions are more competent than the surrounding tuff, are 0.1-0.7 m in diameter, are separated by ~ 1 m, and in some cases are more than 8 m in height. JE Bailey (U. of Hawaii, dissertation, 2005) suggested that similar columns in the Bandelier Tuff were formed when slumping allowed water to pool at the surface of the still-cooling ignimbrite. As water percolated downward it boiled generating evenly spaced convection cells similar to heat pipes. We quantify this conceptual model and apply it the Bishop Tuff to understand the physics within ignimbrite-borne hydrothermal systems. We use thin sections to measure changing porosity and use scanning electron microscope (SEM) and x-ray diffraction (XRD) analyses to show that pore spaces in the columns are cemented by the mineral mordenite, a low temperature zeolite that precipitates between 120-200 oC (Bish et al., 1982), also found in the Bandelier Tuff example. We then use scaling to show 1) that water percolating into the cooling Bishop Tuff would convect and 2) that the geometry and spacing of the columns is predicted by the ignimbrite temperature and permeability. We use the computer program HYDROTHERM (Hayba and Ingebritsen, 1994; Kipp et al., 2008) to model 2-phase convection in the Bishop Tuff. By systematically changing permeability, initial temperature, and topography we can identify the pattern of flows that develop when the ignimbrite is cooled by water from above. Hydrothermally altered columns in ignimbrite are the natural product of coupled heat, mass, and chemical transport and have similarities to other geothermal systems, economic ore deposits

  2. Spot Welding Parameter Optimization to Improve Weld Characteristics for Dissimilar Metals

    OpenAIRE

    Aravinthan Arumugam; MohdAmizi Nor

    2015-01-01

    Abstract Resistance spot welding is a process which is widely used in the automotive industry to join steel parts of various thicknesses and types. The current practice in the automotive industry in determining the welding schedule which will be used in the welding process is based on welding table or experiences. This however may not be the optimum welding schedule that will give the best spot weld quality. This work concentrates on the parameter optimization when spot welding steels with di...

  3. Late Triassic tuff intervals in the Ordos basin, Central China: Their depositional, petrographic, geochemical characteristics and regional implications

    Science.gov (United States)

    Qiu, Xinwei; Liu, Chiyang; Mao, Guangzhou; Deng, Yu; Wang, Feifei; Wang, Jianqiang

    2014-02-01

    Tuff intervals of Upper Triassic Yanchang Formation are laterally widespread in the Ordos basin, Central China. This paper focuses on magmatic origins and potential source regions of these tuff intervals through detail depositional, petrographic and geochemical analyses. Most of the tuff intervals are well-documented at the bottom of the Chang7 oil reservoir unit and can be correlated laterally, and certain tuff beds are reworked by turbidity current or seismic activity. Petrographic studies of the Chang7 tuffs indicate that they are composed of crystal shards, lithic shards and altered glass shards, and the crystal shards include plagioclase, quartz and biotite. Alteration of the Chang7 tuffs is ubiquitous, thus, most of these tuffs transformed into illite/smectite (I/S) mixed-layers which are identified by scanning electron microscopy (SEM) and X-ray diffraction (XRD). Less common minerals are also detected in the Chang7 tuffs such as zircon, hematite, siderite, anatase. Major elements are determined by the X-ray fluorescence (XRF) analysis, the results indicate that the Chang7 tuffs are enriched in K2O (average 4.21%), the ratio of SiO2/Al2O3 ranges from 1.73 to 2.85 (average 2.17), and the ratio of TiO2/Al2O3 varies between 0.006 and 0.032 (average 0.017), which imply that the Chang7 tuffs originated from a felsic parental magma. Trace elements are determined by inductively coupled plasma mass spectrometry (ICP-MS), indicating the total rare earth element (∑REE) concentrations are variable, and range from 117.46 to 466.83 ppm (average 251.88 ppm). REE distribution pattern of the Chang7 tuffs presents a LREE rightward incline with flat HREE curve. The value of δEu ranges from 0.151 to 0.837 (average 0.492), suggesting a strong to weak negative Eu anomaly. The Chang7 tuffs show positive anomalies in Rb, Th and U and negative anomalies in Nb, Sr and Eu on a primitive mantle normalized spidergram. A preliminary analysis of the geochemical composition of the

  4. Pulsed ultrasonic stir welding system

    Science.gov (United States)

    Ding, R. Jeffrey (Inventor)

    2013-01-01

    An ultrasonic stir welding system includes a welding head assembly having a plate and a rod passing through the plate. The rod is rotatable about a longitudinal axis thereof. During a welding operation, ultrasonic pulses are applied to the rod as it rotates about its longitudinal axis. The ultrasonic pulses are applied in such a way that they propagate parallel to the longitudinal axis of the rod.

  5. Viewing Welds By Computer Tomography

    Science.gov (United States)

    Pascua, Antonio G.; Roy, Jagatjit

    1990-01-01

    Computer tomography system used to inspect welds for root penetration. Source illuminates rotating welded part with fan-shaped beam of x rays or gamma rays. Detectors in circular array on opposite side of part intercept beam and convert it into electrical signals. Computer processes signals into image of cross section of weld. Image displayed on video monitor. System offers only nondestructive way to check penetration from outside when inner surfaces inaccessible.

  6. Jointed Holder For Welding Electrodes

    Science.gov (United States)

    Gilbert, Jeffrey L.

    1991-01-01

    Adjustable-angle holder enables use of standard straight electrode with custom-fabricated bent gas cup for welding in difficult-to-reach places. Electrode replaced easily, without removing cup, with aid of tool loosening miniature collet nut on holder. Consumes fewer electrodes for given amount of welding. Angle of holder continuously adjustable to fit angle of gas cup or geometry of part welded. Holder made double-jointed to accommodate gas cup having compound angles.

  7. Reconditioning medical prostheses by welding

    Science.gov (United States)

    Rontescu, C.; Cicic, D. T.; Vasile, I. M.; Bogatu, A. M.; Amza, C. G.

    2017-08-01

    After the technological process of making, some of the medical prostheses may contain imperfections, which can lead to framing the product in the spoilage category. This paper treats the possibility of reconditioning by welding of the prosthesis made of titanium alloys. The paper presents the obtained results after the reconditioning by welding, using the GTAW process, of a intramedullary rod type prosthesis in which was found a crack after the non-destructive examination. The obtained result analysis, after the micrographic examination of the welded joint areas, highlighted that the process of reconditioning by welding can be applied successfully in such situations.

  8. Pulsed ultrasonic stir welding method

    Science.gov (United States)

    Ding, R. Jeffrey (Inventor)

    2013-01-01

    A method of performing ultrasonic stir welding uses a welding head assembly to include a plate and a rod passing through the plate. The rod is rotatable about a longitudinal axis thereof. In the method, the rod is rotated about its longitudinal axis during a welding operation. During the welding operation, a series of on-off ultrasonic pulses are applied to the rod such that they propagate parallel to the rod's longitudinal axis. At least a pulse rate associated with the on-off ultrasonic pulses is controlled.

  9. Explosive welding underwater

    Energy Technology Data Exchange (ETDEWEB)

    Sim, T.; Allen, K.; Lowes, J.M.

    1980-06-11

    Explosive welding underwater is described. First and second underwater tubular members are assembled together so that the outer surface of the first tubular member and the inner surface of the second tubular member are spaced apart to form an annular cavity. The cavity is closed by seals accommodated in portions of the second tubular member, and is then cleaned and dried and filled with a gas at a pressure greater than the surrounding water pressure. The pressure in the cavity is reduced prior to detonating an explosive charge within the first tubular member to weld the members together. The second tubular member may include portions for receiving further seals so as to subdivide the cavity into a number of zones. The pressures in the zones then can be separately adjusted so as to be able to control the pressure difference a cross each seal. 9 claims.

  10. Numerical simulation of welding

    DEFF Research Database (Denmark)

    Hansen, Jan Langkjær; Thorborg, Jesper

    Aim of project:To analyse and model the transient thermal field from arc welding (SMAW, V-shaped buttweld in 15mm plate) and to some extend the mechanical response due to the thermal field. - To implement this model in a general purpose finite element program such as ABAQUS.The simulation...... is limited to 2D and as regards the thermal model we assume plain cross section when comparing with experiments and analytical solutions.Stresses and deformations based on the thermal model is mainly described qualitatively in relation to the mechanical model in ABAQUS. As regards the mechanical model, plain...... stress is also taken into account.Work carried out:With few means it is possible to define a thermal model which describes the thermal field from the welding process in reasonable agreement with reality. Identical results are found with ABAQUS and Rosenthal’s analytical solution of the governing heat...

  11. NEW EXPLOSIVE WELDING TECHNIQUES

    OpenAIRE

    Lotous, V.; Dragobetskii, V.

    2015-01-01

    Purpose - analysis of the variety of factors of the physical phenomena accompanying the process of the power explosive effect for development of new processes of metal treatment: explosive film coating of hardening and updating of a superficial layer of an item. Industrial approbation of cladding techniques by explosion of item surfaces of complex configuration and determination of parameters of the process of the explosive welding of high-strength pig-iron (graphite of the spherical form) wi...

  12. Experimental determination of the critical welding speed in high speed MAG welding

    Institute of Scientific and Technical Information of China (English)

    Hu Zhikun; Wu Chuansong

    2008-01-01

    In high speed MAG welding process, some weld formation defects may be encountered. To get good weld quality, the critical welding speed beyond which humping or undercutting weld bead can occur must be known for different conditions. In this research, high speed MAG welding tests were carried out to check out the effects of different factors on the critical welding speed. Through observing the weld bead profiles and the macrographs of the transverse sections of MAG welds, the occurrence tendency of humping weld was analyzed, and the values of critical welding speed were determined under different levels of welding current or voltage, and the effect of shielding gas compositions on the critical welding speed was also investigated.

  13. Gas Metal Arc Welding. Welding Module 5. Instructor's Guide.

    Science.gov (United States)

    Missouri Univ., Columbia. Instructional Materials Lab.

    This guide is intended to assist vocational educators in teaching an eight-unit module in gas metal arc welding. The module is part of a welding curriculum that has been designed to be totally integrated with Missouri's Vocational Instruction Management System. The following topics are covered in the module: safety and testing, gas metal arc…

  14. Laser Welding Test Results with Gas Atmospheres in Welding Chamber

    Energy Technology Data Exchange (ETDEWEB)

    Joung, Chang-Young; Hong, Jin-Tae; Ahn, Sung-Ho; Heo, Sung-Ho; Jang, Seo-Yun; Yang, Tae-Ho [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    The weld beads of specimens welded under identical conditions in the helium and argon gas were cleaner, more regular, and steadier than those in a vacuum. The penetration depth of the FZ in the vacuum was much deeper than those in the helium and argon gas. To measure the irradiation properties of nuclear fuel in a test reactor, a nuclear fuel test rod instrumented with various sensors must be fabricated with assembly processes. A laser welding system to assemble the nuclear fuel test rod was designed and fabricated to develop various welding technologies of the fuel test rods to joint between a cladding tube and end-caps. It is an air-cooling optical fiber type and its emission modes are a continuous (CW) mode of which the laser generates continuous emission, and pulse (QCW) mode in which the laser internally generates sequences of pulses. We considered the system welding a sample in a chamber that can weld a specimen in a vacuum and inert gas atmosphere, and the chamber was installed on the working plate of the laser welding system. In the chamber, the laser welding process should be conducted to have no defects on the sealing area between a cladding tube and an end-cap.

  15. Shielded Metal Arc Welding. Welding Module 4. Instructor's Guide.

    Science.gov (United States)

    Missouri Univ., Columbia. Instructional Materials Lab.

    This guide is intended to assist vocational educators in teaching an eight-unit module in shielded metal arc welding. The module is part of a welding curriculum that has been designed to be totally integrated with Missouri's Vocational Instruction Management System. The following topics are covered in the module: safety; theory, power sources, and…

  16. Gas Tungsten Arc Welding. Welding Module 6. Instructor's Guide.

    Science.gov (United States)

    Missouri Univ., Columbia. Instructional Materials Lab.

    This guide is intended to assist vocational educators in teaching a three-unit module in gas tungsten arc welding. The module has been designed to be totally integrated with Missouri's Vocational Instruction Management System. The basic principles involved in gas tungsten arc welding, supplies, and applications are covered. The materials included…

  17. Effects of Fusion Tack Welds on Self-Reacting Friction Stir Welds

    Science.gov (United States)

    Nunes, A. C., Jr.; Pendleton, M. L.; Brooke, S. A.; Russell, C. K.

    2012-01-01

    In order to know whether fusion tack welds would affect the strength of self-reacting friction stir seam welds in 2195-T87 aluminum alloy, the fracture stresses of 144 tensile test coupons cut from 24 welded panels containing segments of friction stir welds were measured. Each of the panels was welded under unique processing conditions. A measure of the effect of the tack welds for each panel was devised. An analysis of the measures of the tack weld effect supported the hypothesis that fusion tack welds do not affect the strength of self-reacting friction stir welds to a 5% level of confidence.

  18. Vision-based detection of MAG weld pool

    Institute of Scientific and Technical Information of China (English)

    Gao Jinqiang; Wu Chuansong; Zhang Min; Zhao Yanhua

    2007-01-01

    Weld pool contains significant information about the welding process. The weld pool images of MAG welding are detected by LaserStrobe system. An algorithm for extracting weld pool edge is proposed according to the characteristics of MAG weld pool images. The maximum weld pool length and width are calculated. The measurement data can be used to verify the results of welding process simulation and to provide a good foundation for automatic control of MAG welding process.

  19. Modeling Stress-Strain State in Butt-Welded Joints after TIG Welding

    Directory of Open Access Journals (Sweden)

    V. Atroshenko

    2015-09-01

    Full Text Available In this paper mathematical model was developed for definition of thermal-welding cycle influence on welding deformations distribution in flat samples of austenitic steels after TIG welding and developed recommendations to reduce the welding deformation on o the machinery for welding with a copper backing.

  20. Densely crosslinked polycarbosiloxanes .1. Synthesis

    NARCIS (Netherlands)

    Flipsen, T.A C; Derks, R.; van der Vegt, H.A.; Pennings, A.J; Hadziioannou, G

    1997-01-01

    Novel densely crosslinked polycarbosiloxanes were obtained by using functional branched prepolymers. Two types of soluble prepolymers were prepared from di- and trifunctional alkoxysilane monomers via cohydrolysis/condensation and for both final crosslinking occurred via hydrosilylation. The prepoly

  1. [New welding processes and health effects of welding].

    Science.gov (United States)

    La Vecchia, G Marina; Maestrelli, Piero

    2011-01-01

    This paper describes some of the recent developments in the control technology to enhance capability of Pulse Gas Metal Arc Welding. Friction Stir Welding (FSW) processing has been also considered. FSW is a new solid-state joining technique. Heat generated by friction at the rotating tool softens the material being welded. FSW can be considered a green and energy-efficient technique without deleterious fumes, gas, radiation, and noise. Application of new welding processes is limited and studies on health effects in exposed workers are lacking. Acute and chronic health effects of conventional welding have been described. Metal fume fever and cross-shift decline of lung function are the main acute respiratory effects. Skin and eyes may be affected by heat, electricity and UV radiations. Chronic effects on respiratory system include chronic bronchitis, a benign pneumoconiosis (siderosis), asthma, and a possible increase in the incidence of lung cancer. Pulmonary infections are increased in terms of severity, duration, and frequency among welders.

  2. Corrosion testing of type 304L stainless steel in tuff groundwater environments

    Energy Technology Data Exchange (ETDEWEB)

    Westerman, R.E.; Pitman, S.G.; Haberman, J.H.

    1987-11-01

    The stress-corrosion cracking (SCC) resistance of Type 304L stainless steel (SS) to elevated temperatures in tuff rock and tuff groundwater environments was determined under irradiated and nonirradiated conditions using U-bend specimens and slow-strain-rate tests. The steel was tested both in the solution-annealed condition and after sensitization heat treatments. The material was found to be susceptible to SCC in both the solution-annealed and solution-annealed-and-sensitized conditions when exposed to an irradiated crushed tuff rock environment containing air and water vapor at 90{sup 0}C. A similar exposure at 50{sup 0}C did not result in failure after a 25-month test duration. Specimens of sensitized 304 SS conditioned with a variety of sensitization heat treatments resisted failure during a test of 1-year duration in which a nonirradiated environment of tuff rock and groundwater held at 200{sup 0}C was allowed to boil to dryness on a cyclical basis. All specimens of sensitized 304 SS exposed to this environment failed. Slow-strain-rate studies were performed on 304L, 304, and 316L SS specimens. The 304L SS was tested in J-13 well water at 150{sup 0}C, and the 316L SS at 95{sup 0}C. Neither material showed evidence of SCC in these tests. Sensitized 304 SS did exhibit SCC in J-13 well water in tests conducted at 150{sup 0}C. 12 refs., 27 figs., 13 tabs.

  3. Cerro Xalapaxco: An Unusual Tuff Cone with Multiple Explosion Craters, in Central Mexico (Puebla)

    Science.gov (United States)

    Abrams, M. J.; Siebe, C.

    1994-01-01

    The Xalapaxco tuff cone is located on the northeast flank of La Malinche stratovolcano in central Mexico. An unusually large number (10) of explosion craters, concentrated on the central and on the uphill side of the cone, expose alternating beds of stratified surge deposits and massive fall deposits.

  4. Maximum likelihood Bayesian averaging of airflow models in unsaturated fractured tuff using Occam and variance windows

    NARCIS (Netherlands)

    Morales-Casique, E.; Neuman, S.P.; Vesselinov, V.V.

    2010-01-01

    We use log permeability and porosity data obtained from single-hole pneumatic packer tests in six boreholes drilled into unsaturated fractured tuff near Superior, Arizona, to postulate, calibrate and compare five alternative variogram models (exponential, exponential with linear drift, power, trunca

  5. Cerro Xalapaxco: An Unusual Tuff Cone with Multiple Explosion Craters, in Central Mexico (Puebla)

    Science.gov (United States)

    Abrams, M. J.; Siebe, C.

    1994-01-01

    The Xalapaxco tuff cone is located on the northeast flank of La Malinche stratovolcano in central Mexico. An unusually large number (10) of explosion craters, concentrated on the central and on the uphill side of the cone, expose alternating beds of stratified surge deposits and massive fall deposits.

  6. Occurrence of rhyolytic tuffs at deep sea drilling project site 219 on the Laccadive Ridge

    Digital Repository Service at National Institute of Oceanography (India)

    Siddiquie, H.N.; Sukheswala, R.N.

    A study of thin sections from the lower and middle parts of Unit 5 (Paleocene) from Site 219 shows that these largely consist of acidic or rhyolitic tuffs. The overlying limestones in Unit 5 (Paleocene) and Unit 4 (Lower Eocene) also contain...

  7. Experimental study on the Neapolitan Yellow Tuff: Salt weathering and consolidation

    Science.gov (United States)

    La Russa, Mauro Francesco; Ruffolo, Silvestro Antonio; Alvarez de Buergo, Monica; Ricca, Michela; Belfiore, Cristina Maria; Pezzino, Antonino; Mirocle Crisci, Gino

    2016-04-01

    Salt crystallization is one of the major weathering agents in porous building materials due to the crystallization pressure exerted by salt crystals growing in confined pores. The consolidation of such degraded stone materials is a crucial issue in the field of Cultural Heritage restoration.
 This contribution deals with laboratory experimentation carried out on the Neapolitan Tuff, a pyroclastic rock largely used in the Campanian architecture. Several specimens, collected from a historical quarry nearby the city of Naples, were treated with two different consolidating products: a suspension of nanosilica in water (Syton X30®) and ethyl silicate (Estel 1000®) dispersed in organic solvent (TEOS). Then, in order to assess the effectiveness of consolidation treatments, both treated and untreated samples underwent accelerated degradation through salt crystallization tests. A multi-analytical approach, including mercury intrusion porosimetry, peeling tests and point load test, was employed to evaluate the correlation between the salt crystallization and the micro-structural features of the examined tuff specimens. In addition, the calculation of the crystallization pressures was also performed in order to make a correlation between the porous structure of the tuff and its susceptivity to salt crystallization. Obtained results show that both the tested products increase the resistance of tuff to salt crystallization, although inducing an increase of crystallization pressure. Ethyl silicate, however, shows a better behaviour in terms of superficial cohesion, even after several degradation cycles.

  8. New explosive seam welding concepts

    Science.gov (United States)

    Bement, L. J.

    1973-01-01

    Recently developed techniques provide totally-confined linear explosive seam welding and produce scarf joint with linear explosive seam welding. Linear ribbon explosives are utilized in making narrow, continuous, airtight joints in variety of aluminum alloys, titanium, copper, brass, and stainless steel.

  9. Shedding Light on Laser Welding

    NARCIS (Netherlands)

    Aalderink, B.J.; Aalderink, Benno; Aarts, Ronald G.K.M.; Jonker, Jan B.; Meijer, J.

    2005-01-01

    Nd:YAG laser welding is often used in industry to obtain high quality joints. This however does not mean that monitoring or control of this process is common practice. A few commercial products are available but none of these systems can be used for monitoring the laser welding process of aluminium.

  10. Plasticity Theory of Fillet Welds

    DEFF Research Database (Denmark)

    Hansen, Thomas

    2005-01-01

    This paper deals with simple methods for calculation of fillet welds based on the theory of plasticity. In developing the solutions the lower-bound theorem is used. The welding material and parts of the base material are subdivided into triangular regions with homogeneous stress fields; thereby...

  11. 49 CFR 179.300-9 - Welding.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Welding. 179.300-9 Section 179.300-9... Specifications for Multi-Unit Tank Car Tanks (Classes DOT-106A and 110AW) § 179.300-9 Welding. (a) Longitudinal... fusion welded on class DOT-110A tanks. Welding procedures, welders and fabricators must be approved...

  12. METHOD AND SYSTEM FOR LASER WELDING

    DEFF Research Database (Denmark)

    2008-01-01

    The invention relates to laser welding of at least two adjacent, abutting or overlapping work pieces in a welding direction using multiple laser beams guided to a welding region, wherein at least two of the multiple laser beams are coupled into the welding region so as to form a melt and at least...

  13. Image Control In Automatic Welding Vision System

    Science.gov (United States)

    Richardson, Richard W.

    1988-01-01

    Orientation and brightness varied to suit welding conditions. Commands from vision-system computer drive servomotors on iris and Dove prism, providing proper light level and image orientation. Optical-fiber bundle carries view of weld area as viewed along axis of welding electrode. Image processing described in companion article, "Processing Welding Images for Robot Control" (MFS-26036).

  14. Friction Stir Welding of Aluminum Alloys

    Institute of Scientific and Technical Information of China (English)

    FU Zhi-hong; HE Di-qiu; WANG Hong

    2004-01-01

    Friction stir welding(FSW), a new solid-state welding technology invited in the early 1990s,enables us weld aluminum alloys and titanium alloys etc. The processing of FSW, the microstructure in FSW alloysand the factors influencing weld quality are introduced. The complex factors affecting the properties are researched.

  15. Image Control In Automatic Welding Vision System

    Science.gov (United States)

    Richardson, Richard W.

    1988-01-01

    Orientation and brightness varied to suit welding conditions. Commands from vision-system computer drive servomotors on iris and Dove prism, providing proper light level and image orientation. Optical-fiber bundle carries view of weld area as viewed along axis of welding electrode. Image processing described in companion article, "Processing Welding Images for Robot Control" (MFS-26036).

  16. Origin, Age, and Geochemistry of the Tuff of Saguache Creek, Southwestern Colorado

    Science.gov (United States)

    Turner, K. J.; Young, M. D.; Wendlandt, R. F.

    2003-12-01

    A crystal-poor, rhyolitic, ash-flow tuff in the Eastern San Juan Volcanic Field currently known as the tuff of Saguache Creek (TSC) was reinterpreted by Simon and Wendlandt (1999) as not being distal Sapinero Mesa Tuff. Currently there is no source caldera established for this tuff thereby leaving uncertainties in the volcanic history. Regional mapping of the TSC has subsequently been completed to constrain a possible source caldera. Petrographic studies, and EPMA and LA-ICPMS analyses of the mineral assemblage have been performed to characterize further the tuff, enable correlation of mapped TSC, and constrain petrogenetic models. Petrographic and chemical identification of the TSC builds on characteristics set forth by Simon (2000). These characteristics include abundant feldspar clusters, alkali feldspar mantled plagioclase, no modal quartz, Fe-Ti oxides (often with apatites and zircons), and sparse biotite and pyroxene. Pyroxenes show curiously high MnO (avg 2.70 wt%) and Mg# (avg 79.2) and might be xenocrystic. In comparison, biotites have much lower MnO (avg 0.82 wt%). Average sanidine (Or50) and plagioclase (Ab71) compositions fall within the documented range (Simon, 2000) and show little trace element substitution including Eu Conejos age volcanic deposits. Similarly, an andesitic topographic high just west of Trickle Mtn has TSC vitrophyre on the east-facing slope suggesting strong north-south channeling of the flow unit by paleo-topographic lows. Outcrop elevations also decrease from north to south supporting a possible source caldera to the north. This source could be explained by a distinct circular gravity low on the southeastern slope of the Continental Divide. The low is bordered to the north by a circular arrangement of peaks as well as debris breccias, andesitic flow breccias, and lahars.

  17. Heulandite and mordenite-rich tuffs from Greece: a potential source for pozzolanic materials

    Science.gov (United States)

    Kitsopoulos, K. P.; Dunham, A. C.

    1996-09-01

    The microcystalline mass of the Pliocene tuffs of Santorini and Polyegos islands, in the South Aegean Volcanic Arc, Greece, is very rich in zeolite minerals, more specifically heulandite type 3, i.e. clinoptilolite, and mordenite. In Santorini, clinoptilolite is the dominant authigenic phase and it was formed in a semi-closed system, by the activity of interstitial water within the volcaniclastic sequence. In Polyegos, mordenite dominates and it was formed by hydrothermal alteration of pyroclastics. Experiments described in this work show that the presence of the zeolite minerals has created materials with excellent pozzolanic properties. Tuffs from the two areas were calcined at 760 °C and for 12 h and then mixed with lime in a constant ratio of 1 part lime to 3 parts calcined tuff. As a result, the free lime content of the lime-calcined tuff mixtures was reduced from 25% to 2.05% (Santorini) and 1.31% (Polyegos). Compressive strength tests were carried out on concrete cubes made with 100% Portland cement as the cementitious agent, to be used as reference cubes, and concrete cubes in which the Portland cement has been replaced in 4% and 7% proportions by the calcined tuff as pozzolans. The free lime estimation and the compressive strength tests were all carried out in accordance with the British Standards Institution (BS 4550 and BS 1881) guidelines. Early stage measurements of the compressive strength showed that pozzolan-bearing concrete cubes reached values as high as 140% of the reference cubes. The pozzolan-bearing concrete cubes maintained this superior strength throughout the entire one year period of the experiments. After 360 days, they finally maintained 107% of the compressive strength of the reference cubes.

  18. Evenly-spaced columns in the Bishop Tuff as relicts of hydrothermal convection

    Science.gov (United States)

    Randolph-Flagg, N. G.; Breen, S. J.; Hernandez, A.; Self, S.; Manga, M.

    2015-12-01

    A few square km of the Bishop Tuff in eastern California, USA have evenly spaced erosional columns. These columns are more resistant to erosion due to the precipitation of the low-temperature zeolite (120-200 ºC), mordenite, which is not found in the surrounding tuff. Similar features observed in the Bandelier Tuff were hypothesized to form when cold water from above infiltrated into the still-hot tuff interior. This water would become gravitationally unstable and produced convection with steam upwellings and liquid water downwellings. These downwellings became cemented with mordenite while the upwellings were too dry for chemical reactions. We use two methods to quantitatively assess this hypothesis. First, scaling that ignores the effects of latent heat and mineral precipitation suggests the Rayleigh number (Ra, a measure of convective vigor) for this system is ~103 well above the critical Ra of 4π2. Second, to account for the effect of multiphase flow and latent heat, we use two-dimensional numerical models in the finite difference code HYDROTHERM. We find that the geometry of flow is consistent with field observations and confirm that geometry is sensitive to permeability and topography. These tests suggest a few things about low-pressure hydrothermal systems. 1) The geometry of at least some convection appears to be broadly captured by linear stability theory that ignores reactive transport, heterogeneity of host rock, and the effects of latent heat. 2) Topographic flow sets the wavelength of convection meaning that these columns formed somewhere without topography—probably a lake. Finally, these observations imply a wet paleoclimate in the Eastern Sierra namely that, in the aftermath of the Long Valley eruption, either rain or snow was able to pool in the caldera before the tuff cooled on the order of a hundred years after the eruption.

  19. The Tala Tuff, La Primavera caldera Mexico. Pre-eruptive conditions and magma processes before eruption

    Science.gov (United States)

    Sosa-Ceballos, G.

    2015-12-01

    La Primavera caldera, Jalisco Mexico, is a Pleistocenic volcanic structure formed by dome complexes and multiple pyroclastic flows and fall deposits. It is located at the intersection of the Chapala, Colima, and Tepic grabens in western Mexico. The first volcanic activity associated to La Primavera started ~0.1 Ma with the emission of pre-caldera lavas. The caldera collapse occurred 95 ka and is associated to the eruption of ~20 km3of pumice flows known as the Tala tuff (Mahood 1980). The border of the caldera was replaced by a series of domes dated in 75-30 ky, which partially filled the inner depression of the caldera with pyroclastic flows and falls. For more than a decade the Federal Commission of Electricity in Mexico (CFE) has prospected and evaluated the geothermal potential of the Cerritos Colorados project at La Primavera caldera. In order to better understand the plumbing system that tapped the Tala tuff and to investigate its relation with the potential geothermal field at La Primavera we performed a series of hydrothermal experiments and studied melt inclusions hosted in quartz phenocrysts by Fourier Infra red stectroscopy (FTIR). Although some post caldera products at La Primavera contain fayalite and quartz (suggesting QFM conditions) the Tala tuff does not contain fayalite and we ran experiments under NNO conditions. The absence of titanomagnetite does not allowed us to calculate pre-eruptive temperature. However, the stability of quartz and plagioclase, which are natural phases, suggest that temperature should be less than 750 °C at a pressure of 200 MPa. The analyses of H2O and CO2 dissolved in melt inclusions yielded concentrations of 2-5 wt.% and 50-100 ppm respectively. This data confirm that the pre-eruptive pressure of the Tala tuff is ~200 MPa and in addition to major elements compositions suggest that the Tala tuff is either, compositionally zoned or mixed with other magma just prior to eruption.

