WorldWideScience

Sample records for dengue-2 virus infection

  1. Dengue NS1 Antigen - for Early Detection of Dengue Virus Infection

    Directory of Open Access Journals (Sweden)

    Amol Hartalkar

    2015-08-01

    Full Text Available Objectives: To evaluate the efficacy of NS1 antigen assay for early diagnosis of dengue virus infection in a tertiary care hospital. Methods: This cross sectional study was carried out in department of Medicine from August to December 2013. Total 100 patients with dengue fever were included. Complete blood count, alanine aminotransferase (ALT, aspartate aminotransferase (AST, Dengue NS1 antigen and IgM and IgG antibodies of dengue virus were done in all cases. Results: Of the 100 sera tested, 75% were positive for dengue virus infection based on dengue NS1 antigen, IgM antibody and IgG antibody. Dengue NS1 antigen and IgM, IgG antibody were able to detect dengue virus infection between day 1 to day 8 in 92% of samples, 86.7% of samples and 82.6% of samples respectively. Sixty nine percent (69% were found positive for dengue NS1 antigen, 65% were IgM positive and 62% were IgG positive. Based on the dengue NS1 antigen and IgM antibody combination, 74% were positive for dengue virus infections. Sensitivity of Dengue NS1 antigen was 92.3% and specificity of 74.28% in comparison to IgM antibody. Detection rate increased to 75%, based on the antigen and IgG antibody combination. Sensitivity of dengue NS1 antigen was 90.3% and specificity of 65.8% in comparison to IgG antibody. Conclusion: Dengue NS1 antigen is a useful, sensitive and specific test for early diagnosis of dengue virus infection and it improves diagnostic efficiency in combination with antibody test. Key words: Dengue fever, NS1 antigen. Introduction: Dengue fever (DF is the most common arboviral illness in humans. Each year, an estimated 50-100 million cases of dengue fever and 500,000 cases of dengue hemorrhagic fever occur worldwide, with 30000 deaths (mainly in children. Globally 2.5-3 billion people in approximately 112 tropical and subtropical countries are at risk of dengue.of samples respectively. Sixty nine percent (69% were found positive for dengue NS1 antigen, 65% were Ig

  2. Morphological studies in a model for dengue-2 virus infection in mice

    Directory of Open Access Journals (Sweden)

    Ortrud Monika Barth

    2006-12-01

    Full Text Available One of the main difficulties in studying dengue virus infection in humans and in developing a vaccine is the absence of a suitable animal model which develops the full spectrum of dengue fever, dengue haemorrhagic fever, and dengue shock syndrome. It is our proposal to present morphological aspects of an animal model which shows many similarities with the dengue infection in humans. BALB/c mice were intraperitoneally infected with non-neuroadapted dengue virus serotype 2 (DENV-2. Histopathological and morphometrical analyses of liver tissue revealed focal alterations along the infection, reaching wide-ranging portal and centrolobular veins congestion and sinusoidal cell death. Additional ultrastructural observations demonstrated multifocal endothelial injury, platelet recruitment, and alterated hepatocytes. Dengue virus antigen was detected in hepatocytes and in the capillar endothelium of the central lobular vein area. Liver function tests showed high levels of aspartate transaminase and alanine transaminase enzyme activity. Lung tissue showed interstitial pneumonia and mononuclear cells, interseptal oedema, hyperplasia, and hypertrophy of the bronchiolar epithelial cells. DENV-2 led to a transient inflammatory process, but caused focal alterations of the blood-exchange barrier. Viremia was observed from 2nd to 11th day p.i. by isolation of DENV-2 in C6/36 mosquito cell line inoculated with the supernatant of macerated liver, lung, kidney, and cerebellum tissues of the infected mice.

  3. Roles for Endothelial Cells in Dengue Virus Infection

    Directory of Open Access Journals (Sweden)

    Nadine A. Dalrymple

    2012-01-01

    Full Text Available Dengue viruses cause two severe diseases that alter vascular fluid barrier functions, dengue hemorrhagic fever (DHF and dengue shock syndrome (DSS. The endothelium is the primary fluid barrier of the vasculature and ultimately the effects of dengue virus infection that cause capillary leakage impact endothelial cell (EC barrier functions. The ability of dengue virus to infect the endothelium provides a direct means for dengue to alter capillary permeability, permit virus replication, and induce responses that recruit immune cells to the endothelium. Recent studies focused on dengue virus infection of primary ECs have demonstrated that ECs are efficiently infected, rapidly produce viral progeny, and elicit immune enhancing cytokine responses that may contribute to pathogenesis. Furthermore, infected ECs have also been implicated in enhancing viremia and immunopathogenesis within murine dengue disease models. Thus dengue-infected ECs have the potential to directly contribute to immune enhancement, capillary permeability, viremia, and immune targeting of the endothelium. These effects implicate responses of the infected endothelium in dengue pathogenesis and rationalize therapeutic targeting of the endothelium and EC responses as a means of reducing the severity of dengue virus disease.

  4. Infection of Mosquito Cells (C6/36) by Dengue-2 Virus Interferes with Subsequent Infection by Yellow Fever Virus.

    Science.gov (United States)

    Abrao, Emiliana Pereira; da Fonseca, Benedito Antônio Lopes

    2016-02-01

    Dengue is one of the most important diseases caused by arboviruses in the world. Yellow fever is another arthropod-borne disease of great importance to public health that is endemic to tropical regions of Africa and the Americas. Both yellow fever and dengue viruses are flaviviruses transmitted by Aedes aegypti mosquitoes, and then, it is reasonable to consider that in a given moment, mosquito cells could be coinfected by both viruses. Therefore, we decided to evaluate if sequential infections of dengue and yellow fever viruses (and vice-versa) in mosquito cells could affect the virus replication patterns. Using immunofluorescence and real-time PCR-based replication assays in Aedes albopictus C6/36 cells with single or sequential infections with both viruses, we demonstrated the occurrence of viral interference, also called superinfection exclusion, between these two viruses. Our results show that this interference pattern is particularly evident when cells were first infected with dengue virus and subsequently with yellow fever virus (YFV). Reduction in dengue virus replication, although to a lower extent, was also observed when C6/36 cells were initially infected with YFV followed by dengue virus infection. Although the importance that these findings have on nature is unknown, this study provides evidence, at the cellular level, of the occurrence of replication interference between dengue and yellow fever viruses and raises the question if superinfection exclusion could be a possible explanation, at least partially, for the reported lack of urban yellow fever occurrence in regions where a high level of dengue transmission occurs.

  5. Cells in Dengue Virus Infection In Vivo

    Directory of Open Access Journals (Sweden)

    Sansanee Noisakran

    2010-01-01

    Full Text Available Dengue has been recognized as one of the most important vector-borne emerging infectious diseases globally. Though dengue normally causes a self-limiting infection, some patients may develop a life-threatening illness, dengue hemorrhagic fever (DHF/dengue shock syndrome (DSS. The reason why DHF/DSS occurs in certain individuals is unclear. Studies in the endemic regions suggest that the preexisting antibodies are a risk factor for DHF/DSS. Viremia and thrombocytopenia are the key clinical features of dengue virus infection in patients. The amounts of virus circulating in patients are highly correlated with severe dengue disease, DHF/DSS. Also, the disturbance, mainly a transient depression, of hematological cells is a critical clinical finding in acute dengue patients. However, the cells responsible for the dengue viremia are unresolved in spite of the intensive efforts been made. Dengue virus appears to replicate and proliferate in many adapted cell lines, but these in vitro properties are extremely difficult to be reproduced in primary cells or in vivo. This paper summarizes reports on the permissive cells in vitro and in vivo and suggests a hematological cell lineage for dengue virus infection in vivo, with the hope that a new focus will shed light on further understanding of the complexities of dengue disease.

  6. High-Throughput Quantitative Proteomic Analysis of Dengue Virus Type 2 Infected A549 Cells

    Science.gov (United States)

    Chiu, Han-Chen; Hannemann, Holger; Heesom, Kate J.; Matthews, David A.; Davidson, Andrew D.

    2014-01-01

    Disease caused by dengue virus is a global health concern with up to 390 million individuals infected annually worldwide. There are no vaccines or antiviral compounds available to either prevent or treat dengue disease which may be fatal. To increase our understanding of the interaction of dengue virus with the host cell, we analyzed changes in the proteome of human A549 cells in response to dengue virus type 2 infection using stable isotope labelling in cell culture (SILAC) in combination with high-throughput mass spectrometry (MS). Mock and infected A549 cells were fractionated into nuclear and cytoplasmic extracts before analysis to identify proteins that redistribute between cellular compartments during infection and reduce the complexity of the analysis. We identified and quantified 3098 and 2115 proteins in the cytoplasmic and nuclear fractions respectively. Proteins that showed a significant alteration in amount during infection were examined using gene enrichment, pathway and network analysis tools. The analyses revealed that dengue virus infection modulated the amounts of proteins involved in the interferon and unfolded protein responses, lipid metabolism and the cell cycle. The SILAC-MS results were validated for a select number of proteins over a time course of infection by Western blotting and immunofluorescence microscopy. Our study demonstrates for the first time the power of SILAC-MS for identifying and quantifying novel changes in cellular protein amounts in response to dengue virus infection. PMID:24671231

  7. High-throughput quantitative proteomic analysis of dengue virus type 2 infected A549 cells.

    Directory of Open Access Journals (Sweden)

    Han-Chen Chiu

    Full Text Available Disease caused by dengue virus is a global health concern with up to 390 million individuals infected annually worldwide. There are no vaccines or antiviral compounds available to either prevent or treat dengue disease which may be fatal. To increase our understanding of the interaction of dengue virus with the host cell, we analyzed changes in the proteome of human A549 cells in response to dengue virus type 2 infection using stable isotope labelling in cell culture (SILAC in combination with high-throughput mass spectrometry (MS. Mock and infected A549 cells were fractionated into nuclear and cytoplasmic extracts before analysis to identify proteins that redistribute between cellular compartments during infection and reduce the complexity of the analysis. We identified and quantified 3098 and 2115 proteins in the cytoplasmic and nuclear fractions respectively. Proteins that showed a significant alteration in amount during infection were examined using gene enrichment, pathway and network analysis tools. The analyses revealed that dengue virus infection modulated the amounts of proteins involved in the interferon and unfolded protein responses, lipid metabolism and the cell cycle. The SILAC-MS results were validated for a select number of proteins over a time course of infection by Western blotting and immunofluorescence microscopy. Our study demonstrates for the first time the power of SILAC-MS for identifying and quantifying novel changes in cellular protein amounts in response to dengue virus infection.

  8. THE CHANGING CLINICAL PERFORMANCE OF DENGUE VIRUS INFECTION IN THE YEAR 2009

    Directory of Open Access Journals (Sweden)

    Soegeng Soegijanto

    2012-01-01

    Full Text Available Background: Dengue (DEN virus, the most important arthropod-borne human pathogen, represents a serious public health threat. DEN virus is transmitted to humans by the bite of the domestic mosquito, Aedes aegypti, and circulates in nature as four distinct serological types DEN-1 to 4. The aim of Study: To identify Dengue Virus Serotype I which showed mild clinical performance in five years before and afterward showed severe clinical performance. Material and Method: Prospective and analytic observational study had been done in Dr. Soetomo Hospital and the ethical clearance was conduct on January 01, 2009. The population of this research is all cases of dengue virus infection. Diagnosis were done based on WHO 1997. All of these cases were examined for IgM & IgG anti Dengue Virus and then were followed by PCR examination to identify Dengue Virus serotype. Result and Discussion: DEN 2 was predominant virus serotype with produced a spectrum clinical illness from asymptomatic, mild illness to classic dengue fever (DF to the most severe form of illness (DHF. But DEN 1 usually showed mild illness. Helen at al (2009–2010 epidemiologic study of Dengue Virus Infection in Health Centre Surabaya and Mother and Child Health Soerya Sidoarjo found many cases of Dengue Hemorrhagic Fever were caused by DEN 1 Genotype IV. Amor (2009 study in Dr. Soetomo Hospital found DEN 1 showed severe clinical performance of primary Dengue Virus Infection as Dengue Shock Syndrome two cases and one unusual case. Conclusion: The epidemiologic study of Dengue Virus Infection in Surabaya and Sidoarjo; in the year 2009 found changing predominant Dengue Virus Serotype from Dengue Virus II to Dengue Virus 1 Genotype IV which showed a severe clinical performance coincident with primary infection.

