WorldWideScience

Sample records for dense seismic network

  1. Multiband array detection and location of seismic sources recorded by dense seismic networks

    Science.gov (United States)

    Poiata, Natalia; Satriano, Claudio; Vilotte, Jean-Pierre; Bernard, Pascal; Obara, Kazushige

    2016-06-01

    We present a new methodology for detection and space-time location of seismic sources based on multiscale, frequency-selective coherence of the wave field recorded by dense large-scale seismic networks and local antennas. The method is designed to enhance coherence of the signal statistical features across the array of sensors and consists of three steps: signal processing, space-time imaging, and detection and location. The first step provides, for each station, a simplified representation of seismic signal by extracting multiscale non-stationary statistical characteristics, through multiband higher-order statistics or envelopes. This signal processing scheme is designed to account for a priori unknown transients, potentially associated with a variety of sources (e.g. earthquakes, tremors), and to prepare data for a better performance in posterior steps. Following space-time imaging is carried through 3-D spatial mapping and summation of station-pair time-delay estimate functions. This step produces time-series of 3-D spatial images representing the likelihood that each pixel makes part of a source. Detection and location is performed in the final step by extracting the local maxima from the 3-D spatial images. We demonstrate the efficiency of the method in detecting and locating seismic sources associated with low signal-to-noise ratio on an example of the aftershock earthquake records from local stations of International Maule Aftershock Deployment in Central Chile. The performance and potential of the method to detect, locate and characterize the energy release associated with possibly mixed seismic radiation from earthquakes and low-frequency tectonic tremors is further tested on continuous data from southwestern Japan.

  2. Romanian Complex Data Center for Dense Seismic network

    Science.gov (United States)

    Neagoe, Cristian; Ionescu, Constantin; Marius Manea, Liviu

    2010-05-01

    Since 2002 the National Institute for Earth Physics (NIEP) developed its own real-time digital seismic network: consisting of 96 seismic stations of which 35 are broadband sensors and 24 stations equipped with short period sensors and two arrays earthquakes that transmit data in real time at the National Data Center (NDC) and Eforie Nord (EFOR) Seismic Observatory. EFOR is the back-up for the NDC and also a monitoring center for Black Sea tsunamis. Seismic stations are equipped with Quanterra Q330 and K2 digitizers, broadband seismometers (STS2, CMG40T, CMG 3ESP, CMG3T) and acceleration sensors Episensor Kinemetrics (+ / - 2G). SeedLink who is a part of Seiscomp2.5 and Antelope are software packages used for acquisition in real time (RT) and for data exchange. Communication of digital seismic stations to the National Data Center in Bucharest and Seismic Observatory Eforie Nord is assured by 5 providers (GPRS, VPN, satellite radio and Internet communication). For acquisition and data processing at the two centers of reception and processing is used AntelopeTM 4.11 running on 2 workstations: one for real-time and other for offline processing and also a Seiscomp 3 server that works as back-up for Antelope 4.11 Both acquisition and analysis of seismic data systems produced information about local and global parameters of earthquakes, in addition Antelope is used for manual processing (association events, the calculation of magnitude, creating a database, sending seismic bulletins, calculation of PGA and PGV , etc.), generating ShakeMap products and interacts with global data centers. In order to make all this information easily available across the Web and also lay the grounds for a more modular and flexible development environment the National Data Center developed tools to enable centralizing of data from software such as Antelope which is using a dedicated database system ( Datascope, a database system based on text files ) to a more general-purpose database, My

  3. Dense Local Seismic Network at Villarrica Volcano (Southern Chile)

    Science.gov (United States)

    Mora-Stock, C.; Thorwart, M.; Dzieran, L.; Rabbel, W.

    2013-12-01

    Villarrica volcano is one of the most active volcanoes in the Southern Andes. It has been presenting constant fumarole activity and seismicity since its last eruption in 1984-85. A local network was installed at Villarrica volcano (Southern Chile) during the first two weeks of March, 2012. In total, 75 DSS-Cube short-period stations (30 3-Component, 45 1-Component) were deployed at and around the volcano area, covering approx. 63 km x 55 km. The average station spacing is 1.5 km for stations inside the perimeter of the volcanic edifice, and 5km outside this perimeter. The network recorded ca. 94 volcano tectonic (VT) events located SSW, SSE and North of the crater, with clear P- and S-wave arrivals. Many others, ca.73 events, could be classified as 'hybrid' events (HB), which present high frequencies at the beginning of the signal, and a sharp and notorious S-wave at the crater stations, but a strong scattering, lower frequency content, and elongated coda on the stations along the volcanic edifice. This strong scattering effect is probably caused by the heterogeneous ash layers on the edifice structure. Few long period events (LP), with main frequencies between 2-4 Hz, were observed. From the tectonic regional events, three sets of events can be distinguished. One coming from the southern end of the focal plane of the Maule earthquake (2010), with S-P wave travel time difference of ca. 30 s or more. Another closer group with S-P wave travel time difference between 10 s and 20 s, and the last group with S-P wave travel time difference of 10 s or less. A cross-correlation analysis to the travel times of the regional events and a teleseismic event from Argentina was applied in order to determine the average velocity structure of the volcano, and obtained an average P-wave velocity of 3.6 km/s for the volcanic edifice inside a radius of 6.5 km, and 4.1 km/s for the surrounding area outside this radius. This model serves as a starting point for local earthquake

  4. Romanian complex data center for dense seismic network

    Directory of Open Access Journals (Sweden)

    Constantin Ionescu

    2011-04-01

    792.0pt; margin:72.0pt 72.0pt 72.0pt 72.0pt; mso-header-margin:36.0pt; mso-footer-margin:36.0pt; mso-paper-source:0;} div.Section1 {page:Section1;} --> In 2002, the National Institute for Earth Physics started the development of its own real-time digital seismic network. This now consists of 86 seismic stations, of which 32 are broad-band sensors, 52 stations are equipped with short-period sensors, and two seismic arrays, all of which transmit data in real time to the National Data Center (NDC and the Eforie Nord (EFOR seismic observatory. EFOR is the back-up for the NDC, and it is also a monitoring center for Black Sea tsunamis. The seismic stations are equipped with Quanterra Q330 and K2 digitizers, broad-band seismometers (STS2, CMG40T, CMG 3ESP, CMG3T and Episensor Kinemetrics acceleration sensors (±2g. SeedLink is a part of Seiscomp2.5 and Antelope, which are the software packages used for data acquisition in real time and data exchange. Communication from the digital seismic stations to the NDC in Bucharest and EFOR is assured by five providers (GPRS, VPN, satellite, radio and internet. AntelopeTM 4.11 is used for acquisition and data processing at these two data centers for the reception and processing of the data, which runs on two

  5. A Multi-Step Assessment Scheme for Seismic Network Site Selection in Densely Populated Areas

    Science.gov (United States)

    Plenkers, Katrin; Husen, Stephan; Kraft, Toni

    2015-10-01

    We developed a multi-step assessment scheme for improved site selection during seismic network installation in densely populated areas. Site selection is a complex process where different aspects (seismic background noise, geology, and financing) have to be taken into account. In order to improve this process, we developed a step-wise approach that allows quantifying the quality of a site by using, in addition to expert judgement and test measurements, two weighting functions as well as reference stations. Our approach ensures that the recording quality aimed for is reached and makes different sites quantitatively comparable to each other. Last but not least, it is an easy way to document the decision process, because all relevant parameters are listed, quantified, and weighted.

  6. Dense seismic networks as a tool to characterize active faulting in regions of slow deformation

    Science.gov (United States)

    Custódio, Susana; Arroucau, Pierre; Carrilho, Fernando; Cesca, Simone; Dias, Nuno; Matos, Catarina; Vales, Dina

    2016-04-01

    The theory of plate tectonics states that the relative motion between lithospheric plates is accommodated at plate boundaries, where earthquakes occur on long faults. However, earthquakes with a wide range of magnitudes also occur both off plate boundaries, in intra-plate settings, and along discontinuous, diffuse plate boundaries. These settings are characterized by low rates of lithospheric deformation. A fundamental limitation in the study of slowly deforming regions is the lack of high-quality observations. In these regions, earthquake catalogs have traditionally displayed diffuse seismicity patterns. The location, geometry and activity rate of faults - all basic parameters for understanding fault dynamics - are usually poorly known. The dense seismic networks deployed in the last years around the world have opened new windows in observational seismology. Although high-magnitude earthquakes are rare in regions of slow deformation, low-magnitude earthquakes are well observable on the time-scale of these deployments. In this presentation, we will show how data from dense seismic deployments can be used to characterize faulting in regions of slow deformation. In particular, we will present the case study of western Iberia, a region undergoing low-rate deformation and which has generated some of the largest earthquakes in Europe, both intraplate (mainland) and interplate (offshore). The methods that we employ include automated earthquake detection methods to lower the completeness magnitude of catalogs, earthquake relocations, focal mechanisms patterns, waveform similarity and clustering analysis.

  7. Seismic Velocities Imaging around "AFA" Hydrothermal Area in West Java, Indonesia derived from Dense Seimometer Network

    Science.gov (United States)

    Fanani Akbar, Akhmad; Nugraha, Andri Dian; Jousset, Philippe GM; Ryannugroho, Riskiray; Gassner, Alexandra; Jaya, Makky S.; Sule, Rachmat; Diningrat, Wahyuddin; Hendryana, Andri; Kusnadi, Yosep; Umar, Muksin; Indrinanto, Yudi; Erbas, Kemal

    2015-04-01

    We have deployed about 48 three component seismometers around "AFA" hydrothermal are in West Java, Indonesia from October 2012 up to October 2014 in order to detect microseismic event and to enhance our knowledge about subsurface seismic stucture. The seismometer network in this study, is the first dense seismometer array monitoring around hydrothermal area in Indonesia so far. We analyzed a huge waveform data set to distinguish microseismic, local and regional events. Then, we picked the onset of P-and S-wave arrival of microseismic events carefully visually by eye. We determined the initial microseismic event by applying Geiger's method with uniform seismic velocity model. Totally, we have been successfully determined 2,497 microseismic events around this hydrothermal area. We also improved 1D seismic velocities (Vp, Vs) and simultaneously with hypocenter adjustment as input for the tomography inversion in this study. Overall, the microseismic events are concentrated around production area activities and we also found strong cluster microseismic event in Southern part of this region which still need to be investigated in more details. Now, we are going on tomographic inversion step by using double-difference method. We are going to show more information during the meeting.

  8. Site effects in the Amatrice municipality through dense seismic network and detailed geological-geophysical survey

    Science.gov (United States)

    Cultrera, Giovanna; Cardinali, Mauro; de Franco, Roberto; Gallipoli, Maria Rosaria; Pacor, Francesca; Pergalani, Floriana; Milana, Giuliano; Moscatelli, Massimiliano

    2017-04-01

    After the first mainshock of the 2016 Central Italy seismic sequence, several Italian Institutions (under the umbrella of the Italian Center for Seismic Microzonation; http://www.centromicrozonazionesismica.it) conducted a preparatory survey to seismic microzonation of the Amatrice municipality, badly affected by the Mw 6.0 Amatrice earthquake of August 24. Despite the difficulties due to the heavily damaged investigated area and the winter weather condition, a large amount of different data were gathered in a very short time: (i) geological and geomorphological surveys (field trip and photo-geological interpretation), (ii) geophysical measurements (noise single-station and arrays, geoelectric, seismic refraction, MASW), and (iii) continuous seismic recordings from temporary network. In particular, 35 seismic stations were installed from half-September to early-December in an area of 170 km2, equipped with both velocimeter and accelerometer. They recorded thousands of earthquakes, including the Mw 6.5 of October 30, 2016; the continuous data will be organized in the EIDA repository (http://www.orfeus-eu.org/data/eida) through the INGV EIDA-node. The sites selection was performed according to the following criteria: representativeness of the geological conditions of 26 hamlets that experienced a damage level greater than VII MCS degree, optimization of the network geometry for array analysis, redundancy of bedrock reference sites, safety and accessibility. The photo-geology and the field investigations allowed the realization of a detailed geological-technical map of the area, characterized by peculiar features, namely the distinction between bedrock and Quaternary deposits (alluvial deposits and terraces, alluvial fans, landslides) and morpho-structural features (faults, folds, bedding attitude). Preliminary results allowed also the evaluation of the velocity models that show surface shear wave velocities (Vs) ranging from 200 m/s to 600 m/s. Data analysis of

  9. Seismicity as a key to Understanding the Dead Sea Transform Fault - Results From a Temporary Dense Seismic Network in the Southern Dead Sea Basin

    Science.gov (United States)

    Braeuer, B.; Weber, M. H.; Asch, G.; Haberland, C. A.; Hofstetter, A.; El-Kelani, R.; Darwish, Y.

    2009-12-01

    Knowledge of the seismicity distribution gives a great contribution to understand the processes at transform faults. The analysis of the regional network catalog (Begin & Steinitz, 2005) could not produce a clear image of the distribution of the seismicity. Furthermore, the seismic energy release over the 20 years suggests a continuous decrease of the seismic activity. Therefore, a very dense (station distance 2 - 5km) local seismological network was operated in the southern Dead Sea area within the framework of the international project DESIRE (Dead Sea Integrated Research Project). During its operation time more than 500 local events were registered, which is about five times more than previously estimated. These events give a detailed picture of the distribution of seismicity. The mainly microseismic activity is generally concentrated on the eastern and western faults limiting the Dead Sea basin (DSB). Most of the seismic events occurred in the uppermost 15 km, while the overall depth limit was at 30km. One of the dominant features observed in the dataset was a cluster of 115 earthquakes, occurring in February 2007. For precise relative locations of the events in the cluster Double-Difference location HypoDD (Waldhauser 2001) procedure was applied. We observe a vertical distribution of the events in the cluster. Very shallow events are found in the center of the study area. They are related to activity of the Lisan salt dome beneath that area. Furthermore, the local events were used to refine the picture of the P- and S- wave velocity distribution.

  10. Sources of high frequency seismic noise: insights from a dense network of ~250 stations in northern Alsace (France)

    Science.gov (United States)

    Vergne, Jerome; Blachet, Antoine; Lehujeur, Maximilien

    2015-04-01

    Monitoring local or regional seismic activity requires stations having a low level of background seismic noise at frequencies higher than few tenths of Hertz. Network operators are well aware that the seismic quality of a site depends on several aspects, among them its geological setting and the proximity of roads, railways, industries or trees. Often, the impact of each noise source is only qualitatively known which precludes estimating the quality of potential future sites before they are tested or installed. Here, we want to take advantage of a very dense temporary network deployed in Northern Alsace (France) to assess the effect of various kinds of potential sources on the level of seismic noise observed in the frequency range 0.2-50 Hz. In September 2014, more than 250 seismic stations (FairfieldNodal@ Zland nodes with 10Hz vertical geophone) have been installed every 1.5 km over a ~25km diameter disc centred on the deep geothermal sites of Soultz-sous-Forêts and Rittershoffen. This region exhibits variable degrees of human imprints from quite remote areas to sectors with high traffic roads and big villages. It also encompasses both the deep sedimentary basin of the Rhine graben and the piedmont of the Vosges massif with exposed bedrock. For each site we processed the continuous data to estimate probability density functions of the power spectral densities. At frequencies higher than 1 Hz most sites show a clear temporal modulation of seismic noise related to human activity with the well-known variations between day and night and between weekdays and weekends. Moreover we observe a clear evolution of the spatial distribution of seismic noise levels with frequency. Basically, between 0.5 and 4 Hz the geological setting modulates the level of seismic noise. At higher frequencies, the amplitude of seismic noise appears mostly related to the distance to nearby roads. Based on road maps and traffic estimation, a forward approach is performed to model the induced

  11. Shallow Moho with aseismic upper crust and deep Moho with seismic lower crust beneath the Japanese Islands obtained by seismic tomography using data from dense seismic network

    Science.gov (United States)

    Matsubara, Makoto; Obara, Kazushige

    2015-04-01

    P-wave seismic velocity is well known to be up to 7.0 km/s and over 7.5 km/s in the lower crust and in the mantle, respectively. A large velocity gradient is the definition of the Moho discontinuity between the crust and mantle. In this paper, we investigates the configuration of Moho discontinuity defined as an isovelocity plane with large velocity gradient derived from our fine-scale three-dimensional seismic velocity structure beneath Japanese Islands using data obtained by dense seismic network with the tomographic method (Matsubara and Obara, 2011). Japanese Islands are mainly on the Eurasian and North American plates. The Philippine Sea and Pacific plates are subducting beneath these continental plates. We focus on the Moho discontinuity at the continental side. We calculate the P-wave velocity gradients between the vertical grid nodes since the grid inversion as our tomographic method does not produce velocity discontinuity. The largest velocity gradient is 0.078 (km/s)/km at velocities of 7.2 and 7.3 km/s. We define the iso-velocity plane of 7.2 km/s as the Moho discontinuity. We discuss the Moho discontinuity above the upper boundary of the subducting oceanic plates with consideration of configuration of plate boundaries of prior studies (Shiomi et al., 2008; Kita et al., 2010; Hirata et al, 2012) since the Moho depth derived from the iso-velocity plane denotes the oceanic Moho at the contact zones of the overriding continental plates and the subducting oceanic plates. The Moho discontinuity shallower than 30 km depth is distributed within the tension region like northern Kyushu and coastal line of the Pacific Ocean in the northeastern Japan and the tension region at the Cretaceous as the northeastern Kanto district. These regions have low seismicity within the upper crust. Positive Bouguer anomaly beneath the northeastern Kanto district indicates the ductile material with large density in lower crust at the shallower portion and the aseismic upper crust

  12. Extracting Regional Ionospheric TEC Measurements from Dense GPS (GNSS) Networks in Areas of High Seismic Risk

    Science.gov (United States)

    Reuveni, Y.; Bock, Y.; Geng, J.; Tong, X.; Moore, A. W.

    2013-12-01

    The ionosphere structure and peak electron density vary strongly with time, geographic location, and certain solar and geomagnetic disturbances, causing it to be dynamically variable, and hence, one of the main sources of GPS errors. Since ionospheric delays are a key limitation to successful GPS integer-cycle phase ambiguity resolution and point positioning accuracy, it is useful to estimate these delays on regional scales when using dense GPS networks. When estimating the Total Electron Content (TEC), one has to take into account the inner delay differences between the two frequencies, which are also known as the Differential Code Biases (DCBs), and can cause errors of several meters if they are ignored. Although DCB estimates for GNSS satellites and IGS ground receivers are provided on a regular basis by the International GNSS Service (IGS) analysis centers (such as CODE, JPL, and ESA), the DCBs for regional and local network receivers are not provided, and some of the IGS ground receiver estimates are not available from all analysis centers. Additionally, the DCB estimates vary between different GNSS satellites and ground receivers, where the majority of the DCBs values are based on the assumption that they are constant over 1 day or 1 month for any given GPS satellite or receiver. However, this assumption is far from being valid, since in fact the DCB values often vary diurnally or semi-diurnally. Developing and implementing regional ionospheric TEC models can be used in real-time to reduce errors in precise point positioning for dense real-time GPS networks. In addition, regional TEC maps extracted from GPS ionospheric path delays can be used, along with tropospheric delays, for mitigating errors in Interferometric Synthetic Aperture Radar (InSAR) images, especially for the L-band signals. The regional ionospheric TEC maps can also be used for the detection and characterization of ionospheric perturbations, which is valuable for both telluric natural hazards

  13. Shallow crustal velocities and volcanism suggested from ambient noise studies using a dense broadband seismic network in the Tatun Volcano Group of Taiwan

    Science.gov (United States)

    Huang, Yu-Chih; Lin, Cheng-Horng; Kagiyama, Tsuneomi

    2017-07-01

    The Tatun Volcano Group (TVG) is situated adjacent to the Taipei metropolis and was active predominantly around 0.8-0.2 Ma (Pleistocene). Various recent lines of evidence suggest that the TVG is a potentially active volcano and that future volcanic eruptions cannot be ruled out. Geothermal activities are largely constrained to faults, but the relationship between volcanism and detailed velocity structures is not well understood. We analyzed ambient seismic noise of daily vertical components from 2014 using a dense seismic network of 40 broadband stations. We selected a 0.02° grid spacing to construct 2D and 3D shallow crustal phase velocity maps in the 0.5-3 s period band. Two S-wave velocity profiles transect Chishingshan (Mt. CS) in the shallow 3 km crust are further derived. The footwall of the Shanchiao Fault is dominated by low velocity, which may relate to Tertiary bedrock buried under andesitic lava flows dozens to hundreds of meters thick. The hanging wall of the Shanchiao Fault is the location of recent major volcanic activities. Low velocity zones in the southeast of Dayoukeng (DYK) may be interpreted as hydrothermal reservoirs or water-saturated Tertiary bedrock related to Cenozoic structures in the shallow crust. High velocities conspicuously dominate the east of the TVG, where the earliest stages of volcanism in the TVG are located, but where surface hydro-geothermal activities were absent in recent times. Between the Shanchiao Fault and Kanchiao Fault high velocities were detected, which converge below Mt. CS and may be related to early stages of magma conduits that gradually consolidated. These two faults may play a significant role with the TVG. The submarine volcanism adjacent to the Keelung coastline also requires further attention.

  14. Comparison of the historic seismicity and strain-rate pattern from a dense GPS-GNSS network solution in the Italian Peninsula

    Directory of Open Access Journals (Sweden)

    Giuseppe Casula

    2016-09-01

    Full Text Available We present a dense crustal velocity field and corresponding strain-rate pattern computed using Global Positioning System (GPS- Global Navigation Satellite System (GNSS data from several hundred permanent stations in the Italian Peninsula. GPS data analysis is based on the GAMIT/GLOBK 10.6 software, which was developed and maintained mainly by Massachusetts Institute of Technology (MIT, using tools based on the distributed-sessions approach implemented in this package. The GPS data span the period from January 2008 to December 2012 and come from several different permanent GPS networks in Italy. The GLOBK package implemented in the last version of the GAMIT package is used to compute the position time-series and velocities registered in the International Terrestrial Reference Frame (ITRF 2008. The resulting high-density intra-plate velocity field provides indications of the tectonics of the Mediterranean region. A computation of the strain-rate pattern from GPS data is performed and compared with the map of the epicentral locations of historical earthquakes that occurred in the last 1000 years in the Italian territory, showing that, in general, higher crustal deformation rates are active in regions affected by seismicity of greater magnitude.

  15. Structural Transitions in Dense Networks

    CERN Document Server

    Lambiotte, R; Bhat, U; Redner, S

    2016-01-01

    We introduce an evolving network model in which a new node attaches to a randomly selected target node and also to each of its neighbors with probability $p$. The resulting network is sparse for $p<\\frac{1}{2}$ and dense (average degree increasing with number of nodes $N$) for $p\\geq \\frac{1}{2}$. In the dense regime, individual networks realizations built by this copying mechanism are disparate and not self-averaging. Further, there is an infinite sequence of structural anomalies at $p=\\frac{2}{3}$, $\\frac{3}{4}$, $\\frac{4}{5}$, etc., where the dependences on $N$ of the number of triangles (3-cliques), 4-cliques, undergo phase transitions. When linking to second neighbors of the target can occur, the probability that the resulting graph is complete---where all nodes are connected---is non-zero as $N\\to\\infty$.

  16. 5G Ultra-Dense Cellular Networks

    OpenAIRE

    Ge, Xiaohu; Tu, Song; Mao, Guoqiang; Wang, Cheng-xiang; Han, Tao

    2015-01-01

    Traditional ultra-dense wireless networks are recommended as a complement for cellular networks and are deployed in partial areas, such as hotspot and indoor scenarios. Based on the massive multiple-input multi-output (MIMO) antennas and the millimeter wavecommunication technologies, the 5G ultra-dense cellular network is proposed to deploy in overall cellular scenarios. Moreover, a distribution network architecture is presented for 5G ultra-dense cellular networks. Furthermore, the backhaul ...

  17. Neural networks in seismic discrimination

    Energy Technology Data Exchange (ETDEWEB)

    Dowla, F.U.

    1995-01-01

    Neural networks are powerful and elegant computational tools that can be used in the analysis of geophysical signals. At Lawrence Livermore National Laboratory, we have developed neural networks to solve problems in seismic discrimination, event classification, and seismic and hydrodynamic yield estimation. Other researchers have used neural networks for seismic phase identification. We are currently developing neural networks to estimate depths of seismic events using regional seismograms. In this paper different types of network architecture and representation techniques are discussed. We address the important problem of designing neural networks with good generalization capabilities. Examples of neural networks for treaty verification applications are also described.

  18. Beyond basin resonance: characterizing wave propagation using a dense array and the ambient seismic field

    Science.gov (United States)

    Boué, Pierre; Denolle, Marine; Hirata, Naoshi; Nakagawa, Shigeki; Beroza, Gregory C.

    2016-08-01

    Seismic wave resonance in sedimentary basins is a well-recognized seismic hazard; however, concentrated areas of earthquake damage have been observed near basin edges, where wave propagation is particularly complex and difficult to understand with sparse observations. The Tokyo metropolitan area is densely populated, subject to strong shaking from a diversity of earthquake sources, and sits atop the deep Kanto sedimentary basin. It is also instrumented with two seismic arrays: the dense MEtropolitan Seismic Observation network (MeSO-net) within the basin, and the High sensitivity seismograph network (Hi-net) surrounding it. In this study, we explore the 3-D seismic wavefield within and throughout the Kanto basin, including near and across basin boundaries, using cross-correlations of all components of ambient seismic field between the stations of these two arrays. Dense observations allow us to observe clearly the propagation of three modes of both Rayleigh and Love waves. They also show how the wavefield behaves in the vicinity of sharp basin edges with reflected/converted waves and excitation of higher modes.

  19. Seismicity in West Iberia: small scale seismicity recording from a Dense Seismic Broadband Deployment in Portugal (WILAS Project)

    Science.gov (United States)

    Afonso Dias, Nuno; Custódio, Susana; Silveira, Graça; Carrilho, Fernando; Haberland, Christian; Lima, Vânia; Rio, Inês; Góngora, Eva; Marreiros, Célia; Morais, Iolanda; Vales, Dina; Fonseca, João; Caldeira, Bento; Villaseñor, Antonio

    2013-04-01

    Over the last years several projects targeted the lithospheric structure and its correlation with the surface topography, e.g. EarthSCOPE/USArray or TOPO-EUROPE. Two projects focused on the Iberian Peninsula, one giving particular attention to the southern collision margin (TOPO-MED) and the other to the central cratonic Massif (TOPO-IBERIA/IBERArray). These projects mostly rely on deployed dense seismic broadband (BB) networks with an average inter-station spacing of 60km, which strongly increases the available network spatial coverage. The seismicity recording in such networks is critical to access current rates of lithospheric deformation. Within the scope of project WILAS - West Iberia Lithosphere and Astenosphere Structure (PTDC/CTE-GIX/097946/2008), a 3-year project funded by the Portuguese Science & Technology Foundation (FCT), we deployed a temporary network of 30 BB stations in Portugal between 2010 and 2012, doubling the total number of operating BB stations. Together with the permanent and TOPO-IBERIA stations, the resulting networks provided a full and dense coverage of the Iberian Peninsula. The majority of the permanent stations in Portugal, aimed at the seismic surveillance, are located in the southern part of the country in result of the active tectonic convergence between Iberia and Africa. Therefore, the temporary stations were mainly deployed in the north of Portugal. These temporary stations allowed an improvement of the earthquake detection threshold. The detection of seismic events was based on the analysis of daily spectrograms of the entire network, the new events detected being analysed and included in the catalogue. The new detected events are located mainly in the north, with magnitudes as low as 0.5 ML and in the offshore in the Estremadura Spur. Some additional events were also located south of Portugal, between the Gorringe Bank and the Gulf of Cadiz, in this case the lower magnitudes being ~2.0ML. Focal mechanisms will also be

  20. Seismic Catalogue and Seismic Network in Haiti

    Science.gov (United States)

    Belizaire, D.; Benito, B.; Carreño, E.; Meneses, C.; Huerfano, V.; Polanco, E.; McCormack, D.

    2013-05-01

    The destructive earthquake occurred on January 10, 2010 in Haiti, highlighted the lack of preparedness of the country to address seismic phenomena. At the moment of the earthquake, there was no seismic network operating in the country, and only a partial control of the past seismicity was possible, due to the absence of a national catalogue. After the 2010 earthquake, some advances began towards the installation of a national network and the elaboration of a seismic catalogue providing the necessary input for seismic Hazard Studies. This paper presents the state of the works carried out covering both aspects. First, a seismic catalogue has been built, compiling data of historical and instrumental events occurred in the Hispaniola Island and surroundings, in the frame of the SISMO-HAITI project, supported by the Technical University of Madrid (UPM) and Developed in cooperation with the Observatoire National de l'Environnement et de la Vulnérabilité of Haiti (ONEV). Data from different agencies all over the world were gathered, being relevant the role of the Dominican Republic and Puerto Rico seismological services which provides local data of their national networks. Almost 30000 events recorded in the area from 1551 till 2011 were compiled in a first catalogue, among them 7700 events with Mw ranges between 4.0 and 8.3. Since different magnitude scale were given by the different agencies (Ms, mb, MD, ML), this first catalogue was affected by important heterogeneity in the size parameter. Then it was homogenized to moment magnitude Mw using the empirical equations developed by Bonzoni et al (2011) for the eastern Caribbean. At present, this is the most exhaustive catalogue of the country, although it is difficult to assess its degree of completeness. Regarding the seismic network, 3 stations were installed just after the 2010 earthquake by the Canadian Government. The data were sent by telemetry thought the Canadian System CARINA. In 2012, the Spanish IGN together

  1. Interference Coordination for Dense Wireless Networks

    DEFF Research Database (Denmark)

    Soret, Beatriz; Pedersen, Klaus I.; Jørgensen, Niels T.K.

    2015-01-01

    The promise of ubiquitous and super-fast connectivity for the upcoming years will be in large part fulfilled by the addition of base stations and spectral aggregation. The resulting very dense networks (DenseNets) will face a number of technical challenges. Among others, the interference emerges ...... simply react to an identified interference problem. As an example, we propose two algorithms to apply time domain and frequency domain small cell interference coordination in a DenseNet....

  2. Beyond Resonance: Characterizing Complex Basin Effects Using a Dense Seismic Array

    Science.gov (United States)

    Boué, P.; Denolle, M.; Hirata, N.; Nakagawa, S.; Beroza, G. C.

    2015-12-01

    Cross-correlation of the ambient seismic field is now a well-established approach to create high-resolution images of the crust and the upper mantle, to explore the spatial and temporal variations in elastic wave speeds, and to develop images of complex wavefields themselves. Recent ambient-field studies have successfully observed higher-mode surface waves and body wave propagation at various scales of the Earth. These new observations paved the way for a more accurate seismic hazard assessment for which a detailed knowledge of seismic wave propagation is critical, especially in complex media such as sedimentary basins. While the effects of basin resonance are widely appreciated and understood, basin-edge effects are usually less well constrained, but have been used to explain zones of concentrated damage in the 1994 Northridge and 1995 Kobe earthquakes. In this study, we use the dense MeSO-net (MEtropolitan Seismic Observation network) seismic network, deployed in the Tokyo metropolitan area, and the sparse, but high quality, Hi-net (High sensitivity seismograph network) to identify the dominant modes of wave propagation within the Kanto Basin. Our goal is to explore how the wavefield behaves in the vicinity of sharp basin edges. When combined with the ambient seismic field interferometry, dense, 3-component, seismic arrays provide a new opportunity to image such propagation effects. Using array processing techniques, we show that mode conversions, reflection, and diffractions, in particular at basin edges dominate the ground motion in the Kanto Basin. Accurate predictions of strong ground motion, and its variability, must account for these effects.

  3. Seismic detections of the 15 February 2013 Chelyabinsk meteor from the dense ChinArray

    Science.gov (United States)

    Li, Lu; Wang, Baoshan; Peng, Zhigang; Wang, Weitao

    2016-08-01

    ChinArray is a dense portable broadband seismic network to cover the entire continental China, and the Phase I is deployed along the north-south seismic belt in southwest China. In this study, we analyze seismic data recorded on the ChinArray following the February 15, 2013 Chelyabinsk (Russia) meteor. This was the largest known object entering the Earth's atmosphere since the 1908 Tunguska meteor. The seismic energy radiated from this event was recorded by seismic stations worldwide including the dense ChinArray that are more than 4000 km away. The weak signal from the meteor event was contaminated by a magnitude 5.8 Tonga earthquake occurred ~20 min earlier. To test the feasibility of detecting the weak seismic signals from the meteor event, we compute vespagram and perform F-K analysis to the surface-wave data. We identify a seismic phase with back azimuth (BAZ) of 329.7° and slowness of 34.73 s/deg, corresponding to the surface wave from the Russian meteor event (BAZ ~325.97°). The surface magnitude ( M S) of the meteor event is 3.94 ± 0.18. We also perform similar analysis on the data from the broadband array F-net in Japan, and find the BAZ of the surface waves to be 316.61°. With the different BAZs of ChinArray and F-net, we locate the Russian meteor event at 58.80°N, 58.72°E. The relatively large mislocation (~438 km as compared with 55.15°N, 61.41°E by others) may be a result of the bending propagation path of surface waves, which deviates from the great circle path. Our results suggest that the dense ChinArray and its subarrays could be used to detect weak signals at teleseismic distances.

  4. Community Seismic Network (CSN)

    Science.gov (United States)

    Clayton, R. W.; Heaton, T. H.; Kohler, M. D.; Cheng, M.; Guy, R.; Chandy, M.; Krause, A.; Bunn, J.; Olson, M.; Faulkner, M.; Liu, A.; Strand, L.

    2012-12-01

    We report on developments in sensor connectivity, architecture, and data fusion algorithms executed in Cloud computing systems in the Community Seismic Network (CSN), a network of low-cost sensors housed in homes and offices by volunteers in the Pasadena, CA area. The network has over 200 sensors continuously reporting anomalies in local acceleration through the Internet to a Cloud computing service (the Google App Engine) that continually fuses sensor data to rapidly detect shaking from earthquakes. The Cloud computing system consists of data centers geographically distributed across the continent and is likely to be resilient even during earthquakes and other local disasters. The region of Southern California is partitioned in a multi-grid style into sets of telescoping cells called geocells. Data streams from sensors within a geocell are fused to detect anomalous shaking across the geocell. Temporal spatial patterns across geocells are used to detect anomalies across regions. The challenge is to detect earthquakes rapidly with an extremely low false positive rate. We report on two data fusion algorithms, one that tessellates the surface so as to fuse data from a large region around Pasadena and the other, which uses a standard tessellation of equal-sized cells. Since September 2011, the network has successfully detected earthquakes of magnitude 2.5 or higher within 40 Km of Pasadena. In addition to the standard USB device, which connects to the host's computer, we have developed a stand-alone sensor that directly connects to the internet via Ethernet or wifi. This bypasses security concerns that some companies have with the USB-connected devices, and allows for 24/7 monitoring at sites that would otherwise shut down their computers after working hours. In buildings we use the sensors to model the behavior of the structures during weak events in order to understand how they will perform during strong events. Visualization models of instrumented buildings ranging

  5. National Seismic Network of Georgia

    Science.gov (United States)

    Tumanova, N.; Kakhoberashvili, S.; Omarashvili, V.; Tserodze, M.; Akubardia, D.

    2016-12-01

    Georgia, as a part of the Southern Caucasus, is tectonically active and structurally complex region. It is one of the most active segments of the Alpine-Himalayan collision belt. The deformation and the associated seismicity are due to the continent-continent collision between the Arabian and Eurasian plates. Seismic Monitoring of country and the quality of seismic data is the major tool for the rapid response policy, population safety, basic scientific research and in the end for the sustainable development of the country. National Seismic Network of Georgia has been developing since the end of 19th century. Digital era of the network started from 2003. Recently continuous data streams from 25 stations acquired and analyzed in the real time. Data is combined to calculate rapid location and magnitude for the earthquake. Information for the bigger events (Ml>=3.5) is simultaneously transferred to the website of the monitoring center and to the related governmental agencies. To improve rapid earthquake location and magnitude estimation the seismic network was enhanced by installing additional 7 new stations. Each new station is equipped with coupled Broadband and Strong Motion seismometers and permanent GPS system as well. To select the sites for the 7 new base stations, we used standard network optimization techniques. To choose the optimal sites for new stations we've taken into account geometry of the existed seismic network, topographic conditions of the site. For each site we studied local geology (Vs30 was mandatory for each site), local noise level and seismic vault construction parameters. Due to the country elevation, stations were installed in the high mountains, no accessible in winter due to the heavy snow conditions. To secure online data transmission we used satellite data transmission as well as cell data network coverage from the different local companies. As a result we've already have the improved earthquake location and event magnitudes. We

  6. Sequence of deep-focus earthquakes beneath the Bonin Islands identified by the NIED nationwide dense seismic networks Hi-net and F-net

    Science.gov (United States)

    Takemura, Shunsuke; Saito, Tatsuhiko; Shiomi, Katsuhiko

    2017-03-01

    An M 6.8 ( Mw 6.5) deep-focus earthquake occurred beneath the Bonin Islands at 21:18 (JST) on June 23, 2015. Observed high-frequency (>1 Hz) seismograms across Japan, which contain several sets of P- and S-wave arrivals for the 10 min after the origin time, indicate that moderate-to-large earthquakes occurred sequentially around Japan. Snapshots of the seismic energy propagation illustrate that after one deep-focus earthquake occurred beneath the Sea of Japan, two deep-focus earthquakes occurred sequentially after the first ( Mw 6.5) event beneath the Bonin Islands in the next 4 min. The United States Geological Survey catalog includes three Bonin deep-focus earthquakes with similar hypocenter locations, but their estimated magnitudes are inconsistent with seismograms from across Japan. The maximum-amplitude patterns of the latter two earthquakes were similar to that of the first Bonin earthquake, which indicates similar locations and mechanisms. Furthermore, based on the ratios of the S-wave amplitudes to that of the first event, the magnitudes of the latter events are estimated as M 6.5 ± 0.02 and M 5.8 ± 0.02, respectively. Three magnitude-6-class earthquakes occurred sequentially within 4 min in the Pacific slab at 480 km depth, where complex heterogeneities exist within the slab.[Figure not available: see fulltext.

  7. Building a Smartphone Seismic Network

    Science.gov (United States)

    Kong, Q.; Allen, R. M.

    2013-12-01

    We are exploring to build a new type of seismic network by using the smartphones. The accelerometers in smartphones can be used to record earthquakes, the GPS unit can give an accurate location, and the built-in communication unit makes the communication easier for this network. In the future, these smartphones may work as a supplement network to the current traditional network for scientific research and real-time applications. In order to build this network, we developed an application for android phones and server to record the acceleration in real time. These records can be sent back to a server in real time, and analyzed at the server. We evaluated the performance of the smartphone as a seismic recording instrument by comparing them with high quality accelerometer while located on controlled shake tables for a variety of tests, and also the noise floor test. Based on the daily human activity data recorded by the volunteers and the shake table tests data, we also developed algorithm for the smartphones to detect earthquakes from daily human activities. These all form the basis of setting up a new prototype smartphone seismic network in the near future.

  8. Romanian Educational Seismic Network Project

    Science.gov (United States)

    Tataru, Dragos; Ionescu, Constantin; Zaharia, Bogdan; Grecu, Bogdan; Tibu, Speranta; Popa, Mihaela; Borleanu, Felix; Toma, Dragos; Brisan, Nicoleta; Georgescu, Emil-Sever; Dobre, Daniela; Dragomir, Claudiu-Sorin

    2013-04-01

    Romania is one of the most active seismic countries in Europe, with more than 500 earthquakes occurring every year. The seismic hazard of Romania is relatively high and thus understanding the earthquake phenomena and their effects at the earth surface represents an important step toward the education of population in earthquake affected regions of the country and aims to raise the awareness about the earthquake risk and possible mitigation actions. In this direction, the first national educational project in the field of seismology has recently started in Romania: the ROmanian EDUcational SEISmic NETwork (ROEDUSEIS-NET) project. It involves four partners: the National Institute for Earth Physics as coordinator, the National Institute for Research and Development in Construction, Urban Planning and Sustainable Spatial Development " URBAN - INCERC" Bucharest, the Babeş-Bolyai University (Faculty of Environmental Sciences and Engineering) and the software firm "BETA Software". The project has many educational, scientific and social goals. The main educational objectives are: training students and teachers in the analysis and interpretation of seismological data, preparing of several comprehensive educational materials, designing and testing didactic activities using informatics and web-oriented tools. The scientific objective is to introduce into schools the use of advanced instruments and experimental methods that are usually restricted to research laboratories, with the main product being the creation of an earthquake waveform archive. Thus a large amount of such data will be used by students and teachers for educational purposes. For the social objectives, the project represents an effective instrument for informing and creating an awareness of the seismic risk, for experimentation into the efficacy of scientific communication, and for an increase in the direct involvement of schools and the general public. A network of nine seismic stations with SEP seismometers

  9. Interference Alignment in Dense Wireless Networks

    CERN Document Server

    Niesen, Urs

    2009-01-01

    We consider arbitrary dense wireless networks, in which $n$ nodes are placed in an arbitrary (deterministic) manner on a square region of unit area and communicate with each other over Gaussian fading channels. We provide inner and outer bounds for the $n\\times n$-dimensional unicast and the $n\\times 2^n$-dimensional multicast capacity regions of such a wireless network. These inner and outer bounds differ only by a factor $O(\\log(n))$, yielding a fairly tight scaling characterization of the entire regions. The communication schemes achieving the inner bounds use interference alignment as a central technique and are surprisingly simple.

  10. Southern Appalachian Regional Seismic Network

    Energy Technology Data Exchange (ETDEWEB)

    Chiu, S.C.C.; Johnston, A.C.; Chiu, J.M. [Memphis State Univ., TN (United States). Center for Earthquake Research and Information

    1994-08-01

    The seismic activity in the southern Appalachian area was monitored by the Southern Appalachian Regional Seismic Network (SARSN) since late 1979 by the Center for Earthquake Research and Information (CERI) at Memphis State University. This network provides good spatial coverage for earthquake locations especially in east Tennessee. The level of activity concentrates more heavily in the Valley and Ridge province of eastern Tennessee, as opposed to the Blue Ridge or Inner Piedmont. The large majority of these events lie between New York - Alabama lineament and the Clingman/Ocoee lineament, magnetic anomalies produced by deep-seated basement structures. Therefore SARSN, even with its wide station spacing, has been able to define the essential first-order seismological characteristics of the Southern Appalachian seismic zone. The focal depths of the southeastern U.S. earthquakes concentrate between 8 and 16 km, occurring principally beneath the Appalachian overthrust. In cross-sectional views, the average seismicity is shallower to the east beneath the Blue Ridge and Piedmont provinces and deeper to the west beneath the Valley and Ridge and the North American craton. Results of recent focal mechanism studies by using the CERI digital earthquake catalog between October, 1986 and December, 1991, indicate that the basement of the Valley and Ridge province is under a horizontal, NE-SW compressive stress. Right-lateral strike-slip faulting on nearly north-south fault planes is preferred because it agrees with the trend of the regional magnetic anomaly pattern.

  11. Wireless Fractal Ultra-Dense Cellular Networks.

    Science.gov (United States)

    Hao, Yixue; Chen, Min; Hu, Long; Song, Jeungeun; Volk, Mojca; Humar, Iztok

    2017-04-12

    With the ever-growing number of mobile devices, there is an explosive expansion in mobile data services. This represents a challenge for the traditional cellular network architecture to cope with the massive wireless traffic generated by mobile media applications. To meet this challenge, research is currently focused on the introduction of a small cell base station (BS) due to its low transmit power consumption and flexibility of deployment. However, due to a complex deployment environment and low transmit power of small cell BSs, the coverage boundary of small cell BSs will not have a traditional regular shape. Therefore, in this paper, we discuss the coverage boundary of an ultra-dense small cell network and give its main features: aeolotropy of path loss fading and fractal coverage boundary. Simple performance analysis is given, including coverage probability and transmission rate, etc., based on stochastic geometry theory and fractal theory. Finally, we present an application scene and discuss challenges in the ultra-dense small cell network.

  12. Estimating seismic site response in Christchurch City (New Zealand) from dense low-cost aftershock arrays

    Science.gov (United States)

    Kaiser, Anna E.; Benites, Rafael A.; Chung, Angela I.; Haines, A. John; Cochran, Elizabeth S.; Fry, Bill

    2011-01-01

    The Mw 7.1 September 2010 Darfield earthquake, New Zealand, produced widespread damage and liquefaction ~40 km from the epicentre in Christchurch city. It was followed by the even more destructive Mw 6.2 February 2011 Christchurch aftershock directly beneath the city’s southern suburbs. Seismic data recorded during the two large events suggest that site effects contributed to the variations in ground motion observed throughout Christchurch city. We use densely-spaced aftershock recordings of the Darfield earthquake to investigate variations in local seismic site response within the Christchurch urban area. Following the Darfield main shock we deployed a temporary array of ~180 low-cost 14-bit MEMS accelerometers linked to the global Quake-Catcher Network (QCN). These instruments provided dense station coverage (spacing ~2 km) to complement existing New Zealand national network strong motion stations (GeoNet) within Christchurch city. Well-constrained standard spectral ratios were derived for GeoNet stations using a reference station on Miocene basalt rock in the south of the city. For noisier QCN stations, the method was adapted to find a maximum likelihood estimate of spectral ratio amplitude taking into account the variance of noise at the respective stations. Spectral ratios for QCN stations are similar to nearby GeoNet stations when the maximum likelihood method is used. Our study suggests dense low-cost accelerometer aftershock arrays can provide useful information on local-scale ground motion properties for use in microzonation. Preliminary results indicate higher amplifications north of the city centre and strong high-frequency amplification in the small, shallower basin of Heathcote Valley.

  13. Complex-network description of seismicity

    Directory of Open Access Journals (Sweden)

    S. Abe

    2006-01-01

    Full Text Available The seismic data taken in California and Japan are mapped to growing random networks. It is shown in the undirected network picture that these earthquake networks are scale-free and small-work networks with the power-law connectivity distributions, the large values of the clustering coefficient, and the small values of the average path length. It is demonstrated how the present network approach reveals complexity of seismicity in a novel manner.

  14. Deep Structure and Earthquake Generating Properties in the Yamasaki Fault Zone Estimated from Dense Seismic Observation

    Science.gov (United States)

    Nishigami, K.; Shibutani, T.; Katao, H.; Yamaguchi, S.; Mamada, Y.

    2010-12-01

    We have been estimating crustal heterogeneous structure and earthquake generating properties in and around the Yamasaki fault zone, which is a left-lateral strike-slip active fault with a total length of about 80 km in southwest Japan. We deployed dense seismic observation network, composed of 32 stations with average spacing of 5-10 km around the Yamasaki fault zone. We estimate detailed fault structure such as fault dip and shape, segmentation, and possible location of asperities and rupture initiation point, as well as generating properties of earthquakes in the fault zone, through analyses of accurate hypocenter distribution, focal mechanism, 3-D velocity tomography, coda wave inversion, and other waveform analyses. We also deployed a linear seismic array across the fault, composed of 20 stations with about 20 m spacing, in order to delineate the fault-zone structure in more detail using the seismic waves trapped inside the low velocity zone. We also estimate detailed resistivity structure at shallow depth of the fault zone by AMT (audio-frequency magnetotelluric) and MT surveys. In the scattering analysis of coda waves, we used 2,391 wave traces from 121 earthquakes that occurred in 2002, 2003, 2008 and 2009, recorded at 60 stations, including dense temporary and routine stations. We estimated 3-D distribution of relative scattering coefficients along the Yamasaki fault zone. Microseismicity is high and scattering coefficient is relatively larger in the upper crust along the entire fault zone. The distribution of strong scatterers suggests that the Ohara and Hijima faults, which are the segments in the northwestern part of the Yamasaki fault zone, have almost vertical fault plane from surface to a depth of about 15 km. We used seismic network data operated by Universities, NIED, AIST, and JMA. This study has been carried out as a part of the project "Study on evaluation of earthquake source faults based on surveys of inland active faults" by Japan Nuclear

  15. Dense vibration measurement of an arch bridge before and after its seismic retrofit using wireless smart sensors

    Science.gov (United States)

    Nagayama, Tomonori; Urushima, Akihiko; Fujino, Yozo; Miyashita, Takeshi; Yoshioka, Tsutomu; Ieiri, Masataka

    2012-04-01

    Fundamental functionalities of wireless smart sensors to measure full-scale bridge vibration, such as time synchronization, loss-less multihop communication, and capability to capture small ambient vibrations, are maturing; dense vibration measurement of large structures using wireless smart sensors is expected to reveal the detailed condition of existing structures. An arch bridge is chosen as a target bridge and densely instrumented by 48 wireless smart sensors. Traffic induced vibration of the bridge has been measured before and after its seismic retrofit. The differences between the measured dynamic characteristics are considered to represent the effects of seismic retrofit. The dense measurement allows comparison of spatial characteristics such as detailed mode shapes, in addition to comparison of natural frequencies. Comparison of densely measured mode shapes reveals their changes, which are then used to update the finite element model of the bridge. The measurement, data analysis, and model updating indicate a potential use of dense instrumentation of wireless smart sensor network for structural condition assessment.

  16. The Italian National Seismic Network

    Science.gov (United States)

    Michelini, Alberto

    2016-04-01

    The Italian National Seismic Network is composed by about 400 stations, mainly broadband, installed in the Country and in the surrounding regions. About 110 stations feature also collocated strong motion instruments. The Centro Nazionale Terremoti, (National Earthquake Center), CNT, has installed and operates most of these stations, although a considerable number of stations contributing to the INGV surveillance has been installed and is maintained by other INGV sections (Napoli, Catania, Bologna, Milano) or even other Italian or European Institutions. The important technological upgrades carried out in the last years has allowed for significant improvements of the seismic monitoring of Italy and of the Euro-Mediterranean Countries. The adopted data transmission systems include satellite, wireless connections and wired lines. The Seedlink protocol has been adopted for data transmission. INGV is a primary node of EIDA (European Integrated Data Archive) for archiving and distributing, continuous, quality checked data. The data acquisition system was designed to accomplish, in near-real-time, automatic earthquake detection and hypocenter and magnitude determination (moment tensors, shake maps, etc.). Database archiving of all parametric results are closely linked to the existing procedures of the INGV seismic monitoring environment. Overall, the Italian earthquake surveillance service provides, in quasi real-time, hypocenter parameters which are then revised routinely by the analysts of the Bollettino Sismico Nazionale. The results are published on the web page http://cnt.rm.ingv.it/ and are publicly available to both the scientific community and the the general public. This presentation will describe the various activities and resulting products of the Centro Nazionale Terremoti. spanning from data acquisition to archiving, distribution and specialised products.

  17. The California Integrated Seismic Network

    Science.gov (United States)

    Hellweg, M.; Given, D.; Hauksson, E.; Neuhauser, D.; Oppenheimer, D.; Shakal, A.

    2007-05-01

    The mission of the California Integrated Seismic Network (CISN) is to operate a reliable, modern system to monitor earthquakes throughout the state; to generate and distribute information in real-time for emergency response, for the benefit of public safety, and for loss mitigation; and to collect and archive data for seismological and earthquake engineering research. To meet these needs, the CISN operates data processing and archiving centers, as well as more than 3000 seismic stations. Furthermore, the CISN is actively developing and enhancing its infrastructure, including its automated processing and archival systems. The CISN integrates seismic and strong motion networks operated by the University of California Berkeley (UCB), the California Institute of Technology (Caltech), and the United States Geological Survey (USGS) offices in Menlo Park and Pasadena, as well as the USGS National Strong Motion Program (NSMP), and the California Geological Survey (CGS). The CISN operates two earthquake management centers (the NCEMC and SCEMC) where statewide, real-time earthquake monitoring takes place, and an engineering data center (EDC) for processing strong motion data and making it available in near real-time to the engineering community. These centers employ redundant hardware to minimize disruptions to the earthquake detection and processing systems. At the same time, dual feeds of data from a subset of broadband and strong motion stations are telemetered in real- time directly to both the NCEMC and the SCEMC to ensure the availability of statewide data in the event of a catastrophic failure at one of these two centers. The CISN uses a backbone T1 ring (with automatic backup over the internet) to interconnect the centers and the California Office of Emergency Services. The T1 ring enables real-time exchange of selected waveforms, derived ground motion data, phase arrivals, earthquake parameters, and ShakeMaps. With the goal of operating similar and redundant

  18. RESIF Seismology Datacentre : Recently Released Data and New Services. Computing with Dense Seisimic Networks Data.

    Science.gov (United States)

    Volcke, P.; Pequegnat, C.; Grunberg, M.; Lecointre, A.; Bzeznik, B.; Wolyniec, D.; Engels, F.; Maron, C.; Cheze, J.; Pardo, C.; Saurel, J. M.; André, F.

    2015-12-01

    RESIF is a nationwide french project aimed at building a high quality observation system to observe and understand the inner earth. RESIF deals with permanent seismic networks data as well as mobile networks data, including dense/semi-dense arrays. RESIF project is distributed among different nodes providing qualified data to the main datacentre in Université Grenoble Alpes, France. Data control and qualification is performed by each individual nodes : the poster will provide some insights on RESIF broadband seismic component data quality control. We will then present data that has been recently made publicly available. Data is distributed through worldwide FDSN and european EIDA standards protocols. A new web portal is now opened to explore and download seismic data and metadata. The RESIF datacentre is also now connected to Grenoble University High Performance Computing (HPC) facility : a typical use-case will be presented using iRODS technologies. The use of dense observation networks is increasing, bringing challenges in data growth and handling : we will present an example where HDF5 data format was used as an alternative to usual seismology data formats.

  19. Ambient seismic noise monitoring of the Super-Sauze landslide from a very dense temporary seismic array

    Science.gov (United States)

    Chtouki, Toufik; Vergne, Jerome; Provost, Floriane; Malet, Jean-Philippe; Burtin, Arnaud; Hibert, Clément

    2017-04-01

    The Super-Sauze landslide is located on the southern part of the Barcelonnette Basin (French Alps) and has developed in a soft clay-shale environment. It is one of the four sites continuously monitored through a wide variety of geophysical and hydro-geological techniques in the framework of the OMIV French national landslide observatory. From early June to mid-July 2016, a temporary dense seismic array has been installed in the most active part of the landslide and at its surroundings. 50 different sites with an average inter-station distance of 50m have been instrumented with 150 miniaturized and autonomous seismic stations (Zland nodes), allowing a continuous record of the seismic signal at frequencies higher than 0.2Hz over an almost regular grid. Concurrently, a Ground-Based InSAR device allowed for a precise and continuous monitoring of the surface deformation. Overall, this experiment is intended to better characterize the spatio-temporal evolution of the deformation processes related to various type of forcing. We analyze the continuous records of ambient seismic noise recorded by the dense array. Using power spectral densities, we characterize the various types of natural and anthropogenic seismic sources, including the effect of water turbulence and bedload transport in the small nearby torrents. We also compute the correlation of the ambient diffuse seismic noise in various frequency bands for the 2448 station pairs to recover the empirical Green functions between them. The temporal evolution of the coda part of these noise correlation functions allows monitoring and localizing shear wave velocity variations in the sliding mass. Here we present some preliminary results of this analysis and compare the seismic variations to meteorological data and surface deformation.

  20. Modernization of the Slovenian National Seismic Network

    Science.gov (United States)

    Vidrih, R.; Godec, M.; Gosar, A.; Sincic, P.; Tasic, I.; Zivcic, M.

    2003-04-01

    The Environmental Agency of the Republic of Slovenia, the Seismology Office is responsible for the fast and reliable information about earthquakes, originating in the area of Slovenia and nearby. In the year 2000 the project Modernization of the Slovenian National Seismic Network started. The purpose of a modernized seismic network is to enable fast and accurate automatic location of earthquakes, to determine earthquake parameters and to collect data of local, regional and global earthquakes. The modernized network will be finished in the year 2004 and will consist of 25 Q730 remote broadband data loggers based seismic station subsystems transmitting in real-time data to the Data Center in Ljubljana, where the Seismology Office is located. The remote broadband station subsystems include 16 surface broadband seismometers CMG-40T, 5 broadband seismometers CMG-40T with strong motion accelerographs EpiSensor, 4 borehole broadband seismometers CMG-40T, all with accurate timing provided by GPS receivers. The seismic network will cover the entire Slovenian territory, involving an area of 20,256 km2. The network is planned in this way; more seismic stations will be around bigger urban centres and in regions with greater vulnerability (NW Slovenia, Krsko Brezice region). By the end of the year 2002, three old seismic stations were modernized and ten new seismic stations were built. All seismic stations transmit data to UNIX-based computers running Antelope system software. The data is transmitted in real time using TCP/IP protocols over the Goverment Wide Area Network . Real-time data is also exchanged with seismic networks in the neighbouring countries, where the data are collected from the seismic stations, close to the Slovenian border. A typical seismic station consists of the seismic shaft with the sensor and the data acquisition system and, the service shaft with communication equipment (modem, router) and power supply with a battery box. which provides energy in case

  1. Body-wave retrieval and imaging from ambient seismic fields with very dense arrays

    Science.gov (United States)

    Nakata, N.; Boué, P.; Beroza, G. C.

    2015-12-01

    Correlation-based analyses of ambient seismic wavefields is a powerful tool for retrieving subsurface information such as stiffness, anisotropy, and heterogeneity at a variety of scales. These analyses can be considered to be data-driven wavefield modeling. Studies of ambient-field tomography have been mostly focused on the surface waves, especially fundamental-mode Rayleigh waves. Although the surface-wave tomography is useful to model 3D velocities, the spatial resolution is limited due to the extended depth sensitivity of the surface wave measurements. Moreover, to represent elastic media, we need at least two stiffness parameters (e.g., shear and bulk moduli). We develop a technique to retrieve P diving waves from the ambient field observed by the dense geophone network (~2500 receivers with 100-m spacing) at Long Beach, California. With two-step filtering, we improve the signal-to-noise ratio of body waves to extract P wave observations that we use for tomography to estimate 3D P-wave velocity structure. The small scale-length heterogeneity of the velocity model follows a power law with ellipsoidal anisotropy. We also discuss possibilities to retrieve reflected waves from the ambient field and show other applications of the body-wave extraction at different locations and scales. Note that reflected waves penetrate deeper than diving waves and have the potential to provide much higher spatial resolution.

  2. Localized seismic deformation in the upper mantle revealed by dense seismic arrays

    Science.gov (United States)

    Inbal, Asaf; Ampuero, Jean Paul; Clayton, Robert W.

    2016-10-01

    Seismicity along continental transform faults is usually confined to the upper half of the crust, but the Newport-Inglewood fault (NIF), a major fault traversing the Los Angeles basin, is seismically active down to the upper mantle. We use seismic array analysis to illuminate the seismogenic root of the NIF beneath Long Beach, California, and identify seismicity in an actively deforming localized zone penetrating the lithospheric mantle. Deep earthquakes, which are spatially correlated with geochemical evidence of a fluid pathway from the mantle, as well as with a sharp vertical offset in the lithosphere-asthenosphere boundary, exhibit narrow size distribution and weak temporal clustering. We attribute these characteristics to a transition from strong to weak interaction regimes in a system of seismic asperities embedded in a ductile fault zone matrix.

  3. The seismic monitoring network of Mt. Vesuvius

    Directory of Open Access Journals (Sweden)

    Massimo Orazi

    2013-11-01

    Full Text Available Mt. Vesuvius (southern Italy is one of the most hazardous volcanoes in the world. Its activity is currently characterized by moderate seismicity, with hypocenters located beneath the crater zone with depth rarely exceeding 5 km and magnitudes generally less than 3. The current configuration of the seismic monitoring network of Mt. Vesuvius consists of 18 seismic stations and 7 infrasound microphones. During the period 2006-2010 a seismic array with 48 channels was also operative. The station distribution provides appropriate coverage of the area around the volcanic edifice. The current development of the network and its geometry, under conditions of low seismic noise, allows locating seismic events with M<1. Remote instruments continuously transmit data to the main acquisition center in Naples. Data transmission is realized using different technological solutions based on UHF, Wi-Fi radio links, and TCP/IP client-server applications. Data are collected in the monitoring center of the Osservatorio Vesuviano (Italian National Institute of Geophysics and Volcanology, Naples section, which is equipped with systems for displaying and analyzing signals, using both real-time automatic and manual procedures. 24-hour surveillance allows to immediately communicate any significant anomaly to the Civil Protection authorities.

  4. Frequency and distance changes in the apparent P-wave radiation pattern: effects of seismic wave scattering in the crust inferred from dense seismic observations and numerical simulations

    Science.gov (United States)

    Kobayashi, Manabu; Takemura, Shunsuke; Yoshimoto, Kazuo

    2015-09-01

    Frequency and distance changes in the apparent P-wave radiation pattern (0.75-12 Hz) are investigated using velocity seismograms of shallow strike-slip earthquakes occurring in Chugoku region, southwestern Japan. Data from a dense seismic monitoring network revealed that the four-lobe apparent P-wave radiation pattern was gradually distorted with increasing frequency and propagation distance. Observed features suggest that seismic wave scattering due to small-scale velocity heterogeneity in the crust may be a major cause of this distortion. The effects of seismic wave scattering on apparent P-wave radiation pattern were investigated via 3-D finite difference simulation of seismic wave propagation. Our simulations demonstrated that the scattering of seismic waves modified the apparent P-wave radiation pattern from the original four-lobe shape, and that the small-scale velocity heterogeneity, characterized by the von Kármán-type power spectral density function with correlation distance of 1 km, root-mean-square value of 0.03 and decay rate parameter of 0.5, might be adequate for modelling crustal heterogeneity in the target region. It was also found that the scattering attenuation of P wave expected from this heterogeneity is significantly smaller than the apparent P-wave attenuation and S-wave scattering attenuation reported by Multiple Lapse Time Window Analysis of previous studies in Japan. These results might imply that scattering attenuation is not the dominant mechanism of P-wave attenuation in the crust of Chugoku region.

  5. Censored cooperative positioning for dense wireless networks

    NARCIS (Netherlands)

    Das, Kallol; Wymeersch, Henk

    Cooperative positioning is an emerging topic in wireless sensor networks and navigation. It can improve the positioning accuracy and coverage in GPS-challenged conditions such as inside tunnels, in urban canyons, and indoors. Different algorithms have been proposed relying on iteratively exchanging

  6. Dense graphlet statistics of protein interaction and random networks.

    Science.gov (United States)

    Colak, R; Hormozdiari, F; Moser, F; Schönhuth, A; Holman, J; Ester, M; Sahinalp, S C

    2009-01-01

    Understanding evolutionary dynamics from a systemic point of view crucially depends on knowledge about how evolution affects size and structure of the organisms' functional building blocks (modules). It has been recently reported that statistics over sparse PPI graphlets can robustly monitor such evolutionary changes. However, there is abundant evidence that in PPI networks modules can be identified with highly interconnected (dense) and/or bipartite subgraphs. We count such dense graphlets in PPI networks by employing recently developed search strategies that render related inference problems tractable. We demonstrate that corresponding counting statistics differ significantly between prokaryotes and eukaryotes as well as between "real" PPI networks and scale free network emulators. We also prove that another class of emulators, the low-dimensional geometric random graphs (GRGs) cannot contain a specific type of motifs, complete bipartite graphs, which are abundant in PPI networks.

  7. Overspill avalanching in a dense reservoir network

    CERN Document Server

    Mamede, G L; Schneider, C M; de Araújo, J C; Herrmann, H J

    2012-01-01

    Sustainability of communities, agriculture, and industry is strongly dependent on an effective storage and supply of water resources. In some regions the economic growth has led to a level of water demand which can only be accomplished through efficient reservoir networks. Such infrastructures are not always planned at larger scale but rather made by farmers according to their local needs of irrigation during droughts. Based on extensive data from the upper Jaguaribe basin, one of the world's largest system of reservoirs, located in the Brazilian semiarid northeast, we reveal that surprisingly it self-organizes into a scale-free network exhibiting also a power-law in the distribution of the lakes and avalanches of discharges. With a new self-organized-criticality-type model we manage to explain the novel critical exponents. Implementing a flow model we are able to reproduce the measured overspill evolution providing a tool for catastrophe mitigation and future planning.

  8. Cooperative Handover Management in Dense Cellular Networks

    KAUST Repository

    Arshad, Rabe

    2017-02-07

    Network densification has always been an important factor to cope with the ever increasing capacity demand. Deploying more base stations (BSs) improves the spatial frequency utilization, which increases the network capacity. However, such improvement comes at the expense of shrinking the BSs\\' footprints, which increases the handover (HO) rate and may diminish the foreseen capacity gains. In this paper, we propose a cooperative HO management scheme to mitigate the HO effect on throughput gains achieved via cellular network densification. The proposed HO scheme relies on skipping HO to the nearest BS at some instances along the user\\'s trajectory while enabling cooperative BS service during HO execution at other instances. To this end, we develop a mathematical model, via stochastic geometry, to quantify the performance of the proposed HO scheme in terms of coverage probability and user throughput. The results show that the proposed cooperative HO scheme outperforms the always best connected based association at high mobility. Also, the value of BS cooperation along with handover skipping is quantified with respect to the HO skipping only that has recently appeared in the literature. Particularly, the proposed cooperative HO scheme shows throughput gains of 12% to 27% and 17% on average, when compared to the always best connected and HO skipping only schemes at user velocity ranging from 80 km/h to 160 Km/h, respectively.

  9. Double Barrier Coverage in Dense Sensor Networks

    Institute of Scientific and Technical Information of China (English)

    Cheng-Dong Jiang; Guo-Liang Chen

    2008-01-01

    When a sensor network is deployed to detect objects penetrating a protected region, it is not necessary to have every point in the deployment region covered by a sensor. It is enough if the penetrating objects are detected at some point in their trajectory. If a sensor network guarantees that every penetrating object will be detected by two distinct sensors at the same time somewhere in this area, we say that the network provides double barrier coverage (DBC). In this paper, we propose a new planar structure of Sparse Delaunay Triangulation (SparseDT), and prove some elaborate attributes of it. We develop theoretical foundations for double barrier coverage, and propose efficient algorithms with NS2 simulator using which one can activate the necessary sensors to guarantee double barrier coverage while the other sensors go to sleep. The upper and lower bounds of number of active nodes are determined, and we show that high-speed target will be detected efficiently with this configuration.

  10. Cavola experiment site: geophysical investigations and deployment of a dense seismic array on a landslide

    Directory of Open Access Journals (Sweden)

    L. Martelli

    2007-06-01

    Full Text Available Geophysical site investigations have been performed in association with deployment of a dense array of 95 3-component seismometers on the Cavola landslide in the Northern Apennines. The aim of the array is to study propagation of seismic waves in the heterogeneous medium through comparison of observation and modelling. The small-aperture array (130 m×56 m operated continuously for three months in 2004. Cavola landslide consists of a clay body sliding over mudstone-shale basement, and has a record of historical activity, including destruction of a small village in 1960. The site investigations include down-hole logging of P- and S-wave travel times at a new borehole drilled within the array, two seismic refraction lines with both P-wave profiling and surface-wave analyses, geo-electrical profiles and seismic noise measurements. From the different approaches a consistent picture of the depths and seismic velocities for the landslide has emerged. Their estimates agree with resonance frequencies of seismic noise, and also with the logged depths to basement of 25 m at a new borehole and of 44 m at a pre-existing borehole. Velocities for S waves increase with depth, from 230 m/s at the surface to 625 m/s in basement immediately below the landslide.

  11. Multi-channel Support for Dense Wireless Sensor Networking

    NARCIS (Netherlands)

    Durmaz, O.; Dulman, S.O.; Jansen, P.G.; Havinga, Paul J.M.; Havinga, P.J.M.; Lijding, M.E.M.; Meratnia, N.; Meratnia, Nirvana; Wegdam, M.

    2006-01-01

    Currently, most wireless sensor network applications assume the presence of single-channel Medium Access Control (MAC) protocols. When sensor nodes are densely deployed, single-channel MAC protocols may be inadequate due to the higher demand for the limited bandwidth. To overcome this drawback, we

  12. Handover management in dense cellular networks: A stochastic geometry approach

    KAUST Repository

    Arshad, Rabe

    2016-07-26

    Cellular operators are continuously densifying their networks to cope with the ever-increasing capacity demand. Furthermore, an extreme densification phase for cellular networks is foreseen to fulfill the ambitious fifth generation (5G) performance requirements. Network densification improves spectrum utilization and network capacity by shrinking base stations\\' (BSs) footprints and reusing the same spectrum more frequently over the spatial domain. However, network densification also increases the handover (HO) rate, which may diminish the capacity gains for mobile users due to HO delays. In highly dense 5G cellular networks, HO delays may neutralize or even negate the gains offered by network densification. In this paper, we present an analytical paradigm, based on stochastic geometry, to quantify the effect of HO delay on the average user rate in cellular networks. To this end, we propose a flexible handover scheme to reduce HO delay in case of highly dense cellular networks. This scheme allows skipping the HO procedure with some BSs along users\\' trajectories. The performance evaluation and testing of this scheme for only single HO skipping shows considerable gains in many practical scenarios. © 2016 IEEE.

  13. Dense lower crust elevates long-term earthquake rates in the New Madrid seismic zone

    Science.gov (United States)

    Levandowski, Will; Boyd, Oliver S.; Ramirez-Guzmán, Leonardo

    2016-08-01

    Knowledge of the local state of stress is critical in appraising intraplate seismic hazard. Inverting earthquake moment tensors, we demonstrate that principal stress directions in the New Madrid seismic zone (NMSZ) differ significantly from those in the surrounding region. Faults in the NMSZ that are incompatible with slip in the regional stress field are favorably oriented relative to local stress. We jointly analyze seismic velocity, gravity, and topography to develop a 3-D crustal and upper mantle density model, revealing uniquely dense lower crust beneath the NMSZ. Finite element simulations then estimate the stress tensor due to gravitational body forces, which sums with regional stress. The anomalous lower crust both elevates gravity-derived stress at seismogenic depths in the NMSZ and rotates it to interfere more constructively with far-field stress, producing a regionally maximal deviatoric stress coincident with the highest concentration of modern seismicity. Moreover, predicted principal stress directions mirror variations (observed independently in moment tensors) at the NMSZ and across the region.

  14. Tracking glaciers with the Alaska seismic network

    Science.gov (United States)

    West, M. E.

    2015-12-01

    More than 40 years ago it was known that calving glaciers in Alaska created unmistakable seismic signals that could be recorded tens and hundreds of kilometers away. Their long monochromatic signals invited studies that foreshadowed the more recent surge in glacier seismology. Beyond a handful of targeted studies, these signals have remained a seismic novelty. No systematic attempt has been made to catalog and track glacier seismicity across the years. Recent advances in understanding glacier sources, combined with the climate significance of tidewater glaciers, have renewed calls for comprehensive tracking of glacier seismicity in coastal Alaska. The Alaska Earthquake Center has included glacier events in its production earthquake catalog for decades. Until recently, these were best thought of as bycatch—accidental finds in the process of tracking earthquakes. Processing improvements a decade ago, combined with network improvements in the past five years, have turned this into a rich data stream capturing hundreds of events per year across 600 km of the coastal mountain range. Though the source of these signals is generally found to be iceberg calving, there are vast differences in behavior between different glacier termini. Some glaciers have strong peaks in activity during the spring, while others peak in the late summer or fall. These patterns are consistent over years pointing to fundamental differences in calving behavior. In several cases, changes in seismic activity correspond to specific process changes observed through other means at particular glacier. These observations demonstrate that the current network is providing a faithful record of the dynamic behavior of several glaciers in coastal Alaska. With this as a starting point, we examine what is possible (and not possible) going forward with dedicated detection schemes.

  15. Connectivity of Confined Dense Networks: Boundary Effects and Scaling Laws

    CERN Document Server

    Coon, Justin P; Georgiou, Orestis

    2012-01-01

    In this paper, we study the probability that a dense network confined within a given geometry is fully connected. We employ a cluster expansion approach often used in statistical physics to analyze the effects that the boundaries of the geometry have on connectivity. To maximize practicality and applicability, we adopt four important point-to-point link models based on outage probability in our analysis: single-input single-output (SISO), single-input multiple-output (SIMO), multiple-input single-output (MISO), and multiple-input multiple-output (MIMO). Furthermore, we derive diversity and power scaling laws that dictate how boundary effects can be mitigated (to leading order) in confined dense networks for each of these models. Finally, in order to demonstrate the versatility of our theory, we analyze boundary effects for dense networks comprising MIMO point-to-point links confined within a right prism, a polyhedron that accurately models many geometries that can be found in practice. We provide numerical re...

