Neutron Star Dense Matter Equation of State Constraints with NICER
Bogdanov, Slavko; Arzoumanian, Zaven; Chakrabarty, Deepto; Guillot, Sebastien; Kust Harding, Alice; Ho, Wynn C. G.; Lamb, Frederick K.; Mahmoodifar, Simin; Miller, M. Coleman; Morsink, Sharon; Ozel, Feryal; Psaltis, Dimitrios; Ray, Paul S.; Riley, Tom; Strohmayer, Tod E.; Watts, Anna; Wolff, Michael Thomas; Gendreau, Keith
2017-08-01
One of the principal goals of the Neutron Star Interior Composition Explorer (NICER) is to place constraints on the dense matter equation of state through sensitive X-ray observations of neutron stars. The NICER mission will focus on measuring the masses and radii of several relatively bright, thermally-emitting, rotation-powered millisecond pulsars, by fitting models that incorporate all relevant relativistic effects and atmospheric radiation transfer processes to their periodic soft X-ray modulations. Here, we provide an overview of the targets NICER will observe and tthe technique and models that have been developed by the NICER team to estimate the masses and radii of these pulsars.
Theory of the equation of state of hot dense matter
Energy Technology Data Exchange (ETDEWEB)
Barbee, T W; Surh, M; Yang, L H
1999-07-23
Ab initio molecular dynamics calculations are adapted to treat dense plasmas for temperatures exceeding the electronic Fermi temperature. Extended electronic states are obtained in a plane wave basis by using pseudopotentials for the ion cores in the local density approximation to density functional theory. The method reduces to conventional first principles molecular dynamics at low temperatures with the expected high level of accuracy. The occurrence of thermally excited ion cores at high temperatures is treated by means of final state pseudopotentials. The method is applied to the shock compression Hugoniot equation of state for aluminum. Good agreement with experiment is found for temperatures ranging from zero through 105K.
Equation of state and opacities for warm dense matter
Directory of Open Access Journals (Sweden)
Cotelo Manuel
2013-11-01
Full Text Available This work presents recent developments in the calculation of opacity and equation of state tables suitable for including in the radiation hydrodynamic code ARWEN [1] to study processes like ICF or X-ray secondary sources. For these calculations we use the code bigbart to compute opacities in LTE conditions, with self-consistent data generated with the Flexible Atomic Code (FAC [2]. Non-LTE effects are approximately taken into account by means of the new RADIOM model developed in [3], which makes use of existing LTE data tables. We use the screened-hydrogenic model [4] to derive the Equation of State (EOS using the population and energy of each level.
Spectral Equations-Of-State Theory for Dense, Partially Ionized Matter
Energy Technology Data Exchange (ETDEWEB)
Ritchie, A B
2004-05-14
The Schroedinger equation is solved in time and space to implement a finite-temperature equation-of-state theory for dense, partially ionized matter. The time-dependent calculation generates a spectrum of quantum states. Eigenfunctions are calculated from a knowledge of the spectrum and used to calculate the electronic pressure and energy. Results are given for LID and compared with results from the INFERNO model.
The Neutron Star Mass-Radius Relation and the Equation of State of Dense Matter
Steiner, Andrew W; Brown, Edward F
2012-01-01
The equation of state (EOS) of dense matter has been a long-sought goal of nuclear physics. Equations of state generate unique mass versus radius (M-R) relations for neutron stars, the ultra-dense remnants of stellar evolution. In this work, we determine the neutron star mass-radius relation and, based on recent observations of both transiently accreting and bursting sources, we show that the radius of a 1.4 solar mass neutron star lies between 10.4 and 12.9 km, independent of assumptions about the composition of the core. We show, for the first time, that these constraints remain valid upon removal from our sample of the most extreme transient sources or of the entire set of bursting sources; our constraints also apply even if deconfined quark matter exists in the neutron star core. Our results significantly constrain the dense matter EOS and are, furthermore, consistent with constraints from both heavy-ion collisions and theoretical studies of neutron matter. We predict a relatively weak dependence of the s...
Fast rotation of neutron stars and equation of state of dense matter
Haensel, P; Bejger, M
2008-01-01
Fast rotation of compact stars (at submillisecond period) and, in particular, their stability, are sensitive to the equation of state (EOS) of dense matter. Recent observations of XTE J1739-285 suggest that it contains a neutron star rotating at 1122 Hz (Kaaret et al. 2007). At such rotational frequency the effects of rotation on star's structure are significant. We study the interplay of fast rotation, EOS and gravitational mass of a submillisecond pulsar. We discuss the EOS dependence of spin-up to a submillisecond period, via mass accretion from a disk in a low-mass X-ray binary.
Energy Technology Data Exchange (ETDEWEB)
Dapo, Haris
2009-01-28
The hyperon-nucleon YN low momentum effective interaction (V{sub low} {sub k}) allows for an extensive study of the behavior of hyperons in dense matter, together with an investigation of effects of the presence of hyperons on dense matter. The first step towards this goal is the construction of the matrix elements for the hyperon-nucleon low momentum potential. In order to assess the different properties of hyperons within these potentials we calculate the hyperon single-particle potentials in the Hartree-Fock approximation for all of the interactions. Their dependence on both momentum and density, is studied. The single-particle potentials are then used to determine the chemical potential of hyperons in neutron stars. For nucleonic properties, the nucleon-nucleon V{sub low} {sub k} can be used with the caveat that the calculation of the ground-state energy of symmetric nuclear matter does not correctly reproduce the properties of matter at saturation. With the nucleon-nucleon V{sub low} {sub k} one is unable to reach the densities needed for the calculation of neutron star masses. To circumvent this problem we use two approaches: in the first one, we parametrize the entire nucleonic sector. In the second one, we replace only the three-body force. The former will enable us to study neutron star masses, and the latter for studying the medium's response to the external probe. In this thesis we take the external probe to be the neutrino. By combining this parametrization with the YN V{sub low} {sub k} potential, we calculate the equation of state of equilibrated matter. Performing the calculation in the Hartree-Fock approximation at zero temperature, the concentrations of all particles are calculated. From these we can ascertain at which densities hyperons appear for a wide range of parameters. Finally, we calculate the masses of neutron stars with these concentrations. For the calculation of the medium's response to an external probe, we replace the three
Athena's Constraints on the Dense Matter Equation of State from Quiescent Low Mass X-ray Binaries
Guillot, Sebastien
2016-07-01
The study of neutron star quiescent low-mass X-ray binaries (qLMXBs) will address one of the science goals of the Athena X-ray observatory. The study of the soft X-ray thermal emission from the neutron star surface in qLMXBs is a crucial tool to place constrains on the dense matter equation of state and understand the interior structure of neutron stars. I will briefly review this method, its strengths and current weaknesses and limitations, as well as the current constraints on the equation of state from qLMXBs. The superior sensitivity of Athena will permit the acquisition of unprecedentedly high signal-to-noise spectra from these sources. It has been demonstrated that a single qLMXB, even with a high signal-to-noise spectrum, will not place useful constraints on the dense matter equation of state. However, a combination of qLMXB spectra has shown great promises of obtaining tight constraints on the equation of state. I will discuss the expected prospects for observations of qLMXBs and in particular, I will show that very tight constraints on the equation of state can be obtained from the observations of qLMXBs with the Athena X-ray observatory (even with a 10 % uncertainty on the flux calibration).
Equation of State of Dense Matter and Consequences for Neutron Stars
Directory of Open Access Journals (Sweden)
Thomas A. W.
2013-12-01
Full Text Available There is currently tremendous interest in the role of hyperons and other exotic forms of matter in neutron stars. This is particularly so following the measurement by Demorest et al. of a star with a mass almost 2 solar masses. Given that we know of no physical mechanism to stop the occurrence of hyperons at matter in beta–equilibrium above roughly 3 times nuclear matter density, we discuss the constraints on the possible maximum mass when hyperons are included in the equation of state. The discussion includes a careful assessment of the constraints from low energy nuclear properties as well as the properties of hypernuclei. The model within which these calculations are carried out is the quark-meson coupling (QMC model, which is derived starting at the quark level.
Equation of state of dense matter and the minimum mass of cold neutron stars
Haensel, P; Douchin, F
2002-01-01
Equilibrium configurations of cold neutron stars near the minimum mass are studied, using the recent equation of state SLy, which describes in a unified, physically consistent manner, both the solid crust and the liquid core of neutron stars. Results are compared with those obtained using an older FPS equation of state of cold catalyzed matter. The value of M_min\\simeq 0.09M_sun depends very weakly on the equation of state of cold catalyzed matter: it is 0.094 M_sun for the SLy model, and 0.088 M_sun for the FPS one. Central density at M_min is significantly lower than the normal nuclear density: for the SLy equation of state we get central density 1.7 10^{14} g/cm^3, to be compared with 2.3 10^{14} g/cm^3 obtained for the FPS one. Even at M_min, neutron stars have a small liquid core of radius of about 4 km, containing some 2-3% of the stellar mass. Neutron stars with 0.09 M_sun
Viscosity and equation of state of hot and dense QCD matter - ARRA portion
Energy Technology Data Exchange (ETDEWEB)
Molnar, Denes [Purdue Univ., West Lafayette, IN (United States)
2014-04-14
The Section below summarizes research activities and achievements during the first four years of the PI’s Early Career Research Project (ECRP). Two main areas have been advanced: i) radiative 3 ↔ 2 radiative transport, via development of a new computer code MPC/Grid that solves the Boltzmann transport equation in full 6+1D (3X+3V+time) on both single-CPU and parallel computers; ii) development of a self-consistent framework to convert viscous fluids to particles, and application of this framework to relativistic heavy-ion collisions, in particular, determination of the shear viscosity. Year 5 of the ECRP is under a separate award number, and therefore it has its own report document ’Final Technical Report for Year 5 of the Early Career Research Project “Viscosity and equation of state of hot and dense QCDmatter”’ (award DE-SC0008028). The PI’s group was also part of the DOE JET Topical Collaboration, a multi-institution project that overlapped in time significantly with the ECRP. Purdue achievements as part of the JET Topical Collaboration are in a separate report “Final Technical Report summarizing Purdue research activities as part of the DOE JET Topical Collaboration” (award DE-SC0004077).
Viscosity and equation of state of hot and dense QCD matter
Energy Technology Data Exchange (ETDEWEB)
Molnar, Denes [Purdue Univ., West Lafayette, IN (United States)
2016-05-25
The Section below summarizes research activities and achievements during the fifth (last) year of the PI’s Early Career Research Project (ECRP). Unlike the first four years of the project, the last year was not funded under the American Recovery and Reinvestment Act (ARRA). The ECRP advanced two main areas: i) radiative 3 ↔ 2 radiative transport, via development of a new computer code MPC/Grid that solves the Boltzmann transport equation in full 6+1D (3X+3V+time); and ii) application of relativistic hydrodynamics, via development of a self-consistent framework to convert viscous fluids to particles. In Year 5 we finalized thermalization studies with radiative gg ↔ ggg transport (Sec. 1.1.1) and used nonlinear covariant transport to assess the accuracy of fluid-to-particle conversion models (Sec. 1.1.2), calculated observables with self-consistent fluid-to- particle conversion from realistic viscous hydrodynamic evolution (Secs. 1.2.1 and 1.2.2), extended the covariant energy loss formulation to heavy quarks (Sec. 1.4.1) and studied energy loss in small systems (Sec. 1.4.2), and also investigated how much of the elliptic flow could have non- hydrodynamic origin (Sec 1.3). Years 1-4 of the ECRP were ARRA-funded and, therefore, they have their own report document ’Final Technical Report for Years 1-4 of the Early Career Research Project “Viscosity and equation of state of hot and dense QCD matter”’ (same award number DE-SC0004035). The PI’s group was also part of the DOE JET Topical Collaboration, a multi-institution project that overlapped in time significantly with the ECRP. Purdue achievements as part of the JET Top- ical Collaboration are in a separate report “Final Technical Report summarizing Purdue research activities as part of the DOE JET Topical Collaboration” (award DE-SC0004077).
Effective equation of state of hot and dense matter in nuclear collisions around FAIR energy
Directory of Open Access Journals (Sweden)
Bravina L.
2015-01-01
Full Text Available The chemical and thermal equilibration in the central zone of heavy-ion collisions at energies around FAIR is studied within two microscopic models. Two systems are utilized for the analysis: (i central cubic cell of fixed volume V = 125 fm3 and (ii expanding central area of uniformly distributed energy density. It is found that kinetic, thermal, and chemical equilibration of the expanding hadronic matter are nearly approached in both systems for the period of 10–18 fm/c. The expansion proceeds almost isentropically. The extracted equation of state (EOS in P − ɛ plane has a linear dependence P = aɛ, where a ≡ c2s slightly increases with the collision energy from 0.12 to 0.145. Linear dependencies for the EOS are found also in T − μB and T − μS planes. The characteristic kinks observed in the last two phase diagrams are linked to inelastic freeze-out in the expanding fireball.
Nättilä, J; Kajava, J J E; Suleimanov, V F; Poutanen, J
2015-01-01
The cooling phase of thermonuclear (type-I) X-ray bursts can be used to constrain the neutron star (NS) compactness by comparing the observed cooling tracks of bursts to accurate theoretical atmosphere model calculations. By applying the so-called cooling tail method, where the information from the whole cooling track is used, we constrain the mass, radius, and distance for three different NSs in low-mass X-ray binaries 4U 1702-429, 4U 1724-307, and SAX J1810.8-260. Care is taken to only use the hard state bursts where it is thought that only the NS surface alone is emitting. We then utilize a Markov chain Monte Carlo algorithm within a Bayesian framework to obtain a parameterized equation of state (EoS) of cold dense matter from our initial mass and radius constraints. This allows us to set limits on various nuclear parameters and to constrain an empirical pressure-density relation for the dense matter. Our predicted EoS results in NS radius between 10.5-12.8 km (95% confidence limits) for a mass of 1.4 $M_{...
Warm Dense Matter: An Overview
Energy Technology Data Exchange (ETDEWEB)
Kalantar, D H; Lee, R W; Molitoris, J D
2004-04-21
This document provides a summary of the ''LLNL Workshop on Extreme States of Materials: Warm Dense Matter to NIF'' which was held on 20, 21, and 22 February 2002 at the Wente Conference Center in Livermore, CA. The warm dense matter regime, the transitional phase space region between cold material and hot plasma, is presently poorly understood. The drive to understand the nature of matter in this regime is sparking scientific activity worldwide. In addition to pure scientific interest, finite temperature dense matter occurs in the regimes of interest to the SSMP (Stockpile Stewardship Materials Program). So that obtaining a better understanding of WDM is important to performing effective experiments at, e.g., NIF, a primary mission of LLNL. At this workshop we examined current experimental and theoretical work performed at, and in conjunction with, LLNL to focus future activities and define our role in this rapidly emerging research area. On the experimental front LLNL plays a leading role in three of the five relevant areas and has the opportunity to become a major player in the other two. Discussion at the workshop indicated that the path forward for the experimental efforts at LLNL were two fold: First, we are doing reasonable baseline work at SPLs, HE, and High Energy Lasers with more effort encouraged. Second, we need to plan effectively for the next evolution in large scale facilities, both laser (NIF) and Light/Beam sources (LCLS/TESLA and GSI) Theoretically, LLNL has major research advantages in areas as diverse as the thermochemical approach to warm dense matter equations of state to first principles molecular dynamics simulations. However, it was clear that there is much work to be done theoretically to understand warm dense matter. Further, there is a need for a close collaboration between the generation of verifiable experimental data that can provide benchmarks of both the experimental techniques and the theoretical capabilities
Equation-of-state model for shock compression of hot dense matter
Pain, J C
2007-01-01
A quantum equation-of-state model is presented and applied to the calculation of high-pressure shock Hugoniot curves beyond the asymptotic fourfold density, close to the maximum compression where quantum effects play a role. An analytical estimate for the maximum attainable compression is proposed. It gives a good agreement with the equation-of-state model.
Neutrino Oscillations in Dense Matter
Lobanov, A. E.
2017-03-01
A modification of the electroweak theory, where the fermions with the same electroweak quantum numbers are combined in multiplets and are treated as different quantum states of a single particle, is proposed. In this model, mixing and oscillations of particles arise as a direct consequence of the general principles of quantum field theory. The developed approach enables one to calculate the probabilities of the processes taking place in the detector at long distances from the particle source. Calculations of higher-order processes, including computation of the contributions due to radiative corrections, can be performed in the framework of the perturbation theory using the regular diagram technique. As a result, the analog to the Dirac-Schwinger equation of quantum electrodynamics describing neutrino oscillations and its spin rotation in dense matter can be obtained.
Tolos, Laura; Gamermann, Daniel; Garcia-Recio, Carmen; Molina, Raquel; Nieves, Juan; Oset, Eulogio; Ramos, Angels; LlanesEstrada, FJ; Pelaez,
2011-01-01
Charmed mesons in dense matter are studied within a unitary coupled-channel approach which takes into account Pauli-blocking effects and meson self-energies in a self-consistent manner. We obtain the open-charm meson spectral functions in this dense medium, and discuss their implications on hidden c
Probing the neutron star interior and the Equation of State of cold dense matter with the SKA
Watts, Anna; Espinoza, Cristobal; Andersson, Nils; Antoniadis, John; Antonopoulou, Danai; Buchner, Sarah; Dai, Shi; Demorest, Paul; Freire, Paulo; Hessels, Jason; Margueron, Jerome; Oertel, Micaela; Patruno, Alessandro; Possenti, Andrea; Ransom, Scott; Stairs, Ingrid; Stappers, Ben
2015-01-01
With an average density higher than the nuclear density, neutron stars (NS) provide a unique test-ground for nuclear physics, quantum chromodynamics (QCD), and nuclear superfluidity. Determination of the fundamental interactions that govern matter under such extreme conditions is one of the major unsolved problems of modern physics, and -- since it is impossible to replicate these conditions on Earth -- a major scientific motivation for SKA. The most stringent observational constraints come from measurements of NS bulk properties: each model for the microscopic behaviour of matter predicts a specific density-pressure relation (its `Equation of state', EOS). This generates a unique mass-radius relation which predicts a characteristic radius for a large range of masses and a maximum mass above which NS collapse to black holes. It also uniquely predicts other bulk quantities, like maximum spin frequency and moment of inertia. The SKA, in Phase 1 and particularly in Phase 2 will, thanks to the exquisite timing pr...
Observations of Plasmons in Warm Dense Matter
Energy Technology Data Exchange (ETDEWEB)
Glenzer, S H; Landen, O L; Neumayer, P; Lee, R W; Widmann, K; Pollaine, S W; Wallace, R J; Gregori, G; Holl, A; Bornath, T; Thiele, R; Schwarz, V; Kraeft, W; Redmer, R
2006-09-05
We present the first collective x-ray scattering measurements of plasmons in solid-density plasmas. The forward scattering spectra of a laser-produced narrow-band x-ray line from isochorically heated beryllium show that the plasmon frequency is a sensitive measure of the electron density. Dynamic structure calculations that include collisions and detailed balance match the measured plasmon spectrum indicating that this technique will enable new applications to determine the equation of state and compressibility of dense matter.
Dilatons for Dense Hadronic Matter
Lee, Hyun Kyu
2009-01-01
The idea that the explicit breaking of scale invariance by the trace anomaly of QCD can be rephrased as a spontaneous breaking has been recently exploited to capture the low-energy strong interaction dynamics of dense (and also hot) matter in terms of two dilaton fields, the "soft" (chi_s) and the "hard" (chi_h) fields, in the frame work of the hidden local gauge symmetry. In the Freund-Nambu model, the spontaneous symmetry breaking of scale symmetry is induced by an explicitly breaking term, while the spontaneous symmetry breaking is possible in the flat potential model which is scale symmetric. We discuss the interplay of the soft and hard dilatons using the spontaneously broken scale symmetry schemes and uncover a novel structure of dense matter hitherto unexplored.
Dilatons in Dense Baryonic Matter
Lee, Hyun Kyu
2013-01-01
We discuss the role of dilaton, which is supposed to be representing a special feature of scale symmetry of QCD, trace anomaly, in dense baryonic matter. The idea that the scale symmetry breaking of QCD is responsible for the spontaneous breaking of chiral symmetry is presented along the similar spirit of Freund-Nambu model. The incorporation of dilaton field in the hidden local symmetric parity doublet model is briefly sketched with the possible role of dilaton at high density baryonic matter, the emergence of linear sigma model in dilaton limit.
Bejger, M; Haensel, P; Zdunik, J L; Fortin, M
2016-01-01
We explore the implications of a strong first-order phase transition region in the dense matter equation of state in the interiors of rotating neutron stars, and the resulting creation of two disjoint families of neutron-stars' configurations (the so-called high-mass twins). Rotating, axisymmetric and stationary stellar configurations are obtained numerically in the framework of general relativity, and their global parameters and stability are studied. The equation of state-induced instability divides stable neutron star configurations into two disjoint families: neutron stars (second family) and hybrid stars (third family), with an overlapping region in mass, the high-mass twin star region. These two regions are divided by an instability strip. Its existence has interesting astrophysical consequences for rotating neutron stars. We note that it provides a "natural" explanation for the rotational frequency cutoff in the observed distribution of neutron stars spins, and for the apparent lack of back-bending in ...
Energy Technology Data Exchange (ETDEWEB)
Kondo, K.; Kanesue, T.; Horioka, K.; Okamura, M.
2010-05-23
Warm Dense Matter (WDM) offers an challenging problem because WDM, which is beyond ideal plasma, is in a low temperature and high density state with partially degenerate electrons and coupled ions. WDM is a common state of matter in astrophysical objects such as cores of giant planets and white dwarfs. The WDM studies require large energy deposition into a small target volume in a shorter time than the hydrodynamical time and need uniformity across the full thickness of the target. Since moderate energy ion beams ({approx} 0.3 MeV/u) can be useful tool for WDM physics, we propose WDM generation using Direct Plasma Injection Scheme (DPIS). In the DPIS, laser ion source is connected to the Radio Frequency Quadrupole (RFQ) linear accelerator directly without the beam transport line. DPIS with a realistic final focus and a linear accelerator can produce WDM.
Phases of Dense Matter in Supernovae and Neutron Stars
Institute of Scientific and Technical Information of China (English)
申虹; 王延楠
2012-01-01
We study the properties of dense matter at finite temperature with various proton fractions for use in supernova simulations. The relativistic mean-field theory is used to describe homogeneous nuclear matter, while the Thomas-Fermi approximation is adopted to describe inhomogeneous matter. We also discuss the equation of state of neutron star matter at zero temperature in a wide density range. The equation of state at high densities can be significantly softened by the inclusion of hyperons.
Borovikov, Dmitry
2012-01-01
Features and parameters of \\boiling" liquid layer, which arises under conditions of isentropic expansion of warm dense matter (WDM), are stud- ied with the use of simplest van der Waals equation of state (EOS). Advan- tage of this EOS is possibility of demonstrable and semi-analytical descrip- tion of thermo- and hydrodynamics of the process. Idealized self-similar case of behavior of matter on interception of equilibrium (not metastable) isoentropic curve and boundary of gas-liquid coexistence curve (binodal) is analyzed. The possibility of formation of such "liquid layer" was studied previously in [1] during solving the problem of ablation of metal surface under the action of strong laser radiation. Peculiarity of such "freezing" of finite portion of expanding matter in the state, which corresponds to the binodal of gas-liquid or/and other phase transitions|so called "phase freezeout"and prospects of applications of this phenomenon for intended generation of uniform and extensive zone of previously unexplor...
Belkacem, M; Bass, S A; Bleicher, M; Bravina, L V; Gorenstein, M I; Konopka, J; Neise, L; Spieles, C; Soff, S; Weber, H; Stöcker, H; Greiner, W
1998-01-01
Equilibrium properties of infinite relativistic hadron matter are investigated using the Ultrarelativistic Quantum Molecular Dynamics (UrQMD) model. The simulations are performed in a box with periodic boundary conditions. Equilibration times depend critically on energy and baryon densities. Energy spectra of various hadronic species are shown to be isotropic and consistent with a single temperature in equilibrium. The variation of energy density versus temperature shows a Hagedorn-like behavior with a limiting temperature of 130$\\pm$10 MeV. Comparison of abundances of different particle species to ideal hadron gas model predictions show good agreement only if detailed balance is implemented for all channels. At low energy densities, high mass resonances are not relevant; however, their importance raises with increasing energy density. The relevance of these different conceptual frameworks for any interpretation of experimental data is questioned.
Ion Beam Driven Warm Dense Matter Experiments
Bieniosek, F. M.; Henestroza, E.; Leitner, M. A.; Lidia, S. M.; Logan, B. G.; More, R. M.; Ni, P. A.; Seidl, P. A.; Waldron, W. L.; Barnard, J. J.
2008-11-01
We report plans and experimental results in ion beam-driven warm dense matter (WDM) experiments. Initial experiments use a 0.3 MeV K+ beam from the NDCX-I accelerator. The WDM conditions are to be achieved by longitudinal and transverse neutralized drift compression to provide a hot spot on the target with a 1-mm beam spot size, and 2-ns pulse length. As a technique for heating matter to high energy density, intense ion beams can deliver precise and uniform beam energy deposition, in a relatively large sample size, and can heat any solid-phase target material. The range of the beams in solid targets is less than 1 micron, which can be lengthened by using reduced density porous targets. We have developed a WDM target chamber and target diagnostics including a fast multi-channel optical pyrometer, optical streak camera, VISAR, and high-speed gated cameras. Initial experiments will explore measurement of temperature and other target parameters. Experiments are planned in areas such as dense electronegative targets, porous target homogenization and two-phase equation of state.
Heavy meson production in hot dense matter
Tolos, Laura; Gamermann, Daniel; Garcia-Recio, Carmen; Molina, Raquel; Nieves, Juan; Oset, Eulogio; Ramos, Angels; Nieves, JM; Oset, E; Vacas, MJV
2010-01-01
The properties of charmed mesons in dense matter are studied using a unitary coupled-channel approach in the nuclear medium which takes into account Pauli-blocking effects and meson self-energies in a self-consistent manner. We obtain the open-charm meson spectral functions in this dense nuclear env
Quantum molecular dynamics simulations of dense matter
Energy Technology Data Exchange (ETDEWEB)
Collins, L.; Kress, J.; Troullier, N.; Lenosky, T.; Kwon, I. [Los Alamos National Lab., Albuquerque, NM (United States)
1997-12-31
The authors have developed a quantum molecular dynamics (QMD) simulation method for investigating the properties of dense matter in a variety of environments. The technique treats a periodically-replicated reference cell containing N atoms in which the nuclei move according to the classical equations-of-motion. The interatomic forces are generated from the quantum mechanical interactions of the (between?) electrons and nuclei. To generate these forces, the authors employ several methods of varying sophistication from the tight-binding (TB) to elaborate density functional (DF) schemes. In the latter case, lengthy simulations on the order of 200 atoms are routinely performed, while for the TB, which requires no self-consistency, upwards to 1000 atoms are systematically treated. The QMD method has been applied to a variety cases: (1) fluid/plasma Hydrogen from liquid density to 20 times volume-compressed for temperatures of a thousand to a million degrees Kelvin; (2) isotopic hydrogenic mixtures, (3) liquid metals (Li, Na, K); (4) impurities such as Argon in dense hydrogen plasmas; and (5) metal/insulator transitions in rare gas systems (Ar,Kr) under high compressions. The advent of parallel versions of the methods, especially for fast eigensolvers, presage LDA simulations in the range of 500--1000 atoms and TB runs for tens of thousands of particles. This leap should allow treatment of shock chemistry as well as large-scale mixtures of species in highly transient environments.
Probing Cold Dense Nuclear Matter
Energy Technology Data Exchange (ETDEWEB)
Subedi, Ramesh; Shneor, R.; Monaghan, Peter; Anderson, Bryon; Aniol, Konrad; Annand, John; Arrington, John; Benaoum, Hachemi; Benmokhtar, Fatiha; Bertozzi, William; Boeglin, Werner; Chen, Jian-Ping; Choi, Seonho; Cisbani, Evaristo; Craver, Brandon; Frullani, Salvatore; Garibaldi, Franco; Gilad, Shalev; Gilman, Ronald; Glamazdin, Oleksandr; Hansen, Jens-Ole; Higinbotham, Douglas; Holmstrom, Timothy; Ibrahim, Hassan; Igarashi, Ryuichi; De Jager, Cornelis; Jans, Eddy; Jiang, Xiaodong; Kaufman, Lisa; Kelleher, Aidan; Kolarkar, Ameya; Kumbartzki, Gerfried; LeRose, John; Lindgren, Richard; Liyanage, Nilanga; Margaziotis, Demetrius; Markowitz, Pete; Marrone, Stefano; Mazouz, Malek; Meekins, David; Michaels, Robert; Moffit, Bryan; Perdrisat, Charles; Piasetzky, Eliazer; Potokar, Milan; Punjabi, Vina; Qiang, Yi; Reinhold, Joerg; Ron, Guy; Rosner, Guenther; Saha, Arunava; Sawatzky, Bradley; Shahinyan, Albert; Sirca, Simon; Slifer, Karl; Solvignon, Patricia; Sulkosky, Vince; Sulkosky, Vincent; Sulkosky, Vince; Sulkosky, Vincent; Urciuoli, Guido; Voutier, Eric; Watson, John; Weinstein, Lawrence; Wojtsekhowski, Bogdan; Wood, Stephen; Zheng, Xiaochao; Zhu, Lingyan
2008-06-01
The protons and neutrons in a nucleus can form strongly correlated nucleon pairs. Scattering experiments, in which a proton is knocked out of the nucleus with high-momentum transfer and high missing momentum, show that in carbon-12 the neutron-proton pairs are nearly 20 times as prevalent as proton-proton pairs and, by inference, neutron-neutron pairs. This difference between the types of pairs is due to the nature of the strong force and has implications for understanding cold dense nuclear systems such as neutron stars.
Probing Cold Dense Nuclear Matter
Subedi, R; Monaghan, P; Anderson, B D; Aniol, K; Annand, J; Arrington, J; Benaoum, H; Benmokhtar, F; Bertozzi, W; Boeglin, W; Chen, J -P; Choi, Seonho; Cisbani, E; Craver, B; Frullani, S; Garibaldi, F; Gilad, S; Gilman, R; Glamazdin, O; Hansen, J -O; Higinbotham, D W; Holmstrom, T; Ibrahim, H; Igarashi, R; De Jager, C W; Jans, E; Jiang, X; Kaufman, L; Kelleher, A; Kolarkar, A; Kumbartzki, G; LeRose, J J; Lindgren, R; Liyanage, N; Margaziotis, D J; Markowitz, P; Marrone, S; Mazouz, M; Meekins, D; Michaels, R; Moffit, B; Perdrisat, C F; Piasetzky, E; Potokar, M; Punjabi, V; Qiang, Y; Reinhold, J; Ron, G; Rosner, G; Saha, A; Sawatzky, B; Shahinyan, A; Širca, S; Slifer, K; Solvignon, P; Sulkosky, V; Urciuoli, G; Voutier, E; Watson, J W; Weinstein, L B; Wojtsekhowski, B; Wood, S; Zheng, X -C; Zhu, L; 10.1126/science.1156675
2009-01-01
The protons and neutrons in a nucleus can form strongly correlated nucleon pairs. Scattering experiments, where a proton is knocked-out of the nucleus with high momentum transfer and high missing momentum, show that in 12C the neutron-proton pairs are nearly twenty times as prevalent as proton-proton pairs and, by inference, neutron-neutron pairs. This difference between the types of pairs is due to the nature of the strong force and has implications for understanding cold dense nuclear systems such as neutron stars.
Molecular Dynamics for Dense Matter
Maruyama, Toshiki; Chiba, Satoshi
2012-01-01
We review a molecular dynamics method for nucleon many-body systems called the quantum molecular dynamics (QMD) and our studies using this method. These studies address the structure and the dynamics of nuclear matter relevant to the neutron star crusts, supernova cores, and heavy-ion collisions. A key advantage of QMD is that we can study dynamical processes of nucleon many-body systems without any assumptions on the nuclear structure. First we focus on the inhomogeneous structures of low-density nuclear matter consisting not only of spherical nuclei but also of nuclear "pasta", i.e., rod-like and slab-like nuclei. We show that the pasta phases can appear in the ground and equilibrium states of nuclear matter without assuming nuclear shape. Next we show our simulation of compression of nuclear matter which corresponds to the collapsing stage of supernovae. With increase of density, a crystalline solid of spherical nuclei change to a triangular lattice of rods by connecting neighboring nuclei. Finally, we dis...
Tolos, Laura; Hidalgo-Duque, Carlos; Nieves, Juan; Romanets, Olena; Salcedo, Lorenzo Luis; Torres-Rincon, Juan M
2015-01-01
We study the behavior of dynamically-generated baryon resonances with heavy-quark content within a unitarized coupled-channel theory in matter that fulfills heavy-quark spin symmetry constraints. We analyze the implications for the formation of charmed mesic nuclei and the propagation of heavy mesons in heavy-ion collisions from RHIC to FAIR.
Dense matter at RAON: Challenges and possibilities
Lee, Yujeong; Lee, Chang-Hwan; Gaitanos, T.; Kim, Youngman
2016-11-01
Dense nuclear matter is ubiquitous in modern nuclear physics because it is related to many interesting microscopic and macroscopic phenomena such as heavy ion collisions, nuclear structure, and neutron stars. The on-going rare isotope science project in Korea will build up a rare isotope accelerator complex called RAON. One of the main goals of RAON is to investigate rare isotope physics including dense nuclear matter. Using the relativistic Boltzmann-Uehling-Uhlenbeck (RBUU) transport code, we estimate the properties of nuclear matter that can be created from low-energy heavyion collisions at RAON.We give predictions for the maximum baryon density, the isospin asymmetry and the temperature of nuclear matter that would be formed during 197Au+197Au and 132Sn+64Ni reactions. With a large isospin asymmetry, various theoretical studies indicate that the critical densities or temperatures of phase transitions to exotic states decrease. Because a large isospin asymmetry is expected in the dense matter created at RAON, we discuss possibilities of observing exotic states of dense nuclear matter at RAON for large isospin asymmetry.
Dense stellar matter with trapped neutrinos under strong magnetic fields
Rabhi, A
2009-01-01
We investigate the effects of strong magnetic fields on the equation of state of dense stellar neutrino-free and neutrino-trapped matter. Relativistic nuclear models both with constant couplings (NLW) and with density dependent parameters (DDRH) and including hyperons are considered . It is shown that at low densities neutrinos are suppressed in the presence of the magnetic field. The magnetic field reduces the strangeness fraction of neutrino-free matter and increases the strangeness fraction of neutrino-trapped matter. The mass-radius relation of stars described by these equations of state are determined. The magnetic field makes the overall equation of state stiffer and the stronger the field the larger the mass of maximum mass star and the smaller the baryon density at the center of the star. As a consequence in the presence of strong magnetic fields the possibility that a protoneutron star evolves to a blackhole is smaller.
The EOS and neutrino interactions in dense matter
Energy Technology Data Exchange (ETDEWEB)
Prakash, M.; Reddy, S. [Dept. of Physics and Astronomy, SUNY at Stony Brook, Stony Brook, NY (United States)
1998-06-01
The deleptonization and cooling times of a newly born neutron star depend on the equation of state (EOS) and neutrino opacities in dense matter. Through model calculations we show that effects of Pauli blocking and many-body correlations due to strong interactions reduce both the neutral and charged current neutrino cross sections by large factors compared to the case in which these effects are ignored. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Molnar, Denes [Purdue Univ., West Lafayette, IN (United States)
2014-04-14
The Section below summarizes research activities and achievements during the first four years of the PI’s Early Career Research Project (ECRP). Two main areas have been advanced: i) radiative 3 ↔ 2 radiative transport, via development of a new computer code MPC/Grid that solves the Boltzmann transport equation in full 6+1D (3X+3V+time) on both single-CPU and parallel computers; ii) development of a self-consistent framework to convert viscous fluids to particles, and application of this framework to relativistic heavy-ion collisions, in particular, determination of the shear viscosity. Year 5 of the ECRP is under a separate award number, and therefore it has its own report document ’Final Technical Report for Year 5 of the Early Career Research Project “Viscosity and equation of state of hot and dense QCDmatter”’ (award DE-SC0008028). The PI’s group was also part of the DOE JET Topical Collaboration, a multi-institution project that overlapped in time significantly with the ECRP. Purdue achievements as part of the JET Topical Collaboration are in a separate report “Final Technical Report summarizing Purdue research activities as part of the DOE JET Topical Collaboration” (award DE-SC0004077).
Ion-beam-driven warm dense matter experiments
Bieniosek, F. M.; Barnard, J. J.; Friedman, A.; Henestroza, E.; Jung, J. Y.; Leitner, M. A.; Lidia, S.; Logan, B. G.; More, R. M.; Ni, P. A.; Roy, P. K.; Seidl, P. A.; Waldron, W. L.
2010-08-01
As a technique for heating matter to high energy density, intense beams of heavy ions are capable of delivering precise and uniform beam energy deposition to a relatively large sample. The US heavy ion fusion science program has developed techniques for heating and diagnosing warm dense matter (WDM) targets. We have developed a WDM target chamber and a suite of target diagnostics including a fast multi-channel optical pyrometer, optical streak camera, VISAR, and high-speed gated cameras. Initial WDM experiments heat targets by both the compressed and uncompressed parts of the NDCX-I beam, and explore measurement of temperature, droplet formation and other target parameters. Continued improvements in beam tuning, bunch compression, and other upgrades are expected to yield higher temperature and pressure in the WDM targets. Future experiments are planned in areas such as dense electronegative targets, porous target homogenization and two-phase equation of state.
Flavour Oscillations in Dense Baryonic Matter
Filip, Peter
2017-01-01
We suggest that fast neutral meson oscillations may occur in a dense baryonic matter, which can influence the balance of s/¯s quarks in the nucleus-nucleus and proton-nucleus interactions, if primordial multiplicities of neutral K 0, mesons are sufficiently asymmetrical. The phenomenon can occur even if CP symmetry is fully conserved, and it may be responsible for the enhanced sub-threshold production of multi-strange hyperons observed in the low-energy A+A and p+A interactions.
Energy Technology Data Exchange (ETDEWEB)
Molnar, Denes [Purdue Univ., West Lafayette, IN (United States)
2016-05-25
The Section below summarizes research activities and achievements during the fifth (last) year of the PI’s Early Career Research Project (ECRP). Unlike the first four years of the project, the last year was not funded under the American Recovery and Reinvestment Act (ARRA). The ECRP advanced two main areas: i) radiative 3 ↔ 2 radiative transport, via development of a new computer code MPC/Grid that solves the Boltzmann transport equation in full 6+1D (3X+3V+time); and ii) application of relativistic hydrodynamics, via development of a self-consistent framework to convert viscous fluids to particles. In Year 5 we finalized thermalization studies with radiative gg ↔ ggg transport (Sec. 1.1.1) and used nonlinear covariant transport to assess the accuracy of fluid-to-particle conversion models (Sec. 1.1.2), calculated observables with self-consistent fluid-to-particle conversion from realistic viscous hydrodynamic evolution (Secs. 1.2.1 and 1.2.2), extended the covariant energy loss formulation to heavy quarks (Sec. 1.4.1) and studied energy loss in small systems (Sec. 1.4.2), and also investigated how much of the elliptic flow could have non-hydrodynamic origin (Sec 1.3). Years 1-4 of the ECRP were ARRA-funded and, therefore, they have their own report document ’Final Technical Report for Years 1-4 of the Early Career Research Project “Viscosity and equation of state of hot and dense QCD matter”’ (same award number DE-SC0004035). The PI’s group was also part of the DOE JET Topical Collaboration, a multi-institution project that overlapped in time significantly with the ECRP. Purdue achievements as part of the JET Top- ical Collaboration are in a separate report “Final Technical Report summarizing Purdue research activities as part of the DOE JET Topical Collaboration” (award DE-SC0004077).
Intense, ultrashort light and dense, hot matter
Indian Academy of Sciences (India)
G Ravindra Kumar
2009-07-01
This article presents an overview of the physics and applications of the interaction of high intensity laser light with matter. It traces the crucial advances that have occurred over the past few decades in laser technology and nonlinear optics and then discusses physical phenomena that occur in intense laser fields and their modeling. After a description of the basic phenomena like multiphoton and tunneling ionization, the physics of plasma formed in dense matter is presented. Specific phenomena are chosen for illustration of the scientific and technological possibilities – simulation of astrophysical phenomena, relativistic nonlinear optics, laser wakefield acceleration, laser fusion, ultrafast real time X-ray diffraction, application of the particle beams produced from the plasma for medical therapies etc. A survey of the Indian activities in this research area appears at the end.
Dense hadronic matter in neutron stars
Pagliara, Giuseppe; Lavagno, Andrea; Pigato, Daniele
2014-01-01
The existence of stars with masses up to $2 M_{\\odot}$ and the hints of the existence of stars with radii smaller than $\\sim 11$ km seem to require, at the same time, a stiff and a soft hadronic equation of state at large densities. We argue that these two apparently contradicting constraints are actually an indication of the existence of two families of compact stars: hadronic stars which could be very compact and quark stars which could be very massive. In this respect, a crucial role is played, in the hadronic equation of state, by the delta isobars whose early appearance shifts to large densities the formation of hyperons. We also discuss how recent experimental information on the symmetry energy of nuclear matter at saturation indicate, indirectly, an early appearance of delta isobars in neutron star matter.
Phase Structure and Transport Properties of Dense Quark Matter
Schaefer, Thomas
2010-01-01
We provide a summary of our current knowledge of the phase structure of very dense quark matter. We concentrate on the question how the ground state at asymptotically high density -- color-flavor-locked (CFL) matter -- is modified as the density is lowered. We discuss the nature of the quasi-particle excitations, and present work on the transport properties of dense QCD matter.
Frontiers and challenges in warm dense matter
Desjarlais, Michael; Redmer, Ronald; Trickey, Samuel
2014-01-01
Warm Dense Matter (WDM) occupies a loosely defined region of phase space intermediate between solid, liquid, gas, and plasma, and typically shares characteristics of two or more of these phases. WDM is generally associated with the combination of strongly coupled ions and moderately degenerate electrons, and careful attention to quantum physics and electronic structure is essential. The lack of a small perturbation parameter greatly limits approximate attempts at its accurate description. Since WDM resides at the intersection of solid state and high energy density physics, many high energy density physics (HEDP) experiments pass through this difficult region of phase space. Thus, understanding and modeling WDM is key to the success of experiments on diverse facilities. These include the National Ignition Campaign centered on the National Ignition Facility (NIF), pulsed-power driven experiments on the Z machine, ion-beam-driven WDM experiments on the NDCX-II, and fundamental WDM research at the Linear Coherent...
The symmetry energy in cold dense matter
Jeong, Kie Sang
2015-01-01
We calculate the symmetry energy in cold dense matter both in the normal quark phase and in the 2-color superconductor (2SC) phase. For the normal phase, the thermodynamic potential is calculated by using hard dense loop (HDL) resummation to leading order, where the dominant contribution comes from the longitudinal gluon rest mass. The effect of gluonic interaction to the symmetry energy, obtained from the thermodynamic potential, was found to be small. In the 2SC phase, the non-perturbative BCS paring gives enhanced symmetry energy as the gapped states are forced to be in the common Fermi sea reducing the number of available quarks that can contribute to the asymmetry. We used high density effective field theory to estimate the contribution of gluon interaction to the symmetry energy. Among the gluon rest masses in 2SC phase, only the Meissner mass has iso-spin dependence although the magnitude is much smaller than the Debye mass. As the iso-spin dependence of gluon rest masses is even smaller than the case ...
Symmetry energy in cold dense matter
Energy Technology Data Exchange (ETDEWEB)
Jeong, Kie Sang, E-mail: k.s.jeong@yonsei.ac.kr; Lee, Su Houng, E-mail: suhoung@yonsei.ac.kr
2016-01-15
We calculate the symmetry energy in cold dense matter both in the normal quark phase and in the 2-color superconductor (2SC) phase. For the normal phase, the thermodynamic potential is calculated by using hard dense loop (HDL) resummation to leading order, where the dominant contribution comes from the longitudinal gluon rest mass. The effect of gluonic interaction on the symmetry energy, obtained from the thermodynamic potential, was found to be small. In the 2SC phase, the non-perturbative BCS paring gives enhanced symmetry energy as the gapped states are forced to be in the common Fermi sea reducing the number of available quarks that can contribute to the asymmetry. We used high density effective field theory to estimate the contribution of gluon interaction to the symmetry energy. Among the gluon rest masses in 2SC phase, only the Meissner mass has iso-spin dependence although the magnitude is much smaller than the Debye mass. As the iso-spin dependence of gluon rest masses is even smaller than the case in the normal phase, we expect that the contribution of gluonic interaction to the symmetry energy in the 2SC phase will be minimal. The different value of symmetry energy in each phase will lead to different prediction for the particle yields in heavy ion collision experiment.
Pycnonuclear reactions in dense stellar matter
Yakovlev, D G; Gnedin, O Y
2005-01-01
We discuss pycnonuclear burning of highly exotic atomic nuclei in deep crusts of neutron stars, at densities up to 1e13 g/cc. As an application, we consider pycnonuclear burning of matter accreted on a neutron star in a soft X-ray transient (SXT, a compact binary containing a neutron star and a low-mass companion). The energy released in this burning, while the matter sinks into the stellar crust under the weight of newly accreted material, is sufficient to warm up the star and initiate neutrino emission in its core. The surface thermal radiation of the star in quiescent states becomes dependent of poorly known equation of state (EOS) of supranuclear matter in the stellar core, which gives a method to explore this EOS. Four qualitatively different model EOSs are tested against observations of SXTs. They imply different levels of the enhancement of neutrino emission in massive neutron stars by (1) the direct Urca process in nucleon/hyperon matter; (2) pion condensates; (3) kaon condensates; (4) Cooper pairing ...
Energy Technology Data Exchange (ETDEWEB)
Caillabet, L.
2011-03-25
In the field of the inertial confinement fusion (ICF), the equation of state (EoS) of the hydrogen and its isotopes is one of the most important properties to know. The EoS based on chemical models have difficulty in giving an unambiguous description of the hydrogen in the strong coupled and partial degenerate regime, called Warm Dense Matter (WDM). Indeed, these models use potential with adjustable parameters to describe the many body interactions which are important in the WDM. On the other hand, the ab initio methods resolve almost exactly the quantum many body problem and are thus particularly relevant in this domain. In the first part of this thesis, we describe how we built a table of a multi-phase EoS of the hydrogen, using ab initio methods in the field of the WDM. We show in particular that this EoS is in very good agreement with most of the available experimental data (principal Hugoniot, sound velocity in the molecular fluid, melting curve at low pressure, measurements of multiple shocks). In the second part, we present a direct application of our EoS by showing its influence on the criteria of ignition and combustion of two target designs for ICF: a self-ignited target which will be used on the Laser MegaJoule (LMJ), and a shock-ignited target. We show in particular that the optimization of the laser pulse allowing maximizing the thermonuclear energy is strongly dependent on the precision of the EoS in the strong coupled and degenerate domain. (author) [French] Dans le domaine de la fusion par confinement inertiel (FCI), l'equation d'etat (EoS) de l'hydrogene et de ses isotopes est tres certainement une des proprietes les plus importantes a connaitre. Les EoS basees sur des modeles chimiques peinent a donner une description univoque de l'hydrogene dans le domaine de couplage et de degenerescence partiels, appele matiere dense et tiede, ou Warm Dense Matter (WDM). En effets, ces modeles utilisent des potentiels ad hoc pour decrire les
An integral equation model for warm and hot dense mixtures
Starrett, C E; Daligault, J; Hamel, S
2014-01-01
In Starrett and Saumon [Phys. Rev. E 87, 013104 (2013)] a model for the calculation of electronic and ionic structures of warm and hot dense matter was described and validated. In that model the electronic structure of one "atom" in a plasma is determined using a density functional theory based average-atom (AA) model, and the ionic structure is determined by coupling the AA model to integral equations governing the fluid structure. That model was for plasmas with one nuclear species only. Here we extend it to treat plasmas with many nuclear species, i.e. mixtures, and apply it to a carbon-hydrogen mixture relevant to inertial confinement fusion experiments. Comparison of the predicted electronic and ionic structures with orbital-free and Kohn-Sham molecular dynamics simulations reveals excellent agreement wherever chemical bonding is not significant.
Kinetic theory molecular dynamics and hot dense matter: theoretical foundations.
Graziani, F R; Bauer, J D; Murillo, M S
2014-09-01
Electrons are weakly coupled in hot, dense matter that is created in high-energy-density experiments. They are also mildly quantum mechanical and the ions associated with them are classical and may be strongly coupled. In addition, the dynamical evolution of plasmas under these hot, dense matter conditions involve a variety of transport and energy exchange processes. Quantum kinetic theory is an ideal tool for treating the electrons but it is not adequate for treating the ions. Molecular dynamics is perfectly suited to describe the classical, strongly coupled ions but not the electrons. We develop a method that combines a Wigner kinetic treatment of the electrons with classical molecular dynamics for the ions. We refer to this hybrid method as "kinetic theory molecular dynamics," or KTMD. The purpose of this paper is to derive KTMD from first principles and place it on a firm theoretical foundation. The framework that KTMD provides for simulating plasmas in the hot, dense regime is particularly useful since current computational methods are generally limited by their inability to treat the dynamical quantum evolution of the electronic component. Using the N-body von Neumann equation for the electron-proton plasma, three variations of KTMD are obtained. Each variant is determined by the physical state of the plasma (e.g., collisional versus collisionless). The first variant of KTMD yields a closed set of equations consisting of a mean-field quantum kinetic equation for the electron one-particle distribution function coupled to a classical Liouville equation for the protons. The latter equation includes both proton-proton Coulombic interactions and an effective electron-proton interaction that involves the convolution of the electron density with the electron-proton Coulomb potential. The mean-field approach is then extended to incorporate equilibrium electron-proton correlations through the Singwi-Tosi-Land-Sjolander (STLS) ansatz. This is the second variant of KTMD
Thermal Effects in Dense Matter Beyond Mean Field Theory
Constantinou, Constantinos; Prakash, Madappa
2016-01-01
The formalism of next-to-leading order Fermi Liquid Theory is employed to calculate the thermal properties of symmetric nuclear and pure neutron matter in a relativistic many-body theory beyond the mean field level which includes two-loop effects. For all thermal variables, the semi-analytical next-to-leading order corrections reproduce results of the exact numerical calculations for entropies per baryon up to 2. This corresponds to excellent agreement down to sub-nuclear densities for temperatures up to $20$ MeV. In addition to providing physical insights, a rapid evaluation of the equation of state in the homogeneous phase of hot and dense matter is achieved through the use of the zero-temperature Landau effective mass function and its derivatives.
Baryon formation and dissociation in dense hadronic and quark matter
Energy Technology Data Exchange (ETDEWEB)
Wang Jincheng [Interdisciplinary Center for Theoretical Study and Department of Modern Physics, University of Science and Technology of China, Anhui 230026 (China); Institute for Theoretical Physics, Johann Wolfgang Goethe University, Max-von-Laue-Str. 1, D-60438 Frankfurt am Main (Germany); Wang Qun, E-mail: qunwang@ustc.edu.cn [Interdisciplinary Center for Theoretical Study and Department of Modern Physics, University of Science and Technology of China, Anhui 230026 (China); Theoretical Physics Center for Science Facilities, Chinese Academy of Sciences, Beijing 100049 (China); Rischke, Dirk H. [Institute for Theoretical Physics, Johann Wolfgang Goethe University, Max-von-Laue-Str. 1, D-60438 Frankfurt am Main (Germany); Frankfurt Institute for Advanced Studies, Ruth-Moufang-Str. 1, D-60438 Frankfurt am Main (Germany)
2011-10-19
We study the formation of baryons as composed of quarks and diquarks in hot and dense hadronic matter in a Nambu-Jona-Lasinio (NJL)-type model. We first solve the Dyson-Schwinger equation for the diquark propagator and then use this to solve the Dyson-Schwinger equation for the baryon propagator. We find that stable baryon resonances exist only in the phase of broken chiral symmetry. In the chirally symmetric phase, we do not find a pole in the baryon propagator. In the color-superconducting phase, there is a pole, but it has a large decay width. The diquark does not need to be stable in order to form a stable baryon, a feature typical for so-called Borromean states. Varying the strength of the diquark coupling constant, we also find similarities to the properties of an Efimov state.
Effective Field Theories for Hot and Dense Matter
Directory of Open Access Journals (Sweden)
Blaschke D.
2010-10-01
Full Text Available The lecture is divided in two parts. The ﬁrst one deals with an introduction to the physics of hot, dense many-particle systems in quantum ﬁeld theory [1, 2]. The basics of the path integral approach to the partition function are explained for the example of chiral quark models. The QCD phase diagram is discussed in the meanﬁeld approximation while QCD bound states in the medium are treated in the rainbow-ladder approximation (Gaussian ﬂuctuations. Special emphasis is devoted to the discussion of the Mott eﬀect, i.e. the transition of bound states to unbound, but resonant scattering states in the continnum under the inﬂuence of compression and heating of the system. Three examples are given: (1 the QCD model phase diagram with chiral symmetry ¨ restoration and color superconductivity [3], (2 the Schrodinger equation for heavy-quarkonia [4], and (2 Pions [5] as well as Kaons and D-mesons in the ﬁnite-temperature Bethe-Salpeter equation [6]. We discuss recent applications of this quantum ﬁeld theoretical approach to hot and dense quark matter for a description of anomalous J/ψ supression in heavy-ion collisions [7] and for the structure and cooling of compact stars with quark matter interiors [8]. The second part provides a detailed introduction to the Polyakov-loop Nambu–Jona-Lasinio model [9] for thermodynamics and mesonic correlations [10] in the phase diagram of quark matter. Important relationships of low-energy QCD like the Gell-Mann–Oakes–Renner relation are generalized to ﬁnite temperatures. The eﬀect of including the coupling to the Polyakov-loop potential on the phase diagram and mesonic correlations is discussed. An outlook is given to eﬀects of nonlocality of the interactions [11] and of mesonic correlations in the medium [12] which go beyond the meanﬁeld description.
Neutrino reactions in hot and dense matter
Energy Technology Data Exchange (ETDEWEB)
Lohs, Andreas
2015-04-13
In this thesis, neutrino reactions in hot and dense matter are studied. In particular, this work is concerned with neutrino-matter interactions that are relevant for neutrino transport in core-collapse supernovae (CCSNe). The majority of the energy from a CCSN is released in the form of neutrinos. Accurate understanding and computation of these interactions is most relevant to achieve sufficiently reliable predictions for the evolution of CCSNe and other related question such as the production of heavy elements or neutrino oscillations. For this purpose this work follows the combined approach of searching for new important neutrino reactions and improving the computation of those reactions that are already implemented. First we estimate the relevance of charged-current weak interactions that include muon-neutrinos or muons, as well as the role of neutron decay for neutrino transport in CCSNe. All of these reactions were previously neglected in CCSN-simulations. We derive and compute the matrix element and subsequent semi-analytic expressions for transport properties like the inverse mean free path of the new reactions. It is found that these reactions are important for muon neutrinos and low energy electron antineutrinos at very high densities in the protoneutron star surface. Consequently their implementation might lead to several changes in the prediction of CCSNe signatures such as the nucleosynthesis yields. Second we improve the precision in the computation of well known neutrino-nucleon reactions like neutrino absorption on neutrons. We derive semi-analytic expressions for transport properties that use less restrictive approximations while keeping the computational demand constant. Therefore we consider the full relativistic kinematics of all participating particles i.e. allowing for relativistic nucleons and finite lepton masses. Also the weak magnetism terms of the matrix elements are explicitly included to all orders. From our results we suggest that the
Thermal conductivity measurements of proton-heated warm dense matter
McKelvey, A.; Fernandez-Panella, A.; Hua, R.; Kim, J.; King, J.; Sio, H.; McGuffey, C.; Kemp, G. E.; Freeman, R. R.; Beg, F. N.; Shepherd, R.; Ping, Y.
2015-06-01
Accurate knowledge of conductivity characteristics in the strongly coupled plasma regime is extremely important for ICF processes such as the onset of hydrodynamic instabilities, thermonuclear burn propagation waves, shell mixing, and efficient x-ray conversion of indirect drive schemes. Recently, an experiment was performed on the Titan laser platform at the Jupiter Laser Facility to measure the thermal conductivity of proton-heated warm dense matter. In the experiment, proton beams generated via target normal sheath acceleration were used to heat bi-layer targets with high-Z front layers and lower-Z back layers. The stopping power of a material is approximately proportional to Z2 so a sharp temperature gradient is established between the two materials. The subsequent thermal conduction from the higher-Z material to the lower-Z was measured with time resolved streaked optical pyrometry (SOP) and Fourier domain interferometry (FDI) of the rear surface. Results will be used to compare predictions from the thermal conduction equation and the Wiedemann-Franz Law in the warm dense matter regime. Data from the time resolved diagnostics for Au/Al and Au/C Targets of 20-200 nm thickness will be presented.
Hot and dense matter beyond relativistic mean field theory
Zhang, Xilin
2016-01-01
Properties of hot and dense matter are calculated in the framework of quantum hadro-dynamics by including contributions from two-loop (TL) diagrams arising from the exchange of iso-scalar and iso-vector mesons between nucleons. Our extension of mean-field theory (MFT) employs the same five density-independent coupling strengths which are calibrated using the empirical properties at the equilibrium density of iso-spin symmetric matter. Results of calculations from the MFT and TL approximations are compared for conditions of density, temperature, and proton fraction encountered in astrophysics applications involving compact objects. The TL results for the equation of state (EOS) of cold pure neutron matter at sub- and near-nuclear densities agree well with those of modern quantum Monte Carlo and effective field-theoretical approaches. Although the high-density EOS in the TL approximation for neutron-star matter is substantially softer than its MFT counterpart, it is able to support a $2M_\\odot$ neutron star req...
Pion decay constants in dense skyrmion matter
Directory of Open Access Journals (Sweden)
Lee H.-J.
2010-10-01
Full Text Available According to the QCD, the hadronic matter can have various phases with matter density and temperature. In general, when there is phase transition in a matter, it is known that a symmetry in the matter changes. In case of the hadronic matter, the chiral symmetry in the matter is expected to be restored when the matter density (or temperature increases. The actual order parameter with respect to the chiral symmetry in the hadronic matter is known as the quark condensate from the QCD, but the pion decay constant, corresponding to the radius of the chiral circle, plays the role of the order parameter in an eﬀective ﬁeld theoretical approach to the QCD. In this paper, by using the skyrmion model which is an eﬀective theory to the QCD, we construct the skyrmion matter as a model of the hadronic matter (nuclear matter and calculate the pion decay constant in the matter. Because of presence of the matter, the pion decay constant is split into the two components, the temporal component and the spatial component. We discuss the phase transition in the skyrmion matter and behavior of the two components of the decay constant for massless pion with density of the skyrmion matter.
Estimating transport coefficients in hot and dense quark matter
Deb, Paramita; Mishra, Hiranmaya
2016-01-01
We compute the transport coefficients-- namely, coefficients of shear and bulk viscosity as well as thermal conductivity for hot and dense quark matter. The calculations are performed within the Nambu Jona Lasinio (NJL) model. The estimation of the transport coefficients is made using a quasi particle approach of solving Boltzmann kinetic equation within the relaxation time approximation. The transition rates are calculated in a manifestly covariant manner to estimate the thermal averaged cross sections for quark quark as well as quark anti-quark scattering. The calculations are performed for finite chemical potential also. Within the parameters of the model, the ratio of shear viscosity to entropy density has a minimum at the Mott transition temperature. At vanishing chemical potential, the ratio of bulk viscosity to entropy density, on the other hand, decrease with temperature with a sharp decrease near the critical temperature and vanishes beyond it. At finite chemical potential, however, it increases slow...
Fermion mass and the pressure of dense matter
Fraga, Eduardo S; 10.1063/1.2714447
2008-01-01
We consider a simple toy model to study the effects of finite fermion masses on the pressure of cold and dense matter, with possible applications in the physics of condensates in the core of neutron stars and color superconductivity.
Experimental Studies of the Transport Parameters of Warm Dense Matter
Energy Technology Data Exchange (ETDEWEB)
Chouffani, Khalid [Idaho State Univ., Pocatello, ID (United States)
2014-12-01
There is a need to establish fundamental properties of matter and energy under extreme physical conditions. Although high energy density physics (HEDP) research spans a wide range of plasma conditions, there is one unifying regime that is of particular importance and complexity: that of warm dense matter, the transitional state between solid state condensed matter and energetic plasmas. Most laboratory experimental conditions, including inertial confinement implosion, fall into this regime. Because all aspects of laboratory-created high-energy-density plasmas transition through the warm dense matter regime, understanding the fundamental properties to determine how matter and energy interact in this regime is an important aspect of major research efforts in HEDP. Improved understanding of warm dense matter would have significant and wide-ranging impact on HEDP science, from helping to explain wire initiation studies on the Sandia Z machine to increasing the predictive power of inertial confinement fusion modeling. The central goal or objective of our proposed research is to experimentally determine the electrical resistivity, temperature, density, and average ionization state of a variety of materials in the warm dense matter regime, without the use of theoretical calculations. Since the lack of an accurate energy of state (EOS) model is primarily due to the lack of experimental data, we propose an experimental study of the transport coefficients of warm dense matter.