  9. Towards antiviral therapies for treating dengue virus infections.

    Science.gov (United States)

    Kaptein, Suzanne Jf; Neyts, Johan

    2016-10-01

    Dengue virus is an emerging human pathogen that poses a huge public health burden by infecting annually about 390 million individuals of which a quarter report with clinical manifestations. Although progress has been made in understanding dengue pathogenesis, a licensed vaccine or antiviral therapy against this virus is still lacking. Treatment of patients is confined to symptomatic alleviation and supportive care. The development of dengue therapeutics thus remains of utmost importance. This review focuses on the few molecules that were evaluated in dengue virus-infected patients: balapiravir, chloroquine, lovastatin, prednisolone and celgosivir. The lessons learned from these clinical trials can be very helpful for the design of future trials for the next generation of dengue virus inhibitors. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Seroepidemiology of Asymptomatic Dengue Virus Infection in Jeddah, Saudi Arabia

    Directory of Open Access Journals (Sweden)

    Ghazi A. Jamjoom

    2016-01-01

    Full Text Available Background Although virologically confirmed dengue fever has been recognized in Jeddah, Saudi Arabia, since 1994, causing yearly outbreaks, no proper seroepidemiologic studies on dengue virus have been conducted in this region. Such studies can define the extent of infection by this virus and estimate the proportion that may result in disease. The aim of this study was to measure the seroprevalence of past dengue virus infection in healthy Saudi nationals from different areas in the city of Jeddah and to investigate demographic and environmental factors that may increase exposure to infection. Methods Sera were collected from 1984 Saudi subjects attending primary health care centers in six districts of Jeddah. These included general patients of various ages seeking routine vaccinations, antenatal care or treatment of different illnesses excluding fever or suspected dengue. A number of blood donors were also tested. Serum samples were tested by enzyme immunoassay (EIA for IgG antibodies to dengue viruses 1, 2, 3, 4. A questionnaire was completed for each patient recording various anthropometric data and factors that may indicate possible risk of exposure to mosquito bites and dengue infection. Patients with missing data and those who reported a history of dengue fever were excluded from analysis, resulting in a sample of 1939 patients to be analyzed. Results The overall prevalence of dengue virus infection as measured by anti-dengue IgG antibodies from asymptomatic residents in Jeddah was 47.8% (927/1939 and 37% (68/184 in blood donors. Infection mostly did not result in recognizable disease, as only 19 of 1956 subjects with complete information (0.1% reported having dengue fever in the past. Anti dengue seropositivity increased with age and was higher in males than females and in residents of communal housing and multistory buildings than in villas. One of the six districts showed significant increase in exposure rate as compared to the others

  11. Increased Levels of Txa2 Induced by Dengue Virus Infection in IgM Positive Individuals Is Related to the Mild Symptoms of Dengue

    Science.gov (United States)

    Oliveira, Eneida S.; Colombarolli, Stella G.; Nascimento, Camila S.; Batista, Izabella C. A.; Ferreira, Jorge G. G.; Alvarenga, Daniele L. R.; de Sousa, Laís O. B.; Assis, Rafael R.; Rocha, Marcele N.; Alves, Érica A. R.; Calzavara-Silva, Carlos E.

    2018-01-01

    The inflammatory process plays a major role in the prognosis of dengue. In this context, the eicosanoids may have considerable influence on the regulation of the Dengue virus-induced inflammatory process. To quantify the molecules involved in the cyclooxygenase and lipoxygenase pathways during Dengue virus infection, plasma levels of thromboxane A2, prostaglandin E2 and leukotriene B4; mRNA levels of thromboxane A2 synthase, prostaglandin E2 synthase, leukotriene A4 hydrolase, cyclooxygenase-2 and 5-lipoxygenase; and the levels of lipid bodies in peripheral blood leukocytes collected from IgM-positive and IgM-negative volunteers with mild dengue, and non-infected volunteers, were evaluated. Dengue virus infection increases the levels of thromboxane A2 in IgM-positive individuals as well as the amount of lipid bodies in monocytes in IgM-negative individuals. We suggest that increased levels of thromboxane A2 in IgM-positive individuals plays a protective role against the development of severe symptoms of dengue, such as vascular leakage. PMID:29495587

  12. Flavone Enhances Dengue Virus Type-2 (NGC Strain Infectivity and Replication in Vero Cells

    Directory of Open Access Journals (Sweden)

    Keivan Zandi

    2012-02-01

    Full Text Available This study investigates the effects of 2-phenyl-1-benzopyran-4-one (flavone on DENV-2 infectivity in Vero cells. Virus adsorption and attachment and intracellular virus replication were investigated using a foci forming unit assay (FFUA and quantitative RT-PCR, respectively. Addition of flavone (100 μg/mL significantly increased the number of DENV-2 foci by 35.66% ± 1.52 and 49.66% ± 2.51 when added during and after virus adsorption to the Vero cells, respectively. The average foci size after 4 days of infection increased by 33% ± 2.11 and 89% ± 2.13. The DENV-2 specific RNA copy number in the flavone-treated infected cells increased by 6.41- and 23.1-fold when compared to the mock-treated infected cells. Flavone (100 μg/mL did not promote or inhibit Vero cell proliferation. The CC50 value of flavone against Vero cells was 446 µg/mL. These results suggest that flavone might enhance dengue virus replication by acting antagonistically towards flavonoids known to inhibit dengue virus replication.

  13. The Aedes aegypti toll pathway controls dengue virus infection.

    Directory of Open Access Journals (Sweden)

    Zhiyong Xi

    2008-07-01

    Full Text Available Aedes aegypti, the mosquito vector of dengue viruses, utilizes its innate immune system to ward off a variety of pathogens, some of which can cause disease in humans. To date, the features of insects' innate immune defenses against viruses have mainly been studied in the fruit fly Drosophila melanogaster, which appears to utilize different immune pathways against different types of viruses, in addition to an RNA interference-based defense system. We have used the recently released whole-genome sequence of the Ae. aegypti mosquito, in combination with high-throughput gene expression and RNA interference (RNAi-based reverse genetic analyses, to characterize its response to dengue virus infection in different body compartments. We have further addressed the impact of the mosquito's endogenous microbial flora on virus infection. Our findings indicate a significant role for the Toll pathway in regulating resistance to dengue virus, as indicated by an infection-responsive regulation and functional assessment of several Toll pathway-associated genes. We have also shown that the mosquito's natural microbiota play a role in modulating the dengue virus infection, possibly through basal-level stimulation of the Toll immune pathway.

  14. Dengue virus serotype 2 infection alters midgut and carcass gene expression in the Asian tiger mosquito, Aedes albopictus.

    Directory of Open Access Journals (Sweden)

    Hitoshi Tsujimoto

    Full Text Available The Asian tiger mosquito, Aedes albopictus is currently an important vector for dengue, chikungunya and Zika virus, and its role in transmission of arthropod-borne viruses (arboviruses may increase in the future due to its ability to colonize temperate regions. In contrast to Aedes aegypti, the dominant vector of dengue, chikungunya and Zika virus, genetic responses of Ae. albopictus upon infection with an arbovirus are not well characterized. Here we present a study of the changes in transcript expression in Ae. albopictus exposed to dengue virus serotype 2 via feeding on an artificial bloodmeal.We isolated midguts and midgut-free carcasses of Ae. albopictus fed on bloodmeals containing dengue virus as well as controls fed on virus-free control meals at day 1 and day 5 post-feeding. We confirmed infection of midguts from mosquitoes sampled on day 5 post-feeding via RT-PCR. RNAseq analysis revealed dynamic modulation of the expression of several putative immunity and dengue virus-responsive genes, some of whose expression was verified by qRT-PCR. For example, a serine protease gene was up-regulated in the midgut at 1 day post infection, which may potentially enhance mosquito susceptibility to dengue infection, while 14 leucine-rich repeat genes, previously shown to be involved in mosquito antiviral defenses, were down-regulated in the carcass at 5 days post infection. The number of significantly modulated genes decreased over time in midguts and increased in carcasses.Dengue virus exposure results in the modulation of genes in a time- and site-specific manner. Previous literature on the interaction between mosquitoes and mosquito-borne pathogens suggests that most of the changes that occurred in Ae. albopictus exposed to DENV would favor virus infection. Many genes identified in this study warrant further characterization to understand their role in viral manipulation of and antiviral response of Ae. albopictus.

  15. Susceptibility and response of human blood monocyte subsets to primary dengue virus infection.

    Directory of Open Access Journals (Sweden)

    Kok Loon Wong

    Full Text Available Human blood monocytes play a central role in dengue infections and form the majority of virus infected cells in the blood. Human blood monocytes are heterogeneous and divided into CD16(- and CD16(+ subsets. Monocyte subsets play distinct roles during disease, but it is not currently known if monocyte subsets differentially contribute to dengue protection and pathogenesis. Here, we compared the susceptibility and response of the human CD16(- and CD16(+ blood monocyte subsets to primary dengue virus in vitro. We found that both monocyte subsets were equally susceptible to dengue virus (DENV2 NGC, and capable of supporting the initial production of new infective virus particles. Both monocyte subsets produced anti-viral factors, including IFN-α, CXCL10 and TRAIL. However, CD16(+ monocytes were the major producers of inflammatory cytokines and chemokines in response to dengue virus, including IL-1β, TNF-α, IL-6, CCL2, 3 and 4. The susceptibility of both monocyte subsets to infection was increased after IL-4 treatment, but this increase was more profound for the CD16(+ monocyte subset, particularly at early time points after virus exposure. These findings reveal the differential role that monocyte subsets might play during dengue disease.

  16. Wolbachia and dengue virus infection in the mosquito Aedes fluviatilis (Diptera: Culicidae.

    Directory of Open Access Journals (Sweden)

    Jéssica Barreto Lopes Silva

    Full Text Available Dengue represents a serious threat to human health, with billions of people living at risk of the disease. Wolbachia pipientis is a bacterial endosymbiont common to many insect species. Wolbachia transinfections in mosquito disease vectors have great value for disease control given the bacterium's ability to spread into wild mosquito populations, and to interfere with infections of pathogens, such as dengue virus. Aedes fluviatilis is a mosquito with a widespread distribution in Latin America, but its status as a dengue vector has not been clarified. Ae. fluviatilis is also naturally infected by the wFlu Wolbachia strain, which has been demonstrated to enhance infection with the avian malarial parasite Plasmodium gallinaceum. We performed experimental infections of Ae. fluviatilis with DENV-2 and DENV-3 isolates from Brazil via injection or oral feeding to provide insight into its competence for the virus. We also examined the effect of the native Wolbachia infection on the virus using a mosquito line where the wFlu infection had been cleared by antibiotic treatment. Through RT-qPCR, we observed that Ae. fluviatilis could become infected with both viruses via either method of infection, although at a lower rate than Aedes aegypti, the primary dengue vector. We then detected DENV-2 and DENV-3 in the saliva of injected mosquitoes, and observed that injection of DENV-3-infected saliva produced subsequent infections in naïve Ae. aegypti. However, across our data we observed no difference in prevalence of infection and viral load between Wolbachia-infected and -uninfected mosquitoes, suggesting that there is no effect of wFlu on dengue virus. Our results highlight that Ae. fluviatilis could potentially serve as a dengue vector under the right circumstances, although further testing is required to determine if this occurs in the field.

  17. Immune Activation in the Pathogenesis of Dengue Virus Infection

    NARCIS (Netherlands)

    C.A.M. van de Weg (Cornelia A.M.)