  16. Development of real time monitor system displaying seismic waveform data observed at seafloor seismic network, DONET, for disaster management information

    Science.gov (United States)

    Horikawa, H.; Takaesu, M.; Sueki, K.; Takahashi, N.; Sonoda, A.; Miura, S.; Tsuboi, S.

    2014-12-01

    Mega-thrust earthquakes are anticipated to occur in the Nankai Trough in southwest Japan. In the source areas, we have deployed seafloor seismic network, DONET (Dense Ocean-floor Network System for Earthquake and Tsunamis), in 2010 in order to monitor seismicity, crustal deformations, and tsunamis. DONET system consists of totally 20 stations, which is composed of six kinds of sensors, including strong-motion seismometers and quartz pressure gauges. Those stations are densely distributed with an average spatial interval of 15-20 km and cover near the trench axis to coastal areas. Observed data are transferred to a land station through a fiber-optical cable and then to JAMSTEC (Japan Agency for Marine-Earth Science and Technology) data management center through a private network in real time. After 2011 off the Pacific coast of Tohoku Earthquake, each local government close to Nankai Trough try to plan disaster prevention scheme. JAMSTEC will disseminate DONET data combined with research accomplishment so that they will be widely recognized as important earthquake information. In order to open DONET data observed for research to local government, we have developed a web application system, REIS (Real-time Earthquake Information System). REIS is providing seismic waveform data to some local governments close to Nankai Trough as a pilot study. As soon as operation of DONET is ready, REIS will start full-scale operation. REIS can display seismic waveform data of DONET in real-time, users can select strong motion and pressure data, and configure the options of trace view arrangement, time scale, and amplitude. In addition to real-time monitoring, REIS can display past seismic waveform data and show earthquake epicenters on the map. In this presentation, we briefly introduce DONET system and then show our web application system. We also discuss our future plans for further developments of REIS.

  17. Local seismic network for monitoring of a potential nuclear power plant area

    Science.gov (United States)

    Tiira, Timo; Uski, Marja; Kortström, Jari; Kaisko, Outi; Korja, Annakaisa

    2016-04-01

    This study presents a plan for seismic monitoring of a region around a potential nuclear power plant. Seismic monitoring is needed to evaluate seismic risk. The International Atomic Energy Agency has set guidelines on seismic hazard evaluation and monitoring of such areas. According to these guidelines, we have made a plan for a local network of seismic stations to collect data for seismic source characterization and seismotectonic interpretations, as well as to monitor seismic activity and natural hazards. The detection and location capability of the network were simulated using different station configurations by computing spatial azimuthal coverages and detection threshold magnitudes. Background noise conditions around Pyhäjoki were analyzed by comparing data from different stations. The annual number of microearthquakes that should be detected with a dense local network centered around Pyhäjoki was estimated. The network should be dense enough to fulfill the requirements of azimuthal coverage better than 180° and automatic event location capability down to ML ˜ 0 within a distance of 25 km from the site. A network of 10 stations should be enough to reach these goals. With this setup, the detection threshold magnitudes are estimated to be ML = -0.1 and ML = 0.1 within a radius of 25 and 50 km from Pyhäjoki, respectively. The annual number of earthquakes detected by the network is estimated to be 2 (ML ≥ ˜ -0.1) within 25 km radius and 5 (ML ≥ ˜-0.1 to ˜0.1) within 50 km radius. The location accuracy within 25 km radius is estimated to be 1-2 and 4 km for horizontal coordinates and depth, respectively. Thus, the network is dense enough to map out capable faults with horizontal accuracy of 1-2 km within 25 km radius of the site. The estimation is based on the location accuracies of five existing networks in northern Europe. Local factors, such as seismic noise sources, geology and infrastructure might limit the station configuration and detection and

  18. Evolution of Force Networks in Dense Particulate Media

    CERN Document Server

    Kramar, Miroslav; Kondic, Lou; Mischaikow, Konstantin

    2014-01-01

    We introduce novel sets of measures with the goal of describing dynamical properties of force networks in dense particulate systems. The presented approach is based on persistent homology and allows for extracting precise, quantitative measures that describe the evolution of geometric features of the interparticle forces, without necessarily considering the details related to individual contacts between particles. The networks considered emerge from discrete element simulations of two dimensional particulate systems consisting of compressible frictional circular disks. We quantify the evolution of the networks for slowly compressed systems undergoing jamming transition. The main findings include uncovering significant but localized changes of force networks for unjammed systems, global (system-wide) changes as the systems evolve through jamming, to be followed by significantly less dramatic evolution for the jammed states. We consider both connected components, related in loose sense to force chains, and loop...

  19. Improving Dense Network Performance through Centralized Scheduling and Interference Coordination

    DEFF Research Database (Denmark)

    Lopez, Victor Fernandez; Pedersen, Klaus I.; Alvarez, Beatriz Soret

    2017-01-01

    . Interference management at the receiver is achieved through the use of a Network-Assisted Interference Cancellation and Suppression (NAICS) receiver. In order to further boost the 5th percentile user data rates, the transmission rank at the interferers is selectively reduced by a centralized rank coordination......Dense network deployments comprising small cells pose a series of important challenges when it comes to achieving an efficient resource use and curbing inter-cell interference in the downlink. This article examines different techniques to treat these problems in a dynamic way, from the network...... and the receiver sides. As a network coordination scheme, we apply a centralized joint cell association and scheduling mechanism based on dynamic cell switching, by which users are not always served by the strongest perceived cell. The method simultaneously resultsin more balanced loads and increased performance...

  20. Incorporating Low-Cost Seismometers into the Central Weather Bureau Seismic Network for Earthquake Early Warning in Taiwan

    Directory of Open Access Journals (Sweden)

    Da-Yi Chen

    2015-01-01

    Full Text Available A dense seismic network can increase Earthquake Early Warning (EEW system capability to estimate earthquake information with higher accuracy. It is also critical for generating fast, robust earthquake alarms before strong-ground shaking hits the target area. However, building a dense seismic network via traditional seismometers is too expensive and may not be practical. Using low-cost Micro-Electro Mechanical System (MEMS accelerometers is a potential solution to quickly deploy a large number of sensors around the monitored region. An EEW system constructed using a dense seismic network with 543 MEMS sensors in Taiwan is presented. The system also incorporates the official seismic network of _ Central Weather Bureau (CWB. The real-time data streams generated by the two networks are integrated using the Earthworm software. This paper illustrates the methods used by the integrated system for estimating earthquake information and evaluates the system performance. We applied the Earthworm picker for the seismograms recorded by the MEMS sensors (Chen et al. 2015 following new picking constraints to accurately detect P-wave arrivals and use a new regression equation for estimating earthquake magnitudes. An off-line test was implemented using 46 earthquakes with magnitudes ranging from ML 4.5 - 6.5 to calibrate the system. The experimental results show that the integrated system has stable source parameter results and issues alarms much faster than the current system run by the CWB seismic network (CWBSN.

  1. Shallow magma chamber under the Wudalianchi Volcanic Field unveiled by seismic imaging with dense array

    Science.gov (United States)

    Li, Zhiwei; Ni, Sidao; Zhang, Baolong; Bao, Feng; Zhang, Senqi; Deng, Yang; Yuen, David A.

    2016-05-01

    The Wudalianchi Volcano Field (WDF) is a typical intraplate volcano in northeast China with generation mechanism not yet well understood. As its last eruption was around 300 years ago, the present risk for volcano eruption is of particular public interest. We have carried out a high-resolution ambient noise tomography to investigate the location of magma chambers beneath the volcanic cones with a dense seismic array of 43 seismometers and ~ 6 km spatial interval. Significant low-velocity anomalies up to 10% are found at 7-13 km depth under the Weishan volcano, consistent with the pronounced high electrical-conductivity anomalies from previous magnetotelluric survey. We propose these extremely low velocity anomalies can be interpreted as partial melting in a shallow magma chamber with volume at least 200 km3 which may be responsible for most of the recent volcanic eruptions in WDF. Therefore, this magma chamber may pose a serious hazard for northeast China.

  2. Ambient noise tomography across Mount St. Helens using a dense seismic array

    Science.gov (United States)

    Wang, Yadong; Lin, Fan-Chi; Schmandt, Brandon; Farrell, Jamie

    2017-06-01

    We investigated upper crustal structure with data from a dense seismic array deployed around Mount St. Helens for 2 weeks in the summer of 2014. Interstation cross correlations of ambient seismic noise data from the array were obtained, and clear fundamental mode Rayleigh waves were observed between 2.5 and 5 s periods. In addition, higher-mode signals were observed around 2 s period. Frequency-time analysis was applied to measure fundamental mode Rayleigh wave phase velocities, which were used to invert for 2-D phase velocity maps. An azimuth-dependent traveltime correction was implemented to mitigate potential biases introduced due to an inhomogeneous noise source distribution. Reliable phase velocity maps were only obtained between 3 and 4 s periods due to limitations imposed by the array aperture and higher-mode contamination. The phase velocity tomography results, which are sensitive to structure shallower than 6 km depth, reveal an 10-15% low-velocity anomaly centered beneath the volcanic edifice and peripheral high-velocity anomalies that likely correspond to cooled igneous intrusions. We suggest that the low-velocity anomaly reflects the high-porosity mixture of lava and ash deposits near the surface of the edifice, a highly fractured magmatic conduit and hydrothermal system beneath the volcano, and possibly a small contribution from silicate melt.

  3. Source location of the 19 February 2008 Oregon bolide using seismic networks and infrasound arrays

    Science.gov (United States)

    Walker, Kristoffer T.; Hedlin, Michael A. H.; de Groot-Hedlin, Catherine; Vergoz, Julien; Le Pichon, Alexis; Drob, Douglas P.

    2010-12-01

    On 19 February 2008 a bolide traveled across the sky along a southern trajectory ending in a terminal burst above Oregon. The event was well recorded by the USArray, other seismic networks, four infrasound arrays, and several video cameras. We compare the results of locating the burst using these different sensor networks. Specifically, we reverse time migrate acoustic-to-seismic coupled signals recorded by the USArray out to 800 km range to image the source in 2-D space and time. We also apply a grid search over source altitude and time, minimizing the misfit between observed and predicted arrival times using 3-D ray tracing with a high-resolution atmospheric velocity model. Our seismic and video results suggest a point source rather than a line source associated with a hypersonic trajectory. We compare the seismic source locations to those obtained by using different combinations of observed infrasound array signal back azimuths and arrival times. We find that all locations are consistent. However, the seismic location is more accurate than the infrasound locations due to the larger number of seismic sensors, a more favorable seismic source-receiver geometry, and shorter ranges to the seismometers. For the infrasound array locations, correcting for the wind improved the accuracy, but implementing arrival times while increasing the precision reduced the accuracy presumably due to limitations of the source location method and/or atmospheric velocity model. We show that despite known complexities associated with acoustic-to-seismic coupling, aboveground infrasound sources can be located with dense seismic networks with remarkably high accuracy and precision.

  4. Dense String Networks and the One Scale Model with Friction

    CERN Document Server

    Aulakh, Charanjit S; Soni, V; Aulakh, Charanjit S.; Nagasawa, Michiyasu; Soni, Vikram

    1999-01-01

    We examine the behaviour of string networks with the initial string length densities ($ \\sim T_c^2$) and velocities ($ \\sim 1$) expected on the basis of the Kibble mechanism for string formation during a second order phase transition at $T_c$ in the context of the one scale model with friction. The inclusion of friction and use of the natural initial conditions modifies the current picture of string networks in a basic way.We find that a novel transient regime takes the initially dense and fast network to a sparse (string length density $\\sim T_c^3/M_P$) and slow ($v \\sim (T_c/M_P)^{1/2}$) state in a very short time $\\sim 0.1 t_c$ (where $t_c$ is the time of the phase transition that produces the strings). This allows it to join smoothly on to the well known Kibble Regime which prevails at late times in the friction dominated epoch (with the network scale $L\\sim t^{5/4}$ while the network r.m.s velocity $v \\sim t^{1/4}$) which requires initial conditions of this magnitude. Thus essentially irrespective of str...

  5. The AlpArray Seismic Network: status and operation

    Science.gov (United States)

    Hetényi, György; Molinari, Irene; Clinton, John; Kissling, Edi

    2017-04-01

    The AlpArray initiative (http://www.alparray.ethz.ch) is a large-scale European collaboration to study the entire Alpine orogen at high resolution and in 3D with a large variety of geoscientific methods. The core element of the initiative is an extensive and dense broadband seismological network, the AlpArray Seismic Network (AASN). Over 300 temporary stations complement the permanent seismological stations to ensure homogeneous coverage of the greater Alpine area. The AASN has officially started operation in January 2016 and is now complete on land. It is operated in a joint effort by a number of institutions from Austria, Bosnia-Herzegovina, Croatia, Czech Republic, France, Germany, Hungary, Italy, Slovakia and Switzerland. In the Ligurian Sea, a 32-station OBS campaign is planned from June 2017 until March 2018. This will complete the coverage of the greater Alpine area at an unprecedented resolution. In this poster we present the actual status of the deployment, the effort undertaken by the contributing groups, station performance, best practices, data management as well as often encountered challenges, and provide a meeting and discussion point during the conference.

  6. Alaska Seismic Network Upgrade and Expansion

    Science.gov (United States)

    Sandru, J. M.; Hansen, R. A.; Estes, S. A.; Fowler, M.

    2009-12-01

    such as ANSS, Alaska Volcano Observatory, Bradley Lake Dam, Red Dog Mine, The Plate Boundary Observatory (PBO), Alaska Tsunami Warning Center, and City and State Emergency Managers has helped link vast networks together so that the overall data transition can be varied. This lessens the likelihood of having a single point of failure for an entire network. Robust communication is key to retrieving seismic data. AEIC has gone through growing pains learning how to harden our network and encompassing the many types of telemetry that can be utilized in today's world. Redundant telemetry paths are a goal that is key to retrieving data, however at times this is not feasible with the vast size and terrain in Alaska. We will demonstrate what has worked for us and what our network consists of.

  7. A Scalable Clustering Algorithm in Dense Mobile Sensor Networks

    Directory of Open Access Journals (Sweden)

    Jianbo Li

    2011-03-01

    Full Text Available Clustering offers a kind of hierarchical organization to provide scalability and basic performance guarantee by partitioning the network into disjoint groups of nodes. In this paper a scalable and energy efficient clustering algorithm is proposed under dense mobile sensor networks scenario. In the initial cluster formation phase, our proposed scheme features a simple execution process with polynomial time complexity, and eliminates the “frozen time” requirement by introducing some GPS-capable mobile nodes to act as cluster heads. In the following cluster maintenance stage, the maintenance of clusters is asynchronously and event driven so as to thoroughly eliminate the “ripple effect” brought by node mobility. As a result local changes in a cluster need not be seen and updated by the entire network, thus bringing greatly reduced communication overheads and being well suitable for the high mobility environment. Extensive simulations have been conducted and the simulation results reveal that our proposed algorithm successfully achieves its target at incurring much less clustering overheads as well as maintaining much more stable cluster structure, as compared to HCC(High Connectivity Clustering  algorithm

  8. Adaptive Probabilistic Broadcasting over Dense Wireless Ad Hoc Networks

    Directory of Open Access Journals (Sweden)

    Victor Gau

    2010-01-01

    Full Text Available We propose an idle probability-based broadcasting method, iPro, which employs an adaptive probabilistic mechanism to improve performance of data broadcasting over dense wireless ad hoc networks. In multisource one-hop broadcast scenarios, the modeling and simulation results of the proposed iPro are shown to significantly outperform the standard IEEE 802.11 under saturated condition. Moreover, the results also show that without estimating the number of competing nodes and changing the contention window size, the performance of the proposed iPro can still approach the theoretical bound. We further apply iPro to multihop broadcasting scenarios, and the experiment results show that within the same elapsed time after the broadcasting, the proposed iPro has significantly higher Packet-Delivery Ratios (PDR than traditional methods.

  9. Improved characterization of local seismicity using the Dubai Seismic Network, United Arab Emirates

    Science.gov (United States)

    Al Khatibi, Eman; Abou Elenean, K. M.; Megahed, A. S.; El-Hussain, I.

    2014-08-01

    In April 2006, Dubai Municipality established a broadband seismological network in Dubai Emirate, United Arab Emirates (UAE). This network was the first seismic network in UAE and consists of four remote seismic stations to observe local and regional seismic activity that may have an effect on Dubai Emirate and the surrounding areas. The network exchanges real-time data with the National Center of Meteorology and Seismology in Abu Dhabi, the Earthquake Monitoring Center in Oman and imports in real-time data from few Global Seismic Network stations, which increases the aperture of the network. In April 2012, Dubai Municipality installed an additional five free-field strong motion stations inside the urban area to estimate and publish real-time ShakeMaps for public and decision makers. Although the local seismic activity from April 2006 to June 2013 reflects low seismic activity with the Emirate, it indicates active tectonics in the relatively aseismic northern Oman Mountains region. A few inland clusters of micro-to-small earthquakes have been identified with the new network. A clear cluster of small-to-moderate earthquakes took place in the eastern part of UAE to the east of Masafi, while two clusters of micro-to-small earthquakes took place at Wadi Nazwa and northern Huwaylat. Focal mechanisms of few well recorded earthquakes in this region indicate normal faulting, generally trending NE in parallel to the transition shear zone between the collision at Zagros and the subduction at the Makran zone.

  10. Effect of pore structure on seismic rock-physics characteristics of dense carbonates

    Institute of Scientific and Technical Information of China (English)

    Pan Jian-Guo; Wang Hong-Bin; Li Chuang; Zhao Jian-Guo

    2015-01-01

    The Ordovician carbonate rocks of the Yingshan formation in the Tarim Basin have a complex pore structure owing to diagenetic and secondary structures. Seismic elastic parameters (e.g., wave velocity) depend on porosity and pore structure. We estimated the average specific surface, average pore-throat radius, pore roundness, and average aspect ratio of carbonate rocks from the Tazhong area. High P-wave velocity samples have small average specific surface, small average pore-throat radius, and large average aspect ratio. Differences in the pore structure of dense carbonate samples lead to fluid-related velocity variability. However, the relation between velocity dispersion and average specifi c surface, or the average aspect ratio, is not linear. For large or small average specifi c surface, the pore structure of the rock samples becomes uniform, which weakens squirtfl ow and minimizes the residuals of ultrasonic data and predictions with the Gassmann equation. When rigid dissolved (casting mold) pores coexist with less rigid microcracks, there are significant P-wave velocity differences between measurements and predictions.

  11. Autonomous telemetry system by using mobile networks for a long-term seismic observation

    Science.gov (United States)

    Hirahara, S.; Uchida, N.; Nakajima, J.

    2012-04-01

    When a large earthquake occurs, it is important to know the detailed distribution of aftershocks immediately after the main shock for the estimation of the fault plane. The large amount of seismic data is also required to determine the three-dimensional seismic velocity structure around the focal area. We have developed an autonomous telemetry system using mobile networks, which is specialized for aftershock observations. Because the newly developed system enables a quick installation and real-time data transmission by using mobile networks, we can construct a dense online seismic network even in mountain areas where conventional wired networks are not available. This system is equipped with solar panels that charge lead-acid battery, and enables a long-term seismic observation without maintenance. Furthermore, this system enables a continuous observation at low costs with flat-rate or prepaid Internet access. We have tried to expand coverage areas of mobile communication and back up Internet access by configuring plural mobile carriers. A micro server embedded with Linux consists of automatic control programs of the Internet connection and data transmission. A status monitoring and remote maintenance are available via the Internet. In case of a communication failure, an internal storage can back up data for two years. The power consumption of communication device ranges from 2.5 to 4.0 W. With a 50 Ah lead-acid battery, this system continues to record data for four days if the battery charging by solar panels is temporarily unavailable.

  12. The development of the Moldova digital seismic network

    Science.gov (United States)

    Ilies, I.; Ionescu, C.; Grigore, A. G.

    2009-04-01

    The Republic of Moldova is located in the seismically active region, about 70% of its area is predisposed to shaking intensity 7 - 8 points MSK. Focal zones of the primary seismic danger to the territory of the Republic of Moldova are: Vrancea zone - for the whole of its territory and Dobrogea zone - for the southern part. Monitoring of seismic instrumentation in the republic is provided by the Center of Experimental Seismology, Institute of Geology and Seismology, Academy of Sciences of Moldova. According to the seismic zoning map of the Republic of Moldova, seismic stations "Cahul, Leova" and "Giurgiulesti" located in 8 - degree zone, the central regional station "Chisinau" - in 7 - degree, a station "Soroca" - in 6 - degree zone MSK scale. The development of seismic network since 2004, going through a transition to a modern digital recording, improving working conditions for staff and the construction of new buildings for seismic stations, equipping the new network equipment and improve the methods of collecting and processing seismic data. The works to modernize the network of seismic stations in Moldova were initiated in 2003 with the acquisition of the first three axial digital accelerometer. The device was installed initially in Chisinau, and from it we received the first digital recordings of earthquakes from September 27 and October 27, 2004. In joint efforts with National Institute of Research and Development for Earth Physics from Bucharest, Romania, four seismic stations from Republic of Moldavia was upgraded by broadband and strong motion sensors connected at Q 330 digital recorders that issue continuous recording and real time data stream. Starting from spring of 2008, real time seismic data exchange between IGG Republic of Moldavia and NIEP Romania is running using internet connection.

  13. Seismic reliability analysis of urban water distribution network

    Institute of Scientific and Technical Information of China (English)

    Li Jie; Wei Shulin; Liu Wei

    2006-01-01

    An approach to analyze the seismic reliability of water distribution networks by combining a hydraulic analysis with a first-order reliability method (FORM), is proposed in this paper.The hydraulic analysis method for normal conditions is modified to accommodate the special conditions necessary to perform a seismic hydraulic analysis. In order to calculate the leakage area and leaking flow of the pipelines in the hydraulic analysis method, a new leakage model established from the seismic response analysis of buried pipelines is presented. To validate the proposed approach, a network with 17 nodes and 24 pipelines is investigated in detail. The approach is also applied to an actual project consisting of 463 nodes and 767pipelines. Thee results show that the proposed approach achieves satisfactory results in analyzing the seismic reliability of large-scale water distribution networks.

  14. Site characterization of the national seismic network of Italy

    Science.gov (United States)

    Bordoni, Paola; Pacor, Francesca; Cultrera, Giovanna; Casale, Paolo; Cara, Fabrizio; Di Giulio, Giuseppe; Famiani, Daniela; Ladina, Chiara; PIschiutta, Marta; Quintiliani, Matteo

    2017-04-01

    The national seismic network of Italy (Rete Sismica Nazionale, RSN) run by Istituto Nazionale di Geofisica e Vulcanologia (INGV) consists of more than 400 seismic stations connected in real time to the institute data center in order to locate earthquakes for civil defense purposes. A critical issue in the performance of a network is the characterization of site condition at the recording stations. Recently INGV has started addressing this subject through the revision of all available geological and geophysical data, the acquisition of new information by means of ad-hoc field measurements and the analysis of seismic waveforms. The main effort is towards building a database, integrated with the other INGV infrastructures, designed to archive homogeneous parameters through the seismic network useful for a complete site characterization, including housing, geological, seismological and geotechnical features as well as the site class according to the European and Italian building codes. Here we present the ongoing INGV activities.

  15. Damage Detection and Localization from Dense Network of Strain Sensors

    Directory of Open Access Journals (Sweden)

    Simon Laflamme

    2016-01-01

    Full Text Available Structural health monitoring of large systems is a complex engineering task due to important practical issues. When dealing with large structures, damage diagnosis, localization, and prognosis necessitate a large number of sensors, which is a nontrivial task due to the lack of scalability of traditional sensing technologies. In order to address this challenge, the authors have recently proposed a novel sensing solution consisting of a low-cost soft elastomeric capacitor that transduces surface strains into measurable changes in capacitance. This paper demonstrates the potential of this technology for damage detection, localization, and prognosis when utilized in dense network configurations over large surfaces. A wind turbine blade is adopted as a case study, and numerical simulations demonstrate the effectiveness of a data-driven algorithm relying on distributed strain data in evidencing the presence and location of damage, and sequentially ranking its severity. Numerical results further show that the soft elastomeric capacitor may outperform traditional strain sensors in damage identification as it provides additive strain measurements without any preferential direction. Finally, simulation with reconstruction of measurements from missing or malfunctioning sensors using the concepts of virtual sensors and Kriging demonstrates the robustness of the proposed condition assessment methodology for sparser or malfunctioning grids.

  16. Clustering-based interference management in densely deployed femtocell networks

    Directory of Open Access Journals (Sweden)

    Jingyi Dai

    2016-11-01

    Full Text Available Deploying femtocells underlaying macrocells is a promising way to improve the capacity and enhance the coverage of a cellular system. However, densely deployed femtocells in urban area also give rise to intra-tier interference and cross-tier issue that should be addressed properly in order to acquire the expected performance gain. In this paper, we propose an interference management scheme based on joint clustering and resource allocation for two-tier Orthogonal Frequency Division Multiplexing (OFDM-based femtocell networks. We formulate an optimization task with the objective of maximizing the sum throughput of the femtocell users (FUs under the consideration of intra-tier interference mitigation, while controlling the interference to the macrocell user (MU under its bearable threshold. The formulation problem is addressed by a two-stage procedure: femtocells clustering and resource allocation. First, disjoint femtocell clusters with dynamic sizes and numbers are generated to minimize intra-tier interference. Then each cluster is taken as a resource allocation unit to share all subchannels, followed by a fast algorithm to distribute power among these subchannels. Simulation results show that our proposed schemes can improve the throughput of the FUs with acceptable complexity.

  17. On the Virtual Cell Transmission in Ultra Dense Networks

    Directory of Open Access Journals (Sweden)

    Xiaopeng Zhu

    2016-10-01

    Full Text Available Ultra dense networks (UDN are identified as one of the key enablers for 5G, since they can provide an ultra high spectral reuse factor exploiting proximal transmissions. By densifying the network infrastructure equipment, it is highly possible that each user will have one or more dedicated serving base station antennas, introducing the user-centric virtual cell paradigm. However, due to irregular deployment of a large amount of base station antennas, the interference environment becomes rather complex, thus introducing severe interferences among different virtual cells. This paper focuses on the downlink transmission scheme in UDN where a large number of users and base station antennas is uniformly spread over a certain area. An interference graph is first created based on the large-scale fadings to give a potential description of the interference relationship among the virtual cells. Then, base station antennas and users in the virtual cells within the same maximally-connected component are grouped together and merged into one new virtual cell cluster, where users are jointly served via zero-forcing (ZF beamforming. A multi-virtual-cell minimum mean square error precoding scheme is further proposed to mitigate the inter-cluster interference. Additionally, the interference alignment framework is proposed based on the low complexity virtual cell merging to eliminate the strong interference between different virtual cells. Simulation results show that the proposed interference graph-based virtual cell merging approach can attain the average user spectral efficiency performance of the grouping scheme based on virtual cell overlapping with a smaller virtual cell size and reduced signal processing complexity. Besides, the proposed user-centric transmission scheme greatly outperforms the BS-centric transmission scheme (maximum ratio transmission (MRT in terms of both the average user spectral efficiency and edge user spectral efficiency. What is more

  18. Complete multiple round quantum dense coding with quantum logical network

    Institute of Scientific and Technical Information of China (English)

    LI ChunYan; LI XiHan; DENG FuGuo; ZHOU Ping; ZHOU HongYu

    2007-01-01

    We present a complete multiple round quantum dense coding scheme for improving the source capacity of that introduced recently by Zhang et al. The receiver resorts to two qubits for storing the four local unitary operations in each round.

  19. Towards a new earthquake catalog for Ireland and its near offshore domains : a joint analysis of permanent and dense temporary seismic array data

    Science.gov (United States)

    Arroucau, Pierre; Lebedev, Sergei

    2016-04-01

    Ireland is located on the European North Atlantic margin, at the northwesternmost edge of the Eurasian continent, several hundred kilometers away from the closest plate boundaries, namely the North Atlantic ridge and the Nubia-Eurasia convergence front. Its low level of seismicity, according to the number of events and magnitudes given by the existing catalogs, is thus expected. However, it still appears surprisingly low compared to neighboring domains, including Great Britain and, more generally, the rest of the Atlantic margin. One explanation might be that the events reported in those catalogs do not reflect the actual seismic activity of Ireland due to a lack, until recently, of permanent seismological stations on the Irish territory. Although the Irish National seismic Network (INSN) now consists of 6 stations, and despite a good station coverage of Britain, to the east, by the British Geological survey (BGS) stations, most of the earthquakes occurring in Ireland may still be missed because of their low magnitude. Here, we combine the waveform data recorded at permanent (INSN, BGS) stations with that from dense temporary array deployed in the past 5 years by the Dublin Institute for Advanced Studies (DIAS) and the University College Dublin (UCD). In addition to new arrival time data and new locations for already known catalog events, our analysis reveals newly detected earthquakes in Ireland, and sheds new light on the seismotectonics of this intraplate continental region. This sets the stage for joint earthquake relocation and 3D velocity model determination, which should lead to a better understanding of the relationships between the current seismic activity and the geological structure of the Irish lithosphere.

  20. Use of Southern California Integrated GPS Network (SCIGN) to image post-seismic perturbations of the ionosphere.

    Science.gov (United States)

    Artru, J.; Ducic, V.; Lognonné, P.

    2002-12-01

    Post-seismic perturbations in the atmosphere and ionosphere are induced by solid earth-atmosphere coupling, and can be monitored systematically after large earthquakes, e.g. using Doppler sounding. We will focus here on the capacity of short-scale imagery of the ionosphere offered by dense GPS networks. SCIGN is composed of 250 receivers in Southern California that provide continuous measurements of Total Electron Content along each receiver-satellite. A reconstruction of 2-D vertical electron content maps is performed, with a special attention paid on the accuracy and resolution achieved. We applied our technique to the detection of post-seismic ionospheric perturbations by the Hector Mine Earthquake in Southern California on October 16th, 1999. Two regimes of seismic perturbations are found, the first one related to seismic waves traveling in the ionosphere at about 3 km/s whereas the second regime would be induced by the onset of a gravity wave.

  1. Sensing network for electromagnetic fields generated by seismic activities

    Science.gov (United States)

    Gershenzon, Naum I.; Bambakidis, Gust; Ternovskiy, Igor V.

    2014-06-01

    The sensors network is becoming prolific and play now increasingly more important role in acquiring and processing information. Cyber-Physical Systems are focusing on investigation of integrated systems that includes sensing, networking, and computations. The physics of the seismic measurement and electromagnetic field measurement requires special consideration how to design electromagnetic field measurement networks for both research and detection earthquakes and explosions along with the seismic measurement networks. In addition, the electromagnetic sensor network itself could be designed and deployed, as a research tool with great deal of flexibility, the placement of the measuring nodes must be design based on systematic analysis of the seismic-electromagnetic interaction. In this article, we review the observations of the co-seismic electromagnetic field generated by earthquakes and man-made sources such as vibrations and explosions. The theoretical investigation allows the distribution of sensor nodes to be optimized and could be used to support existing geological networks. The placement of sensor nodes have to be determined based on physics of electromagnetic field distribution above the ground level. The results of theoretical investigations of seismo-electromagnetic phenomena are considered in Section I. First, we compare the relative contribution of various types of mechano-electromagnetic mechanisms and then analyze in detail the calculation of electromagnetic fields generated by piezomagnetic and electrokinetic effects.

  2. Observation of seismicity based on DOMERAPI and BMKG seismic networks: A preliminary result from DOMERAPI project

    Science.gov (United States)

    Ramdhan, Mohamad; Nugraha, Andri Dian; Widiyantoro, Sri; Kristyawan, Said; Sembiring, Andry Syaly; Mtaxian, Jean-Philippe

    2016-05-01

    DOMERAPI project has involved earth scientists from Indonesia and France to conduct comprehensively a study of the internal structure of Mt. Merapi and its vicinity based on seismic tomographic imaging. The DOMERAPI seismic network was running from October 2013 to April 2015 consisting of 53 broad-band seismometers, covering Mt. Merapi and Mt. Merbabu, and some geological features such as Opak and Dengkeng faults. Earthquake hypocenter determination conducted in this study is an important step before seismic tomographic imaging. The earthquake events were identified and picked manually and carefully. The majority of earthquakes occured outside the DOMERAPI network. The ray paths of seismic waves from these earthquakes passed through the deep part of the study area around Merapi. The joint data of BMKG and DOMERAPI networks can minimize the azimuthal gap, which is often used to obtain an indication of the reliability of the epicentral solution. Our preliminary results show 279 events from October 2013 to mid August 2014. For future work, we will incorporate the BPPTKG (Center for Research and Technology Development of Geological Disaster) data catalogue in order to enrich seismic ray paths. The combined data catalogues will provide information as input for further advanced studies and volcano hazards mitigation.

  3. Virginia Regional Seismic Network. Final report (1986--1992)

    Energy Technology Data Exchange (ETDEWEB)

    Bollinger, G.A.; Sibol, M.S.; Chapman, M.C.; Snoke, J.A. [Virginia Polytechnic Inst. and State Univ., Blacksburg, VA (US). Seismological Observatory

    1993-07-01

    In 1986, the Virginia Regional Seismic Network was one of the few fully calibrated digital seismic networks in the United States. Continued operation has resulted in the archival of signals from 2,000+ local, regional and teleseismic sources. Seismotectonic studies of the central Virginia seismic zone showed the activity in the western part to be related to a large antiformal structure while seismicity in the eastern portion is associated spatially with dike swarms. The eastern Tennessee seismic zone extends over a 300x50 km area and is the result of a compressive stress field acting at the intersection between two large crustal blocks. Hydroseismicity, which proposes a significant role for meteoric water in intraplate seismogenesis, found support in the observation of common cyclicities between streamflow and earthquake strain data. Seismic hazard studies have provided the following results: (1) Damage areas in the eastern United States are three to five times larger than those observed in the west. (2) Judged solely on the basis of cataloged earthquake recurrence rates, the next major shock in the southeast region will probably occur outside the Charleston, South Carolina area. (3) Investigations yielded necessary hazard parameters (for example, maximum magnitudes) for several sites in the southeast. Basic to these investigations was the development and maintenance of several seismological data bases.

  4. Use of an Educational Seismic Network for Monitoring Intraplate Seismicity in the Central United States

    Science.gov (United States)

    Webb, S. M.; Bailey, L.; Lindsey, J.; Pavlis, G. L.; Hamburger, M. W.; Bauer, M.

    2006-12-01

    The Indiana PEPP seismic network is a 21-station broadband, digital seismic network operated as a collaboration between Indiana University and area high schools, colleges, and museums. Since 1999 the network has used internet data transmission to provide real-time network recording and archiving at the IRIS Data Management Center. The network provides expanded coverage of intraplate seismicity, quarry and mining explosion, and teleseismic earthquakes. We analyzed the signal-to-noise ratio for 11 local events tabulated in the ANSS catalog and used this to project the detection threshold for the network. We define a detection threshold for these events as the minimum projected equivalent event with 5 phases having a signal to noise ration of 3 or larger. We found that the detection threshold for events in southern Indiana, which is the approximate center of the network, varied from 1.7 to 2.3. For events outside this area the estimated detection floor ranges from 2.5 to 3.3. We also examined 264 regional earthquakes (300 to 1500 km) tabulated in the ANSS catalog during 2002. We found events larger than approximately 2.5 in the New Madrid region were consistently detectable. Regional events larger than 3.0 in the 700 to 1500 km distance range were consistently recorded. To further clarify detection capabilities we carefully scanned all data from a 114- day period, from day 51 through 164 of 2002. During this test period we observed 3520 mining explosions (29 events/day), all teleseismic events larger than about 5.0, and only 2 unambiguous earthquakes (the June 18, M_L = 5.0, Evansville (Caborn) mainshock and a single aftershock). This result illustrates an important practical issue in appraising seismicity levels in this area: less than 0.1% of the detected signals were local earthquakes. We extended this review period to include the remaining 251 days of 2002, but examining only the nighttime hours (0000-1200 UTC), when the levels of noise and blasting are minimal

  5. A network communication and recording system for digital seismic observation

    Institute of Scientific and Technical Information of China (English)

    WANG Hong-ti; ZHUANG Can-tao; XUE Bing; LI Jiang; CHEN Yang; ZHU Xiao-yi; LOU Wen-yu; LIU Ming-hui

    2006-01-01

    A network communication and recording system based on China-made ARCA SOC and embedded Linux operating system is introduced in this paper. It supports TCP/IP network communication protocol and mass storage medium. It has strong points of self-monitor, low power consumption, high timing accuracy, high reliability of operation, etc. It can serve up to 20 centers real-time waveform data at the same time. It meets not only the requirements of physical networking observation, but also virtual networking observation based on Intemet in which real-time data transmission is required. Its ability of field recording also meets the requirements of portable seismic observation, strong motion observation and seismic exploration observation, etc.

  6. Small world in a seismic network: the California case

    Directory of Open Access Journals (Sweden)

    A. Jiménez

    2008-05-01

    Full Text Available Recent work has shown that disparate systems can be described as complex networks i.e. assemblies of nodes and links with nontrivial topological properties. Examples include technological, biological and social systems. Among them, earthquakes have been studied from this perspective. In the present work, we divide the Southern California region into cells of 0.1°, and calculate the correlation of activity between them to create functional networks for that seismic area, in the same way that the brain activity is studied from the complex network perspective. We found that the network shows small world features.

  7. Building an educational seismic network in Romanian schools

    Science.gov (United States)

    Zaharia, Bogdan; Tataru, Dragos; Grecu, Bogdan; Ionescu, Constantin; Bican-Brisan, Nicoleta; Neagoe, Cristian

    2014-05-01

    Understanding the earthquake phenomena and their effects is an important step toward the education of population and aims to raise the awareness about the earthquake risk and possible mitigation actions. In this sense, The Romanian Educational Seismic Network project represents an efficient communication tool, allowing teaching and learning about the earthquakes and seismic wave impact through experimental practices and educational activities. The seismic network consist of nine SEP seismometers installed in high-schools from the most important seismic areas (Vrancea, Banat, Făgăraş, Dobrogea), vulnerable cities (Bucharest, Iasi) or high populated places (Cluj, Sibiu, Timisoara, Zalău) and is coordinated by the National Institute of Earth Physics from Bucharest. Once installed, the seismic network is the starting point of activities for students through an e-learning platform. Some objectives are aimed: - To train students and teachers how to make analysis and interpretation of seismological data; - To make science more interesting for students; - To improve the participation rates in physical sciences for students; - To raise awareness of geoscience as a scientific discipline for pre-university students; - To promote the installation and effective use of educational seismographs and seismic data; - To reinforce and develop relationships between participating schools and research institutes; - To create an earthquake database this will be used by students and teachers for educational purposes. Different types of practical activities using educational seismometer, designed by researchers for students, are described in educational materials and in the web platform project. Also we encourage the teachers from the participating schools to share their experiences and produce new didactic tools for the classroom. This collaborative work could illustrate the conjugated efforts of researchers and teachers for a better education and awareness of the risk culture

  8. Detecting and Monitoring for Induced Seismicity without a Local Seismic Network: Application to the Youngstown, Ohio Induced Seismic Sequence

    Science.gov (United States)

    Holtkamp, S. G.; Brudzinski, M. R.; Currie, B. S.

    2013-12-01

    From March to December 2011, the Ohio Department of Natural Resources Ohio Seismic Network (ODNR OSN) recorded 11 earthquakes in Youngstown, OH. Pumping stopped after a local seismic network was installed in December and showed the earthquakes were nucleating near a nearby wastewater injection well. Unfortunately, 11 events identified by ODNR plus the local data represent a limited characterization of the sequence, making it difficult to confirm a causal relationship between injection and the earthquakes. This is a limitation of traditional seismic techniques, which required an earthquake to be M>~2.0 to be identified by ODNR before the local deployment. While local seismic deployments can provide adequate resolution to test triggering hypotheses, they suffer from two disadvantages: (1) these deployments are costly and scientifically focused, and (2) they only monitor seismicity after they are installed, and so are unable to characterize the beginning of the seismic sequence. Since there are over 200,000 wells associated with energy technologies in the US, it is not reasonable to install or expect local seismic observational capabilities with each potential case of induced seismicity. To address this limitation, we have developed a multiple station template matching (waveform cross correlation) algorithm, which is able to detect events ~10x smaller than traditional techniques, utilizing regional broadband seismometers located within 200km of the earthquakes. With this technique, we detect ~280 earthquakes in the Youngstown earthquake sequence, allowing us to test the correlation between seismicity and injection. We find that the earthquakes started two weeks after injection began and ended 2 weeks after injection ended. Our improved catalog shows that the rate of earthquakes closely follows the injection history, with a gradual rate increase at the beginning of the sequence and an abrupt reduction in earthquake rate after injection ceased. A combination of relative

  9. Dense distributed processing in a hindlimb scratch motor network

    DEFF Research Database (Denmark)

    Guzulaitis, Robertas; Hounsgaard, Jørn Dybkjær

    2014-01-01

    In reduced preparations, hindlimb movements can be generated by a minimal network of neurons in the limb innervating spinal segments. The network of neurons that generates real movements is less well delineated. In an ex vivo carapace-spinal cord preparation from adult turtles (Trachemys scripta ...... of a distributed motor network that secures motor coherence.......In reduced preparations, hindlimb movements can be generated by a minimal network of neurons in the limb innervating spinal segments. The network of neurons that generates real movements is less well delineated. In an ex vivo carapace-spinal cord preparation from adult turtles (Trachemys scripta...... elegans), we show that ventral horn interneurons in mid-thoracic spinal segments are functionally integrated in the hindlimb scratch network. First, mid-thoracic interneurons receive intense synaptic input during scratching and behave like neurons in the hindlimb enlargement. Second, some mid...

  10. Earth slope reliability analysis under seismic loadings using neural network

    Institute of Scientific and Technical Information of China (English)

    PENG Huai-sheng; DENG Jian; GU De-sheng

    2005-01-01

    A new method was proposed to cope with the earth slope reliability problem under seismic loadings. The algorithm integrates the concepts of artificial neural network, the first order second moment reliability method and the deterministic stability analysis method of earth slope. The performance function and its derivatives in slope stability analysis under seismic loadings were approximated by a trained multi-layer feed-forward neural network with differentiable transfer functions. The statistical moments calculated from the performance function values and the corresponding gradients using neural network were then used in the first order second moment method for the calculation of the reliability index in slope safety analysis. Two earth slope examples were presented for illustrating the applicability of the proposed approach. The new method is effective in slope reliability analysis. And it has potential application to other reliability problems of complicated engineering structure with a considerably large number of random variables.

  11. Mesh Generation from Dense 3D Scattered Data Using Neural Network

    Institute of Scientific and Technical Information of China (English)

    ZHANGWei; JIANGXian-feng; CHENLi-neng; MAYa-liang

    2004-01-01

    An improved self-organizing feature map (SOFM) neural network is presented to generate rectangular and hexagonal lattic with normal vector attached to each vertex. After the neural network was trained, the whole scattered data were divided into sub-regions where classified core were represented by the weight vectors of neurons at the output layer of neural network. The weight vectors of the neurons were used to approximate the dense 3-D scattered points, so the dense scattered points could be reduced to a reasonable scale, while the topological feature of the whole scattered points were remained.

  12. High yield, controlled synthesis of graphitic networks from dense micro emulsions

    NARCIS (Netherlands)

    Negro, E.; Dieci, M.; Sordi, D.; Kowlgi, K.; Makkee, M.; Koper, G.J.M.

    2014-01-01

    We report on the production of Carbon Nano Networks (CNNs) from dense microemulsions in which catalyst nanoparticles have been synthesized. CNNs are 3D carbon networks, consisting of branches and junctions, and are mesoporous, graphitic, and conductive being suitable as electrode materials.

  13. Network similarity and statistical analysis of earthquake seismic data

    CERN Document Server

    Deyasi, Krishanu; Banerjee, Anirban

    2016-01-01

    We study the structural similarity of earthquake networks constructed from seismic catalogs of different geographical regions. A hierarchical clustering of underlying undirected earthquake networks is shown using Jensen-Shannon divergence in graph spectra. The directed nature of links indicates that each earthquake network is strongly connected, which motivates us to study the directed version statistically. Our statistical analysis of each earthquake region identifies the hub regions. We calculate the conditional probability of the forthcoming occurrences of earthquakes in each region. The conditional probability of each event has been compared with their stationary distribution.

  14. Network similarity and statistical analysis of earthquake seismic data

    Science.gov (United States)

    Deyasi, Krishanu; Chakraborty, Abhijit; Banerjee, Anirban

    2017-09-01

    We study the structural similarity of earthquake networks constructed from seismic catalogs of different geographical regions. A hierarchical clustering of underlying undirected earthquake networks is shown using Jensen-Shannon divergence in graph spectra. The directed nature of links indicates that each earthquake network is strongly connected, which motivates us to study the directed version statistically. Our statistical analysis of each earthquake region identifies the hub regions. We calculate the conditional probability of the forthcoming occurrences of earthquakes in each region. The conditional probability of each event has been compared with their stationary distribution.

  15. Data Set From Molisan Regional Seismic Network Events

    CERN Document Server

    De Gasperis, Giovanni

    2016-01-01

    After the earthquake occurred in Molise (Central Italy) on 31st October 2002 (Ml 5.4, 29 people dead), the local Servizio Regionale per la Protezione Civile to ensure a better analysis of local seismic data, through a convention with the Istituto Nazionale di Geofisica e Vulcanologia (INGV), promoted the design of the Regional Seismic Network (RMSM) and funded its implementation. The 5 stations of RMSM worked since 2007 to 2013 collecting a large amount of seismic data and giving an important contribution to the study of seismic sources present in the region and the surrounding territory. This work reports about the dataset containing all triggers collected by RMSM since July 2007 to March 2009, including actual seismic events; among them, all earthquakes events recorded in coincidence to Rete Sismica Nazionale Centralizzata (RSNC) of INGV have been marked with S and P arrival timestamps. Every trigger has been associated to a spectrogram defined into a recorded time vs. frequency domain. The main aim of this...

  16. The improved broadband Real-Time Seismic Network in Romania

    Science.gov (United States)

    Neagoe, C.; Ionescu, C.

    2009-04-01

    Starting with 2002 the National Institute for Earth Physics (NIEP) has developed its real-time digital seismic network. This network consists of 96 seismic stations of which 48 broad band and short period stations and two seismic arrays are transmitted in real-time. The real time seismic stations are equipped with Quanterra Q330 and K2 digitizers, broadband seismometers (STS2, CMG40T, CMG 3ESP, CMG3T) and strong motions sensors Kinemetrics episensors (+/- 2g). SeedLink and AntelopeTM (installed on MARMOT) program packages are used for real-time (RT) data acquisition and exchange. The communication from digital seismic stations to the National Data Center in Bucharest is assured by 5 providers (GPRS, VPN, satellite communication, radio lease line and internet), which will assure the back-up communications lines. The processing centre runs BRTT's AntelopeTM 4.10 data acquisition and processing software on 2 workstations for real-time processing and post processing. The Antelope Real-Time System is also providing automatic event detection, arrival picking, event location and magnitude calculation. It provides graphical display and reporting within near-real-time after a local or regional event occurred. Also at the data center was implemented a system to collect macroseismic information using the internet on which macro seismic intensity maps are generated. In the near future at the data center will be install Seiscomp 3 data acquisition processing software on a workstation. The software will run in parallel with Antelope software as a back-up. The present network will be expanded in the near future. In the first half of 2009 NIEP will install 8 additional broad band stations in Romanian territory, which also will be transmitted to the data center in real time. The Romanian Seismic Network is permanently exchanging real -time waveform data with IRIS, ORFEUS and different European countries through internet. In Romania, magnitude and location of an earthquake are now

  17. Censoring for Bayesian Cooperative Positioning in Dense Wireless Networks

    NARCIS (Netherlands)

    Das, Kallol; Wymeersch, Henk

    2012-01-01

    Cooperative positioning is a promising solution for location-enabled technologies in GPS-challenged environments. However, it suffers from high computational complexity and increased network traffic, compared to traditional positioning approaches. The computational complexity is related to the numbe

  18. The AlpArray Seismic Network: current status and next steps

    Science.gov (United States)

    Hetényi, György; Molinari, Irene; Clinton, John; Kissling, Edi

    2016-04-01

    The AlpArray initiative (http://www.alparray.ethz.ch) is a large-scale European collaboration to study the entire Alpine orogen at high resolution and in 3D with a large variety of geoscientific methods. The core element of the initiative is an extensive and dense broadband seismological network, the AlpArray Seismic Network (AASN), which complements the permanent seismological stations to ensure homogeneous coverage of the greater Alpine area. The some 260 temporary stations of the AlpArray Seismic Network are operated as a joint effort by a number of institutions from Austria, Bosnia-Herzegovina, Croatia, Czech Republic, France, Germany, Hungary, Italy, Slovakia and Switzerland. The first stations were installed in Spring 2015 and the full AASN is planned to be operational by early Summer 2016. In this poster we present the actual status of the deployment, the effort undertaken by the contributing groups, station performance, typical noise levels, best practices in installation as well as in data management, often encountered challenges, and planned next steps including the deployment of ocean bottom seismometers in the Ligurian Sea.

  19. Prediction-based association control scheme in dense femtocell networks

    Science.gov (United States)

    Pham, Ngoc-Thai; Huynh, Thong; Hwang, Won-Joo; You, Ilsun; Choo, Kim-Kwang Raymond

    2017-01-01

    The deployment of large number of femtocell base stations allows us to extend the coverage and efficiently utilize resources in a low cost manner. However, the small cell size of femtocell networks can result in frequent handovers to the mobile user, and consequently throughput degradation. Thus, in this paper, we propose predictive association control schemes to improve the system’s effective throughput. Our design focuses on reducing handover frequency without impacting on throughput. The proposed schemes determine handover decisions that contribute most to the network throughput and are proper for distributed implementations. The simulation results show significant gains compared with existing methods in terms of handover frequency and network throughput perspective. PMID:28328992

  20. Cooperative Development of the Pakistan Seismic Network System (PSNS)

    Science.gov (United States)

    Detweiler, S.; Mooney, W.; McDonald, S.

    2005-12-01

    We propose to cooperate with the Pakistan Meteorological Department for the design and construction of the new Pakistan Seismic Network System (PSNS) that has been funded by the government of Pakistan. The PSNS will consist of 12-15 broadband stations, 50 short-period stations, and 50 accelerometers. Our role will be to provide technical assistance in site selection, to prepare the Request for Proposals (RFP) from industry, and to evaluate performance. The relative importance of tsunami warnings, national earthquake and landslide hazards, and whether a largely urban or truly national network is envisioned will be determined early in the program. Final placement of stations will take many factors into consideration including proximity to faults and seismic activity, geographic accessibility, the consistency of bedrock, and various cultural or social effects. This cooperation has the potential to lead to the development of a desperately needed tsunami early warning network that could protect the Pakistani coastal population in the event of a natural disaster such as the Dec. 26, 2004 Sumatra earthquake and tsunami. The seismic hazard off the coast of Pakistan is high due to the proximity of the Makran and Sumatra subduction zones, the former of which could trigger tsunamis in Pakistan with heights of 12m within minutes. In addition to monitoring earthquake activity, the PSNS will provide seismic data of interest to the world-wide scientific community for a region in which there is little understanding of the upper crust and mantle. It will furthermore address educational outreach and diplomacy issues by providing training to Pakistani scientists in routine network operation and data processing.

  1. Scattering of high-frequency P wavefield derived by dense Hi-net array observations in Japan and computer simulations of seismic wave propagations

    Science.gov (United States)

    Takemura, Shunsuke; Furumura, Takashi

    2013-04-01

    We studied the scattering properties of high-frequency seismic waves due to the distribution of small-scale velocity fluctuations in the crust and upper mantle beneath Japan based on an analysis of three-component short-period seismograms and comparison with finite difference method (FDM) simulation of seismic wave propagation using various stochastic random velocity fluctuation models. Using a large number of dense High-Sensitivity Seismograph network waveform data of 310 shallow crustal earthquakes, we examined the P-wave energy partition of transverse component (PEPT), which is caused by scattering of the seismic wave in heterogeneous structure, as a function of frequency and hypocentral distances. At distance of less than D = 150 km, the PEPT increases with increasing frequency and is approximately constant in the range of from D = 50 to 150 km. The PEPT was found to increase suddenly at a distance of over D = 150 km and was larger in the high-frequency band (f > 4 Hz). Therefore, strong scattering of P wave may occur around the propagation path (upper crust, lower crust and around Moho discontinuity) of the P-wave first arrival phase at distances of larger than D = 150 km. We also found a regional difference in the PEPT value, whereby the PEPT value is large at the backarc side of northeastern Japan compared with southwestern Japan and the forearc side of northeastern Japan. These PEPT results, which were derived from shallow earthquakes, indicate that the shallow structure of heterogeneity at the backarc side of northeastern Japan is stronger and more complex compared with other areas. These hypotheses, that is, the depth and regional change of small-scale velocity fluctuations, are examined by 3-D FDM simulation using various heterogeneous structure models. By comparing the observed feature of the PEPT with simulation results, we found that strong seismic wave scattering occurs in the lower crust due to relatively higher velocity and stronger heterogeneities

  2. The Mexican Seismic Network (Red Sísmica Mexicana)

    Science.gov (United States)

    Valdes-Gonzales, C. M.; Arreola-Manzano, J.; Castelan-Pescina, G.; Alonso-Rivera, P.; Saldivar-Rangel, M. A.; Rodriguez-Arteaga, O. O.; Lopez-Lena-Villasana, R.

    2014-12-01

    The Mexican Seismic Network (Red Sísmica Mexicana) was created to give sufficient information and opportune to make decisions in order to mitigate seismic and tsunami risk. This was a Mexican government initiative headed by CENAPRED (National Disaster Prevention Center) who made an effort to integrated academic institutions and civil agencies to work together through a collaboration agreement. This network is supported by Universidad National Autónoma de México (UNAM) and its seismic networks (Broad Band and Strong Motion), the Centro de Instrumentación y Registro Sismico (CIRES) with its Earthquake Early Warning System that covers the Guerrero Gap and Oaxaca earthquakes, The Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE) with the support of its expertise in tsunami observation and the Secretaria de Marina (SEMAR) to monitor the sea level and operate the Mexican Tsunami Warning Center. The institutions involved in this scope have the compromise to interchange and share the data and advice to the Civil Protection authorities.

  3. Rapid response seismic networks in Europe: lessons learnt from the L'Aquila earthquake emergency

    Directory of Open Access Journals (Sweden)

    Angelo Strollo

    2011-08-01

    Full Text Available

    The largest dataset ever recorded during a normal fault seismic sequence was acquired during the 2009 seismic emergency triggered by the damaging earthquake in L'Aquila (Italy. This was possible through the coordination of different rapid-response seismic networks in Italy, France and Germany. A seismic network of more than 60 stations recorded up to 70,000 earthquakes. Here, we describe the different open-data archives where it is possible to find this unique set of data for studies related to hazard, seismotectonics and earthquake physics. Moreover, we briefly describe some immediate and direct applications of emergency seismic networks. At the same time, we note the absence of communication platforms between the different European networks. Rapid-response networks need to agree on common strategies for network operations. Hopefully, over the next few years, the European Rapid-Response Seismic Network will became a reality.

  4. Earthquake Monitoring: SeisComp3 at the Swiss National Seismic Network

    Science.gov (United States)

    Clinton, J. F.; Diehl, T.; Cauzzi, C.; Kaestli, P.

    2011-12-01

    The Swiss Seismological Service (SED) has an ongoing responsibility to improve the seismicity monitoring capability for Switzerland. This is a crucial issue for a country with low background seismicity but where a large M6+ earthquake is expected in the next decades. With over 30 stations with spacing of ~25km, the SED operates one of the densest broadband networks in the world, which is complimented by ~ 50 realtime strong motion stations. The strong motion network is expected to grow with an additional ~80 stations over the next few years. Furthermore, the backbone of the network is complemented by broadband data from surrounding countries and temporary sub-networks for local monitoring of microseismicity (e.g. at geothermal sites). The variety of seismic monitoring responsibilities as well as the anticipated densifications of our network demands highly flexible processing software. We are transitioning all software to the SeisComP3 (SC3) framework. SC3 is a fully featured automated real-time earthquake monitoring software developed by GeoForschungZentrum Potsdam in collaboration with commercial partner, gempa GmbH. It is in its core open source, and becoming a community standard software for earthquake detection and waveform processing for regional and global networks across the globe. SC3 was originally developed for regional and global rapid monitoring of potentially tsunamagenic earthquakes. In order to fulfill the requirements of a local network recording moderate seismicity, SED has tuned configurations and added several modules. In this contribution, we present our SC3 implementation strategy, focusing on the detection and identification of seismicity on different scales. We operate several parallel processing "pipelines" to detect and locate local, regional and global seismicity. Additional pipelines with lower detection thresholds can be defined to monitor seismicity within dense subnets of the network. To be consistent with existing processing

  5. FALCON or how to compute measures time efficiently on dynamically evolving dense complex networks?

    Science.gov (United States)

    Franke, R; Ivanova, G

    2014-02-01

    A large number of topics in biology, medicine, neuroscience, psychology and sociology can be generally described via complex networks in order to investigate fundamental questions of structure, connectivity, information exchange and causality. Especially, research on biological networks like functional spatiotemporal brain activations and changes, caused by neuropsychiatric pathologies, is promising. Analyzing those so-called complex networks, the calculation of meaningful measures can be very long-winded depending on their size and structure. Even worse, in many labs only standard desktop computers are accessible to perform those calculations. Numerous investigations on complex networks regard huge but sparsely connected network structures, where most network nodes are connected to only a few others. Currently, there are several libraries available to tackle this kind of networks. A problem arises when not only a few big and sparse networks have to be analyzed, but hundreds or thousands of smaller and conceivably dense networks (e.g. in measuring brain activation over time). Then every minute per network is crucial. For these cases there several possibilities to use standard hardware more efficiently. It is not sufficient to apply just standard algorithms for dense graph characteristics. This article introduces the new library FALCON developed especially for the exploration of dense complex networks. Currently, it offers 12 different measures (like clustering coefficients), each for undirected-unweighted, undirected-weighted and directed-unweighted networks. It uses a multi-core approach in combination with comprehensive code and hardware optimizations. There is an alternative massively parallel GPU implementation for the most time-consuming measures, too. Finally, a comparing benchmark is integrated to support the choice of the most suitable library for a particular network issue. Copyright © 2013 Elsevier Inc. All rights reserved.

  6. OGS improvements in 2012 in running the Northeastern Italy Seismic Network: the Ferrara VBB borehole seismic station

    Science.gov (United States)

    Pesaresi, Damiano; Romanelli, Marco; Barnaba, Carla; Bragato, Pier Luigi; Durì, Giorgio

    2013-04-01

    The Centro di Ricerche Sismologiche (CRS, Seismological Research Center) of the Istituto Nazionale di Oceanografia e di Geofisica Sperimentale (OGS, Italian National Institute for Oceanography and Experimental Geophysics) in Udine (Italy) after the strong earthquake of magnitude M=6.4 occurred in 1976 in the Italian Friuli-Venezia Giulia region, started to operate the Northeastern Italy Seismic Network: it currently consists of 17 very sensitive broad band and 18 simpler short period seismic stations, all telemetered to and acquired in real time at the OGS-CRS data center in Udine. Real time data exchange agreements in place with other Italian, Slovenian, Austrian and Swiss seismological institutes lead to a total number of about 100 seismic stations acquired in real time, which makes the OGS the reference institute for seismic monitoring of Northeastern Italy. The southwestern edge of the OGS seismic network stands on the Po alluvial basin: earthquake localization and characterization in this area is affected by the presence of soft alluvial deposits. OGS ha already experience in running a local seismic network in high noise conditions making use of borehole installations in the case of the micro-seismicity monitoring of a local gas storage site for a private company. Following the ML=5.9 earthquake that struck the Emilia region around Ferrara in Northern Italy on May 20, 2012 at 02:03:53 UTC, a cooperation of Istituto Nazionale di Geofisica e Vulcanologia, OGS, the Comune di Ferrara and the University of Ferrara lead to the reinstallation of a previously existing very broad band (VBB) borehole seismic station in Ferrara. The aim of the OGS intervention was on one hand to extend its real time seismic monitoring capabilities toward South-West, including Ferrara and its surroundings, and on the other hand to evaluate the seismic response at the site. We will describe improvements in running the Northeastern Italy Seismic Network, including details of the Ferrara VBB

  7. Fault Orientation Determination for the 4 March 2008 Taoyuan Earthquake from Dense Near-Source Seismic Observations

    Directory of Open Access Journals (Sweden)

    Min-Hung Shih

    2014-01-01

    Full Text Available On 4 March 2008, a moderate earthquake (ML = 5.2 occurred in southern Taiwan and named as the Taoyuan earthquake, preceded by foreshocks and followed by numerous aftershocks. This earthquake sequence occurred during the TAIGER (TAiwan Integrated GEodynamics Research controlled-source seismic experiment. Consequently, several seismic networks were deployed in the Taiwan area at this time and many stations recorded this earthquake sequence in the near-source region. We archived and processed near-source observations to determine the fault orientation. To locate the events more accurately, station corrections, waveform cross-correlation to pick seismic phases, and a double-difference earthquake location algorithm were used to compute earthquake hypocenters. Over a 50-hour recording period, beginning half an hour before the start of the main shock, 2340 events were identified within the earthquake sequence. The identified aftershocks reveal a clear fault plane with a strike of N37°EN37°E and a dip of 45°SE.45°SE. This plane corresponds to one of the focal mechanism nodal planes determined by the Broadband Array in Taiwan for Seismology (BATS (strike = 37°,37°, dip = 48°,48°, and rake = 96°.96°. Based on the main shock focal mechanism, the aftershock distribution, and the regional geological reports, we suggest that faulting on the northern extension of the major regional active fault, the Chishan Fault, caused the Taoyuan earthquake sequence.

  8. Low Cost Seismic Network Practical Applications for Producing Quick Shaking Maps in Taiwan

    Directory of Open Access Journals (Sweden)

    Chih-Yih Hsieh

    2014-01-01

    Full Text Available Two major earthquakes of ML greater than 6.0 occurred in Taiwan in the first half of 2013. The vibrant shaking brought landslides, falling rocks and casualties. This paper presents a seismic network developed by National Taiwan University (NTU with 401 Micro-Electro Mechanical System (MEMS accelerators. The network recorded high quality strong motion signals from the two events and produced delicate shaking maps within one minute after the earthquake occurrence. The high shaking regions of the intensity map produced by the NTU system suggest damage and casualty locations. Equipped with a dense array of MEMS accelerometers, the NTU system is able to accommodate 10% signals loss from part of the seismic stations and maintain its normal functions for producing shaking maps. The system also has the potential to identify the rupture direction which is one of the key indices used to estimate possible damage. The low cost MEMS accelerator array shows its potential in real-time earthquake shaking map generation and damage avoidance.

  9. Practical Applications of Low Cost Seismic Network for Producing Quick Shaking Map in Taiwan

    Science.gov (United States)

    Wu, Yih-Min

    2014-05-01

    Two major earthquakes of ML greater than 6.0 occurred in Taiwan in the first half of 2013. The vibrantly shakings brought landslides, falling rocks and casualties. This paper presents a seismic network developed by National Taiwan University (NTU) with 401 Micro-ElectroMechanical Systems (MEMS) accelerators. The network recorded high quality strong motion signals of the two events and produced delicate shaking maps within one minute after the earthquake occurrence. The high shaking regions of the intensity map produced by the NTU system precisely indicate the locations of damages and casualties. Equipping with the dense array of MEMS accelerometers, the NTU system is able to accommodate 10% signals loss from part of the seismic stations and maintains its normal functions for producing shaking maps. The system also has the potential to identify the direction of rupture which is one of the key indices to estimate possible damages. The low cost MEMS accelerator array shows its potential in real-time earthquake shaking map generation and damage avoidance.

  10. A microwave transmission-line network guiding electromagnetic fields through a dense array of metallic objects

    CERN Document Server

    Alitalo, Pekka; Vehmas, Joni; Tretyakov, Sergei

    2008-01-01

    We present measurements of a transmission-line network, designed for cloaking applications in the microwave region. The network is used for channelling microwave energy through an electrically dense array of metal objects, which is basically impenetrable to the impinging electromagnetic radiation. With the designed transmission-line network the waves emitted by a source placed in an air-filled waveguide, are coupled into the network and guided through the array of metallic objects. Our goal is to illustrate the simple manufacturing, assembly, and the general feasibility of these types of cloaking devices.

  11. From sparse to dense and from assortative to disassortative in online social networks

    CERN Document Server

    Li, Menghui; Gong, Xiaofeng; Li, Kun; Wu, Jinshan; Di, Zengru; Lai, Choy-Heng

    2013-01-01

    In this paper, inspired by the analysis on several empirical online social networks, we propose a simple reaction-diffusion-like coevolving model, in which individuals are activated to create links based on their states influenced by local dynamics and their own intension. It is shown that the model can reproduce the remarkable properties observed in empirical online social networks, particularly, that the assortative coefficients are neural or negative and the power law exponents are smaller than 2. Moreover, we demonstrate that, under feasible conditions, the modeling networks naturally convert from assortative to disassortative, and from sparse to dense. Our model is helpful for understanding the formation and evolution of online social networks.

  12. A Stochastic Geometry Framework for LOS/NLOS Propagation in Dense Small Cell Networks

    DEFF Research Database (Denmark)

    Galiotto, Carlo; Kiilerich Pratas, Nuno; Marchetti, Nicola

    2015-01-01

    The need to carry out analytical studies of wireless systems often motivates the usage of simplified models which, despite their tractability, can easily lead to an overestimation of the achievable performance. In the case of dense small cells networks, the standard single slope path-loss model h...

  13. Can Full Duplex Boost Throughput and Delay of 5G Ultra-Dense Small Cell Networks?

    DEFF Research Database (Denmark)

    Gatnau, Marta; Berardinelli, Gilberto; Mahmood, Nurul Huda;

    2016-01-01

    Given the recent advances in system and antenna design, practical implementation of full duplex (FD) communication is becoming increasingly feasible. In this paper, the potential of FD in enhancing the performance of 5th generation (5G) ultra-dense small cell networks is investigated. The goal...

  14. Effect of LOS/NLOS Propagation on 5G Ultra-Dense Networks

    DEFF Research Database (Denmark)

    Galiotto, Carlo; Pratas, Nuno; Doyle, Linda

    2017-01-01

    The combined presence of Line-of-Sight (LOS) and Non-Line-of-Sight (NLOS) components in the radio propagation environment can severely degrade the Ultra-Dense Networks (UDNs) performance. Backed by a stochastic geometry model, we show that when the LOS/NLOS propagation components are taken into a...... and to take advantage of extreme cell densification in the upcoming 5G wireless networks....

  15. Supporting IP dense mode multicast routing protocols in WDM all-optical networks

    Science.gov (United States)

    Salvador, Marcos R.; Heemstra de Groot, Sonia; Dey, Diptish

    2000-09-01

    Recent developments in all-optical networking and wavelength division multiplexing technologies allow for the support of optical multicasting, a missing feature towards the optical Internet. In this paper we propose a protocol to construct source-rooted WDM multicast trees. The protocol works under dense mode multicasting routing IP protocols and supports network nodes with different degrees of light splitting, wavelength conversion, and add/drop capabilities.

  16. Modeling virtualized downlink cellular networks with ultra-dense small cells

    KAUST Repository

    Ibrahim, Hazem

    2015-09-11

    The unrelenting increase in the mobile users\\' populations and traffic demand drive cellular network operators to densify their infrastructure. Network densification increases the spatial frequency reuse efficiency while maintaining the signal-to-interference-plus-noise-ratio (SINR) performance, hence, increases the spatial spectral efficiency and improves the overall network performance. However, control signaling in such dense networks consumes considerable bandwidth and limits the densification gain. Radio access network (RAN) virtualization via control plane (C-plane) and user plane (U-plane) splitting has been recently proposed to lighten the control signaling burden and improve the network throughput. In this paper, we present a tractable analytical model for virtualized downlink cellular networks, using tools from stochastic geometry. We then apply the developed modeling framework to obtain design insights for virtualized RANs and quantify associated performance improvement. © 2015 IEEE.

  17. Module discovery by exhaustive search for densely connected, co-expressed regions in biomolecular interaction networks.

    Science.gov (United States)

    Colak, Recep; Moser, Flavia; Chu, Jeffrey Shih-Chieh; Schönhuth, Alexander; Chen, Nansheng; Ester, Martin

    2010-10-25

    Computational prediction of functionally related groups of genes (functional modules) from large-scale data is an important issue in computational biology. Gene expression experiments and interaction networks are well studied large-scale data sources, available for many not yet exhaustively annotated organisms. It has been well established, when analyzing these two data sources jointly, modules are often reflected by highly interconnected (dense) regions in the interaction networks whose participating genes are co-expressed. However, the tractability of the problem had remained unclear and methods by which to exhaustively search for such constellations had not been presented. We provide an algorithmic framework, referred to as Densely Connected Biclustering (DECOB), by which the aforementioned search problem becomes tractable. To benchmark the predictive power inherent to the approach, we computed all co-expressed, dense regions in physical protein and genetic interaction networks from human and yeast. An automatized filtering procedure reduces our output which results in smaller collections of modules, comparable to state-of-the-art approaches. Our results performed favorably in a fair benchmarking competition which adheres to standard criteria. We demonstrate the usefulness of an exhaustive module search, by using the unreduced output to more quickly perform GO term related function prediction tasks. We point out the advantages of our exhaustive output by predicting functional relationships using two examples. We demonstrate that the computation of all densely connected and co-expressed regions in interaction networks is an approach to module discovery of considerable value. Beyond confirming the well settled hypothesis that such co-expressed, densely connected interaction network regions reflect functional modules, we open up novel computational ways to comprehensively analyze the modular organization of an organism based on prevalent and largely available large

  18. Module discovery by exhaustive search for densely connected, co-expressed regions in biomolecular interaction networks.

    Directory of Open Access Journals (Sweden)

    Recep Colak

    Full Text Available BACKGROUND: Computational prediction of functionally related groups of genes (functional modules from large-scale data is an important issue in computational biology. Gene expression experiments and interaction networks are well studied large-scale data sources, available for many not yet exhaustively annotated organisms. It has been well established, when analyzing these two data sources jointly, modules are often reflected by highly interconnected (dense regions in the interaction networks whose participating genes are co-expressed. However, the tractability of the problem had remained unclear and methods by which to exhaustively search for such constellations had not been presented. METHODOLOGY/PRINCIPAL FINDINGS: We provide an algorithmic framework, referred to as Densely Connected Biclustering (DECOB, by which the aforementioned search problem becomes tractable. To benchmark the predictive power inherent to the approach, we computed all co-expressed, dense regions in physical protein and genetic interaction networks from human and yeast. An automatized filtering procedure reduces our output which results in smaller collections of modules, comparable to state-of-the-art approaches. Our results performed favorably in a fair benchmarking competition which adheres to standard criteria. We demonstrate the usefulness of an exhaustive module search, by using the unreduced output to more quickly perform GO term related function prediction tasks. We point out the advantages of our exhaustive output by predicting functional relationships using two examples. CONCLUSION/SIGNIFICANCE: We demonstrate that the computation of all densely connected and co-expressed regions in interaction networks is an approach to module discovery of considerable value. Beyond confirming the well settled hypothesis that such co-expressed, densely connected interaction network regions reflect functional modules, we open up novel computational ways to comprehensively analyze

  19. Probabilistic Completeness Studies of the INGV Seismic Network in Italy

    Science.gov (United States)

    Schorlemmer, D.; Mele, F.; Marzocchi, W.