Neutrinos and Nucleosynthesis in Hot and Dense Matter
Energy Technology Data Exchange (ETDEWEB)
Fuller, George [Univ. of California, San Diego, CA (United States)
2016-01-14
The Topical Collaboration for Neutrinos and Nucleosynthesis in Hot and Dense matter brought together researchers from a variety of nuclear science specialties and a number of institutions to address nuclear physics and neutrino physics problems associated with dense matter and the origin of the elements. See attached final technical reports for (1) the UCSD award and (2) a copy of the report for the whole TC
Phases of dense matter with holographic instantons
Preis, Florian
2016-01-01
We discuss nuclear matter and the transition to quark matter in the decompactified limit of the Sakai-Sugimoto model. Nuclear matter is included through instantons on the flavor branes of the model. Our approximation is based on the flat-space solution, but we allow for a dynamical instanton width and deformation and compute the energetically preferred number of instanton layers in the bulk as a function of the baryon chemical potential. We determine the regions in parameter space where the binding energy of nuclear matter is like in QCD, and compute the phase diagram in the plane of temperature and chemical potential.
Warm dense matter and Thomson scattering at FLASH
Energy Technology Data Exchange (ETDEWEB)
Faeustlin, Roland Rainer
2010-05-15
X-ray free electron lasers are powerful tools to investigate moderately to strongly correlated solid density low temperature plasmas, named warm dense matter. These plasmas are of most interest for astrophysics and laser plasma interaction, particularly inertial confinement fusion. This work utilizes the ultrashort soft x-ray pulse duration and high brilliance of the free electron laser in Hamburg, FLASH, to generate warm dense matter and to study its ultrafast processes. The techniques applied are absorption measurement, emission spectroscopy and Thomson scattering. Radiative hydrodynamics and Thomson scattering simulations are used to investigate the impact of temperature and density gradients in the sample and to fit the experimental data. The measurements result in a comprehensive picture of soft x-ray matter interaction related to warm dense matter and yield insight into ultrafast equilibration and relaxation mechanisms, in particular impact ionization and radiative recombination. (orig.)
Quark matter formation in dense stellar objects
Indian Academy of Sciences (India)
S C Phatak
2001-08-01
It is expected that at very large densities and/or temperatures a quark-hadron phase transition takes place. Lattice QCD calculations at zero baryon density indicate that the transition occurs at c∼ 150-170 MeV. The transition is likely to be second order or a cross over phenomenon. Although not much is known about the density at which the phase transition takes place at small temperatures, it is expected to occur around the nuclear densities of few times nuclear matter density. Also, there is a strong reason to believe that the quark matter formed after the phase transition is in colour superconducting phase. The matter densities in the interior of neutron stars being larger than the nuclear matter density, the neutron star cores may possibly consist of quark matter which may be formed during the collapse of supernova. Starting with the assumption that the quark matter, when formed consists of predominantly and quarks, we consider the evolution of quarks by weak interactions in the present work. The reaction rates and time required to reach the chemical equilibrium are computed here. Our calculations show that the chemical equilibrium is reached in about 10-7 seconds. Further more during the equilibration process enormous amont of energy is released and copious numbers of neutrinos are produced. Implications of these on the evolution of supernovae will be discussed.
Recent progress on dense nuclear matter in skyrmion approaches
Ma, YongLiang; Rho, Mannque
2017-03-01
The Skyrme model provides a novel unified approach to nuclear physics. In this approach, single baryon, baryonic matter and medium-modified hadron properties are treated on the same footing. Intrinsic density dependence (IDD) reflecting the change of vacuum by compressed baryonic matter figures naturally in the approach. In this article, we review the recent progress on accessing dense nuclear matter by putting baryons treated as solitons, namely, skyrmions, on crystal lattice with accents on the implications in compact stars.
Relaxation of the chiral imbalance in dense matter of a neutron star
Directory of Open Access Journals (Sweden)
Dvornikov Maxim
2016-01-01
Full Text Available Using the quantum field theory methods, we calculate the helicity flip of an electron scattering off protons in dense matter of a neutron star. The influence of the electroweak interaction between electrons and background nucleons on the helicity flip is examined. We also derive the kinetic equation for the chiral imbalance. The derived kinetic equation is compared with the results obtained by other authors.
Plasmon resonance in warm dense matter
Energy Technology Data Exchange (ETDEWEB)
Thiele, R; Bornath, T; Fortmann, C; Holl, A; Redmer, R; Reinholz, H; Ropke, G; Wierling, A; Glenzer, S H; Gregori, G
2008-02-21
Collective Thomson scattering with extreme ultraviolet light or x-rays is shown to allow for a robust measurement of the free electron density in dense plasmas. Collective excitations like plasmons appear as maxima in the scattering signal. Their frequency position can directly be related to the free electron density. The range of applicability of the standard Gross-Bohm dispersion relation and of an improved dispersion relation in comparison to calculations based on the dielectric function in random phase approximation is investigated. More important, this well-established treatment of Thomson scattering on free electrons is generalized in the Born-Mermin approximation by including collisions. We show that, in the transition region from collective to non-collective scattering, the consideration of collisions is important.
Scale-invariant hidden local symmetry, topology change, and dense baryonic matter
Paeng, Won-Gi; Kuo, Thomas T. S.; Lee, Hyun Kyu; Rho, Mannque
2016-05-01
When scale symmetry is implemented into hidden local symmetry in low-energy strong interactions to arrive at a scale-invariant hidden local symmetric (HLS) theory, the scalar f0(500 ) may be interpreted as pseudo-Nambu-Goldstone (pNG) boson, i.e., dilaton, of spontaneously broken scale invariance, joining the pseudoscalar pNG bosons π and the matter fields V =(ρ ,ω ) as relevant degrees of freedom. Implementing the skyrmion-half-skyrmion transition predicted at large Nc in QCD at a density roughly twice the nuclear matter density found in the crystal simulation of dense skyrmion matter, we determine the intrinsically density-dependent "bare parameters" of the scale-invariant HLS Lagrangian matched to QCD at a matching scale ΛM. The resulting effective Lagrangian, with the parameters scaling with the density of the system, is applied to nuclear matter and dense baryonic matter relevant to massive compact stars by means of the double-decimation renormalization-group Vlow k formalism. We satisfactorily postdict the properties of normal nuclear matter and more significantly predict the equation of state of dense compact-star matter that quantitatively accounts for the presently available data coming from both the terrestrial and space laboratories. We interpret the resulting structure of compact-star matter as revealing how the combination of hidden-scale symmetry and hidden local symmetry manifests itself in compressed baryonic matter.
Collaborative Research: Neutrinos & Nucleosynthesis in Hot Dense Matter
Energy Technology Data Exchange (ETDEWEB)
Reddy, Sanjay
2013-09-06
It is now firmly established that neutrinos, which are copiously produced in the hot and dense core of the supernova, play a role in the supernova explosion mechanism and in the synthesis of heavy elements through a phenomena known as r-process nucleosynthesis. They are also detectable in terrestrial neutrino experiments, and serve as a probe of the extreme environment and complex dynamics encountered in the supernova. The major goal of the UW research activity relevant to this project was to calculate the neutrino interaction rates in hot and dense matter of relevance to core collapse supernova. These serve as key input physics in large scale computer simulations of the supernova dynamics and nucleosynthesis being pursued at national laboratories here in the United States and by other groups in Europe and Japan. Our calculations show that neutrino production and scattering rate are altered by the nuclear interactions and that these modifications have important implications for nucleosynthesis and terrestrial neutrino detection. The calculation of neutrino rates in dense matter are difficult because nucleons in the dense matter are strongly coupled. A neutrino interacts with several nucleons and the quantum interference between scattering off different nucleons depends on the nature of correlations between them in dense matter. To describe these correlations we used analytic methods based on mean field theory and hydrodynamics, and computational methods such as Quantum Monte Carlo. We found that due to nuclear effects neutrino production rates at relevant temperatures are enhanced, and that electron neutrinos are more easily absorbed than anti-electron neutrinos in dense matter. The latter, was shown to favor synthesis of heavy neutron-rich elements in the supernova.
Dense Matter and Neutron Stars in Parity Doublet Models
Schramm, S; Negreiros, R; Steinheimer, J
2011-01-01
We investigate the properties of dense matter and neutron stars. In particular we discuss model calculations based on the parity doublet picture of hadronic chiral symmetry. In this ansatz the onset of chiral symmetry restoration is reflected by the degeneracy of baryons and their parity partners. In this approach we also incorporate quarks as degrees of freedom to be able to study hybrid stars.
Nucleation of strange matter in dense stellar cores
Energy Technology Data Exchange (ETDEWEB)
Horvath, J.E. (Instituto Astronomico e Geofisico, Universidade de Sao Paulo, Avenida M. Stefano 4200, Agua Funda (04301) Sao Paulo, Sao Paulo (Brazil)); Benvenuto, O.G. (Facultad de Ciencias Astronomicas y Geofisicas, Universidad Nacional de La Plata, Paseo del Bosque S/N (1900) La Plata (Argentina)); Vucetich, H. (Departamento de Fisica, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Calle 49 y 115, C.C.67 (1900) La Plata (Argentina))
1992-05-15
We investigate the nucleation of strange quark matter inside hot, dense nuclear matter. Applying Zel'dovich's kinetic theory of nucleation we find a lower limit of the temperature {ital T} for strange-matter bubbles to appear, which happens to be satisfied inside the Kelvin-Helmholtz cooling era of a compact star life but not much after it. Our bounds thus suggest that a prompt conversion could be achieved, giving support to earlier expectations for nonstandard type-II supernova scenarios.
Self-consistent proton crystallization in dense neutron star matter
Energy Technology Data Exchange (ETDEWEB)
Kutschera, M. [Institute of Nuclear Physics, Cracow (Poland); Wojcik, W. [Politechnika Krakowska, Cracow (Poland)
1992-11-01
We construct a solid-like variational wave functions for protons localized in dense neutron star matter. The localized protons are centered on the lattice sites and the neutron background is described by periodic Bloch wave functions. The self-consistent periodic structure arises due to a collective mean field. For low proton fraction the periodic potential is weak and the neutron Fermi surface is well approximated by a sphere. With the Skyrme forces we find that the proton solid is of lower energy than a uniform matter for densities above n{sub l} {approx} 4 n{sub 0}, where n{sub 0} = 0.17 fm{sup -3} is the nuclear saturation density. We discuss implications of the proton crystallization for properties of dense matter in neutron stars. (author). 7 refs, 8 figs.
What can we learn from NJL-type models about dense matter?
Buballa, Michael
2016-01-01
The merits and limitations of the Nambu--Jona-Lasinio model as a model for strong interactions at nonzero density are critically discussed. We present several examples, demonstrating that, while in general the results should not be trusted quantitatively, the NJL model is a powerful theoretical tool for getting new insights and ideas about the QCD phase diagram and the dense-matter equation of state.
Modeling the jet quenching in hot and dense QCD matter
Lokhtin, I P; Petrushanko, S V; Snigirev, A M; Arsene, I; Tywoniuk, K
2009-01-01
One of the important perturbative ("hard") probes of hot and dense QCD matter is the medium-induced energy loss of energetic partons, so called "jet quenching", which is predicted to be very different in cold nuclear matter and in QGP, and leads to a number of phenomena which are already seen in the RHIC data on the qualitative level. The inclusion of jet quenching and other important collective effects, such as radial and elliptic flows, in the existing Monte-Carlo models of relativistic heavy ion collisions is discussed. Some issues on the corresponding physical observables at RHIC and LHC energies obtained with HYDJET++ model are presented.
Topical Collaboration "Neutrinos and Nucleosynthesis in Hot and Dense Matter"
Energy Technology Data Exchange (ETDEWEB)
Allahverdi, Rouzbeh [Univ. of New Mexico, Albuquerque, NM (United States)
2015-09-18
This is the final technical report describing contributions from the University of New Mexico to Topical Collaboration on "Neutrinos and Nucleosynthesis in Hot and Dense Matter" in the period June 2010 through May 2015. During the funding period, the University of New Mexico successfully hired Huaiyu Duan as a new faculty member with the support from DOE, who has contributed to the Topical Collaboration through his research and collaborations.
Kinetic equation for strongly interacting dense Fermi systems
Lipavsky, P; Spicka, V
2001-01-01
We review the non-relativistic Green's-function approach to the kinetic equations for Fermi liquids far from equilibrium. The emphasis is on the consistent treatment of the off-shell motion between collisions and on the non-instant and non-local picture of binary collisions. The resulting kinetic equation is of the Boltzmann type, and it represents an interpolation between the theory of transport in metals and the theory of moderately dense gases. The free motion of particles is renormalised by various mean field and mass corrections in the spirit of Landau's quasiparticles in metals. The collisions are non-local in the spirit of Enskog's theory of non-ideal gases. The collisions are moreover non-instant, a feature which is absent in the theory of gases, but which is shown to be important for dense Fermi systems. In spite of its formal complexity, the presented theory has a simple implementation within the Monte-Carlo simulation schemes. Applications in nuclear physics are given for heavy-ion reactions and th...
Quark Matter Equation of State from Perturbative QCD
Vuorinen, Aleksi
2016-01-01
In this proceedings contribution, we discuss recent developments in the perturbative determination of the Equation of State of dense quark matter, relevant for the microscopic description of neutron star cores. First, we introduce the current state of the art in the problem, both at zero and small temperatures, and then present results from two recent perturbative studies that pave the way towards extending the EoS to higher orders in perturbation theory.
Stability of superfluid vortices in dense quark matter
Alford, Mark G; Vachaspati, Tanmay; Windisch, Andreas
2016-01-01
Superfluid vortices in the color-flavor-locked (CFL) phase of dense quark matter are known to be energetically disfavored relative to well-separated triplets of "semi-superfluid" color flux tubes. However, the short-range interaction (metastable versus unstable) has not been established. In this paper we perform numerical calculations using the effective theory of the condensate field, mapping the regions in the parameter space of coupling constants where the vortices are metastable versus unstable. For the case of zero gauge coupling we analytically identify a candidate for the unstable mode, and show that it agrees well with the results of the numerical calculations. We find that in the region of the parameter space that seems likely to correspond to real-world CFL quark matter the vortices are unstable, indicating that if such matter exists in neutron star cores it is very likely to contain semi-superfluid color flux tubes rather than superfluid vortices.
Unified description of dense matter in neutron stars and magnetars
Chamel, N; Mihailov, L M; Velchev, Ch J; Stoyanov, Zh K; Mutafchieva, Y D; Ivanovich, M D; Fantina, A F; Pearson, J M; Goriely, S
2013-01-01
We have recently developed a set of equations of state based on the nuclear energy density functional theory providing a unified description of the different regions constituting the interior of neutron stars and magnetars. The nuclear functionals, which were constructed from generalized Skyrme effective nucleon-nucleon interactions, yield not only an excellent fit to essentially all experimental atomic mass data but were also constrained to reproduce the neutron-matter equation of state as obtained from realistic many-body calculations.
Ab initio thermodynamic results for warm dense matter
Bonitz, Michael
2016-10-01
Warm dense matter (WDM) - an exotic state where electrons are quantum degenerate and ions may be strongly correlated - is ubiquitous in dense astrophysical plasmas and highly compressed laboratory systems including inertial fusion. Accurate theoretical predictions require precision thermodynamic data for the electron gas at high density and finite temperature around the Fermi temperature. First such data have been obtained by restricted path integral Monte Carlo (restricted PIMC) simulations and transformed into analytical fits for the free energy. Such results are also key input for novel finite temperature density functional theory. However, the RPIMC data of Ref. 1 are limited to moderate densities, and even there turned out to be surprisingly inaccurate, which is a consequence of the fermion sign problem. These problems were recently overcome by the development of alternative QMC approaches in Kiel (configuration PIMC and permutation blocking PIMC) and Imperial College (Density matrix QMC). The three methods have their strengths and limitations in complementary parameter regions and provide highly accurate thermodynamic data for the electronic contributions in WDM. While the original results were obtained for small particle numbers, recently accurate finite size corrections were derived allowing to compute ab initio thermodynamic data with an unprecedented accuracy of better than 0.3 percent. This provides the final step for the use as benchmark data for experiments and models of Warm dense matter. Co-authors: T. Schoof, S. Groth, T. Dornheim, F. D. Malone, M. Foulkes, and T. Sjostroem, Funded by: DFG via SFB-TR24 and project BO1366-10.
A pulsed power hydrodynamics approach to exploring properties of warm dense matter
Energy Technology Data Exchange (ETDEWEB)
Reinovsky, Robert Emil [Los Alamos National Laboratory
2008-01-01
Pulsed Power Hydrodynamics, as an application of low-impedance, pulsed power, and high magnetic field technology developed over the last decade to study advanced hydrodynamic problems, instabilities, turbulence, and material properties, can potentially be applied to the study of the behavior and properties of warm dense matter (WDM) as well. Exploration of the properties, such as equation of state and conductivity, of warm dense matter is an emerging area of study focused on the behavior of matter at density near solid density (from 10% of solid density to a few times solid density) and modest temperatures ({approx}1-10 eV). Warm dense matter conditions can be achieved by laser or particle beam heating of very small quantities of matter on timescales short compared to the subsequent hydrodynamic expansion timescales (isochoric heating) and a vigorous community of researchers is applying these techniques using petawatt scale laser systems, but the microscopic size scale of the WDM produced in this way limits access to some physics phenomena. Pulsed power hydrodynamics techniques, either through high convergence liner compression of a large volume, modest density, low temperature plasma to densities approaching solid density or through the explosion and subsequent expansion of a conductor (wire) against a high pressure (density) gas background (isobaric expansion) techniques both offer the prospect for producing warm dense matter in macroscopic quantities. However, both techniques demand substantial energy, proper power conditioning and delivery, and an understanding of the hydrodynamic and instability processes that limit each technique. Similarly, liner compression of normal density material, perhaps using multiple reflected shocks can provide access to the challenging region above normal density -- again with the requirement of very large amounts of driving energy. In this paper we will provide an introduction to techniques that might be applied to explore this
Dense baryonic matter: constraints from recent neutron star observations
Hell, Thomas
2014-01-01
Updated constraints from neutron star masses and radii impose stronger restrictions on the equation of state for baryonic matter at high densities and low temperatures. The existence of two-solar-mass neutron stars rules out many soft equations of state with prominent "exotic" compositions. The present work reviews the conditions required for the pressure as a function of baryon density in order to satisfy these new constraints. Several scenarios for sufficiently stiff equations of state are evaluated. The common starting point is a realistic description of both nuclear and neutron matter based on a chiral effective field theory approach to the nuclear many-body problem. Possible forms of hybrid matter featuring a quark core in the center of the star are discussed using a three-flavor Polyakov--Nambu--Jona-Lasinio (PNJL) model. It is found that a conventional equation of state based on nuclear chiral dynamics meets the astrophysical constraints. Hybrid matter generally turns out to be too soft unless addition...
Evolution of a dense neutrino gas in matter and electromagnetic field
Dvornikov, Maxim
2011-01-01
We describe the system of massive Weyl fields propagating in background matter and interacting with an external electromagnetic field. The interaction with an electromagnetic field is due to the presence of anomalous magnetic moments. To canonically quantize this system first we develop the classical field theory treatment of Weyl spinors in frames of the Hamilton formalism which accounts for the external fields. Then, on the basis of the exact solution of the wave equation for a massive Weyl field in background matter we obtain the effective Hamiltonian for the description of spin-flavor oscillations of Majorana neutrinos in matter and a magnetic field. Finally, we incorporate in our analysis the neutrino self-interaction which is essential when the neutrino density is sufficiently high. We also discuss the applicability of our results for the studies of collective effects in spin-flavor oscillations of supernova neutrinos in dense matter and strong magnetic field.
Cold and Dense Matter in a Magnetic Field
de la Incera, Vivian
2009-01-01
Our Universe is full of regions where extreme physical conditions are realized. Among the most intriguing cases are the so-called magnetars: neutron stars with very dense cores and super-strong magnetic fields. In this paper I review the current understanding of the physical properties of quark matter at ultra-high density in the presence of very large magnetic fields. I will discuss the main results on this topic, the main challenges that still remain, and how they could be related to the physics of magnetars.
Hot dense magnetized ultrarelativistic spinor matter in a slab
Sitenko, Yu A
2016-01-01
Properties of hot dense ultrarelativistic spinor matter in a slab of finite width, placed in a transverse uniform magnetic field, are studied. The admissible set of boundary conditions is determined by the requirement that spinor matter be confined inside the slab. In thermal equilibrium, the chiral separation effect in the slab is shown to depend both on temperature and chemical potential; this is distinct from the unrealistic case of the magnetic field filling the unbounded (infinite) medium, when the effect is temperature-independent. In the realistic case of the slab, a stepwise behaviour of the axial current density at zero temperature is smoothed out as temperature increases, turning into a linear behaviour at infinitely large temperature. A choice of boundary conditions can facilitate either augmentation or attenuation of the chiral separation effect; in particular, the effect can persist even at zero chemical potential, if temperature is nonzero. Thus the boundary condition can serve as a source that ...
Equation of state for cold and dense heavy QCD
Energy Technology Data Exchange (ETDEWEB)
Glesaaen, Jonas; Neuman, Mathias; Philipsen, Owe [Institut für Theoretische Physik, Goethe-Universität Frankfurt, Max-von-Laue-Str. 1, Frankfurt am Main, 60438 (Germany)
2016-03-15
A previously derived three-dimensional effective lattice theory describing the thermodynamics of QCD with heavy quarks in the cold and dense region is extended through order ∼u{sup 5}κ{sup 8} in the combined character and hopping expansion of the original four-dimensional Wilson action. The systematics of the effective theory is investigated to determine its range of validity in parameter space. We demonstrate the severe cut-off effects due to lattice saturation, which afflict any lattice results at finite baryon density independent of the sign problem or the quality of effective theories, and which have to be removed by continuum extrapolation. We then show how the effective theory can be solved analytically by means of a linked cluster expansion, which is completely unaffected by the sign problem, in quantitative agreement with numerical simulations. As an application, we compute the cold nuclear equation of state of heavy QCD. Our continuum extrapolated result is consistent with a polytropic equation of state for non-relativistic fermions.
Gravitational closure of matter field equations
Schuller, F P; Wolz, F; Düll, M
2016-01-01
We show how to unlock the hidden information about gravity in one's choice of matter dynamics. Restricting attention to canonically quantizable matter field equations, but therefore being able to admit any tensorial background geometry, one is left with very little choice for the dynamics of the geometry. Indeed, the physical requirement that the common canonical evolution of matter and geometry can start and end on shared Cauchy surfaces imposes consistency conditions so strong that the Lagrangian for the geometry arises as the solution of a particular system of linear partial differential equations. Employing a suitable associated bundle to encode the canonical configuration degrees of freedom of the geometry, this system can be set up without additional constraints and with coefficient functions that indeed only depend on the causal structure of the chosen matter dynamics. Through these equations, the Lagrangian for the geometry is thus determined by the stipulated matter field dynamics, up to typically on...
Many-body forces, isospin asymmetry and dense hyperonic matter
Gomes, R O; Schramm, S; Vascconcellos, C A Z
2015-01-01
The equation of state (EoS) of asymmetric nuclear matter at high densities is a key topic for the description of matter inside neutron stars. The determination of the properties of asymmetric nuclear matter, such as the symmetry energy ($a_{sym}$) and the slope of the symmetry energy ($L_0$) at saturation density, has been exaustively studied in order to better constrain the nuclear matter EoS. However, differently from symmetric matter properties that are reasonably constrained, the symmetry energy and its slope still large uncertainties in their experimental values. Regarding this subject, some studies point towards small values of the slope of the symmetry energy, while others suggest rather higher values. Such a lack of agreement raised a certain debate in the scientific community. In this paper, we aim to analyse the role of these properties on the behavior of asymmetric hyperonic matter. Using the formalism presented in Ref. (R.O. Gomes et al 2014}, which considers many-body forces contributions in the ...
Hot dense matter creation in short-pulse laser interaction with tamped foils
Energy Technology Data Exchange (ETDEWEB)
Chen, S; Pasley, J; Beg, F; Gregori, G; Evans, R G; Notley, M; Mackinnon, A; Glenzer, S; Hansen, S; King, J; Chung, H; Wilks, S; Stephens, R; Freeman, R; Weber, R; Saiz, E G; Khattak, F; Riley, D
2006-08-15
The possibility of producing hot dense matter has important applications for the understanding of transport processes in inertial confinement fusion (ICF) [1] and laboratory astrophysics experiments [2]. While the success of ICF requires the correct solution of a complex interaction between laser coupling, equation-of-state, and particle transport problems, the possibility of experimentally recreating conditions found during the ignition phase in a simplified geometry is extremely appealing. In this paper we will show that hot dense plasma conditions found during ICF ignition experiments can be reproduced by illuminating a tamped foil with a high intensity laser. We will show that temperatures on the order of kiloelectronvolts at solid densities can be achieved under controlled conditions during the experiment. Hydrodynamic tamping by surface coatings allows to reach higher density regimes by enabling the diagnosis of matter that has not yet begun to decompress, thus opening the possibility of directly investigating strongly coupled systems [3]. Our experimental diagnostics is based on K-shell spectroscopy coupled to x-ray imaging techniques. Such techniques have recently become prevalent in the diagnosis of hot dense matter [4]. By looking at the presence, and relative strengths, of lines associated with different ionization states, spectroscopy provides considerable insight into plasma conditions. At the same time, curved crystal imaging techniques allow for the spatial resolution of different regions of the target, both allowing for comparison of heating processes with the results of Particle-In-Cell (PIC) and hybrid simulation codes.
Warm and dense stellar matter under strong magnetic fields
Rabhi, A; Providência, C
2011-01-01
We investigate the effects of strong magnetic fields on the equation of state of warm stellar matter as it may occur in a protoneutron star. Both neutrino free and neutrino trapped matter at a fixed entropy per baryon are analyzed. A relativistic mean field nuclear model, including the possibility of hyperon formation, is considered. A density dependent magnetic field with the magnitude $10^{15}$ G at the surface and not more than $3\\times 10^{18}$ G at the center is considered. The magnetic field gives rise to a neutrino suppression, mainly at low densities, in matter with trapped neutrinos. It is shown that an hybrid protoneutron star will not evolve to a low mass blackhole if the magnetic field is strong enough and the magnetic field does not decay. However, the decay of the magnetic field after cooling may give rise to the formation of a low mass blackhole.
Constraining the State of Ultra-dense Matter with the Neutron Star Interior Composition Explorer
Bogdanov, Slavko
2016-04-01
[This presentation is submitted on behalf of the entire NICER Science Team] The state of cold matter at densities exceeding those of atomic nuclei remains one of the principal outstanding problems in modern physics. Neutron stars provide the only known setting in the universe where these physical conditions can be explored. Thermal X-ray radiation from the physical surface of a neutron star can serve as a powerful tool for probing the poorly understood behavior of the matter in the dense stellar interior. For instance, realistic modeling of the thermal X-ray modulations observed from rotation-powered millisecond pulsars can produce stringent constraints on the neutron star mass-radius relation, and by extension the state of supra-nuclear matter. I will describe the prospects for precision neutron star equation of state constraints with millisecond pulsars using the forthcoming Neutron Star Interior Composition Explorer (NICER) X-ray timing mission.
Path Integral Monte Carlo and Density Functional Molecular Dynamics Simulations of Warm Dense Matter
Militzer, Burkhard; Driver, Kevin
2011-10-01
We analyze the applicability of two first-principles simulation techniques, path integral Monte Carlo (PIMC) and density functional molecular dynamics (DFT-MD), to study the regime of warm dense matter. We discuss the advantages as well as the limitations of each method and propose directions for future development. Results for dense, liquid helium, where both methods have been applied, demonstrate the range of each method's applicability. Comparison of the equations of state from simulations with analytical theories and free energy models show that DFT is useful for temperatures below 100000 K and then PIMC provides accurate results for all higher temperatures. We characterize the structure of the liquid in terms of pair correlation functions and study the closure of the band gap with increasing density and temperature. Finally, we discuss simulations of heavier elements and demonstrate the reliability are both methods in such cases with preliminary results.
Li, Zhi-Guo; Cheng, Yan; Chen, Qi-Feng; Chen, Xiang-Rong
2016-05-01
The equation of state, self-diffusion, and viscosity coefficients of helium have been investigated by quantum molecular dynamics (QMD) simulations in the warm dense matter regime. Our simulations are validated through the comparison with the reliable experimental data. The calculated principal and reshock Hugoniots of liquid helium are in good agreement with the gas-gun data. On this basis, we revisit the issue for helium, i.e., the possibility of the instabilities predicted by chemical models at around 2000 GPa and 10 g/cm3 along the pressure isotherms of 6309, 15 849, and 31 623 K. Our calculations show no indications of instability in this pressure-temperature region, which reconfirm the predictions of previous QMD simulations. The self-diffusion and viscosity coefficients of warm dense helium have been systematically investigated by the QMD simulations. We carefully test the finite-size effects and convergences of statistics, and obtain numerically converged self-diffusion and viscosity coefficients by using the Kubo-Green formulas. The present results have been used to evaluate the existing one component plasma models. Finally, the validation of the Stokes-Einstein relationship for helium in the warm dense regime is discussed.
Warm Dense Matter Experiments Driven by Ion Beams
Bieniosek, F. M.; Henestroza, E.; Jung, J. Y.; Leitner, M. A.; Lidia, S.; Logan, B. G.; More, R. M.; Ni, P. A.; Roy, P. K.; Seidl, P. A.; Waldron, W. L.; Barnard, J. J.; Friedman, A.
2009-11-01
Intense beams of heavy ions are capable of heating volumetric samples of matter to high energy density. We present results from warm dense matter (WDM) experiments at NDCX-I. The 0.3 MeV, 30-mA K^+ beam from the NDCX-I accelerator heats foil targets by combined longitudinal and transverse neutralized drift compression of the ion beam to a spot size ˜ 1 mm, and compressed pulse length ˜ 2 ns. The uncompressed beam flux is >=500 kW/cm^2, and the compressed pulse flux is > 5 MW/cm^2. Both the compressed and uncompressed parts of the NDCX-I beam heat targets. Future plans include construction of the NDCX-II accelerator, which is designed to heat targets at the Bragg peak using a 3-4 MeV lithium ion beam. We have developed a target chamber and target diagnostics including a fast multi-channel optical pyrometer, optical streak camera, and high-speed gated cameras. We compare measurements of temperature, droplet formation and other target parameters with model predictions. Continued improvements in beam tuning, bunch compression, and other upgrades are expected to yield higher flux on target.
Optical diagnostic of warm dense matter at NDCXI
Ni, Pavel; Bieniosek, Frank; Barnard, John; Henestroza, Enrique; Lidia, Steve; More, Dick
2010-11-01
This work is related to recently warm dense matter experiments at Lawrence Berkeley National Laboratory (LBNL), Neutralized Drift Compression Experiment (NDCX) accelerator, which delivers a 30-mA, 350-keV K^+ ion beam. Using the recently-developed technique of neutralized drift compression, the beam is simultaneously compressed longitudinally by a factor of 50, and focused transversely down to a 1 mm spot. The beam pulse is used to pulse heat various target materials, including Al, W, C, Pt and Si, above 3000 K driving samples into two-phase, liquid-vapor states. The next generation accelerator, NDCX-II, is being built and scheduled to be accomplished in 2012. This new machine will, utilize 2 MeV Li+ ions, to heat 2 micrometer thick metal targets up to 1,5 eV in 0.5 ns. This will allow us investigate near critical points properties of matter. The talk will focus on diagnostics aspects of WDM at NDCX. The fielded diagnostics include a specially developed three-channel optical pyrometer which probes color temperatures of the target at 750 nm, 1000 nm and 1500 nm, with 75 ps temporal resolution. Continuous target emission from 450 nm to 850 nm is recorded by a custom spectrometer, consisting of a high dynamic range Hamamatsu streak camera and a holographic grating. Free expansion of the sample is measured by a VISAR. Future diagnostics for the NDX-II user facility will be also discussed.
Ultrabright x-ray laser scattering for dynamic warm dense matter physics
Energy Technology Data Exchange (ETDEWEB)
Fletcher, L. B. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Univ. of California, Berkeley, CA (United States); Lee, H. J. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Doppner, T. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Galtier, E. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Nagler, B. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Heimann, P. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Fortmann, C. [QuantumWise A/S, Koebenhavn (Denmark); LePape, S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Mao, T. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Millot, M. [Univ. of California, Berkeley, CA (United States); Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Pak, A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Turnbull, D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Chapman, D. A. [AWE plc, Reading (United Kingdom); Univ. of Warwick, Coventry (United Kingdom); Gericke, D. O. [AWE plc, Reading (United Kingdom); Vorberger, J. [Max Planck Institute for the Physics of Complex Systems, Dresden (Germany); White, T. [Univ. of Oxford, Oxford (United Kingdom); Gregori, G. [Univ. of Oxford, Oxford (United Kingdom); Wei, M. [General Atomics, San Diego, CA (United States); Barbrel, B. [Univ. of California, Berkeley, CA (United States); Falcone, R. W. [Univ. of California, Berkeley, CA (United States); Kao, C. -C. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Nuhn, H. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Welch, J. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Zastrau, U. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Friedrich-Schiller-Univ., Jena (Germany); Neumayer, P. [GSI Helmhltzzentrum fur Schwerionenforschung GmbH, Darmstadt (Germany); Hastings, J. B. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Glenzer, S. H. [SLAC National Accelerator Lab., Menlo Park, CA (United States)
2015-03-23
In megabar shock waves, materials compress and undergo a phase transition to a dense charged-particle system that is dominated by strong correlations and quantum effects. This complex state, known as warm dense matter, exists in planetary interiors and many laboratory experiments (for example, during high-power laser interactions with solids or the compression phase of inertial confinement fusion implosions). Here, we apply record peak brightness X-rays at the Linac Coherent Light Source to resolve ionic interactions at atomic (ångström) scale lengths and to determine their physical properties. Our in situ measurements characterize the compressed lattice and resolve the transition to warm dense matter, demonstrating that short-range repulsion between ions must be accounted for to obtain accurate structure factor and equation of state data. Additionally, the unique properties of the X-ray laser provide plasmon spectra that yield the temperature and density with unprecedented precision at micrometre-scale resolution in dynamic compression experiments.
An equation of state for dark matter
Fronsdal, Christian
2011-01-01
Dark matter, believed to be present in many galaxies, is interpreted as a hydrodynamical system in interaction with the gravitational field and nothing else. An equation of state determines the mass distribution and the associated gravitational field. Conversely, the gravitational field can be inferred from observation of orbital velocities of stars in the Milky Way, in a first approximation in which the field is mainly due to the distribution of dark matter. In this approximation, the equation of state is determined by the gravitational field via the equations of motion. The resulting equation of state is a simple expression that accounts for the main features of the galactic rotation curve over 6 orders of magnitude.
Hot and dense matter in compact stars - from nuclei to quarks
Energy Technology Data Exchange (ETDEWEB)
Hempel, Matthias
2010-10-19
This dissertation deals with the equation of state of hot and dense matter in compact stars, with special focus on first order phase transitions. A general classification of first order phase transitions is given and the properties of mixed phases are discussed. Aspects of nucleation and the role of local constraints are investigated. The derived theoretical concepts are applied to matter in neutron stars and supernovae, in the hadron-quark and the liquid-gas phase transition. For the detailed description of the liquid-gas phase transition a new nuclear statistical equilibrium model is developed. It is based on a thermodynamic consistent implementation of relativistic mean-field interactions and excluded volume effects. With this model different equation of state tables are calculated and the composition and thermodynamic properties of supernova matter are analyzed. As a first application numerical simulations of core-collapse supernovae are presented. For the hadron-quark phase transition two possible scenarios are studied in more detail. First the appearance of a new mixed phase in a proto neutron star and the implications on its evolution. In the second scenario the consequences of the hadron-quark transition in corecollapse supernovae are investigated. Simulations show that the appearance of quark matter has clear observable signatures and can even lead to the generation of an explosion. (orig.)
Effective Model Approach to the Dense State of QCD Matter
Fukushima, Kenji
2010-01-01
The first-principle approach to the dense state of QCD matter, i.e. the lattice-QCD simulation at finite baryon density, is not under theoretical control for the moment. The effective model study based on QCD symmetries is a practical alternative. However the model parameters that are fixed by hadronic properties in the vacuum may have unknown dependence on the baryon chemical potential. We propose a new prescription to constrain the effective model parameters by the matching condition with the thermal Statistical Model. In the transitional region where thermal quantities blow up in the Statistical Model, deconfined quarks and gluons should smoothly take over the relevant degrees of freedom from hadrons and resonances. We use the Polyakov-loop coupled Nambu--Jona-Lasinio (PNJL) model as an effective description in the quark side and show how the matching condition is satisfied by a simple ansatz on the Polyakov loop potential. Our results favor a phase diagram with the chiral phase transition located at sligh...
The Modification of the Scalar Field in dense Nuclear Matter
Directory of Open Access Journals (Sweden)
Rożynek J.
2011-04-01
Full Text Available We show the possible evolution of the nuclear deep inelastic structure function with nuclear density ρ. The nucleon deep inelastic structure function represents distribution of quarks as function of Björken variable x which measures the longitudinal fraction of momentum carried by them during the Deep Inelastic Scattering (DIS of electrons on nuclear targets. Starting with small density and negative pressure in Nuclear Matter (NM we have relatively large inter-nucleon distances and increasing role of nuclear interaction mediated by virtual mesons.When the density approaches the saturation point, ρ = ρ0, we have no longer separate mesons and nucleons but eventually modified nucleon Structure Function (SF in medium. The ratio of nuclear to nucleon SF measured at saturation point is well known as “EMC effect”. For larger density, ρ > ρ0, when the localization of quarks is smaller then 0.3 fm, the nucleons overlap. We argue that nucleon mass should start to decrease in order to satisfy the Momentum Sum Rule (MSR of DIS. These modifications of the nucleon Structure Function (SF are calculated in the frame of the nuclear Relativistic Mean Field (RMF convolution model. The correction to the Fermi energy from term proportional to the pressure is very important and its inclusion modifies the Equation of State (EoS for nuclear matter.
Interspecies stress in momentum equations for dense binary particulate systems.
Zhang, D Z; Ma, X; Rauenzahn, R M
2006-07-28
For two-species particulate systems, ensemble averaged continuity and momentum equations for each species are derived based on the Liouville equation of the system. The ensemble average used is species specific. It is found that the interaction between species results in not only the interspecies force but also a stress in the momentum equations. In the limit that particles of one of the species can be considered as a continuum, the existence of the interspecies stress enables us to reduce the derived equations to the familiar form for dispersed two-phase flows.
Atomistic study of mixing at high Z / low Z interfaces at Warm Dense Matter Conditions
Haxhimali, Tomorr; Glosli, James; Rudd, Robert; Lawrence Livermore National Laboratory Team
2016-10-01
We use atomistic simulations to study different aspects of mixing occurring at an initially sharp interface of high Z and low Z plasmas in the Warm/Hot Dense Matter regime. We consider a system of Diamond (the low Z component) in contact with Ag (the high Z component), which undergoes rapid isochoric heating from room temperature up to 10 eV, rapidly changing the solids into warm dense matter at solid density. We simulate the motion of ions via the screened Coulomb potential. The electric field, the electron density and ionizations level are computed on the fly by solving Poisson equation. The spatially varying screening lengths computed from the electron cloud are included in this effective interaction; the electrons are not simulated explicitly. We compute the electric field generated at the Ag-C interface as well as the dynamics of the ions during the mixing process occurring at the plasma interface. Preliminary results indicate an anomalous transport of high Z ions (Ag) into the low Z component (C); a phenomenon that is partially related to the enhanced transport of ions due to the generated electric field. These results are in agreement with recent experimental observation on Au-diamond plasma interface. This work was performed under the auspices of the US Dept. of Energy by Lawrence Livermore National Security, LLC under Contract DE-AC52-07NA27344.
Some Recent Progress on Quark Pairings in Dense Quark and Nuclear Matter
Institute of Scientific and Technical Information of China (English)
庞锦毅; 王金成; 王群
2012-01-01
In this review article we give a brief overview on some recent progress in quark pairings in dense quark~nuclear matter mostly developed in the past five years. We focus on following aspects in particular： the BCS-BEC crossover in the CSC phase, the baryon formation and dissociation in dense quark/nuclear matter, the Ginzburg-Landau theory for three-flavor dense matter with UA （1） anomaly, and the collective and Nambu-Goldstone modes for the spin-one CSC.
Inhomogeneous chiral symmetry breaking in dense neutron-star matter
Energy Technology Data Exchange (ETDEWEB)
Buballa, Michael; Carignano, Stefano [Technische Universitaet Darmstadt, Theoriezentrum, Institut fuer Kernphysik, Darmstadt (Germany)
2016-03-15
An increasing number of model results suggests that chiral symmetry is broken inhomogeneously in a certain window at intermediate densities in the QCD phase diagram. This could have significant effects on the properties of compact stars, possibly leading to new astrophysical signatures. In this contribution we discuss this idea by reviewing recent results on inhomogeneous chiral symmetry breaking under an astrophysics-oriented perspective. After introducing two commonly studied spatial modulations of the chiral condensate, the chiral density wave and the real kink crystal, we focus on their properties and their effect on the equation of state of quark matter. We also describe how these crystalline phases are affected by different elements which are required for a realistic description of a compact star, such as charge neutrality, the presence of magnetic fields, vector interactions and the interplay with color superconductivity. Finally, we discuss possible signatures of inhomogeneous chiral symmetry breaking in the core of compact stars, considering the cases of mass-radius relations and neutrino emissivity explicitly. (orig.)
Accelerator and Ion Beam Tradeoffs for Studies of Warm Dense Matter
Barnard, John J; Callahan, Debra; Davidson, Ronald C; Friedman, Alex; Grant-Logan, B; Grisham, Larry; Lee, Edward; Lee, Richard; Olson, Craig; Rose, David; Santhanam, Parthiban; Sessler, Andrew M; Staples, John W; Tabak, Max; Welch, Dale; Wurtele, Jonathan; Yu, Simon
2005-01-01
One approach to heat a target to "Warm Dense Matter" conditions (similar, for example, to the interiors of giant planets or certain stages in Inertial Confinement Fusion targets), is to use intense ion beams as the heating source. By consideration of ion beam phase space constraints, both at the injector, and at the final focus, and consideration of simple equations of state, approximate conditions at a target foil may be calculated. Thus target temperature and pressure may be calculated as a function of ion mass, ion energy, pulse duration, velocity tilt, and other accelerator parameters. We examine the variation in target performance as a function of various beam and accelerator parameters, in the context of several different accelerator concepts, recently proposed for WDM studies.
Intense Ion Beam for Warm Dense Matter Physics
Energy Technology Data Exchange (ETDEWEB)
Coleman, Joshua Eugene [Univ. of California, Berkeley, CA (United States)
2008-01-01
The Neutralized Drift Compression Experiment (NDCX) at Lawrence Berkeley National Laboratory is exploring the physical limits of compression and focusing of ion beams for heating material to warm dense matter (WDM) and fusion ignition conditions. The NDCX is a beam transport experiment with several components at a scale comparable to an inertial fusion energy driver. The NDCX is an accelerator which consists of a low-emittance ion source, high-current injector, solenoid matching section, induction bunching module, beam neutralization section, and final focusing system. The principal objectives of the experiment are to control the beam envelope, demonstrate effective neutralization of the beam space-charge, control the velocity tilt on the beam, and understand defocusing effects, field imperfections, and limitations on peak intensity such as emittance and aberrations. Target heating experiments with space-charge dominated ion beams require simultaneous longitudinal bunching and transverse focusing. A four-solenoid lattice is used to tune the beam envelope to the necessary focusing conditions before entering the induction bunching module. The induction bunching module provides a head-to-tail velocity ramp necessary to achieve peak axial compression at the desired focal plane. Downstream of the induction gap a plasma column neutralizes the beam space charge so only emittance limits the focused beam intensity. We present results of beam transport through a solenoid matching section and simultaneous focusing of a singly charged K^{+} ion bunch at an ion energy of 0.3 MeV. The results include a qualitative comparison of experimental and calculated results after the solenoid matching section, which include time resolved current density, transverse distributions, and phase-space of the beam at different diagnostic planes. Electron cloud and gas measurements in the solenoid lattice and in the vicinity of intercepting diagnostics are also presented. Finally
A Sesame Equation of State for Dense Ce
Energy Technology Data Exchange (ETDEWEB)
Greeff, Carl William [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Crockett, Scott [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2016-03-15
We generated a new Sesame equation of state table for Ce. It is a single effective phase table for the high density phases α, α ', ϵ and liquid. Also, the EOS is meant to be used with a ramp to represent the initial low density γ phase.
Sound Wave in Hot Dense Matter Created in Heavy Ion Collision
Sun, X.; Yang, Z.
2005-01-01
A model to study the sound wave in hot dense matter created in heavy ion collisions by jet is proposed.The preliminary data of jet shape analysis of PHENIX Collaboration for all centralities and two directions is well explained in this model. Then the wavelength of the sound wave, the natural frequency of the hot dense matter and the speed of sound wave are estimated from the fit.
Decay of Langmuir wave in dense plasmas and warm dense matter
Son, S; Moon, Sung Joon
2010-01-01
The decays of the Langmuir waves in dense plasmas are computed using the dielectric function theory widely used in the solid state physics. Four cases are considered: a classical plasma, a Maxwellian plasma, a degenerate quantum plasma, and a partially degenerate plasma. The result is considerably different from the conventional Landau damping theory.
Equation of state of warm condensed matter
Energy Technology Data Exchange (ETDEWEB)
Barbee, T.W., III; Young, D.A.; Rogers, F.J.
1998-03-01
Recent advances in computational condensed matter theory have yielded accurate calculations of properties of materials. These calculations have, for the most part, focused on the low temperature (T=0) limit. An accurate determination of the equation of state (EOS) at finite temperature also requires knowledge of the behavior of the electron and ion thermal pressure as a function of T. Current approaches often interpolate between calculated T=0 results and approximations valid in the high T limit. Plasma physics-based approaches are accurate in the high temperature limit, but lose accuracy below T{approximately}T{sub Fermi}. We seek to ``connect up`` these two regimes by using ab initio finite temperature methods (including linear-response[1] based phonon calculations) to derive an equation of state of condensed matter for T{<=}T{sub Fermi}. We will present theoretical results for the principal Hugoniot of shocked materials, including carbon and aluminum, up to pressures P>100 GPa and temperatures T>10{sup 4}K, and compare our results with available experimental data.
Fractionized Skyrmions in Dense Compact-Star Matter
Harada, Masayasu; Lee, Hyun Kyu; Rho, Mannque
2016-01-01
The hadronic matter described as a skyrmion matter embedded in an FCC crystal is found to turn into a half-skyrmion matter with vanishing (in the chiral limit) quark condensate and {\\it non-vanishing} pion decay constant {$f_\\pi$} at a density $n_{1/2}$ lower than or near the critical density $n_c$ at which hadronic matter changes over to a chiral symmetry restored phase with possibly deconfined quarks. When hidden local gauge fields and a dilaton scalar of spontaneously broken scale symmetry with decay constant $f_\\chi$ are incorporated, this half-skyrmion phase is characterized by $f_\\chi\\approx f_\\pi\
A strong diffusive ion mode in dense ionized matter predicted by Langevin dynamics.
Mabey, P; Richardson, S; White, T G; Fletcher, L B; Glenzer, S H; Hartley, N J; Vorberger, J; Gericke, D O; Gregori, G
2017-01-30
The state and evolution of planets, brown dwarfs and neutron star crusts is determined by the properties of dense and compressed matter. Due to the inherent difficulties in modelling strongly coupled plasmas, however, current predictions of transport coefficients differ by orders of magnitude. Collective modes are a prominent feature, whose spectra may serve as an important tool to validate theoretical predictions for dense matter. With recent advances in free electron laser technology, X-rays with small enough bandwidth have become available, allowing the investigation of the low-frequency ion modes in dense matter. Here, we present numerical predictions for these ion modes and demonstrate significant changes to their strength and dispersion if dissipative processes are included by Langevin dynamics. Notably, a strong diffusive mode around zero frequency arises, which is not present, or much weaker, in standard simulations. Our results have profound consequences in the interpretation of transport coefficients in dense plasmas.
Astrophysical Constraints on Dense Matter in Neutron Stars
Miller, M Coleman
2013-01-01
Ever since the discovery of neutron stars it has been realized that they serve as probes of a physical regime that cannot be accessed in laboratories: strongly degenerate matter at several times nuclear saturation density. Existing nuclear theories diverge widely in their predictions about such matter. It could be that the matter is primarily nucleons, but it is also possible that exotic species such as hyperons, free quarks, condensates, or strange matter may dominate this regime. Astronomical observations of cold high-density matter are necessarily indirect, which means that we must rely on measurements of quantities such as the masses and radii of neutron stars and their surface effective temperatures as a function of age. Here we review the current status of constraints from various methods and the prospects for future improvements.
Fractionized Skyrmions in Dense Compact-Star Matter
Harada, Masayasu; Ma, Yong-Liang; Lee, Hyun Kyu; Rho, Mannque
The hadronic matter described as a skyrmion matter embedded in an FCC crystal is found to turn into a half-skyrmion matter with vanishing (in the chiral limit) quark condensate and non-vanishing pion decay constant fπ at a density n1/2 lower than or near the critical density nc at which hadronic matter changes over to a chiral symmetry restored phase with possibly deconfined quarks. When hidden local gauge fields and a dilaton scalar of spontaneously broken scale symmetry with decay constant fχ are incorporated, this half-skyrmion phase is characterized by fχ ≈ fπ ≠ 0 with the hidden gauge coupling g ≠ 0 but ≪ 1. While chiral symmetry is restored globally in this region in the sense that space-averaged, figures as a doorway to chiral restoration. The fractionization of skyrmion matter into half-skyrmion matter has a tantalizing analogy to what appears to happen in condensed matter in (2+1) dimensions where half-skyrmions or "meron" enter as relevant degrees of freedom at the interface.
Study of the Warm Dense Matter with XANES spectroscopy - Applications to planetary interiors
Denoeud, Adrien
With the recent discovery of many exoplanets, modelling the interior of these celestial bodies is becoming a fascinating scientific challenge. In this context, it is crucial to accurately know the equations of state and the macroscopic and microscopic physical properties of their constituent materials in the Warm Dense Matter regime (WDM). Moreover, planetary models rely almost exclusively on physical properties obtained using first principles simulations based on density functional theory (DFT) predictions. It is thus of paramount importance to validate the basic underlying mechanisms occurring for key planetary constituents (metallization, dissociation, structural modifications, phase transitions, etc....) as pressure and temperature both increase. In this work, we were interested in two materials that can be mainly found in the Earth-like planets: silica, or SiO2, as a model compound of the silicates that constitute the major part of their mantles, and iron, which is found in abundance in their cores. These two materials were compressed and brought to the WDM regime by using strong shock created by laser pulses during various experiments performed on the LULI2000 (Palaiseau, France) and the JLF (Livermore, US) laser facilities and on the LCLS XFEL (Stanford, US). In order to penetrate this dense matter and to have access to its both ionic and electronic structures, we have probed silica and iron with time-resolved X-ray Absorption Near Edge Structure (XANES). In parallel with these experiments, we performed quantum molecular dynamics simulations based on DFT at conditions representative of the region investigated experimentally so as to extract the interesting physical processes and comprehend the limits of the implemented models. In particular, these works allowed us to highlight the metallization processes of silica in temperature and the structural changes of its liquid in density, as well as to more constrain the melting curve of iron at very high pressures.
Phases of dense matter with non-spherical nuclei
Energy Technology Data Exchange (ETDEWEB)
Pethick, C.J. [NORDITA, Copenhagen (Denmark)]|[Dept. of Physics, Univ. of Illinois at Urbana-Champaign, Urbana, IL (United States); Ravenhall, D.G. [Dept. of Physics, Univ. of Illinois at Urbana-Champaign, Urbana, IL (United States)
1998-06-01
A brief review is given of some of the important physics related to phases with non-spherical nuclei that can exist in neutron stars and in matter in stellar collapse at densities just below the saturation density of nuclear matter. Comparisons are made with other systems that exhibit similar liquid-crystal-like phases, both in nuclear physics and in condensed matter physics. A short account is given of recent work on the elastic properties of these phases, and their vibration spectrum, as well as on neutron superfluid gaps. (orig.)
Nucleon effective masses in field theories of dense matter
Energy Technology Data Exchange (ETDEWEB)
Lee, C.H.; Reddy, S.; Prakash, M. [Dept. of Physics and Astronomy, Stony Brook, NY (United States)
1998-06-01
We point out some generic trends of effective masses in commonly used field-theoretical descriptions of stellar matter in which several species of strongly interacting particles of dissimilar masses may be present. (orig.)
Kinetic theory the Chapman-Enskog solution of the transport equation for moderately dense gases
Brush, S G
1972-01-01
Kinetic Theory, Volume 3: The Chapman-Enskog Solution of the Transport Equation for Moderately Dense Gases describes the Chapman-Enskog solution of the transport equation for moderately dense gases. Topics covered range from the propagation of sound in monatomic gases to the kinetic theory of simple and composite monatomic gases and generalizations of the theory to higher densities. The application of kinetic theory to the determination of intermolecular forces is also discussed. This volume is divided into two sections and begins with an introduction to the work of Hilbert, Chapman, and Ensko
A k-{\\varepsilon} turbulence closure model of an isothermal dry granular dense matter
Fang, Chung
2016-07-01
The turbulent flow characteristics of an isothermal dry granular dense matter with incompressible grains are investigated by the proposed first-order k-{\\varepsilon} turbulence closure model. Reynolds-filter process is applied to obtain the balance equations of the mean fields with two kinematic equations describing the time evolutions of the turbulent kinetic energy and dissipation. The first and second laws of thermodynamics are used to derive the equilibrium closure relations satisfying turbulence realizability conditions, with the dynamic responses postulated by a quasi-linear theory. The established closure model is applied to analyses of a gravity-driven stationary flow down an inclined moving plane. While the mean velocity decreases monotonically from its value on the moving plane toward the free surface, the mean porosity increases exponentially; the turbulent kinetic energy and dissipation evolve, respectively, from their minimum and maximum values on the plane toward their maximum and minimum values on the free surface. The evaluated mean velocity and porosity correspond to the experimental outcomes, while the turbulent dissipation distribution demonstrates a similarity to that of Newtonian fluids in turbulent shear flows. When compared to the zero-order model, the turbulent eddy evolution tends to enhance the transfer of the turbulent kinetic energy and plane shearing across the flow layer, resulting in more intensive turbulent fluctuation in the upper part of the flow. Solid boundary as energy source and sink of the turbulent kinetic energy becomes more apparent in the established first-order model.
Dai, Jiayu; Hou, Yong; Yuan, Jianmin
2010-06-18
Electron-ion interactions are central to numerous phenomena in the warm dense matter (WDM) regime and at higher temperature. The electron-ion collisions induced friction at high temperature is introduced in the procedure of ab initio molecular dynamics using the Langevin equation based on density functional theory. In this framework, as a test for Fe and H up to 1000 eV, the equation of state and the transition of electronic structures of the materials with very wide density and temperature can be described, which covers a full range of WDM up to high energy density physics. A unified first principles description from condensed matter to ideal ionized gas plasma is constructed.
Matter Equation of State in General Relativity
Kim, Hyeong-Chan
2016-01-01
We study how a strong gravity affects the equation of state of matters. For this purpose, we employ a canonical ensemble of classical monoatomic ideal gas inside a box in a Rindler spacetime. The total energy decreases monotonically with the increase of the external gravity representing its attractiveness. It is however bounded below, which is different from that of the Newtonian gravity case. As for the entropy, it decreases with the external gravity in the Newtonian regime. However, in the presence of strong gravity or ultra-relativistic high temperature, the entropy increases with the gravity. This result can be a resolution of the negative entropy problem of the ideal gas in the Newtonian gravity. In the presence of strong gravity, the bottom of the box is very close to the event horizon of the Rindler spacetime mimiking a blackhole and the gas behaves as if it is on an effective two dimensional surface located at the bottom of the box. Investigating the equation of state in the strong gravity regime, the...
Half-Skyrmions and the Equation of State for Compact-Star Matter
Dong, Huan; Lee, Hyun Kyu; Machleidt, R; Rho, Mannque
2012-01-01
The half-skyrmions that appear in dense baryonic matter when skyrmions are put on crystals modify drastically hadron properties in dense medium and affect strongly the nuclear tensor forces, thereby influencing the equation of state (EoS) of dense nuclear and asymmetric nuclear matter. The matter comprised of half skyrmions has vanishing quark condensate but non-vanishing pion decay constant and could be interpreted as a hadronic dual of strong-coupled quark matter. We infer from this observation a set of new scaling laws -- called "new-BR" -- for the parameters in nuclear effective field theory controlled by renormalization-group flow. They are subjected to the EoS of symmetric and asymmetric nuclear matter, and are then applied to nuclear symmetry energies and properties of compact stars. The changeover from the skyrmion matter to a half-skyrmion matter that takes place after the cross-over density $n_{1/2}$ makes the EoS stiffer and leads to a compact star as massive as $\\sim 2.4M_\\odot$. Cross-over densit...
Dense Matter Characterization by X-ray Thomson Scattering
Energy Technology Data Exchange (ETDEWEB)
Landen, O L; Glenzer, S H; Edwards, M J; Lee, R W; Collins, G W; Cauble, R C; Hsing, W W; Hammel, B A
2000-12-29
We discuss the extension of the powerful technique of Thomson scattering to the x-ray regime for providing an independent measure of plasma parameters for dense plasmas. By spectrally-resolving the scattering, the coherent (Rayleigh) unshifted scattering component can be separated from the incoherent Thomson component, which is both Compton and Doppler shifted. The free electron density and temperature can then be inferred from the spectral shape of the high frequency Thomson scattering component. In addition, as the plasma temperature is decreased, the electron velocity distribution as measured by incoherent Thomson scattering will make a transition from the traditional Gaussian Boltzmann distribution to a density-dependent parabolic Fermi distribution to. We also present a discussion for a proof-of-principle experiment appropriate for a high energy laser facility.
Hyperon-Nucleon Interactions and the Composition of Dense Matter from Quantum Chromodynamics
Energy Technology Data Exchange (ETDEWEB)
Konstantinos Orginos, Silas Beane, Emmanuel Chang, Saul Cohen, Huey-Wen Lin, Tom Luu, Assumpta Parreno, Martin Savage, Andre Walker-Loud, William Detmold
2012-10-01
The low-energy n{Sigma}{sup -} interactions determine, in part, the role of the strange quark in dense matter, such as that found in astrophysical environments. The scattering phase-shifts for this system are determined from a numerical evaluation of the QCD path integral using the technique of Lattice QCD. Our results, performed at a pion mass of m{sub {pi}} ~ 389 MeV in two large lattice volumes, and at one lattice spacing, are extrapolated to the physical pion mass using effective field theory. The calculated interactions indicate that the strange quark plays an important role in dense matter.
Pure quantum states of neutrino with rotating spin in dense magnetized matter
Arbuzova, E V; Murchikova, E M
2009-01-01
The problem of rotation of the neutrino spin in dense matter and in strong electromagnetic field is solved in full agreement with the basic principles of quantum mechanics. We found complete system of wave functions of a massive Dirac neutrino possessing anomalous magnetic moment. These functions are eigenfunctions of kinetic momentum operator and describe neutrino with rotating spin. Using these wave functions it is possible to calculate probabilities of various processes with neutrino in the framework of the Furry picture. The dispersion law for the neutrino in dense magnetized matter is found. It is shown that group velocity of neutrino is independent of spin orientation.
Fermion Damping Rate Effects in Cold Dense Matter
Manuel, C
2000-01-01
We review the non-Fermi or marginal liquid behavior of a relativistic QED plasma. In this medium a quasiparticle has a damping rate that depends linearly on the distance between its energy and the Fermi surface. We stress that this dependence is due to the long-range character of the magnetic interactions in the medium. Finally, we study how the quark damping rate modifies the gap equation of color superconductivity, reducing the value of the gap at the Fermi surface.
Chirally symmetric but confining dense and cold matter
Glozman, L Ya
2007-01-01
The folklore tradition about the QCD phase diagram is that the chiral restoration and deconfinement transitions coincide. Very recently McLerran and Pisarski suggested, based on qualitative large $N_c$ arguments, that at moderate temperature and not very small chemical potential it is not the case. We address this question within the only known exactly solvable confining and chirally symmetric model. It is postulated within this model that there exists linear Coulomb-like confining interaction. The chiral symmetry breaking and the quark Green function are obtained from the Schwinger-Dyson equation while the color-singlet meson spectrum results from the Bethe-Salpeter equation. Single quarks cannot be observed because the single-quark Green function is infrared divergent. We solve this model at T=0 and finite chemical potential \\mu and obtain a clear chiral restoration phase transition at the critical value \\mu_{cr}. Below this value the quarks have a finite momentum-dependent dynamical mass and the spectrum i...