    2014-01-01

    markdownabstract__Abstract__ Dengue virus (DENV) is a positive-stranded RNA virus and belongs to the Flaviviridae family. The virus is transmitted by the bite of an infected Aedes-mosquito and circulates in tropical and subtropical areas around the world. The incidence of dengue has risen

  18. Gamma interferon augments Fc gamma receptor-mediated dengue virus infection of human monocytic cells.

    OpenAIRE

    Kontny, U; Kurane, I; Ennis, F A

    1988-01-01

    It has been reported that anti-dengue antibodies at subneutralizing concentrations augment dengue virus infection of monocytic cells. This is due to the increased uptake of dengue virus in the form of virus-antibody complexes by cells via Fc gamma receptors. We analyzed the effects of recombinant human gamma interferon (rIFN-gamma) on dengue virus infection of human monocytic cells. U937 cells, a human monocytic cell line, were infected with dengue virus in the form of virus-antibody complexe...

  19. Comparative Evaluation of Permissiveness to Dengue Virus Serotype 2 Infection in Primary Rodent Macrophages

    Directory of Open Access Journals (Sweden)

    Jeanette Prada-Arismendy

    2012-01-01

    Full Text Available Infection with dengue virus presents a broad clinical spectrum, which can range from asymptomatic cases to severe cases that are characterised by haemorrhagic syndrome and/or shock. The reason for such variability remains unknown. This work evaluated the in vitro permissiveness of mouse, rat, hamster and guinea pig macrophages to infection by dengue virus 2 (DENV2. The results established that macrophages derived from the BALB/c mouse strain showed higher permissiveness to DENV2 infection than macrophages from other rodent species, although all rodent species studied had the C820T mutation in the oligoadenylate synthetase 1b gene, indicating no relationship to the different in vitro susceptibilities of mouse cells at this locus. Other molecular mechanisms related to flavivirus susceptibility remain to be explored.

  20. Drug repurposing of minocycline against dengue virus infection.

    Science.gov (United States)

    Leela, Shilpa Lekshmi; Srisawat, Chatchawan; Sreekanth, Gopinathan Pillai; Noisakran, Sansanee; Yenchitsomanus, Pa-Thai; Limjindaporn, Thawornchai

    2016-09-09

    Dengue virus infection is one of the most common arthropod-borne viral diseases. A complex interplay between host and viral factors contributes to the severity of infection. The antiviral effects of three antibiotics, lomefloxacin, netilmicin, and minocycline, were examined in this study, and minocycline was found to be a promising drug. This antiviral effect was confirmed in all four serotypes of the virus. The effects of minocycline at various stages of the viral life cycle, such as during viral RNA synthesis, intracellular envelope protein expression, and the production of infectious virions, were examined and found to be significantly reduced by minocycline treatment. Minocycline also modulated host factors, including the phosphorylation of extracellular signal-regulated kinase1/2 (ERK1/2). The transcription of antiviral genes, including 2'-5'-oligoadenylate synthetase 1 (OAS1), 2'-5'-oligoadenylate synthetase 3 (OAS3), and interferon α (IFNA), was upregulated by minocycline treatment. Therefore, the antiviral activity of minocycline may have a potential clinical use against Dengue virus infection. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Mitochondrial and bioenergetic dysfunction in human hepatic cells infected with dengue 2 virus

    OpenAIRE

    El-Bacha , Tatiana; Midlej , Victor; Silva , Ana Paula Pereira Da; Costa , Leandro Silva Da; Benchimol , Marlene; Galina , Antonio; Poian , Andrea T. Da

    2007-01-01

    Mitochondrial and bioenergetic dysfunction in human hepatic cells infected with dengue 2 virus correspondence: Corresponding author. Fax: +55 21 22708647. (El-Bacha, Tatiana) (El-Bacha, Tatiana) Laboratorio de Bioquimica de Virus, Instituto de Bioquimica Medica, Universidade Federal do Rio de Janeiro - RJ-Brasil--> , Av. Bauhinia n? 400 ? CCS Bloco H 2? andar--> , sala 22. Ilha do Governador--> ...

  2. Dengue virus type 2: replication and tropisms in orally infected Aedes aegypti mosquitoes.

    Science.gov (United States)

    Salazar, Ma Isabel; Richardson, Jason H; Sánchez-Vargas, Irma; Olson, Ken E; Beaty, Barry J

    2007-01-30

    To be transmitted by its mosquito vector, dengue virus (DENV) must infect midgut epithelial cells, replicate and disseminate into the hemocoel, and finally infect the salivary glands, which is essential for transmission. The extrinsic incubation period (EIP) is very relevant epidemiologically and is the time required from the ingestion of virus until it can be transmitted to the next vertebrate host. The EIP is conditioned by the kinetics and tropisms of virus replication in its vector. Here we document the virogenesis of DENV-2 in newly-colonized Aedes aegypti mosquitoes from Chetumal, Mexico in order to understand better the effect of vector-virus interactions on dengue transmission. After ingestion of DENV-2, midgut infections in Chetumal mosquitoes were characterized by a peak in virus titers between 7 and 10 days post-infection (dpi). The amount of viral antigen and viral titers in the midgut then declined, but viral RNA levels remained stable. The presence of DENV-2 antigen in the trachea was positively correlated with virus dissemination from the midgut. DENV-2 antigen was found in salivary gland tissue in more than a third of mosquitoes at 4 dpi. Unlike in the midgut, the amount of viral antigen (as well as the percent of infected salivary glands) increased with time. DENV-2 antigen also accumulated and increased in neural tissue throughout the EIP. DENV-2 antigen was detected in multiple tissues of the vector, but unlike some other arboviruses, was not detected in muscle. Our results suggest that the EIP of DENV-2 in its vector may be shorter that the previously reported and that the tracheal system may facilitate DENV-2 dissemination from the midgut. Mosquito organs (e.g. midgut, neural tissue, and salivary glands) differed in their response to DENV-2 infection.

  3. Dengue virus type 2: replication and tropisms in orally infected Aedes aegypti mosquitoes

    Directory of Open Access Journals (Sweden)

    Olson Ken E

    2007-01-01

    Full Text Available Abstract Background To be transmitted by its mosquito vector, dengue virus (DENV must infect midgut epithelial cells, replicate and disseminate into the hemocoel, and finally infect the salivary glands, which is essential for transmission. The extrinsic incubation period (EIP is very relevant epidemiologically and is the time required from the ingestion of virus until it can be transmitted to the next vertebrate host. The EIP is conditioned by the kinetics and tropisms of virus replication in its vector. Here we document the virogenesis of DENV-2 in newly-colonized Aedes aegypti mosquitoes from Chetumal, Mexico in order to understand better the effect of vector-virus interactions on dengue transmission. Results After ingestion of DENV-2, midgut infections in Chetumal mosquitoes were characterized by a peak in virus titers between 7 and 10 days post-infection (dpi. The amount of viral antigen and viral titers in the midgut then declined, but viral RNA levels remained stable. The presence of DENV-2 antigen in the trachea was positively correlated with virus dissemination from the midgut. DENV-2 antigen was found in salivary gland tissue in more than a third of mosquitoes at 4 dpi. Unlike in the midgut, the amount of viral antigen (as well as the percent of infected salivary glands increased with time. DENV-2 antigen also accumulated and increased in neural tissue throughout the EIP. DENV-2 antigen was detected in multiple tissues of the vector, but unlike some other arboviruses, was not detected in muscle. Conclusion Our results suggest that the EIP of DENV-2 in its vector may be shorter that the previously reported and that the tracheal system may facilitate DENV-2 dissemination from the midgut. Mosquito organs (e.g. midgut, neural tissue, and salivary glands differed in their response to DENV-2 infection.

  4. Competitive inhibitor of cellular alpha-glucosidases protects mice from lethal dengue virus infection

    OpenAIRE

    Chang, Jinhong; Schul, Wouter; Yip, Andy; Xu, Xiaodong; Guo, Ju-Tao; Block, Timothy M.

    2011-01-01

    Dengue virus infection causes diseases in people, ranging from the acute febrile illness Dengue fever, to life-threatening Dengue Hemorrhagic Fever/Dengue Shock Syndrome. We previously reported that a host cellular α-glucosidases I and II inhibitor, imino sugar CM-10-18, potently inhibited dengue virus replication in cultured cells, and significantly reduced viremia in dengue virus infected AG129 mice. In this report we show that CM-10-18 also significantly protects mice from death and/or dis...

  5. Nine year trends of dengue virus infection in Mumbai, Western India.

    Science.gov (United States)

    Shastri, Jayanthi; Williamson, Manita; Vaidya, Nilima; Agrawal, Sachee; Shrivastav, Om

    2017-01-01

    Dengue virus (DENV) causes a wide range of diseases in humans, from acute febrile illness Dengue fever (DF) to life-threatening Dengue hemorrhagic fever (DHF) or Dengue shock syndrome (DSS). Factors believed to be responsible for spread of Dengue virus infection include explosive population growth, unplanned urban overpopulation with inadequate public health systems, poor standing water and vector control, climate changes and increased international recreational, business, military travel to endemic areas. All of these factors must be addressed to control the spread of Dengue and other mosquito-borne infections. The detection of Dengue virus RNA by reverse transcriptase PCR (RT-PCR) in human serum or plasma samples is highly indicative of acute Dengue fever. Moreover, the method is able to identify the Dengue virus serotype by demonstrating defined sequence homologies in the viral genomic RNA. During the nine year period of this study analysis, 6767 strongly suspected cases were tested by RT-PCR. 1685 (24.9%) were Dengue PCR positive and confirmed as Dengue cases. Observations on the seasonality were based on the nine year's data as the intensity of sampling was at its maximum during monsoon season. Dengue typing was done on 100 positive samples after storage of Dengue RNA at - 80°C. Dengue serotypes were detected in 69 samples of which Dengue 2 was most predominant. 576 samples were processed for NS1 antigen and PCR simultaneously. 19/576 were positive (3.3 %) for NS1 as well as by PCR. 23/576 samples were negative for NS1 antigen, but were positive by RT-PCR. The remaining 534 samples which were negative for NS1 antigen were also negative by Dengue RT-PCR. In this study we sought to standardize rapid, sensitive, and specific fluorogenic probe-based RT-PCR assay to screen and serotype a representative range of Dengue viruses that are found in and around Mumbai. Qualitative Dengue virus TaqMan assays could have tremendous utility for the epidemiological

  6. Dengue virus type 2 infections of Aedes aegypti are modulated by the mosquito's RNA interference pathway.

    Directory of Open Access Journals (Sweden)

    Irma Sánchez-Vargas

    2009-02-01

    Full Text Available A number of studies have shown that both innate and adaptive immune defense mechanisms greatly influence the course of human dengue virus (DENV infections, but little is known about the innate immune response of the mosquito vector Aedes aegypti to arbovirus infection. We present evidence here that a major component of the mosquito innate immune response, RNA interference (RNAi, is an important modulator of mosquito infections. The RNAi response is triggered by double-stranded RNA (dsRNA, which occurs in the cytoplasm as a result of positive-sense RNA virus infection, leading to production of small interfering RNAs (siRNAs. These siRNAs are instrumental in degradation of viral mRNA with sequence homology to the dsRNA trigger and thereby inhibition of virus replication. We show that although dengue virus type 2 (DENV2 infection of Ae. aegypti cultured cells and oral infection of adult mosquitoes generated dsRNA and production of DENV2-specific siRNAs, virus replication and release of infectious virus persisted, suggesting viral circumvention of RNAi. We also show that DENV2 does not completely evade RNAi, since impairing the pathway by silencing expression of dcr2, r2d2, or ago2, genes encoding important sensor and effector proteins in the RNAi pathway, increased virus replication in the vector and decreased the extrinsic incubation period required for virus transmission. Our findings indicate a major role for RNAi as a determinant of DENV transmission by Ae. aegypti.

  7. Pharmacological intervention for dengue virus infection.

    Science.gov (United States)

    Lai, Jenn-Haung; Lin, Yi-Ling; Hsieh, Shie-Liang

    2017-04-01

    Dengue virus (DENV) infection has a considerable health impact in tropical and subtropical countries worldwide. Escalation of infection rates greatly increases morbidity and mortality, most commonly from deaths due to dengue hemorrhagic fever and dengue shock syndrome. Although the development of an effective, long-lasting vaccine has been a major aim for control and prevention of DENV infection, the currently licensed vaccine has limitations and is less than satisfactory. Thus, there remains an important need to identify effective and tolerable medications for treatment of DENV-infected patients both in the early phase, to prevent progression to fatal outcomes, and to minimize deaths after patients develop severe complications. This review will address several specific points, including (1) approaches to identify anti-DENV medications, (2) recent advances in the development of potential compounds targeting DENV infection, (3) experience with clinical trials of regimens for DENV infection, (4) some available medications of potential for clinical trials against DENV infection, (5) reasons for unsuccessful outcomes and challenges of anti-DENV treatments, and (6) directions for developing or selecting better anti-DENV strategies. This review provides useful guidance for clinicians selecting drugs for DENV-infected patients with severe manifestations or potential fatal disease progression, and for basic researchers seeking to develop effective anti-DENV regimens. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Effects of cell culture and laboratory conditions on type 2 dengue virus infectivity.