  20. Explosive welding finds uses offshore

    Energy Technology Data Exchange (ETDEWEB)

    1984-02-01

    This article discusses an explosive welding procedure for pipeline repair. Unlike fusion welding, explosive welding does not leave a brittle area behind and will stop axial or longitudinal cracking of a pipeline. The metals are joined by cold impact pressure, which actually liquifies the metal at the point of impact. In explosive welding, the force of the circular explosion drives the two metals together with such an impact that a bonded wave pattern is set up. All surface defects and oxides are pushed ahead of the collision front, resulting in a metal-to-metal seal. Two techniques are reviewed: the Exploweld method and the Norabel method. Both methods do not reduce or expand the internal diameter of the welded surface.

  1. Reduction of Biomechanical and Welding Fume Exposures in Stud Welding.

    Science.gov (United States)

    Fethke, Nathan B; Peters, Thomas M; Leonard, Stephanie; Metwali, Mahmoud; Mudunkotuwa, Imali A

    2016-04-01

    The welding of shear stud connectors to structural steel in construction requires a prolonged stooped posture that exposes ironworkers to biomechanical and welding fume hazards. In this study, biomechanical and welding fume exposures during stud welding using conventional methods were compared to exposures associated with use of a prototype system that allowed participants to weld from an upright position. The effect of base material (i.e. bare structural beam versus galvanized decking) on welding fume concentration (particle number and mass), particle size distribution, and particle composition was also explored. Thirty participants completed a series of stud welding simulations in a local apprenticeship training facility. Use of the upright system was associated with substantial reductions in trunk inclination and the activity levels of several muscle groups. Inhalable mass concentrations of welding fume (averaged over ~18 min) when using conventional methods were high (18.2 mg m(-3) for bare beam; 65.7 mg m(-3) for through deck), with estimated mass concentrations of iron (7.8 mg m(-3) for bare beam; 15.8 mg m(-3) for through deck), zinc (0.2 mg m(-3) for bare beam; 15.8 mg m(-3) for through deck), and manganese (0.9 mg m(-3) for bare beam; 1.5 mg m(-3) for through deck) often exceeding the American Conference of Governmental Industrial Hygienists Threshold Limit Values (TLVs). Number and mass concentrations were substantially reduced when using the upright system, although the total inhalable mass concentration remained above the TLV when welding through decking. The average diameters of the welding fume particles for both bare beam (31±17 nm) through deck conditions (34±34 nm) and the chemical composition of the particles indicated the presence of metallic nanoparticles. Stud welding exposes ironworkers to potentially high levels of biomechanical loading (primarily to the low back) and welding fume. The upright system used in this study improved exposure

  2. Spot Welding Parameter Optimization to Improve Weld Characteristics for Dissimilar Metals

    Directory of Open Access Journals (Sweden)

    Aravinthan Arumugam

    2015-01-01

    Full Text Available Abstract Resistance spot welding is a process which is widely used in the automotive industry to join steel parts of various thicknesses and types. The current practice in the automotive industry in determining the welding schedule which will be used in the welding process is based on welding table or experiences. This however may not be the optimum welding schedule that will give the best spot weld quality. This work concentrates on the parameter optimization when spot welding steels with dissimilar thickness and type using Grey Based Taguchi Method. The experimentation in this work used a L9 orthogonal array with three factors with each factor having three levels. The three factors used are welding current weld time and electrode force. The three weld characteristics that were optimized are weld strength weld nugget diameter and weld indentation. The analysis of variance ANOVA that was carried out showed that welding current gave the most significant contribution in the optimum welding schedule. The comparison test that was carried out to compare the current welding schedule and the optimum welding schedule showed distinct improvement in the increase of weld diameter and weld strengthas well as decrease in electrode indentation.

  3. Friction stir welding of copper alloys

    Institute of Scientific and Technical Information of China (English)

    Liu Shuhua; Liu Meng; Wang Deqing; Xu Zhenyue

    2007-01-01

    Copper plates,brass plates and copper/brass plates were friction stir welded with various parameters. Experimental results show that the microstructure of the weld is characterized by its much finer grains as contrasted with the coarse grains of parent materials and the heat-affected zones are very narrow. The microhardness of the copper weld is a little higher than that of parent plate. The microhardness of brass weld is about 25% higher than that of parent material. The tensile strength of copper joints increases with increasing welding speed in the test range. The range of parameters to obtain good welds for copper is much wider than that for brass. When different materials were welded, the position of copper plate before welding affected the quality of FSW joints. If the copper plate was put on the advancing side of weld, the good quality of weld could be got under proper parameters.

  4. DETECTION AND ANALYSIS OF WELD POOL SHAPE FOR CO2 SHORT CIRCUITING ARC WELDING

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A general industrial CCD(ICCD) camera is redesigned to detect the weld pool without arc at the period of short circuiting,so that the interference of arc and spatter during CO2 short circuiting arc welding is eliminated. Through the analysis of weld pool image, both size parameters (such as weld pool area A, weld pool length L1, L2 and weld pool breadth b) and contour parameters (bi which describe the curves of weld pool boundany) ,which could indicate the shape features of weld pool, had been defined to express weld pool information quantitatively. The investigation of the relationships between weld pool shape parameters and welding process parameters may be beneficial to the quality control of CO2 welding.

  5. Weld Metal Cooling Rate Indicator System.

    Science.gov (United States)

    rate of change of weld temperature at the predetermined weld temperature. A range of...provided so that the rate of change of weld temperatures at the predetermined weld temperature can be compared with this range. A device is then provided...which is responsive to the comparing information for indicating whether the rate of change of weld temperature is within, above, or below the range

  6. Corrosion Properties of Laser Welded Stainless Steel

    DEFF Research Database (Denmark)

    Weldingh, Jakob; Olsen, Flemmming Ove

    1997-01-01

    In this paper the corrosion properties of laser welded AISI 316L stainless steel are examined. A number of different welds has been performed to test the influence of the weld parameters of the resulting corrosion properties. It has been chosen to use the potential independent critical pitting...... temperature (CPT) test as corrosion test. The following welding parameters are varied: Welding speed, lsser power, focus point position and laser operation mode (CW or pulsed)....

  7. Modeling the thermal-hydrologic processes in a large-scale underground heater test in partially saturated fractured tuff

    Science.gov (United States)

    Birkholzer, J. T.; Tsang, Y. W.

    2000-02-01

    The Drift Scale Test (DST) is being conducted in an underground facility at Yucca Mountain, Nevada, to probe the coupled thermal, hydrological, mechanical, and chemical processes likely to occur in the fractured rock mass around a potential high-level nuclear waste repository. Thermal-hydrological processes in the DST have been simulated using a three-dimensional numerical model. The model incorporates the realistic test configuration and all available site-specific measurements pertaining to the thermal and hydrological properties of the unsaturated fractured tuff of the test block. The modeled predictions were compared to the extensive set of measured data collected in the first year of this 8-year-long test. The mean error between the predictions and measurement at 12 months of heating for over 1600 temperature sensors is about 2°C. Heat-pipe signature in the temperature data, indicating two-phase regions of liquid-vapor counterflow, is seen in both the measurements and simulated results. The redistribution of moisture content in the rock mass (resulting from vaporization and condensation) was probed by periodic air-injection testing and geophysical measurements. Good agreement also occurred between the model predictions and these measurements. The general agreement between predictions from the numerical simulations and the measurements of the thermal test indicates that our fundamental understanding of the coupled thermal-hydrologic processes at Yucca Mountain is sound. However, effects of spatial heterogeneity from discrete fractures that are observed in the temperature data are not matched by simulations from the numerical model, which treat the densely spaced fractures as a continuum.

  8. Versatile Friction Stir Welding/Friction Plug Welding System

    Science.gov (United States)

    Carter, Robert

    2006-01-01

    A proposed system of tooling, machinery, and control equipment would be capable of performing any of several friction stir welding (FSW) and friction plug welding (FPW) operations. These operations would include the following: Basic FSW; FSW with automated manipulation of the length of the pin tool in real time [the so-called auto-adjustable pin-tool (APT) capability]; Self-reacting FSW (SRFSW); SR-FSW with APT capability and/or real-time adjustment of the distance between the front and back shoulders; and Friction plug welding (FPW) [more specifically, friction push plug welding] or friction pull plug welding (FPPW) to close out the keyhole of, or to repair, an FSW or SR-FSW weld. Prior FSW and FPW systems have been capable of performing one or two of these operations, but none has thus far been capable of performing all of them. The proposed system would include a common tool that would have APT capability for both basic FSW and SR-FSW. Such a tool was described in Tool for Two Types of Friction Stir Welding (MFS- 31647-1), NASA Tech Briefs, Vol. 30, No. 10 (October 2006), page 70. Going beyond what was reported in the cited previous article, the common tool could be used in conjunction with a plug welding head to perform FPW or FPPW. Alternatively, the plug welding head could be integrated, along with the common tool, into a FSW head that would be capable of all of the aforementioned FSW and FPW operations. Any FSW or FPW operation could be performed under any combination of position and/or force control.

  9. Study of Gasdynamic Effect Upon the Weld Geometry When Concumable Electrode Welding

    Science.gov (United States)

    Chinakhov, D. A.; Grigorieva, E. G.; Mayorova, E. I.

    2016-04-01

    The paper considers the ways of weld geometry controlling when consumable electrode welding under single-jet and double-jet gas shielding. The authors provide comparative results of experimental studies on the effects of shielding gas supply upon the weld geometry in weld joints produced from construction carbon steel 45. It has been established that gas-dynamic effect of the shielding gas has a significant impact upon shaping and weld geometry when consumable electrode welding under double-jet gas shielding.

  10. A study of weld quality in ultrasonic spot welding of similar and dissimilar metals

    Science.gov (United States)

    Al-Sarraf, Z.; Lucas, M.

    2012-08-01

    Several difficulties are faced in joining thinner sheets of similar and dissimilar materials from fusion welding processes such as resistance welding and laser welding. Ultrasonic metal welding overcomes many of these difficulties by using high frequency vibration and applied pressure to create a solid-state weld. Ultrasonic metal welding is an effective technique in joining small components, such as in wire bonding, but is also capable of joining thicker sheet, depending on the control of welding conditions. This study presents the design, characterisation and test of a lateral-drive ultrasonic metal welding device. The ultrasonic welding horn is modelled using finite element analysis and its vibration behaviour is characterised experimentally to ensure ultrasonic energy is delivered to the weld coupon. The welding stack and fixtures are then designed and mounted on a test machine to allow a series of experiments to be conducted for various welding and ultrasonic parameters. Weld strength is subsequently analysed using tensile-shear tests. Control of the vibration amplitude profile through the weld cycle is used to enhance weld strength and quality, providing an opportunity to reduce part marking. Optical microscopic examination and scanning electron microscopy (SEM) were employed to investigate the weld quality. The results show how the weld quality is particularly sensitive to the combination of clamping force and vibration amplitude of the welding tip.

  11. A method of initial welding position guiding for arc welding robot based on visual servo control

    Institute of Scientific and Technical Information of China (English)

    郭振民; 陈善本; 邱涛; 吴林

    2003-01-01

    In order to solve the visual guiding task of initial welding position for arc welding robot, this paper presents a practice-prone image-based visual servo control strategy without calibration, and we perform validating experiments on a nine-DOF arc welding robot system. Experimental results illustrate presented method has the function to fulfill the task of welding robot initial positioning with certain anti-jamming ability. This method provides a basis for guiding welding gun to initial welding pose with real typical seam's image properties to replace flag block properties, and is a significant exploit to realize visual guiding of initial welding position and seam tracing in robot welding system.

  12. Laser welding of fused quartz

    Science.gov (United States)

    Piltch, Martin S.; Carpenter, Robert W.; Archer, III, McIlwaine

    2003-06-10

    Refractory materials, such as fused quartz plates and rods are welded using a heat source, such as a high power continuous wave carbon dioxide laser. The radiation is optimized through a process of varying the power, the focus, and the feed rates of the laser such that full penetration welds may be accomplished. The process of optimization varies the characteristic wavelengths of the laser until the radiation is almost completely absorbed by the refractory material, thereby leading to a very rapid heating of the material to the melting point. This optimization naturally occurs when a carbon dioxide laser is used to weld quartz. As such this method of quartz welding creates a minimum sized heat-affected zone. Furthermore, the welding apparatus and process requires a ventilation system to carry away the silicon oxides that are produced during the welding process to avoid the deposition of the silicon oxides on the surface of the quartz plates or the contamination of the welds with the silicon oxides.

  13. 10,170 flawless welds

    CERN Multimedia

    Antonella Del Rosso

    2014-01-01

    The welding of tubes containing the principal current-carrying busbars in the LHC magnets was one of the main activities of the SMACC project. After a year of preparation and another of intense activity in the tunnel, the last weld was completed on Wednesday 14 May. Over 10,170 welds have been inspected and not a single fault has been found.    The welder (above) creates the weld using an orbital welding machine (below) specifically designed for CERN. Each of the eight sectors of the LHC contains around 210 interconnects between the superconducting magnets. Consolidating these interconnections was the SMACC project’s primary objective. One of the last jobs before closing the interconnects is the welding of the M lines: each has a 104 mm diameter and a radial clearance of just 45 mm. In total: 10,170 welds carried out in a single year of activities. A true challenge, which was carried out by a team of 30 highly specialised welders, working under the supervision o...

  14. Diatreme evolution during the phreatomagmatic eruption of the Songaksan tuff ring, Jeju Island, Korea

    Science.gov (United States)

    Go, S. Y.; Kim, G. B.; Jeong, J. O.; Sohn, Y. K.

    2017-03-01

    The Songaksan tuff ring, Jeju Island, Korea, which erupted ca. 3.7 ka BP in a coastal setting, provides an unusual opportunity to study the processes of phreatomagmatic eruption and the formation of a diatreme because of the exceptionally well-preserved ejecta beds and well-known subsurface geology. The tuff sequence can be divided into four units (A to D), which have distinctly different accidental componentry (quartz-rich vs. quartz-poor), grain surface features (abraded and ash-coated vs. unabraded and uncoated), and chemical compositions of juvenile particles. The basal tephra bed of unit A, which probably erupted after the removal of the relatively hard shallow-level (120 m deep) accidental grains, suggesting that the early erupted tephra had not yet experienced recycling and pre-eruption mixing in the diatreme. On the other hand, the overlying tephra beds of units A, B, and D contain an abundance of abraded and ash-coated juvenile/accidental grains, suggesting that the tephra comprised significant proportions of "recycled" or "premixed" materials from previous eruptions or subsurface explosions, which participated in the explosion-driven mixing in the diatreme before eventual ejection from the diatreme. Unit C is unusual in that it comprises extremely rare accidental grains and ash-coated juvenile/accidental grains. We interpret that the supply of solid materials, either accidental or juvenile, to the diatreme was greatly reduced because of temporary stabilization of the diatreme and the reduction in magma flux to the diatreme. The diatreme is therefore envisaged to have been filled with a water-saturated slurry, in which particle abrasion and adhesion were inhibited. We also infer that the diatreme fill was temporarily removed by a powerful explosion before eruption of unit C on the basis of the near absence of the tephra grains from earlier eruptions throughout the tephra beds of unit C. The ratio of tachylite to sideromelane grains generally increases up

  15. Pulse shaping effects on weld porosity in laser beam spot welds : contrast of long- & short- pulse welds.

    Energy Technology Data Exchange (ETDEWEB)

    Ellison, Chad M. (Honeywell FM& T, Kansas City, MO); Perricone, Matthew J. (R.J. Lee Group, Inc., Monroeville, PA); Faraone, Kevin M. (BWX Technologies, Inc., Lynchburg, VA); Norris, Jerome T.

    2007-10-01

    Weld porosity is being investigated for long-pulse spot welds produced by high power continuous output lasers. Short-pulse spot welds (made with a pulsed laser system) are also being studied but to a much small extent. Given that weld area of a spot weld is commensurate with weld strength, the loss of weld area due to an undefined or unexpected pore results in undefined or unexpected loss in strength. For this reason, a better understanding of spot weld porosity is sought. Long-pulse spot welds are defined and limited by the slow shutter speed of most high output power continuous lasers. Continuous lasers typically ramp up to a simmer power before reaching the high power needed to produce the desired weld. A post-pulse ramp down time is usually present as well. The result is a pulse length tenths of a second long as oppose to the typical millisecond regime of the short-pulse pulsed laser. This study will employ a Lumonics JK802 Nd:YAG laser with Super Modulation pulse shaping capability and a Lasag SLS C16 40 W pulsed Nd:YAG laser. Pulse shaping will include square wave modulation of various peak powers for long-pulse welds and square (or top hat) and constant ramp down pulses for short-pulse welds. Characterization of weld porosity will be performed for both pulse welding methods.

  16. The influence of the corrosion product layer generated on the high strength low-alloy steels welded by underwater wet welding with stainless steel electrodes in seawater

    Science.gov (United States)

    Bai, Qiang; Zou, Yan; Kong, Xiangfeng; Gao, Yang; Dong, Sheng; Zhang, Wei

    2017-02-01

    The high strength low-alloy steels are welded by underwater wet welding with stainless steel electrodes. The micro-structural and electrochemical corrosion study of base metal (BM), weld zone (WZ) and heat affected zone (HAZ) are carried out to understand the influence of the corrosion product layer generated on the high strength low-alloy steels welded by underwater wet welding with stainless steel electrodes, methods used including, potentiodynamic polarization, electrochemical impedance spectroscopy (EIS) and scanning electron microscope (SEM). The results indicate that the WZ acts as a cathode and there is no corrosion product on it throughout the immersion period in seawater. The HAZ and BM acts as anodes. The corrosion rates of the HAZ and BM change with the immersion time increasing. In the initial immersion period, the HAZ has the highest corrosion rate because it has a coarse tempered martensite structure and the BM exhibites a microstructure with very fine grains of ferrite and pearlite. After a period of immersion, the BM has the highest corrosion rate. The reason is that the corrosion product layer on the HAZ is dense and has a better protective property while that on the BM is loose and can not inhibit the diffusion of oxygen.

  17. Residual stresses in welded plates

    Science.gov (United States)

    Bernstein, Edward L.

    1994-01-01

    The purpose of this project was to develop a simple model which could be used to study residual stress. The mechanism that results in residual stresses in the welding process starts with the deposition of molten weld metal which heats the immediately adjacent material. After solidification of weld material, normal thermal shrinkage is resisted by the adjacent, cooler material. When the thermal strain exceeds the elastic strain corresponding to the yield point stress, the stress level is limited by this value, which decreases with increasing temperature. Cooling then causes elastic unloading which is restrained by the adjoining material. Permanent plastic strain occurs, and tension is caused in the region immediately adjacent to the weld material. Compression arises in the metal farther from the weld in order to maintain overall static equilibrium. Subsequent repair welds may add to the level of residual stresses. The level of residual stress is related to the onset of fracture during welding. Thus, it is of great importance to be able to predict the level of residual stresses remaining after a weld procedure, and to determine the factors, such as weld speed, temperature, direction, and number of passes, which may affect the magnitude of remaining residual stress. It was hoped to use traditional analytical modeling techniques so that it would be easier to comprehend the effect of these variables on the resulting stress. This approach was chosen in place of finite element methods so as to facilitate the understanding of the physical processes. The accuracy of the results was checked with some existing experimental studies giving residual stress levels found from x-ray diffraction measurements.

  18. Laser welding and post weld treatment of modified 9Cr-1MoVNb steel.

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Z. (Nuclear Engineering Division)

    2012-04-03

    Laser welding and post weld laser treatment of modified 9Cr-1MoVNb steels (Grade P91) were performed in this preliminary study to investigate the feasibility of using laser welding process as a potential alternative to arc welding methods for solving the Type IV cracking problem in P91 steel welds. The mechanical and metallurgical testing of the pulsed Nd:YAG laser-welded samples shows the following conclusions: (1) both bead-on-plate and circumferential butt welds made by a pulsed Nd:YAG laser show good welds that are free of microcracks and porosity. The narrow heat affected zone has a homogeneous grain structure without conventional soft hardness zone where the Type IV cracking occurs in conventional arc welds. (2) The laser weld tests also show that the same laser welder has the potential to be used as a multi-function tool for weld surface remelting, glazing or post weld tempering to reduce the weld surface defects and to increase the cracking resistance and toughness of the welds. (3) The Vicker hardness of laser welds in the weld and heat affected zone was 420-500 HV with peak hardness in the HAZ compared to 240 HV of base metal. Post weld laser treatment was able to slightly reduce the peak hardness and smooth the hardness profile, but failed to bring the hardness down to below 300 HV due to insufficient time at temperature and too fast cooling rate after the time. Though optimal hardness of weld made by laser is to be determined for best weld strength, methods to achieve the post weld laser treatment temperature, time at the temperature and slow cooling rate need to be developed. (4) Mechanical testing of the laser weld and post weld laser treated samples need to be performed to evaluate the effects of laser post treatments such as surface remelting, glazing, re-hardening, or tempering on the strength of the welds.

  19. Novel Process Revolutionizes Welding Industry

    Science.gov (United States)

    2008-01-01

    Glenn Research Center, Delphi Corporation, and the Michigan Research Institute entered into a research project to study the use of Deformation Resistance Welding (DRW) in the construction and repair of stationary structures with multiple geometries and dissimilar materials, such as those NASA might use on the Moon or Mars. Traditional welding technologies are burdened by significant business and engineering challenges, including high costs of equipment and labor, heat-affected zones, limited automation, and inconsistent quality. DRW addresses each of those issues, while drastically reducing welding, manufacturing, and maintenance costs.

  20. Development of Welding Procedures for NPP Dissimilar Metal Weld

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jang Wook; Cho, Hong Seok; Lee, Dong Min; Park, Yu Deog; Choi, Sang Hoon [Korea Plant Service and Engineering Co., Seongnam (Korea, Republic of)

    2008-05-15

    Nuclear primary system consists of various materials according to the function. Recently, concern about the integrity on Dissimilar Metal Weld (DMW) which was made of inconel material such as alloy 600/82/182 has arisen from industry. Leak from hot leg nozzle weld at V.C Summer and axial cracks in hot leg nozzle welds at Ringhals 3 and 4 were took placed at the DMW zone, which is major degradation mechanism known as Primary Water Stress Corrosion Cracking (PWSCC). In order to ensure operational ability of nuclear power plants, it is necessary to obtain measures against unexpected risks. KPS has developed the DMW technology, Narrow Groove Welding (NGW) system and field implementation procedures for alloy 600 since March 2005.

  1. Materials participation in welded joints manufacturing

    Science.gov (United States)

    Ghenghea, L. D.

    2016-08-01

    Management of materials dilution to form a joint with higher features asked by complex metallic structures is a problem that took attention and efforts of welding processes researchers and this communication will give a little contribution presenting some scientific and experimental results of dilution processes studied by Welding Research Group from Iasi, Romania, TCM Department. Liquid state welding processes have a strong dependence related to dilution of base and filler materials, the most important are for automatic joining using welding. The paper presents a review of some scientific works already published and their contributions, results of dilution coefficient evaluation using weighing, graphics and software applied for shielded metal arc welding process. Paper results could be used for welders’ qualification, welding procedure specification and other welding processes researchers’ activities. The results of Welding Research Group from Iasi, Romania, TCM Department, show dilution coefficient values between 20-30 % of base material and 70-80 % of filler material for studied welding process.

  2. Effect of Welding Parameters on Dilution and Weld Bead Geometry in Cladding

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The effect of pulsed gas metal arc welding (GMAW) variables on the dilution and weld bead geometry in cladding X65 pipeline steel with 316L stainless steel was studied. Using a full factorial method, a series of experiments were carried out to know the effect of wire feed rate, welding speed, distance between gas nozzle and plate, and the vertical angle of welding on dilution and weld bead geometry. The findings indicate that the dilution of weld metal and its dimension i.e. width, height and depth increase with the feed rate, but the contact angle of the bead decreases first and then increases. Meantime, welding speed has an opposite effect except for dilution. There is an interaction effect between welding parameters at the contact angle. The results also show forehand welding or decreasing electrode extension decrease the angle of contact. Finally,a mathematical model is contrived to highlight the relationship between welding variables with dilution and weld bead geometry.

  3. Comparison between hybrid laser-MIG welding and MIG welding for the invar36 alloy

    Science.gov (United States)

    Zhan, Xiaohong; Li, Yubo; Ou, Wenmin; Yu, Fengyi; Chen, Jie; Wei, Yanhong

    2016-11-01

    The invar36 alloy is suitable to produce mold of composite materials structure because it has similar thermal expansion coefficient with composite materials. In the present paper, the MIG welding and laser-MIG hybrid welding methods are compared to get the more appropriate method to overcome the poor weldability of invar36 alloy. According to the analysis of the experimental and simulated results, it has been proved that the Gauss and cone combined heat source model can characterize the laser-MIG hybrid welding heat source well. The total welding time of MIG welding is 8 times that of hybrid laser-MIG welding. The welding material consumption of MIG welding is about 4 times that of hybrid laser-MIG welding. The stress and deformation simulation indicate that the peak value of deformation during MIG welding is 3 times larger than that of hybrid laser-MIG welding.

  4. Studies of the mobility of uranium and thorium in Nevada Test Site tuff

    Energy Technology Data Exchange (ETDEWEB)

    Wollenberg, H.A.; Flexser, S.; Smith, A.R. [Lawrence Berkeley Lab., CA (United States)

    1991-06-01

    Hydro-geochemical processes must be understood if the movement of radionuclides away from a breached radioactive waste canister is to be modeled and predicted. In this respect, occurrences of uranium and thorium in hydrothermal systems are under investigation in tuff and in rhyolitic tuff that was heated to simulate the effects of introduction of radioactive waste. In these studies, high-resolution gamma spectrometry and fission-track radiography are coupled with observations of alteration mineralogy and thermal history to deduce the evidence of, or potential for movement of, U and Th in response to the thermal environment. Observations to date suggest that U was mobile in the vicinity of the heater but that localized reducing environments provided by Fe-Ti-Mn-oxide minerals concentrated U and thus attenuated its migration.

  5. Diffusion of sodium, potassium, calcium, manganese, and radon in tuff and clinoptilolite under leaching

    Science.gov (United States)

    Dikii, N. P.; Dovbnya, A. N.; Lyashko, Yu. V.; Medvedev, D. V.; Medvedeva, E. P.; Uvarov, V. L.; Achkasov, K. V.

    2011-07-01

    Nuclear physics methods are used to determine the diffusion coefficients of Na, Ca, Mn, K, and 222Rn in clinoptilolite (Sokirnitsa occurrence, Ukraine) and in natural tuff (Yucca Mountain, Nevada, United States) and in tuff irradiated by γ-quanta ( E max = 23 MeV) to a dose of 107 Gy at a leaching temperature of 37°C. The diffusion coefficients of sodium and potassium in clinoptilolite are found to differ considerably: 4 × 10-17 and 2 × 10-20 m2/s, respectively. This indicates the influence of aquacomplexes on the cation transfer. The diffusion coefficient of radon in these materials is determined: in clinoptilolite it equals 2.5 × 10-12 m2/s.

  6. Sorption and desorption of remazol yellow by a Fe-zeolitic tuff

    Energy Technology Data Exchange (ETDEWEB)

    Solache R, M. J. [ININ, Departamento de Quimica, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico); Villalva C, R.; Diaz N, M. C., E-mail: marcos.solache@inin.gob.m [Instituto Tecnologico de Toluca, Division de Estudios del Posgrado, Av. Tecnologico s/n, Ex-Rancho La Virgen, 52140 Metepec, Estado de Mexico (Mexico)

    2010-07-01

    The adsorption of remazol yellow from aqueous solution was evaluated using a Fe-zeolitic tuff. The adsorbent was characterized by scanning electron microscopy, IR spectroscopy and X-ray diffraction. Sorption kinetic and isotherms were determined and the adsorption behavior was analyzed. Kinetic pseudo-second order and Langmuir-Freundlich models were successfully applied to the experimental results, indicating chemisorption on a heterogeneous material. The regeneration of the material was best accomplished by using a H{sub 2}O{sub 2} solution. The sorption capacity of the Fe-zeolitic tuff increased when the saturated samples were treated with a H{sub 2O2} or FeCl{sub 3} solution. (Author)

  7. Evaluating the paleomagnetic potential of single zircon crystals using the Bishop Tuff

    CERN Document Server

    Fu, Roger R; Lima, Eduardo A; Kehayias, Pauli; Araujo, Jefferson F D F; Glenn, David R; Gelb, Jeff; Einsle, Joshua F; Bauer, Ann M; Harrison, Richard J; Ali, Guleed A H; Walsworth, Ronald L

    2016-01-01

    Zircon crystals offer a unique combination of suitability for high-precision radiometric dating and high resistance to alteration. Paleomagnetic experiments on ancient zircons may potentially constrain the earliest geodynamo, which holds broad implications for the early Earth interior and atmosphere. However, the ability of zircons to record accurately the geomagnetic field has not been fully demonstrated. Here we conduct thermal and room temperature alternating field (AF) paleointensity experiments on 767.1 thousand year old (ka) zircons from the Bishop Tuff, California. The rapid emplacement of these zircons in a well-characterized magnetic field provides a high-fidelity test of the zircons intrinsic paleomagnetic recording accuracy. Successful dual heating experiments on nine zircons measured using a superconducting quantum interference device (SQUID) microscope yield a mean paleointensity of 46.2 +/- 18.8 microtesla (1sigma), which agrees closely with high-precision results from Bishop Tuff whole rock (43...