Collective excitations, instabilities, and ground state in dense quark matter
Gorbar, E V; Miransky, V A; Shovkovy, I A; Hashimoto, Michio
2006-01-01
We study the spectrum of light plasmons in the (gapped and gapless) two-flavor color superconducting phases and its connection with the chromomagnetic instabilities and the structure of the ground state. It is revealed that the chromomagnetic instabilities in the 4-7th and 8th gluonic channels correspond to two very different plasmon spectra. These spectra lead us to the unequivocal conclusion about the existence of gluonic condensates (some of which can be spatially inhomogeneous) in the ground state. We also argue that spatially inhomogeneous gluonic condensates should exist in the three-flavor quark matter with the values of the mass of strange quark corresponding to the gapless color-flavor locked state.
Time-evolution of dense hadronic matter in high energy heavy ion reactions
Energy Technology Data Exchange (ETDEWEB)
Otuka, Naohiko; Ohnishi, Akira [Hokkaido Univ., Sapporo (Japan). Dept. of Physics; Nara, Yasushi; Maruyama, Tomoyuki; Niita, Koji
1997-05-01
Time evolution of hadronic resonance matter in ultrarelativistic nucleus-nucleus collisions are studied in the framework of cascade models. We investigate the role of higher baryonic resonances during the time evolution of hot and dense hadronic matter at AGS energies. Although final hadronic spectrum can reproduced well with and without higher baryonic resonances, the inclusion of higher resonances is shown to prevent the temperature from going beyond 200 MeV. (author)
Li, Dafang; Liu, Haitao; Zeng, Siliang; Wang, Cong; Wu, Zeqing; Zhang, Ping; Yan, Jun
2014-07-31
By performing quantum molecular dynamics (QMD) simulations, we investigate the equation of states, electrical and optical properties of the expanded beryllium at densities two to one-hundred lower than the normal solid density, and temperatures ranging from 5000 to 30000 K. With decreasing the density of Be, the optical response evolves from the one characteristic of a simple metal to the one of an atomic fluid. By fitting the optical conductivity spectra with the Drude-Smith model, it is found that the conducting electrons become localized at lower densities. In addition, the negative derivative of the electrical resistivity on temperature at density about eight lower than the normal solid density demonstrates that the metal to nonmetal transition takes place in the expanded Be. To interpret this transition, the electronic density of states is analyzed systematically. Furthermore, a direct comparison of the Rosseland opacity obtained by using QMD and the standard opacity code demonstrates that QMD provides a powerful tool to validate plasma models used in atomic physics approaches in the warm dense matter regime.
Highly efficient accelerator of dense matter using laser-induced cavity pressure acceleration
Energy Technology Data Exchange (ETDEWEB)
Badziak, J.; Jablonski, S.; Pisarczyk, T.; Raczka, P.; Chodukowski, T.; Kalinowska, Z.; Parys, P.; Rosinski, M.; Borodziuk, S. [Institute of Plasma Physics and Laser Microfusion, 01-497 Warsaw (Poland); Krousky, E. [Institute of Physics, AS CR, 182 21 Prague 8 (Czech Republic); Liska, R.; Kucharik, M. [Czech Technical University, FNSPE, 160 41 Prague 6 (Czech Republic); Ullschmied, J. [Institute of Plasma Physics, AS CR, 182 20 Prague 8 (Czech Republic)
2012-05-15
Acceleration of dense matter to high velocities is of high importance for high energy density physics, inertial confinement fusion, or space research. The acceleration schemes employed so far are capable of accelerating dense microprojectiles to velocities approaching 1000 km/s; however, the energetic efficiency of acceleration is low. Here, we propose and demonstrate a highly efficient scheme of acceleration of dense matter in which a projectile placed in a cavity is irradiated by a laser beam introduced into the cavity through a hole and then accelerated in a guiding channel by the pressure of a hot plasma produced in the cavity by the laser beam or by the photon pressure of the ultra-intense laser radiation trapped in the cavity. We show that the acceleration efficiency in this scheme can be much higher than that achieved so far and that sub-relativisitic projectile velocities are feasible in the radiation pressure regime.
Towards the phase diagram of dense two-color matter
Cotter, Seamus; Hands, Simon; Skullerud, Jon-Ivar
2012-01-01
We study two-color QCD with two flavors of Wilson fermion as a function of quark chemical potential mu and temperature T. We find evidence of a superfluid phase at intermediate mu and low T where the quark number density and diquark condensate are both very well described by a Fermi sphere of nearly-free quarks disrupted by a BCS condensate. Our results suggest that the quark contribution to the energy density is negative (and balanced by a positive gauge contribution), although this result is highly sensitive to details of the energy renormalisation. We also find evidence that the chiral condensate in this region vanishes in the massless limit. This region gives way to a region of deconfined quark matter at higher T and mu, with the deconfinement temperature, determined from the renormalised Polyakov loop, decreasing only very slowly with increasing chemical potential. The quark number susceptibility chi_q does not exhibit any qualitative change at the deconfinement transition. We argue that this is because ...
Importance of finite-temperature exchange correlation for warm dense matter calculations
Karasiev, Valentin V.; Calderín, Lázaro; Trickey, S. B.
2016-06-01
The effects of an explicit temperature dependence in the exchange correlation (XC) free-energy functional upon calculated properties of matter in the warm dense regime are investigated. The comparison is between the Karasiev-Sjostrom-Dufty-Trickey (KSDT) finite-temperature local-density approximation (TLDA) XC functional [Karasiev et al., Phys. Rev. Lett. 112, 076403 (2014), 10.1103/PhysRevLett.112.076403] parametrized from restricted path-integral Monte Carlo data on the homogeneous electron gas (HEG) and the conventional Monte Carlo parametrization ground-state LDA XC [Perdew-Zunger (PZ)] functional evaluated with T -dependent densities. Both Kohn-Sham (KS) and orbital-free density-functional theories are used, depending upon computational resource demands. Compared to the PZ functional, the KSDT functional generally lowers the dc electrical conductivity of low-density Al, yielding improved agreement with experiment. The greatest lowering is about 15% for T =15 kK. Correspondingly, the KS band structure of low-density fcc Al from the KSDT functional exhibits a clear increase in interband separation above the Fermi level compared to the PZ bands. In some density-temperature regimes, the deuterium equations of state obtained from the two XC functionals exhibit pressure differences as large as 4% and a 6% range of differences. However, the hydrogen principal Hugoniot is insensitive to the explicit XC T dependence because of cancellation between the energy and pressure-volume work difference terms in the Rankine-Hugoniot equation. Finally, the temperature at which the HEG becomes unstable is T ≥7200 K for the T -dependent XC, a result that the ground-state XC underestimates by about 1000 K.
Droplet evolution in expanding flow of warm dense matter
Armijo, Julien; 10.1103/PhysRevE.83.051507
2011-01-01
We propose a simple, self-consistent kinetic model for the evolution of a mixture of droplets and vapor expanding adiabatically in vacuum after rapid, almost isochoric heating. We study the evolution of the two-phase fluid at intermediate times between the molecular and the hydrodynamic scales, focusing on out-of-equilibrium and surface effects. We use the van der Waals equation of state as a test bed to implement our model and study the phenomenology of the upcoming second neutralized drift compression experiment (NDCX-II) at Lawrence Berkeley National Laboratory (LBNL) that uses ion beams for target heating.We find an approximate expression for the temperature difference between the droplets and the expanding gas and we check it with numerical calculations. The formula provides a useful criterion to distinguish the thermalized and nonthermalized regimes of expansion. In the thermalized case, the liquid fraction grows in a proportion that we estimate analytically, whereas, in case of too rapid expansion, a s...
Dvornikov, Maxim
2016-12-01
We study the generation of strong large scale magnetic fields in dense quark matter. The magnetic field growth is owing to the magnetic field instability driven by the electroweak interaction of quarks. We discuss the situation when the chiral symmetry is unbroken in the degenerate quark matter. In this case we predict the amplification of the seed magnetic field 1012G to the strengths (1014 -1015)G. In our analysis we use the typical parameters of the quark matter in the core of a hybrid star or in a quark star. We also discuss the application of the obtained results to describe the magnetic fields generation in magnetars.
On the definition of Burnett transport coefficients of the dense multi-element charged matter
Pavlov, G A
2003-01-01
To determine the Burnett transport coefficients of non-ideal multi-element charged matter the representations of conservation equations of matter as generalized Langevin equations are used. Mori's algorithm is revised to derive the equation of motion of a dynamical value operator of a system in the form of the generalized nonlinear Langevin equation. After transformation, using necessary variational derivatives, these equations are compared with the Burnett hydrodynamical conservation equations. In consequence, the response function expressions of transport coefficients corresponding to second-order derivatives of thermal disturbances are found in the long-wavelength and low-frequency limits. To establish a link between the results of the executed investigations and hydrodynamical problems the properties of the high derivative coefficients matrix of the set of conservation equations in the linearized Burnett approximation are discussed.
Fast spectral solution of the generalized Enskog equation for dense gases
Wu, Lei; Zhang, Yonghao; Reese, Jason M.
2015-12-01
We propose a fast spectral method for solving the generalized Enskog equation for dense gases. For elastic collisions, the method solves the Enskog collision operator with a computational cost of O (M d - 1Nd log N), where d is the dimension of the velocity space, and M d - 1 and Nd are the number of solid angle and velocity space discretizations, respectively. For inelastic collisions, the cost is N times higher. The accuracy of this fast spectral method is assessed by comparing our numerical results with analytical solutions of the spatially-homogeneous relaxation of heated granular gases. We also compare our results for force-driven Poiseuille flow and Fourier flow with those from molecular dynamics and Monte Carlo simulations. Although it is phenomenological, the generalized Enskog equation is capable of capturing the flow dynamics of dense granular gases, and the fast spectral method is accurate and efficient. As example applications, Fourier and Couette flows of a dense granular gas are investigated. In addition to the temperature profile, both the density and the high-energy tails in the velocity distribution functions are found to be strongly influenced by the restitution coefficient.
Dense baryonic matter in the hidden local symmetry approach: Half-skyrmions and nucleon mass
Ma, Yong-Liang; Harada, Masayasu; Lee, Hyun Kyu; Oh, Yongseok; Park, Byung-Yoon; Rho, Mannque
2013-07-01
Hadron properties in dense medium are treated in a unified way in a skyrmion model constructed with an effective Lagrangian, in which the ρ and ω vector mesons are introduced as hidden gauge bosons, valid up to O(p4) terms in chiral expansion including the homogeneous Wess-Zumino terms. All the low energy constants of the Lagrangian—apart from the pion decay constant and the vector meson mass—are fixed by the master formula derived from the relation between the five-dimensional holographic QCD and the four-dimensional hidden local symmetry Lagrangian. This Lagrangian allows one to pin down the density n1/2 at which the skyrmions in medium fractionize into half-skyrmions, bringing in a drastic change in the equation of state of dense baryonic matter. We find that the U(1) field that figures in the Chern-Simons term in the five-dimensional holographic QCD action or equivalently the ω field in the homogeneous Wess-Zumino term in the dimensionally reduced hidden local symmetry action plays a crucial role in the half-skyrmion phase. The importance of the ω degree of freedom may be connected to what happens in the instanton structure of elementary baryon noticed in holographic QCD. The most striking and intriguing in what is found in the model is that the pion decay constant that smoothly drops with increasing density in the skyrmion phase stops decreasing at n1/2 and remains nearly constant in the half-skyrmion phase. In accordance with the large Nc consideration, the baryon mass also stays nonscaling in the half-skyrmion phase. This feature which is reminiscent of the parity-doublet baryon model with a chirally invariant mass m0 is supported by the nuclear effective field theory with the parameters of the Lagrangian scaling modified at the skyrmion-half-skyrmion phase transition. It also matches with one-loop renormalization group analysis based on hidden local symmetry. A link between a nonvanishing m0 and the origin of nucleon mass distinctive from
The Equation of State and Quark Number Susceptibility in Hard-Dense-Loop Approximation
Jiang, Yu; Huang, Shi-song; Sun, Wei-min; Zong, Hong-shi
2010-01-01
Based on the method proposed in [ H. S. Zong, W. M. Sun, Phys. Rev. \\textbf{D 78}, 054001 (2008)], we calculate the equation of state (EOS) of QCD at zero temperature and finite quark chemical potential under the hard-dense-loop (HDL) approximation. A comparison between the EOS under HDL approximation and the cold, perturbative EOS of QCD proposed by Fraga, Pisarski and Schaffner-Bielich is made. It is found that the pressure under HDL approximation is generally smaller than the perturbative result. In addition, we also calculate the quark number susceptibility (QNS) at finite temperature and finite chemical potential under hard-thermal/dense-loop (HTL/HDL) approximation and compare our results with the corresponding ones in the previous literature.
Equation of state of dense neon and krypton plasmas in the partial ionization regime
Energy Technology Data Exchange (ETDEWEB)
Chen, Q. F., E-mail: chenqf01@gmail.com; Zheng, J.; Gu, Y. J.; Li, Z. G. [Laboratory of Shock Wave and Detonation Physics, Institute of Fluid Physics, P.O. Box 919-102, Mianyang, Sichuan (China)
2015-12-15
The compression behaviors of dense neon and krypton plasmas over a wide pressure-temperature range are investigated by self-consistent fluid variational theory. The ionization degree and equation of state of dense neon and krypton are calculated in the density-temperature range of 0.01–10 g/cm{sup 3} and 4–50 kK. A region of thermodynamic instability is found which is related to the plasma phase transition. The calculated shock adiabat and principal Hugoniot of liquid krypton are in good agreement with available experimental data. The predicted results of shock-compressed liquid neon are presented, which provide a guide for dynamical experiments or numerical first-principle calculations aimed at studying the compression properties of liquid neon in the partial ionization regime.
Hyperon-Nucleon Interactions and the Composition of Dense Nuclear Matter from Quantum Chromodynamics
Energy Technology Data Exchange (ETDEWEB)
Beane, S R; Cohen, S D; Detmold, W; Lin, H -W; Luu, T C; Orginos, K; Parreno, A; Savage, M J
2012-10-01
The low-energy neutron-{Sigma}{sup -} interactions determine, in part, the role of the strange quark in dense matter, such as that found in astrophysical environments. The scattering phase shifts for this system are obtained from a numerical evaluation of the QCD path integral using the technique of Lattice QCD. Our calculations, performed at a pion mass of m{sub pi} ~ 389 MeV in two large lattice volumes, and at one lattice spacing, are extrapolated to the physical pion mass using effective field theory. The interactions determined from QCD are consistent with those extracted from hyperon-nucleon experimental data within uncertainties, and strengthen theoretical arguments that the strange quark is a crucial component of dense nuclear matter.
Hyperon-Nucleon Interactions and the Composition of Dense Nuclear Matter from Quantum Chromodynamics
Beane, S R; Cohen, S D; Detmold, W; Lin, H -W; Luu, T C; Orginos, K; Parreno, A; Savage, M J; Walker-Loud, A
2012-01-01
The low-energy neutron-Sigma^- interactions determine, in part, the role of the strange quark in dense matter, such as that found in astrophysical environments. The scattering phase shifts for this system are obtained from a numerical evaluation of the QCD path integral using the technique of Lattice QCD. Our calculations, performed at a pion mass of m_pi ~ 389 MeV in two large lattice volumes, and at one lattice spacing, are extrapolated to the physical pion mass using effective field theory. The interactions determined from QCD are consistent with those extracted from hyperon-nucleon experimental data within uncertainties, and strengthen theoretical arguments that the strange quark is a crucial component of dense nuclear matter.
The Korringa-Kohn-Rostoker Method Applied to Warm Dense Matter
Finkenstadt, Daniel; Newnam, Charles E.; Wilson, Brian G.
2012-02-01
The electronic structure, EOS and transport properties of warm electrons in an amorphous or disordered configuration of ions is not well described by either solid-state or plasma models. Such warm, dense systems share the characteristic of the solid state that multi-center scattering effects are of paramount importance in forming bands of valence states. Theoretical treatment of the EOS of warm, dense matter therefore requires a way to include significant occupation of higher energy and angular momentum channel continuum states. We are extending the Green's function Kohn-Korringa-Rostoker code MECCA as an all-electron (non-pseudo potential) method that treats arbitrary mixtures of atoms on an ab-initio basis over a broad range of conditions, from cold, solid matter up to hot plasmas at extreme (ICF) compression. Specific examples of Aluminum and Boron-Nitride will be discussed.
ION BEAM HEATED TARGET SIMULATIONS FOR WARM DENSE MATTER PHYSICS AND INERTIAL FUSION ENERGY
Energy Technology Data Exchange (ETDEWEB)
Barnard, J.J.; Armijo, J.; Bailey, D.S.; Friedman, A.; Bieniosek, F.M.; Henestroza, E.; Kaganovich, I.; Leung, P.T.; Logan, B.G.; Marinak, M.M.; More, R.M.; Ng, S.F.; Penn, G.E.; Perkins, L.J.; Veitzer, S.; Wurtele, J.S.; Yu, S.S.; Zylstra, A.B.
2008-08-01
Hydrodynamic simulations have been carried out using the multi-physics radiation hydrodynamics code HYDRA and the simplified one-dimensional hydrodynamics code DISH. We simulate possible targets for a near-term experiment at LBNL (the Neutralized Drift Compression Experiment, NDCX) and possible later experiments on a proposed facility (NDCX-II) for studies of warm dense matter and inertial fusion energy related beam-target coupling. Simulations of various target materials (including solids and foams) are presented. Experimental configurations include single pulse planar metallic solid and foam foils. Concepts for double-pulsed and ramped-energy pulses on cryogenic targets and foams have been simulated for exploring direct drive beam target coupling, and concepts and simulations for collapsing cylindrical and spherical bubbles to enhance temperature and pressure for warm dense matter studies are described.
Ion Beam Heated Target Simulations for Warm Dense Matter Physics and Inertial Fusion Energy
Energy Technology Data Exchange (ETDEWEB)
Barnard, J J; Armijo, J; Bailey, D S; Friedman, A; Bieniosek, F M; Henestroza, E; Kaganovich, I; Leung, P T; Logan, B G; Marinak, M M; More, R M; Ng, S F; Penn, G E; Perkins, L J; Veitzer, S; Wurtele, J S; Yu, S S; Zylstra, A B
2008-08-12
Hydrodynamic simulations have been carried out using the multi-physics radiation hydrodynamics code HYDRA and the simplified one-dimensional hydrodynamics code DISH. We simulate possible targets for a near-term experiment at LBNL (the Neutralized Drift Compression Experiment, NDCX) and possible later experiments on a proposed facility (NDCX-II) for studies of warm dense matter and inertial fusion energy related beam-target coupling. Simulations of various target materials (including solids and foams) are presented. Experimental configurations include single pulse planar metallic solid and foam foils. Concepts for double-pulsed and ramped-energy pulses on cryogenic targets and foams have been simulated for exploring direct drive beam target coupling, and concepts and simulations for collapsing cylindrical and spherical bubbles to enhance temperature and pressure for warm dense matter studies are described.
Beane, S R; Chang, E; Cohen, S D; Detmold, W; Lin, H-W; Luu, T C; Orginos, K; Parreño, A; Savage, M J; Walker-Loud, A
2012-10-26
The low-energy nΣ(-) interactions determine, in part, the role of the strange quark in dense matter, such as that found in astrophysical environments. The scattering phase shifts for this system are obtained from a numerical evaluation of the QCD path integral using the technique of lattice QCD. Our calculations, performed at a pion mass of m(π)~389 MeV in two large lattice volumes and at one lattice spacing, are extrapolated to the physical pion mass using effective field theory. The interactions determined from lattice QCD are consistent with those extracted from hyperon-nucleon experimental data within uncertainties and strengthen model-dependent theoretical arguments that the strange quark is a crucial component of dense nuclear matter.
Symmetric and anti-symmetric Landau parameters and magnetic properties of dense quark matter
Pal, Kausik
2010-01-01
The dimensionless Fermi liquid parameters (FLPs), $F_{0,1}^{sym}$ and $F_{0,1}^{asym}$, for spin asymmetric dense quark matter have been calculated. In general FLPs are infrared divergent due to the exchange of massless gluons. We use the hard-density-loop (HDL) corrected gluon propagator to remove such divergences. The FLPs so determined are then used to calculate magnetic properties like magnetization $$ and magnetic susceptibility $\\chi_M$ of spin polarized quark matter. We also study the density dependence of $$ and $\\chi_M$.
Dissipationless Hall Current in Dense Quark Matter in a Magnetic Field
Ferrer, E J
2016-01-01
We show the realization of axion electrodynamics within the Dual Chiral Density Wave phase of dense quark matter in the presence of a magnetic field. The system exhibits an anomalous dissipantionless Hall current perpendicular to the magnetic field and an anomalous electric charge density. Connection to topological insulators and 3D optical lattices, as well as possible implications for heavy-ion collisions and neutron stars are outlined.
Solution of dense systems of linear equations in electromagnetic scattering calculations
Energy Technology Data Exchange (ETDEWEB)
Rahola, J. [Center for Scientific Computing, Espoo (Finland)
1994-12-31
The discrete-dipole approximation (DDA) is a method for calculating the scattering of light by an irregular particle. The DDA has been used for example in calculations of optical properties of cosmic dust. In this method the particle is approximated by interacting electromagnetic dipoles. Computationally the DDA method includes the solution of large dense systems of linear equations where the coefficient matrix is complex symmetric. In the author`s work, the linear systems of equations are solved by various iterative methods such as the conjugate gradient method applied to the normal equations and QMR. The linear systems have rather low condition numbers due to which many iterative methods perform quite well even without any preconditioning. Some possible preconditioning strategies are discussed. Finally, some fast special methods for computing the matrix-vector product in the iterative methods are considered. In some cases, the matrix-vector product can be computed with the fast Fourier transform, which enables the author to solve dense linear systems of hundreds of thousands of unknowns.
Ion potential in warm dense matter: wake effects due to streaming degenerate electrons.
Moldabekov, Zhandos; Ludwig, Patrick; Bonitz, Michael; Ramazanov, Tlekkabul
2015-02-01
The effective dynamically screened potential of a classical ion in a stationary flowing quantum plasma at finite temperature is investigated. This is a key quantity for thermodynamics and transport of dense plasmas in the warm-dense-matter regime. This potential has been studied before within hydrodynamic approaches or based on the zero temperature Lindhard dielectric function. Here we extend the kinetic analysis by including the effects of finite temperature and of collisions based on the Mermin dielectric function. The resulting ion potential exhibits an oscillatory structure with attractive minima (wakes) and, thus, strongly deviates from the static Yukawa potential of equilibrium plasmas. This potential is analyzed in detail for high-density plasmas with values of the Brueckner parameter in the range 0.1≤r(s)≤1 for a broad range of plasma temperature and electron streaming velocity. It is shown that wake effects become weaker with increasing temperature of the electrons. Finally, we obtain the minimal electron streaming velocity for which attraction between ions occurs. This velocity turns out to be less than the electron Fermi velocity. Our results allow for reliable predictions of the strength of wake effects in nonequilibrium quantum plasmas with fast streaming electrons showing that these effects are crucial for transport under warm-dense-matter conditions, in particular for laser-matter interaction, electron-ion temperature equilibration, and stopping power.
Zero temperature quark matter equation of state
Energy Technology Data Exchange (ETDEWEB)
Grassi, F.
1987-09-01
An equation of state is computed for a plasma of one flavor quarks interacting through some phenomenological potential, in the Hartree approximation, at zero temperature. Assuming that the confining potential is scalar and color-independent, it is shown that the quarks undergo a first-order mass phase transition. In addition, due to the way screening is introduced, all the thermodynamic quantities computed are independent of the actual shape of the interquark potential. This equation of state is then generalized to a potential with scalar and vector components, Fock corrections are discussed and the case of a several quark flavor plasma is studied. 19 refs., 2 figs.
Charged anisotropic matter with linear or nonlinear equation of state
Varela, Victor; Ray, Saibal; Chakraborty, Kaushik; Kalam, Mehedi
2010-01-01
Ivanov pointed out substantial analytical difficulties associated with self-gravitating, static, isotropic fluid spheres when pressure explicitly depends on matter density. Simplification achieved with the introduction of electric charge were noticed as well. We deal with self-gravitating, charged, anisotropic fluids and get even more flexibility in solving the Einstein-Maxwell equations. In order to discuss analytical solutions we extend Krori and Barua's method to include pressure anisotropy and linear or non-linear equations of state. The field equations are reduced to a system of three algebraic equations for the anisotropic pressures as well as matter and electrostatic energy densities. Attention is paid to compact sources characterized by positive matter density and positive radial pressure. Arising solutions satisfy the energy conditions of general relativity. Spheres with vanishing net charge contain fluid elements with unbounded proper charge density located at the fluid-vacuum interface. Notably the...
Phenomenological neutron star equations of state. 3-window modeling of QCD matter
Energy Technology Data Exchange (ETDEWEB)
Kojo, Toru [University of Illinois at Urbana-Champaign, Department of Physics, Urbana, Illinois (United States)
2016-03-15
We discuss the 3-window modeling of cold, dense QCD matter equations of state at density relevant to neutron star properties. At low baryon density, n{sub B}
Diffusion of dark matter in a hot and dense nuclear environment
Cermeño, Marina; Silk, Joseph
2015-01-01
We calculate the mean free path in a hot and dense nuclear environment for a fermionic dark matter particle candidate interacting with nucleons via scalar and vector couplings. We determine the effects of density and temperature in the medium by using nuclear distribution functions to size the importance of the final state blocking. Our results show that stellar nuclear scenarios, where dark matter may be accreted, provide opacities several orders of magnitude larger than those for Standard Model neutrinos in the context of cooling of proto-neutron stars. We also show that in a diffusive approximation with couplings of Fermi's constant strength the obtained dark matter-nucleon crosss sections display the same sensitivity that upper limits constrained with collider searches in the mass region $m_\\chi \\lesssim$ 5 GeV.
Dvornikov, Maxim
2016-01-01
We study the generation of strong large scale magnetic fields in dense quark matter. The magnetic field growth is owing to the magnetic field instability driven by the electroweak interaction of quarks. We discuss the situation when the chiral symmetry is unbroken in the degenerate quark matter. In this case we predict the amplification of the seed magnetic field $10^{12}\\,\\text{G}$ to the strengths $(10^{14}-10^{15})\\,\\text{G}$. In our analysis we use the typical parameters of the quark matter in the core of a hybrid star or in a quark star. We also discuss the application of the obtained results to describe the magnetic fields generation in magnetars.
Confronting effective models for deconfinement in dense quark matter with lattice data
Andersen, Jens O; Naylor, William
2015-01-01
Ab initio numerical simulations of the thermodynamics of dense quark matter remain a challenge. Apart from the infamous sign problem, lattice methods have to deal with finite volume and discretization effects as well as with the necessity to introduce sources for symmetry-breaking order parameters. We study these artifacts in the Polyakov-loop-extended Nambu-Jona-Lasinio model, and compare its predictions to existing lattice data for cold and dense two-color matter with two flavors of Wilson quarks. To achieve even qualitative agreement with lattice data \\emph{requires} the introduction of two novel elements in the model: (i) explicit chiral symmetry breaking in the effective contact four-fermion interaction, referred to as the chiral twist, and (ii) renormalization of the Polyakov loop. The feedback of the dense medium to the gauge sector is modeled by a chemical-potential-dependent scale in the Polyakov-loop potential. In contrast to previously used analytical ans\\"atze, we determine its dependence on the c...
The ion potential in warm dense matter: wake effects due to streaming degenerate electrons
Moldabekov, Zhandos; Bonitz, Michael; Ramazano, Tlekkabul
2014-01-01
The effective dynamically screened potential of a classical ion in a stationary flowing quantum plasma at finite temperature is investigated. This is a key quantity for thermodynamics and transport of dense plasmas in the warm dense matter regime. To compute this potential a linear response description of the electrons via the Mermin dielectric function is utilized with electron-electron collisions taken into account via a relaxation time approximation. The ion potential strongly deviates from the static Yukawa potential exhibiting the familiar oscillatory structure with attractive minima (wake potential). This potential is analyzed in detail for high-density plasmas with values of the Brueckner parameter in the range $0.1 \\le r_s \\le 1$, for a broad range of plasma temperature and electron streaming velocity. It is shown that wake effects become weaker with increasing temperature of the electrons. Finally, we obtain the minimal electron streaming velocity for which attraction between ions occurs. This veloci...
Topological Insulators Dirac Equation in Condensed Matters
Shen, Shun-Qing
2012-01-01
Topological insulators are insulating in the bulk, but process metallic states around its boundary owing to the topological origin of the band structure. The metallic edge or surface states are immune to weak disorder or impurities, and robust against the deformation of the system geometry. This book, Topological insulators, presents a unified description of topological insulators from one to three dimensions based on the modified Dirac equation. A series of solutions of the bound states near the boundary are derived, and the existing conditions of these solutions are described. Topological invariants and their applications to a variety of systems from one-dimensional polyacetalene, to two-dimensional quantum spin Hall effect and p-wave superconductors, and three-dimensional topological insulators and superconductors or superfluids are introduced, helping readers to better understand this fascinating new field. This book is intended for researchers and graduate students working in the field of topological in...
Topological insulators Dirac equation in condensed matter
Shen, Shun-Qing
2017-01-01
This new edition presents a unified description of these insulators from one to three dimensions based on the modified Dirac equation. It derives a series of solutions of the bound states near the boundary, and describes the current status of these solutions. Readers are introduced to topological invariants and their applications to a variety of systems from one-dimensional polyacetylene, to two-dimensional quantum spin Hall effect and p-wave superconductors, three-dimensional topological insulators and superconductors or superfluids, and topological Weyl semimetals, helping them to better understand this fascinating field. To reflect research advances in topological insulators, several parts of the book have been updated for the second edition, including: Spin-Triplet Superconductors, Superconductivity in Doped Topological Insulators, Detection of Majorana Fermions and so on. In particular, the book features a new chapter on Weyl semimetals, a topic that has attracted considerable attention and has already b...
Bailly-Grandvaux, M; Bellei, C; Forestier-Colleoni, P; Fujioka, S; Giuffrida, L; Honrubia, J J; Batani, D; Bouillaud, R; Chevrot, M; Cross, J E; Crowston, R; Dorard, S; Dubois, J -L; Ehret, M; Gregori, G; Hulin, S; Kojima, S; Loyez, E; Marques, J -R; Morace, A; Nicolai, Ph; Roth, M; Sakata, S; Schaumann, G; Serres, F; Servel, J; Tikhonchuk, V T; Woolsey, N; Zhang, Z
2016-01-01
High-energy-density flows through dense matter are needed for effective progress in the production of laser-driven intense sources of energetic particles and radiation, in driving matter to extreme temperatures creating state regimes relevant for planetary or stellar science as yet inaccessible at the laboratory scale, or in achieving high-gain laser-driven thermonuclear fusion. When interacting at the surface of dense (opaque) targets, intense lasers accelerate relativistic electron beams which transport a significant fraction of the laser energy into the target depth. However, the overall laser-to-target coupling efficiency is impaired by the large divergence of the electron beam, intrinsic to the laser-plasma interaction. By imposing a longitudinal 600T laser-driven magnetic-field, our experimental results show guided >10MA-current of MeV-electrons in solid matter. Due to the applied magnetic field, the transported energy-density and the peak background electron temperature at the 60micron-thick targets re...
Interacting quark matter equation of state for compact stars
Fraga, Eduardo S; Vuorinen, Aleksi
2014-01-01
Lattice QCD studies of the thermodynamics of the hot quark-gluon plasma (QGP) demonstrate the importance of accounting for the interactions of quarks and gluons, if one wants to investigate the phase structure of strongly interacting matter. Motivated by this observation and using state-of-the-art results from perturbative QCD, we construct a simple effective equation of state for cold quark matter that consistently incorporates the effects of interactions and furthermore includes a built-in estimate of the inherent systematic uncertainties. This goes beyond the MIT bag model description in a crucial way, yet leads to an equation of state that is equally straightforward to use.
Probing dense matter in compact star cores with radio pulsar data
Alford, Mark G
2014-01-01
Astrophysical observations of compact stars provide, in addition to collider experiments, the other big source of information on matter under extreme conditions. The largest and most precise data set about neutron stars is the timing data of radio pulsars. We show how this unique data can be used to learn about the ultra-dense matter in the compact star interior. The method relies on astro-seismology based on special global oscillation modes (r-modes) that emit gravitational waves. They would prevent pulsars from spinning with their observed high frequencies, unless the damping of these modes, determined by the microscopic properties of matter, can prevent this. We show that for each form of matter there is a distinct region in a frequency/spindown-rate diagram where r-modes can be present. We find that stars containing ungapped quark matter are consistent with both the observed radio and x-ray data, whereas, even when taking into account the considerable uncertainties, neutron star models with standard visco...
Electron transport calculations in warm dense matter using scattering cross sections
Burrill, D J; Charest, M R J; Starrett, C E
2015-01-01
The Ziman formulation of electrical conductivity is tested in warm and hot dense matter using the pseudo-atom molecular dynamics method. Several implementation options that have been widely used in the literature are systematically tested through a comparison to accurate but expensive Kohn-Sham density functional theory molecular dynamics (KS-DFT-MD) calculations. The comparison is made for several elements and mixtures and for a wide range of temperatures and densities, and reveals a preferred method that generally gives very good agreement with the KSDFT-MD results, but at a fraction of the computational cost.
Magnetic Moments of Octet Baryons in Hot and Dense Nuclear Matter
Singh, Harpreet; Dahiya, Harleen
2016-01-01
We have calculated the in-medium magnetic moments of octet baryons in the presence of hot and dense symmetric nuclear matter. Effective magnetic moments of baryons have been derived from medium modified quark masses within chiral SU(3) quark mean field model.Further, for better insight of medium modification of baryonic magnetic moments, we have considered the explicit contributions from the valence as well as sea quark effects. These effects have been successful in giving the description of baryonic magnetic moments in vacuum. The magnetic moments of baryons are found to vary significantly as a function of density of nuclear medium.
Neutrino-antineutrino pair production by a photon in a dense matter
Lobanov, A E
2006-01-01
The possibility of radiative effects that are due to interaction of fermions with a dense matter is investigated. Neutrino-antineutrino photo-production is studied. The rate of this process is calculated in the Furry picture. It is demonstrated that this effect does not disappear even if the medium refractive index is assumed to be equal to unity. The rate obtained strongly depends on the polarization states of the particles involved. This leads to evident spatial asymmetries, which may have certain consequences observable in astrophysical and cosmological studies.
Veysman, M; Winkel, M; Reinholz, H
2016-01-01
Fundamental properties of warm dense matter are described by the dielectric function, which gives access to the frequency-dependent electrical conductivity, absorption, emission and scattering of radiation, charged particles stopping and further macroscopic properties. Different approaches to the dielectric function and the related dynamical collision frequency are compared in a wide frequency range. The high-frequency limit describing inverse bremsstrahlung and the low-frequency limit of the dc conductivity are considered. Sum rules and Kramers-Kronig relation are checked for the generalized linear response theory and the standard approach following kinetic theory. The results are discussed in application to aluminum, xenon and argon plasmas.
Test of a new heat-flow equation for dense-fluid shock waves.
Holian, Brad Lee; Mareschal, Michel; Ravelo, Ramon
2010-09-21
Using a recently proposed equation for the heat-flux vector that goes beyond Fourier's Law of heat conduction, we model shockwave propagation in the dense Lennard-Jones fluid. Disequilibrium among the three components of temperature, namely, the difference between the kinetic temperature in the direction of a planar shock wave and those in the transverse directions, particularly in the region near the shock front, gives rise to a new transport (equilibration) mechanism not seen in usual one-dimensional heat-flow situations. The modification of the heat-flow equation was tested earlier for the case of strong shock waves in the ideal gas, which had been studied in the past and compared to Navier-Stokes-Fourier solutions. Now, the Lennard-Jones fluid, whose equation of state and transport properties have been determined from independent calculations, allows us to study the case where potential, as well as kinetic contributions are important. The new heat-flow treatment improves the agreement with nonequilibrium molecular-dynamics simulations under strong shock wave conditions, compared to Navier-Stokes.
Wang, Cong; Long, Yao; Tian, Ming-Feng; He, Xian-Tu; Zhang, Ping
2013-04-01
We have calculated the equations of state, the viscosity and self-diffusion coefficients, and electronic transport coefficients of beryllium in the warm dense regime for densities from 4.0 to 6.0 g/cm(3) and temperatures from 1.0 to 10.0 eV by using quantum molecular dynamics simulations. The principal Hugoniot curve is in agreement with underground nuclear explosive and high-power laser experimental results up to ~20 Mbar. The calculated viscosity and self-diffusion coefficients are compared with the one-component plasma model, using effective charges given by the average-atom model. The Stokes-Einstein relationship, which connects viscosity and self-diffusion coefficients, is found to hold fairly well in the strong coupling regime. The Lorenz number, which is the ratio between thermal and electrical conductivities, is computed via Kubo-Greenwood formula and compared to the well-known Wiedemann-Franz law in the warm dense region.
The equation of state of QCD under hard-dense-loop approximation
Institute of Scientific and Technical Information of China (English)
无
2009-01-01
Based on the method proposed by Zong et al.,we calculate the equation of state(EOS) of QCD at zero temperature and finite quark chemical potential under the hard-dense-loop(HDL) approximation.A comparison between the EOS under HDL approximation and the cold,perturbative EOS of QCD proposed by Fraga,Pisarski and Schaffner-Bielich is made.It is found that when μ is less than 4.7 GeV,the pressure density calculated using HDL approximation is much larger than that calculated using pertur-bation theory.This enhancement of the obtained pressure density with respect to that of perturbation theory can be regarded as a possible explanation for the strong coupled QGP.It is also expected that the obtained EOS can be applied in the study of neutron stars.
The equation of state of QCD under hard-dense-loop approximation
Sun, Weimin; Jiang, Yu; Zong, Hongshi
2009-10-01
Based on the method proposed by Zong et al., we calculate the equation of state (EOS) of QCD at zero temperature and finite quark chemical potential under the hard-dense-loop (HDL) approximation. A comparison between the EOS under HDL approximation and the cold, perturbative EOS of QCD proposed by Fraga, Pisarski and Schaffner-Bielich is made. It is found that when µ is less than 4.7 GeV, the pressure density calculated using HDL approximation is much larger than that calculated using perturbation theory. This enhancement of the obtained pressure density with respect to that of perturbation theory can be regarded as a possible explanation for the strong coupled QGP. It is also expected that the obtained EOS can be applied in the study of neutron stars.
Quantum molecular dynamics simulations of equation of state of warm dense ethane
Li, Chuan-Ying; Wang, Cong; Li, Yong-Sheng; Li, Da-Fang; Li, Zi; Zhang, Ping
2016-09-01
The equation of state of warm dense ethane is obtained using quantum molecular dynamics simulations based on finite-temperature density functional theory for densities from 0.1 g / cm 3 to 3.1 g / cm 3 and temperatures from 0.1 eV to 5.17 eV. The calculated pressure and internal energy are fitted with cubic polynomials in terms of density and temperature. Specific density-temperature-pressure tracks such as the principal and double shock Hugoniot curves along with release isentropes are predicted which are fundamental for the analysis and interpretation of high-pressure experiments. The principal and double shock Hugoniot curves are in agreement with the experimental data from the Sandia Z-Machine [Magyar et al., Phys. Rev. B 91, 134109 (2015)].
Zaghloul, Mofreh R
2015-01-01
We present computational results and tables of the equation-of-state, thermodynamic properties, and shock Hugoniot for hot dense fluid deuterium. The present results are generated using a recently developed chemical model that takes into account different high density effects such as Coulomb interactions among charged particles, partial degeneracy, and intensive short range hard core repulsion. Internal partition functions are evaluated in a statistical-mechanically consistent way implementing recent developments in the literature. The shock Hugoniot curve derived from the present tables is in reasonable overall agreement with the Hugoniot derived from the Nova-laser shock wave experiments on liquid deuterium, showing that deuterium has a significantly higher compressibility than predicted by the SESAME tables or by Path Integral Monte Carlo (PIMC) calculations. Computational results are presented as surface plots for the dissociated fraction, degree of ionization, pressure, and specific internal energy for d...
Kabeer, Fairoja Cheenicode; Zijlstra, Eeuwe S.; Garcia, Martin E.
2014-03-01
Intense ultrashort extreme ultraviolet (XUV) pulses can be used to create warm dense matter in the laboratory, which then develops to a plasma state. So far, however, it is unknown, whether this transition occurs via heat transfer from hot electrons to cold atoms or nonthermally due to a lattice instability. Here we computed the response of the phonon spectra of copper and silver to the presence of XUV-excited core holes and core holes together with very hot electrons. We found that the average interatomic bonds become stronger in the warm dense state. We discuss why these findings support the above-mentioned heat transfer scenario.
Calculations on the stopping power of a heterogeneous Warm Dense Matter
Casas, David; Schnürer, Matthias; Barriga-Carrasco, Manuel D; Morales, Roberto; González-Gallego, Luis
2015-01-01
The stopping power of Warm Dense Matter (WDM) is estimated by means of the individual contributions of free electrons and bound electrons existing in this special kind of matter, located between classical and degenerate plasmas. For free electrons, the dielectric formalism, well described in previous works of our research group, is used to estimate free electron stopping power. For bound electrons, mean excitation energy of ions is used. Excitation energies are obtained through atomic calculations of the whole atom or, shell by shell in order to estimate their stopping power. Influence of temperature and density is analyzed in case of an impinging projectile. This influence became important for low projectile velocities and negligible for high ones. Using both analysis, the stopping power of an extended WDM is inferred from a dynamical calculation of energy transferred from the projectile to the plasma, where the Bragg peak and stopping range are calculated. Finally, this theoretical framework is used to stud...
Numerical Solution of the Equation of Electron Transport in Matter
Golovin, A I
2002-01-01
One introduces a numerical approach to solve equation of fast electron transport in a matter in plane and spherical geometry with regard to fluctuations of energy losses and generation of secondary electrons. Calculation results are shown to be in line with the experimental data. One compared the introduced approach with the method of moments
Approach to the propagation of massive neutrinos in dense matter by Wigner functions
Sirera Tomas, Miguel
The problem of massive neutrinos comes from Grant Unification Theories but also from the so called Neutrino Solar Puzzle. The solution of this puzzle seems to be in the neutrinos physics and to need that the neutrinos are particles with mass. The possible mass of the neutrinos is not only important for Solar Neutrinos but also in other astrophysical environments such as Supernovae, Neutron Stars or The Early Universe. If the neutrinos are particles with mass, or at least one of their generations, oscillations are produced in both vacuum and matter. The oscillation in matter could cause the so called MSW effect, that transforms a neutrino flavour to another. The problem of the propagation of neutrinos in matter has been dealt with by many authors who have usually solved the covariant motion equations, and sometimes by Green Functions. In this work, this has been done using statistical techniques by Wigner Functions, which do not only allow us to study the propagation ways but also to know the behavior of the neutrinos field in equilibrium. On the other hand, the astrophysical systems, that we have commented above, yield a great amount of neutrinos which spread through them and are finally emitted to space, and so it is important to have a transport equation that explain how a neutrinos distribution is spread which is not in equilibrium. It is possible to achieve this equation by motion equations of the Wigner Functions.
Piron, R.; Blenski, T.
2011-12-01
The Variational Average-Atom in Quantum Plasmas (VAAQP) code is based on a fully variational theory of dense plasmas in equilibrium in which the neutrality of the Wigner-Seitz ion sphere is not required, contrary to the INFERNO model. We report on some recent progress in the VAAQP model and numerical code. Three important points of the virial theorem derivation are emphasized and explained. The virial theorem is also used as an important tool allowing us to check the formulas and numerical methods used in the code. Applications of the VAAQP code are shown using as an example the equation-of-state of beryllium in the warm dense matter regime. Comparisons with the INFERNO model, and with available experimental data on the principal Hugoniot are also presented.
Pribram-Jones, Aurora
Warm dense matter (WDM) is a high energy phase between solids and plasmas, with characteristics of both. It is present in the centers of giant planets, within the earth's core, and on the path to ignition of inertial confinement fusion. The high temperatures and pressures of warm dense matter lead to complications in its simulation, as both classical and quantum effects must be included. One of the most successful simulation methods is density functional theory-molecular dynamics (DFT-MD). Despite great success in a diverse array of applications, DFT-MD remains computationally expensive and it neglects the explicit temperature dependence of electron-electron interactions known to exist within exact DFT. Finite-temperature density functional theory (FT DFT) is an extension of the wildly successful ground-state DFT formalism via thermal ensembles, broadening its quantum mechanical treatment of electrons to include systems at non-zero temperatures. Exact mathematical conditions have been used to predict the behavior of approximations in limiting conditions and to connect FT DFT to the ground-state theory. An introduction to FT DFT is given within the context of ensemble DFT and the larger field of DFT is discussed for context. Ensemble DFT is used to describe ensembles of ground-state and excited systems. Exact conditions in ensemble DFT and the performance of approximations depend on ensemble weights. Using an inversion method, exact Kohn-Sham ensemble potentials are found and compared to approximations. The symmetry eigenstate Hartree-exchange approximation is in good agreement with exact calculations because of its inclusion of an ensemble derivative discontinuity. Since ensemble weights in FT DFT are temperature-dependent Fermi weights, this insight may help develop approximations well-suited to both ground-state and FT DFT. A novel, highly efficient approach to free energy calculations, finite-temperature potential functional theory, is derived, which has the
Equation of State for Neutralino Star as a Form of Cold Dark Matter
Institute of Scientific and Technical Information of China (English)
XIA Hui; REN Jie; TANG Gang; LI Xue-Qian; LI Yi-Fan; SHEN Hong
2008-01-01
In order to study the structure of neutralino star and dark galaxy, we consider dynamical interactions due to boson-exchange in the neutralino matter. Taking into account interactions of neutralinos with bosons, we derive the equation of state (EOS) of neutralino stars in terms of the relativistic mean-field approach. Then we apply the resulting EOS to investigate properties of the neutralino star such as its density profile and mass limit. For example, if the neutralino mass is around 1 TeV, the Oppenheimer mass limit of the neutralino star is obtained as 6.06×10-7.Mo, and the corresponding radius is about 7.8 ram. Actually, due to an increasing annihilation rate as indicated by our calculation, this dense state can never be realized in practice. Our results also show that the low-density neutralino star may be a possible aggregation of the cold dark matter.
Topology Change and Tensor Forces for the EoS of Dense Baryonic Matter
Lee, Hyun Kyu
2013-01-01
When skyrmions representing nucleons are put on crystal lattice and compressed to simulate high density, there is a transition above the normal nuclear matter density $n_0$ from a matter consisting of skyrmions with integer baryon charge to a state of half-skyrmions with half-integer baryon charge. We exploit this observation in an effective field theory formalism to access dense baryonic system. We find that the topology change involved implies a changeover from a Fermi liquid structure to a non-Fermi liquid with the chiral condensate in the nucleon "melted off." The $\\sim 80%$ of the nucleon mass that remains, invariant under chiral transformation, points to the origin of the (bulk of) proton mass that is not encoded in the standard mechanism of spontaneously broken chiral symmetry. The topology change engenders a drastic modification of the nuclear tensor forces, thereby nontrivially affecting the EoS, in particular, the symmetry energy, for compact star matter. It brings in stiffening of the EoS needed to...
Thermal properties of hot and dense matter with finite range interactions
Constantinou, Constantinos; Prakash, Madappa; Lattimer, James M
2015-01-01
We explore the thermal properties of hot and dense matter using a model that reproduces the empirical properties of isospin symmetric and asymmetric bulk nuclear matter, optical model fits to nucleon-nucleus scattering data, heavy-ion flow data in the energy range 0.5-2 GeV/A, and the largest well-measured neutron star mass of 2 $\\rm{M}_\\odot$. Results of this model which incorporates finite range interactions through Yukawa type forces are contrasted with those of a zero-range Skyrme model that yields nearly identical zero-temperature properties at all densities for symmetric and asymmetric nucleonic matter and the maximum neutron star mass, but fails to account for heavy-ion flow data due to the lack of an appropriate momentum dependence in its mean field. Similarities and differences in the thermal state variables and the specific heats between the two models are highlighted. Checks of our exact numerical calculations are performed from formulas derived in the strongly degenerate and non-degenerate limits....
The generation of warm dense matter samples using pulsed-power generators
Gourdain, P. A.; Seyler, C. E.; Knapp, P. F.
2016-10-01
Warm dense matter (WDM) bridges the gap between plasma and condensed matter, with densities similar to that of a solid, but temperature on the order of 1 eV. WDM is key to understanding the formation of gaseous giants, Mega-Earths, planetary collisions and inertial fusion implosions. Yet, the quantum properties of WDM and how they are expressed at the macroscopic level are mostly unknown. This paper uses 3-dimensional numerical simulations to show that cm-scale WDM samples can be generated by pulsed-power machines using a fast plasma closing switch, which virtually eliminates the mixing of WDM with other states of matter, allowing the measurement of its physical properties using line average diagnostics. A pre-ionized gas puff is imploded onto a central metal rod. Initially, most of the discharge current flows inside the gas shell. When the shell reaches the rod the full current switches to the rod in less than 10 ns. The subsequent compression produces WDM. We will discuss how an existing platform to generate cm-scale WDM at 20MA on the Z-machine at Sandia National Laboratories. This research is sponsored by DOE.
Skyrmions, half-skyrmions and nucleon mass in dense baryonic matter
Ma, Yong-Liang; Lee, Hyun Kyu; Oh, Yongseok; Rho, Mannque
2013-01-01
We explore the hadron properties in dense baryonic matter in a unified way by using a Skyrme model constructed with an effective Lagrangian which includes the $\\rho$ and $\\omega$ vector mesons as hidden gauge bosons and is valid up to $O(p^4)$ in chiral expansion including the homogeneous Wess-Zumino terms. With the two input values of pion decay constant and the lowest lying vector meson mass which can be fixed in free space, all the other low energy constants in the effective Lagrangian are determined by their master formulas derived from holographic QCD models, which allows us to study the baryonic matter properties with no additional free parameters and thus without ambiguities. We find that the $\\omega$ field that figures in the homogeneous Wess-Zumino term plays a crucial role in the skyrmion structure and its matter properties. The most striking and intriguing observation is that the pion decay constant that smoothly drops with increasing density in the Skyrmion phase stops decreasing at $n_{1/2}^{}$ a...
Beam Steering, Focusing and Compression for Warm-Dense Matter Experiments
Lidia, S. M.; Anders, A.; Cohen, R. H.; Coleman, J. E.; Dorf, M.; Gilson, E. P.; Grote, D. P.; Jung, J. Y.; Leitner, M.; Logan, B. G.; Roy, P. K.; Sefkow, A. B.; Seidl, P. A.; Waldron, W. L.; Welch, D. R.
2008-11-01
The Heavy-Ion Fusion Sciences Virtual National Laboratory is pursuing an approach to target heating experiments in the Warm Dense Matter regime, using space-charge-dominated ion beams that are simultaneously longitudinally bunched and transversely focused. Axial compression leading to ˜100X current amplification and simultaneous radial focusing have led to encouraging energy deposition approaching, but still short of, the intensities required for eV-range target heating experiments. We present measurements from the Neutralized Drift Compression Experiment to reach the necessary higher beam intensities, including: (1) axial compression and radial focusing; (2) spatial and temporal distribution of energy deposition at the target plane; and (3) centroid motion of the beam spot through the pulse.
Input energy measurement toward warm dense matter generation using intense pulsed power generator
Hayashi, R.; Ito, T.; Ishitani, T.; Tamura, F.; Kudo, T.; Takakura, N.; Kashine, K.; Takahashi, K.; Sasaki, T.; Kikuchi, T.; Harada, Nob.; Jiang, W.; Tokuchi, A.
2016-05-01
In order to investigate properties of warm dense matter (WDM) in inertial confinement fusion (ICF), evaluation method for the WDM with isochoric heating on the implosion time-scale using an intense pulsed power generator ETIGO-II (∼1 TW, ∼50 ns) has been considered. In this study, the history of input energy into the sample is measured from the voltage and the current waveforms. To achieve isochoric heating, a foamed aluminum with pore sizes 600 μm and with 90% porosity was packed into a hollow glass capillary (ø 5 mm × 10 mm). The temperature of the sample is calculated from the numerical calculation using the measured input power. According to the above measurements, the input energy into a sample and the achievable temperature are estimated to be 300 J and 6000 K. It indicates that the WDM state is generated using the proposed method with ICF implosion time-scale.
Effects of Dense Matter on Hadron Production in Heavy-Ion Collisions
Papp, G; Fái, G; Lévai, Peter; Zhang, Y; Papp, Gabor; Barnafoeldi, Gergely; Fai, George; Levai, Peter; Zhang, Yi
2000-01-01
The intrinsic transverse momentum distribution of partons in the nucleon can be used to explain a large amount of high-$p_T$ hadron and photon production data in high-energy nucleon-nucleon collisions at energies $\\sqrt{s} \\approx 20$ to 1800 GeV. However, proton-nucleus experiments at energies $\\approx 30$ GeV show an extra enhancement (Cronin effect) in the yield of photons and mesons compared to a simple extrapolation of the proton-proton data. This enhancement is due to the effect of the dense hadronic matter encountered by the projectile proton in the nuclear environment. We discuss the origin and the properties of the nuclear enhancement.
Dense Baryonic Matter in Hidden Local Symmetry Approach: Half-Skyrmions and Nucleon Mass
Ma, Yong-Liang; Lee, Hyun Kyu; Oh, Yongseok; Park, Byung-Yoon; Rho, Mannque
2013-01-01
Hadron properties in dense medium are treated in a unified way in a skyrmion model constructed with an effective Lagrangian, in which the rho and omega vector mesons are introduced as hidden gauge bosons, valid up to O(p^4) terms in chiral expansion including the homogeneous Wess-Zumino terms. All the low energy constants - apart from f_pi and m_rho - are fixed by the master formula derived from the relation between 5-D hQCD and 4-D HLS. This allows one to pin down the density n_1/2 at which the skyrmions in medium fractionize into half-skyrmions, bringing in a drastic change in the EoS of dense matter. We find that the U(1) field that figures in the CS term in the hQCD action or equivalently the omega field in the hWZ term in the dimensionally reduced HLS action plays a crucial role in the half-skyrmion phase. The importance of the omega degree of freedom may be connected to what happens in the instanton structure of elementary baryon noticed in hQCD. The most striking and intriguing in what is found in the ...
Kapila, Vivek; Deymier, Pierre; Runge, Keith
2011-10-01
Several areas of study including heavy ion beam, large scale laser, and high pressure or Thomson scattering studies necessitate a fundamental understanding of warm dense matter (WDM) i.e. matter at high temperature and high density. The WDM regime, however, lacks any adequate highly developed class of simulation methods. Recent progress to address this deficit has been the development of orbital-free Density Functional Theory (ofDFT). However, scant benchmark information is available on temperature and pressure dependence of simple but realistic models in WDM regime. The present work aims to fill this critical gap using the restricted path-integral molecular dynamics (rPIMD) method. Within the discrete path integral representation, electrons are described as harmonic necklaces. Quantum exchange takes the form of cross linking between electron necklaces. The fermion sign problem is addressed by restricting the density matrix to positive values. The molecular dynamics algorithm is employed to sample phase space. Here, we focus on the behavior of strongly correlated electron plasmas under WDM conditions. We compute the kinetic and potential energies and compare them to those obtained with the ofDFT method. Several areas of study including heavy ion beam, large scale laser, and high pressure or Thomson scattering studies necessitate a fundamental understanding of warm dense matter (WDM) i.e. matter at high temperature and high density. The WDM regime, however, lacks any adequate highly developed class of simulation methods. Recent progress to address this deficit has been the development of orbital-free Density Functional Theory (ofDFT). However, scant benchmark information is available on temperature and pressure dependence of simple but realistic models in WDM regime. The present work aims to fill this critical gap using the restricted path-integral molecular dynamics (rPIMD) method. Within the discrete path integral representation, electrons are described as
Iterative solution of dense linear systems arising from the electrostatic integral equation in MEG
Energy Technology Data Exchange (ETDEWEB)
Rahola, Jussi [Simulintu Oy, Espoo (Finland); Tissari, Satu [CSC - Scientific Computing Ltd, Espoo (Finland)]. E-mail: satu.tissari@csc.fi
2002-03-21
We study the iterative solution of dense linear systems that arise from boundary element discretizations of the electrostatic integral equation in magnetoencephalography (MEG). We show that modern iterative methods can be used to decrease the total computation time by avoiding the time-consuming computation of the LU decomposition of the coefficient matrix. More importantly, the modern iterative methods make it possible to avoid the explicit formation of the coefficient matrix which is needed when a large number of unknowns are used. To study the convergence of iterative solvers we examine the eigenvalue distributions of the coefficient matrices. For the sphere we show how the eigenvalues of the integral operator are approximated by the eigenvalues of the coefficient matrix when the collocation and Galerkin methods are used as discretization methods. The collocation method approximates the eigenvalues of the integral operator directly. The Galerkin method produces a coefficient matrix that needs to be preconditioned in order to maintain optimal convergence speed. With the ILU(0) preconditioner iterative methods converge fast and independent of the number of discretization points for both the collocation and Galerkin approaches. The preconditioner has no significant effect on the total computational time. (author)
Energy Technology Data Exchange (ETDEWEB)
Zaghloul, Mofreh R. [Department of Physics, College of Science, United Arab Emirates University, P.O. Box 15551, Al-Ain (United Arab Emirates)
2015-11-15
We present computational results and tables of the equation-of-state, thermodynamic properties, and shock Hugoniot for hot dense fluid deuterium. The present results are generated using a recently developed chemical model that takes into account different high density effects such as Coulomb interactions among charged particles, partial degeneracy, and intensive short range hard core repulsion. Internal partition functions are evaluated in a statistical-mechanically consistent way implementing recent developments in the literature. The shock Hugoniot curve derived from the present tables is overall in reasonable agreement with the Hugoniot derived from the Nova-laser shock wave experiments on liquid deuterium, showing that deuterium has a significantly higher compressibility than predicted by the SESAME tables or by Path Integral Monte Carlo calculations. Computational results are presented as surface plots for the dissociated fraction, degree of ionization, pressure, and specific internal energy for densities ranging from 0.0001 to 40 g/cm{sup 3} and temperatures from 2000 to ∼10{sup 6 }K. Tables for values of the above mentioned quantities in addition to the specific heat at constant pressure, c{sub p}, ratio of specific heats, c{sub p}/c{sub v}, sound speed and Hugoniot curve (for a specific initial state) are presented for practical use.
Effect of a strong magnetic field on the energy yield of nuclear reactions in dense nuclear matter
Energy Technology Data Exchange (ETDEWEB)
Sekerzhitskii, V.S. [Pushkin Pedagogical Institute, Brest (Belarus)
1995-01-01
According to modern concepts, the electron-neutron-nuclear (Aen) phase of dense highly degenerate matter can be realized in the shells of neutron stars. This phase has relatively stable and absolutely stable states of thermodynamic equilibrium. Strong magnetic fields can exist in neutron stars. For this reason, analysis of their effect on the characteristics of the Aen phase is of great interest. It is specially important to study the influence of strong magnetic fields on the energy yield of nuclear reactions in dense nuclear matter because the transition to the absolute equilibrium state proceeds through these reactions.
$^3P_2$-$^3F_2$ Pairing in Dense Neutron Matter The Spectrum of Solutions
Zverev, M V; Khodel, V A
2003-01-01
The $^3P_2$-$^3F_2$ pairing model is generally considered to provide an adequate description of the superfluid states of neutron matter at densities some 2-3 times that of saturated symmetrical nuclear matter. The problem of solving the system of BCS gap equations expressing the $^3P_2$-$^3F_2$ model is attacked with the aid of the separation approach. This method, developed originally for quantitative study of S-wave pairing in the presence of strong short-range repulsions, serves effectively to reduce the coupled, singular, nonlinear BCS integral equations to a set of coupled algebraic equations. For the first time, sufficient precision becomes accessible to resolve small energy splittings between the different pairing states. Adopting a perturbative strategy, we are able to identify and characterize the full repertoire of real solutions of the $^3P_2$-$^3F_2$ pairing model, in the limiting regime of small tensor-coupling strength. The P-F channel coupling is seen to lift the striking parametric degeneracie...
Hadronic Equation of State and Speed of Sound in Thermal and Dense Medium
Tawfik, A
2012-01-01
The equation of state and squared speed of sound $c_s^2$ are studied in grand canonical ensemble of all hadron resonances having masses $\\leq 2\\,$GeV. The ensemble is divided into strange and non-strange hadron resonances. Furthermore, pionic, bosonic and femeionic sectors are considered, separately. It is found that $c_s^2$ calculated in the QCD matter below $T_c$ is obviously causal. There is no sign for superluminal phenomena. It is found that the lightest Goldstone bosons, the pions, represent the main contributors to $c_s^2$ at low temperatures. At this temperature scale, they determine the hadronic thermodynamics including the equation of state, almost entirely. The comparison of the barotropic dependence of the pressure calculated in the hadron resonance gas (HRG) with that of full lattice QCD at vanishing and finite chemical potential is excellent. Nevertheless, the comparison of $c_s^2$ at vanishing chemical potential is not that good. But, when switching on the chemical potential, HRG $c_s^2$ and th...