    2007-12-01

    An important characteristic of any seismic network is its detection completeness, which should be considered a function of space and time. Many researchers rely on robust estimates of detection completeness, especially when investigating statistical parameters of earthquake occurence. We apply the newly developed probabilistic magnitude of completeness (PMC) method to the INGV network in Italy and report on completeness and earthquake detection capabilities. We have (1) investigated the variation of detection completeness with time over the last two years, (2) conducted scenario computations on possible system failures, (3) estimated the completeness drops due to random failures of stations. The results show that the INGV network is largely stable and strongly affected only by large-scale station outages. This stability indicates that Italy can provide the data of required quality for CSEP (Collaboratory for the Study of Earthquake Predictability) testing.

  20. Site response, shallow shear-wave velocity, and wave propagation at the San Jose, California, dense seismic array

    Science.gov (United States)

    Hartzell, S.; Carver, D.; Williams, R.A.; Harmsen, S.; Zerva, A.

    2003-01-01

    Ground-motion records from a 52-element dense seismic array near San Jose, California, are analyzed to obtain site response, shallow shear-wave velocity, and plane-wave propagation characteristics. The array, located on the eastern side of the Santa Clara Valley south of the San Francisco Bay, is sited over the Evergreen basin, a 7-km-deep depression with Miocene and younger deposits. Site response values below 4 Hz are up to a factor of 2 greater when larger, regional records are included in the analysis, due to strong surface-wave development within the Santa Clara Valley. The pattern of site amplification is the same, however, with local or regional events. Site amplification increases away from the eastern edge of the Santa Clara Valley, reaching a maximum over the western edge of the Evergreen basin, where the pre-Cenozoic basement shallows rapidly. Amplification then decreases further to the west. This pattern may be caused by lower shallow shear-wave velocities and thicker Quaternary deposits further from the edge of the Santa Clara Valley and generation/trapping of surface waves above the shallowing basement of the western Evergreen basin. Shear-wave velocities from the inversion of site response spectra based on smaller, local earthquakes compare well with those obtained independently from our seismic reflection/refraction measurements. Velocities from the inversion of site spectra that include larger, regional records do not compare well with these measurements. A mix of local and regional events, however, is appropriate for determination of site response to be used in seismic hazard evaluation, since large damaging events would excite both body and surface waves with a wide range in ray parameters. Frequency-wavenumber, plane-wave analysis is used to determine the backazimuth and apparent velocity of coherent phases at the array. Conventional, high-resolution, and multiple signal characterization f-k power spectra and stacked slowness power spectra are

  1. Caucasus Seismic Information Network: Data and Analysis Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Randolph Martin; Mary Krasovec; Spring Romer; Timothy O' Connor; Emanuel G. Bombolakis; Youshun Sun; Nafi Toksoz

    2007-02-22

    The geology and tectonics of the Caucasus region (Armenia, Azerbaijan, and Georgia) are highly variable. Consequently, generating a structural model and characterizing seismic wave propagation in the region require data from local seismic networks. As of eight years ago, there was only one broadband digital station operating in the region – an IRIS station at Garni, Armenia – and few analog stations. The Caucasus Seismic Information Network (CauSIN) project is part of a nulti-national effort to build a knowledge base of seismicity and tectonics in the region. During this project, three major tasks were completed: 1) collection of seismic data, both in event catalogus and phase arrival time picks; 2) development of a 3-D P-wave velocity model of the region obtained through crustal tomography; 3) advances in geological and tectonic models of the region. The first two tasks are interrelated. A large suite of historical and recent seismic data were collected for the Caucasus. These data were mainly analog prior to 2000, and more recently, in Georgia and Azerbaijan, the data are digital. Based on the most reliable data from regional networks, a crustal model was developed using 3-D tomographic inversion. The results of the inversion are presented, and the supporting seismic data are reported. The third task was carried out on several fronts. Geologically, the goal of obtaining an integrated geological map of the Caucasus on a scale of 1:500,000 was initiated. The map for Georgia has been completed. This map serves as a guide for the final incorporation of the data from Armenia and Azerbaijan. Description of the geological units across borders has been worked out and formation boundaries across borders have been agreed upon. Currently, Armenia and Azerbaijan are working with scientists in Georgia to complete this task. The successful integration of the geologic data also required addressing and mapping active faults throughout the greater Caucasus. Each of the major

  2. Cooperative Game-Based Energy Efficiency Management over Ultra-Dense Wireless Cellular Networks

    Directory of Open Access Journals (Sweden)

    Ming Li

    2016-09-01

    Full Text Available Ultra-dense wireless cellular networks have been envisioned as a promising technique for handling the explosive increase of wireless traffic volume. With the extensive deployment of small cells in wireless cellular networks, the network spectral efficiency (SE is improved with the use of limited frequency. However, the mutual inter-tier and intra-tier interference between or among small cells and macro cells becomes serious. On the other hand, more chances for potential cooperation among different cells are introduced. Energy efficiency (EE has become one of the most important problems for future wireless networks. This paper proposes a cooperative bargaining game-based method for comprehensive EE management in an ultra-dense wireless cellular network, which highlights the complicated interference influence on energy-saving challenges and the power-coordination process among small cells and macro cells. Especially, a unified EE utility with the consideration of the interference mitigation is proposed to jointly address the SE, the deployment efficiency (DE, and the EE. In particular, closed-form power-coordination solutions for the optimal EE are derived to show the convergence property of the algorithm. Moreover, a simplified algorithm is presented to reduce the complexity of the signaling overhead, which is significant for ultra-dense small cells. Finally, numerical simulations are provided to illustrate the efficiency of the proposed cooperative bargaining game-based and simplified schemes.

  3. MorphoNeuroNet: an automated method for dense neurite network analysis.

    Science.gov (United States)

    Pani, Giuseppe; De Vos, Winnok H; Samari, Nada; de Saint-Georges, Louis; Baatout, Sarah; Van Oostveldt, Patrick; Benotmane, Mohammed Abderrafi

    2014-02-01

    High content cell-based screens are rapidly gaining popularity in the context of neuronal regeneration studies. To analyze neuronal morphology, automatic image analysis pipelines have been conceived, which accurately quantify the shape changes of neurons in cell cultures with non-dense neurite networks. However, most existing methods show poor performance for well-connected and differentiated neuronal networks, which may serve as valuable models for inter alia synaptogenesis. Here, we present a fully automated method for quantifying the morphology of neurons and the density of neurite networks, in dense neuronal cultures, which are grown for more than 10 days. MorphoNeuroNet, written as a script for ImageJ, Java based freeware, automatically determines various morphological parameters of the soma and the neurites (size, shape, starting points, and fractional occupation). The image analysis pipeline consists of a multi-tier approach in which the somas are segmented by adaptive region growing using nuclei as seeds, and the neurites are delineated by a combination of various intensity and edge detection algorithms. Quantitative comparison showed a superior performance of MorphoNeuroNet to existing analysis tools, especially for revealing subtle changes in thin neurites, which have weak fluorescence intensity compared to the rest of the network. The proposed method will help determining the effects of compounds on cultures with dense neurite networks, thereby boosting physiological relevance of cell-based assays in the context of neuronal diseases. © 2013 International Society for Advancement of Cytometry.

  4. Cooperative Game-Based Energy Efficiency Management over Ultra-Dense Wireless Cellular Networks.

    Science.gov (United States)

    Li, Ming; Chen, Pengpeng; Gao, Shouwan

    2016-09-13

    Ultra-dense wireless cellular networks have been envisioned as a promising technique for handling the explosive increase of wireless traffic volume. With the extensive deployment of small cells in wireless cellular networks, the network spectral efficiency (SE) is improved with the use of limited frequency. However, the mutual inter-tier and intra-tier interference between or among small cells and macro cells becomes serious. On the other hand, more chances for potential cooperation among different cells are introduced. Energy efficiency (EE) has become one of the most important problems for future wireless networks. This paper proposes a cooperative bargaining game-based method for comprehensive EE management in an ultra-dense wireless cellular network, which highlights the complicated interference influence on energy-saving challenges and the power-coordination process among small cells and macro cells. Especially, a unified EE utility with the consideration of the interference mitigation is proposed to jointly address the SE, the deployment efficiency (DE), and the EE. In particular, closed-form power-coordination solutions for the optimal EE are derived to show the convergence property of the algorithm. Moreover, a simplified algorithm is presented to reduce the complexity of the signaling overhead, which is significant for ultra-dense small cells. Finally, numerical simulations are provided to illustrate the efficiency of the proposed cooperative bargaining game-based and simplified schemes.

  5. Cooperative Game-Based Energy Efficiency Management over Ultra-Dense Wireless Cellular Networks

    Science.gov (United States)

    Li, Ming; Chen, Pengpeng; Gao, Shouwan

    2016-01-01

    Ultra-dense wireless cellular networks have been envisioned as a promising technique for handling the explosive increase of wireless traffic volume. With the extensive deployment of small cells in wireless cellular networks, the network spectral efficiency (SE) is improved with the use of limited frequency. However, the mutual inter-tier and intra-tier interference between or among small cells and macro cells becomes serious. On the other hand, more chances for potential cooperation among different cells are introduced. Energy efficiency (EE) has become one of the most important problems for future wireless networks. This paper proposes a cooperative bargaining game-based method for comprehensive EE management in an ultra-dense wireless cellular network, which highlights the complicated interference influence on energy-saving challenges and the power-coordination process among small cells and macro cells. Especially, a unified EE utility with the consideration of the interference mitigation is proposed to jointly address the SE, the deployment efficiency (DE), and the EE. In particular, closed-form power-coordination solutions for the optimal EE are derived to show the convergence property of the algorithm. Moreover, a simplified algorithm is presented to reduce the complexity of the signaling overhead, which is significant for ultra-dense small cells. Finally, numerical simulations are provided to illustrate the efficiency of the proposed cooperative bargaining game-based and simplified schemes. PMID:27649170

  6. 3D porosity prediction from seismic inversion and neural networks

    Science.gov (United States)

    Leite, Emilson Pereira; Vidal, Alexandre Campane

    2011-08-01

    In this work, we address the problem of transforming seismic reflection data into an intrinsic rock property model. Specifically, we present an application of a methodology that allows interpreters to obtain effective porosity 3D maps from post-stack 3D seismic amplitude data, using measured density and sonic well log data as constraints. In this methodology, a 3D acoustic impedance model is calculated from seismic reflection amplitudes by applying an L1-norm sparse-spike inversion algorithm in the time domain, followed by a recursive inversion performed in the frequency domain. A 3D low-frequency impedance model is estimated by kriging interpolation of impedance values calculated from well log data. This low-frequency model is added to the inversion result which otherwise provides only a relative numerical scale. To convert acoustic impedance into a single reservoir property, a feed-forward Neural Network (NN) is trained, validated and tested using gamma-ray and acoustic impedance values observed at the well log positions as input and effective porosity values as target. The trained NN is then applied for the whole reservoir volume in order to obtain a 3D effective porosity model. While the particular conclusions drawn from the results obtained in this work cannot be generalized, such results suggest that this workflow can be applied successfully as an aid in reservoir characterization, especially when there is a strong non-linear relationship between effective porosity and acoustic impedance.

  7. Observations of basin ground motions from a dense seismic array in San Jose, California

    Science.gov (United States)

    Frankel, A.; Carver, D.; Cranswick, E.; Bice, T.; Sell, R.; Hanson, S.

    2001-01-01

    We installed a dense array of 41 digital seismographs in San Jose, California, to evaluate in detail the effects of a deep sedimentary basin and shallow sedimentary deposits on earthquake ground motions. This urban array is located near the eastern edge of the Santa Clara Valley and spans the Evergreen sedimentary basin identified by gravity data. Average station spacing is 1 km, with three stations initially spaced 110 m apart. Despite the high-noise urban environment, the stations of the array successfully triggered on and recorded small local earthquakes (M 2.5-2.8 at 10-25 km distance) and larger regional events such as the M 5.0 Bolinas earthquake (90 km distance), M 4.6-5.6 earthquakes near Mammoth Lakes (270 km distance), M 4.9-5.6 events in western Nevada (420 km distance) and the M 7.1 Hector Mine earthquake (590 km distance). Maps of spectral ratios across the array show that the highest amplitudes in all frequency bands studied (0.125-8 Hz) are generally observed at stations farther from the eastern edge of the Santa Clara Valley. Larger spectral amplitudes are often observed above the western edge of the Evergreen Basin. Snapshots of the recorded wavefield crossing the array for regional events to the east reveal that large, low-frequency (0.125-0.5 Hz) arrivals after the S-wave travel from south to north across the array. A moving-window, cross-correlation analysis finds that these later arrivals are surface waves traveling from the south. The timing and propagation direction of these arrivals indicates that they were likely produced by scattering of incident S waves at the border of the Santa Clara Valley to the south of the array. It is remarkable that the largest low-frequency phases at many of the valley sites for regional events to the east are basin surface waves coming from a direction about 70 degrees different from that of the epicenters. Basin surface waves emanating from the eastern edge of the valley are also identified by the cross

  8. Towards marine seismological Network: real time small aperture seismic array

    Science.gov (United States)

    Ilinskiy, Dmitry

    2017-04-01

    Most powerful and dangerous seismic events are generated in underwater subduction zones. Existing seismological networks are based on land seismological stations. Increased demands for accuracy of location, magnitude, rupture process of coming earthquakes and at the same time reduction of data processing time require information from seabed seismic stations located near the earthquake generation area. Marine stations provide important contribution for clarification of the tectonic settings in most active subduction zones of the world. Early warning system for subduction zone area is based on marine seabed array which located near the area of most hazardous seismic zone in the region. Fast track processing for location of the earthquake hypocenter and energy takes place in buoy surface unit. Information about detected and located earthquake reaches the onshore seismological center earlier than the first break waves from the same earthquake will reach the nearest onshore seismological station. Implementation of small aperture array is based on existed and shown a good proven performance and costs effective solutions such as weather moored buoy and self-pop up autonomous seabed seismic nodes. Permanent seabed system for real-time operation has to be installed in deep sea waters far from the coast. Seabed array consists of several self-popup seismological stations which continuously acquire the data, detect the events of certain energy class and send detected event parameters to the surface buoy via acoustic link. Surface buoy unit determine the earthquake location by receiving the event parameters from seabed units and send such information in semi-real time to the onshore seismological center via narrow band satellite link. Upon the request from the cost the system could send wave form of events of certain energy class, bottom seismic station battery status and other environmental parameters. When the battery life of particular seabed unit is close to became empty

  9. Reconstruction of in-plane strain maps using hybrid dense sensor network composed of sensing skin

    Science.gov (United States)

    Downey, Austin; Laflamme, Simon; Ubertini, Filippo

    2016-12-01

    The authors have recently developed a soft-elastomeric capacitive (SEC)-based thin film sensor for monitoring strain on mesosurfaces. Arranged in a network configuration, the sensing system is analogous to a biological skin, where local strain can be monitored over a global area. Under plane stress conditions, the sensor output contains the additive measurement of the two principal strain components over the monitored surface. In applications where the evaluation of strain maps is useful, in structural health monitoring for instance, such signal must be decomposed into linear strain components along orthogonal directions. Previous work has led to an algorithm that enabled such decomposition by leveraging a dense sensor network configuration with the addition of assumed boundary conditions. Here, we significantly improve the algorithm’s accuracy by leveraging mature off-the-shelf solutions to create a hybrid dense sensor network (HDSN) to improve on the boundary condition assumptions. The system’s boundary conditions are enforced using unidirectional RSGs and assumed virtual sensors. Results from an extensive experimental investigation demonstrate the good performance of the proposed algorithm and its robustness with respect to sensors’ layout. Overall, the proposed algorithm is seen to effectively leverage the advantages of a hybrid dense network for application of the thin film sensor to reconstruct surface strain fields over large surfaces.

  10. An Adaptive Channel Access Method for Dynamic Super Dense Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Chunyang Lei

    2015-12-01

    Full Text Available Super dense and distributed wireless sensor networks have become very popular with the development of small cell technology, Internet of Things (IoT, Machine-to-Machine (M2M communications, Vehicular-to-Vehicular (V2V communications and public safety networks. While densely deployed wireless networks provide one of the most important and sustainable solutions to improve the accuracy of sensing and spectral efficiency, a new channel access scheme needs to be designed to solve the channel congestion problem introduced by the high dynamics of competing nodes accessing the channel simultaneously. In this paper, we firstly analyzed the channel contention problem using a novel normalized channel contention analysis model which provides information on how to tune the contention window according to the state of channel contention. We then proposed an adaptive channel contention window tuning algorithm in which the contention window tuning rate is set dynamically based on the estimated channel contention level. Simulation results show that our proposed adaptive channel access algorithm based on fast contention window tuning can achieve more than 95 % of the theoretical optimal throughput and 0 . 97 of fairness index especially in dynamic and dense networks.

  11. An Adaptive Channel Access Method for Dynamic Super Dense Wireless Sensor Networks.

    Science.gov (United States)

    Lei, Chunyang; Bie, Hongxia; Fang, Gengfa; Zhang, Xuekun

    2015-12-03

    Super dense and distributed wireless sensor networks have become very popular with the development of small cell technology, Internet of Things (IoT), Machine-to-Machine (M2M) communications, Vehicular-to-Vehicular (V2V) communications and public safety networks. While densely deployed wireless networks provide one of the most important and sustainable solutions to improve the accuracy of sensing and spectral efficiency, a new channel access scheme needs to be designed to solve the channel congestion problem introduced by the high dynamics of competing nodes accessing the channel simultaneously. In this paper, we firstly analyzed the channel contention problem using a novel normalized channel contention analysis model which provides information on how to tune the contention window according to the state of channel contention. We then proposed an adaptive channel contention window tuning algorithm in which the contention window tuning rate is set dynamically based on the estimated channel contention level. Simulation results show that our proposed adaptive channel access algorithm based on fast contention window tuning can achieve more than 95 % of the theoretical optimal throughput and 0 . 97 of fairness index especially in dynamic and dense networks.

  12. Measuring distance through dense weighted networks: The case of hospital-associated pathogens.

    Directory of Open Access Journals (Sweden)

    Tjibbe Donker

    2017-08-01

    Full Text Available Hospital networks, formed by patients visiting multiple hospitals, affect the spread of hospital-associated infections, resulting in differences in risks for hospitals depending on their network position. These networks are increasingly used to inform strategies to prevent and control the spread of hospital-associated pathogens. However, many studies only consider patients that are received directly from the initial hospital, without considering the effect of indirect trajectories through the network. We determine the optimal way to measure the distance between hospitals within the network, by reconstructing the English hospital network based on shared patients in 2014-2015, and simulating the spread of a hospital-associated pathogen between hospitals, taking into consideration that each intermediate hospital conveys a delay in the further spread of the pathogen. While the risk of transferring a hospital-associated pathogen between directly neighbouring hospitals is a direct reflection of the number of shared patients, the distance between two hospitals far-away in the network is determined largely by the number of intermediate hospitals in the network. Because the network is dense, most long distance transmission chains in fact involve only few intermediate steps, spreading along the many weak links. The dense connectivity of hospital networks, together with a strong regional structure, causes hospital-associated pathogens to spread from the initial outbreak in a two-step process: first, the directly surrounding hospitals are affected through the strong connections, second all other hospitals receive introductions through the multitude of weaker links. Although the strong connections matter for local spread, weak links in the network can offer ideal routes for hospital-associated pathogens to travel further faster. This hold important implications for infection prevention and control efforts: if a local outbreak is not controlled in time

  13. Measuring distance through dense weighted networks: The case of hospital-associated pathogens

    Science.gov (United States)

    Smieszek, Timo; Henderson, Katherine L.; Johnson, Alan P.

    2017-01-01

    Hospital networks, formed by patients visiting multiple hospitals, affect the spread of hospital-associated infections, resulting in differences in risks for hospitals depending on their network position. These networks are increasingly used to inform strategies to prevent and control the spread of hospital-associated pathogens. However, many studies only consider patients that are received directly from the initial hospital, without considering the effect of indirect trajectories through the network. We determine the optimal way to measure the distance between hospitals within the network, by reconstructing the English hospital network based on shared patients in 2014–2015, and simulating the spread of a hospital-associated pathogen between hospitals, taking into consideration that each intermediate hospital conveys a delay in the further spread of the pathogen. While the risk of transferring a hospital-associated pathogen between directly neighbouring hospitals is a direct reflection of the number of shared patients, the distance between two hospitals far-away in the network is determined largely by the number of intermediate hospitals in the network. Because the network is dense, most long distance transmission chains in fact involve only few intermediate steps, spreading along the many weak links. The dense connectivity of hospital networks, together with a strong regional structure, causes hospital-associated pathogens to spread from the initial outbreak in a two-step process: first, the directly surrounding hospitals are affected through the strong connections, second all other hospitals receive introductions through the multitude of weaker links. Although the strong connections matter for local spread, weak links in the network can offer ideal routes for hospital-associated pathogens to travel further faster. This hold important implications for infection prevention and control efforts: if a local outbreak is not controlled in time, colonised patients will

  14. ULF radio monitoring network in a seismic area

    Science.gov (United States)

    Toader, Victorin; Moldovan, Iren-Adelina; Ionescu, Constantin; Marmureanu, Alexandru

    2017-04-01

    ULF monitoring is a part of a multidisciplinary network (AeroSolSys) located in Vrancea (Curvature Carpathian Mountains). Four radio receivers (100 kHz - microwave) placed on faults in a high seismic area characterized by deep earthquakes detect fairly weak radio waves. The radio power is recorded in correlation with many other parameters related to near surface low atmosphere phenomena (seismicity, solar radiation, air ionization, electromagnetic activity, radon, CO2 concentration, atmospheric pressure, telluric currents, infrasound, seismo-acoustic emission, meteorological information). We follow variations in the earth's surface propagate radio waves avoiding reflection on ionosphere. For this reason the distance between stations is less than 60 km and the main source of emission is near (Bod broadcasting transmitter for long- and medium-wave radio, next to Brasov city). In the same time tectonic stress affects the radio propagation in air and it could generates ULF waves in ground (LAI coupling). To reduce the uncertainty is necessary to monitor a location for extended periods of time to outline local and seasonal fluctuations. Solar flares do not affect seismic activity but they produce disturbances in telecommunications networks and power grids. Our ULF monitoring correlated with two local magnetometers does not indicate this so far with our receivers. Our analysis was made during magnetic storms with Kp 7 and 8 according to NOAA satellites. To correlate the results we implemented an application that monitors the satellite EUTELSAT latency compared to WiMAX land communication in the same place. ULF band radio monitoring showed that our receiver is dependent on temperature and that it is necessary to introduce a band pass filter in data analysis. ULF data acquisition is performed by Kinemetrics and National Instruments digitizers with a sampling rate of 100 Hz in Miniseed format and then converted into text files with 1 Hz rate for analysis in very low

  15. Strain and ground-motion monitoring at magmatic areas: ultra-long and ultra-dense networks using fibre optic sensing systems

    Science.gov (United States)

    Jousset, Philippe; Reinsch, Thomas; Henninges, Jan; Blanck, Hanna; Ryberg, Trond

    2016-04-01

    The fibre optic distributed acoustic sensing technology (DAS) is a "new" sensing system for exploring earth crustal elastic properties and monitoring both strain and seismic waves with unprecedented acquisition characteristics. The DAS technology principle lies in sending successive and coherent pulses of light in an optical fibre and measuring the back-scattered light issued from elastic scattering at random defaults within the fibre. The read-out unit includes an interferometer, which measures light interference patterns continuously. The changes are related to the distance between such defaults and therefore the strain within the fibre can be detected. Along an optical fibre, DAS can be used to acquire acoustic signals with a high spatial (every meter over kilometres) and high temporal resolution (thousand of Hz). Fibre optic technologies were, up to now, mainly applied in perimeter surveillance applications and pipeline monitoring and in boreholes. Previous experiments in boreholes have shown that the DAS technology is well suited for probing subsurface elastic properties, showing new ways for cheaper VSP investigations of the Earth crust. Here, we demonstrate that a cable deployed at ground surface can also help in exploring subsurface properties at crustal scale and monitor earthquake activity in a volcanic environment. Within the framework of the EC funded project IMAGE, we observed a >15 km-long fibre optic cable at the surface connected to a DAS read-out unit. Acoustic data was acquired continuously for 9 days. Hammer shots were performed along the surface cable in order to locate individual acoustic traces and calibrate the spatial distribution of the acoustic information. During the monitoring period both signals from on- and offshore explosive sources and natural seismic events could be recorded. We compare the fibre optic data to conventional seismic records from a dense seismic network deployed on Reykjanes. We show that we can probe and monitor earth

  16. An Interference-Aware Distributed Transmission Technique for Dense Small Cell Networks

    DEFF Research Database (Denmark)

    Mahmood, Nurul Huda; Berardinelli, Gilberto; Pedersen, Klaus I.

    2015-01-01

    transmission technique that can efficiently manage the interference in an uncoordinated dense small cell network is investigated in this work. The proposed interference aware scheme only requires instantaneous channel state information at the transmitter end towards the desired receiver. Motivated by penalty...... methods in optimization studies, an interference dependent weighting factor is introduced to control the number of parallel transmission streams. The proposed scheme can outperform a more complex benchmark transmission scheme in terms of the sum network throughput in certain scenarios and with realistic...

  17. Joint Device Positioning and Clock Synchronization in 5G Ultra-Dense Networks

    OpenAIRE

    Koivisto, Mike; Costa, Mário; Werner, Janis; Heiska, Kari; Talvitie, Jukka; Leppänen, Kari; Koivunen, Visa; Valkama, Mikko

    2016-01-01

    In this article, we address the prospects and key enabling technologies for highly efficient and accurate device positioning and tracking in 5G radio access networks. Building on the premises of ultra-dense networks as well as on the adoption of multicarrier waveforms and antenna arrays in the access nodes (ANs), we first formulate extended Kalman filter (EKF)-based solutions for computationally efficient joint estimation and tracking of the time of arrival (ToA) and direction of arrival (DoA...

  18. OGS improvements in 2012 in running the North-eastern Italy Seismic Network: the Ferrara VBB borehole seismic station

    Science.gov (United States)

    Pesaresi, D.; Romanelli, M.; Barnaba, C.; Bragato, P. L.; Durì, G.

    2014-07-01

    The Centro di Ricerche Sismologiche (CRS, Seismological Research Centre) of the Istituto Nazionale di Oceanografia e di Geofisica Sperimentale (OGS, Italian National Institute for Oceanography and Experimental Geophysics) in Udine (Italy) after the strong earthquake of magnitude M=6.4 occurred in 1976 in the Italian Friuli-Venezia Giulia region, started to operate the North-eastern Italy Seismic Network: it currently consists of 17 very sensitive broad band and 18 simpler short period seismic stations, all telemetered to and acquired in real time at the OGS-CRS data centre in Udine. Real time data exchange agreements in place with other Italian, Slovenian, Austrian and Swiss seismological institutes lead to a total number of about 100 seismic stations acquired in real time, which makes the OGS the reference institute for seismic monitoring of North-eastern Italy. The south-western edge of the OGS seismic network (Fig. 1) stands on the Po alluvial basin: earthquake localization and characterization in this area is affected by the presence of soft alluvial deposits. OGS ha already experience in running a local seismic network in high noise conditions making use of borehole installations in the case of the micro-seismicity monitoring of a local gas storage site for a private company. Following the ML = 5.9 earthquake that struck the Emilia region around Ferrara in Northern Italy on 20 May 2012 at 02:03:53 UTC, a cooperation of Istituto Nazionale di Geofisica e Vulcanologia, OGS, the Comune di Ferrara and the University of Ferrara lead to the reinstallation of a previously existing very broad band (VBB) borehole seismic station in Ferrara. The aim of the OGS intervention was on one hand to extend its real time seismic monitoring capabilities toward South-West, including Ferrara and its surroundings, and on the other hand to evaluate the seismic response at the site. We will describe improvements in running the North-eastern Italy Seismic Network, including details of

  19. The Quake-Catcher Network: An Innovative Community-Based Seismic Network

    Science.gov (United States)

    Saltzman, J.; Cochran, E. S.; Lawrence, J. F.; Christensen, C. M.

    2009-12-01

    The Quake-Catcher Network (QCN) is a volunteer computing seismic network that engages citizen scientists, teachers, and museums to participate in the detection of earthquakes. In less than two years, the network has grown to over 1000 participants globally and continues to expand. QCN utilizes Micro-Electro-Mechanical System (MEMS) accelerometers, in laptops and external to desktop computers, to detect moderate to large earthquakes. One goal of the network is to involve K-12 classrooms and museums by providing sensors and software to introduce participants to seismology and community-based scientific data collection. The Quake-Catcher Network provides a unique opportunity to engage participants directly in the scientific process, through hands-on activities that link activities and outcomes to their daily lives. Partnerships with teachers and museum staff are critical to growth of the Quake Catcher Network. Each participating institution receives a MEMS accelerometer to connect, via USB, to a computer that can be used for hands-on activities and to record earthquakes through a distributed computing system. We developed interactive software (QCNLive) that allows participants to view sensor readings in real time. Participants can also record earthquakes and download earthquake data that was collected by their sensor or other QCN sensors. The Quake-Catcher Network combines research and outreach to improve seismic networks and increase awareness and participation in science-based research in K-12 schools.

  20. From sparse to dense and from assortative to disassortative in online social networks

    Science.gov (United States)

    Li, Menghui; Guan, Shuguang; Wu, Chensheng; Gong, Xiaofeng; Li, Kun; Wu, Jinshan; di, Zengru; Lai, Choy-Heng

    2014-05-01

    Inspired by the analysis of several empirical online social networks, we propose a simple reaction-diffusion-like coevolving model, in which individuals are activated to create links based on their states, influenced by local dynamics and their own intention. It is shown that the model can reproduce the remarkable properties observed in empirical online social networks; in particular, the assortative coefficients are neutral or negative, and the power law exponents γ are smaller than 2. Moreover, we demonstrate that, under appropriate conditions, the model network naturally makes transition(s) from assortative to disassortative, and from sparse to dense in their characteristics. The model is useful in understanding the formation and evolution of online social networks.

  1. Enterprise virtual private network (VPN) with dense wavelength division multiplexing (DWDM) design

    Science.gov (United States)

    Carranza, Aparicio

    An innovative computer simulation and modeling tool for metropolitan area optical data communication networks is presented. These models address the unique requirements of Virtual Private Networks for enterprise data centers, which may comprise a mixture of protocols including ESCON, FICON, Fibre Channel, Sysplex protocols (ETR, CLO, ISC); and other links interconnected over dark fiber using Dense Wavelength Division Multiplexing (DWDM). Our models have the capability of designing a network with minimal inputs; to compute optical link budgets; suggest alternative configurations; and also optimize the design based on user-defined performance metrics. The models make use of Time Division Multiplexing (TDM) wherever possible for lower data rate traffics. Simulation results for several configurations are presented and they have been validated by means of experiments conducted on the IBM enterprise network testbed in Poughkeepsie, N.Y.

  2. From sparse to dense and from assortative to disassortative in online social networks.

    Science.gov (United States)

    Li, Menghui; Guan, Shuguang; Wu, Chensheng; Gong, Xiaofeng; Li, Kun; Wu, Jinshan; Di, Zengru; Lai, Choy-Heng

    2014-01-01

    Inspired by the analysis of several empirical online social networks, we propose a simple reaction-diffusion-like coevolving model, in which individuals are activated to create links based on their states, influenced by local dynamics and their own intention. It is shown that the model can reproduce the remarkable properties observed in empirical online social networks; in particular, the assortative coefficients are neutral or negative, and the power law exponents γ are smaller than 2. Moreover, we demonstrate that, under appropriate conditions, the model network naturally makes transition(s) from assortative to disassortative, and from sparse to dense in their characteristics. The model is useful in understanding the formation and evolution of online social networks.

  3. Strong Ground Motion Database System for the Mexican Seismic Network

    Science.gov (United States)

    Perez-Yanez, C.; Ramirez-Guzman, L.; Ruiz, A. L.; Delgado, R.; Macías, M. A.; Sandoval, H.; Alcántara, L.; Quiroz, A.

    2014-12-01

    A web-based system for strong Mexican ground motion records dissemination and archival is presented. More than 50 years of continuous strong ground motion instrumentation and monitoring in Mexico have provided a fundamental resource -several thousands of accelerograms- for better understanding earthquakes and their effects in the region. Lead by the Institute of Engineering (IE) of the National Autonomous University of Mexico (UNAM), the engineering strong ground motion monitoring program at IE relies on a continuously growing network, that at present includes more than 100 free-field stations and provides coverage to the seismic zones in the country. Among the stations, approximately 25% send the observed acceleration to a processing center in Mexico City in real-time, and the rest require manual access, remote or in situ, for later processing and cataloguing. As part of a collaboration agreement between UNAM and the National Center for Disaster Prevention, regarding the construction and operation of a unified seismic network, a web system was developed to allow access to UNAM's engineering strong motion archive and host data from other institutions. The system allows data searches under a relational database schema, following a general structure relying on four databases containing the: 1) free-field stations, 2) epicentral location associated with the strong motion records available, 3) strong motion catalogue, and 4) acceleration files -the core of the system. In order to locate and easily access one or several records of the data bank, the web system presents a variety of parameters that can be involved in a query (seismic event, region boundary, station name or ID, radial distance to source or peak acceleration). This homogeneous platform has been designed to facilitate dissemination and processing of the information worldwide. Each file, in a standard format, contains information regarding the recording instrument, the station, the corresponding earthquake

  4. Connection with seismic networks and construction of real time earthquake monitoring system

    Energy Technology Data Exchange (ETDEWEB)

    Chi, Heon Cheol; Lee, H. I.; Shin, I. C.; Lim, I. S.; Park, J. H.; Lee, B. K.; Whee, K. H.; Cho, C. S. [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    2000-12-15

    It is natural to use the nuclear power plant seismic network which have been operated by KEPRI(Korea Electric Power Research Institute) and local seismic network by KIGAM(Korea Institute of Geology, Mining and Material). The real time earthquake monitoring system is composed with monitoring module and data base module. Data base module plays role of seismic data storage and classification and the other, monitoring module represents the status of acceleration in the nuclear power plant area. This research placed the target on the first, networking the KIN's seismic monitoring system with KIGAM and KEPRI seismic network and the second, construction the KIN's Independent earthquake monitoring system.

  5. Development of Alaska Volcano Observatory Seismic Networks, 1988-2008

    Science.gov (United States)

    Tytgat, G.; Paskievitch, J. F.; McNutt, S. R.; Power, J. A.

    2008-12-01

    The number and quality of seismic stations and networks on Alaskan volcanoes have increased dramatically in the 20 years from 1988 to 2008. Starting with 28 stations on six volcanoes in 1988, the Alaska Volcano Observatory (AVO) now operates 194 stations in networks on 33 volcanoes spanning the 2000 km Aleutian Arc. All data are telemetered in real time to laboratory facilities in Fairbanks and Anchorage and recorded on digital acquisition systems. Data are used for both monitoring and research. The basic and standard network designs are driven by practical considerations including geography and terrain, access to commercial telecommunications services, and environmental vulnerability. Typical networks consist of 6 to 8 analog stations, whose data can be telemetered to fit on a single analog telephone circuit terminated ultimately in either Fairbanks or Anchorage. Towns provide access to commercial telecommunications and signals are often consolidated for telemetry by remote computer systems. Most AVO stations consist of custom made fiberglass huts that house the batteries, electronics, and antennae. Solar panels are bolted to the south facing side of the huts and the seismometers are buried nearby. The huts are rugged and have allowed for good station survivability and performance reliability. However, damage has occurred from wind, wind-blown pumice, volcanic ejecta, lightning, icing, and bears. Power is provided by multiple isolated banks of storage batteries charged by solar panels. Primary cells are used to provide backup power should the rechargable system fail or fall short of meeting the requirement. In the worst cases, snow loading blocks the solar panels for 7 months, so sufficient power storage must provide power for at least this long. Although primarily seismic stations, the huts and overall design allow additional instruments to be added, such as infrasound sensors, webcams, electric field meters, etc. Yearly maintenance visits are desirable, but some

  6. The ASCI Network for SC '98: Dense Wave Division Multiplexing for Distributed and Distance Computing

    Energy Technology Data Exchange (ETDEWEB)

    Adams, R.L.; Butman, W.; Martinez, L.G.; Pratt, T.J.; Vahle, M.O.

    1999-06-01

    This document highlights the DISCOM's Distance computing and communication team activities at the 1998 Supercomputing conference in Orlando, Florida. This conference is sponsored by the IEEE and ACM. Sandia National Laboratories, Lawrence Livermore National Laboratory, and Los Alamos National Laboratory have participated in this conference for ten years. For the last three years, the three laboratories have a joint booth at the conference under the DOE's ASCI, Accelerated Strategic Computing Initiatives. The DISCOM communication team uses the forum to demonstrate and focus communications and networking developments. At SC '98, DISCOM demonstrated the capabilities of Dense Wave Division Multiplexing. We exhibited an OC48 ATM encryptor. We also coordinated the other networking activities within the booth. This paper documents those accomplishments, discusses the details of their implementation, and describes how these demonstrations support overall strategies in ATM networking.

  7. Estimation of azimuth and slowness of teleseismic signals recorded by a local seismic network

    Institute of Scientific and Technical Information of China (English)

    靳平; 潘常周

    2002-01-01

    A new method that is applicable to local seismic networks to estimate the azimuth and slowness of teleseismic signals is introduced in the paper. The method is based on the correlation between the arrival times and station positions. The analyzed results indicate that the azimuth and slowness of teleseismic signals can be accurately estimated by the method. Average errors for azimuth and slowness measurements obtained by this method using data of Xi(an Digital Telemetry Seismic Network are 2.0o and 0.34 s/(o), respectively. The conclusions drawn from this study indicate that this method may be very useful to interpret teleseismic records of local seismic networks.

  8. NEURAL NETWORKS PREDICTION FOR SEISMIC RESPONSE OF STRUCTURE UNDER THE LEVENBERG-MARQUARDT ALGORITHM

    Institute of Scientific and Technical Information of China (English)

    徐赵东; 沈亚鹏; 李爱群

    2003-01-01

    Objective To investigate the prediction effect of neural networks for seismic response of structure under the Levenberg-Marquardt(LM) algorithm. Results Based on identification and prediction ability of neural networks for nonlinear systems, and combined with LM algorithm, a multi-layer forward networks is adopted to predict the seismic responses of structure. The networks is trained in batch by the shaking table test data of three-floor reinforced concrete structure firstly, then the seismic responses of structure are predicted under the unused excitation data, and the predict responses are compared with the experiment responses. The error curves between the prediction and the experimental results show the efficiency of the method. Conclusion LM algorithm has very good convergence rate, and the neural networks can predict the seismic response of the structure well.

  9. The use of a dense urban meteorological network to enable long term electricity consumption forecasting

    Science.gov (United States)

    Antunes de Azevedo, J.

    2015-12-01

    High air temperatures have an impact on energy consumption, since the demand for cooling fans and air conditioning increases. With current climate projections indicating a general increase in air temperatures, as well as more frequent and intense heat waves, cooling energy demand will increase with time and should therefore be considered by industry and policy makers. Cooling degree days (CDD) are a standard approach used by energy industry to estimate cooling demand. The methodology compares ambient temperatures with a base value for air temperature considered representative of the city being analysed. However, due to the Urban Heat Island effect, temperature and energy consumption will vary considerably across a city. Hence, for CDD to be estimated across an urban area, air temperature data from dense urban networks are required. This study analysed air temperature data available from a dense urban meteorological network to estimate CDD and cooling needs across Birmingham-UK for summer 2013. From the results, it was possible to identify the potential role and limitations of urban meteorological networks in forecasting electricity demand within a city for future climate scenarios.

  10. Rock property estimates using multiple seismic attributes and neural networks; Pegasus Field, West Texas

    Energy Technology Data Exchange (ETDEWEB)

    Schuelke, J.S.; Quirein, J.A.; Sarg, J.F.

    1998-12-31

    This case study shows the benefit of using multiple seismic trace attributes and the pattern recognition capabilities of neural networks to predict reservoir architecture and porosity distribution in the Pegasus Field, West Texas. The study used the power of neural networks to integrate geologic, borehole and seismic data. Illustrated are the improvements between the new neural network approach and the more traditional method of seismic trace inversion for porosity estimation. Comprehensive statistical methods and interpretational/subjective measures are used in the prediction of porosity from seismic attributes. A 3-D volume of seismic derived porosity estimates for the Devonian reservoir provide a very detailed estimate of porosity, both spatially and vertically, for the field. The additional reservoir porosity detail provided, between the well control, allows for optimal placement of horizontal wells and improved field development. 6 refs., 2 figs.

  11. Analyzing the Potential of Full Duplex in 5G Ultra-Dense Small Cell Networks

    DEFF Research Database (Denmark)

    Gatnau, Marta; Berardinelli, Gilberto; Mahmood, Nurul Huda;

    2016-01-01

    Full duplex technology has become an attractive solution for future 5th Generation (5G) systems for accommodating the exponentially growing mobile traffic demand. Full duplex allows a node to transmit and receive simultaneously in the same frequency band, thus, theoretically, doubling the system......-interference cancellation are demonstrated using our own developed test bed. Secondly, a detailed evaluation of full duplex communication in 5G ultra-dense small cell networks via system level simulations is provided. The results are presented in terms of throughput and delay. Two types of full duplex are studied: when...

  12. Deep convolutional neural networks for dense non-uniform motion deblurring

    CSIR Research Space (South Africa)

    Cronje, J

    2015-11-01

    Full Text Available stream_source_info Cronje_2015_ABSTRACT.pdf.txt stream_content_type text/plain stream_size 885 Content-Encoding ISO-8859-1 stream_name Cronje_2015_ABSTRACT.pdf.txt Content-Type text/plain; charset=ISO-8859-1 Computer... Vision and Pattern Recognition Deep Convolutional Neural Networks for Dense Non- Uniform Motion Deblurring Jaco Cronje Council for Scientific and Industrial Research, Pretoria, South Africa Email: jcronje@csir.co.za Abstract The work...

  13. Green Small Cell Operation of Ultra-Dense Networks Using Device Assistance

    Directory of Open Access Journals (Sweden)

    Gilsoo Lee

    2016-12-01

    Full Text Available As higher performance is demanded in 5G networks, energy consumption in wireless networks increases along with the advances of various technologies, so enhancing energy efficiency also becomes an important goal to implement 5G wireless networks. In this paper, we study the energy efficiency maximization problem focused on finding a suitable set of turned-on small cell access points (APs. Finding the suitable on/off states of APs is challenging since the APs can be deployed by users while centralized network planning is not always possible. Therefore, when APs in small cells are randomly deployed and thus redundant in many cases, a mechanism of dynamic AP turning-on/off is required. We propose a device-assisted framework that exploits feedback messages from the user equipment (UE. To solve the problem, we apply an optimization method using belief propagation (BP on a factor graph. Then, we propose a family of online algorithms inspired by BP, called DANCE, that requires low computational complexity. We perform numerical simulations, and the extensive simulations confirm that BP enhances energy efficiency significantly. Furthermore, simple, but practical DANCE exhibits close performance to BP and also better performance than other popular existing methods. Specifically, in a small-sized network, BP enhances energy efficiency 129%. Furthermore, in ultra-dense networks, DANCE algorithms successfully achieve orders of magnitude higher energy efficiency than that of the baseline.

  14. Problems and prospects of creating a global land-ocean seismic network

    Science.gov (United States)

    Levchenko, D. G.; Kuzin, I. P.; Lobkovsky, L. I.; Roginsky, K. A.

    2016-09-01

    The paper discussed the advantages and limitations of seismic signal detection on the ocean bottom. The need to create long-term seismic monitoring systems in areas of industrial development on the shelf and continental slope, as well as in areas with high seismic and tsunami hazards, is justified. The results of employing broadband bottom seismographs during expeditions of the Shirshov Institute of Oceanology of the Russian Academy of Sciences (IO RAS) are described. Autonomous broadband bottom seismographs with operational communication via satellite or radio channels are proposed for creating a global marine seismic network.

  15. Complex patterns arise through spontaneous symmetry breaking in dense homogeneous networks of neural oscillators

    Science.gov (United States)

    Singh, Rajeev; Menon, Shakti N.; Sinha, Sitabhra

    2016-02-01

    There has been much interest in understanding collective dynamics in networks of brain regions due to their role in behavior and cognitive function. Here we show that a simple, homogeneous system of densely connected oscillators, representing the aggregate activity of local brain regions, can exhibit a rich variety of dynamical patterns emerging via spontaneous breaking of permutation or translational symmetries. Upon removing just a few connections, we observe a striking departure from the mean-field limit in terms of the collective dynamics, which implies that the sparsity of these networks may have very important consequences. Our results suggest that the origins of some of the complicated activity patterns seen in the brain may be understood even with simple connection topologies.

  16. Multiconnectivity for Mobility Robustness in Standalone 5G Ultra Dense Networks with Intrafrequency Cloud Radio Access

    Directory of Open Access Journals (Sweden)

    Fasil B. Tesema

    2017-01-01

    Full Text Available Capacity and ultra-reliable communication are some of the requirements for 5th generation (5G networks. One of the candidate technologies to satisfy capacity requirement is standalone Ultra Dense Network (UDN. However, UDNs are characterized by fast change of received signal strength that creates mobility challenges in terms of increased handovers and connection failures. In this paper, a low layer multiconnectivity scheme is presented for standalone UDN aiming at ultra-reliable communication that is free of interruptions from handover procedures and connection failures. Furthermore, the problem in managing of the set of serving cells, that are involved in multiconnectivity for each user, is formulated. By using numerical method, feasible scheme for management of the set of serving cells is derived. Performance of the proposed multiconnectivity scheme is evaluated and compared against single connectivity. It is shown that the proposed multiconnectivity scheme outperforms single connectivity considerably in terms of connection failures and cell-edge throughput.

  17. Flood avalanches in a semiarid basin with a dense reservoir network

    CERN Document Server

    Peter, Samuel J; Araújo, N A M; Herrmann, H J

    2014-01-01

    This study investigates flood avalanches in a dense reservoir network in the semiarid north-eastern Brazil. The population living in this area strongly depends on the availability of the water from this network. Water is stored during intense wet-season rainfall events and evaporates from the reservoir surface during the dry season. These seasonal changes are the driving forces behind the water dynamics in the network. The reservoir network and its connectivity properties during flood avalanches are investigated with a model called ResNetM, which simulates each reservoir explicitly. It runs on the basis of daily calculated water balances for each reservoir. A spilling reservoir contributes with water to the reservoir downstream, which can trigger avalanches affecting, in some cases, large fractions of the network. The main focus is on the study of the relation between the total amount of water stored and the largest observable cluster of connected reservoirs that overspill in the same day. It is shown that th...

  18. Calibration and Recovery of Nuclear Test Seismic Ground-Motion Data from the Leo Brady Seismic Network

    Science.gov (United States)

    Young, B.; Abbott, R. E.

    2016-12-01

    In 1960, Sandia National Laboratories established a small seismic network with stations in Nevada, Utah, and California with the mission to monitor underground nuclear tests (UGTs) at the Nevada National Security Site (NNSS, formerly known as the Nevada Test Site). Over time, this seismic network came to be known as the Leo Brady Seismic Network (LBSN). The LBSN recorded approximately 800 UGTs at the NNSS from its inception through the end of testing in 1992. These irreplaceable data, mostly archived on analog, frequency-modulated magnetic tapes and stored in vaults, are now being digitized. This necessitated a calibration method to take the data from analog FM to digital counts to ground-motion units. Complicating the issue, the seismic system setup, telemetering, instrumentation, and calibration methods changed several times over the course of the LBSN's service life, and much of the documentation and knowledge of the system has been lost to time. The information necessary to understand, interpret, and ultimately calibrate these data was therefore collected from many disparate sources, each of which contains bits and pieces of relevant information. Contradictory information was often the rule rather than the exception. Where necessary (due to a lack of direct information) we made educated guesses as to the exact system, setup, and methodologies used. Ultimately, we documented the evolution and configuration of the seismic network, and determined both empirical and analytical approaches to calibrating these data. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  19. Local Short Period Seismic Network at Villarrica Volcano

    Science.gov (United States)

    Mora-Stock, Cindy; Thorwart, Martin; Dzieran, Laura; Rabbel, Wolfgang

    2014-05-01

    Since its last eruption in 1984-85, the Villarrica volcano has been presenting both seismic and fumarolic activity, accompanied by an open vent and a refulgent lava lake. To study its activity, a local seismic network of 75 DSS-Cubes short-period stations was deployed at and around the volcano. During the first two weeks of March, 2012, 30 3-Component and 45 1-Component stations were installed in a 63 km x 55 km area, with spacing between stations of 1.5 km for stations inside the perimeter of the volcanic edifice, and 5 km outside this perimeter. In total, approximately 94 volcano tectonic (VT) events with clear P- and S- wave arrivals were located to the SSW, SSE and North of the Crater at an average depth of 3 km below sea level. At least 73 events classified as "hybrids" (HB) were observed, predominantly about 2 km above sea level near or at the conduit. They present emergent higher frequencies at the beginning of the signal, and sharp S-wave at the crater stations, but a strong scattering, lower frequency content, and elongated coda on the stations along the volcanic edifice, probably due to ash layers and heterogeneities at the edifice. A few long period events (LP) with frequencies between 2-4 Hz were observed during the two weeks. Three set of groups can be distinguished for the regional tectonic events: aftershocks on the southern end of the rupture of the Maule 2010 event, with S-P wave travel time difference of ca. 30 s or more; a second group with S-P travel time difference between 10 s and 20s; and the much closer group with S-P wave difference of 10 s or less. To determine the average velocity structure of the volcano, a cross-correlation analysis of the waves from a M6.1 event in Argentina and other regional events was performed. The model used was a cylindric model of 6.5 km radius inside the volcanic edifice, which gave a P-wave velocity of 3.6 km/s, and a region outside this radius with a velocity of 4.1 km. The network was divided into five zones

  20. The Self-Organising Seismic Early Warning Information Network

    Science.gov (United States)

    Eveslage, Ingmar; Fischer, Joachim; Kühnlenz, Frank; Lichtblau, Björn; Milkereit, Claus; Picozzi, Matteo

    2010-05-01

    The Self-Organising Seismic Early Warning Information Network (SOSEWIN) represents a new approach for Earthquake Early Warning Systems (EEWS), consisting in taking advantage of novel wireless communications technologies without the need of a planned, centralised infrastructure. It also sets out to overcome problems of insufficient node density, which typically affects present existing early warning systems, by having the SOSEWIN seismological sensing units being comprised of low-cost components (generally bought "off-the-shelf"), with each unit initially costing 100's of Euros, in contrast to 1,000's to 10,000's for standard seismological stations. The reduced sensitivity of the new sensing units arising from the use of lower-cost components will be compensated by the network's density, which in the future is expected to number 100's to 1000's over areas served currently by the order of 10's of standard stations. The robustness, independence of infrastructure, spontaneous extensibility due to a self-healing/self-organizing character in the case of removing/failing or adding sensors makes SOSEWIN potentially useful for various use cases, e.g. monitoring of building structures (as we could proof during the L'Aquila earthquake) or technical systems and most recently for seismic microzonation. Nevertheless the main purpose SOSEWIN was initially invented for is the earthquake early warning and rapid response, for which reason the ground motion is continuously monitored by conventional accelerometers (3-component) and processed within a station. Based on this, the network itself decides whether an event is detected cooperatively in a two-level hierarchical alarming protocol. Experiences and experiment results with the SOSEWIN-prototype installation in the Ataköy district of Istanbul (Turkey) are presented. The limited size of this installation with currently 20 nodes allows not answering certain questions regarding the useful or possible size of a SOSEWIN installation

  1. Micro seismic event detection based on neural networks in the Groningen area, The Netherlands

    Science.gov (United States)

    Paap, Bob; van Maanen, Peter-Paul; Carpentier, Stefan; Meekes, Sjef

    2017-04-01

    Over the past decades, the Groningen gas field has been increasingly faced by induced earthquakes resulting from gas production. The seismic monitoring network at Groningen has been densified in order to acquire more accurate information regarding the onset and origin of seismic events, resulting in increasing amounts of seismic data. Although traditional automated event detection techniques generally are successful in detecting events from continuous data, its detection success is challenged in cases of lower signal-to-noise ratios and often limited availability of seismologists. Besides the recent expansion of the Groningen seismic network, additional new seismic networks have been deployed at several geothermal and CO2 storage fields. The data stream coming from these networks has sparked specific interest in neural networks for automated classification and interpretation. Here we explore the feasibility of neural networks in classifying the occurrence of seismic events. For this purpose a three-layered feedforward neural network was trained using public data related to a seismic event in the Groningen gas field obtained from the Royal Netherlands Meteorological Institute (KNMI) data portal. The first arrival times that were determined by KNMI for a subset of the station data were used to determine the arrival times for the other station data. Different derivatives, using different frequency sub-band and STA/LTA settings, were used as input. Based on these data, the network's parameters were then optimized to predict arrival times accurately. Although this study is still ongoing, we anticipate our approach can significantly increase the performance as compared to detection methods usually applied to the Groningen gas field. This will clear the way for future real-time micro seismic event classification.

  2. Analysis of a dense seismic array to determine sources of Newtonian gravitational noise at the LIGO sites

    Science.gov (United States)

    Driggers, Jennifer; Harms, Jan; Raymond, Vivien; Adhikari, Rana

    2013-04-01

    Newtonian gravitational noise will be an important noise contributor for Advanced LIGO and proposed upgrades to Advanced LIGO, between 5Hz and 30Hz. A major step toward subtracting this Newtonian noise and thus improving the astrophysical detection ability of ground-based gravitational wave observatories is determining the dominant sources of seismic noise, which contribute most strongly to the Newtonian noise. An array of 44 sensors was installed at the LIGO Hanford site for 8 months, including the duration of a commissioning test of a 4km Fabry-Perot cavity. We will show results from this array, including application of LIGO data analysis methods to seismic source localization, relative importance of locally generated versus far-field seismic disturbances, and estimates of residual seismic noise and Newtonian noise present in the cavity length data. We will discuss how this information will help improve noise subtraction algorithms, particularly in terms of optimal sensor placement.

  3. Operating a global seismic network - perspectives from the USGS GSN

    Science.gov (United States)

    Gee, L. S.; Derr, J. S.; Hutt, C. R.; Bolton, H.; Ford, D.; Gyure, G. S.; Storm, T.; Leith, W.

    2007-05-01

    The Global Seismographic Network (GSN) is a permanent digital network of state-of-the-art seismological and geophysical sensors connected by a global telecommunications network, serving as a multi-use scientific facility used for seismic monitoring for response applications, basic and applied research in solid earthquake geophysics, and earth science education. A joint program of the U.S. Geological Survey (USGS), the National Science Foundation, and Incorporated Research Institutions in Seismology (IRIS), the GSN provides near- uniform, worldwide monitoring of the Earth through 144 modern, globally distributed seismic stations. The USGS currently operates 90 GSN or GSN-affiliate stations. As a US government program, the USGS GSN is evaluated on several performance measures including data availability, data latency, and cost effectiveness. The USGS-component of the GSN, like the GSN as a whole, is in transition from a period of rapid growth to steady- state operations. The program faces challenges of aging equipment and increased operating costs at the same time that national and international earthquake and tsunami monitoring agencies place an increased reliance on GSN data. Data acquisition of the USGS GSN is based on the Quanterra Q680 datalogger, a workhorse system that is approaching twenty years in the field, often in harsh environments. An IRIS instrumentation committee recently selected the Quanterra Q330 HR as the "next generation" GSN data acquisition system, and the USGS will begin deploying the new equipment in the middle of 2007. These new systems will address many of the issues associated with the ageing Q680 while providing a platform for interoperability across the GSN.. In order to address the challenge of increasing operational costs, the USGS employs several tools. First, the USGS benefits from the contributions of local host institutions. The station operators are the first line of defense when a station experiences problems, changing boards

  4. Upgrading the seismic and geodetic network of the Popocatépetl volcano (Mexico).

    Science.gov (United States)

    Calò, Marco; Iglesias Mendoza, Arturo; Legrand, Denis; Valdés González, Carlos Miguel; Perez Campos, Xyoli

    2017-04-01

    The Popocatépetl is one of the most active volcanoes in Mexico and is located only 70 km from Mexico City, populated by more than 20 millions of people, and only 35 km from the Puebla municipality with almost 1.5 millions of people living. The recent activity of the volcano is generally marked by explosions emitting ash plumes often reaching the densely populated regions. In the framework of the Mexican Fund for Prevention of Natural Disasters (FOPREDEN) we are renovating and upgrading the existing geodetic and seismic networks monitoring the volcano. In this project we are installing 10 broadband seismic stations (120s-050Hz) in shallow boreholes (3-5m depth) and 4 GPS with real time sampling rate of 1 Hz. All instruments are equipped with continuous recording systems for real time monitoring purposes and research. The Popocatépetl exceeds 5400m, and the altitude of the stations ranges from 2200 m to 4300 m making it difficult their installation and maintenance. Because of ash emissions and the hard working condition, the real-time transmission is split into two systems in order to ensure the monitoring of the volcano also during the highest expected activity. Therefore we set up a network of "first order", consisting of four stations located about 20 km from the crater and equipped with satellite transmission. These stations, being far enough from the crater, ensure the real time monitoring of the major events also during intense periods of activity of the volcano. The remaining six stations are installed near to the crater (less than 10 km) and take part of the "second order" network equipped with a telemetered radio system transmitting the data either directly to the National Center of Disaster Prevention (CENAPRED) and National Seismological Service (SSN) or to the first order stations (for the sites that have not direct visible line with the monitoring centers). The four GPS sensors are all installed in the second order sites in order to monitor the largest

  5. Assessing the detection capability of a dense infrasound network in the southern Korean Peninsula

    Science.gov (United States)

    Che, Il-Young; Le Pichon, Alexis; Kim, Kwangsu; Shin, In-Cheol

    2017-08-01

    The Korea Infrasound Network (KIN) is a dense seismoacoustic array network consisting of eight small-aperture arrays with an average interarray spacing of ˜100 km. The processing of the KIN historical recordings over 10 yr in the 0.05-5 Hz frequency band shows that the dominant sources of signals are microbaroms and human activities. The number of detections correlates well with the seasonal and daily variability of the stratospheric wind dynamics. The quantification of the spatiotemporal variability of the KIN detection performance is simulated using a frequency-dependent semi-empirical propagation modelling technique. The average detection thresholds predicted for the region of interest by using both the KIN arrays and the International Monitoring System (IMS) infrasound station network at a given frequency of 1.6 Hz are estimated to be 5.6 and 10.0 Pa for two- and three-station coverage, respectively, which was about three times lower than the thresholds predicted by using only the IMS stations. The network performance is significantly enhanced from May to August, with detection thresholds being one order of magnitude lower than the rest of the year due to prevailing steady stratospheric winds. To validate the simulations, the amplitudes of ground-truth repeated surface mining explosions at an open-pit limestone mine were measured over a 19-month period. Focusing on the spatiotemporal variability of the stratospheric winds which control to first order where infrasound signals are expected to be detected, the predicted detectable signal amplitude at the mine and the detection capability at one KIN array located at a distance of 175 km are found to be in good agreement with the observations from the measurement campaign. The detection threshold in summer is ˜2 Pa and increases up to ˜300 Pa in winter. Compared with the low and stable thresholds in summer, the high temporal variability of the KIN performance is well predicted throughout the year. Simulations

  6. Ocean bottom seismic and tsunami network along the Japan Trench

    Science.gov (United States)

    Uehira, K.; Kanazawa, T.; Noguchi, S.; Aoi, S.; Kunugi, T.; Matsumoto, T.; Okada, Y.; Sekiguchi, S.; Shiomi, K.; Shinohara, M.; Yamada, T.

    2012-12-01

    Huge tsunami, which was generated by the 2011 off the Pacific Coast of Tohoku Earthquake of M9 subduction zone earthquake, attacked the coastal areas in the north-eastern Japan and gave severe casualties (about 20,000 people) and property damages in the areas. The present tsunami warning system, based on land seismic observation data, did not work effectively in the case of the M9 earthquake. For example, real tsunami height was higher than that of forecast by this system. It is strongly acknowledged that marine observation data is necessary to make tsunami height estimation more accurately. Therefore, new ocean bottom observation project has started in 2011 that advances the countermeasures against earthquake and tsunami disaster related to subduction zone earthquake and outer rise earthquake around Japan Trench and Kuril Trench. A large scale ocean bottom cabled observation network is scheduled to be deployed around Japan Trench and Kuril Trench by 2015. The network is consisted of 154 ocean bottom observation stations. Ocean bottom fiber optic cables, about 5100 km in total length, connect the stations to land. Observation stations with tsunami meters and seismometers will be placed on the seafloor off Hokkaido, off Tohoku and off Kanto, in a spacing of about 30 km almost in the direction of East-West (perpendicular to the trench axis) and in a spacing of about 50 - 60 km almost in the direction of North-South (parallel to the trench axis). Two or more sets of tsunami meters and seismometers will be installed in one station for redundancy. Two sets of three component servo accelerometers, a set of three component quartz type accelerometers (frequency outputs), a set of three component velocity seismometers will be installed, and two sets of quartz type depth sensors (frequency outputs) will be installed as tsunami meters. Tsunami data and seismometer data will be digitized at sampling frequency of 10 Hz and 100 Hz, respectively, and will be added clock

  7. GFZ wireless seismic array (GFZ-WISE), a wireless mesh network of seismic sensors: new perspectives for seismic noise array investigations and site monitoring.

    Science.gov (United States)

    Picozzi, Matteo; Milkereit, Claus; Parolai, Stefano; Jaeckel, Karl-Heinz; Veit, Ingo; Fischer, Joachim; Zschau, Jochen

    2010-01-01

    Over the last few years, the analysis of seismic noise recorded by two dimensional arrays has been confirmed to be capable of deriving the subsoil shear-wave velocity structure down to several hundred meters depth. In fact, using just a few minutes of seismic noise recordings and combining this with the well known horizontal-to-vertical method, it has also been shown that it is possible to investigate the average one dimensional velocity structure below an array of stations in urban areas with a sufficient resolution to depths that would be prohibitive with active source array surveys, while in addition reducing the number of boreholes required to be drilled for site-effect analysis. However, the high cost of standard seismological instrumentation limits the number of sensors generally available for two-dimensional array measurements (i.e., of the order of 10), limiting the resolution in the estimated shear-wave velocity profiles. Therefore, new themes in site-effect estimation research by two-dimensional arrays involve the development and application of low-cost instrumentation, which potentially allows the performance of dense-array measurements, and the development of dedicated signal-analysis procedures for rapid and robust estimation of shear-wave velocity profiles. In this work, we present novel low-cost wireless instrumentation for dense two-dimensional ambient seismic noise array measurements that allows the real-time analysis of the surface-wavefield and the rapid estimation of the local shear-wave velocity structure for site response studies. We first introduce the general philosophy of the new system, as well as the hardware and software that forms the novel instrument, which we have tested in laboratory and field studies.

  8. Seismic sequences and swarms in the Latium-Abruzzo-Molise Apennines (central Italy): New observations and analysis from a dense monitoring of the recent activity

    Science.gov (United States)

    Frepoli, A.; Cimini, G. B.; De Gori, P.; De Luca, G.; Marchetti, A.; Monna, S.; Montuori, C.; Pagliuca, N. M.

    2017-08-01

    We present a detailed analysis of the seismic activity in the central Apennines based on a high quality seismogram data set collected from two temporary and three permanent networks. This integrated network recorded, between January 2009 and December 2013, a total of 7011 local earthquakes (6270 selected for this study), with local magnitudes ML ranging from 0.4 to 4.7. Hypocentres were located by using a reference 1D crustal velocity model determined with a genetic algorithm. The majority of the hypocenters are located beneath the axis of the Apenninic belt, while the rest are found along the peri-Tyrrhenian margin. Hypocentral depth distribution extends to a depth of 31 km with a pronounced peak between 8 and 12 km. Both low-to-moderate magnitude seismic sequences and diffuse swarm-like seismicity was observed. There were two major seismic swarms and a seismic sequence, which included the Marsica-Sora ML 4.7 main shock. A total of 468 fault plane solutions were derived from P-wave polarities. This new data set more than quadruples the number of focal mechanisms that was previously available for regional stress field analysis in the study region. The majority of the fault plane solutions in the central Apennines show predominantly normal fault movements, with T-axis trends oriented NE-SW. Focal mechanisms calculated in this study confirm that this area is in extension. For the seismic swarms-sequence in the Marsica-Sora area we also derived the azimuth and plunge of the principal stress axes by inverting fault plane solutions. We find a few right-lateral strike-slip focal mechanisms that possibly identify the prolongation of the strike-slip kinematics in the Gargano-Apulia foreland to the west, and mark the passage to the NW-SE striking normal faults of the inner Apenninic belt. The seismicity and stress distribution we observe might be consistent with a fragmented tectonic scenario in which faults with small dimensions release seismic energy in a diffused way.

  9. The Irpinia Seismic Network (ISN): a new Monitoring Infrastructure for Seismic Alert Management in Campania Region, Southern Italy

    Science.gov (United States)

    Iannaccone, G.; Satriano, C.; Weber, E.; Cantore, L.; Corciulo, M.; Romano, L.; Martino, C.; Dicrosta, M.; Zollo, A.

    2005-12-01

    The Irpinia Seismic Network is an high dynamics, high density seismographic network under development in the Southern Apenninic chain. It is deployed in the area stroken by several destructive earthquakes during last centuries. In its final configuration the network will consist of more than fourty high dynamic seismic stations subdivided in physical subnetworks inter-connected by a robust data transmission system. The system is being designed with two primary targets: -Monitoring and analysis of background seismic activity produced by the active fault system which is the cause for large earthquakes in the past, included the 1980, Irpinia earthquake (Ms=6.9) - Development and experimentation of a prototype system for seismic early and post-event warning to be used for protecting public infrastructures and buildings of strategic relevance of the Regione Campania The seismic network will be completed in two stages: 1 - Deployment of 30 seismic stations along the Campania-Lucania Apenninic chain (to date almost completed) 2 - Setting up radio communication system for data transmission. Installation of 12 additional seismic stations (end of year 2006) To ensure an high dynamic recording range each site is equipped with two type of sensors: 30 force-balance accelerometer (model Guralp CMG5-T) and a velocimeter. In particular, 25 sites with short period three components instrument (model Geotech S13-J) and 5 with broad-band sensor (Nanometrics Trillium, with frequency response in the 0.033-50 Hz band). The used data logger is the Osiris-6 model produced by Agecodagis whose main features are: six channels, O/N 24 bit A/D converter, ARM processor with embedded Linux and open source software, two PCMCIA slots (used for two 5GB microdrive or one disk and wi-fi card), Ethernet, wi-fi and serial communication, low power cosumption (~1 W). Power is ensured by two 120 W solar panels and two 130 Ah gel batteries. Each recording site is equipped with a control/alarm system through

  10. The interseismic velocity field of the central Apennines from a dense GPS network

    Directory of Open Access Journals (Sweden)

    Alessandro Galvani

    2013-02-01

    Full Text Available Since 1999, we have repeatedly surveyed the central Apennines through a dense survey-style geodetic network, the Central Apennines Geodetic Network (CAGeoNet. CAGeoNet consists of 123 benchmarks distributed over an area of ca. 180 km × 130 km, from the Tyrrhenian coast to the Adriatic coast, with an average inter-site distance of 3 km to 5 km. The network is positioned across the main seismogenic structures of the region that are capable of generating destructive earthquakes. Here, we show the horizontal GPS velocity field of both CAGeoNet and continuous GPS stations in this region, as estimated from the position–time series in the time span from 1999 to 2007. We analyzed the data using both the Bernese and GAMIT software, rigorously combining the two solutions to obtain a validated result. Then, we analyzed the strain-rate field, which shows a region of extension along the axis of the Apennine chain, with values from 2 × 10–9 yr–1 to 66·× 10–9 yr–1, and a relative minimum of ca. 20 × 10–9 yr–1 located in the L'Aquila basin area. Our velocity field represents an improved estimation of the ongoing elastic interseismic deformation of the central Apennines, and in particular relating to the area of the L'Aquila earthquake of April 6, 2009.

  11. Rapid estimation of tsunami source centroid location using a dense offshore observation network

    Science.gov (United States)

    Yamamoto, N.; Hirata, K.; Aoi, S.; Suzuki, W.; Nakamura, H.; Kunugi, T.

    2016-05-01

    This paper proposes a rapid method of estimating tsunami source locations using real-time ocean-bottom hydrostatic pressure data from a dense offshore observation network. We defined two characteristic locations representing the real-time tsunami disturbance and the initial sea surface height distribution. First, we defined the tsunami centroid location (TCL), which is the centroid location of the maximum absolute amplitude of the real-time ocean-bottom hydrostatic pressure changes. Second, we defined the centroid location of the absolute values of the initial sea surface height displacements. To determine whether the TCL can approximate the centroid location of the tsunami source, we examined approximately 1000 near-field synthetic tsunami scenarios and a realistic tsunami scenario of the 2011 Tohoku earthquake in the Japan Trench. From these examinations, it was confirmed that in most scenarios, the TCLs obtained within a few minutes after the occurrence of an earthquake were close to the actual corresponding tsunami source locations.

  12. Spatial evolutionary public goods game on complete graph and dense complex networks.

    Science.gov (United States)

    Kim, Jinho; Chae, Huiseung; Yook, Soon-Hyung; Kim, Yup

    2015-03-23

    We study the spatial evolutionary public goods game (SEPGG) with voluntary or optional participation on a complete graph (CG) and on dense networks. Based on analyses of the SEPGG rate equation on finite CG, we find that SEPGG has two stable states depending on the value of multiplication factor r, illustrating how the "tragedy of the commons" and "an anomalous state without any active participants" occurs in real-life situations. When r is low (). We also derive the exact scaling relation for r*. All of the results are confirmed by numerical simulation. Furthermore, we find that a cooperator-dominant state emerges when the number of participants or the mean degree, 〈k〉, decreases. We also investigate the scaling dependence of the emergence of cooperation on r and 〈k〉. These results show how "tragedy of the commons" disappears when cooperation between egoistic individuals without any additional socioeconomic punishment increases.

  13. Bridge damage detection using spatiotemporal patterns extracted from dense sensor network

    Science.gov (United States)

    Liu, Chao; Gong, Yongqiang; Laflamme, Simon; Phares, Brent; Sarkar, Soumik

    2017-01-01

    The alarmingly degrading state of transportation infrastructures combined with their key societal and economic importance calls for automatic condition assessment methods to facilitate smart management of maintenance and repairs. With the advent of ubiquitous sensing and communication capabilities, scalable data-driven approaches is of great interest, as it can utilize large volume of streaming data without requiring detailed physical models that can be inaccurate and computationally expensive to run. Properly designed, a data-driven methodology could enable fast and automatic evaluation of infrastructures, discovery of causal dependencies among various sub-system dynamic responses, and decision making with uncertainties and lack of labeled data. In this work, a spatiotemporal pattern network (STPN) strategy built on symbolic dynamic filtering (SDF) is proposed to explore spatiotemporal behaviors in a bridge network. Data from strain gauges installed on two bridges are generated using finite element simulation for three types of sensor networks from a density perspective (dense, nominal, sparse). Causal relationships among spatially distributed strain data streams are extracted and analyzed for vehicle identification and detection, and for localization of structural degradation in bridges. Multiple case studies show significant capabilities of the proposed approach in: (i) capturing spatiotemporal features to discover causality between bridges (geographically close), (ii) robustness to noise in data for feature extraction, (iii) detecting and localizing damage via comparison of bridge responses to similar vehicle loads, and (iv) implementing real-time health monitoring and decision making work flow for bridge networks. Also, the results demonstrate increased sensitivity in detecting damages and higher reliability in quantifying the damage level with increase in sensor network density.