    Science.gov (United States)

    Manning, J S; Collins, J K

    1979-01-01

    The stability of type 2 dengue virus to exposure to a variety of laboratory conditions was determined. Suckling mouse brain passage virus was adapted for growth in BHK-21 cells, and plaque assays were performed using a tragacanth gum overlay. A three- to fourfold increase in plaque size could be obtained if monolayers were subconfluent at time of inoculation. Incubation of virus for 24 h at 37 degrees C, pH 6.5, or in buffer containing 1 mM ethylenediaminetetraacetate considerably reduced virus infectivity as compared with virus incubated for the same period at 4 degrees C, pH 8.0, or in buffer with or without 1 mM CaCl2 and 1 mM MgCl2. Multiple freezing and thawing of virus tissue culture medium containing 10% fetal calf serum did not reduce virus infectivity. Images PMID:41848

  9. Molecular determinants of dengue virus 2 envelope protein important for virus entry in FcγRIIA-mediated antibody-dependent enhancement of infection

    International Nuclear Information System (INIS)

    Chotiwan, Nunya; Roehrig, John T.; Schlesinger, Jacob J.; Blair, Carol D.; Huang, Claire Y.-H.

    2014-01-01

    Antibody-dependent enhancement (ADE) of infection may cause severe illness in patients suffering a secondary infection by a heterologous dengue virus (DENV) serotype. During ADE of infection, cross-reactive non- or poorly-neutralizing antibodies form infectious virus-Ab complexes with the newly infecting serotype and enhance virus infection by binding to the Fcγ receptors (FcγR) on FcγR-bearing cells. In this study, we determined that molecular determinants of DENV2 envelope protein critical for virus entry during non-ADE infection are also required for ADE infection mediated by FcγRIIA, and binding of virus-Ab complexes with FcγRIIA alone is not sufficient for ADE of infection. The FcγRIIA mainly plays an auxiliary role in concentrating the virus–Ab complex to the cell surface, and other primary cellular receptors are required for virus entry. Understanding the viral entry pathway in ADE of DENV infection will greatly facilitate rational designs of anti-viral therapeutics against severe dengue disease associated with ADE. - Highlights: • KKK305/307/310 in DENV2 E-DIII is critical for virus attachment in ADE and non-ADE infection. • Binding of DENV2–Ab complex with FcγRII alone is not sufficient for virus entry in ADE infection. • Other primary receptors were required for DENV2 internalization during FcγRII–mediated ADE. • G104 and L135 of DENV2 E are critical for virus-mediated membrane fusion. • DENV2 virus-mediated membrane fusion is required for both ADE and non-ADE infection

  10. Molecular determinants of dengue virus 2 envelope protein important for virus entry in FcγRIIA-mediated antibody-dependent enhancement of infection

    Energy Technology Data Exchange (ETDEWEB)

    Chotiwan, Nunya; Roehrig, John T. [Arboviral Diseases Branch, Division of Vector-Borne Disease, Centers for Disease Control and Prevention, Fort Collins, CO 80521 (United States); Schlesinger, Jacob J. [Department of Medicine, University of Rochester, Rochester, NY 14642 (United States); Blair, Carol D. [Arthropod-borne and Infectious Diseases Laboratory, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523 (United States); Huang, Claire Y.-H., E-mail: yxh0@cdc.gov [Arboviral Diseases Branch, Division of Vector-Borne Disease, Centers for Disease Control and Prevention, Fort Collins, CO 80521 (United States)

    2014-05-15

    Antibody-dependent enhancement (ADE) of infection may cause severe illness in patients suffering a secondary infection by a heterologous dengue virus (DENV) serotype. During ADE of infection, cross-reactive non- or poorly-neutralizing antibodies form infectious virus-Ab complexes with the newly infecting serotype and enhance virus infection by binding to the Fcγ receptors (FcγR) on FcγR-bearing cells. In this study, we determined that molecular determinants of DENV2 envelope protein critical for virus entry during non-ADE infection are also required for ADE infection mediated by FcγRIIA, and binding of virus-Ab complexes with FcγRIIA alone is not sufficient for ADE of infection. The FcγRIIA mainly plays an auxiliary role in concentrating the virus–Ab complex to the cell surface, and other primary cellular receptors are required for virus entry. Understanding the viral entry pathway in ADE of DENV infection will greatly facilitate rational designs of anti-viral therapeutics against severe dengue disease associated with ADE. - Highlights: • KKK305/307/310 in DENV2 E-DIII is critical for virus attachment in ADE and non-ADE infection. • Binding of DENV2–Ab complex with FcγRII alone is not sufficient for virus entry in ADE infection. • Other primary receptors were required for DENV2 internalization during FcγRII–mediated ADE. • G104 and L135 of DENV2 E are critical for virus-mediated membrane fusion. • DENV2 virus-mediated membrane fusion is required for both ADE and non-ADE infection.

  11. Increased Levels of Txa₂ Induced by Dengue Virus Infection in IgM Positive Individuals Is Related to the Mild Symptoms of Dengue.

    Science.gov (United States)

    Oliveira, Eneida S; Colombarolli, Stella G; Nascimento, Camila S; Batista, Izabella C A; Ferreira, Jorge G G; Alvarenga, Daniele L R; de Sousa, Laís O B; Assis, Rafael R; Rocha, Marcele N; Alves, Érica A R; Calzavara-Silva, Carlos E

    2018-02-28

    The inflammatory process plays a major role in the prognosis of dengue. In this context, the eicosanoids may have considerable influence on the regulation of the Dengue virus -induced inflammatory process. To quantify the molecules involved in the cyclooxygenase and lipoxygenase pathways during Dengue virus infection, plasma levels of thromboxane A2, prostaglandin E2 and leukotriene B4; mRNA levels of thromboxane A2 synthase, prostaglandin E2 synthase, leukotriene A4 hydrolase, cyclooxygenase-2 and 5-lipoxygenase; and the levels of lipid bodies in peripheral blood leukocytes collected from IgM-positive and IgM-negative volunteers with mild dengue, and non-infected volunteers, were evaluated. Dengue virus infection increases the levels of thromboxane A2 in IgM-positive individuals as well as the amount of lipid bodies in monocytes in IgM-negative individuals. We suggest that increased levels of thromboxane A2 in IgM-positive individuals plays a protective role against the development of severe symptoms of dengue, such as vascular leakage.

  12. An in-depth analysis of original antigenic sin in dengue virus infection.

    Science.gov (United States)

    Midgley, Claire M; Bajwa-Joseph, Martha; Vasanawathana, Sirijitt; Limpitikul, Wannee; Wills, Bridget; Flanagan, Aleksandra; Waiyaiya, Emily; Tran, Hai Bac; Cowper, Alison E; Chotiyarnwong, Pojchong; Chotiyarnwon, Pojchong; Grimes, Jonathan M; Yoksan, Sutee; Malasit, Prida; Simmons, Cameron P; Mongkolsapaya, Juthathip; Screaton, Gavin R

    2011-01-01

    The evolution of dengue viruses has resulted in four antigenically similar yet distinct serotypes. Infection with one serotype likely elicits lifelong immunity to that serotype, but generally not against the other three. Secondary or sequential infections are common, as multiple viral serotypes frequently cocirculate. Dengue infection, although frequently mild, can lead to dengue hemorrhagic fever (DHF) which can be life threatening. DHF is more common in secondary dengue infections, implying a role for the adaptive immune response in the disease. There is currently much effort toward the design and implementation of a dengue vaccine but these efforts are made more difficult by the challenge of inducing durable neutralizing immunity to all four viruses. Domain 3 of the dengue virus envelope protein (ED3) has been suggested as one such candidate because it contains neutralizing epitopes and it was originally thought that relatively few cross-reactive antibodies are directed to this domain. In this study, we performed a detailed analysis of the anti-ED3 response in a cohort of patients suffering either primary or secondary dengue infections. The results show dramatic evidence of original antigenic sin in secondary infections both in terms of binding and enhancement activity. This has important implications for dengue vaccine design because heterologous boosting is likely to maintain the immunological footprint of the first vaccination. On the basis of these findings, we propose a simple in vitro enzyme-linked immunosorbent assay (ELISA) to diagnose the original dengue infection in secondary dengue cases.

  13. SERO-EPIDEMIOLOGY OF DENGUE VIRUS INFECTION IN CITIES OF INDONESIA

    Directory of Open Access Journals (Sweden)

    Soegeng Soegijanto

    2013-10-01

    Full Text Available Background: Dengue Virus Infektion is major public health problem in Indonesia. Aedesaegypti is widespread in both urban and rural areas, where multiple virus Serotype are circulating. On 2013 outbreak ofdengue virus infection occur in East Java. Therefore study seroepidemiology in Bangkalan and Lombok had been done. Aim:to find a mutated strain ofDengue Virus in 4 cities ofIndonesia. Method: On 2011 and 2012 seroepidemiology study had been done in Dr. Soetomo Surabaya and Soerya Sidoarjo Hospital; and on 2013 study had been done in Surabaya, Bangkalan and Lombok Hospital . Diagnosis ofDengue Virus Infection was based on Criteri WHO - 2009. Virus isolation in Surabaya, Sidoarjo, Bangkalan and Lombok had been done. Result:a total of349 isolate were obtained from dengue patients sera collected in Surabaya and Sidoarjo, 2011–2012 showed that Den V1 (182, Den V2 (20 Den V4 (1 were found in Surabaya on 2011 and Den V 1 (79 , Den V 2 (7 were found in Surabaya on 2012; Den V1 (40, Den V 2 (3 were found in Sidoarjo on 2011 and Den V 1 (17 were found in Sidoarjo on 2012; Virus isolation in Surabaya on 2013, January: 237 serum sample were collected, found Den V 1 (8, Den V 3 (2 and Den V 4 (5. And PCR stereotyping of isolated viruses in Madura found Den V 1 (1 and Den V 4 (23. In Lombok found Den V 4 (4.It is possible to shift predominant strain in Surabaya , Genotype or Serotype shift might increase the number ofdengue patients. Conclusion: there were shift predominant strain in Surabaya especially Den V 1. Therefore to continuous surveillance ofcirculating viruses is required to predict the risk ofDHF and DF

  14. Nine year trends of dengue virus infection in Mumbai, Western India

    OpenAIRE

    Shastri, Jayanthi; Williamson, Manita; Vaidya, Nilima; Agrawal, Sachee; Shrivastav, Om

    2017-01-01

    Introduction: Dengue virus (DENV) causes a wide range of diseases in humans, from acute febrile illness Dengue fever (DF) to life-threatening Dengue hemorrhagic fever (DHF) or Dengue shock syndrome (DSS). Factors believed to be responsible for spread of Dengue virus infection include explosive population growth, unplanned urban overpopulation with inadequate public health systems, poor standing water and vector control, climate changes and increased international recreational, business, milit...

  15. Early diagnosis of dengue virus infection in clinically suspected cases

    International Nuclear Information System (INIS)

    Afridi, N.K.; Ahmed, S.; Ali, N.; Khan, S.A.