Spin polarization phenomena in dense neutron matter at a strong magnetic field
Isayev, A A
2010-01-01
Spin polarized states in neutron matter at strong magnetic fields up to $10^{18}$ G are considered in the model with the Skyrme effective interaction. Analyzing the self-consistent equations at zero temperature, it is shown that a thermodynamically stable branch of solutions for the spin polarization parameter as a function of density corresponds to the negative spin polarization when the majority of neutron spins are oriented oppositely to the direction of the magnetic field. Besides, it is found that in a strong magnetic field the state with the positive spin polarization can be realized as a metastable state at the high density region in neutron matter. At finite temperature, the entropy of the thermodynamically stable branch demonstrates the unusual behavior being larger than that for the nonpolarized state (at vanishing magnetic field) above certain critical density which is caused by the dependence of the entropy on the effective masses of neutrons in a spin polarized state.
Study of hot and dense nuclear matter in effective QCD model
Islam, Chowdhury Aminul
2016-01-01
In this thesis we use various effective QCD models to investigate hot and dense nuclear matter created in heavy ion collisions. To characterize such matter, we mainly exploit correlation functions and some of the associated spectral properties. We explore the vector meson current-current correlation function with and without the influence of vector interaction in Nambu\\textendash Jona-Lasinio (NJL) model and also in its Polyakov loop extended version (PNJL). As a spectral property we have computed the dilepton rate which is found to be enhanced in strongly interacting QGP (sQGP) as compared to the Born rate in a weakly coupled QGP. We further consider the idea of entanglement between the chiral and confinement dynamics through the entangled PNJL (EPNJL) model and re-explore the vector spectral function and the spectral property such as the dilepton production rate studied in our earlier effort. Because of the strong entanglement, the coupling strengths run with the temperature and chemical potential. The impl...
Proton acceleration experiments and warm dense matter research using high power lasers
Energy Technology Data Exchange (ETDEWEB)
Roth, M; Alber, I; Guenther, M; Harres, K [Institut fuer Kernphysik, Technische Universitaet Darmstadt, 64289 Darmstadt (Germany); Bagnoud, V [GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, 64291 Darmstadt (Germany); Brown, C R D [Plasma Physics Group, Imperial College London, SW7 2BZ (United Kingdom); Clarke, R; Heathcote, R; Li, B [STFC, Rutherford Appleton Laboratory (RAL), Chilton, Didcot, OX14 OQX (United Kingdom); Daido, H [Photo Medical Research Center, JAEA, Kizugawa-City, Kyoto 619-0215 (Japan); Fernandez, J; Flippo, K; Gaillard, S; Gauthier, C [Los Alamos National Laboratory (LANL), Los Alamos, NM 87545 (United States); Geissel, M [Sandia National Laboratories, Albuquerque, NM 87185 (United States); Glenzer, S; Kritcher, A; Kugland, N; LePape, S [Lawrence Livermore National Laboratory, Livermore, CA 94551 (United States); Gregori, G, E-mail: markus.roth@physik.tu-darmstadt.d [Clarendon Laboratory, University of Oxford, Parks Road, Oxford OX1 3PU (United Kingdom)
2009-12-15
The acceleration of intense proton and ion beams by ultra-intense lasers has matured to a point where applications in basic research and technology are being developed. Crucial for harvesting the unmatched beam parameters driven by the relativistic electron sheath is the precise control of the beam. In this paper we report on recent experiments using the PHELIX laser at GSI, the VULCAN laser at RAL and the TRIDENT laser at LANL to control and use laser accelerated proton beams for applications in high energy density research. We demonstrate efficient collimation of the proton beam using high field pulsed solenoid magnets, a prerequisite to capture and transport the beam for applications. Furthermore, we report on two campaigns to use intense, short proton bunches to isochorically heat solid targets up to the warm dense matter state. The temporal profile of the proton beam allows for rapid heating of the target, much faster than the hydrodynamic response time thereby creating a strongly coupled plasma at solid density. The target parameters are then probed by x-ray Thomson scattering to reveal the density and temperature of the heated volume. This combination of two powerful techniques developed during the past few years allows for the generation and investigation of macroscopic samples of matter in states present in giant planets or the interior of the earth.
Kadam, Guru Prakash
2015-01-01
We estimate dissipative properties viz: shear and bulk viscosities of hadronic matter using rel- ativistic Boltzmann equation in relaxation time approximation within ambit of excluded volume hadron resonance gas (EHRG) model. We find that at zero baryon chemical potential the shear viscosity to entropy ratio ({\\eta}/s) decreases with temperature and reaches very close to Kovtun-Son- Starinets (KSS) bound. At sufficiently large baryon chemical potential this ratio shows same behav- ior as a function of temperature but goes below KSS bound. We further find that along chemical freezout line {\\eta}/s increases monotonically while the bulk viscosity to entropy ratio ({\\zeta}/s) decreases monotonically.
Directory of Open Access Journals (Sweden)
Koniges Alice
2013-11-01
Full Text Available The Neutralized Drift Compression Experiment II (NDCX II is an induction accelerator planned for initial commissioning in 2012. The final design calls for a 3 MeV, Li+ ion beam, delivered in a bunch with characteristic pulse duration of 1 ns, and transverse dimension of order 1 mm. The NDCX II will be used in studies of material in the warm dense matter (WDM regime, and ion beam/hydrodynamic coupling experiments relevant to heavy ion based inertial fusion energy. We discuss recent efforts to adapt the 3D ALE-AMR code to model WDM experiments on NDCX II. The code, which combines Arbitrary Lagrangian Eulerian (ALE hydrodynamics with Adaptive Mesh Refinement (AMR, has physics models that include ion deposition, radiation hydrodynamics, thermal diffusion, anisotropic material strength with material time history, and advanced models for fragmentation. Experiments at NDCX-II will explore the process of bubble and droplet formation (two-phase expansion of superheated metal solids using ion beams. Experiments at higher temperatures will explore equation of state and heavy ion fusion beam-to-target energy coupling efficiency. Ion beams allow precise control of local beam energy deposition providing uniform volumetric heating on a timescale shorter than that of hydrodynamic expansion. We also briefly discuss the effects of the move to exascale computing and related computational changes on general modeling codes in fusion.
Skyrmions, half-skyrmions and nucleon mass in dense baryonic matter
Ma, Yong-Liang; Harada, Masayasu; Lee, Hyun Kyu; Oh, Yongseok; Rho, Mannque
2014-04-01
We explore the hadron properties in dense baryonic matter in a unified way by using a Skyrme model constructed with an effective Lagrangian which includes the ρ and ω vector mesons as hidden gauge bosons and is valid up to O(p4) in chiral expansion including the homogeneous Wess-Zumino terms. With the two input values of pion decay constant and the lowest lying vector meson mass which can be fixed in free space, all the other low energy constants in the effective Lagrangian are determined by their master formulas derived from holographic QCD models, which allows us to study the baryonic matter properties with no additional free parameters and thus without ambiguities. We find that the ω field that figures in the homogeneous Wess-Zumino term plays a crucial role in the skyrmion structure and its matter properties. The most striking and intriguing observation is that the pion decay constant that smoothly drops with increasing density in the Skyrmion phase stops decreasing at n1/2 at which the skyrmions in medium fractionize into half-skyrmions and remains nearly constant in the half-skyrmion phase. In accordance with the large Nc consideration, the baryon mass also stays non-scaling in the half-skyrmion phase. This feature is supported by the nuclear effective field theory with the parameters of the Lagrangian scaling modified at the skyrmion-half-skyrmion phase transition. Our exploration also uncovers the crucial role of the ω meson in multi-baryon systems as well as in the structure of a single skyrmion.
Energy Technology Data Exchange (ETDEWEB)
Mo, M. Z., E-mail: mmo09@slac.stanford.edu; Shen, X.; Chen, Z.; Li, R. K.; Dunning, M.; Zheng, Q.; Weathersby, S. P.; Reid, A. H.; Coffee, R.; Makasyuk, I.; Edstrom, S.; McCormick, D.; Jobe, K.; Hast, C.; Glenzer, S. H.; Wang, X. [SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025 (United States); Sokolowski-Tinten, K. [Faculty of Physics and Centre for Nanointegration Duisburg-Essen, University of Duisburg-Essen, Lotharstrasse 1, D-47048 Duisburg (Germany)
2016-11-15
We have developed a single-shot mega-electronvolt ultrafast-electron-diffraction system to measure the structural dynamics of warm dense matter. The electron probe in this system is featured by a kinetic energy of 3.2 MeV and a total charge of 20 fC, with the FWHM pulse duration and spot size at sample of 350 fs and 120 μm respectively. We demonstrate its unique capability by visualizing the atomic structural changes of warm dense gold formed from a laser-excited 35-nm freestanding single-crystal gold foil. The temporal evolution of the Bragg peak intensity and of the liquid signal during solid-liquid phase transition are quantitatively determined. This experimental capability opens up an exciting opportunity to unravel the atomic dynamics of structural phase transitions in warm dense matter regime.
Depth Averaged Equations Applied To Study of Defense Structures Effects On Dense Avalanche Flows
Naaim, M.; Bouvet-Naaim, F.; Faug, T.; Lachamp, P.
Avalanche zoning and protection devices are the complementary tools used to assess avalanche risk and protect persons and human activities in mountainous areas. Despite the intensive use of defense structures as protection against avalanches, their hydraulic and structural effects are not well known. Many structures were designed empirically using expert knowledge or knowledge developed in other domain such as hydraulic. Defence structures effects in terms of energy dissipation, deviation and snow retention are difficult to study in situ. The cost and difficulties of experiments, the danger and the weak annual number of avalanches in a given site, are the reasons why scientists oriented their research towards the use of numerical or laboratory physical models. This paper presents and discuss the possibilities to use depth averaged equations to study dense avalanche flows around defence structures. The used numerical resolu- tion method is based on an upwind numerical scheme. Equations are integrated on each cell of the mesh and the numerical fluxes are calculated thanks to a simplified Riemann solver where the retained solution is obtained as a combination of shock and rarefaction founctions. This allows taking into account the topography variation and jets and surges presence. These two characteristics are needed because both exper- imental and in situ observations showed a significant topography modifications and jets and surges formations during interaction between avalanche flows and structures. The case of vertical surfaces such as those made of concrete destined to deviate flows are treated by appropriated boundary condition functions. A discussion about the best way to integrate defence structures in such model is presented and discussed. This modelisation has, in a first time, been tested on analytical solutions and on experimen- tal laboratory scale model results. These tests have shown the capacity of this model, despite the strong hypothesis, to
Backreaction effects on the matter side of Einstein's field equations
Floerchinger, Stefan; Wiedemann, Urs Achim
2015-01-01
Recently, we have derived a novel and compact expression for how perturbations in the matter fields of the cosmological fluid can lead to deviations from the standard Friedmann equations. Remarkably, the dissipative damping of velocity perturbations by bulk and shear viscosity in the dark sector can modify the expansion history of the universe on arbitrarily large scales. In universes in which this effect is sufficiently sizeable, it could account for the acceleration of the cosmological expansion. But even if dark matter should be less viscous and if the effect would be correspondingly smaller, it may have observable consequences in the era of precision cosmology. Here, we review the origin of this backreaction effect and possibilities to constrain it further.
Interacting Quark Matter Equation of State for Compact Stars
Fraga, Eduardo S.; Kurkela, Aleksi; Vuorinen, Aleksi
2014-02-01
Lattice quantum chromodynamics (QCD) studies of the thermodynamics of hot quark-gluon plasma demonstrate the importance of accounting for the interactions of quarks and gluons if one wants to investigate the phase structure of strongly interacting matter. Motivated by this observation and using state-of-the-art results from perturbative QCD, we construct a simple, effective equation of state (EOS) for cold quark matter that consistently incorporates the effects of interactions and furthermore includes a built-in estimate of the inherent systematic uncertainties. This goes beyond the MIT bag model description in a crucial way, yet leads to an EOS that is equally straightforward to use. We also demonstrate that, at moderate densities, our EOS can be made to smoothly connect to hadronic EOSs, with the two exhibiting very similar behavior near the matching region. The resulting hybrid stars are seen to have masses similar to those predicted by the purely nucleonic EOSs.
INTERACTING QUARK MATTER EQUATION OF STATE FOR COMPACT STARS
Energy Technology Data Exchange (ETDEWEB)
Fraga, Eduardo S. [Institute for Theoretical Physics, Goethe University, D-60438 Frankfurt am Main (Germany); Kurkela, Aleksi [Theory Division, PH-TH, Case C01600, CERN, CH-1211 Geneva 23 (Switzerland); Vuorinen, Aleksi [Department of Physics and Helsinki Institute of Physics, P.O. Box 64, FI-00014 University of Helsinki (Finland)
2014-02-01
Lattice quantum chromodynamics (QCD) studies of the thermodynamics of hot quark-gluon plasma demonstrate the importance of accounting for the interactions of quarks and gluons if one wants to investigate the phase structure of strongly interacting matter. Motivated by this observation and using state-of-the-art results from perturbative QCD, we construct a simple, effective equation of state (EOS) for cold quark matter that consistently incorporates the effects of interactions and furthermore includes a built-in estimate of the inherent systematic uncertainties. This goes beyond the MIT bag model description in a crucial way, yet leads to an EOS that is equally straightforward to use. We also demonstrate that, at moderate densities, our EOS can be made to smoothly connect to hadronic EOSs, with the two exhibiting very similar behavior near the matching region. The resulting hybrid stars are seen to have masses similar to those predicted by the purely nucleonic EOSs.
Chiral symmetry and nuclear matter equation of state
Indian Academy of Sciences (India)
A B Santra
2001-08-01
We investigate the effect on the nuclear matter equation of state (EOS) due to modiﬁcation of meson and nucleon parameters in nuclear medium as a consequence of partial restoration of chiral symmetry. To get the EOS, we have used Brueckner–Bethe–Golstone formalism with Bonn- potential as two-body interaction and QCD sum rule and Brown–Rho scaling prescriptions for modiﬁcation of hadron parameters. We ﬁnd that EOS is very much sensitive to the meson parameters. We can ﬁt, with two body interaction alone, both the saturation density and the binding energy per nucleon.
Nuclear matter equation of state and -meson parameters
Indian Academy of Sciences (India)
A B Santra; U Lambardo
2005-01-01
We try to determine phenomenologically the extent of in-medium modification of -meson parameters so that the saturation observables of the nuclear matter equation of state (EOS) are reproduced. To calculate the EOS we have used Brueckner–Bethe–Goldstone formalism with Bonn potential as two-body interaction. We find that it is possible to understand all the saturation observables, namely, saturation density, energy per nucleon and incompressibility, by incorporating in-medium modification of -meson–nucleon coupling constant and -meson mass by a few per cent.
Results from an Orion proton heating experiment for Warm Dense Matter studies
Allan, Peter; James, Steven; Brown, Colin; Hobbs, Lauren; Hill, Matthew; Hoarty, David; Chen, Hui; Hazi, Andy; AWE Team; LLNL Team
2014-10-01
The properties of warm dense matter covering densities and temperatures in the ranges 0.1-10x solid and 1-100eV, fall between ideal plasma and condensed matter theories. Studies have highlighted uncertainties in EoS predictions using methods based on the Thomas-Fermi and ion-cell models. In particular, such models predict large departures from ideal gas behaviour for low Z material at low densities and temperatures. In an extension of previous work, material has been isochorically heated using short-pulse laser-generated proton beams. Here, the method of Foord et al. was used toinfer isentropes oflow Z materials and provide data to validate model predictions. Earlier measurements were limited by the eV backlighterenergy to relatively low densities and pressures below 1.5Mbar, and were conducted in cylindrical geometry. More recent experiments performed at the Orion laser use a parabolic crystal imaging system in order to measure to higher pressures by probing planar expansion of aluminium foils at 1.8keV. The imaging system is described and results are presented showing a spatial resolution of 6um, which was then streaked to give temporal resolution of 10ps. Preliminary analysis of the foil expansion indicates a peak temperature of 30eV. The proton and ion spectra used to heat the sample were measured by a magnetic spectrometer and a Thomson parabola. These results are presented and the effect on the measured expansion discussed. Plans for future measurements are discussed in the light of results obtained so far.
Short intense ion pulses for materials and warm dense matter research
Seidl, Peter A; Lidia, Steven M; Persaud, Arun; Stettler, Matthew; Takakuwa, Jeffrey H; Waldron, William L; Schenkel, Thomas; Barnard, John J; Friedman, Alex; Grote, David P; Davidson, Ronald C; Gilson, Erik P; Kaganovich, Igor D
2015-01-01
We have commenced experiments with intense short pulses of ion beams on the Neutralized Drift Compression Experiment-II at Lawrence Berkeley National Laboratory, by generating beam spots size with radius r < 1 mm within 2 ns FWHM and approximately 10^10 ions/pulse. To enable the short pulse durations and mm-scale focal spot radii, the 1.2 MeV Li+ ion beam is neutralized in a 1.6-meter drift compression section located after the last accelerator magnet. An 8-Tesla short focal length solenoid compresses the beam in the presence of the large volume plasma near the end of this section before the target. The scientific topics to be explored are warm dense matter, the dynamics of radiation damage in materials, and intense beam and beam-plasma physics including selected topics of relevance to the development of heavy-ion drivers for inertial fusion energy. Here we describe the accelerator commissioning and time-resolved ionoluminescence measurements of yttrium aluminium perovskite using the fully integrated accel...
Progress in beam focusing and compression for warm-dense matter experiments
Seidl, P. A.; Anders, A.; Bieniosek, F. M.; Barnard, J. J.; Calanog, J.; Chen, A. X.; Cohen, R. H.; Coleman, J. E.; Dorf, M.; Gilson, E. P.; Grote, D. P.; Jung, J. Y.; Leitner, M.; Lidia, S. M.; Logan, B. G.; Ni, P.; Roy, P. K.; Van den Bogert, K.; Waldron, W. L.; Welch, D. R.
2009-07-01
The Heavy-Ion Fusion Sciences Virtual National Laboratory is pursuing an approach to target heating experiments in the warm-dense matter regime, using space-charge-dominated ion beams that are simultaneously longitudinally bunched and transversely focused. Longitudinal beam compression by large factors has been demonstrated in the Neutralized Drift Compression Experiment (NDCX) with controlled ramps and forced neutralization. Using an injected 30-mA K + ion beam with initial kinetic energy 0.3 MeV, axial compression leading to ˜50-fold current amplification and simultaneous radial focusing to beam radii of a few mm have led to encouraging energy deposition approaching the intensities required for eV-range target heating experiments. We discuss the status of several improvements to our Neutralized Drift Compression Experiment and associated beam diagnostics that are under development to reach the necessary higher beam intensities, including (1) greater axial compression via a longer velocity ramp using a new bunching module with approximately twice the available volt seconds (Vs); (2) improved centroid control via beam steering dipoles to mitigate aberrations in the bunching module; (3) time-dependent focusing elements to correct considerable chromatic aberrations; and (4) plasma injection improvements to establish a plasma density always greater than the beam density, expected to be >10 13 cm -3.
Short intense ion pulses for materials and warm dense matter research
Seidl, Peter A.; Persaud, Arun; Waldron, William L.; Barnard, John J.; Davidson, Ronald C.; Friedman, Alex; Gilson, Erik P.; Greenway, Wayne G.; Grote, David P.; Kaganovich, Igor D.; Lidia, Steven M.; Stettler, Matthew; Takakuwa, Jeffrey H.; Schenkel, Thomas
2015-11-01
We have commenced experiments with intense short pulses of ion beams on the Neutralized Drift Compression Experiment-II at Lawrence Berkeley National Laboratory, by generating beam spots size with radius r<1 mm within 2 ns FWHM and approximately 1010 ions/pulse. To enable the short pulse durations and mm-scale focal spot radii, the 1.2 MeV Li+ ion beam is neutralized in a 1.6-meter drift compression section located after the last accelerator magnet. An 8-Tesla short focal length solenoid compresses the beam in the presence of the large volume plasma near the end of this section before the target. The scientific topics to be explored are warm dense matter, the dynamics of radiation damage in materials, and intense beam and beam-plasma physics including selected topics of relevance to the development of heavy-ion drivers for inertial fusion energy. Here we describe the accelerator commissioning and time-resolved ionoluminescence measurements of yttrium aluminum perovskite using the fully integrated accelerator and neutralized drift compression components.
Short intense ion pulses for materials and warm dense matter research
Energy Technology Data Exchange (ETDEWEB)
Seidl, Peter A., E-mail: PASeidl@lbl.gov [Lawrence Berkeley National Laboratory, Berkeley, CA (United States); Persaud, Arun; Waldron, William L. [Lawrence Berkeley National Laboratory, Berkeley, CA (United States); Barnard, John J. [Lawrence Livermore National Laboratory, Livermore, CA (United States); Davidson, Ronald C. [Princeton Plasma Physics Laboratory, Princeton, NJ (United States); Friedman, Alex [Lawrence Livermore National Laboratory, Livermore, CA (United States); Gilson, Erik P. [Princeton Plasma Physics Laboratory, Princeton, NJ (United States); Greenway, Wayne G. [Lawrence Berkeley National Laboratory, Berkeley, CA (United States); Grote, David P. [Lawrence Livermore National Laboratory, Livermore, CA (United States); Kaganovich, Igor D. [Princeton Plasma Physics Laboratory, Princeton, NJ (United States); Lidia, Steven M.; Stettler, Matthew; Takakuwa, Jeffrey H.; Schenkel, Thomas [Lawrence Berkeley National Laboratory, Berkeley, CA (United States)
2015-11-11
We have commenced experiments with intense short pulses of ion beams on the Neutralized Drift Compression Experiment-II at Lawrence Berkeley National Laboratory, by generating beam spots size with radius r<1 mm within 2 ns FWHM and approximately 10{sup 10} ions/pulse. To enable the short pulse durations and mm-scale focal spot radii, the 1.2 MeV Li{sup +} ion beam is neutralized in a 1.6-meter drift compression section located after the last accelerator magnet. An 8-Tesla short focal length solenoid compresses the beam in the presence of the large volume plasma near the end of this section before the target. The scientific topics to be explored are warm dense matter, the dynamics of radiation damage in materials, and intense beam and beam-plasma physics including selected topics of relevance to the development of heavy-ion drivers for inertial fusion energy. Here we describe the accelerator commissioning and time-resolved ionoluminescence measurements of yttrium aluminum perovskite using the fully integrated accelerator and neutralized drift compression components.
Ofek, E. O.; Fox, D.; Cenko, Stephen B.; Sullivan, M; Gnat, O.; Frail, D. A.; Horesh, A.; Corsi, A.; Quimby, R. M.; Gehrels, N.; Kulkarni, S. R.; Gal-Yam, A.; Nugent, P. E.; Yaron, O.; Fillippenko, A. V; Kasliwal, M. M.; Bildsten, L.; Bloom, J. S.; Poznanski, D.; Arcavi, I.; Laher, R. R.; Levitan, D.; Sesar, B.; Surace, J..
2013-01-01
The optical light curve of some supernovae (SNe) may be powered by the outward diffusion of the energy deposited by the explosion shock (the so-called shock breakout) in optically thick (Tau approx > 30) circumstellar matter (CSM). Recently, it was shown that the radiation-mediated and radiation-dominated shock in an optically thick wind must transform into a collisionless shock and can produce hard X-rays. The X-rays are expected to peak at late times, relative to maximum visible light. Here we report on a search, using Swift/XRT and Chandra, for X-ray emission from 28 SNe that belong to classes whose progenitors are suspected to be embedded in dense CSM. Our sample includes 19 Type IIn SNe, one Type Ibn SN, and eight hydrogen-poor superluminous SNe (SLSN-I such as SN 2005ap). Two SNe (SN 2006jc and SN 2010jl) have X-ray properties that are roughly consistent with the expectation for X-rays from a collisionless shock in optically thick CSM. However, the X-ray emission from SN 2006jc can also be explained as originating in an optically thin region. Thus, we propose that the optical light curve of SN 2010jl is powered by shock breakout in CSM. We suggest that two other events (SN 2010al and SN 2011ht) were too X-ray bright during the SN maximum optical light to be explained by the shock-breakout model.We conclude that the light curves of some, but not all, SNe IIn/Ibn are powered by shock breakout in CSM. For the rest of the SNe in our sample, including all of the SLSN-I events, our X-ray limits are not deep enough and were typically obtained too early (i.e., near the SN maximum light) for definitive conclusions about their nature. Late-time X-ray observations are required in order to further test whether these SNe are indeed embedded in dense CSM. We review the conditions required for a shock breakout in a wind profile. We argue that the timescale, relative to maximum light, for the SN to peak in X-rays is a probe of the column density and the density profile above
Schönlein, A.; Boutoux, G.; Pikuz, S.; Antonelli, L.; Batani, D.; Debayle, A.; Franz, A.; Giuffrida, L.; Honrubia, J. J.; Jacoby, J.; Khaghani, D.; Neumayer, P.; Rosmej, O. N.; Sakaki, T.; Santos, J. J.; Sauteray, A.
2016-05-01
We studied the interaction of a high-intensity laser with mass-limited Ti-wires. The laser was focused up to 7× 1020 \\text{W/cm}2 , with contrast of 10-10 to produce relativistic electrons. High-spatial-resolution X-ray spectroscopy was used to measure isochoric heating induced by hot electrons propagating along the wire up to 1 mm depth. For the first time it was possible to distinguish surface target regions heated by mixed plasma mechanisms from those heated only by the hot electrons that generate warm dense matter with temperatures up to 50 eV. Our results are compared to simulations that highlight both the role of electron confinement inside the wire and the importance of resistive stopping powers in warm dense matter.
Sheng, W.; Chen, G.-J.; Lu, H.-C.
1989-01-01
An attempt is made in this work to combine the Enskog theory of transport properties with the simple cubic Peng-Robinson (PR) equation of state. The PR equation of state provides the density dependence of the equilibrium radial distribution function. A slight empirical modification of the Enskog equation is proposed to improve the accuracy of correlation of thermal conductivity and viscosity coefficient for dense gases and liquids. Extensive comparisons with experimental data of pure fluids are made for a wide range of fluid states with temperatures from 90 to 500 K and pressures from 1 to 740 atm. The total average absolute deviations are 2.67% and 2.02% for viscosity and thermal conductivity predictions, respectively. The proposed procedure for predicting viscosity and thermal conductivity is simple and straightforward. It requires only critical parameters and acentric factors for the fluids.
The compressibility equation for soft-matter liquids
Tejero, C F
2003-01-01
Effective interactions in soft-matter physics result from a formal contraction of an initial multicomponent system, composed of mesoscopic and small particles, into an effective one-component description. By tracing out in the partition function the degrees of freedom of the small particles, a one-component system of mesoscopic particles interacting with a state-dependent Hamiltonian is found. Although the effective Hamiltonian is not in general pairwise additive, it is usually approximated by a volume term and a pair-potential contribution. In this paper the relation between the structure, for which the volume term plays no role, and the thermodynamics of a fluid of particles interacting with a density-dependent pair potential is analysed. It is shown that the compressibility equation differs from that of atomic fluids. An important consequence is that the infinite-compressibility line derived from the thermodynamics does not coincide with the spinodal line stemming from the divergence of correlations.
Piron, R.; Blenski, T.
2011-02-01
The numerical code VAAQP (variational average atom in quantum plasmas), which is based on a fully variational model of equilibrium dense plasmas, is applied to equation-of-state calculations for aluminum, iron, copper, and lead in the warm-dense-matter regime. VAAQP does not impose the neutrality of the Wigner-Seitz ion sphere; it provides the average-atom structure and the mean ionization self-consistently from the solution of the variational equations. The formula used for the electronic pressure is simple and does not require any numerical differentiation. In this paper, the virial theorem is derived in both nonrelativistic and relativistic versions of the model. This theorem allows one to express the electron pressure as a combination of the electron kinetic and interaction energies. It is shown that the model fulfills automatically the virial theorem in the case of local-density approximations to the exchange-correlation free-energy. Applications of the model to the equation-of-state and Hugoniot shock adiabat of aluminum, iron, copper, and lead in the warm-dense-matter regime are presented. Comparisons with other approaches, including the inferno model, and with available experimental data are given. This work allows one to understand the thermodynamic consistency issues in the existing average-atom models. Starting from the case of aluminum, a comparative study of the thermodynamic consistency of the models is proposed. A preliminary study of the validity domain of the inferno model is also included.
Piron, R; Blenski, T
2011-02-01
The numerical code VAAQP (variational average atom in quantum plasmas), which is based on a fully variational model of equilibrium dense plasmas, is applied to equation-of-state calculations for aluminum, iron, copper, and lead in the warm-dense-matter regime. VAAQP does not impose the neutrality of the Wigner-Seitz ion sphere; it provides the average-atom structure and the mean ionization self-consistently from the solution of the variational equations. The formula used for the electronic pressure is simple and does not require any numerical differentiation. In this paper, the virial theorem is derived in both nonrelativistic and relativistic versions of the model. This theorem allows one to express the electron pressure as a combination of the electron kinetic and interaction energies. It is shown that the model fulfills automatically the virial theorem in the case of local-density approximations to the exchange-correlation free-energy. Applications of the model to the equation-of-state and Hugoniot shock adiabat of aluminum, iron, copper, and lead in the warm-dense-matter regime are presented. Comparisons with other approaches, including the inferno model, and with available experimental data are given. This work allows one to understand the thermodynamic consistency issues in the existing average-atom models. Starting from the case of aluminum, a comparative study of the thermodynamic consistency of the models is proposed. A preliminary study of the validity domain of the inferno model is also included.
It should be Einstein-Laub Equations inside Matter
Mahdy, Mahdy Rahman Chowdhury
2012-01-01
In a recent article [1], Mansuripur has claimed that inside the matter, conventional Lorentz Force law should be abandoned in favor of a more general expression of the electromagnetic force density such as the one discovered by A. Einstein and J.Laub in 1908. The main focus of the claim of Mansuripur is based on special theory of relativity. According to [1], Lorentz force law is incompatible with special theory of relativity. In this article, we have focused in favor of Einstein-Laub equations (Force law; associated stress tensor, momentum density, Poynting vector etc) from quite different point of views. Especially we have tried to include previously and recently reported experimental observations, Abraham, Minkowski and Nelson controversy, Quantum Electrodynamics and most importantly the significance of associated stress tensors to judge the problem from a broader and engineering point of view. At the end of the day, considering all the issues, we have found that only Einstein-Laub equations can predict th...
Geudens, Guy; Staelens, Jeroen; Kint, Vincent; Goris, Robbie; Lust, Noël
2004-01-01
International audience; A dense natural regeneration of Scots pine (Pinus sylvestris L.) exhibits a considerable biomass build-up in the first four years, with amounts of 7.03 Mg ha-1 for aboveground biomass, and 0.88 Mg ha-1 for coarse root biomass (> 1 mm). Power equations were developed, which relate collar diameter (ranging from 0.3 to 2.7 cm) and height to total aboveground and coarse root biomass of two, three and four-year-old seedlings in a regeneration of 16 seedlings m-2 at one site...
Betatron x-rays from laser plasma accelerators: a new probe for warm dense matter at LCLS
Albert, Felicie
2016-10-01
Betatron x-ray radiation, driven by electrons from laser-wakefield acceleration, has unique properties to probe high energy density (HED) plasmas and warm dense matter. Betatron radiation is produced when relativistic electrons oscillate in the plasma wake of a laser pulse. Its properties are similar to those of synchrotron radiation, with a 1000 fold shorter pulse. This presentation will focus on the experimental challenges and results related to the development of betatron radiation for x-ray absorption spectroscopy of HED matter at large-scale laser facilities. A detailed presentation of the source mechanisms and characteristics in the blowout regime of laser-wakefield acceleration will be followed by a description of recent experiments performed at the Linac Coherent Light Source (LCLS). At LCLS, we have recently commissioned the betatron x-ray source driven by the MEC short pulse laser (1 J, 40 fs). The source is used as a probe for investigating the X-ray absorption near edge structure (XANES) spectrum at the K- or L-edge of iron and silicon oxide driven to a warm dense matter state (temperature of a few eV and solid densities). The driver is either LCLS itself or an optical laser. These experiments demonstrate the capability to study the electron-ion equilibration mechanisms in warm dense matter with sub-picosecond resolution. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344, and supported by the Laboratory Directed research and development program under tracking codes 13-LW-076, 16-ERD-041 and by the Office of Fusion Energy Sciences under SCW1476 and SCW1569.
Proceedings of RIKEN BNL Research Center Workshop: P- and CP-odd Effects in Hot and Dense Matter
Energy Technology Data Exchange (ETDEWEB)
Deshpande, A.; Fukushima, K.; Kharzeev, D.; Warringa, H.; Voloshin, S.
2010-04-26
This volume contains the proceedings of the RBRC/CATHIE workshop on 'P- and CP-odd Effects in Hot and Dense Matter' held at the RIKEN-BNL Research Center on April 26-30, 2010. The workshop was triggered by the experimental observation of charge correlations in heavy ion collisions at RHIC, which were predicted to occur due to local parity violation (P- and CP-odd fluctuations) in hot and dense QCD matter. This experimental result excited a significant interest in the broad physics community, inspired a few alternative interpretations, and emphasized the need for a deeper understanding of the role of topology in QCD vacuum and in hot and dense quark-gluon matter. Topological effects in QCD are also closely related to a number of intriguing problems in condensed matter physics, cosmology and astrophysics. We therefore felt that a broad cross-disciplinary discussion of topological P- and CP-odd effects in various kinds of matter was urgently needed. Such a discussion became the subject of the workshop. Specific topics discussed at the workshop include the following: (1) The current experimental results on charge asymmetries at RHIC and the physical interpretations of the data; (2) Quantitative characterization of topological effects in QCD matter including both analytical (perturbative and non-perturbative using gauge/gravity duality) and numerical (lattice-QCD) calculations; (3) Topological effects in cosmology of the Early Universe (including baryogenesis and dark energy); (4) Topological effects in condensed matter physics (including graphene and superfiuids); and (5) Directions for the future experimental studies of P- and CP-odd effects at RHIC and elsewhere. We feel that the talks and intense discussions during the workshop were extremely useful, and resulted in new ideas in both theory and experiment. We hope that the workshop has contributed to the progress in understanding the role of topology in QCD and related fields. We thank all the speakers and
Determination of the equation of state of asymmetric nuclear matter
Energy Technology Data Exchange (ETDEWEB)
Tsang, Manyee Betty [Michigan State Univ., East Lansing, MI (United States)
2016-12-30
A new Time Projection Chamber (TPC), called the SπRIT (SAMURAI pion Reconstruction Ion Tracker) TPC was constructed and used successfully in two experiments with the SAMURAI spectrometer at RIKEN, Japan to study the equation of state of neutron rich matter. As a result of the project, the SπRIT collaboration, an international collaboration consisting of groups from US, Japan, Korea, Poland, China and Germany, has been formed to pursue the science opportunities provided by the SπRIT TPC. After completion of the TPC and the two experiments, the collaboration continues to develop the software to analyze the SπRIT experiments and extract constraints of symmetry energy at supra-saturation densities. Over 250 TB of data have been obtained in the last SπRIT TPC experimental campaign. Construction of the TPC provided opportunities for the scientists to develop new designs for the light-weight and thin-walled field cage for the large pad plane and for the gating grid. Two PhD students (1 US and 1 Korea) graduated in 2016 based on their research on the TPC. At least four more doctoral theses (2 US, 1 Japan and 1 Korea) based on physics from the SπRIT experiments are expected.
Energy Technology Data Exchange (ETDEWEB)
Chen, Ke [Univ. of Liverpool (United Kingdom)
1996-12-31
We study various preconditioning techniques for the iterative solution of boundary integral equations, and aim to provide a theory for a class of sparse preconditioners. Two related ideas are explored here: singularity separation and inverse approximation. Our preliminary conclusion is that singularity separation based preconditioners perform better than approximate inverse based while it is desirable to have both features.
Oikonomou, V K; Park, Miok
2014-01-01
We study some aspects of cosmological evolution in a universe described by a viable curvature corrected exponential $F(R)$ gravity model, in the presence of matter fluids consisting of collisional matter and radiation. Particularly, we express the Friedmann-Robertson-Walker equations of motion in terms of parameters that are appropriate for describing the dark energy oscillations and compare the dark energy density and the dark energy equation of state parameter corresponding to collisional and non-collisional matter. In addition to these, and owing to the fact that the cosmological evolution of collisional and non-collisional matter universes, when quantified in terms of the Hubble parameter and the effective equation of states parameters, is very much alike, we further scrutinize the cosmological evolution study by extending the analysis to the study of matter perturbations in the matter domination era. We quantify this analysis in terms of the growth factor of matter perturbations, in which case the result...
Chen, Z.; Hering, P.; Brown, S. B.; Curry, C.; Tsui, Y. Y.; Glenzer, S. H.
2016-11-01
To study the rapid evolution of AC conductivity from ultrafast laser excited warm dense matter (WDM), a spatial chirp single-shot method is developed utilizing a crossing angle pump-probe configuration. The pump beam is shaped individually in two spatial dimensions so that it can provide both sufficient laser intensity to excite the material to warm dense matter state and a uniform time window of up to 1 ps with sub-100 fs FWHM temporal resolution. Temporal evolution of AC conductivity in laser excited warm dense gold was also measured.
Veysman, M.; Röpke, G.; Winkel, M.; Reinholz, H.
2016-07-01
Fundamental properties of warm dense matter are described by the dielectric function, which gives access to the frequency-dependent electrical conductivity; absorption, emission, and scattering of radiation; charged particles stopping; and further macroscopic properties. Different approaches to the dielectric function and the related dynamical collision frequency are compared in a wide frequency range. The high-frequency limit describing inverse bremsstrahlung and the low-frequency limit of the dc conductivity are considered. Sum rules and Kramers-Kronig relation are checked for the generalized linear response theory and the standard approach following kinetic theory. The results are discussed in application to aluminum, xenon, and argon plasmas.
Adcox, K; Ajitanand, N N; Akiba, Y; Alexander, J; Aphecetche, L; Arai, Y; Aronson, S H; Averbeck, R; Awes, T C; Barish, K N; Barnes, P D; Barrette, J; Bassalleck, B; Bathe, S; Baublis, V; Bazilevsky, A; Belikov, S V; Bellaiche, F G; Belyaev, S T; Bennett, M J; Berdnikov, Yu A; Botelho, S S; Brooks, M L; Brown, D S; Bruner, N L; Bucher, D; Büsching, H; Bumazhnov, V A; Bunce, G M; Burward-Hoy, J M; Butsyk, S; Carey, T A; Chand, P; Chang, J; Chang, W C; Chavez, L L; Chernichenko, S K; Chi, C Y; Chiba, J; Chiu, M; Choudhury, R K; Christ, T; Chujo, T; Chung, M S; Chung, P; Cianciolo, V; Cole, B A; D'Enterria, D G; Dávid, G; Delagrange, H; Denisov, A; Deshpande, A A; Desmond, E J; Dietzsch, O; Dinesh, B V; Drees, A; Durum, A A; Dutta, D; Ebisu, K; Efremenko, Yu V; El-Chenawi, K F; Enyo, H; Esumi, S C; Ewell, L A; Ferdousi, T; Fields, D E; Fokin, S L; Fraenkel, Zeev; Franz, A; Frawley, A D; Fung, S Y; Garpman, S; Ghosh, T K; Glenn, A; Godoi, A L; Goto, Y; Greene, S V; Grosse-Perdekamp, M; Sen-Gupta, S K; Guryn, W; Gustafsson, Hans Åke; Haggerty, J S; Hamagaki, H; Hansen, A G; Hara, H; Hartouni, E P; Hayano, R S; Hayashi, N; He, X; Hemmick, T K; Heuser, J M; Hill, J C; Ho, D S; Homma, K; Hong, B; Hoover, A; Ichihara, T; Imai, K; Ippolitov, M S; Ishihara, M; Jacak, B V; Jang, W Y; Jia, J; Johnson, B M; Johnson, S C; Joo, K S; Kametani, S; Kang, J H; Kann, M; Kapoor, S S; Kelly, S; Khachaturov, B A; Khanzadeev, A V; Kikuchi, J; Kim, D J; Kim, H J; Kim, S Y; Kim, Y G; Kinnison, W W; Kistenev, E P; Kiyomichi, A; Klein-Bösing, C; Klinksiek, S A; Kochenda, L M; Kochetkov, D; Kochetkov, V; Köhler, D; Kohama, T; Kozlov, A; Kroon, P J; Kurita, K; Kweon, M J; Kwon, Y; Kyle, G S; Lacey, R A; Lajoie, J G; Lauret, J; Lebedev, A; Lee, D M; Leitch, M J; Li, X H; Li, Z; Lim, D J; Liu, M X; Liu, X; Liu Zu Ping; Maguire, C F; Mahon, J R; Makdisi, Y I; Man'ko, V I; Mao, Y; Mark, S K; Markacs, S; Martínez, G; Marx, M D; Masaike, A; Matathias, F; Matsumoto, T; McGaughey, P L; Melnikov, E A; Merschmeyer, M; Messer, F; Messer, M; Miake, Y; Miller, T E; Milov, A M; Mioduszewski, S; Mischke, R E; Mishra, G C; Mitchell, J T; Mohanty, A K; Morrison, D P; Moss, J M; Muhlbacher, F; Muniruzzaman, M; Murata, J; Nagamiya, S; Nagasaka, Y; Nagle, J L; Nakada, Y; Nandi, B K; Newby, J; Nikkinen, L; Nilsson, P O; Nishimura, S; Nyanin, A S; Nystrand, J; O'Brien, E; Ogilvie, C A; Ohnishi, H; Ojha, I D; Ono, M; Onuchin, V A; Oskarsson, A; Österman, L; Otterlund, I; Oyama, K; Paffrath, L; Palounek, A P T; Pantuev, V S; Papavassiliou, V; Pate, S F; Peitzmann, Thomas; Petridis, A; Pinkenburg, C H; Pisani, R P; Pitukhin, P; Plasil, F; Pollack, M E; Pope, K; Purschke, M L; Ravinovich, I; Read, K F; Reygers, K; Riabov, V; Riabov, Y; Rosati, M; Rose, A A; Ryu, S S; Saitô, N; Sakaguchi, A; Sakaguchi, T; Sako, H; Sakuma, T; Samsonov, V; Sangster, T C; Santo, R; Sato, H D; Sato, S; Sawada, S; Schlei, B R; Schutz, Y; Semenov, V; Seto, R K; Shea, T K; Shein, I V; Shibata, T A; Shigaki, K; Shiina, T; Shin, Y H; Sibiryak, Yu; Silvermyr, D; Sim, K S; Simon-Gillo, J; Singh, C P; Singh, V; Sivertz, M; Soldatov, A; Soltz, R A; Sørensen, S; Stankus, P W; Starinsky, N; Steinberg, P; Stenlund, E; Ster, A; Stoll, S P; Sugioka, M; Sugitate, T; Sullivan, J P; Sumi, Y; Sun, Z; Suzuki, M; Takagui, E M; Taketani, A; Tamai, M; Tanaka, K H; Tanaka, Y; Taniguchi, E; Tannenbaum, M J; Thomas, J; Thomas, J H; Thomas, T L; Tian, W; Tojo, J; Torii, H A; Towell, R S; Tserruya, Itzhak; Tsuruoka, H; Tsvetkov, A A; Tuli, S K; Tydesjo, H; Tyurin, N; Ushiroda, T; van Hecke, H; Velissaris, C; Velkovska, J; Velkovsky, M; Vinogradov, A A; Volkov, M A; Vorobyov, A A; Vznuzdaev, E A; Wang, H; Watanabe, Y; White, S N; Witzig, C; Wohn, F K; Woody, C L; Xie, W; Yagi, K; Yokkaichi, S; Young, G R; Yushmanov, I E; Zajc, W A; Zhang, Z; Zhou, S
2004-01-01
Extensive experimental data from high-energy nucleus-nucleus collisions were recorded using the PHENIX detector at the Relativistic Heavy Ion Collider (RHIC). The comprehensive set of measurements from the first three years of RHIC operation includes charged particle multiplicities, transverse energy, yield ratios and spectra of identified hadrons in a wide range of transverse momenta (p_T), elliptic flow, two-particle correlations, non-statistical fluctuations, and suppression of particle production at high p_T. The results are examined with an emphasis on implications for the formation of a new state of dense matter. We find that the state of matter created at RHIC cannot be described in terms of ordinary color neutral hadrons.
Neutron Star Interiors and the Equation of State of Superdense Matter
Weber, F; Rosenfield, P
2007-01-01
Neutron stars contain matter in one of the densest forms found in the Universe. This feature, together with the unprecedented progress in observational astrophysics, makes such stars superb astrophysical laboratories for a broad range of exciting physical studies. This paper gives an overview of the phases of dense matter predicted to make their appearance in the cores of neutron stars. Particular emphasis is put on the role of strangeness. Net strangeness is carried by hyperons, K-mesons, H-dibaryons, and strange quark matter, and may leave its mark in the masses, radii, moment of inertia, dragging of local inertial frames, cooling behavior, surface composition, and the spin evolution of neutron stars. These observables play a key role for the exploration of the phase diagram of dense nuclear matter at high baryon number density but low temperature, which is not accessible to relativistic heavy ion collision experiments.
{pi}{pi}-correlations in hot and dense matter; {pi}{pi}-Korrelationen in heisser und dichter Materie
Energy Technology Data Exchange (ETDEWEB)
Isselhorst, C.
2006-07-01
Properties of the {pi}{pi}-interactions in hot and dense matter are studied within a nonperturbative and symmetry conserving approach. The pion and its chiral partner, the {sigma}-meson, are described within the linear {sigma} model and special attention is given to the conservation of the underlying chiral symmetry. The first part deals with the properties of pion and {sigma} in the vacuum, the further being the ''Goldstone''-boson of the theory, while the latter is a broad resonance. The results in the vacuum are tested against experimental results like {pi}{pi}-phase shifts as well as the mass and the width of the {sigma}-meson. Besides the propagator of the {sigma}-meson, the preservation of the chiral symmetry is explicitly examined and chiral Ward identities for the n-point functions of the theory are fulfilled. Furthermore the {pi}{pi}-scattering matrix is calculated and shown to be consistent with predictions from chiral perturbation theory. In the second part of this work the model is extended to finite temperature with special emphasis on the chiral phase transition. The transition temperature and the critical exponent {beta} are determined, and the influence of the temperature on the propagator of the s-meson as well as on the {pi}{pi}-scattering matrix is examined. The third part deals with the properties of pion and {sigma} in dense matter. Additional couplings like the ones to particle-hole excitations and short range repulsion have to be included to ensure stability at nuclear matter density. At zero three momentum one observes a strong downward shift of the {sigma}-mass accompanied by an accumulation of strength near the two-pion threshhold in the spectral function. Taking into account a finite three momentum for the {pi}{pi}-pair, respectively the {sigma}-meson, one observes a weakening of the aforementioned effect. Having thus developed a model for the {pi}{pi}-interaction at finite temperature and density, we try to describe
The influence of the local volume fluctuations on the equation-of-state of hot and dense plasmas
Salzmann, David; Fisher, Dima; Barshalom, Avraham; Oreg, Joseph
2008-04-01
Generally, equation-of-state (EOS) of hot and dense plasmas is computed under the assumption that there is a constant volume available to every ion/atom in the plasma. In the present paper we combined two recently developed models to evaluate the influence of local density fluctuations around the ions on the corresponding EOS. The first of these is the so-called Ion Ellipsoid Model (IEM). IEM assumes that the local volume of the ion is a 3-dimensional ellipsoidal enclosure. Full description of the model is given in Ref. [1]. From IEM semi-empirical formulas were derived for the ions volume distribution function [1] for 0INFERNO models to calculate opacities and EOS on the same footing. We will describe the model and present preliminary results indicating the effect of the volume fluctuations around the ions on EOS results.
Harbour, L.; Dharma-wardana, M. W. C.; Klug, D. D.; Lewis, L. J.
2016-11-01
Ultrafast laser experiments yield increasingly reliable data on warm dense matter, but their interpretation requires theoretical models. We employ an efficient density functional neutral-pseudoatom hypernetted-chain (NPA-HNC) model with accuracy comparable to ab initio simulations and which provides first-principles pseudopotentials and pair potentials for warm-dense matter. It avoids the use of (i) ad hoc core-repulsion models and (ii) "Yukawa screening" and (iii) need not assume ion-electron thermal equilibrium. Computations of the x-ray Thomson scattering (XRTS) spectra of aluminum and beryllium are compared with recent experiments and with density-functional-theory molecular-dynamics (DFT-MD) simulations. The NPA-HNC structure factors, compressibilities, phonons, and conductivities agree closely with DFT-MD results, while Yukawa screening gives misleading results. The analysis of the XRTS data for two of the experiments, using two-temperature quasi-equilibrium models, is supported by calculations of their temperature relaxation times.
Enhancing the light-matter interaction using slow light: towards the concept of dense light
Thévenaz, Luc; Dicaire, Isabelle; Chin, Sang Hoon
2012-01-01
A couple of experiments are here presented to clarify the impact of slow light on light-matter interaction. The experiments are designed, so that the process generating slow light and the probed light-matter interaction only present a marginal cross-effect. The impact of slow light on simple molecular absorption could be separately evaluated under either material or structural slow light propagation in the same medium and led to an entirely different response.
Hadronic and Quark-Gluon Excitations of Dense and Hot Matter
Renk, T; Weise, W
2002-01-01
We summarize recent developments in our understanding of low-mass quark-antiquark excitations in hadronic matter under various different conditions. This includes the thermodynamics of the chiral condensate, pions as Goldstone bosons in normal nuclear matter, and excursions into extreme territory of the QCD phase diagram: lepton pair production from a fireball expanding through the transition boundary between the quark-gluon and hadron pha ses of QCD.
Hadronic equation of state and speed of sound in thermal and dense medium
Nasser Tawfik, Abdel; Magdy, Hend
2014-10-01
The equation of state p(ɛ) and speed of sound squared cs2 are studied in grand canonical ensemble of all hadron resonances having masses ≤2 GeV. This large ensemble is divided into strange and non-strange hadron resonances and furthermore to pionic, bosonic and fermionic sectors. It is found that the pions represent the main contributors to cs2 and other thermodynamic quantities including the equation of state p(ɛ) at low temperatures. At high temperatures, the main contributions are added in by the massive hadron resonances. The speed of sound squared can be calculated from the derivative of pressure with respect to the energy density, ∂p/∂ɛ, or from the entropy-specific heat ratio, s/cv. It is concluded that the physics of these two expressions is not necessarily identical. They are distinguishable below and above the critical temperature Tc. This behavior is observed at vanishing and finite chemical potential. At high temperatures, both expressions get very close to each other and both of them approach the asymptotic value, 1/3. In the hadron resonance gas (HRG) results, which are only valid below Tc, the difference decreases with increasing the temperature and almost vanishes near Tc. It is concluded that the HRG model can very well reproduce the results of the lattice quantum chromodynamics (QCD) of ∂p/∂ɛ and s/cv, especially at finite chemical potential. In light of this, energy fluctuations and other collective phenomena associated with the specific heat might be present in the HRG model. At fixed temperatures, it is found that cs2 is not sensitive to the chemical potential.
Energy Technology Data Exchange (ETDEWEB)
Ravasio, A
2007-03-15
In this work, we present 3 novel diagnostics for warm dense plasma (WDM) investigations: hard X-ray radiography, proton radiography and X-ray Thomson scattering. Each of these techniques is applied in shock compression experiments. The main objective consists in accessing a new parameter, in addition to shock and particle velocity, for EOS (Equation of State) measurements. In the first chapter we give a deep description of WDM states as strongly coupled and Fermi degenerate states. Then, we introduce how we have generated a WDM state in our experiment: the shock wave. We, in particular, illustrate its formation in the classical laser-matter interaction regime. In the second chapter the principles of standard probing techniques are presented. We see that energetic probe sources are necessary to investigate high Z dense plasmas. The third chapter is dedicated to X-ray radiography results. We report on a first direct density measurement of a shock compressed high Z target using K{alpha} hard X-ray radiation. These results are of great interests as they allow an in-situ characterization of high Z material, impossible with standard techniques. We show that probing a well known material as Al will allow the comparison between our data and the results from already validated simulations. In the fourth chapter, we present the results obtained from proton radiography on low density carbon foam. The data analysis will require the development of a specific Monte-Carlo code to simulate the proton propagation through the shocked target. The comparison of the simulations with the experimental data show a low dependency on density. The fifth chapter is devoted to X-ray Thomson scattering results. For the first time, we have performed collective x-ray Thomson scattering measurement from a shock compressed target, accessing to electron density and temperature. The obtained results are compared with simulated x-ray scattered spectra. The novel technique is then used in the
Gourdain, P.-A.; Seyler, C. E.
2017-09-01
Warm dense matter is difficult to generate since it corresponds to a state of matter which pressure is order of magnitude larger than can be handled by natural materials. A diamond anvil can be used to pressurize matter up to one Gbar, this matter is at high density but at room temperature. High power lasers and heavy ion beams can generate warm dense matter on time scales where measuring quasi-static transport coefficients such as viscosity or heat conduction proves difficult since both experimental techniques relies on inertial confinement. We present here a third method to generate warm dense matter. It uses a pulsed-power driver which current rise time is substantially shortened by using a plasma opening switch, limiting the development of electrothermal instabilities. The switch relies on the implosion of a gas puff Z-pinch which carries most of the discharge current until the pinch reaches the sample. After that, the sample is compressed until it reaches the warm dense matter regime. Three-dimensional magnetohydrodynamics computations show that if the density of the gas is low enough no detectable instabilities (e.g. kinks and sausages modes) impede the remainder of the implosion.
Ab initio study of thermodynamically consistent equation of state of warm dense aluminum plasma
Gao, Xiang; Chen, Liang; Valencia, Ramón; Xia, Weiyi; Gao, Weiwei; Han, Xiao-Ying; Li, Jia-Ming; Zhang, Peihong
2016-09-01
Thermodynamically consistent equation of state (EOS) of two-temperature aluminum across a wide range of parameter space (compression ratio ratios V0/V up to 4, electronic temperatures Te up to 1 500 000 K, and ionic temperature Tion up to 10 000 000 K for Te up to 40 000 K) is investigated from the free energy calculations using density functional theory (DFT) based first-principles electronic structure methods. Our results can serve as a stringent benchmark for the present EOS model and database, where various approximations are adopted, used in hydrodynamic simulations as well as developing new EOS models. We find that the Thomas-Fermi model for the electronic pressure overestimates the EOS within the present parameter space, whereas the Thomas-Fermi model with exchange corrections are in good agreement with our results for Te greater than 600 000 K. The ionic pressure for a given ionic temperature Tion is found to be nearly independent of the electronic temperature at high temperatures, which can be modeled with kinetic theory for Tion larger than 1 000 000 K for various Te. The asymptotic behavior of the electronic contributions to the plasma pressure is further analyzed and casted into a compact analytical form with a few fitting parameters. This analytical form is physically well motivated and reproduces the desired asymptotic behaviors of the EOS within the interested parameter space. Therefore, our results can be conveniently used for modeling important properties and processes of high energy density systems.
QCD evolution equations for high energy partons in nuclear matter
Kinder-Geiger, Klaus; Geiger, Klaus; Mueller, Berndt
1994-01-01
We derive a generalized form of Altarelli-Parisi equations to decribe the time evolution of parton distributions in a nuclear medium. In the framework of the leading logarithmic approximation, we obtain a set of coupled integro- differential equations for the parton distribution functions and equations for the virtuality (``age'') distribution of partons. In addition to parton branching processes, we take into account fusion and scattering processes that are specific to QCD in medium. Detailed balance between gain and loss terms in the resulting evolution equations correctly accounts for both real and virtual contributions which yields a natural cancellation of infrared divergences.
Visualizing expanding warm dense matter heated by laser-generated ion beams
Energy Technology Data Exchange (ETDEWEB)
Bang, Woosuk [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2015-08-24
This PowerPoint presentation concluded with the following. We calculated the expected heating per atom and temperatures of various target materials using a Monte Carlo simulation code and SESAME EOS tables. We used aluminum ion beams to heat gold and diamond uniformly and isochorically. A streak camera imaged the expansion of warm dense gold (5.5 eV) and diamond (1.7 eV). GXI-X recorded all 16 x-ray images of the unheated gold bar targets proving that it could image the motion of the gold/diamond interface of the proposed target.
Equation of State for Isospin Asymmetric Matter of Nucleons and Deltas
Institute of Scientific and Technical Information of China (English)
2008-01-01
<正>The equation of state (EOS) of isospin asymmetry nuclear matter is important for understanding not only properties of nuclei and dynamics of nuclear reaction in microscopical scale but also many issues of
Dharma-wardana, M W C
2012-09-01
The pair interactions Uij(r) determine the thermodynamics and linear transport properties of matter via the pair-distribution functions (PDFs), i.e., gij(r). Great simplicity is achieved if Uij(r) could be directly used to predict material properties via classical simulations, avoiding many-body wave functions. Warm dense matter (WDM) is encountered in quasiequilibria where the electron temperature Te differs from the ion temperature Ti, as in laser-heated or in shock-compressed matter. The electron PDFs gee(r) as perturbed by the ions are used to evaluate fully nonlocal exchange-correlation corrections to the free energy, using hydrogen as an example. Electron-ion potentials for ions with a bound core are discussed with Al and Si as examples, for WDM with Te≠Ti, and valid for times shorter than the electron-ion relaxation time. In some cases the potentials develop attractive regions and then become repulsive and "Yukawa-like" for higher Te. These results clarify the origin of initial phonon hardening and rapid release. Pair potentials for shock-heated WDM show that phonon hardening would not occur in most such systems. Defining meaningful quasiequilibrium static transport coefficients consistent with the dynamic values is addressed. There seems to be no meaningful "static conductivity" obtainable by extrapolating experimental or theoretical σ(ω,Ti,Te) to ω→0, unless Ti→Te as well. Illustrative calculations of quasistatic resistivities R(Ti,Te) of laser-heated as well as shock-heated aluminum and silicon are presented using our pseudopotentials, pair potentials, and classical integral equations. The quasistatic resistivities display clear differences in their temperature evolutions, but are not the strict ω→0 limits of the dynamic values.
Effective equations for isotropic quantum cosmology including matter
Bojowald, Martin; Skirzewski, Aureliano
2007-01-01
Effective equations often provide powerful tools to develop a systematic understanding of detailed properties of a quantum system. This is especially helpful in quantum cosmology where several conceptual and technical difficulties associated with the full quantum equations can be avoided in this way. Here, effective equations for Wheeler-DeWitt and loop quantizations of spatially flat, isotropic cosmological models sourced by a massive or interacting scalar are derived and studied. The resulting systems are remarkably different from that given for a free, massless scalar. This has implications for the coherence of evolving states and the realization of a bounce in loop quantum cosmology.
Nucleon-nucleon effective potential in dense matter including rho-meson exchange
Mornas, L; Pérez, A
2002-01-01
We obtain the RPA summed one-meson exchange potential between nucleons in symmetric nuclear matter at zero temperature, from a model which includes rho, sigma, omega and pi mesons. The behavior of rho mesons inside the medium is first discussed using different schemes to extract a finite contribution from the vacuum polarization. These schemes give qualitatively different results for the in-medium rho mass. The results are discussed in connection with the nonrenormalizability of the model. We next study the modified potential as density increases. In the intermediate-distance range, it is qualitatively modified by matter and vacuum effects. In the long-distance range (r>2 fm), one observes the presence of oscillations, which are not present in free space. Features on this distance range are insensitive to the renormalization scheme.
Kondo cloud of single heavy quark in cold and dense matter
Yasui, Shigehiro
2016-01-01
The Kondo effect is a universal phenomena observed in a variety of fermion systems containing a heavy impurity particle whose interaction is governed by the non-Abelian interaction. At extremely high density, I study the Kondo effect by color exchange in quark matter containing a single heavy (charm or bottom) quark as an impurity particle. To obtain the ground state with the Kondo effect, I introduce the condensate mixing the light quark and the heavy quark (Kondo cloud) in the mean-field approximation. I estimate the energy gain by formation of the Kondo cloud, and present that the Kondo cloud exhibits the resonant structure. I also evaluate the scattering cross section for the light quark and the heavy quark, and discuss its effect to the finite size quark matter.
Kondo cloud of single heavy quark in cold and dense matter
Yasui, Shigehiro
2017-10-01
The Kondo effect is a universal phenomena observed in a variety of fermion systems containing a heavy impurity particle whose interaction is governed by the non-Abelian interaction. At extremely high density, I study the Kondo effect by color exchange in quark matter containing a single heavy (charm or bottom) quark as an impurity particle. To obtain the ground state with the Kondo effect, I introduce the condensate mixing the light quark and the heavy quark (Kondo cloud) in the mean-field approximation. I estimate the energy gain by formation of the Kondo cloud, and present that the Kondo cloud exhibits the resonant structure. I also evaluate the scattering cross section for the light quark and the heavy quark, and discuss its effect to the finite size quark matter.
(In)stability in dense strange hadronic matter and compact stars
Torres, James R; Menezes, Debora P
2016-01-01
Background : The emergence of hyperon degrees of freedom in neutron star matter has been associated to first order phase transitions in some phenomenological models, but conclusions on the possible physical existence of an instability in the strangeness sector are strongly model dependent. Purpose : The purpose of the present study is to assess whether strangeness instabilities are related to specific values of the largely unconstrained hyperon interactions, and to study the effect of the strange meson couplings on phenomenological properties of neutron stars and supernova matter, once these latter are fixed to fulfill the constraints imposed by hypernuclear data. Method : We consider a phenomenological RMF model sufficiently simple to allow a complete exploration of the parameter space. Results : We show that no instability at supersaturation density exists for the RMF model, as long as the parameter space is constrained by basic physical requirements. This is at variance with a non-relativistic functional, ...