  14. Base Station Ordering for Emergency Call Localization in Ultra-dense Cellular Networks

    KAUST Repository

    Elsawy, Hesham

    2017-10-04

    This paper proposes the base station ordering localization technique (BoLT) for emergency call localization in cellular networks. Exploiting the foreseen ultra-densification of the next-generation (5G and beyond) cellular networks, we utilize higher-order Voronoi tessellations to provide ubiquitous localization services that are in compliance to the public safety standards in cellular networks. The proposed localization algorithm runs at the base stations (BSs) and requires minimal operation from agents (i.e., mobile users). Particularly, BoLT requires each agent to feedback a neighbor cell list (NCL) that contains the order of neighboring BSs based on the received signal power in the pilots sent from these BSs. Moreover, this paper utilizes stochastic geometry to develop a tractable mathematical model to assess the performance of BoLT in a general network setting. The goal of this paper is to answer the following two fundamental questions: i) how many BSs should be ordered and reported by the agent to achieve a desirable localization accuracy? and ii) what is the localization error probability given that the pilot signals are subject to shadowing? Assuming that the BSs are deployed according to a Poisson point process (PPP), we answer these two questions via characterizing the tradeoff between the area of location region (ALR) and the localization error probability in terms of the number of BSs ordered by the agent. The results show that reporting the order of six neighboring BSs is sufficient to localize the agent within 10% of the cell area. Increasing the number of reported BSs to ten confines the location region to 1% of the cell area. This would translate to the range of a few meters to decimeters in the foreseen ultra-dense 5G networks.

  15. The Benefits of Using Dense Temperature Sensor Networks to Monitor Urban Warming

    Science.gov (United States)

    Twine, T. E.; Snyder, P. K.; Kucharik, C. J.; Schatz, J.

    2015-12-01

    Urban heat islands (UHIs) occur when urban and suburban areas experience temperatures that are elevated relative to their rural surroundings because of differences in the fraction of gray and green infrastructure. Studies have shown that communities most at risk for impacts from climate-related disasters (i.e., lower median incomes, higher poverty, lower education, and minorities) tend to live in the hottest areas of cities. Development of adequate climate adaptation tools for cities relies on knowledge of how temperature varies across space and time. Traditionally, a city's urban heat island has been quantified using near-surface air temperature measurements from a few sites. This methodology assumes (1) that the UHI can be characterized by the difference in air temperature from a small number of points, and (2) that these few points represent the urban and rural signatures of the region. This methodology ignores the rich information that could be gained from measurements across the urban to rural transect. This transect could traverse elevations, water bodies, vegetation fraction, and other land surface properties. Two temperature sensor networks were designed and implemented in the Minneapolis-Saint Paul, MN and Madison, WI metropolitan areas beginning in 2011 and 2012, respectively. Both networks use the same model sensor and record temperature every 15 minutes from ~150 sensors. Data from each network has produced new knowledge of how temperature varies diurnally and seasonally across the cities and how the UHI magnitude is influenced by weather phenomena (e.g., wind, snow cover, heat waves) and land surface characteristics such as proximity to inland lakes. However, the two metropolitan areas differ in size, population, structure, and orientation to water bodies. In addition, the sensor networks were established in very different manners. We describe these differences and present lessons learned from the design and ongoing efforts of these two dense networks

  16. MmWave massive-MIMO-based wireless backhaul for the 5G ultra-dense network

    OpenAIRE

    Gao, Zhen; Dai, Linglong; Mi; Wang, Zhaocheng; Imran, Muhammad Ali; Shakir, Muhammad Zeeshan

    2015-01-01

    Ultra-dense network (UDN) has been considered as a promising candidate for future 5G network to meet the explosive data demand. To realize UDN, a reliable, Gigahertz bandwidth, and cost-effective backhaul connecting ultra-dense small-cell base stations (BSs) and macro-cell BS is prerequisite. Millimeter-wave (mmWave) can provide the potential Gbps traffic for wireless backhaul. Moreover, mmWave can be easily integrated with massive MIMO for the improved link reliability. In this article, we d...

  17. Application of neural networks for identification of faults in a 3D seismic survey offshore Tunisia

    Science.gov (United States)

    Mastouri, Raja; Marchant, Robin; Marillier, François; Jaboyedoff, Michel; Bouaziz, Samir

    2013-04-01

    The Kerkennah High area (offshore Tunisia) is dominated by series of horst and grabens resulting from multiple tectonic events and multiphase stress (extension, compression, translation). In order to decipher this complex structural history from a 3D seismic survey, a neural network is applied to extract a fault-cube from the amplitude data (which does not image faults directly). The neural network transforms seismic attributes into a new 3D data cube in which faults are highlighted. This technique comprises the following steps. First, we compute several seismic attributes (dip-steering similarity, curvature, frequency, ridge and fault enhancement filters…) that enhance different aspects of the seismic data related to faulting. In a second step, a number of points in the seismic data are selected as representative of either faults or areas devoid of faults. These points are tested by the artificial neural network to determine the range in which the different attributes are representative of faults or not. Based on this learning phase, the neural network is then applied to the entire 3D seismic cube to produce a fault-cube that contains only faults which contrast and continuity have been enhance.

  18. Seismicity and active tectonics at Coloumbo Reef (Aegean Sea, Greece): Monitoring an active volcano at Santorini Volcanic Center using a temporary seismic network

    Science.gov (United States)

    Dimitriadis, I.; Karagianni, E.; Panagiotopoulos, D.; Papazachos, C.; Hatzidimitriou, P.; Bohnhoff, M.; Rische, M.; Meier, T.

    2009-02-01

    The volcanic center of Santorini Island is the most active volcano of the southern Aegean volcanic arc. Α dense seismic array consisting of fourteen portable broadband seismological stations has been deployed in order to monitor and study the seismo-volcanic activity at the broader area of the Santorini volcanic center between March 2003 and September 2003. Additional recordings from a neighbouring larger scale temporary network (CYCNET) were also used for the relocation of more than 240 earthquakes recorded by both arrays. A double-difference relocation technique was used, in order to obtain optimal focal parameters for the best-constrained earthquakes. The results indicate that the seismic activity of the Santorini volcanic center is strongly associated with the tectonic regime of the broader Southern Aegean Sea area as well as with the volcanic processes. The main cluster of the epicenters is located at the Coloumbo Reef, a submarine volcano of the volcanic system of Santorini Islands. A smaller cluster of events is located near the Anydros Islet, aligned in a NE-SW direction, running almost along the main tectonic feature of the area under study, the Santorini-Amorgos Fault Zone. In contrast, the main Santorini Island caldera is characterized by the almost complete absence of seismicity. This contrast is in very good agreement with recent volcanological and marine studies, with the Coloumbo volcanic center showing an intense high-temperature hydrothermal activity, in comparison to the corresponding low-level activity of the Santorini caldera. The high-resolution hypocentral relocations present a clear view of the volcanic submarine structure at the Coloumbo Reef, showing that the main seismic activity is located within a very narrow vertical column, mainly at depths between 6 and 9 km. The focal mechanisms of the best-located events show that the cluster at the Coloumbo Reef is associated with the "Kameni-Coloumbo Fracture Zone", which corresponds to the

  19. The gravitational resolving power of global seismic networks in the 0.1-10 Hz band

    Science.gov (United States)

    Mulargia, Francesco; Kamenshchik, Alexander

    2016-04-01

    Among the first attempts to detect gravitational waves, the seismic approach pre-dates the digital era. Major advances in computational power, seismic instrumentation and in the knowledge of seismic noise suggest to reappraise its potential. Using the whole earth as a detector, with the thousands of digital seismometers of seismic global networks as a single phased array, more than two decades of continuous seismic noise data are available and can be readily sifted at the only cost of (a pretty gigantic) computation. Using a subset of data, we show that absolute strains h ≲10-17 on burst gravitational pulses and h ≲10-21 on periodic signals may be feasibly resolved in the frequency range 0.1-10 Hz, only marginally covered by current advanced LIGO and future eLISA. However, theoretical predictions for the largest cosmic gravitational emissions at these frequencies are a few orders of magnitude lower.

  20. Application of feedback connection artificial neural network to seismic data filtering

    CERN Document Server

    Djarfour, Noureddine; Baddari, Kamel; Mihoubi, Abdelhafid; Ferahtia, Jalal; 10.1016/j.crte.2008.03.003

    2008-01-01

    The Elman artificial neural network (ANN) (feedback connection) was used for seismic data filtering. The recurrent connection that characterizes this network offers the advantage of storing values from the previous time step to be used in the current time step. The proposed structure has the advantage of training simplicity by a back-propagation algorithm (steepest descent). Several trials were addressed on synthetic (with 10% and 50% of random and Gaussian noise) and real seismic data using respectively 10 to 30 neurons and a minimum of 60 neurons in the hidden layer. Both an iteration number up to 4000 and arrest criteria were used to obtain satisfactory performances. Application of such networks on real data shows that the filtered seismic section was efficient. Adequate cross-validation test is done to ensure the performance of network on new data sets.

  1. Change in the pattern of crustal seismicity at the Southern Central Andes from a local seismic network

    Science.gov (United States)

    Nacif, Silvina; Lupari, Marianela; Triep, Enrique G.; Nacif, Andrés; Álvarez, Orlando; Folguera, Andrés; Gímenez, Mario

    2017-06-01

    Shallow seismicity in the Southern Central Andes is associated with interplate earthquakes due to the subduction of the Nazca plate beneath the South American plate and neotectonic activity, mainly located in the retro-arc region. However, this pattern changes drastically south of 34°S within the transition zone at the Southern Central Andes where crustal seismicity associated with mountain-building processes concentrates at the fore-arc and intra-arc region. In order to define more accurately this transition we used data from a high density-seismic network over the Chilean fore-arc and axial Andean sector ( 33-34.5°S). We obtained a constraint data set of 77 seismic events located mostly in the Principal Cordillera western flank in the first 10 km of the upper crust. This cluster implies an abrupt change in the pattern of seismicity at the Southern Central Andes with a set of structures in the fore-arc and intra-arc accommodating shortening. This change in the locus of crustal seismicity and particularly its location on the fore-arc and intra-arc south of 34°S is discussed on the light of different hypotheses among which changes in the precipitation pattern and erosion along the Andes were favored. Focalized erosion associated with direction of prevailing Pacific winds south of 34°S could determine subcritical conditions that could be adjusted by out-of-sequence deformation causing crustal earthquakes in the fore-arc region, becoming the retro-arc zone nearly fossilized from a deformational point of view. Additionally, trench sediments associated with this change in the precipitation pattern could also favor decoupling of the subduction zone inhibiting retro-arc seismicity, although it does not explain activation of fore-arc structures south of 34°S and their absence north of this latitude. Finally, inhomogeneous distribution of seismicity through the fore-arc zone south of 34°S is discussed on the light of variable elastic thicknesses.

  2. Data Verification Tools for Minimizing Management Costs of Dense Air-Quality Monitoring Networks.

    Science.gov (United States)

    Miskell, Georgia; Salmond, Jennifer; Alavi-Shoshtari, Maryam; Bart, Mark; Ainslie, Bruce; Grange, Stuart; McKendry, Ian G; Henshaw, Geoff S; Williams, David E

    2016-01-19

    Aiming at minimizing the costs, both of capital expenditure and maintenance, of an extensive air-quality measurement network, we present simple statistical methods that do not require extensive training data sets for automated real-time verification of the reliability of data delivered by a spatially dense hybrid network of both low-cost and reference ozone measurement instruments. Ozone is a pollutant that has a relatively smooth spatial spread over a large scale although there can be significant small-scale variations. We take advantage of these characteristics and demonstrate detection of instrument calibration drift within a few days using a rolling 72 h comparison of hourly averaged data from the test instrument with that from suitably defined proxies. We define the required characteristics of the proxy measurements by working from a definition of the network purpose and specification, in this case reliable determination of the proportion of hourly averaged ozone measurements that are above a threshold in any given day, and detection of calibration drift of greater than ±30% in slope or ±5 parts-per-billion in offset. By analyzing results of a study of an extensive deployment of low-cost instruments in the Lower Fraser Valley, we demonstrate that proxies can be established using land-use criteria and that simple statistical comparisons can identify low-cost instruments that are not stable and therefore need replacing. We propose that a minimal set of compliant reference instruments can be used to verify the reliability of data from a much more extensive network of low-cost devices.

  3. Informatics technology mimics ecology: dense, mutualistic collaboration networks are associated with higher publication rates.

    Science.gov (United States)

    Sorani, Marco D

    2012-01-01

    Information technology (IT) adoption enables biomedical research. Publications are an accepted measure of research output, and network models can describe the collaborative nature of publication. In particular, ecological networks can serve as analogies for publication and technology adoption. We constructed network models of adoption of bioinformatics programming languages and health IT (HIT) from the literature.We selected seven programming languages and four types of HIT. We performed PubMed searches to identify publications since 2001. We calculated summary statistics and analyzed spatiotemporal relationships. Then, we assessed ecological models of specialization, cooperativity, competition, evolution, biodiversity, and stability associated with publications.Adoption of HIT has been variable, while scripting languages have experienced rapid adoption. Hospital systems had the largest HIT research corpus, while Perl had the largest language corpus. Scripting languages represented the largest connected network components. The relationship between edges and nodes was linear, though Bioconductor had more edges than expected and Perl had fewer. Spatiotemporal relationships were weak. Most languages shared a bioinformatics specialization and appeared mutualistic or competitive. HIT specializations varied. Specialization was highest for Bioconductor and radiology systems. Specialization and cooperativity were positively correlated among languages but negatively correlated among HIT. Rates of language evolution were similar. Biodiversity among languages grew in the first half of the decade and stabilized, while diversity among HIT was variable but flat. Compared with publications in 2001, correlation with publications one year later was positive while correlation after ten years was weak and negative.Adoption of new technologies can be unpredictable. Spatiotemporal relationships facilitate adoption but are not sufficient. As with ecosystems, dense, mutualistic

  4. Informatics technology mimics ecology: dense, mutualistic collaboration networks are associated with higher publication rates.

    Directory of Open Access Journals (Sweden)

    Marco D Sorani

    Full Text Available Information technology (IT adoption enables biomedical research. Publications are an accepted measure of research output, and network models can describe the collaborative nature of publication. In particular, ecological networks can serve as analogies for publication and technology adoption. We constructed network models of adoption of bioinformatics programming languages and health IT (HIT from the literature.We selected seven programming languages and four types of HIT. We performed PubMed searches to identify publications since 2001. We calculated summary statistics and analyzed spatiotemporal relationships. Then, we assessed ecological models of specialization, cooperativity, competition, evolution, biodiversity, and stability associated with publications.Adoption of HIT has been variable, while scripting languages have experienced rapid adoption. Hospital systems had the largest HIT research corpus, while Perl had the largest language corpus. Scripting languages represented the largest connected network components. The relationship between edges and nodes was linear, though Bioconductor had more edges than expected and Perl had fewer. Spatiotemporal relationships were weak. Most languages shared a bioinformatics specialization and appeared mutualistic or competitive. HIT specializations varied. Specialization was highest for Bioconductor and radiology systems. Specialization and cooperativity were positively correlated among languages but negatively correlated among HIT. Rates of language evolution were similar. Biodiversity among languages grew in the first half of the decade and stabilized, while diversity among HIT was variable but flat. Compared with publications in 2001, correlation with publications one year later was positive while correlation after ten years was weak and negative.Adoption of new technologies can be unpredictable. Spatiotemporal relationships facilitate adoption but are not sufficient. As with ecosystems, dense

  5. Comparison of the low-cost MEMS accelerometers used by the Quake-Catcher Network and traditional strong motion seismic sensors

    Science.gov (United States)

    Cochran, E. S.; Lawrence, J.; Kaiser, A. E.; Fry, B.; Chung, A. I.; Evans, J. R.

    2011-12-01

    Accelerometers based on low-cost micro-electro-mechanical systems (MEMS) have improved swiftly, making the rapid deployment of dense seismic arrays possible. For example, the Quake-Catcher Network (QCN) makes use of MEMS-based tri-axial sensors installed in homes and businesses to record earthquakes, with almost 2000 participants worldwide. QCN utilizes an open-source distributed-computing system, called the Berkeley Open Infrastructure for Network Computing (BOINC), to retrieve waveforms from continuous or triggered recordings back to the QCN server. Furthermore, the QCN approach can also be used to augment existing seismic networks for rapid-earthquake detection purposes, as well as studies on seismic source- and site-related phenomena. Following the 3 September 2010 Mw7.1 Darfield earthquake, 192 QCN stations were installed in a dense array to record the on-going aftershock sequence in and around the city of Christchurch. We examine the peak ground motions recorded during a M5.1 aftershock and find that peak ground acceleration (PGA) is spatially variable, but with a clear decay in amplitude with distance. In general, closely located GeoNet and QCN stations report similar PGA. Several QCN stations were located within 1 km of existing GeoNet stations, providing an opportunity to compare time series and amplitude spectra. For these closely spaced pairs of stations, the amplitude spectra observed from the horizontal components are highly correlated with average cross-correlation coefficients of 0.9 or higher. In addition, we find the correlation coefficient decreases with increasing distance between station pairs. In future work we will compare the instrumental sensitivity between traditional and MEMS-based sensors by conducting shake table tests of five different types of MEMS sensors at the Albuquerque Seismic Lab.

  6. SISMIKO: emergency network deployment and data sharing for the 2016 central Italy seismic sequence

    Directory of Open Access Journals (Sweden)

    Milena Moretti

    2016-12-01

    Full Text Available At 01:36 UTC (03:36 local time on August 24th 2016, an earthquake Mw 6.0 struck an extensive sector of the central Apennines (coordinates: latitude 42.70° N, longitude 13.23° E, 8.0 km depth. The earthquake caused about 300 casualties and severe damage to the historical buildings and economic activity in an area located near the borders of the Umbria, Lazio, Abruzzo and Marche regions. The Istituto Nazionale di Geofisica e Vulcanologia (INGV located in few minutes the hypocenter near Accumoli, a small town in the province of Rieti. In the hours after the quake, dozens of events were recorded by the National Seismic Network (Rete Sismica Nazionale, RSN of the INGV, many of which had a ML > 3.0. The density and coverage of the RSN in the epicentral area meant the epicenter and magnitude of the main event and subsequent shocks that followed it in the early hours of the seismic sequence were well constrained. However, in order to better constrain the localizations of the aftershock hypocenters, especially the depths, a denser seismic monitoring network was needed. Just after the mainshock, SISMIKO, the coordinating body of the emergency seismic network at INGV, was activated in order to install a temporary seismic network integrated with the existing permanent network in the epicentral area. From August the 24th to the 30th, SISMIKO deployed eighteen seismic stations, generally six components (equipped with both velocimeter and accelerometer, with thirteen of the seismic station transmitting in real-time to the INGV seismic monitoring room in Rome. The design and geometry of the temporary network was decided in consolation with other groups who were deploying seismic stations in the region, namely EMERSITO (a group studying site-effects, and the emergency Italian strong motion network (RAN managed by the National Civil Protection Department (DPC. Further 25 BB temporary seismic stations were deployed by colleagues of the British Geological Survey

  7. A Low Collision and High Throughput Data Collection Mechanism for Large-Scale Super Dense Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Chunyang Lei

    2016-07-01

    Full Text Available Super dense wireless sensor networks (WSNs have become popular with the development of Internet of Things (IoT, Machine-to-Machine (M2M communications and Vehicular-to-Vehicular (V2V networks. While highly-dense wireless networks provide efficient and sustainable solutions to collect precise environmental information, a new channel access scheme is needed to solve the channel collision problem caused by the large number of competing nodes accessing the channel simultaneously. In this paper, we propose a space-time random access method based on a directional data transmission strategy, by which collisions in the wireless channel are significantly decreased and channel utility efficiency is greatly enhanced. Simulation results show that our proposed method can decrease the packet loss rate to less than 2 % in large scale WSNs and in comparison with other channel access schemes for WSNs, the average network throughput can be doubled.

  8. A Low Collision and High Throughput Data Collection Mechanism for Large-Scale Super Dense Wireless Sensor Networks

    Science.gov (United States)

    Lei, Chunyang; Bie, Hongxia; Fang, Gengfa; Gaura, Elena; Brusey, James; Zhang, Xuekun; Dutkiewicz, Eryk

    2016-01-01

    Super dense wireless sensor networks (WSNs) have become popular with the development of Internet of Things (IoT), Machine-to-Machine (M2M) communications and Vehicular-to-Vehicular (V2V) networks. While highly-dense wireless networks provide efficient and sustainable solutions to collect precise environmental information, a new channel access scheme is needed to solve the channel collision problem caused by the large number of competing nodes accessing the channel simultaneously. In this paper, we propose a space-time random access method based on a directional data transmission strategy, by which collisions in the wireless channel are significantly decreased and channel utility efficiency is greatly enhanced. Simulation results show that our proposed method can decrease the packet loss rate to less than 2% in large scale WSNs and in comparison with other channel access schemes for WSNs, the average network throughput can be doubled. PMID:27438839

  9. A Low Collision and High Throughput Data Collection Mechanism for Large-Scale Super Dense Wireless Sensor Networks.

    Science.gov (United States)

    Lei, Chunyang; Bie, Hongxia; Fang, Gengfa; Gaura, Elena; Brusey, James; Zhang, Xuekun; Dutkiewicz, Eryk

    2016-07-18

    Super dense wireless sensor networks (WSNs) have become popular with the development of Internet of Things (IoT), Machine-to-Machine (M2M) communications and Vehicular-to-Vehicular (V2V) networks. While highly-dense wireless networks provide efficient and sustainable solutions to collect precise environmental information, a new channel access scheme is needed to solve the channel collision problem caused by the large number of competing nodes accessing the channel simultaneously. In this paper, we propose a space-time random access method based on a directional data transmission strategy, by which collisions in the wireless channel are significantly decreased and channel utility efficiency is greatly enhanced. Simulation results show that our proposed method can decrease the packet loss rate to less than 2 % in large scale WSNs and in comparison with other channel access schemes for WSNs, the average network throughput can be doubled.

  10. The Community Seismic Network and Quake-Catcher Network: Monitoring building response to earthquakes through community instrumentation

    Science.gov (United States)

    Cheng, M.; Kohler, M. D.; Heaton, T. H.; Clayton, R. W.; Chandy, M.; Cochran, E.; Lawrence, J. F.

    2013-12-01

    The Community Seismic Network (CSN) and Quake-Catcher Network (QCN) are dense networks of low-cost ($50) accelerometers that are deployed by community volunteers in their homes in California. In addition, many accelerometers are installed in public spaces associated with civic services, publicly-operated utilities, university campuses, and high-rise buildings. Both CSN and QCN consist of observation-based structural monitoring which is carried out using records from one to tens of stations in a single building. We have deployed about 150 accelerometers in a number of buildings ranging between five and 23 stories in the Los Angeles region. In addition to a USB-connected device which connects to the host's computer, we have developed a stand-alone sensor-plug-computer device that directly connects to the internet via Ethernet or WiFi. In the case of CSN, the sensors report data to the Google App Engine cloud computing service consisting of data centers geographically distributed across the continent. This robust infrastructure provides parallelism and redundancy during times of disaster that could affect hardware. The QCN sensors, however, are connected to netbooks with continuous data streaming in real-time via the distributed computing Berkeley Open Infrastructure for Network Computing software program to a server at Stanford University. In both networks, continuous and triggered data streams use a STA/LTA scheme to determine the occurrence of significant ground accelerations. Waveform data, as well as derived parameters such as peak ground acceleration, are then sent to the associated archives. Visualization models of the instrumented buildings' dynamic linear response have been constructed using Google SketchUp and MATLAB. When data are available from a limited number of accelerometers installed in high rises, the buildings are represented as simple shear beam or prismatic Timoshenko beam models with soil-structure interaction. Small-magnitude earthquake records

  11. A dense Black Carbon network in the region of Paris, France: Implementation, objectives, and first results

    Science.gov (United States)

    Sciare, Jean; Petit, Jean-Eudes; Sarda-Esteve, Roland; Bonnaire, Nicolas; Gros, Valérie; Pernot, Pierre; Ghersi, Véronique; Ampe, Christophe; Songeur, Charlotte; Brugge, Benjamin; Debert, Christophe; Favez, Olivier; Le Priol, Tiphaine; Mocnik, Grisa

    2013-04-01

    Motivations. Road traffic and domestic wood burning emissions are two major contributors of particulate pollution in our cities. These two sources emit ultra-fine, soot containing, particles in the atmosphere, affecting health adversely, increasing morbidity and mortality from cardiovascular and respiratory conditions and casing lung cancer. A better characterization of soot containing aerosol sources in our major cities provides useful information for policy makers for assessment, implementation and monitoring of strategies to tackle air pollution issues affecting human health with additional benefits for climate change. Objectives. This study on local sources of primary Particulate Matter (PM) in the megacity of Paris is a follow-up of several programs (incl. EU-FP7-MEGAPOLI) that have shown that fine PM - in the Paris background atmosphere - is mostly secondary and imported. A network of 14 stations of Black Carbon has been implemented in the larger region of Paris to provide highly spatially resolved long term survey of local combustion aerosols. To our best knowledge, this is the first time that such densely BC network is operating over a large urban area, providing novel information on the spatial/temporal distribution of combustion aerosols within a post-industrialized megacity. Experimental. As part of the PRIMEQUAL "PREQUALIF" project, a dense Black Carbon network (of 14 stations) has been installed over the city of Paris beginning of 2012 in order to produce spatially resolved Equivalent Black Carbon (EBC) concentration maps with high time resolution through modeling and data assimilation. This network is composed of various real-time instruments (Multi-Angle Absorption Photometer, MAAP by THERMO; Multi-wavelength Aethalometers by MAGEE Scientific) implemented in contrasted sites (rural background, urban background, traffic) complementing the regulated measurements (PM, NOx) in the local air quality network AIRPARIF (http

  12. Nature of the lithosphere across the Variscan orogen of SW Iberia: Dense wide-angle seismic reflection data

    Science.gov (United States)

    Palomeras, I.; Carbonell, R.; Flecha, I.; Simancas, F.; Ayarza, P.; Matas, J.; MartíNez Poyatos, D.; Azor, A.; GonzáLez Lodeiro, F.; PéRez-Estaún, A.

    2009-02-01

    Two wide-angle seismic transects have been acquired across the SW Iberian Massif. They crossed three major geological zones (South Portuguese Zone, Ossa-Morena Zone, and Central Iberian Zone), with their tectonic contacts and the Pyrite Belt being of greatest interest. A total of 690 digital seismic recording instruments (650 Texans and 40 Reftek 3 component units) from the IRIS-PASSCAL Instrument Pool were used. The transects (A and B) are each approximately 300 km long and consist of 3 and 6 shot points, respectively, with an approximately 60-km shot point interval. The charge sizes range from 1000 kg at the edges to 500 kg at the center. These recently acquired experiments were designed to provide velocity constraints on the lithosphere and to complement the previously acquired normal incidence seismic profile IBERSEIS. Both data sets are part of the SW Iberia project, which was developed within the EUROPROBE program and designed to address fundamental questions about the nature and dynamics of the Variscan lithosphere. The acquisition parameters provide closely spaced wide-angle seismic images of the lithosphere beneath SW Iberia. In transect A, the station spacing was on average 400 m, while along transect B, the receiver spacing was approximately 150 m. Because of this close trace spacing, the lateral continuity of the seismic arrivals is greatly improved. Frequency analysis revealed that the recorded events feature relatively low frequencies (6-25 Hz). After processing, the shot records show high-amplitude and well-defined arrivals. The interpreted PmP arrival, located at approximately 11 s (normal incidence traveltime), is characterized by high amplitude and relatively low frequency (6-12 Hz). A well-defined Pn arrival appears at offsets beyond 120 km. At far offsets greater than 180 km, an upper mantle reflection is observed. Furthermore, within the upper crust, the shots records feature a relatively high-velocity arrival, located at 4-5-s normal incidence

  13. Social Media as Seismic Networks for the Earthquake Damage Assessment

    Science.gov (United States)

    Meletti, C.; Cresci, S.; La Polla, M. N.; Marchetti, A.; Tesconi, M.

    2014-12-01

    The growing popularity of online platforms, based on user-generated content, is gradually creating a digital world that mirrors the physical world. In the paradigm of crowdsensing, the crowd becomes a distributed network of sensors that allows us to understand real life events at a quasi-real-time rate. The SoS-Social Sensing project [http://socialsensing.it/] exploits the opportunistic crowdsensing, involving users in the sensing process in a minimal way, for social media emergency management purposes in order to obtain a very fast, but still reliable, detection of emergency dimension to face. First of all we designed and implemented a decision support system for the detection and the damage assessment of earthquakes. Our system exploits the messages shared in real-time on Twitter. In the detection phase, data mining and natural language processing techniques are firstly adopted to select meaningful and comprehensive sets of tweets. Then we applied a burst detection algorithm in order to promptly identify outbreaking seismic events. Using georeferenced tweets and reported locality names, a rough epicentral determination is also possible. The results, compared to Italian INGV official reports, show that the system is able to detect, within seconds, events of a magnitude in the region of 3.5 with a precision of 75% and a recall of 81,82%. We then focused our attention on damage assessment phase. We investigated the possibility to exploit social media data to estimate earthquake intensity. We designed a set of predictive linear models and evaluated their ability to map the intensity of worldwide earthquakes. The models build on a dataset of almost 5 million tweets exploited to compute our earthquake features, and more than 7,000 globally distributed earthquakes data, acquired in a semi-automatic way from USGS, serving as ground truth. We extracted 45 distinct features falling into four categories: profile, tweet, time and linguistic. We run diagnostic tests and

  14. Mobility-Aware Modeling and Analysis of Dense Cellular Networks With $C$ -Plane/ $U$ -Plane Split Architecture

    KAUST Repository

    Ibrahim, Hazem

    2016-09-19

    The unrelenting increase in the population of mobile users and their traffic demands drive cellular network operators to densify their network infrastructure. Network densification shrinks the footprint of base stations (BSs) and reduces the number of users associated with each BS, leading to an improved spatial frequency reuse and spectral efficiency, and thus, higher network capacity. However, the densification gain comes at the expense of higher handover rates and network control overhead. Hence, user’s mobility can diminish or even nullifies the foreseen densification gain. In this context, splitting the control plane ( C -plane) and user plane ( U -plane) is proposed as a potential solution to harvest densification gain with reduced cost in terms of handover rate and network control overhead. In this paper, we use stochastic geometry to develop a tractable mobility-aware model for a two-tier downlink cellular network with ultra-dense small cells and C -plane/ U -plane split architecture. The developed model is then used to quantify the effect of mobility on the foreseen densification gain with and without C -plane/ U -plane split. To this end, we shed light on the handover problem in dense cellular environments, show scenarios where the network fails to support certain mobility profiles, and obtain network design insights.

  15. Local seismic network at the Olkiluoto site. Annual report 2002-2004

    Energy Technology Data Exchange (ETDEWEB)

    Saari, J. [Enprima Oy, Vantaa (Finland)

    2005-09-15

    In Olkiluoto, Posiva Oy has operated a local seismic network since February 2002. In the beginning, the network consisted of six seismic stations. Later, in June 2004, the seismic network was expanded with two new seismic stations. At that time started the excavation of the underground characterisation facility (the ONKALO) and the basic operation procedure was changed more suitable for the demands of the new situation. The purpose of the microearthquake measurements at Olkiluoto is to improve understanding of the structure, behaviour and long term stability of the bedrock. The studies include both tectonic and excavation-induced microearthquakes. An additional task of monitoring is related to safeguarding of the ONKALO. This report gives the results of microseismic monitoring during the years 2002 - 2004. Also the changes in the structure and the operation procedure of the network are described. The network has operated nearly continuously. The longest interruption occurred 16.-17.6.2004, when two new seismic stations were installed in the network and the operation procedure was changed. Altogether 757 events have been located in the Olkiluoto area. The magnitudes of the observed events range from ML = -3.5 to ML = 1.2. All of them are explosions or other artificial events. So far, none of the 757 observed events can be classified as microearthquakes. Five of the events have characteristics that make the origin of the recorded signal uncertain. They are quite unlikely microearthquakes, but they are not typical examples of artificial seismic signals either. When the experience and the data set of the Olkiluoto microearthquakes increase the identification of events will be more definite. Evidence of activity that would has influence on the safety of the ONKALO, have not found. (orig.)

  16. Seismic-Reliability-Based Optimal Layout of a Water Distribution Network

    Directory of Open Access Journals (Sweden)

    Do Guen Yoo

    2016-02-01

    Full Text Available We proposed an economic, cost-constrained optimal design of a water distribution system (WDS that maximizes seismic reliability while satisfying pressure constraints. The model quantifies the seismic reliability of a WDS through a series of procedures: stochastic earthquake generation, seismic intensity attenuation, determination of the pipe failure status (normal, leakage, and breakage, pipe failure modeling in hydraulic simulation, and negative pressure treatment. The network’s seismic reliability is defined as the ratio of the available quantity of water to the required water demand under stochastic earthquakes. The proposed model allows no pipe option in decisions, making it possible to identify seismic-reliability-based optimal layout for a WDS. The model takes into account the physical impact of earthquake events on the WDS, which ultimately affects the network’s boundary conditions (e.g., failure level of pipes. A well-known benchmark network, the Anytown network, is used to demonstrate the proposed model. The network’s optimal topology and pipe layouts are determined from a series of optimizations. The results show that installing large redundant pipes degrades the system’s seismic reliability because the pipes will cause a large rupture opening under failure. Our model is a useful tool to find the optimal pipe layout that maximizes system reliability under earthquakes.

  17. On the Effects of Frequency Scaling over Capacity Scaling in Underwater Networks— Part II: Dense Network Model

    DEFF Research Database (Denmark)

    Shin, Won-Yong; Lucani Rötter, Daniel Enrique; Medard, Muriel

    2013-01-01

    This is the second in a two-part series of papers on information-theoretic capacity scaling laws for an underwater acoustic network. Part II focuses on a dense network scenario, where nodes are deployed in a unit area. By deriving a cut-set upper bound on the capacity scaling, we first show...... that there exists either a bandwidth or power limitation, or both, according to the operating regimes (i.e., path-loss attenuation regimes), thus yielding the upper bound that follows three fundamentally different information transfer arguments. In addition, an achievability result based on the multi-hop (MH......) transmission is presented for dense networks. MH is shown to guarantee the order optimality under certain operating regimes. More specifically, it turns out that scaling the carrier frequency faster than or as is instrumental towards achieving the order optimality of the MH protocol....

  18. Convective rain cell contours inferred from a very dense gauge network

    Science.gov (United States)

    Teschl, Reinhard; Teschl, Franz; Fuchsberger, Jürgen

    2017-04-01

    Statistical information on the size of rain cells is of interest to a variety of disciplines: from meteorology and hydrology to microwave propagation e.g. for planning satellite communication systems. Rain cell size distributions are often based on weather radar data because of the high spatial and temporal resolution. The measuring accuracy of ground-based in situ sensors like rain gauges is admittedly higher, however, typical rain gauge networks exhibit a too coarse grid to adequately capture the spatial variability of precipitation, especially of convective cells. In the course of the present work, data originating from a very dense rain-gauge network was used: WegenerNet is a climate station network in Styria, Austria, consisting of 153 stations within an area of about 20 km × 15 km. The network provides well serviced and supervised datasets since January 2007. Multilevel quality flags are used to indicate integrity and plausibility of the data. Based on the point measurements of rainfall, interpolations on a 200 m × 200 m grid are provided. The detection of rain cells in the grid-data was accomplished by identifying contiguous areas where the rain rate is equal to or higher than a specified threshold value. Once a connected area of a defined magnitude was identified, its dimension was determined and the equivalent circular diameter of the rain cell was calculated. Only rain cells with contours higher than 5 mm per 5 minutes were considered, because the study area with its about 300 square kilometers often did not allow the complete detection of more widespread rainfall events associated with lower intensity contours. In any case it was made sure that rain cells, which were only partially detected, did not distort the results. The period of observation comprises up to now a 7-year timespan from 2010 to 2016. An extension of the period back to 2007 is planned in order to take advantage of full 10 years of high-resolution data. For the analysis only intervals

  19. Dense Semantic Labeling of Subdecimeter Resolution Images With Convolutional Neural Networks

    Science.gov (United States)

    Volpi, Michele; Tuia, Devis

    2017-02-01

    Semantic labeling (or pixel-level land-cover classification) in ultra-high resolution imagery (Neural Networks (CNNs) achieve this goal by learning discriminatively a hierarchy of representations of increasing abstraction. In this paper we present a CNN-based system relying on an downsample-then-upsample architecture. Specifically, it first learns a rough spatial map of high-level representations by means of convolutions and then learns to upsample them back to the original resolution by deconvolutions. By doing so, the CNN learns to densely label every pixel at the original resolution of the image. This results in many advantages, including i) state-of-the-art numerical accuracy, ii) improved geometric accuracy of predictions and iii) high efficiency at inference time. We test the proposed system on the Vaihingen and Potsdam sub-decimeter resolution datasets, involving semantic labeling of aerial images of 9cm and 5cm resolution, respectively. These datasets are composed by many large and fully annotated tiles allowing an unbiased evaluation of models making use of spatial information. We do so by comparing two standard CNN architectures to the proposed one: standard patch classification, prediction of local label patches by employing only convolutions and full patch labeling by employing deconvolutions. All the systems compare favorably or outperform a state-of-the-art baseline relying on superpixels and powerful appearance descriptors. The proposed full patch labeling CNN outperforms these models by a large margin, also showing a very appealing inference time.

  20. Optimal spike-based communication in excitable networks with strong-sparse and weak-dense links

    Science.gov (United States)

    Teramae, Jun-Nosuke; Tsubo, Yasuhiro; Fukai, Tomoki

    2012-07-01

    The connectivity of complex networks and functional implications has been attracting much interest in many physical, biological and social systems. However, the significance of the weight distributions of network links remains largely unknown except for uniformly- or Gaussian-weighted links. Here, we show analytically and numerically, that recurrent neural networks can robustly generate internal noise optimal for spike transmission between neurons with the help of a long-tailed distribution in the weights of recurrent connections. The structure of spontaneous activity in such networks involves weak-dense connections that redistribute excitatory activity over the network as noise sources to optimally enhance the responses of individual neurons to input at sparse-strong connections, thus opening multiple signal transmission pathways. Electrophysiological experiments confirm the importance of a highly broad connectivity spectrum supported by the model. Our results identify a simple network mechanism for internal noise generation by highly inhomogeneous connection strengths supporting both stability and optimal communication.

  1. Love wave phase velocity models of the southeastern margin of Tibetan Plateau from a dense seismic array

    Science.gov (United States)

    Han, Fengqin; Jia, Ruizhi; Fu, Yuanyuan V.

    2017-08-01

    Love wave dispersion maps across the southeastern margin of the Tibetan Plateau are obtained using earthquake data recorded by the temporary ChinArray and permanent China Digital Seismic Array. Fundamental mode Love wave phase velocity curves are measured by inverting Love wave amplitude and phase with the two-plane-wave method. The phase velocity maps with resolution better than 150 km are presented at periods of 20-100 s, which is unprecedented in the study area. The maps agree well with each other and show clear correlations with major tectonic structures. The Love wave phase velocity could provide new information about structures in the crust and upper mantle beneath the southeast margin of Tibetan Plateau, like the radial anisotropy.

  2. Seismicity of the rocky mountains and Rio Grande Rift from the EarthScope Transportable Array and CREST temporary seismic networks, 2008-2010

    Science.gov (United States)

    Nakai, J. S.; Sheehan, A. F.; Bilek, S. L.

    2017-03-01

    We developed a catalog of small magnitude (ML -0.1 to 4.7) seismicity across Colorado and New Mexico from the EarthScope USArray Transportable Array and CREST (Colorado Rocky Mountains Experiment and Seismic Transects) seismic networks from 2008 to 2010 to characterize active deformation in the Rio Grande Rift. We recorded over 900 earthquakes in the Rio Grande Rift region, not including induced earthquakes and mine blasts, and find that the rift is actively deforming both broadly and in distinct regions. Seismic events that are likely induced, mostly in the Raton Basin, make up 66% of the catalog (1837 earthquakes). Neogene faults in the northern rift in north central Colorado are seismically active in the North Park Basin and northwestern Colorado. The central rift from the San Luis Basin (southern Colorado) to south of the Socorro Magma Body is the most seismically active rift region, and seismicity delineates the deformation in the Colorado Plateau transition zone, which is spatially correlated with volcanic vents, dikes, and faults within the western Jemez Lineament. The eastern Jemez Lineament is nearly aseismic and surrounded by a halo of seismicity culminating in boundaries defined by recent moderate (Mw 3.9 and Mw 3.3) earthquakes. The southern rift is characterized by diffuse seismicity in Texas and Mexico. This study provides an updated seismic catalog built with uniformity in seismometer coverage and low epicentral uncertainties ( 2 km) that allows for regional evaluation of seismicity. During this time period, clusters of seismicity and moderate magnitude earthquakes characterize deformation in a low-strain rate extensional environment.

  3. USGS Global Seismographic Network (GSN): Data and Seismic Metadata

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The Global Seismographic Network (GSN) is a permanent digital network of state-of-the-art seismological and geophysical sensors connected by a telecommunications...

  4. SNES - Seismic Network Evaluation through Simulation: an application to the Italian RSNC-INGV

    Science.gov (United States)

    D'Alessandro, Antonino; Luzio, Dario; D'Anna, Giuseppe; Mangano, Giorgio; Messina, Nicola

    2010-05-01

    In this work we present a new method to evaluate the location performance of a seismic network through earthquakes simulation (SNES - Seismic Networks Evaluation through Simulation). To be applied, the SNES method require: P and S velocity models, seismic attenuation law, seismic stations positions and their experimental noise spectra and, finally, an empirical law that link the variance of the residual times of a station to the hypocenter position. This method allow to map the confidence interval estimates of the hypocentral parameters as function of magnitude, focus depth and confidence level. The simulation was carried out assuming that the epicentres of synthetic earthquakes are located in the knots of a square grid which was covering the investigated area. For each synthetic earthquake, the seismic spectrum was calculated in every station to determine the local Signal to Noise Ratio (SNR): the set of active stations in the location procedure and the relative azimuthal gap was determined by a threshold value of this parameter. Finally, the covariance matrix of synthetic data and the partial derivatives of the model were determined and used to estimate the covariance matrix of the hypocentral parameters. This method was applied to the Italian RSNC-INGV to evaluate its location performance, with a 95% confidence level. This simulation was carried out for small magnitude earthquakes (1.5seismic network. We show how the Ocean Bottom Seismometers can play an important role in this network improvement.

  5. MyShake: Initial Observations from a Global Smartphone Seismic Network

    Science.gov (United States)

    Kong, Q.; Allen, R. M.; Schreier, L.

    2016-12-01

    MyShake is a global smartphone seismic network that harnesses the power of crowdsourcing. It has two component: an android application running on the personal smartphones to detect earthquake-like motion, and a network detection algorithm to aggregate results from multiple smartphones to detect earthquakes. The MyShake application was released to the public on Feb 12th 2016. Within the first 5 months, there are more than 200 earthquakes recorded by the smartphones all over the world, including events in Chile, Argentina, Mexico, Morocco, Greece, Nepal, New Zealand, Taiwan, Japan, and across North America. In this presentation, we will show the waveforms we recorded from the smartphones for different earthquakes, and the evidences for using this data as a supplementary to the current earthquake early warning system. We will also show the performance of MyShake system during the some earthquakes in US. In short, MyShake smartphone seismic network can be a nice complementary system to the current traditional seismic network, at the same time, it can be a standalone system in places where few seismic stations were installed to reduce the earthquake hazards.

  6. Local seismic network at the Olkiluoto site. Annual report for 2011

    Energy Technology Data Exchange (ETDEWEB)

    Saari, J.; Malm, M. [AF-Consult Oy, Espoo (Finland)

    2012-06-15

    This report gives the results of microseismic monitoring during 2011. Excavation of the underground characterisation facility called ONKALO started in 2004. Before that, in February 2002, Posiva Oy established a local seismic network of six stations on the island of Olkiluoto. After that the number of seismic stations has increased gradually. In 2011 Posiva's permanent seismic network consists of 15 seismic stations and 20 triaxial sensors. The purpose of the microearthquake measurements at Olkiluoto is to improve understanding of the structure, behaviour and long term stability of the bedrock. The investigation area includes two target areas. The larger target area, called seismic semiregional area, covers the Olkiluoto Island and its surroundings. The purpose is to monitor explosions and tectonic earthquakes in regional scale inside that area. The smaller target area is called the seismic ONKALO block, which is a 2 km x 2 km x 2 km cube surrounding ONKALO. It is assumed that all the expected excavation induced events occur within this volume. At the moment the seismic ONKALO block includes ten seismic stations. An additional task of monitoring is related to safeguarding of the construction of ONKALO. The configuration of the seismic network as well as the software packages applied in data processing and analyses have remained during the previous year. The design model of ONKALO and the brittle fault zone model of the Olkiluoto of the seismic visualization package Jdi were upgraded in 2011. The network has operated nearly continuously. There was a 14 minutes and 30 second long operation failure in December 2011. That was the first network operation failure in five years. Altogether 1223 events have been located in the Olkiluoto area, in the reported time period. Most of them (1098) are explosions that occurred inside the seismic semiregional area and especially inside the seismic ONKALO block (1064 events). The magnitudes of the observed explosions inside the

  7. Cluster Analysis of Velocity Field Derived from Dense GNSS Network of Japan

    Science.gov (United States)

    Takahashi, A.; Hashimoto, M.

    2015-12-01

    Dense GNSS networks have been widely used to observe crustal deformation. Simpson et al. (2012) and Savage and Simpson (2013) have conducted cluster analyses of GNSS velocity field in the San Francisco Bay Area and Mojave Desert, respectively. They have successfully found velocity discontinuities. They also showed an advantage of cluster analysis for classifying GNSS velocity field. Since in western United States, strike-slip events are dominant, geometry is simple. However, the Japanese Islands are tectonically complicated due to subduction of oceanic plates. There are many types of crustal deformation such as slow slip event and large postseismic deformation. We propose a modified clustering method of GNSS velocity field in Japan to separate time variant and static crustal deformation. Our modification is performing cluster analysis every several months or years, then qualifying cluster member similarity. If a GNSS station moved differently from its neighboring GNSS stations, the station will not belong to in the cluster which includes its surrounding stations. With this method, time variant phenomena were distinguished. We applied our method to GNSS data of Japan from 1996 to 2015. According to the analyses, following conclusions were derived. The first is the clusters boundaries are consistent with known active faults. For examples, the Arima-Takatsuki-Hanaore fault system and the Shimane-Tottori segment proposed by Nishimura (2015) are recognized, though without using prior information. The second is improving detectability of time variable phenomena, such as a slow slip event in northern part of Hokkaido region detected by Ohzono et al. (2015). The last one is the classification of postseismic deformation caused by large earthquakes. The result suggested velocity discontinuities in postseismic deformation of the Tohoku-oki earthquake. This result implies that postseismic deformation is not continuously decaying proportional to distance from its epicenter.

  8. 3D Traveltime Tomography and 1D Wavefield Inversion of Dense 3D Seismic Refraction Data From a Shallow Groundwater Contamination Site

    Science.gov (United States)

    Zelt, C. A.; Chen, J.; Levander, A.

    2016-12-01

    In 2012 Rice University carried out a shallow seismic survey in Rifle, Colorado where the groundwater was contaminated by vanadium and uranium ore-processing operations ending in 1958. The purpose of the seismic survey is to provide constraints to improve hydrogeologic modeling. The 3-D P-wave survey over 96 m x 60 m included 2158 shots recorded by 384 channels yielding 828,672 traces. An accelerated weight drop provided data with good signal-to-noise ratio (SNR) and a dominant frequency of 60 Hz. The overall good SNR allows for precise picking and an average uncertainty of 0.65 ms was assigned based on an analysis of all reciprocal time differences. Unreliable source triggering necessitated solving for shot time corrections during travelitme tomography, creating a mixed-parameter inverse problem. Several steps in addition to conventional 3-D traveltime tomography were applied to exploit the dense data and precise picking to overcome the data's low frequency content: (1) stacking the arrival-time-corrected traces in offset bins for 1-D reflectivity modeling to constrain discontinuities; (2) reduced smoothing regularization based on the local angular distribution of raypaths; and (3) a frequency-dependent form of traveltime tomography to account for the data's frequency content. Model assessment techniques include: (1) removal of the best and poorest fit data to assess the effect of outliers, (2) a jackknife procedure to estimate the uncertainty of each velocity node, and (3) checkerboard tests to estimate lateral model resolution using random shot and picking errors consistent with the real data. The results show that most of the velocity model has a relative error of less than 2% and lateral resolution of better than 5, 10 and 20 m to depths of 5, 10 and 20 m, respectively. Results include an isovelocity surface that represents the top of the Wasatch formation.

  9. The CarboCount CH sites: characterization of a dense greenhouse gas observation network

    Directory of Open Access Journals (Sweden)

    B. Oney

    2015-10-01

    Full Text Available We describe a new rural network of four densely placed (2, CH4, and CO measurement sites in north-central Switzerland and analyze its suitability for regional-scale (~ 100–500 km carbon flux studies. We characterize each site for the period from March 2013 to February 2014 by analyzing surrounding land cover, observed local meteorology, and sensitivity to surface fluxes, as simulated with the Lagrangian particle dispersion model FLEXPART-COSMO (FLEXible PARTicle dispersion model-Consortium for Small-Scale Modeling. The Beromünster measurements are made on a tall tower (212 m located on a gentle hill. At Beromünster, regional CO2 signals (measurement minus background vary diurnally from −4 to +4 ppmv, on average, and are simulated to come from nearly the entire Swiss Plateau, where 50 % of surface influence is simulated to be within 130–260 km distance. The Früebüel site measurements are made 4 m above ground on the flank of a gently sloping mountain. Nearby (2 signals varying diurnally from −5 to +12 ppmv and elevated summer daytime CH4 signals (+30 ppbv above other sites. The Gimmiz site measurements are made on a small tower (32 m in flat terrain. Here, strong summertime regional signals (−5 to +60 ppmv CO2 stem from large, nearby (2. Here, considerable anthropogenic influence from the nearby industrialized region near Zurich causes the average wintertime regional CO2 signals to be 5 ppmv above the regional signals simultaneously measured at the Früebüel site. We find that the suitability of the data sets from our current observation network for regional carbon budgeting studies largely depends on the ability of the high-resolution (2 km atmospheric transport model to correctly capture the temporal dynamics of the stratification of the lower atmosphere at the different sites. The current version of the atmospheric transport model captures these dynamics well, but it clearly reaches its limits at the sites in steep topography

  10. The CarboCount CH sites: characterization of a dense greenhouse gas observation network

    Directory of Open Access Journals (Sweden)

    B. Oney

    2015-05-01

    Full Text Available We describe a new rural network of four densely placed (2, CH4, and CO measurement sites in north-central Switzerland and analyze their suitability for regional-scale (~ 100 to 500 km carbon flux studies. We characterize each site by analyzing surrounding land cover, observed local meteorology, and sensitivity to surface fluxes, as simulated with the Lagrangian particle dispersion model FLEXPART-COSMO. The Beromünster measurements are made on a tall tower (212 m located on a gentle hill. At Beromünster, regional CO2 signals (measurement minus background vary diurnally from −4 to +4 ppmv on average, and are simulated to come from nearly the entire Swiss Plateau, where 50% of surface influence is simulated to be within 130 to 260 km distance. The Früebüel site measurements are made 4 m above ground on the flank of a gently sloping mountain. Nearby (2 signals varying diurnally from −5 to +12 ppmv and elevated summer daytime CH4 signals (+30 ppbv above other sites. The Gimmiz site measurements are made on a small tower (32 m in flat terrain. Here, strong summertime regional signals (−5 to +60 ppmv CO2 stem from large, nearby (2. Here, considerable anthropogenic influence from the nearby industrialized region near Zurich cause the average wintertime regional CO2 signals to be 5 ppmv above the regional signals simultaneously measured at Früebüel site. We find that the suitability of the datasets from our current observation network for regional carbon budgeting studies largely depends on the ability of the high-resolution (2 km atmospheric transport model to correctly capture the temporal dynamics of the stratification of the lower atmosphere at the different sites. The current version of the atmospheric transport model captures these dynamics well, but it clearly reaches its limits at the sites in steep topography, and at the sites that generally remain in the surface layer. Trace gas transport and inverse modeling studies will be

  11. Study of earthquakes using a borehole seismic network at Koyna, India

    Science.gov (United States)

    Gupta, Harsh; Satyanarayana, Hari VS; Shashidhar, Dodla; Mallika, Kothamasu; Ranjan Mahato, Chitta; Shankar Maity, Bhavani

    2017-04-01

    Koyna, located near the west coast of India, is a classical site of artificial water reservoir triggered earthquakes. Triggered earthquakes started soon after the impoundment of the Koyna Dam in 1962. The activity has continued till now including the largest triggered earthquake of M 6.3 in 1967; 22 earthquakes of M ≥ 5 and several thousands smaller earthquakes. The latest significant earthquake of ML 3.7 occurred on 24th November 2016. In spite of having a network of 23 broad band 3-component seismic stations in the near vicinity of the Koyna earthquake zone, locations of earthquakes had errors of 1 km. The main reason was the presence of 1 km thick very heterogeneous Deccan Traps cover that introduced noise and locations could not be improved. To improve the accuracy of location of earthquakes, a unique network of eight borehole seismic stations surrounding the seismicity was designed. Six of these have been installed at depths varying from 981 m to 1522 m during 2015 and 2016, well below the Deccan Traps cover. During 2016 a total of 2100 earthquakes were located. There has been a significant improvement in the location of earthquakes and the absolute errors of location have come down to ± 300 m. All earthquakes of ML ≥ 0.5 are now located, compared to ML ≥1.0 earlier. Based on seismicity and logistics, a block of 2 km x 2 km area has been chosen for the 3 km deep pilot borehole. The installation of the borehole seismic network has further elucidated the correspondence between rate of water loading/unloading the reservoir and triggered seismicity.

  12. Detectability and reliability analysis of the local seismic network in Pakistan

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The detectability and reliability analysis for the local seismic network is performed employing by Bungum and Husebye technique. The events were relocated using standard computer codes for hypocentral locations. The detectability levels are estimated from the twenty-five years of recorded data in terms of 50(, 90( and 100( cumulative detectability thresholds, which were derived from frequency-magnitude distribution. From this analysis the 100( level of detectability of the network is ML=1.7 for events which occur within the network. The accuracy in hypocentral solutions of the network is investigated by considering the fixed real hypocenter within the network. The epicentral errors are found to be less than 4 km when the events occur within the network. Finally, the problems faced during continuous operation of the local network, which effects its detectability, are discussed.

  13. A disjoint algorithm for seismic reliability analysis of lifeline networks

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The algorithm is based on constructing a disjoin kg t set of the minimal paths in a network system. In this paper,cubic notation was used to describe the logic function of a network in a well-balanced state, and then the sharp-product operation was used to construct the disjoint minimal path set of the network. A computer program has been developed, and when combined with decomposition technology, the reliability of a general lifeline network can be effectively and automatically calculated.

  14. A controlled source seismic attenuation study of the crust beneath Mount St. Helens with a dense array

    Science.gov (United States)

    Hupp, K.; Schmandt, B.; Kiser, E.; Hansen, S. M.; Levander, A.

    2016-12-01

    Crustal properties beneath Mount St. Helens are investigated using attenuation measurements from an array of 904 cable-free seismographs, referred to as nodes, located within 15 km of the summit crater. Measurements of P wave attenuation were made using 23 controlled explosion sources located 0 - 80 km outside the node array, which provides a well-balanced distribution of source-receiver azimuths and distances. The 500-1000 kg explosive sources were observed regionally, and all explosions produced P waves recorded with signal-to-noise power ratios of >3 dB for >90% of the node array. We estimate relative variations in the path-integrated attenuation parameter, t*, using 2 - 25 Hz spectral ratios of individual node spectra relative to the array median spectrum for each explosion source. For small source-receiver distances (>100). An exception to the previously mentioned trends is that for distances <30 km a ring of 150 nodes closest to the summit crater surrounding the base of the volcanic edifice yield low relative t* estimates ( -0.1s) and high mean envelope amplitudes at all frequencies from 2-25 Hz. The anomalous amplification of these "inner ring" recordings for small offsets could arise from very low impedance in the shallow crust beneath the edifice possibly enhanced by resonance within the edifice. Longer offset measurements will be used for 3D relative attenuation (dQ-1) tomography. We hypothesize that high attenuation (low Q) volumes may be observed at 5-15 km beneath Mount St. Helens where recent controlled source velocity tomography indicates high Vp/Vs. Adding attenuation constraints to recent seismic velocity results will aid estimating properties such as the melt fraction in the upper crustal magma reservoir.

  15. UMTS rapid response real-time seismic networks: implementation and strategies at INGV

    Science.gov (United States)

    Govoni, A.; Margheriti, L.; Moretti, M.; Lauciani, V.; Sensale, G.; Bucci, A.; Criscuoli, F.

    2015-12-01

    Universal Mobile Telecommunications System (UMTS) and its evolutions are nowadays the most affordable and widespread data communication infrastructure available almost world wide. Moreover the always growing cellular phone market is pushing the development of new devices with higher performances and lower power consumption. All these characteristics make UMTS really useful for the implementation of an "easy to deploy" temporary real-time seismic station. Despite these remarkable features, there are many drawbacks that must be properly taken in account to effectively transmit the seismic data: Internet security, signal and service availability, power consumption. - Internet security: exposing seismological data services and seismic stations to the Internet is dangerous, attack prone and can lead to downtimes in the services, so we setup a dedicated Virtual Private Network (VPN) service to protect all the connected devices. - Signal and service availability: while for temporary experiment a carefull planning and an accurate site selection can minimize the problem, this is not always the case with rapid response networks. Moreover, as with any other leased line, the availability of the UMTS service during a seismic crisis is basically unpredictable. Nowadays in Italy during a major national emergency a Committee of the Italian Civil Defense ensures unified management and coordination of emergency activities. Inside it the telecom companies are committed to give support to the crisis management improving the standards in their communication networks. - Power consumption: it is at least of the order of that of the seismic station and, being related to data flow and signal quality is largely unpredictable. While the most secure option consists in adding a second independent solar power supply to the seismic station, this is not always a very convenient solution since it doubles the cost and doubles the equipment on site. We found that an acceptable trade-off is to add an

  16. Utah's Regional/Urban ANSS Seismic Network---Strategies and Tools for Quality Performance

    Science.gov (United States)

    Burlacu, R.; Arabasz, W. J.; Pankow, K. L.; Pechmann, J. C.; Drobeck, D. L.; Moeinvaziri, A.; Roberson, P. M.; Rusho, J. A.

    2007-05-01

    The University of Utah's regional/urban seismic network (224 stations recorded: 39 broadband, 87 strong-motion, 98 short-period) has become a model for locally implementing the Advanced National Seismic System (ANSS) because of successes in integrating weak- and strong-motion recording and in developing an effective real-time earthquake information system. Early achievements included implementing ShakeMap, ShakeCast, point-to- multipoint digital telemetry, and an Earthworm Oracle database, as well as in-situ calibration of all broadband and strong-motion stations and submission of all data and metadata into the IRIS DMC. Regarding quality performance, our experience as a medium-size regional network affirms the fundamental importance of basics such as the following: for data acquisition, deliberate attention to high-quality field installations, signal quality, and computer operations; for operational efficiency, a consistent focus on professional project management and human resources; and for customer service, healthy partnerships---including constant interactions with emergency managers, engineers, public policy-makers, and other stakeholders as part of an effective state earthquake program. (Operational cost efficiencies almost invariably involve trade-offs between personnel costs and the quality of hardware and software.) Software tools that we currently rely on for quality performance include those developed by UUSS (e.g., SAC and shell scripts for estimating local magnitudes) and software developed by other organizations such as: USGS (Earthworm), University of Washington (interactive analysis software), ISTI (SeisNetWatch), and IRIS (PDCC, BUD tools). Although there are many pieces, there is little integration. One of the main challenges we face is the availability of a complete and coherent set of tools for automatic and post-processing to assist in achieving the goals/requirements set forth by ANSS. Taking our own network---and ANSS---to the next level

  17. Optimization of Broadband Seismic Network in the Kingdom of Saudi Arabia

    KAUST Repository

    Alshuhail, Abdulrahman

    2011-05-01

    Saudi Arabia covers a large portion of the Arabian plate, a region characterized by seismic activity, along complex divergent and convergent plate boundaries. In order to understand these plate boundaries it is essential to optimize the design of the broadband seismic station network to accurately locate earthquakes. In my study, I apply an optimization method to design the broadband station distribution in Saudi Arabia. This method is based on so called D-optimal planning criterion that optimizes the station distribution for locating the hypocenters of earthquakes. Two additional adjustments were implemented: to preferentially acquire direct and refracted wave, and to account for geometric spreading of seismic waves (and thus increases the signal to noise ratio). The method developed in this study for optimizing the geographical location of broadband stations uses the probability of earthquake occurrence and a 1-D velocity model of the region, and minimizes the ellipsoid volume of the earthquake location errors. The algorithm was applied to the current seismic network, operated by the Saudi Geologic Survey (SGS). Based on the results, I am able to make recommendations on, how to expand the existing network. Furthermore, I quantify the efficiency of our method by computing the standard error of epicenter and depth before and after adding the proposed stations.

  18. Green Architecture for Dense Home Area Networks Based on Radio-over-Fiber with Data Aggregation Approach

    Institute of Scientific and Technical Information of China (English)

    Mohd Sharil Abdullah; Mohd Adib Sarijari; Abdul Hadi Fikri Abdul Hamid; Norsheila Fisal; Anthony Lo; Rozeha A. Rashid; Sharifah Kamilah Syed Yusof

    2016-01-01

    Abstract-Thehigh-density population leads to crowded cities. The future city is envisaged to encompass a large-scale network with diverse applications and a massive number of interconnected heterogeneous wireless-enabled devices. Hence, green technology elements are crucial to design sustainable and future-proof network architectures. They are the solutions for spectrum scarcity, high latency, interference, energy efficiency, and scalability that occur in dense and heterogeneous wireless networks especially in the home area network (HAN). Radio-over-fiber (ROF) is a technology candidate to provide a global view of HAN’s activities that can be leveraged to allocate orthogonal channel communications for enabling wireless-enabled HAN devices transmission, with considering the clustered-frequency-reuse approach. Our proposed network architecture design is mainly focused on enhancing the network throughput and reducing the average network communications latency by proposing a data aggregation unit (DAU). The performance shows that with the DAU, the average network communications latency reduces significantly while the network throughput is enhanced, compared with the existing ROF architecture without the DAU.

  19. An improved real-time seismic network in the Central Mediterranean

    Science.gov (United States)

    Agius, Matthew; Galea, Pauline; D'Amico, Sebastiano

    2014-05-01

    The Central Mediterranean is a region of active tectonics characterised by the interaction of a number of varied and sometimes poorly understood processes. Superimposed on the convergent scenario of the African plate pushing northwestward, a NE-SW directed extensional regime is active in the Sicily Channel, expressed in the form of a seismically active east-west trending system of strike-slip lineaments and a series of pull-apart grabens. The offshore seismicity of the Sicily channel, generally limited to magnitudes below 4.5, is normally difficult to quantify precisely, due to poor station coverage, yet it is believed that its analysis will considerably improve our understanding of the processes affecting the region. We present recent improvements to real and virtual seismic networking in the Central Mediterranean, based at the Seismic Monitoring and Research Unit (SMRU), University of Malta. Within the project SIMIT (B1-2.19/11) funded by the Italia-Malta Operational Programme 2007-2013, earthquake monitoring on the Maltese Islands is being upgraded through the installation of a further two broadband stations, one of which will be on the smaller island of Gozo. A new network, ML (Malta Seismic Network), has been internationally registered with the FDSN. At the same time, the installation and implementation of SeisComP3 has enabled the setting up of a virtual, real-time Central Mediterranean network, made up of 18 stations in Southern Italy (including Sicily, Lampedusa and Pantelleria) belonging to the Istituto Nazionale di Geofisica e Vulcanologia, 3 stations in Tunisia (National Institute of Meteorology of Tunisia) and the 3 stations on the Maltese Islands. This will allow us to rapidly perform more accurate hypocentral locations in the region. The virtual network, which also incorporates a number of more distant stations, has been tuned to issue SMS alerts for potentially felt events in the Sicily Channel detected by the network, and for strong earthquakes

  20. Theoretical design and field deployment of a dense strong motion instrument network for the Alpine Fault, South Island, New Zealand.

    Science.gov (United States)

    Francois, C.; Berril, J.; Pettinga, J.

    2003-04-01

    A dense network of strong motion seismometers is being developed in order to investigate the complexities of the upper crustal rupture process and propagation of major seismogenic sources such as the Alpine Fault and strands of the Marlborough Fault System defining the South Island sector of the Australia-Pacific plate boundary zone. The proposed network is designed as a dense array of approximately 20 accelerographs using the University of Canterbury 12-bit CUSP instrument, now nearing development completion. It will be deployed straddling the Alpine Fault in the central West Coast region of the South Island, and coverage will extend across the region at the Alpine-Hope Fault junction also. The array layout is being designed utilizing the frequency-analysis MUSIC method (Multiple Signal Characterization) developed by Goldstein and Archuleta (1991a&b). Synthetic strong-motion records were computed using an empirical Green's function synthetic seismogram program EMPSYN (Hutchings, 1987). The process of finding an optimal network configuration is dependent on the geometry of the array (study of the frequency analysis performance of the modelled earthquake data for various proposed array configurations), and on the instrument site conditions (geology, communications, accessibility, isolation etc). References Goldstein, P. and R. J. Archuleta (1991a). "Deterministic frequency-wavenumber methods and direct measurements of rupture propagation during earthquakes using a dense array; data analysis." Journal of Geophysical Research, B, Solid Earth and Planets 96(4): 6187-6198. Goldstein, P. and R. J. Archuleta (1991b). "Deterministic frequency-wavenumber methods and direct measurements of rupture propagation during earthquakes using a dense array; theory and methods." Journal of Geophysical Research, B, Solid Earth and Planets 96(4): 6173-6185. Hutchings, L. J. (1987). "Modelling strong earthquake ground motion with empirical Green's function", Ph.D. thesis, Department of

  1. UMTS rapid response real-time seismic networks: implementation and strategies at INGV

    Science.gov (United States)

    Govoni, Aladino; Margheriti, Lucia; Moretti, Milena; Lauciani, Valentino; Sensale, Gianpaolo; Bucci, Augusto; Criscuoli, Fabio

    2015-04-01

    The benefits of portable real-time seismic networks are several and well known. During the management of a temporary experiment from the real-time data it is possible to detect and fix rapidly problems with power supply, time synchronization, disk failures and, most important, seismic signal quality degradation due to unexpected noise sources or sensor alignment/tampering. This usually minimizes field maintenance trips and maximizes both the quantity and the quality of the acquired data. When the area of the temporary experiment is not well monitored by the local permanent network, the real-time data from the temporary experiment can be fed to the permanent network monitoring system improving greatly both the real-time hypocentral locations and the final revised bulletin. All these benefits apply also in case of seismic crises when rapid deployment stations can significantly contribute to the aftershock analysis. Nowadays data transmission using meshed radio networks or satellite systems is not a big technological problem for a permanent seismic network where each site is optimized for the device power consumption and is usually installed by properly specialized technicians that can configure transmission devices and align antennas. This is not usually practical for temporary networks and especially for rapid response networks where the installation time is the main concern. These difficulties are substantially lowered using the now widespread UMTS technology for data transmission. A small (but sometimes power hungry) properly configured device with an omnidirectional antenna must be added to the station assembly. All setups are usually configured before deployment and this allows for an easy installation also by untrained personnel. We describe here the implementation of a UMTS based portable seismic network for both temporary experiments and rapid response applications developed at INGV. The first field experimentation of this approach dates back to the 2009 L

  2. EVALUATION ON SEISMIC DAMAGE OF TRANSPORTATION NETWORK BASED ON FRAGILITY CURVE

    Science.gov (United States)

    Fujimi, Toshio; Mazda, Taiji; Mizokami, Shoshi; Kiyota, Reo

    This paper evaluates the seismic damage probabilistically. The target area of this study is Kumamoto urban road network. The procedures of this study are making the fragility curve, and then calculating indirect traffic damage based on fragility curve. Making the fragility curve includes three types of bridge pier. GUIDELINE FOR HIGHWAY BRIDGE SEISMIC DESIGN in 1972, SPECIFICATION FOR HIGHWAY BRIDGES Part V Seismic design in 1980 and 1990. To calculate traffic damage, it is considered scenario earthquake and the model of traffic assignment. Scenario earthquake is of Futagawa-Hinagu fault zone. The model of assignment is User Equilibrium Assignment. This study has yielded two results as the distribution of indirect traffic damage is normal, and there are 69 bridges in the area has failure probability, which are designed before 1980, and exist within 10km from the epicenter.

  3. Multiple indices method for real-time tsunami inundation forecast using a dense offshore observation network

    Science.gov (United States)

    Yamamoto, N.; Aoi, S.; Hirata, K.; Suzuki, W.; Kunugi, T.; Nakamura, H.

    2015-12-01

    We started to develop a new methodology for real-time tsunami inundation forecast system (Aoi et al., 2015, this meeting) using densely offshore tsunami observations of the Seafloor Observation Network for Earthquakes and Tsunamis (S-net), which is under construction along the Japan Trench (Kanazawa et al., 2012, JpGU; Uehira et al., 2015, IUGG). In our method, the most important concept is involving any type and/or form uncertainties in the tsunami forecast, which cannot be dealt with any of standard linear/nonlinear least square approaches. We first prepare a Tsunami Scenario Bank (TSB), which contains offshore tsunami waveforms at the S-net stations and tsunami inundation information calculated from any possible tsunami source. We then quickly select several acceptable tsunami scenarios that can explain offshore observations by using multiple indices and appropriate thresholds, after a tsunami occurrence. At that time, possible tsunami inundations coupled with selected scenarios are forecasted (Yamamoto et al., 2014, AGU). Currently, we define three indices: correlation coefficient and two variance reductions, whose L2-norm part is normalized either by observations or calculations (Suzuki et al., 2015, JpGU; Yamamoto et al., 2015, IUGG). In this study, we construct the TSB, which contains various tsunami source models prepared for the probabilistic tsunami hazard assessment in the Japan Trench region (Hirata et al., 2014, AGU). To evaluate the propriety of our method, we adopt the fault model based on the 2011 Tohoku earthquake as a pseudo "observation". We also calculate three indices using coastal maximum tsunami height distributions between observation and calculation. We then obtain the correlation between coastal and offshore indices. We notice that the index value of coastal maximum tsunami heights is closer to 1 than the index value of offshore waveforms, i.e., the coastal maximum tsunami height may be predictable within appropriate thresholds defined for

  4. Characterization of large mass movements occurred in the Italian Alps using seismic monitoring networks

    Science.gov (United States)

    Coviello, Velio; De Santis, Francesca; Chiarle, Marta; Arattano, Massimo; Godio, Alberto

    2014-05-01

    Passive seismic monitoring techniques have been profusely adopted to detect seismic sources induced by slope deformation and landslide propagation. Seismic signal processing can provide relevant information on the dynamics of unstable slopes, and may allow the identification of collapse precursors. Otherwise, seismic sensors have been used to characterize the volume and propagation velocity of rock-slides and debris-flows. For these purposes, geophone arrays are usually installed in specific monitoring sites. However, also a broadband seismic network can be used to identify signals originated by the detachment and movements of large masses. One advantage of using these networks would be the ability to detect remote events that might otherwise go unnoticed for weeks or months. Furthermore, even if often recorded at a distance, the spectral analysis of the low frequency content of the recorded signal may allow a preliminary characterization of the phenomenon. We selected five well known large mass movements occurred in the Italian Alps with volumes between 300.000 cubic meter (Monte Rosa rock avalanche, 2007) and 34.000.000 cubic meter (Val Pola rock avalanche, 1987). On average, seismic stations located up to 40 km far from these events were able to detect them, except for the Val Pola rock avalanche which was recorded at a distance greater than 100 km. As already observed by other authors, for these phenomena common signal characteristics include emergent onsets on all channels, slowly decaying tails and a triangular spectrogram shape. For this study we used different ground velocity sensors and considering the event magnitude, the distance source-receiver and to ensure a flat frequency response we focused on the 1-40 Hz frequency band. In this work these five large slope instabilities are described and the associated seismograms are presented and analyzed together with a first discussion of their spectral characteristics.