  8. An astronomical age for the Bishop Tuff and concordance with radioisotopic dates

    DEFF Research Database (Denmark)

    Rivera, Tiffany; Zeeden, Christian; Storey, Michael

    2014-01-01

    The Bishop Tuff forms a key stratigraphic horizon for synchronization of Quaternary sedimentary records in North America. The unit stratigraphically overlies the Matuyama-Brunhes geomagnetic polarity reversal by several thousand years; high-precision dating of this tuff may be valuable for regional...... and global correlation of records. The Quaternary time scale is anchored by 40Ar/39Ar ages on lava flows and ash layers where available, with stage boundaries and geomagnetic reversals including astronomically tuned records. However, astronomical dating has not yet validated the high-precision 238U/206Pb...... ages, including new single crystal 40Ar/39Ar sanidine fusion analyses presented here, which demonstrates that concordance through multiple dating techniques is achievable within the Quaternary...

  9. Friction Stir Welding Technology: Adapting NASA's Retractable Pin Tool

    OpenAIRE

    ECT Team, Purdue

    2007-01-01

    In late 1991, The Welding Institute (TWI), a British research and technology organization, invented and patented a welding process named Friction Stir Welding (FSW). Friction Stir Welding is a highly significant advancement in aluminum welding technology that can produce stronger, lighter, and more efficient welds than any previous process.

  10. Magnetic links among lava flows, tuffs and the underground plumbing system in a monogenetic volcano, derived from magnetics and paleomagnetic studies

    Science.gov (United States)

    Urrutia-Fucugauchi, Jaime; Trigo-Huesca, Alfonso; Pérez-Cruz, Ligia

    2012-12-01

    A combined study using magnetics and paleomagnetism of the Toluquilla monogenetic volcano and associated lavas and tuffs from Valsequillo basin in Central Mexico provides evidence on a 'magnetic' link between the lavas, ash tuffs and the underground volcanic conduit system. Paleomagnetic analyses show that the lava and ash tuff carry reverse polarity magnetizations, which correlate with the inversely polarized dipolar magnetic anomaly over the volcano. The magnetizations in the lava and tuff show similar southward declinations and upward inclinations, supporting petrological inferences that the tuff was emplaced while still hot and indicating a temporal correlation for lava and tuff emplacement. Modeling of the dipolar anomaly gives a reverse polarity source magnetization associated with a vertical prismatic body with southward declination and upward inclination, which correlates with the reverse polarity magnetizations in the lava and tuff. The study documents a direct correlation of the paleomagnetic records with the underground magmatic conduit system of the monogenetic volcano. Time scale for cooling of the volcanic plumbing system involves a longer period than the one for the tuff and lava, suggesting that magnetization for the source of dipolar anomaly may represent a long time average as compared to the spot readings in the lava and tuff. The reverse polarity magnetizations in lava and tuff and in the underground source body for the magnetic anomaly are interpreted in terms of eruptive activity of Toluquilla volcano at about 1.3 Ma during the Matuyama reverse polarity C1r.2r chron.

  11. Constructing dense genetic linkage maps

    NARCIS (Netherlands)

    Jansen, J.; Jong, de A.G.; Ooijen, van J.W.

    2001-01-01

    This paper describes a novel combination of techniques for the construction of dense genetic linkage maps. The construction of such maps is hampered by the occurrence of even small proportions of typing errors. Simulated annealing is used to obtain the best map according to the optimality criterion:

  12. Method for dense packing discovery.

    Science.gov (United States)

    Kallus, Yoav; Elser, Veit; Gravel, Simon

    2010-11-01

    The problem of packing a system of particles as densely as possible is foundational in the field of discrete geometry and is a powerful model in the material and biological sciences. As packing problems retreat from the reach of solution by analytic constructions, the importance of an efficient numerical method for conducting de novo (from-scratch) searches for dense packings becomes crucial. In this paper, we use the divide and concur framework to develop a general search method for the solution of periodic constraint problems, and we apply it to the discovery of dense periodic packings. An important feature of the method is the integration of the unit-cell parameters with the other packing variables in the definition of the configuration space. The method we present led to previously reported improvements in the densest-known tetrahedron packing. Here, we use the method to reproduce the densest-known lattice sphere packings and the best-known lattice kissing arrangements in up to 14 and 11 dimensions, respectively, providing numerical evidence for their optimality. For nonspherical particles, we report a dense packing of regular four-dimensional simplices with density ϕ=128/219≈0.5845 and with a similar structure to the densest-known tetrahedron packing.

  13. Unconditional Continuous Variable Dense Coding

    CERN Document Server

    Ralph, T C

    2002-01-01

    We investigate the conditions under which unconditional dense coding can be achieved using continuous variable entanglement. We consider the effect of entanglement impurity and detector efficiency and discuss experimental verification. We conclude that the requirements for a strong demonstration are not as stringent as previously thought and are within the reach of present technology.

  14. Precipitation in CF-8M duplex stainless steel welds

    Science.gov (United States)

    Ritter, Ann M.; Cieslak, Michael J.; Savage, Warren F.

    1983-01-01

    Welds of CF-8M, a cast 316-type stainless steel which normally solidifies as primary delta-ferrite, were induced to solidify as primary austenite by the addition of nitrogen to the shielding gas used during gas tungsten arc welding. Those welds which experienced a shift in solidification mode formed eutectic ferrite during the terminal transient stage of solidification. Primary delta-ferrite and eutectic ferrite are differentiated by their location in the dendritic microstructure. The shape of the ferrite/austenite interface tends to be rounded for primary delta-ferrite and more angular for eutectic ferrite. Elemental profiles were plotted from STEM/EDS measurements across the two types of ferrite, and showed differences between the composition of the austenite immediately adjacent to the primary delta-ferrite, as opposed to the eutectic ferrite. In addition, while the primary delta-ferrite/austenite interfaces are largely devoid of precipitation, the eutectic ferrite/austenite interfaces are densely covered with small precipitates of x-phase. The mean stoichiometry of this phase has been calculated from STEM/EDS data on extraction replicas, and approximates Fe50Cr32Mo13Ni5. Intragranular inclusions were also examined and found to be complex, with most of them containing varying quantities of Mn, Si, and S.

  15. Research on image segmentation of weld seam of oil derrick welded by arc welding robot

    Institute of Scientific and Technical Information of China (English)

    Cai Guangyu; Cui Shilin; Wu Changlin

    2009-01-01

    This paper puts forward a new method of PCNN (pulse-coupled neural networks) image segmentation, in which the binary matrix of the ignition frequency matrix is employed, for the first time, to act as the final result of image segmentation. It gives the principles of PCNN parameter selection under the guidance of this process. The new method reduces the dependence of PCNN on parameters, improves the effect of image segmentation, and produces good results after being applied to image recognition of weld seam of oil derrick welded by arc welding robot.

  16. Zeolitic volcanic tuffs from Macicas (Cluj County, natural raw materials used for NH4+ removal from wastewaters

    Directory of Open Access Journals (Sweden)

    Horea Bedelean

    2006-04-01

    Full Text Available Volcanic tuffs out cropping in Măcicaş area (Cluj County have been investigated and tested for their ammonium removal capacity. The zeolitic volcanic tuffs from Măcicaş are mainly represented by vitric and vitric crystal tuffs. In this region, significant amounts of volcanic glass in the pyroclastic sequence have been replaced by zeolites (between 50-80 %. The main zeolite species identified in volcanic tuffs from Măcicaş is clinoptilolite and subordinately mordenite. The zeolitic tuff samples considered in zeolitic sodium form (labeled M1-Na and M2-Na are tested in ammonium removal experiments. The ammonium ions were completely removed from 0.0716g/dm3 NH4+ solution onto 10g of zeolitic material in static regime. In dynamic regime, the ammonium ions were completely removed after 250 ml and 500 ml solution passed on M1-Na and M2-Na sample respectively. Also the zeolite exhaustion takes place after more than 1500 ml solution is processed in both cases. The ionic exchange properties suggest that the zeolitic tuff of the Măcicaş region can be used as a final stage (following the biological process in wastewater treatment plants in order to assure compliance with environmental standards.

  17. Alteration history of Mount Epomeo Green Tuff and a related polymictic breccia, Ischia Island, Italy: evidence for debris avalanche

    Science.gov (United States)

    Altaner, S.; Demosthenous, C.; Pozzuoli, A.; Rolandi, G.

    2013-05-01

    This paper presents mineralogical, chemical, and textural data for the Mount Epomeo Green Tuff and an associated polymictic breccia on Ischia Island, Italy with the purpose of defining the alteration history of the two units and the emplacement origin of the polymictic breccia. Our results indicate that the Green Tuff trachytic ignimbrite experienced three alteration events that produced the following mineral assemblages: (1) phillipsite, randomly interstratified (R0) illite/smectite (I/S), Fe-illite, and smectite (in situ Green Tuff); (2) chabazite, phillipsite, R0 I/S, and Fe-illite (proximal facies Green Tuff at Scarrupata di Barano); and (3) analcime, authigenic K-feldspar, Fe-illite, R0 I/S, and smectite (clasts of Green Tuff in polymictic breccia). Phillipsite, chabazite, and R0 I/S within the in situ and proximal facies Green Tuff indicate low-temperature alteration ( T 70 °C) alteration within a mostly closed chemical system. These data suggest that the polymictic breccia represents a debris avalanche deposit created by a catastrophic volcanic collapse, which was associated with low-temperature hydrothermal alteration and thus structural weakening of the volcano. The debris avalanche that produced the polymictic breccia on Ischia may be related to nearby massive debris avalanche deposits recently discovered offshore of southern Ischia. The young age of the polymictic breccia (5.7-8.6 ka) and the possibility of its catastrophic emplacement indicate an additional volcanic hazard for Ischia Island.

  18. Bench-scale experimental determination of the thermal diffusivity of crushed tuff

    Energy Technology Data Exchange (ETDEWEB)

    Ryder, E.E.; Finley, R.E.; George, J.T.; Ho, C.K.; Longenbaugh, R.S. [Sandia National Labs., Albuquerque, NM (United States); Connolly, J.R. [New Mexico Univ., Albuquerque, NM (United States)

    1996-06-01

    A bench-scale experiment was designed and constructed to determine the effective thermal diffusivity of crushed tuff. Crushed tuff particles ranging from 12.5 mm to 37.5 mm (0.5 in. to 1.5 in.) were used to fill a cylindrical volume of 1.58 m{sup 3} at an effective porosity of 0.48. Two iterations of the experiment were completed; the first spanning approximately 502 hours and the second 237 hours. Temperatures near the axial heater reached 700 degrees C, with a significant volume of the test bed exceeding 100 degrees C. Three post-test analysis techniques were used to estimate the thermal diffusivity of the crushed tuff. The first approach used nonlinear parameter estimation linked to a one dimensional radial conduction model to estimate thermal diffusivity from the first 6 hours of test data. The second method used the multiphase TOUGH2 code in conjunction with the first 20 hours of test data not only to estimate the crushed tuffs thermal diffusivity, but also to explore convective behavior within the test bed. Finally, the nonlinear conduction code COYOTE-II was used to determine thermal properties based on 111 hours of cool-down data. The post-test thermal diffusivity estimates of 5.0 x 10-7 m{sup 2}/s to 6.6 x 10-7 m{sup 2}/s were converted to effective thermal conductivities and compared to estimates obtained from published porosity-based relationships. No obvious match between the experimental data and published relationships was found to exist; however, additional data for other particle sizes and porosities are needed.

  19. Reaction of the Topopah Spring Tuff with J-13 water at 120{sup 0}C

    Energy Technology Data Exchange (ETDEWEB)

    Oversby, V.M.

    1984-07-18

    This report describes a series of hydrothermal experiments using crushed tuff from the Topopah Spring Member and natural ground water from well J-13. The purpose of these experiments is to define the changes in water chemistry that would result from temperature changes caused by emplacing high-level nuclear waste in a repository in the Topopah Spring tuff. Experiments were conducted at 120{sup 0}C in Teflon-lined reaction vessels at four separate rock-to-water ratios and for reaction times up to 72 days. The composition of evaporite deposits contained in the pores of the surface-outcrop rock material used in these experiments is determined from solution compositions resulting from treatment of the rock before the start of the experiments. Results from the experiments at 120{sup 0}C are compared with previous experimental results from hydrothermal reaction of the Topopah Spring tuff with J-13 water at 90 and 150{sup 0}C. The main conclusion that can be drawn from this work is that changes in the water chemistry due to heating of the rock-water system can be expected to be very minor. There is no significant source of anions (F{sup -}, Cl{sup -}, NO{sub 3}{sup -}, or SO{sub 4}{sup 2-}) in the rock; solution anion compositions after reaction of pretreated rock with J-13 water differ very little from the starting compositions. The major changes in cations are an increase in silica to approximately the level of cristobalite solubility, supersaturation of aluminum followed by slow precipitation, and fairly rapid precipitation of calcium and magnesium due to the retrograde solubility of calcite. These results are in good agreement with those previously reported for reaction of the tuff with J-13 water at 90 and 150{sup 0}C. 7 references, 7 figures, 28 tables.

  20. Explosive welding of undersea pipelines

    Energy Technology Data Exchange (ETDEWEB)

    Stalker, A.W.

    1978-02-01

    The phenomenon of explosive welding has been known informally for many years. A number of investigations reported the occurerence of solid phase bonds as an incidental effect when using high explosives in association with adjacent metal surfaces and probably the earliest formal record was the observation by Carl in 1944 of a bond between two copper discs in contact with a detonator. In 1957 Philipchuk reported what is now recognized as an explosive weld between aluminium channel sections and a steel die when carrying out explosive forming trials. Since then a great deal of development work has resulted in explosive welding becoming a well established manufacturing technique, particularly in the fields of cladding and the joining of tube/tubeplates. In more recent years the process has been extended to the welding of large diameter line pipe materials.

  1. Welding Development W87 Baseline

    Energy Technology Data Exchange (ETDEWEB)

    A. Newman; G. Gibbs; G. K. Hicken

    1998-11-01

    This report covers the development activities used to qualify the Gas Tungsten Arc (FTA) girth weld and the resistance stem attachments on the W87 Base Line (W87BL). Design of experiments was used throughout the development activities.

  2. Thermomechanical Modelling of Resistance Welding

    DEFF Research Database (Denmark)

    Bay, Niels; Zhang, Wenqi

    2007-01-01

    The present paper describes a generic programme for analysis, optimization and development of resistance spot and projection welding. The programme includes an electrical model determining electric current and voltage distribution as well as heat generation, a thermal model calculating heat...

  3. Welding and Production Metallurgy Facility

    Data.gov (United States)

    Federal Laboratory Consortium — This 6000 square foot facility represents the only welding laboratory of its kind within DA. It is capable of conducting investigations associated with solid state...

  4. Weld bonding of stainless steel

    DEFF Research Database (Denmark)

    Santos, I. O.; Zhang, Wenqi; Goncalves, V.M.

    2004-01-01

    This paper presents a comprehensive theoretical and experimental investigation of the weld bonding process with the purpose of evaluating its relative performance in case of joining stainless steel parts, against alternative solutions based on structural adhesives or conventional spot...

  5. YAG laser welding with surface activating flux

    Institute of Scientific and Technical Information of China (English)

    樊丁; 张瑞华; 田中学; 中田一博; 牛尾诚夫

    2003-01-01

    YAG laser welding with surface activating flux has been investigated, and the influencing factors and mechanism are discussed. The results show that both surface activating flux and surface active element S have fantastic effects on the YAG laser weld shape, that is to obviously increase the weld penetration and D/W ratio in various welding conditions. The mechanism is thought to be the change of weld pool surface tension temperature coefficient, thus, the change of fluid flow pattern in weld pool due to the flux.

  6. Forming of aluminium alloy friction stir welds

    Science.gov (United States)

    Bruni, Carlo

    2016-10-01

    The present paper aims at investigating, through analytical models, numerical models and experiments, the effect of the warm deformation phase, realised with an in temperature upsetting, on the weld previously performed by friction stir lap welding on aluminium alloy blanks. The investigation allows to show the deformation zones after upsetting that determine the homogenisation of the weld section. The analytical model allows to relate the friction factor with the upsetting load. The presence on the weld of not elevated friction factor values determines the deformation and localisation levels very useful for the weld. Such methodology allows to improve the weld itself with the forming phase.

  7. Micromorphology of pedogenically derived fracture fills in Bandelier Tuff, New Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Davenport, D.W.; Wilcox, B.P. [Los Alamos National Lab., NM (United States); Allen, B.L. [Texas Tech Univ., Lubbock, TX (United States)

    1995-11-01

    Fractures in the Bandelier Tuff are potential paths for water movement and transport of contaminants from waste disposal sites and other contaminated areas at Los Alamos National Laboratory, Los Alamos, NM. Contaminants transported in this way could ultimately be found in Los Alamos drinking water or in the Rio Grande, which flows through heavily populated areas in both the USA and Mexico. We conducted this study to determine (i) the morphology and origin of soil-like material in the fractures, and (ii) the likelihood of significant water movement through the fractures. We examined thin sections of fracture fills, soils, and tuffs to obtain fabric and mineralogical data, and collected field data on soil horizons, color, texture, structure, clay films, and root abundance. Fracture fills consist of clay, CaCO{sub 3}, or combinations of the two with minor inclusions of tuff and sand grains. Clay consists of thick, highly oriented argillans aligned parallel to fracture walls, and of discrete books in fracture interiors. Carbonate consists of massive microcrystalline calcite, which completely fills some fractures, and laminae or infillings between clay laminae or books in clay-dominated fractures. The potential creation of new macropores by a variety of processes, however, including seismic activity and biological disturbance, could allow rapid water movement and contaminant transport. 44 refs., 8 figs., 4 tabs.

  8. Studies of ancient concrete as analogs of cementitious sealing materials for a repository in tuff

    Energy Technology Data Exchange (ETDEWEB)

    Roy, D.M.; Langton, C.A.

    1989-03-01

    The durability of ancient cementitious materials has been investigated to provide data applicable to determining the resistance to weathering of concrete materials for sealing a repository for storage of high-level radioactive waste. Because tuff and volcanic ash are used in the concretes in the vicinity of Rome, the results are especially applicable to a waste repository in tuff. Ancient mortars, plasters, and concretes collected from Rome, Ostia, and Cosa dating to the third century BC show remarkable durability. The aggregates used in the mortars, plasters, and concretes included basic volcanic and pyroclastic rocks (including tuff), terra-cotta, carbonates, sands, and volcanic ash. The matrices of ancient cementitious materials have been characterized and classified into four categories: (1) hydraulic hydrated lime and hydrated lime cements, (2) hydraulic aluminous and ferruginous hydrated lime cements ({plus_minus} siliceous components), (3) pozzolana/hydrated lime cements, and (4) gypsum cements. Most of the materials investigated are in category (3). The materials were characterized to elucidate aspects of the technology that produced them and their response to the environmental exposure throughout their centuries of existence. Their remarkable properties are the result of a combination of chemical, mineralogical, and microstructural factors. Their durability was found to be affected by the matrix mineralogy, particle size, and porosity; aggregate type, grading and proportioning; and the methodology of placement. 30 refs.

  9. Studies of ancient concrete as analogs of cementitious sealing materials for a repository in tuff

    Energy Technology Data Exchange (ETDEWEB)

    Roy, D.M.; Langton, C.A.

    1989-03-01

    The durability of ancient cementitious materials has been investigated to provide data applicable to determining the resistance to weathering of concrete materials for sealing a repository for storage of high-level radioactive waste. Because tuff and volcanic ash are used in the concretes in the vicinity of Rome, the results are especially applicable to a waste repository in tuff. Ancient mortars, plasters, and concretes collected from Rome, Ostia, and Cosa dating to the third century BC show remarkable durability. The aggregates used in the mortars, plasters, and concretes included basic volcanic and pyroclastic rocks (including tuff), terra-cotta, carbonates, sands, and volcanic ash. The matrices of ancient cementitious materials have been characterized and classified into four categories: (1) hydraulic hydrated lime and hydrated lime cements, (2) hydraulic aluminous and ferruginous hydrated lime cements ({plus_minus} siliceous components), (3) pozzolana/hydrated lime cements, and (4) gypsum cements. Most of the materials investigated are in category (3). The materials were characterized to elucidate aspects of the technology that produced them and their response to the environmental exposure throughout their centuries of existence. Their remarkable properties are the result of a combination of chemical, mineralogical, and microstructural factors. Their durability was found to be affected by the matrix mineralogy, particle size, and porosity; aggregate type, grading and proportioning; and the methodology of placement. 30 refs.

  10. Effects of Sabalan Tuff as a Natural Pozzolan on Properties of Plastic Concrete

    Science.gov (United States)

    Doodaran, R. Sadeghi; Khiavi, M. Pasbani

    One of the most common methods for watertighting in dams is to use cutoff or watertight walls. These types of walls should have high plasticity and low permeability [1]. Developing these walls with such qualities requires using plastic concrete with paneling method. In most cases, adding these materials to concrete improves some of its qualities such as consistency, viscosity of fresh concrete, decrease in permeability, increase in plasticity, long term increase in compressive strength, durability against sulphats and decrease in price. The main purpose of this project is using Sabalan natural tuff in plastic concrete for an access to a desirable modulus of elasticity without a decrease in compressive strength. In this paper, in addition to the impact of Sabalan natural pozzolan tuff on plastic concrete qualities, the impacts of pozzolan cement made of this kind of tuff (Ardebil pozzolan cement) on it has been considered. The results showed improvement on the qualities of plastic concrete such as decrease in permeability, decrease in modulus of elasticity and increase in durability against destructive factors with retaining compressive strength.

  11. Formation of a Hydrothermal Kaolinite Deposit from Rhyolitic Tuff in Jiangxi, China

    Institute of Scientific and Technical Information of China (English)

    Ye Yuan; Guanghai Shi; Mengchu Yang; Yinuo Wu; Zhaochong Zhang; Anjie Huang; Jiajing Zhang

    2014-01-01

    The Longmen kaolinite deposit is one of the largest hydrothermal clay deposits of Ganxi volcanic basin (northern Wuyi Mountain area, China). The pristine host rocks are rhyolitic crystal-vitric tuff and minor lapilli tuff from the Late Jurassic Ehuling Formation. The ore consists of kaolin-group minerals (kaolinite, dickite), pyrophyllite with minor quartz, sericite, pyrite, etc.. From the host rocks to the transition zones (altered rocks) then to the vein ores, contents of SiO2 and TFe2O3 decrease, whereas Al2O3 and LOI increase, consistent with the contents increase of kaolin minerals and pyrophyllite in the samples. The total REE abundances of the ores are much lower than that of the host and altered rocks, Rb, Nb, Nd, Zr, Ti and Y are significantly depleted. Apparent zoning features of bulk geochemistry and mineral component reflect that the kaolinite deposit occurred at the expense of the host rock by ascending hydrothermal fluids with distinct removal of SiO2, TFe2O3, Na2O, K2O. According to the mineral assemblage, the formation temperature of this deposit falls within the range of 270-350 ℃. With regard to the industrial applications, the kaolinized ores are suitable for use in ceramics and gemologic materials crafted for seal stones. Moreover, in mineralogical terms, this deposit is also proved to be an excellent example for studying channeled hydrothermal alterations of rhyolitic tuff.

  12. Leaching of solutes from ion-exchange resins buried in Bandelier Tuff

    Energy Technology Data Exchange (ETDEWEB)

    Essington, E.H.; Fuentes, H.R.; Polzer, W.L.; Lopez, E.A.; Stallings, E.A.

    1986-10-01

    Prediction of solute transport at shallow land burial facilities requires a knowledge of the rates of release of solutes (source term) from the buried wastes and of those processes affecting transport through the surrounding media. The leaching (removal) of lithium, strontium, and cesium from a resin/tuff mixture (Bandelier Tuff) was conducted under unsaturated steady and unsteady (drainage) flow conditions in both laboratory columns and large-scale field caissons to approximate the conditions of buried contaminated-waste resins. Lithium was leached most rapidly and strontium least rapidly. Stopping the flow for a period of 40 to 60 days to create drainage (unsteady flow) conditions had very little effect on the concentrations of solutes leached from the resin/tuff layer. Leaching of these solutes in laboratory columns simulated the large-scale (caisson) leaching very well. Thus, laboratory studies may be reasonable predictors of leaching under certain large-scale field conditions. Also, leaching appears to be a kinetics-controlled process that, for the experimental conditions of this study, may be represented by simple first-order kinetics. Further work should concentrate on understanding the effect of environmental factors such as solute mixtures, concentrations, and temperature, as well as those mechanisms that control leaching of solutes. Also, the evaluation and development of alternative mathematical models for describing the source term are needed.

  13. Experimental study on activating welding for aluminum alloys

    Institute of Scientific and Technical Information of China (English)

    Huang Yong; Fan Ding

    2005-01-01

    TIG welding and EB welding for aluminum alloy 3003 were carried out to study the effects of activating flux on weld penetration of activating welding for aluminum alloys. SiO2 was used as the activating flux. It is found that, SiO2 can increase the weld penetration and decrease the weld width of FBTIG when the flux gap is small. For A-TIG welding and EB welding with focused mode, the weld penetrations and the weld widths increase simultaneously. SiO2 has little effect on the weld penetration and weld width of EB welding with defocused mode. It is believed that, change of surface tension temperature gradient is not the main mechanism of SiO2 improving weld penetration of activating welding for aluminum alloys.

  14. Laser based spot weld characterization

    Science.gov (United States)

    Jonietz, Florian; Myrach, Philipp; Rethmeier, Michael; Suwala, Hubert; Ziegler, Mathias

    2016-02-01

    Spot welding is one of the most important joining technologies, especially in the automotive industry. Hitherto, the quality of spot welded joints is tested mainly by random destructive tests. A nondestructive testing technique offers the benefit of cost reduction of the testing procedure and optimization of the fabrication process, because every joint could be examined. This would lead to a reduced number of spot welded joints, as redundancies could be avoided. In the procedure described here, the spot welded joint between two zinc-coated steel sheets (HX340LAD+Z100MB or HC340LA+ZE 50/50) is heated optically on one side. Laser radiation and flash light are used as heat sources. The melted zone, the so called "weld nugget" provides the mechanical stability of the connection, but also constitutes a thermal bridge between the sheets. Due to the better thermal contact, the spot welded joint reveals a thermal behavior different from the surrounding material, where the heat transfer between the two sheets is much lower. The difference in the transient thermal behavior is measured with time resolved thermography. Hence, the size of the thermal contact between the two sheets is determined, which is directly correlated to the size of the weld nugget, indicating the quality of the spot weld. The method performs well in transmission with laser radiation and flash light. With laser radiation, it works even in reflection geometry, thus offering the possibility of testing with just one-sided accessibility. By using heating with collimated laser radiation, not only contact-free, but also remote testing is feasible. A further convenience compared to similar thermographic approaches is the applicability on bare steel sheets without any optical coating for emissivity correction. For this purpose, a proper way of emissivity correction was established.

  15. Laser Welding in Electronic Packaging

    Science.gov (United States)

    2000-01-01

    The laser has proven its worth in numerous high reliability electronic packaging applications ranging from medical to missile electronics. In particular, the pulsed YAG laser is an extremely flexible and versatile too] capable of hermetically sealing microelectronics packages containing sensitive components without damaging them. This paper presents an overview of details that must be considered for successful use of laser welding when addressing electronic package sealing. These include; metallurgical considerations such as alloy and plating selection, weld joint configuration, design of optics, use of protective gases and control of thermal distortions. The primary limitations on use of laser welding electronic for packaging applications are economic ones. The laser itself is a relatively costly device when compared to competing welding equipment. Further, the cost of consumables and repairs can be significant. These facts have relegated laser welding to use only where it presents a distinct quality or reliability advantages over other techniques of electronic package sealing. Because of the unique noncontact and low heat inputs characteristics of laser welding, it is an ideal candidate for sealing electronic packages containing MEMS devices (microelectromechanical systems). This paper addresses how the unique advantages of the pulsed YAG laser can be used to simplify MEMS packaging and deliver a product of improved quality.

  16. Totally confined explosive welding

    Science.gov (United States)

    Bement, L. J. (Inventor)

    1978-01-01

    The undesirable by-products of explosive welding are confined and the association noise is reduced by the use of a simple enclosure into which the explosive is placed and in which the explosion occurs. An infrangible enclosure is removably attached to one of the members to be bonded at the point directly opposite the bond area. An explosive is completely confined within the enclosure at a point in close proximity to the member to be bonded and a detonating means is attached to the explosive. The balance of the enclosure, not occupied by explosive, is filled with a shaped material which directs the explosive pressure toward the bond area. A detonator adaptor controls the expansion of the enclosure by the explosive force so that the enclosure at no point experiences a discontinuity in expansion which causes rupture. The use of the technique is practical in the restricted area of a space station.

  17. Welding of Prosthetic Alloys

    Directory of Open Access Journals (Sweden)

    Wojciechowska M.

    2015-04-01

    Full Text Available This paper presents the techniques of joining metal denture elements, used in prosthetic dentistry: the traditional soldering technique with a gas burner and a new technique of welding with a laser beam; the aim of the study was to make a comparative assessment of the quality of the joints in view of the possibility of applying them in prosthetic structures. Fractographic examinations were conducted along with tensile strength and impact strength tests, and the quality of the joints was assessed compared to the solid metal. The experiments have shown that the metal elements used to make dentures, joined by the technique which employs a laser beam, have better strength properties than those achieved with a gas burner.

  18. Ship construction and welding

    CERN Document Server

    Mandal, Nisith R

    2017-01-01

    This book addresses various aspects of ship construction, from ship types and construction materials, to welding technologies and accuracy control. The contents of the book are logically organized and divided into twenty-one chapters. The book covers structural arrangement with longitudinal and transverse framing systems based on the service load, and explains basic structural elements like hatch side girders, hatch end beams, stringers, etc. along with structural subassemblies like floors, bulkheads, inner bottom, decks and shells. It presents in detail double bottom construction, wing tanks & duct keels, fore & aft end structures, etc., together with necessary illustrations. The midship sections of various ship types are introduced, together with structural continuity and alignment in ship structures. With regard to construction materials, the book discusses steel, aluminum alloys and fiber reinforced composites. Various methods of steel material preparation are discussed, and plate cutting and form...