From non-degenerate conducting polymers to dense matter in the massive Gross-Neveu model
Thies, M; Thies, Michael; Urlichs, Konrad
2005-01-01
Using results from the theory of non-degenerate conducting polymers like cis-polyacetylene, we generalize our previous work on baryonic matter in the massless Gross-Neveu model to finite bare fermion mass. In the large N limit, the exact ground state is constructed analytically, in close analogy to the bipolaron lattice in polymers. These findings are contrasted to the standard scenario with a first order phase transition as a function of density.
Suresh Kumar; Lixin Xu
2014-01-01
In this paper, we study a cosmological model in general relativity within the framework of spatially flat Friedmann–Robertson–Walker space–time filled with ordinary matter (baryonic), radiation, dark matter and dark energy, where the latter two components are described by Chevallier–Polarski–Linder equation of state parameters. We utilize the observational data sets from SNLS3, BAO and Planck + WMAP9 + WiggleZ measurements of matter power spectrum to constrain the model parameters. We find th...
Wu, D; Yu, W; Fritzsche, S
2016-01-01
A physical model based on Monte-Carlo approach is proposed to calculate the ionization dynamics of warm dense matters within particle-in-cell simulations, where impact ionization, electron-ion recombination and ionization potential depression (IPD) by surrounding plasmas are taken into consideration self-consistently. When compared with other models, which are applied in the literature for plasmas near thermal equilibrium, the temporal relaxation of ionizations can also be simulated by the proposed model with the final thermal equilibrium determined by the competition between impact ionization and its inverse process, i.e., electron-ion recombination. Our model is general and can be applied for both single elements and alloys with quite different compositions. The proposed model is implemented into a particle-in-cell (PIC) simulation code, and the average ionization degree of bulk aluminium varying with temperature is calculated, showing good agreement with the data provided by FLYCHK code.
Energy Technology Data Exchange (ETDEWEB)
Ishino, Masahiko, E-mail: ishino.masahiko@jaea.go.jp; Hasegawa, Noboru; Nishikino, Masaharu; Kawachi, Tetsuya; Yamagiwa, Mitsuru [Quantum Beam Science Center, Japan Atomic Energy Agency, 8-1-7, Umemidai, Kizugawa, Kyoto 619-0215 (Japan); Pikuz, Tatiana [Joint Institute for High Temperatures, Russian Academy of Sciences, 13-2, Izhorskaya Street, Moscow 125412 (Russian Federation); Graduate School of Engineering, Osaka University, 1-1, Yamadaoka, Suita, Osaka 565-0871 (Japan); Skobelev, Igor [Joint Institute for High Temperatures, Russian Academy of Sciences, 13-2, Izhorskaya Street, Moscow 125412 (Russian Federation); National Research Nuclear University, Moscow Engineering Physics Institute, 31, Kashirskoe Shosse, Moscow 115409 (Russian Federation); Faenov, Anatoly [Joint Institute for High Temperatures, Russian Academy of Sciences, 13-2, Izhorskaya Street, Moscow 125412 (Russian Federation); Institute for Academic Initiatives, Osaka University, 1-1, Yamadaoka, Suita, Osaka 565-0871 (Japan); Inogamov, Nail [Landau Institute for Theoretical Physics, Russian Academy of Sciences, 1-A, Akademika Semenova av., Chernogolovka, Moscow Region 142432 (Russian Federation)
2014-11-14
We investigated the optical emission from the ablating surfaces induced by the irradiations of soft x-ray laser (SXRL) pulses with the aim of estimation of the maximum electron temperature. No emission signal in the spectral range of 400–800 nm could be observed despite the formation of damage structures on the target surfaces. Hence, we estimated an upper limit for the electron temperature of 0.4–0.7 eV for the process duration of 100–1000 ps. Our results imply that the ablation and/or surface modification by the SXRL is not accompanied by plasma formation but is induced by thermo-mechanical pressure, which is so called a spallative ablation. This spallative ablation process occurs in the low electron temperature region of a non-equilibrium state of warm dense matter.
Dharma-wardana, M W C
2016-01-01
Using data from recent laser-shock experiments and related density-functional molecular-dynamics simulations on carbon, we demonstrate that the ionic structures predicted within the neutral-pseudo-atom approach for a complex liquid in the warm-dense matter regime are in good agreement with available data, even where transient covalent bonding dominates ionic correlations. Evidence for an unusual phase transition of a liquid $\\to$ vapor with an abrupt decrease in ionization occurring simultaneously is presented. Here a covalently-bonded metallic-liquid, i.e., carbon of density 1.0 g/cm$^3$, transits to a disordered mono-atomic fluid at 7 eV. Other transitions where the mean ionization $Z$ drops abruptly are also uncovered
Exotic dense matter states pumped by relativistic laser plasma in the radiation dominant regime
Colgan, J; Jr.,; Faenov, A Ya; Pikuz, S A; Wagenaars, E; Booth, N; Brown, C R D; Culfa, O; Dance, R J; Evans, R G; Gray, R J; Hoarty, D J; Kaempfer, T; Lancaster, K L; McKenna, P; Rossall, A L; Skobelev, I Yu; Schulze, K S; Uschmann, I; Zhidkov, A G; Woolsey, N C
2012-01-01
The properties of high energy density plasma are under increasing scrutiny in recent years due to their importance to our understanding of stellar interiors, the cores of giant planets$^{1}$, and the properties of hot plasma in inertial confinement fusion devices$^2$. When matter is heated by X-rays, electrons in the inner shells are ionized before the valence electrons. Ionization from the inside out creates atoms or ions with empty internal electron shells, which are known as hollow atoms (or ions)$^{3,4,5}$. Recent advances in free-electron laser (FEL) technology$^{6,7,8,9}$ have made possible the creation of condensed matter consisting predominantly of hollow atoms. In this Letter, we demonstrate that such exotic states of matter, which are very far from equilibrium, can also be formed by more conventional optical laser technology when the laser intensity approaches the radiation dominant regime$^{10}$. Such photon-dominated systems are relevant to studies of photoionized plasmas found in active galactic ...
Probing properties of hot and dense QCD matter with heavy flavor in the PHENIX experiment at RHIC
Directory of Open Access Journals (Sweden)
Nouicer Rachid
2015-01-01
Full Text Available Hadrons carrying heavy quarks, i.e. charm or bottom, are important probes of the hot and dense medium created in relativistic heavy ion collisions. Heavy quarkantiquark pairs are mainly produced in initial hard scattering processes of partons. While some of the produced pairs form bound quarkonia, the vast majority hadronize into particles carrying open heavy flavor. Heavy quark production has been studied by the PHENIX experiment at RHIC via measurements of single leptons from semi-leptonic decays in both the electron channel at mid-rapidity and in the muon channel at forward rapidity. A large suppression and azimuthal anisotropy of single electrons have been observed in Au + Au collisions at 200 GeV. These results suggest a large energy loss and flow of heavy quarks in the hot, dense matter. The PHENIX experiment has also measured J/ψ production at 200 GeV in p + p, d + Au, Cu + Cu and Au + Au collisions, both at mid- and forward-rapidities, and additionally Cu + Au and U + U at forward-rapidities. In the most energetic collisions, more suppression is observed at forward rapidity than at central rapidity. This can be interpreted either as a sign of quark recombination, or as a hint of additional cold nuclear matter effects. The centrality dependence of nuclear modification factor, RAA(pT, for J/ψ in U + U collisions at √sNN = 193 GeV shows a similar trend to the lighter systems, Au + Au and Cu + Cu, at similar energy 200 GeV.
Energy Technology Data Exchange (ETDEWEB)
Brygoo, St
2006-11-15
The purpose of this work was to develop a new approach of laser shocks on pre-compressed targets in order to collect data concerning the equation of state in the warm dense matter zone of the phase diagram. The accuracy of the measurement has been increased by the use of a new metrology based on quartz. Quartz is considered as a standard for the measurement of both the pressure and the density, a model of an isentropic relaxation based on a Grueneisen type approximation has been developed. By combining laser shocks with diamond anvil cells and by using this new metrology, we have investigated the following systems: diamond, helium, hydrogen, deuterium and hydrogen-helium mixtures. The results for helium agree very well with the predictions of the Saumon-Chabrier model. The results for deuterium are consistent with the latest results found in literature. As for the results concerning hydrogen, they have showed the limits of the quartz-based metrology. In fact, by being so little dense we are at the limit of the application range of the quartz relaxation. A mixture of helium-hydrogen (50 %) has been investigated, no sign of phase separation has been found.
Neutral current interactions of low-energy neutrinos in dense neutron matter
Lovato, Alessandro; Gandolfi, Stefano; Losa, Cristina
2013-01-01
We report the results of a calculation of the response of cold neutron matter to neutral-current interactions with low energy neutrinos, carried out using an effective interaction and effective operators consistently derived within the formalism of Correlated Basis Functions. The neutrino mean free path obtained from the calculated responses turns out to be strongly affected by both short and long range correlations, leading to a sizable increase with respect to the prediction of the Fermi gas model. The consistency between the proposed approach and Landau theory of normal Fermi liquids also has been investigated, using a set of Landau parameters obtained from the matrix elements of the effective interaction.
Zero Sound in Neutron Stars with Dense Quark Matter under Strong Magnetic Fields
Kouvaris, Chris
2009-01-01
We study a neutron star with a quark matter core under extremely strong magnetic fields. We investigate the possibility of an Urca process as a mechanism for the cooling of such a star. We found that apart from very particular cases, the Urca process cannot occur. We also study the stability of zero sound modes under the same conditions. We derive limits for the coupling constant of an effective theory, in order the zero sound to be undamped. We show that zero sound modes can help kinematically to facilitate a cooling process.
Energy Technology Data Exchange (ETDEWEB)
Santini, Elvira
2008-02-15
The vector meson spectral functions are calculated to the first order in the nuclear matter density assuming the dominant contribution comes from the couplings of the vector mesons to nucleons and nucleon resonances. An attempt is made to reproduce the HADES dilepton production data with the in-medium spectral functions of the vector mesons using the Relativistic Quantum Molecular Dynamics (RQMD) transport model developed earlier for modelling heavy-ion collisions. The results are sensitive to the in-medium broadening of nucleon resonances. A generally good agreement with the HADES data is achieved for selfconsistent treatment of the nucleon resonance broadening and the vector meson spectral functions. (orig.)
Critical temperatures for superconducting quark matter existence in dense stellar cores
Energy Technology Data Exchange (ETDEWEB)
Horvath, J.E. (Inst. Astronomico e Geofisico, Univ. de Sao Paulo, Av. M. Stefano 4200 (04301) Sao Paulo (BR)); Benvenuto, O.G. (Facultad de Ciencias Astronomicas y Geofisicas UNLP, Paseo del Bosque S/N (1900) La Plata (AR)); Vucetich, H. (Dept. di Fisica UNLP, Calle 49 y 115, C.C. 65, (1900) La Plata (AR))
1992-04-10
If quark matter is actually a component of compact stars it can probably develop a superconducting phase as a result of QCD interactions. This effect may be harmless for (or dramatically affect) the properties of the star, depending on the actual value of the strong coupling constant {alpha}{sub c}. Explicit expressions for the critical temperature T{sub c} are derived by using some recent results on the long-range behavior of the gluon propagators. In this paper the consequences for the cooling histories of compact stars and possible trends are briefly discussed.
Heavy quarkonium moving in a hot and dense deconfined nuclear matter
Thakur, Lata; Mishra, Hiranmaya
2016-01-01
We study the behavior of the complex potential between a heavy quark and its anti-quark, which are in relative motion with respect to a hot and dense medium. The heavy quark-antiquark complex potential is obtained by correcting both the Coulombic and the linear terms in the Cornell potential through a dielectric function estimated within real-time formalism using the hard thermal loop (HTL) approximation. We show the variation of both the real and the imaginary parts of the potential for different values of velocities when the bound state ($ Q\\bar{Q}$ pair) is aligned in the direction parallel as well as perpendicular to the relative velocity of the $ Q\\bar{Q}$ pair with thermal medium. With increase of the relative velocity the screening of the real part of potential becomes weaker at short distances and stronger at large distances for the parallel case. However, for the perpendicular case, the potential decreases with increase in velocity at all the distances which results in the larger screening of the pot...
Constraining the nuclear matter equation of state around twice saturation density
Directory of Open Access Journals (Sweden)
Leifels Y.
2015-01-01
Full Text Available Using data on elliptic flow measured by the FOPI collaboration we extract constraints for the equation of state (EOS of symmetric nuclear matter with the help of the microscopic transport code IQMD. Best agreement between data and calculations is obtained with a ’soft’ equation of state including a momentum dependent interaction. From the model it can be deduced that the characteristic density related to the observed flow signal is around twice saturation density and that both compression within the fireball and the presence of the surrounding spectator matter is necessary for the development of the signal and its sensitivity to the nuclear equation of state.
Ovanesyan, Grigory
2011-01-01
Two effects, jet broadening and gluon bremsstrahlung induced by the propagation of a highly energetic quark in dense QCD matter, are reconsidered from effective theory point of view. We modify the standard Soft Collinear Effective Theory (SCET) Lagrangian to include Glauber modes, which are needed to implement the interactions between the medium and the collinear fields. We derive the Feynman rules for this Lagrangian and show that it is invariant under soft and collinear gauge transformations. We find that the newly constructed theory SCET$_{\\rm G}$ recovers exactly the general result for the transverse momentum broadening of jets. In the limit where the radiated gluons are significantly less energetic than the parent quark, we obtain a jet energy-loss kernel identical to the one discussed in the reaction operator approach to parton propagation in matter. In the framework of SCET$_{\\rm G}$ we present results for the fully-differential bremsstrahlung spectrum for both the incoherent and the Landau-Pomeranchun...
Wu, D; Yu, W; Fritzsche, S
2016-01-01
A Monte-Carlo approach to proton stopping in warm dense matter is implemented into an existing particle-in-cell code. The model is based on multiple binary-collisions among electron-electron, electron-ion and ion-ion, taking into account contributions from both free and bound electrons, and allows to calculate particle stopping in much more natural manner. At low temperature limit, when ``all'' electron are bounded at the nucleus, the stopping power converges to the predictions of Bethe-Bloch theory, which shows good consistency with data provided by the NIST. With the rising of temperatures, more and more bound electron are ionized, thus giving rise to an increased stopping power to cold matter, which is consistent with the report of a recently experimental measurement [Phys. Rev. Lett. 114, 215002 (2015)]. When temperature is further increased, with ionizations reaching the maximum, lowered stopping power is observed, which is due to the suppression of collision frequency between projected proton beam and h...
The role of gauge fields in cold and dense quark matter
Energy Technology Data Exchange (ETDEWEB)
Noronha, J.
2007-07-01
In this thesis we investigate the role played by gauge fields in providing new observable signatures that can attest to the presence of color superconductivity in neutron stars. We show that thermal gluon fluctuations in color-flavor locked superconductors can substantially increase their critical temperature and also change the order of the transition, which becomes a strong first-order phase transition. Moreover, we explore the effects of strong magnetic fields on the properties of color-flavor locked superconducting matter. We find that both the energy gaps as well as the magnetization are oscillating functions of the magnetic field. Also, it is shown that the magnetization can be so strong that homogeneous quark matter becomes metastable for a range of parameters. This points towards the existence of magnetic domains or other types of magnetic inhomogeneities in the hypothesized quark cores of magnetars. Obviously, our results only apply if the strong magnetic fields observed on the surface of magnetars can be transmitted to their inner core. This can occur if the superconducting protons expected to exist in the outer core form a type-II superconductor. However, it has been argued that the observed long periodic oscillations in isolated pulsars can only be explained if the outer core is a type-I superconductor rather than type-II. We show that this is not the only solution for the precession puzzle by demonstrating that the long-term variation in the spin of PSR 1828-11 can be explained in terms of Tkachenko oscillations within superfluid shells. (orig.)
Heavy vector and axial-vector mesons in hot and dense asymmetric strange hadronic matter
Kumar, Arvind; Chhabra, Rahul
2015-09-01
We calculate the effects of finite density and temperature of isospin asymmetric strange hadronic matter, for different strangeness fractions, on the in-medium properties of vector (D*,Ds*,B*,Bs*) and axial-vector (D1,D1 s,B1,B1 s) mesons, using the chiral hadronic SU(3) model and QCD sum rules. We focus on the evaluation of in-medium mass-shift and shift in decay constant of above vector and axial-vector mesons. In the quantum chromodynamics sum rule approach, the properties, e.g., the masses and decay constants of vector and axial-vector mesons are written in terms of quark and gluon condensates. These quark and gluon condensates are evaluated in the present work within the chiral SU(3) model, through the medium modification of scalar-isoscalar fields σ and ζ , the scalar-isovector field δ , and the scalar dilaton field χ , in the strange hadronic medium which includes both nucleons as well as hyperons. As we shall see in detail, the masses and decay constants of heavy vector and axial-vector mesons are affected significantly from isospin asymmetry and the strangeness fraction of the medium, and these modifications may influence the experimental observables produced in heavy-ion collision experiments. The results of present investigations of in-medium properties of vector and axial-vector mesons at finite density and temperature of strange hadronic medium may be helpful for understanding the experimental data from heavy-ion collision experiments in particular for the compressed baryonic matter (CBM) experiment of the FAIR facility at GSI, Germany.
Freire, Paulo C; Lattimer, James; Stairs, Ingrid; Arzoumanian, Zaven; Cordes, James; Deneva, Julia
2009-01-01
More than four decades after the discovery of pulsars, the composition of matter at their cores is still a mystery. This white paper summarizes how recent high-precision measurements of millisecond pulsar masses have introduced new experimental constraints on the properties of super-dense matter, and how continued timing of intriguing new objects, coupled with radio telescope surveys to discover more pulsars, might introduce significantly more stringent constraints.
Calculation of thermal conductivity coefficients of electrons in magnetized dense matter
Bisnovatyi-Kogan, G S
2016-01-01
The solution of Boltzmann equation for plasma in magnetic field, with arbitrarily degenerate electrons and non-degenerate nuclei, is obtained by Chapman-Enskog method. Functions, generalizing Sonin polynomials are used for obtaining an approximate solution. Fully ionized plasma is considered. The tensor of the heat conductivity coefficients in non-quantized magnetic field is calculated. For non-degenerate and strongly degenerate plasma the asymptotic analytic formulas are obtained, which are compared with results of previous authors. The Lorentz approximation, with neglecting of electron-electron encounters, is asymptotically exact for strongly degenerate plasma. For non-degenerate plasma the solution at 3-function approximation for Lorentz gas deviate from the exact solution for about 2.2\\%, at zero magnetic field. We obtain the solution for the heat conductivity tensor for the case of non-degenerate electrons, in presence of a magnetic field, in three polynomial approximation with account of electron-electr...
Chiral Restoration and the Scalar and Vector Correlations in Hot and Dense Matter
Kunihiro, T
2003-01-01
First, it is pointed out that hadron/nuclear physics based on QCD should be regarded as ``condensed matter physics'' of the QCD vacuum. We indicate that phase shift analyses which respect chiral symmetry (ChS), analyticity and crossing symmetry of the scattering amplitude show the $sigma$ meson pole in the s-channel in the low mass region as well as the $rho$ meson pole in the $t$-channel in the pipi scattering in the scalar channel. We review recent developments in exploring possible precursory phenomena of partial restoration of chis in nuclear medium by examining the spectral function in the scalar and the vector channels. We emphasize that the wave function renormalization of the pion in the medium plays an essential role to induce the decrease of the pion decay constant as the order parameter of chiral transition. An emphasis is also put on the importance to examine the scalar and vector channels simultaneously for exploring the possible restoration of chiral symmetry.
Indications for a critical end point in the phase diagram for hot and dense nuclear matter.
Lacey, Roy A
2015-04-10
Excitation functions for the Gaussian emission source radii difference (R_{out}^{2}-R_{side}^{2}) obtained from two-pion interferometry measurements in Au+Au (sqrt[s_{NN}]=7.7-200 GeV) and Pb+Pb (sqrt[s_{NN}]=2.76 TeV) collisions are studied for a broad range of collision centralities. The observed nonmonotonic excitation functions validate the finite-size scaling patterns expected for the deconfinement phase transition and the critical end point (CEP), in the temperature versus baryon chemical potential (T,μ_{B}) plane of the nuclear matter phase diagram. A finite-size scaling (FSS) analysis of these data suggests a second order phase transition with the estimates T^{cep}∼165 MeV and μ_{B}^{cep}∼95 MeV for the location of the critical end point. The critical exponents (ν≈0.66 and γ≈1.2) extracted via the same FSS analysis place this CEP in the 3D Ising model universality class.
Ma, Yong-Liang; Harada, Masayasu; Lee, Hyun Kyu; Oh, Yongseok; Park, Byung-Yoon; Rho, Mannque
2014-08-01
We find that, when the dilaton is implemented as a (pseudo-)Nambu-Goldstone boson using a conformal compensator or "conformon" in a hidden gauge symmetric Lagrangian written to O(p4) from which baryons arise as solitons, namely, skyrmions, the vector manifestation and chiral symmetry restoration at high density predicted in hidden local symmetry theory—which is consistent with Brown-Rho scaling—are lost or sent to infinite density. It is shown that they can be restored if in medium the behavior of the ω field is taken to deviate from that of the ρ meson in such a way that the flavor U(2) symmetry is strongly broken at increasing density. The hitherto unexposed crucial role of the ω meson in the structure of elementary baryon and multibaryon systems is uncovered in this work. In the state of half-skyrmions to which the skyrmions transform at a density n1/2≳n0 (where n0 is the normal nuclear matter density), characterized by the vanishing (space averaged) quark condensate but nonzero pion decay constant, the nucleon mass remains more or less constant at a value ≳60% of the vacuum value, indicating a large component of the nucleon mass that is not associated with the spontaneous breaking of chiral symmetry. We discuss its connection to the chiral-invariant mass m0 that figures in the parity-doublet baryon model.
Indications for a critical point in the phase diagram for hot and dense nuclear matter
Lacey, Roy A.
2016-12-01
Two-pion interferometry measurements are studied for a broad range of collision centralities in Au+Au (√{sNN} = 7.7- 200 GeV) and Pb+Pb (√{sNN} = 2.76 TeV) collisions. They indicate non-monotonic excitation functions for the Gaussian emission source radii difference (Rout -Rside), suggestive of reaction trajectories which spend a fair amount of time near a soft point in the equation of state (EOS) that coincides with the critical end point (CEP). A Finite-Size Scaling (FSS) analysis of these excitation functions, provides further validation tests for the CEP. It also indicates a second order phase transition at the CEP, and the values Tcep ∼ 165 MeV and μBcep ∼ 95 MeV for its location in the (T ,μB)-plane of the phase diagram. The static critical exponents (ν ≈ 0.66 and γ ≈ 1.2) extracted via the same FSS analysis, place this CEP in the 3D Ising model (static) universality class. A Dynamic Finite-Size Scaling analysis of the excitation functions, gives the estimate z ∼ 0.87 for the dynamic critical exponent, suggesting that the associated critical expansion dynamics is dominated by the hydrodynamic sound mode.
Properties of hot and dense matter created in relativistic heavy ion collisions
Energy Technology Data Exchange (ETDEWEB)
Arsene, Ionut Cristian
2009-07-01
In this thesis we tried to characterize a few aspects of the rich field of relativistic heavy ion collisions at intermediate and high energies. In chapter 2 we used two different microscopic string models, UrQMD and QGSM, to study the formation and evolution of the locally equilibrated matter in the central zone of heavy ion collisions at energies spanning from sq root sNN approx 4 GeV up to 17.3 GeV. The calculations were performed both in the cubic central cell of fixed volume V = 5 centre dot 5 centre dot 5 fm3 and for the instantly expanding volume of homogeneous energy density. To decide whether or not equilibrium is reached we used a traditional approach based on the fulfillment of the conditions of kinetic, thermal and chemical equilibrium. Both models favor the formation of equilibrated matter for a period of about 10 fm/c in which the matter expands isentropically with constant entropy per baryon. The square of the speed of sound c{sub s}2 has been found to vary in UrQMD from 0.13 at AGS to 0.15 at SPS energies and in QGSM from 0.11 at AGS to 0.15 at SPS. In both models the rise in c{sub s}2 slows down at sq rootsNN approx 9 GeV. Chapter 3 describes the HYDJET++ model as a superposition of the soft, hydrotype state and the hard state resulting from multi-parton fragmentation. Both states are treated independently. The hard part is an NN collision generator called PYQUEN which modifies the 'standard' jet event obtained with the PYTHIA generator and includes radiative and collisional energy loss for partons. Initial state effects like shadowing are included also. The soft part is the thermal hadronic state generated on the chemical and thermal freeze-out hypersurfaces obtained from the parametrization of relativistic hydrodynamics. We found that this model gives a good description of soft observables at top RHIC energy, like the p{sub T} spectrum, elliptic flow and HBT correlations. The hard part of the model describes well the high-p{sub T
Properties of hot and dense matter created in relativistic heavy ion collisions
Energy Technology Data Exchange (ETDEWEB)
Arsene, Ionut Cristian
2009-07-01
In this thesis we tried to characterize a few aspects of the rich field of relativistic heavy ion collisions at intermediate and high energies. In chapter 2 we used two different microscopic string models, UrQMD and QGSM, to study the formation and evolution of the locally equilibrated matter in the central zone of heavy ion collisions at energies spanning from sq root sNN approx 4 GeV up to 17.3 GeV. The calculations were performed both in the cubic central cell of fixed volume V = 5 centre dot 5 centre dot 5 fm3 and for the instantly expanding volume of homogeneous energy density. To decide whether or not equilibrium is reached we used a traditional approach based on the fulfillment of the conditions of kinetic, thermal and chemical equilibrium. Both models favor the formation of equilibrated matter for a period of about 10 fm/c in which the matter expands isentropically with constant entropy per baryon. The square of the speed of sound c{sub s}2 has been found to vary in UrQMD from 0.13 at AGS to 0.15 at SPS energies and in QGSM from 0.11 at AGS to 0.15 at SPS. In both models the rise in c{sub s}2 slows down at sq rootsNN approx 9 GeV. Chapter 3 describes the HYDJET++ model as a superposition of the soft, hydrotype state and the hard state resulting from multi-parton fragmentation. Both states are treated independently. The hard part is an NN collision generator called PYQUEN which modifies the 'standard' jet event obtained with the PYTHIA generator and includes radiative and collisional energy loss for partons. Initial state effects like shadowing are included also. The soft part is the thermal hadronic state generated on the chemical and thermal freeze-out hypersurfaces obtained from the parametrization of relativistic hydrodynamics. We found that this model gives a good description of soft observables at top RHIC energy, like the p{sub T} spectrum, elliptic flow and HBT correlations. The hard part of the model describes well the high-p{sub T
Energy Technology Data Exchange (ETDEWEB)
Schade, Henry
2010-09-15
Strange particles play an important role as probes of relativistic heavy-ion collisions where hot and dense matter is studied. The focus of this thesis is on the production of strange particles within a transport model of Boltzmann-Uehling-Uhlenbeck (BUU) type. Current data of the HADES Collaboration concerning K{sup {+-}} and {phi} spectra provide the appropriate experimental framework. Moreover, the double-strange hyperon {xi}{sup -} is analyzed below the free NN production threshold. Hadron multiplicities, transversemomentum and rapidity spectra are compared with recent experimental data. Further important issues are in-medium mass shifts, the nuclear equation of state as well as the mean field of nucleons. Besides the study of AA collisions a comparison with recent ANKE data regarding the {phi} yield in pA collisions is done. Transparency ratios are determined and primarily investigated for absorption of {phi} mesons by means of the BUU transport code. Thereby, secondary {phi} production channels, isospin asymmetry and detector acceptance are important issues. A systematic analysis is presented for different system sizes. The momentum integrated Boltzmann equations describe dense nuclear matter on a hadronic level appearing in the Big Bang as well as in little bangs, in the context of kinetic off-equilibrium dynamics. This theory is applied to antiprotons and numerically calculated under consideration of various expansion models. Here, the evolution of proton- and antiproton densities till freeze-out is analyzed for ultra-relativistic heavy-ion collisions within a hadrochemic resonance gas model acting as a possible ansatz for solving the ''antiproton puzzle''. Furthermore, baryonic matter and antimatter is investigated in the early universe and the adiabatic path of cosmic matter is sketched in the QCD phase diagram. (orig.)
Equation of State of Nuclear Matter in Chiral σ-ω Model
Institute of Scientific and Technical Information of China (English)
CHEN Wei; DONG Dong-Qiao; WEN De-Hua; LIU Guo-Tao; LIU Liang-Gang
2004-01-01
The equation of state of nuclear matter is studied in the 1-loop approximation of chiral linear σ-ω model.By introducing the density-dependent coupling constants, the problem of tachyon pole in the chiral σ-ω model is resolved.The 1-loop contributions ofσ and π mesons to the nucleon's binding energy are included, while the empirical properties of nuclear matter such as saturation density, binding energy, and incompressibility are well reproduced.
Schenkel, T.; Persaud, A.; Gua, H.; Seidl, P. A.; Waldron, W. L.; Gilson, E. P.; Kaganovich, I. D.; Davidson, R. C.; Friedman, A.; Barnard, J. J.; Minior, A. M.
2014-10-01
We report results from the 2nd generation Neutralized Drift Compression Experiment at Berkeley Lab. NDCX-II is a pulsed, linear induction accelerator designed to drive thin foils to warm dense matter (WDM) states with peak temperatures of ~ 1 eV using intense, short pulses of 1.2 MeV lithium ions. Tunability of the ion beam enables pump-probe studies of radiation effects in solids as a function of excitation density, from isolated collision cascades to the onset of phase-transitions and WDM. Ion channeling is an in situ diagnostic of damage evolution during ion pulses with a sensitivity of channeled ions tracks lattice disorder evolution with a resolution of ~ 1 ns using fast current measurements. We will discuss pump-probe experiments with pulsed ion beams and the development of diagnostics for WDM and multi-scale (ms to fs) access to the materials physics of collision cascades e.g. in fusion reactor materials. Work performed under auspices of the US DOE under Contract No. DE-AC02-05CH11231.
Ao, T.; Harding, E. C.; Bailey, J. E.; Lemke, R. W.; Desjarlais, M. P.; Hansen, S. B.; Smith, I. C.; Geissel, M.; Maurer, A.; Reneker, J.; Romero, D.; Sinars, D. B.; Rochau, G. A.; Benage, J. F.
2016-03-01
Experiments on the Sandia Z pulsed-power accelerator have demonstrated the ability to produce warm dense matter (WDM) states with unprecedented uniformity, duration, and size, which are ideal for investigations of fundamental WDM properties. For the first time, space-resolved x-ray Thomson scattering (XRTS) spectra from shocked carbon foams were recorded on Z. The large (>20 MA) electrical current produced by Z was used to launch Al flyer plates up to 25 km/s. The impact of the flyer plate on a CH2 foam target produced a shocked state with an estimated pressure of 0.75 Mbar, density of 0.52 g/cm3, and temperature of 4.3 eV. Both unshocked and shocked portions of the foam target were probed with 6.2 keV x-rays produced by focusing the Z-Beamlet laser onto a nearby Mn foil. The data are composed of three spatially distinct spectra that were simultaneously captured with a single spectrometer with high spectral (4.8 eV) and spatial (190 μm) resolutions. Detailed spectral information from three target locations is provided simultaneously: the incident x-ray source, the scattered signal from unshocked foam, and the scattered signal from shocked foam.
Kapila, Vivek; Deymier, Pierre; Runge, Keith
2012-02-01
Warm dense matter (WDM) can be characterized by electron temperatures of a few eV and densities an order of magnitude or more beyond ambient. This regime currently lacks any adequate highly developed class of simulation methods. Recent developments in orbital-free Density Functional Theory (ofDFT) aim to provide such a simulation method, however, little benchmark information is available on temperature and pressure dependence of simple but realistic models in WDM regime. The present work aims to fill this critical gap using the restricted path-integral molecular dynamics (rPIMD) method. Within the discrete path integral representation, electrons are described as harmonic necklaces, while, quantum exchange takes the form of cross linking between electron necklaces. The fermion sign problem is addressed by restricting the density matrix to positive values and a molecular dynamics algorithm is employed to sample phase space. Here, we focus on the behavior of strongly correlated electron plasmas under WDM conditions. We compute the kinetic and potential energies and compare them to those obtained with the ofDFT method.
Wu, D.; He, X. T.; Yu, W.; Fritzsche, S.
2017-02-01
A Monte Carlo approach to proton stopping in warm dense matter is implemented into an existing particle-in-cell code. This approach is based on multiple electron-electron, electron-ion, and ion-ion binary collision and accounts for both the free and the bound electrons in the plasmas. This approach enables one to calculate the stopping of particles in a more natural manner than existing theoretical treatment. In the low-temperature limit, when "all" electrons are bound to the nucleus, the stopping power coincides with the predictions from the Bethe-Bloch formula and is consistent with the data from the National Institute of Standard and Technology database. At higher temperatures, some of the bound electrons are ionized, and this increases the stopping power in the plasmas, as demonstrated by A. B. Zylstra et al. [Phys. Rev. Lett. 114, 215002 (2015)], 10.1103/PhysRevLett.114.215002. At even higher temperatures, the degree of ionization reaches a maximum and thus decreases the stopping power due to the suppression of collision frequency between projected proton beam and hot plasmas in the target.
Clérouin, Jean; Desbiens, Nicolas; Dubois, Vincent; Arnault, Philippe
2016-12-01
We show that the Bayesian inference of recently measured x-ray diffraction spectra from laser-shocked aluminum [L. B. Fletcher et al., Nat. Photon. 9, 274 (2015), 10.1038/nphoton.2015.41] with the one-component-plasma (OCP) model performs remarkably well at estimating the ionic density and temperature. This statistical approach requires many evaluations of the OCP static structure factor, which were done using a recently derived analytic fit. The atomic form factor is approximated by an exponential function in the diffraction window of the first peak. The electronic temperature is then estimated from a comparison of this approximated form factor with the electronic structure of an average atom model. Out-of-equilibrium states, with electrons hotter than ions, are diagnosed for the spectra obtained early after the pump, whereas at a late time delay the plasma is at thermal equilibrium. Apart from the present findings, this OCP-based modeling of warm dense matter has an important role to play in the interpretation of x-ray Thomson scattering measurements currently performed at large laser facilities.
Energy Technology Data Exchange (ETDEWEB)
Ji, Q., E-mail: qji@lbl.gov; Seidl, P. A.; Waldron, W. L.; Takakuwa, J. H.; Persaud, A.; Schenkel, T. [Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Friedman, A.; Grote, D. P.; Barnard, J. J. [Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Lawrence Livermore National Laboratory, Livermore, California 94550 (United States)
2016-02-15
The neutralized drift compression experiment was designed and commissioned as a pulsed, linear induction accelerator to drive thin targets to warm dense matter (WDM) states with peak temperatures of ∼1 eV using intense, short pulses (∼1 ns) of 1.2 MeV lithium ions. At that kinetic energy, heating a thin target foil near the Bragg peak energy using He{sup +} ions leads to more uniform energy deposition of the target material than Li{sup +} ions. Experiments show that a higher current density of helium ions can be delivered from a plasma source compared to Li{sup +} ions from a hot plate type ion source. He{sup +} beam pulses as high as 200 mA at the peak and 4 μs long were measured from a multi-aperture 7-cm-diameter emission area. Within ±5% variation, the uniform beam area is approximately 6 cm across. The accelerated and compressed pulsed ion beams can be used for materials studies and isochoric heating of target materials for high energy density physics experiments and WDM studies.
Equation of state for isospin asymmetric nuclear matter using Lane potential
Basu, D N; Samanta, C
2006-01-01
A variational method of obtaining equation of state (EOS) for symmetric nuclear matter from a density dependent M3Y interaction supplemented by a zero-range potential is described. The energy per nucleon is minimized to obtain the ground state of symmetric nuclear matter. The saturation energy per nucleon used for nuclear matter calculations is determined from the co-efficient of the volume term of Bethe-Weizs\\"acker mass formula which is evaluated by fitting the recent experimental and estimated atomic mass excesses from Audi-Wapstra-Thibault atomic mass table by minimizing the mean square deviation. The constants of density dependence of the effective interaction are obtained by reproducing the saturation energy per nucleon and the saturation density of spin and isospin symmetric cold infinite nuclear matter. The EOS of symmetric nuclear matter, thus obtained, provide reasonably good estimate of nuclear incompressibility. Once the consants of density dependence are determined, EOS for asymmetric nuclear mat...
Static black holes in equilibrium with matter: nonlinear equation of state
Zaslavskii, Oleg B
2010-01-01
We consider a spherically symmetric black hole in equilibrium with surrounding classical matter that is characterized by a nonlinear dependence of the radial pressure p_{r} on the density {\\rho}. We examine under which requirements such an equilibrium is possible. It is shown that if the radial and transverse pressures are equal (Pascal perfect fluid), equation of state should be approximately linear near the horizon. The corresponding restriction on ((dp_{r})/(d{\\rho})) is a direct generalization of the result, previously found for an exactly linear equation of state. In the anisotropic case there is no restriction on equation of state but the horizon should be simple (nondegenerate).
An equation of state for dark matter in the Milky Way
Fronsdal, Christian
2012-01-01
Dark matter, believed to be present in many galaxies, is interpreted as a hydrodynamical system in interaction with the gravitational field and with nothing else. The gravitational field of our Galaxy can be inferred from observation of orbital velocities of the visible stars, in a first approximation in which the field is taken to be due to the distribution of dark matter only. An equation of state is determined by the gravitational field via the equations of motion. To arrive at an estimate of the distribution of dark matter in our galaxy, and simultaneously learn something about the gravitational field in the inner regions, the following strategy was adopted: 1. The observed rotation curves suggest an expression for the newtonian potential, valid in the outer region. 2. The assumption of a quasi stationary, spherically symmetric distribution of dark matter then leads to a unique equation of state. 3. This equation of state is assumed to be valid all the way to the center (though of course the newtonian app...
The Einstein-Klein-Gordon Equations, Wave Dark Matter, and the Tully-Fisher Relation
Goetz, Andrew S
2015-01-01
We examine the Einstein equation coupled to the Klein-Gordon equation for a complex-valued scalar field. These two equations together are known as the Einstein-Klein-Gordon system. In the low-field, non-relativistic limit, the Einstein-Klein-Gordon system reduces to the Poisson-Schr\\"odinger system. We describe the simplest solutions of these systems in spherical symmetry, the spherically symmetric static states, and some scaling properties they obey. We also describe some approximate analytic solutions for these states. The EKG system underlies a theory of wave dark matter, also known as scalar field dark matter (SFDM), boson star dark matter, and Bose-Einstein condensate (BEC) dark matter. We discuss a possible connection between the theory of wave dark matter and the baryonic Tully-Fisher relation, which is a scaling relation observed to hold for disk galaxies in the universe across many decades in mass. We show how fixing boundary conditions at the edge of the spherically symmetric static states implies T...
Thermodynamics of the symmetry energy and the equation of state of isospin-asymmetric nuclear matter
Energy Technology Data Exchange (ETDEWEB)
Wellenhofer, Corbinian; Kaiser, Norbert [Physik Department, Technische Universitaet Muenchen (Germany); Holt, Jeremy W. [Department of Physics, University of Washington, Seattle (United States); Weise, Wolfram [Physik Department, Technische Universitaet Muenchen (Germany); ECT, Villa Tambosi, Trento (Italy)
2015-07-01
Knowledge of the thermodynamic properties of the nuclear symmetry energy is essential for the study of heavy-ion collisions and a multitude of astrophysical phenomena. In this work, we investigate the density and temperature dependence of the symmetry energy using many-body perturbation theory with microscopic chiral nuclear forces. The calculational methods and nuclear force models are benchmarked against empirical constraints for isospin-symmetric nuclear matter and the virial expansion of low-density neutron matter. It is found that whereas the symmetry free energy and entropy both increase uniformly with temperature, the symmetry energy exhibits almost universal behavior. Moreover, we show results for the equation of state of isospin-asymmetric nuclear matter, obtained from the parabolic approximation. The different thermodynamic instabilities at subsaturation densities are examined, and we construct the equation of state corresponding to an equilibrium liquid-gas phase transition by means of the generalized Maxwell construction for two-component fluids.
Reciprocity invariance of the Friedmann equation, Missing Matter and double Dark Energy
Vazquez, J Alberto; Lasenby, A N; Ibison, M; Bridges, M
2012-01-01
The current concordance model of cosmology is dominated by two mysterious ingredients: dark matter and dark energy. In this paper, we explore the possibility that, in fact, there exist two dark-energy components: the cosmological constant \\Lambda, with equation-of-state parameter w_\\Lambda=-1, and a `missing matter' component X with w_X=-2/3, which we introduce here to allow the Friedmann equation written in terms of conformal time \\eta to be form-invariant under the reciprocity transformation a(\\eta)\\to 1/a(\\eta) of the scale factor. Using recent cosmological observations, we constrain the present-day energy density of missing matter to be \\Omega_{X,0}=-0.11\\pm 0.14. This is consistent with the standard LCDM model, but constraints on the energy densities of all the components are considerably broadened by the introduction of missing matter; significant relative probability exists even for \\Omega_{X,0}\\sim 0.2, and so the presence of a missing matter component cannot be ruled out. Nonetheless, a Bayesian mode...
-matrix approach to the equation of state of dilute nuclear matter
Indian Academy of Sciences (India)
J N De; S K Samaddar; B K Agrawal
2014-04-01
Based on the general analysis of the grand canonical partition function in the -matrix framework, a method is presented to calculate the equation of state of dilute warm nuclear matter. The result is a model-independent virial series for the pressure and density that systematically includes contributions from all the ground and excited states of all the stable nuclear species and their scattering channels. The multiplicity distribution of these species to keep the matter in statistical equilibrium is found out and then the pressure, incompressibility and the symmetry energy of the system are evaluated. The calculated symmetry energy coefficients are found to be in fair agreement with the recent experimental data.
Energy Technology Data Exchange (ETDEWEB)
Chernov, S. V., E-mail: chernov@lpi.ru [Russian Academy of Sciences, Astrospace Center, Lebedev Physical Institute (Russian Federation)
2015-06-15
We consider the magnetohydrodynamic theory of spherically symmetric accretion of a perfect fluid onto a Schwarzschild black hole with an ultrahard equation of state, p = μ ∼ ρ{sup 2}, where p is the pressure, μ is the total energy density, and ρ is the fluid density. An approximate analytical solution is written out. We show that one critical sonic surface that coincides with the black hole event horizon is formed instead of two critical surfaces (fast and slow magnetosonic surfaces) for a degenerate ultrahard equation of state of matter.
Thermodynamics and equations of state of matter from ideal gas to quark-gluon plasma
Fortov, Vladimir
2016-01-01
The monograph presents a comparative analysis of different thermodynamic models of the equations of state. The basic ideological premises of the theoretical methods and the experiment are considered. The principal attention is on the description of states that are of greatest interest for the physics of high energy concentrations which are either already attained or can be reached in the near future in controlled terrestrial conditions, or are realized in astrophysical objects at different stages of their evolution. Ultra-extreme astrophysical and nuclear-physical applications are also analyzed where the thermodynamics of matter is affected substantially by relativism, high-power gravitational and magnetic fields, thermal radiation, transformation of nuclear particles, nucleon neutronization, and quark deconfinement. The book is intended for a wide range of specialists engaged in the study of the equations of state of matter and high energy density physics, as well as for senior students and postgraduates.
The extended Conformal Einstein field equations with matter: the Einstein-Maxwell field
Lübbe, Christian
2011-01-01
A discussion is given of the conformal Einstein field equations coupled with matter whose energy-momentum tensor is trace-free. These resulting equations are expressed in terms of a generic Weyl connection. The article shows how in the presence of matter it is possible to construct a conformal gauge which allows to know \\emph{a priori} the location of the conformal boundary. In vacuum this gauge reduces to the so-called conformal Gaussian gauge. These ideas are applied to obtain: (i) a new proof of the stability of Einstein-Maxwell de Sitter-like spacetimes; (ii) a proof of the semi-global stability of purely radiative Einstein-Maxwell spacetimes.
Density dependent magnetic field and the equation of state of hyperonic matter
Casali, Rudiney Hoffmann
2013-01-01
We are interested on the effects, caused by strong variable density dependent magnetic fields, on hyperonic matter, its symmetry energy, equations of state and mass-radius relations. The inclusion of the anomalous magnetic moment of the particles involved in a stellar system is performed, and some results are compared with the cases that do not take this correction under consideration. The Lagrangian density used follows the nonlinear Walecka model plus the leptons subjected to an external magnetic field.
Dharma-wardana, M W C
2012-01-01
The pair-interactions U_{ij}(r) determine the thermodynamics and linear transport properties of matter via the pair-distribution functions (PDFs), i.e., g_{ij}(r). Great simplicity is achieved if U_{ij}(r) could be directly used to predict material properties via classical simulations, avoiding many-body wavefunctions. Warm dense matter (WDM) is encountered in quasi-equilibria where the electron temperature $T_e$ differs from the ion temperature T_i, as in laser-heated or in shock-compressed matter. The electron PDFs g_{ee}(r) as perturbed by the ions are used to evaluate fully non-local exchange-correlation corrections to the free energy, using Hydrogen as an example. Electron-ion potentials for ions with a bound core are discussed with Al and Si as examples, for WDM with T_e \
Energy Technology Data Exchange (ETDEWEB)
More, R.M.
1986-01-01
Recent experiments with high-power pulsed lasers have strongly encouraged the development of improved theoretical understanding of highly charged ions in a dense plasma environment. This work examines the theory of dense plasmas with emphasis on general rules which govern matter at extreme high temperature and density. 106 refs., 23 figs.
Hou, Yong; Fu, Yongsheng; Bredow, Richard; Kang, Dongdong; Redmer, Ronald; Yuan, Jianmin
2017-03-01
The average-atom model combined with the hyper-netted chain approximation is an efficient tool for electronic and ionic structure calculations for warm dense matter. Here we generalize this method in order to describe non-equilibrium states with different electron and ion temperature as produced in laser-matter interactions on ultra-short time scales. In particular, the electron-ion and ion-ion correlation effects are considered when calculating the electron structure. We derive an effective ion-ion pair-potential using the electron densities in the framework of temperature-depended density functional theory. Using this ion-ion potential we perform molecular dynamics simulations in order to determine the ionic transport properties such as the ionic diffusion coefficient and the shear viscosity through the ionic velocity autocorrelation functions.
Constraining a dark matter and dark energy interaction scenario with a dynamical equation of state
Yang, Weiqiang; Banerjee, Narayan; Pan, Supriya
2017-06-01
In this work we have used the recent cosmic chronometer data along with the latest estimation of the local Hubble parameter value, H0 at 2.4% precision as well as the standard dark energy probes, such as the Supernovae Type Ia, baryon acoustic oscillation distance measurements, and cosmic microwave background measurements (PlanckTT+ lowP ) to constrain a dark energy model where the dark energy is allowed to interact with the dark matter. A general equation of state of dark energy parametrized by a dimensionless parameter "β " is utilized. From our analysis, we find that the interaction is compatible with zero within the 1 σ confidence limit. We also show that the same evolution history can be reproduced by a small pressure of the dark matter.
Three-body Effect on Equation of State of Spin-polarized Nuclear Matter
Institute of Scientific and Technical Information of China (English)
ZuoWei
2003-01-01
The equation of state (EOS) of spin-polarized nuclear matter has been investigated within the spin-dependent; Brueckner-Hartree-Fock framework by adopting the realistic nucleon-nucleon interaction supplemented with a microscopic three-body force. The three-body force effects have been studied and stressed with a special attention. The calculated results are given in Fig.1. It is seen that; in the Brueckner-Hartree-Fock framework the predicted energy per particle of spin-polarized nuclear matter versus the neutron and proton spin-polarization parameters fulfills a quadratic law in the whole range of spin-polarization. The related physical quantities such as spin the Landau parameters Go in spin channel and G′0 in spin-isospin channel, have been also calculated.
Integral equation and discontinuous Galerkin methods for the analysis of light-matter interaction
Baczewski, Andrew David
Light-matter interaction is among the most enduring interests of the physical sciences. The understanding and control of this physics is of paramount importance to the design of myriad technologies ranging from stained glass, to molecular sensing and characterization techniques, to quantum computers. The development of complex engineered systems that exploit this physics is predicated at least partially upon in silico design and optimization that properly capture the light-matter coupling. In this thesis, the details of computational frameworks that enable this type of analysis, based upon both Integral Equation and Discontinuous Galerkin formulations will be explored. There will be a primary focus on the development of efficient and accurate software, with results corroborating both. The secondary focus will be on the use of these tools in the analysis of a number of exemplary systems.
Quantum Theory of Conducting Matter Newtonian Equations of Motion for a Bloch Electron
Fujita, Shigeji
2007-01-01
Quantum Theory of Conducting Matter: Newtonian Equations of Motion for a Bloch Electron targets scientists, researchers and graduate-level students focused on experimentation in the fields of physics, chemistry, electrical engineering, and material sciences. It is important that the reader have an understanding of dynamics, quantum mechanics, thermodynamics, statistical mechanics, electromagnetism and solid-state physics. Many worked-out problems are included in the book to aid the reader's comprehension of the subject. The Bloch electron (wave packet) moves by following the Newtonian equation of motion. Under an applied magnetic field B the electron circulates around the field B counterclockwise or clockwise depending on the curvature of the Fermi surface. The signs of the Hall coefficient and the Seebeck coefficient are known to give the sign of the major carrier charge. For alkali metals, both are negative, indicating that the carriers are "electrons." These features arise from the Fermi surface difference...
Strange matter equation of state in the quark mass-density-dependent model
Energy Technology Data Exchange (ETDEWEB)
Benvenuto, O.G. (Facultad de Ciencias Astronomicas y Geofisicas, Universidad Nacional de La Plata, Paseo del Bosque S/N, 1900 La Plata (Argentina)); Lugones, G. (Departamento de Fisica, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, 1900 La Plata (Argentina))
1995-02-15
We study the properties and stability of strange matter at [ital T]=0 in the quark mass-density-dependent model for noninteracting quarks. We found a wide stability window'' for the values of the parameters ([ital C],[ital M][sub [ital s]0]) and the resulting equation of state at low densities is stiffer than that of the MIT bag model. At high densities it tends to the ultrarelativistic behavior expected because of the asymptotic freedom of quarks. The density of zero pressure is near the one predicted by the bag model and [ital not] shifted away as stated before; nevertheless, at these densities the velocity of sound is [approx]50% larger in this model than in the bag model. We have integrated the equations of stellar structure for strange stars with the present equation of state. We found that the mass-radius relation is very much the same as in the bag model, although it extends to more massive objects, due to the stiffening of the equation of state at low densities.
Dali, Sarabjyot S; Sevick-Muraca, Eva M
2012-11-15
Isotropic scattering coefficient measurements were made of monodisperse polystyrene lattices of two different diameters of 144 nm and 223 nm and at volume fractions ranging from 0.15 to 0.22, using frequency domain photon migration measurements at wavelengths of 660, 685, 785 and 828 nm. The isotropic scattering coefficient measurements were shown to be sensitive to the changing ionic strength (0.5-4 mM, NaCl equiv.) of the dispersions exhibiting hindered scattering owing to structure at the lowest ionic strength values. Monte Carlo simulations and numerical solution of the Ornstein Zernike equations were used to compute isotropic scattering coefficients for comparison to measured values. The interaction potential was modeled as a hard sphere Yukawa potential and the Hypernetted Chain closure was used to solve the OZ equation. Effective particle charges were found after renormalization of the bare particle charge and used to predict the isotropic scattering coefficient. The model data were found to follow similar trends as experimental measurements. The refractive index of the particles has found to be an important factor for predicting experimental isotropic scattering coefficient values. Published by Elsevier Inc.
Danel, J-F; Kazandjian, L
2015-01-01
We test two isothermal-isobaric mixing rules, respectively based on excess-pressure and total-pressure equilibration, applied to the equation of state of a dense plasma. While the equation of state is generally known for pure species, that of arbitrary mixtures is not available so that the validation of accurate mixing rules, that implies resorting to first-principles simulations, is very useful. Here we consider the case of a plastic with composition C(2)H(3) and we implement two complementary ab initio approaches adapted to the dense plasma domain: quantum molecular dynamics, limited to low temperature by its computational cost, and orbital-free molecular dynamics, that can be implemented at high temperature. The temperature and density range considered is 1-10 eV and 0.6-10 g/cm(3) for quantum molecular dynamics, and 5-1000 eV and 1-10 g/cm(3) for orbital-free molecular dynamics. Simulations for the full C(2)H(3) mixture are the benchmark against which to assess the mixing rules, and both pressure and internal energy are compared. We find that the mixing rule based on excess-pressure equilibration is overall more accurate than that based on total-pressure equilibration; except for quantum molecular dynamics and a thermodynamic domain characterized by very low or negative excess pressures, it gives pressures which are generally within statistical error or within 1% of the exact ones. Besides, its superiority is amplified in the calculation of a principal Hugoniot.
Danel, J-F; Kazandjian, L; Piron, R
2016-04-01
Of the two approaches of density-functional theory molecular dynamics, quantum molecular dynamics is limited at high temperature by computational cost whereas orbital-free molecular dynamics, based on an approximation of the kinetic electronic free energy, can be implemented in this domain. In the case of deuterium, it is shown how orbital-free molecular dynamics can be regarded as the limit of quantum molecular dynamics at high temperature for the calculation of the equation of state. To this end, accurate quantum molecular dynamics calculations are performed up to 20 eV at mass densities as low as 0.5g/cm^{3} and up to 10 eV at mass densities as low as 0.2g/cm^{3}. As a result, the limitation in temperature so far attributed to quantum molecular dynamics is overcome and an approach combining quantum and orbital-free molecular dynamics is used to construct an equation of state of deuterium. The thermodynamic domain addressed is that of the fluid phase above 1 eV and 0.2g/cm^{3}. Both pressure and internal energy are calculated as functions of temperature and mass density, and various exchange-correlation contributions are compared. The generalized gradient approximation of the exchange-correlation functional, corrected to approximately include the influence of temperature, is retained and the results obtained are compared to other approaches and to experimental shock data; in parts of the thermodynamic domain addressed, these results significantly differ from those obtained in other first-principles investigations which themselves disagree. The equations of state of hydrogen and tritium above 1 eV and above, respectively, 0.1g/cm^{3} and 0.3g/cm^{3}, can be simply obtained by mass density scaling from the results found for deuterium. This ab initio approach allows one to consistently cover a very large domain of temperature on the domain of mass density outlined above.
Quantum-statistical equation-of-state models of dense plasmas: high-pressure Hugoniot shock adiabats
Pain, Jean-Christophe
2007-01-01
We present a detailed comparison of two self-consistent equation-of-state models which differ from their electronic contribution: the atom in a spherical cell and the atom in a jellium of charges. It is shown that both models are well suited for the calculation of Hugoniot shock adiabats in the high pressure range (1 Mbar-10 Gbar), and that the atom-in-a-jellium model provides a better treatment of pressure ionization. Comparisons with experimental data are also presented. Shell effects on shock adiabats are reviewed in the light of these models. They lead to additional features not only in the variations of pressure versus density, but also in the variations of shock velocity versus particle velocity. Moreover, such effects are found to be responsible for enhancement of the electronic specific heat.
Equation of State of Spin-polarized Neutron Matter and Three-body Effect
Institute of Scientific and Technical Information of China (English)
ZuoWei
2003-01-01
Within the spin-dependent Brueckner-Hartree-Fock (BHF) framework, the equation of state of the spinpolarized neutron matter has been investigated by adopting the realistic nucleon-nucleon interaction supplemented with a microscopic three-body force. The three-body force has been turn out to be crucial for reproducing the empirical saturation properties of nuclear matter in a non-relativistic microscopic approach[2] such as BHF. The related physical quantities such as spin-symmetry energy, magnetic susceptibility, have been extracted. The three-body force effects have been studied and discussed with a special attention. It is found that in the whole range of spin-polarization, the cnergy per particle of spin-polarized neutron matter fulfills a quadratic relation versus the spin-polarization parameter. The calculated spin-symmetry energies as a function of densityare shown in Fig.l, where the solid curve is obtained by using the AVis two-body force plus the three-body force and the dashed curve is the result by adopting the pure AVis two-body force.
Tables of Hyperonic Matter Equation of State for Core-Collapse Supernovae
Ishizuka, C; Tsubakihara, K; Sumiyoshi, K; Yamada, S
2008-01-01
We present sets of equation of state (EOS) of nuclear matter including hyperons using an SU_f(3) extended relativistic mean field (RMF) model with a wide coverage of density, temperature, and charge fraction for numerical simulations of core collapse supernovae. Coupling constants of Sigma and Xi hyperons with the sigma meson are determined to fit the hyperon potential depths in nuclear matter, U_Sigma(rho_0) ~ +30 MeV and U_Xi(rho_0) ~ -15 MeV, which are suggested from recent analyses of hyperon production reactions. At low densities, the EOS of uniform matter is connected with the EOS by Shen et al., in which formation of finite nuclei is included in the Thomas-Fermi approximation. In the present EOS, the maximum mass of neutron stars decreases from 2.17 M_sun (Ne mu) to 1.63 M_sun (NYe mu) when hyperons are included. Hyperon effects are found to be small in prompt phase of supernova explosions, since the temperature and density do not reach the region of hyperon mixture, where the hyperon fraction is above...
Average-atom treatment of relaxation time in x-ray Thomson scattering from warm dense matter.
Johnson, W R; Nilsen, J
2016-03-01
The influence of finite relaxation times on Thomson scattering from warm dense plasmas is examined within the framework of the average-atom approximation. Presently most calculations use the collision-free Lindhard dielectric function to evaluate the free-electron contribution to the Thomson cross section. In this work, we use the Mermin dielectric function, which includes relaxation time explicitly. The relaxation time is evaluated by treating the average atom as an impurity in a uniform electron gas and depends critically on the transport cross section. The calculated relaxation rates agree well with values inferred from the Ziman formula for the static conductivity and also with rates inferred from a fit to the frequency-dependent conductivity. Transport cross sections determined by the phase-shift analysis in the average-atom potential are compared with those evaluated in the commonly used Born approximation. The Born approximation converges to the exact cross sections at high energies; however, differences that occur at low energies lead to corresponding differences in relaxation rates. The relative importance of including relaxation time when modeling x-ray Thomson scattering spectra is examined by comparing calculations of the free-electron dynamic structure function for Thomson scattering using Lindhard and Mermin dielectric functions. Applications are given to warm dense Be plasmas, with temperatures ranging from 2 to 32 eV and densities ranging from 2 to 64 g/cc.
Unveiling the equation of state of nuclear matter with binary neutron stars
Energy Technology Data Exchange (ETDEWEB)
Galeazzi, F.; Rezzolla, L. [Frankfurt Univ., Frankfurt am Main (Germany). Inst. for Theoretical Physics
2016-11-01
2015 marked the hundred anniversary of Albert Einstein's lecture at the Prussian Academy of Science in which he introduced, for the first time, the famous field equations which became the core of his theory of general relativity. This masterpiece of 20th century science has proven extremely solid in all its predictions from the precession of the perihelion of Mercury to the observation of gravitational lensing in distant galaxies, to the more mundane time-delay corrections required by the global positioning system. One last piece of the puzzle is although still missing and comprise the direct measurement of the gravitational wave (GW) radiation emitted by any accelerating mass. These ripples in the spacetime fabric are extremely weak even when produced in the most extreme of the conditions as the ones present during the mergers of two black holes or neutron stars. For this reason they have eluded experimental scientists for almost four decades. But things are about to change, last year a new array of advanced gravitational wave detectors, namely advanced LIGO and Virgo came online in late September and they are expected to observe up to 40 events per year involving the mergers of two compact objects. Despite the high sensitivity of this generation of ground base interferometers, it is still necessary to use accurate gravitational waveforms models to extract all the information from the signal produced by the detector. In this project we focus on the merger of two neutron stars which orbit together in a binary system. The nonlinear nature of the Einstein equations coupled with the complex microphysics behind neutron star matter requires the use of sophisticated codes which uses advanced numerical techniques to produce accurate results. By using the GW signals calculated in our numerical simulations we will be able to strongly link the properties of neutron star matter to a precise set of observable frequencies from the detector. This information, together with
Energy Technology Data Exchange (ETDEWEB)
Hansen, S. B., E-mail: sbhanse@sandia.gov, E-mail: anatolyf@hotmail.com [Sandia National Laboratories, Albuquerque, New Mexico 87123 (United States); Colgan, J.; Abdallah, J. [Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Faenov, A. Ya., E-mail: sbhanse@sandia.gov, E-mail: anatolyf@hotmail.com [Joint Institute for High Temperatures, Russian Academy of Sciences, Moscow 125412 (Russian Federation); Quantum Beam Science Directorate, Japan Atomic Energy Agency, Kyoto 619-0215 (Japan); Pikuz, S. A.; Skobelev, I. Yu. [Joint Institute for High Temperatures, Russian Academy of Sciences, Moscow 125412 (Russian Federation); Wagenaars, E.; Culfa, O.; Dance, R. J.; Tallents, G. J.; Rossall, A. K.; Woolsey, N. C. [York Plasma Institute, Department of Physics, University of York, York YO10 5DD (United Kingdom); Booth, N.; Lancaster, K. L. [Central Laser Facility, STFC Rutherford Appleton Laboratory, Didcot OX11 0QX (United Kingdom); Evans, R. G. [Department of Physics, Imperial College, London SW7 2AZ (United Kingdom); Gray, R. J.; McKenna, P. [SUPA, Department of Physics, University of Strathclyde, Glasgow G4 ONG (United Kingdom); Kaempfer, T.; Schulze, K. S. [Helmholtzinstitut Jena, Jena D-07743 (Germany); Uschmann, I. [Helmholtzinstitut Jena, Jena D-07743 (Germany); Institut für Optik und Quantenelektronic, Friedrich-Schiller-Universität Jena, Max-Wien Platz 1, Jena, D-07743 (Germany); and others
2014-03-15
X-ray emission from hollow ions offers new diagnostic opportunities for dense, strongly coupled plasma. We present extended modeling of the x-ray emission spectrum reported by Colgan et al. [Phys. Rev. Lett. 110, 125001 (2013)] based on two collisional-radiative codes: the hybrid-structure Spectroscopic Collisional-Radiative Atomic Model (SCRAM) and the mixed-unresolved transition arrays (MUTA) ATOMIC model. We show that both accuracy and completeness in the modeled energy level structure are critical for reliable diagnostics, investigate how emission changes with different treatments of ionization potential depression, and discuss two approaches to handling the extensive structure required for hollow-ion models with many multiply excited configurations.