  5. Teaching hands-on geophysics: examples from the Rū seismic network in New Zealand

    Science.gov (United States)

    van Wijk, Kasper; Simpson, Jonathan; Adam, Ludmila

    2017-03-01

    Education in physics and geosciences can be effectively illustrated by the analysis of earthquakes and the subsequent propagation of seismic waves in the Earth. Educational seismology has matured to a level where both the hard- and software are robust and user friendly. This has resulted in successful implementation of educational networks around the world. Seismic data recorded by students are of such quality that these can be used in classic earthquake location exercises, for example. But even ocean waves weakly coupled into the Earth’s crust can now be recorded on educational seismometers. These signals are not just noise, but form the basis of more recent developments in seismology, such as seismic interferometry, where seismic waves generated by ocean waves—instead of earthquakes—can be used to infer information about the Earth’s interior. Here, we introduce an earthquake location exercise and an analysis of ambient seismic noise, and present examples. Data are provided, and all needed software is freely available.

  6. The Central and Eastern U.S. Seismic Network: Legacy of USArray

    Science.gov (United States)

    Eakins, J. A.; Astiz, L.; Benz, H.; Busby, R. W.; Hafner, K.; Reyes, J. C.; Sharer, G.; Vernon, F.; Woodward, R.

    2014-12-01

    As the USArray Transportable Array entered the central and eastern United States, several Federal agencies (National Science Foundation, U.S. Geological Survey, U.S. Nuclear Regulatory Commission, and Department of Energy) recognized the unique opportunity to retain TA stations beyond the original timeline. The mission of the CEUSN is to produce data that enables researchers and Federal agencies alike to better understand the basic geologic questions, background earthquake rates and distribution, seismic hazard potential, and associated societal risks of this region. The selected long-term sub-array from Transportable Array (TA) stations includes nearly 200 sites, complemented by 100 broadband stations from the existing regional seismic networks to form the Central and Eastern United States Network (CEUSN). Multiple criteria for site selection were weighed by an inter-agency TA Station Selection (TASS) Working Group: seismic noise characteristics, data availability in real time, proximity to nuclear power plants, and homogeneous distribution throughout the region. The Array Network Facility (ANF) started collecting data for CEUSN network stations since late 2013, with all stations collected since May 2014. Regional seismic data streams are collected in real-time from the IRIS Data Management Center (DMC). TA stations selected to be part of CEUSN, retain the broadband sensor to which a 100 sps channel is added, the infrasound and environmental channels, and, at some stations, accelerometers are deployed. The upgraded sites become part of the N4 network for which ANF provides metadata and can issue remote commands to the station equipment. Stations still operated by TA, but planned for CEUSN, are included in the virtual network so all stations are currently available now. By the end of 2015, the remaining TA stations will be upgraded. Data quality control procedures developed for TA stations at ANF and at the DMC are currently performed on N4 data. However

  7. MyShake: A smartphone seismic network for earthquake early warning and beyond.

    Science.gov (United States)

    Kong, Qingkai; Allen, Richard M; Schreier, Louis; Kwon, Young-Woo

    2016-02-01

    Large magnitude earthquakes in urban environments continue to kill and injure tens to hundreds of thousands of people, inflicting lasting societal and economic disasters. Earthquake early warning (EEW) provides seconds to minutes of warning, allowing people to move to safe zones and automated slowdown and shutdown of transit and other machinery. The handful of EEW systems operating around the world use traditional seismic and geodetic networks that exist only in a few nations. Smartphones are much more prevalent than traditional networks and contain accelerometers that can also be used to detect earthquakes. We report on the development of a new type of seismic system, MyShake, that harnesses personal/private smartphone sensors to collect data and analyze earthquakes. We show that smartphones can record magnitude 5 earthquakes at distances of 10 km or less and develop an on-phone detection capability to separate earthquakes from other everyday shakes. Our proof-of-concept system then collects earthquake data at a central site where a network detection algorithm confirms that an earthquake is under way and estimates the location and magnitude in real time. This information can then be used to issue an alert of forthcoming ground shaking. MyShake could be used to enhance EEW in regions with traditional networks and could provide the only EEW capability in regions without. In addition, the seismic waveforms recorded could be used to deliver rapid microseism maps, study impacts on buildings, and possibly image shallow earth structure and earthquake rupture kinematics.

  8. Supervised machine learning on a network scale: application to seismic event classification and detection

    Science.gov (United States)

    Reynen, Andrew; Audet, Pascal

    2017-09-01

    A new method using a machine learning technique is applied to event classification and detection at seismic networks. This method is applicable to a variety of network sizes and settings. The algorithm makes use of a small catalogue of known observations across the entire network. Two attributes, the polarization and frequency content, are used as input to regression. These attributes are extracted at predicted arrival times for P and S waves using only an approximate velocity model, as attributes are calculated over large time spans. This method of waveform characterization is shown to be able to distinguish between blasts and earthquakes with 99 per cent accuracy using a network of 13 stations located in Southern California. The combination of machine learning with generalized waveform features is further applied to event detection in Oklahoma, United States. The event detection algorithm makes use of a pair of unique seismic phases to locate events, with a precision directly related to the sampling rate of the generalized waveform features. Over a week of data from 30 stations in Oklahoma, United States are used to automatically detect 25 times more events than the catalogue of the local geological survey, with a false detection rate of less than 2 per cent. This method provides a highly confident way of detecting and locating events. Furthermore, a large number of seismic events can be automatically detected with low false alarm, allowing for a larger automatic event catalogue with a high degree of trust.

  9. The Italian National Seismic Network and the earthquake and tsunami monitoring and surveillance systems

    Science.gov (United States)

    Michelini, Alberto; Margheriti, Lucia; Cattaneo, Marco; Cecere, Gianpaolo; D'Anna, Giuseppe; Delladio, Alberto; Moretti, Milena; Pintore, Stefano; Amato, Alessandro; Basili, Alberto; Bono, Andrea; Casale, Paolo; Danecek, Peter; Demartin, Martina; Faenza, Licia; Lauciani, Valentino; Mandiello, Alfonso Giovanni; Marchetti, Alessandro; Marcocci, Carlo; Mazza, Salvatore; Mariano Mele, Francesco; Nardi, Anna; Nostro, Concetta; Pignone, Maurizio; Quintiliani, Matteo; Rao, Sandro; Scognamiglio, Laura; Selvaggi, Giulio

    2016-11-01

    The Istituto Nazionale di Geofisica e Vulcanologia (INGV) is an Italian research institution, with focus on Earth Sciences. INGV runs the Italian National Seismic Network (Rete Sismica Nazionale, RSN) and other networks at national scale for monitoring earthquakes and tsunami as a part of the National Civil Protection System coordinated by the Italian Department of Civil Protection (Dipartimento di Protezione Civile, DPC). RSN is composed of about 400 stations, mainly broadband, installed in the Country and in the surrounding regions; about 110 stations feature also co-located strong motion instruments, and about 180 have GPS receivers and belong to the National GPS network (Rete Integrata Nazionale GPS, RING). The data acquisition system was designed to accomplish, in near-real-time, automatic earthquake detection, hypocenter and magnitude determination, moment tensors, shake maps and other products of interest for DPC. Database archiving of all parametric results are closely linked to the existing procedures of the INGV seismic monitoring environment and surveillance procedures. INGV is one of the primary nodes of ORFEUS (Observatories & Research Facilities for European Seismology) EIDA (European Integrated Data Archive) for the archiving and distribution of continuous, quality checked seismic data. The strong motion network data are archived and distributed both in EIDA and in event based archives; GPS data, from the RING network are also archived, analyzed and distributed at INGV. Overall, the Italian earthquake surveillance service provides, in quasi real-time, hypocenter parameters to the DPC. These are then revised routinely by the analysts of the Italian Seismic Bulletin (Bollettino Sismico Italiano, BSI). The results are published on the web, these are available to both the scientific community and the general public. The INGV surveillance includes a pre-operational tsunami alert service since INGV is one of the Tsunami Service providers of the North

  10. Automated classification of seismic sources in a large database: a comparison of Random Forests and Deep Neural Networks.

    Science.gov (United States)

    Hibert, Clement; Stumpf, André; Provost, Floriane; Malet, Jean-Philippe

    2017-04-01

    In the past decades, the increasing quality of seismic sensors and capability to transfer remotely large quantity of data led to a fast densification of local, regional and global seismic networks for near real-time monitoring of crustal and surface processes. This technological advance permits the use of seismology to document geological and natural/anthropogenic processes (volcanoes, ice-calving, landslides, snow and rock avalanches, geothermal fields), but also led to an ever-growing quantity of seismic data. This wealth of seismic data makes the construction of complete seismicity catalogs, which include earthquakes but also other sources of seismic waves, more challenging and very time-consuming as this critical pre-processing stage is classically done by human operators and because hundreds of thousands of seismic signals have to be processed. To overcome this issue, the development of automatic methods for the processing of continuous seismic data appears to be a necessity. The classification algorithm should satisfy the need of a method that is robust, precise and versatile enough to be deployed to monitor the seismicity in very different contexts. In this study, we evaluate the ability of machine learning algorithms for the analysis of seismic sources at the Piton de la Fournaise volcano being Random Forest and Deep Neural Network classifiers. We gather a catalog of more than 20,000 events, belonging to 8 classes of seismic sources. We define 60 attributes, based on the waveform, the frequency content and the polarization of the seismic waves, to parameterize the seismic signals recorded. We show that both algorithms provide similar positive classification rates, with values exceeding 90% of the events. When trained with a sufficient number of events, the rate of positive identification can reach 99%. These very high rates of positive identification open the perspective of an operational implementation of these algorithms for near-real time monitoring of

  11. 陕西测震台网技术系统%The technological system of seismic network in Shaanxi

    Institute of Scientific and Technical Information of China (English)

    李少睿; 罗治国

    2012-01-01

    Taking the Shaanxi seismic network as an example, the architecture of seismic network technique system is analyzed in this paper. We can conclude that with application of virtual network, 3G wireless and remote network monitoring techniques, the operation quality of Shaanxi digital seismic network and fast responsibility of mobile seismic network are improved significantly. The implementation of real sharing of observation data among the provincial and municipal seismic networks will promote the seismic response capacity, perfects the earthquake monitoring system for earthquake administration department.%通过测震台网网络技术平台,分析其系统构成及虚拟台网、3G无线传输、远程网络监控等技术在陕西测震台网的应用.该平台的建成,提高了测震台网运行质量及流动测震台网的快速响应能力,实现省、市测震台网观测数据的实时共享,对进一步提升地震部门地震响应能力、完善监测体系,具有重要意义.

  12. Effect of seismic retrofit of bridges on transportation networks

    Institute of Scientific and Technical Information of China (English)

    Masanobu Shinozuka; Yuko Murachi; Xuejiang Dong; Youwei Zhou; Michal J. Orlikowski

    2003-01-01

    The objective of this research is to determine the effect earthquakes have on the performance of transportation network systems. To do this, bridge fragility curves, expressed as a function of peak ground acceleration (PGA) and peak ground velocity (PGV), were developed. Network damage was evaluated under the 1994 Northridge earthquake and scenario earthquakes. A probabilistic model was developed to determine the effect of repair of bridge damage on the improvement of the network performance as days passed after the event. As an example, the system performance degradation measured in terms of an index, "Drivers Delay," is calculated for the Los Angeles area transportation system, and losses due to Drivers Delay with and without retrofit were estimated.

  13. Planning the improvement of a seismic network for monitoring active volcanic areas: the experience on Mt. Etna

    Science.gov (United States)

    D'Alessandro, A.; Scarfì, L.; Scaltrito, A.; Di Prima, S.; Rapisarda, S.

    2013-10-01

    Seismology and geodesy are generally seen as the most reliable diagnostic tools for monitoring highly active or erupting volcanoes, like Mt. Etna. From the early 1980's, seismic activity was monitored at Mt. Etna by a permanent seismic network, progressively improved in the following years. This network has been considerably enhanced since 2005 by 24-bit digital stations equipped with broad-band (40 s) sensors. Today, thanks to a configuration of 33 broad-band and 12 short-period stations, we have a good coverage of the volcanic area as well as a high quality of the collected data. In the framework of the VULCAMED project a workgroup of Istituto Nazionale di Geofisica e Vulcanologia has taken on the task of developing the seismic monitoring system, through the installation of other seismic stations. The choice of optimal sites must be clearly made through a careful analysis of the geometry of the existing seismic network. In this paper, we applied the Seismic Network Evaluation through Simulation in order to evaluate the performance of the Etna Seismic Network before and after the addition of the stations in the candidate sites. The main advantage of the adopted method is that we can evaluate the improvement of the network before the actual installation of the stations. Our analysis has permitted to identify some critical issues of the current permanent seismic network related to the lack of stations in the southern sector of the volcano, which is nevertheless affected by a number of seismogenic structures. We have showed that the addition of stations at the candidate sites would greatly extend the coverage of the network to the south by significantly reducing the errors in the hypocenter parameters estimation.

  14. The new Algerian Digital Seismic Network (ADSN): towards an earthquake early-warning system

    Science.gov (United States)

    Yelles-Chaouche, A.; Allili, T.; Alili, A.; Messemen, W.; Beldjoudi, H.; Semmane, F.; Kherroubi, A.; Djellit, H.; Larbes, Y.; Haned, S.; Deramchi, A.; Amrani, A.; Chouiref, A.; Chaoui, F.; Khellaf, K.; Nait Sidi Said, C.

    2013-10-01

    Seismic monitoring in Algeria has seen great changes since the Boumerdes earthquake of 21 May 2003. Indeed, the installation of a new digital seismic network has resulted in a significant upgrade of the previous analog telemetry network. During the last four years, the number of stations in operation has increased substantially from 25 to 69, and 20 of these are broadband, 2 are very broadband, 47 are short period. 21 are equipped with accelerometers. They are all managed by Antelope software from Kinemetrics (US Cie), and they are all connected in real time and use various modes of transmission (e.g., satellite, internet, mobile phone). The spatial repartition of the stations now cover most of northern Algeria. In addition, 70 GPS stations have recently been added to this seismological network, most of them collocated with the seismological stations. Since the installation of the network, the records of local or distant events have improved significantly. The automatic processing of the data in a few minutes allows alert messages to be distributed to Civil Defense and other national authorities to react promptly to any emergency. The current strategy is to improve the data quality, to increase the density of the network by adding about 50 new stations, to reduce the processing time, and to reduce the time needed to send out an alert message. The result should be greatly improved network performance, which will lead to an effective early-warning system.

  15. MyShake: A smartphone seismic network for earthquake early warning and beyond

    OpenAIRE

    Kong, Qingkai; Allen, Richard M.; Schreier, Louis; Kwon, Young-Woo

    2016-01-01

    Large magnitude earthquakes in urban environments continue to kill and injure tens to hundreds of thousands of people, inflicting lasting societal and economic disasters. Earthquake early warning (EEW) provides seconds to minutes of warning, allowing people to move to safe zones and automated slowdown and shutdown of transit and other machinery. The handful of EEW systems operating around the world use traditional seismic and geodetic networks that exist only in a few nations. Smartphones are...

  16. Crowd-Sourcing Seismic Data for Education and Research Opportunities with the Quake-Catcher Network

    Science.gov (United States)

    Sumy, D. F.; DeGroot, R. M.; Benthien, M. L.; Cochran, E. S.; Taber, J. J.

    2016-12-01

    The Quake Catcher Network (QCN; quakecatcher.net) uses low cost micro-electro-mechanical system (MEMS) sensors hosted by volunteers to collect seismic data. Volunteers use accelerometers internal to laptop computers, phones, tablets or small (the size of a matchbox) MEMS sensors plugged into desktop computers using a USB connector to collect scientifically useful data. Data are collected and sent to a central server using the Berkeley Open Infrastructure for Network Computing (BOINC) distributed computing software. Since 2008, sensors installed in museums, schools, offices, and residences have collected thousands of earthquake records, including the 2010 M8.8 Maule, Chile, the 2010 M7.1 Darfield, New Zealand, and 2015 M7.8 Gorkha, Nepal earthquakes. In 2016, the QCN in the United States transitioned to the Incorporated Research Institutions for Seismology (IRIS) Consortium and the Southern California Earthquake Center (SCEC), which are facilities funded through the National Science Foundation and the United States Geological Survey, respectively. The transition has allowed for an influx of new ideas and new education related efforts, which include focused installations in several school districts in southern California, on Native American reservations in North Dakota, and in the most seismically active state in the contiguous U.S. - Oklahoma. We present and describe these recent educational opportunities, and highlight how QCN has engaged a wide sector of the public in scientific data collection, particularly through the QCN-EPIcenter Network and NASA Mars InSight teacher programs. QCN provides the public with information and insight into how seismic data are collected, and how researchers use these data to better understand and characterize seismic activity. Lastly, we describe how students use data recorded by QCN sensors installed in their classrooms to explore and investigate felt earthquakes, and look towards the bright future of the network.

  17. Weighted complex networks applied to seismicity: the Itoiz dam (Northern Spain

    Directory of Open Access Journals (Sweden)

    A. Jiménez

    2011-07-01

    Full Text Available On 18 September 2004, an earthquake of magnitude mbLg = 4.6 was recorded near the Itoiz dam (Northern Spain. It occurred after the first impoundment of the reservoir and has been catalogued by some authors as induced seismicity. We analyzed the seismicity in the region as weighted complex networks and tried to differentiate this event from others that occurred nearby. We calculated the main topological features of the networks formed by the seismic clusters and compared them. We compared the results with a series of simulations, and showed that the clusters were better modelled with the Epidemic-Type Aftershock Sequence (ETAS model than with random models. We found that the properties of the different clusters are grouped according to the magnitude of the main shocks and the number of events in each cluster, and that no distinct feature could be obtained for the 18 September 2004 series. We found that the nodes with the highest strength are the most important in the networks' traffic, and are associated with the events with the highest magnitude within the clusters.

  18. Seismic Design Value Evaluation Based on Checking Records and Site Geological Conditions Using Artificial Neural Networks

    Directory of Open Access Journals (Sweden)

    Tienfuan Kerh

    2013-01-01

    Full Text Available This study proposes an improved computational neural network model that uses three seismic parameters (i.e., local magnitude, epicentral distance, and epicenter depth and two geological conditions (i.e., shear wave velocity and standard penetration test value as the inputs for predicting peak ground acceleration—the key element for evaluating earthquake response. Initial comparison results show that a neural network model with three neurons in the hidden layer can achieve relatively better performance based on the evaluation index of correlation coefficient or mean square error. This study further develops a new weight-based neural network model for estimating peak ground acceleration at unchecked sites. Four locations identified to have higher estimated peak ground accelerations than that of the seismic design value in the 24 subdivision zones are investigated in Taiwan. Finally, this study develops a new equation for the relationship of horizontal peak ground acceleration and focal distance by the curve fitting method. This equation represents seismic characteristics in Taiwan region more reliably and reasonably. The results of this study provide an insight into this type of nonlinear problem, and the proposed method may be applicable to other areas of interest around the world.

  19. Performances of the Italian seismic network, 1985-2002: the hidden thing

    CERN Document Server

    Marchetti, Alessandro; Cucci, Luigi; Pirro, Mario

    2004-01-01

    Seismic data users and people managing a sesimic network are both interested in the potentiality of the data, with the difference that the former look at stability, the second at improvements. In this work we measure the performances of the Italian Telemetered Seismic Network in 1985-2002 by defining basic significant parameters and studying their evolution during the years. Then, we deal with the geological methods used to characterise or to plan a seismic station deployment in a few cases. Last, we define the gain of the network as the percentage of located earthquakes with respect to the total recorded earthquakes. By analysing the distribution of non-located ("missed") earthquakes, we suggest possible actions to take in order to increase the gain. Results show that completeness magnitude is 2.4 in the average over the analysed period, and it can be as low as 2.2 when we consider non-located earthquakes as well. Parameters such as the distance between an earthquake and the closest station, and the RMS loca...

  20. Urban MEMS based seismic network for post-earthquakes rapid disaster assessment

    Science.gov (United States)

    D'Alessandro, Antonino; Luzio, Dario; D'Anna, Giuseppe

    2014-05-01

    Life losses following disastrous earthquake depends mainly by the building vulnerability, intensity of shaking and timeliness of rescue operations. In recent decades, the increase in population and industrial density has significantly increased the exposure to earthquakes of urban areas. The potential impact of a strong earthquake on a town center can be reduced by timely and correct actions of the emergency management centers. A real time urban seismic network can drastically reduce casualties immediately following a strong earthquake, by timely providing information about the distribution of the ground shaking level. Emergency management centers, with functions in the immediate post-earthquake period, could be use this information to allocate and prioritize resources to minimize loss of human life. However, due to the high charges of the seismological instrumentation, the realization of an urban seismic network, which may allow reducing the rate of fatalities, has not been achieved. Recent technological developments in MEMS (Micro Electro-Mechanical Systems) technology could allow today the realization of a high-density urban seismic network for post-earthquakes rapid disaster assessment, suitable for the earthquake effects mitigation. In the 1990s, MEMS accelerometers revolutionized the automotive-airbag system industry and are today widely used in laptops, games controllers and mobile phones. Due to their great commercial successes, the research into and development of MEMS accelerometers are actively pursued around the world. Nowadays, the sensitivity and dynamics of these sensors are such to allow accurate recording of earthquakes with moderate to strong magnitude. Due to their low cost and small size, the MEMS accelerometers may be employed for the realization of high-density seismic networks. The MEMS accelerometers could be installed inside sensitive places (high vulnerability and exposure), such as schools, hospitals, public buildings and places of

  1. Earthquake and nuclear explosion location using the global seismic network

    Energy Technology Data Exchange (ETDEWEB)

    Lopez, L.M.

    1983-01-01

    The relocation of nuclear explosions, aftershock sequence and regional seismicity is addressed by using joint hypocenter determination, Lomnitz' distance domain location, and origin time and earthquake depth determination with local observations. Distance domain and joint hypocenter location are used for a stepwise relocation of nuclear explosions in the USSR. The resulting origin times are 2.5 seconds earlier than those obtained by ISC. Local travel times from the relocated explosions are compared to Jeffreys-Bullen tables. P times are found to be faster at 9-30/sup 0/ distances, the largest deviation being around 10 seconds at 13-18/sup 0/. At these distances S travel times also are faster by approximately 20 seconds. The 1977 Sumba earthquake sequence is relocated by iterative joint hypocenter determination of events with most station reports. Simultaneously determined station corrections are utilized for the relocation of smaller aftershocks. The relocated hypocenters indicate that the aftershocks were initially concentrated along the deep trench. Origin times and depths are recalculated for intermediate depth and deep earthquakes using local observations in and around the Japanese Islands. It is found that origin time and depth differ systematically from ISC values for intermediate depth events. Origin times obtained for events below the crust down to 100 km depth are earlier, whereas no general bias seem to exist for origin times of events in the 100-400 km depth range. The recalculated depths for earthquakes shallower than 100 km are shallower than ISC depths. The depth estimates for earthquakes deeper than 100 km were increased by the recalculations.

  2. Site Assessment of a New State-Wide Seismic Network in Texas (TexNet), USA.

    Science.gov (United States)

    Savvaidis, Alexandros; Young, Bissett; Hennings, Peter; Rathje, Ellen; Zalachoris, George; Young, Michael H.; Walter, Jacob I.; DeShon, Heather R.; Frohlich, Cliff

    2017-04-01

    Earthquake activity has recently increased in the southern mid-continent of the U.S., including Texas. To monitor seismicity activity in the state of Texas, a new seismicity monitoring program known as TexNet, was funded by the Texas State Legislature in 2015. TexNet consists of 22 new permanent broadband (120s post-hole) seismic stations that will complement the 17 stations currently operating in the State. These permanent stations will provide the baseline seismicity of the state. In addition, 36 portable stations (incorporating both a 20s post-hole seismometer and a post-hole accelerometer) will be used to densify the network in specific areas, of the State, depending on measured seismicity level, proximity to infrastructure, or other scientific investigations. One goal for TexNet is to provide authenticated data needed to evaluate the location, and frequency of earthquakes. To minimize the uncertainties in earthquake locations and increase detectability of the network, an extensive site assessment survey was conducted. The initial station positions were chosen based on Earthscope, Transportable Array (TA) site positions, while ensuring that the stations were relatively evenly-spaced across the State. We then analyzed the noise and earthquake data from the TA seismometers, and added new locations based on geology, topography, and absence of nearby human activities. A 30-min noise test was conducted at each site to identify the site amplification using HVSR information. A 24-hr survey then followed, where the noise level during day and night was identified, analyzed using power spectral density and compared to the NHNM and NLNM (Peterson, 1993; USGS Open File Report, 322). Based on these survey results nearby alternative sites were evaluated to improve final site position. Deployment and data streaming started on September 2016, and will be discussed during this presentation.

  3. The community seismic network and quake-catcher network: enabling structural health monitoring through instrumentation by community participants

    Science.gov (United States)

    Kohler, Monica D.; Heaton, Thomas H.; Cheng, Ming-Hei

    2013-04-01

    A new type of seismic network is in development that takes advantage of community volunteers to install low-cost accelerometers in houses and buildings. The Community Seismic Network and Quake-Catcher Network are examples of this, in which observational-based structural monitoring is carried out using records from one to tens of stations in a single building. We have deployed about one hundred accelerometers in a number of buildings ranging between five and 23 stories in the Los Angeles region. In addition to a USB-connected device which connects to the host's computer, we have developed a stand-alone sensor-plug-computer device that directly connects to the internet via Ethernet or wifi. In the case of the Community Seismic Network, the sensors report both continuous data and anomalies in local acceleration to a cloud computing service consisting of data centers geographically distributed across the continent. Visualization models of the instrumented buildings' dynamic linear response have been constructed using Google SketchUp and an associated plug-in to matlab with recorded shaking data. When data are available from only one to a very limited number of accelerometers in high rises, the buildings are represented as simple shear beam or prismatic Timoshenko beam models with soil-structure interaction. Small-magnitude earthquake records are used to identify the first set of horizontal vibrational frequencies. These frequencies are then used to compute the response on every floor of the building, constrained by the observed data. These tools are resulting in networking standards that will enable data sharing among entire communities, facility managers, and emergency response groups.

  4. VORBrouter: A dynamic data routing system for Real-Time Seismic networks

    Science.gov (United States)

    Hansen, T.; Vernon, F.; Lindquist, K.; Orcutt, J.

    2004-12-01

    For anyone who has managed a moderately complex buffered real-time data transport system, the need for reliable adaptive data transport is clear. The ROADNet VORBrouter system, an extension to the ROADNet data catalog system [AGU-2003, Dynamic Dataflow Topology Monitoring for Real-time Seismic Networks], allows dynamic routing of real-time seismic data from sensor to end-user. Traditional networks consist of a series of data buffer computers with data transport interconnections configured by hand. This allows for arbitrarily complex data networks, which can often exceed full comprehension by network administrators, sometimes resulting in data loops or accidental data cutoff. In order to manage data transport systems in the event of a network failure, a network administrator must be called upon to change the data transport paths and to recover the missing data. Using VORBrouter, administrators can sleep at night while still providing 7/24 uninterupted data streams at realistic cost. This software package uses information from the ROADNet data catalog system to route packets around failed link outages and to new consumers in real-time. Dynamic data routing protocols operating on top of the Antelope Data buffering layer allow authorized users to request data sets from their local buffer and to have them delivered from anywhere within the network of buffers. The VORBrouter software also allows for dynamic routing around network outages, and the elimination of duplicate data paths within the network, while maintaining the nearly lossless data transport features exhibited by the underlying Antelope system. We present the design of the VORBrouter system, its features, limitations and some future research directions.

  5. Sismos a l'Ecole : a Seismic Educational Network (FRANCE) linked with Research

    Science.gov (United States)

    Berenguer, J.; Le Puth, J.; Courboulex, F.; Zodmi, B.; Boneff, M.

    2007-12-01

    Ahead of the quick evolution of our society, in which scientific information has to be accurately understood by a great majority, the promotion of a responsible behaviour coming from educated and trained citizens has become a priority. One of the roles of school is to enable children to understand sciences, these same sciences that were long ago the prerogative of scientific laboratories. The educational network SISMOS à l\\'"Ecole is an example of a project structured on the knowledge of seismic risks through a scientific and technological approach. It develops a teaching method leading to an approach towards the knowledge of natural disasters. The original and innovating feature of this educational network is to enable students to set up a seismograph in their school. The recorded signals - coming from a regional or a worldwide seismic activity - feed an on- line database, which is in fact a real research centre for seismic resources as well as a starting point for educational and scientific activities. The network, that numbers about thirty stations set up in France, in its overseas departments and territories, and in a couple of French schools abroad, is based upon an experience initiated in the French Riviera ten years ago or so. The achievement of the program has from then on gone beyond the simple purpose of conveying seismic data that research and monitoring centres could have recorded. Thanks to the use of scientific measures, students become involved and get into complex notions revolving around geophysics and geosciences. Developing simple tools, setting up concrete experiments combined with an investigate reasoning makes it easier to build up a quality scientific culture as well as an education of citizens to risks.

  6. Seismic Observations in the Taipei Metropolitan Area Using the Downhole Network

    Directory of Open Access Journals (Sweden)

    Win-Gee Huang

    2010-01-01

    Full Text Available Underlain by soft soils, the Taipei Metropolitan Area (TMA experienced major damage due to ground-motion amplification during the Hualien earthquake of 1986, the Chi-Chi earthquake of 1999, the Hualien earthquake of 2002 and the Taitung earthquake of 2003. To study how a local site can substantially change the characteristics of seismic waves as they pass through soft deposits below the free surface, two complementary downhole seismic arrays have been operated in the TMA, since 1991 and 2008. The accelerometer downhole array is composed of eight boreholes at depths in excess of 300 meters. The downhole array velocity sensor collocated with accelerometer composed of four boreholes at depths up to 90 meters. The integrated seismic network monitors potential earthquakes originating from faults in and around the TMA and provides wide-dynamic range measurement of data ranging in amplitude from seismic background noise levels to damage levels as a result of shaking. The data sets can be used to address on the response of soft-soil deposits to ground motions. One of the major considerations is the nonlinear response of soft soil deposits at different levels of excitation. The collocated acceloerometer and velocity sensors at boreholes give the necessary data for studies of non-linearity to be acquired. Such measurements in anticipation of future large, damaging earthquakes will be of special importance for the mitigation of earthquake losses.

  7. A Multi-View Dense Image Matching Method for High-Resolution Aerial Imagery Based on a Graph Network

    Directory of Open Access Journals (Sweden)

    Li Yan

    2016-09-01

    Full Text Available Multi-view dense matching is a crucial process in automatic 3D reconstruction and mapping applications. In this paper, we present a robust and effective multi-view dense matching algorithm for high-resolution aerial images based on a graph network. The overlap ratio and intersection angle between image pairs are used to find candidate stereo pairs and build the graph network. A Coarse-to-Fine strategy based on an improved Semi-Global Matching algorithm is applied for disparity computation across stereo pairs. Based on the constructed graph, point clouds of base views are generated by triangulating all connected image nodes, followed by a fusion process with the average reprojection error as a priority measure. The proposed method was successfully applied in experiments on aerial image test dataset provided by the ISPRS of Vaihingen, Germany and an oblique nadir image block of Zürich, Switzerland, using three kinds of matching configurations. The proposed method was compared to other state-of-art methods, SURE and PhotoScan. The results demonstrate that the proposed method delivers matches at higher completeness, efficiency, and accuracy than the other methods tested; the RMS for average reprojection error reached the sub pixel level and the actual positioning deviation was better than 1.5 GSD.

  8. A seismic network to investigate the sedimentary hosted hydrothermal Lusi system

    Science.gov (United States)

    Javad Fallahi, Mohammad; Mazzini, Adriano; Lupi, Matteo; Obermann, Anne; Karyono, Karyono

    2016-04-01

    The 29th of May 2006 marked the beginning of the sedimentary hosted hydrothermal Lusi system. During the last 10 years we witnessed numerous alterations of the Lusi system behavior that coincide with the frequent seismic and volcanic activity occurring in the region. In order to monitor the effect that the seismicity and the activity of the volcanic arc have on Lusi, we deployed a ad hoc seismic network. This temporary network consist of 10 broadband and 21 short period stations and is currently operating around the Arjuno-Welirang volcanic complex, along the Watukosek fault system and around Lusi, in the East Java basin since January 2015. We exploit this dataset to investigate surface wave and shear wave velocity structure of the upper-crust beneath the Arjuno-Welirang-Lusi complex in the framework of the Lusi Lab project (ERC grant n° 308126). Rayleigh and Love waves travelling between each station-pair are extracted by cross-correlating long time series of ambient noise data recorded at the stations. Group and phase velocity dispersion curves are obtained by time-frequency analysis of cross-correlation functions, and are tomographically inverted to provide 2D velocity maps corresponding to different sampling depths. 3D shear wave velocity structure is then acquired by inverting the group velocity maps.

  9. The AlpArray-CASE project: temporary broadband seismic network deployment and characterization

    Science.gov (United States)

    Dasović, Iva; Molinari, Irene; Stipčević, Josip; Šipka, Vesna; Salimbeni, Simone; Jarić, Dejan; Prevolnik, Snježan; Kissling, Eduard; Clinton, John; Giardini, Domenico

    2017-04-01

    While the northern part of the Adriatic microplate will be accurately imaged within the AlpArray project, its central and southern parts deserve detailed studies to obtain a complete picture of its structure and evolution. The Adriatic microplate forms the upper plate in the Western and Central Alps whereas it forms the lower plate in the Apennines and the Dinarides. However, the tectonics of Adriatic microplate is not well constrained and remains controversial, especially with regard to its contact with the Dinarides. The primary goal of the Central Adriatic Seismic Experiment (CASE) is to provide high quality seismological data and to shed light on seismicity and 3D lithospheric structure of the central Adriatic microplate and its boundaries. The CASE project is an international AlpArray Complementary Experiment carried out by four institutions: Department of Earth Sciences and Swiss Seismological Service of ETH Zürich (CH), Department of Geophysics and Croatian Seismological Service of Faculty of Science at University of Zagreb (HR), Republic Hydrometeorological Service of Republic of Srpska (BIH) and Istituto Nazionale di Geofisica e Vulcanologia (I). It establishes a temporary seismic network, expected to be operational at least for one year, composed by existing permanent and temporary seismic stations operated by the institutions involved and newly deployed temporary seismic stations, installed in November and December 2016, provided by ETH Zürich and INGV: five in Croatia, four in Bosnia and Herzegovina and two in Italy. In this work, we present stations sites and settings and discuss their characteristics in terms of site-effects and noise level of each station. In particular, we analyse the power spectral density estimates in order to investigate major sources of noise and background noise.

  10. Tomography of the lower troposhere using a small, dense network of GPS receivers

    NARCIS (Netherlands)

    Flores, A.; Vilà-Guerau de Arellano, J.; Gradinarsky, L.P.; Rius, A.

    2001-01-01

    The application of tomographic techniques to the troposphere with GPS signals was demonstrated in previous work using data from the Kilauea permanent network, Hawaii. Local orography of the network considered there, however, played a key role in the resolution capabilities of the technique. The auth

  11. Tomography of the lower troposhere using a small, dense network of GPS receivers

    NARCIS (Netherlands)

    Flores, A.; Vilà-Guerau de Arellano, J.; Gradinarsky, L.P.; Rius, A.

    2001-01-01

    The application of tomographic techniques to the troposphere with GPS signals was demonstrated in previous work using data from the Kilauea permanent network, Hawaii. Local orography of the network considered there, however, played a key role in the resolution capabilities of the technique. The auth

  12. Performance of the INGV National Seismic Network from 1997 to 2007

    Directory of Open Access Journals (Sweden)

    F. Mele

    2008-06-01

    Full Text Available Seismic monitoring in Italy has strongly improved since the 1997 Umbria-Marche earthquake sequence. This has made the National Seismic Network (RSN a powerful tool both to rapidly locate and quantify thousands of earthquakes occurring in Italy every year, and to study the seismic activity in detail, accumulating an impressive high quality data set that will be exploited in the coming years to understand earthquake processes and to investigate the deep structure. This paper summarizes and compares the basic features of the seismicity recorded in 2000 and 2006, before and after the implementation of the new RSN, showing that the number of well located earthquakes has more than doubled and that the completeness magnitude has dropped from ~2.3 to ~1.7. In addition, we concentrate on the evaluation of the current automatic location and magnitudes versus the revised ones, published routinely in the INGV bulletins. We show that the rapid estimates of locations and magnitudes are robust and reliable for most regions in Italy: more than 75% of the earthquakes are located in real time within 10km from the «true» locations, whereas the rapid magnitudes ML are within ±0.4 from the revised values in 90% of cases. The comparison between real-time and revised locations shows that there are a few regions in Italy where a further network improvement is still desirable. These include all the off-shore regions, Calabria, western Sicily, the Alpine and Po Plain region, and some small areas along the peninsula.

  13. Organizational Culture as the Driver of Dense Intra-organizational Networks

    Directory of Open Access Journals (Sweden)

    Eckenhofer Eva

    2011-06-01

    Full Text Available Shared norms and values are essential for connecting individuals in social networks as well as triggering exchange of information and joint cooperation. Trust, proximity and reciprocity are also relevant to having a positive outcome within social networks as they are linked to Social Capital, competitiveness of organizations, advantages of the economies of scales and scope as well as decrease in transaction-costs. Organizational culture impacts on most aspects of organizational life, especially when it comes to people and their relationships. Even though it is widely acknowledged that culture plays an important role in social network building and the qualities of these connections, there has not been much research on it. Therefore, the question which usually arises is which type of organizational culture is most likely to have a positive influence on the intra-organizational networks and lead to a higher density of the network. Based on a literature study and a case study analysis of two Austrian organizations, the authors’ aimed at providing some clarifications on the impact of organizational culture on the density of intra-organizational networks. This paper uses the Competing Values Framework and the Social Network Analysis for that purpose.

  14. Energy Efficiency of the IEEE 802.15.4 Standard in Dense Wireless Microsensor Networks: Modeling and Improvement Perspectives

    CERN Document Server

    Bougard, Bruno; Daly, Denis C; Chandrakasan, Anantha; Dehaene, Wim

    2011-01-01

    Wireless microsensor networks, which have been the topic of intensive research in recent years, are now emerging in industrial applications. An important milestone in this transition has been the release of the IEEE 802.15.4 standard that specifies interoperable wireless physical and medium access control layers targeted to sensor node radios. In this paper, we evaluate the potential of an 802.15.4 radio for use in an ultra low power sensor node operating in a dense network. Starting from measurements carried out on the off-the-shelf radio, effective radio activation and link adaptation policies are derived. It is shown that, in a typical sensor network scenario, the average power per node can be reduced down to 211m mm mW. Next, the energy consumption breakdown between the different phases of a packet transmission is presented, indicating which part of the transceiver architecture can most effectively be optimized in order to further reduce the radio power, enabling self-powered wireless microsensor networks...

  15. Energy Analysis of Contention Tree-Based Access Protocols in Dense Machine-to-Machine Area Networks

    Directory of Open Access Journals (Sweden)

    Francisco Vázquez-Gallego

    2015-01-01

    Full Text Available Machine-to-Machine (M2M area networks aim at connecting an M2M gateway with a large number of energy-constrained devices that must operate autonomously for years. Therefore, attaining high energy efficiency is essential in the deployment of M2M networks. In this paper, we consider a dense M2M area network composed of hundreds or thousands of devices that periodically transmit data upon request from a gateway or coordinator. We theoretically analyse the devices’ energy consumption using two Medium Access Control (MAC protocols which are based on a tree-splitting algorithm to resolve collisions among devices: the Contention Tree Algorithm (CTA and the Distributed Queuing (DQ access. We have carried out computer-based simulations to validate the accuracy of the theoretical models and to compare the energy performance using DQ, CTA, and Frame Slotted-ALOHA (FSA in M2M area networks with devices in compliance with the IEEE 802.15.4 physical layer. Results show that the performance of DQ is totally independent of the number of contending devices, and it can reduce the energy consumed per device in more than 35% with respect to CTA and in more than 80% with respect to FSA.

  16. Predicting the performance of local seismic networks using Matlab and Google Earth.

    Energy Technology Data Exchange (ETDEWEB)

    Chael, Eric Paul

    2009-11-01

    We have used Matlab and Google Earth to construct a prototype application for modeling the performance of local seismic networks for monitoring small, contained explosions. Published equations based on refraction experiments provide estimates of peak ground velocities as a function of event distance and charge weight. Matlab routines implement these relations to calculate the amplitudes across a network of stations from sources distributed over a geographic grid. The amplitudes are then compared to ambient noise levels at the stations, and scaled to determine the smallest yield that could be detected at each source location by a specified minimum number of stations. We use Google Earth as the primary user interface, both for positioning the stations of a hypothetical local network, and for displaying the resulting detection threshold contours.

  17. High-Efficiency Device Positioning and Location-Aware Communications in Dense 5G Networks

    OpenAIRE

    Koivisto, Mike; Hakkarainen, Aki; Costa, Mário; Kela, Petteri; Leppänen, Kari; Valkama, Mikko

    2016-01-01

    In this article, the prospects and enabling technologies for high-efficiency device positioning and location-aware communications in emerging 5G networks are reviewed. We will first describe some key technical enablers and demonstrate by means of realistic ray-tracing and map based evaluations that positioning accuracies below one meter can be achieved by properly fusing direction and delay related measurements on the network side, even when tracking moving devices. We will then discuss the p...

  18. Joint 3D Positioning and Network Synchronization in 5G Ultra-Dense Networks Using UKF and EKF

    OpenAIRE

    Koivisto, Mike; Costa, Mário; Hakkarainen, Aki; Leppänen, Kari; Valkama, Mikko

    2016-01-01

    It is commonly expected that future fifth generation (5G) networks will be deployed with a high spatial density of access nodes (ANs) in order to meet the envisioned capacity requirements of the upcoming wireless networks. Densification is beneficial not only for communications but it also creates a convenient infrastructure for highly accurate user node (UN) positioning. Despite the fact that positioning will play an important role in future networks, thus enabling a huge amount of location-...

  19. A new algorithm to detect earthquakes outside the seismic network: preliminary results

    Science.gov (United States)

    Giudicepietro, Flora; Esposito, Antonietta Maria; Ricciolino, Patrizia

    2017-04-01

    In this text we are going to present a new technique for detecting earthquakes outside the seismic network, which are often the cause of fault of automatic analysis system. Our goal is to develop a robust method that provides the discrimination result as quickly as possible. We discriminate local earthquakes from regional earthquakes, both recorded at SGG station, equipped with short period sensors, operated by Osservatorio Vesuviano (INGV) in the Southern Apennines (Italy). The technique uses a Multi Layer Perceptron (MLP) neural network with an architecture composed by an input layer, a hidden layer and a single node output layer. We pre-processed the data using the Linear Predictive Coding (LPC) technique to extract the spectral features of the signals in a compact form. We performed several experiments by shortening the signal window length. In particular, we used windows of 4, 2 and 1 seconds containing the onset of the local and the regional earthquakes. We used a dataset of 103 local earthquakes and 79 regional earthquakes, most of which occurred in Greece, Albania and Crete. We split the dataset into a training set, for the network training, and a testing set to evaluate the network's capacity of discrimination. In order to assess the network stability, we repeated this procedure six times, randomly changing the data composition of the training and testing set and the initial weights of the net. We estimated the performance of this method by calculating the average of correct detection percentages obtained for each of the six permutations. The average performances are 99.02%, 98.04% and 98.53%, which concern respectively the experiments carried out on 4, 2 and 1 seconds signal windows. The results show that our method is able to recognize the earthquakes outside the seismic network using only the first second of the seismic records, with a suitable percentage of correct detection. Therefore, this algorithm can be profitably used to make earthquake automatic

  20. Combining network and array waveform coherence for automatic location: examples from induced seismicity monitoring

    Science.gov (United States)

    Sick, Benjamin; Joswig, Manfred

    2017-03-01

    Events from induced seismicity suffer from low signal-to-noise ratios and noise spikes due to the industrial setting. Low magnitude thresholds are needed for traffic light warning systems. Conventional automatic location methods rely on independent picking of first arrivals from seismic wave onsets at recordings of single stations. Picking is done separately and without feedback from the actual location algorithm. If the recording network is small or only few phases can be associated, single wrong associations can lead to large errors in hypocentre locations and magnitude. Event location by source scanning which was established in the last two decades can provide more robust results. This study investigates how source-scanning can be extended and improved by integrating information from seismic arrays, that is, waveform stacking and Fisher ratio. These array methods rely on the coherency of the raw filtered waveforms while traditional source scanning uses a characteristic function to obtain coherency from otherwise incoherent waveforms between distant stations. Short-term/long-term average (STA/LTA) serves as the characteristic function and single station vertical-component traces for P-phases and radial and transverse components for S-phases are used. For array stations, the STA/LTA of the stacked vertical seismogram which is furthermore weighted by the STA/LTA of the Fisher ratio, dependent on backazimuth and slowness, is utilized for P-phases. The new method is tested on two diverse data sets from induced seismicity monitoring. In the chosen examples, the extension by array-processing techniques can reduce mean hypocentre errors up to a factor of 2.9, resolve ambiguities and further restrain the location.

  1. An Experimental Study of Advanced Receivers in a Practical Dense Small Cells Network

    DEFF Research Database (Denmark)

    Assefa, Dereje; Berardinelli, Gilberto; Tavares, Fernando Menezes Leitão

    2016-01-01

    that advanced receivers can alleviate the need for detailed cell planning. To this end we adopt a hybrid simulation evaluation approach where propagation data are obtained from experimental analysis, and by which we analyse how MIMO constellation and network size impacts to the aim. The experimental data have...

  2. Evaluation of DECT-ULE for robust communication in dense wireless sensor networks

    NARCIS (Netherlands)

    Das, Kallol; Havinga, Paul J.M.

    2012-01-01

    In today’s world wireless sensor networks (WSNs) have enormous applications which made our everyday life much easier. In most of these applications, the unlicensed 2.4 GHz frequency band has been used for sensor communications. Due to the wide use, the chance of getting interference in this frequenc

  3. Evaluation of DECT-ULE for robust communication in dense wireless sensor networks

    NARCIS (Netherlands)

    Das, Kallol; Havinga, Paul J.M.

    2012-01-01

    In today’s world wireless sensor networks (WSNs) have enormous applications which made our everyday life much easier. In most of these applications, the unlicensed 2.4 GHz frequency band has been used for sensor communications. Due to the wide use, the chance of getting interference in this

  4. Argonne National Lab deploys Force10 networks' massively dense ethernet switch for supercomputing cluster

    CERN Multimedia

    2003-01-01

    "Force10 Networks, Inc. today announced that Argonne National Laboratory (Argonne, IL) has successfully deployed Force10 E-Series switch/routers to connect to the TeraGrid, the world's largest supercomputing grid, sponsored by the National Science Foundation (NSF)" (1/2 page).

  5. Evaluation of DECT-ULE for robust communication in dense wireless sensor networks

    NARCIS (Netherlands)

    Das, Kallol; Havinga, Paul

    2012-01-01

    In today’s world wireless sensor networks (WSNs) have enormous applications which made our everyday life much easier. In most of these applications, the unlicensed 2.4 GHz frequency band has been used for sensor communications. Due to the wide use, the chance of getting interference in this frequenc

  6. Module discovery by exhaustive search for densely connected, co-expressed regions in biomolecular networks

    NARCIS (Netherlands)

    Colak, R.; Moser, F.; Shu, J.; Schoenhuth, A.; Chen, N.; Ester, M.

    2010-01-01

    Background Computational prediction of functionally related groups of genes (functional modules) from large-scale data is an important issue in computational biology. Gene expression experiments and interaction networks are well studied large-scale data sources, available for many not yet exhaustive

  7. Feasibility of quantum key distribution through dense wavelength division multiplexing network

    CERN Document Server

    Qi, Bing; Qian, Li; Lo, Hoi-Kwong

    2010-01-01

    In this paper, we study the feasibility of conducting quantum key distribution (QKD) together with classical communication through the same optical fiber by employing dense-wavelength-division-multiplexing (DWDM) technology at telecom wavelength. The impact of the classical channels to the quantum channel has been investigated for both QKD based on single photon detection and QKD based on homodyne detection. Our studies show that the latter can tolerate a much higher level of contamination from the classical channels than the former. This is because the local oscillator used in the homodyne detector acts as a "mode selector" which can suppress noise photons effectively. We have performed simulations based on both the decoy BB84 QKD protocol and the Gaussian modulated coherent state (GMCS) QKD protocol. While the former cannot tolerate even one classical channel (with a power of 0dBm), the latter can be multiplexed with 38 classical channels (0dBm power each channel) and still has a secure distance around 10km...

  8. Modulation of cargo release from dense core granules by size and actin network.

    Science.gov (United States)

    Felmy, Felix

    2007-08-01

    During regulated fusion of secretory granules with the plasma membrane, a fusion pore first opens and then dilates. The dilating pore allows cargo proteins from the dense core to be released into the extracellular space. Using real-time evanescent field fluorescence microscopy of live PC12 cells, it was determined how rapidly proteins of different sizes escape from single granules after fusion. Tissue plasminogen activator (tPA)-Venus is released 40-fold slower than the three times smaller neuropeptide Y [NPY-monomeric GFP (mGFP)]. An NPY bearing two mGFPs in tandem [NPY-(mGFP)(2)] as an intermediate-sized fusion probe is released most slowly. Although, the time-course of release varies substantially for a given probe. Coexpression of beta-actin, actin-related protein 3 or mAbp1 slowed the release of the two larger cargo molecules but did not affect release of NPY-mGFP or of the granule-membrane-bound probe Vamp-pHluorin. Additionally, high concentrations of cytochalasin D slowed release of the tPA-Venus. Together these results suggest that fusion pore dilation is not the only determinate of release time-course and that actin rearrangements similar to those mediating actin-mediated motility influences the time-course of release without directly interfering with the granule membrane to cell membrane connection.

  9. RMT focal plane sensitivity to seismic network geometry and faulting style

    Science.gov (United States)

    Johnson, Kendra L.; Hayes, Gavin P.; Herrmann, Robert B.; Benz, Harley M.; McNamara, Dan E.; Bergman, Eric

    2016-07-01

    Modern tectonic studies often use regional moment tensors (RMTs) to interpret the seismotectonic framework of an earthquake or earthquake sequence; however, despite extensive use, little existing work addresses RMT parameter uncertainty. Here, we quantify how network geometry and faulting style affect RMT sensitivity. We examine how data-model fits change with fault plane geometry (strike and dip) for varying station configurations. We calculate the relative data fit for incrementally varying geometries about a best-fitting solution, applying our workflow to real and synthetic seismograms for both real and hypothetical station distributions and earthquakes. Initially, we conduct purely observational tests, computing RMTs from synthetic seismograms for hypothetical earthquakes and a series of well-behaved network geometries. We then incorporate real data and station distributions from the International Maule Aftershock Deployment (IMAD), which recorded aftershocks of the 2010 MW 8.8 Maule earthquake, and a set of regional stations capturing the ongoing earthquake sequence in Oklahoma and southern Kansas. We consider RMTs computed under three scenarios: (1) real seismic records selected for high data quality; (2) synthetic seismic records with noise computed for the observed source-station pairings and (3) synthetic seismic records with noise computed for all possible station-source pairings. To assess RMT sensitivity for each test, we observe the `fit falloff', which portrays how relative fit changes when strike or dip varies incrementally; we then derive the ranges of acceptable strikes and dips by identifying the span of solutions with relative fits larger than 90 per cent of the best fit. For the azimuthally incomplete IMAD network, Scenario 3 best constrains fault geometry, with average ranges of 45° and 31° for strike and dip, respectively. In Oklahoma, Scenario 3 best constrains fault dip with an average range of 46°; however, strike is best constrained by

  10. Continuous broadband seismic observation on the Greenland Ice Sheet under Greenland Ice Sheet monitoring Network

    Science.gov (United States)

    Tsuboi, Seiji; Kanao, Masaki; Tono, Yoko; Himeno, Tetsuto; Toyokuni, Genti; Childs, Dean; Dahl-Jensen, Trine; anderson, Kent

    2013-04-01

    We have installed the ice sheet broadband seismograph station, called ICE-S (DK.ICESG) in June 2011, in collaboration with IRIS Polar Services under the GreenLand Ice Sheet monitoring Network (GLISN), which is a new, international, broadband seismic capability for Greenland being implemented through the collaboration between Denmark, Canada, France, Germany, Italy, Japan, Norway, Poland, Switzerland, and the USA. The primary purpose of GLISN project is to define the fine structure and detailed mechanisms of glacial earthquakes within the Greenland Ice Sheet. These glacial earthquakes in the magnitude range 4.6-5.1 may be modeled as a large glacial ice mass sliding downhill several meters on its basal surface over duration of 30 to 60 seconds. Glacial earthquakes have been observed at seismic stations within Greenland (Larsen et al, 2006), but the coverage was very sparse and a broadband, real-time seismic network was needed to be installed throughout Greenland's Ice Sheet and perimeter. The National Institute for Polar Research and Japan Agency for Marine-Earth Science and Technology are members of GLISN project and we have started to operate ICESG station since 2011. The station is equipped with a CMG-3T broadband seismometer and a Quanterra Q330 data logger. We have visited the station again in May, 2012 and successfully retrieved one year of continuous records from the broadband seismometer and updated the telemetry system to eventually allow real time monitoring of the station. ICESG station is now daily sending 1 Hz continuous data over the iridium satellite system using RUDICS. The observed three component seismograms demonstrate that the quality of this ice sheet station is good enough to record not only local earthquakes around Greeland but also teleseismic earthquakes. We could record three component broadband seismograms for April 11, 2012 Off the west coast of Northern Sumatra earthquake (Mw8.6). These seismograms show high signal to noise ratio

  11. Dense wavelength multiplexing of 1550 nm QKD with strong classical channels in reconfigurable networking environments

    Energy Technology Data Exchange (ETDEWEB)

    Rosenberg, Danna [Los Alamos National Laboratory; Peterson, Charles G [Los Alamos National Laboratory; Dallmann, Nicholas [Los Alamos National Laboratory; Hughes, Richard J [Los Alamos National Laboratory; Mccabe, Kevin P [Los Alamos National Laboratory; Nordholt, Jane E [Los Alamos National Laboratory; Tyagi, Hush T [Los Alamos National Laboratory; Peters, Nicholas A [TELCORDIA TECHNOLOGIES; Toliver, Paul [TELCORDIA TECHNOLOGIES; Chapman, Thomas E [TELCORDIA TECHNOLOGIES; Runser, Robert J [TELCORDIA TECHNOLOGIES; Mcnown, Scott R [TELCORDIA TECHNOLOGIES

    2008-01-01

    To move beyond dedicated links and networks, quantum communications signals must be integrated into networks carrying classical optical channels at power levels many orders of magnitude higher than the quantum signals themselves. We demonstrate transmission of a 1550-nm quantum channel with up to two simultaneous 200-GHz spaced classical telecom channels, using ROADM (reconfigurable optical <1dd drop multiplexer) technology for multiplexing and routing quantum and classical signals. The quantum channel is used to perform quantum key distribution (QKD) in the presence of noise generated as a by-product of the co-propagation of classical channels. We demonstrate that the dominant noise mechanism can arise from either four-wave mixing or spontaneous Raman scattering, depending on the optical path characteristics as well <1S the classical channel parameters. We quantity these impairments and discuss mitigation strategies.

  12. Designing a low-cost effective network for monitoring large scale regional seismicity in a soft-soil region (Alsace, France)

    Science.gov (United States)

    Bès de Berc, M.; Doubre, C.; Wodling, H.; Jund, H.; Hernandez, A.; Blumentritt, H.

    2015-12-01

    The Seismological Observatory of the North-East of France (ObSNEF) is developing its monitoring network within the framework of several projects. Among these project, RESIF (Réseau sismologique et géodésique français) allows the instrumentation of broad-band seismic stations, separated by 50-100 km. With the recent and future development of geothermal industrial projects in the Alsace region, the ObSNEF is responsible for designing, building and operating a dense regional seismic network in order to detect and localize earthquakes with both a completeness magnitude of 1.5 and no clipping for M6.0. The realization of the project has to be done prior to the summer 2016Several complex technical and financial constraints constitute such a projet. First, most of the Alsace Région (150x150 km2), particularly the whole Upper Rhine Graben, is a soft-soil plain where seismic signals are dominated by a high frequency noise level. Second, all the signals have to be transmitted in near real-time. And finally, the total cost of the project must not exceed $450,000.Regarding the noise level in Alsace, in order to make a reduction of 40 dB for frequencies above 1Hz, we program to instrument into 50m deep well with post-hole sensor for 5 stations out of 8 plane new stations. The 3 remaining would be located on bedrock along the Vosges piedmont. In order to be sensitive to low-magnitude regional events, we plan to install a low-noise short-period post-hole velocimeter. In order to avoid saturation for high potentiel local events (M6.0 at 10km), this velocimeter will be coupled with a surface strong-motion sensor. Regarding the connectivity, these stations will have no wired network, which reduces linking costs and delays. We will therefore use solar panels and a 3G/GPRS network. The infrastructure will be minimal and reduced to an outdoor box on a secured parcel of land. In addition to the data-logger, we will use a 12V ruggedized computer, hosting a seed-link server for near

  13. Serviceability Assessment for Cascading Failures in Water Distribution Network under Seismic Scenario

    Directory of Open Access Journals (Sweden)

    Qing Shuang

    2016-01-01

    Full Text Available The stability of water service is a hot point in industrial production, public safety, and academic research. The paper establishes a service evaluation model for the water distribution network (WDN. The serviceability is measured in three aspects: (1 the functionality of structural components under disaster environment; (2 the recognition of cascading failure process; and (3 the calculation of system reliability. The node and edge failures in WDN are interrelated under seismic excitations. The cascading failure process is provided with the balance of water supply and demand. The matrix-based system reliability (MSR method is used to represent the system events and calculate the nonfailure probability. An example is used to illustrate the proposed method. The cascading failure processes with different node failures are simulated. The serviceability is analyzed. The critical node can be identified. The result shows that the aged network has a greater influence on the system service under seismic scenario. The maintenance could improve the antidisaster ability of WDN. Priority should be given to controlling the time between the initial failure and the first secondary failure, for taking postdisaster emergency measures within this time period can largely cut down the spread of cascade effect in the whole WDN.

  14. Silting in the dense reservoir network of the Pereira de Miranda catchment

    OpenAIRE

    Lira,Daniely; Toledo,Cristian; Mamede,George

    2014-01-01

    This study aims to analyze the impacts of the reservoir network within Pereira de Miranda - CE catchment (also called Pentecoste) over sediment transport and storage capacity of the system. The survey of the "damming" was carried out using satellite images. We identified 502 erosion units, derived from overlaying maps of the Universal Soil Loss Equation parameters, which allowed the estimation of localized erosion in the basin and identification of areas potentially generating sediment. In or...

  15. Mobility-Aware Caching and Computation Offloading in 5G Ultra-Dense Cellular Networks.

    Science.gov (United States)

    Chen, Min; Hao, Yixue; Qiu, Meikang; Song, Jeungeun; Wu, Di; Humar, Iztok

    2016-06-25

    Recent trends show that Internet traffic is increasingly dominated by content, which is accompanied by the exponential growth of traffic. To cope with this phenomena, network caching is introduced to utilize the storage capacity of diverse network devices. In this paper, we first summarize four basic caching placement strategies, i.e., local caching, Device-to-Device (D2D) caching, Small cell Base Station (SBS) caching and Macrocell Base Station (MBS) caching. However, studies show that so far, much of the research has ignored the impact of user mobility. Therefore, taking the effect of the user mobility into consideration, we proposes a joint mobility-aware caching and SBS density placement scheme (MS caching). In addition, differences and relationships between caching and computation offloading are discussed. We present a design of a hybrid computation offloading and support it with experimental results, which demonstrate improved performance in terms of energy cost. Finally, we discuss the design of an incentive mechanism by considering network dynamics, differentiated user's quality of experience (QoE) and the heterogeneity of mobile terminals in terms of caching and computing capabilities.

  16. Mobility-Aware Caching and Computation Offloading in 5G Ultra-Dense Cellular Networks

    Directory of Open Access Journals (Sweden)

    Min Chen

    2016-06-01

    Full Text Available Recent trends show that Internet traffic is increasingly dominated by content, which is accompanied by the exponential growth of traffic. To cope with this phenomena, network caching is introduced to utilize the storage capacity of diverse network devices. In this paper, we first summarize four basic caching placement strategies, i.e., local caching, Device-to-Device (D2D caching, Small cell Base Station (SBS caching and Macrocell Base Station (MBS caching. However, studies show that so far, much of the research has ignored the impact of user mobility. Therefore, taking the effect of the user mobility into consideration, we proposes a joint mobility-aware caching and SBS density placement scheme (MS caching. In addition, differences and relationships between caching and computation offloading are discussed. We present a design of a hybrid computation offloading and support it with experimental results, which demonstrate improved performance in terms of energy cost. Finally, we discuss the design of an incentive mechanism by considering network dynamics, differentiated user’s quality of experience (QoE and the heterogeneity of mobile terminals in terms of caching and computing capabilities.

  17. Site response and station performance of the newly-upgraded Myanmar National Seismic Network

    Science.gov (United States)

    Wolin, E.; Thiam, H. N.; MIN Htwe, Y. M.; Kyaw, T. L.; Tun, P. P.; Min, Z.; Htwe, S. H.; Aung, T. M.; Lin, K. K.; Aung, M. M.; De Cristofaro, J. L.; Franke, M.; Hough, S. E.

    2016-12-01

    Myanmar is in a tectonically complex region between the eastern edge of the Himalayan collision zone and the northern end of the Sunda megathrust. Faults accommodating the oblique motion between India and Southeast Asia pose a hazard to the population of Myanmar, with few Mw>7 events in recent decades, but a number of Mw7-8 events documented in the historical record. A primary concern is the right-lateral Sagaing fault stretching more than 1000 km through the center of Myanmar in proximity to large cities such as Yangon, Mandalay, and the capital Nay Pyi Taw. Until recently, earthquake monitoring and research efforts have been hampered by a lack of modern instrumentation and communication infrastructure. In January of 2016, a major upgrade of the Myanmar National Seismic Network (MNSN; network code MM) was undertaken to improve earthquake monitoring capability. We installed five permanent broadband/strong-motion seismic stations and real-time data telemetry using newly improved cellular networks. Data are telemetered to the MNSN hub in Nay Pyi Taw and archived at the Incorporated Research Institutions for Seismology Data Management Center. We analyzed station performance and site response using noise and events recorded over the first six months of station operation. Background noise characteristics vary across the array, but indicate that the new stations are performing well. With data from the upgraded stations, the MNSN is able to lower the event detection threshold relative to the threshold provided by the global network, improving the ability of the MNSN to report on locally felt events, and improving significantly the monitoring of ground motions within the country. MM stations have recorded more than 20 earthquakes of M≥4.5 within Myanmar and its immediate surroundings, including a M6.8 earthquake located northwest of Mandalay on 13 April 2016. We use this new dataset to calculate horizontal-to-vertical spectral ratios and evaluate the site response of MM

  18. Caltech/USGS Southern California Seismic Network (SCSN): Infrastructure upgrade to support Earthquake Early Warning (EEW)

    Science.gov (United States)

    Bhadha, R. J.; Hauksson, E.; Boese, M.; Felizardo, C.; Thomas, V. I.; Yu, E.; Given, D. D.; Heaton, T. H.; Hudnut, K. W.

    2013-12-01

    The SCSN is the modern digital ground motion seismic network in Southern California and performs the following tasks: 1) Operates remote seismic stations and the central data processing systems in Pasadena; 2) Generates and reports real-time products including location, magnitude, ShakeMap, aftershock probabilities and others; 3) Responds to FEMA, CalOES, media, and public inquiries about earthquakes; 4) Manages the production, archival, and distribution of waveforms, phase picks, and other data at the SCEDC; 5) Contributes to development and implementation of the demonstration EEW system called CISN ShakeAlert. Initially, the ShakeAlert project was funded through the US Geological Survey (USGS) and in early 2012, the Gordon and Betty Moore Foundation provided three years of new funding for EEW research and development for the US west coast. Recently, we have also received some Urban Areas Security Initiative (UASI) funding to enhance the EEW capabilities for the local UASI region by making our system overall faster, more reliable and redundant than the existing system. The additional and upgraded stations will be capable of decreasing latency and ensuring data delivery by using more reliable and redundant telemetry pathways. Overall, this will enhance the reliability of the earthquake early warnings by providing denser station coverage and more resilient data centers than before. * Seismic Datalogger upgrade: replaces existing dataloggers with modern equipment capable of sending one-second uncompressed packets and utilizing redundant Ethernet telemetry. * GPS upgrade: replaces the existing GPS receivers and antennas, especially at "zipper array" sites near the major faults, with receivers that perform on-board precise point positioning to calculate position and velocity in real time and stream continuous data for use in EEW calculations. * New co-located seismic/GPS stations: increases station density and reduces early warning delays that are incurred by travel

  19. Seismicity within the Irpinia Fault System As Monitored By Isnet (Irpinia Seismic Network) and Its Possible Relation with Fluid Storage

    Science.gov (United States)

    Festa, G.; Zollo, A.; Amoroso, O.; Ascione, A.; Colombelli, S.; Elia, L.; Emolo, A.; Martino, C.; Mazzoli, S.; Orefice, A.; Russo, G.

    2014-12-01

    ISNet (http://isnet.fisica.unina.it) is deployed in Southern Apennines along the active fault system responsible for the 1980, M 6.9 Irpinia earthquake. ISNet consists of 32 seismic stations equipped with both strong motion and velocimetric instruments (either broadband or short-period), with the aim of capture a broad set of seismic signals, from ambient noise to strong motion. Real time and near real time procedures run at ISNet with the goal of monitoring the seismicity, check possible space-time anomalies, detect seismic sequences and launch an earthquake early warning in the case of potential significant ground shaking in the area. To understand the role of fluids on the seismicity of the area, we investigated velocity and attenuation models. The former is built from accurate cross-correlation picking and S wave detection based onto polarization analysis. Joint inversion of both P and S arrival times is then based on a linearized multi-scale tomographic approach. Attenuation is instead obtained from inversion of displacement spectra, deconvolving for the source effect. High VP/VS and QS/QP >1 were found within a ~15 km wide rock volume where intense microseismicity is located. This indicates that concentration of seismicity is possibly controlled by high pore fluid pressure. This earthquake reservoir may come from a positive feedback between the seismic pumping that controls the fluid transmission through the fractured damage zone and the low permeability of cross fault barrier, increasing the fluid pore pressure within the fault bounded block. In this picture, sequences mostly occur at the base of this fluid rich layer. They show an anomalous pattern in the earthquake occurrence per magnitude classes; main events evolve with a complex source kinematics, as obtained from backprojection of apparent source time functions, indicating possible directivity effects. In this area sequences might be the key for understanding the transition between the deep

  20. Observations Using the Taipei Basin Broadband Downhole Seismic Network: The 26 December 2006, Pingtung Earthquake Doublet, Taiwan

    Directory of Open Access Journals (Sweden)

    Win-Gee Huang

    2008-01-01

    Full Text Available To monitor the fault activity in the Taipei area, a new broadband downhole seismic network comprised of three stations was established in the Taipei Basin over a period of three years, 2005 - 2007. The network geometry is a triangle with a station spacing of about 12 km covering the entire Taipei Basin. Each station has two holes of different depths containing modern instruments, including a low-gain broadband seismometer. The largest depth is 150 m. We report our first experience on the installation and operation of the broadband downhole seismic network in the Taipei Basin. Some representative records from the Pingtung earthquake doublet in December 2006 are shown here. Ground displacement during the Pingtung earthquake doublet can be recovered from the velocity records without the baseline corrections that are required for the acceleration records. Our network offers excellent data for accurate and effective characterization of seismic motion in the study area. Seismic data from this network will be shared with other research institutions in Taiwan and abroad for further research.

  1. What would dense atmospheric observation networks bring to the quantification of city CO2 emissions?

    Science.gov (United States)

    Wu, Lin; Broquet, Grégoire; Ciais, Philippe; Bellassen, Valentin; Vogel, Felix; Chevallier, Frédéric; Xueref-Remy, Irène; Wang, Yilong

    2016-06-01

    Cities currently covering only a very small portion ( global energy-related CO2, but they are associated with 71-76 % of CO2 emissions from global final energy use. Although many cities have set voluntary climate plans, their CO2 emissions are not evaluated by the monitoring, reporting, and verification (MRV) procedures that play a key role for market- or policy-based mitigation actions. Here we analyze the potential of a monitoring tool that could support the development of such procedures at the city scale. It is based on an atmospheric inversion method that exploits inventory data and continuous atmospheric CO2 concentration measurements from a network of stations within and around cities to estimate city CO2 emissions. This monitoring tool is configured for the quantification of the total and sectoral CO2 emissions in the Paris metropolitan area (˜ 12 million inhabitants and 11.4 TgC emitted in 2010) during the month of January 2011. Its performances are evaluated in terms of uncertainty reduction based on observing system simulation experiments (OSSEs). They are analyzed as a function of the number of sampling sites (measuring at 25 m a.g.l.) and as a function of the network design. The instruments presently used to measure CO2 concentrations at research stations are expensive (typically ˜ EUR 50 k per sensor), which has limited the few current pilot city networks to around 10 sites. Larger theoretical networks are studied here to assess the potential benefit of hypothetical operational lower-cost sensors. The setup of our inversion system is based on a number of diagnostics and assumptions from previous city-scale inversion experiences with real data. We find that, given our assumptions underlying the configuration of the OSSEs, with 10 stations only the uncertainty for the total city CO2 emission during 1 month is significantly reduced by the inversion by ˜ 42 %. It can be further reduced by extending the network, e.g., from 10 to 70 stations, which is

  2. Imaging the atmosphere using volcanic infrasound recorded on a dense local sensor network

    Science.gov (United States)

    Marcillo, O. E.; Johnson, J. B.; Johnson, R.