    2016-01-01

    Objective: Comparison of real time reverse transcriptase polymerase chain reaction (RTPCR) and immunoglobulin M (IgM) capture enzyme linked immunosorbent assay (ELISA) for diagnosis of dengue virus infection in first week of illness in clinically suspected patients of dengue fever. Study Design: Cross sectional study. Place and Duration of Study: Department of haematology, Armed Forces Institute of Pathology (AFIP) Rawalpindi from Jan 2013 to Nov 2013. Material and Methods: A cross sectional study including 68 clinically suspected patients of dengue fever according to the World Health Organization (WHO) criteria. IgM capture ELISA and RT PCR for dengue virus ribonucleic acid (RNA) was performed on samples collected from patients having fever for 1 to 7 days. These were divided into two groups. Patients in group 1 presented with fever of 4 days or less, patients in group 2 had fever of 5 to 7 days duration. Results: In group 1, 72 percent of the patients were positive by RT PCR while 31 percent were positive by IgM capture ELISA. In group 2, 43 percent of the patients were positive by RT PCR while 97 percent were positive by ELISA. Conclusion: RT PCR can be used for early detection of dengue virus infection in the first few days of fever while IgM ELISA is diagnostic afterwards. (author)

  16. Neurological Manifestations of Dengue Infection

    Directory of Open Access Journals (Sweden)

    Guo-Hong Li

    2017-10-01

    Full Text Available Dengue counts among the most commonly encountered arboviral diseases, representing the fastest spreading tropical illness in the world. It is prevalent in 128 countries, and each year >2.5 billion people are at risk of dengue virus infection worldwide. Neurological signs of dengue infection are increasingly reported. In this review, the main neurological complications of dengue virus infection, such as central nervous system (CNS, peripheral nervous system, and ophthalmic complications were discussed according to clinical features, treatment and possible pathogenesis. In addition, neurological complications in children were assessed due to their atypical clinical features. Finally, dengue infection and Japanese encephalitis were compared for pathogenesis and main clinical manifestations.

  17. Prior Exposure to Zika Virus Significantly Enhances Peak Dengue-2 Viremia in Rhesus Macaques

    OpenAIRE

    George, Jeffy; Valiant, William G.; Mattapallil, Mary J.; Walker, Michelle; Huang, Yan-Jang S.; Vanlandingham, Dana L.; Misamore, John; Greenhouse, Jack; Weiss, Deborah E.; Verthelyi, Daniela; Higgs, Stephen; Andersen, Hanne; Lewis, Mark G.; Mattapallil, Joseph J.

    2017-01-01

    Structural and functional homologies between the Zika and Dengue viruses? envelope proteins raise the possibility that cross-reactive antibodies induced following Zika virus infection might enhance subsequent Dengue infection. Using the rhesus macaque model we show that prior infection with Zika virus leads to a significant enhancement of Dengue-2 viremia that is accompanied by neutropenia, lympocytosis, hyperglycemia, and higher reticulocyte counts, along with the activation of pro-inflammat...

  18. Dengue death with evidence of hemophagocytic syndrome and dengue virus infection in the bone marrow.

    Science.gov (United States)

    Ab-Rahman, Hasliana Azrah; Wong, Pooi-Fong; Rahim, Hafiz; Abd-Jamil, Juraina; Tan, Kim-Kee; Sulaiman, Syuhaida; Lum, Chai-See; Syed-Omar, Syarifah-Faridah; AbuBakar, Sazaly

    2015-01-01

    HPS is a potentially life-threatening histiocytic disorder that has been described in various viral infections including dengue. Its involvement in severe and fatal dengue is probably more common but is presently under recognized. A 38-year-old female was admitted after 5 days of fever. She was deeply jaundiced, leukopenic and thrombocytopenic. Marked elevation of transaminases, hyperbilirubinemia and hypoalbuminemia were observed. She had deranged INR values and prolonged aPTT accompanied with hypofibrinogenemia. She also had splenomegaly. She was positive for dengue IgM. Five days later she became polyuric and CT brain image showed gross generalized cerebral edema. Her conditions deteriorated by day 9, became confused with GCS of 9/15. Her BMAT showed minimal histiocytes. Her serum ferritin level peaked at 13,670.00 µg/mL and her sCD163 and sCD25 values were markedly elevated at 4750.00 ng/mL and 4191.00 pg/mL, respectively. She succumbed to the disease on day 10 and examination of her tissues showed the presence of dengue virus genome in the bone marrow. It is described here, a case of fatal dengue with clinical features of HPS. Though BMAT results did not show the presence of macrophage hemophagocytosis, other laboratory features were consistent with HPS especially marked elevation of ferritin, sCD163 and sCD25. Detection of dengue virus in the patient's bone marrow, fifteen days after the onset of fever was also consistent with the suggestion that the HPS is associated with dengue virus infection. The findings highlight HPS as a possible complication leading to severe dengue and revealed persistent dengue virus infection of the bone marrow. Detection of HPS markers; ferritin, sCD163 and sCD25, therefore, should be considered for early recognition of HPS-associated dengue.

  19. FEVER AS INDICATOR TO SECONDARY INFECTION IN DENGUE VIRAL INFECTION

    Directory of Open Access Journals (Sweden)

    Soegeng Soegijanto

    2018-04-01

    Full Text Available Dengue Virus Infections are distributed in tropical and sub-tropical regions and transmitted by the mosquitoes such as Aedes aegypti and Aedes albopictus. Dengue virus can cause dengue fever, dengue hemorrhagic fever and dengue shock syndrome or dengue and severe dengue classified by World Health Organization. Beside it concurrent infection virus salmonella had been found some cases who showed fever more than 7 days. Concurrent infection with two agents can result in an illness having overlapping symptoms creating a diagnostic dilemma for treating physician, such as dengue fever with typhoid fever. The aim of this research is detection of dengue virus and secondary infection with Salmonella typhi in patients suspected dengue virus infection. Detection of dengue virus and Salmonella typhi using immunochromatography test such as NS1, IgG/IgM for dengue virus infection, and IgM/IgG Salmonella and blood culture. The fifty children with dengue virus infection came to Soerya hospital and 17 cases suspected dengue virus infection, five cases showed a positive NS1 on the second day of fever and one case concurrent with clinical manifestation of convulsi on the third days of fever there were five cases only showed positive. It was showed in this study that on the fourth to six day of fever in dengue virus infection accompanied by antibody IgM & IgG dengue. There were 12 cases showed the clinical manifestation of concurrent dengue viral infection and Salmonella, all of them showed a mild clinical manifestation and did not show plasma leakage and shock. In this study we found the length of stay of concurrent Dengue Virus Infection and Salmonella infection is more than 10 days. These patients were also more likely to have co-existing haemodynamic disturbances and bacterial septicaemia which would have required treatment with inotropes and antibiotics. This idea is very important to make update dengue viral management to decrease mortality in outbreak try to

  20. Differential protein modulation in midguts of Aedes aegypti infected with chikungunya and dengue 2 viruses.

    Science.gov (United States)

    Tchankouo-Nguetcheu, Stéphane; Khun, Huot; Pincet, Laurence; Roux, Pascal; Bahut, Muriel; Huerre, Michel; Guette, Catherine; Choumet, Valérie

    2010-10-05

    Arthropod borne virus infections cause several emerging and resurgent infectious diseases. Among the diseases caused by arboviruses, dengue and chikungunya are responsible for a high rate of severe human diseases worldwide. The midgut of mosquitoes is the first barrier for pathogen transmission and is a target organ where arboviruses must replicate prior to infecting other organs. A proteomic approach was undertaken to characterize the key virus/vector interactions and host protein modifications that happen in the midgut for viral transmission to eventually take place. Using a proteomics differential approach with two-Dimensional Differential in-Gel Electrophoresis (2D-DIGE), we defined the protein modulations in the midgut of Aedes aegypti that were triggered seven days after an oral infection (7 DPI) with dengue 2 (DENV-2) and chikungunya (CHIKV) viruses. Gel profile comparisons showed that the level of 18 proteins was modulated by DENV-2 only and 12 proteins were modulated by CHIKV only. Twenty proteins were regulated by both viruses in either similar or different ways. Both viruses caused an increase of proteins involved in the generation of reactive oxygen species, energy production, and carbohydrate and lipid metabolism. Midgut infection by DENV-2 and CHIKV triggered an antioxidant response. CHIKV infection produced an increase of proteins involved in detoxification. Our study constitutes the first analysis of the protein response of Aedes aegypti's midgut infected with viruses belonging to different families. It shows that the differentially regulated proteins in response to viral infection include structural, redox, regulatory proteins, and enzymes for several metabolic pathways. Some of these proteins like antioxidant are probably involved in cell protection. On the other hand, we propose that the modulation of other proteins like transferrin, hsp60 and alpha glucosidase, may favour virus survival, replication and transmission, suggesting a subversion of

  1. Activity of andrographolide against dengue virus.

    Science.gov (United States)

    Panraksa, Patcharee; Ramphan, Suwipa; Khongwichit, Sarawut; Smith, Duncan R

    2017-03-01

    Dengue is the most prevalent arthropod-transmitted viral illness of humans, with an estimated 100 million symptomatic infections occurring each year and more than 2.5 billion people living at risk of infection. There are no approved antiviral agents against dengue virus, and there is only limited introduction of a dengue vaccine in some countries. Andrographolide is derived from Andrographis paniculata, a medicinal plant traditionally used to treat a number of conditions including infections. The antiviral activity of andrographolide against dengue virus (DENV) serotype 2 was evaluated in two cell lines (HepG2 and HeLa) while the activity against DENV 4 was evaluated in one cell line (HepG2). Results showed that andrographolide had significant anti-DENV activity in both cell lines, reducing both the levels of cellular infection and virus output, with 50% effective concentrations (EC 50 ) for DENV 2 of 21.304 μM and 22.739 μM for HepG2 and HeLa respectively. Time of addition studies showed that the activity of andrographolide was confined to a post-infection stage. These results suggest that andrographolide has the potential for further development as an anti-viral agent for dengue virus infection. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. The Epidemiology, Virology and Clinical Findings of Dengue Virus Infections in a Cohort of Indonesian Adults in Western Java.

    Directory of Open Access Journals (Sweden)

    Herman Kosasih

    2016-02-01

    Full Text Available Dengue has emerged as one of the most important infectious diseases in the last five decades. Evidence indicates the expansion of dengue virus endemic areas and consequently the exponential increase of dengue virus infections across the subtropics. The clinical manifestations of dengue virus infection include sudden fever, rash, headache, myalgia and in more serious cases, spontaneous bleeding. These manifestations occur in children as well as in adults. Defining the epidemiology of dengue in a given area is critical to understanding the disease and devising effective public health strategies.Here, we report the results from a prospective cohort study of 4380 adults in West Java, Indonesia, from 2000-2004 and 2006-2009. A total of 2167 febrile episodes were documented and dengue virus infections were confirmed by RT-PCR or serology in 268 cases (12.4%. The proportion ranged from 7.6 to 41.8% each year. The overall incidence rate of symptomatic dengue virus infections was 17.3 cases/1,000 person years and between September 2006 and April 2008 asymptomatic infections were 2.6 times more frequent than symptomatic infections. According to the 1997 WHO classification guidelines, there were 210 dengue fever cases, 53 dengue hemorrhagic fever cases (including one dengue shock syndrome case and five unclassified cases. Evidence for sequential dengue virus infections was seen in six subjects. All four dengue virus serotypes circulated most years. Inapparent dengue virus infections were predominantly associated with DENV-4 infections.Dengue virus was responsible for a significant percentage of febrile illnesses in an adult population in West Java, Indonesia, and this percentage varied from year to year. The observed incidence rate during the study period was 43 times higher than the reported national or provincial rates during the same time period. A wide range of clinical severity was observed with most infections resulting in asymptomatic disease. The

  3. Identification of human hnRNP C1/C2 as a dengue virus NS1-interacting protein

    International Nuclear Information System (INIS)

    Noisakran, Sansanee; Sengsai, Suchada; Thongboonkerd, Visith; Kanlaya, Rattiyaporn; Sinchaikul, Supachok; Chen, Shui-Tein; Puttikhunt, Chunya

    2008-01-01

    Dengue virus nonstructural protein 1 (NS1) is a key glycoprotein involved in the production of infectious virus and the pathogenesis of dengue diseases. Very little is known how NS1 interacts with host cellular proteins and functions in dengue virus-infected cells. This study aimed at identifying NS1-interacting host cellular proteins in dengue virus-infected cells by employing co-immunoprecipitation, two-dimensional gel electrophoresis, and mass spectrometry. Using lysates of dengue virus-infected human embryonic kidney cells (HEK 293T), immunoprecipitation with an anti-NS1 monoclonal antibody revealed eight isoforms of dengue virus NS1 and a 40-kDa protein, which was subsequently identified by quadrupole time-of-flight tandem mass spectrometry (Q-TOF MS/MS) as human heterogeneous nuclear ribonucleoprotein (hnRNP) C1/C2. Further investigation by co-immunoprecipitation and co-localization confirmed the association of hnRNP C1/C2 and dengue virus NS1 proteins in dengue virus-infected cells. Their interaction may have implications in virus replication and/or cellular responses favorable to survival of the virus in host cells

  4. Dengue virus infection in renal allograft recipients: a case series during 2010 outbreak.

    Science.gov (United States)

    Prasad, N; Bhadauria, D; Sharma, R K; Gupta, A; Kaul, A; Srivastava, A

    2012-04-01

    Dengue virus infection is an emerging global threat caused by Arbovirus, a virus from Flaviridiae family, which is transmitted by mosquitoes, Aedes aegypti and Aedes albopictus. Renal transplant recipients who live in the endemic zones of dengue infection or who travel to an endemic zone could be at risk of this infection. Despite multiple epidemics and a high case fatality rate in the Southeast Asian region, only a few cases of dengue infection in renal transplant recipients have been reported. Here, we report a case series of 8 dengue viral infection in renal transplant recipients. Of the 8 patients, 3 developed dengue hemorrhagic shock syndrome and died. © 2011 John Wiley & Sons A/S.