A multi-wavelength streak-optical-pyrometer for warm-dense matter experiments at NDCX-I and NDCX-II
Ni, P. A.; Bieniosek, F. M.; Henestroza, E.; Lidia, S. M.
2014-01-01
We report on a multi-wavelength streak-optical-pyrometer (SOP) developed the for warm-dense-matter (WDM) experiments at the existing NDCX-I facility and the NDCX-II facility currently being commissioned at LBNL. The SOP served as the primary temperature diagnostic in the recent NDCX-I experiments, in which an intense K+ beam was used to heat different metal samples into WDM states. The SOP consists of a spectral grating (visible and near-infrared spectral range) and a fast, high-dynamic-range optical streak camera. The instrument is calibrated absolutely with a NIST-traceable tungsten ribbon lamp and can itself be considered as an absolutely calibrated, time-resolving spectrometer. The sample temperature is determined from fitting the recorded thermal spectrum into the Planck formula multiplied by a model of emissivity.
A multi-wavelength streak-optical-pyrometer for warm-dense matter experiments at NDCX-I and NDCX-II
Energy Technology Data Exchange (ETDEWEB)
Ni, P.A., E-mail: pani@lbl.gov; Bieniosek, F.M.; Henestroza, E.; Lidia, S.M.
2014-01-01
We report on a multi-wavelength streak-optical-pyrometer (SOP) developed the for warm-dense-matter (WDM) experiments at the existing NDCX-I facility and the NDCX-II facility currently being commissioned at LBNL. The SOP served as the primary temperature diagnostic in the recent NDCX-I experiments, in which an intense K{sup +} beam was used to heat different metal samples into WDM states. The SOP consists of a spectral grating (visible and near-infrared spectral range) and a fast, high-dynamic-range optical streak camera. The instrument is calibrated absolutely with a NIST-traceable tungsten ribbon lamp and can itself be considered as an absolutely calibrated, time-resolving spectrometer. The sample temperature is determined from fitting the recorded thermal spectrum into the Planck formula multiplied by a model of emissivity.
Torres, James R.; Gulminelli, Francesca; Menezes, Débora P.
2017-02-01
Background: The emergence of hyperon degrees of freedom in neutron star matter has been associated to first-order phase transitions in some phenomenological models, but conclusions on the possible physical existence of an instability in the strangeness sector are strongly model dependent. Purpose: The purposes of the present study are to assess whether strangeness instabilities are related to specific values of the largely unconstrained hyperon interactions and to study the effect of the strange meson couplings on phenomenological properties of neutron stars and supernova matter, once these latter are fixed to fulfill the constraints imposed by hypernuclear data. Method: We consider a phenomenological relativistic mean field model (RMF) model sufficiently simple to allow a complete exploration of the parameter space. Results: We show that no instability at supersaturation density exists for the RMF model, as long as the parameter space is constrained by basic physical requirements. This is at variance with a nonrelativistic functional, with a functional behavior fitted through ab initio calculations. Once the study is extended to include the full octet, we show that the parameter space allows reasonable radii for canonical neutron stars as well as massive stars above two-solar mass, together with an important strangeness content of the order of 30%, slightly decreasing with increasing entropy, even in the absence of a strangeness-driven phase transition. Conclusions: We conclude that the hyperon content of neutron stars and supernova matter cannot be established with present constraints, and is essentially governed by the unconstrained coupling to the strange isoscalar meson.
Description of the evolution of inhomogeneities on a dark matter halo with the Vlasov equation
Domínguez-Fernández, Paola; Jiménez-Vázquez, Erik; Alcubierre, Miguel; Montoya, Edison; Núñez, Darío
2017-09-01
We use a direct numerical integration of the Vlasov equation in spherical symmetry with a background gravitational potential to determine the evolution of a collection of particles in different models of a galactic halo in order to test its stability against perturbations. Such collection is assumed to represent a dark matter inhomogeneity which is represented by a distribution function defined in phase-space. Non-trivial stationary states are obtained and determined by the virialization of the system. We describe some features of these stationary states by means of the properties of the final distribution function and final density profile. We compare our results using the different halo models and find that the NFW halo model is the most stable of them, in the sense that an inhomogeneity in this halo model requires a shorter time to virialize.
Extraction of Nuclear Matter Properties from Nuclear Masses by a Model of Equation of State
Institute of Scientific and Technical Information of China (English)
K.C.Chung; C.S.Wang; A.J.Santiago
2001-01-01
The extraction of nuclear matter properties from measured nuclear masses is investigated in the energy density functional formalism of nuclei.It is shown that the volume energy a1 and the nuclear incompressibility Ko depend essentially on μnN -+- pZ - 2EN,whereas the symmetry energy J and the density symmetry coefficient L as well as symmetry incompressibility Ks depend essentially on μn - μp,where μp ＝μp - Ec/ Z,μn and μp are the neutron and proton chemical potentials respectively,EN the nuclear energy,and Ec the Coulomb energy.The obtained symmetry energy is J ＝ 28.5 MeV,while other coefficients are uncertain within ranges depending on the model of nuclear equation of state.``
Equation of state of the neutron star matter, and the nuclear symmetry energy
Loan, Doan Thi; Khoa, Dao T; Margueron, Jerome
2011-01-01
The nuclear mean-field potentials obtained in the Hartree-Fock method with different choices of the in-medium nucleon-nucleon (NN) interaction have been used to study the equation of state (EOS) of the neutron star (NS) matter. The EOS of the uniform NS core has been calculated for the np$e\\mu$ composition in the $\\beta$-equilibrium at zero temperature, using version Sly4 of the Skyrme interaction as well as two density-dependent versions of the finite-range M3Y interaction (CDM3Y$n$ and M3Y-P$n$), and versions D1S and D1N of the Gogny interaction. Although the considered effective NN interactions were proven to be quite realistic in numerous nuclear structure and/or reaction studies, they give quite different behaviors of the symmetry energy of nuclear matter at supranuclear densities that lead to the \\emph{soft} and \\emph{stiff} scenarios discussed recently in the literature. Different EOS's of the NS core and the EOS of the NS crust given by the compressible liquid drop model have been used as input of the...
New Kohn-Sham density functional based on microscopic nuclear and neutron matter equations of state
Baldo, M.; Robledo, L. M.; Schuck, P.; Viñas, X.
2013-06-01
A new version of the Barcelona-Catania-Paris energy functional is applied to a study of nuclear masses and other properties. The functional is largely based on calculated ab initio nuclear and neutron matter equations of state. Compared to typical Skyrme functionals having 10-12 parameters apart from spin-orbit and pairing terms, the new functional has only 2 or 3 adjusted parameters, fine tuning the nuclear matter binding energy and fixing the surface energy of finite nuclei. An energy rms value of 1.58 MeV is obtained from a fit of these three parameters to the 579 measured masses reported in the Audi and Wapstra [Nucl. Phys. ANUPABL0375-947410.1016/j.nuclphysa.2003.11.003 729, 337 (2003)] compilation. This rms value compares favorably with the one obtained using other successful mean field theories, which range from 1.5 to 3.0 MeV for optimized Skyrme functionals and 0.7 to 3.0 for the Gogny functionals. The other properties that have been calculated and compared to experiment are nuclear radii, the giant monopole resonance, and spontaneous fission lifetimes.
Exact solutions to the continuous-quality equation for soil organic matter turnover.
Bosatta, Ernesto; Agren, Göran I
2003-09-07
All living systems depend on transformations of elements between different states. In particular, the transformation of dead organic matter in the soil (SOM) by decomposers (microbes) releases elements incorporated in SOM and makes the elements available anew to plants. A major problem in analysing and describing this process is that SOM, as the result of the decomposer activity, is a mixture of a very large number of molecules with widely differing chemical and physical properties. The continuous-quality equation (CQE) is a general equation describing this complexity by assigning a continuous-quality variable to each carbon atom in SOM. The use of CQE has been impeded by its complicated mathematics. Here, we show by deriving exact solutions that, at least for some specific cases, there exist solutions to CQE. These exact solutions show that previous approximations have overestimated the rate by which litter decomposes and as a consequence underestimated steady state SOM amounts. The exact and approximate solutions also differ with respect to the parameter space in which they yield finite steady-state SOM amounts. The latter point is important because temperature is one of the parameters and climatic change may move the solution from a region of the parameter space with infinite steady-state SOM to a region of finite steady-state SOM, with potentially large changes in soil carbon stores. We also show that the solution satisfies the Chapman-Kolmogorov theorem. The importance of this is that it provides efficient algorithms for numerical solutions.
Directory of Open Access Journals (Sweden)
Xinzhi Liu
1998-01-01
Full Text Available This paper studies a class of high order delay partial differential equations. Employing high order delay differential inequalities, several oscillation criteria are established for such equations subject to two different boundary conditions. Two examples are also given.
Inoue, Takashi; Aoki, Sinya; Doi, Takumi; Hatsuda, Tetsuo; Ikeda, Yoichi; Ishii, Noriyoshi; Murano, Keiko; Nemura, Hidekatsu; Sasaki, Kenji
2013-09-13
Quark mass dependence of the equation of state (EOS) for nucleonic matter is investigated, on the basis of the Brueckner-Hartree-Fock method with the nucleon-nucleon interaction extracted from lattice QCD simulations. We observe saturation of nuclear matter at the lightest available quark mass corresponding to the pseudoscalar meson mass ≃469 MeV. Mass-radius relation of the neutron stars is also studied with the EOS for neutron-star matter from the same nuclear force in lattice QCD. We observe that the EOS becomes stiffer and thus the maximum mass of neutron star increases as the quark mass decreases toward the physical point.
Exotic dense-matter states pumped by a relativistic laser plasma in the radiation-dominated regime.
Colgan, J; Abdallah, J; Faenov, A Ya; Pikuz, S A; Wagenaars, E; Booth, N; Culfa, O; Dance, R J; Evans, R G; Gray, R J; Kaempfer, T; Lancaster, K L; McKenna, P; Rossall, A L; Skobelev, I Yu; Schulze, K S; Uschmann, I; Zhidkov, A G; Woolsey, N C
2013-03-22
In high-spectral resolution experiments with the petawatt Vulcan laser, strong x-ray radiation of KK hollow atoms (atoms without n = 1 electrons) from thin Al foils was observed at pulse intensities of 3 × 10(20) W/cm(2). The observations of spectra from these exotic states of matter are supported by detailed kinetics calculations, and are consistent with a picture in which an intense polychromatic x-ray field, formed from Thomson scattering and bremsstrahlung in the electrostatic fields at the target surface, drives the KK hollow atom production. We estimate that this x-ray field has an intensity of >5 × 10(18) W/cm(2) and is in the 3 keV range.
Shi, Limei; Huang, Yaxin; Lu, Yaping; Chen, Feizhou; Zhang, Min; Yu, Yang; Kong, Fanxiang
2017-08-01
Cyanobacterial blooms occur in eutrophic lakes worldwide, and greatly impair these ecosystems. To explore influences of cyanobacterial blooms on dynamics of both particulate organic matter (POM) and dissolved organic matter (DOM), which are at the base of the food chain, an investigation was conducted from December 2014 to November 2015 that included various stages of the seasonal cyanobacterial blooms (dominated by Microcystis) in a large-shallow eutrophic Chinese lake (Taihu Lake). Data from eight sites of the lake are compiled into a representative seasonal cycle to assess general patterns of POM and DOM dynamics. Compared to December, 5-fold and 3.5-fold increases were observed in July for particulate organic carbon (POC, 3.05-15.37 mg/L) and dissolved organic carbon (DOC, 5.48-19.25 mg/L), respectively, with chlorophyll a (Chl a) concentrations varying from 8.2 to 97.7 μg/L. Approximately 40% to 76% of total organic carbon was partitioned into DOC. All C, N, and P in POM and DOC were significantly correlated with Chl a. POC:Chl a ratios were low, whereas proportions of the estimated phytoplankton-derived organic matter in total POM were high during bloom seasons. These results suggested that contributions of cyanobacterial blooms to POM and DOC varied seasonally. Seasonal average C:P ratios in POM and DOM varied from 79 to 187 and 299 to 2 175, respectively. Both peaked in July and then sharply decreased. Redundancy analysis revealed that Chl a explained most of the variations of C:N:P ratios in POM, whereas temperature was the most explanatory factor for DOM. These findings suggest that dense cyanobacterial blooms caused both C-rich POM and DOM, thereby providing clues for understanding their influence on ecosystems.
de Vega, H. J.; Sanchez, N. G.
2017-02-01
The Thomas-Fermi approach to galaxy structure determines self-consistently and non-linearly the gravitational potential of the fermionic warm dark matter (WDM) particles given their quantum distribution function f( E). This semiclassical framework accounts for the quantum nature and high number of DM particles, properly describing gravitational bounded and quantum macroscopic systems as neutron stars, white dwarfs and WDM galaxies. We express the main galaxy magnitudes as the halo radius r_h , mass M_h , velocity dispersion and phase space density in terms of the surface density which is important to confront to observations. From these expressions we derive the general equation of state for galaxies, i.e., the relation between pressure and density, and provide its analytic expression. Two regimes clearly show up: (1) Large diluted galaxies for M_h ≳ 2.3 × 10^6 M_⊙ and effective temperatures T_0 > 0.017 K described by the classical self-gravitating WDM Boltzman gas with a space-dependent perfect gas equation of state, and (2) Compact dwarf galaxies for 1.6 × 10^6 M_⊙ ≳ M_h ≳ M_{h,min} ˜eq 3.10 × 10^4 (2 {keV}/m)^{16/5} M_⊙, T_0 < 0.011 K described by the quantum fermionic WDM regime with a steeper equation of state close to the degenerate state. In particular, the T_0 = 0 degenerate or extreme quantum limit yields the most compact and smallest galaxy. In the diluted regime, the halo radius r_h , the squared velocity v^2(r_h) and the temperature T_0 turn to exhibit square-root of M_h scaling laws. The normalized density profiles ρ (r)/ρ (0) and the normalized velocity profiles v^2(r)/ v^2(0) are universal functions of r/r_h reflecting the WDM perfect gas behavior in this regime. These theoretical results contrasted to robust and independent sets of galaxy data remarkably reproduce the observations. For the small galaxies, 10^6 ≳ M_h ≥ M_{h,min} , the equation of state is galaxy mass dependent and the density and velocity profiles are not
Bang, W; Bradley, P A; Vold, E L; Boettger, J C; Fernández, J C
2015-01-01
In a recent experiment on the Trident laser facility, a laser-driven beam of quasi-monoenergetic aluminum ions was used to heat solid gold and diamond foils isochorically to 5.5 eV and 1.7 eV, respectively. Here theoretical calculations are presented that suggest the gold and diamond were heated uniformly by these laser-driven ion beams. According to calculations and SESAME equation-of-state tables, laser-driven aluminum ion beams achievable on Trident, with a finite energy spread of (delta E)/E ~ 20%, are expected to heat the targets more uniformly than a beam of 140 MeV aluminum ions with zero energy spread. The robustness of the expected heating uniformity relative to the changes in the incident ion energy spectra is evaluated, and expected plasma temperatures of various target materials achievable with the current experimental platform are presented.
Equation of state of imbalanced cold matter from chiral perturbation theory
Carignano, Stefano; Mannarelli, Massimo
2016-01-01
We study the thermodynamic properties of matter at vanishing temperature for non-extreme values of the isospin chemical potential and of the strange quark chemical potential. From the leading order pressure obtained by maximizing the static chiral Lagrangian density we derive a simple expression for the equation of state in the pion condensed phase and in the kaon condensed phase. We find an analytical expression for the maximum of the ratio between the chiral perturbation energy density and the Stefan-Boltzmann energy density as well as for the isospin chemical potential at the peak in good agreement with lattice simulations of quantum chromodynamics. We speculate on the location of the crossover from the Bose-Einstein condensate state to the Bardeen-Cooper-Schrieffer state by a simple analysis of the thermodynamic properties of the system. For $\\mu_I \\gtrsim 2 m_\\pi$ the leading order chiral perturbation theory breaks down; as an example it underestimates the energy density of the system and leads to a wron...
Equation of state of imbalanced cold matter from chiral perturbation theory
Carignano, Stefano; Mammarella, Andrea; Mannarelli, Massimo
2016-03-01
We study the thermodynamic properties of matter at vanishing temperature for nonextreme values of the isospin chemical potential and of the strange quark chemical potential. From the leading-order pressure obtained by maximizing the static chiral Lagrangian density, we derive a simple expression for the equation of state in the pion condensed phase and in the kaon condensed phase. We find an analytical expression for the maximum of the ratio between the energy density and the Stefan-Boltzmann energy density and for the isospin chemical potential at the peak, both in good agreement with lattice simulations of quantum chromodynamics. We speculate on the location of the crossover from the Bose-Einstein condensate state to the Bardeen-Cooper-Schrieffer state by a simple analysis of the thermodynamic properties of the system. For μI≳2 mπ, the leading-order chiral perturbation theory breaks down; for example, it underestimates the energy density of the system and leads to a wrong asymptotic behavior.
Energy Technology Data Exchange (ETDEWEB)
Vega, H.J. de [Sorbonne Universites, Universite Pierre et Marie Curie UPMC Paris VI, LPTHE CNRS UMR 7589, Paris Cedex 05 (France); Sanchez, N.G. [Observatoire de Paris PSL Research University, Sorbonne Universites UPMC Paris VI, Observatoire de Paris, LERMA CNRS UMR 8112, Paris (France)
2017-02-15
The Thomas-Fermi approach to galaxy structure determines self-consistently and non-linearly the gravitational potential of the fermionic warm dark matter (WDM) particles given their quantum distribution function f(E). This semiclassical framework accounts for the quantum nature and high number of DM particles, properly describing gravitational bounded and quantum macroscopic systems as neutron stars, white dwarfs and WDM galaxies. We express the main galaxy magnitudes as the halo radius r{sub h}, mass M{sub h}, velocity dispersion and phase space density in terms of the surface density which is important to confront to observations. From these expressions we derive the general equation of state for galaxies, i.e., the relation between pressure and density, and provide its analytic expression. Two regimes clearly show up: (1) Large diluted galaxies for M{sub h} >or similar 2.3 x 10{sup 6} M {sub CircleDot} and effective temperatures T{sub 0} > 0.017 K described by the classical self-gravitating WDM Boltzman gas with a space-dependent perfect gas equation of state, and (2) Compact dwarf galaxies for 1.6 x 10{sup 6} M {sub CircleDot} >or similar M{sub h} >or similar M{sub h,min} ≅ 3.10 x 10{sup 4} (2 keV/m){sup (16)/(5)} M {sub CircleDot}, T{sub 0} < 0.011 K described by the quantum fermionic WDM regime with a steeper equation of state close to the degenerate state. In particular, the T{sub 0} = 0 degenerate or extreme quantum limit yields the most compact and smallest galaxy. In the diluted regime, the halo radius r{sub h}, the squared velocity v{sup 2}(r{sub h}) and the temperature T{sub 0} turn to exhibit square-root of M{sub h} scaling laws. The normalized density profiles ρ(r)/ρ(0) and the normalized velocity profiles v{sup 2}(r)/v{sup 2}(0) are universal functions of r/r{sub h} reflecting the WDM perfect gas behavior in this regime. These theoretical results contrasted to robust and independent sets of galaxy data remarkably reproduce the observations. For
... also appear white on mammography, they can be hidden by or within dense breast tissue. Other imaging ... understanding of the possible charges you will incur. Web page review process: This Web page is reviewed ...
Holographic Quark Matter and Neutron Stars.
Hoyos, Carlos; Jokela, Niko; Rodríguez Fernández, David; Vuorinen, Aleksi
2016-07-15
We use a top-down holographic model for strongly interacting quark matter to study the properties of neutron stars. When the corresponding equation of state (EOS) is matched with state-of-the-art results for dense nuclear matter, we consistently observe a first-order phase transition at densities between 2 and 7 times the nuclear saturation density. Solving the Tolman-Oppenheimer-Volkov equations with the resulting hybrid EOSs, we find maximal stellar masses in excess of two solar masses, albeit somewhat smaller than those obtained with simple extrapolations of the nuclear matter EOSs. Our calculation predicts that no quark matter exists inside neutron stars.
Veselsky, M.; Klimo, J.; Ma, Yu-Gang; Souliotis, G. A.
2016-12-01
The mechanism of fusion hindrance, an effect preventing the synthesis of superheavy elements in the reactions of cold and hot fusion, is investigated using the Boltzmann-Uehling-Uhlenbeck equation, where Coulomb interaction is introduced. A strong sensitivity is observed both to the modulus of incompressibility of symmetric nuclear matter, controlling the competition of surface tension and Coulomb repulsion, and to the stiffness of the density-dependence of symmetry energy, influencing the formation of the neck prior to scission. The experimental fusion probabilities were for the first time used to derive constraints on the nuclear equation of state. A strict constraint on the modulus of incompressibility of nuclear matter K0=240 -260 MeV is obtained while the stiff density-dependences of the symmetry energy (γ >1 ) are rejected.
Kambe, Takahide; Saito, Koichi
2016-01-01
As the interior density of a neutron star can become very high, it has been expected and discussed that quark matter may exist inside it. To describe the transition from hadron to quark phases (and vice versa), there are mainly two methods; one is the first-order phase transition, and the other is the crossover phenomenon. In the present study, using the flavor-SU (3) NJL model with the vector coupling interaction, we have calculated the equation of state for the quark phase at high density. Furthermore, for the hadron phase at low density, we have used two kinds of the equations of state; one is a relatively soft one by the QHD model, and the other is a stiff one calculated with relativistic Brueckner-Hartree-Fock approximation. Using those equations of state for the two phases, we have investigated the influence of various choices of parameters concerning the crossover region on the mass and radius of a neutron star.
Voineskos, Aristotle N; Rajji, Tarek K; Lobaugh, Nancy J; Miranda, Dielle; Shenton, Martha E; Kennedy, James L; Pollock, Bruce G; Mulsant, Benoit H
2012-01-01
Age-related decline in microstructural integrity of certain white matter tracts may explain cognitive decline associated with normal aging. Whole brain tractography and a clustering segmentation in 48 healthy individuals across the adult lifespan were used to examine: interhemispheric (corpus callosum), intrahemispheric association (cingulum, uncinate, arcuate, inferior longitudinal, inferior occipitofrontal), and projection (corticospinal) fibers. Principal components analysis reduced cognitive tests into 6 meaningful factors: (1) memory and executive function; (2) visuomotor dexterity; (3) motor speed; (4) attention and working memory; (5) set-shifting/flexibility; and (6) visuospatial construction. Using theory-based structural equation modeling, relationships among age, white matter tract integrity, and cognitive performance were investigated. Parsimonious model fit demonstrated relationships where decline in white matter integrity may explain age-related decline in cognitive performance: inferior longitudinal fasciculus (ILF) with visuomotor dexterity; the inferior occipitofrontal fasciculus with visuospatial construction; and posterior fibers (i.e., splenium) of the corpus callosum with memory and executive function. Our findings suggest that decline in the microstructural integrity of white matter fibers can account for cognitive decline in normal aging.
Osetrin, Konstantin; Osetrin, Evgeny
2015-01-01
The characteristics of dust matter in space-time models, admitting the existence of privilege coordinate systems are given, where the single-particle Hamilton-Jacobi equation can be integrated by the method of complete separation of variables. The resulting functional form of the 4-velocity field and energy density of matter for all types of spaces under consideration is presented.
Buschlinger, Robert; Peschel, Ulf
2014-01-01
We present a time-domain model for the simulation of light-matter interaction in semiconductors in arbitrary geometries and across a wide range of excitation conditions. The electromagnetic field is treated classically using the finite-difference time-domain method. The polarization and occupation numbers of the semiconductor material are described using the semiconductor Bloch equations including many-body effects in the screened Hartree-Fock approximation. Spontaneous emission noise is introduced using stochastic driving terms. As an application of the model, we present simulations of the dynamics of a nanowire laser including optical pumping, seeding by spontaneous emission and the selection of lasing modes.
Excitation function of elliptic flow in Au+Au collisions and the nuclear matter equation of state
Andronic, A; Basrak, Z; Bastid, N; Benabderrahmane, L; Berek, G; Caplar, R; Cordier, E; Crochet, Philippe; Dupieux, P; Dzelalija, M; Fodor, Z; Gasparic, I; Grishkin, Yu; Hartmann, O N; Herrmann, N; Hildenbrand, K D; Hong, B; Kecskeméti, J; Kim, Y J; Kirejczyk, M; Koczón, P; Korolija, M; Kotte, R; Kress, T; Lebedev, A; Leifels, Y; López, X; Mangiarotti, A; Merschmeyer, M; Neubert, W; Pelte, D; Petrovici, M; Rami, F; Reisdorf, W; de Schauenburg, B; Schüttauf, A; Seres, Z; Sikora, B; Sim, K S; Simion, V; Siwek-Wilczynska, K; Smolyankin, V T; Stockmeier, M R; Stoicea, G; Tyminski, Z; Wagner, P; Wisniewski, K; Wohlfarth, D; Xiao, Z G; Yushmanov, I E; Zhilin, A
2005-01-01
We present measurements of the excitation function of elliptic flow at midrapidity in Au+Au collisions at beam energies from 0.09 to 1.49 GeV per nucleon. For the integral flow, we discuss the interplay between collective expansion and spectator shadowing for three centrality classes. A complete excitation function of transverse momentum dependence of elliptic flow is presented for the first time in this energy range, revealing a rapid change with incident energy below 0.4 AGeV, followed by an almost perfect scaling at the higher energies. The equation of state of compressed nuclear matter is addressed through comparisons to microscopic transport model calculations.
Holographic quark matter and neutron stars
Hoyos, Carlos; Jokela, Niko; Vuorinen, Aleksi
2016-01-01
We use a top-down holographic model for strongly interacting quark matter to study the properties of neutron stars. When the corresponding Equation of State (EoS) is matched with state-of-the-art results for dense nuclear matter, we consistently observe a first order phase transition at densities between two and seven times the nuclear saturation density. Solving the Tolman-Oppenheimer-Volkov equations with the resulting hybrid EoSs, we find maximal stellar masses in the excess of two solar masses, albeit somewhat smaller than those obtained with simple extrapolations of the nuclear matter EoSs.
Exact solution of equations for proton localization in neutron star matter
Kubis, Sebastian
2016-01-01
The rigorous treatment of proton localization phenomenon in asymmetric nuclear matter is presented. The solution of proton wave function and neutron background distribution is found by the use of the extended Thomas-Fermi approach. The minimum of energy is obtained in the Wigner- Seitz approximation of spherically symmetric cell. The analysis of three different nuclear models suggests that the proton localization is likely to take place in the interior of neutron star.
A Matter of Principle: The Principles of Quantum Theory, Dirac's Equation, and Quantum Information
Plotnitsky, Arkady
2015-01-01
This article is concerned with the role of fundamental principles in theoretical physics, especially quantum theory. The fundamental principles of relativity will be be addressed as well in view of their role in quantum electrodynamics and quantum field theory, specifically Dirac's work, which, in particular Dirac's derivation of his relativistic equation for the electron from the principles of relativity and quantum theory, is the main focus of this article. I shall, however, also consider Heisenberg's derivation of quantum mechanics, which inspired Dirac. I argue that Heisenberg's and Dirac's work alike was guided by their adherence to and confidence in the fundamental principles of quantum theory. The final section of the article discusses the recent work by G. M. D' Ariano and his coworkers on the principles of quantum information theory, which extends quantum theory and its principles in a new direction. This extension enabled them to offer a new derivation of Dirac's equation from these principles alone...
Effective equations for matter-wave gap solitons in higher-order transversal states.
Mateo, A Muñoz; Delgado, V
2013-10-01
We demonstrate that an important class of nonlinear stationary solutions of the three-dimensional (3D) Gross-Pitaevskii equation (GPE) exhibiting nontrivial transversal configurations can be found and characterized in terms of an effective one-dimensional (1D) model. Using a variational approach we derive effective equations of lower dimensionality for BECs in (m,n(r)) transversal states (states featuring a central vortex of charge m as well as n(r) concentric zero-density rings at every z plane) which provides us with a good approximate solution of the original 3D problem. Since the specifics of the transversal dynamics can be absorbed in the renormalization of a couple of parameters, the functional form of the equations obtained is universal. The model proposed finds its principal application in the study of the existence and classification of 3D gap solitons supported by 1D optical lattices, where in addition to providing a good estimate for the 3D wave functions it is able to make very good predictions for the μ(N) curves characterizing the different fundamental families. We have corroborated the validity of our model by comparing its predictions with those from the exact numerical solution of the full 3D GPE.
Fukushima, Kenji
2014-01-01
We summarize recent developments in identifying the ground state of dense baryonic matter and beyond. The topics include deconfinement from baryonic matter to quark matter, a diquark mixture, topological effect coupled with chirality and density, and inhomogeneous chiral condensates.
A NEW EQUATION OF STATE FOR NEUTRON STAR MATTER WITH NUCLEI IN THE CRUST AND HYPERONS IN THE CORE
Energy Technology Data Exchange (ETDEWEB)
Miyatsu, Tsuyoshi [Department of Physics, Soongsil University, Seoul 156-743 (Korea, Republic of); Yamamuro, Sachiko; Nakazato, Ken' ichiro, E-mail: tmiyatsu@ssu.ac.kr [Department of Physics, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510 (Japan)
2013-11-01
The equation of state for neutron stars in a wide-density range at zero temperature is constructed. The chiral quark-meson coupling model within relativistic Hartree-Fock approximation is adopted for uniform nuclear matter. The coupling constants are determined so as to reproduce the experimental data of atomic nuclei and hypernuclei. In the crust region, nuclei are taken into account within the Thomas-Fermi calculation. All octet baryons are considered in the core region, while only Ξ{sup –} appears in neutron stars. The resultant maximum mass of neutron stars is 1.95 M{sub ☉}, which is consistent with the constraint from the recently observed massive pulsar, PSR J1614-2230.
A new equation of state for neutron star matter with nuclei in the crust and hyperons in the core
Miyatsu, Tsuyoshi; Nakazato, Ken'ichiro
2013-01-01
The equation of state for neutron stars in a wide-density range at zero temperature is constructed. The chiral quark-meson coupling model within relativistic Hartree-Fock approximation is adopted for uniform nuclear matter. The coupling constants are determined so as to reproduce the experimental data of atomic nuclei and hypernuclei. In the crust region, nuclei are taken into account within the Thomas-Fermi calculation. All octet baryons are considered in the core region, while only $\\Xi^{-}$ appears in neutron stars. The resultant maximum mass of neutron stars is $1.95M_\\odot$, which is consistent with the constraint from the recently observed massive pulsar, PSR J1614-2230.
Quinto, A G
2016-01-01
We studied the Dynamical Symmetry Breaking (DSB) mechanism in a supersymmetric Chern-Simons theory in $\\left(2+1\\right)$ dimensions coupled to $N$ matter superfields in the superfield formalism. For this purpose, we developed a mechanism to calculate the effective superpotencial $K_{\\mathrm{eff}}\\left(\\sigma_{\\mathrm{cl}},\\alpha\\right)$, where $\\sigma_{\\mathrm{cl}}$ is a background superfield, and $\\alpha$ a gauge-fixing parameter that is introduced in the quantization process. The possible dependence of the effective potential on the gauge parameter have been studied in the context of quantum field theory. We developed the formalism of the Nielsen identities in the superfield language, which is the appropriate formalism to study DSB when the effective potential is gauge dependent. We also discuss how to calculate the effective superpotential via the Renormalization Group Equation (RGE) from the knowledge of the renormalization group functions of the theory, i.e., $\\beta$ functions and anomalous dimensions $\\...
Valenza, Ryan A.; Seidler, Gerald T.
2016-03-01
The intense femtosecond-scale pulses from x-ray free electron lasers (XFELs) are able to create and interrogate interesting states of matter characterized by long-lived nonequilibrium semicore or core electron occupancies or by the heating of dense phases via the relaxation cascade initiated by the photoelectric effect. We address here the latter case of "warm dense matter" (WDM) and investigate the observable consequences of x-ray heating of the electronic degrees of freedom in crystalline systems. We report temperature-dependent density functional theory calculations for the x-ray diffraction from crystalline LiF, graphite, diamond, and Be. We find testable, strong signatures of condensed-phase effects that emphasize the importance of wide-angle scattering to study nonequilibrium states. These results also suggest that the reorganization of the valence electron density at eV-scale temperatures presents a confounding factor to achieving atomic resolution in macromolecular serial femtosecond crystallography (SFX) studies at XFELs, as performed under the "diffract before destroy" paradigm.
Davis, Anthony B.
2013-01-01
I survey the theoretical foundations of the slowly-but-surely emerging field of multiple scattering lidar, which has already found applications in atmospheric and cryospheric optics that I also discuss. In multiple scattering lidar, returned pulses are stretched far beyond recognition, and there is no longer a one-to-one connection between range and return-trip timing. Moreover, one can exploit the radial profile of the diffuse radiance field excited by the laser source that, by its very nature, is highly concentrated in space and collimated in direction. One needs, however, a new class of lidar equations to explore this new phenomenology. A very useful set is derived from radiative diffusion theory, which is found at the opposite asymptotic limit of radiative transfer theory than the conventional (single-scattering) limit used to derive the standard lidar equation. In particular, one can use it to show that, even if the simple time-of-flight-to-range connection is irretrievably lost, multiply-scattered lidar light can be used to restore a unique profiling capability with coarser resolution but much deeper penetration into a wide variety of optical thick media in nature. Several new applications are proposed, including a laser bathymetry technique that should work for highly turbid coastal waters.
Energy Technology Data Exchange (ETDEWEB)
Pastor, J
2004-07-01
We have determined the equation of state of nuclear matter according to relativistic non-linear models. In particular, we are interested in regions of high density and/or high temperature, in which the thermodynamic functions have very different behaviours depending on which model one uses. The high-density behaviour is, for example, a fundamental ingredient for the determination of the maximum mass of neutron stars. As an application, we have studied the process of two-pion annihilation into e{sup +}e{sup -} pairs in dense and hot matter. Accordingly, we have determined the way in which the non-linear terms modify the meson propagators occurring in this process. Our results have been compared with those obtained for the meson propagators in free space. We have found models that give an enhancement of the dilepton production rate in the low invariant mass region. Such an enhancement is in good agreement with the invariant mass dependence of the data obtained in heavy ions collisions at CERN/SPS energies. (author)
Fulazzaky, Mohamad Ali
2013-01-01
Anaerobic treatment processes to remove organic matter from palm oil mill effluent (POME) have been used widely in Malaysia. Still the amounts of total organic and total mineral released from POME that may cause degradation of the receiving environment need to be verified. This paper proposes the use of the hydrodynamic equations to estimate performance of the cascaded anaerobic ponds (CAP) and to calculate amounts of total organic matter and total mineral released from POME. The CAP efficiencies to remove biochemical oxygen demands, chemical oxygen demands, total solids and volatile solids (VS) as high as 94.5, 93.6, 96.3 and 98.2 %, respectively, are estimated. The amounts of total organic matter and total mineral as high as 538 kg VS/day and 895 kg FS/day, respectively, released from POME to the receiving water are calculated. The implication of the proposed hydrodynamic equations contributes to more versatile environmental assessment techniques, sometimes replacing laboratory analysis.
Thermophysical properties of warm dense hydrogen
Holst, Bastian; Desjarlais, Michael P
2007-01-01
We study the thermophysical properties of warm dense hydrogen using quantum molecular dynamics simulations. New results are presented for the pair distribution functions, the equation of state, the Hugoniot curve, and the reflectivity. We compare with available experimental data and predictions of the chemical picture. Especially, we discuss the nonmetal-to-metal transition which occurs at about 40 GPa in the dense fluid.
Braaten, Eric; Zhang, Hong
2015-01-01
If the dark matter consists of axions, gravity can cause them to coalesce into axion stars, which are stable gravitationally bound Bose-Einstein condensates of axions. In the previously known axion stars, gravity and the attractive force between pairs of axions are balanced by the kinetic pressure.If the axion mass energy is $mc^2= 10^{-4}$ eV, these dilute axion stars have a maximum mass of about $10^{-14} M_\\odot$. We point out that there are also dense axion stars in which gravity is balanced by the mean-field pressure of the axion condensate. We study axion stars using the leading term in a systematically improvable approximation to the effective potential of the nonrelativistic effective field theory for axions. Using the Thomas-Fermi approximation in which the kinetic pressure is neglected, we find a sequence of new branches of axion stars in which gravity is balanced by the mean-field interaction energy of the axion condensate. If $mc^2 = 10^{-4}$ eV, the first branch of these dense axion stars has mas...
Braaten, Eric; Mohapatra, Abhishek; Zhang, Hong
2016-09-01
If the dark matter particles are axions, gravity can cause them to coalesce into axion stars, which are stable gravitationally bound systems of axions. In the previously known solutions for axion stars, gravity and the attractive force between pairs of axions are balanced by the kinetic pressure. The mass of these dilute axion stars cannot exceed a critical mass, which is about 10-14M⊙ if the axion mass is 10-4 eV . We study axion stars using a simple approximation to the effective potential of the nonrelativistic effective field theory for axions. We find a new branch of dense axion stars in which gravity is balanced by the mean-field pressure of the axion Bose-Einstein condensate. The mass on this branch ranges from about 10-20M⊙ to about M⊙ . If a dilute axion star with the critical mass accretes additional axions and collapses, it could produce a bosenova, leaving a dense axion star as the remnant.
Mohapatra, Abhishek; Braaten, Eric; Zhang, Hong
2016-03-01
If the dark matter consists of axions, gravity can cause them to coalesce into axion stars, which are stable gravitationally bound Bose-Einstein condensates of axions. In the previously known axion stars, gravity and the attractive force between pairs of axions are balanced by the kinetic pressure. If the axion mass energy is mc2 =10-4 eV, these dilute axion stars have a maximum mass of about 10-14M⊙ . We point out that there are also dense axion stars in which gravity is balanced by the mean-field pressure of the axion condensate. We study axion stars using the leading term in a systematically improvable approximation to the effective potential of the nonrelativistic effective field theory for axions. Using the Thomas-Fermi approximation in which the kinetic pressure is neglected, we find a sequence of new branches of axion stars in which gravity is balanced by the mean-field interaction energy of the axion condensate. If mc2 =10-4 4 eV, the first branch of these dense axion stars has mass ranging from about 10-11M⊙ toabout M⊙.
Sartoris, Barbara; Rosati, Piero; Borgani, Stefano; Umetsu, Keiichi; Bartelmann, Matthias; Girardi, Marisa; Grillo, Claudio; Lemze, Doron; Zitrin, Adi; Balestra, Italo; Mercurio, Amata; Nonino, Mario; Postman, Marc; Czakon, Nicole; Bradley, Larry; Broadhurst, Tom; Coe, Dan; Medezinski, Elinor; Melchior, Peter; Meneghetti, Massimo; Merten, Julian; Annunziatella, Marianna; Benitez, Narciso; Czoske, Oliver; Donahue, Megan; Ettori, Stefano; Ford, Holland; Fritz, Alexander; Kelson, Dan; Koekemoer, Anton; Kuchner, Ulrike; Lombardi, Marco; Maier, Christian; Mou, Leonidas A; Munari, Emiliano; Presotto, Valentina; Scodeggio, Marco; Seitz, Stella; Tozzi, Paolo; Zheng, Wei; Ziegler, Bodo
2014-01-01
A pressureless scenario for the Dark Matter (DM) fluid is a widely adopted hypothesis, despite the absence of a direct observational evidence. According to general relativity, the total mass-energy content of a system shapes the gravitational potential well, but different test particles perceive this potential in different ways depending on their properties. Cluster galaxy velocities, being $\\ll$c, depend solely on the gravitational potential, whereas photon trajectories reflect the contributions from the gravitational potential plus a relativistic-pressure term that depends on the cluster mass. We exploit this phenomenon to constrain the Equation of State (EoS) parameter of the fluid, primarily DM, contained in galaxy clusters. We use the complementary information provided by the kinematic and lensing mass profiles of the galaxy cluster MACS 1206.2-0847 at $z=0.44$, as obtained in an extensive imaging and spectroscopic campaign within the CLASH survey. The unprecedented high quality of our data-set and the p...
Kumar, Suresh
2014-01-01
In this work we consider a spatially homogeneous and flat FRW space-time filled with non-interacting matter and dark energy components. The equation of state (EoS) parameters of the two sources are varied phenomenologically in terms of scale factor of the FRW space-time in such a way that the evolution of the Universe takes place from the early radiation-dominated phase to the present dark energy-dominated phase. We find parameters of the model in terms of redshift, which in principle are observationally testable and allow us to compare the derived model with observations. We constrain the model in two cases with the latest astronomical observations, and discuss the best fit model parameters in detail. First, we explore a special case of the model with WMAP+BAO+H0 observations by synchronizing the model with the $\\Lambda$CDM model at the present epoch. An interesting point that emerges from this observational analysis is that the model is not only consistent with the $\\Lambda$CDM predictions at the present ep...
Energy Technology Data Exchange (ETDEWEB)
Wilson, B G; Sonnad, V
2011-02-14
Precise electronic structure calculations of ions in plasmas benefit from optimized numerical radial meshes. A new closed form expression for obtaining non-linear parameters for the efficient generation of analytic log-linear radial meshes is presented. In conjunction with the (very simple) algorithm for the rapid high precision evaluation of Lambert's W-function, the above identity allows the precise construction of generalized log-linear radial meshes adapted to various constraints.
Holographic Renormalization in Dense Medium
Directory of Open Access Journals (Sweden)
Chanyong Park
2014-01-01
describes a dense medium at finite temperature, is investigated in this paper. In a dense medium, two different thermodynamic descriptions are possible due to an additional conserved charge. These two different thermodynamic ensembles are classified by the asymptotic boundary condition of the bulk gauge field. It is also shown that in the holographic renormalization regularity of all bulk fields can reproduce consistent thermodynamic quantities and that the Bekenstein-Hawking entropy is nothing but the renormalized thermal entropy of the dual field theory. Furthermore, we find that the Reissner-Nordström AdS black brane is dual to a theory with conformal matter as expected, whereas a charged black brane with a nontrivial dilaton profile is mapped to a theory with nonconformal matter although its leading asymptotic geometry still remains as AdS space.
Stress transmission and incipient yield flow in dense granular materials
Blumenfeld, Raphael
2010-05-01
Jammed granular matter transmits stresses non-uniformly like no conventional solid, especially when it is on the verge of failure. Jamming is caused by self-organization of granular matter under external loads, often giving rise to networks of force chains that support the loads non-uniformly. An ongoing debate in the literature concerns the correct way to model the static stress field in such media: good old elasticity theory or newcomer isostaticity theory. The two differ significantly and, in particular in 2D, isostaticity theory leads naturally to force chain solutions. More recently, it has been proposed that real granular materials are made of mixtures of regions, some behaving elastically and some isostatically. The theory to describe these systems has been named stato-elasticity. In this paper, I first present the rationale for stato-elasticity theory. An important step towards the construction of this theory is a good understanding of stress transmission in the regions of pure isostatic states. A brief description is given of recently derived general solutions for 2D isostatic regions with nonuniform structures, which go well beyond the over-simplistic picture of force chains. I then show how the static stress equations are related directly to incipient yield flow and derive the equations that govern yield and creep rheology of dense granular matter at the initial stages of failure. These equations are general and describe strains in granular materials of both rigid and compliant particles.
Ogitsu, T.; Fernandez-Paãella, A.; Correa, A.; Engelhorn, K.; Barbrel, B.; Prendergast, D. G.; Pemmaraju, D.; Beckwith, M.; Kraus, D.; Hamel, S.; Cho, B. I.; Jin, L.; Wong, J.; Heinman, P.; Collins, G. W.; Falcone, R.; Ping, Y.
2016-10-01
We present a study of the electron-phonon coupling of warm dense iron upon femtosecond laser excitation by time-resolved x-ray absorption near edge spectroscopy (XANES). The dynamics of iron in electron-ion non-equilibrium conditions was studied using ab-initio density-functional-theory (DFT) simulations combined with the Two Temperature Model (TTM) where spatial inhomogeneity of electron (and ion) temperature(s) due to short ballistic electron transport length in iron was explicitly taken into consideration. Detailed comparison between our simulation results and experiments indicates that the ion temperature dependence on specific heat and on electron-phonon coupling also plays a relevant role in modeling the relaxation dynamics of electrons and ions. These results are the first experimental evidence of the suppression of the electron-phonon coupling factor of a transition metal at electron temperatures ranging 5000- 10000 K. This work was performed under DOE contract DE-AC52-07NA27344 with support from OFES Early Career program and LLNL LDRD program.
Pounds, K. A.; Reeves, J. N.; Page, K. L.; OBrien, P. T.
2004-01-01
An XMM-Newton observation of the luminous Seyfert 1 galaxy 1H 0419-577 in September 2002, when the source was in an extreme low-flux state, found a very hard X-ray spectrum at 1-10 keV with a strong soft excess below -1 keV. Comparison with an earlier XMM-Newton observation when 1H 0419-577 was X-ray bright indicated the dominant spectral variability was due to a steep power law or cool Comptonised thermal emission. Four further XMM-Newton observations, with 1H 0419-577 in intermediate flux states, now support that conclusion, while we also find the variable emission component in intermediate state difference spectra to be strongly modified by absorption in low ionisation matter. The variable soft excess then appears to be an artefact of absorption of the underlying continuum while the core soft emission can be attributed to re- combination in an extended region of more highly ionised gas. We note the wider implications of finding substantial cold dense matter overlying (or embedded in) the X-ray continuum source in a luminous Seyfert 1 galaxy.
Pounds, K A; Page, K L; O'Brien, P T
2004-01-01
An XMM-Newton observation of the luminous Seyfert 1 galaxy 1H 0419-577 in September 2002, when the source was in an extreme low-flux state, found a very hard X-ray spectrum at 1-10 keV with a strong soft excess below ~1 keV. Comparison with an earlier XMM-Newton observation when 1H 0419-577 was `X-ray bright' indicated the dominant spectral variability was due to a steep power law or cool Comptonised thermal emission. Four further XMM-Newton observations, with 1H 0419-577 in intermediate flux states, now support that conclusion, while we also find the variable emission component in intermediate state difference spectra to be strongly modified by absorption in low ionisation matter. The variable `soft excess' then appears to be an artefact of absorption of the underlying continuum while the `core' soft emission can be attributed to recombination in an extended region of more highly ionised gas. We note the wider implications of finding substantial cold dense matter overlying (or embedded in) the X-ray continuu...
Dense hadron star in quark degree of freedom
Directory of Open Access Journals (Sweden)
Tzeng Yiharn
2014-03-01
Full Text Available The quark degree of freedom may play an important role as one studies dense hadron stars which can help to understand the universe origin. We add a temperature dependence to the effective quark mass adopted from a quark-quark interaction on the QCD basis to probe properties of the star in the quark degree of freedom. Based on this interaction, the quark matter’s equation of state is obtained and its thermodynamic characteristics is investigated in detail. Stability of a star made of such matter is examined with and without strange quarks. The Tolman-Oppenheimer-Volkov equation along with the condition that dm=dr = 4πr2E are used to calculate mass and radius of such a star. Exact computations are made to calculate the star’s radius and mass at several temperatures. Comparisons of results from these temperatures are made and the significance is carefully investigated and discussed.
Energy Technology Data Exchange (ETDEWEB)
Sartoris, Barbara; Borgani, Stefano; Girardi, Marisa [Dipartimento di Fisica, Sezione di Astronomia, Università di Trieste, Via Tiepolo 11, I-34143 Trieste (Italy); Biviano, Andrea; Balestra, Italo; Nonino, Mario [INAF/Osservatorio Astronomico di Trieste, Via Tiepolo 11, I-34143 Trieste (Italy); Rosati, Piero [Dipartimento di Fisica e Scienze della Terra, Universita' di Ferrara, Via Saragat 1, I-44122 Ferrara (Italy); Umetsu, Keiichi; Czakon, Nicole [Institute of Astronomy and Astrophysics, Academia Sinica, P.O. Box 23-141, Taipei 10617, Taiwan (China); Bartelmann, Matthias [Zentrum für Astronomie der Universität Heidelberg, ITA, Albert-Ueberle-Str. 2, D-69120 Heidelberg (Germany); Grillo, Claudio [Dark Cosmology Centre, Niels Bohr Institute, University of Copenhagen, Juliane Maries Vej 30, DK-2100 Copenhagen (Denmark); Lemze, Doron; Medezinski, Elinor [Department of Physics and Astronomy, The Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218 (United States); Zitrin, Adi [Cahill Center for Astronomy and Astrophysics, California Institute of Technology, MS 249-17, Pasadena, CA 91125 (United States); Mercurio, Amata [INAF/Osservatorio Astronomico di Capodimonte, Via Moiariello 16, I-80131 Napoli (Italy); Postman, Marc; Bradley, Larry; Coe, Dan [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Broadhurst, Tom [Department of Theoretical Physics, University of the Basque Country, P.O. Box 644, E-48080 Bilbao (Spain); Melchior, Peter, E-mail: sartoris@oats.inaf.it [Department of Physics, The Ohio State University, Columbus, OH 43210 (United States); and others
2014-03-01
A pressureless scenario for the dark matter (DM) fluid is a widely adopted hypothesis, despite the absence of direct observational evidence. According to general relativity, the total mass-energy content of a system shapes the gravitational potential well, but different test particles perceive this potential in different ways depending on their properties. Cluster galaxy velocities, being <
Nakamura, Kouji
2008-01-01
Some formulae for the perturbations of the matter fields are summarized within the framework of the second-order gauge-invariant cosmological perturbation theory in a four dimensional homogeneous isotropic universe, which is developed in the papers [K. Nakamura, Prog. Theor. Phys. {\\bf 117} (2005), 17.]. We derive the formulae for the perturbations of the energy momentum tensors and equations of motion in the cases of a perfect fluid, an imperfect fluid, and a signle scalar field, and show that all equations are derived in terms of gauge-invariant variables without any gauge fixing.
Sammarruca, Francesca
2016-01-01
We present predictions of the binding energy per nucleon and the neutron skin thickness in highly neutron-rich isotopes of Oxygen, Magnesium, and Aluminum. The calculations are carried out at and below the neutron drip line. The nuclear properties are obtained via an energy functional whose input is the equation of state of isospin-asymmetric in?finite matter. The latter is based on a microscopic derivation applying chiral few-nucleon forces. We highlight the impact of the equation of state at diff?erent orders of chiral effective fi?eld theory and discuss the role of three-neutron forces.
Veselsky, Martin; Ma, Yu-Gang; Souliotis, Georgios A
2016-01-01
The mechanism of fusion hindrance, an effect preventing the synthesis of superheavy elements in the reactions of cold and hot fusion, is investigated using the Boltzmann-Uehling-Uhlenbeck equation, where Coulomb interaction is introduced. A strong sensitivity is observed both to the modulus of incompressibility of symmetric nuclear matter, controlling the competition of surface tension and Coulomb repulsion, and to the stiffness of the density-dependence of symmetry energy, influencing the formation of the neck prior to scission. The experimental fusion probabilities were for the first time used to derive constraints on the nuclear equation of state. A strict constraint on the modulus of incompressibility of nuclear matter $K_0 = 240 - 260$ MeV is obtained while the stiff density-dependences of the symmetry energy ($\\gamma>1.$) are rejected.
Condensates and correlations in nuclear matter
Directory of Open Access Journals (Sweden)
Röpke G.
2010-10-01
Full Text Available Nuclei in dense matter are inﬂuenced by the medium. Solving an A-particle Schroedinger equation including the eﬀects of self-energy and Pauli blocking, a quasiparticle description is introduced. Deriving thermodynamic properties, this approach contains the NSE at low densities as well as mean-ﬁeld approaches at high densities. Consequences for the symmetry energy, the phase transition, the determination of thermodynamic parameters from cluster yields and astrophysical applications are discussed.
Institute of Scientific and Technical Information of China (English)
LIU Yu-Xin; CHAO Jing-Yi; CHANG Lei; YUAN Wei
2005-01-01
@@ With the Dyson-Schwinger equation formalism at finite chemical potential, we study the density dependence of the mass and decay constant of pion in nuclear matter. The calculated results indicate that both the mass and the decay constant remain almost constant at small chemical potential. As the chemical potential gets quite large, the decay constant increases and the mass decreases with the increasing of the chemical potential, and both of them vanish suddenly as a critical value is reached.
Winckler, N; Shevelko, V P; Al-Turany, M; Kollegger, T; Stöhlker, Th
2017-01-01
A detailed description of a recently developed BREIT computer code (Balance Rate Equations of Ion Transportation) for calculating charge-state fractions of ion beams passing through matter is presented. The code is based on the analytical solutions of the differential balance equations for the charge-state fractions as a function of the target thickness and can be used for calculating the ion evolutions in gaseous, solid and plasma targets. The BREIT code is available on-line and requires the charge-changing cross sections and initial conditions in the input file. The eigenvalue decomposition method, applied to obtain the analytical solutions of the rate equations, is described in the paper. Calculations of non-equilibrium and equilibrium charge-state fractions, performed by the BREIT code, are compared with experimental data and results of other codes for ion beams in gaseous and solid targets. Ability and limitations of the BREIT code are discussed in detail.
Winckler, N.; Rybalchenko, A.; Shevelko, V. P.; Al-Turany, M.; Kollegger, T.; Stöhlker, Th.
2017-02-01
A detailed description of a recently developed BREIT computer code (Balance Rate Equations of Ion Transportation) for calculating charge-state fractions of ion beams passing through matter is presented. The code is based on the analytical solutions of the differential balance equations for the charge-state fractions as a function of the target thickness and can be used for calculating the ion evolutions in gaseous, solid and plasma targets. The BREIT code is available on-line and requires the charge-changing cross sections and initial conditions in the input file. The eigenvalue decomposition method, applied to obtain the analytical solutions of the rate equations, is described in the paper. Calculations of non-equilibrium and equilibrium charge-state fractions, performed by the BREIT code, are compared with experimental data and results of other codes for ion beams in gaseous and solid targets. Ability and limitations of the BREIT code are discussed in detail.
Dense topological spaces and dense continuity
Aldwoah, Khaled A.
2013-09-01
There are several attempts to generalize (or "widen") the concept of topological space. This paper uses equivalence relations to generalize the concept of topological space via the concept of equivalence relations. By the generalization, we can introduce from particular topology on a nonempty set X many new topologies, we call anyone of these new topologies a dense topology. In addition, we formulate some simple properties of dense topologies and study suitable generalizations of the concepts of limit points, closeness and continuity, as well as Jackson, Nörlund and Hahn dense topologies.
New equation of state models for hydrodynamic applications
Young, David A.; Barbee, Troy W.; Rogers, Forrest J.
1998-07-01
Two new theoretical methods for computing the equation of state of hot, dense matter are discussed. The ab initio phonon theory gives a first-principles calculation of lattice frequencies, which can be used to compare theory and experiment for isothermal and shock compression of solids. The ACTEX dense plasma theory has been improved to allow it to be compared directly with ultrahigh pressure shock data on low-Z materials. The comparisons with experiment are good, suggesting that these models will be useful in generating global EOS tables for hydrodynamic simulations.
New equation of state model for hydrodynamic applications
Energy Technology Data Exchange (ETDEWEB)
Young, D.A.; Barbee, T.W. III; Rogers, F.J.
1997-07-01
Two new theoretical methods for computing the equation of state of hot, dense matter are discussed.The ab initio phonon theory gives a first-principles calculation of lattice frequencies, which can be used to compare theory and experiment for isothermal and shock compression of solids. The ACTEX dense plasma theory has been improved to allow it to be compared directly with ultrahigh pressure shock data on low-Z materials. The comparisons with experiment are good, suggesting that these models will be useful in generating global EOS tables for hydrodynamic simulations.
New equation of state models for hydrodynamic applications
Energy Technology Data Exchange (ETDEWEB)
Young, D.A.; Barbee, T.W. III; Rogers, F.J. [Physics Department, Lawrence Livermore National Laboratory, Livermore, California 94551 (United States)
1998-07-01
Two new theoretical methods for computing the equation of state of hot, dense matter are discussed. The ab initio phonon theory gives a first-principles calculation of lattice frequencies, which can be used to compare theory and experiment for isothermal and shock compression of solids. The ACTEX dense plasma theory has been improved to allow it to be compared directly with ultrahigh pressure shock data on low-Z materials. The comparisons with experiment are good, suggesting that these models will be useful in generating global EOS tables for hydrodynamic simulations. {copyright} {ital 1998 American Institute of Physics.}
What's the Matter in Cosmology?
Clifton, Timothy
2015-01-01
Almost all models of the universe start by assuming that matter fields can be modelled as dust. In the real universe, however, matter is clumped into dense objects that are separated by regions of space that are almost empty. If we are to treat such a distribution of matter as being modelled as a fluid, in some average or coarse-grained sense, then there a number of questions that must be answered. One of the most fundamental of these is whether or not the interaction energy between masses should gravitate. If it does, then a dust-like description may not be sufficient. We would then need to ask how interaction energies should be calculated in cosmology, and how they should appear in the Friedmann-like equations that govern the large-scale behaviour of the universe. I will discuss some recent results that may shed light on these questions.
On the contribution of exchange interactions to the Vlasov equation
Zamanian, J; Marklund, M
2014-01-01
Exchange effects play an important role in determining the equilibrium properties of dense matter systems, as well as for magnetic phenomena. There exists an extensive literature concerning, e.g., the effects of exchange interactions on the equation of state of dense matter. Here, a generalization of the Vlasov equation to include exchange effects is presented allowing for electromagnetic mean fields, thus incorporating some of the dynamic effects due to the exchange interactions. Treating the exchange term perturbatively, the correction to classical Langmuir waves in plasmas is found, and the results are compared with previous work. It is noted that the relative importance of exchange effects scales similarly with density and temperature as particle dispersive effects, but that the overall magnitude is sensitive to the details of the specific problem. The implications of our results are discussed.
Warm dense mater: another application for pulsed power hydrodynamics
Energy Technology Data Exchange (ETDEWEB)
Reinovsky, Robert Emil [Los Alamos National Laboratory
2009-01-01
Pulsed Power Hydrodynamics (PPH) is an application of low-impedance pulsed power, and high magnetic field technology to the study of advanced hydrodynamic problems, instabilities, turbulence, and material properties. PPH can potentially be applied to the study of the properties of warm dense matter (WDM) as well. Exploration of the properties of warm dense matter such as equation of state, viscosity, conductivity is an emerging area of study focused on the behavior of matter at density near solid density (from 10% of solid density to slightly above solid density) and modest temperatures ({approx}1-10 eV). Conditions characteristic of WDM are difficult to obtain, and even more difficult to diagnose. One approach to producing WDM uses laser or particle beam heating of very small quantities of matter on timescales short compared to the subsequent hydrodynamic expansion timescales (isochoric heating) and a vigorous community of researchers are applying these techniques. Pulsed power hydrodynamic techniques, such as large convergence liner compression of a large volume, modest density, low temperature plasma to densities approaching solid density or through multiple shock compression and heating of normal density material between a massive, high density, energetic liner and a high density central 'anvil' are possible ways to reach relevant conditions. Another avenue to WDM conditions is through the explosion and subsequent expansion of a conductor (wire) against a high pressure (density) gas background (isobaric expansion) techniques. However, both techniques demand substantial energy, proper power conditioning and delivery, and an understanding of the hydrodynamic and instability processes that limit each technique. In this paper we will examine the challenges to pulsed power technology and to pulsed power systems presented by the opportunity to explore this interesting region of parameter space.