  19. NASA welding assessment program

    Science.gov (United States)

    Stofel, E. J.

    1984-01-01

    A long duration test was conducted for comparing various methods of attaching electrical interconnects to solar cells for near Earth orbit spacecraft. Representative solar array modules were thermally cycled for 36,000 cycles between -80 and +80 C. The environmental stress of more than 6 years on a near Earth spacecraft as it cycles in and out of the earth's shadow was simulated. Evaluations of the integrity of these modules were made by visual and by electrical examinations before starting the cycling and then at periodic intervals during the cycling tests. Modules included examples of parallel gap and of ultrasonic welding, as well as soldering. The materials and fabrication processes are state of the art, suitable for forming large solar arrays of spacecraft quality. The modules survived this extensive cycling without detectable degradation in their ability to generate power under sunlight illumination.

  20. A study of processes for welding pipelines

    Energy Technology Data Exchange (ETDEWEB)

    Weston, J. (ed.)

    1991-07-01

    A review was made of exisiting and potential processes for welding pipelines: fusion welding (arc, electron beam, laser, thermit) and forge welding (friction, flash, magnetically impelled arc butt, upset butt, explosive, shielded active gas, gas pressure). Consideration of J-lay operations gave indications that were reflections of the status of the processes in terms of normal land and offshore S-lay operation: forge welding processes, although having promise require considerable development; fusion welding processes offer several possibilities (mechanized GMA welding likely to be used in 1991-2); laser welding requires development in all pipeline areas: a production machine for electron beam welding will involve high costs. Nondestructive testing techniques are also reviewed. Demand for faster quality assessment is being addressed by speeding radiographic film processing and through the development of real time radiography and automatic ultrasonic testing. Conclusions on most likely future process developments are: SMAW with cellulosic electrodes is best for tie-ins, short pip runs; SMAW continues to be important for small-diameter lines, although mechanized GMA could be used, along with mechanical joining, MIAB, radial fraction, and flash butt; mechanized GMA welding is likely to predominate for large diameter lines and probably will be used for the first J-lay line (other techniques could be used too); and welding of piping for station facilities involves both shop welding of sub-assemblies and on-site welding of pipe and sub-assemblies to each other (site welding uses both SMAW and GMAW). Figs, tabs.

  1. Effect of Welding Methods on the Structure and Mechanical Properties of Welded Joints of Screw Piles

    Science.gov (United States)

    Golikov, N. I.; Sidorov, M. M.; Stepanova, K. V.

    2016-11-01

    Mechanical properties and characteristics of the structure of welded joints of screw piles are studied. It is shown that cast tips from steel 25L do not meet the performance specifications for operation in the Northern climatic zone. Quality welded joints of screw piles can be obtained by semiautomatic welding in an environment of CO2 with Sv-08G2S welding wire.

  2. Development of technique for laser welding of biological tissues using laser welding device and nanocomposite solder.

    Science.gov (United States)

    Gerasimenko, A; Ichcitidze, L; Podgaetsky, V; Ryabkin, D; Pyankov, E; Saveliev, M; Selishchev, S

    2015-08-01

    The laser device for welding of biological tissues has been developed involving quality control and temperature stabilization of weld seam. Laser nanocomposite solder applied onto a wound to be weld has been used. Physicochemical properties of the nanocomposite solder have been elucidated. The nature of the tissue-organizing nanoscaffold has been analyzed at the site of biotissue welding.

  3. ALGORITHM AND IMPLEMENTATION OF AUTO-SEARCHING WELD LINE FOR WELDING MOBILE ROBOT

    Institute of Scientific and Technical Information of China (English)

    ZHANG Ke; L(U) Xueqin; WU Yixiong; LOU Songnian

    2006-01-01

    An algorithm of auto-searching weld line for welding mobile robot is presented.Auto-searching weld line is that the robot can automatically recognize a weld groove according to the characteristics of the weld groove before welding, and then adjust itself posture to the desired status preparing for welding, namely, it is a process that the robot autonomously aligns itself to the center of welding seam. Firstly, the configuration of welding mobile robot with the function of auto-searching weld line is introduced, then the algorithm and implementation of auto-searching weld line are presented on the basis of kinematics model of the robot, at last trajectory planning among auto-searching weld line is investigated in detail. The experiment result shows that the developed welding mobile robot can successfully implement the task of auto-searching weld line before welding, tracking error precision can be controlled to approximate ± 1.5 mm, and satisfy the requirement of practical welding project.

  4. EMAT weld inspection and weld machine diagnostic system for continuous coil processing lines

    Science.gov (United States)

    Latham, Wayne M.; MacLauchlan, Daniel T.; Geier, Dan P.; Lang, Dennis D.

    1996-11-01

    Weld breaks of steel coil during cold rolling and continuous pickling operations are a significant source of lost productivity and product yield. Babcock and Wilcox Innerspec Technologies has developed a weld process control system which monitors the key variables of the welding process and determines the quality of the welds generated by flash butt welding equipment. This system is known as the Temate 2000 Automated Flash Butt Weld Inspection and Weld Machine Diagnostic System. The Temate 2000 system utilizes electro- magnetic acoustic transducer (EMAT) technology as the basis for performing on-line, real-time, nondestructive weld quality evaluation. This technique accurately detects voids, laps, misalignment and over/under trim conditions in the weld. Results of the EMAT weld inspection are immediately presented to the weld machine operator for disposition. Welding process variables such as voltage, current, platen movements and upset pressures are monitored and collected with the high speed data acquisition system. This data is processed and presented in real-time display to indicate useful welding process information such as platen crabbing, upset force, peak upset current, and many others. Alarming for each variable is provided and allows detailed maintenance reports and summary information to be generated. All weld quality and process parameter data are stored, traceable to each unique weld, and available for post process evaluation. Installation of the Temate 2000 system in a major flat rolled steel mill has contributed to near elimination of weld breakage and increased productivity at this facility.

  5. Warm Dense Matter: An Overview

    Energy Technology Data Exchange (ETDEWEB)

    Kalantar, D H; Lee, R W; Molitoris, J D

    2004-04-21

    This document provides a summary of the ''LLNL Workshop on Extreme States of Materials: Warm Dense Matter to NIF'' which was held on 20, 21, and 22 February 2002 at the Wente Conference Center in Livermore, CA. The warm dense matter regime, the transitional phase space region between cold material and hot plasma, is presently poorly understood. The drive to understand the nature of matter in this regime is sparking scientific activity worldwide. In addition to pure scientific interest, finite temperature dense matter occurs in the regimes of interest to the SSMP (Stockpile Stewardship Materials Program). So that obtaining a better understanding of WDM is important to performing effective experiments at, e.g., NIF, a primary mission of LLNL. At this workshop we examined current experimental and theoretical work performed at, and in conjunction with, LLNL to focus future activities and define our role in this rapidly emerging research area. On the experimental front LLNL plays a leading role in three of the five relevant areas and has the opportunity to become a major player in the other two. Discussion at the workshop indicated that the path forward for the experimental efforts at LLNL were two fold: First, we are doing reasonable baseline work at SPLs, HE, and High Energy Lasers with more effort encouraged. Second, we need to plan effectively for the next evolution in large scale facilities, both laser (NIF) and Light/Beam sources (LCLS/TESLA and GSI) Theoretically, LLNL has major research advantages in areas as diverse as the thermochemical approach to warm dense matter equations of state to first principles molecular dynamics simulations. However, it was clear that there is much work to be done theoretically to understand warm dense matter. Further, there is a need for a close collaboration between the generation of verifiable experimental data that can provide benchmarks of both the experimental techniques and the theoretical capabilities

  6. Determination through the distortions analysis of the best welding sequence in longitudinal welds VATS electron beam welding FE simulation

    Energy Technology Data Exchange (ETDEWEB)

    Guirao, J., E-mail: julio@natec-ingenieros.co [Numerical Technologies, S.L., Marques de San Esteban No. 52, 33206 Gijon (Spain); Rodriguez, E. [Department of Mechanical Engineering, University of Oviedo, Campus de Viesques, 33203 Gijon (Spain); Bayon, A. [Vacuum Vessel Group, Fusion for Energy, Josep Pla 2, 08019 Barcelona (Spain); Bouyer, F. [DCNS, Indret 44620 LA MONTAGNE (France); Pistono, J. [Department of Thermal Machines and Motors, University of Oviedo, Campus de Viesques, 33203 Gijon (Spain); Jones, L. [Vacuum Vessel Group, Fusion for Energy, Josep Pla 2, 08019 Barcelona (Spain)

    2010-08-15

    This paper presents a detailed finite element simulation of the longitudinal rib welds of Vessel Advanced Technology Segment (VATS) by e-beam welding. Nine different simulation sequences were carried out to explain the different mechanisms that drive the distortions process during welding and to lead to an optimum sequence which minimizes the final distortions. The simulations were used to guide the manufacture of the final sequence of the VATS. Distortion measurements taken after welding compared very well with the simulated results.

  7. TECHNOLOGICAL ISSUES IN MECHANISED FEED WIG/TIG WELDING SURFACING OF WELDING

    Directory of Open Access Journals (Sweden)

    BURCA Mircea

    2016-09-01

    manual welding tests in the light of using the process for welding surfacing being known that in such applications mechanised operations are recommended whenever possible given the latter strengths i.e. increased productivity and quality deposits. The research also aims at achieving a comparative a study between wire mechanised feed based WIG manual welding and the manual rod entry based manual welding in terms of geometry deposits, deposits aesthetics, operating technique, productivity, etc . In this regard deposits were made by means of two welding procedures, and subsequently welding surfacing was made with the optimum values of the welding parameters in this case.

  8. Effects of welding technology on welding stress based on the finite element method

    Science.gov (United States)

    Fu, Jianke; Jin, Jun

    2017-01-01

    Finite element method is used to simulate the welding process under four different conditions of welding flat butt joints. Welding seams are simulated with birth and death elements. The size and distribution of welding residual stress is obtained in the four kinds of welding conditions by Q345 manganese steel plate butt joint of the work piece. The results shown that when using two-layers welding,the longitudinal and transverse residual stress were reduced;When welding from Middle to both sides,the residual stress distribution will change,and the residual stress in the middle of the work piece was reduced.

  9. Fabrication of Aluminum Tubes Filled with Aluminum Alloy Foam by Friction Welding

    Directory of Open Access Journals (Sweden)

    Yoshihiko Hangai

    2015-10-01

    Full Text Available Aluminum foam is usually used as the core of composite materials by combining it with dense materials, such as in Al foam core sandwich panels and Al-foam-filled tubes, owing to its low tensile and bending strengths. In this study, all-Al foam-filled tubes consisting of ADC12 Al-Si-Cu die-cast aluminum alloy foam and a dense A1050 commercially pure Al tube with metal bonding were fabricated by friction welding. First, it was found that the ADC12 precursor was firmly bonded throughout the inner wall of the A1050 tube without a gap between the precursor and the tube by friction welding. No deformation of the tube or foaming of the precursor was observed during the friction welding. Next, it was shown that by heat treatment of an ADC12-precursor-bonded A1050 tube, gases generated by the decomposition of the blowing agent expand the softened ADC12 to produce the ADC12 foam interior of the dense A1050 tube. A holding time during the foaming process of approximately tH = 8.5 min with a holding temperature of 948 K was found to be suitable for obtaining a sound ADC12-foam-filled A1050 tube with sufficient foaming, almost uniform pore structures over the entire specimen, and no deformation or reduction in the thickness of the tube.

  10. Modeling of welded bead profile for rapid prototyping by robotic MAG welding

    Institute of Scientific and Technical Information of China (English)

    CAO Yong; ZHU Sheng; WANG Tao; WANG Wanglong

    2009-01-01

    As a deposition technology, robotic metal active gas(MAG) welding has shown new promise for rapid prototyping (RP) of metallic parts. During the process of metal forming using robotic MAG welding, sectional profile of single-pass welded bead is critical to formed accuracy and quality of metal pans. In this paper, the experiments of single-pass welded bead for rapid prototyping using robotic MAG welding were carried out. The effect of some edge detectors on the cross-sectional edge of welded bead was discussed and curve fitting was applied using leat square fitting. Consequently, the mathematical model of welded bead profile was developed. The experimental results show that good shape could be obtained under suitable welding parameters. Canny operawr is suitable to edge detection of welded bead profile, and the mathematical model of welded bead profile developed is approximately parabola.

  11. Predicting effects of diffusion welding parameters on welded joint properties by artificial neural network

    Institute of Scientific and Technical Information of China (English)

    刘黎明; 祝美丽; 牛济泰; 张忠典

    2001-01-01

    The static model for metal matrix composites in diffusion welding was established by means of artificial neural network method. The model presents the relationship between weld joint properties and welding parameters such as welding temperature, welding pressure and welding time. Through simulating the diffusion welding process of SiCw/6061Al composite, the effects of welding parameters on the strength of welded joint was studied and optimal technical parameters was obtained. It is proved that this method has good fault-tolerant ability and versatility and can overcome the shortage of the general experiment. The established static model is in good agreement with the actual welding process, so it becomes a new path for studying the weldability of new material.

  12. Effect of Laser Welding Parameters on Formation of NiTi Shape Memory Alloy Welds

    Directory of Open Access Journals (Sweden)

    Wei Wang

    2014-01-01

    Full Text Available In this work experimental trials of welding of NiTi flat plates with 2.0 mm thickness were conducted using a 4.5 kW continuous wave (CW Nd:YAG laser. The influences of laser output power, welding speed, defocus amount and side-blow shielding gas flow rate on the morphology, welding depth and width, and quality of the welded seam were investigated. Meanwhile, the effects of heat input on the mechanical and functional properties of welded joints were studied. The results show that laser welding can take better formation in NiTi alloys. The matching curves with laser power and welding speed affecting different formation of welds were experimentally acquired, which can provide references for laser welding and engineering application of NiTi alloy. The heat input has obvious effects on the ultimate tensile strength (UTS and shape memory behavior of the welded joints.

  13. Effect of weld reinforcement on axial plastic buckling of welded steel cylindrical shells

    Institute of Scientific and Technical Information of China (English)

    Chu-lin YU; Zhi-ping CHEN; Ji WANG; Shun-juan YAN; Li-cai YANG

    2012-01-01

    The effect of weld reinforcement on axial plastic buckling of welded steel cylindrical shells is investigated through experimental and numerical buckling analysis using six welded steel cylindrical shell specimens.The relationship between the amplitude of weld reinforcement and the axial plastic buckling critical load is explored.The effect of the material yield strength and the number of circumferential welds on the axial plastic buckling is studied.Results show that circumferential weld reinforcement represents a severe imperfect form of axially compressed welded steel cylindrical shells and the axial plastic buckling critical load decreases with the increment of the mean amplitude of circumferential weld reinforcement.The material yield strength and the number of circumferential welds are found to have no significant effect on buckling waveforms; however,the axial plastic buckling critical load can be decreased to some extent with the increase of the number of circumferential welds.

  14. Effect of Multi-repair Welding on Fatigue Performance of Aluminum Alloy Profile Welded Joint

    Science.gov (United States)

    Diao, You-De; Shi, Chun-Yuan; Tian, Hong-Lei

    2016-05-01

    Aluminum alloy profile has been widely used in the manufacture of the rail vehicles. But it's necessary for the repair welding of the welded joints to be conducted because some defects exist in the weld such as porosity, inclusions and incomplete penetrations in the welding processes. In this paper, the influence of the multi-repair welding of 6005A aluminum alloy profile butt welded joints on the fatigue performance are investigated based on the results of fatigue tests. The parameters of curves and the fatigue strength of the welded joints are calculated, and Goodman fatigue limit diagram is also obtained. The results show that fatigue strength of aluminum alloy profile butt welded joints, in condition of 107 cycle life, meet the standard requirement for the as-welded, repair welded state one time or two times respectively.

  15. Characteristics of Welding Crack Defects and Failure Mode in Resistance Spot Welding of DP780 Steel

    Institute of Scientific and Technical Information of China (English)

    Xiao-pei WANG; Yong-qiang ZHANG; Jian-bin JU; Jian-qiang ZHANG; Jian-wei YANG

    2016-01-01

    The mechanical properties of welded joints in resistance spot welding of DP780 steel were tested,and three dif-ferent types of welding cracks in welded joints were investigated by optical microscopy,scanning electron microscopy and electron back-scattered diffraction.Finally,the failure mode of the welded joints in shear tensile test was dis-cussed.It is found the shear tensile strength of welded joints can be greatly improved by adding preheating current or tempering current.The surface crack in welded joint is intergranular fracture,while the inner crack in welded joint is transgranular fracture,and the surface crack on the edge of the electrode imprint can be improved by adding prehea-ting current or tempering current.The traditional failure mode criterion advised by American Welding Society is no longer suitable for DP780 spot welds and the critical nugget size suggested by Pouranvari is overestimated.

  16. Effects of welding parameters on the mechanical properties of inert gas welded 6063 Aluminium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Ertan, Taner [MAKO Corporation (Turkey); Uguz, Agah [Uludag Univ. (Turkey). Mechnical Engineering Dept.; Ertan, Rukiye

    2012-07-01

    The influence of welding parameters, namely welding current and gas flow rate, on the mechanical properties of Gas Tungsten Arc Welding (GTAW) and Shielded Metal Arc Welding (SMAW) welded 6063 Aluminum alloy (AA 6063) has been investigated. In order to study the effect of the welding current and gas flow rate, microstructural examination, hardness measurements and room temperature tensile tests have been carried out. The experimental results show that the mechanical properties of GTAW welded joints have better mechanical properties than those of SMAW welded joints. Increasing the welding current appeared to have a beneficial effect on the mechanical properties. However, either increasing or decreasing the gas flow rate resulted in a decrease of hardness and tensile strength. It was also found that, the highest strength was obtained in GTAW welded samples at 220 A and 15 l/min gas flow rate.

  17. Structural Transitions in Dense Networks

    CERN Document Server

    Lambiotte, R; Bhat, U; Redner, S

    2016-01-01

    We introduce an evolving network model in which a new node attaches to a randomly selected target node and also to each of its neighbors with probability $p$. The resulting network is sparse for $p<\\frac{1}{2}$ and dense (average degree increasing with number of nodes $N$) for $p\\geq \\frac{1}{2}$. In the dense regime, individual networks realizations built by this copying mechanism are disparate and not self-averaging. Further, there is an infinite sequence of structural anomalies at $p=\\frac{2}{3}$, $\\frac{3}{4}$, $\\frac{4}{5}$, etc., where the dependences on $N$ of the number of triangles (3-cliques), 4-cliques, undergo phase transitions. When linking to second neighbors of the target can occur, the probability that the resulting graph is complete---where all nodes are connected---is non-zero as $N\\to\\infty$.

  18. Holographic Renormalization in Dense Medium

    Directory of Open Access Journals (Sweden)

    Chanyong Park

    2014-01-01

    describes a dense medium at finite temperature, is investigated in this paper. In a dense medium, two different thermodynamic descriptions are possible due to an additional conserved charge. These two different thermodynamic ensembles are classified by the asymptotic boundary condition of the bulk gauge field. It is also shown that in the holographic renormalization regularity of all bulk fields can reproduce consistent thermodynamic quantities and that the Bekenstein-Hawking entropy is nothing but the renormalized thermal entropy of the dual field theory. Furthermore, we find that the Reissner-Nordström AdS black brane is dual to a theory with conformal matter as expected, whereas a charged black brane with a nontrivial dilaton profile is mapped to a theory with nonconformal matter although its leading asymptotic geometry still remains as AdS space.

  19. Radiative properties of dense nanofluids.

    Science.gov (United States)

    Wei, Wei; Fedorov, Andrei G; Luo, Zhongyang; Ni, Mingjiang

    2012-09-01

    The radiative properties of dense nanofluids are investigated. For nanofluids, scattering and absorbing of electromagnetic waves by nanoparticles, as well as light absorption by the matrix/fluid in which the nanoparticles are suspended, should be considered. We compare five models for predicting apparent radiative properties of nanoparticulate media and evaluate their applicability. Using spectral absorption and scattering coefficients predicted by different models, we compute the apparent transmittance of a nanofluid layer, including multiple reflecting interfaces bounding the layer, and compare the model predictions with experimental results from the literature. Finally, we propose a new method to calculate the spectral radiative properties of dense nanofluids that shows quantitatively good agreement with the experimental results.

  20. Dilatons for Dense Hadronic Matter

    CERN Document Server

    Lee, Hyun Kyu

    2009-01-01

    The idea that the explicit breaking of scale invariance by the trace anomaly of QCD can be rephrased as a spontaneous breaking has been recently exploited to capture the low-energy strong interaction dynamics of dense (and also hot) matter in terms of two dilaton fields, the "soft" (chi_s) and the "hard" (chi_h) fields, in the frame work of the hidden local gauge symmetry. In the Freund-Nambu model, the spontaneous symmetry breaking of scale symmetry is induced by an explicitly breaking term, while the spontaneous symmetry breaking is possible in the flat potential model which is scale symmetric. We discuss the interplay of the soft and hard dilatons using the spontaneously broken scale symmetry schemes and uncover a novel structure of dense matter hitherto unexplored.

  1. Experimental and simulated strength of spot welds

    DEFF Research Database (Denmark)

    Nielsen, Chris Valentin; Bennedbæk, Rune A.K.; Larsen, Morten B.

    2014-01-01

    Weld strength testing of single spots in DP600 steel is presented for the three typical testing procedures, i.e. tensile-shear, cross-tension and peel testing. Spot welds are performed at two sets of welding parameters and strength testing under these conditions is presented by load-elongation cu......Weld strength testing of single spots in DP600 steel is presented for the three typical testing procedures, i.e. tensile-shear, cross-tension and peel testing. Spot welds are performed at two sets of welding parameters and strength testing under these conditions is presented by load......-elongation curves revealing the maximum load and the elongation at break. Welding and strength testing is simulated by SORPAS® 3D, which allows the two processes to be prepared in a combined simulation, such that the simulated welding properties are naturally applied to the simulation of strength testing. Besides...

  2. Polyimide weld bonding for titanium alloy joints

    Science.gov (United States)

    Vaughan, R. W.; Kurland, R. M.

    1974-01-01

    Two weld bonding processes were developed for joining titanium alloy; one process utilizes a weld-through technique and the other a capillary-flow technique. The adhesive used for the weld-through process is similar to the P4/A5F system. A new polyimide laminating resin, BFBI/BMPM, was used in the capillary-flow process. Static property information was generated for weld-bonded joints over the temperature range of 219 K (-65 F) to 561 K (+550 F) and fatigue strength information was generated at room temperature. Significant improvement in fatigue strength was demonstrated for weld-bonded joints over spot-welded joints. A demonstration was made of the applicability of the weld-through weld-bonding process for fabricating stringer stiffened skin panels.

  3. Experimental determination of the weld penetration evolution in keyhole plasma arc welding

    Institute of Scientific and Technical Information of China (English)

    Hu Qingxian; Wu Chuansong; Zhang Yuming

    2007-01-01

    Keyhole plasma arc welding experiments are conducted to measure the weld geometry and penetration at different moments during the initial phase from igniting arc to quasi-steady state. Indirect information on keyhole formation and evolution in plasma arc welding can be extracted based on the weld macrophotograph at cross section. It has laid foundation to verify the mathematical models of keyhole plasma arc welding.

  4. Welding polarity effects on weld spatters and bead geometry of hyperbaric dry GMAW

    Science.gov (United States)

    Xue, Long; Wu, Jinming; Huang, Junfen; Huang, Jiqiang; Zou, Yong; Liu, Jian

    2016-03-01

    Welding polarity has influence on welding stability to some extent, but the specific relationship between welding polarity and weld quality has not been found, especially under the hyperbaric environment. Based on a hyperbaric dry welding experiment system, gas metal arc welding(GMAW) experiments with direct current electrode positive(DCEP) and direct current electrode negative(DCEN) operations are carried out under the ambient pressures of 0.1 MPa, 0.4 MPa, 0.7 MPa and 1.0 MPa to find the influence rule of different welding polarities on welding spatters and weld bead geometry. The effects of welding polarities on the weld bead geometry such as the reinforcement, the weld width and the penetration are discussed. The experimental results show that the welding spatters gradually grow in quantity and size for GMAW with DCEP, while GMAW with DCEN can produce fewer spatters comparatively with the increase of the ambient pressure. Compared with DCEP, the welding current and arc voltage waveforms for DCEN is more stable and the distribution of welding current probability density for DCEN is more concentrated under the hyperbaric environment. When the ambient pressure is increased from 0.1 MPa to 1.0 MPa, the effects of welding polarities on the reinforcement, the weld width and the penetration are as follows: an increase of 0.8 mm for the weld reinforcement is produced by GMAW with DCEN and 1.3 mm by GMAW with DCEP, a decrease of 7.2 mm for the weld width is produced by DCEN and 6.1 mm by DCEP; and an increase of 3.9 mm for the penetration is produced by DCEN and 1.9 mm by DCEP. The proposed research indicates that the desirable stability in the welding procedure can be achieved by GMAW with DCEN operation under the hyperbaric environment.

  5. Welding Polarity Effects on Weld Spatters and Bead Geometry of Hyperbaric Dry GMAW

    Institute of Scientific and Technical Information of China (English)

    XUE Long; WU Jinming; HUANG Junfen; HUANG Jiqiang; ZOU Yong; LIU Jian

    2016-01-01

    Welding polarity has influence on welding stability to some extent, but the specific relationship between welding polarity and weld quality has not been found, especially under the hyperbaric environment. Based on a hyperbaric dry welding experiment system, gas metal arc welding(GMAW) experiments with direct current electrode positive(DCEP) and direct current electrode negative(DCEN) operations are carried out under the ambient pressures of 0.1 MPa, 0.4 MPa, 0.7 MPa and 1.0 MPa to find the influence rule of different welding polarities on welding spatters and weld bead geometry. The effects of welding polarities on the weld bead geometry such as the reinforcement, the weld width and the penetration are discussed. The experimental results show that the welding spatters gradually grow in quantity and size for GMAW with DCEP, while GMAW with DCEN can produce fewer spatters comparatively with the increase of the ambient pressure. Compared with DCEP, the welding current and arc voltage waveforms for DCEN is more stable and the distribution of welding current probability density for DCEN is more concentrated under the hyperbaric environment. When the ambient pressure is increased from 0.1 MPa to 1.0 MPa, the effects of welding polarities on the reinforcement, the weld width and the penetration are as follows: an increase of 0.8 mm for the weld reinforcement is produced by GMAW with DCEN and 1.3 mm by GMAW with DCEP, a decrease of 7.2 mm for the weld width is produced by DCEN and 6.1 mm by DCEP; and an increase of 3.9 mm for the penetration is produced by DCEN and 1.9 mm by DCEP. The proposed research indicates that the desirable stability in the welding procedure can be achieved by GMAW with DCEN operation under the hyperbaric environment.

  6. Closed circuit television welding alignment system

    Energy Technology Data Exchange (ETDEWEB)

    Darner, G.S.

    1976-09-01

    Closed circuit television (CCTV) weld targeting systems were developed to provide accurate and repeatable positioning of the electrode of an electronic arc welder with respect to the parts being joined. A sliding mirror electrode holder was developed for use with closed circuit television equipment on existing weld fixturing. A complete motorized CCTV weld alignment system was developed to provide weld targeting for even the most critical positioning requirements.

  7. Stereoscopic Video Weld-Seam Tracker

    Science.gov (United States)

    Kennedy, Larry Z.

    1991-01-01

    Stereoscopic video camera and laser illuminator operates in conjunction with image-data-processing computer to locate weld seam and to map surface features in vicinity of seam. Intended to track seams to guide placement of welding torch in automatic welding system and to yield information on qualities of welds. More sensitive than prior optical seam trackers and suitable for use in production environment. Tracks nearly invisible gap between butted machined edges of two plates.

  8. Welding distortion of aluminium structural members

    Energy Technology Data Exchange (ETDEWEB)

    Goglio, L. [Politecnico di Torino (Italy). Dept. of Mech.; Gugliotta, A. [Politecnico di Torino (Italy). Dept. of Mech.; Pasquino, D. [Politecnico di Torino (Italy). Dept. of Mech.

    1996-12-31

    The paper deals with the angular distortion induced in aluminium tubular beams during welding to prepare T junctions. The research, based on experimental measurements, makes use of statistical methods to identify the parameters (beam section, weld length, welding direction, etc.) that influence the angular change. The results are discussed also considering a model known from the literature. It is found that the distortion is generally low and can be minimized by a proper welding process. (orig.)

  9. Laser welding of advanced high strength steels

    OpenAIRE

    Ahmed, Essam Ahmed Ali

    2011-01-01

    This research work focuses on characterization of CO2 laser beam welding (LBW) of dual phase (DP) and transformation induced plasticity (TRIP) steel sheets based on experimental, numerical simulation and statistical modeling approaches. The experimental work aimed to investigate the welding induced-microstructures, hardness, tensile properties and formability limit of laser welding butt joints of DP/DP, TRIP/TRIP and DP/TRIP steel sheets under different welding speeds. The effects of shieldin...

  10. Welding technology for rails. Rail no setsugo gijutsu

    Energy Technology Data Exchange (ETDEWEB)

    Okumura, M.; Karimine, K. (Nippon Steel Corp., Tokyo (Japan)); Uchino, K.; Sugino, K. (Nippon Steel Corp., Kitakyushu, Fukuoka (Japan). Technical Research Inst. of Yawata Works); Ueyama, K. (JR Railway Technical Research Inst., Tokyo (Japan))

    1993-08-01

    The rail joining technology is indispensable for making long welded rails. Flush butt welding, gas welding, enclosed arc welding, and thermit welding are used properly as the welding methods. A method for improving the joint reliability by controlling the residual stress distribution of welded joint is investigated to prepare high carbon component weld metal similar to the rail. Problems with each of the welding methods and the newly developed technology to solve the problems are outlined. Composition of the coating is improved also, and a high C system welding rod is developed which has satisfactory weldability. High performance and high efficient new enclosed arc welding technology not available by now is developed which utilizes high carbon welding metal as a new EA welding work technology, and put to practical use. As a result of this study, useful guides are obtained for the establishment of satisfactory thermit welding technology. 17 refs., 16 figs., 1 tab.