  5. Clinical and laboratory profile of different dengue sub types in dengue virus infection

    OpenAIRE

    Niloy Gan Chaudhuri; S. Vithyavathi; K. Sankar

    2016-01-01

    Background: Dengue infection, an arthropod-borne viral hemorrhagic fever is caused by Arbovirus of Flavivirus genus and transmitted by Aedes aegypti, Aedes albopictus. Liver involvement in dengue fever is manifested by the elevation of transaminases representing reactive hepatitis, due to direct attack of virus itself or the use of hepatotoxic drugs. The objective of the study was to investigate clinical and laboratory profile of different dengue sub type's patients admitted for dengue fever....

  6. Efektivitas Pentagamavunon-0 (PGV-0 pada fase awal infeksi virus Dengue-2

    Directory of Open Access Journals (Sweden)

    Dewi Marbawati

    2015-01-01

    Full Text Available Abstract. Dengue virus infects 50 to 100 million people every year, however, specific treatment or effective antiviral drugs to treat viral infections has not been found yet. Curcumin known has  perform the inhibition of ubiquitin-proteasome system that causes a decrease of Japanese encephalitis, one kind of flavivirus. Structural modifications was known to increase the biological activity of curcumin. Pentagamavunon-0 (PGV-0 is known have activity similar to or even better than curcumin. This study aims to determine the effect of PGV-0 in the early phase of infection of dengue- virus 2 (one day of infection. This study includes quasi-experimental study. The method used for the detection of Dengue-2 viruswas immunocytochemistry, whichpreviously tested by PGV-0 cytotoxic test against vero cells. Cytotoxic test results indicate safe concentrations (no toxic effects of PGV-0 against vero cells is 4.44 µM. Calculation of positive rate compared with the positive control(14.55 ± 7.25 showed that the value of positive rate due to one-day Dengue virus-2 infection with PGV-0 treatment was smaller(3.8 ± 3.89. It was concluded that the PGV-0 is able to decrease the positive rate due to Den-2 infection in the initial period of infection. Keywords: dengue, Pentagamavunon-0 (PGV-0,immunocytochemistry, vero cells Abstrak.Virus Dengue menginfeksi 50 sampai 100 juta orangper tahun, namun terapi yang spesifik atau obat antivirus yang efektif belum ditemukan. Kurkumin diketahui mampu melakukan penghambatan system ubiquitin-proteasome yang menyebabkan penurunan produksi salah satu jenis Flavivirus yaitu Japanese encephaitis. Modifikasi struktur kurkumin terbukti meningkatkan aktivitas biologisnya.  Pentagamavunon-0 (PGV-0 diketahui memiliki aktifitas mirip atau bahkan  lebih baik dari kurkumin. Tujuan dari penelitian ini adalah mengetahui pengaruh pemberian PGV-0 pada fase awal infeksi virus Dengue-2 (satu hari infeksi. Penelitian ini termasuk penelitian

  7. Treatment Effectiveness of Amantadine Against Dengue Virus Infection.

    Science.gov (United States)

    Lin, Chieh-Cheng; Chen, Wen-Ching

    2016-12-05

    BACKGROUND About 400 million cases of dengue, a mosquito-borne disease, are reported annually, but no drug is yet available for treatment. In 1988, at Feng Lin Clinic, Taiwan, we encountered about 10,000 cases and tested various drugs before confirming an antiviral effect of amantadine against dengue virus in vitro. After we administered amantadine to patients for 1-2 days, most achieved full remission. None experienced potentially life-threatening dengue hemorrhagic fever or dengue shock syndrome. Herein, we present 34 cases from recent clinical experience that show amantadine's unusual effect against dengue virus infection. CASE REPORT We divided 34 patients with symptoms of dengue fever, confirmed by a screening test, into 3 groups: 6 Category 1 patients received amantadine at onset, 21 Category 2 patients received amantadine within 2-6 days, and 7 Contrast group patients received no amantadine because they visited other clinics or were admitted to a large hospital. When Category 1 patients were treated with amantadine 100 mg 3 times per day, all symptoms dramatically subsided within 1-2 days. In Category 2 patients, most symptoms diminished within 1-2 days after starting the same regimen. In the Contrast group, all symptoms persisted 7 days after onset. White blood cell and platelet counts in Category 1 and 2 patients recovered to normal range, but remained below low normal in the Contrast group. CONCLUSIONS Amantadine is effective and should be given as soon as possible to stop the disease course if dengue fever is confirmed through screening or clinical signs and symptoms. A well-designed larger sample study is warranted to test this effectiveness.

  8. Co-infections with Chikungunya and Dengue Viruses, Guatemala, 2015.

    Science.gov (United States)

    Edwards, Thomas; Signor, Leticia Del Carmen Castillo; Williams, Christopher; Donis, Evelin; Cuevas, Luis E; Adams, Emily R

    2016-11-01

    We screened serum samples referred to the national reference laboratory in Guatemala that were positive for chikungunya or dengue viruses in June 2015. Co-infection with both viruses was detected by reverse transcription PCR in 46 (32%) of 144 samples. Specimens should be tested for both arboviruses to detect co-infections.

  9. Response to Dengue virus infections altered by cytokine-like substances from mosquito cell cultures

    Directory of Open Access Journals (Sweden)

    Laosutthipong Chaowanee

    2010-11-01

    Full Text Available Abstract Background With both shrimp and commercial insects such as honey bees, it is known that stable, persistent viral infections characterized by absence of disease can sometimes shift to overt disease states as a result of various stress triggers and that this can result in serious economic losses. The main research interest of our group is to understand the dynamics of stable viral infections in shrimp and how they can be destabilized by stress. Since there are no continuous cell lines for crustaceans, we have used a C6/36 mosquito cell line infected with Dengue virus to test hypotheses regarding these interactions. As a result, we accidentally discovered two new cytokine-like substances in 5 kDa extracts from supernatant solutions of acutely and persistently infected mosquito cells. Results Naïve C6/36 cells were exposed for 48 h to 5 kDa membrane filtrates prepared from the supernatant medium of stable C6/36 mosquito cell cultures persistently-infected with Dengue virus. Subsequent challenge of naïve cells with a virulent stock of Dengue virus 2 (DEN-2 and analysis by confocal immunofluorescence microscopy using anti-DEN-2 antibody revealed a dramatic reduction in the percentage of DEN-2 infected cells when compared to control cells. Similar filtrates prepared from C6/36 cells with acute DEN-2 infections were used to treat stable C6/36 mosquito cell cultures persistently-infected with Dengue virus. Confocal immunofluorescence microscopy revealed destabilization in the form of an apoptosis-like response. Proteinase K treatment removed the cell-altering activities indicating that they were caused by small polypeptides similar to those previously reported from insects. Conclusions This is the first report of cytokine-like substances that can alter the responses of mosquito cells to Dengue virus. This simple model system allows detailed molecular studies on insect cytokine production and on cytokine activity in a standard insect cell line.

  10. Differential protein modulation in midguts of Aedes aegypti infected with chikungunya and dengue 2 viruses.

    Directory of Open Access Journals (Sweden)

    Stéphane Tchankouo-Nguetcheu

    Full Text Available BACKGROUND: Arthropod borne virus infections cause several emerging and resurgent infectious diseases. Among the diseases caused by arboviruses, dengue and chikungunya are responsible for a high rate of severe human diseases worldwide. The midgut of mosquitoes is the first barrier for pathogen transmission and is a target organ where arboviruses must replicate prior to infecting other organs. A proteomic approach was undertaken to characterize the key virus/vector interactions and host protein modifications that happen in the midgut for viral transmission to eventually take place. METHODOLOGY AND PRINCIPAL FINDINGS: Using a proteomics differential approach with two-Dimensional Differential in-Gel Electrophoresis (2D-DIGE, we defined the protein modulations in the midgut of Aedes aegypti that were triggered seven days after an oral infection (7 DPI with dengue 2 (DENV-2 and chikungunya (CHIKV viruses. Gel profile comparisons showed that the level of 18 proteins was modulated by DENV-2 only and 12 proteins were modulated by CHIKV only. Twenty proteins were regulated by both viruses in either similar or different ways. Both viruses caused an increase of proteins involved in the generation of reactive oxygen species, energy production, and carbohydrate and lipid metabolism. Midgut infection by DENV-2 and CHIKV triggered an antioxidant response. CHIKV infection produced an increase of proteins involved in detoxification. CONCLUSION/SIGNIFICANCE: Our study constitutes the first analysis of the protein response of Aedes aegypti's midgut infected with viruses belonging to different families. It shows that the differentially regulated proteins in response to viral infection include structural, redox, regulatory proteins, and enzymes for several metabolic pathways. Some of these proteins like antioxidant are probably involved in cell protection. On the other hand, we propose that the modulation of other proteins like transferrin, hsp60 and alpha

  11. Complex modulation of the Aedes aegypti transcriptome in response to dengue virus infection.

    Science.gov (United States)

    Bonizzoni, Mariangela; Dunn, W Augustine; Campbell, Corey L; Olson, Ken E; Marinotti, Osvaldo; James, Anthony A

    2012-01-01

    Dengue fever is the most important arboviral disease world-wide, with Aedes aegypti being the major vector. Interactions between the mosquito host and dengue viruses (DENV) are complex and vector competence varies among geographically-distinct Ae. aegypti populations. Additionally, dengue is caused by four antigenically-distinct viral serotypes (DENV1-4), each with multiple genotypes. Each virus genotype interacts differently with vertebrate and invertebrate hosts. Analyses of alterations in mosquito transcriptional profiles during DENV infection are expected to provide the basis for identifying networks of genes involved in responses to viruses and contribute to the molecular-genetic understanding of vector competence. In addition, this knowledge is anticipated to support the development of novel disease-control strategies. RNA-seq technology was used to assess genome-wide changes in transcript abundance at 1, 4 and 14 days following DENV2 infection in carcasses, midguts and salivary glands of the Ae. aegypti Chetumal strain. DENV2 affected the expression of 397 Ae. aegypti genes, most of which were down-regulated by viral infection. Differential accumulation of transcripts was mainly tissue- and time-specific. Comparisons of our data with other published reports reveal conservation of functional classes, but limited concordance of specific mosquito genes responsive to DENV2 infection. These results indicate the necessity of additional studies of mosquito-DENV interactions, specifically those focused on recently-derived mosquito strains with multiple dengue virus serotypes and genotypes.