Dark matter concentrations in galactic nuclei according to polytropic models
Saxton, Curtis J.; Younsi, Ziri; Wu, Kinwah
2016-10-01
We calculate the radial profiles of galaxies where the nuclear region is self-gravitating, consisting of self-interacting dark matter (SIDM) with F degrees of freedom. For sufficiently high density this dark matter becomes collisional, regardless of its behaviour on galaxy scales. Our calculations show a spike in the central density profile, with properties determined by the dark matter microphysics, and the densities can reach the `mean density' of a black hole (from dividing the black hole mass by the volume enclosed by the Schwarzschild radius). For a galaxy halo of given compactness (χ ≡ 2GM/Rc2), certain values for the dark matter entropy yield a dense central object lacking an event horizon. For some soft equations of state of the SIDM (e.g. F ≳ 6), there are multiple horizonless solutions at given compactness. Although light propagates around and through a sphere composed of dark matter, it is gravitationally lensed and redshifted. While some calculations give non-singular solutions, others yield solutions with a central singularity. In all cases, the density transitions smoothly from the central body to the dark matter envelope around it, and to the galaxy's dark matter halo. We propose that pulsar timing observations will be able to distinguish between systems with a centrally dense dark matter sphere (for different equations of state) and conventional galactic nuclei that harbour a supermassive black hole.
Dense nucleonic matter and the renormalization group
Drews, Matthias; Klein, Bertram; Weise, Wolfram
2013-01-01
Fluctuations are included in a chiral nucleon-meson model within the framework of the functional renormalization group. The model, with parameters fitted to reproduce the nuclear liquid-gas phase transition, is used to study the phase diagram of QCD. We find good agreement with results from chiral effective field theory. Moreover, the results show a separation of the chemical freeze-out line and chiral symmetry restoration at large baryon chemical potentials.
Dense nucleonic matter and the renormalization group
Directory of Open Access Journals (Sweden)
Drews Matthias
2014-03-01
Full Text Available Fluctuations are included in a chiral nucleon-meson model within the framework of the functional renormalization group. The model, with parameters fitted to reproduce the nuclear liquid-gas phase transition, is used to study the phase diagram of QCD. We find good agreement with results from chiral effective field theory. Moreover, the results show a separation of the chemical freeze-out line and chiral symmetry restoration at large baryon chemical potentials.
Inverse magnetic catalysis in dense holographic matter
Preis, Florian; Schmitt, Andreas
2010-01-01
We study the chiral phase transition in a magnetic field at finite temperature and chemical potential within the Sakai-Sugimoto model, a holographic top-down approach to (large-N_c) QCD. We consider the limit of a small separation of the flavor D8-branes, which corresponds to a dual field theory comparable to a Nambu-Jona Lasinio (NJL) model. Mapping out the surface of the chiral phase transition in the parameter space of magnetic field strength, quark chemical potential, and temperature, we find that for small temperatures the addition of a magnetic field decreases the critical chemical potential for chiral symmetry restoration - in contrast to the case of vanishing chemical potential where, in accordance with the familiar phenomenon of magnetic catalysis, the magnetic field favors the chirally broken phase. This "inverse magnetic catalysis" (IMC) appears to be associated with a previously found magnetic phase transition within the chirally symmetric phase that shows an intriguing similarity to a transition ...
Aletras, Anthony H.; Ingkanisorn, W. Patricia; Mancini, Christine; Arai, Andrew E.
2005-09-01
Displacement encoding with stimulated echoes (DENSE) with a low encoding strength phase-cycled meta-DENSE readout and a two fold SENSE acceleration ( R = 2) is described. This combination reduces total breath-hold times for increased patient comfort during cardiac regional myocardial contractility studies. Images from phantoms, normal volunteers, and a patient are provided to demonstrate the SENSE-DENSE combination of methods. The overall breath-hold time is halved while preserving strain map quality.
Quantum dense key distribution
Degiovanni, I P; Castelletto, S; Rastello, M L; Bovino, F A; Colla, A M; Castagnoli, G C
2004-01-01
This paper proposes a new protocol for quantum dense key distribution. This protocol embeds the benefits of a quantum dense coding and a quantum key distribution and is able to generate shared secret keys four times more efficiently than BB84 one. We hereinafter prove the security of this scheme against individual eavesdropping attacks, and we present preliminary experimental results, showing its feasibility.
Maselli, Andrea; Ferrari, Valeria
2013-01-01
We study how to extract information on the neutron star equation of state from the gravitational wave signal emitted during the coalescence of a binary system composed by two neutron stars or a neutron star and a black hole. We use Post-Newtonian templates which include the tidal deformability parameter and, when tidal disruption occurs before merger, a frequency cut-off. Assuming that this signal is detected by Advanced LIGO/Virgo or ET, we evaluate the uncertainties on these parameters using different data analysis strategies based on the Fisher matrix approach, and on recently obtained analytical fits of the relevant quantities. We find that the tidal deformability is more effective than the stellar compactness to discriminate among different possible equations of state.
Probing warm dense lithium by inelastic X-ray scattering
Energy Technology Data Exchange (ETDEWEB)
Garcia Saiz, E.; Riley, D. [School of Mathematics and Physics, Queen' s University of Belfast, Belfast (United Kingdom); Gregori, G. [Clarendon Laboratory, University of Oxford, Parks Road, Oxford (United Kingdom); Gregori, G.; Clarke, R.J.; Neely, D.; Notley, M.M.; Spindloe, C. [Central Laser Facility, Rutherford Appleton Laboratory, Chilton, Didcot, OX (United Kingdom); Gericke, D.O.; Vorberger, J.; Wunsch, K. [Centre for Fusion, Space and Astrophysics, Department of Physics, University of Warwick, Coventry (United Kingdom); Barbrel, B.; Koenig, M. [Laboratoire pour l' Utilisation des Laser Intenses, Ecole Polytechnique - Universite Paris-6, 91 - Palaiseau (France); Freeman, R.R.; Weber, R.L.; Van Woerkom, L. [Department of Physics, The Ohio State University, Columbus, Ohio (United States); Glenzer, S.H.; Landen, O.L.; Neumayer, P.; Price, D. [Lawrence Livermore National Laboratory, Livermore, California (United States); Khattak, F.Y. [Department of Physics, Kohat University of Science and Technology, Kohat-26000, NWFP (Pakistan); Pelka, A.; Roth, M.; Schollmeier, M. [Institut fur Kernphysik, Technische Universitat Darmstadt (Germany)
2008-10-15
One of the grand challenges of contemporary physics is understanding strongly interacting quantum systems comprising such diverse examples as ultracold atoms in traps, electrons in high-temperature superconductors and nuclear matter. Warm dense matter, defined by temperatures of a few electron volts and densities comparable with solids, is a complex state of such interacting matter. Moreover, the study of warm dense matter states has practical applications for controlled thermonuclear fusion, where it is encountered during the implosion phase, and it also represents laboratory analogues of astrophysical environments found in the core of planets and the crusts of old stars. Here we demonstrate how warm dense matter states can be diagnosed and structural properties can be obtained by inelastic X-ray scattering measurements on a compressed lithium sample. Combining experiments and ab initio simulations enables us to determine its microscopic state and to evaluate more approximate theoretical models for the ionic structure. (authors)
Navarrete, Alvaro; Paredes, Angel; Salgueiro, José R.; Michinel, Humberto
2017-01-01
We analyze theoretically the Schrödinger-Poisson equation in two transverse dimensions in the presence of a Kerr term. The model describes the nonlinear propagation of optical beams in thermo-optical media and can be regarded as an analog system for a self-gravitating self-interacting wave. We compute numerically the family of radially symmetric ground-state bright stationary solutions for focusing and defocusing local nonlinearity, keeping in both cases a focusing nonlocal nonlinearity. We also analyze excited states and oscillations induced by fixing the temperature at the borders of the material. We provide simulations of soliton interactions, drawing analogies with the dynamics of galactic cores in the scalar field dark-matter scenario.
Colloquium: Nonlinear Collective Interactions in Dense Plasmas
Shukla, P K
2010-01-01
The current understanding of some important collective processes in dense quantum plasmas is presented. After reviewing the basic properties of dense quantum plasmas with degenerate electrons, we present model equations (e.g. the quantum hydrodynamic and effective nonlinear Schr\\"odinger-Poisson equations) that describe collective nonlinear phenomena at nanoscales. The effects of the electron degeneracy arise due to Heisenberg's uncertainty principle and Pauli's exclusion principle for overlapping electron wave functions that result in a nonlinear quantum electron pressure and tunneling/diffusion of electrons through a nonlinear quantum Bohm potential. Since degenerate electrons have $1/2-$spin due to their Fermionic nature, there also appear a spin electron current and a spin force acting on the electrons due to the Bohr magnetization. The present nonlinear equations do not include strong electron correlations and electron-exchange interactions. The quantum effects caused by the electron degeneracy produce n...
Energy Technology Data Exchange (ETDEWEB)
Gilles, D
2005-07-01
This report is devoted to illustrate the power of a Monte Carlo (MC) simulation code to study the thermodynamical properties of a plasma, composed of classical point particles at thermodynamical equilibrium. Such simulations can help us to manage successfully the challenge of taking into account 'exactly' all classical correlations between particles due to density effects, unlike analytical or semi-analytical approaches, often restricted to low dense plasmas. MC simulations results allow to cover, for laser or astrophysical applications, a wide range of thermodynamical conditions from more dense (and correlated) to less dense ones (where potentials are long ranged type). Therefore Yukawa potentials, with a Thomas-Fermi temperature- and density-dependent screening length, are used to describe the effective ion-ion potentials. In this report we present two MC codes ('PDE' and 'PUCE') and applications performed with these codes in different fields (spectroscopy, opacity, equation of state). Some examples of them are discussed and illustrated at the end of the report. (author)
Spherical configuration of a super-dense hot compact object with particular EoS
Tito, E P
2016-01-01
The equation of state (EoS) $P = P (\\rho, ...)$ -- pressure as a function of density and other thermodynamical quantities -- is what generates particularities of mass--radius distribution $M (R)$ for super--dense compact stellar bodies, the remnants of cosmic cataclysms. In view of recent nuclear experiments, we propose one particular EoS, which admits the critical state characterized by density $\\rho_c$ and temperature $T_c$, and which under certain conditions permits a radial distribution of the super--dense matter in "liquid" phase. We establish such conditions and demonstrate that a stable configuration is indeed possible (only) for temperatures smaller than the critical one. Using Tolman--Oppenheimer--Volkoff equations for hydrostatic equilibrium, we derive the mass--radius relation for the super--dense compact objects with masses smaller than the Sun, $M \\ll M_{\\odot}$. The obtained results are within the constraints established by both heavy--ion collision experiments and theoretical studies of neutron...
Eisenberg, Bob
2016-01-01
Charges are everywhere because most atoms are charged. Chemical bonds are formed by electrons with their charge. Charges move and interact according to Maxwell's equations in space and in atoms where the equations of electrodynamics are embedded in Schroedinger's equation as the potential. Maxwell's equations are universal, valid inside atoms and between stars from times much shorter than those of atomic motion (0.1 femtoseconds) to years (32 mega-seconds). Maxwell's equations enforce the conservation of current. Analysis shows that the electric field can take on whatever value is needed to ensure conservation of current. The properties of matter rearrange themselves to satisfy Maxwell's equations and conservation of current. Conservation of current is as universal as Maxwell's equations themselves. Yet equations of electrodynamics find little place in the literature of material physics, chemistry, or biochemistry. Kinetic models of chemistry and Markov treatments of atomic motion are ordinary differential eq...
Sobolev gradients and differential equations
Neuberger, John William
1997-01-01
A Sobolev gradient of a real-valued functional is a gradient of that functional taken relative to the underlying Sobolev norm. This book shows how descent methods using such gradients allow a unified treatment of a wide variety of problems in differential equations. Equal emphasis is placed on numerical and theoretical matters. Several concrete applications are made to illustrate the method. These applications include (1) Ginzburg-Landau functionals of superconductivity, (2) problems of transonic flow in which type depends locally on nonlinearities, and (3) minimal surface problems. Sobolev gradient constructions rely on a study of orthogonal projections onto graphs of closed densely defined linear transformations from one Hilbert space to another. These developments use work of Weyl, von Neumann and Beurling.
Goutéraux, B
2010-01-01
In this thesis, we wish to examine the black-hole solutions of modified gravity theories inspired by String Theory or Cosmology. Namely, these modifications will take the guise of additional gauge and scalar fields for the so-called Einstein-Maxwell-Dilaton theories with an exponential Liouville potential; and of extra spatial dimensions for Einstein-Gauss-Bonnet theories. The black-hole solutions of EMD theories as well as their integrability are reviewed. One of the main results is that a master equation is obtained in the case of planar horizon topology, which allows to completely integrate the problem for s special relationship between the couplings. We also classify existing solutions. We move on to the study of Gauss-Bonnet black holes, focusing on the six-dimensional case. It is found that the Gauss-Bonnet coupling exposes the Weyl tensor of the horizon to the dynamics, severely restricting the Einstein spaces admissible and effectively lifting some of the degeneracy on the horizon topology. We then tu...
Modelling dense relational data
DEFF Research Database (Denmark)
Herlau, Tue; Mørup, Morten; Schmidt, Mikkel Nørgaard;
2012-01-01
Relational modelling classically consider sparse and discrete data. Measures of influence computed pairwise between temporal sources naturally give rise to dense continuous-valued matrices, for instance p-values from Granger causality. Due to asymmetry or lack of positive definiteness they are no......Relational modelling classically consider sparse and discrete data. Measures of influence computed pairwise between temporal sources naturally give rise to dense continuous-valued matrices, for instance p-values from Granger causality. Due to asymmetry or lack of positive definiteness...... they are not naturally suited for kernel K-means. We propose a generative Bayesian model for dense matrices which generalize kernel K-means to consider off-diagonal interactions in matrices of interactions, and demonstrate its ability to detect structure on both artificial data and two real data sets....
Coherent {lambda}-{sigma}{sup 0} mixing in high-density neutron matter
Energy Technology Data Exchange (ETDEWEB)
Shinmura, S. [Department of Information Science, Gifu University, Gifu (Japan); Khin Swe Myint [Department of Physics, Mandalay University, Mandalay (Myanmar); Harada, T. [Osaka Electro-Communication University, Neyagawa, Osaka (Japan); Akaishi, Y. [Institute of Particle and Nuclear Studies, KEK, Tsukuba (Japan)
2002-02-01
The Brueckner theory is applied to hyperon properties in dense neutron matter. The coupled-channel Bethe-Goldstone equations are solved for the Nijmegen hyperon-nucleon potentials, NSC97 and NSC89. The coherent {lambda}-{sigma} coupling is strongly enhanced in neutron matter and causes large {sigma}{sup 0} mixing of 5 {approx} 25% at {rho}={rho}{sub 0}{approx}3{rho}{sub 0}. The coherent mixing drastically affects the hyperon composition of neutron-star matter. (author)
Energy Technology Data Exchange (ETDEWEB)
Li, Hui [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Li, Shengtai [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Jungman, Gerard [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Hayes-Sterbenz, Anna Catherine [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2016-08-31
The mechanisms for pinch formation in Dense Plasma Focus (DPF) devices, with the generation of high-energy ions beams and subsequent neutron production over a relatively short distance, are not fully understood. Here we report on high-fidelity 2D and 3D numerical magnetohydrodynamic (MHD) simulations using the LA-COMPASS code to study the pinch formation dynamics and its associated instabilities and neutron production.
Hu, S. X.
2014-10-01
Accurate knowledge of the properties of warm dense deuterium/tritium (DT) is essential to reliably design inertial confinement fusion (ICF) implosions. In the warm-dense-matter regime, routinely accessed by low-adiabat ICF implosions, strong-coupling and degeneracy effects play an important role in determining plasma properties. Using first-principles methods of both path-integral Monte Carlo and quantum molecular-dynamics (QMD), we have performed systematic investigation of the equation of state, thermal conductivity, and opacity for DT over a wide range of densities and temperatures. These first-principles properties have been incorporated into our hydrocodes. When compared to hydro simulations using standard plasma models, significant differences in 1-D target performance have been identified for simulations of DT implosions. For low-adiabat (α Administration under Award Number DE-NA0001944.
Equations of state for supernovae and compact stars
Oertel, M; Klähn, T; Typel, S
2016-01-01
We review various theoretical approaches for the equation of state (EoS) of dense matter, relevant for the description of core-collapse supernovae, compact stars and compact star mergers. The emphasis is put on models that are applicable to all of these scenarios. Such EoS models have to cover large ranges in baryon number density, temperature and isospin asymmetry. The characteristics of matter change dramatically within these ranges, from a mixture of nucleons, nuclei, and electrons to uniform, strongly interacting matter containing nucleons, and possibly other particles such as hyperons or quarks. As the development of an EoS requires joint efforts from many directions we consider different theoretical approaches and discuss relevant experimental and observational constraints which provide insights for future research. Finally, results from applications of the discussed EoS models are summarized.
Coalescence preference in dense packing of bubbles
Kim, Yeseul; Gim, Bopil; Gim, Bopil; Weon, Byung Mook
2015-11-01
Coalescence preference is the tendency that a merged bubble from the contact of two original bubbles (parent) tends to be near to the bigger parent. Here, we show that the coalescence preference can be blocked by densely packing of neighbor bubbles. We use high-speed high-resolution X-ray microscopy to clearly visualize individual coalescence phenomenon which occurs in micro scale seconds and inside dense packing of microbubbles with a local packing fraction of ~40%. Previous theory and experimental evidence predict a power of -5 between the relative coalescence position and the parent size. However, our new observation for coalescence preference in densely packed microbubbles shows a different power of -2. We believe that this result may be important to understand coalescence dynamics in dense packing of soft matter. This work (NRF-2013R1A22A04008115) was supported by Mid-career Researcher Program through NRF grant funded by the MEST and also was supported by Ministry of Science, ICT and Future Planning (2009-0082580) and by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry and Education, Science and Technology (NRF-2012R1A6A3A04039257).
Soft X-ray spectrometer design for warm dense plasma measurements on DARHT Axis-I
Energy Technology Data Exchange (ETDEWEB)
Ramey, Nicholas Bryan [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Perry, John Oliver [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Coleman, Joshua Eugene [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2017-07-11
A preliminary design study is being performed on a soft X-ray spectrometer to measure K-shell spectra emitted by a warm dense plasma generated on Axis-I of the Dual-Axis Radiographic Hydrodynamic Testing (DARHT) facility at Los Alamos National Laboratory. The 100-ns-long intense, relativistic electron pulse with a beam current of 1.7 kA and energy of 19.8 MeV deposits energy into a thin metal foil heating it to a warm dense plasma. The collisional ionization of the target by the electron beam produces an anisotropic angular distribution of K-shell radiation and a continuum of both scattered electrons and Bremsstrahlung up to the beam energy of 19.8 MeV. The principal goal of this project is to characterize these angular distributions to determine the optimal location to deploy the soft X-ray spectrometer. In addition, a proof-of-principle design will be presented. The ultimate goal of the spectrometer is to obtain measurements of the plasma temperature and density to benchmark equation-of-state models of the warm dense matter regime.
DNS of turbulent flows of dense gases
Sciacovelli, L.; Cinnella, P.; Gloerfelt, X.; Grasso, F.
2017-03-01
The influence of dense gas effects on compressible turbulence is investigated by means of numerical simulations of the decay of compressible homogeneous isotropic turbulence (CHIT) and of supersonic turbulent flows through a plane channel (TCF). For both configurations, a parametric study on the Mach and Reynolds numbers is carried out. The dense gas considered in these parametric studies is PP11, a heavy fluorocarbon. The results are systematically compared to those obtained for a diatomic perfect gas (air). In our computations, the thermodynamic behaviour of the dense gases is modelled by means of the Martin-Hou equation of state. For CHIT cases, initial turbulent Mach numbers up to 1 are analyzed using mesh resolutions up to 5123. For TCF, bulk Mach numbers up to 3 and bulk Reynolds numbers up to 12000 are investigated. Average profiles of the thermodynamic quantities exhibit significant differences with respect to perfect-gas solutions for both of the configurations. For high-Mach CHIT, compressible structures are modified with respect to air, with weaker eddy shocklets and stronger expansions. In TCF, the velocity profiles of dense gas flows are much less sensitive to the Mach number and collapse reasonably well in the logarithmic region without any special need for compressible scalings, unlike the case of air, and the overall flow behaviour is midway between that of a variable-property liquid and that of a gas.
Compton scattering measurements from dense plasmas
Energy Technology Data Exchange (ETDEWEB)
Glenzer, S H; Neumayer, P; Doeppner, T; Landen, L; Lee, R W; Wallace, R; Weber, S; Lee, H J; Kritcher, A L; Falcone, R; Regan, S P; Sawada, H; Meyerhofer, D D; Gregori, G; Fortmann, C; Schwarz, V; Redmer, R
2007-10-02
Compton scattering has been developed for accurate measurements of densities and temperatures in dense plasmas. One future challenge is the application of this technique to characterize compressed matter on the National Ignition Facility where hydrogen and beryllium will approach extremely dense states of matter of up to 1000 g/cc. In this regime, the density, compressibility, and capsule fuel adiabat may be directly measured from the Compton scattered spectrum of a high-energy x-ray line source. Specifically, the scattered spectra directly reflect the electron velocity distribution. In non-degenerate plasmas, the width provides an accurate measure of the electron temperatures, while in partially Fermi degenerate systems that occur in laser-compressed matter it provides the Fermi energy and hence the electron density. Both of these regimes have been accessed in experiments at the Omega laser by employing isochorically heated solid-density beryllium and moderately compressed beryllium foil targets. In the latter experiment, compressions by a factor of 3 at pressures of 40 Mbar have been measured in excellent agreement with radiation hydrodynamic modeling.
Compton scattering measurements from dense plasmas
Energy Technology Data Exchange (ETDEWEB)
Glenzer, S H; Neumayer, P; Doeppner, T; Landen, O L; Lee, R W; Wallace, R J; Weber, S [Lawrence Livermore National Laboratory, Livermore, CA (United States); Lee, H J; Kritcher, A L; Falcone, R [University of California Berkeley, Berkeley, CA 94709 (United States); Regan, S P; Sawada, H; Meyerhofer, D D [Laboratory for Laser Energetics, Rochester, NY (United States); Gregori, G [Clarendon Laboratory, University of Oxford, Oxford OX1 3PU (United Kingdom); Fortmann, C; Schwarz, V; Redmer, R [Institut fuer Physik, Universitaet Rostock, D-18051 Rostock (Germany)], E-mail: glenzer1@llnl.gov
2008-05-15
Compton scattering techniques have been developed for accurate measurements of densities and temperatures in dense plasmas. One future challenge is the application of this technique to characterize compressed matter on the National Ignition Facility where hydrogen and beryllium will approach extremely dense states of matter of up to 1000 g/cc. In this regime, the density, compressibility, and capsule fuel adiabat may be directly measured from the Compton scattered spectrum of a high-energy x-ray line source. Specifically, the scattered spectra directly reflect the electron velocity distribution. In non-degenerate plasmas, the width provides an accurate measure of the electron temperatures, while in partially Fermi degenerate systems that occur in laser-compressed matter it provides the Fermi energy and hence the electron density. Both of these regimes have been accessed in experiments at the Omega laser by employing isochorically heated solid-density beryllium and moderately compressed beryllium foil targets. In the latter experiment, compressions by a factor of 3 at pressures of 40 Mbar have been measured in excellent agreement with radiation hydrodynamic modeling.
Zhang, Wendy; Dodge, Kevin M.; Peters, Ivo R.; Ellowitz, Jake; Klein Schaarsberg, Martin H.; Jaeger, Heinrich M.
2014-03-01
Upon impact onto a solid surface at several meters-per-second, a dense suspension plug splashes by ejecting liquid-coated particles. We study the mechanism for splash formation using experiments and a numerical model. In the model, the dense suspension is idealized as a collection of cohesionless, rigid grains with finite surface roughness. The grains also experience lubrication drag as they approach, collide inelastically and rebound away from each other. Simulations using this model reproduce the measured momentum distribution of ejected particles. They also provide direct evidence supporting the conclusion from earlier experiments that inelastic collisions, rather than viscous drag, dominate when the suspension contains macroscopic particles immersed in a low-viscosity solvent such as water. Finally, the simulations reveal two distinct routes for splash formation: a particle can be ejected by a single high momentum-change collision. More surprisingly, a succession of small momentum-change collisions can accumulate to eject a particle outwards. Supported by NSF through its MRSEC program (DMR-0820054) and fluid dynamics program (CBET-1336489).
DENSE MEDIUM CYCLONE OPTIMIZATON
Energy Technology Data Exchange (ETDEWEB)
Gerald H. Luttrell; Chris J. Barbee; Peter J. Bethell; Chris J. Wood
2005-06-30
Dense medium cyclones (DMCs) are known to be efficient, high-tonnage devices suitable for upgrading particles in the 50 to 0.5 mm size range. This versatile separator, which uses centrifugal forces to enhance the separation of fine particles that cannot be upgraded in static dense medium separators, can be found in most modern coal plants and in a variety of mineral plants treating iron ore, dolomite, diamonds, potash and lead-zinc ores. Due to the high tonnage, a small increase in DMC efficiency can have a large impact on plant profitability. Unfortunately, the knowledge base required to properly design and operate DMCs has been seriously eroded during the past several decades. In an attempt to correct this problem, a set of engineering tools have been developed to allow producers to improve the efficiency of their DMC circuits. These tools include (1) low-cost density tracers that can be used by plant operators to rapidly assess DMC performance, (2) mathematical process models that can be used to predict the influence of changes in operating and design variables on DMC performance, and (3) an expert advisor system that provides plant operators with a user-friendly interface for evaluating, optimizing and trouble-shooting DMC circuits. The field data required to develop these tools was collected by conducting detailed sampling and evaluation programs at several industrial plant sites. These data were used to demonstrate the technical, economic and environmental benefits that can be realized through the application of these engineering tools.
Numerical modeling for dilute and dense sprays
Chen, C. P.; Kim, Y. M.; Shang, H. M.; Ziebarth, J. P.; Wang, T. S.
1992-01-01
We have successfully implemented a numerical model for spray-combustion calculations. In this model, the governing gas-phase equations in Eulerian coordinate are solved by a time-marching multiple pressure correction procedure based on the operator-splitting technique. The droplet-phase equations in Lagrangian coordinate are solved by a stochastic discrete particle technique. In order to simplify the calculation procedure for the circulating droplets, the effective conductivity model is utilized. The k-epsilon models are utilized to characterize the time and length scales of the gas phase in conjunction with turbulent modulation by droplets and droplet dispersion by turbulence. This method entails random sampling of instantaneous gas flow properties and the stochastic process requires a large number of computational parcels to produce the satisfactory dispersion distributions even for rather dilute sprays. Two major improvements in spray combustion modelings were made. Firstly, we have developed a probability density function approach in multidimensional space to represent a specific computational particle. Secondly, we incorporate the Taylor Analogy Breakup (TAB) model for handling the dense spray effects. This breakup model is based on the reasonable assumption that atomization and drop breakup are indistinguishable processes within a dense spray near the nozzle exit. Accordingly, atomization is prescribed by injecting drops which have a characteristic size equal to the nozzle exit diameter. Example problems include the nearly homogeneous and inhomogeneous turbulent particle dispersion, and the non-evaporating, evaporating, and burning dense sprays. Comparison with experimental data will be discussed in detail.
Deconfinement phase transition in neutron star matter
Institute of Scientific and Technical Information of China (English)
LI Ang; PENG Guang-Xiong; Lombardo U
2009-01-01
The transition from hadron phase to strange quark phase in dense matter is investigated. Instead of using the conventional bag model in quark sect, we achieve the confinement by a density-dependent quark mass derived from in-medium chiral condensates, with a thermodynamic problem improved. In nuclear slot,we adopt the equation of state from Brueckner-Bethe-Goldstone approach with three-body force. It is found that the mixed phase can occur, for reasonable confinement parameter, near the normal saturation density,and transit to pure quark matter at 4-5 times the saturation, which is quite different from the previous results from other quark models that pure quark phase can not appear at neutron-star densities.
Gobato, Ricardo; Fedrigo, Desire Francine Gobato
2015-01-01
Our work is an approach between matter and energy. Using the famous equation E = mc^2, Einstein and the Law of Universal Gravitation of Newton, we estimate that a small amount matter converted into energy is needed to lift, using the gravitational potential energy equation on the surface, a mountain of solid iron or even Mount Everest.
Wave packet molecular dynamics simulations of warm dense hydrogen
Knaup, M; Toepffer, C; Zwicknagel, G
2003-01-01
Recent shock-wave experiments with deuterium in a regime where a plasma phase-transition has been predicted and their theoretical interpretation are the matter of a controversial discussion. In this paper, we apply 'wave packet molecular dynamics' (WPMD) simulations to investigate warm dense hydrogen. The WPMD method was originally used by Heller for a description of the scattering of composite particles such as simple atoms and molecules; later it was applied to Coulomb systems by Klakow et al. In the present version of our model the protons are treated as classical point-particles, whereas the electrons are represented by a completely anti-symmetrized Slater sum of periodic Gaussian wave packets. We present recent results for the equation of state of hydrogen at constant temperature T = 300 K and of deuterium at constant Hugoniot E - E sub 0 + 1/2(1/n - 1/n sub 0)(p + p sub 0) = 0, and compare them with the experiments and several theoretical approaches.
Non-equilibrium Warm Dense Gold: Experiments and Simulations
Ng, Andrew
2015-11-01
This talk is an overview of a series of studies of non-equilibrium Warm Dense Matter using a broad range of measured properties of a single material, namely Au, as comprehensive benchmarks for theory. The measurements are made in fs-laser pump-probe experiments. For understanding lattice stability, our investigation reveals a solid phase at high energy density. This leads to the calculation of lattice dynamics using MD simulations and phonon hardening in DFT-MD simulations. For understanding electron transport in two-temperature states, AC conductivity is used to evaluate DFT-MD and Kubo-Greenwood calculations while DC conductivity is used to test Ziman calculations in a DFT average atom model. The electron density is also used to assess electronic structure calculations in DFT simulations. In our latest study of electron kinetics in states with a non-Fermi-Dirac distribution, three-body recombination is found to have a significant effect on electron thermalizaiton time. This is driving an effort to develop electron kinetics simulations using the Boltzmann equation method.
Rivasseau, Vincent; Fuchs, Jean-Nöel
2017-01-01
This fifteenth volume of the Poincare Seminar Series, Dirac Matter, describes the surprising resurgence, as a low-energy effective theory of conducting electrons in many condensed matter systems, including graphene and topological insulators, of the famous equation originally invented by P.A.M. Dirac for relativistic quantum mechanics. In five highly pedagogical articles, as befits their origin in lectures to a broad scientific audience, this book explains why Dirac matters. Highlights include the detailed "Graphene and Relativistic Quantum Physics", written by the experimental pioneer, Philip Kim, and devoted to graphene, a form of carbon crystallized in a two-dimensional hexagonal lattice, from its discovery in 2004-2005 by the future Nobel prize winners Kostya Novoselov and Andre Geim to the so-called relativistic quantum Hall effect; the review entitled "Dirac Fermions in Condensed Matter and Beyond", written by two prominent theoreticians, Mark Goerbig and Gilles Montambaux, who consider many other mater...
Neutrinos and electrons in background matter: a new approach
Studenikin, A
2006-01-01
We present a rather powerful method in investigations of different phenomena that can appear when neutrinos and electrons are moving in the background matter. This method is based on the use of the modified Dirac equations for the particles wave functions, in which the correspondent effective potentials that account for the matter influence on particles are included. The developed approach establishes a basis for investigation of different phenomena which can arise when neutrinos and electrons move in dense media, including those peculiar for astrophysical and cosmological environments. The approach developed is similar to the Furry representation of quantum electrodynamics, widely used for description of particles interactions in the presence of external electromagnetic fields, and it works when a macroscopic amount of the background particles are confined within the scale of a neutrino or electron de Broglie wave lengths. We consider the modified Dirac equations for neutrinos (of both Dirac and Majorana typ...
Bagayev, S N; Mekhov, I B; Moroshkin, P V; Chekhonin, I A; Davliatchine, E M; Kindel, E
2003-01-01
Experimental and numerical investigation of single beam and pump-probe interaction with a resonantly absorbing dense extended medium under strong and weak field-matter coupling is presented. Significant probe beam amplification and conical emission were observed. Under relatively weak pumping and high medium density, when the condition of strong coupling between field and resonant matter is fulfilled, the probe amplification spectrum has a form of spectral doublet. Stronger pumping leads to the appearance of a single peak of the probe beam amplification at the transition frequency. The greater probe intensity results in an asymmetrical transmission spectrum with amplification at the blue wing of the absorption line and attenuation at the red one. Under high medium density, a broad band of amplification appears. Theoretical model is based on the solution of the Maxwell-Bloch equations for a two-level system. Different types of probe transmission spectra obtained are attributed to complex dynamics of a coherent...
Wambach, Jochen
2013-01-01
In this presentation I discuss two aspects of the neutron-matter equation of state. One relates to the symmetry energy of nuclear matter and empirical constraints on its slope parameter at saturation density. The second deals with spatially inhomogeneous chiral phases of deconfined quark matter in the inner core of a neutron star.
Energy Technology Data Exchange (ETDEWEB)
Tahir, N.A. [Gesellschaft fuer Schwerionenforschung Darmstadt, 64291 Darmstadt (Germany)]. E-mail: n.tahir@gsi.de; Spiller, P. [Gesellschaft fuer Schwerionenforschung Darmstadt, 64291 Darmstadt (Germany); Udrea, S. [Institut fuer Kernphysik, TU Darmstadt, 64289 Darmstadt (Germany); Cortazar, O.D. [ETSI Industriales, Universidad de Castilla-La Mancha, 13071 Ciudad Real (Spain); Deutsch, C. [LPGP, Universite Paris-Sud, 91405 Orsay (France); Fortov, V.E. [Institute for Problems in Chemical Physics, Chernogolovka (Russian Federation); Gryaznov, V. [Institute for Problems in Chemical Physics, Chernogolovka (Russian Federation); Hoffmann, D.H.H. [Gesellschaft fuer Schwerionenforschung Darmstadt, 64291 Darmstadt (Germany); Institut fuer Kernphysik, TU Darmstadt, 64289 Darmstadt (Germany); Lomonosov, I.V. [Institute for Problems in Chemical Physics, Chernogolovka (Russian Federation); Ni, P. [Institut fuer Kernphysik, TU Darmstadt, 64289 Darmstadt (Germany); Piriz, A.R. [ETSI Industriales, Universidad de Castilla-La Mancha, 13071 Ciudad Real (Spain); Shutov, A. [Institute for Problems in Chemical Physics, Chernogolovka (Russian Federation); Temporal, M. [ETSI Industriales, Universidad de Castilla-La Mancha, 13071 Ciudad Real (Spain); Varentsov, D. [Institut fuer Kernphysik, TU Darmstadt, 64289 Darmstadt (Germany)
2006-04-15
This paper shows with the help of numerical simulations the capabilities of intense heavy ion beams to induce states of high-energy density (HED) in matter. Two different experimental schemes are considered, namely, HIHEX (heavy ion heating and expansion) and LAPLAS (laboratory planetary sciences). The first scheme considers isochoric heating and subsequent isentropic expansion of matter while the latter deals with low entropy compression of matter using multiple shock reflection technique. This work has been done within the framework of the HEDgeHOB (high-energy density matter generated by heavy ion beams) collaboration that has been formed to organize and facilitate construction of experimental facilities and later to perform experimental work in the field of HED matter at the future FAIR (facility for antiprotons and ion research) facility.
Tahir, N. A.; Spiller, P.; Udrea, S.; Cortazar, O. D.; Deutsch, C.; Fortov, V. E.; Gryaznov, V.; Hoffmann, D. H. H.; Lomonosov, I. V.; Ni, P.; Piriz, A. R.; Shutov, A.; Temporal, M.; Varentsov, D.
2006-04-01
This paper shows with the help of numerical simulations the capabilities of intense heavy ion beams to induce states of high-energy density (HED) in matter. Two different experimental schemes are considered, namely, HIHEX (heavy ion heating and expansion) and LAPLAS (laboratory planetary sciences). The first scheme considers isochoric heating and subsequent isentropic expansion of matter while the latter deals with low entropy compression of matter using multiple shock reflection technique. This work has been done within the framework of the HEDgeHOB (high-energy density matter generated by heavy ion beams) collaboration that has been formed to organize and facilitate construction of experimental facilities and later to perform experimental work in the field of HED matter at the future FAIR (facility for antiprotons and ion research) facility.
Hazewinkel, M.
1995-01-01
Dedication: I dedicate this paper to Prof. P.C. Baayen, at the occasion of his retirement on 20 December 1994. The beautiful equation which forms the subject matter of this paper was invented by Wouthuysen after he retired. The four complex variable Wouthuysen equation arises from an original space-
Eremets, M.; Troyan, I.
2012-12-01
Hydrogen at ambient pressures and low temperatures forms a molecular crystal which is expected to display metallic properties under megabar pressures. This metal is predicted to be superconducting with a very high critical temperature Tc of 200-400 K. The superconductor may potentially be recovered metastably at ambient pressures, and it may acquire a new quantum state as a metallic superfluid and a superconducting superfluid. Recent experiments performed at low temperatures T 220 GPa, new Raman modes arose, providing evidence for the transformation to a new opaque and electrically conductive phase IV. Above 260 GPa, in the next phase V, hydrogen reflected light well. Its resistance was nearly temperature-independent over a wide temperature range, down to 30 K, indicating that the hydrogen was metallic. Releasing the pressure induced the metallic phase to transform directly into molecular hydrogen with significant hysteresis at 200 GPa and 295 K. These data were published in our paper: M. I. Eremets and I. A. Troyan "Conductive dense hydrogen." Nature Materials 10: 927-931. We will present also new results on hydrogen: phase diagram with phases IV and V determined in P,T domain up to 300 GPa and 350 K. We will also discuss possible structures of phase IV based on our Raman and infrared measurements up to 300 GPa.
Dense Hypervelocity Plasma Jets
Case, Andrew; Witherspoon, F. Douglas; Messer, Sarah; Bomgardner, Richard; Phillips, Michael; van Doren, David; Elton, Raymond; Uzun-Kaymak, Ilker
2007-11-01
We are developing high velocity dense plasma jets for fusion and HEDP applications. Traditional coaxial plasma accelerators suffer from the blow-by instability which limits the mass accelerated to high velocity. In the current design blow-by is delayed by a combination of electrode shaping and use of a tailored plasma armature created by injection of a high density plasma at a few eV generated by arrays of capillary discharges or sparkgaps. Experimental data will be presented for a complete 32 injector gun system built for driving rotation in the Maryland MCX experiment, including data on penetration of the plasma jet through a magnetic field. We present spectroscopic measurements of plasma velocity, temperature, and density, as well as total momentum measured using a ballistic pendulum. Measurements are in agreement with each other and with time of flight data from photodiodes and a multichannel PMT. Plasma density is above 10^15 cm-3, velocities range up to about 100 km/s. Preliminary results from a quadrature heterodyne HeNe interferometer are consistent with these results.
Li, Xiao-ya; Wang, Bin; Sun, Win-min; Zong, Hong-shi
2008-01-01
The thermal properties of cold dense nuclear matter are investigated with chiral perturbation theory. The evolution curves for the baryon number density, baryon number susceptibility, pressure and the equation of state are obtained. The chiral condensate is calculated and our result shows that when the baryon chemical potential goes beyond $1150 \\mathrm{MeV}$, the absolute value of the quark condensate decreases rapidly, which indicates a tendency of chiral restoration.
X-ray scattering as a probe for warm dense mixtures and high-pressure miscibility
Wünsch, K; Gregori, G; Gericke, D O
2010-01-01
We demonstrate the abilities of elastic x-ray scattering to yield information on dense matter with multiple ion species and on the microscopic mixing in dense materials. Based on partial structure factors from ab initio simulations, a novel approach for the elastic scattering feature is applied to dense hydrogen-beryllium and hydrogen-helium mixtures. The scattering signal differs significantly between single species, real microscopic mixtures, and two separate fluids in the scattering volume.
Structures of Strong Shock Waves in Dense Plasmas
Institute of Scientific and Technical Information of China (English)
JIANG Zhong-He; HE Yong; HU Xi-Wei; LV Jian-Hong; HU Ye-Min
2007-01-01
@@ Structures of strong shock waves in dense plasmas are investigated via the steady-state Navier-Stokes equations and Poisson equation. The structures from fluid simulation agree with the ones from kinetic simulation. The effects of the transport coefficients on the structures are analysed. The enhancements of the electronic heat conduction and ionic viscosity both will broaden the width of the shock fronts, and decrease the electric fields in the fronts.
Self-diffusion in a dense magnetized plasma
Cohen, J.S.; Suttorp, L.G.
1984-01-01
Self-diffusion through dense classical one-component plasmas in a uniform magnetic field is studied by means of renormalized kinetic theory. Extensions of the Landau and the Rostoker equations to plasmas of high density are derived. The coefficient of self-diffusion along the magnetic field is evalu
Comprehensive Studies of Ultrafast Laser Excited Warm Dense Gold
Chen, Zhijiang; Mo, Mianzhen; Russell, Brandon; Tsui, Ying; Wang, Xijie; Ng, Andrew; Glenzer, Siegfried
2016-10-01
Isochoric excitation of solids by ultrafast laser pulses is an important approach to generate warm dense matter in laboratory. Electrical conductivity, structural dynamics and lattice stabilities are the most important properties in ultrafast laser excited warm dense matter. To investigate these properties, we have developed multiple advanced capabilities at SLAC recently, including the measurement of semi-DC electrical conductivity with ultrafast THz radiation, the study of solid and liquid structural dynamics by ultrafast electron diffraction (UED), and the investigation of lattice stability using frequency domain interferometry (FDI) on both front and rear surfaces. Due to the non-reversible nature in exciting solid to warm dense matter, all these diagnostics are implemented with single-shot approaches, reducing the uncertainties due to shot-to-shot fluctuations. In this talk, we will introduce these novel capabilities and present some highlighted studies in warm dense gold, which was uniformly excited by ultrafast laser pulses at 400nm. We appreciate the supports from DOE FES under FWP #100182.
Densely crosslinked polycarbosiloxanes .1. Synthesis
Flipsen, T.A C; Derks, R.; van der Vegt, H.A.; Pennings, A.J; Hadziioannou, G
1997-01-01
Novel densely crosslinked polycarbosiloxanes were obtained by using functional branched prepolymers. Two types of soluble prepolymers were prepared from di- and trifunctional alkoxysilane monomers via cohydrolysis/condensation and for both final crosslinking occurred via hydrosilylation. The prepoly
Partial ionization in dense plasmas: Comparisons among average-atom density functional models
Murillo, Michael S.; Weisheit, Jon; Hansen, Stephanie B.; Dharma-wardana, M. W. C.
2013-06-01
Nuclei interacting with electrons in dense plasmas acquire electronic bound states, modify continuum states, generate resonances and hopping electron states, and generate short-range ionic order. The mean ionization state (MIS), i.e, the mean charge Z of an average ion in such plasmas, is a valuable concept: Pseudopotentials, pair-distribution functions, equations of state, transport properties, energy-relaxation rates, opacity, radiative processes, etc., can all be formulated using the MIS of the plasma more concisely than with an all-electron description. However, the MIS does not have a unique definition and is used and defined differently in different statistical models of plasmas. Here, using the MIS formulations of several average-atom models based on density functional theory, we compare numerical results for Be, Al, and Cu plasmas for conditions inclusive of incomplete atomic ionization and partial electron degeneracy. By contrasting modern orbital-based models with orbital-free Thomas-Fermi models, we quantify the effects of shell structure, continuum resonances, the role of exchange and correlation, and the effects of different choices of the fundamental cell and boundary conditions. Finally, the role of the MIS in plasma applications is illustrated in the context of x-ray Thomson scattering in warm dense matter.
Partial ionization in dense plasmas: comparisons among average-atom density functional models.
Murillo, Michael S; Weisheit, Jon; Hansen, Stephanie B; Dharma-wardana, M W C
2013-06-01
Nuclei interacting with electrons in dense plasmas acquire electronic bound states, modify continuum states, generate resonances and hopping electron states, and generate short-range ionic order. The mean ionization state (MIS), i.e, the mean charge Z of an average ion in such plasmas, is a valuable concept: Pseudopotentials, pair-distribution functions, equations of state, transport properties, energy-relaxation rates, opacity, radiative processes, etc., can all be formulated using the MIS of the plasma more concisely than with an all-electron description. However, the MIS does not have a unique definition and is used and defined differently in different statistical models of plasmas. Here, using the MIS formulations of several average-atom models based on density functional theory, we compare numerical results for Be, Al, and Cu plasmas for conditions inclusive of incomplete atomic ionization and partial electron degeneracy. By contrasting modern orbital-based models with orbital-free Thomas-Fermi models, we quantify the effects of shell structure, continuum resonances, the role of exchange and correlation, and the effects of different choices of the fundamental cell and boundary conditions. Finally, the role of the MIS in plasma applications is illustrated in the context of x-ray Thomson scattering in warm dense matter.
Fong, Richard; Doroshkevich, Andrei G.; Turchaninov, Victor I.
1995-07-01
The theory of the formation of large-scale structure in the universe through the action of gravitational instability imply the existence of substantial amounts of baryonic dark matter, of the order of 50% of the total baryon content in the universe, in the ``voids'' or under-dense regions seen in the large-scale distribution of galaxies. We discuss also the large-scale structure of dark matter expected in voids and the present and future possibilities for the observation of this baryonic dark matter in ``voids.''
Energy Technology Data Exchange (ETDEWEB)
Fong, R. [Department of Physics, University of Durham, Durham, DH1 3LE (United Kingdom); Doroshkevich, A.G. [Keldysh Institute of Applied Mathematics, 125047 Moscow (Russian Federation)]|[Teoretical Astrophysics Centrum, Blegsdamsvej 17, Copenhagen DK 2100 (Denmark); Turchaninov, V.I. [Keldysh Institute of Applied Mathematics, 125047 Moscow (Russian Federation)
1995-07-01
The theory of the formation of large-scale structure in the universe through the action of gravitational instability imply the existence of substantial amounts of baryonic dark matter, of the order of 50% of the total baryon content in the universe, in the ``voids`` or under-dense regions seen in the large-scale distribution of galaxies. We discuss also the large-scale structure of dark matter expected in voids and the present and future possibilities for the observation of this baryonic dark matter in ``voids.`` {copyright} {ital 1995} {ital American} {ital Institute} {ital of} {ital Physics}.
Exotic x-ray emission from dense plasmas
Rosmej, F. B.; Dachicourt, R.; Deschaud, B.; Khaghani, D.; Dozières, M.; Šmíd, M.; Renner, O.
2015-11-01
Exotic x-ray emission from dense matter is identified as the complex high intensity satellite emission from autoionizing states of highly charged ions. Among a vast amount of possible transitions, double K-hole hollow ion (HI) x-ray emission K0L X → K1L X-1 + hν hollow is of exceptional interest due to its advanced diagnostic potential for matter under extreme conditions where opacity and radiation fields play important roles. Transient ab initio simulations identify intense short pulse radiation fields (e.g., those emitted by x-ray free electron lasers) as possible driving mechanisms of HI x-ray emission via two distinct channels: first, successive photoionization of K-shell electrons, second, photoionization followed by resonant photoexciation among various ionic charge states that are simultaneously present in high density matter. We demonstrated that charge exchange of intermixing inhomogenous plasmas as well as collisions driven by suprathermal electrons are possible mechanisms to populate HIs to observable levels in dense plasmas, particularly in high current Z-pinch plasmas and high intensity field-ionized laser produced plasmas. Although the HI x-ray transitions were repeatedly identified in many other cases of dense optical laser produced plasmas on the basis of atomic structure calculations, their origin is far from being understood and remains one of the last holy grails of high intensity laser-matter interaction.
Dense QCD: a Holographic Dyonic Salt
Rho, Mannque; Zahed, Ismail
2009-01-01
Dense QCD at zero temperature with a large number of colors is a crystal. We show that in the holographic dual description, the crystal is made out of pairs of dyons with $e=g=\\pm 1$ charges in a salt-like arrangement. We argue that with increasing density the dyon masses and topological charges equalize, turning the salt-like configuration to a bcc of half-instantons. The latter is dual to a cubic crystal of half-skyrmions. We estimate the transition from an fcc crystal of instantons to a bcc crystal of dyons to about 3 times nuclear matter density with a dyon binding energy of about 180 MeV.
Probing the Physical Structures of Dense Filaments
Li, Di
2015-08-01
Filament is a common feature in cosmological structures of various scales, ranging from dark matter cosmic web, galaxy clusters, inter-galactic gas flows, to Galactic ISM clouds. Even within cold dense molecular cores, filaments have been detected. Theories and simulations with (or without) different combination of physical principles, including gravity, thermal balance, turbulence, and magnetic field, can reproduce intriguing images of filaments. The ubiquity of filaments and the similarity in simulated ones make physical parameters, beyond dust column density, a necessity for understanding filament evolution. I report three projects attempting to measure physical parameters of filaments. We derive the volume density of a dense Taurus filament based on several cyanoacetylene transitions observed by GBT and ART. We measure the gas temperature of the OMC 2-3 filament based on combined GBT+VLA ammonia images. We also measured the sub-millimeter polarization vectors along OMC3. These filaments were found to be likely a cylinder-type structure, without dynamic heating, and likely accreting mass along the magnetic field lines.
Pseudo-Goldstone modes in isospin-asymmetric nuclear matter
Energy Technology Data Exchange (ETDEWEB)
Cohen, T.D. [Washington Univ., Seattle, WA (United States). Dept. of Physics; Broniowski, W. [Institute of Nuclear Physics, Cracow (Poland)
1994-12-01
We analyze the chiral limit in dense isoptin-asymmetric nuclear matter. It is shown that the pseudo-Goldstone modes in this system are qualitatively different from the case of isospin-symmetric matter. (author). 20 refs.
Pseudo-Goldstone modes in isospin-asymmetric nuclear matter
Energy Technology Data Exchange (ETDEWEB)
Cohen, T.D. [Univ. of Washington, Seattle, WA (United States); Broniowski, W. [H. Niewodniczanski Institute of Nuclear Physics, Cracow (Poland)
1995-01-01
The authors analyze the chiral limit in dense isospin-asymmetric nuclear matter. It is shown that the pseudo-Goldstone modes in this system are qualitatively different from the case of isospin-symmetric matter.
Monte Carlo simulation of electrons in dense gases
Tattersall, Wade; Boyle, Greg; Cocks, Daniel; Buckman, Stephen; White, Ron
2014-10-01
We implement a Monte-Carlo simulation modelling the transport of electrons and positrons in dense gases and liquids, by using a dynamic structure factor that allows us to construct structure-modified effective cross sections. These account for the coherent effects caused by interactions with the relatively dense medium. The dynamic structure factor also allows us to model thermal gases in the same manner, without needing to directly sample the velocities of the neutral particles. We present the results of a series of Monte Carlo simulations that verify and apply this new technique, and make comparisons with macroscopic predictions and Boltzmann equation solutions. Financial support of the Australian Research Council.
Khodel, V V; Clark, J W
2001-01-01
The separation method developed earlier by us [Nucl. Phys. A 598 390 (1996)] to calculate and analyze solutions of the BCS gap equation for sup 1 S sub 0 pairing is extended and applied to sup 3 P sub 2 - sup 3 F sub 2 pairing in pure neutron matter. The pairing matrix elements are written as a separable part plus a remainder that vanishes when either momentum variable is on the Fermi surface. This decomposition effects a separation of (i) the problem of determining the dependence of the gap components in a spin-angle representation on the magnitude of the momentum (described by a set of functions independent of magnetic quantum number) from (ii) the problem of determining the dependence of the gap on angle or magnetic projection. The former problem is solved through a set of nonsingular, quasilinear integral equations, providing inputs for solution of the latter problem through a coupled system of algebraic equations for a set of numerical coefficients. An incisive criterion is given for finding the upper cr...
Ablyazimov, T.; Abuhoza, A.; Adak, R. P.; Adamczyk, M.; Agarwal, K.; Aggarwal, M. M.; Ahammed, Z.; Ahmad, F.; Ahmad, N.; Ahmad, S.; Akindinov, A.; Akishin, P.; Akishina, E.; Akishina, T.; Akishina, V.; Akram, A.; Al-Turany, M.; Alekseev, I.; Alexandrov, E.; Alexandrov, I.; Amar-Youcef, S.; Anđelić, M.; Andreeva, O.; Andrei, C.; Andronic, A.; Anisimov, Yu.; Appelshäuser, H.; Argintaru, D.; Atkin, E.; Avdeev, S.; Averbeck, R.; Azmi, M. D.; Baban, V.; Bach, M.; Badura, E.; Bähr, S.; Balog, T.; Balzer, M.; Bao, E.; Baranova, N.; Barczyk, T.; Bartoş, D.; Bashir, S.; Baszczyk, M.; Batenkov, O.; Baublis, V.; Baznat, M.; Becker, J.; Becker, K.-H.; Belogurov, S.; Belyakov, D.; Bendarouach, J.; Berceanu, I.; Bercuci, A.; Berdnikov, A.; Berdnikov, Y.; Berendes, R.; Berezin, G.; Bergmann, C.; Bertini, D.; Bertini, O.; Beşliu, C.; Bezshyyko, O.; Bhaduri, P. P.; Bhasin, A.; Bhati, A. K.; Bhattacharjee, B.; Bhattacharyya, A.; Bhattacharyya, T. K.; Biswas, S.; Blank, T.; Blau, D.; Blinov, V.; Blume, C.; Bocharov, Yu.; Book, J.; Breitner, T.; Brüning, U.; Brzychczyk, J.; Bubak, A.; Büsching, H.; Bus, T.; Butuzov, V.; Bychkov, A.; Byszuk, A.; Cai, Xu; Cãlin, M.; Cao, Ping; Caragheorgheopol, G.; Carević, I.; Cătănescu, V.; Chakrabarti, A.; Chattopadhyay, S.; Chaus, A.; Chen, Hongfang; Chen, LuYao; Cheng, Jianping; Chepurnov, V.; Cherif, H.; Chernogorov, A.; Ciobanu, M. I.; Claus, G.; Constantin, F.; Csanád, M.; D'Ascenzo, N.; Das, Supriya; Das, Susovan; de Cuveland, J.; Debnath, B.; Dementiev, D.; Deng, Wendi; Deng, Zhi; Deppe, H.; Deppner, I.; Derenovskaya, O.; Deveaux, C. A.; Deveaux, M.; Dey, K.; Dey, M.; Dillenseger, P.; Dobyrn, V.; Doering, D.; Dong, Sheng; Dorokhov, A.; Dreschmann, M.; Drozd, A.; Dubey, A. K.; Dubnichka, S.; Dubnichkova, Z.; Dürr, M.; Dutka, L.; Dželalija, M.; Elsha, V. V.; Emschermann, D.; Engel, H.; Eremin, V.; Eşanu, T.; Eschke, J.; Eschweiler, D.; Fan, Huanhuan; Fan, Xingming; Farooq, M.; Fateev, O.; Feng, Shengqin; Figuli, S. P. D.; Filozova, I.; Finogeev, D.; Fischer, P.; Flemming, H.; Förtsch, J.; Frankenfeld, U.; Friese, V.; Friske, E.; Fröhlich, I.; Frühauf, J.; Gajda, J.; Galatyuk, T.; Gangopadhyay, G.; García Chávez, C.; Gebelein, J.; Ghosh, P.; Ghosh, S. K.; Gläßel, S.; Goffe, M.; Golinka-Bezshyyko, L.; Golovatyuk, V.; Golovnya, S.; Golovtsov, V.; Golubeva, M.; Golubkov, D.; Gómez Ramírez, A.; Gorbunov, S.; Gorokhov, S.; Gottschalk, D.; Gryboś, P.; Grzeszczuk, A.; Guber, F.; Gudima, K.; Gumiński, M.; Gupta, A.; Gusakov, Yu.; Han, Dong; Hartmann, H.; He, Shue; Hehner, J.; Heine, N.; Herghelegiu, A.; Herrmann, N.; Heß, B.; Heuser, J. M.; Himmi, A.; Höhne, C.; Holzmann, R.; Hu, Dongdong; Huang, Guangming; Huang, Xinjie; Hutter, D.; Ierusalimov, A.; Ilgenfritz, E.-M.; Irfan, M.; Ivanischev, D.; Ivanov, M.; Ivanov, P.; Ivanov, Valery; Ivanov, Victor; Ivanov, Vladimir; Ivashkin, A.; Jaaskelainen, K.; Jahan, H.; Jain, V.; Jakovlev, V.; Janson, T.; Jiang, Di; Jipa, A.; Kadenko, I.; Kähler, P.; Kämpfer, B.; Kalinin, V.; Kallunkathariyil, J.; Kampert, K.-H.; Kaptur, E.; Karabowicz, R.; Karavichev, O.; Karavicheva, T.; Karmanov, D.; Karnaukhov, V.; Karpechev, E.; Kasiński, K.; Kasprowicz, G.; Kaur, M.; Kazantsev, A.; Kebschull, U.; Kekelidze, G.; Khan, M. M.; Khan, S. A.; Khanzadeev, A.; Khasanov, F.; Khvorostukhin, A.; Kirakosyan, V.; Kirejczyk, M.; Kiryakov, A.; Kiš, M.; Kisel, I.; Kisel, P.; Kiselev, S.; Kiss, T.; Klaus, P.; Kłeczek, R.; Klein-Bösing, Ch.; Kleipa, V.; Klochkov, V.; Kmon, P.; Koch, K.; Kochenda, L.; Koczoń, P.; Koenig, W.; Kohn, M.; Kolb, B. W.; Kolosova, A.; Komkov, B.; Korolev, M.; Korolko, I.; Kotte, R.; Kovalchuk, A.; Kowalski, S.; Koziel, M.; Kozlov, G.; Kozlov, V.; Kramarenko, V.; Kravtsov, P.; Krebs, E.; Kreidl, C.; Kres, I.; Kresan, D.; Kretschmar, G.; Krieger, M.; Kryanev, A. V.; Kryshen, E.; Kuc, M.; Kucewicz, W.; Kucher, V.; Kudin, L.; Kugler, A.; Kumar, Ajit; Kumar, Ashwini; Kumar, L.; Kunkel, J.; Kurepin, A.; Kurepin, N.; Kurilkin, A.; Kurilkin, P.; Kushpil, V.; Kuznetsov, S.; Kyva, V.; Ladygin, V.; Lara, C.; Larionov, P.; Laso García, A.; Lavrik, E.; Lazanu, I.; Lebedev, A.; Lebedev, S.; Lebedeva, E.; Lehnert, J.; Lehrbach, J.; Leifels, Y.; Lemke, F.; Li, Cheng; Li, Qiyan; Li, Xin; Li, Yuanjing; Lindenstruth, V.; Linnik, B.; Liu, Feng; Lobanov, I.; Lobanova, E.; Löchner, S.; Loizeau, P.-A.; Lone, S. A.; Lucio Martínez, J. A.; Luo, Xiaofeng; Lymanets, A.; Lyu, Pengfei; Maevskaya, A.; Mahajan, S.; Mahapatra, D. P.; Mahmoud, T.; Maj, P.; Majka, Z.; Malakhov, A.; Malankin, E.; Malkevich, D.; Malyatina, O.; Malygina, H.; Mandal, M. M.; Mandal, S.; Manko, V.; Manz, S.; Marin Garcia, A. M.; Markert, J.; Masciocchi, S.; Matulewicz, T.; Meder, L.; Merkin, M.; Mialkovski, V.; Michel, J.; Miftakhov, N.; Mik, L.; Mikhailov, K.; Mikhaylov, V.; Milanović, B.; Militsija, V.; Miskowiec, D.; Momot, I.; Morhardt, T.; Morozov, S.; Müller, W. F. J.; Müntz, C.; Mukherjee, S.; Muñoz Castillo, C. E.; Murin, Yu.; Najman, R.; Nandi, C.; Nandy, E.; Naumann, L.; Nayak, T.; Nedosekin, A.; Negi, V. S.; Niebur, W.; Nikulin, V.; Normanov, D.; Oancea, A.; Oh, Kunsu; Onishchuk, Yu.; Ososkov, G.; Otfinowski, P.; Ovcharenko, E.; Pal, S.; Panasenko, I.; Panda, N. R.; Parzhitskiy, S.; Patel, V.; Pauly, C.; Penschuck, M.; Peshekhonov, D.; Peshekhonov, V.; Petráček, V.; Petri, M.; Petriş, M.; Petrovici, A.; Petrovici, M.; Petrovskiy, A.; Petukhov, O.; Pfeifer, D.; Piasecki, K.; Pieper, J.; Pietraszko, J.; Płaneta, R.; Plotnikov, V.; Plujko, V.; Pluta, J.; Pop, A.; Pospisil, V.; Poźniak, K.; Prakash, A.; Prasad, S. K.; Prokudin, M.; Pshenichnov, I.; Pugach, M.; Pugatch, V.; Querchfeld, S.; Rabtsun, S.; Radulescu, L.; Raha, S.; Rami, F.; Raniwala, R.; Raniwala, S.; Raportirenko, A.; Rautenberg, J.; Rauza, J.; Ray, R.; Razin, S.; Reichelt, P.; Reinecke, S.; Reinefeld, A.; Reshetin, A.; Ristea, C.; Ristea, O.; Rodriguez Rodriguez, A.; Roether, F.; Romaniuk, R.; Rost, A.; Rostchin, E.; Rostovtseva, I.; Roy, Amitava; Roy, Ankhi; Rożynek, J.; Ryabov, Yu.; Sadovsky, A.; Sahoo, R.; Sahu, P. K.; Sahu, S. K.; Saini, J.; Samanta, S.; Sambyal, S. S.; Samsonov, V.; Sánchez Rosado, J.; Sander, O.; Sarangi, S.; Satława, T.; Sau, S.; Saveliev, V.; Schatral, S.; Schiaua, C.; Schintke, F.; Schmidt, C. J.; Schmidt, H. R.; Schmidt, K.; Scholten, J.; Schweda, K.; Seck, F.; Seddiki, S.; Selyuzhenkov, I.; Semennikov, A.; Senger, A.; Senger, P.; Shabanov, A.; Shabunov, A.; Shao, Ming; Sheremetiev, A. D.; Shi, Shusu; Shumeiko, N.; Shumikhin, V.; Sibiryak, I.; Sikora, B.; Simakov, A.; Simon, C.; Simons, C.; Singaraju, R. N.; Singh, A. K.; Singh, B. K.; Singh, C. P.; Singhal, V.; Singla, M.; Sitzmann, P.; Siwek-Wilczyńska, K.; Škoda, L.; Skwira-Chalot, I.; Som, I.; Song, Guofeng; Song, Jihye; Sosin, Z.; Soyk, D.; Staszel, P.; Strikhanov, M.; Strohauer, S.; Stroth, J.; Sturm, C.; Sultanov, R.; Sun, Yongjie; Svirida, D.; Svoboda, O.; Szabó, A.; Szczygieł, R.; Talukdar, R.; Tang, Zebo; Tanha, M.; Tarasiuk, J.; Tarassenkova, O.; Târzilă, M.-G.; Teklishyn, M.; Tischler, T.; Tlustý, P.; Tölyhi, T.; Toia, A.; Topil'skaya, N.; Träger, M.; Tripathy, S.; Tsakov, I.; Tsyupa, Yu.; Turowiecki, A.; Tuturas, N. G.; Uhlig, F.; Usenko, E.; Valin, I.; Varga, D.; Vassiliev, I.; Vasylyev, O.; Verbitskaya, E.; Verhoeven, W.; Veshikov, A.; Visinka, R.; Viyogi, Y. P.; Volkov, S.; Volochniuk, A.; Vorobiev, A.; Voronin, Aleksey; Voronin, Alexander; Vovchenko, V.; Vznuzdaev, M.; Wang, Dong; Wang, Xi-Wei; Wang, Yaping; Wang, Yi; Weber, M.; Wendisch, C.; Wessels, J. P.; Wiebusch, M.; Wiechula, J.; Wielanek, D.; Wieloch, A.; Wilms, A.; Winckler, N.; Winter, M.; Wiśniewski, K.; Wolf, Gy.; Won, Sanguk; Wu, Ke-Jun; Wüstenfeld, J.; Xiang, Changzhou; Xu, Nu; Yang, Junfeng; Yang, Rongxing; Yin, Zhongbao; Yoo, In-Kwon; Yuldashev, B.; Yushmanov, I.; Zabołotny, W.; Zaitsev, Yu.; Zamiatin, N. I.; Zanevsky, Yu.; Zhalov, M.; Zhang, Yifei; Zhang, Yu; Zhao, Lei; Zheng, Jiajun; Zheng, Sheng; Zhou, Daicui; Zhou, Jing; Zhu, Xianglei; Zinchenko, A.; Zipper, W.; Żoładź, M.; Zrelov, P.; Zryuev, V.; Zumbruch, P.; Zyzak, M.