  11. Laser weld process monitoring and control using chromatic filtering of thermal radiation from a weld pool

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Cheol Jung; Kim, Min Suk; Baik, Sung Hoon; Chung, Chin Man

    2000-06-01

    The application of high power Nd: YAG lasers for precision welding in industry has been growing quite fast these days in diverse areas such as the automobile, the electronics and the aerospace industries. These diverse applications also require the new developments for the precise control and the reliable process monitoring. Due to the hostile environment in laser welding, a remote monitoring is required. The present development relates in general to weld process monitoring techniques, and more particularly to improved methods and apparatus for real-time monitoring of thermal radiation of a weld pool to monitor a size variation and a focus shift of the weld pool for weld process control, utilizing the chromatic aberration of focusing lens or lenses. The monitoring technique of the size variation and the focus shift of a weld pool is developed by using the chromatic filtering of the thermal radiation from a weld pool. The monitoring of weld pool size variation can also be used to monitor the weld depth in a laser welding. Furthermore, the monitoring of the size variation of a weld pool is independent of the focus shift of a weld pool and the monitoring of the focus shift of a weld pool is independent of the size variation of a weld pool.

  12. Welding of aluminum with linear ribbon explosives.

    Science.gov (United States)

    Bement, L. J.

    1971-01-01

    A small-scale simplified, parallel plate process of welding aluminum with very small quantities of lead-sheathed linear ribbon RDX explosive is described. The results of the welding of five different alloys, obtained by using this technique, show that the weld strengths are up to 90% of the parent metal tensile strength.

  13. 49 CFR 195.224 - Welding: Weather.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Welding: Weather. 195.224 Section 195.224 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY... PIPELINE Construction § 195.224 Welding: Weather. Welding must be protected from weather conditions...

  14. 49 CFR 179.400-11 - Welding.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Welding. 179.400-11 Section 179.400-11...-11 Welding. (a) Except for closure of openings and a maximum of two circumferential closing joints in... subchapter). (d) Each welding procedure, welder, and fabricator must be approved. [Amdt. 179-32, 48 FR...

  15. 49 CFR 179.220-10 - Welding.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Welding. 179.220-10 Section 179.220-10... Specifications for Non-Pressure Tank Car Tanks (Classes DOT-111AW and 115AW) § 179.220-10 Welding. (a) All joints... of this subchapter). Welding procedures, welders, and fabricators shall be approved. (b)...

  16. 49 CFR 179.200-10 - Welding.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Welding. 179.200-10 Section 179.200-10... Specifications for Non-Pressure Tank Car Tanks (Classes DOT-111AW and 115AW) § 179.200-10 Welding. (a) All joints... W (IBR, see § 171.7 of this subchapter). Welding procedures, welders and fabricators shall...

  17. 46 CFR 154.660 - Pipe welding.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Pipe welding. 154.660 Section 154.660 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SAFETY STANDARDS FOR... § 154.660 Pipe welding. (a) Pipe welding must meet Part 57 of this chapter. (b) Longitudinal butt...

  18. 49 CFR 179.100-9 - Welding.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Welding. 179.100-9 Section 179.100-9... Specifications for Pressure Tank Car Tanks (Classes DOT-105, 109, 112, 114 and 120) § 179.100-9 Welding. (a) All..., appendix W (IBR, see § 171.7 of this subchapter). Welding procedures, welders and fabricators shall...

  19. Experimental analysis of cut welding in aluminium

    DEFF Research Database (Denmark)

    Dorph, Pernille; De Chiffre, Leonardo; Bay, Niels

    1993-01-01

    Cut welding is a newly developed cold pressure welding process. In the present work, an experimental investigation was carried out analyzing the mechanisms involved in cut welding of a block to a strip. Experiments were carried out in technically pure aluminium. The investigation has involved...

  20. Friction welding thermal and metallurgical characteristics

    CERN Document Server

    Yilbas, Bekir Sami

    2014-01-01

    This book provides insight into the thermal analysis of friction welding incorporating welding parameters such as external, duration, breaking load, and material properties. The morphological and metallurgical changes associated with the resulting weld sites are analysed using characterization methods such as electron scanning microscope, energy dispersive spectroscopy, X-ray Diffraction, and Nuclear reaction analysis.

  1. Resistance welding equipment manufacturing capability for exports

    Energy Technology Data Exchange (ETDEWEB)

    Sastry, V.S.; Raju, Y.S.; Somani, A.K.; Setty, D.S.; Rameswara Raw, A.; Hermantha Rao, G.V.S.; Jayaraj, R.N. [Nuclear Fuel Complex, Dept. of Atomic Energy, Hyderbad (India)

    2010-07-01

    Indian Pressurised Heavy Water Reactor (PHWR) fuel bundle is fully welded and is unique in its design. Appendage welding, end closure welding, and end plate welding is carried out using resistance welding technique. Out of many joining processes available, resistance-welding process is reliable, environment friendly and best suitable for mass production applications. Nuclear Fuel Complex (NFC), an industrial unit is established in Hyderabad, under the aegis of the Dept of Atomic Energy to manufacture fuel for Pressurised Heavy Water Reactors. From inception, NFC has given importance for self-reliance and indigenization with respect to manufacturing process and equipment. Sintering furnaces, centreless grinders, appendage-welding machines, end-closure welding equipment and end-plate welding equipments, which were initially imported, are either indigenized or designed and manufactured in house. NFC has designed, manufactured a new appendage-welding machine for manufacturing 37 element fuel bundles. Recently NFC has bagged an order from IAEA through international bidding for design, manufacture, supply, erection and commissioning of end-closure welding equipment. The paper gives in detail the salient features of these welding equipment. (author)

  2. Automatic Guidance System for Welding Torches

    Science.gov (United States)

    Smith, H.; Wall, W.; Burns, M. R., Jr.

    1984-01-01

    Digital system automatically guides welding torch to produce squarebutt, V-groove and lap-joint weldments within tracking accuracy of +0.2 millimeter. Television camera observes and traverses weld joint, carrying welding torch behind. Image of joint digitized, and resulting data used to derive control signals that enable torch to track joint.

  3. Electron Beam Welding to Join Gamma Titanium Aluminide Articles

    Science.gov (United States)

    Kelly, Thomas Joseph (Inventor)

    2008-01-01

    A method is provided for welding two gamma titanium aluminide articles together. The method includes preheating the two articles to a welding temperature of from about 1700 F to about 2100 F, thereafter electron beam welding the two articles together at the welding temperature and in a welding vacuum to form a welded structure, and thereafter annealing the welded structure at an annealing temperature of from about 1800 F to about 2200 F, to form a joined structure.

  4. Materials and welding engineering in advanced coal utilization plants

    Energy Technology Data Exchange (ETDEWEB)

    Schuhmacher, D.; Schulze-Frielinghaus, W.; Puetz, J.; Eichhorn, F.; Gaever, E. van

    1983-08-01

    The authors present the findings of studies on welding methods for high-temperature alloys used in advanced coal gasification plants. They discuss weld preparation, automatic TIG welding, MIG welding (also with pulsed arc) and plasma arc welding. The mechanical properties of welded joints before and after age hardening are investigated, and the results of fatigue and corrosion tests are presented. The welding methods are compared with a view to their suitability for high-temperature materials.

  5. Microstructure modeling in weld metal

    Energy Technology Data Exchange (ETDEWEB)

    David, S.A.; Babu, S.S.

    1995-12-31

    Since microstructure development in the weld metal region is controlled by various physical processes, there is a need for integrated predictive models based on fundamental principles to describe and predict the effect of these physical processes. These integrated models should be based on various tools available for modeling microstructure development in a wide variety of alloy systems and welding processes. In this paper, the principles, methodology, and future directions of modeling thermochemical reactions in liquid, solidification, and solid state transformations are discussed with some examples for low-alloy steel, stainless steel, and Ni-base superalloy. Thermochemical deoxidation reactions in liquid low-alloy steel lead to oxide inclusion formation. This inclusion formation has been modeled by combining principles of ladle metallurgy and overall transformation kinetics. The model`s comparison with the experimental data and the ongoing work on coupling this inclusion model with the numerical models of heat transfer and fluid flow are discussed. Also, recent advances in theoretical and physical modeling of the solidification process are reviewed with regard to predicting the solidification modes, grain structure development, segregation effects, and nonequilibrium solidification in welds. The effects of solid state phase transformations on microstructure development and various methods of modeling these transformations are reviewed. Successful models, based on diffusion-controlled growth and plate growth theories, on microstructure development in low-alloy steel and stainless steel weld metals are outlined. This paper also addresses the importance of advanced analytical techniques to understand the solid state transformation mechanisms in welds.

  6. Contamination and solid state welds.

    Energy Technology Data Exchange (ETDEWEB)

    Mills, Bernice E.

    2007-05-01

    Since sensitivity to contamination is one of the verities of solid state joining, there is a need for assessing contamination of the part(s) to be joined, preferably nondestructively while it can be remedied. As the surfaces that are joined in pinch welds are inaccessible and thus provide a greater challenge, most of the discussion is of the search for the origin and effect of contamination on pinch welding and ways to detect and mitigate it. An example of contamination and the investigation and remediation of such a system is presented. Suggestions are made for techniques for nondestructive evaluation of contamination of surfaces for other solid state welds as well as for pinch welds. Surfaces that have good visual access are amenable to inspection by diffuse reflection infrared Fourier transform (DRIFT) spectroscopy. Although other techniques are useful for specific classes of contaminants (such as hydrocarbons), DRIFT can be used most classes of contaminants. Surfaces such as the interior of open tubes or stems that are to be pinch welded can be inspected using infrared reflection spectroscopy. It must be demonstrated whether or not this tool can detect graphite based contamination, which has been seen in stems. For tubes with one closed end, the technique that should be investigated is emission infrared spectroscopy.

  7. Constructing Dense Graphs with Unique Hamiltonian Cycles

    Science.gov (United States)

    Lynch, Mark A. M.

    2012-01-01

    It is not difficult to construct dense graphs containing Hamiltonian cycles, but it is difficult to generate dense graphs that are guaranteed to contain a unique Hamiltonian cycle. This article presents an algorithm for generating arbitrarily large simple graphs containing "unique" Hamiltonian cycles. These graphs can be turned into dense graphs…

  8. Reconnaissance geochronology of tuffs in the Miocene Barstow Formation: implications for basin evolution and tectonics in the central Mojave Desert

    Science.gov (United States)

    Miller, D.M.; Leslie, S.R.; Hillhouse, J.W.; Wooden, J.L.; Vazquez, J.A.; Reynolds, R.E.

    2010-01-01

    Early to middle Miocene lacustrine strata of the Barstow Formation are well dated in just a few places, limiting our ability to infer basin evolution and regional tectonics. At the type section in the Mud Hills, previous studies have shown that the lacustrine interval of the Barstow Formation is between ~16.3 Ma and ~13.4 Ma. Elsewhere, lake beds of the Barstow Formation have yielded vertebrate fossils showing the Hemingfordian/Bartovian transition at ~16 Ma but are otherwise poorly dated. In an attempt to clarify the age and depositional environments of the lake deposits, we are mapping the Barstow Formation and dating zircons from interbedded tuffs, as well as testing ash-flow tuffs for the distinctive remanent magnetization direction of the widespread Peach Spring Tuff. Thus far, our new U-Pb zircon ages inficate that the Barstow lake beds contain tuff beds as old as 19.1 Ma and as young as 15.3 Ma. At Harvard Hill, Barstow lake beds contain a thick tuff dated at 18.7 Ma. On the basis of zircon ages, mineralogy, zircon chemistry, and paleomagnetic results, we consider the thick tuff to be a lacustrine facies of the Peach Spring Tuff. We have identified the Peach Spring Tuff by similar methods at eight localities over a broad area, providing a timeline for several fluvial and lacustrine sections. The new dates indicate that long-lived lacustrine systems originated before 19 Ma and persisted to at least 15 Ma. The onset of lacustrine conditions predates the Peach Spring Tuff in most Barstow Formation sections and may be older than 19.5 Ma in some places. The new data indicate that the central Mojave Desert contained narrow to broad lake basins during and after extension, and that Barstow lacustrine deposits did not exclusively postdate extensional tectonics. At present, it is unclear whether several separate, small lake basins coexisted during the early to middle Miocene, or if instead several small early Miocene basins gradually coalesced over about 6 millions

  9. Study of Mechanical Properties and Characterization of Pipe Steel welded by Hybrid (Friction Stir Weld + Root Arc Weld) Approach

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Yong Chae [ORNL; Sanderson, Samuel [MegaStir Technologies LLC; Mahoney, Murray [Consultant; Wasson, Andrew J [ExxonMobil, Upstream Research Company (URC); Fairchild, Doug P [ExxonMobil, Upstream Research Company (URC); Wang, Yanli [ORNL; Feng, Zhili [ORNL

    2015-01-01

    Friction stir welding (FSW) has recently attracted attention as an alternative construction process for gas/oil transportation applications due to advantages compared to fusion welding techniques. A significant advantage is the ability of FSW to weld the entire or nearly the entire wall thickness in a single pass, while fusion welding requires multiple passes. However, when FSW is applied to a pipe or tube geometry, an internal back support anvil is required to resist the plunging forces exerted during FSW. Unfortunately, it may not be convenient or economical to use internal backing support due to limited access for some applications. To overcome this issue, ExxonMobil recently developed a new concept, combining root arc welding and FSW. That is, a root arc weld is made prior to FSW that supports the normal loads associated with FSW. In the present work, mechanical properties of a FSW + root arc welded pipe steel are reported including microstructure and microhardness.

  10. A Stereo Vision Visualization Method in Welding

    Science.gov (United States)

    Zhao, Chuangxin; Richardson, Ian M.; Kleijn, Chris; Kenjeres, Sasa; Saldi, Zaki

    2008-09-01

    The oscillation of weld pool surface, vaporization and spatters make the measurement in welding difficult; two dimensional results can not reflect enough information in welding. However, there are few direct three dimensional methods to understand the fluid flow during welding. In this paper, we described a three dimensional reconstruction method to measure velocity in welding based on a single high speed camera. A stereo adapter was added in front of the high speed camera lens to obtain two images in the same frame from different view points at the same time; according to the machine vision theory, three dimensional parameters could be reconstructed based on these two images

  11. Probing Cold Dense Nuclear Matter

    Energy Technology Data Exchange (ETDEWEB)

    Subedi, Ramesh; Shneor, R.; Monaghan, Peter; Anderson, Bryon; Aniol, Konrad; Annand, John; Arrington, John; Benaoum, Hachemi; Benmokhtar, Fatiha; Bertozzi, William; Boeglin, Werner; Chen, Jian-Ping; Choi, Seonho; Cisbani, Evaristo; Craver, Brandon; Frullani, Salvatore; Garibaldi, Franco; Gilad, Shalev; Gilman, Ronald; Glamazdin, Oleksandr; Hansen, Jens-Ole; Higinbotham, Douglas; Holmstrom, Timothy; Ibrahim, Hassan; Igarashi, Ryuichi; De Jager, Cornelis; Jans, Eddy; Jiang, Xiaodong; Kaufman, Lisa; Kelleher, Aidan; Kolarkar, Ameya; Kumbartzki, Gerfried; LeRose, John; Lindgren, Richard; Liyanage, Nilanga; Margaziotis, Demetrius; Markowitz, Pete; Marrone, Stefano; Mazouz, Malek; Meekins, David; Michaels, Robert; Moffit, Bryan; Perdrisat, Charles; Piasetzky, Eliazer; Potokar, Milan; Punjabi, Vina; Qiang, Yi; Reinhold, Joerg; Ron, Guy; Rosner, Guenther; Saha, Arunava; Sawatzky, Bradley; Shahinyan, Albert; Sirca, Simon; Slifer, Karl; Solvignon, Patricia; Sulkosky, Vince; Sulkosky, Vincent; Sulkosky, Vince; Sulkosky, Vincent; Urciuoli, Guido; Voutier, Eric; Watson, John; Weinstein, Lawrence; Wojtsekhowski, Bogdan; Wood, Stephen; Zheng, Xiaochao; Zhu, Lingyan

    2008-06-01

    The protons and neutrons in a nucleus can form strongly correlated nucleon pairs. Scattering experiments, in which a proton is knocked out of the nucleus with high-momentum transfer and high missing momentum, show that in carbon-12 the neutron-proton pairs are nearly 20 times as prevalent as proton-proton pairs and, by inference, neutron-neutron pairs. This difference between the types of pairs is due to the nature of the strong force and has implications for understanding cold dense nuclear systems such as neutron stars.

  12. Probing Cold Dense Nuclear Matter

    CERN Document Server

    Subedi, R; Monaghan, P; Anderson, B D; Aniol, K; Annand, J; Arrington, J; Benaoum, H; Benmokhtar, F; Bertozzi, W; Boeglin, W; Chen, J -P; Choi, Seonho; Cisbani, E; Craver, B; Frullani, S; Garibaldi, F; Gilad, S; Gilman, R; Glamazdin, O; Hansen, J -O; Higinbotham, D W; Holmstrom, T; Ibrahim, H; Igarashi, R; De Jager, C W; Jans, E; Jiang, X; Kaufman, L; Kelleher, A; Kolarkar, A; Kumbartzki, G; LeRose, J J; Lindgren, R; Liyanage, N; Margaziotis, D J; Markowitz, P; Marrone, S; Mazouz, M; Meekins, D; Michaels, R; Moffit, B; Perdrisat, C F; Piasetzky, E; Potokar, M; Punjabi, V; Qiang, Y; Reinhold, J; Ron, G; Rosner, G; Saha, A; Sawatzky, B; Shahinyan, A; Širca, S; Slifer, K; Solvignon, P; Sulkosky, V; Urciuoli, G; Voutier, E; Watson, J W; Weinstein, L B; Wojtsekhowski, B; Wood, S; Zheng, X -C; Zhu, L; 10.1126/science.1156675

    2009-01-01

    The protons and neutrons in a nucleus can form strongly correlated nucleon pairs. Scattering experiments, where a proton is knocked-out of the nucleus with high momentum transfer and high missing momentum, show that in 12C the neutron-proton pairs are nearly twenty times as prevalent as proton-proton pairs and, by inference, neutron-neutron pairs. This difference between the types of pairs is due to the nature of the strong force and has implications for understanding cold dense nuclear systems such as neutron stars.

  13. Dilatons in Dense Baryonic Matter

    CERN Document Server

    Lee, Hyun Kyu

    2013-01-01

    We discuss the role of dilaton, which is supposed to be representing a special feature of scale symmetry of QCD, trace anomaly, in dense baryonic matter. The idea that the scale symmetry breaking of QCD is responsible for the spontaneous breaking of chiral symmetry is presented along the similar spirit of Freund-Nambu model. The incorporation of dilaton field in the hidden local symmetric parity doublet model is briefly sketched with the possible role of dilaton at high density baryonic matter, the emergence of linear sigma model in dilaton limit.

  14. Magnesium oxide-impregnated tuff soil-derived ceramic: a novel cadmium(II) adsorbing media

    Science.gov (United States)

    Salim, Md; Bhakta, Jatindra N.; Maneesh, Namburath; Munekage, Yukihiro; Motomura, Kevin

    2017-07-01

    The contamination of cadmium (Cd) in the aquatic environment is one of the serious environmental and human health's risks. The present study attempted to develop the potential magnesium oxide (MgO)-impregnated tuff soil-derived ceramic (MITDC)-based novel adsorbent media for adsorbing higher rate of cadmium [Cd(II)] from water phase. A potential MITDC adsorbent media was developed using volcanic raw tuff soil and its Cd(II) adsorption capacity from water phase was evaluated comparing with the raw tuff soil. A series of studies were carried out in an agitated batch method at 20 ± 2 °C to characterize the adsorption capacity of MITDC under different conditions of factors, such as contact time (0-360 min), initial pH (3-11) of solution, dose of MITDC (2, 5, 7.5 and 10 g/L), and initial concentration of Cd(II) (5, 10, 20, 30, and 40 mg/L), influencing the adsorption mechanism. MITDC exhibited the equilibrium state of maximum Cd(II) adsorption at the contact time 120 min and pH 4.7 (removed 98.2 % Cd) when initial Cd(II) concentration was 10 mg/L in the present study. The dose of 7.5 g MITDC/L showed maximum removal of Cd(II) from water. Experimental data were described by the Freundlich and the Langmuir isotherms and equilibrium data fitted well with the Langmuir model ( R 2 = 0.996). The Cd(II) adsorption capacity of MITDC was 31.25 mg/g. The high Cd(II) adsorption capacity indicated that novel MITDC could be used as a potential ceramic adsorbent media to remove high rate of Cd(II) from aqueous phase.

  15. Estimation of possibilities of making euro pallets from reclaimed polyolefin’s with tuff

    Directory of Open Access Journals (Sweden)

    S. Kuciel

    2010-07-01

    Full Text Available Possibilities of reusing and developing of waste plastics are one of the main problems of waste management for municipal governmentespecially in the context of adapting Polish law to standards of EC [1]. During the last 10 years total amount of plastics waste increasedtwice, especially in communal agglomerations. Among communal waste plastics make up 7 to 14% of whole their mass and 30% of theirvolume [1,2]. Plastic products have been recycled to be used in a number of different products often different from their original use.Reclaimed plastics can’t be used as products which have contact with food or as high demands esthetic and hygienic products, they alsoshouldn’t be applied as short-time used products because they quickly come back to plastics store-place. Reclaimed plastics have lowerproperties than virgin plastics – mainly the strength falls with the simultaneous fall of modules and increase fragile especially for PP, PE,PS and PET [1]. One of the possibilities of reinforcement of polyolefines is adding diverse fillers like glass or carbon fibers (but they arerather expensive and natural fillers like mineral, wood and others [3]. It’s especially important for wasted of low density polyethylenewhich has low modulus. For the tests it was used waste polyethylene (LDPE and HDPE from industrial with 15% mineral fillers – tuff.For the tests it was prepared two kinds of composites materials with 15% of tuff powder. Besides for comparison it was tested recycledpolyethylene (HDPE and LDPE and next was tested specimens cut out from produced europallets (with 15% of tuff. It was testedmechanical properties all prepared composite materials like tensile strength, stress and bending e-modulus and processing properties likemelt flow, Vicat point and photos on SEM microscope.

  16. Magnesium oxide-impregnated tuff soil-derived ceramic: a novel cadmium(II) adsorbing media

    Science.gov (United States)

    Salim, Md; Bhakta, Jatindra N.; Maneesh, Namburath; Munekage, Yukihiro; Motomura, Kevin

    2015-07-01

    The contamination of cadmium (Cd) in the aquatic environment is one of the serious environmental and human health's risks. The present study attempted to develop the potential magnesium oxide (MgO)-impregnated tuff soil-derived ceramic (MITDC)-based novel adsorbent media for adsorbing higher rate of cadmium [Cd(II)] from water phase. A potential MITDC adsorbent media was developed using volcanic raw tuff soil and its Cd(II) adsorption capacity from water phase was evaluated comparing with the raw tuff soil. A series of studies were carried out in an agitated batch method at 20 ± 2 °C to characterize the adsorption capacity of MITDC under different conditions of factors, such as contact time (0-360 min), initial pH (3-11) of solution, dose of MITDC (2, 5, 7.5 and 10 g/L), and initial concentration of Cd(II) (5, 10, 20, 30, and 40 mg/L), influencing the adsorption mechanism. MITDC exhibited the equilibrium state of maximum Cd(II) adsorption at the contact time 120 min and pH 4.7 (removed 98.2 % Cd) when initial Cd(II) concentration was 10 mg/L in the present study. The dose of 7.5 g MITDC/L showed maximum removal of Cd(II) from water. Experimental data were described by the Freundlich and the Langmuir isotherms and equilibrium data fitted well with the Langmuir model (R 2 = 0.996). The Cd(II) adsorption capacity of MITDC was 31.25 mg/g. The high Cd(II) adsorption capacity indicated that novel MITDC could be used as a potential ceramic adsorbent media to remove high rate of Cd(II) from aqueous phase.

  17. Evaluating the paleomagnetic potential of single zircon crystals using the Bishop Tuff

    Science.gov (United States)

    Fu, Roger R.; Weiss, Benjamin P.; Lima, Eduardo A.; Kehayias, Pauli; Araujo, Jefferson F. D. F.; Glenn, David R.; Gelb, Jeff; Einsle, Joshua F.; Bauer, Ann M.; Harrison, Richard J.; Ali, Guleed A. H.; Walsworth, Ronald L.

    2017-01-01

    Zircon crystals offer a unique combination of suitability for high-precision radiometric dating and high resistance to alteration. Paleomagnetic experiments on ancient zircons may potentially constrain the history of the earliest geodynamo, which would hold broad implications for the early Earth's interior and atmosphere. However, the ability of zircons to record accurately the geomagnetic field has not been demonstrated. Here we conduct thermal and alternating field (AF) paleointensity experiments on 767.1 thousand year old (ka) zircons from the Bishop Tuff, California. The rapid emplacement of these zircons in a well-characterized magnetic field provides a high-fidelity test of the zircons' intrinsic paleomagnetic recording accuracy. Successful dual heating experiments on eleven zircons measured using a superconducting quantum interference device (SQUID) microscope yield a mean paleointensity of 54.1 ± 6.8μT (1σ; 42.6 ± 5.3μT after excluding possible maghemite-bearing zircons), which is consistent with high-precision results from Bishop Tuff whole rock (43.0 ± 3.2μT). High-resolution quantum diamond magnetic (QDM) mapping, electron microscopy, and X-ray tomography indicate that the bulk of the remanent magnetization in Bishop Tuff zircons is carried by Fe oxides associated with apatite inclusions, which may be susceptible to destruction via metamorphism and aqueous alteration in older zircons. As such, while zircons can reliably record the geomagnetic field, robust zircon-derived paleomagnetic results require careful characterization of the ferromagnetic carrier and demonstration of their occurrence in primary inclusions. We further conclude that a combination of quantum diamond magnetometry and high-resolution imaging can provide detailed, direct characterization of the ferromagnetic mineralogy of geological samples.

  18. Radionuclide Transport in Tuff and Carbonate Fractures from Yucca Flat, Nevada Test Site

    Energy Technology Data Exchange (ETDEWEB)

    Zavarin, M; Johnson, M R; Roberts, S K; Pletcher, R; Rose, T P; Kersting, A B; Eaton, G; Hu, Q; Ramon, E; Walensky, J; Zhao, P

    2006-02-01

    In the Yucca Flat basin of the Nevada Test Site (NTS), 747 shaft and tunnel nuclear detonations were conducted primarily within the tuff confining unit (TCU) or the overlying alluvium. The TCU in the Yucca Flat basin is hypothesized to reduce radionuclide migration to the regional carbonate aquifer (lower carbonate aquifer) due to its wide-spread aerial extent and chemical reactivity. However, shortcuts through the TCU by way of fractures may provide a migration path for radionuclides to the lower carbonate aquifer (LCA). It is, therefore, imperative to understand how radionuclides migrate or are retarded in TCU fractures. Furthermore, understanding the migration behavior of radionuclides once they reach the fractured LCA is important for predicting contaminant transport within the regional aquifer. The work presented in this report includes: (1) information on the radionuclide reactive transport through Yucca Flat TCU fractures (likely to be the primary conduit to the LCA), (2) information on the reactive transport of radionuclides through LCA fractures and (3) data needed to calibrate the fracture flow conceptualization of predictive models. The predictive models are used to define the extent of contamination for the Underground Test Area (UGTA) project. Because of the complex nature of reactive transport in fractures, a stepwise approach to identifying mechanisms controlling radionuclide transport was used. In the first set of TCU experiments, radionuclide transport through simple synthetic parallel-plate fractured tuff cores was examined. In the second, naturally fractured TCU cores were used. For the fractured LCA experiments, both parallel-plate and rough-walled fracture transport experiments were conducted to evaluate how fracture topography affects radionuclide transport. Tuff cores were prepared from archived UE-7az and UE-7ba core obtained from the USGS core library, Mercury, Nevada. Carbonate cores were prepared from archived ER-6-1 core, also obtained

  19. Explosive welding: Principles and potentials

    Energy Technology Data Exchange (ETDEWEB)

    Brasher, D.G.; Butler, D.J. [Northwest Technical Industries, Inc., Sequim, WA (United States)

    1995-03-01

    Explosive welding is a solid-state process in which controlled explosive detonations force two or more metals together at high pressures. The resultant composite system is joined with a high-quality metallurgical bond. Explosive welding (or explosive bonding) is a high-pressure process in which contaminant surface films are plastically jetted off the base metals as a result of the collision of two metals. The time duration involved in the explosive welding event is so short that the reaction zone (or heat affected zone) between the constituent metals is microscopic. During the process, the first few atomic layers of each metal become plasma because of the high velocity of the impact (200 to 500 m/s, 660 to 1,640 ft/s.) The angle of collision causes the plasma to jet in front of the collision point, effectively scrub-cleaning both surfaces, and leaving clean metal behind.

  20. High frequency welded (ERW) casing

    Energy Technology Data Exchange (ETDEWEB)

    Duisberg, J. (Hoesch Roehrenwerke A.G., Hamm (Germany, F.R.))

    1980-09-01

    Due to the up-to-date standard in welding and testing techniques, the significance of ERW-casing is growing rapidly. The basic items of ERW-pipe are explained in detail. The forming mechanism, the high frequency welding by induction and contact welding processes is explained in detail as well as destructive and non-destructive testing methods. Finishing the ends as threading, thread control (gauging), power tight connection, pressure test and final quality control are rounding up the picture of the production of ERW-casing. Last but not least the test results from the joint strength- and collapse tests which are of outstanding interest for casings, are compared with API requirements in order to demonstrate compliance with API requirements.