  12. Complex modulation of the Aedes aegypti transcriptome in response to dengue virus infection.

    Directory of Open Access Journals (Sweden)

    Mariangela Bonizzoni

    Full Text Available Dengue fever is the most important arboviral disease world-wide, with Aedes aegypti being the major vector. Interactions between the mosquito host and dengue viruses (DENV are complex and vector competence varies among geographically-distinct Ae. aegypti populations. Additionally, dengue is caused by four antigenically-distinct viral serotypes (DENV1-4, each with multiple genotypes. Each virus genotype interacts differently with vertebrate and invertebrate hosts. Analyses of alterations in mosquito transcriptional profiles during DENV infection are expected to provide the basis for identifying networks of genes involved in responses to viruses and contribute to the molecular-genetic understanding of vector competence. In addition, this knowledge is anticipated to support the development of novel disease-control strategies. RNA-seq technology was used to assess genome-wide changes in transcript abundance at 1, 4 and 14 days following DENV2 infection in carcasses, midguts and salivary glands of the Ae. aegypti Chetumal strain. DENV2 affected the expression of 397 Ae. aegypti genes, most of which were down-regulated by viral infection. Differential accumulation of transcripts was mainly tissue- and time-specific. Comparisons of our data with other published reports reveal conservation of functional classes, but limited concordance of specific mosquito genes responsive to DENV2 infection. These results indicate the necessity of additional studies of mosquito-DENV interactions, specifically those focused on recently-derived mosquito strains with multiple dengue virus serotypes and genotypes.

  13. The seroprevalence and seroincidence of dengue virus infection in western Kenya.

    Science.gov (United States)

    Blaylock, Jason M; Maranich, Ashley; Bauer, Kristen; Nyakoe, Nancy; Waitumbi, John; Martinez, Luis J; Lynch, Julia

    2011-09-01

    Epidemics of dengue fever have been documented throughout the African continent over the past several decades, however little is known about the prevalence or incidence of dengue virus infection in the absence of an outbreak. No studies have analyzed the prevalence of dengue infection in western Kenya to date. This study describes the seroincidence and seroprevalence of dengue infection in western Kenya. Banked sera obtained from 354 healthy, afebrile children ages 12-47 months from Kisumu District, Kenya, were analyzed for antibodies to dengue virus using an IgG indirect ELISA. We found a seroprevalence of 1.1% (4 of 354 samples) and incidence of 8.5 seroconversions per 1000 persons per year in this study population. This appears to be similar to that previously reported in coastal regions of the country outside of known epidemic periods. Since there has never been a reported dengue epidemic in western Kenya, continued investigation and evaluation in a patient population presenting with fever is necessary to further confirm this finding. Published by Elsevier Ltd.

  14. Neurological manifestations of dengue viral infection

    Directory of Open Access Journals (Sweden)

    Carod-Artal FJ

    2014-10-01

    Full Text Available Francisco Javier Carod-Artal1,21Neurology Department, Raigmore hospital, Inverness, UK; 2Universitat Internacional de Catalunya (UIC, Barcelona, Spain Abstract: Dengue is the most common mosquito-borne viral infection worldwide. There is increased evidence for dengue virus neurotropism, and neurological manifestations could make part of the clinical picture of dengue virus infection in at least 0.5%–7.4% of symptomatic cases. Neurological complications have been classified into dengue virus encephalopathy, dengue virus encephalitis, immune-mediated syndromes (acute disseminated encephalomyelitis, myelitis, Guillain–Barré syndrome, neuritis brachialis, acute cerebellitis, and others, neuromuscular complications (hypokalemic paralysis, transient benign muscle dysfunction and myositis, and dengue-associated stroke. Common neuro-ophthalmic complications are maculopathy and retinal vasculopathy. Pathogenic mechanisms include systemic complications and metabolic disturbances resulting in encephalopathy, direct effect of the virus provoking encephalitis, and postinfectious immune mechanisms causing immune-mediated syndromes. Dengue viruses should be considered as a cause of neurological disorders in endemic regions. Standardized case definitions for specific neurological complications are still needed. Keywords: encephalitis, encephalopathy, dengue fever, neurological complications

  15. NNDSS - Table II. Cryptosporidiosis to Dengue virus infection

    Data.gov (United States)

    U.S. Department of Health & Human Services — NNDSS - Table II. Cryptosporidiosis to Dengue virus infection - 2018. In this Table, provisional cases of selected notifiable diseases (≥1,000 cases reported during...

  16. Incidence of dengue virus infection among Japanese travellers, 2006 to 2010

    Directory of Open Access Journals (Sweden)

    Yuki Tada

    2012-06-01

    Full Text Available Introduction: Dengue continues to be a global public health concern. In Japan, although dengue cases are currently seen only among travellers returning from endemic areas, the number of reported cases is rising according to the national case-based surveillance system. We evaluated the characteristics of dengue cases imported into Japan and the relationship between the incidence of infection and season of travel to popular destinations.Methods: Dengue cases reported to the national surveillance system were retrospectively examined. The number of reported cases per number of Japanese travellers to a dengue-endemic country was calculated to estimate the country-specific incidence of imported dengue virus infection. The incidence of dengue infection among Japanese travellers was compared between dengue high season and low season in each country using relative risk (RR and associated 95% confidence intervals (CI.Results: Among 540 Japanese residents who were reported as dengue cases from 2006 to 2010, the majority had travelled to Indonesia, India, the Philippines and Thailand. The RR of dengue infection among Japanese travellers during dengue high season versus low season was 4.92 (95% CI: 3.01–8.04 for the Philippines, 2.76 (95% CI: 1.67–4.54 for Thailand and 0.37 (95% CI: 0.15–0.92 for Indonesia.Discussion: Overall, higher incidence of imported cases appeared to be related to historic dengue high seasons. Travellers planning to visit dengue-endemic countries should be aware of historic dengue seasonality and the current dengue situation.

  17. Serum Metabolomics Investigation of Humanized Mouse Model of Dengue Virus Infection.

    Science.gov (United States)

    Cui, Liang; Hou, Jue; Fang, Jinling; Lee, Yie Hou; Costa, Vivian Vasconcelos; Wong, Lan Hiong; Chen, Qingfeng; Ooi, Eng Eong; Tannenbaum, Steven R; Chen, Jianzhu; Ong, Choon Nam

    2017-07-15

    Dengue is an acute febrile illness caused by dengue virus (DENV) and a major cause of morbidity and mortality in tropical and subtropical regions of the world. The lack of an appropriate small-animal model of dengue infection has greatly hindered the study of dengue pathogenesis and the development of therapeutics. In this study, we conducted mass spectrometry-based serum metabolic profiling from a model using humanized mice (humice) with DENV serotype 2 infection at 0, 3, 7, 14, and 28 days postinfection (dpi). Forty-eight differential metabolites were identified, including fatty acids, purines and pyrimidines, acylcarnitines, acylglycines, phospholipids, sphingolipids, amino acids and derivatives, free fatty acids, and bile acid. These metabolites showed a reversible-change trend-most were significantly perturbed at 3 or 7 dpi and returned to control levels at 14 or 28 dpi, indicating that the metabolites might serve as prognostic markers of the disease in humice. The major perturbed metabolic pathways included purine and pyrimidine metabolism, fatty acid β-oxidation, phospholipid catabolism, arachidonic acid and linoleic acid metabolism, sphingolipid metabolism, tryptophan metabolism, phenylalanine metabolism, lysine biosynthesis and degradation, and bile acid biosynthesis. Most of these disturbed pathways are similar to our previous metabolomics findings in a longitudinal cohort of adult human dengue patients across different infection stages. Our analyses revealed the commonalities of host responses to DENV infection between humice and humans and suggested that humice could be a useful small-animal model for the study of dengue pathogenesis and the development of dengue therapeutics. IMPORTANCE Dengue virus is the most widespread arbovirus, causing an estimated 390 million dengue infections worldwide every year. There is currently no effective treatment for the disease, and the lack of an appropriate small-animal model of dengue infection has greatly

  18. TRANSMISI TRANSOVARIAL VIRUS DENGUE PADA TELUR NYAMUK AEDES AEGYPTI(L.

    Directory of Open Access Journals (Sweden)

    Magdalena Desiree Seran

    2013-03-01

    Full Text Available Abstract. The ability of dengue virus to maintain its existence in nature through two mechanisms, both horizontal and vertical transmission (transovarial of the infective female mosquitoes to the next generation. This study aims to investigate the transovarial transmission and transovarial infection rate (TIR of dengue virus in eggs Aedes aegypti infected mother has a peroral virus DEN-2. This study is an experimental study in the laboratory. The population of the study was Ae. aegypti adults who have previously been infected with DEN-2 virus orally and proved to be infected with DEN-2 transovarially (Fl. The research sample was egg of Ae. aegypti from F2 generation which colonized from DEN-2 transovarially infected Ae. aegypti (Fl. Egg squash preparations made as many as 50 samples from jive difJerent mosquito parents. The presence of dengue virus antigen in mosquitoes FO and Fl were checked by SPBC immunocytochemistry method and using monoclonal antibodies DSSC7 (l: 50 as standardized primary antibodies. The results shows the existence of transovarial transmission of dengue virus in eggs Ae. aegypti (F2 were seen in squash preparations in the form of a brownish color egg spread on embryonic tissues (TIR= 52%. It concludes that dengue virus is able to be transmitted vertically through the egg. Keywords: transovarial transmission, eggsquash, Aedes aegypti, transovarial infection rate (TIR Abstrak. Kemampuan virus dengue untuk mempertahankan keberadaanya di alam dilakukan melalui dua mekanisme yaitu transmisi horizontal dan dengan transmisi vertikal (transovarial yaitu dari nyamuk betina infektif ke generasi berikutnya. Penelitian ini bertujuan untuk mengetahui adanya transmisi transovarial dan transovarial infection rate (TIR virus dengue pada telur Ae. aegypti yang induknya telah diinfeksi virus DEN-2 secara peroraI. Penelitian merupakan jenis penelitian eksperimental di laboratorium. Populasi penelitian adalah Ae. aegypti betina dewasa yang

  19. Antiviral Activity of Novel Quinoline Derivatives against Dengue Virus Serotype 2

    Directory of Open Access Journals (Sweden)

    Carolina de la Guardia

    2018-03-01

    Full Text Available Dengue virus causes dengue fever, a debilitating disease with an increasing incidence in many tropical and subtropical territories. So far, there are no effective antivirals licensed to treat this virus. Here we describe the synthesis and antiviral activity evaluation of two compounds based on the quinoline scaffold, which has shown potential for the development of molecules with various biological activities. Two of the tested compounds showed dose-dependent inhibition of dengue virus serotype 2 in the low and sub micromolar range. The compounds 1 and 2 were also able to impair the accumulation of the viral envelope glycoprotein in infected cells, while showing no sign of direct virucidal activity and acting possibly through a mechanism involving the early stages of the infection. The results are congruent with previously reported data showing the potential of quinoline derivatives as a promising scaffold for the development of new antivirals against this important virus.

  20. Survey of malaria and anti-dengue virus IgG among febrile HIV-infected patients attending a tertiary hospital in Abuja, Nigeria.

    Science.gov (United States)

    Mustapha, Jelili Olaide; Emeribe, Anthony Uchenna; Nasir, Idris Abdullahi

    2017-01-01

    Dengue and malaria are infections, of great public health concern, especially in sub-Saharan Africa where the burden of HIV infection is high. This study was conducted to determine the seroprevalence of dengue virus IgG antibodies and dengue/malaria coinfection among febrile HIV-infected patients attending the University of Abuja Teaching Hospital, Gwagwalada, Abuja. In this cross-sectional study, blood samples from 178 consenting HIV-infected patients receiving antiretroviral therapy were collected and tested for plasmodiasis and anti-Dengue virus IgG using malaria microscopy and ELISA, respectively. Interviewer-based questionnaires were used to assess subjects' sociodemographic variables and dengue risk factors. Of the 178 screened participants, 44.4% were seropositive for dengue virus IgG antibody, whereas 29.2% were positive for Plasmodium falciparum. About 44.2% were positive for both dengue virus and P. falciparum . There was a statistical association between anti-dengue IgG and occupation ( p =0.03) but not with age, residential area, educational level and patients' gender ( p >0.05). Seroprevalence of anti-dengue specific IgG was relatively higher in participants who adopted protective measures. There was a statistical association between seroprevalence of anti-dengue IgG and adoption of preventive measures ( p <0.05). The high prevalence of malaria and dengue virus IgG indicates the need to strengthen vector control and dengue surveillance programs.