    2010-12-01

    We deployed a 47-node infrasound sensor network around Kilauea’s Halemaumau Vent to image the atmospheric conditions of the near-surface. This active vent is a persistent radiator of energetic infrasound enabling us to probe atmospheric winds and temperatures. This research builds upon a previous experiment that recorded infrasound on a three-node network, to determine relative phase delay and invert for atmospheric wind. The technique developed for this previous analysis assumed the intrinsic sound speed and was able to track the evolution of the average wind field in a large area (around 10 km2) and was largely insensitive to local meteorological effects, caused by topography and vegetation. The results of this previous experiment showed the potential of this technique for atmospheric studies and called for a following experiment with a denser sensor network over a larger area. During the summer 2010, we returned to Kilauea and deployed a 47-sensor network in three different configurations around Kilauea summit and down the volcano’s flanks. Persistent infrasonic tremor was ‘loud’ with excess pressures up to 10 Pa (when scaled to 1 km) and periods of high acoustic emissions that lasted from hours to days. The instrumentation for this experiment was composed of single-channel RefTek RT125A Texan digitizers and InfraNMT infrasound sensors. The Texan digitizers provide high-resolution 24-bit analog to digital conversion and can operate continuously for approximately five days with two D-cell batteries. The InfraNMT sensor is based on a piezo-electric transducer and was developed at the Infrasound Laboratory at New Mexico Tech. This sensor features low power (< 3 mA at 9 V) and flat response between 0.02 to 50 Hz. Three different network topologies were tested during this two-week experiment. For the first and second topologies, the sensors were deployed along established roads on two almost perpendicular sensor lines centered at the Halema’uma’u crater

  3. Knowledge discovery from seismic data using neural networks; Descoberta de conhecimento a partir de dados sismicos utilizando redes neurais

    Energy Technology Data Exchange (ETDEWEB)

    Paula, Wesley R. de; Costa, Bruno A.D.; Gomes, Herman M. [Universidade Federal de Campina Grande (UFCG), PB (Brazil)

    2004-07-01

    The analysis and interpretation of seismic data is of fundamental importance to the Oil Industry, since it helps discover geologic formations that are conducive to hydrocarbon accumulation. The use of seismic data in reservoir characterization may be performed through localized data inspections and clustering based on features of common seismic responses. This clustering or classification can be performed in two basic ways: visually, with the help of graphical tools; or using automatic classification techniques, such as statistical models and artificial neural networks. Neural network based methods are generally superior to rule- or knowledge-based systems, since they have a better generalization capability and are fault tolerant. Within this context, the main objective of this work is to describe methods that employ the two main neural network based approaches (supervised and unsupervised) in knowledge discovery from seismic data. Initially, the implementation and experiments were focused on the problem of seismic facies recognition using the unsupervised approach, but in future works, the implementation of the supervised approach, an application to fault detection and a parallel implementation of the proposed methods are planned. (author)

  4. Swedish National Seismic Network (SNSN). A short report on recorded earthquakes during the first quarter of the year 2011

    Energy Technology Data Exchange (ETDEWEB)

    Boedvarsson, Reynir (Uppsala Univ. (Sweden). Dept. of Earth Sciences)

    2011-04-15

    According to an agreement with Swedish Nuclear Fuel and Waste Management Company (SKB) and Uppsala Univ., the Dept. of Earth Sciences has continued to carry out observations of seismic events at seismic stations within the Swedish National Seismic Network (SNSN). This short report gives brief information about the recorded seismicity during January through March 2011. The Swedish National Seismic Network consists of 62 stations. During January through March, 2,145 events were located whereof 116 are estimated as real earthquakes, 1,521 are estimated as explosions, 308 are induced earthquakes in the vicinity of the mines in Kiruna and Malmberget and 200 events are still considered as uncertain but these are most likely explosions and are mainly located outside the network. Four earthquakes had magnitudes equal to or above M{sub L} = 2.0 during the period. In January an earthquake with magnitude M{sub L} = 2.4 was located in Gulf of Bothnia, 74 km east of Umeaa. Three earthquakes with magnitudes of M{sub L} = 2.0 were located 20 km east of Boden, 2 km SW of Falkoeping and 18 km west of Robertsfors

  5. Swedish National Seismic Network (SNSN). A short report on recorded earthquakes during the second quarter of the year 2011

    Energy Technology Data Exchange (ETDEWEB)

    Boedvarsson, Reynir (Uppsala Univ., Dept. of Earth Sciences (Sweden))

    2011-07-15

    According to an agreement with Swedish Nuclear Fuel and Waste Management Company (SKB) and Uppsala Univ., the Dept. of Earth Sciences has continued to carry out observations of seismic events at seismic stations within the Swedish National Seismic Network (SNSN). This short report gives brief information about the recorded seismicity during April through June 2011. The Swedish National Seismic Network consists of 62 stations. During April through June, 2,160 events were located whereof 129 are estimated as real earthquakes, 1,502 are estimated as explosions, 310 are induced earthquakes in the vicinity of the mines in Kiruna and Malmberget and 219 events are still considered as uncertain but these are most likely explosions and are mainly located outside the network. Two earthquakes had magnitudes above M{sub L} = 2.0 during the period. In May one earthquake with magnitude M{sub L} = 2.8 was located in Kattegatt, 31 km SW of Falkenberg and in April an earthquake with magnitude M{sub L} = 2.0 was located 19 km NW of Robertsfors. Additional 16 earthquakes had magnitudes equal to or above M{sub L} = 1.0

  6. Computer-Aided Analysis of Flow in Water Pipe Networks after a Seismic Event

    Directory of Open Access Journals (Sweden)

    Won-Hee Kang

    2017-01-01

    Full Text Available This paper proposes a framework for a reliability-based flow analysis for a water pipe network after an earthquake. For the first part of the framework, we propose to use a modeling procedure for multiple leaks and breaks in the water pipe segments of a network that has been damaged by an earthquake. For the second part, we propose an efficient system-level probabilistic flow analysis process that integrates the matrix-based system reliability (MSR formulation and the branch-and-bound method. This process probabilistically predicts flow quantities by considering system-level damage scenarios consisting of combinations of leaks and breaks in network pipes and significantly reduces the computational cost by sequentially prioritizing the system states according to their likelihoods and by using the branch-and-bound method to select their partial sets. The proposed framework is illustrated and demonstrated by examining two example water pipe networks that have been subjected to a seismic event. These two examples consist of 11 and 20 pipe segments, respectively, and are computationally modeled considering their available topological, material, and mechanical properties. Considering different earthquake scenarios and the resulting multiple leaks and breaks in the water pipe segments, the water flows in the segments are estimated in a computationally efficient manner.

  7. A semantic autonomous video surveillance system for dense camera networks in Smart Cities.

    Science.gov (United States)

    Calavia, Lorena; Baladrón, Carlos; Aguiar, Javier M; Carro, Belén; Sánchez-Esguevillas, Antonio

    2012-01-01

    This paper presents a proposal of an intelligent video surveillance system able to detect and identify abnormal and alarming situations by analyzing object movement. The system is designed to minimize video processing and transmission, thus allowing a large number of cameras to be deployed on the system, and therefore making it suitable for its usage as an integrated safety and security solution in Smart Cities. Alarm detection is performed on the basis of parameters of the moving objects and their trajectories, and is performed using semantic reasoning and ontologies. This means that the system employs a high-level conceptual language easy to understand for human operators, capable of raising enriched alarms with descriptions of what is happening on the image, and to automate reactions to them such as alerting the appropriate emergency services using the Smart City safety network.

  8. Playing Radio Resource Management Games in Dense Wireless 5G Networks

    Directory of Open Access Journals (Sweden)

    Paweł Sroka

    2016-01-01

    Full Text Available This paper considers the problem of an efficient and flexible tool for interference mitigation in ultradense heterogeneous cellular 5G networks. Several game-theory based approaches are studied, focusing on noncooperative games, where each base station in the end tries to maximize its payoff. An analysis of backhaul requirements of investigated approaches is carried out, with a proposal of a mechanism for backhaul requirements reduction. Moreover, improvements in terms of energy use optimization are proposed to further increase the system gains. The presented simulation results of a detailed ultradense 5G wireless system show that the discussed game-theoretic approaches are very promising solutions for interference mitigation outperforming the algorithm proposed for LTE-Advanced in terms of the achieved spectral efficiency. Finally, it is proved that the introduction of energy-efficient and backhaul-optimized operation does not significantly degrade the performance achieved with the considered approaches.

  9. Statistical Analysis of Tract-Tracing Experiments Demonstrates a Dense, Complex Cortical Network in the Mouse.

    Science.gov (United States)

    Ypma, Rolf J F; Bullmore, Edward T

    2016-09-01

    Anatomical tract tracing methods are the gold standard for estimating the weight of axonal connectivity between a pair of pre-defined brain regions. Large studies, comprising hundreds of experiments, have become feasible by automated methods. However, this comes at the cost of positive-mean noise making it difficult to detect weak connections, which are of particular interest as recent high resolution tract-tracing studies of the macaque have identified many more weak connections, adding up to greater connection density of cortical networks, than previously recognized. We propose a statistical framework that estimates connectivity weights and credibility intervals from multiple tract-tracing experiments. We model the observed signal as a log-normal distribution generated by a combination of tracer fluorescence and positive-mean noise, also accounting for injections into multiple regions. Using anterograde viral tract-tracing data provided by the Allen Institute for Brain Sciences, we estimate the connection density of the mouse intra-hemispheric cortical network to be 73% (95% credibility interval (CI): 71%, 75%); higher than previous estimates (40%). Inter-hemispheric density was estimated to be 59% (95% CI: 54%, 62%). The weakest estimable connections (about 6 orders of magnitude weaker than the strongest connections) are likely to represent only one or a few axons. These extremely weak connections are topologically more random and longer distance than the strongest connections, which are topologically more clustered and shorter distance (spatially clustered). Weak links do not substantially contribute to the global topology of a weighted brain graph, but incrementally increased topological integration of a binary graph. The topology of weak anatomical connections in the mouse brain, rigorously estimable down to the biological limit of a single axon between cortical areas in these data, suggests that they might confer functional advantages for integrative

  10. Quantifying capability of a local seismic network in terms of locations and focal mechanism solutions of weak earthquakes

    Science.gov (United States)

    Fojtíková, Lucia; Kristeková, Miriam; Málek, Jiří; Sokos, Efthimios; Csicsay, Kristián; Zahradník, Jiří

    2016-01-01

    Extension of permanent seismic networks is usually governed by a number of technical, economic, logistic, and other factors. Planned upgrade of the network can be justified by theoretical assessment of the network capability in terms of reliable estimation of the key earthquake parameters (e.g., location and focal mechanisms). It could be useful not only for scientific purposes but also as a concrete proof during the process of acquisition of the funding needed for upgrade and operation of the network. Moreover, the theoretical assessment can also identify the configuration where no improvement can be achieved with additional stations, establishing a tradeoff between the improvement and additional expenses. This paper presents suggestion of a combination of suitable methods and their application to the Little Carpathians local seismic network (Slovakia, Central Europe) monitoring epicentral zone important from the point of seismic hazard. Three configurations of the network are considered: 13 stations existing before 2011, 3 stations already added in 2011, and 7 new planned stations. Theoretical errors of the relative location are estimated by a new method, specifically developed in this paper. The resolvability of focal mechanisms determined by waveform inversion is analyzed by a recent approach based on 6D moment-tensor error ellipsoids. We consider potential seismic events situated anywhere in the studied region, thus enabling "mapping" of the expected errors. Results clearly demonstrate that the network extension remarkably decreases the errors, mainly in the planned 23-station configuration. The already made three-station extension of the network in 2011 allowed for a few real data examples. Free software made available by the authors enables similar application in any other existing or planned networks.

  11. Grid-Search Location Methods for Ground-Truth Collection from Local and Regional Seismic Networks

    Energy Technology Data Exchange (ETDEWEB)

    Schultz, C A; Rodi, W; Myers, S C

    2003-07-24

    The objective of this project is to develop improved seismic event location techniques that can be used to generate more and better quality reference events using data from local and regional seismic networks. Their approach is to extend existing methods of multiple-event location with more general models of the errors affecting seismic arrival time data, including picking errors and errors in model-based travel-times (path corrections). Toward this end, they are integrating a grid-search based algorithm for multiple-event location (GMEL) with a new parameterization of travel-time corrections and new kriging method for estimating the correction parameters from observed travel-time residuals. Like several other multiple-event location algorithms, GMEL currently assumes event-independent path corrections and is thus restricted to small event clusters. The new parameterization assumes that travel-time corrections are a function of both the event and station location, and builds in source-receiver reciprocity and correlation between the corrections from proximate paths as constraints. The new kriging method simultaneously interpolates travel-time residuals from multiple stations and events to estimate the correction parameters as functions of position. They are currently developing the algorithmic extensions to GMEL needed to combine the new parameterization and kriging method with the simultaneous location of events. The result will be a multiple-event location method which is applicable to non-clustered, spatially well-distributed events. They are applying the existing components of the new multiple-event location method to a data set of regional and local arrival times from Nevada Test Site (NTS) explosions with known origin parameters. Preliminary results show the feasibility and potential benefits of combining the location and kriging techniques. They also show some preliminary work on generalizing of the error model used in GMEL with the use of mixture

  12. The Katla volcanic system imaged using local earthquakes recorded with a temporary seismic network

    Science.gov (United States)

    Jeddi, Zeinab; Tryggvason, Ari; Gudmundsson, Ólafur

    2016-10-01

    Katla is one of the most active subglacial volcanoes in Iceland. A temporary seismic network was operated on and around Katla for 2.5 years. A subset of 800 analyzed local earthquakes clustered geographically in four regions: (1) the caldera, (2) the western region, (3) the southern rim, and (4) the eastern rim of the glacier. Based on the frequency content of recorded seismograms, each event was labeled as volcano tectonic (VT), long period (LP), or `Mixed'. The southern cluster consists of LP events only, and the eastern cluster consists of VT events, while the western cluster is `Mixed' although primarily LP. The caldera seismicity is confined to a subregion centered in the northeastern part of the caldera above 1 km below sea level (bsl) and gradually deepens away from its center to about 4 km depth. Deeper events are almost all VT, whereas LP events in the center of caldera locate at shallow depths. This is also where the velocities are lowest in the top 3 km of the crust of our 3-D tomographic model. A high-velocity core ( 6.5 km/s) is found at 4 km bsl beneath this low-velocity zone. We propose that a "subcaldera" may be developing within the present caldera and suggest a conceptual model for Katla volcano with a thin volume ( 1 km thick) that may host hot rhyolitic material in the shallow crust below the relocated seismic activity and above the high-velocity core. We interpret this core to consist of mafic cumulates resulting from fractionation of mafic intrusions and partial melting of subsiding hydrothermally altered rocks.

  13. PG&E's Seismic Network Goes Digital With Strong Motion: Successes and Challenges

    Science.gov (United States)

    Stanton, M. A.; Cullen, J.; McLaren, M. K.

    2008-12-01

    Pacific Gas and Electric Company (PG&E) is in year 3 of a 5-year project to upgrade the Central Coast Seismic Network (CCSN) from analog to digital. Located along the south-central California coast, the CCSN began operation in 1987, with 20 analog stations; 15 vertical component and 5 dual gain 3-component S-13 sensors. The analog signals travel over FM radio telemetry links and voice channels via PG&E's microwave network to our facility in San Francisco (SF), where the A/D conversion is performed on a computer running Earthworm v7.1, which also transmits the data to the USGS in Menlo Park. At the conversion point the dynamic ranges of the vertical and dual-gain sensors are 40-50dB and 60-70dB, respectively. Dynamic range exceedance (data clipping) generally occurs for a M2.5 or greater event within about 40 km of a station. The motivations to upgrade the seismic network were the need for higher dynamic range and to retire obsolete analog transmission equipment. The upgraded digital stations consist of the existing velocity sensors, a 131A-02/3 accelerometer and a Reftek 130-01 Broadband Seismic Recorder for digital data recording and transmission to SF. Vertical only stations have one component of velocity and 3 components of acceleration. Dual gain sites have 3 components of velocity and 3 of acceleration. To date we have successfully upgraded 6 sites; 3 more will be installed by the end of 2008. Some of the advantages of going digital are 1) data is recorded at each site and in SF, 2) substantially increased dynamic range of the velocity sensors to 120dB, as observed by on scale, close-by recordings from a M3.9 San Simeon aftershock on 04/29/2008, 3) accelerometers for on scale recording of large earthquakes, and 4) ability to contribute our strong motion data to USGS ShakeMaps. A significant challenge has been consistent radio communications. To resolve this issue we are installing point-to-multipoint Motorola Canopy spread spectrum radios at the stations and

  14. Earthquake location determination using data from DOMERAPI and BMKG seismic networks: A preliminary result of DOMERAPI project

    Science.gov (United States)

    Ramdhan, Mohamad; Nugraha, Andri Dian; Widiyantoro, Sri; Métaxian, Jean-Philippe; Valencia, Ayunda Aulia

    2015-04-01

    DOMERAPI project has been conducted to comprehensively study the internal structure of Merapi volcano, especially about deep structural features beneath the volcano. DOMERAPI earthquake monitoring network consists of 46 broad-band seismometers installed around the Merapi volcano. Earthquake hypocenter determination is a very important step for further studies, such as hypocenter relocation and seismic tomographic imaging. Ray paths from earthquake events occurring outside the Merapi region can be utilized to delineate the deep magma structure. Earthquakes occurring outside the DOMERAPI seismic network will produce an azimuthal gap greater than 1800. Owing to this situation the stations from BMKG seismic network can be used jointly to minimize the azimuthal gap. We identified earthquake events manually and carefully, and then picked arrival times of P and S waves. The data from the DOMERAPI seismic network were combined with the BMKG data catalogue to determine earthquake events outside the Merapi region. For future work, we will also use the BPPTKG (Center for Research and Development of Geological Disaster Technology) data catalogue in order to study shallow structures beneath the Merapi volcano. The application of all data catalogues will provide good information as input for further advanced studies and volcano hazards mitigation.

  15. Earthquake location determination using data from DOMERAPI and BMKG seismic networks: A preliminary result of DOMERAPI project

    Energy Technology Data Exchange (ETDEWEB)

    Ramdhan, Mohamad [Study Program of Earth Science, Institut Teknologi Bandung, Jl. Ganesa 10, Bandung, 40132 (Indonesia); Agency for Meteorology, Climatology and Geophysics of Indonesia (BMKG) Jl. Angkasa 1 No. 2 Kemayoran, Jakarta Pusat, 10720 (Indonesia); Nugraha, Andri Dian; Widiyantoro, Sri [Global Geophysics Research Group, Faculty of Mining and Petroleum Engineering, Institut TeknologiBandung, Jl. Ganesa 10, Bandung, 40132 (Indonesia); Métaxian, Jean-Philippe [Institut de Recherche pour le Développement (IRD) (France); Valencia, Ayunda Aulia, E-mail: mohamad.ramdhan@bmkg.go.id [Study Program of Geophysical Engineering, Institut Teknologi Bandung, Jl. Ganesa 10, Bandung, 40132 (Indonesia)

    2015-04-24

    DOMERAPI project has been conducted to comprehensively study the internal structure of Merapi volcano, especially about deep structural features beneath the volcano. DOMERAPI earthquake monitoring network consists of 46 broad-band seismometers installed around the Merapi volcano. Earthquake hypocenter determination is a very important step for further studies, such as hypocenter relocation and seismic tomographic imaging. Ray paths from earthquake events occurring outside the Merapi region can be utilized to delineate the deep magma structure. Earthquakes occurring outside the DOMERAPI seismic network will produce an azimuthal gap greater than 180{sup 0}. Owing to this situation the stations from BMKG seismic network can be used jointly to minimize the azimuthal gap. We identified earthquake events manually and carefully, and then picked arrival times of P and S waves. The data from the DOMERAPI seismic network were combined with the BMKG data catalogue to determine earthquake events outside the Merapi region. For future work, we will also use the BPPTKG (Center for Research and Development of Geological Disaster Technology) data catalogue in order to study shallow structures beneath the Merapi volcano. The application of all data catalogues will provide good information as input for further advanced studies and volcano hazards mitigation.

  16. Swedish National Seismic Network (SNSN). A short report on recorded earthquakes during the third quarter of the year 2011

    Energy Technology Data Exchange (ETDEWEB)

    Boedvarsson, Reynir (Uppsala University, Department of Earth Sciences (Sweden))

    2011-10-15

    According to an agreement with the Swedish Nuclear Fuel and Waste Management Company (SKB) and Uppsala University, the Department of Earth Sciences has continued to carry out observation and additional construction of new seismic stations within the Swedish National Seismic Network (SNSN). This short report gives brief information about the recorded seismicity during July through September 2011. The Swedish National Seismic Network now consists of 64 stations after that two additional stations were constructed in August this year. During July through September, 2,096 events were located whereof 137 are estimated as real earthquakes, 1,250 are estimated as explosions, 488 are induced earthquakes in the vicinity of the mines in Kiruna and Malmberget and 221 events are still considered as uncertain but these are most likely explosions and are mainly located outside the network. Four earthquakes located by the network had magnitudes above M{sub L} = 2.0 during the period. In July an earthquake with magnitude M{sub L} = 2.9 was located in Oppland-Hedmark in Norway. In August three earthquakes were located, one with a magnitude of M{sub L} = 2.4 located 13 km north of Laimoluokta, 66 km north of Kiruna, one earthquake with a magnitude of M{sub L} = 2.3 was located in Finland, 125 km north of Pajala and one earthquake with a magnitude of M{sub L} = 2.1 was located in the North Sea offshore Denmark

  17. A Real-Time Discrimination System of Earthquakes and Explosions for the Mainland Spanish Seismic Network

    Science.gov (United States)

    García Vargas, Marta; Rueda, Juan; García Blanco, Rosa María; Mezcua, Julio

    2017-01-01

    Different waveform-based discrimination parameters were tested using multivariate statistical analysis to develop a real-time procedure for discriminating explosions from earthquakes at regional distances in the Iberian Peninsula. This work enabled a purge of the Spanish National Seismic Catalogue for the period 2003-2014. The training data consisted of waveform-based signal properties in the time and frequency domain for events (earthquakes and explosions) recorded during the selected time period by the Spanish Broadband National Network and Sonseca short-period Array of the Instituto Geográfico Nacional (IGN). For each station and its associated training dataset, a discriminant function was defined as a linear combination of the measured variables. All station-specific discriminant functions were then combined with a weighting scheme to test the training events, revealing that 86 % of the events were consistent with the analysts' judgement. The application of this method to the whole of the IGN's seismic database for the studied period gave an 83 % success rate; however, a 91 % success rate is reached if events are classified using at least three stations and 100 % confidence levels.

  18. Universal law for waiting internal time in seismicity and its implication to earthquake network

    CERN Document Server

    Abe, Sumiyoshi

    2012-01-01

    In their paper (Europhys. Lett., 71 (2005) 1036), Carbone, Sorriso-Valvo, Harabaglia and Guerra showed that "unified scaling law" for conventional waiting times of earthquakes claimed by Bak et al. (Phys. Rev. Lett., 88 (2002) 178501) is actually not universal. Here, instead of the conventional time, the concept of the internal time termed the event time is considered for seismicity. It is shown that, in contrast to the conventional waiting time, the waiting event time obeys a power law. This implies the existence of temporal long-range correlations in terms of the event time with no sharp decay of the crossover type. The discovered power-law waiting event-time distribution turns out to be universal in the sense that it takes the same form for seismicities in California, Japan and Iran. In particular, the parameters contained in the distribution take the common values in all these geographical regions. An implication of this result to the procedure of constructing earthquake networks is discussed.

  19. Study of seismicity in the NW Himalaya and adjoining regions using IMS network

    Science.gov (United States)

    Ali, Sherif M.; Shanker, D.

    2017-03-01

    The Reviewed Event Bulletin (REB) of the International Data Center (IDC) has been used in order to investigate the seismicity of the Northwest Himalaya and its neighboring region for the time period June 1999 to March 2015 within the geographical coordinates 25-40° N latitude and 65-85° E longitude. We have used a very precisely located earthquake dataset recorded by the International Monitoring System (IMS) Network containing 7,583 events with body wave magnitudes from 2.5 to 6.3. The study area has been subdivided into six regions based on the Flinn-Engdahl (F-E) seismic and geographical regionalization scheme, which was used as the region classifications of the International Data Center catalog. The examined region includes NW India, Pakistan, Nepal, Xizang, Kashmir, and Hindukush. For each region, Magnitudes of completeness (Mc) and Gutenberg-Richter (GR) recurrence parameters ( a and b values) have been estimated. The Gutenberg-Richter analysis is preceded by an overview of the seismotectonics of the study area. The obtained Mc values vary from 3.5 to 3.9. The lower value of Mc was found mainly in Xizang region whereas the higher Mc threshold is evident in Pakistan region. However, the b values vary from 1.19 to 1.48. The lowest b value is recorded in Xizang region, which is mostly related to the Main Karakoram Thrust (MKT) fault, whereas the highest b values are recorded in NW India and Kashmir regions, which are mostly related to the Main Frontal Thrust (MFT) fault. The REB for the selected period has been compared to the most renowned bulletin of global seismicity, namely that issued by the National Earthquake Information Center (NEIC) of the United States Geological Survey (USGS). A study of 4,821 events recorded by USGS in the study region indicates that about 36 % of seismic events were missed and the catalog is considered as complete for events with magnitudes ≥4.0. However, both a and b values are obviously higher than those of IMS catalog. The a

  20. Site characterization of the Romanian Seismic Network stations: a national initiative and its first preliminary results

    Science.gov (United States)

    Grecu, Bogdan; Zahria, Bogdan; Manea, Elena; Neagoe, Cristian; Borleanu, Felix; Diaconescu, Mihai; Constantinescu, Eduard; Bala, Andrei

    2017-04-01

    The seismic activity in Romania is dominated by the intermediate-depth earthquakes occurring in Vrancea region, although weak to moderate crustal earthquakes are produced regularly in different areas of the country. The National Institute for Earth Physics (NIEP) built in the last years an impressive infrastructure for monitoring this activity, known as the Romanian Seismic Network (RSN). At present, RSN consists of 122 seismic stations, of which 70 have broadband velocity sensors and 42 short period sensors. One hundred and eleven stations out of 122 have accelerometer sensors collocated with velocity sensors and only 10 stations have only accelerometers. All the stations record continuously the ground motion and the data are transmitted in real-time to the Romanian National Data Center (RoNDC), in Magurele. Last year, NIEP has started a national project that addresses the characterization of all real-time seismic stations that constitute the RSN. We present here the steps that were undertaken and the preliminary results obtained since the beginning the project. The first two activities consisted of collecting all the existent technical and geological data, with emphasize on the latter. Then, we performed station noise investigations and analyses in order to characterize the noise level and estimate the resonances of the sites. The computed H/V ratios showed clear resonant peaks at different frequencies which correlate relatively well with the thickness of the sedimentary package beneath the stations. The polarization analysis of the H/V ratios indicates for some stations a strong directivity of the resonance peak which suggests possible topographic effects at the stations. At the same time, special attention was given to the estimation of the site amplification from earthquake data. The spectral ratios obtained from the analysis of more than 50 earthquakes with magnitudes (Mw) larger than 4.1 are characterized by similar resonance peaks as those obtained from

  1. Study of seismicity in the NW Himalaya and adjoining regions using IMS network

    Science.gov (United States)

    Ali, Sherif M.; Shanker, D.

    2016-08-01

    The Reviewed Event Bulletin (REB) of the International Data Center (IDC) has been used in order to investigate the seismicity of the Northwest Himalaya and its neighboring region for the time period June 1999 to March 2015 within the geographical coordinates 25-40° N latitude and 65-85° E longitude. We have used a very precisely located earthquake dataset recorded by the International Monitoring System (IMS) Network containing 7,583 events with body wave magnitudes from 2.5 to 6.3. The study area has been subdivided into six regions based on the Flinn-Engdahl (F-E) seismic and geographical regionalization scheme, which was used as the region classifications of the International Data Center catalog. The examined region includes NW India, Pakistan, Nepal, Xizang, Kashmir, and Hindukush. For each region, Magnitudes of completeness (Mc) and Gutenberg-Richter (GR) recurrence parameters (a and b values) have been estimated. The Gutenberg-Richter analysis is preceded by an overview of the seismotectonics of the study area. The obtained Mc values vary from 3.5 to 3.9. The lower value of Mc was found mainly in Xizang region whereas the higher Mc threshold is evident in Pakistan region. However, the b values vary from 1.19 to 1.48. The lowest b value is recorded in Xizang region, which is mostly related to the Main Karakoram Thrust (MKT) fault, whereas the highest b values are recorded in NW India and Kashmir regions, which are mostly related to the Main Frontal Thrust (MFT) fault. The REB for the selected period has been compared to the most renowned bulletin of global seismicity, namely that issued by the National Earthquake Information Center (NEIC) of the United States Geological Survey (USGS). A study of 4,821 events recorded by USGS in the study region indicates that about 36 % of seismic events were missed and the catalog is considered as complete for events with magnitudes ≥4.0. However, both a and b values are obviously higher than those of IMS catalog. The a

  2. On the estimate of earthquake magnitude at a local seismic network

    Energy Technology Data Exchange (ETDEWEB)

    Di Grazia, G.; Langer, H.; Ursino, A.; Scarfi, L. [Istituto Nazionale di Geofisica e Vulcanologia, Sez. di Catania, Priolo-Grgallo, Siracusa (Italy); Gresta, S. [Catania Univ., Catania (Italy). Dipt. di Scienze Geologiche

    2001-06-01

    It was investigated possible uncertainties and bases of magnitude estimate arising from instrument characteristics site conditions and routine data processing at a local seismic network running in Southeastern Sicily. Differences in instrument characteristics turned out to be of minor importance for small and moderate earthquakes. Magnitudes routinely calculated with the Hypoellipse program are obtained from the peak ground velocities applying a correction for the dominant period. This procedure yields slightly lower values than the standard procedure, where magnitudes are estimated from peak ground displacement. In order to provide the operators in the data center with a tool for an immediate estimate of earthquake size from drum records it was carried out a bivariate regression relating local magnitude (M{sub 1}) to the duration of the signal and the travel time difference of P- and S-waves.

  3. Aspects regarding the use of the INFREP network for identifying possible seismic precursors

    Science.gov (United States)

    Dolea, Paul; Cristea, Octavian; Dascal, Paul Vladut; Moldovan, Iren-Adelina; Biagi, Pier Francesco

    In the last decades, one of the main research directions in identifying seismic precursors involved monitoring VLF (Very Low Frequency) and LF (Low Frequency) radio waves and analysing their propagation characteristics. Essentially this method consists of monitoring different available VLF and LF transmitters from long distance reception points. The received signal has two major components: the ground wave and the sky wave, where the sky wave propagates by reflection on the lower layers of the ionosphere. It is assumed that before and during major earthquakes, unusual changes may occur in the lower layers of the ionosphere, such as the modification of the charged particles number density and the altitude of the reflection zone. Therefore, these unusual changes in the ionosphere may generate unusual variations in the received signal level. The International Network for Frontier Research on Earthquake Precursors (INFREP) was developed starting with 2009 and consists of several dedicated VLF and LF radio receivers used for monitoring various radio transmitters located throughout Europe. The receivers' locations were chosen so that the propagation path from these VLF/LF stations would pass over high seismicity regions while others were chosen to obtain different control paths. The monitoring receivers are capable of continuously measuring the received signal amplitude from the VLF/LF stations of interest. The recorded data is then stored and sent to an INFREP database, which is available on the Internet for scientific researchers. By processing and analysing VLF and LF data samples, collected at different reception points and at different periods of the year, one may be able to identify some distinct patterns in the envelope of the received signal level over time. Significant deviations from these patterns may have local causes such as the electromagnetic pollution at the monitoring point, regional causes like existing electrical storms over the propagation path or

  4. Information system evolution at the French National Network of Seismic Survey (BCSF-RENASS)

    Science.gov (United States)

    Engels, F.; Grunberg, M.

    2013-12-01

    The aging information system of the French National Network of Seismic Survey (BCSF-RENASS), located in Strasbourg (EOST), needed to be updated to satisfy new practices from Computer science world. The latter means to evolve our system at different levels : development method, datamining solutions, system administration. The new system had to provide more agility for incoming projects. The main difficulty was to maintain old system and the new one in parallel the time to validate new solutions with a restricted team. Solutions adopted here are coming from standards used by the seismological community and inspired by the state of the art of devops community. The new system is easier to maintain and take advantage of large community to find support. This poster introduces the new system and choosen solutions like Puppet, Fabric, MongoDB and FDSN Webservices.

  5. Dense borehole network observations of a small surge-type glacier

    Science.gov (United States)

    Rada, C.; Schoof, C.; Radic, V.

    2015-12-01

    vi) Preliminary evidence suggest that englacial conduits can persist over winter, potentially forming an hydraulic network that could play an important role in water transport We discuss how our results fit into current efforts to model subglacial drainage and alterations to drainage model physics that are suggested by our observations.

  6. Dense Ocean Floor Network for Earthquakes and Tsunamis; DONET/ DONET2, Part2 -Development and data application for the mega thrust earthquakes around the Nankai trough-

    Science.gov (United States)

    Kaneda, Y.; Kawaguchi, K.; Araki, E.; Matsumoto, H.; Nakamura, T.; Nakano, M.; Kamiya, S.; Ariyoshi, K.; Baba, T.; Ohori, M.; Hori, T.; Takahashi, N.; Kaneko, S.; Donet Research; Development Group

    2010-12-01

    Yoshiyuki Kaneda Katsuyoshi Kawaguchi*, Eiichiro Araki*, Shou Kaneko*, Hiroyuki Matsumoto*, Takeshi Nakamura*, Masaru Nakano*, Shinichirou Kamiya*, Keisuke Ariyoshi*, Toshitaka Baba*, Michihiro Ohori*, Narumi Takakahashi*, and Takane Hori** * Earthquake and Tsunami Research Project for Disaster Prevention, Leading Project , Japan Agency for Marine-Earth Science and Technology (JAMSTEC) **Institute for Research on Earth Evolution, Japan Agency for Marine-Earth Science and Technology (JAMSTEC) DONET (Dense Ocean Floor Network for Earthquakes and Tsunamis) is the real time monitoring system of the Tonankai seismogenic zones around the Nankai trough southwestern Japan. We were starting to develop DONET to perform real time monitoring of crustal activities over there and the advanced early warning system. DONET will provide important and useful data to understand the Nankai trough maga thrust earthquake seismogenic zones and to improve the accuracy of the earthquake recurrence cycle simulation. Details of DONET concept are as follows. 1) Redundancy, Extendable function and advanced maintenance system using the looped cable system, junction boxes and the ROV/AUV. DONET has 20 observatories and incorporated in a double land stations concept. Also, we are developed ROV for the 10km cable extensions and heavy weight operations. 2) Multi kinds of sensors to observe broad band phenomena such as long period tremors, very low frequency earthquakes and strong motions of mega thrust earthquakes over M8: Therefore, sensors such as a broadband seismometer, an accelerometer, a hydrophone, a precise pressure gauge, a differential pressure gauge and a thermometer are equipped with each observatory in DONET. 3) For speedy detections, evaluations and notifications of earthquakes and tsunamis: DONET system will be deployed around the Tonankai seismogenic zone. 4) Provide data of ocean floor crustal deformations derived from pressure sensors: Simultaneously, the development of data

  7. Searchlight Correlation Detectors: Optimal Seismic Monitoring Using Regional and Global Networks

    Science.gov (United States)

    Gibbons, Steven J.; Kværna, Tormod; Näsholm, Sven Peter

    2015-04-01

    The sensitivity of correlation detectors increases greatly when the outputs from multiple seismic traces are considered. For single-array monitoring, a zero-offset stack of individual correlation traces will provide significant noise suppression and enhanced sensitivity for a source region surrounding the hypocenter of the master event. The extent of this region is limited only by the decrease in waveform similarity with increasing hypocenter separation. When a regional or global network of arrays and/or 3-component stations is employed, the zero-offset approach is only optimal when the master and detected events are co-located exactly. In many monitoring situations, including nuclear test sites and geothermal fields, events may be separated by up to many hundreds of meters while still retaining sufficient waveform similarity for correlation detection on single channels. However, the traveltime differences resulting from the hypocenter separation may result in significant beam loss on the zero-offset stack and a deployment of many beams for different hypothetical source locations in geographical space is required. The beam deployment necessary for optimal performance of the correlation detectors is determined by an empirical network response function which is most easily evaluated using the auto-correlation functions of the waveform templates from the master event. The correlation detector beam deployments for providing optimal network sensitivity for the North Korea nuclear test site are demonstrated for both regional and teleseismic monitoring configurations.

  8. NON-INVASIVE DETERMINATION OF THE LOCATION AND DISTRBUTION OF FREE-PHASE DENSE NONAQUEOUS PHASE LIQUIDS (DNAPL) BY SEISMIC REFLECTION TECHNIQUES

    Energy Technology Data Exchange (ETDEWEB)

    Michael G. Waddell; William J. Domoracki; Jerome Eyer

    2003-01-01

    The Earth Sciences and Resources Institute, University of South Carolina is conducting a proof of concept study to determine the location and distribution of subsurface DNAPL carbon tetrachloride (CCl{sub 4}) contamination at the 216-Z-9 crib, 200 West area, DOE Hanford Site, Washington by use of two-dimensional high-resolution seismic reflection surveys and borehole geophysical data. The study makes use of recent advances in seismic reflection amplitude versus offset (AVO) technology to directly detect the presence of subsurface DNAPL. The techniques proposed are noninvasive means of site characterization and direct free-phase DNAPL detection. This final report covers the results of Tasks 1, 2, and 3. Task (1) contains site evaluation and seismic modeling studies. The site evaluation consists of identifying and collecting preexisting geological and geophysical information regarding subsurface structure and the presence and quantity of DNAPL. The seismic modeling studies were undertaken to determine the likelihood that an AVO response exists and its probable manifestation. Task (2) is the design and acquisition of 2-D seismic reflection data to image areas of probable high concentration of DNAPL. Task (3) is the processing and interpretation of the 2-D data. During the commission of these tasks four seismic reflection profiles were collected. Subsurface velocity information was obtained by vertical seismic profile surveys in three wells. The interpretation of these data is in two parts. Part one is the construction and interpretation of structural contour maps of the contact between the Hanford Fine unit and the underlying Plio/Pleistocene unit and of the contact between the Plio/Pleistocene unit and the underlying caliche layer. These two contacts were determined to be the most likely surfaces to contain the highest concentration CCl{sub 4}. Part two of the interpretation uses the results of the AVO modeling to locate any seismic amplitude anomalies that might be

  9. Building Ventilation as an Effective Disease Intervention Strategy in a Dense Indoor Contact Network in an Ideal City

    Science.gov (United States)

    Gao, Xiaolei; Lei, Hao; Xu, Pengcheng; Cowling, Benjamin J.; Li, Yuguo

    2016-01-01

    Emerging diseases may spread rapidly through dense and large urban contact networks, especially they are transmitted by the airborne route, before new vaccines can be made available. Airborne diseases may spread rapidly as people visit different indoor environments and are in frequent contact with others. We constructed a simple indoor contact model for an ideal city with 7 million people and 3 million indoor spaces, and estimated the probability and duration of contact between any two individuals during one day. To do this, we used data from actual censuses, social behavior surveys, building surveys, and ventilation measurements in Hong Kong to define eight population groups and seven indoor location groups. Our indoor contact model was integrated with an existing epidemiological Susceptible, Exposed, Infectious, and Recovered (SEIR) model to estimate disease spread and with the Wells-Riley equation to calculate local infection risks, resulting in an integrated indoor transmission network model. This model was used to estimate the probability of an infected individual infecting others in the city and to study the disease transmission dynamics. We predicted the infection probability of each sub-population under different ventilation systems in each location type in the case of a hypothetical airborne disease outbreak, which is assumed to have the same natural history and infectiousness as smallpox. We compared the effectiveness of controlling ventilation in each location type with other intervention strategies. We conclude that increasing building ventilation rates using methods such as natural ventilation in classrooms, offices, and homes is a relatively effective strategy for airborne diseases in a large city. PMID:27611368

  10. Time-lapse seismic imaging of the Reykjanes geothermal reservoir

    Science.gov (United States)

    Weemstra, Cornelis; Obermann, Anne; Blanck, Hanna; Verdel, Arie; Paap, Bob; Árni Guðnason, Egill; Páll Hersir, Gylfi; Jousset, Philippe; Sigurðsson, Ómar

    2016-04-01

    We report on the results obtained from a dense seismic deployment over a geothermal reservoir. The reservoir has been producing continuously for almost a decade and is located on the tip of the Reykjanes peninsula, SW Iceland. The seismic stations on top of the reservoir have continuously recorded the ambient seismic wavefield between April 2014 and September 2015. The density of the seismic network makes the data well suited for time-lapse seismic imaging of the reservoir. To that end we compute time-lapse responses through the application of seismic interferometry. These interferometric lapse responses are obtained by simple crosscorrelation of the seismic noise recorded by the different seismic stations. We subsequently evaluate the temporal variation of the coda of these crosscorrelations. The term coda refers to the later arriving, multiple scattered waves. The multiple scattering implies that these waves have sampled the subsurface very densely and hence become highly sensitive to tiny mechanical and structural changes in that subsurface. This sensitivity allows one, in principle at least, to monitor the geothermal reservoir. Preliminary results indeed suggest a relation between the temporal variation of the coda waves and the reservoir. Ultimately, this method may lead to a means to monitor a geothermal reservoir in both space and time.

  11. Towards the azimuthal characteristics of ionospheric and seismic effects of "Chelyabinsk" meteorite fall according to the data from coherent radar, GPS and seismic networks

    CERN Document Server

    Berngardt, O I; Kutelev, K A; Zherebtsov, G A; Dobrynina, A A; Shestakov, N V; Zagretdinov, R V; Bakhtiyarov, V F; Kusonsky, O A

    2015-01-01

    We present the results of a study of the azimuthal characteristics of ionospheric and seismic effects of the meteorite 'Chelyabinsk', based on the data from the network of GPS receivers, coherent decameter radar EKB SuperDARN and network of seismic stations. It is shown, that 6-14 minutes after the bolide explosion, GPS network observed the cone-shaped wavefront of TIDs that is interpreted as a ballistic acoustic wave. The typical TIDs propagation velocity were observed 661+/-256m/s, which corresponds to the expected acoustic wave speed for 240km height. 14 minutes after the bolide explosion, at distances of 200km we observed the emergence and propagation of a TID with spherical wavefront, that is interpreted as gravitational mode of internal acoustic waves. The propagation velocity of this TID was 337+/-89m/s which corresponds to the propagation velocity of these waves in similar situations. At EKB SuperDARN radar, we observed TIDs in the sector of azimuthal angles close to the perpendicular to the meteorite...

  12. Can Artificial Neural Networks be Applied in Seismic Predicition? Preliminary Analysis Applying Radial Topology. Case: Mexico

    CERN Document Server

    Mota-Hernandez, Cinthya; Alvarado-Corona, Rafael

    2014-01-01

    Tectonic earthquakes of high magnitude can cause considerable losses in terms of human lives, economic and infrastructure, among others. According to an evaluation published by the U.S. Geological Survey, 30 is the number of earthquakes which have greatly impacted Mexico from the end of the XIX century to this one. Based upon data from the National Seismological Service, on the period between January 1, 2006 and May 1, 2013 there have occurred 5,826 earthquakes which magnitude has been greater than 4.0 degrees on the Richter magnitude scale (25.54% of the total of earthquakes registered on the national territory), being the Pacific Plate and the Cocos Plate the most important ones. This document describes the development of an Artificial Neural Network (ANN) based on the radial topology which seeks to generate a prediction with an error margin lower than 20% which can inform about the probability of a future earthquake one of the main questions is: can artificial neural networks be applied in seismic forecast...

  13. GPS on Every Roof, GPS Sensor Network for Post-Seismic Building-Wise Damage Identification

    Directory of Open Access Journals (Sweden)

    Kenji Oguni

    2013-12-01

    Full Text Available Development of wireless sensor network equipped with GPS for post-seismic building-wise damage identification is presented in this paper. This system is called GPS on Every Roof. Sensor node equipped with GPS antenna and receiver is installed on the top of the roof of each and every building. The position of this sensor node is measured before and after earthquake. The final goal of this system is to i identify the displacement of the roof of each house and ii collect the information of displacement of the roof of the houses through wireless communication. Superposing this information on GIS, building-wise damage distribution due to earthquake can be obtained. The system overview, hardware and some of the key components of the system such as on-board GPS relative positioning algorithm to achieve the accuracy in the order of several centimeters are described in detail. Also, the results from a field experiment using a wireless sensor network with 39 sensor nodes are presented.

  14. Estimation of seismic quality factor: Artificial neural networks and current approaches

    Science.gov (United States)

    Yıldırım, Eray; Saatçılar, Ruhi; Ergintav, Semih

    2017-01-01

    The aims of this study are to estimate soil attenuation using alternatives to traditional methods, to compare results of using these methods, and to examine soil properties using the estimated results. The performances of all methods, amplitude decay, spectral ratio, Wiener filter, and artificial neural network (ANN) methods, are examined on field and synthetic data with noise and without noise. High-resolution seismic reflection field data from Yeniköy (Arnavutköy, İstanbul) was used as field data, and 424 estimations of Q values were made for each method (1,696 total). While statistical tests on synthetic and field data are quite close to the Q value estimation results of ANN, Wiener filter, and spectral ratio methods, the amplitude decay methods showed a higher estimation error. According to previous geological and geophysical studies in this area, the soil is water-saturated, quite weak, consisting of clay and sandy units, and, because of current and past landslides in the study area and its vicinity, researchers reported heterogeneity in the soil. Under the same physical conditions, Q value calculated on field data can be expected to be 7.9 and 13.6. ANN models with various structures, training algorithm, input, and number of neurons are investigated. A total of 480 ANN models were generated consisting of 60 models for noise-free synthetic data, 360 models for different noise content synthetic data and 60 models to apply to the data collected in the field. The models were tested to determine the most appropriate structure and training algorithm. In the final ANN, the input vectors consisted of the difference of the width, energy, and distance of seismic traces, and the output was Q value. Success rate of both ANN methods with noise-free and noisy synthetic data were higher than the other three methods. Also according to the statistical tests on estimated Q value from field data, the method showed results that are more suitable. The Q value can be estimated

  15. Seismicity in 2010 and major earthquakes recorded and located in Costa Rica from 1983 until 2012, by the local OVSICORI-UNA seismic network

    Science.gov (United States)

    Ronnie, Q.; Segura, J.; Burgoa, B.; Jimenez, W.; McNally, K. C.

    2013-05-01

    This work is the result of the analysis of existing information in the earthquake database of the Observatorio Sismológico y Vulcanológico de Costa Rica, Universidad Nacional (OVSICORI-UNA), and seeks disclosure of basic seismological information recorded and processed in 2010. In this year there was a transition between the software used to record, store and locate earthquakes. During the first three months of 2010, we used Earthworm (http://folkworm.ceri.memphis.edu/ew-doc), SEISAN (Haskov y Ottemoller, 1999) and Hypocenter (Lienert y Haskov, 1995) to capture, store and locate the earthquakes, respectively; in April 2010, ANTELOPE (http://www.brtt.com/software.html) start to be used for recording and storing and GENLOC (Fan at al, 2006) and LOCSAT (Bratt and Bache 1988), to locate earthquakes. GENLOC was used for local events and LOCSAT for regional and distant earthquakes. The local earthquakes were located using the 1D velocity model of Quintero and Kissling (2001) and for regional and distant earthquakes IASPEI91 (Kennett and Engdahl, 1991) was used. All the events for 2010 and shown in this work were rechecked by the authors. We located 3903 earthquakes in and around Costa Rica and 746 regional and distant seismic events were recorded (see Figure 1). In this work we also give a summary of major earthquakes recorded and located by OVSICORI-UNA network between 1983 and 2012. Seismicity recorded by OVSICORI-UNA network in 2010

  16. A Contribution to Mitigating Seismic Risk in the Bay Area: The Bay Area Regional Deformation (BARD) GPS Network

    Science.gov (United States)

    Houlie, N.; Romanowicz, B.; Hellweg, P.

    2007-05-01

    In the San Francisco Bay Area (SFBA), two million people live in a geologically complex, tectonically active region that has experienced several historic earthquakes, including the 1868 Hayward, the 1906 San Francisco, and 1989 Loma Prieta earthquakes. Geodetic measurements, which are especially useful for detecting deformation and strain on deep structures throughout the seismic cycle, show that Bay Area deformation is both spatially complex and varying with time. Increasingly, GPS data can also be used in real time to complement seismic data in providing robust real-time earthquake information, and, potentially, early warning. The Bay Area Regional Deformation (BARD) network of permanent, continuously operating Global Positioning System (GPS) receivers monitors crustal deformation in the Bay Area and northern California. BARD is a network collocated with several seismic networks (BDSN, NHFN, mini-PBO) operating in Northern California. As the local determination of magnitude is problematic for large earthquakes, the GPS will provide strong constraints on rupture geometry and amount of slip along the slipping fault. Thus, the collocation of all the networks will help mitigate earthquake- related risks associated with an earthquake in the SFBA or in northern California.

  17. Earthquake Activity, Operation of State Seismic Network with 5 stations, 3-Piedmont 2-Coastal Plane, Published in 1970, Delaware Geological Survey.

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — This Earthquake Activity dataset, was produced all or in part from Field Observation information as of 1970. It is described as 'Operation of State Seismic Network...

  18. Aspirations, challenges, and open issues for software-based 5G networks in extremely dense and heterogeneous scenarios

    National Research Council Canada - National Science Library

    M. Borges, Vinicius C; Cardoso, Kleber Vieira; Cerqueira, Eduardo; Nogueira, Michele; Santos, Aldri

    2015-01-01

    An upsurge of heterogeneous wireless devices and wide-ranging applications on extremely dense urban scenarios has led to challenging conditions that cannot be easily handled by 4G systems, such as the...

  19. Dense Breasts

    Science.gov (United States)

    ... also appear white on mammography, they can be hidden by or within dense breast tissue. Other imaging ... understanding of the possible charges you will incur. Web page review process: This Web page is reviewed ...

  20. 密柱钢板深梁结构抗震性能试验研究%Experimental study on seismic behavior of structure with dense columns-deep steel plate beams

    Institute of Scientific and Technical Information of China (English)

    董宏英; 张力嘉; 曹万林; 乔崎云; 刘恒超

    2015-01-01

    and weak deep steel plate beams” can achieve the duc-tile yield mechanism.Among three types of dense columns with the same steel consumption, the structure with circular steel tube columns has the best seismic performance.Compared with the struc-ture of Q345, the structure with steel deep beams of Q235 has better ductility in spite of lower load-bearing capacity.The structure with dense columns-deep steel plate beams has good seismic perform-ance and shows good ductile yield mechanism.

  1. Automatic Reconstruction of Fault Networks from Seismicity Catalogs: 3D Optimal Anisotropic Dynamic Clustering

    CERN Document Server

    Ouillon, G; Sornette, D; Ouillon, Guy; Ducorbier, Caroline; Sornette, Didier

    2007-01-01

    We propose a new pattern recognition method that is able to reconstruct the 3D structure of the active part of a fault network using the spatial location of earthquakes. The method is a generalization of the so-called dynamic clustering method, that originally partitions a set of datapoints into clusters, using a global minimization criterion over the spatial inertia of those clusters. The new method improves on it by taking into account the full spatial inertia tensor of each cluster, in order to partition the dataset into fault-like, anisotropic clusters. Given a catalog of seismic events, the output is the optimal set of plane segments that fits the spatial structure of the data. Each plane segment is fully characterized by its location, size and orientation. The main tunable parameter is the accuracy of the earthquake localizations, which fixes the resolution, i.e. the residual variance of the fit. The resolution determines the number of fault segments needed to describe the earthquake catalog, the better...

  2. Analysis of the seismicity in central Tibet based on the SANDWICH network and its tectonic implications

    Science.gov (United States)

    Zhu, Gaohua; Liang, Xiaofeng; Tian, Xiaobo; Yang, Hongfeng; Wu, Chenglong; Duan, Yaohui; Li, Wei; Zhou, Beibei

    2017-04-01

    We have located a total of 232 local earthquakes using data recorded by the SANDWICH seismic network from November 2013 to October 2014 in central Tibet across the Bangong-Nujiang suture (BNS). The focal depths of all earthquakes are shallower than 30 km and therefore are in the upper crust. The absence of lower crust earthquakes may imply a weak, ductile lower crust in central Tibet. Moreover, these earthquakes are dispersed throughout conjugate strike-slip fault zones, indicating that evenly distributed upper crustal deformation might predominate in central Tibet. This observation agrees with the hypothesis that conjugate fault zones accommodate coeval east-west extension and north-south contraction via continuous deformation. Moreover, the focal mechanisms show that strike-slip and normal faulting are the dominant types of deformation and that the extension in central Tibet is oriented approximately east-west. Despite some anomalies, the kinematics implied by most of the focal mechanisms correlate well with those of the surface structures.

  3. Transmission Techniques for Ultra Dense Wavelength Division Multiplexing By Using Two Optical Amplifiers in Nonlinear Optical Networks

    Directory of Open Access Journals (Sweden)

    Abd El-Naser A. Mohammed

    2010-09-01

    Full Text Available In the present paper, the problem amplification techniques of ultra dense wavelength division multiplexing (UDWDM in nonlinear optical networks are investigated through five transmission techniques. The impact of tailoring of chirped pulses of different temporal waveforms is investigated in a normal dispersion fiber. The set of multiplexed signals are tailored in a different a subset to assure approximately the same output level of power to hold the signal-to-noise ratio at the same level. Moreover, three different transmission techniques, namely, soliton propagation, maximum time division multiplexing (MTDM and ìShannonî capacity, are employed where successive section of alternating dispersion are used as a technique to manage the dispersion. Distributed ìRamanî amplifiers as well as Erbium doped fiber amplifier are engaged to maximize the repeater spacing. We have succeeded to multiplex 2400 (UDWDM channels in the optical range 1.45  1.65 µm with channel spacing ranging from 0.3 up to 0.6 nm where each channel has its own characteristic parameters of loss, dispersion, and amplification. The channels are divided into sub-groups ( each of 4, 5, 6, 7,Ö.,24 where the technique of space division multiplexing (SDM is applied. The multispan effects of ìKerrî nonlinearity and amplifier noise on ìShannonî channel capacity of dispersion-free nonlinear fiber is considered as a ceiling value for the sake of comparison. The case of soliton with modified Raman amplification via parametric gain also is investigated. Each link has special chemical structure, optical signals power, and optical Raman pumping. The cable contains {4, 5, 6, 7,Ö. , 24} links in SDM. It has been shown that the modified Raman gain yields higher effects on the variable under consideration if compared with the conventional Raman gain. The number of links is in positive correlations with the set of effects {Repeater spacing, Soliton product, MTDM product}. In general

  4. Multiresolution analysis of the spatiotemporal variability in global radiation observed by a dense network of 99 pyranometers

    Science.gov (United States)

    Lakshmi Madhavan, Bomidi; Deneke, Hartwig; Witthuhn, Jonas; Macke, Andreas

    2017-03-01

    The time series of global radiation observed by a dense network of 99 autonomous pyranometers during the HOPE campaign around Jülich, Germany, are investigated with a multiresolution analysis based on the maximum overlap discrete wavelet transform and the Haar wavelet. For different sky conditions, typical wavelet power spectra are calculated to quantify the timescale dependence of variability in global transmittance. Distinctly higher variability is observed at all frequencies in the power spectra of global transmittance under broken-cloud conditions compared to clear, cirrus, or overcast skies. The spatial autocorrelation function including its frequency dependence is determined to quantify the degree of similarity of two time series measurements as a function of their spatial separation. Distances ranging from 100 m to 10 km are considered, and a rapid decrease of the autocorrelation function is found with increasing frequency and distance. For frequencies above 1/3 min-1 and points separated by more than 1 km, variations in transmittance become completely uncorrelated. A method is introduced to estimate the deviation between a point measurement and a spatially averaged value for a surrounding domain, which takes into account domain size and averaging period, and is used to explore the representativeness of a single pyranometer observation for its surrounding region. Two distinct mechanisms are identified, which limit the representativeness; on the one hand, spatial averaging reduces variability and thus modifies the shape of the power spectrum. On the other hand, the correlation of variations of the spatially averaged field and a point measurement decreases rapidly with increasing temporal frequency. For a grid box of 10 km × 10 km and averaging periods of 1.5-3 h, the deviation of global transmittance between a point measurement and an area-averaged value depends on the prevailing sky conditions: 2.8 (clear), 1.8 (cirrus), 1.5 (overcast), and 4.2 % (broken

  5. Swedish National Seismic Network (SNSN). A short report on recorded earthquakes during the fourth quarter of the year 2011

    Energy Technology Data Exchange (ETDEWEB)

    Boedvarsson, Reynir (Uppsala University, Department of Earth Sciences (Sweden))

    2012-01-15

    According to an agreement with the Swedish Nuclear Fuel and Waste Management Company (SKB) and Uppsala University, the Department of Earth Sciences has continued to carry out observation and additional construction of new seismic stations within the Swedish National Seismic Network (SNSN). This short report gives brief information about the recorded seismicity during October through December 2011. The Swedish National Seismic Network now consists of 65 stations. During October through December, 2,682 events were located whereof 165 are estimated as real earthquakes, 1,628 are estimated as explosions, 660 are induced earthquakes in the vicinity of the mines in Kiruna and Malmberget and 229 events are still considered as uncertain but these are most likely explosions and are mainly located outside the network. Seven earthquakes had magnitudes above M{sub L} = 2.0 during the period. In October two earthquakes had magnitudes above M{sub L} = 2.0. One with magnitude M{sub L} = 2.2 was located 24 km SE of Nikkaluokta and one earthquake with magnitude M{sub L} = 2.1 was located 28 km SW of Ludvika. In November an earthquake with magnitude M{sub L} = 2.2 was located 55 km north of Oevertorneaa and one with magnitude M{sub L} = 2.0 was located 6 km east of Grantraesk and 101 km NW of Umeaa. In December three earthquakes had magnitudes above M{sub L} = 2.0. One had a magnitude of M{sub L} = 2.8 and was located 22 km NW of Robertsfors and one earthquake with a magnitude of M{sub L} = 2.4 was located 25 km north of Robertsfors. One earthquake with magnitude M{sub L} = 2.2 was located 8 km west of Hudiksvall

  6. Seismic features and automatic discrimination of deep and shallow induced-microearthquakes using neural network and logistic regression

    Science.gov (United States)

    Mousavi, S. Mostafa; Horton, Stephen, P.; Langston, Charles A.; Samei, Borhan

    2016-07-01

    We develop an automated strategy for discriminating deep microseismic events from shallow ones on the basis of the waveforms recorded on a limited number of surface receivers. Machine-learning techniques are employed to explore the relationship between event hypocenters and seismic features of the recorded signals in time, frequency, and time-frequency domains. We applied the technique to 440 microearthquakes -1.7deep and shallow events based on the knowledge gained from existing patterns. The cross validation test showed that events with depth shallower than 250 m can be discriminated from events with hypocentral depth between 1000 to 2000 m with 88% and 90.7% accuracy using logistic regression (LR) and artificial neural network (ANN) models, respectively. Similar results were obtained using single station seismograms. The results show that the spectral features have the highest correlation to source depth. Spectral centroids and 2D cross-correlations in the time-frequency domain are two new seismic features used in this study that showed to be promising measures for seismic event classification. The used machine learning techniques have application for efficient automatic classification of low energy signals recorded at one or more seismic stations.

  7. Seismic features and automatic discrimination of deep and shallow induced-microearthquakes using neural network and logistic regression

    Science.gov (United States)

    Mousavi, S. Mostafa; Horton, Stephen P.; Langston, Charles A.; Samei, Borhan

    2016-10-01

    We develop an automated strategy for discriminating deep microseismic events from shallow ones on the basis of the waveforms recorded on a limited number of surface receivers. Machine-learning techniques are employed to explore the relationship between event hypocentres and seismic features of the recorded signals in time, frequency and time-frequency domains. We applied the technique to 440 microearthquakes -1.7 train the system to discriminate between deep and shallow events based on the knowledge gained from existing patterns. The cross-validation test showed that events with depth shallower than 250 m can be discriminated from events with hypocentral depth between 1000 and 2000 m with 88 per cent and 90.7 per cent accuracy using logistic regression and artificial neural network models, respectively. Similar results were obtained using single station seismograms. The results show that the spectral features have the highest correlation to source depth. Spectral centroids and 2-D cross-correlations in the time-frequency domain are two new seismic features used in this study that showed to be promising measures for seismic event classification. The used machine-learning techniques have application for efficient automatic classification of low energy signals recorded at one or more seismic stations.

  8. Seismic monitoring at Cascade Volcanic Centers, 2004?status and recommendations

    Science.gov (United States)

    Moran, Seth C.

    2004-01-01

    The purpose of this report is to assess the current (May, 2004) status of seismic monitoring networks at the 13 major Cascade volcanic centers. Included in this assessment are descriptions of each network, analyses of the ability of each network to detect and to locate seismic activity, identification of specific weaknesses in each network, and a prioritized list of those networks that are most in need of additional seismic stations. At the outset it should be recognized that no Cascade volcanic center currently has an adequate seismic network relative to modern-day networks at Usu Volcano (Japan) or Etna and Stromboli volcanoes (Italy). For a system the size of Three Sisters, for example, a modern-day, cutting-edge seismic network would ideally consist of a minimum of 10 to 12 short-period three-component seismometers (for determining particle motions, reliable S-wave picks, moment tensor inversions, fault-plane solutions, and other important seismic parameters) and 7 to 10 broadband sensors (which, amongst other considerations, enable detection and location of very long period (VLP) and other low-frequency events, moment tensor inversions, and, because of their wide dynamic range, on-scale recording of large-amplitude events). Such a dense, multi component seismic network would give the ability to, for example, detect in near-real-time earthquake migrations over a distance of ~0.5km or less, locate tremor sources, determine the nature of a seismic source (that is, pure shear, implosive, explosive), provide on-scale recordings of very small and very large-amplitude seismic signals, and detect localized changes in seismic stress tensor orientations caused by movement of magma bodies. However, given that programmatic resources are currently limited, installation of such networks at this time is unrealistic. Instead, this report focuses on identifying what additional stations are needed to guarantee that anomalous seismicity associated with volcanic unrest will be

  9. Looking for underlying features in automatic and reviewed seismic bulletins through a neural network

    Science.gov (United States)

    Carluccio, R.; Console, R.; Chiappini, M.; Chiappini, S.

    2009-12-01

    SEL1 bulletins are, among all IDC products, a fundamental tool for NDCs in their task of national assessment of compliance with the CTBT. This is because SEL1s are expected to be disseminated within 2 hours from the occurrence of any detected waveform event, and the National Authorities are supposed to take a political decision in nearly real time, especially in the case when the event could triggers the request for an on site inspection. In this context not only the rapidity, but also the reliability of the SEL1 is a fundamental requirement. Our last years experience gained in the comparison between SEL1 and Italian Seismic Bulletin events has shown that SEL1s usually contain a big fraction of bogus events (sometimes close to 50%). This is due to many factors, all related to the availability of processing data and to the fast automatic algorithms involved. On the other hand, REBs are much more reliable as proved by our experience. Therefore, in spite of their relevant time delay by which they are distributed, which prevents their real-time use, REBs can be still useful in a retrospective way as reference information for comparison with SEL1s. This study tries to set up a sort of logical filter on the SEL1s that, while maintaining the rapidity requirements, improves their reliability. Our idea is based on the assumption that the SEL1s are produced by systematic algorithm of phase association and therefore some patterns among the input and output data could exist and be recognized. Our approach was initially based on a set of rules suggested by human experts on their personal experience, and its application on large datasets on a global scale. Other approaches not involving human interaction (data mining techniques) do exist. This study refers specifically to a semi-automatic approach: fitting of multi-parametric relationships hidden in the data set, through the application of neural networks by an algorithm of supervised learning. Full SEL1 and REB bulletins from

  10. Cell Selection Game for Densely-Deployed Sensor and Mobile Devices In 5G Networks Integrating Heterogeneous Cells and the Internet of Things

    Directory of Open Access Journals (Sweden)

    Lusheng Wang

    2015-09-01

    Full Text Available With the rapid development of wireless networking technologies, the Internet of Things and heterogeneous cellular networks (HCNs tend to be integrated to form a promising wireless network paradigm for 5G. Hyper-dense sensor and mobile devices will be deployed under the coverage of heterogeneous cells, so that each of them could freely select any available cell covering it and compete for resource with others selecting the same cell, forming a cell selection (CS game between these devices. Since different types of cells usually share the same portion of the spectrum, devices selecting overlapped cells can experience severe inter-cell interference (ICI. In this article, we study the CS game among a large amount of densely-deployed sensor and mobile devices for their uplink transmissions in a two-tier HCN. ICI is embedded with the traditional congestion game (TCG, forming a congestion game with ICI (CGI and a congestion game with capacity (CGC. For the three games above, we theoretically find the circular boundaries between the devices selecting the macrocell and those selecting the picocells, indicated by the pure strategy Nash equilibria (PSNE. Meanwhile, through a number of simulations with different picocell radii and different path loss exponents, the collapse of the PSNE impacted by severe ICI (i.e., a large number of picocell devices change their CS preferences to the macrocell is profoundly revealed, and the collapse points are identified.

  11. Cell Selection Game for Densely-Deployed Sensor and Mobile Devices In 5G Networks Integrating Heterogeneous Cells and the Internet of Things.

    Science.gov (United States)

    Wang, Lusheng; Wang, Yamei; Ding, Zhizhong; Wang, Xiumin

    2015-09-18

    With the rapid development of wireless networking technologies, the Internet of Things and heterogeneous cellular networks (HCNs) tend to be integrated to form a promising wireless network paradigm for 5G. Hyper-dense sensor and mobile devices will be deployed under the coverage of heterogeneous cells, so that each of them could freely select any available cell covering it and compete for resource with others selecting the same cell, forming a cell selection (CS) game between these devices. Since different types of cells usually share the same portion of the spectrum, devices selecting overlapped cells can experience severe inter-cell interference (ICI). In this article, we study the CS game among a large amount of densely-deployed sensor and mobile devices for their uplink transmissions in a two-tier HCN. ICI is embedded with the traditional congestion game (TCG), forming a congestion game with ICI (CGI) and a congestion game with capacity (CGC). For the three games above, we theoretically find the circular boundaries between the devices selecting the macrocell and those selecting the picocells, indicated by the pure strategy Nash equilibria (PSNE). Meanwhile, through a number of simulations with different picocell radii and different path loss exponents, the collapse of the PSNE impacted by severe ICI (i.e., a large number of picocell devices change their CS preferences to the macrocell) is profoundly revealed, and the collapse points are identified.

  12. Grid-Search Location Methods for Ground-Truth Collection From Local and Regional Seismic Networks

    Energy Technology Data Exchange (ETDEWEB)

    William Rodi; Craig A. Schultz; Gardar Johannesson; Stephen C. Myers

    2005-05-13

    This project investigated new techniques for improving seismic event locations derived from regional and local networks. The technqiues include a new approach to empirical travel-time calibration that simultaneously fits data from multiple stations and events, using a generalization of the kriging method, and predicts travel-time corrections for arbitrary event-station paths. We combined this calibration approach with grid-search event location to produce a prototype new multiple-event location method that allows the use of spatially well-distributed events and takes into account correlations between the travel-time corrections from proximate event-station paths. Preliminary tests with a high quality data set from Nevada Test Site explosions indicated that our new calibration/location method offers improvement over the conventional multiple-event location methods now in common use, and is applicable to more general event-station geometries than the conventional methods. The tests were limited, however, and further research is needed to fully evaluate, and improve, the approach. Our project also demonstrated the importance of using a realistic model for observational errors in an event location procedure. We took the initial steps in developing a new error model based on mixture-of-Gaussians probability distributions, which possess the properties necessary to characterize the complex arrival time error processes that can occur when picking low signal-to-noise arrivals. We investigated various inference methods for fitting these distributions to observed travel-time residuals, including a Markov Chain Monte Carlo technique for computing Bayesian estimates of the distribution parameters.

  13. The INGV seismic monitoring system: activities during the first month of the 2016 Amatrice seismic sequence.

    Science.gov (United States)

    Scognamiglio, L.; Margheriti, L.; Moretti, M.; Pintore, S.

    2016-12-01

    At 01:36:32 UTC on August 24, 2016 an earthquake of ML=6.0 occurred in Central Italy, near Amatrice village; 21 s after the origin time, the first automatic location became available while the first magnitude estimate followed 47s after. The INGV seismologists on duty provided the alert to the Italian Civil Protection Department and thereby triggered the seismic emergency protocol In the hours after the earthquake, hundreds of events were recorded by the Italian Seismic Network of the INGV. SISMIKO, the coordinating body of the emergency seismic network, was activated few minutes after the mainshock. The main goal of this emergency group is to install temporary dense seismic network integrated with the existing permanent networks in the epicentral area to better constrain the aftershock hypocenters. From August the 24th to the 30th, SISMIKO deployed 18 seismic stations, generally six components (equipped with both seismometer and accelerometer), 13 of which were transmitting in real-time to the INGV seismic surveillance room in Rome. All data acquired are available at the European Integrated Data Archive (EIDA). The seismic sequence in the first month generated thousands of earthquakes which were processed and detected by the INGV automated localization system. We analyzed the performance of this system. Hundreds of those events were located by seismologists on shifts, the others were left to be analyzed by the Bollettino Sismico Italiano (BSI). The procedures of the BSI revise and integrate all available data. This allows for a better constrained location and for a more realistic hypocentral depth estimation. The first eight hours of August 24th were the most critical for the INGV surveillance room. Data recorded in these hours were carefully re-analyzed by BSI operators and the number of located events increased from 133 to 408, while the magnitude of completeness dropped significantly from about 3.5 to 2.7.

  14. Potential improvements in horizontal very broadband seismic data in the IRIS/USGS component of the Global Seismic Network

    Science.gov (United States)

    Ringler, Adam; Steim, J.M.; Zandt, T; Hutt, Charles R.; Wilson, David; Storm, Tyler

    2016-01-01

    The Streckeisen STS‐1 has been the primary vault‐type seismometer used in the over‐150‐station Global Seismographic Network (GSN). This sensor has long been known for its outstanding vertical, very long‐period (e.g., >100  s period), and low‐noise performance, although the horizontal long‐period noise performance is less well known. The STS‐1 is a limited, important resource, because it is no longer made or supported by the original manufacturer. We investigate the incoherent noise of horizontal‐component sensors, where coherent signals among sensors have been removed, giving an upper bound on the self‐noise of both the STS‐1 and STS‐2 horizontal components. Our findings suggest that a well‐installed STS‐2 could potentially produce data with similar or better incoherent noise levels to that of a horizontal‐component STS‐1. Along with our experimental investigation, we compare background noise levels for a calendar year at Incorporated Research Institutions for Seismology/U.S. Geological Survey network stations, which comprise approximately two‐thirds of the GSN, with collocated STS‐1 and STS‐2 seismometers. The use of an STS‐2‐class of sensor (flat to velocity to 120 s period) to acquire low‐frequency data in surface‐vault installations would allow network operators to focus more attention on improving vertical data. In order to deal with the difference in instrument response shapes between the two instruments, we detail two different time‐domain filters that would allow users to convert broadband STS‐2 data into very broadband data with a response similar to that of an STS‐1 (flat to velocity to 360 s period). We conclude that the complexity of the current primary horizontal vault sensors in the GSN may not be necessary until we are better able to isolate surface horizontal sensors from various noise sources.

  15. Recent seismicity before the 24 August 2016 Mw 6.0 central Italy earthquake as recorded by the ReSIICO seismic network

    Directory of Open Access Journals (Sweden)

    Simone Marzorati

    2016-12-01

    Full Text Available The seismicity of the last four years before the August 24 2016 01:36 UTC MW 6.0 earthquake that struck central Italy is presented with the aim to understand the preparatory phase of the event. In contrast with the 2009 L’Aquila earthquake that was preceded by a seismic sequence and the 2013-2015 Gubbio seismic swarm that, to date, is ended without any strong event, our preliminary results don’t show seismic sequences in the last months previous the mainshock of the August 24 2016 and a low similarity between seismicity clusters in the last four years and the foreshocks.

  16. Crustal thickness variation beneath the Romanian seismic network from Rayleigh wave dispersion and receiver function analysis

    Science.gov (United States)

    Tataru, Dragos; Grecu, Bogdan; Zaharia, Bogdan

    2014-05-01

    Variations in crustal thickness in Romania where determined by joint inversion of P wave receiver functions (RFs) and Rayleigh wave group velocity dispersion. We present new models of shear wave velocity structure of the crust beneath Romanian broad band stations. The data set consist in more than 500 teleseismic earthquake with epicentral distance between 30° and 95°, magnitude greater than 6 and a signal-to-noise ratio greater than 3 for the P-wave pulse. Most epicenters are situated along the northern Pacific Rim and arrive with backazimuths (BAZs) between 0° and 135° at the Romanian seismic network. We combine receiver functions with fundamental-mode of the Rayleigh wave group velocities to further constrain the shear-wave velocity structure.To extract the group velocities we applied the Multiple Filter Technique analysis to the vertical components of the earthquakes recordings. This technique allowed us to identify the Rayleigh wave fundamental mode and to compute the dispersion curves of the group velocities at periods between 10 and 150 s allowing us to resolve shear wave velocities to a depth of 100 km. The time-domain iterative deconvolution procedure of Ligorrıa and Ammon (1999) was employed to deconvolve the vertical component of the teleseismic P waveforms from the corresponding horizontal components and obtain radial and transverse receiver functions at each broadband station. The data are inverted using a joint, linearized inversion scheme (Hermann, 2002) which accounts for the relative influence of each set of observations, and allows a trade-off between fitting the observations, constructing a smooth model, and matching a priori constraints. The results show a thin crust for stations located inside the Pannonian basin (28-30 km) and a thicker crust for those in the East European Platform (36-40 km). The stations within the Southern and Central Carpathian Orogen are characterized by crustal depths of ~35 km. For stations located in the Northern

  17. Teacher Directed Design: Content Knowledge, Pedagogy and Assessment under the Nevada K-12 Real-Time Seismic Network

    Science.gov (United States)

    Cantrell, P.; Ewing-Taylor, J.; Crippen, K. J.; Smith, K. D.; Snelson, C. M.