  1. Intraluminal tissue welding for anastomosis

    Science.gov (United States)

    Glinsky, Michael; London, Richard; Zimmerman, George; Jacques, Steven

    1998-10-27

    A method and device are provided for performing intraluminal tissue welding for anastomosis of a hollow organ. A retractable catheter assembly is delivered through the hollow organ and consists of a catheter connected to an optical fiber, an inflatable balloon, and a biocompatible patch mounted on the balloon. The disconnected ends of the hollow organ are brought together on the catheter assembly, and upon inflation of the balloon, the free ends are held together on the balloon to form a continuous channel while the patch is deployed against the inner wall of the hollow organ. The ends are joined or "welded" using laser radiation transmitted through the optical fiber to the patch. A thin layer of a light-absorbing dye on the patch can provide a target for welding. The patch may also contain a bonding agent to strengthen the bond. The laser radiation delivered has a pulse profile to minimize tissue damage.

  2. Relationship between sound signal and weld pool status in plasma arc welding

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The sound features of the weld pool status in plasma arc welding were systematically investigated after the sound signal was collected with a microphone. The results show that it is difficult to extract information about the weld pool status directly in time domain although the sound signal varies with the weld pool behaviors to some extent. The frequency spectra of the sound signal contain plenty of information about the weld pool behaviors. It is shown from the analysis of the sound generation mechanism that the sound signal of plasma arc welding is mainly caused by the weld pool oscillation, the power source fluctuation and so on. RS algorithm is designed to determine the weld pool status, and it is able to offer the feedback information for the closed-loop control of the penetration quality of plasma arc welding.

  3. Simulation of Weld Depth in A-TIG Welding with Unified Arc-electrode model

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Calculations have been made for weld depths occurring for TIG welding activated by a flux over the surface of the weld pool. In this case, the flux introduces an electrically insulating layer over the outer regions of the weld-pool surface. There is then an increase in the current density at the surface of the centre of the weld-pool with a consequent increase in the J×B forces, which drive a strong convective flow of the molten metal downwards, tending to make a deep weld. For a flux which produces an insulating layer for all but a central region of radius 2 mm, the calculated weld-depth is 7 mm, and an arc spot is predicted at the centre of the weld-pool surface. As yet we have not resolved the reason for significant differences that exist between our measurements of weld depth and the theoretical predictions.

  4. Real-time monitoring of weld penetration quality in roboticarc welding process

    Institute of Scientific and Technical Information of China (English)

    Wu Chuansong; Jia Chuanbao; Duan Xiaoning

    2008-01-01

    It is of great significance to develop an intelligent monitoring system for weld penetration defects such as incomplete penetration and burn-through in real-time during robotic arc welding process. In this paper, robotic gas metal arc welding experiments are carried out on the mild steel test pieces with Vee-type groove. Through-the-arc sensing method is used to capture the transient values of the welding voltage and current. The raw data of the captured welding current and voltage are processed statistically, and the feature vector S10 is extracted to correlate the welding conditions to the weld penetration information. It lays foundation for intelligent monitoring of weld quality in robotic arc welding.

  5. Local equivalent welding element to predict the welding deformations of plate-type structures

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Considering the Heat Affected Zone (HAZ) of welding joint, the residual strain be-haviors of material under constraint and temperature circulation, as well as the activating mechanism of welding process, this paper addresses a new type welding element for numerical simulation of welding deformation, which is called the LEWE (the local equivalent welding element). This element can describe the basic char-acteristics of welded seam: the local position points of inherent strain, the equiva-lent size, the bending radius (or bending angle) from inherent strain, etc. It could be used to predict the welding deformation of plate-type structure. The comparisons between the computed deflection of welded plate and its experiment measurement are present. The results showed that the LEWE possesses a potential to simulate the deformation of welding process high-efficiently and precisely.

  6. Influence of weld structure on cross-weld creep behavior in P23 steel

    Energy Technology Data Exchange (ETDEWEB)

    Allen, D.J.; Degnan, C.C. [E.ON Engineering (United Kingdom); Brett, S.J. [RWE npower (United Kingdom); Buchanan, L.W. [Doosan Babcock (United Kingdom)

    2010-07-01

    A thick section pipe weld in low alloy steel P23 has been characterised by cross-weld creep rupture testing at a range of stresses, together with all-weld-metal and parent material testing, under the auspices of the UK High Temperature Power Plant Forum. The results generally show that the weld metal can be weak when tested in the transverse (cross-weld) orientation, and can fail with limited overall ductility by cracking in the zone of refined weld metal beneath the fusion boundary of the superposed weld bead. However, one specimen showed a much superior performance, which could be understood in terms of its locally more creep resistant weld macrostructure. The implications for P23 performance and weld manufacture are discussed. (orig.)

  7. Evaluation of similar metal weld effects on residual stress of nozzle dissimilar metal weld

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Seung Cheon; Jeong, Jae Uk; Chang, Yoon Suk; Kim, Young Jin [Sungkyunkwan Univ., Seoul (Korea, Republic of)

    2008-07-01

    Determination of weld-induced residual stress has been an important issue in nuclear power industry because several failures were reported in dissimilar metal weld parts due to primary water stress corrosion cracking. In this context, a couple of remarkable round robin analyses were conducted to quantify the welding simulation variables and to establish optimized numerical analysis process. The purpose of the present research is to introduce welding simulation results for a safety and relief nozzle, which has a dissimilar metal weld part as well as a similar metal weld part. First, finite element analyses are carried out to calculate residual stresses at the inside of nozzle considering only dissimilar metal welding. Subsequently, residual stresses taking into account both the dissimilar and similar metal welding are computed. The similar metal weld effect is evaluated by comparing these analysis results and technical findings derived from the evaluation are fully discussed.

  8. Advantages of new micro-jet welding technology on weld microstructure control

    Directory of Open Access Journals (Sweden)

    Jan PIWNIK

    2013-01-01

    Full Text Available An innovative apparatus to welding process with micro-jet cooling of the weld made it possible to carry out technological tests, which have proved theoretical considerations about this problem. This project gives real opportunities for professional development in the field of welding with controlling the parameters of weld structure. These tests have proved that the new micro-jet technology has the potential for growth. It may be great achievement of welding technology in order to increase weld metal strength. The new technology with micro-jet cooling may have many practical applications in many fields, for example such as in the transport industry or to repair damaged metal elements. The advantages of the new device over the traditional system are the ability to control the structure of the weld, the weld mechanical performance increases and improve the quality of welded joints.

  9. EFFECTS OF ELECTRODE DEFORMATION OF RESISTANCE SPOT WELDING ON 304 AUSTENITIC STAINLESS STEEL WELD GEOMETRY

    Directory of Open Access Journals (Sweden)

    Nachimani Charde

    2012-12-01

    Full Text Available The resistance spot welding process is accomplished by forcing huge amounts of current flow from the upper electrode tip through the base metals to the lower electrode tip, or vice versa or in both directions. A weld joint is established between the metal sheets through fusion, resulting in a strong bond between the sheets without occupying additional space. The growth of the weld nugget (bond between sheets is therefore determined from the welding current density; sufficient time for current delivery; reasonable electrode pressing force; and the area provided for current delivery (electrode tip. The welding current and weld time control the root penetration, while the electrode pressing force and electrode tips successfully accomplish the connection during the welding process. Although the welding current and weld time cause the heat generation at the areas concerned (electrode tip area, the electrode tips’ diameter and electrode pressing forces also directly influence the welding process. In this research truncated-electrode deformation and mushrooming effects are observed, which result in the welded areas being inconsistent due to the expulsion. The copper to chromium ratio is varied from the tip to the end of the electrode whilst the welding process is repeated. The welding heat affects the electrode and the electrode itself influences the shape of the weld geometry.

  10. Effect of activating fluxes on weld mechanical properties in TIG welding

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Activating TIG (A-TIG) welding has received many attentions worldwide since the end of 1990s. Compared with conventional TIG welding A-TIG welding can greatly improve the welding productivity and reduce the welding cost without altering the equipments under the same welding procedures and is considered as a innovative variant of conventional TIG welding. The materials applied by A-TIG welding have ranged from original titanium alloy to stainless steel, carbon steel, high temperature alloy steel and so forth. The effects of activating fluxes with single component on weld mechanical properties such as tensile strength, hardness and elastics during A-TIG welding of stainless steel are discussed in this paper. The experimental results show that different fluxes have different effects on the weld mechanical properties. Among these fluxes the flux SiO2 is the best in the performance of tensile strength and ductility, while flux Cr2O3 is the best in the performance of weld hardness compared with conventional TIG welding. These experiments provide the foundation for selecting the most suitable fluxes for stainless steel in practical welding production.

  11. Effect of weld schedule variation on the weldability and durability of AHSS spot weld joints

    Science.gov (United States)

    Weishaupt, Eric Raymond

    Tensile strength testing and high cycle fatigue testing of advanced high strength steel spot welded shear lap joints were performed for the various weld conditions. The materials used in this study were DP 980, DP 780 and TRIP 780. The microstructure and microhardness of the shear lap joints were examined in an effort to identify the effect of microstructural changes on the strength and fatigue durability of the spot weld specimens. The occurrence of interfacial failure was recorded for the differing weld processes. Several weld schedules were examined and used to produce shear lap spot weld joints, specifically varying the squeeze force and the average current. The weld force used to produce a spot weld does not have a significant effect on the fracture mode of the specimen given the average current is constant. The average current used to produce a spot weld has a significant effect on the fracture mode of the spot weld for several squeeze forces. Interfacial failure of spot welded TRIP 780 can be mitigated using a certain range of currents when welding. This appears to come as a tradeoff for sacrificing the strength of the joint. Higher values of weld strength were obtainable; however, welds that failed with higher strengths also experienced interfacial failure. A fracture mechanics approach to estimating the high cycle fatigue life of the shear lap specimen is also proposed and represents a conservative estimate of the shear lap specimen durability.

  12. Fossil Fumarolic Pipes in the Tshirege Member of the Bandelier Tuff

    Science.gov (United States)

    Caporuscio, F. A.; Gardner, J. N.; Schultz-Fellenz, E. S.; Lewis, C. J.; Kelley, R. E.; Greene, M. K.

    2008-12-01

    The geology exposed on the walls (3000 m2) of a large pit in the Bandelier Tuff gives unparalled 3-D exposures of many structures that develop in thick deposits of pyroclastic flows. Subunits of the Tshirege Member of the Bandelier Tuff, erupted at 1.25 Ma, exhibit distinct rubble-filled fissures, or pipes, that range in width from centimeters to meters. The fissures exhibit zones of fines depletion, indurated wall structures, upward flaring geometry to the top of the host unit, and fissure-filling blocks of the host unit as well as rubble derived from overlying pyroclastic units. In the units directly overlying the fissures are intensely fractured in- place rubble zones. Additionally, the fissures appear to be regularly spaced at about 4.5 or 7.5 meters apart. All these field characteristics are indicative of fumarolic activity. Petrographic, XRD, and XRF studies of distinct pipes were done to investigate the physical changes imparted to the tuff by the fumarolic activity. Petrography indicates that the pipe wall and pipe centers are enriched in tridymite and potassium feldspar. These minerals fill the void spaces in pumice and groundmass void spaces of the pipe wall rocks, imparting the indurated nature. Other mineralogic indicators of late stage fumarolic gas phase deposition are optically continuous, feathery overgrowths on sanidine phenocrysts and scapolite in pipe centers. Also, clinopyroxenes in the overlying rubble zones have oxidized rims indicative of highly oxidizing gases emanating from the fumarolic pipes below. XRD analyses of rubble zones above the pipes show decreased cristobalite (4 wt. %) and feldspar (9 wt. %), and increased clay contents (12 to 26 wt. %). This change from feldspar and cristobalite to clay suggests an acidic nature of fumarolic gases. XRF analyses show trends in bulk chemistry consistent with fumarolic data from other tuffs. The data indicate that there have been systematic changes in the geochemistry of the fissures readily

  13. A Brief Introduction to the Theory of Friction Stir Welding

    Science.gov (United States)

    Nunes, Arthur C., Jr.

    2008-01-01

    Friction stir welding (FSW) is a solid state welding process invented in 1991 at The Welding Institute in the United Kingdom. A weld is made in the FSW process by translating a rotating pin along a weld seam so as to stir the sides of the seam together. FSW avoids deleterious effects inherent in melting and is already an important welding process for the aerospace industry, where welds of optimal quality are demanded. The structure of welds determines weld properties. The structure of friction stir welds is determined by the flow field in the weld metal in the vicinity of the weld tool. A simple kinematic model of the FSW flow field developed at Marshall Space Flight Center, which enables the basic features of FSW microstructure to be understood and related to weld process parameters and tool design, is explained.

  14. Mechanical Properties of Plug Welds after Micro-Jet Cooling

    Directory of Open Access Journals (Sweden)

    Hadryś D.

    2016-12-01

    Full Text Available New technology of micro-jet welding could be regarded as a new way to improve mechanical properties of plug welds. The main purpose of that paper was analyzing of mechanical properties of plug welds made by MIG welding method with micro-jet cooling. The main way for it was comparison of plug welds made by MIG welding method with micro-jet cooling and plug welds made by ordinary MIG welding method. It is interesting for steel because higher amount of acicular ferrite (AF in weld metal deposit (WMD is obtained in MIG welding method with micro-jet cooling in relation to ordinary MIG welding method. This article presents the influence of the cooling medium and the number of micro-jet streams on mechanical properties of the welded joint. Mechanical properties were described by force which is necessary to destroy weld joint.

  15. Quality control of laser tailor welded blanks

    Science.gov (United States)

    Yan, Qi

    2008-03-01

    Tailor welded blanks were widely used in the automobile industry for their special advantages. A combination of different materials, thickness, and coatings could be welded together to form a blank for stamping car body panels. With the gradually growing consciousness on safety requirement of auto body structural, the business of laser tailor welded blanks is developing rapidly in China. Laser tailor welded blanks were just the semi products between steel factory and automobile manufacturers. As to the laser welding defects such as convexity and concavity, automobile industry had the strict requirement. In this paper, quality standard on laser tailor welded blanks were discussed. As for the production of laser tailor welded blanks, online quality control of laser tailor welded blanks was introduced. The image processing system for welding laser positioning and weld seam monitoring were used in the production of laser tailor welded blanks. The system analyzes images from the individual cameras and transmits the results to the machine control system via a CAN bus.

  16. TIG welding power supply with improved efficiency

    Directory of Open Access Journals (Sweden)

    Сергій Володимирович Гулаков

    2015-03-01

    Full Text Available In the article, the influence of the DC component of the welding current during TIG (Tungsten Inert Gas welding is discussed. Known methods of DC current cancellation are reviewed, such as capacitor bank or diode/thyristor network insertion in the secondary circuit of the welding transformer. A new method of controlling the magnitude and shape of the TIG welding current is proposed. The idea is to insert a controlled voltage source in the secondary circuit of the welding transformer. This controlled voltage source is realized using a full-bridge voltage source inverter (VSI. VSI control system design issues are discussed. VSI is controlled by a three-level hysteretic current controller, while current reference is generated using lookup table driven by PLL (Phase Locked Loop locked to the mains frequency. Simulation results are shown. The proposed topology of TIG power supply allows to provide magnitude and shape control of the welding current, with the limitation that its DC component must be zero. Thus, some capabilities of professional AC-TIG welders are obtained using substantially lower cost components: VSI built using high-current low voltage MOSFETs with control system based on 32-bit ARM microcontroller. The use of proposed TIG welding power supply will eliminate the DC component of the welding current, improve welding transformer’s power factor and improve welding technology by increasing the welding arc stability

  17. Evolution of a Laser Hybrid Welding Map

    Science.gov (United States)

    Kaplan, Alexander F. H.; Frostevarg, Jan; Ilar, Torbjörn; Bang, Hee-Seon; Bang, Han-Sur

    Laser arc hybrid welding combines the advantages but also the complex physical mechanisms of gas metal arc welding and laser keyhole welding. From manifold mainly experimental but also theoretical research results a map with versatile functions was initiated for the first time. The purpose is to survey the overall context and to facilitate navigation to the various phenomena that are shown through case studies accompanied by theoretical explanations and guidelines for optimization. Though not complete, the map enables systematic and graphical navigation to relevant publications. Based on a fundamental structure of the map, which was decided early, it is inherently extendable in the future by adding existing and new knowledge, also from other research groups, enabling evolution. The fundament of the map structure comprises gouge thickness, joint type and metal grade, in coherence with product and weld designers' starting points. The next hierarchy level of the map offers options in the joint type as well as in hybrid welding techniques. The latter contains techniques like double-sided welding, pulse shaping management of the arc or laser, CMT arcs, tandem arcs, or remelting of undercuts. In addition to laser-arc hybrid welding, other hybrid laser techniques like multilayer hot-wire laser welding of narrow gaps or hybrid laser friction stir welding can be taken into account. At the other end of the hierarchy, the map offers via a database-like archive electronic navigation to research results like weld macrographs, high speed imaging or numerical simulation results of the welding process.

  18. Weld penetration and defect control. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Chin, B.A.

    1992-05-15

    Highly engineered designs increasingly require the use of improved materials and sophisticated manufacturing techniques. To obtain optimal performance from these engineered products, improved weld properties and joint reliability are a necessarily. This requirement for improved weld performance and reliability has led to the development of high-performance welding systems in which pre-programmed parameters are specified before any welding takes place. These automated systems however lack the ability to compensate for perturbations which arise during the welding process. Hence the need for systems which monitor and control the in-process status of the welding process. This report discusses work carried out on weld penetration indicators and the feasibility of using these indicators for on-line penetration control.

  19. Residual stress simulation of circumferential welded joints

    Directory of Open Access Journals (Sweden)

    Melicher R.

    2007-11-01

    Full Text Available Residual stresses are an important consideration in the component integrity and life assessment of welded structure. The welding process is very complex time dependent physical phenomenon with material nonlinearity. The welding is a thermal process with convection between fluid flow and welding body, between welding bodyand environment. Next type of boundary conditions is radiation and thermo-mechanical contact on the outer surface of gas pipe in the near of weld. The temperature variation so obtained is utilised to find the distribution of the stress field.In this paper, a brief review of weld simulation and residual stress modelling using the finite element method (FEM by commercial software ANSYS is presented. Thermo-elastic-plastic formulations using a von Mises yield criterion with nonlinear kinematics hardening has been employed. Residual axial and hoop stresses obtained from the analysis have been shown. The commercial FEM code ANSYS was used for coupled thermalmechanical analysis.

  20. Polyimide adhesives for weld-bonding titanium

    Science.gov (United States)

    Vaughan, R. W.; Sheppard, C. H.; Baucom, R.

    1976-01-01

    Two weld bonding processes were developed for joining titanium alloy; one process utilizes a weld-through technique and the other a capillary-flow technique. The adhesive used for the weld-through process is similar to the P4/A5F system and a new adhesive system, CP/CFA, was used in the capillary-flow process. Static property information was generated for weld-bonded joints over the temperature range of 219K (-65 F) to 561K (550 F) and fatigue strength information was generated at room temperature. Significant improvement in fatigue strength was demonstrated for weld-bonded joints over spot-welded joints. A demonstration was made of the applicability of weld-bonding for fabricating stringer stiffened skin panels.

  1. Holocene phreatomagmatic eruptions alongside the densely populated northern shoreline of Lake Kivu, East African Rift: timing and hazard implications

    Science.gov (United States)

    Poppe, Sam; Smets, Benoît; Fontijn, Karen; Rukeza, Montfort Bagalwa; De Marie Fikiri Migabo, Antoine; Milungu, Albert Kyambikwa; Namogo, Didier Birimwiragi; Kervyn, François; Kervyn, Matthieu

    2016-11-01

    The Virunga Volcanic Province (VVP) represents the most active zone of volcanism in the western branch of the East African Rift System. While the VVP's two historically active volcanoes, Nyamulagira and Nyiragongo, have built scoria cones and lava flows in the adjacent lava fields, several small phreatomagmatic eruptive centers lie along Lake Kivu's northern shoreline, highlighting the potential for explosive magma-water interaction. Their presence in the densely urbanized Sake-Goma-Gisenyi area necessitates an assessment of their eruptive mechanisms and chronology. Some of these eruptive centers possess multiple vents, and depositional contacts suggest distinct eruptive phases within a single structure. Depositional facies range from polymict tuff breccia to tuff and loose lapilli, often impacted by blocks and volcanic bombs. Along with the presence of dilute pyroclastic density current (PDC) deposits, indicators of magma-water interaction include the presence of fine palagonitized ash, ash aggregates, cross-bedding, and ballistic impact sags. We estimate that at least 15 phreatomagmatic eruptions occurred in the Holocene, during which Lake Kivu rose to its current water level. Radiocarbon dates of five paleosols in the top of volcanic tuff deposits range between ˜2500 and ˜150 cal. year bp and suggest centennial- to millennial-scale recurrence of phreatomagmatic activity. A vast part of the currently urbanized zone on the northern shoreline of Lake Kivu was most likely impacted by products from phreatomagmatic activity, including PDC events, during the Late Holocene, highlighting the need to consider explosive magma-water interaction as a potential scenario in future risk assessments.

  2. Advanced Control Methods for Optimization of Arc Welding

    DEFF Research Database (Denmark)

    Thomsen, J. S.

    Gas Metal Arc Welding (GMAW) is a proces used for joining pieces of metal. Probably, the GMAW process is the most successful and widely used welding method in the industry today. A key issue in welding is the quality of the welds produced. The quality of a weld is influenced by several factors...

  3. Study made to establish parameters and limitations of explosive welding

    Science.gov (United States)

    Polhemus, F. C.

    1967-01-01

    It is theorized that metal jetting must be present for welding to occur, therefore an explosive weld interface may indicate the relation between the metal jet velocity and shock wave velocity in welding. Parameters for effecting explosive welding in patches of 3 or 4 inches in diameter were established, and found applicable to explosive welding of patches of various sizes.

  4. 49 CFR 192.235 - Preparation for welding.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Preparation for welding. 192.235 Section 192.235... BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Welding of Steel in Pipelines § 192.235 Preparation for welding. Before beginning any welding, the welding surfaces must be clean and free of any material...

  5. Petrographic and geochemical characteristics of a section through the Tiva Canyon Tuff at Antler Ridge, Yucca Mountain, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Singer, F.R.; Widmann, B.L.; Dickerson, R.P. [Science Applications International Corp., Golden, CO (United States); Byers, F.M. Jr. [Geological Survey, Denver, CO (United States)

    1994-12-31

    The Tiva Canyon Tuff of the Paintbrush Group of Miocene age caps much of Yucca Mountain, Nevada and is a compositionally zoned, compound cooling, pyroclastic flow that ranges from a dominantly high-silica rhyolitic base to a quartz-latitic caprock. Petrographic and geochemical studies have focused on rigorously defining the internal stratigraphy of this unit to support the detailed mapping of the Ghost Dance fault and other structures in the central fault block of Yucca Mountain. This study shows that devitrification textures and vapor phase mineralogy, in addition to other physical attributes such as pumice variability (flattening) and crystal content, can be used as distinguishing criteria to better define lithologic zones within the Tiva Canyon Tuff. In addition, the study also shows that the petrographic textures and chemistry of the groundmass vary systematically within recognizable lithologic zones and may be used to characterize and vertically divide litho-stratigraphic zones within the Tiva Canyon Tuff.

  6. Study on DC welding parameters of Al-alloy shaping based on arc-welding robot

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The Al-alloy arc-welding shaping system based on arc-welding robot is established, and the Al-alloy shaping manufacture is realized with the DC (direct current) gas metal arc welding (GMAW). The research indicates that the metal transfer type of DC GMAW, heat input and the initial temperature of the workpiece greatly affect the Al-alloy shaping based on arc welding robot. On the penetration, the weld width and the reinforcement, the influence of welding parameters is analyzed by generalized regression neural network (GRNN) fitting.

  7. Analysis and Comparison of Friction Stir Welding and Laser Assisted Friction Stir Welding of Aluminum Alloy

    OpenAIRE

    Sabina Luisa Campanelli; Giuseppe Casalino; Caterina Casavola; Vincenzo Moramarco

    2013-01-01

    Friction Stir Welding (FSW) is a solid-state joining process; i.e., no melting occurs. The welding process is promoted by the rotation and translation of an axis-symmetric non-consumable tool along the weld centerline. Thus, the FSW process is performed at much lower temperatures than conventional fusion welding, nevertheless it has some disadvantages. Laser Assisted Friction Stir Welding (LAFSW) is a combination in which the FSW is the dominant welding process and the laser pre-heats the we...

  8. Residual stress analysis of an overlay weld on a dissimilar metal weld

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kang Soo; Lee, Ho Jin; Lee, Bong Sang (Korea Atomic Energy Research Institute, Daejeon (Korea)); Jung, I.C.; Byeon, J.G.; Park, K.S. (Doosan Heavy Industries and Construction Co., Changwon (Korea)), e-mail: kskim5@kaeri.re.kr

    2009-07-01

    In recent years, a dissimilar metal, Alloy 82/182 welds used to connect stainless steel piping and low alloy steel or carbon steel components in nuclear reactor piping system have experienced a cracking due to a primary water stress corrosion (PWSCC). It is well known that one reason for the cracking is the residual stress by the weld. But, it is difficult to estimate the weld residual stress exactly due to many parameters of a welding. In this paper, the analysis of 3 FEM models is performed to estimate the weld residual stress on a dissimilar metal weld exactly

  9. Magnetohydrodynamic behaviors in a resistance spot weld nugget under different welding currents

    Institute of Scientific and Technical Information of China (English)

    S.; Jack; HU

    2008-01-01

    Magnetohydrodynamic behaviors in a resistance spot weld nugget under different welding currents are investigated based on a multiphysics coupled numerical model, which incorporates phase change and variable electrical contact resis-tances at faying surface and electrode-workpiece contact surface. The patterns of the flow field and thermal field at the end of the welding phase under different welding currents are obtained. The evolutions of fluid flow and heat transfer during the whole welding process are also revealed systematically. The analysis results are also compared with a traditional electrothermal coupled model to obtain the quantitative effects of the magnetohydrodynamic behaviors on the resistance spot weld nugget formation.

  10. Magnetohydrodynamic behaviors in a resistance spot weld nugget Under different welding currents

    Institute of Scientific and Technical Information of China (English)

    LI YongBing; LIN ZhongQin; S. Jack HU; CHEN GuanLong

    2008-01-01

    Magnetohydrodynamic behaviors in a resistance spot weld nugget under different welding currents are investigated based on a multiphysics coupled numerical model, which incorporates phase change and variable electrical contact resis- tances at faying surface and electrode-workpiece contact surface. The patterns of the flow field and thermal field at the end of the welding phase under different welding currents are obtained. The evolutions of fluid flow and heat transfer during the whole welding process are also revealed systematically. The analysis results are also compared with a traditional electrothermal coupled model to obtain the quantitative effects of the magnetohydrodynamic behaviors on the resistance spot weld nugget formation.

  11. Study on the effect of welding current during laser beam-resistance seam welding of aluminum alloy 5052

    Institute of Scientific and Technical Information of China (English)

    Li Yongqiang; Zhao Xihua; Zhao He; Cao Haipeng; Zhao Huanling

    2008-01-01

    The effect of welding current on the weld shape and tensile shear load during laser beam-resistance seam welding (LB-RSW) of aluminum alloy 5052 is studied. Experimental results show that the penetration depth, weld width,tensile shear load and the ratio of penetration depth to weld width of LB-RSW are bigger than those of laser beam welding(LBW) under the same conditions and the former three parameters increase as welding current rises. The weld shape of LB-RSW below 5 kA welding current is nearly the same as that of LBW. The weld morphology is protuberant under the condition of 5 kA welding current and 0.8 m/min welding speed. Furthermore, the microstructure of the weld seam of LB-RSW is coarser than that of LBW.

  12. Numerical simulation of weld tab length influence on welding residual stress and distortion of aero-engine disk

    Institute of Scientific and Technical Information of China (English)

    Xue-qiu ZHANG; Jian-guo YANG; Xue-song LIU; Xu-hui CHEN; Hong-yuan FANG; Shen QU

    2009-01-01

    In order to control the welding residual stress and distortion to the greatest extent, based on the MSC. MARC software platform and adopting the impending critical value methods gradually, the welding residual stress and distortion are calculated through varying the weld tab length values. The results show that different weld tab lengths only have a slight effect on welding residual stress but a significant effect on welding distortion. According to the calculation results with different weld tab lengths, the critical length value for the 100 mm-length TC4 alloy weld for electron beam welding of an integral disk should be 50 mm or so.

  13. Oxidation behavior of base metal, weld metal and HAZ regions of SMAW weldment in ASTM SA210 GrA1 steel

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Ravindra [Metallurgical and Materials Engineering Department, Indian Institute of Technology Roorkee, Roorkee 247667 (India)], E-mail: ravirs_2002@rediffmail.com; Tewari, V.K.; Prakash, Satya [Metallurgical and Materials Engineering Department, Indian Institute of Technology Roorkee, Roorkee 247667 (India)

    2009-06-24

    Shielded metal arc welding (SMAW) was used to weld together ASTM SA210 GrA1 steel. The oxidation studies were conducted on different regions of shielded metal arc weldment i.e., base metal, weld metal and heat affected zone (HAZ) specimens after exposure to air at 900 deg. C under cyclic conditions. The thermo-gravimetric technique was used to establish kinetics of oxidation. X-ray diffraction (XRD) and scanning electron microscopy/energy-dispersive analysis (SEM/EDAX) techniques were used to analyze the oxidation products. Base metal showed more weight gain than that of weld metal and HAZ. The HAZ specimen showed the least weight gain due to the formation of densely inner oxide scale.