2017-03-01
Substantial experimental and theoretical efforts worldwide are devoted to explore the phase diagram of strongly interacting matter. At LHC and top RHIC energies, QCD matter is studied at very high temperatures and nearly vanishing net-baryon densities. There is evidence that a Quark-Gluon-Plasma (QGP) was created at experiments at RHIC and LHC. The transition from the QGP back to the hadron gas is found to be a smooth cross over. For larger net-baryon densities and lower temperatures, it is expected that the QCD phase diagram exhibits a rich structure, such as a first-order phase transition between hadronic and partonic matter which terminates in a critical point, or exotic phases like quarkyonic matter. The discovery of these landmarks would be a breakthrough in our understanding of the strong interaction and is therefore in the focus of various high-energy heavy-ion research programs. The Compressed Baryonic Matter (CBM) experiment at FAIR will play a unique role in the exploration of the QCD phase diagram in the region of high net-baryon densities, because it is designed to run at unprecedented interaction rates. High-rate operation is the key prerequisite for high-precision measurements of multi-differential observables and of rare diagnostic probes which are sensitive to the dense phase of the nuclear fireball. The goal of the CBM experiment at SIS100 (√{s_{NN}}= 2.7-4.9 GeV) is to discover fundamental properties of QCD matter: the phase structure at large baryon-chemical potentials ( μ_B > 500 MeV), effects of chiral symmetry, and the equation of state at high density as it is expected to occur in the core of neutron stars. In this article, we review the motivation for and the physics programme of CBM, including activities before the start of data taking in 2024, in the context of the worldwide efforts to explore high-density QCD matter.
Directory of Open Access Journals (Sweden)
Waldyr A. Rodrigues
2016-01-01
Full Text Available We discuss the physics of interacting fields and particles living in a de Sitter Lorentzian manifold (dSLM, a submanifold of a 5-dimensional pseudo-Euclidean (5dPE equipped with a metric tensor inherited from the metric of the 5dPE space. The dSLM is naturally oriented and time oriented and is the arena used to study the energy-momentum conservation law and equations of motion for physical systems living there. Two distinct de Sitter space-time structures MdSL and MdSTP are introduced given dSLM, the first equipped with the Levi-Civita connection of its metric field and the second with a metric compatible parallel connection. Both connections are used only as mathematical devices. Thus, for example, MdSL is not supposed to be the model of any gravitational field in the General Relativity Theory (GRT. Misconceptions appearing in the literature concerning the motion of free particles in dSLM are clarified. Komar currents are introduced within Clifford bundle formalism permitting the presentation of Einstein equation as a Maxwell like equation and proving that in GRT there are infinitely many conserved currents. We prove that in GRT even when the appropriate Killing vector fields exist it is not possible to define a conserved energy-momentum covector as in special relativistic theories.
Predicting diffusivities in dense fluid mixtures
Directory of Open Access Journals (Sweden)
C. DARIVA
1999-09-01
Full Text Available In this work the Enskog solution of the Boltzmann equation, as corrected by Speedy, together with the Weeks-Chandler-Andersen (WCA perturbation theory of liquids is employed in correlating and predicting self-diffusivities of dense fluids. Afterwards this theory is used to estimate mutual diffusion coefficients of solutes at infinite dilution in sub and supercritical solvents. We have also investigated the behavior of Fick diffusion coefficients in the proximity of a binary vapor-liquid critical point since this subject is of great interest for extraction purposes. The approach presented here, which makes use of a density and temperature dependent hard-sphere diameter, is shown to be excellent for predicting diffusivities in dense pure fluids and fluid mixtures. The calculations involved highly nonideal mixtures as well as systems with high molecular asymmetry. The predicted diffusivities are in good agreement with the experimental data for the pure and binary systems. The methodology proposed here makes only use of pure component information and density of mixtures. The simple algebraic relations are proposed without any binary adjustable parameters and can be readily used for estimating diffusivities in multicomponent mixtures.
Charmonium propagation through a dense medium
Directory of Open Access Journals (Sweden)
Kopeliovich B.Z.
2015-01-01
Full Text Available Attenuation of a colourless c̄c dipole propagating with a large momentum through a hot medium originates from two sources, Debye screening (melting, and inelastic collisions with surrounding scattering centres (absorption. The former never terminates completely production of a bound charmonium in heavy ion collisions, even at very high temperatures. The latter, is controlled my the magnitude of the dipole cross section, related to the transport coefficient, which is the rate of transverse momentum broadening in the medium. A novel procedure of Lorentz boosting of the Schrödinger equation is developed, which allows to calculate the charmonium survival probability employing the path-integral technique, incorporating both melting and absorption. A novel mechanism of charmonium regeneration in a dense medium is proposed.
Heinz, U; Denicol, G S; Martinez, M; Nopoush, M; Noronha, J; Ryblewski, R; Strickland, M
2015-01-01
Several recent results are reported from work aiming to improve the quantitative precision of relativistic viscous fluid dynamics for relativistic heavy-ion collisions. The dense matter created in such collisions expands in a highly anisotropic manner. Due to viscous effects this also renders the local momentum distribution anisotropic. Optimized hydrodynamic approaches account for these anisotropies already at leading order in a gradient expansion. Recently discovered exact solutions of the relativistic Boltzmann equation in anisotropically expanding systems provide a powerful testbed for such improved hydrodynamic approximations. We present the latest status of our quest for a formulation of relativistic viscous fluid dynamics that is optimized for applications to relativistic heavy-ion collisions.
Local-field approach to the interaction of an ultracold dense Bose gas with a light field
Krutitsky, K V; Audretsch, J
1999-01-01
The propagation of the electromagnetic field of a laser through a dense Bose gas is examined and nonlinear operator equations for the motion of the center of mass of the atoms are derived. The goal is to present a self-consistent set of coupled Maxwell-Bloch equations for atomic and electromagnetic fields generalized to include the atomic center-of-mass motion. Two effects are considered: The ultracold gas forms a medium for the Maxwell field which modifies its propagation properties. Combined herewith is the influence of the dipole-dipole interaction between atoms which leads to a density dependent shift of the atomic transition frequency. It is expressed in a position dependent detuning and is the reason for the nonlinearity. This results in a direct and physically transparent way from the quantum field theoretical version of the local-field approach to electrodynamics in quantum media. The equations for the matter fields are general. Previously published nonlinear equations are obtained as limiting cases. ...
Strong and Electroweak Matter 2004
Eskola, Kari J.; Kainulainen, Kimmo; Kajantie, Keijo; Rummukainen, Kari
the equation of state for two flavor QCD at non-zero Baryon density / S. Ejiri ... [et al.] -- Phase conversion after a chiral transition: effects from inhomogeneities and finite size / E. S. Fraga -- Coherent Baryogenesis and nonthermal leptogenesis: a comparison / B. Garbrecht, T. Prokopec and M. G. Schmidt -- Two aspects of color superconductivity: gauge independence and neutrality / A. Gerhold -- QCD phase diagram in nonlocal chiral quark models / D. Gómez Dumm -- QCD equation of state and dark matter / M. Hindmarsh and O. Philipsen -- Analytical approach to SU(2) Yang-Mills thermodynamics / R. Hofmann -- Free energies of static three quark systems / K. Hübner ... [et al.] -- Color ferromagnetic state of dense quark matter / A. Iwazaki -- Axial currents from CKM matrix CP violation and electroweak Baryogenesis / T. Konstandin -- Dilute monopole gas, and K-tensions in gluodynamics / C. P. Korthals Altes and P. Giovannangeli -- Infrared QCD and the renormalisation group / D. F. Litim ... [et al.] -- Residual confinement in high-temperature Yang-Mills theory / A. Maas ... [et al.] -- Scalar O(N) model at finite temperature - 2PI effective potential in different approximations / J. Baacke and S. Michalski -- Cutoff effects in meson spectral functions / T. Blum and P. Petreczky -- Anomalous specific heat in ultradegenerate QED and QCD / A. Gerhold, A. Ipp and A. Rebhan -- Color-superconducting phases in cold and dense quark matter / A. Schmitt -- Non fermi liquid effects in dense matter and compact star cooling / K. Schwenzer and T. Schäfer -- Prethermalisation and the build-up of the Higgs effect / D. Sexty and A. Patkós -- Vector meson at non-zero Baryon density and zero sound / S. J. Hands and C. G. Strouthos -- Impact of Baryon resonances on the chiral phase transition / D. Zschiesche ... [et al.].
Leahy, Denis
2010-01-01
Millisecond pulsars are rapidly rotating neutron stars where general relativity plays a strong role in the propagation of light from the neutron star to observer. The observed X-ray pulse shapes carry information on the mass, radius and surface shape of the neutron star. Comparison of theoretical calculations of pulse shapes with observed pulse shapes can give useful constraints on neutron star properties. Then comparison with calculated properties giving an assumed equation of state (EOS) can confirm or rule out the assumed EOS.
23 Elemental Composition of Suspended Particulate Matter ...
African Journals Online (AJOL)
`123456789jkl''''#
coarse and fine particulate matter fractions at the higher height. The elements Cu, Zn, ... dense population, high density housing, the ..... could be in the vapor phase at the higher height. .... precipitation from a remote background site in. India.
Constructing dense genetic linkage maps
Jansen, J.; Jong, de A.G.; Ooijen, van J.W.
2001-01-01
This paper describes a novel combination of techniques for the construction of dense genetic linkage maps. The construction of such maps is hampered by the occurrence of even small proportions of typing errors. Simulated annealing is used to obtain the best map according to the optimality criterion:
Method for dense packing discovery.
Kallus, Yoav; Elser, Veit; Gravel, Simon
2010-11-01
The problem of packing a system of particles as densely as possible is foundational in the field of discrete geometry and is a powerful model in the material and biological sciences. As packing problems retreat from the reach of solution by analytic constructions, the importance of an efficient numerical method for conducting de novo (from-scratch) searches for dense packings becomes crucial. In this paper, we use the divide and concur framework to develop a general search method for the solution of periodic constraint problems, and we apply it to the discovery of dense periodic packings. An important feature of the method is the integration of the unit-cell parameters with the other packing variables in the definition of the configuration space. The method we present led to previously reported improvements in the densest-known tetrahedron packing. Here, we use the method to reproduce the densest-known lattice sphere packings and the best-known lattice kissing arrangements in up to 14 and 11 dimensions, respectively, providing numerical evidence for their optimality. For nonspherical particles, we report a dense packing of regular four-dimensional simplices with density ϕ=128/219≈0.5845 and with a similar structure to the densest-known tetrahedron packing.
Unconditional Continuous Variable Dense Coding
Ralph, T C
2002-01-01
We investigate the conditions under which unconditional dense coding can be achieved using continuous variable entanglement. We consider the effect of entanglement impurity and detector efficiency and discuss experimental verification. We conclude that the requirements for a strong demonstration are not as stringent as previously thought and are within the reach of present technology.
Rapid heating of matter using high power lasers
Energy Technology Data Exchange (ETDEWEB)
Bang, Woosuk [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2016-04-08
This slide presentation describes motivation (uniform and rapid heating of a target, opportunity to study warm dense matter, study of nuclear fusion reactions), rapid heating of matter with intense laser-driven ion beams, visualization of the expanding warm dense gold and diamond, and nuclear fusion experiments using high power lasers (direct heating of deuterium spheres (radius ~ 10nm) with an intense laser pulse.
The Compressed Baryonic Matter Experiment at FAIR
Energy Technology Data Exchange (ETDEWEB)
Heuser, Johann M.
2013-05-02
The Compressed Baryonic Matter (CBM) experiment will explore the phase diagram of strongly interacting matter in the region of high net baryon densities. The experiment is being laid out for nuclear collision rates from 0.1 to 10 MHz to access a unique wide spectrum of probes, including rarest particles like hadrons containing charm quarks, or multi-strange hyperons. The physics programme will be performed with ion beams of energies up to 45 GeV/nucleon. Those will be delivered by the SIS-300 synchrotron at the completed FAIR accelerator complex. Parts of the research programme can already be addressed with the SIS-100 synchrotron at the start of FAIR operation in 2018. The initial energy range of up to 11 GeV/nucleon for heavy nuclei, 14 GeV/nucleon for light nuclei, and 29 GeV for protons, allows addressing the equation of state of compressed nuclear matter, the properties of hadrons in a dense medium, the production and propagation of charm near the production threshold, and exploring the third, strange dimension of the nuclide chart. In this article we summarize the CBM physics programme, the preparation of the detector, and give an outline of the recently begun construction of the Facility for Antiproton and Ion Research.
A review of flow modeling for dense medium cyclones
Energy Technology Data Exchange (ETDEWEB)
M. Narasimha; M.S. Brennan; P.N. Holtham [Tata Steel, Jamshedpur (India). R& amp; D Division
2006-06-15
A critical assessment is presented for the existing fluid flow models used for dense medium cyclones (DMCs) and hydrocyclones. As the present discussion indicates, the understanding of dense medium cyclone flow is still far from the complete. However, its similarity to the hydrocyclone provides a basis for improved understanding of fluid flow in DMCs. The complexity of fluid flow in DMCs is basically due to the existence of medium as well as the dominance of turbulent particle size and density effects on separation. Both the theoretical and experimental analysis is done with respect to two-phase motions and solid phase flow in hydrocyclones or DMCs. A detailed discussion is presented on the empirical, semiempirical, and the numerical models based upon both the vorticity-stream function approach and Navier-Stokes equations in their primitive variables and in cylindrical coordinates available in literature. The existing equations describing turbulence and multiphase flows in cyclone are also critically reviewed.
Collaborative Research: Neutrinos and Nucleosynthesis in Hot and Dense Matter
Energy Technology Data Exchange (ETDEWEB)
Alford, Mark [Washington Univ., St. Louis, MO (United States)
2015-05-31
The Topical Collaboration funded one of Prof. Alford's graduate students, Jun (Sophia) Han, by providing 75% of her support. The work reported here was wholly or partly supported by the Topical Collaboration. Additional support, e.g. for postdoc Kai Schwenzer, came from Nuclear Theory grant #DE-FG02-05ER41375.
Creation and transmutation of magnetized nuclei at explosively dense matter
Directory of Open Access Journals (Sweden)
Kondratyev V. N.
2012-12-01
Full Text Available Synthesis of iron group chemical elements is considered for the ultra-magnetized astrophysical plasma in supernovae. Maximum of nucleosynthesis products is shown to shift towards smaller mass numbers approaching titanium due to magnetic modification of nuclear structure. The results are corroborated with an excess of 44Ti revealed from the INTEGRAL mission data.
Top quarks in hot dense matter in the CMS detector
Vermunt, Luuk
2016-01-01
A feasibility study of the measurement of the top quark pair production cross section using the muon+jets channel in heavy-ion collisions is presented. Data, corresponding to a total integrated luminosity of 0.404 nb$^{-1}$ at 5.02 TeV/nucleon, accumulated by the CMS experiment is used. After establishing a robust event selection we evaluate the expected composition of the sample in data. Due to the still low $S/B$ ratio, no observation of this process has been made in our study. Further improvements on the baseline selection studied in this note are furthermore discussed.
Diagnostics for heavy ion beam driven Warm dense matter experiments
Ni, Pavel; Bieniosek, Frank; Lidia, Steve; Seidl, Peter; Waldron, Will
2009-11-01
A set of diagnostic has been developed for the WDM experiments at Berkeley. The diagnostics are aimed at the in-situ measurement of temperature, expansion velocity and pressure of a WDM sample.A specially developed two-channel pyrometer probes color temperatures at 750 nm,1000 nm and 1400 nm, with 75 ps temporal resolution. The system has a broad dynamic range with a lower limit ˜2000 K and upper limit ˜100000 K. The pyrometer design is based on custom spectrally selective beam splitters and can be upgraded up to seven channels. Continuous target emission from 450 nm to 850 nm is recorder by a custom spectrometer, consisting of a high dynamic range Hamamatsu streak camera and a holographic grating. The system is calibrated absolutely with a tungsten ribbon lamp (NIST traceable). The various sweeping times of the streak unit allows for temporal resolution varying from 1 ps to 1 us. The spectrometer has a lower sensitivity than the pyrometer and applied in experiments with higher temperatures. Hydrodynamic expansion velocity of a target's free surface is measured by a commercially available all- fiber Doppler shift laser interferometer (VISAR). The installed delay etalon allows for velocity detection with 2 m/s precision and 0.5 ns resolution.
Collaborative Research: Neutrinos and Nucleosynthesis in Hot Dense Matter
Energy Technology Data Exchange (ETDEWEB)
McLaughlin, Gail [North Carolina State Univ., Raleigh, NC (United States); Schaefer, Thomas [North Carolina State Univ., Raleigh, NC (United States)
2015-05-31
The major accomplishments of the research activity at NC State during the five years were: to determine the effects and signatures of turbulence in supernova, to calculate r-process and supernova nucleosynthesis, and to determine the neutrino scattering and flavor transformation that occurs in black hole accretion disks. This report goes into more detail on them.
Dense baryonic matter in strong coupling lattice gauge theory
Bringoltz, B
2004-01-01
We investigate the strong coupling limit of lattice QCD in the Hamiltonian formulation for systems with non-zero baryon density. In leading order the Hamiltonian looks like an antiferromagnet that is invariant under global U(N_f)xU(N_f) and local SU(N_c). Physically it describes meson dynamics with a fixed background of baryon density. We study this Hamiltonian with several baryon number distributions, and concentrate on the global symmetries of the ground state and on the properties of low lying excitations. In particular, for uniform non-zero baryon density we write the partition function as a path integral that is tractable in the limit of large N_c. We find that the ground state spontaneously breaks chiral symmetry as well as discrete lattice rotations in a way that depends on N_f and the density. The low energy excitations include type I and type II Goldstone bosons. The energies of the latter are of order 1/N_c, and are quadratic in momentum. Bosons of either type can develop anisotropic dispersion rela...
Dense Chern-Simons Matter with Fermions at Large N
Geracie, Michael; Son, Dam T
2015-01-01
In this paper we investigate properties of Chern-Simons theory coupled to massive fermions in the large N limit. We demonstrate that at low temperatures the system is in a Fermi liquid state whose features can be systematically compared to the standard phenomenological theory of Landau Fermi liquids. This includes matching microscopically derived Landau parameters with thermodynamic predictions of Landau Fermi liquid theory. We also calculate the exact conductivity and viscosity tensors at zero temperature and finite chemical potential. In particular we point out that the Hall conductivity of an interacting system is not entirely accounted for by the Berry flux through the Fermi sphere. Furthermore, investigation of the thermodynamics in the non-relativistic limit reveals novel phenomena at strong coupling. As the 't Hooft coupling approaches 1, the system exhibits an extended intermediate temperature regime in which the thermodynamics is described by neither the quantum Fermi liquid theory nor the classical ...
Dark matter concentrations in galactic nuclei according to polytropic models
Saxton, Curtis J; Wu, Kinwah
2016-01-01
We calculate the radial profiles of galaxies where the nuclear region is self-gravitating, consisting of self-interacting dark matter (SIDM) with $F$ degrees of freedom. For sufficiently high density this dark matter becomes collisional, regardless of its behaviour on galaxy scales. Our calculations show a spike in the central density profile, with properties determined by the dark matter microphysics, and the densities can reach the `mean density' of a black hole (from dividing the black-hole mass by the volume enclosed by the Schwarzschild radius). For a galaxy halo of given compactness ($\\chi=2GM/Rc^2$), certain values for the dark matter entropy yield a dense central object lacking an event horizon. For some soft equations of state of the SIDM (e.g. $F\\ge6$), there are multiple horizonless solutions at given compactness. Although light propagates around and through a sphere composed of dark matter, it is gravitationally lensed and redshifted. While some calculations give non-singular solutions, others yie...
Non-dense domain operator matrices and Cauchy problems
Lalaoui Rhali, S
2002-01-01
In this work, we study Cauchy problems with non-dense domain operator matrices. By assuming that the entries of an unbounded operator matrix are Hille-Yosida operators, we give a necessary and sufficient condition ensuring that the part of this operator matrix generates a semigroup in the closure of its domain. This allows us to prove the well-posedness of the corresponding Cauchy problem. Our results are applied to delay and neutral differential equations.
Composition and thermodynamic properties of dense alkali metal plasmas
Energy Technology Data Exchange (ETDEWEB)
Gabdullin, M.T. [NNLOT, al-Farabi Kazakh National University, 71 al-Farabi Str., Almaty 050035 (Kazakhstan); Ramazanov, T.S.; Dzhumagulova, K.N. [IETP, al-Farabi Kazakh National University, 71 al-Farabi Str., Almaty 050035 (Kazakhstan)
2012-04-15
In this work composition and thermodynamic properties of dense alkali metal plasmas (Li, Na) were investigated. Composition was derived by solving the Saha equations with corrections due to nonideality. The lowering of the ionization potentials was calculated on the basis of pseudopotentials by taking screening and quantum effects into account (copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)
Incompressibility of strange matter
Sinha, M N; Dey, J; Dey, M; Ray, S; Bhowmick, S; Sinha, Monika; Bagchi, Manjari; Dey, Jishnu; Dey, Mira; Ray, Subharthi; Bhowmick, Siddhartha
2002-01-01
Strange stars calculated from a realistic equation of state (EOS) show compact objects in the mass radius curve, when they are solved for gravitational fields via TOV equation. Many of the observed stars seem to fit in with this kind of compactness irrespective of whether they are X-ray pulsars, bursters or soft $\\gamma$ repeaters or radio pulsars. Calculated incompressibility of this strange matter shows continuity with that of nuclear matter. This is important in the cosmic separation of phase scenario. We compare our calculations of incompressibility with that of a nuclear matter EOS. This EOS has a continuous transition to ud-matter at about five times normal density. From a look at the consequent velocity of sound it is found that the transition to ud-matter seems necessary.
da Silva Schneider, Andre; Roberts, Luke; Ott, Christian
2017-01-01
The equation of state (EOS) of dense matter is an essential ingredient for numerical simulations of many astrophysical phenomena. We implement a modular open-source Fortran 90 code to construct the EOS of hot dense matter for astrophysical applications. For high density matter we use a non-relativistic liquid-drop description of nuclei that includes surface effects in a single nucleus approximation (SNA). The model is based on the work of Lattimer and Swesty and has been generalized to accommodate most Skyrme parametrizations available in the literature. Low density matter is described as an ensemble of nuclei in nuclear statistical equilibrium (NSE). The transition between the SNA and NSE regimes is performed via a continuous function that smoothly blends their Helmholtz free energy. To account for the existence of 2 solar mass neutron stars, we extend the formalism to allow for a stiffening of the EOS at densities above 3 times nuclear saturation density, where the properties of matter are presently poorly constrained. We study how different Skyrme parametrizations affect the EOS, neutron star mass-radius relationships, and the spherically symmetric collapse and post-bounce supernova evolution of massive stars.
INFERNO - A better model of atoms in dense plasmas
Liberman, D. A.
1982-03-01
A self-consistent field model of atoms in dense plasmas has been devised and incorporated in a computer program. In the model there is a uniform positive charge distribution with a hole in it and at the center of the hole an atomic nucleus. There are electrons, in both bound and continuum states, in sufficient number to form an electrically neutral system. The Dirac equation is used so that high Z atoms can be dealt with. A finite temperature is assumed, and a mean field (average atom) approximation is used in statistical averages. Applications have been made to equations of states and to photoabsorption.
A nonlinear model for magnetoacoustic waves in dense dissipative plasmas with degenerate electrons
Energy Technology Data Exchange (ETDEWEB)
Masood, W. [COMSATS Institute of Information Technology, Islamabad (Pakistan); National Centre for Physics (NCP), Shahdra Valley Road, Islamabad (Pakistan); Jahangir, R.; Siddiq, M. [National Centre for Physics (NCP), Shahdra Valley Road, Islamabad (Pakistan); Eliasson, B. [SUPA, Physics Department, University of Strathclyde, Glasgow (United Kingdom)
2014-10-15
The properties of nonlinear fast magnetoacoustic waves in dense dissipative plasmas with degenerate electrons are studied theoretically in the framework of the Zabolotskaya-Khokhlov (ZK) equation for small but finite amplitude excitations. Shock-like solutions of the ZK equation are obtained and are applied to parameters relevant to white dwarf stars.
Microscopic and thermodynamic properties of dense semiclassical partially ionized hydrogen plasma
Energy Technology Data Exchange (ETDEWEB)
Ramazanov, T S; Dzhumagulova, K N; Gabdullin, M T [IETP, Al-Farabi Kazakh National University, 96a, Tole Bi St, Almaty, 050012 (Kazakhstan)
2006-04-28
Microscopic and thermodynamic properties of dense semiclassical partially ionized hydrogen plasma were investigated on the basis of pseudopotential models. Radial distribution functions (RDF) of particles were obtained using a system of the Ornstein-Zernike integral equations. The corrections to internal energy and the equation of state were calculated using RDF.
Structural Transitions in Dense Networks
Lambiotte, R; Bhat, U; Redner, S
2016-01-01
We introduce an evolving network model in which a new node attaches to a randomly selected target node and also to each of its neighbors with probability $p$. The resulting network is sparse for $p<\\frac{1}{2}$ and dense (average degree increasing with number of nodes $N$) for $p\\geq \\frac{1}{2}$. In the dense regime, individual networks realizations built by this copying mechanism are disparate and not self-averaging. Further, there is an infinite sequence of structural anomalies at $p=\\frac{2}{3}$, $\\frac{3}{4}$, $\\frac{4}{5}$, etc., where the dependences on $N$ of the number of triangles (3-cliques), 4-cliques, undergo phase transitions. When linking to second neighbors of the target can occur, the probability that the resulting graph is complete---where all nodes are connected---is non-zero as $N\\to\\infty$.
Radiative properties of dense nanofluids.
Wei, Wei; Fedorov, Andrei G; Luo, Zhongyang; Ni, Mingjiang
2012-09-01
The radiative properties of dense nanofluids are investigated. For nanofluids, scattering and absorbing of electromagnetic waves by nanoparticles, as well as light absorption by the matrix/fluid in which the nanoparticles are suspended, should be considered. We compare five models for predicting apparent radiative properties of nanoparticulate media and evaluate their applicability. Using spectral absorption and scattering coefficients predicted by different models, we compute the apparent transmittance of a nanofluid layer, including multiple reflecting interfaces bounding the layer, and compare the model predictions with experimental results from the literature. Finally, we propose a new method to calculate the spectral radiative properties of dense nanofluids that shows quantitatively good agreement with the experimental results.
Signals of Supersymmetric Dark Matter
Abbas, A
2000-01-01
The Lightest Supersymmetric Particle predicted in most of the supersymmetric scenarios is an ideal candidate for the dark matter of cosmology. Their detection is of extreme significance today. Recently there have been intriguing signals of a 59 Gev neutralino dark matter at DAMA in Gran Sasso. We look at other possible signatures of dark matter in astrophysical and geological frameworks. The passage of the earth through dense clumps of dark matter would produce large quantities of heat in the interior of this planet through the capture and subsequent annihilation of dark matter particles. This heat would lead to large-scale volcanism which could in turn have caused mass extinctions. The periodicity of such volcanic outbursts agrees with the frequency of palaeontological mass extinctions as well as the observed periodicity in the occurrence of the largest flood basalt provinces on the globe. Binary character of these extinctions is another unique aspect of this signature of dark matter. In addition dark matter...
Jippes, Mariëlle; Driessen, Erik W; Broers, Nick J; Majoor, Gerard D; Gijselaers, Wim H; van der Vleuten, Cees P M
2015-07-01
National culture has been shown to play a role in curriculum change in medical schools, and business literature has described a similar influence of organizational culture on change processes in organizations. This study investigated the impact of both national and organizational culture on successful curriculum change in medical schools internationally. The authors tested a literature-based conceptual model using multilevel structural equation modeling. For the operationalization of national and organizational culture, the authors used Hofstede's dimensions of culture and Quinn and Spreitzer's competing values framework, respectively. To operationalize successful curriculum change, the authors used two derivates: medical schools' organizational readiness for curriculum change developed by Jippes and colleagues, and change-related behavior developed by Herscovitch and Meyer. The authors administered a questionnaire in 2012 measuring the described operationalizations to medical schools in the process of changing their curriculum. Nine hundred ninety-one of 1,073 invited staff members from 131 of 345 medical schools in 56 of 80 countries completed the questionnaire. An initial poor fit of the model improved to a reasonable fit by two suggested modifications which seemed theoretically plausible. In sum, characteristics of national culture and organizational culture, such as a certain level of risk taking, flexible policies and procedures, and strong leadership, affected successful curriculum change. National and organizational culture influence readiness for change in medical schools. Therefore, medical schools considering curriculum reform should anticipate the potential impact of national and organizational culture.
Equation of State in a Generalized Relativistic Density Functional Approach
Typel, Stefan
2015-01-01
The basic concepts of a generalized relativistic density functional approach to the equation of state of dense matter are presented. The model is an extension of relativistic mean-field models with density-dependent couplings. It includes explicit cluster degrees of freedom. The formation and dissolution of nuclei is described with the help of mass shifts. The model can be adapted to the description of finite nuclei in order to study the effect of $\\alpha$-particle correlations at the nuclear surface on the neutron skin thickness of heavy nuclei. Further extensions of the model to include quark degrees of freedom or an energy dependence of the nucleon self-energies are outlined.
Quark matter droplets in neutron stars
Heiselberg, H.; Pethick, C. J.; Staubo, E. F.
1993-01-01
We show that, for physically reasonable bulk and surface properties, the lowest energy state of dense matter consists of quark matter coexisting with nuclear matter in the presence of an essentially uniform background of electrons. We estimate the size and nature of spatial structure in this phase, and show that at the lowest densities the quark matter forms droplets embedded in nuclear matter, whereas at higher densities it can exhibit a variety of different topologies. A finite fraction of the interior of neutron stars could consist of matter in this new phase, which would provide new mechanisms for glitches and cooling.
Quark matter droplets in neutron stars
Heiselberg, H.; Pethick, C. J.; Staubo, E. F.
1993-01-01
We show that, for physically reasonable bulk and surface properties, the lowest energy state of dense matter consists of quark matter coexisting with nuclear matter in the presence of an essentially uniform background of electrons. We estimate the size and nature of spatial structure in this phase, and show that at the lowest densities the quark matter forms droplets embedded in nuclear matter, whereas at higher densities it can exhibit a variety of different topologies. A finite fraction of the interior of neutron stars could consist of matter in this new phase, which would provide new mechanisms for glitches and cooling.
Friedmann equation and Hubble condition
Baumgaertel, Hellmut
2014-01-01
The note presents results on the solutions of the Friedmann equation, which satisfy the Hubble condition, where the radiation term is taken into account. For these solutions the equation $\\sigma=\\sigma_{cr}$, where $\\sigma$ is the radiation invariant of the Friedmann equation and $\\sigma_{cr}$ the "critical radiation parameter", introduced in [5], is an analytic relation between the matter density and the radiation density at the present time and the cosmological constant which can be represented by two function branches, expressing the cosmological constant as unique functions of the matter and radiation density. These functions are the "frontier lines" between regions of constant type.
Dark Matter and Potential fields
Pestov, I
2004-01-01
A general concept of potential field is introduced. The potential field that one puts in correspondence with dark matter, has fundamental geometrical interpretation (parallel transport) and has intrinsically inherent in local symmetry. The equations of dark matter field are derived that are invariant with respect to the local transformations. It is shown how to reduce these equations to the Maxwell equations. Thus, the dark matter field may be considered as generalized electromagnetic field and a simple solution is given of the old problem to connect electromagnetic field with geometrical properties of the physical manifold itself. It is shown that gauge fixing renders generalized electromagnetic field effectively massive while the Maxwell electromagnetic field remains massless. To learn more about interactions between matter and dark matter on the microscopical level (and to recognize the fundamental role of internal symmetry) the general covariant Dirac equation is derived in the Minkowski space--time which...
Constructing Dense Graphs with Unique Hamiltonian Cycles
Lynch, Mark A. M.
2012-01-01
It is not difficult to construct dense graphs containing Hamiltonian cycles, but it is difficult to generate dense graphs that are guaranteed to contain a unique Hamiltonian cycle. This article presents an algorithm for generating arbitrarily large simple graphs containing "unique" Hamiltonian cycles. These graphs can be turned into dense graphs…
Partial differential equations
Levine, Harold
1997-01-01
The subject matter, partial differential equations (PDEs), has a long history (dating from the 18th century) and an active contemporary phase. An early phase (with a separate focus on taut string vibrations and heat flow through solid bodies) stimulated developments of great importance for mathematical analysis, such as a wider concept of functions and integration and the existence of trigonometric or Fourier series representations. The direct relevance of PDEs to all manner of mathematical, physical and technical problems continues. This book presents a reasonably broad introductory account of the subject, with due regard for analytical detail, applications and historical matters.
Li, Zhi-Guo; Chen, Qi-Feng; Gu, Yun-Jun; Zheng, Jun; Chen, Xiang-Rong
2016-10-01
The accurate hydrodynamic description of an event or system that addresses the equations of state, phase transitions, dissociations, ionizations, and compressions, determines how materials respond to a wide range of physical environments. To understand dense matter behavior in extreme conditions requires the continual development of diagnostic methods for accurate measurements of the physical parameters. Here, we present a comprehensive diagnostic technique that comprises optical pyrometry, velocity interferometry, and time-resolved spectroscopy. This technique was applied to shock compression experiments of dense gaseous deuterium-helium mixtures driven via a two-stage light gas gun. The advantage of this approach lies in providing measurements of multiple physical parameters in a single experiment, such as light radiation histories, particle velocity profiles, and time-resolved spectra, which enables simultaneous measurements of shock velocity, particle velocity, pressure, density, and temperature and expands understanding of dense high pressure shock situations. The combination of multiple diagnostics also allows different experimental observables to be measured and cross-checked. Additionally, it implements an accurate measurement of the principal Hugoniots of deuterium-helium mixtures, which provides a benchmark for the impedance matching measurement technique.
Combustion of nuclear matter into strange matter
Energy Technology Data Exchange (ETDEWEB)
Lugones, G. (Departamento di Fisica, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, (1900) La Plata (Argentina)); Benvenuto, O.G.; Vucetich, H. (Facultad de Ciencias Astronomicas y Geofisicas, Universidad Nacional de La Plata, Paseo del Bosque S/N, (1900) La Plata (Argentina))
1994-11-15
We study the properties of the combustion of pure neutron matter into strange matter in the framework of relativistic hydrodynamical theory of combustion. Because of the uncertainties in the actual properties of neutron matter, we employ the free neutron, Bethe-Johnson, Lattimer-Ravenhall, and Walecka equations of state and for strange matter we adopt the MIT bag model approximation. We find that combustion is possible for free neutron, Bethe-Johnson, and Lattimer-Ravenhall neutron matter but not for Walecka neutron matter. We interpret these results using a simple polytropic approximation showing that there exists a general flammability condition. We also study the burning of neutron matter into strange matter in a pipe showing that hydrodynamics demands flames faster than predicted by kinetics by several orders of magnitude, implying that the flame must be turbulent. Also the conditions for the deflagration to detonation transition are addressed, showing that in a pipe some of them are satisfied, strongly suggesting that the actual combustion mode should be detonation.
Li, Tiexiang; Huang, Tsung-Ming; Lin, Wen-Wei; Wang, Jenn-Nan
2017-03-01
We propose an efficient eigensolver for computing densely distributed spectra of the two-dimensional transmission eigenvalue problem (TEP), which is derived from Maxwell’s equations with Tellegen media and the transverse magnetic mode. The governing equations, when discretized by the standard piecewise linear finite element method, give rise to a large-scale quadratic eigenvalue problem (QEP). Our numerical simulation shows that half of the positive eigenvalues of the QEP are densely distributed in some interval near the origin. The quadratic Jacobi-Davidson method with a so-called non-equivalence deflation technique is proposed to compute the dense spectrum of the QEP. Extensive numerical simulations show that our proposed method processes the convergence efficiently, even when it needs to compute more than 5000 desired eigenpairs. Numerical results also illustrate that the computed eigenvalue curves can be approximated by nonlinear functions, which can be applied to estimate the denseness of the eigenvalues for the TEP.
Cold quark matter in compact stars
Energy Technology Data Exchange (ETDEWEB)
Franzon, B.; Fogaca, D. A.; Navarra, F. S. [Instituto de Fisica, Universidade de Sao Paulo Rua do Matao, Travessa R, 187, 05508-090 Sao Paulo, SP (Brazil); Horvath, J. E. [Instituto de Astronomia, Geofisica e Ciencias Atmosfericas, Universidade de Sao Paulo, Rua do Matao, 1226, 05508-090, Sao Paulo, SP (Brazil)
2013-03-25
We used an equation of state for the cold quark matter to the study of properties of quark stars. We also discuss the absolute stability of quark matter and compute the mass-radius relation for self-bound stars.
The equilibrium of dense plasma in a gravity field
Vasilev, B V
2000-01-01
The equilibrium of dense plasma in a gravity field and problem of a gravity-induced electric polarization in this matter are discussed. The calculation for metals performed before shows that both - the gravity-induced compressive strain and the gravity-induced electric field - are inversely proportional to their Young moduli. The calculation for high dense plasma, where Young modulus is equal to zero, shows that there is another effect: each cell of this plasma inside a celestial body in own gravity field obtains the small positive electric charge. It happens as heavy ions sag on to light electron clouds. A celestial body stays electrically neutral as a whole, because the negative electric charge concentrates on its surface. The gravity-induced positive volume charge is very small, its order of magnitude equals to $10^{-18}e$ per atom only. But it is sufficient for the complete conterbalancing of the gravity force.
Constitutive relations for steady, dense granular flows
Vescovi, D.; Berzi, D.; di Prisco, C. G.
2011-12-01
In the recent past, the flow of dense granular materials has been the subject of many scientific works; this is due to the large number of natural phenomena involving solid particles flowing at high concentration (e.g., debris flows and landslides). In contrast with the flow of dilute granular media, where the energy is essentially dissipated in binary collisions, the flow of dense granular materials is characterized by multiple, long-lasting and frictional contacts among the particles. The work focuses on the mechanical response of dry granular materials under steady, simple shear conditions. In particular, the goal is to obtain a complete rheology able to describe the material behavior within the entire range of concentrations for which the flow can be considered dense. The total stress is assumed to be the linear sum of a frictional and a kinetic component. The frictional and the kinetic contribution are modeled in the context of the critical state theory [8, 10] and the kinetic theory of dense granular gases [1, 3, 7], respectively. In the critical state theory, the granular material approaches a certain attractor state, independent on the initial arrangement, characterized by the capability of developing unlimited shear strains without any change in the concentration. Given that a disordered granular packing exists only for a range of concentration between the random loose and close packing [11], a form for the concentration dependence of the frictional normal stress that makes the latter vanish at the random loose packing is defined. In the kinetic theory, the particles are assumed to interact through instantaneous, binary and uncorrelated collisions. A new state variable of the problem is introduced, the granular temperature, which accounts for the velocity fluctuations. The model has been extended to account for the decrease in the energy dissipation due to the existence of correlated motion among the particles [5, 6] and to deal with non
Influence of the nuclear equation of state on the hadron-quark phase transition in neutron stars
Institute of Scientific and Technical Information of China (English)
YANG Fang; SHEN Hong
2008-01-01
We study the hadron-quark phase transition in the interior of neutron stars, and examine the influence of the nuclear equation of state on the phase transition and neutron star properties. The relativistic mean field theory with several parameter sets is used to construct the nuclear equation of state, while the Nambu-Jona-Lasinio model is used for the description of the deconfined quark phase. Our results show that a harder nuclear equation of state leads to an earlier onset of a mixed phase of hadronic and quark matter. We find that a massive neutron star possesses a mixed phase core, but it is not dense enough to possess a pure quark core.
Magnus, Wilhelm
2004-01-01
The hundreds of applications of Hill's equation in engineering and physics range from mechanics and astronomy to electric circuits, electric conductivity of metals, and the theory of the cyclotron. New applications are continually being discovered and theoretical advances made since Liapounoff established the equation's fundamental importance for stability problems in 1907. Brief but thorough, this volume offers engineers and mathematicians a complete orientation to the subject.""Hill's equation"" connotes the class of homogeneous, linear, second order differential equations with real, period
An extended GS method for dense linear systems
Niki, Hiroshi; Kohno, Toshiyuki; Abe, Kuniyoshi
2009-09-01
Davey and Rosindale [K. Davey, I. Rosindale, An iterative solution scheme for systems of boundary element equations, Internat. J. Numer. Methods Engrg. 37 (1994) 1399-1411] derived the GSOR method, which uses an upper triangular matrix [Omega] in order to solve dense linear systems. By applying functional analysis, the authors presented an expression for the optimum [Omega]. Moreover, Davey and Bounds [K. Davey, S. Bounds, A generalized SOR method for dense linear systems of boundary element equations, SIAM J. Comput. 19 (1998) 953-967] also introduced further interesting results. In this note, we employ a matrix analysis approach to investigate these schemes, and derive theorems that compare these schemes with existing preconditioners for dense linear systems. We show that the convergence rate of the Gauss-Seidel method with preconditioner PG is superior to that of the GSOR method. Moreover, we define some splittings associated with the iterative schemes. Some numerical examples are reported to confirm the theoretical analysis. We show that the EGS method with preconditioner produces an extremely small spectral radius in comparison with the other schemes considered.
Directory of Open Access Journals (Sweden)
Luiz Fernando Carvalho Leite
2003-08-01
biologically resistant to decomposition and passive (chemically recalcitrant or physically protected pools with different decomposition rates. First-order equations are used to model all soil organic matter pools and soil moisture and temperature modifying decomposition rates. Turnover of active pool and formation of passive soil organic matter are mediated by sand and clay content, respectively. Plant residue is partitioned into pools dependent on the lignin and nitrogen content. Through the model, it can link organic matter at the fertility levels and the current and future management, optimizing the understanding of the transformations of the nutrients in soils of the several agroecosystems
Einasto, Jaan
2013-01-01
I give a review of the development of the concept of dark matter. The dark matter story passed through several stages from a minor observational puzzle to a major challenge for theory of elementary particles. Modern data suggest that dark matter is the dominant matter component in the Universe, and that it consists of some unknown non-baryonic particles. Dark matter is the dominant matter component in the Universe, thus properties of dark matter particles determine the structure of the cosmic...
Efficient Decomposition of Dense Matrices over GF(2)
Albrecht, Martin R
2010-01-01
In this work we describe an efficient implementation of a hierarchy of algorithms for the decomposition of dense matrices over the field with two elements (GF(2)). Matrix decomposition is an essential building block for solving dense systems of linear and non-linear equations and thus much research has been devoted to improve the asymptotic complexity of such algorithms. In this work we discuss an implementation of both well-known and improved algorithms in the M4RI library. The focus of our discussion is on a new variant of the M4RI algorithm - denoted MMPF in this work -- which allows for considerable performance gains in practice when compared to the previously fastest implementation. We provide performance figures on x86_64 CPUs to demonstrate the viability of our approach.
Propagation of Light in a Hot and Dense Medium
Masood, Samina
2016-01-01
Photons, as quanta of electromagnetic fields, determine the electromagnetic properties of an extremely hot and dense medium. Considering the properties of photons in the interacting medium of charged particles, we explicitly calculate the electromagnetic properties such as the electric permittivity, magnetic permeability, refractive index and the propagation speed of electromagnetic signals in extremely hot and dense background in cosmos. Photons acquire dynamically generated mass in a medium. The screening mass of photon, Debye shielding length and the plasma frequency are calculated as functions of statistical parameters of the medium. We study the properties of the propagating particles in astrophysical systems of distinct statistical conditions. The modifications in the medium properties lead to the equation of state of the system. We mainly calculate all these parameters for extremely high temperatures of the early universe.
Magnetoacoustic solitons in dense astrophysical electron-positron-ion plasmas
Hussain, S.; Mahmood, S.; Mushtaq, A.
2013-08-01
Nonlinear magnetoacoustic waves in dense electron-positron-ion plasmas are investigated by using three fluid quantum magnetohydrodynamic model. The quantum mechanical effects of electrons and positrons are taken into account due to their Fermionic nature (to obey Fermi statistics) and quantum diffraction effects (Bohm diffusion term) in the model. The reductive perturbation method is employed to derive the Korteweg-de Vries (KdV) equation for low amplitude magnetoacoustic soliton in dense electron-positron-ion plasmas. It is found that positron concentration has significant impact on the phase velocity of magnetoacoustic wave and on the formation of single pulse nonlinear structure. The numerical results are also illustrated by taking into account the plasma parameters of the outside layers of white dwarfs and neutron stars/pulsars.
Electroweak interactions between intense neutrino beams and dense electron-positron magneto-plasmas
Tsintsadze, N L; Stenflo, L
2003-01-01
The electroweak coupling between intense neutrino beams and strongly degenerate relativistic dense electron-positron magneto-plasmas is considered. The intense neutrino bursts interact with the plasma due to the weak Fermi interaction force, and their dynamics is governed by a kinetic equation. Our objective here is to develop a kinetic equation for a degenerate neutrino gas and to use that equation to derive relativistic magnetohydrodynamic equations. The latter are useful for studying numerous collective processes when intense neutrino beams nonlinearly interact with degenerate, relativistic, dense electron-positron plasmas in strong magnetic fields. If the number densities of the plasma particles are of the order of 10 sup 3 sup 3 cm sup - sup 3 , the pair plasma becomes ultra-relativistic, which strongly affects the potential energy of the weak Fermi interaction. The new system of equations allows several neutrino-driven streaming instabilities involving new types of relativistic Alfven-like waves, The re...
Chiral symmetry in a hot and dense magnetic medium
Energy Technology Data Exchange (ETDEWEB)
Ferrari, Gabriel N.; Pinto, Marcus B. [Departamento de Fisica, Universidade Federal de Santa Catarina, Florianopolis (Brazil)
2013-03-25
We consider the Linear Sigma Model (LSM) in the Mean Field Approximation (MFA) in order to analyze hot and dense two flavor quark matter subject to strong magnetic fields. We pay especial attention to the case of a finite chemical potential, which has not yet been fully explored. Here, we investigate the strength of the chiral transition and the behavior of the sigma meson mass for {mu}= 0 and {mu}{ne} 0 under strong magnetic fields, as well as its effects over the T-{mu} plane.
Viscoelastic behavior of dense microemulsions
Cametti, C.; Codastefano, P.; D'arrigo, G.; Tartaglia, P.; Rouch, J.; Chen, S. H.
1990-09-01
We have performed extensive measurements of shear viscosity, ultrasonic absorption, and sound velocity in a ternary system consisting of water-decane-sodium di(2-ethylhexyl)sulfo- succinate(AOT), in the one-phase region where it forms a water-in-oil microemulsion. We observe a rapid increase of the static shear viscosity in the dense microemulsion region. Correspondingly the sound absorption shows unambiguous evidence of a viscoelastic behavior. The absorption data for various volume fractions and temperatures can be reduced to a universal curve by scaling both the absorption and the frequency by the measured static shear viscosity. The sound absorption can be interpreted as coming from the high-frequency tail of the viscoelastic relaxation, describable by a Cole-Cole relaxation formula with unusually small elastic moduli.
Advanced functional evolution equations and inclusions
Benchohra, Mouffak
2015-01-01
This book presents up-to-date results on abstract evolution equations and differential inclusions in infinite dimensional spaces. It covers equations with time delay and with impulses, and complements the existing literature in functional differential equations and inclusions. The exposition is devoted to both local and global mild solutions for some classes of functional differential evolution equations and inclusions, and other densely and non-densely defined functional differential equations and inclusions in separable Banach spaces or in Fréchet spaces. The tools used include classical fixed points theorems and the measure-of non-compactness, and each chapter concludes with a section devoted to notes and bibliographical remarks. This monograph is particularly useful for researchers and graduate students studying pure and applied mathematics, engineering, biology and all other applied sciences.
Mattsson, Thomas R.; Cochrane, Kyle R.; Root, Seth; Carpenter, John H.
2013-10-01
Density Functional Theory (DFT) has proven remarkably accurate in predicting properties of matter under shock compression into the dense plasma regime. Materials where chemistry plays a role are of interest for many applications, including planetary science and inertial confinement fusion (ICF). As examples of systems where chemical reactions are important, and demonstration of the high fidelity possible for these both structurally and chemically complex systems, we will discuss shock- and re-shock of liquid carbon dioxide (CO2) in the range 100 to 800 GPa and shock compression of hydrocarbon polymers, including GDP (glow discharge polymer) which is used as an ablator in laser ICF experiments. Experimental results from Sandia's Z machine validate the DFT simulations at extreme conditions and the combination of experiment and DFT provide reliable data for evaluating existing and constructing future wide-range equations of state models for molecular compounds. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Company, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
Soft X-Ray Thomson Scattering in Warm Dense Hydrogen at FLASH
Energy Technology Data Exchange (ETDEWEB)
Faustlin, R R; Toleikis, S; Bornath, T; Doppner, T; Dusterer, S; Forster, E; Fortmann, C; Glenzer, S H; Gode, S; Gregori, G; Irsig, R; Laarmann, T; Lee, H J; Li, B; Meiwes-Broer, K; Mithen, J; Przystawik, A; Redlin, H; Redmer, R; Reinholz, H; Ropke, G; Tavella, F; Thiele, R; Tiggesbaumker, J; Uschmann, I; Zastrau, U; Tschentscher, T
2009-07-15
We present collective Thomson scattering with soft x-ray free electron laser radiation as a method to track the evolution of warm dense matter plasmas with {approx}200 fs time resolution. In a pump-probe scheme an 800 nm laser heats a 20 {micro}m hydrogen droplet to the plasma state. After a variable time delay in the order of ps the plasma is probed by an x-ray ultra violet (XUV) pulse which scatters from the target and is recorded spectrally. Alternatively, in a self-Thomson scattering experiment, a single XUV pulse heats the target while a portion of its photons are being scattered probing the target. From such inelastic x-ray scattering spectra free electron temperature and density can be inferred giving insight on relaxation time scales in plasmas as well as the equation of state. We prove the feasibility of this method in the XUV range utilizing the free electron laser facility in Hamburg, FLASH. We recorded Thomson scattering spectra for hydrogen plasma, both in the self-scattering and in the pump-probe mode using optical laser heating.
Nonlinear propagation of ion-acoustic waves in a degenerate dense plasma
Indian Academy of Sciences (India)
M M Masud; A A Mamun
2013-07-01
Nonlinear propagation of ion-acoustic (IA) waves in a degenerate dense plasma (with all the constituents being degenerate, for both the non-relativistic or ultrarelativistic cases) have been investigated by the reductive perturbation method. The linear dispersion relation and Korteweg de Vries (KdV) equation have been derived, and the numerical solutions of KdV equation have been analysed to identify the basic features of electrostatic solitary structures that may form in such a degenerate dense plasma. The implications of our results in compact astrophysical objects, particularly, in white dwarfs and neutron stars, have been briefly discussed.
Bohlken, Marc M; Brouwer, Rachel M; Mandl, René C W; Hedman, Anna M; van den Heuvel, Martijn P; van Haren, Neeltje E M; Kahn, René S; Pol, Hilleke E Hulshoff
2016-01-01
Intelligence is associated with a network of distributed gray matter areas including the frontal and parietal higher association cortices and primary processing areas of the temporal and occipital lobes. Efficient information transfer between gray matter regions implicated in intelligence is thought to be critical for this trait to emerge. Genetic factors implicated in intelligence and gray matter may promote a high capacity for information transfer. Whether these genetic factors act globally or on local gray matter areas separately is not known. Brain maps of phenotypic and genetic associations between gray matter volume and intelligence were made using structural equation modeling of 3T MRI T1-weighted scans acquired in 167 adult twins of the newly acquired U-TWIN cohort. Subsequently, structural connectivity analyses (DTI) were performed to test the hypothesis that gray matter regions associated with intellectual ability form a densely connected core. Gray matter regions associated with intellectual ability were situated in the right prefrontal, bilateral temporal, bilateral parietal, right occipital and subcortical regions. Regions implicated in intelligence had high structural connectivity density compared to 10,000 reference networks (p=0.031). The genetic association with intelligence was for 39% explained by a genetic source unique to these regions (independent of total brain volume), this source specifically implicated the right supramarginal gyrus. Using a twin design, we show that intelligence is genetically represented in a spatially distributed and densely connected network of gray matter regions providing a high capacity infrastructure. Although genes for intelligence have overlap with those for total brain volume, we present evidence that there are genes for intelligence that act specifically on the subset of brain areas that form an efficient brain network.
Colloquium: Measuring the neutron star equation of state using x-ray timing
Watts, Anna L.; Andersson, Nils; Chakrabarty, Deepto; Feroci, Marco; Hebeler, Kai; Israel, Gianluca; Lamb, Frederick K.; Miller, M. Coleman; Morsink, Sharon; Özel, Feryal; Patruno, Alessandro; Poutanen, Juri; Psaltis, Dimitrios; Schwenk, Achim; Steiner, Andrew W.; Stella, Luigi; Tolos, Laura; van der Klis, Michiel
2016-04-01
One of the primary science goals of the next generation of hard x-ray timing instruments is to determine the equation of state of matter at supranuclear densities inside neutron stars by measuring the radius of neutron stars with different masses to accuracies of a few percent. Three main techniques can be used to achieve this goal. The first involves waveform modeling. The flux observed from a hotspot on the neutron star surface offset from the rotational pole will be modulated by the star's rotation, and this periodic modulation at the spin frequency is called a pulsation. As the photons propagate through the curved spacetime of the star, information about mass and radius is encoded into the shape of the waveform (pulse profile) via special and general-relativistic effects. Using pulsations from known sources (which have hotspots that develop either during thermonuclear bursts or due to channeled accretion) it is possible to obtain tight constraints on mass and radius. The second technique involves characterizing the spin distribution of accreting neutron stars. A large collecting area enables highly sensitive searches for weak or intermittent pulsations (which yield spin) from the many accreting neutron stars whose spin rates are not yet known. The most rapidly rotating stars provide a clean constraint, since the limiting spin rate where the equatorial surface velocity is comparable to the local orbital velocity, at which mass shedding occurs, is a function of mass and radius. However, the overall spin distribution also provides a guide to the torque mechanisms in operation and the moment of inertia, both of which can depend sensitively on dense matter physics. The third technique is to search for quasiperiodic oscillations in x-ray flux associated with global seismic vibrations of magnetars (the most highly magnetized neutron stars), triggered by magnetic explosions. The vibrational frequencies depend on stellar parameters including the dense matter equation of
Shock-adiabatic to quasi-isentropic compression of warm dense helium up to 150 GPa
Zheng, J.; Chen, Q. F.; Gu, Y. J.; Li, J. T.; Li, Z. G.; Li, C. J.; Chen, Z. Y.
2017-06-01
Multiple reverberation compression can achieve higher pressure, higher temperature, but lower entropy. It is available to provide an important validation for the elaborate and wider planetary models and simulate the inertial confinement fusion capsule implosion process. In the work, we have developed the thermodynamic and optical properties of helium from shock-adiabatic to quasi-isentropic compression by means of a multiple reverberation technique. By this technique, the initial dense gaseous helium was compressed to high pressure and high temperature and entered the warm dense matter (WDM) region. The experimental equation of state (EOS) of WDM helium in the pressure-density-temperature (P-ρ -T) range of 1 -150 GPa , 0.1 -1.1 g c m-3 , and 4600-24 000 K were measured. The optical radiations emanating from the WDM helium were recorded, and the particle velocity profiles detecting from the sample/window interface were obtained successfully up to 10 times compression. The optical radiation results imply that dense He has become rather opaque after the 2nd compression with a density of about 0.3 g c m-3 and a temperature of about 1 eV. The opaque states of helium under multiple compression were analyzed by the particle velocity measurements. The multiple compression technique could efficiently enhanced the density and the compressibility, and our multiple compression ratios (ηi=ρi/ρ0,i =1 -10 ) of helium are greatly improved from 3.5 to 43 based on initial precompressed density (ρ0) . For the relative compression ratio (ηi'=ρi/ρi -1) , it increases with pressure in the lower density regime and reversely decreases in the higher density regime, and a turning point occurs at the 3rd and 4th compression states under the different loading conditions. This nonmonotonic evolution of the compression is controlled by two factors, where the excitation of internal degrees of freedom results in the increasing compressibility and the repulsive interactions between the
5G Ultra-Dense Cellular Networks
Ge, Xiaohu; Tu, Song; Mao, Guoqiang; Wang, Cheng-xiang; Han, Tao
2015-01-01
Traditional ultra-dense wireless networks are recommended as a complement for cellular networks and are deployed in partial areas, such as hotspot and indoor scenarios. Based on the massive multiple-input multi-output (MIMO) antennas and the millimeter wavecommunication technologies, the 5G ultra-dense cellular network is proposed to deploy in overall cellular scenarios. Moreover, a distribution network architecture is presented for 5G ultra-dense cellular networks. Furthermore, the backhaul ...
Interference Coordination for Dense Wireless Networks
DEFF Research Database (Denmark)
Soret, Beatriz; Pedersen, Klaus I.; Jørgensen, Niels T.K.
2015-01-01
The promise of ubiquitous and super-fast connectivity for the upcoming years will be in large part fulfilled by the addition of base stations and spectral aggregation. The resulting very dense networks (DenseNets) will face a number of technical challenges. Among others, the interference emerges ...... simply react to an identified interference problem. As an example, we propose two algorithms to apply time domain and frequency domain small cell interference coordination in a DenseNet....
HOW GOOD IS A DENSE SHOP SCHEDULE?
Institute of Scientific and Technical Information of China (English)
陈礴; 俞文(鱼此)
2001-01-01
In this paper, we study a class of simple and easy-to-construct shop schedules, known as dense schedules. We present tight bounds on the maximum deviation in makespan of dense flow-shop and job-shop schedules from their optimal ones. For dense open-shop schedules, we do the same for the special case of four machines and thus add a stronger supporting case for proving a standing conjecture.