    2004-12-01

    Education professionals and seismologists under the emerging SUN (Shaking Up Nevada) program are leveraging the existing infrastructure of the real-time Nevada K-12 Seismic Network to provide a unique inquiry based science experience for teachers. The concept and effort are driven by teacher needs and emphasize rigorous content knowledge acquisition coupled with the translation of that knowledge into an integrated seismology based earth sciences curriculum development process. We are developing a pedagogical framework, graduate level coursework, and materials to initiate the SUN model for teacher professional development in an effort to integrate the research benefits of real-time seismic data with science education needs in Nevada. A component of SUN is to evaluate teacher acquisition of qualified seismological and earth science information and pedagogy both in workshops and in the classroom and to assess the impact on student achievement. SUN's mission is to positively impact earth science education practices. With the upcoming EarthScope initiative, the program is timely and will incorporate EarthScope real-time seismic data (USArray) and educational materials in graduate course materials and teacher development programs. A number of schools in Nevada are contributing real-time data from both inexpensive and high-quality seismographs that are integrated with Nevada regional seismic network operations as well as the IRIS DMC. A powerful and unique component of the Nevada technology model is that schools can receive "stable" continuous live data feeds from 100's seismograph stations in Nevada, California and world (including live data from Earthworm systems and the IRIS DMC BUD - Buffer of Uniform Data). Students and teachers see their own networked seismograph station within a global context, as participants in regional and global monitoring. The robust real-time Internet communications protocols invoked in the Nevada network provide for local data acquisition

  18. On the reliability of Quake-Catcher Network earthquake detections

    Science.gov (United States)

    Yildirim, Battalgazi; Cochran, Elizabeth S.; Chung, Angela I.; Christensen, Carl M.; Lawrence, Jesse F.

    2015-01-01

    Over the past two decades, there have been several initiatives to create volunteer‐based seismic networks. The Personal Seismic Network, proposed around 1990, used a short‐period seismograph to record earthquake waveforms using existing phone lines (Cranswick and Banfill, 1990; Cranswicket al., 1993). NetQuakes (Luetgert et al., 2010) deploys triaxial Micro‐Electromechanical Systems (MEMS) sensors in private homes, businesses, and public buildings where there is an Internet connection. Other seismic networks using a dense array of low‐cost MEMS sensors are the Community Seismic Network (Clayton et al., 2012; Kohler et al., 2013) and the Home Seismometer Network (Horiuchi et al., 2009). One main advantage of combining low‐cost MEMS sensors and existing Internet connection in public and private buildings over the traditional networks is the reduction in installation and maintenance costs (Koide et al., 2006). In doing so, it is possible to create a dense seismic network for a fraction of the cost of traditional seismic networks (D’Alessandro and D’Anna, 2013; D’Alessandro, 2014; D’Alessandro et al., 2014).

  19. Analysis of rainfall intensities using very dense network measurements and radar information for the Brno area during the period 2003-2009

    Energy Technology Data Exchange (ETDEWEB)

    Salek, Milan; Stepanek, Petr; Zahradnicek, Pavel [Czech Hydrometeorological Institute, Brno (Czech Republic)

    2012-02-15

    This study presents a data quality control and spatial analysis of maximum precipitation sums of various durations for the area of the city of Brno, using a dense network of automatic gauge stations and radar information. The measurements of 18 stations in the area of Brno, Czech Republic were established for the purposes of better management of the city sewerage system. Before evaluation of the measurements, quality control was executed on the daily, hourly and 15-minute precipitation sums. All suspicious data were compared with radar measurements and erroneous input data were removed. From this quality controlled data, the maxima of precipitation sums for durations of 5, 10, 15 and 60 minutes were calculated for the given time frames (months, seasons and years) and were spatially analyzed. The role of spatial precipitation estimates using weather radar data for hourly rainfall accumulations has been investigated as well. It is revealed that radar measurements show rather little improvement of the areal precipitation estimates when such a dense gauge network is available in real time, but it would be hard to replace radar measurements by any other source of data for successful quality control of the rain-gauge data, especially in summer months. (orig.)

  20. A Simple Battery Aware Gossip Based Sleep Protocol for Densely Deployed Ad-hoc and Sensor Networks

    OpenAIRE

    Shukla, Ashish

    2010-01-01

    Conserving power in mobile ad-hoc and sensor networks is a big challenge. Most of the nodes in these networks, in general, are battery powered, therefore, an efficient power saving protocol is required to extend the lifetime of such networks. A lot of work has been done and several protocols have been proposed to address this problem. Gossip based protocols, which are based on the results of percolation theory, significantly reduce power consumption with very little implementation overhead. H...

  1. Neural network approach to the prediction of seismic events based on low-frequency signal monitoring of the Kuril-Kamchatka and Japanese regions

    Directory of Open Access Journals (Sweden)

    Irina Popova

    2013-08-01

    Full Text Available Very-low-frequency/ low-frequency (VLF/LF sub-ionospheric radiowave monitoring has been widely used in recent years to analyze earthquake preparatory processes. The connection between earthquakes with M ≥5.5 and nighttime disturbances of signal amplitude and phase has been established. Thus, it is possible to use nighttime anomalies of VLF/LF signals as earthquake precursors. Here, we propose a method for estimation of the VLF/LF signal sensitivity to seismic processes using a neural network approach. We apply the error back-propagation technique based on a three-level perceptron to predict a seismic event. The back-propagation technique involves two main stages to solve the problem; namely, network training, and recognition (the prediction itself. To train a neural network, we first create a so-called ‘training set’. The ‘teacher’ specifies the correspondence between the chosen input and the output data. In the present case, a representative database includes both the LF data received over three years of monitoring at the station in Petropavlovsk-Kamchatsky (2005-2007, and the seismicity parameters of the Kuril-Kamchatka and Japanese regions. At the first stage, the neural network established the relationship between the characteristic features of the LF signal (the mean and dispersion of a phase and an amplitude at nighttime for a few days before a seismic event and the corresponding level of correlation with a seismic event, or the absence of a seismic event. For the second stage, the trained neural network was applied to predict seismic events from the LF data using twelve time intervals in 2004, 2005, 2006 and 2007. The results of the prediction are discussed.

  2. Seismology on the Greenland ice sheet: results from the deployment of a high-density campaign seismic network in 2011

    Science.gov (United States)

    Walter, F.; Husen, S.; Meier, M.; Plenkers, K.; Hiemer, S.; Ryser, C.; Lüthi, M.; Funk, M.; Catania, G.; Clinton, J.

    2012-04-01

    The effect of the observed increase in surface melt on the dynamics of the Greenland ice sheet is not fully understood. Specifically, it is not clear to what extent the subglacial hydraulic system can respond to changes in melt water input. Depending on its adaptability, the subglacial drainage system may help enhance or diminish ice flow during warming air temperatures. In order to gain a better understanding of the subglacial drainage system, we installed a high-density campaign seismic network during summer 2011 on the Greenland ice sheet. The goal of the passive seismic monitoring is the detection and characterization of dislocation mechanisms, such as englacial fracturing and basal stick-slip motion. A better understanding of these processes will elucidate the englacial and subglacial drainage system and its role in ice dynamics. The seismic deployment was part of an international deep drilling project. In the vicinity of the seismic network seven boreholes were drilled to the glacier bed and equipped with scientific instruments to measure englacial deformation, temperature, basal water pressure and glacier sliding rates. In our presentation we describe the seismological experiment and offer a first impression of the 'icequake' waveform variety, which we have recorded. The installation consisted of 17 three-component seismometers, including three deep (150 - 400 m) borehole sensors and two broadband seismometers. The aperture of the array was about one kilometre. It was operated over a time span of six weeks. Data were recorded continuously at high sampling frequencies (500 Hz). Due to high ablation rates surface sensors had to be re-leveled daily. As expected from previous studies of Alpine icequakes we recorded a large number of surface crevassing events and found evidence for deeper (more than 100 m depth) fracture events most likely due englacial hydrofracturing. In addition, we recorded relatively low-frequency (0.3-1.5 Hz) transients, with high signal

  3. DENSENESS OF RADIAL-BASIS FUNCTIONS IN L2(Rn) AND ITS APPLICATIONS IN NEURAL NETWORKS

    Institute of Scientific and Technical Information of China (English)

    CHENTIANPING; CHENHONG

    1996-01-01

    The authors discuss problems of approximation to functions in L2 (Rn)and operators from L2(Rn1)to L2(Rn2)by Radial-Basis Functions. The results obtained solve the parblem of capability of RBF neural networks,a basic problem in neural networks.

  4. Retrieval of the P wave reflectivity response from autocorrelation of seismic noise: Jakarta Basin, Indonesia

    Science.gov (United States)

    Saygin, Erdinc; Cummins, Phil R.; Lumley, David

    2017-01-01

    We autocorrelate the continuously recorded seismic wavefield across a dense network of seismometers to map the P wave reflectivity response of the Jakarta Basin, Indonesia. The proximity of this mega city to known active faults and the subduction of the Australian plate, especially when the predominance of masonry construction and thick sedimentary basin fill are considered, suggests that it is a hot spot for seismic risk. In order to understand the type of ground motion that earthquakes might cause in the basin, it is essential to obtain reliable information on its seismic velocity structure. The body wave reflections are sensitive to the sharp velocity contrasts, which makes them useful in seismic imaging. Results show autocorrelograms at different seismic stations with reflected-wave travel time variations, which reflect the variation in basement depth across the thick sedimentary basin. We also confirm the validity of the observed autocorrelation waveforms by conducting a 2-D full waveform modeling.

  5. A Simple Battery Aware Gossip Based Sleep Protocol for Densely Deployed Ad-hoc and Sensor Networks

    CERN Document Server

    Shukla, Ashish

    2010-01-01

    Conserving power in mobile ad-hoc and sensor networks is a big challenge. Most of the nodes in these networks, in general, are battery powered, therefore, an efficient power saving protocol is required to extend the lifetime of such networks. A lot of work has been done and several protocols have been proposed to address this problem. Gossip based protocols, which are based on the results of percolation theory, significantly reduce power consumption with very little implementation overhead. However, not much work has been done to make gossiping battery aware. In this paper we introduce a simple gossip based battery aware sleep protocol. The protocol allows low battery nodes to sleep more, therefore, improves overall network lifetime.

  6. Improvements of the Regional Seismic network of Northwestern Italy in the framework of ALCoTra program activities

    Science.gov (United States)

    Bosco, Fabrizio

    2014-05-01

    Arpa Piemonte (Regional Agency for Environmental Protection), in partnership with University of Genoa, manages the regional seismic network, which is part of the Regional Seismic network of Northwestern Italy (RSNI). The network operates since the 80s and, over the years, it has developed in technological features, analysis procedures and geographical coverage. In particular in recent years the network has been further enhanced through the integration of Swiss and French stations installed in the cross-border area. The environmental context enables the installation of sensors in sites with good conditions as regards ambient noise and limited local amplification effects (as proved by PSD analysis, signal quality monitoring via PQLX, H/V analysis). The instrumental equipment consists of Broadband and Very Broadband sensors (Nanometrics Trillium 40" and 240") and different technological solutions for signals real-time transmission (cable, satellite, GPRS), according to the different local environment, with redundant connections and with experimental innovative systems. Digital transmission and acquisition systems operate through standard protocols (Nanometrics, SeedLink), with redundancy in data centers (Genoa, Turin, Rome). Both real-time automatic and manual operational procedures are in use for signals analysis (events detection, picking, focal parameters and ground shaking determination). In the framework of cross-border cooperation program ALCoTra (http://www.interreg-alcotra.org), approved by the European Commission, several projects have been developed to improve the performances of seismic monitoring systems used by partners (Arpa Piemonte, Aosta Valley Region, CNRS, Joseph Fourier University). The cross-border context points out first of all the importance of signals sharing (from 14 to 23 stations in narrow French-Italian border area, with an increase of over 50%) and of coordination during new stations planning and installation in the area. In the ongoing

  7. Reconstruction of a 2D seismic wavefield by seismic gradiometry

    Science.gov (United States)

    Maeda, Takuto; Nishida, Kiwamu; Takagi, Ryota; Obara, Kazushige

    2016-12-01

    We reconstructed a 2D seismic wavefield and obtained its propagation properties by using the seismic gradiometry method together with dense observations of the Hi-net seismograph network in Japan. The seismic gradiometry method estimates the wave amplitude and its spatial derivative coefficients at any location from a discrete station record by using a Taylor series approximation. From the spatial derivatives in horizontal directions, the properties of a propagating wave packet, including the arrival direction, slowness, geometrical spreading, and radiation pattern can be obtained. In addition, by using spatial derivatives together with free-surface boundary conditions, the 2D vector elastic wavefield can be decomposed into divergence and rotation components. First, as a feasibility test, we performed an analysis with a synthetic seismogram dataset computed by a numerical simulation for a realistic 3D medium and the actual Hi-net station layout. We confirmed that the wave amplitude and its spatial derivatives were very well-reproduced for period bands longer than 25 s. Applications to a real large earthquake showed that the amplitude and phase of the wavefield were well reconstructed, along with slowness vector. The slowness of the reconstructed wavefield showed a clear contrast between body and surface waves and regional non-great-circle-path wave propagation, possibly owing to scattering. Slowness vectors together with divergence and rotation decomposition are expected to be useful for determining constituents of observed wavefields in inhomogeneous media.

  8. Weather-related Ground Motions Recorded by Taiwan Broadband Seismic Network Stations

    Science.gov (United States)

    Yang, C. F.; Chi, W. C.; Lai, Y. J.

    2015-12-01

    Broadband seismometers record ground motions, which can be induced by weather-related processes. Analyzing such signals might help to better understand those natural processes. Here, we used continuous seismic data, meteorological data and stream data to analyze the weather-related ground motions during typhoon cases and rainy season case in Taiwan. We detected some long period seismic signals at the station Mahsi (MASB) during three meteorological cases (Typhoon Kalmaegi in 2008, Typhoon Morakot in 2009 and the East Asian rainy season in 2012). The amplitude of the seismic waveform correlated with the amount of the precipitation and the derivative of water level and discharge in the nearby river. According to the relationships of waveforms in main and minor rainfall events, we derived apparent source time functions (ASTFs) and used the ASTFs to estimate and quantify the precipitation of main rainfall events in the cases. The estimated precipitation has high correlation coefficients (> 0.82) with the observation. It shows that the long period seismic data may be applied to rainfall monitoring.

  9. Revisiting Earth's radial seismic structure using a Bayesian neural network approach

    NARCIS (Netherlands)

    de Wit, R.W.L.

    2015-01-01

    The gross features of seismic observations can be explained by relatively simple spherically symmetric (1-D) models of wave velocities, density and attenuation, which describe the Earth's average(radial) structure. 1-D earth models are often used as a reference for studies on Earth's thermo-chemical

  10. Revisiting Earth's radial seismic structure using a Bayesian neural network approach

    NARCIS (Netherlands)

    de Wit, R.W.L.

    2015-01-01

    The gross features of seismic observations can be explained by relatively simple spherically symmetric (1-D) models of wave velocities, density and attenuation, which describe the Earth's average(radial) structure. 1-D earth models are often used as a reference for studies on Earth's thermo-chemical

  11. Mitigation of the consequence of seismically induced damage on a utility water network by means of next generation SCADA

    Science.gov (United States)

    Robertson, Jamie; Shinozuka, Masanobu; Wu, Felix

    2011-04-01

    When a lifeline system such as a water delivery network is damaged due to a severe earthquake, it is critical to identify its location and extent of the damage in real time in order to minimize the potentially disastrous consequence such damage could otherwise entail. This paper demonstrates how the degree of such minimization can be estimated qualitatively by using the water delivery system of Irvine Water Ranch District (IRWD) as testbed, when it is subjected to magnitude 6.6 San Joaquin Hills Earthquake. In this demonstration, we consider two cases when the IRWD system is equipped or not equipped with a next generation SCADA which consists of a network of MEMS acceleration sensors densely populated and optimally located. These sensors are capable of identifying the location and extent of the damage as well as transmitting the data to the SCADA center for monitoring and control.

  12. Neural network analysis of crosshole tomographic images: The seismic signature of gas hydrate bearing sediments in the Mackenzie Delta (NW Canada)

    Science.gov (United States)

    Bauer, K.; Pratt, R. G.; Haberland, C.; Weber, M.

    2008-10-01

    Crosshole seismic experiments were conducted to study the in-situ properties of gas hydrate bearing sediments (GHBS) in the Mackenzie Delta (NW Canada). Seismic tomography provided images of P velocity, anisotropy, and attenuation. Self-organizing maps (SOM) are powerful neural network techniques to classify and interpret multi-attribute data sets. The coincident tomographic images are translated to a set of data vectors in order to train a Kohonen layer. The total gradient of the model vectors is determined for the trained SOM and a watershed segmentation algorithm is used to visualize and map the lithological clusters with well-defined seismic signatures. Application to the Mallik data reveals four major litho-types: (1) GHBS, (2) sands, (3) shale/coal interlayering, and (4) silt. The signature of seismic P wave characteristics distinguished for the GHBS (high velocities, strong anisotropy and attenuation) is new and can be used for new exploration strategies to map and quantify gas hydrates.

  13. Bedrock mapping of buried valley networks using seismic reflection and airborne electromagnetic data

    Science.gov (United States)

    Oldenborger, G. A.; Logan, C. E.; Hinton, M. J.; Pugin, A. J.-M.; Sapia, V.; Sharpe, D. R.; Russell, H. A. J.

    2016-05-01

    In glaciated terrain, buried valleys often host aquifers that are significant groundwater resources. However, given the range of scales, spatial complexity and depth of burial, buried valleys often remain undetected or insufficiently mapped. Accurate and thorough mapping of bedrock topography is a crucial step in detecting and delineating buried valleys and understanding formative valley processes. We develop a bedrock mapping procedure supported by the combination of seismic reflection data and helicopter time-domain electromagnetic data with water well records for the Spiritwood buried valley aquifer system in Manitoba, Canada. The limited spatial density of water well bedrock observations precludes complete depiction of the buried valley bedrock topography and renders the water well records alone inadequate for accurate hydrogeological model building. Instead, we leverage the complementary strengths of seismic reflection and airborne electromagnetic data for accurate local detection of the sediment-bedrock interface and for spatially extensive coverage, respectively. Seismic reflection data are used to define buried valley morphology in cross-section beneath survey lines distributed over a regional area. A 3D model of electrical conductivity is derived from inversion of the airborne electromagnetic data and used to extrapolate buried valley morphology over the entire survey area. A spatially variable assignment of the electrical conductivity at the bedrock surface is applied to different features of the buried valley morphology identified in the seismic cross-sections. Electrical conductivity is then used to guide construction of buried valley shapes between seismic sections. The 3D locus of points defining each morphological valley feature is constructed using a path optimization routine that utilizes deviation from the assigned electrical conductivities as the cost function. Our resulting map represents a bedrock surface of unprecedented detail with more

  14. The Seismic Broad Band Western Mediterranean (wm) Network and the Obs Fomar Pool: Current state and Obs activities.

    Science.gov (United States)

    Pazos, Antonio; Davila, Jose Martin; Buforn, Elisa; Bezzeghoud, Mourad; Harnafi, Mimoun; Mattesini, Mauricio; Caldeira, Bento; Hanka, Winfried; El Moudnib, Lahcen; Strollo, Angelo; Roca, Antoni; Lopez de Mesa, Mireya; Dahm, Torsten; Cabieces, Roberto

    2016-04-01

    The Western Mediterranean (WM) seismic network started in 1996 as an initiative of the Royal Spanish Navy Observatory (ROA) and the Universidad Complutense de Madrid (UCM), with the collaboration of the GeoForschungsZentrum (GFZ) of Potsdam. A first broad band seismic station (SFUC) was installed close to Cádiz (South Spain). Since then, additional stations have been installed in the Ibero-Moghrebian region. In 2005, the "WM" code was assigned by the FDSN and new partners were jointed: Evora University (UEVO, Portugal), the Scientifique Institute of Rabat (ISRABAT, Morocco), and GFZ. Now days, the WM network is composed by 15 BB stations, all of them with Streckaisen STS-2 or STS-2.5 sensors, Quanterra or Earthdata digitizers and SeiscomP. Most them have co-installed a permanent geodetic GPS stations, and some them also have an accelerometer. There are 10 stations deployed in Spanish territory (5 in the Iberian peninsula, 1 in Balearic islands and 4 in North Africa Spanish places) with VSAT or Internet communications, 2 in Portugal (one of them without real time), and 3 in Morocco (2 VSAT and 1 ADSL). Additionally, 2 more stations (one in South Spain and one in Morocco) will be installed along this year. Additionally ROA has deployed a permanent real time VBB (CMG-3T: 360s) station at the Alboran Island. Due to the fact that part of the seismic activity is located at marine areas, and also because of the poor geographic azimuthal coverage at some zones provided by the land stations (specially in the SW of the San Vicente Cape area), ROA and UCM have acquired six broad band "LOBSTERN" OBS, manufactured by KUM (Kiel, Germany), conforming the OBS FOMAR pool. Three of them with CMG-40T sensor and the other with Trillium 120. These OBS were deployed along the Gibraltar strait since January to November 2014 to study the microseismicity in the Gibraltar strait area. In September 2015 FOMAR network has been deployed in SW of the San Vicente Cape for 8 months as a part of

  15. Experimental validation of concept for real-time wavelength monitoring and tracking in densely populated WDM networks

    Science.gov (United States)

    Vukovic, Alex; Savoie, Michel; Hua, Heng; Campbell, Scott; Nguyen, Thao

    2005-10-01

    As the telecom industry responds with technological innovations to requests for higher data rates, increased number of wavelengths at higher densities, longer transmission distances and more intelligence for next generation optical networks, new monitoring schemes based on monitoring and tracking of each wavelength need to be developed and deployed. An optical layer monitoring scheme, based on tracking key optical parameters per each wavelength, is considered to be one of enablers for the transformation of today's opaque networks to dynamic, agile future networks. Ever-tighter network monitoring and control will be required to fulfill customer Service Level Agreements (SLAs). A wavelength monitoring and tracking concept was developed as a three-step approach. It started with the identification of all critical parameters required to obtain sufficient information about each wavelength; followed by the deployment of a cost-efficient device to provide simultaneous, accurate measurements in real-time of all critical parameters; and finally, the formulation of a specification for wavelength monitoring and tracking devices for real-time, simultaneous measurements and processing the data. A prototype solution based on a commercially available integrated modular spectrometer within a testbed environment associated with the all-optical network (AON) demonstrator program was used to verify and validate the wavelength monitoring and tracking concept. The developed concept verified that it can manage tracking of 32 wavelengths within a wavelength division multiplexing network. The developed concept presented in this paper can be used inside the transparent domains of networks to detect, identify and locate signal degradations in real-time, even sometimes to recognize the cause of the failure. Aside from the reduction of operational expenses due to the elimination of the need for operators at every site and skilled field technicians to isolate and repair faults, the developed

  16. 1 Gbps full-duplex links for ultra-dense-WDM 6.25 GHz frequency slots in optical metro-access networks.

    Science.gov (United States)

    Altabas, Jose A; Izquierdo, David; Lazaro, Jose A; Lerin, Adolfo; Sotelo, Felix; Garces, Ignacio

    2016-01-11

    1 Gbps full-duplex optical links for 6.25 GHz ultra dense WDM frequency slots are demonstrated and optimized for cost-effective metro-access networks. The OLT-ONU downlinks are based on 1 Gbps Nyquist-DPSK using MZM and single-detector heterodyne reception obtaining a sensitivity of -52 dBm. The ONU-OLT uplinks are based on 1 Gbps NRZ-DPSK by directly phase modulated DFB and also single-detector heterodyne reception obtaining same sensitivity of -52 dBm. The power budget of full-duplex link is 43 dB. These proposed links can provide service to 16 (32) users at each 100 (200) GHz WDM channel.

  17. Products and Services Available from the Southern California Earthquake Data Center (SCEDC) and the Southern California Seismic Network (SCSN)

    Science.gov (United States)

    Yu, E.; Bhaskaran, A.; Chen, S. L.; Andrews, J. R.; Thomas, V. I.; Hauksson, E.; Clayton, R. W.

    2016-12-01

    The Southern California Earthquake Data Center (SCEDC) archives continuous and triggered data from nearly 9429 data channels from 513 Southern California Seismic Network recorded stations. The SCEDC provides public access to these earthquake parametric and waveform data through web services, its website http://scedc.caltech.edu and through client application such as STP. This poster will describe the most recent significant developments at the SCEDC. The SCEDC now provides web services to access its holdings. Event Parametric Data (FDSN Compliant): http://service.scedc.caltech.edu/fdsnws/event/1/ Station Metadata (FDSN Compliant): http://service.scedc.caltech.edu/fdsnws/station/1/ Waveforms (FDSN Compliant): http://service.scedc.caltech.edu/fdsnws/dataselect/1/ Event Windowed Waveforms, phases: http://service.scedc.caltech.edu/webstp/ In an effort to assist researchers accessing catalogs from multiple seismic networks, the SCEDC has entered its earthquake parametric catalog into the ANSS Common Catalog (ComCat). Origin, phase, and magnitude information have been loaded. The SCEDC data holdings now include a double difference catalog (Hauksson et. al 2011) spanning 1981 through 2015 available via STP, and a focal mechanism catalog (Yang et al. 2011). As part of a NASA/AIST project in collaboration with JPL and SIO, the SCEDC now archives and distributes real time 1 Hz streams of GPS displacement solutions from the California Real Time Network. The SCEDC has implemented the Continuous Wave Buffer (CWB) to manage its waveform archive and allow users to access continuous data available within seconds of real time. This software was developed and currently in use at NEIC. SCEDC has moved its website (http://scedc.caltech.edu) to the Cloud. The Recent Earthquake Map and static web pages are now hosted by Amazon Web Services. This enables the web site to serve large number of users without competing for resources needed by SCSN/SCEDC mission critical operations.

  18. Determining the structure-mechanics relationships of dense microtubule networks with confocal microscopy and magnetic tweezers-based microrheology.

    Science.gov (United States)

    Yang, Yali; Valentine, Megan T

    2013-01-01

    The microtubule (MT) cytoskeleton is essential in maintaining the shape, strength, and organization of cells. Its spatiotemporal organization is fundamental for numerous dynamic biological processes, and mechanical stress within the MT cytoskeleton provides an important signaling mechanism in mitosis and neural development. This raises important questions about the relationships between structure and mechanics in complex MT structures. In vitro, reconstituted cytoskeletal networks provide a minimal model of cell mechanics while also providing a testing ground for the fundamental polymer physics of stiff polymer gels. Here, we describe our development and implementation of a broad tool kit to study structure-mechanics relationships in reconstituted MT networks, including protocols for the assembly of entangled and cross-linked MT networks, fluorescence imaging, microstructure characterization, construction and calibration of magnetic tweezers devices, and mechanical data collection and analysis. In particular, we present the design and assembly of three neodymium iron boron (NdFeB)-based magnetic tweezers devices optimized for use with MT networks: (1) high-force magnetic tweezers devices that enable the application of nano-Newton forces and possible meso- to macroscale materials characterization; (2) ring-shaped NdFeB-based magnetic tweezers devices that enable oscillatory microrheology measurements; and (3) portable magnetic tweezers devices that enable direct visualization of microscale deformation in soft materials under applied force.

  19. Characterizing waveform uncertainty due to ambient noise for the Global Seismic Network

    Science.gov (United States)

    Guandique, J. A.; Burdick, S.; Lekic, V.

    2015-12-01

    Ambient seismic noise is the vibration present on seismograms not due by any earthquake or discrete source. It can be caused by trees swaying in the wind or trucks rumbling on the freeway, but the main source of noise is the microseism caused by ocean waves. The frequency content and amplitude of seismic noise varies due to weather, season, and the location of a station, among other factors. Because noise affects recordings of earthquake waveforms, better understanding it could improve the detection of small earthquakes, reduce false positives in earthquake early warning, and quantify uncertainty in waveform-based studies In this study, we used two years of 3-component accelerograms from stations in the GSN. We eliminate days with major earthquakes, aggregate analysis by month, and calculate the mean power spectrum for each component and the transfer function between components. For each power spectrum, we determine the dominant frequency and amplitude of the primary (PM) and secondary (SM) microseisms which appear at periods of ~14s and ~7s, as well as any other prominent peaks. The cross-component terms show that noise recorded on different components cannot be treated as independent. Trends in coherence and phase delay suggest directionality in the noise and information about in which modes it propagates. Preliminary results show that the noise on island stations exhibits less monthly variability, and its PM peaks tend to be much weaker than the SM peaks. The continental stations show much less consistent behavior, with higher variability in the PM peaks between stations and higher frequency content during winter months. Stations that are further inland have smaller SM peaks compared to coastal stations, which are more similar to island stations. Using these spectra and cross-component results, we develop a method for generating realistic 3-component seismic noise and covariance matrices, which can be used across various seismic applications.

  20. Prediction of gas hydrate saturation throughout the seismic section in Krishna Godavari basin using multivariate linear regression and multi-layer feed forward neural network approach

    Digital Repository Service at National Institute of Oceanography (India)

    Singh, Y.; Nair, R.R.; Singh, H.; Datta, P.; Jaiswal, P.; Dewangan, P.; Ramprasad, T.

    -Godavari basin. Log prediction process, with uncertainties based on root mean square error properties, was implemented by way of a multi-layer feed forward neural network. The log properties were merged with seismic data by applying a non-linear transform...

  1. Preliminary 3d depth migration of a network of 2d seismic lines for fault imaging at a Pyramid Lake, Nevada geothermal prospect

    Energy Technology Data Exchange (ETDEWEB)

    Frary, R.; Louie, J. [UNR; Pullammanappallil, S. [Optim; Eisses, A.

    2016-08-01

    Roxanna Frary, John N. Louie, Sathish Pullammanappallil, Amy Eisses, 2011, Preliminary 3d depth migration of a network of 2d seismic lines for fault imaging at a Pyramid Lake, Nevada geothermal prospect: presented at American Geophysical Union Fall Meeting, San Francisco, Dec. 5-9, abstract T13G-07.

  2. Strike-slip fault network of the Huangshi structure, SW Qaidam Basin: Insights from surface fractures and seismic data

    Science.gov (United States)

    Cheng, Xiang; Zhang, Qiquan; Yu, Xiangjiang; Du, Wei; Liu, Runchao; Bian, Qing; Wang, Zhendong; Zhang, Tuo; Guo, Zhaojie

    2017-01-01

    The Huangshi structure, as one of the NWW-trending S-shaped structures in the southwestern Qaidam Basin, holds important implications for unraveling the regional structural pattern. There are four dominant sets of surface strike-slip fractures at the core of the Huangshi structure. The fractures with orientations of N28°E, N47°E and N65°E correlate well with conjugate Riedel shears (R‧), tension fractures (T) and Riedel shears (R) in the Riedel shear model, respectively. Two conjugate strike-slip fracture sets occur at the surface of the Hongpan structure (secondary to the Huangshi structure) and the southwestern part of the Huangshi structure. In seismic sections, the Huangshi structure is present as a positive flower or Y-shaped structure governed by steeply dipping faults, whereas Hongpan and Xiaoshaping structures, located symmetrically to the Huangshi structure, are thrust-controlled anticlines. The Riedel shear pattern of surface strike-slip fractures, the positive flower or Y-shaped structure in seismic sections and the NW-trending secondary compressional anticlines consistently demonstrate that the Huangshi structure is dominated by left-lateral strike-slip faults which comprise a strike-slip fault network. Considering the similar S-shaped configuration and NWW trend of structures across the southwestern Qaidam Basin, it can be further speculated that these structures are also predominantly of left-lateral strike-slip types.

  3. Seismicity and active tectonics in the Alboran Sea, Western Mediterranean: Constraints from an offshore-onshore seismological network and swath bathymetry data

    OpenAIRE

    Grevemeyer, Ingo; Gràcia, Eulàlia; Villaseñor, Antonio; Leuchters, W.; Watts, A. B.

    2015-01-01

    Seismicity and tectonic structure of the Alboran Sea were derived from a large amphibious seismological network deployed in the offshore basins and onshore in Spain and Morocco, an area where the convergence between the African and Eurasian plates causes distributed deformation. Crustal structure derived from local earthquake data suggests that the Alboran Sea is underlain by thinned continental crust with a mean thickness of about 20 km. During the 5 months of offshore network operation, a t...

  4. Optimal Identification Algorithm for Virus Attack in Super Dense Network%超密集网络中病毒攻击优化识别算法

    Institute of Scientific and Technical Information of China (English)

    田关伟

    2016-01-01

    超密集网络是根据汇聚节点的拓扑属性进行测度中心加权融合的网络模型,超密集网络中容易受到类似于DOS等病毒的拒绝服务攻击。由于DOS病毒特征具有频谱混迭特性,在超密集网络难以有效识别。目前采用联合特征检测方法进行病毒攻击信息的检测识别,性能随着环境干扰影响起伏较大。提出一种基于幅频响应带宽检测的病毒攻击识别算法。进行病毒攻击的数学模型构建和信号分析,然后设计格型陷波器实现攻击信号的干扰抑制和滤波,根据病毒攻击信号的检测带宽和攻击带宽,选取不同的陷波器频率参数和带宽参数,进行频谱特征混迭加权处理,提取幅频响应特征进行病毒攻击的带宽检测,实现攻击特征识别。仿真结果表明,采用该算法对超密集网络中的病毒攻击进行幅频响应特征提取,具有较好的抗干扰性能,准确检测识别概率优越于传统算法,在网络安全领域具有较好的应用价值。%The super dense network is based on the topological properties of the sink node to measure center weighted fusion of the network model, which is easy to got a denial of service attack similar to D OS and other viruses in the dense network. Because of the characteristic of DOS virus, it is difficult to identify the super dense network. At present, the detection and recognition of the virus attack information is carried out by using the combined feature detection method. The performance of the detection method is greatly affected by the environmental interference. A virus attack recognition algorithm based on the detection of amplitude frequency response bandwidth is proposed. The mathematical model and signal analysis of virus attacks are carried out. Then the interference suppression and filtering are designed. According to the detection bandwidth and bandwidth of the virus attack signal, the frequency parameters and

  5. USArray - Seismic Reconnaissance in Northwest Canada

    Science.gov (United States)

    Schmidt, M.; Spiers, K.; Murray, M. S.

    2014-12-01

    This poster describes the results of reconnaissance carried out by the Arctic Institute of North America in summer 2014 in collaboration with USArray and IRIS for deployment of the USArray in northern British Columbia and Yukon Territory, Canada. USArray is a 15-year program to place a dense network of permanent and portable seismographs across the continental United States and parts of Canada. The seismographs record local, regional, and distant (teleseismic) earthquakes. The array records seismic waves that propagate through finer and finer slices of the earth enabling scientists to link structures inherited from earlier stages of continental formation to known and potential geologic hazards (e.g., earthquakes, volcanoes, landslides) (www.usarray.org). USArray deployment in Canada will complement existing Canadian seismic network(s). This project will be particularly significant in the St. Elias region of southwest Yukon, northwest British Columbia, and southeast Alaska as this one of the most seismically active areas and tectonically complex areas in Canada . The deployment will complement ongoing geological mapping carried out by both Yukon Geological Survey, the Geological Survey of Canada and several universities. This reconnaissance work is part of a growing portfolio of research conducted by the Arctic Institute of North America, University of Calgary designed to meet needs for information and enable synthesis and transfer of knowledge for problem solving and decision-making in the north.

  6. Retrieval of P wave Basin Response from Autocorrelation of Seismic Noise-Jakarta, Indonesia

    Science.gov (United States)

    Saygin, E.; Cummins, P. R.; Lumley, D. E.

    2016-12-01

    Indonesia's capital city, Jakarta, is home to a very large (over 10 million), vulnerable population and is proximate to known active faults, as well as to the subduction of Australian plate, which has a megathrust at abut 300 km distance, as well as intraslab seismicity extending to directly beneath the city. It is also located in a basin filled with a thick layer of unconsolidated and poorly consolidated sediment, which increases the seismic hazard the city is facing. Therefore, the information on the seismic velocity structure of the basin is crucial for increasing our knowledge of the seismic risk. We undertook a passive deployment of broadband seismographs throughout the city over a 3-month interval in 2013-2014, recording ambient seismic noise at over 90 sites for intervals of 1 month or more. Here we consider autocorrelations of the vertical component of the continuously recorded seismic wavefield across this dense network to image the shallow P wave velocity structure of Jakarta, Indonesia. Unlike the surface wave Green's functions used in ambient noise tomography, the vertical-component autocorrelograms are dominated by body wave energy that is potentially sensitive to sharp velocity contrasts, which makes them useful in seismic imaging. Results show autocorrelograms at different seismic stations with travel time variations that largely reflect changes in sediment thickness across the basin. We also confirm the validity our interpretation of the observed autocorrelation waveforms by conducting 2D finite difference full waveform numerical modeling for randomly distributed seismic sources to retrieve the reflection response through autocorrelation.

  7. Analysis of Modern Techniques for Nuclear-test Yield Determination of NTS Events Using Data From the Leo Brady Seismic Network

    Science.gov (United States)

    Schramm, K. A.; Bilek, S. L.; Abbott, R. E.

    2007-12-01

    Nuclear test detection is a challenging, but important task for treaty verification. Many techniques have been developed to discriminate between an explosion and an earthquake and if an explosion is detected, to determine its yield. Sandia National Laboratories (SNL) has maintained the Leo Brady Seismic Network (LBSN) since 1960 to record nuclear tests at the Nevada Test Site (NTS), providing a unique data set for yield determination. The LBSN is comprised of five permanent stations surrounding the NTS at regional distances, and data (in digital from post 1983) exists for almost all tests. Modern seismic data processing techniques can be used with this data to apply new methods to better determine the seismic yield. Using mb(Lg) we found that, when compared to published yields, our estimates were low for events over 100 kilotons (kt) and near the published value for events under 40 kt. We are currently measuring seismic-phase amplitudes, examining body- and surface-wave spectra and using seismic waveform modeling techniques to determine the seismic yield of NTS explosions using the waveforms from the LBSN.

  8. Time Series Analysis of Soil Radon Data Using Multiple Linear Regression and Artificial Neural Network in Seismic Precursory Studies

    Science.gov (United States)

    Singh, S.; Jaishi, H. P.; Tiwari, R. P.; Tiwari, R. C.

    2017-07-01

    This paper reports the analysis of soil radon data recorded in the seismic zone-V, located in the northeastern part of India (latitude 23.73N, longitude 92.73E). Continuous measurements of soil-gas emission along Chite fault in Mizoram (India) were carried out with the replacement of solid-state nuclear track detectors at weekly interval. The present study was done for the period from March 2013 to May 2015 using LR-115 Type II detectors, manufactured by Kodak Pathe, France. In order to reduce the influence of meteorological parameters, statistical analysis tools such as multiple linear regression and artificial neural network have been used. Decrease in radon concentration was recorded prior to some earthquakes that occurred during the observation period. Some false anomalies were also recorded which may be attributed to the ongoing crustal deformation which was not major enough to produce an earthquake.

  9. Fin whale tracks recorded by a seismic network on the Juan de Fuca Ridge, Northeast Pacific Ocean.

    Science.gov (United States)

    Soule, Dax C; Wilcock, William S D

    2013-03-01

    Fin whale calls recorded from 2003 to 2004 by a seafloor seismic network on the Endeavour segment of the Juan de Fuca Ridge were analyzed to determine tracks and calling patterns. Over 150 tracks were obtained with a total duration of ~800 h and swimming speeds from 1 to 12 km/h. The dominant inter-pulse interval (IPI) is 24 s and the IPI patterns define 4 categories: a 25 s single IPI and 24/30 s dual IPI produced by single calling whales, a 24/13 s dual IPI interpreted as two calling whales, and an irregular IPI interpreted as groups of calling whales. There are also tracks in which the IPI switches between categories. Call rates vary seasonally with all the tracks between August and April. From August to October tracks are dominated by the irregular IPI and are predominantly headed to the northwest, suggesting that a portion of the fin whale population does not migrate south in the fall. The other IPI categories occur primarily from November to March. These tracks have slower swimming speeds, tend to meander, and are predominantly to the south. The distribution of fin whales around the network is non-random with more calls near the network and to the east and north.

  10. Compilation of a recent seismicity data base of the greater Alpine region from several seismological networks and preliminary 3D tomographic results

    Directory of Open Access Journals (Sweden)

    M. Granet

    1997-06-01

    Full Text Available Local earthquake data collected by seven national and regional seismic networks have been compiled into a travel time catalog of 32341 earthquakes for the period 1980 to 1995 in South-Central Europe. As a prerequisite, a complete and corrected station list (master station list has been prepared according to updated information provided by every network. By simultaneous inversion of some 600 well-locatable events we obtained one-dimensional (1D velocity propagation models for each network. Consequently, these velocity models with appropriate station corrections have been used to obtain high-quality hypocenter locations for events inside and among the station networks. For better control, merging of phase data from several networks was performed as an iterative process where at each iteration two data sets of neighbouring networks or groups of networks were merged. Particular care was taken to detect and correctly identify phase data from events common to data sets from two different networks. In case of reports of the same phase data from more than one network, the phase data from the network owning and servicing the station were used according to the master station list. The merging yielded a data set of 278007 P and 191074 S-wave travel time observations from 32341 events in the greater Alpine region. Restrictive selection (number of P-wave observations >7; gap <160 degrees yielded a data set of about 10000 events with a total of more than 128000 P and 87000 S-wave observations well suited for local earthquake seismic tomography study. Preliminary tomographic results for South-Central Europe clearly show the topography of the crust-mantle boundary in the greater Alpine region and outline the 3D structure of the seismic Ivrea body.

  11. Recognition and detection of seismic phases by artificial neural network detector; Jinko neural network ni yoru jishinha no ninshiki to kenshutsu

    Energy Technology Data Exchange (ETDEWEB)

    Yamazaki, K.; Wang, W. [Tokyo Gakugei University, Tokyo (Japan)

    1997-05-27

    Initial parts of P-waves, medium or high in intensity, are detected using an artificial neural network (ANN). The ANN is the generic name given to information processing systems of the non-Neumann type configured to human brain in point of information processing function, and is packaged into computers in the form of software capable of parallel processing, self-organizing, learning, etc. In this paper, a hierarchical ANN-assisted seismic motion recognition system is constructed on the basis of an error reverse propagation algorithm. It is reported here, with a remark that this study wants much more data from tests for the evaluation of the quality of the recognition, that P-wave recognition has been achieved. When this technique is applied to the S-wave, much more real-time information will become available. For the improvement of the system, a number of problems have to be solved, including the establishment of automatic refurbishment through adaptation-and-learning and configuration that incorporates frequency-related matters. It is found that this system is effective in seismic wave phase recognition but that it is not suitable for precision measurement. 7 refs., 4 figs.

  12. Decisions of hypermarkets location in dense urban area – effects on streets network congestion in the Bucharest case

    Directory of Open Access Journals (Sweden)

    Eugen ROSCA

    2008-01-01

    Full Text Available The paper represents some partial results of the research carried out by the Transportation, Traffic and Logistics Department - University POLITEHNICA of Bucharest, funded by the Romanian Ministry of Research and Education through the National University Research Council. In this paper we provide: a brief description of the interrelation between the life style changes of Romanian people during the last decades and the car traffic congestion in large cities; the streets network modelling of a radial-circular urban structure (the characteristic of a historically developed city as Bucharest city is, in case of car traffic congestion; the assessment model of the additional car traffic congestion for certain locations with large attractivity. Having an important effect on the entire lifestyle of urban people, the decision of a hypermarket location might be a complex one, taking into consideration the new leisure and shopping tendencies but also the additional car traffic congestion caused by the chosen location.

  13. Ground Truth Location of Earthquakes by Use of Ambient Seismic Noise From a Sparse Seismic Network: A Case Study in Western Australia

    Science.gov (United States)

    Zeng, Xiangfang; Xie, Jun; Ni, Sidao

    2015-06-01

    The estimated Green's function (EGF) extracted from the ambient seismic noise cross-correlation function (NCF) enables valuable calibration of surface wave propagation along the path connecting seismic stations. Such calibration is adopted in a new method for ground truth location of earthquakes, achieved from the location relative to a seismic station. The surface wave group travel times were obtained from the NCFs between a station near the earthquake and remote stations. The differential travel times from the NCFs and the surface wave of the earthquake were used in a relative location procedure. When this method was applied to earthquake location with only six seismic stations in western Australia, the location of the Mw 4.1 Kalannie (September 21, 2005) earthquake was found to be accurate to within 2 km compared with the ground truth location with InSAR for which azimuth coverage of seismic stations is preferable. Synthetic tests suggest that the group travel time is slightly affected by focal mechanism and focal depth, thus unknown earthquake source parameters did not introduce substantial bias to earthquake location with the group travel time method.

  14. Present and Future of Metropolitan Seismic Observation network (MeSO-net) in Japan

    Science.gov (United States)

    Hirata, N.; Nakagawa, S.; Sakai, S.; Honda, R.; Kimura, H.; Panayotopoulos, Y.; Kano, M.

    2015-12-01

    Tokyo and its vicinity are most seismically risky areas in the world. To prepare for the seismic disaster we have started a series of integrated Tokyo Metropolitan projects for disaster mitigation since 2002.The current Tokyo Metropolitan Project (Phase III) has started in 2012 with a new project name as "Special Project for Reducing Vulnerability for Urban Mega-earthquake Disasters" to use MeSO-net data for constructing 3-D velocity and Q structure beneath the greater Tokyo. We aim to collect data for regional characterization to access seismic hazard produced by subduction of Philippine Sea and Pacific plates. The data from MeSO-net are continuously collected at the data management center in the Earthquake Research Institute (ERI), the University of Tokyo, with a sampling rate of 200 Hz. The data are 3-componnent accelerogram with a full scale of +/- 1,500 gal for horizontal and +/-500 gal for vertical component and the effective dynamic range is 135dB at 40Hz. Available frequency range is from 0.05 to 85 Hz, which is good for travel time analysis of body waves to ambient noise analysis for surface waves. We have successfully operated MeSO-net for about 7 years without serious malfunction. We collect more than 150 TB continuous ground motion data with more than 100K earthquakes including the 2011 Tohoku-oki earthquake and all its aftershocks. The data are used many studies (e.g., Nakagawa et al., 2010,2015; Ishibe et al., 2015; Denolle et al., 2014) and currently prepared for disclosing both in continues and event-by-event format. We are developing a fully automatic earthquake detection/location system for local earthquakes beneath MeSO-net. A numerical system to estimate ground motions at an arbitrary location without MeSO-net station is under developing (Kano et al., 2015).We also install a sensor system in a building for monitoring motion and damages by a large earthquake (Nakashima et al., 2015). Those studies are eventually integrated to develop an advanced

  15. Investigation of T-Wave Propagation in the Offshore Area East of Taiwan from Early Analog Seismic Network Observations

    Directory of Open Access Journals (Sweden)

    Bor-Shouh Huang

    2011-01-01

    Full Text Available Extant paper records of the early analog seismic network of Taiwan represent a large resource for earthquake studies in several disciplines. In this study, we report on T waves generated from offshore earthquakes, based on analog observations. The T phases were identified from their stable apparent velocity of about 1.5 km s-1 and other observations using data recorded by stations in eastern Taiwan and on two nearby islands. The observed T phases are recorded for the first time from Taiwan, and in particular are observed by the network in the distal range of local earthquakes. Most of the T waves are observed at island stations at epicentral distances greater than 100 km. For earthquakes that occurred a great distance east of Taiwan, the T phases are always the most dominant phases observed at island stations east of Taiwan, and are also seen at some inland stations with smaller amplitudes. No T phases from inland events were observed by stations on Taiwan or on nearby islands. The observations indicate that the amplitude of the T phase is highly attenuated on its land path and that the propagation direction of the T phase is affected by water depth.

  16. Recorded earthquake responses from the integrated seismic monitoring network of the Atwood Building, Anchorage, Alaska

    Science.gov (United States)

    Celebi, M.

    2006-01-01

    An integrated seismic monitoring system with a total of 53 channels of accelerometers is now operating in and at the nearby free-field site of the 20-story steel-framed Atwood Building in highly seismic Anchorage, Alaska. The building has a single-story basement and a reinforced concrete foundation without piles. The monitoring system comprises a 32-channel structural array and a 21-channel site array. Accelerometers are deployed on 10 levels of the building to assess translational, torsional, and rocking motions, interstory drift (displacement) between selected pairs of adjacent floors, and average drift between floors. The site array, located approximately a city block from the building, comprises seven triaxial accelerometers, one at the surface and six in boreholes ranging in depths from 15 to 200 feet (???5-60 meters). The arrays have already recorded low-amplitude shaking responses of the building and the site caused by numerous earthquakes at distances ranging from tens to a couple of hundred kilometers. Data from an earthquake that occurred 186 km away traces the propagation of waves from the deepest borehole to the roof of the building in approximately 0.5 seconds. Fundamental structural frequencies [0.58 Hz (NS) and 0.47 Hz (EW)], low damping percentages (2-4%), mode coupling, and beating effects are identified. The fundamental site frequency at approximately 1.5 Hz is close to the second modal frequencies (1.83 Hz NS and 1.43 EW) of the building, which may cause resonance of the building. Additional earthquakes prove repeatability of these characteristics; however, stronger shaking may alter these conclusions. ?? 2006, Earthquake Engineering Research Institute.

  17. Imaging Fracture Networks Using Angled Crosshole Seismic Logging and Change Detection Techniques

    Science.gov (United States)

    Knox, H. A.; Grubelich, M. C.; Preston, L. A.; Knox, J. M.; King, D. K.

    2015-12-01

    We present results from a SubTER funded series of cross borehole geophysical imaging efforts designed to characterize fracture zones generated with an alternative stimulation method, which is being developed for Enhanced Geothermal Systems (EGS). One important characteristic of this stimulation method is that each detonation will produce multiple fractures without damaging the wellbore. To date, we have collected six full data sets with ~30k source-receiver pairs each for the purposes of high-resolution cross borehole seismic tomographic imaging. The first set of data serves as the baseline measurement (i.e. un-stimulated), three sets evaluate material changes after fracture emplacement and/or enhancement, and two sets are used for evaluation of pick error and seismic velocity changes attributable to changing environmental factors (i.e. saturation due to rain/snowfall in the shallow subsurface). Each of the six datasets has been evaluated for data quality and first arrivals have been picked on nearly 200k waveforms in the target area. Each set of data is then inverted using a Vidale-Hole finite-difference 3-D eikonal solver in two ways: 1) allowing for iterative ray tracing and 2) with fixed ray paths determined from the test performed before the fracture stimulation of interest. Utilizing these two methods allows us to compare and contrast the results from two commonly used change detection techniques. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  18. High Lithium Transference Number Electrolytes via Creation of 3-Dimensional, Charged, Nanoporous Networks from Dense Functionalized Nanoparticle Composites

    KAUST Repository

    Schaefer, Jennifer L.

    2013-03-26

    High lithium transference number, tLi+, electrolytes are desired for use in both lithium-ion and lithium metal rechargeable battery technologies. Historically, low tLi+ electrolytes have hindered device performance by allowing ion concentration gradients within the cell, leading to high internal resistances that ultimately limit cell lifetime, charging rates, and energy density. Herein, we report on the synthesis and electrochemical features of electrolytes based on nanoparticle salts designed to provide high tLi+. The salts are created by cofunctionalization of metal oxide nanoparticles with neutral organic ligands and tethered lithium salts. When dispersed in a conducting fluid such as tetraglyme, they spontaneously form a charged, nanoporous network of particles at moderate nanoparticle loadings. Modification of the tethered anion chemistry from -SO3 - to -SO3BF3 - is shown to enhance ionic conductivity of the electrolytes by facilitating ion pair dissociation. At a particle volume fraction of 0.15, the electrolyte exists as a self-supported, nanoporous gel with an optimum ionic conductivity of 10 -4 S/cm at room temperature. Galvanostatic polarization measurements on symmetric lithium metal cells containing the electrolyte show that the cell short circuit time, tSC, is inversely proportional to the square of the applied current density tSC ∼ J-2, consistent with previously predicted results for traditional polymer-in-salt electrolytes with low tLi+. Our findings suggest that electrolytes with tLi+ ≈ 1 and good ion-pair dissociation delay lithium dendrite nucleation and may lead to improved lithium plating in rechargeable batteries with metallic lithium anodes. © 2013 American Chemical Society.

  19. Advective diffusion of volcanic plume captured by dense GNSS network around Sakurajima volcano: a case study of the vulcanian eruption on July 24, 2012

    Science.gov (United States)

    Ohta, Yusaku; Iguchi, Masato

    2015-09-01

    Data from a dense GNSS network were used to investigate the temporal and spatial development of a volcanic plume during the eruptive event at Sakurajima volcano in Japan on July 24, 2012. We extracted the post-fit phase residuals (PPR) of ionosphere-free linear combinations for each satellite based on the precise point positioning (PPP) approach. Temporal and spatial PPR anomalies clearly detected the movement of the volcanic plume. The maximum height of the crossing points of anomalous PPR paths was determined to be approximately 4000 m. We also compared the estimated wet zenith tropospheric delay with the estimated PPR anomalies, which suggested that we might successfully extract the PPR anomalies caused by the eruptive event. We then compared the PPR with the signal-to-noise ratio (SNR) anomalies. Only the path passing just above the crater showed significant change in the SNR value, suggesting that the volcanic ash and the water vapor within the volcanic plume became separated after reaching a high altitude because of ash fall during the plume's lateral movement. Each of the two observables might reflect different characteristics of the water vapor and volcanic ash.

  20. Automatic reconstruction of fault networks from seismicity catalogs including location uncertainty

    CERN Document Server

    Wang, Yaming; Woessner, Jochen; Sornette, Didier; Husen, Stephan

    2013-01-01

    We introduce the Anisotropic Clustering of Location Uncertainty Distributions (ACLUD) method to reconstruct active fault networks on the basis of both earthquake locations and their estimated individual uncertainties. After a massive search through the large solution space of possible reconstructed fault networks, we apply six different validation procedures in order to select the corresponding best fault network. Two of the validation steps (cross-validation and Bayesian Information Criterion (BIC) process the fit residuals, while the four others look for solutions that provide the best agreement with independently observed focal mechanisms. Tests on synthetic catalogs allow us to qualify the performance of the fitting method and of the various validation procedures. The ACLUD method is able to provide solutions that are close to the expected ones, especially for the BIC and focal mechanismbased techniques. The clustering method complemented by the validation step based on focal mechanisms provides good solu...

  1. Data Compression of Seismic Images by Neural Networks Compression d'images sismiques par des réseaux neuronaux

    Directory of Open Access Journals (Sweden)

    Epping W. J. M.

    2006-11-01

    Full Text Available Neural networks with the multi-layered perceptron architecture were trained on an autoassociation task to compress 2D seismic data. Networks with linear transfer functions outperformed nonlinear neural nets with single or multiple hidden layers. This indicates that the correlational structure of the seismic data is predominantly linear. A compression factor of 5 to 7 can be achieved if a reconstruction error of 10% is allowed. The performance on new test data was similar to that achieved with the training data. The hidden units developed feature-detecting properties that resemble oriented line, edge and more complex feature detectors. The feature detectors of linear neural nets are near-orthogonal rotations of the principal eigenvectors of the Karhunen-Loève transformation. Des réseaux neuronaux à architecture de perceptron multicouches ont été expérimentés en auto-association pour permettre la compression de données sismiques bidimensionnelles. Les réseaux neuronaux à fonctions de transfert linéaires s'avèrent plus performants que les réseaux neuronaux non linéaires, à une ou plusieurs couches cachées. Ceci indique que la structure corrélative des données sismiques est à prédominance linéaire. Un facteur de compression de 5 à 7 peut être obtenu si une erreur de reconstruction de 10 % est admise. La performance sur les données de test est très proche de celle obtenue sur les données d'apprentissage. Les unités cachées développent des propriétés de détection de caractéristiques ressemblant à des détecteurs de lignes orientées, de bords et de figures plus complexes. Les détecteurs de caractéristique des réseaux neuronaux linéaires sont des rotations quasi orthogonales des vecteurs propres principaux de la transformation de Karhunen-Loève.

  2. Introduction to VPN technique used in Seismic Information Network of Sichuan%VPN技术在四川地震信息网络中的应用

    Institute of Scientific and Technical Information of China (English)

    林洋; 张颖

    2015-01-01

    通过 VPN 技术的应用,使不同地区的节点通过 Internet 实现了专网通信的可能,并促进了四川省地震信息网络的建设和发展。文章介绍了 VPN 技术在四川地震信息网络中的应用及其实现。%The VPN technique makes it possible to communicate the seismic messages of the specific network through the different regions nodes.We introduce the VPN technique some of details used in Sichuan Seismic Infor-mation Network.

  3. Evaluation of infrasound signals from the shuttle Atlantis using a large seismic network.

    Science.gov (United States)

    de Groot-Hedlin, Catherine D; Hedlin, Michael A H; Walker, Kristoffer T; Drob, Douglas P; Zumberge, Mark A

    2008-09-01

    Inclement weather in Florida forced the space shuttle "Atlantis" to land at Edwards Air Force Base in southern California on June 22, 2007, passing near three infrasound stations and several hundred seismic stations in northern Mexico, southern California, and Nevada. The high signal-to-noise ratio, broad receiver coverage, and Atlantis' positional information allow for the testing of infrasound propagation modeling capabilities through the atmosphere to regional distances. Shadow zones and arrival times are predicted by tracing rays that are launched at right angles to the conical shock front surrounding the shuttle through a standard climatological model as well as a global ground to space model. The predictions and observations compare favorably over much of the study area for both atmospheric specifications. To the east of the shuttle trajectory, there were no detections beyond the primary acoustic carpet. Infrasound energy was detected hundreds of kilometers to the west and northwest (NW) of the shuttle trajectory, consistent with the predictions of ducting due to the westward summer-time stratospheric jet. Both atmospheric models predict alternating regions of high and low ensonifications to the NW. However, infrasound energy was detected tens of kilometers beyond the predicted zones of ensonification, possibly due to uncertainties in stratospheric wind speeds.

  4. 阜新矿震台网无线信道测试%WIRLESS CHANNEL TEST OF FUXIN MINE SEISMIC NETWORK

    Institute of Scientific and Technical Information of China (English)

    王学成; 刘一萌; 唐喆; 李秀丽; 雷晨

    2011-01-01

    为了提高矿震台网的运行率,保障地震数据的连续率、完整率,对阜新矿震台网的信道进行了测试,主要包括制作传播路径地形剖面图以了解信道传输的视通条件、对信道传播损耗的理论计算及功率储备的测量、进行接收场强及背景干扰的测试以确定传输频点.结果显示,阜新矿震台网无线传输信道的场强在50~73 dB之间,能够保证无线信号传输质量,符合遥测台网建设技术规范要求.%FM wireless transmission at the mine seismic network construction, data transmission channel testing is the key link.It is related to run rate of the mine seismic network, continuous rate and full rate of seismic data.The testing channel are mainly including the production of propagation path terrain profile in order to understand the channel transmission vision conditions, the channel propagation loss calculation and the power reserves measurement, the receiving field strength and background interference tests to determine the transmission frequency.Through the channel testing of Fuxin mine seismic network, wireless transmission channel of the field strength is between the 50 to 73 dB, ensuring wireless signal transmission quality, in line with telemetry network construction technical requirements.

  5. Testing the global capabilities of the Antelope software suite: fast location and Mb determination of teleseismic events using the ASAIN and GSN seismic networks

    Science.gov (United States)

    Pesaresi, D.; Russi, M.; Plasencia, M.; Cravos, C.

    2009-04-01

    The Italian National Institute for Oceanography and Experimental Geophysics (Istituto Nazionale di Oceanografia e di Geofisica Sperimentale, OGS) is running the Antarctic Seismographic Argentinean Italian Network (ASAIN), made of 5 seismic stations located in the Scotia Sea region in Antarctica and in Argentina: data from these stations are transferred in real time to the OGS headquarters in Trieste (Italy) via satellite links. OGS is also running, in close cooperation with the Friuli-Venezia Giulia Civil Defense, the North East (NI) Italy seismic network, making use of the Antelope commercial software suite from BRTT as the main acquisition system. As a test to check the global capabilities of Antelope, we set up an instance of Antelope acquiring data in real time from both the regional ASAIN seismic network in Antarctica and a subset of the Global Seismic Network (GSN) funded by the Incorporated Research Institution for Seismology (IRIS). The facilities of the IRIS Data Management System, and specifically the IRIS Data Management Center, were used for real time access to waveform required in this study. Preliminary results over 1 month period indicated that about 82% of the earthquakes with magnitude M>5.0 listed in the PDE catalogue of the National Earthquake Information Center (NEIC) of the United States Geological Survey (USGS) were also correctly detected by Antelope, with an average location error of 0.05 degrees and average body wave magnitude Mb estimation error below 0.1. The average time difference between event origin time and the actual time of event determination by Antelope was of about 45': the comparison with 20', the IASPEI91 P-wave travel time for 180 degrees distance, and 25', the estimate of our test system data latency, indicate that Antelope is a serious candidate for regional and global early warning systems. Updated figures calculated over a longer period of time will be presented and discussed.

  6. Using W-phase for regional source inversion: An application to the data from the virtual seismic network in the Western Pacific region

    Science.gov (United States)

    Liang, W.; Zhao, L.; Chen, P.; Yu, Y.; Liu, C.; Huang, B.; Kanamori, H.

    2009-12-01

    The W-phase inversion has been proven to be an efficient way to determine the magnitude and source mechanism of large earthquakes for tsunami warning purposes (Kanamori and Rivera, 2008). The Institute of Earth Sciences has exchanged seismic data in a real-time manner with other agencies in surrounding countries, including Japan, Vietnam, and Malaysia, to form a virtual seismic network in the western Pacific region. Any local organization may issue an earthquake report with its own data acquisition system individually. With the hypocentral information provided, we are able to apply this new technique to invert the data from this virtual regional network for the source mechanisms of large earthquakes which occurred on the major convergent plate boundary zones within 2-30 degrees. In this case, the W-phase will be completely retrieved in 1.5-12.5 minutes. To evaluate the reliability of inversion with this network geometry, we invert waveforms of scenario earthquakes synthesized by normal mode summation method. A series of examples were then studied to compare the difference between our results and the global CMT solutions. We hope this practical application will contribute to the tsunami mitigation and seismic hazard assessment in the Western Pacific and Southern Asia regions.

  7. A Datacenter Backstage: The Knowledge that Supports the Brazilian Seismic Network

    Science.gov (United States)

    Calhau, J.; Assumpcao, M.; Collaço, B.; Bianchi, M.; Pirchiner, M.

    2015-12-01

    Historically, Brazilian seismology never had a clear strategic vision about how its data should be acquired, evaluated, stored and shared. Without a data management plan, data (for any practical purpose) could be lost, resulting in a non-uniform coverage that will reduce any chance of local and international collaboration, i.e., data will never become scientific knowledge. Since 2009, huge efforts from four different institutions are establishing the new permanent Brazilian Seismographic Network (RSBR), mainly with resources from PETROBRAS, the Brazilian Government oil company. Four FDSN sub-networks currently compose RSBR, with a total of 80 permanent stations. BL and BR codes (from BRASIS subnet) with 47 stations maintained by University of Sao Paulo (USP) and University of Brasilia (UnB) respectively; NB code (RSISNE subnet), with 16 stations deployed by University of Rio Grande do Norte (UFRN); and ON code (RSIS subnet), with 18 stations operated by the National Observatory (ON) in Rio de Janeiro. Most stations transmit data in real-time via satellite or cell-phone links. Each node acquires its own stations locally, and data is real-time shared using SeedLink. Archived data is distributed via ArcLink and/or FDSNWS services. All nodes use the SeisComP3 system for real-time processing and as a levering back-end. Open-source solutions like Seiscomp3 require some homemade tools to be developed, to help solve the most common daily problems of a data management center: local magnitude into the real-time earthquake processor, website plugins, regional earthquake catalog, contribution with ISC catalog, quality-control tools, data request tools, etc. The main data products and community activities include: kml files, data availability plots, request charts, summer school courses, an Open Lab Day and news interviews. Finally, a good effort was made to establish BRASIS sub-network and the whole RSBR as a unified project, that serves as a communication channel between

  8. Updated Episodic Tremor and Slip on the Cocos-Caribbean Subduction zone as measured by a GPS and Seismic Network on the Nicoya Peninsula, Costa Rica

    Science.gov (United States)

    Psencik, K. C.; Dixon, T. H.; Schwartz, S.; Walter, J.; Protti, M.; Gonzalez, V.

    2008-12-01

    The close proximity of the Nicoya Peninsula to the Cocos-Caribbean Subduction zone plate boundary makes it a prime location to use GPS to study episodic tremor and slip. Nicoya Peninsula currently has an operating network of 13 continuous GPS (CGPS) and 12 seismic stations designed to identify and characterize the pattern of episodic tremor and slip (ETS) events along the seismogenic zone under Costa Rica's Pacific Margin. The CGPS stations have varying degrees of equipment and communication. Of the 13 sites, five are equipped with SIM cards and modems for direct download capabilities, two of which are connected to a router for direct internet access. These sites, LMNL, located in Limonal, and LEPA, located in Lepanta are being monitored on the PBO network by UNAVCO with all of the quality and systems checks that this implies. All sites with NetRS receivers are currently partitioned to record both 5Hz and 30 second position data. The advantage to recording at a 5 Hz interval is that the receivers may be used to record long period dynamic events during large earthquakes along the Cocos-Caribbean plate boundary. The occurrence of slow slip events has been previously postulated in this region based on correlated fluid flow and seismic tremor events recorded near the margin wedge in 2000 and from sparse GPS observations in 2003. Paucity of data prevented details of these events from being resolved. In May 2007 a slow slip event was recorded on our densified GPS network and accompanied by seismic tremor. We will present the refined GPS time series and correlated seismic tremor for both likely slow slip events in September 2003 and May 2007. We will also present the inferred pattern of slip on the plate interface. Future plans include installation of additional sites, including the interior of the peninsula and reference sites on the stable Caribbean plate.

  9. 3D modelling of the active normal fault network in the Apulian Ridge (Eastern Mediterranean Sea): Integration of seismic and bathymetric data with implicit surface methods

    Science.gov (United States)

    Bistacchi, Andrea; Pellegrini, Caludio; Savini, Alessandra; Marchese, Fabio

    2016-04-01

    The Apulian ridge (North-eastern Ionian Sea, Mediterranean), interposed between the facing Apennines and Hellenides subduction zones (to the west and east respectively), is characterized by thick cretaceous carbonatic sequences and discontinuous tertiary deposits crosscut by a penetrative network of NNW-SSE normal faults. These are exposed onshore in Puglia, and are well represented offshore in a dataset composed of 2D seismics and wells collected by oil companies from the '60s to the '80s, more recent seismics collected during research projects in the '90s, recent very high resolution seismics (VHRS - Sparker and Chirp-sonar data), multibeam echosounder bathymetry, and sedimentological and geo-chronological analyses of sediment samples collected on the seabed. Faults are evident in 2D seismics at all scales, and their along-strike geometry and continuity can be characterized with multibeam bathymetric data, which show continuous fault scarps on the seabed (only partly reworked by currents and covered by landslides). Fault scarps also reveal the finite displacement accumulated in the Holocene-Pleistocene. We reconstructed a 3D model of the fault network and suitable geological boundaries (mainly unconformities due to the discontinuous distribution of quaternary and tertiary sediments) with implicit surface methods implemented in SKUA/GOCAD. This approach can be considered very effective and allowed reconstructing in details complex structures, like the frequent relay zones that are particularly well imaged by seafloor geomorphology. Mutual cross-cutting relationships have been recognized between fault scarps and submarine mass-wasting deposits (Holocene-Pleistocene), indicating that, at least in places, these features are coeval, hence the fault network should be considered active. At the regional scale, the 3D model allowed measuring the horizontal WSW-ENE stretching, which can be associated to the bending moment applied to the Apulian Plate by the combined effect

  10. Seismic wavefield imaging based on the replica exchange Monte Carlo method

    Science.gov (United States)

    Kano, Masayuki; Nagao, Hiromichi; Ishikawa, Daichi; Ito, Shin-ichi; Sakai, Shin'ichi; Nakagawa, Shigeki; Hori, Muneo; Hirata, Naoshi

    2016-11-01

    Earthquakes sometimes cause serious disasters not only directly by ground motion itself but also secondarily by infrastructure damage, particularly in densely populated urban areas that have capital functions. To reduce the number and severity of secondary disasters, it is important to evaluate seismic hazards rapidly by analyzing the seismic responses of individual structures to input ground motions. We propose a method that integrates physics-based and data-driven approaches in order to obtain a seismic wavefield for use as input to a seismic response analysis. The new contribution of this study is the use of the replica exchange Monte Carlo (REMC) method, which is one of the Markov chain Monte Carlo (MCMC) methods, for estimation of a seismic wavefield, together with a one-dimensional (1-D) local subsurface structure and source information. Numerical tests were conducted to verify the proposed method, using synthetic observation data obtained from analytical solutions for two horizontally-layered subsurface structure models. The geometries of the observation sites were determined from the dense seismic observation array called the Metropolitan Seismic Observation network (MeSO-net), which has been in operation in the Tokyo metropolitan area in Japan since 2007. The results of the numerical tests show that the proposed method is able to search the parameters related to the source and the local subsurface structure in a broader parameter space than the Metropolis method, which is an ordinary MCMC method. The proposed method successfully reproduces a seismic wavefield consistent with a true wavefield. In contrast, ordinary kriging, which is a classical data-driven interpolation method for spatial data, is hardly able to reproduce a true wavefield, even in the low frequency bands. This suggests that it is essential to employ both physics-based and data-driven approaches in seismic wavefield imaging, utilizing seismograms from a dense seismic array. The REMC method

  11. Seismic wavefield imaging based on the replica exchange Monte Carlo method

    Science.gov (United States)

    Kano, Masayuki; Nagao, Hiromichi; Ishikawa, Daichi; Ito, Shin-ichi; Sakai, Shin'ichi; Nakagawa, Shigeki; Hori, Muneo; Hirata, Naoshi

    2017-01-01

    Earthquakes sometimes cause serious disasters not only directly by ground motion itself but also secondarily by infrastructure damage, particularly in densely populated urban areas that have capital functions. To reduce the number and severity of secondary disasters, it is important to evaluate seismic hazards rapidly by analysing the seismic responses of individual structures to input ground motions. We propose a method that integrates physics-based and data-driven approaches in order to obtain a seismic wavefield for use as input to a seismic response analysis. The new contribution of this study is the use of the replica exchange Monte Carlo (REMC) method, which is one of the Markov chain Monte Carlo (MCMC) methods, for estimation of a seismic wavefield, together with a 1-D local subsurface structure and source information. Numerical tests were conducted to verify the proposed method, using synthetic observation data obtained from analytical solutions for two horizontally layered subsurface structure models. The geometries of the observation sites were determined from the dense seismic observation array called the Metropolitan Seismic Observation network, which has been in operation in the Tokyo metropolitan area in Japan since 2007. The results of the numerical tests show that the proposed method is able to search the parameters related to the source and the local subsurface structure in a broader parameter space than the Metropolis method, which is an ordinary MCMC method. The proposed method successfully reproduces a seismic wavefield consistent with a true wavefield. In contrast, ordinary kriging, which is a classical data-driven interpolation method for spatial data, is hardly able to reproduce a true wavefield, even in the low frequency bands. This suggests that it is essential to employ both physics-based and data-driven approaches in seismic wavefield imaging, utilizing seismograms from a dense seismic array. The REMC method, which provides not only

  12. Basin-scale Green's functions from the ambient seismic field recorded by MeSO-net stations

    Science.gov (United States)

    Viens, Loïc.; Koketsu, Kazuki; Miyake, Hiroe; Sakai, Shin'ichi; Nakagawa, Shigeki

    2016-04-01

    Seismic waves propagating through the Earth can be significantly affected by velocity structures such as sedimentary basins. We investigate the propagation characteristics of seismic waves across the Kanto basin, Japan, using Green's functions extracted from the ambient seismic field. We use two stations situated on the eastern and southern edges of the basin as virtual sources, and approximately 420 stations, which are mainly a part of the Metropolitan Seismic Observation network (MeSO-net), as receivers. Using seismometers aligned along two straight lines with the virtual sources, we find that several types of waves can be recovered, each with different sensitivities to the layers that compose the basin. We also show that after amplitude calibration, the extracted Green's functions can accurately simulate the seismic waves of two moderate Mw 4-5 shallow earthquakes that occurred close to the virtual sources. Furthermore, we find that the distribution of the 5% damped pseudovelocity response at a period of 6 s computed from the records of each event and the Green's function waveforms have similar amplification patterns. This study supports the fact that dense networks recording continuously the ambient seismic field in metropolitan areas can be used to accurately assess seismic hazard at high spatial resolution.