  14. Micro-mechanical properties of 2219 welded joints with twin wire welding

    Institute of Scientific and Technical Information of China (English)

    Xu Wenli; Li Qingfen; Meng Qingguo; Fang Hongyuan; Gao Na

    2006-01-01

    Nanoindentation method was adopted to investigate the distribution regularities of micro-mechanical properties of 2219 twin wire welded joints, thus providing the necessary theoretical basis and guidance for joint strengthening and improvement of welding procedure.Experimental results show that in weld zone, micro-mechanical properties are seriously uneven.Both hardness and elastic modulus distribute as uneven sandwich layers, while micro-mechanical properties in bond area are much more uniform than weld zone;In heat-affected zone of 2219 twin wire welded joint, distribution regularity of hardness is similar to elastic modulus.The average hardness in quenching zone is higher than softening zone, and the average elastic modulus in solid solution zone is slightly higher than softening zone.As far as the whole welded joint is concerned,metal in weld possesses the lowest hardness.For welded specimens without reinforcement, fracture position is the weld when tensioning.While for welded specimens with reinforcement, bond area is the poorest position with joint strength coefficient of 61%.So, it is necessary to strengthen the poor positions-weld and bond area of 2219 twin wire welded joint in order to solve joint weakening of welding this kind of alloy.

  15. Welded joints integrity analysis and optimization for fiber laser welding of dissimilar materials

    Science.gov (United States)

    Ai, Yuewei; Shao, Xinyu; Jiang, Ping; Li, Peigen; Liu, Yang; Liu, Wei

    2016-11-01

    Dissimilar materials welded joints provide many advantages in power, automotive, chemical, and spacecraft industries. The weld bead integrity which is determined by process parameters plays a significant role in the welding quality during the fiber laser welding (FLW) of dissimilar materials. In this paper, an optimization method by taking the integrity of the weld bead and weld area into consideration is proposed for FLW of dissimilar materials, the low carbon steel and stainless steel. The relationships between the weld bead integrity and process parameters are developed by the genetic algorithm optimized back propagation neural network (GA-BPNN). The particle swarm optimization (PSO) algorithm is taken for optimizing the predicted outputs from GA-BPNN for the objective. Through the optimization process, the desired weld bead with good integrity and minimum weld area are obtained and the corresponding microstructure and microhardness are excellent. The mechanical properties of the optimized joints are greatly improved compared with that of the un-optimized welded joints. Moreover, the effects of significant factors are analyzed based on the statistical approach and the laser power (LP) is identified as the most significant factor on the weld bead integrity and weld area. The results indicate that the proposed method is effective for improving the reliability and stability of welded joints in the practical production.

  16. Uranium(VI adsorption on surfactant modified heulandite/clinoptilolite rich tuff

    Directory of Open Access Journals (Sweden)

    SRDJAN MATIJASEVIC

    2006-12-01

    Full Text Available The adsorption of uranium(VI on heulandite/clinoptilolite rich zeolitic tuff modified with diferent amounts (2, 5 and 10 meq/100 g of hexadecyltrimethyl ammonium (HDTMA ion was investigated. The organozeolites were prepared by ion exchange of inorganic cations at the zeolite surface with HDTMA ions, and the three prepared samples were denoted as OA-2, OA-5 and OA-10. The maximal amount of HDTMAin the organozeolite OA-10 (10 meq/100 g was equal to the external cation exchange capacity of the starting material. The results showed that uranium( VI adsorption on unmodified zeolitic tuff was low (0.34 mg uranium(VI/g adsorbent, while for the organozeolites, the adsorption increased with increasing amount of HDTMA at the zeolitic surface. The highest adsorption indexes were achieved for the organozeolite OA-10, in which all the surface inorganic cations had been replaced with HDTMA. An investigation of the adsorption of uranium(VI ions onto organozeolite OA-10 at different pH values (3, 6 and 8 showed that the adsorption index increased with increasing amount of adsorbent in the suspension. Since uranium(VI speciation is highly dependent on pH, from the adsorption isotherms, it can be seen that uranium(VI adsorption on organozeolite OA-10 at pH 6 and 8 is well described by a Langmuir type of isotherm, while at pH 3, it corresponds to a Type III isotherm.

  17. Clinoptilolite compositions in diagenetically-altered tuffs at a potential nuclear waste repository, Yucca Mountain, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Broxton, D.E.

    1987-12-31

    The compositions of Yucca Mountain clinoptilolites and their host tuffs are highly variable. Clinoptilolites and heulandites in fractures near the repository and in a thin, altered zone at the top of the Topopah Spring basal vitrophyre have consistent calcium-rich compositions. Below this level, clinoptilolites in thick zones of diagenetic alteration on the east side of Yucca Mountain have calcic-potassic compositions and become more calcium rich with depth. Clinoptilolites in stratigraphically equivalent tuffs to the west have sodic-potassic compositions and become more sodic with depth. Clinoptilolite properties important for repository performance assessment include thermal expansion/contraction behavior, hydration/dehydration behavior, and ion-exchange properties. These properties can be significantly affected by clinoptilolite compositions. The compositional variations for clinoptilolites found by this study suggest that the properties will vary vertically and laterally at Yucca Mountain. Used in conjunction with experimental data, the clinoptilolite compositions presented here can be used to model the behavior of clinoptilolites in the repository environment and along transport pathways.

  18. Biofilms on tuff stones at historical sites: identification and removal by nonthermal effects of radiofrequencies.

    Science.gov (United States)

    Cennamo, P; Caputo, P; Giorgio, A; Moretti, A; Pasquino, N

    2013-10-01

    A methodology aiming at identifying and removing biofilms from cultural heritage was applied to stones from tuff walls in historical sites. Identification of phototrophic encrusting microorganisms was carried out by optical and electron microscopy, as well as by molecular techniques (DNA analyses and denaturing gradient gel electrophoresis (DGGE)). In all sites, the examination of microbial components of biofilms resulted in the identification of 17 species belonging to Cyanobacteria, Rhodophyta, Bacillariophyta and Chlorophyta, with Cyanobacteria being the dominant components in all biofilms. In order to remove the biofilms, an innovative technique based on the use of nonthermal effects of radiofrequencies was adopted. The source of the electromagnetic fields was a signal generator connected to a horn antenna through an amplifier to provide the power boost required to generate the target field amplitude. Seven days after exposure to radiofrequency electromagnetic field, about 50 % reduction of biofilm was observed; after 14 days, biofilm extension was reduced by about 90 %. DGGE analyses performed after 14 days confirmed these visual inspections. Also, DGGE analyses carried out before and 14 days after treatments showed that 12 out of 17 identified species disappeared. A complete visual disappearance of biofilms was observed a month after the beginning of treatments. DGGE repeated at this time confirmed the total disappearance of biofilm-forming species. Treated stones, when transferred back to their original sites, did not show any microorganism re-growing after 6 months. No alteration in the color and structural consistency of tuff substrata was observed after radiofrequency treatments.

  19. Wireline-rotary air coring of the Bandelier Tuff, Los Alamos, New Mexico

    Science.gov (United States)

    Teasdale, W.E.; Pemberton, R.R.

    1984-01-01

    This paper describes experiments using wireline-rotary air-coring techniques conducted in the Bandelier Tuff using a modified standard wireline core-barrel system. The modified equipment was used to collect uncontaminated cores of unconsolidated ash and indurated tuff at Los Alamos, New Mexico. Core recovery obtained from the 210-foot deep test hole was about 92 percent. A standard HQ-size, triple-tube wireline core barrel (designed for the passage of liquid drilling fluids) was modified for air coring as follows: (1) Air passages were milled in the latch body part of the head assembly; (2) the inside dimension of the outer core barrel tube was machined and honed to provide greater clearance between the inner and outer barrels; (3) oversized reaming devices were added to the outer core barrel and the coring bit to allow more clearance for air and cuttings return; (4) the eight discharge ports in the coring bit were enlarged. To control airborne-dust pollution, a dust-and-cuttings discharge subassembly, designed and built by project personnel, was used. (USGS)

  20. Analysis of Fracture in Cores from the Tuff Confining Unit beneath Yucca Flat, Nevada Test Site

    Energy Technology Data Exchange (ETDEWEB)

    Lance Prothro

    2008-03-01

    The role fractures play in the movement of groundwater through zeolitic tuffs that form the tuff confining unit (TCU) beneath Yucca Flat, Nevada Test Site, is poorly known. This is an important uncertainty, because beneath most of Yucca Flat the TCU lies between the sources of radionuclide contaminants produced by historic underground nuclear testing and the regional carbonate aquifer. To gain a better understanding of the role fractures play in the movement of groundwater and radionuclides through the TCU beneath Yucca Flat, a fracture analysis focusing on hydraulic properties was performed on conventional cores from four vertical exploratory holes in Area 7 of Yucca Flat that fully penetrate the TCU. The results of this study indicate that the TCU is poorly fractured. Fracture density for all fractures is 0.27 fractures per vertical meter of core. For open fractures, or those observed to have some aperture, the density is only 0.06 fractures per vertical meter of core. Open fractures are characterized by apertures ranging from 0.1 to 10 millimeter, and averaging 1.1 millimeter. Aperture typically occurs as small isolated openings along the fracture, accounting for only 10 percent of the fracture volume, the rest being completely healed by secondary minerals. Zeolite is the most common secondary mineral occurring in 48 percent of the fractures observed.

  1. Stable isotopes of authigenic minerals in variably-saturated fractured tuff

    Energy Technology Data Exchange (ETDEWEB)

    Weber, D.S.; Evans, D.D.

    1988-11-01

    Identifying stable isotope variation and mineralogical changes in fractured rock may help establish the history of climatic and geomorphological processes that might affect the isolation properties of a waste repository site. This study examines the use of the stable isotope ratios of oxygen ({sup 18}O/{sup 16}O) and carbon ({sup 13}C/{sup 12}C) in authigenic minerals as hydrogeochemical tools tracing low-temperature rock-water interaction in variably-saturated fractured stuff. Isotopic compositions of fracture-filling and rock matrix minerals in the Apache Leap tuff, near Superior, Arizona were concordant with geothermal temperatures and in equilibrium with water isotopically similar to present-day meteoric water and groundwater. Oxygen and carbon isotope ratios of fracture-filling, in unsaturated fractured tuff, displayed an isotopic gradient believed to result from near-surface isotopic enrichment due to evaporation rather than the effects of rock-water interaction. Oxygen isotope ratios of rock matrix opal samples exhibited an isotopic gradient believed to result from, leaching and reprecipitation of silica at depth. Methods and results can be used to further define primary flowpaths and the movement of water in variably-saturated fractured rock. 71 refs., 23 figs., 3 tabs.

  2. Explosive Welding for Remote Applications

    Science.gov (United States)

    Bement, L. J.

    1985-01-01

    Explosive seam welding produces up to 100-percent joint strength. Ribbon explosive activated by remote energy source produces metallurgically sound joint. Success of technique verified for joints between like metals and joints between two different metals. Applications include structural assembly in toxic atmospheres and in radioactive or otherwise hazardous environments.

  3. Fundamentals of Welding. Teacher Edition.

    Science.gov (United States)

    Fortney, Clarence; And Others

    These instructional materials assist teachers in improving instruction on the fundamentals of welding. The following introductory information is included: use of this publication; competency profile; instructional/task analysis; related academic and workplace skills list; tools, materials, and equipment list; and 27 references. Seven units of…

  4. Mechanics Model of Plug Welding

    Science.gov (United States)

    Zuo, Q. K.; Nunes, A. C., Jr.

    2015-01-01

    An analytical model has been developed for the mechanics of friction plug welding. The model accounts for coupling of plastic deformation (material flow) and thermal response (plastic heating). The model predictions of the torque, energy, and pull force on the plug were compared to the data of a recent experiment, and the agreements between predictions and data are encouraging.

  5. Welding the CNGS decay tube

    CERN Multimedia

    Maximilien Brice

    2004-01-01

    3.6 km of welds were required for the 1 km long CERN Neutrinos to Gran Sasso (CNGS) decay tube, in which particles produced in the collision with a proton and a graphite target will decay into muons and muon neutrinos. Four highly skilled welders performed this delicate task.

  6. Review of laser hybrid welding

    DEFF Research Database (Denmark)

    Bagger, Claus

    2004-01-01

    In this artucle an overview og the hybrid welding process is given. After a short historic overview, a review of the fundamental phenomenon taking place when a laser (CO2 or Nd:YAG) interacts in the same molten pool as a more conventional source of energy, e.g. tungsten in-active gas, plasma...

  7. Review of laser hybrid welding

    DEFF Research Database (Denmark)

    Bagger, Claus

    2004-01-01

    In this artucle an overview og the hybrid welding process is given. After a short historic overview, a review of the fundamental phenomenon taking place when a laser (CO2 or Nd:YAG) interacts in the same molten pool as a more conventional source of energy, e.g. tungsten in-active gas, plasma...

  8. Welding. FOS: Fundamentals of Service.

    Science.gov (United States)

    John Deere Co., Moline, IL.

    This manual on modern gas and arc welding is one of a series of power mechanics texts and visual aids on the servicing of automotive and off-the-road agricultural and construction equipment. Materials provide basic information with illustrations for use by vocational students and teachers as well as shop servicemen and laymen. The eight sections…

  9. Viscoelastic behavior of dense microemulsions

    Science.gov (United States)

    Cametti, C.; Codastefano, P.; D'arrigo, G.; Tartaglia, P.; Rouch, J.; Chen, S. H.

    1990-09-01

    We have performed extensive measurements of shear viscosity, ultrasonic absorption, and sound velocity in a ternary system consisting of water-decane-sodium di(2-ethylhexyl)sulfo- succinate(AOT), in the one-phase region where it forms a water-in-oil microemulsion. We observe a rapid increase of the static shear viscosity in the dense microemulsion region. Correspondingly the sound absorption shows unambiguous evidence of a viscoelastic behavior. The absorption data for various volume fractions and temperatures can be reduced to a universal curve by scaling both the absorption and the frequency by the measured static shear viscosity. The sound absorption can be interpreted as coming from the high-frequency tail of the viscoelastic relaxation, describable by a Cole-Cole relaxation formula with unusually small elastic moduli.

  10. Neutrino Oscillations in Dense Matter

    Science.gov (United States)

    Lobanov, A. E.

    2017-03-01

    A modification of the electroweak theory, where the fermions with the same electroweak quantum numbers are combined in multiplets and are treated as different quantum states of a single particle, is proposed. In this model, mixing and oscillations of particles arise as a direct consequence of the general principles of quantum field theory. The developed approach enables one to calculate the probabilities of the processes taking place in the detector at long distances from the particle source. Calculations of higher-order processes, including computation of the contributions due to radiative corrections, can be performed in the framework of the perturbation theory using the regular diagram technique. As a result, the analog to the Dirac-Schwinger equation of quantum electrodynamics describing neutrino oscillations and its spin rotation in dense matter can be obtained.

  11. DPIS for warm dense matter

    Energy Technology Data Exchange (ETDEWEB)

    Kondo, K.; Kanesue, T.; Horioka, K.; Okamura, M.

    2010-05-23

    Warm Dense Matter (WDM) offers an challenging problem because WDM, which is beyond ideal plasma, is in a low temperature and high density state with partially degenerate electrons and coupled ions. WDM is a common state of matter in astrophysical objects such as cores of giant planets and white dwarfs. The WDM studies require large energy deposition into a small target volume in a shorter time than the hydrodynamical time and need uniformity across the full thickness of the target. Since moderate energy ion beams ({approx} 0.3 MeV/u) can be useful tool for WDM physics, we propose WDM generation using Direct Plasma Injection Scheme (DPIS). In the DPIS, laser ion source is connected to the Radio Frequency Quadrupole (RFQ) linear accelerator directly without the beam transport line. DPIS with a realistic final focus and a linear accelerator can produce WDM.

  12. Mineralogy, petrology and whole-rock chemistry data compilation for selected samples of Yucca Mountain tuffs; Yucca Mountain Site Characterization Project

    Energy Technology Data Exchange (ETDEWEB)

    Connolly, J.R. [New Mexico Univ., Albuquerque, NM (United States)

    1991-12-01

    Petrologic, bulk chemical, and mineralogic data are presented for 49 samples of tuffaceous rocks from core holes USW G-1 and UE-25a{number_sign}1 at Yucca Mountain, Nevada. Included, in descending stratigraphic order, are 11 samples from the Topopah Spring Member of the Paintbrush Tuff, 12 samples from the Tuffaceous Beds of Calico Hills, 3 samples from the Prow Pass Member of the Crater Flat Tuff, 20 samples from the Bullfrog Member of the Crater Flat Tuff and 3 samples from the Tram Member of the Crater Flat Tuff. The suite of samples contains a wide variety of petrologic types, including zeolitized, glassy, and devitrified tuffs. Data vary considerably between groups of samples, and include thin section descriptions (some with modal analyses for which uncertainties are estimated), electron microprobe analyses of mineral phases and matrix, mineral identifications by X-ray diffraction, and major element analyses with uncertainty estimates.

  13. Nondestructive Ultrasonic Inspection of Friction Stir Welds

    Science.gov (United States)

    Tabatabaeipour, M.; Hettler, J.; Delrue, S.; Van Den Abeele, K.

    Friction Stir Welding (FSW) is a relatively new solid-state welding procedure developed at The Welding Institute (TWI-UK) and the technique is widely employed for welding aluminum alloys in various applications. In order to examine the quality of the welds and to detect a variety of welding flaws such as wormholes and root-flaws, it is required to develop a methodical inspection technique that can be used for the identification and localization of such defects. The most prevalent and risky defect in this type of welding is the barely visible root flaw with a length varying from 100-700 μm. Due to the extreme characteristics of the flaw, off-the-shelf ultrasonic weld inspection methods are not always able to readily detect this type of minute defect feature. Here, we propose a novel approach to characterize root flaws using an oblique incident ultrasonic C-scan backscattering analysis. The implementation consists of an immersion ultrasonic testing method in pulse echo (i.e. backscatter) mode with a 3.5 MHz transducer, and makes use of an empirical procedure to engender of a shear wave dominated excitation at the root surface, and to properly gate the received signal for root flaw examination. By scanning the surface above the welded component, a C-scan image displaying the backscatter response from the root surface of the nugget zone can be obtained which allows a simple interpretation of the root flaw status of the weld.

  14. ITER lip seal welding and cutting developments

    Energy Technology Data Exchange (ETDEWEB)

    Levesy, B.; Cordier, J.J.; Jokinen, T. [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul Lez Durance (France); Kujanpää, V.; Karhu, M. [VTT Technical Research Centre of Finland (Finland); Le Barbier, R. [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul Lez Durance (France); Määttä, T. [VTT Technical Research Centre of Finland (Finland); Martins, J.P.; Utin, Y. [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul Lez Durance (France)

    2015-10-15

    Highlights: • Different TIG and Laser welding techniques are tested. • Twin spot laser welding techniques is the best. • Limited heat input gives a stable weld pool in all positions. • Penetrations is achieved. • Lip seal welding and cutting with a robotic arm is successfully performed on a representative mock-up. - Abstract: The welded lip seals form part of the torus primary vacuum boundary in between the port plugs and the vacuum vessel, and are classified as Protection Important Component. In order to refurbish the port plugs or the in-vessel components, port plugs have to be removed from the machine. The lip seal design must enable up to ten opening of the vacuum vessel during the life time operation of the ITER machine. Therefore proven, remote reliable cutting and re-welding are essential, as these operations need to be performed in the port cells in a nuclear environment, where human presence will be restricted. Moreover, the combination of size of the components to be welded (∼10 m long vacuum compatible thin welds) and the congested environment close to the core of the machine constraint the type and size of tools to be used. This paper describes the lip seal cutting and welding development programme performed at the VTT Technical Research Centre, Finland. Potential cutting and welding techniques are analyzed and compared. The development of the cutting, TIG and laser welding techniques on samples are presented. Effects of lip seal misalignments and optimization of the 2 welding processes are discussed. Finally, the manufacturing and test of the two 1.2 m × 1 m representative mock-ups are presented. The set-up and use of a robotic arm for the mock-up cutting and welding operations are also described.

  15. Optimization of underwater wet welding process parameters using neural network

    National Research Council Canada - National Science Library

    Omajene, Joshua Emuejevoke; Martikainen, Jukka; Wu, Huapeng; Kah, Paul

    2014-01-01

    .... The soundness of a weld can be predicted from the weld bead geometry.This paper illustrates the application of artificial neural network approach in the optimization of the welding process parameter and the influence of the water environment...

  16. A study on consumable aided tungsten indirect arc welding

    Institute of Scientific and Technical Information of China (English)

    Wang Jun; Wang Yuxin; Feng Jicai

    2009-01-01

    A consumable aided tungsten indirect arc welding method has been studied. This method is different from the traditional TIG welding because it introduces an MIG welding torch into the traditional TIG welding system. An indirect arc is generated between the consumable electrode of the MIG welding torch and the tungsten electrode of the TIG welding torch, but not generated between the tungsten electrode of the welding torch and the base metal. Welding current flows from the consumable electrode to the tungsten electrode in the free-burning indirect arc. The consumable aided tungsten indirect arc welding not only rapidly melts the welding wire but also effectively restrains the excessive fusion of the base metal. The welding experiment and the theoretical analysis confirm that this method can obtain a high deposition rate and a low dilution ratio during the welding process.

  17. Research Activities at IPT, DTU on Resistance Projection Welding

    DEFF Research Database (Denmark)

    Bay, Niels

    2000-01-01

    Resistance welding processes and among these especially the resistance projection welding is considered an industrially strategic process with increasing applications as alternative to other welding processes, soldering, brazing and mechanical assembling. This is due to increasing requirements as...

  18. Laser welding of tailored blanks

    Directory of Open Access Journals (Sweden)

    Peças, P.

    1998-04-01

    Full Text Available Laser welding has an incrising role in the automotive industry, namely on the sub-assemblies manufacturing. Several sheet-shape parts are laser welded, on a dissimilar combination of thicknesses and materials, and are afterwards formed (stamped being transformed in a vehicle body component. In this paper low carbon CO2 laser welding, on the thicknesses of 1,25 and 0,75 mm, formability investigation is described. There will be a description of how the laser welded blanks behave in different forming tests, and the influence of misalignment and undercut on the formibility. The quality is evaluated by measuring the limit strain and limit effective strain for the laser welded sheets and the base material, which will be presented in a forming limit diagram.

    A soldadura laser assume um papel cada vez mais importante na indústria automóvel, principalmente para a fabricação de sub-conjuntos constituídos por varias partes de chapa de diferentes espessuras (e diferentes materiais, que depois de estampados constituem um componente para integrar num veículo. Descreve-se neste artigo o trabalho de investigação de enformabilidade de chapa de ac.o de baixo carbono soldada por laser de CO2, nas espessuras de 1,25 e 0,75 mm. Apresenta-se uma descrição do comportamento das chapas soldadas por laser em diferentes testes de enformação, e a influência dos defeitos das soldaduras (desalinhamento e queda do banho-undercut no comportamento à enformação. A qualidade é avaliada pela medição da extensão limite e da extensão limite efectiva no material base e no material soldado, que serão representadas num diagrama de limite de enformabilidade.

  19. The effect of post-welding conditions in friction stir welds: From weld simulation to Ductile Failure

    DEFF Research Database (Denmark)

    Hattel, Jesper Henri; Nielsen, Kim Lau; Tutum, Cem Celal

    2012-01-01

    The post-welding stress state, strain history and material conditions of friction stir welded joints are often strongly idealized when used in subsequent modeling analyses, typically by neglecting one or more of the features above. But, it is obvious that the conditions after welding do influence...... software ANSYS, a thermo-mechanical model is employed to predict the thermally induced stresses and strains during welding, while an in-house finite element code is used to study the plastic flow localization and failure in a subsequent structural analysis. The coupling between the two models is made...... to plastic flow localization was observed, with a substantial influence on the specimen elongation at the onset of localization and thereby failure. This influence is, however, shown to be strongly affected by the applied boundary conditions. Specimens cut from the welded plate, transverse to the weld line...

  20. Inverse Dipolar Magnetic Anomaly Over the Volcanic Cone Linked to Reverse Polarity Magnetizations in Lavas and Tuffs - Implications for the Conduit System

    Science.gov (United States)

    Fucugauchi, J. U.; Perez-Cruz, L. L.; Trigo-Huesca, A.

    2012-12-01

    A combined magnetics and paleomagnetic study of Toluquilla monogenetic volcano and associated lavas and tuffs from Valsequillo basin in Central Mexico provides evidence on a magnetic link between lavas, ash tuffs and the underground volcanic conduit system. Paleomagnetic analyses show that lavas and ash tuffs carry reverse polarity magnetizations, which correlate with the inversely polarized dipolar magnetic anomaly over the volcano. The magnetizations in the lava and tuff show similar southward declinations and upward inclinations, supporting petrological inferences that the tuff was emplaced while still hot and indicating a temporal correlation for lava and tuff emplacement. Conduit geometry is one of the important controlling factors in eruptive dynamics of basaltic volcanoes. However volcanic conduits are often not, or only partly, exposed. Modeling of the dipolar anomaly gives a reverse polarity source magnetization associated with a vertical prismatic body with southward declination and upward inclination, which correlates with the reverse polarity magnetizations in the lava and tuff. The study documents a direct correlation of the paleomagnetic records with the underground magmatic conduit system of the monogenetic volcano. Time scale for cooling of the volcanic plumbing system involves a longer period than the one for the tuff and lava, suggesting that magnetization for the source of dipolar anomaly may represent a long time average as compared to the spot readings in the lava and tuff. The reverse polarity magnetizations in lava and tuff and in the underground source body for the magnetic anomaly are interpreted in terms of eruptive activity of Toluquilla volcano at about 1.3 Ma during the Matuyama reverse polarity C1r.2r chron.

  1. Time Dependant Weld Shape in Ar-O2 Shielded Stationary GTA Welding

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The stationary gas tungsten arc welding (GTA) is carried out on SUS304 stainless steel under Ar-0.1%O2 and Ar-0.3%O2 mixed shielding to observe the evolution of the molten pool and investigate the role of Marangoni convection on the weld shape. After welding, the oxygen content in the weld metal was measured by using an oxygen/nitrogen analyzer. Small addition of oxygen to the argon based shielding gas can effectively adjust the weld pool oxygen content. Oxygen plays an important role as an surface active element in determining the pattern of Marangoni convection in the stainless steel weld pool. When the weld metal oxygen content is over the critical value, 0.01 wt pet, corresponding to the Ar-0.3%O2 mixed shielding gas, the Marangoni convection changes from outward to inward direction and the weld shape dramatically changes from wide shallow shape to narrow deep shape.

  2. The optimization of welding regime parameters at shielded metal arc welding (SMAW) by mathematical modeling

    National Research Council Canada - National Science Library

    V. Petrescu; G. Paraschiv; D. Dobrotă

    2016-01-01

    The realized researches followed the determining of mathematical models that allow the optimization of the welding process in order to obtain welded joints with certain values of the mechanical characteristics...

  3. Weld pool boundary and weld bead shape reconstruction based on passive vision in P-GMAW

    Institute of Scientific and Technical Information of China (English)

    Yan Zhihong; Zhang Guangjun; Gao Hongming; Wu Lin

    2006-01-01

    A passive visual sensing system is established in this research, and clear weld pool images in pulsed gas metal arc welding ( P-GMA W) can be captured with this system. The three-dimensional weld pool geometry, especially the weld height,is not only a crucial factor in determining workpiece mechanical properties, but also an important parameter for reflecting the penetration. A new three-dimensional (3D) model is established to describe the weld pool geometry in P-GMAW. Then, a series of algorithms are developed to extract the model geometrical parameters from the weld pool images. Furthermore, the method to reconstruct the 3D shape of weld pool boundary and weld bead from the two-dimensional images is investigated.

  4. Effect of Pulse Parameters on Weld Quality in Pulsed Gas Metal Arc Welding: A Review

    Science.gov (United States)

    Pal, Kamal; Pal, Surjya K.

    2011-08-01

    The weld quality comprises bead geometry and its microstructure, which influence the mechanical properties of the weld. The coarse-grained weld microstructure, higher heat-affected zone, and lower penetration together with higher reinforcement reduce the weld service life in continuous mode gas metal arc welding (GMAW). Pulsed GMAW (P-GMAW) is an alternative method providing a better way for overcoming these afore mentioned problems. It uses a higher peak current to allow one molten droplet per pulse, and a lower background current to maintain the arc stability. Current pulsing refines the grains in weld fusion zone with increasing depth of penetration due to arc oscillations. Optimum weld joint characteristics can be achieved by controlling the pulse parameters. The process is versatile and easily automated. This brief review illustrates the effect of pulse parameters on weld quality.

  5. Improvement of Weld Quality Using a Weaving Beam in Laser Welding

    Institute of Scientific and Technical Information of China (English)

    Xudong ZHANG; Wuzhu CHEN; Gang BAO; Lin ZHAO

    2004-01-01

    This paper describes a way to improve the weld quality through suppressing the porosity formation and restraining the growth of columnar grains by using a weaving beam in laser welding. The experimental results show that the N2 porosity of beamweaving laser welding low carbon steel can be remarkably reduced with increasing weaving frequency, and porosity can be eliminated when the weaving amplitude is only 0.5 mm; and the Ar porosity in the weld metal is decreased with increasing weaving frequency and amplitude when the welding speed is higher than 0.5 m/min. The beam-weaving laser welding of ultrafine grained steel has been investigated. The experimental results show that beam-weaving laser welding with appropriate amplitude and frequency can partly restrain the growth of the columnar grain and improve the tensile strength of the weld metal.

  6. The impact of welding wire on the mechanical properties of welded joints

    Directory of Open Access Journals (Sweden)

    Magdalena Mazur

    2014-06-01

    Full Text Available This paper presents results of the mechanical properties of Hardox 450 steel welded joints. These welded joints were made in accordance with welding procedure specifications (WPS, which was prepared and  applied in the Wielton company. Fillers were provided by welding wires with two different diameters. The welding wire was G4Sil with diameter of 1.0 mm and 1.2 mm. The aim of this study was to examine whether the thickness of the welding wire has a direct effect on the properties of welded joints. Test specimens were made in similar parameters of the welding process. Then they were subjected to macroscopic research, tensile strength, impact strength and hardness

  7. Penetration control by weld pool resonance during gas tungsten arc welding

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Presents penetration control by weld pool resonance which occurs when the natural frequency of weld pool is equal to the frequency of sine wave current while the weld pool is excited into oscillation by superimposing sine wave current with definite frequency or regular fiequency on DC current, and experiments carried out on detecting resonance signals during both stationary and travelling arc welding with variant frequency pulse current, and concludes with ex perimental results that penetration control can be realized by weld pool resonance when welding speed is lower than 80mm/min, and this control method is applicable to welding thin (0.5 ~ 3.0 mm) plates of carbon steel, low alloy steel, high strength steel and superhigh strength steel, and suitable for alternating polarity welding of stainless steel, titanium alloy steel and aluminum alloy.