  13. An improved DS acoustic-seismic modality fusion algorithm based on a new cascaded fuzzy classifier for ground-moving targets classification in wireless sensor networks

    Science.gov (United States)

    Pan, Qiang; Wei, Jianming; Cao, Hongbing; Li, Na; Liu, Haitao

    2007-04-01

    A new cascaded fuzzy classifier (CFC) is proposed to implement ground-moving targets classification tasks locally at sensor nodes in wireless sensor networks (WSN). The CFC is composed of three and two binary fuzzy classifiers (BFC) respectively in seismic and acoustic signal channel in order to classify person, Light-wheeled (LW) Vehicle, and Heavywheeled (HW) Vehicle in presence of environmental background noise. Base on the CFC, a new basic belief assignment (bba) function is defined for each component BFC to give out a piece of evidence instead of a hard decision label. An evidence generator is used to synthesize available evidences from BFCs into channel evidences and channel evidences are further temporal-fused. Finally, acoustic-seismic modality fusion using Dempster-Shafer method is performed. Our implementation gives significantly better performance than the implementation with majority-voting fusion method through leave-one-out experiments.

  14. Network of recurrent events: an application to aftershock sequences and the ETAS model of seismicity

    Science.gov (United States)

    Davidsen, J.; Peixoto, T. De Paula

    2010-05-01

    Many striking features of geophysical processes can be portrayed as patterns or clusters of localized events including, but not limited to, solar flares and earthquakes. A generic attribute in all these cases is that one event can trigger or somehow induce another one to occur - or possibly numerous further events. Studying the spatiotemporal clustering of such localized events is often the only way to gain insight into the underlying microscopic dynamics that causes the triggering. A recently introduced approach (Geophys. Res. Lett. 33, L11304 (2006)) allows one to quantify non-trivial spatiotemporal clustering and to infer the causal structure of activity patterns based on the view that any suitable definition of clustering should be purely contextual and depend only on the actual history of events. The approach utilizes the notion of space-time records and maps the activity pattern onto a network. Here, we apply this method to compare the spatiotemporal clustering of aftershock sequences (Parkfield and Hector Mine) to that of synthetic catalogs generated by the epidemic type aftershock sequence (ETAS) model.

  15. Basin and Crustal Structure of Jakarta and Bandung, Indonesia from Two Seismic Campaigns

    Science.gov (United States)

    Saygin, E.; Cummins, P. R.; Cipta, A.; Irsam, M.; Masturyono, M.; Murjaya, J.; Nugraha, A. D.; Pandhu, R.; Widiyantoro, S.; Zulhan, Z.

    2014-12-01

    Between October 2013 and February 2014, a dense portable seismic broadband network was operated by The Australian National University (ANU) and Indonesian Agency for Meteorology, Climatology and Geophysics (BMKG) in Jakarta, Indonesia. Jakarta is located in Java Island, Indonesia, with a population over 10 million. Overall 96 points were sampled through the successive deployments of 52 seismic broadband sensors at different parts of the city. After recording continuous seismic data for 5 months, the network was shifted to Bandung, another city to the south-east of Jakarta on March 2014. Bandung is situated on a old lake deposit surrounded by volcanic provinces. The configuration of the seismic network at Bandung encompasses the whole city as well as an active volcano-Tangkuban Perahu and Lembang Fault both located just outside of the city.In both of the experiments, oceanic and anthropogenic noise were recorded as well as local and regional earthquakes. We apply regularized deconvolution to the recorded data of the vertical components of available station pairs, and over 4000 Green's functions were retrieved in total. Waveforms from stacked interstation deconvolutions show clear arrivals of Rayleigh and body waves. The traveltimes that were extracted from the group velocity filtering of Rayleigh wave arrivals, are used in a Transdimensional Bayesian seismic tomography method to map the velocity perturbations across cities. The constructed images at Jakarta mark the very low group velocities of Rayleigh waves, as low as 150 m/s at 1 Hz showing influence of a very low velocity basin. Low seismic velocity regions imaged through seismic noise tomography beneath both cities potentially posses a large risk of causing seismic amplification during a large earthquake close to the cities.

  16. Three-month performance evaluation of the Nanometrics, Inc., Libra Satellite Seismograph System in the northern California Seismic Network

    Science.gov (United States)

    Oppenheimer, David H.

    2000-01-01

    In 1999 the Northern California Seismic Network (NCSN) purchased a Libra satellite seismograph system from Nanometrics, Inc to assess whether this technology was a cost-effective and robust replacement for their analog microwave system. The system was purchased subject to it meeting the requirements, criteria and tests described in Appendix A. In early 2000, Nanometrics began delivery of various components of the system, such as the hub and remote satellite dish and mounting hardware, and the NCSN installed and assembled most equipment in advance of the arrival of Nanometrics engineers to facilitate the configuration of the system. The hub was installed in its permanent location, but for logistical reasons the "remote" satellite hardware was initially configured at the NCSN for testing. During the first week of April Nanometrics engineers came to Menlo Park to configure the system and train NCSN staff. The two dishes were aligned with the satellite, and the system was fully operational in 2 days with little problem. Nanometrics engineers spent the remaining 3 days providing hands-on training to NCSN staff in hardware/software operation, configuration, and maintenance. During the second week of April 2000, NCSN staff moved the entire remote system of digitizers, dish assembly, and mounting hardware to Mammoth Lakes, California. The system was reinstalled at the Mammoth Lakes water treatment plant and communications successfully reestablished with the hub via the satellite on 14 April 2000. The system has been in continuous operation since then. This report reviews the performance of the Libra system for the three-month period 20 April 2000 through 20 July 2000. The purpose of the report is to assess whether the system passed the acceptance tests described in Appendix A. We examine all data gaps reported by NCSN "gap list" software and discuss their cause.

  17. External forcing of earthquake swarms at Alpine regions: example from a seismic meteorological network at Mt. Hochstaufen SE-Bavaria

    Directory of Open Access Journals (Sweden)

    V. Svejdar

    2011-11-01

    Full Text Available In the last few years, it has been shown that above-average rainfall and the following diffusion of excess water into subsurface structures is able to trigger earthquake swarms in the uppermost brittle portion of the Earth's crust. However, there is still an ongoing debate on whether the crust already needs to be in a critical-to-failure state or whether it is sufficient that water is transported rapidly within channels and veins of karst or similar geological formations to the underlying, earthquake-generating layers. Also unknown is the role of other forcing mechanisms, possible co-variables and probably necessary tectonic loading in the triggering process of earthquakes. Because of these problems, we do not use an explicit physical model but instead analyze the meteorological and geophysical data via sophisticated statistical models. ewline We are interested in the influence of a more complete set of possible forcing parameters, including the influence of synthetic earth tides, on the occurrence of earthquake swarms. In this context, regression models are the adequate tool, since the calculation of simple correlations can be confounded by the other variables. Since our outcome variable (the number of quakes is a count, we use Poisson regression models that include the plausible assumption of a Poisson distribution for the counts. For this study, we use nearly continuous recordings of a seismic and meteorological network in the years 2002–2008 at Mt. Hochstaufen in SE-Bavaria. Our non-linear regression model reveals correlations between external forces and the triggering of earthquakes. In addition to the still dominant influence of rainfall, theoretical estimated tidal tilt show some weak influence on the swarm generation. However, the influence of the modeled trend functions shows that rain is by far not the most important forcing mechanism present in the data.

  18. Dense topological spaces and dense continuity

    Science.gov (United States)

    Aldwoah, Khaled A.

    2013-09-01

    There are several attempts to generalize (or "widen") the concept of topological space. This paper uses equivalence relations to generalize the concept of topological space via the concept of equivalence relations. By the generalization, we can introduce from particular topology on a nonempty set X many new topologies, we call anyone of these new topologies a dense topology. In addition, we formulate some simple properties of dense topologies and study suitable generalizations of the concepts of limit points, closeness and continuity, as well as Jackson, Nörlund and Hahn dense topologies.

  19. Definition of a unique model for the improvement of the monitoring network and seismic risk reduction of the school buildings in Italy

    Science.gov (United States)

    Greco, M.; Console, R.; Colangelo, A.; Cioè, A.; Trivigno, L.

    2015-12-01

    In the latest decade the safety of the Italian schools against seismic risk is a crucial subject for the Italian legislation as well as to the UN Convention on the DRR and the more specific priorities adopted even within the OECD. Recently, the Italian Parliament approved a law (L98/2013) which launched the Commissioning Safety of School Buildings Plan and the Definition of a Unique Model, to be developed by the CGIAM, in order to improve monitoring network and seismic risk reduction (SRR). The objectives of such a law deals with increasing in the knowledge of public actions aimed to improve the effectiveness of the SRR policy on school buildings. The actions of the CGIAM will consist in the identification of a significant number of school buildings in Italy, mainly in terms of type of construction and material, on which calibrate specific synthetic parameters and test models. Furthermore, the activities are addressed to quantitatively evaluation of intervention efficacy, to set up simple systems of instrumental monitoring, even able to test the possibility of periodical checks of the state of general preservation. The main issues carried on by the CGIAM mainly concern the completion and enrichment of the existing data base of school buildings, even through the collaboration of the Ministries and other relevant Italian research institutions, the evaluation of seismic hazard and site condition analysis as well as the definition of other seismic risk factors. Nevertheless a cost-benefit analysis as well as application and dissemination of such tools are proposed too. At the same time, the CGIAM contributes to the definition of experimental installation and use of a Simplified Accelerometric Monitoring Network for school buildings comprehensive of testing phase on a limited number of structures. The work proposes a synthetic overview of the employed methodologies as well as the first results arising from the research and implementation activities.

  20. Long-Period seismic events at Ubinas Volcano (Peru): their implications and potentiality as monitoring tool

    Science.gov (United States)

    Zandomeneghi, D.; Inza, A.; Metaxian, J.-P.; Macedo, O.

    2012-04-01

    Ubinas volcano (Southern Peru) is an active andesitic stratovolcano, located 75 km East of Arequipa City, with an average occurrence of 6-7 eruptions per century and persistent fumarolic and phreatic activity. The most recent eruption, accompanied by explosions and by the extrusion of a lava dome, started on March 2006 with an increase of seismicity and observed fumarole occurrence followed in April by more intense explosions, recorded until May 2009. To monitor the volcanic activity, the Geophysical Institute of Peru and the Institut de Recherche pour le Développment (France), built up a seismic network around the volcano, installing 4 permanent stations and deploying 8 supplementary temporary broadband seismometers. In addition, in the period May to July 2009, a seismic experiment was carried out on the volcano flanks with 2 cross-shaped dense antennas with broadband seismometers. As the seismic activity was characterized by recurring low-frequency waveforms, we identify their pattern of occurrence through waveform cross-correlation technique, with respect to major eruptive phases and other observations (as volcano ground deformation from tiltmeters, volcanic product composition, etc). Once established their likely association with the eruptive sequence, we utilize both local network and dense-array data and analyze their location, changes in location, spectral content variations and possible physical explanation. The final aim is to introduce this kind of analysis as quantitative tool to understand ongoing eruptive phases at andesitic volcanoes and possibly to forecast magma/fluid significant movements.

  1. Hourly Comparison of GPM-IMERG-Final-Run and IMERG-Real-Time (V-03) over a Dense Surface Network in Northeastern Austria

    Science.gov (United States)

    Sharifi, Ehsan; Steinacker, Reinhold; Saghafian, Bahram

    2017-04-01

    Accurate quantitative daily precipitation estimation is key to meteorological and hydrological applications in hazards forecast and management. In-situ observations over mountainous areas are mostly limited, however, currently available satellite precipitation products can potentially provide the precipitation estimation needed for meteorological and hydrological applications. Over the years, blended methods that use multi-satellites and multi-sensors have been developed for estimating of global precipitation. One of the latest satellite precipitation products is GPM-IMERG (Global Precipitation Measurement with 30-minute temporal and 0.1-degree spatial resolutions) which consists of three products: Final-Run (aimed for research), Real-Time early run, and Real-Time late run. The Integrated Multisatellite Retrievals for GPM (IMERG) products built upon the success of TRMM's Multisatellite Precipitation Analysis (TMPA) products continue to make improvements in spatial and temporal resolutions and snowfall estimates. Recently, researchers who evaluated IMERG-Final-Run V-03 and other precipitation products indicated better performance for IMERG-Final-Run against other similar products. In this study two GPM-IMERG products, namely final run and real time-late run, were evaluated against a dense synoptic stations network (62 stations) over Northeastern Austria for mid-March 2015 to end of January 2016 period at hourly time-scale. Both products were examined against the reference data (stations) in capturing the occurrence of precipitation and statistical characteristics of precipitation intensity. Both satellite precipitation products underestimated precipitation events of 0.1 mm/hr to 0.4 mm/hr in intensity. For precipitations 0.4 mm/hr and greater, the trend was reversed and both satellite products overestimated than station recorded data. IMERG-RT outperformed IMERG-FR for precipitation intensity in the range of 0.1 mm/hr to 0.4 mm/hr while in the range of 1.1 to 1.8 mm

  2. Single-station monitoring of volcanoes using seismic ambient noise

    Science.gov (United States)

    De Plaen, Raphael S. M.; Lecocq, Thomas; Caudron, Corentin; Ferrazzini, Valérie; Francis, Olivier

    2016-08-01

    Seismic ambient noise cross correlation is increasingly used to monitor volcanic activity. However, this method is usually limited to volcanoes equipped with large and dense networks of broadband stations. The single-station approach may provide a powerful and reliable alternative to the classical "cross-station" approach when measuring variation of seismic velocities. We implemented it on the Piton de la Fournaise in Reunion Island, a very active volcano with a remarkable multidisciplinary continuous monitoring. Over the past decade, this volcano has been increasingly studied using the traditional cross-correlation technique and therefore represents a unique laboratory to validate our approach. Our results, tested on stations located up to 3.5 km from the eruptive site, performed as well as the classical approach to detect the volcanic eruption in the 1-2 Hz frequency band. This opens new perspectives to successfully forecast volcanic activity at volcanoes equipped with a single three-component seismometer.

  3. Swiss-AlpArray temporary broadband seismic stations deployment and noise characterization

    Science.gov (United States)

    Molinari, Irene; Clinton, John; Kissling, Edi; Hetényi, György; Giardini, Domenico; Stipčević, Josip; Dasović, Iva; Herak, Marijan; Šipka, Vesna; Wéber, Zoltán; Gráczer, Zoltán; Solarino, Stefano; Swiss-AlpArray Field Team; AlpArray Working Group

    2016-10-01

    AlpArray is a large collaborative seismological project in Europe that includes more than 50 research institutes and seismological observatories. At the heart of the project is the collection of top-quality seismological data from a dense network of broadband temporary seismic stations, in compliment to the existing permanent networks, that ensures a homogeneous station coverage of the greater Alpine region. This Alp Array Seismic Network (AASN) began operation in January 2016 and will have a duration of at least 2 years. In this work we report the Swiss contribution to the AASN, we concentrate on the site selection process, our methods for stations installation, data quality and data management. We deployed 27 temporary broadband stations equipped with STS-2 and Trillium Compact 120 s sensors. The deployment and maintenance of the temporary stations across 5 countries is managed by ETH Zurich and it is the result of a fruitful collaboration between five institutes in Europe.

  4. Seismic source parameters of the induced seismicity at The Geysers geothermal area, California, by a generalized inversion approach

    Science.gov (United States)

    Picozzi, Matteo; Oth, Adrien; Parolai, Stefano; Bindi, Dino; De Landro, Grazia; Amoroso, Ortensia

    2017-04-01

    The accurate determination of stress drop, seismic efficiency and how source parameters scale with earthquake size is an important for seismic hazard assessment of induced seismicity. We propose an improved non-parametric, data-driven strategy suitable for monitoring induced seismicity, which combines the generalized inversion technique together with genetic algorithms. In the first step of the analysis the generalized inversion technique allows for an effective correction of waveforms for the attenuation and site contributions. Then, the retrieved source spectra are inverted by a non-linear sensitivity-driven inversion scheme that allows accurate estimation of source parameters. We therefore investigate the earthquake source characteristics of 633 induced earthquakes (ML 2-4.5) recorded at The Geysers geothermal field (California) by a dense seismic network (i.e., 32 stations of the Lawrence Berkeley National Laboratory Geysers/Calpine surface seismic network, more than 17.000 velocity records). We find for most of the events a non-selfsimilar behavior, empirical source spectra that requires ωγ source model with γ > 2 to be well fitted and small radiation efficiency ηSW. All these findings suggest different dynamic rupture processes for smaller and larger earthquakes, and that the proportion of high frequency energy radiation and the amount of energy required to overcome the friction or for the creation of new fractures surface changes with the earthquake size. Furthermore, we observe also two distinct families of events with peculiar source parameters that, in one case suggests the reactivation of deep structures linked to the regional tectonics, while in the other supports the idea of an important role of steeply dipping fault in the fluid pressure diffusion.

  5. Application of Seismic Array Processing to Tsunami Early Warning

    Science.gov (United States)

    An, C.; Meng, L.

    2015-12-01

    Tsunami wave predictions of the current tsunami warning systems rely on accurate earthquake source inversions of wave height data. They are of limited effectiveness for the near-field areas since the tsunami waves arrive before data are collected. Recent seismic and tsunami disasters have revealed the need for early warning to protect near-source coastal populations. In this work we developed the basis for a tsunami warning system based on rapid earthquake source characterisation through regional seismic array back-projections. We explored rapid earthquake source imaging using onshore dense seismic arrays located at regional distances on the order of 1000 km, which provides faster source images than conventional teleseismic back-projections. We implement this method in a simulated real-time environment, and analysed the 2011 Tohoku earthquake rupture with two clusters of Hi-net stations in Kyushu and Northern Hokkaido, and the 2014 Iquique event with the Earthscope USArray Transportable Array. The results yield reasonable estimates of rupture area, which is approximated by an ellipse and leads to the construction of simple slip models based on empirical scaling of the rupture area, seismic moment and average slip. The slip model is then used as the input of the tsunami simulation package COMCOT to predict the tsunami waves. In the example of the Tohoku event, the earthquake source model can be acquired within 6 minutes from the start of rupture and the simulation of tsunami waves takes less than 2 min, which could facilitate a timely tsunami warning. The predicted arrival time and wave amplitude reasonably fit observations. Based on this method, we propose to develop an automatic warning mechanism that provides rapid near-field warning for areas of high tsunami risk. The initial focus will be Japan, Pacific Northwest and Alaska, where dense seismic networks with the capability of real-time data telemetry and open data accessibility, such as the Japanese HiNet (>800

  6. Aftershock distribution and heterogeneous structure in and around the source area of the 2014 northern Nagano Prefecture earthquake (Mw 6.2) , central Japan, revealed by dense seismic array observation

    Science.gov (United States)

    Kurashimo, E.; Hirata, N.; Iwasaki, T.; Sakai, S.; Obara, K.; Ishiyama, T.; Sato, H.

    2015-12-01

    A shallow earthquake (Mw 6.2) occurred on November 22 in the northern Nagano Prefecture, central Japan. Aftershock area is located near the Kamishiro fault, which is a part of the Itoigawa-Shizuoka Tectonic Line (ISTL). ISTL is one of the major tectonic boundaries in Japan. Precise aftershock distribution and heterogeneous structure in and around the source region of this earthquake is important to constrain the process of earthquake occurrence. We conducted a high-density seismic array observation in and around source area to investigate aftershock distribution and crustal structure. One hundred sixty-three seismic stations, approximately 1 km apart, were deployed during the period from December 3, 2014 to December 21, 2014. Each seismograph consisted of a 4.5 Hz 3-component seismometer and a digital data recorder (GSX-3). Furthermore, the seismic data at 40 permanent stations were incorporated in our analysis. During the seismic array observation, the Japan Meteorological Agency located 977 earthquakes in a latitude range of 35.5°-37.1°N and a longitude range of 136.7°-139.0°E, from which we selected 500 local events distributed uniformly in the study area. To investigate the aftershock distribution and the crustal structure, the double-difference tomography method [Zhang and Thurber, 2003] was applied to the P- and S-wave arrival time data obtained from 500 local earthquakes. The relocated aftershock distribution shows a concentration on a plane dipping eastward in the vicinity of the mainshock hypocenter. The large slip region (asperity) estimated from InSAR analysis [GSI, 2014] corresponds to the low-activity region of the aftershocks. The depth section of Vp structure shows that the high Vp zone corresponds to the large slip region. These results suggest that structural heterogeneities in and around the fault plane may have controlled the rupture process of the 2014 northern Nagano Prefecture earthquake.

  7. Assessment of small-scale variability of rainfall and multi-satellite precipitation estimates using measurements from a dense rain gauge network in Southeast India

    Science.gov (United States)

    Sunilkumar, K.; Narayana Rao, T.; Satheeshkumar, S.

    2016-05-01

    This paper describes the establishment of a dense rain gauge network and small-scale variability in rain events (both in space and time) over a complex hilly terrain in Southeast India. Three years of high-resolution gauge measurements are used to validate 3-hourly rainfall and sub-daily variations of four widely used multi-satellite precipitation estimates (MPEs). The network, established as part of the Megha-Tropiques validation program, consists of 36 rain gauges arranged in a near-square grid area of 50 km × 50 km with an intergauge distance of 6-12 km. Morphological features of rainfall in two principal rainy seasons (southwest monsoon, SWM, and northeast monsoon, NEM) show marked differences. The NEM rainfall exhibits significant spatial variability and most of the rainfall is associated with large-scale/long-lived systems (during wet spells), whereas the contribution from small-scale/short-lived systems is considerable during the SWM. Rain events with longer duration and copious rainfall are seen mostly in the western quadrants (a quadrant is 1/4 of the study region) in the SWM and northern quadrants in the NEM, indicating complex spatial variability within the study region. The diurnal cycle also exhibits large spatial and seasonal variability with larger diurnal amplitudes at all the gauge locations (except for 1) during the SWM and smaller and insignificant diurnal amplitudes at many gauge locations during the NEM. On average, the diurnal amplitudes are a factor of 2 larger in the SWM than in the NEM. The 24 h harmonic explains about 70 % of total variance in the SWM and only ˜ 30 % in the NEM. During the SWM, the rainfall peak is observed between 20:00 and 02:00 IST (Indian Standard Time) and is attributed to the propagating systems from the west coast during active monsoon spells. Correlograms with different temporal integrations of rainfall data (1, 3, 12, 24 h) show an increase in the spatial correlation with temporal integration, but the

  8. Episodic Tremor and Slip on the Cocos-Caribbean Subduction zone as measured by a GPS and Seismic Network on the Nicoya Peninsula, Costa Rica

    Science.gov (United States)

    Psencik, K. C.; Dixon, T. H.; Schwartz, S.; Protti, M.; Gonzalez, V.; Walter, J.; Biggs, J.

    2008-05-01

    The close proximity of the Nicoya Peninsula land mass to the Cocos-Caribbean subduction zone plate boundary makes it a prime location to use GPS to study such plate boundary processes as locking zone dynamics and episodic tremor and slip. Nicoya Peninsula currently has an operating network of 12 continuous GPS (CGPS) and 10 seismic stations designed to identify and characterize the pattern of episodic tremor and slip (ETS) events along the seismogenic zone under Costa Rica's Pacific Margin. The CGPS stations have varying degrees of equipment and communication. Of the 12 sites, four are equipped with SIM cards and modems for direct download capabilities, one of which is connected to a router for direct internet access. This site, LMNL, located in Limonal, is being monitored on the PBO network by UNAVCO with all of the quality and systems checks that this implies. All sites with NetRS receivers are currently partitioned to record both 5Hz and 30 second position data. The advantage to recording at a 5 Hz interval is that the receivers may be used to record long period dynamic events during large earthquakes along the Cocos-Caribbean plate boundary. The occurrence of slow slip events has been previously postulated in this region based on correlated fluid flow and seismic tremor events recorded near the margin wedge in 2000 and from sparse GPS observations in 2003. Paucity of data prevented details of these events from being resolved. In May 2007 a slow slip event was recorded on our densified GPS network and accompanied by seismic tremor. We will present the preliminary GPS time series and correlated seismic tremor for both likely slow slip events in September 2003 and May 2007. Once the displacement patterns have been characterized, we intend to model both the transient motion on the fault plane as well as the locking pattern before and after the events in an effort to determine if the occurrence of an ETS event has any impact on the nature and distribution of the

  9. Second and Third Quarters Hanford Seismic Report for Fiscal Year 1999

    Energy Technology Data Exchange (ETDEWEB)

    Hartshorn, Donald C.; Reidel, Stephen P.; Rohay, Alan C.

    1999-10-08

    Hanford Seismic Monitoring provides an uninterrupted collection of high-quality raw and processed seismic data from the Hanford Seismic Network (HSN) for the U.S. Department of Energy and its contractors. Hanford Seismic Monitoring also locates and identifies sources of seismic activity and monitors changes in the historical pattern of seismic activity at the Hanford Site.

  10. A Kinematic Fault Network Model of Crustal Deformation for California and Its Application to the Seismic Hazard Analysis

    Science.gov (United States)

    Zeng, Y.; Shen, Z.; Harmsen, S.; Petersen, M. D.

    2010-12-01

    We invert GPS observations to determine the slip rates on major faults in California based on a kinematic fault model of crustal deformation with geological slip rate constraints. Assuming an elastic half-space, we interpret secular surface deformation using a kinematic fault network model with each fault segment slipping beneath a locking depth. This model simulates both block-like deformation and elastic strain accumulation within each bounding block. Each fault segment is linked to its adjacent elements with slip continuity imposed at fault nodes or intersections. The GPS observations across California and its neighbors are obtained from the SCEC WGCEP project of California Crustal Motion Map version 1.0 and SCEC Crustal Motion Map 4.0. Our fault models are based on the SCEC UCERF 2.0 fault database, a previous southern California block model by Shen and Jackson, and the San Francisco Bay area block model by d’Alessio et al. Our inversion shows a slip rate ranging from 20 to 26 mm/yr for the northern San Andreas from the Santa Cruz Mountain to the Peninsula segment. Slip rates vary from 8 to 14 mm/yr along the Hayward to the Maacama segment, and from 17 to 6 mm/yr along the central Calaveras to West Napa. For the central California creeping section, we find a depth dependent slip rate with an average slip rate of 23 mm/yr across the upper 5 km and 30 mm/yr underneath. Slip rates range from 30 mm/yr along the Parkfield and central California creeping section of the San Andres to an average of 6 mm/yr on the San Bernardino Mountain segment. On the southern San Andreas, slip rates vary from 21 to 30 mm/yr from the Cochella Valley to the Imperial Valley, and from 7 to 16 mm/yr along the San Jacinto segments. The shortening rate across the greater Los Angeles region is consistent with the regional tectonics and crustal thickening in the area. We are now in the process of applying the result to seismic hazard evaluation. Overall the geodetic and geological derived

  11. Performances of the UNDERground SEISmic array for the analysis of seismicity in Central Italy

    Directory of Open Access Journals (Sweden)

    R. Scarpa

    2006-06-01

    Full Text Available This paper presents the first results from the operation of a dense seismic array deployed in the underground Physics Laboratories at Gran Sasso (Central Italy. The array consists of 13 short-period, three-component seismometers with an aperture of about 550 m and average sensor spacing of 90 m. The reduced sensor spacing, joined to the spatially-white character of the background noise allows for quick and reliable detection of coherent wavefront arrivals even under very poor SNR conditions. We apply high-resolution frequency-slowness and polarization analyses to a set of 27 earthquakes recorded between November, 2002, and September, 2003, at epicentral distances spanning the 20-140 km interval. We locate these events using inversion of P- and S-wave backazimuths and S-P delay times, and compare the results with data from the Centralized National Seismic Network catalog. For the case of S-wave, the discrepancies among the two set of locations never exceed 10 km; the largest errors are instead observed for the case of P-waves. This observation may be due to the fact that the small array aperture does not allow for robust assessment of waves propagating at high apparent velocities. This information is discussed with special reference to the directions of future studies aimed at elucidating the location of seismogenetic structures in Central Italy from extended analysis of the micro-seismicity.

  12. Optimization of Ambient Noise Cross-Correlation Imaging Across Large Dense Array

    Science.gov (United States)

    Sufri, O.; Xie, Y.; Lin, F. C.; Song, W.

    2015-12-01

    Ambient Noise Tomography is currently one of the most studied topics of seismology. It gives possibility of studying physical properties of rocks from the depths of subsurface to the upper mantle depths using recorded noise sources. A network of new seismic sensors, which are capable of recording continuous seismic noise and doing the processing at the same time on-site, could help to assess possible risk of volcanic activity on a volcano and help to understand the changes in physical properties of a fault before and after an earthquake occurs. This new seismic sensor technology could also be used in oil and gas industry to figure out depletion rate of a reservoir and help to improve velocity models for obtaining better seismic reflection cross-sections. Our recent NSF funded project is bringing seismologists, signal processors, and computer scientists together to develop a new ambient noise seismic imaging system which could record continuous seismic noise and process it on-site and send Green's functions and/or tomography images to the network. Such an imaging system requires optimum amount of sensors, sensor communication, and processing of the recorded data. In order to solve these problems, we first started working on the problem of optimum amount of sensors and the communication between these sensors by using small aperture dense network called Sweetwater Array, deployed by Nodal Seismic in 2014. We downloaded ~17 day of continuous data from 2268 one-component stations between March 30-April 16 2015 from IRIS DMC and performed cross-correlation to determine the lag times between station pairs. The lag times were then entered in matrix form. Our goal is to selecting random lag time values in the matrix and assuming all other elements of the matrix either missing or unknown and performing matrix completion technique to find out how close the results from matrix completion technique would be close to the real calculated values. This would give us better idea

  13. Significantly Dense Two-Dimensional Hydrogen-Bond Network in a Layered Zirconium Phosphate Leading to High Proton Conductivities in Both Water-Assisted Low-Temperature and Anhydrous Intermediate-Temperature Regions.

    Science.gov (United States)

    Gui, Daxiang; Zheng, Tao; Xie, Jian; Cai, Yawen; Wang, Yaxing; Chen, Lanhua; Diwu, Juan; Chai, Zhifang; Wang, Shuao

    2016-12-19

    A highly stable layered zirconium phosphate, (NH4)2[ZrF2(HPO4)2] (ZrP-1), was synthesized by an ionothermal method and contains an extremely dense two-dimensional hydrogen-bond network that is thermally stable up to 573 K, leading to combined ultrahigh water-assisted proton conductivities of 1.45 × 10(-2) S cm(-1) at 363 K/95% relative humidity and sustainable anhydrous proton conductivity of 1.1 × 10(-5) S cm(-1) at 503 K.

  14. Dense with Sense

    Science.gov (United States)

    Aletras, Anthony H.; Ingkanisorn, W. Patricia; Mancini, Christine; Arai, Andrew E.

    2005-09-01

    Displacement encoding with stimulated echoes (DENSE) with a low encoding strength phase-cycled meta-DENSE readout and a two fold SENSE acceleration ( R = 2) is described. This combination reduces total breath-hold times for increased patient comfort during cardiac regional myocardial contractility studies. Images from phantoms, normal volunteers, and a patient are provided to demonstrate the SENSE-DENSE combination of methods. The overall breath-hold time is halved while preserving strain map quality.

  15. Seismic Performance Analysis of Urban Water Supply Network%城市供水管抗震功能可靠性分析

    Institute of Scientific and Technical Information of China (English)

    李晓娟; 沈斐敏

    2014-01-01

    The dynamical change of the node flow is considered with water pressure. Leakage hydraulic model of water supply network is built in a possible earthquake. Combining with EPANET to compute network nodes actual flow and pressure,performance reliability index of low pressure is computed. Based on a second moment method, performance reliability index of water supply pipe network system under low pressure is obtained. In combination with case studies, water supply pipe network capacity is predicted and seismic performance analysis with low pressure hydraulic is gotten, which provides reference for disaster management of urban water supply networks earthquake.%考虑节点流量随节点水压的动态变化,构建地震导致渗漏的供水管网水力模型,基于EPANET计算管网节点实际流量和水压,在此基础上结合一次二阶矩方法,得到震后低压供水时管网系统的功能可靠性指标。结合实例分析预测震后管网供水能力,并进行了震后低压供水时管网功能可靠性分析,研究结果可为城市供水管网抗震防灾管理提供借鉴。

  16. Ultrashallow seismic imaging of the causative fault of the 1980, M6.9, southern Italy earthquake by pre-stack depth migration of dense wide-aperture data

    Science.gov (United States)

    Bruno, Pier Paolo; Castiello, Antonio; Improta, Luigi

    2010-10-01

    A two-step imaging procedure, including pre-stack depth migration (PSDM) and non-linear multiscale refraction tomography, was applied to dense wide-aperture data with the aim of imaging the causative fault of the 1980, M6.9, Irpinia normal faulting earthquake in a very complex geologic environment. PSDM is often ineffective for ultrashallow imaging (100 m of depth and less) of laterally heterogeneous media because of the difficulty in estimating a correct velocity model for migration. Dense wide-aperture profiling allowed us to build accurate velocity models across the fault zone by multiscale tomography and to record wide-angle reflections from steep reflectors. PSDM provided better imaging with respect to conventional post-stack depth migration, and improved definition of fault geometry and apparent cumulative displacement. Results indicate that this imaging strategy can be very effective for near-surface fault detection and characterization. Fault location and geometry are in agreement with paleoseismic data from two nearby trenches. The estimated vertical fault throw is only 29-38 m. This value, combined with the vertical slip rate determined by trench data, suggests a young age (97-127 kyr) of fault inception.

  17. Monte Carlo Volcano Seismic Moment Tensors

    Science.gov (United States)

    Waite, G. P.; Brill, K. A.; Lanza, F.

    2015-12-01

    Inverse modeling of volcano seismic sources can provide insight into the geometry and dynamics of volcanic conduits. But given the logistical challenges of working on an active volcano, seismic networks are typically deficient in spatial and temporal coverage; this potentially leads to large errors in source models. In addition, uncertainties in the centroid location and moment-tensor components, including volumetric components, are difficult to constrain from the linear inversion results, which leads to a poor understanding of the model space. In this study, we employ a nonlinear inversion using a Monte Carlo scheme with the objective of defining robustly resolved elements of model space. The model space is randomized by centroid location and moment tensor eigenvectors. Point sources densely sample the summit area and moment tensors are constrained to a randomly chosen geometry within the inversion; Green's functions for the random moment tensors are all calculated from modeled single forces, making the nonlinear inversion computationally reasonable. We apply this method to very-long-period (VLP) seismic events that accompany minor eruptions at Fuego volcano, Guatemala. The library of single force Green's functions is computed with a 3D finite-difference modeling algorithm through a homogeneous velocity-density model that includes topography, for a 3D grid of nodes, spaced 40 m apart, within the summit region. The homogenous velocity and density model is justified by long wavelength of VLP data. The nonlinear inversion reveals well resolved model features and informs the interpretation through a better understanding of the possible models. This approach can also be used to evaluate possible station geometries in order to optimize networks prior to deployment.

  18. Simulations of a Microearthquake Network

    Science.gov (United States)

    Valtonen, O.; Uski, M.; Korja, A.; Tiira, T.; Kortström, J.

    2012-04-01

    Sites of vulnerable facilities, such as power plants, are required to be evaluated and monitored for possible earthquakes. Seismic networks having a recording capability for microearthquakes are well suited for acquiring more detailed information on local seismicity. When a dense, local seismic network is set up, numerous microearthquakes are expected to be recorded within a relatively short time period. Thus seismotectonic interpretation and seismic hazard evaluation of the area can be improved with the accurately locatable earthquakes recorded by the microearthquake network. This study gives an example of simulations of a local microearthquake network centred around a future power plant -site. The site area is characterised by low intraplate seismicity, with earthquake magnitudes rarely exceeding 4.0. The network is required to fulfil the preconditions of azimuthal coverage better than 180° and automatic event location capability down to ML~0 within the study area. Automatic event detection capability is simulated based on a relationship derived between event magnitude and maximum observation distance. The azimuthal coverage and the threshold magnitude are then computed for different station configurations and the results are presented as contour maps. An optimal configuration of ten seismograph stations is proposed for further on-site research. The threshold magnitude within the study area and the annual number of earthquakes detected by the network are estimated. Also the automatic earthquake location accuracy for horizontal coordinates and depth is approximated. Location accuracy can be further improved by the application of local velocity models and relative location schemes. Modifications to the optimal configuration are expected in the deployment phase, because the area is surrounded by industrial noise sources.

  19. Design and Implementation of a Wireless Sensor Network of GPS-enabled Seismic Sensors for the Study of Glaciers and Ice Sheets

    Science.gov (United States)

    Bilen, S. G.; Anandakrishnan, S.; Urbina, J. V.

    2012-12-01

    In an effort to provide new and improved geophysical sensing capabilities for the study of ice sheets in Antarctica and Greenland, or to study mountain glaciers, we are developing a network of wirelessly interconnected seismic and GPS sensor nodes (called "geoPebbles"), with the primary objective of making such instruments more capable and cost effective. We describe our design methodology, which has enabled us to develop these state-of-the art sensors using commercial-off-the-shelf hardware combined with custom-designed hardware and software. Each geoPebble is a self-contained, wirelessly connected sensor for collecting seismic measurements and position information. Each node is built around a three-component seismic recorder, which includes an amplifier, filter, and 24-bit analog-to-digital card that can sample up to 10 kHz. Each unit also includes a microphone channel to record the ground-coupled airwave. The timing for each node is available through a carrier-phase measurement of the L1 GPS signal at an absolute accuracy of better than a microsecond. Each geoPebble includes 16 GB of solid-state storage, wireless communications capability to a central supervisory unit, and auxiliary measurements capability (up to eight 10-bit channels at low sample rates). We will report on current efforts to test this new instrument and how we are addressing the challenges imposed by the extreme weather conditions on the Antarctic continent. After fully validating its operational conditions, the geoPebble system will be available for NSF-sponsored glaciology research projects. Geophysical experiments in the polar region are logistically difficult. With the geoPebble system, the cost of doing today's experiments (low-resolution, 2D) will be significantly reduced, and the cost and feasibility of doing tomorrow's experiments (integrated seismic, positioning, 3D, etc.) will be reasonable. Sketch of an experiment with geoPebbles scattered on the surface of the ice sheet. The seismic

  20. Atoms in dense plasmas

    Energy Technology Data Exchange (ETDEWEB)

    More, R.M.

    1986-01-01

    Recent experiments with high-power pulsed lasers have strongly encouraged the development of improved theoretical understanding of highly charged ions in a dense plasma environment. This work examines the theory of dense plasmas with emphasis on general rules which govern matter at extreme high temperature and density. 106 refs., 23 figs.

  1. Quantum dense key distribution

    CERN Document Server

    Degiovanni, I P; Castelletto, S; Rastello, M L; Bovino, F A; Colla, A M; Castagnoli, G C

    2004-01-01

    This paper proposes a new protocol for quantum dense key distribution. This protocol embeds the benefits of a quantum dense coding and a quantum key distribution and is able to generate shared secret keys four times more efficiently than BB84 one. We hereinafter prove the security of this scheme against individual eavesdropping attacks, and we present preliminary experimental results, showing its feasibility.

  2. A Review of Seismicity in 2008

    Institute of Scientific and Technical Information of China (English)

    Li Gang; Liu Jie; Yu Surong

    2009-01-01

    @@ 1 SURVEY OF GLOBE SEISMICITY IN 2008 A total of 19 strong earthquakes with Ms≥7.0 occurred in the world in 2008 according to the Chinese Seismic Station Network (Table 1 ). The strongest earthquake was the Wenchuan earthquake with Ms8.0 on May 12,2008 (Fig.1). Earthquake frequency was apparently lower and the energy release remarkably attenuated in 2008, compared to seismicity in 2007. The characteristics of seismicity are as follows:

  3. Planning the improvement of seismic monitoring in a volcanic supersite: experience on Mt. Etna

    Science.gov (United States)

    D'Alessandro, Antonino; Scarfi, Luciano; Scaltrito, Antonio; Aiesi, Giampiero; Di Prima, Sergio; Ferrari, Ferruccio; Rapisarda, Salvatore

    2013-04-01

    Etna is one of the most active volcanoes in the world and one of the most intriguing natural laboratories for the understanding of eruptive processes and lava uprising in basalt-type volcanic environments; indeed, it is considered, by the scientific international community, together with the Vesuvius and the Hawaiian Islands, as a volcanic supersite. Its activity is continuously monitored by the Osservatorio Etneo of the Istituto Nazionale di Geofisica e Vulcanologia (INGV), by means of an array of integrated multidisciplinary techniques. In particular, Etna seismicity is recorded by a dense local seismic network (ESN- Etna Seismic Network), which, nowadays, consists of about 40 real-time seismic stations, many of which equipped with broadband velocity and accelerometer sensors. The data are analyzed routinely in detail by the Osservatorio Etneo staff, producing daily and periodic reports and bulletins of the earthquakes located in the whole Sicily and southern Calabria region. In the last decades, seismological observations provided important information on both the dynamics and internal structure of the volcano, in addition to their interaction with the regional tectonic structures. In the last year, in the framework of the VULCAMED project, an INGV workgroup has taken on the task of developing the existing seismic network through the installation of new measurement stations. By considering the spatial distribution of earthquakes in the area, the presence of structures known as seismically active and through extensive geological-geophysical surveys, ten potential new sites were identified. In the following months, some of these sites will complement the existing network. The choice of optimal sites must clearly be made through a careful analysis of environmental noise, of the possible logistics, technical and broadcast problems, but must also take into account the geometry of the existing seismic network. For this purpose, we applied the Seismic Network

  4. Multiscale seismic tomography and mantle dynamics

    Science.gov (United States)

    Zhao, Dapeng

    2010-05-01

    ; Zhao, 2004). Evidence also shows that arc magma and slab dehydration may also contribute to the generation of various types of earthquakes in subduction zones (Zhao et al., 2002). Most of the slab materials in NW Pacific regions are stagnant in the mantle transition zone before finally collapsing down to the CMB as a result of large gravitational instability from phase transitions. The active intraplate volcanoes in NE Asia continent (such as Changbai and Wudalianchi volcanoes) are not plume-related hotspots, but are a kind of back-arc volcanoes whose formation was closely related to the deep subduction of the Pacific slab and its stagnancy in the mantle transition zone (Zhao, 2004; Zhao et al., 2009). The origin of the active Tengchong volcano in SW China is related to the subduction of the Burma microplate (Huang and Zhao, 2006; Zhao, 2009). The Philippine Sea slab is subducting aseismically down to about 500 km depth (Abdelwahed and Zhao, 2007; Zhao, 2009). The Apollo seismic data (1969-1977) are used to estimate P and S wave tomography down to 1000 km depth under the near-side of the Moon, which shows a correlation between the lateral heterogeneity in the lunar mantle and distribution of deep moonquakes (Zhao et al., 2008). The non-uniform nature of the current distribution of seismic stations and earthquakes on Earth requires a multiscale approach to seismic imaging. Regions that are covered densely by stations and/or seismicity can be imaged with a high resolution by using local tomography, while poorly instrumented regions can only be imaged roughly by global or large-scale regional tomography. This situation will last for quite a long time. A thorough understanding of the seismic structure and deep Earth dynamics will only be achieved by a combination of more effective seismic imaging techniques and dense coverage of global seismic networks, particularly in the oceans. References Abdelwahed, M., D. Zhao (2007) Deep structure of the Japan subduction zone. Phys

  5. Retrieving impulse response function amplitudes from the ambient seismic field

    Science.gov (United States)

    Viens, Loïc; Denolle, Marine; Miyake, Hiroe; Sakai, Shin'ichi; Nakagawa, Shigeki

    2017-07-01

    Seismic interferometry is now widely used to retrieve the impulse response function of the Earth between two distant seismometers. The phase information has been the focus of most passive imaging studies, as conventional seismic tomography uses traveltime measurements. The amplitude information, however, is harder to interpret because it strongly depends on the distribution of ambient seismic field sources and on the multitude of processing methods. Our study focuses on the latter by comparing the amplitudes of the impulse response functions calculated between seismic stations in the Kanto sedimentary basin, Japan, using several processing techniques. This region provides a unique natural laboratory to test the reliability of the amplitudes with complex wave propagation through the basin, and dense observations from the Metropolitan Seismic Observation network. We compute the impulse response functions using the cross correlation, coherency and deconvolution techniques of the raw ambient seismic field and the cross correlation of 1-bit normalized data. To validate the amplitudes of the impulse response functions, we use a shallow Mw 5.8 earthquake that occurred on the eastern edge of Kanto Basin and close to a station that is used as the virtual source. Both S and surface waves are retrieved in the causal part of the impulse response functions computed with all the different techniques. However, the amplitudes obtained from the deconvolution method agree better with those of the earthquake. Despite the expected wave attenuation due to the soft sediments of the Kanto Basin, seismic amplification caused by the basin geometry dominates the amplitudes of S and surface waves and is captured by the ambient seismic field. To test whether or not the anticausal part of the impulse response functions from deconvolution also contains reliable amplitude information, we use another virtual source located on the western edge of the basin. We show that the surface wave amplitudes

  6. Picking vs Waveform based detection and location methods for induced seismicity monitoring

    Science.gov (United States)

    Grigoli, Francesco; Boese, Maren; Scarabello, Luca; Diehl, Tobias; Weber, Bernd; Wiemer, Stefan; Clinton, John F.

    2017-04-01

    Microseismic monitoring is a common operation in various industrial activities related to geo-resouces, such as oil and gas and mining operations or geothermal energy exploitation. In microseismic monitoring we generally deal with large datasets from dense monitoring networks that require robust automated analysis procedures. The seismic sequences being monitored are often characterized by very many events with short inter-event times that can even provide overlapped seismic signatures. In these situations, traditional approaches that identify seismic events using dense seismic networks based on detections, phase identification and event association can fail, leading to missed detections and/or reduced location resolution. In recent years, to improve the quality of automated catalogues, various waveform-based methods for the detection and location of microseismicity have been proposed. These methods exploit the coherence of the waveforms recorded at different stations and do not require any automated picking procedure. Although this family of methods have been applied to different induced seismicity datasets, an extensive comparison with sophisticated pick-based detection and location methods is still lacking. We aim here to perform a systematic comparison in term of performance using the waveform-based method LOKI and the pick-based detection and location methods (SCAUTOLOC and SCANLOC) implemented within the SeisComP3 software package. SCANLOC is a new detection and location method specifically designed for seismic monitoring at local scale. Although recent applications have proved an extensive test with induced seismicity datasets have been not yet performed. This method is based on a cluster search algorithm to associate detections to one or many potential earthquake sources. On the other hand, SCAUTOLOC is more a "conventional" method and is the basic tool for seismic event detection and location in SeisComp3. This approach was specifically designed for

  7. Observational Studies of Earthquake Preparation and Generation to Mitigate Seismic Risks in Mines

    Science.gov (United States)

    Durrheim, R. J.; Ogasawara, H.; Nakatani, M.; Milev, A.; Cichowicz, A.; Kawakata, H.; Yabe, Y.; Murakami, O.; Naoi, M. M.; Moriya, H.; Satoh, T.

    2011-12-01

    We provide a status report on a 5-year project to monitor in-situ fault instability and strong motion in South African gold mines. The project has two main aims: (1) To learn more about earthquake preparation and generation mechanisms by deploying dense arrays of high-sensitivity sensors within rock volumes where mining is likely to induce significant seismic activity. (2) To upgrade the South African national surface seismic network in the mining districts. This knowledge will contribute to efforts to upgrade schemes of seismic hazard assessment and to limit and mitigate the seismic risks in deep mines. As of 31 July 2011, 46 boreholes totalling 1.9 km in length had been drilled at project sites at Ezulwini, Moab-Khotsong and Driefontein gold mines. Several dozen more holes are still to be drilled. Acoustic emission sensors, strain- and tiltmeters, and controlled seismic sources are being installed to monitor the deformation of the rock mass, the accumulation of damage during the preparation phase, and changes in dynamic stress as the rupture front propagates. These data will be integrated with measurements of stope closure, stope strong motion, seismic data recorded by the mine-wide network, and stress modelling. Preliminary results will be reported at AGU meeting. The project is endorsed by the Japan Science and Technology Agency (JST), Japan International Cooperation Agency (JICA) and the South African government. It is funded by the JST-JICA program for Science and Technology Research Partnership for Sustainable development (SATREPS, the Council for Scientific and Industrial Research (CSIR), the Council for Geoscience, the University of the Witwatersrand and the Department of Science and Technology. The contributions of Seismogen CC, OHMS Ltd, AnglogoldAshanti Rock Engineering Applied Research Group, First Uranium, the Gold Fields Seismic Department and the Institute of Mine Seismology are gratefully acknowledged.

  8. Seismic facies; Facies sismicas

    Energy Technology Data Exchange (ETDEWEB)

    Johann, Paulo Roberto Schroeder [PETROBRAS, Rio de Janeiro, RJ (Brazil). Exploracao e Producao Corporativo. Gerencia de Reservas e Reservatorios]. E-mail: johann@petrobras.com.br

    2004-11-01

    The method presented herein describes the seismic facies as representations of curves and vertical matrixes of the lithotypes proportions. The seismic facies are greatly interested in capturing the spatial distributions (3D) of regionalized variables, as for example, lithotypes, sedimentary facies groups and/ or porosity and/or other properties of the reservoirs and integrate them into the 3D geological modeling (Johann, 1997). Thus when interpreted as curves or vertical matrixes of proportions, seismic facies allow us to build a very important tool for structural analysis of regionalized variables. The matrixes have an important application in geostatistical modeling. In addition, this approach provides results about the depth and scale of the wells profiles, that is, seismic data is integrated to the characterization of reservoirs in depth maps and in high resolution maps. The link between the different necessary technical phases involved in the classification of the segments of seismic traces is described herein in groups of predefined traces of two approaches: a) not supervised and b) supervised by the geological knowledge available on the studied reservoir. The multivariate statistical methods used to obtain the maps of the seismic facies units are interesting tools to be used to provide a lithostratigraphic and petrophysical understanding of a petroleum reservoir. In the case studied these seismic facies units are interpreted as representative of the depositional system as a part of the Namorado Turbiditic System, Namorado Field, Campos Basin.Within the scope of PRAVAP 19 (Programa Estrategico de Recuperacao Avancada de Petroleo - Strategic Program of Advanced Petroleum Recovery) some research work on algorithms is underway to select new optimized attributes to apply seismic facies. One example is the extraction of attributes based on the wavelet transformation and on the time-frequency analysis methodology. PRAVAP is also carrying out research work on an

  9. Seismic wavefield imaging in the Tokyo metropolitan area, Japan, based on the replica exchange Monte Carlo method

    Science.gov (United States)

    Kano, Masayuki; Nagao, Hiromichi; Nagata, Kenji; Ito, Shin-ichi; Sakai, Shin'ichi; Nakagawa, Shigeki; Hori, Muneo; Hirata, Naoshi

    2017-04-01

    Earthquakes sometimes cause serious disasters not only directly by ground motion itself but also secondarily by infrastructure damage, particularly in densely populated urban areas. To reduce these secondary disasters, it is important to rapidly evaluate seismic hazards by analyzing the seismic responses of individual structures due to the input ground motions. Such input motions are estimated utilizing an array of seismometers that are distributed more sparsely than the structures. We propose a methodology that integrates physics-based and data-driven approaches in order to obtain the seismic wavefield to be input into seismic response analysis. This study adopts the replica exchange Monte Carlo (REMC) method, which is one of the Markov chain Monte Carlo (MCMC) methods, for the estimation of the seismic wavefield together with one-dimensional local subsurface structure and source information. Numerical tests show that the REMC method is able to search the parameters related to the source and the local subsurface structure in broader parameter space than the Metropolis method, which is an ordinary MCMC method. The REMC method well reproduces the seismic wavefield consistent with the true one. In contrast, the ordinary kriging, which is a classical data-driven interpolation method for spatial data, is hardly able to reproduce the true wavefield even at low frequencies. This indicates that it is essential to take both physics-based and data-driven approaches into consideration for seismic wavefield imaging. Then the REMC method is applied to the actual waveforms observed by a dense seismic array MeSO-net (Metropolitan Seismic Observation network), in which 296 accelerometers are continuously in operation with several kilometer intervals in the Tokyo metropolitan area, Japan. The estimated wavefield within a frequency band of 0.10-0.20 Hz is absolutely consistent with the observed waveforms. Further investigation suggests that the seismic wavefield is successfully

  10. Joint Interpretation of Multi-parameter Tomographic Models (e.g., Seismic P and S Velocity, Anisotropy, Attenuation): A Neural Network Approach

    Science.gov (United States)

    Bauer, K.

    2008-12-01

    Seismic tomography can provide a set of models which represent different properties of the same target region. A typical example is the development of coincident P and S velocity cross sections from travel time tomography. Other applications may include additional determination of attenuation and anisotropy. Self-organizing maps (SOM) are powerful neural network techniques to classify and interpret multi-attribute data sets. The coincident tomographic images are translated to a set of data vectors in order to train a Kohonen layer. The total gradient of the model vectors is determined for the trained SOM and a watershed segmentation algorithm is used to visualize and map the lithological clusters with well-defined seismic signatures. The principal working flow is demonstrated for a synthetic data set. Further examples include P and S velocity tomography across a sub-volcanic ring complex in Namibia, and combination of velocity, anisotropy, and attenuation tomography to characterize gas hydrate bearing sediments in the Mackenzie Delta, NW Canada.

  11. A high-resolution ambient seismic noise model for Europe

    Science.gov (United States)

    Kraft, Toni

    2014-05-01

    In the past several years, geological energy technologies receive growing attention and have been initiated in or close to urban areas. Some of these technologies involve injecting fluids into the subsurface (e.g., oil and gas development, waste disposal, and geothermal energy development) and have been found or suspected to cause small to moderate sized earthquakes. These earthquakes, which may have gone unnoticed in the past when they occurred in remote sparsely populated areas, are now posing a considerable risk for the public acceptance of these technologies in urban areas. The permanent termination of the EGS project in Basel, Switzerland after a number of induced ML~3 (minor) earthquakes in 2006 is one prominent example. It is therefore essential to the future development and success of these geological energy technologies to develop strategies for managing induced seismicity and keeping the size of induced earthquake at a level that is acceptable to all stakeholders. Most guidelines and recommendations on induced seismicity published since the 1970ies conclude that an indispensable component of such a strategy is the establishment of seismic monitoring in an early stage of a project. This is because an appropriate seismic monitoring is the only way to detect and locate induced microearthquakes with sufficient certainty to develop an understanding of the seismic and geomechanical response of the reservoir to the geotechnical operation. In addition, seismic monitoring lays the foundation for the establishment of advanced traffic light systems and is therefore an important confidence building measure towards the local population and authorities. Due to this development an increasing number of seismic monitoring networks are being installed in densely populated areas with strongly heterogeneous, and unfavorable ambient noise conditions. This poses a major challenge on the network design process, which aims to find the sensor geometry that optimizes the

  12. Co-seismic Displacement of the 25 April 2015 Nepal Ms8.1 Earthquake Effects on the China's Mount Everest Area Derived from GNSS Data Using the PPP Network Solution by UPD Ambiguity Fixed Technology

    Directory of Open Access Journals (Sweden)

    WANG Hu

    2017-05-01

    Full Text Available Co-seismic displacement of the GNSS stations in areas surrounding the earthquake are accurately obtained using UPD (uncalibrated phase delay ambiguity fixed technology without having to consider the effects of earthquake on the GNSS baseline calculating. During the 25 April 2015 Nepal Ms8.1 seismological GNSS data from the National Datum Engineering of China, the Crustal Movement Observation Network of China and the Mount Everest GNSS stations are calculated using UPD ambiguity fixed technology, then co-seismic displacement field of the China's Mount Everest and surrounding areas are derived and analyzed. Firstly, the UPD of wide-lane and narrow lane are estimated using the uniform distribution National GNSS and the surrounding IGS stability stations away from the seismic zones. Secondly, the float carrier phase ambiguities from each GNSS station in the seismic zones are fixed using the UPD of wide-lane and narrow until all the GNSS station are completed. Then whole network GNSS station coordinates are just only estimated using the accurately phase observations without ambiguity form all the GNSS stations. The GNSS data from IGS stations are used to verify the precision of the above method. Finally, Co-seismic displacement field of the China's Mount Everest are derived and particularly analyzed. From 2005 to 2015 year the displacement of China's Mount Everest are showed. Meanwhlile, this paper provides a precise and reliable method to monitor earthquake.

  13. Past, present and future improvements of the efficiency of the local seismic network of the geothermal reservoir of Casaglia, Ferrara (North Italy)

    Science.gov (United States)

    Abu Zeid, Nasser; Dall'olio, Lorella; Bignardi, Samuel; Santarato, Giovanni

    2017-04-01

    The microseismic network of Ferrara was established, in the beginning of 1990 and started its monitoring activity few months before the start of reservoir exploitation, for residential and industrial heating purposes, of the Casaglia geothermal site characterised by fluids of 100 °C: February 1990. The purpose was to monitor the natural seismicity so as to be able to discriminate it from possible induced ones due to exploitation activities which consists of a closed loop system composed of three boreholes: one for re-injection "Casaglia001" and two for pumping hot fluids. The microseismic network started, and still today, its monitoring activities with five vertical 2 Hz and one 3D seismometers model Mark products L4A/C distributed at reciprocal distances of about 5 to 7 km around the reservoir covering an area of 100 km^2. Since its beginning the monitoring activities proceeded almost continuously. However, due to technological limitations of the network HW, although sufficient to capture small magnitude earthquakes (near zero), the exponential increase of anthropogenic and electromagnetic noise degraded the monitoring capability of the network especially for small ones. To this end and as of 2007, the network control passed to the University of Ferrara, Department of Physics and Earth Sciences, the network HD for digitalisation and continuous data transmission was replaced with GURALP equipment's.. Since its establishment, few earthquakes occurred in the geothermal area with Ml 5 km. However, following the Emilia sequence of 2012, and as an example we present and discuss the local earthquake (Ml 2.5) occurred in Casaglia (Ferrara, Italy) on September 3, 2015, in the vicinity of the borehole Casaglia1 used for fluid re-injection. In this case, both INGV national network and OGS NE-Italy regional networks provided similar information, with hypocenter at about 5-6 km North of the reservoir edge and about 16 km of depth. However, the same event, relocated by using

  14. Hydrocarbon Induced Seismicity in Northern Netherlands

    Science.gov (United States)

    Dost, B.; Spetzler, J.; Kraaijpoel, D.; Caccavale, M.

    2015-12-01

    The northern Netherlands has been regarded aseismic until the first earthquakes started in 1986, after more than 25 years of gas production from the one of the largest on-shore gas-fields in the World, the Groningen field, and accompanying smaller gas fields. Due to the shallow sources, at approximately 3 km depth, even small magnitude events cause considerable damage to buildings in the region. Since the largest recorded event in the Groningen field in 2012 with ML= 3,6, more than 30.000 damage claims were received by the mining company. Since 1995 a seismic monitoring network is operational in the region, consisting of 8 200m deep boreholes with 4 levels of 3C 4,5 Hz geophones. The network was designed for a location threshold of ML=1,5 over a 40x 80 km region. Average station separation was 20 km. At the end of 2014, 245 events have been recorded with ML ≥ 1,5, out of a total of 1100. Since 2003 a new mining law is in place in the Netherlands, which requires for each gas field in production a seismic risk analysis. Initially, due to the small number of events for specific fields, a general hazard (PSHA) was calculated for all gas-fields and a maximum magnitude was estimated at ML = 3,9. Since 2003 an increase in the activity rate is observed for the Groningen field, leading to the development of new models and a re-assessment of parameters like the maximum magnitude. More recently these models are extended to seismic risk, where also the fragility of the regional buildings is taken into account. Understanding the earthquake process is essential in taking mitigation measures. Continued research is focused on reducing the uncertainties in the hazard and risk models and is accompanied by an upgrade of the monitoring network. In 2014 a new dense network was designed to monitor the Groningen gas field in this region (30*40 km) with an average separation of 4 km. This allows an improved location threshold (M>0,5) and location accuracy (50-100m). A detailed P- and S

  15. Scattering of high-frequency seismic waves caused by irregular surface topography and small-scale velocity inhomogeneity

    Science.gov (United States)

    Takemura, Shunsuke; Furumura, Takashi; Maeda, Takuto

    2015-04-01

    Based on 3-D finite difference method simulations of seismic wave propagation, we examined the processes by which the complex, scattered high-frequency (f > 1 Hz) seismic wavefield during crustal earthquakes is developed due to heterogeneous structure, which includes small-scale velocity inhomogeneity in subsurface structure and irregular surface topography on the surface, and compared with observations from dense seismic networks in southwestern Japan. The simulations showed the process by which seismic wave scattering in the heterogeneous structure develops long-duration coda waves and distorts the P-wave polarization and apparent S-wave radiation pattern. The simulations revealed that scattering due to irregular topography is significant only near the station and thus the topographic scattering effects do not accumulate as seismic waves propagate over long distances. On the other hand, scattering due to velocity inhomogeneity in the subsurface structure distorts the seismic wavefield gradually as seismic waves propagate. The composite model, including both irregular topography and velocity inhomogeneity, showed the combined effects. Furthermore, by introducing irregular topography, the effects of seismic wave scattering on both body and coda waves were stronger than in the model with velocity inhomogeneity alone. Therefore, to model the high-frequency seismic wavefield, both topography and velocity inhomogeneity in the subsurface structure should be taken into account in the simulation model. By comparing observations with the simulations including topography, we determined that the most preferable small-scale velocity heterogeneity model for southwestern Japan is characterized by the von Kármán power spectral density function with correlation distance a = 5 km, rms value of fluctuation ɛ = 0.07 and decay order κ = 0.5. We also demonstrated that the relative contribution of scattering due to the topography of southwestern Japan is approximately 12 per cent.

  16. A microseismic study in a low seismicity area of Italy: the Città di Castello 2000-2001 experiment

    Directory of Open Access Journals (Sweden)

    P. Augliera

    2003-06-01

    Full Text Available Recent seismological studies contribute to better understand the first order characteristics of earthquake occurrence in Italy, identifying the potential sites for moderate to large size earthquakes. Ad hoc passive seismic experiments performed in these areas provide information to focus on the location and geometry of the active faults more closely. This information is relevant for assessing seismic hazard and for accurately constraining possible ground shaking scenarios. The area around the Città di Castello Basin, in the Northern Apennines (Central Italy, is characterized by the absence of instrumental seismicity (M > 2.5, it is adjacent to faults ruptured by recent and historical earthquakes. To better understand the tectonics of the area, we installed a dense network of seismic stations equipped with broadband and short period seismometers collecting data continuously for 8 months (October 2000-May 2001. The processing of ~ 900 Gbyte of data revealed a consistent background seismicity consisting of very low magnitude earthquakes (ML < 3.2. Preliminary locations of about 2200 local earthquakes show that the area can be divided into two regions with different seismic behaviour: an area to the NW, in between Sansepolcro and Città di Castello, where seismicity is not present. An area toward the SE, in between Città di Castello, Umbertide and Gubbio, where we detected a high microseismicity activity. These findings suggest a probable different mechanical behaviour of the two regions. In the latter area, the seismicity is confined between 0 and 8 km of depth revealing a rather well defined east-dipping, low angle fault 35 km wide that cuts through the entire upper crust down to 12-15 km depth. Beside an apparent structural complexity, fault plane solutions of background seismicity reveal a homogeneous pattern of deformation with a clear NE-SW extension.

  17. Seismicity in Northern Germany

    Science.gov (United States)

    Bischoff, Monika; Gestermann, Nicolai; Plenefisch, Thomas; Bönnemann, Christian

    2013-04-01

    Northern Germany is a region of low tectonic activity, where only few and low-magnitude earthquakes occur. The driving tectonic processes are not well-understood up to now. In addition, seismic events during the last decade concentrated at the borders of the natural gas fields. The source depths of these events are shallow and in the depth range of the gas reservoirs. Based on these observations a causal relationship between seismicity near gas fields and the gas production is likely. The strongest of these earthquake had a magnitude of 4.5 and occurred near Rotenburg in 2004. Also smaller seismic events were considerably felt by the public and stimulated the discussion on the underlying processes. The latest seismic event occurred near Langwedel on 22nd November 2012 and had a magnitude of 2.8. Understanding the causes of the seismicity in Northern Germany is crucial for a thorough evaluation. Therefore the Seismological Service of Lower Saxony (NED) was established at the State Office for Mining, Energy and Geology (LBEG) of Lower Saxony in January 2013. Its main task is the monitoring and evaluation of the seismicity in Lower Saxony and adjacent areas. Scientific and technical questions are addressed in close cooperation with the Seismological Central Observatory (SZO) at the Federal Institute for Geosciences and Natural Resources (BGR). The seismological situation of Northern Germany will be presented. Possible causes of seismicity are introduced. Rare seismic events at greater depths are distributed over the whole region and probably are purely tectonic whereas events in the vicinity of natural gas fields are probably related to gas production. Improving the detection threshold of seismic events in Northern Germany is necessary for providing a better statistical basis for further analyses answering these questions. As a first step the existing seismic network will be densified over the next few years. The first borehole station was installed near Rethem by BGR

  18. Landslide seismic magnitude

    Science.gov (United States)

    Lin, C. H.; Jan, J. C.; Pu, H. C.; Tu, Y.; Chen, C. C.; Wu, Y. M.

    2015-11-01

    Landslides have become one of the most deadly natural disasters on earth, not only due to a significant increase in extreme climate change caused by global warming, but also rapid economic development in topographic relief areas. How to detect landslides using a real-time system has become an important question for reducing possible landslide impacts on human society. However, traditional detection of landslides, either through direct surveys in the field or remote sensing images obtained via aircraft or satellites, is highly time consuming. Here we analyze very long period seismic signals (20-50 s) generated by large landslides such as Typhoon Morakot, which passed though Taiwan in August 2009. In addition to successfully locating 109 large landslides, we define landslide seismic magnitude based on an empirical formula: Lm = log ⁡ (A) + 0.55 log ⁡ (Δ) + 2.44, where A is the maximum displacement (μm) recorded at one seismic station and Δ is its distance (km) from the landslide. We conclude that both the location and seismic magnitude of large landslides can be rapidly estimated from broadband seismic networks for both academic and applied purposes, similar to earthquake monitoring. We suggest a real-time algorithm be set up for routine monitoring of landslides in places where they pose a frequent threat.

  19. Kinematics, seismotectonics and seismic potential of the eastern sector of the European Alps from GPS and seismic deformation data

    Science.gov (United States)

    Serpelloni, E.; Vannucci, G.; Anderlini, L.; Bennett, R. A.

    2016-10-01

    We present a first synoptic view of the seismotectonics and kinematics of the eastern sector of the European Alps using geodetic and seismological data. The study area marks the boundary between the Adriatic and the Eurasian plates, through a wide zone of deformation including a variety of tectonic styles within a complex network of crustal and lithospheric faults. A new dense GPS velocity field, new focal mechanisms and seismic catalogues, with uniformly re-calibrated magnitudes (from 1005), are used to estimate geodetic and seismic deformation rates and to develop interseismic kinematic and fault locking models. Kinematic indicators from seismological and geodetic data are remarkably consistent at different spatial scales. In addition to large-scale surface motion, GPS velocities highlight more localized deformation features revealing a complex configuration of interacting tectonic blocks, for which new constraints are provided in this work accounting for elastic strain build up at faults bonding rotating blocks. The geodetic and seismological data highlight two belts of higher deformation rates running WSW-ENE along the Eastern Southern Alps (ESA) in Italy and E-W in Slovenia, where deformation is more distributed. The highest geodetic strain-rates are observed in the Montello-Cansiglio segment of the ESA thrust front, for which the higher density of the GPS network provides indications of limited interseismic locking. Most of the dextral shear between the Eastern Southern Alps and the Eastern Alps blocks is accommodated along the Fella-Sava fault rather than the Periadriatic fault. In northern Croatia and Slovenia geodetic and seismological data allow constraining the kinematics of the active structures bounding the triangular-shaped region encompassing the Sava folds, which plays a major role in accommodating the transition from Adria- to Pannonian-like motion trends. The analysis of the seismic and geodetic moment rates provides new insights into the seismic

  20. Modelling dense relational data

    DEFF Research Database (Denmark)

    Herlau, Tue; Mørup, Morten; Schmidt, Mikkel Nørgaard;

    2012-01-01

    Relational modelling classically consider sparse and discrete data. Measures of influence computed pairwise between temporal sources naturally give rise to dense continuous-valued matrices, for instance p-values from Granger causality. Due to asymmetry or lack of positive definiteness they are no......Relational modelling classically consider sparse and discrete data. Measures of influence computed pairwise between temporal sources naturally give rise to dense continuous-valued matrices, for instance p-values from Granger causality. Due to asymmetry or lack of positive definiteness...... they are not naturally suited for kernel K-means. We propose a generative Bayesian model for dense matrices which generalize kernel K-means to consider off-diagonal interactions in matrices of interactions, and demonstrate its ability to detect structure on both artificial data and two real data sets....

  1. Data quality of seismic records from the Tohoku, Japan earthquake as recorded across the Albuquerque Seismological Laboratory networks

    Science.gov (United States)

    Ringler, A.T.; Gee, L.S.; Marshall, B.; Hutt, C.R.; Storm, T.

    2012-01-01

    Great earthquakes recorded across modern digital seismographic networks, such as the recent Tohoku, Japan, earthquake on 11 March 2011 (Mw = 9.0), provide unique datasets that ultimately lead to a better understanding of the Earth's structure (e.g., Pesicek et al. 2008) and earthquake sources (e.g., Ammon et al. 2011). For network operators, such events provide the opportunity to look at the performance across their entire network using a single event, as the ground motion records from the event will be well above every station's noise floor.

  2. The seismic network design based on DMVPN access%基于DMVPN接入地震行业网络设计

    Institute of Scientific and Technical Information of China (English)

    金鹏; 孙庆文; 李永红; 杨玉永; 李希亮

    2015-01-01

    介绍山东省地震行业网络建设中县级地震台网使用的动态多点VPN接入方式,对中心站点和分支站点的配置进行说明,分析DMVPN相较于其他VPN的优势。作为一种经济有效的地震行业网络接入方式,DMVPN具有较强的推广、应用价值。%This paper briefl y introduces using DMVPN(Dynamic Multipoint VPN) method to construction county-level earthquake industry network in Shandong Province. The confi guration of central site and branch site was in detail analyzes and was given the advantages of DMVPN to compared with other VPN. As a kind of economic and effective seismic network access methods,DMVPN has a strong promotion and application value.

  3. Shallow seismogenic zone detected from an offshore-onshore temporary seismic network in the Esmeraldas area (northern Ecuador)

    Science.gov (United States)

    Pontoise, B.; Monfret, T.

    2004-02-01

    For a given site, many factors control the seismic risk. Earthquake magnitude, hypocentral distance, rupture mechanism, site effects and site vulnerability are among the most important. This article deals with one of these factors: the depth of the seismogenic zone, in the northern Ecuadorian subduction system, beneath a highly vulnerable site, the city of Esmeraldas and its industrial complex, the Ecuadorian oil refinery and shipping terminal. To address this problem, we analyzed data from a three weeks passive seismological experiment, conducted in the spring of 1998, using 13 Ocean Bottom Seismometers and 10 portable land-stations. A preliminary interpretation of wide-angle data obtained in the fall of 2000, in the Manta area, 100 km South of the study area, unambiguously indicates the presence of a velocity inversion in the Ecuadorian margin velocity structure. This velocity inversion is characterized by a shadow-zone of ˜1 s on the record-sections, and is interpreted as the result of a velocity contrast between the upper plate structure and the sedimentary and basaltic layer II of the subducted oceanic Nazca plate. One-dimensional velocity models are deduced from these wide-angle data and are used for earthquake location in the Esmeraldas area. This highly improved the hypocentral parameter determinations. The updip limit of the seismogenic zone is found at a depth of ˜12 km, 35 km eastward of the trench, and the depth of the seismogenic zone below the Esmeraldas city is found at ˜20 km. This shallow depth of the seismogenic zone dramatically increases the seismic hazard of the area.

  4. Imaging slow slip events and their relationship to seismic slow earthquakes in southwest Japan

    Science.gov (Un