  8. Forming Completely Penetrated Welded T-joints when Pulsed Arc Welding

    Science.gov (United States)

    Krampit, N. Yu; Krampit, M. A.; Sapozhkov, A. S.

    2016-04-01

    The paper is focused on revealing the influence of welding parameters on weld formation when pulsed arc welding. As an experimental sample a T-joint over 10 mm was selected. Welding was carried out in flat position, which required no edge preparation but provided mono-directional guaranteed root penetration. The following parameters of welding were subjected to investigation: gap in the joint, wire feed rate and incline angles of the torch along and across the weld axis. Technological recommendations have been made with respect to pulsed arc welding; the cost price of product manufacturing can be reduced on their basis due to reduction of labor input required by machining, lowering consumption of welding materials and electric power.

  9. A NEURAL NETWORK FOR WELD PENETRATION CONTROL IN GAS TUNGSTEN ARC WELDING

    Institute of Scientific and Technical Information of China (English)

    C.S. Wu; J.Q. Gao; Y.H. Zhao

    2006-01-01

    Realizing of weld penetration control in gas tungsten arc welding requires establishment of a model describing the relationship between the front-side geometrical parameters of weld pool and the back-side weld width with sufficient accuracy. A neural network model is developed to attain this aim. Welding experiments are conducted to obtain the training data set (including 973 groups of geometrical parameters of the weld pool and back-side weld width) and the verifying data set (108 groups). Two data sets are used for training and verifying the neural network, respectively.The testing results show that the model has sufficient accuracy and can meet the requirements of weld penetration control.

  10. Development of narrow gap welding technology for extremely thick steel

    Science.gov (United States)

    Imai, K.; Saito, T.; Okumura, M.

    In the field of extremely thick steel, various narrow gap welding methods were developed on the basis of former welding methods and are used in practice. It is important to develop and improve automatic narrow gap welding, J edge preparation by gas cutting, the prevention of welding defects, wires for narrow gap welding and so on in order to expand the scope of application of the method. Narrow gap welding technologies are described, based on new concepts developed by Nippon Steel Corporation.

  11. 5G Ultra-Dense Cellular Networks

    OpenAIRE

    Ge, Xiaohu; Tu, Song; Mao, Guoqiang; Wang, Cheng-xiang; Han, Tao

    2015-01-01

    Traditional ultra-dense wireless networks are recommended as a complement for cellular networks and are deployed in partial areas, such as hotspot and indoor scenarios. Based on the massive multiple-input multi-output (MIMO) antennas and the millimeter wavecommunication technologies, the 5G ultra-dense cellular network is proposed to deploy in overall cellular scenarios. Moreover, a distribution network architecture is presented for 5G ultra-dense cellular networks. Furthermore, the backhaul ...

  12. Interference Coordination for Dense Wireless Networks

    DEFF Research Database (Denmark)

    Soret, Beatriz; Pedersen, Klaus I.; Jørgensen, Niels T.K.

    2015-01-01

    The promise of ubiquitous and super-fast connectivity for the upcoming years will be in large part fulfilled by the addition of base stations and spectral aggregation. The resulting very dense networks (DenseNets) will face a number of technical challenges. Among others, the interference emerges ...... simply react to an identified interference problem. As an example, we propose two algorithms to apply time domain and frequency domain small cell interference coordination in a DenseNet....

  13. HOW GOOD IS A DENSE SHOP SCHEDULE?

    Institute of Scientific and Technical Information of China (English)

    陈礴; 俞文(鱼此)

    2001-01-01

    In this paper, we study a class of simple and easy-to-construct shop schedules, known as dense schedules. We present tight bounds on the maximum deviation in makespan of dense flow-shop and job-shop schedules from their optimal ones. For dense open-shop schedules, we do the same for the special case of four machines and thus add a stronger supporting case for proving a standing conjecture.

  14. Breaking Dense Structures: Proving Stability of Densely Structured Hybrid Systems

    Directory of Open Access Journals (Sweden)

    Eike Möhlmann

    2015-06-01

    Full Text Available Abstraction and refinement is widely used in software development. Such techniques are valuable since they allow to handle even more complex systems. One key point is the ability to decompose a large system into subsystems, analyze those subsystems and deduce properties of the larger system. As cyber-physical systems tend to become more and more complex, such techniques become more appealing. In 2009, Oehlerking and Theel presented a (de-composition technique for hybrid systems. This technique is graph-based and constructs a Lyapunov function for hybrid systems having a complex discrete state space. The technique consists of (1 decomposing the underlying graph of the hybrid system into subgraphs, (2 computing multiple local Lyapunov functions for the subgraphs, and finally (3 composing the local Lyapunov functions into a piecewise Lyapunov function. A Lyapunov function can serve multiple purposes, e.g., it certifies stability or termination of a system or allows to construct invariant sets, which in turn may be used to certify safety and security. In this paper, we propose an improvement to the decomposing technique, which relaxes the graph structure before applying the decomposition technique. Our relaxation significantly reduces the connectivity of the graph by exploiting super-dense switching. The relaxation makes the decomposition technique more efficient on one hand and on the other allows to decompose a wider range of graph structures.

  15. Tailoring weld geometry and composition in fusion welding through convective mass transfer calculations

    Science.gov (United States)

    Mishra, Saurabh

    In the past two decades, numerical transport phenomena based models have provided useful information about the thermal cycles and weld pool geometry. However, no effort has been made to apply these concepts to design weld consumables, to study the weld bead shape on welding two plates with different sulfur contents and to tailor weld pool geometry to specified dimensions. The present research focuses on these unexplored areas. The research proposed here seeks to develop a quantitative understanding of mass transport during fusion welding, with special emphasis on the role of surface active elements and the effect of solute distribution on weld defects like liquation cracking. A comprehensive model, incorporating numerical three-dimensional calculations of temperature and velocity fields and solute distribution in the weld pool is developed for the proposed quantitative study. The study identifies the factors that affect the weld pool geometry on joining two plates with different sulfur contents, and predicts the susceptibility of an aluminum-copper alloy GMA weld to liquation cracking. The specific contributions of the present thesis research include (i) development of a numerical solute transport model for fusion welding; (ii) improving the reliability of output of the numerical model; (iii) achieving computational efficiency and economy by developing a neural network trained by data generated by the numerical model; (iv) creating a bi-directional methodology where a target weld attribute like weld pool geometry can be attained via multiple combinations of input process parameters like arc current, voltage and welding speed; (v) calculating sulfur distribution during gas tungsten arc welding of stainless steel plates with different sulfur contents and predicting the arc welding of aluminum-copper alloys by incorporating the heat and mass addition from filler metal and a non-equilibrium solidification model, and using the copper content of the mushy zone to predict

  16. Boosting Active Contours for Weld Pool Visual Tracking in Automatic Arc Welding

    DEFF Research Database (Denmark)

    Liu, Jinchao; Fan, Zhun; Olsen, Søren Ingvor;

    2015-01-01

    Detecting the shape of the non-rigid molten metal during welding, so-called weld pool visual sensing, is one of the central tasks for automating arc welding processes. It is challenging due to the strong interference of the high-intensity arc light and spatters as well as the lack of robust...... to weld pool tracking and the presented results verified its feasibility....

  17. Friction Stir Welding of Tapered Thickness Welds Using an Adjustable Pin Tool

    Science.gov (United States)

    Adams, Glynn; Venable, Richard; Lawless, Kirby

    2003-01-01

    Friction stir welding (FSW) can be used for joining weld lands that vary in thickness along the length of the weld. An adjustable pin tool mechanism can be used to accomplish this in a single-pass, full-penetration weld by providing for precise changes in the pin length relative to the shoulder face during the weld process. The difficulty with this approach is in accurately adjusting the pin length to provide a consistent penetration ligament throughout the weld. The weld technique, control system, and instrumentation must account for mechanical and thermal compliances of the tooling system to conduct tapered welds successfully. In this study, a combination of static and in-situ measurements, as well as active control, is used to locate the pin accurately and maintain the desired penetration ligament. Frictional forces at the pin/shoulder interface were a source of error that affected accurate pin position. A traditional FSW pin tool design that requires a lead angle was used to join butt weld configurations that included both constant thickness and tapered sections. The pitch axis of the tooling was fixed throughout the weld; therefore, the effective lead angle in the tapered sections was restricted to within the tolerances allowed by the pin tool design. The sensitivity of the FSW process to factors such as thickness offset, joint gap, centerline offset, and taper transition offset were also studied. The joint gap and the thickness offset demonstrated the most adverse affects on the weld quality. Two separate tooling configurations were used to conduct tapered thickness welds successfully. The weld configurations included sections in which the thickness decreased along the weld, as well as sections in which the thickness increased along the weld. The data presented here include weld metallography, strength data, and process load data.

  18. The Effect of Weld Penetration on Blast Performance of Welded Panels

    Science.gov (United States)

    2014-08-01

    demonstrate the difference in performance of full-penetration (nominally 100%) welds and partial-penetration (nominally 70%) welds under blast loading...The welded coupons consisted of armour steel plate, Bisalloy BisPlate High Hardness Armour steel, welded to Bisalloy BisPlate80 steel with an...If an armoured vehicle is subjected to explosive blast loading, such as, detonation of a mine or an Improvised Explosive Device (IED), the blast

  19. Prediction of numerical distortion after welding with various welding sequences and clampings

    Directory of Open Access Journals (Sweden)

    S. Kastelic

    2010-10-01

    Full Text Available Welding simulation of a test cover for hydropower plant was made due to very large dimensions of the cover. The main aim was to predict distortion after welding in order to avoid machining the cover. Welding process was simulated with the Sysweld program to keep distortion in desired limits. Various welding sequences and clamping conditions were calculated to reduce the distortion. Calculation of microstructure constituents in virtual complex geometry of joints was also analyzed.

  20. Repair welding of cast iron coated electrodes

    Science.gov (United States)

    Żuk, M.; Górka, J.; Dojka, R.; Czupryński, A.

    2017-08-01

    Welding cast iron is a complex production procedure. Repair welding was used to repair damaged or poorly made castings. This is due to a tendency to cracking of the material during welding as well as after it. Welding cast iron can be carried out on hot or on cold. Hot welding requires high heat material and the use of welding material in the form of cast iron. In the case of cold welding, it is possible to use different materials. Mostly used filler metals are nickel and copper based. The work shows the course of research concerning repairmen of ductile iron with arc welding method. For the reparation process four types of ESAB company coated electrodes dedicated for cast iron were used with diameter 3.2 and 4 mm: ES 18-8-6B (4mm), EB 150 (4mm), OK NiCl, EŻM. In the cast iron examined during the testing grooves were made using plasma methods, in order to simulate the removed casting flaws. Then the welding process with coated electrodes was executed. The process utilized low welding current row of 100A, so there would only be a small amount of heat delivered to the heat affected zone (HAZ). Short stitches were made, after welding it was hammered, in order to remove stresses. After the repair welding the part of studies commenced which purpose was finding surface defects using visual testing (VT) and penetration testing (PT). In the second part, a series of macro and microscopic studies were executed witch the purpose of disclosuring the structure. Then the hardness tests for welds cross sections were performed. An important aspect of welding cast iron is the colour of the padding weld after welding, more precisely the difference between the base material and padding weld, the use of different materials extra gives the extra ability to select the best variant. The research of four types of coated electrode was executed, based on the demands the best option in terms of aesthetic, strength and hardness.

  1. Influence of the Initial Fiber Orientation on the Weld Strength in Welding of Glass Fiber Reinforced Thermoplastics

    Directory of Open Access Journals (Sweden)

    Isabel Fiebig

    2016-01-01

    Full Text Available The welding factors are significantly lower in welding of fiber reinforced thermoplastics than in welding of unreinforced thermoplastics due to the fiber orientation in the weld. This paper presents results from investigations on the influence of the initial fiber orientation on the weld strength in hot plate and vibration welding for glass fiber reinforced polypropylene and polyamide 6. Injection molded specimens are compared to specimens with main initial fiber orientation being longitudinal and transverse to the joining direction. The results of CT analysis of the fiber orientation in the weld show the opportunity to achieve a higher weld strength by using specimens with fibers being initially oriented longitudinally to the joining direction. The influence of the initial fiber orientation in the parts to be welded on the weld strength in hot plate welding is more distinct than in vibration welding.

  2. Effect of laser characteristics on the weld shape and properties of penetration laser weld of BT20 titanium alloy

    Institute of Scientific and Technical Information of China (English)

    陈俐; 巩水利; 姚伟; 胡伦骥

    2004-01-01

    The laser beam welding of BT20 titanium alloy was conducted to investigate the weld shape, microstructures and properties. The full penetration weld characteristics produced by CO2 laser and by YAG laser were compared. The results show that the full penetration weld of YAG laser welding closes to "X" shape, and weld of CO2 laser welding is "nail-head" shape. Those result from special heating mode of laser deep penetration welding. The tension strength of CO2 laser and YAG laser joints equal to that of the base metal, but the former has better ductility. All welds consist mainly of the acicular α phase and a few β phase in microstructure. The dendritic crystal of CO2 laser weld is a little finer than YAG laser weld. According the research CO2 laser is better than YAG laser for welding of BT20 titanium alloy.

  3. Femtosecond fiber laser welding of dissimilar metals.

    Science.gov (United States)

    Huang, Huan; Yang, Lih-Mei; Bai, Shuang; Liu, Jian

    2014-10-01

    In this paper, welding of dissimilar metals was demonstrated for the first time, to the best of our knowledge, by using a high-energy high-repetition-rate femtosecond fiber laser. Metallurgical and mechanical properties were investigated and analyzed under various processing parameters (pulse energy, repetition rate, and welding speed). Results showed that the formation of intermetallic brittle phases and welding defects could be effectively reduced. Strong welding quality with more than 210 MPa tensile strength for stainless steel-aluminum and 175 MPa tensile strength for stainless steel-magnesium has been demonstrated. A minimal heat affected zone and uniform and homogenous phase transformation in the welding region have been demonstrated. This laser-welding technique can be extended for various applications in semiconductor, automobile, aerospace, and biomedical industries.

  4. Microstructures of 2219 twin wire welded joints

    Institute of Scientific and Technical Information of China (English)

    Xu Wenli; Li Qingfen; Meng Qingguo; Gao Na; Fang Hongyuan

    2005-01-01

    With thick plates of 2219 high-strength alloy, the microstructures of welded joints with twin wire MIG welding were analyzed. Experimental results show that no hot crack was found in the weld due to discontinuous distribution of cocrystallization with low melting temperature, but porosity is serious in the first weld seam that is mainly composed of equiaxial grains with uneven sizes. As the poor position of the whole welded joint, fusion zone has big and coarse grains,uneven microstructures ; In quenching zone, there exist a lot of soaked microstructures that cocrystallization with low melting temperature solute into matrix, thus strengthening the metal in this zone; In excessive aging zone, much more phases that distribute evenly will be separated from the matrix; Outside this zone, properties and microstructures of the metal are basically similar to matrix due to the relatively low temperature or unaffected heat in the zone during welding.

  5. Innovative Tools Advance Revolutionary Weld Technique

    Science.gov (United States)

    2009-01-01

    The iconic, orange external tank of the space shuttle launch system not only contains the fuel used by the shuttle s main engines during liftoff but also comprises the shuttle s backbone, supporting the space shuttle orbiter and solid rocket boosters. Given the tank s structural importance and the extreme forces (7.8 million pounds of thrust load) and temperatures it encounters during launch, the welds used to construct the tank must be highly reliable. Variable polarity plasma arc welding, developed for manufacturing the external tank and later employed for building the International Space Station, was until 1994 the best process for joining the aluminum alloys used during construction. That year, Marshall Space Flight Center engineers began experimenting with a relatively new welding technique called friction stir welding (FSW), developed in 1991 by The Welding Institute, of Cambridge, England. FSW differs from traditional fusion welding in that it is a solid-state welding technique, using frictional heat and motion to join structural components without actually melting any of the material. The weld is created by a shouldered pin tool that is plunged into the seam of the materials to be joined. The tool traverses the line while rotating at high speeds, generating friction that heats and softens but does not melt the metal. (The heat produced approaches about 80 percent of the metal s melting temperature.) The pin tool s rotation crushes and stirs the plasticized metal, extruding it along the seam as the tool moves forward. The material cools and consolidates, resulting in a weld with superior mechanical properties as compared to those weld properties of fusion welds. The innovative FSW technology promises a number of attractive benefits. Because the welded materials are not melted, many of the undesirables associated with fusion welding porosity, cracking, shrinkage, and distortion of the weld are minimized or avoided. The process is more energy efficient, safe

  6. Welding and Joining of Titanium Aluminides

    Directory of Open Access Journals (Sweden)

    Jian Cao

    2014-06-01

    Full Text Available Welding and joining of titanium aluminides is the key to making them more attractive in industrial fields. The purpose of this review is to provide a comprehensive overview of recent progress in welding and joining of titanium aluminides, as well as to introduce current research and application. The possible methods available for titanium aluminides involve brazing, diffusion bonding, fusion welding, friction welding and reactive joining. Of the numerous methods, solid-state diffusion bonding and vacuum brazing have been most heavily investigated for producing reliable joints. The current state of understanding and development of every welding and joining method for titanium aluminides is addressed respectively. The focus is on the fundamental understanding of microstructure characteristics and processing–microstructure–property relationships in the welding and joining of titanium aluminides to themselves and to other materials.

  7. MODEL OF LASER-TIG HYBRID WELDING HEAT SOURCE

    Institute of Scientific and Technical Information of China (English)

    Chen Yanbin; Li Liqun; Feng Xiaosong; Fang Junfei

    2004-01-01

    The welding mechanism of laser-TIG hybrid welding process is analyzed. With the variation of arc current, the welding process is divided into two patterns: deep-penetration welding and heat conductive welding. The heat flow model of hybrid welding is presented. As to deep-penetration welding, the heat source includes a surface heat flux and a volume heat flux. The heat source of heat conductive welding is composed of two Gaussian distribute surface heat sources. With this heat source model, a temperature field is calculated. The finite element code MARC is employed for this purpose. The calculation results show a good agreement with the experimental data.

  8. FEM Simulation of Welding Quafity in Porthole Die Extrusion

    Institute of Scientific and Technical Information of China (English)

    HE Youfeng; XIE Shuisheng; CHENG Lei; HUANG Guojie; FU Yao

    2011-01-01

    The effects of die structure such as the height of the welding, the welding angle and chamber the shape of the bridge on the welding quality of profiles were investigated by means of the commercial software DEFORM-3D. The numerical simulation results show that the welding quality of the hollow profiles has great sensitive to the die structure. With increasing the welding chamber height and decreasing the welding angle of the die leg can improve the welding quality. In addition, the welding quality index k of the new designed shape of the die leg is little down from 4.1 to 3.9 comparing the standard leg.

  9. Influence of Specific Features of Twin Arc Welding on Properties of Weld Joints

    Science.gov (United States)

    Sholokhov, M. A.; Melnikov, A. U.; Fiveyskiy, A. M.

    2016-04-01

    The present article covers the influence of standard and narrow gap twin arc welding on properties of weld joints from high-strength steels. While analyzing microsections we established that distribution of micro structure and phase terms, as well the distribution of micro-hardness, were more homogeneous under narrow gap twin arc welding.

  10. Numerical evaluation of multipass welding temperature field in API 5L X80 steel welded joints

    Directory of Open Access Journals (Sweden)

    J Nóbrega

    2016-10-01

    Full Text Available Many are the metallurgical changes suffered by materials when subjected to welding thermal cycle, promoting a considerable influence on the welded structures thermo mechanical properties. In project phase, one alternative for evaluating the welding cycle variable, would be the employment of computational methods through simulation. So, this paper presents an evaluation of the temperature field in a multipass welding of API 5L X80 steel used for oil and gas transportation, using the ABAQUS ® software, based on Finite Elements Method (FEM. During the simulation complex phenomena are considerable including: Variation in physical and mechanical properties of materials as a function of temperature, welding speed and the different mechanisms of heat exchange with the environment (convection and radiation were used. These considerations allow a more robust mathematical modeling for the welding process. An analytical heat source proposed by Goldak, to model the heat input in order to characterize the multipass welding through the GTAW (Gas Tungsten Arc Welding process on root and the SMAW (Shielded Metal Arc Welding process for the filling passes were used. So, it was possible to evaluate the effect of each welding pass on the welded joint temperature field, through the temperature peaks and cooling rates values during the welding process.

  11. Boosting Active Contours for Weld Pool Visual Tracking in Automatic Arc Welding

    DEFF Research Database (Denmark)

    Liu, Jinchao; Fan, Zhun; Olsen, Søren Ingvor

    2015-01-01

    Detecting the shape of the non-rigid molten metal during welding, so-called weld pool visual sensing, is one of the central tasks for automating arc welding processes. It is challenging due to the strong interference of the high-intensity arc light and spatters as well as the lack of robust...

  12. Enabling high speed friction stir welding of aluminum tailor welded blanks

    Science.gov (United States)

    Hovanski, Yuri

    Current welding technologies for production of aluminum tailor-welded blanks (TWBs) are utilized in low-volume and niche applications, and have yet to be scaled for the high-volume vehicle market. This study targeted further weight reduction, part reduction, and cost savings by enabling tailor-welded blank technology for aluminum alloys at high-volumes. While friction stir welding (FSW) has traditionally been applied at linear velocities less than one meter per minute, high volume production applications demand the process be extended to higher velocities more amenable to cost sensitive production environments. Unfortunately, weld parameters and performance developed and characterized at low to moderate welding velocities do not directly translate to high speed linear friction stir welding. Therefore, in order to facilitate production of high volume aluminum FSW components, parameters were developed with a minimum welding velocity of three meters per minute. With an emphasis on weld quality, welded blanks were evaluated for post-weld formability using a combination of numerical and experimental methods. Evaluation across scales was ultimately validated by stamping full-size production door inner panels made from dissimilar thickness aluminum tailor-welded blanks, which provided validation of the numerical and experimental analysis of laboratory scale tests.

  13. TomoWELD. Precise detection of weld defects; TomoWELD. Defekte in Schweissnaehten praezise erkennen

    Energy Technology Data Exchange (ETDEWEB)

    Walter, David [Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin (Germany)

    2016-06-15

    Nuclear power plants are complex and technically elaborate systems whose aim is to produce electricity. They must meet the highest safety requirements. Within the reactors, nuclear reactions and radioactive transformations release energy which is used to evaporate water. The steam generated drives turbines that in turn are coupled with generators which convert the kinetic energy provided by the turbines into electrical energy. The process is easy to illustrate but difficult to control and requires technical equipment such as kilometre-long pipe systems. Austenitic steel is frequently used for this purpose because of its high strength and corrosion resistance. The individual pipe components are joined by welding. However, welds may contain hidden defects. Cracks, lack of fusion or pore nests that can remain undetected may have catastrophic consequences. Therefore, all welds in a nuclear power plant, without exception, must be checked. Approved non-destructive methods use ultrasound and X-ray. The technology developed at BAM is called TomoWELD. [German] Kernkraftwerke sind komplexe und technisch aufwendige Anlagen zur Gewinnung von Elektrizitaet. Sie muessen allerhoechsten Sicherheitsanspruechen genuegen. Die bei Kernreaktionen und radioaktiven Umwandlungen freiwerdende Energie wird genutzt, um Wasser zu verdampfen. Der Dampf treibt Turbinen an und die wiederum sind mit Generatoren gekoppelt, welche die durch die Turbinen bereitgestellte kinetische Energie in elektrische Energie umwandeln. Der Prozess laesst sich einfach darstellen, ihn zu steuern ist allerdings kompliziert und erfordert weitere technische Komponenten, wie beispielsweise kilometerlange Rohrleitungssysteme. Wegen seiner hohen Festigkeit sowie Korrosionsbestaendigkeit wird oft austenitischer Stahl dafuer verwendet. Gefuegt werden die einzelnen Rohrteile durch Schweissen. Doch Schweissnaehte koennen viele verborgene Defekte enthalten. Bleiben Risse, Bindefehler oder Porennester unentdeckt, kann das

  14. Inhibition of the formation of intermetallic compounds in aluminum-steel welded joints by friction stir welding

    OpenAIRE

    Torres López, Edwar A.; Ramirez, Antonio J

    2015-01-01

    Formation of deleterious phases during welding of aluminum and steel is a challenge of the welding processes, for decades. Friction Stir Welding (FSW) has been used in an attempt to reduce formation of intermetallic compounds trough reducing the heat input. In this research, dissimilar joint of 6063-T5 aluminum alloy and AISI-SAE 1020 steel were welded using this technique. The temperature of welded joints was measured during the process. The interface of the welded joints was characterized u...

  15. Studying the sorption properties of a clinoptilolite-containing tuff with respect to europium(III) ions

    Science.gov (United States)

    Kozhevnikova, N. M.

    2014-03-01

    The kinetic laws of sorption of europium(III) ions from sulfate solutions by a clinoptilolite-containing tuff are studied. The kinetic parameters of sorption process are determined and absorption isotherms are constructed for europium ions. It is found that both external and internal diffusion are rate-limiting steps, and europium is completely extracted from dilute solutions (<0.0025 m).

  16. Zeolitic alteration and fracture fillings in silicic tuffs at a potential nuclear waste repository, Yucca Mountain, Nevada, USA

    Energy Technology Data Exchange (ETDEWEB)

    Broxton, D.E.; Carlos, B.A.

    1986-12-31

    This paper describes the distribution and chemistry of zeolites in tuffs and in fractures at Yucca Mountain. Samples used in this study were collected from continuously-cored exploratory drill holes. A variety of analytical techniques, including optical petrography, x-ray powder diffraction, electron microanalysis, and x-ray fluorescence, were used to characterize the distribution and chemistry of zeolites in these samples.

  17. Structure, stratigraphy, and eruption dynamics of a young tuff ring: Hanauma Bay, O'ahu, Hawai'i

    Science.gov (United States)

    Rottas, K. M.; Houghton, B. F.

    2012-09-01

    The Hanauma Bay-Koko Head complex is one of several young volcanic landforms along the Koko fissure, in southeastern O'ahu. The Hanauma Bay region of the complex comprises two nested tuff rings, inner and outer Hanauma Bay, and multiple smaller vents. The internal structure of the inner tuff ring, well exposed due to subsequent breaching by the ocean and wave erosion, indicates that it formed during a minimum of five distinct phases of deposition that produced five mappable units. Significant inward collapses generated major unconformities that separate the units exposed in the inner wall. The planes of failure are cut by narrow steep-walled, locally overhung channels and gullies, suggesting that the collapse events were each followed by short time breaks during which the deposits were eroded by rainfall runoff. Within each pyroclastic unit, there are many local slump scars and unconformities, suggesting that minor instability of the inner wall was a near-constant feature. From bedding sags and surge bed forms, it is apparent that the vent shifted at least twice during tuff ring growth. Ballistic blocks in the youngest unit indicate that the eruption overlapped in time with a separate eruption to the north, most likely to be that of the Kahauloa tuff ring 880 m away.

  18. Spectral Differences Between Palagonite Tuffs Formed in Sub-Glacial Versus Liquid Water Environments: Relevance to Mars

    Science.gov (United States)

    Farrand, W. H.; Lane, M. D.

    2002-01-01

    The reflectance and emissivity spectra of palagonite tuffs formed in sub-glacial environments are compared with those formed in liquid water environments. The relevance to palagonites produced by water-magma interactions on Mars is discussed. Additional information is contained in the original extended abstract.

  19. Numerical methods in simulation of resistance welding

    DEFF Research Database (Denmark)

    Nielsen, Chris Valentin; Martins, Paulo A.F.; Zhang, Wenqi

    2015-01-01

    Finite element simulation of resistance welding requires coupling betweenmechanical, thermal and electrical models. This paper presents the numerical models and theircouplings that are utilized in the computer program SORPAS. A mechanical model based onthe irreducible flow formulation is utilized...... a resistance welding point of view, the most essential coupling between the above mentioned models is the heat generation by electrical current due to Joule heating. The interaction between multiple objects is anothercritical feature of the numerical simulation of resistance welding because it influences...

  20. Development of a comprehensive weld process model

    Energy Technology Data Exchange (ETDEWEB)

    Radhakrishnan, B.; Zacharia, T.; Paul, A.

    1997-05-01

    This cooperative research and development agreement (CRADA) between Concurrent Technologies Corporation (CTC) and Lockheed Martin Energy Systems (LMES) combines CTC`s expertise in the welding area and that of LMES to develop computer models and simulation software for welding processes. This development is of significant impact to the industry, including materials producers and fabricators. The main thrust of the research effort was to develop a comprehensive welding simulation methodology. A substantial amount of work has been done by several researchers to numerically model several welding processes. The primary drawback of most of the existing models is the lack of sound linkages between the mechanistic aspects (e.g., heat transfer, fluid flow, and residual stress) and the metallurgical aspects (e.g., microstructure development and control). A comprehensive numerical model which can be used to elucidate the effect of welding parameters/conditions on the temperature distribution, weld pool shape and size, solidification behavior, and microstructure development, as well as stresses and distortion, does not exist. It was therefore imperative to develop a comprehensive model which would predict all of the above phenomena during welding. The CRADA built upon an already existing three-dimensional (3-D) welding simulation model which was developed by LMES which is capable of predicting weld pool shape and the temperature history in 3-d single-pass welds. However, the model does not account for multipass welds, microstructural evolution, distortion and residual stresses. Additionally, the model requires large resources of computing time, which limits its use for practical applications. To overcome this, CTC and LMES have developed through this CRADA the comprehensive welding simulation model described above.