  1. Dengue Virus Type 2 in Travelers Returning to Japan from Sri Lanka, 2017.

    Science.gov (United States)

    Tsuboi, Motoyuki; Kutsuna, Satoshi; Maeki, Takahiro; Taniguchi, Satoshi; Tajima, Shigeru; Kato, Fumihiro; Lim, Chang-Kweng; Saijo, Masayuki; Takaya, Saho; Katanami, Yuichi; Kato, Yasuyuki; Ohmagari, Norio

    2017-11-01

    In June 2017, dengue virus type 2 infection was diagnosed in 2 travelers returned to Japan from Sri Lanka, where the country's largest dengue fever outbreak is ongoing. Travelers, especially those previously affected by dengue fever, should take measures to avoid mosquito bites.

  2. Cross reactivity of commercial anti-dengue immunoassays in patients with acute Zika virus infection.

    Science.gov (United States)

    Felix, Alvina Clara; Souza, Nathalia C Santiago; Figueiredo, Walter M; Costa, Angela A; Inenami, Marta; da Silva, Rosangela M G; Levi, José Eduardo; Pannuti, Claudio Sergio; Romano, Camila Malta

    2017-08-01

    Several countries have local transmission of multiple arboviruses, in particular, dengue and Zika viruses, which have recently spread through many American countries. Cross reactivity among Flaviviruses is high and present a challenge for accurate identification of the infecting agent. Thus, we evaluated the level of cross reactivity of anti-dengue IgM/G Enzyme-Linked Immunosorbent Assays (ELISA) from three manufacturers against 122 serum samples obtained at two time-points from 61 patients with non-dengue confirmed Zika virus infection. All anti-dengue ELISAs cross reacted with serum from patients with acute Zika infection at some level and a worrisome number of seroconversion for dengue IgG and IgM was observed. These findings may impact the interpretation of currently standard criteria for dengue diagnosis in endemic regions. © 2017 Wiley Periodicals, Inc.

  3. RNAi: antiviral therapy against dengue virus.

    Science.gov (United States)

    Idrees, Sobia; Ashfaq, Usman A

    2013-03-01

    Dengue virus infection has become a global threat affecting around 100 countries in the world. Currently, there is no licensed antiviral agent available against dengue. Thus, there is a strong need to develop therapeutic strategies that can tackle this life threatening disease. RNA interference is an important and effective gene silencing process which degrades targeted RNA by a sequence specific process. Several studies have been conducted during the last decade to evaluate the efficiency of siRNA in inhibiting dengue virus replication. This review summarizes siRNAs as a therapeutic approach against dengue virus serotypes and concludes that siRNAs against virus and host genes can be next generation treatment of dengue virus infection.

  4. Proteasome Inhibition Suppresses Dengue Virus Egress in Antibody Dependent Infection.

    Directory of Open Access Journals (Sweden)

    Milly M Choy

    2015-11-01

    Full Text Available The mosquito-borne dengue virus (DENV is a cause of significant global health burden, with an estimated 390 million infections occurring annually. However, no licensed vaccine or specific antiviral treatment for dengue is available. DENV interacts with host cell factors to complete its life cycle although this virus-host interplay remains to be fully elucidated. Many studies have identified the ubiquitin proteasome pathway (UPP to be important for successful DENV production, but how the UPP contributes to DENV life cycle as host factors remains ill defined. We show here that proteasome inhibition decouples infectious virus production from viral RNA replication in antibody-dependent infection of THP-1 cells. Molecular and imaging analyses in β-lactone treated THP-1 cells suggest that proteasome function does not prevent virus assembly but rather DENV egress. Intriguingly, the licensed proteasome inhibitor, bortezomib, is able to inhibit DENV titers at low nanomolar drug concentrations for different strains of all four serotypes of DENV in primary monocytes. Furthermore, bortezomib treatment of DENV-infected mice inhibited the spread of DENV in the spleen as well as the overall pathological changes. Our findings suggest that preventing DENV egress through proteasome inhibition could be a suitable therapeutic strategy against dengue.

  5. Longitudinal Analysis of Natural Killer Cells in Dengue Virus-Infected Patients in Comparison to Chikungunya and Chikungunya/Dengue Virus-Infected Patients.

    Directory of Open Access Journals (Sweden)

    Caroline Petitdemange

    2016-03-01

    Full Text Available Dengue virus (DENV is the most prominent arbovirus worldwide, causing major epidemics in South-East Asia, South America and Africa. In 2010, a major DENV-2 outbreak occurred in Gabon with cases of patients co-infected with chikungunya virus (CHIKV. Although the innate immune response is thought to be of primordial importance in the development and outcome of arbovirus-associated pathologies, our knowledge of the role of natural killer (NK cells during DENV-2 infection is in its infancy.We performed the first extensive comparative longitudinal characterization of NK cells in patients infected by DENV-2, CHIKV or both viruses. Hierarchical clustering and principal component analyses were performed to discriminate between CHIKV and DENV-2 infected patients.We observed that both activation and differentiation of NK cells are induced during the acute phase of infection by DENV-2 and CHIKV. Combinatorial analysis however, revealed that both arboviruses induced two different signatures of NK-cell responses, with CHIKV more associated with terminal differentiation, and DENV-2 with inhibitory KIRs. We show also that intracellular production of interferon-γ (IFN-γ by NK cells is strongly stimulated in acute DENV-2 infection, compared to CHIKV.Although specific differences were observed between CHIKV and DENV-2 infections, the significant remodeling of NK cell populations observed here suggests their potential roles in the control of both infections.

  6. Lack of Durable Cross-Neutralizing Antibodies Against Zika Virus from Dengue Virus Infection.

    Science.gov (United States)

    Collins, Matthew H; McGowan, Eileen; Jadi, Ramesh; Young, Ellen; Lopez, Cesar A; Baric, Ralph S; Lazear, Helen M; de Silva, Aravinda M

    2017-05-01

    Cross-reactive antibodies elicited by dengue virus (DENV) infection might affect Zika virus infection and confound serologic tests. Recent data demonstrate neutralization of Zika virus by monoclonal antibodies or human serum collected early after DENV infection. Whether this finding is true in late DENV convalescence (>6 months after infection) is unknown. We studied late convalescent serum samples from persons with prior DENV or Zika virus exposure. Despite extensive cross-reactivity in IgG binding, Zika virus neutralization was not observed among primary DENV infections. We observed low-frequency (23%) Zika virus cross-neutralization in repeat DENV infections. DENV-immune persons who had Zika virus as a secondary infection had distinct populations of antibodies that neutralized DENVs and Zika virus, as shown by DENV-reactive antibody depletion experiments. These data suggest that most DENV infections do not induce durable, high-level Zika virus cross-neutralizing antibodies. Zika virus-specific antibody populations develop after Zika virus infection irrespective of prior DENV immunity.

  7. Dengue human infection models to advance dengue vaccine development.

    Science.gov (United States)

    Larsen, Christian P; Whitehead, Stephen S; Durbin, Anna P

    2015-12-10

    Dengue viruses (DENV) currently infect approximately 400 million people each year causing millions to seek care and overwhelming the health care infrastructure in endemic areas. Vaccines to prevent dengue and therapeutics to treat dengue are not currently available. The efficacy of the most advanced candidate vaccine against symptomatic dengue in general and DENV-2 in particular was much lower than expected, despite the ability of the vaccine to induce neutralizing antibody against all four DENV serotypes. Because seroconversion to the DENV serotypes following vaccination was thought to be indicative of induced protection, these results have made it more difficult to assess which candidate vaccines should or should not be evaluated in large studies in endemic areas. A dengue human infection model (DHIM) could be extremely valuable to down-select candidate vaccines or therapeutics prior to engaging in efficacy trials in endemic areas. Two DHIM have been developed to assess the efficacy of live attenuated tetravalent (LATV) dengue vaccines. The first model, developed by the Laboratory of Infectious Diseases at the U. S. National Institutes of Health, utilizes a modified DENV-2 strain DEN2Δ30. This virus was derived from the DENV-2 Tonga/74 that caused only very mild clinical infection during the outbreak from which it was recovered. DEN2Δ30 induced viremia in 100%, rash in 80%, and neutropenia in 27% of the 30 subjects to whom it was given. The Walter Reed Army Institute of Research (WRAIR) is developing a DHIM the goal of which is to identify DENV that cause symptomatic dengue fever. WRAIR has evaluated seven viruses and has identified two that meet dengue fever criteria. Both of these models may be very useful in the evaluation and down-selection of candidate dengue vaccines and therapeutics. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  8. Purification and crystallization of dengue and West Nile virus NS2B–NS3 complexes

    Energy Technology Data Exchange (ETDEWEB)

    D’Arcy, Allan, E-mail: allan.darcy@novartis.com; Chaillet, Maxime; Schiering, Nikolaus; Villard, Frederic [Novartis Institutes of Biomedical Research, Protease Platform, Klybeckstrasse 144, CH 4002 Basel (Switzerland); Lim, Siew Pheng [Novartis Institutes of Tropical Diseases (Singapore); Lefeuvre, Peggy [Novartis Institutes of Biomedical Research, Protease Platform, Klybeckstrasse 144, CH 4002 Basel (Switzerland); Erbel, Paul [Novartis Institutes of Biomedical Research, Protease Platform, Klybeckstrasse 144, CH 4002 Basel (Switzerland); Novartis Institutes of Tropical Diseases (Singapore)

    2006-02-01

    Crystals of dengue serotype 2 and West Nile virus NS2B–NS3 protease complexes have been obtained and the crystals of both diffract to useful resolution. Sample homogeneity was essential for obtaining X-ray-quality crystals of the dengue protease. Controlled proteolysis produced a crystallizable fragment of the apo West Nile virus NS2B–NS3 and crystals were also obtained in the presence of a peptidic inhibitor. Both dengue and West Nile virus infections are an increasing risk to humans, not only in tropical and subtropical areas, but also in North America and parts of Europe. These viral infections are generally transmitted by mosquitoes, but may also be tick-borne. Infection usually results in mild flu-like symptoms, but can also cause encephalitis and fatalities. Approximately 2799 severe West Nile virus cases were reported this year in the United States, resulting in 102 fatalities. With this alarming increase in the number of West Nile virus infections in western countries and the fact that dengue virus already affects millions of people per year in tropical and subtropical climates, there is a real need for effective medicines. A possible therapeutic target to combat these viruses is the protease, which is essential for virus replication. In order to provide structural information to help to guide a lead identification and optimization program, crystallizations of the NS2B–NS3 protease complexes from both dengue and West Nile viruses have been initiated. Crystals that diffract to high resolution, suitable for three-dimensional structure determinations, have been obtained.

  9. Purification and crystallization of dengue and West Nile virus NS2B–NS3 complexes

    International Nuclear Information System (INIS)

    D’Arcy, Allan; Chaillet, Maxime; Schiering, Nikolaus; Villard, Frederic; Lim, Siew Pheng; Lefeuvre, Peggy; Erbel, Paul

    2006-01-01

    Crystals of dengue serotype 2 and West Nile virus NS2B–NS3 protease complexes have been obtained and the crystals of both diffract to useful resolution. Sample homogeneity was essential for obtaining X-ray-quality crystals of the dengue protease. Controlled proteolysis produced a crystallizable fragment of the apo West Nile virus NS2B–NS3 and crystals were also obtained in the presence of a peptidic inhibitor. Both dengue and West Nile virus infections are an increasing risk to humans, not only in tropical and subtropical areas, but also in North America and parts of Europe. These viral infections are generally transmitted by mosquitoes, but may also be tick-borne. Infection usually results in mild flu-like symptoms, but can also cause encephalitis and fatalities. Approximately 2799 severe West Nile virus cases were reported this year in the United States, resulting in 102 fatalities. With this alarming increase in the number of West Nile virus infections in western countries and the fact that dengue virus already affects millions of people per year in tropical and subtropical climates, there is a real need for effective medicines. A possible therapeutic target to combat these viruses is the protease, which is essential for virus replication. In order to provide structural information to help to guide a lead identification and optimization program, crystallizations of the NS2B–NS3 protease complexes from both dengue and West Nile viruses have been initiated. Crystals that diffract to high resolution, suitable for three-dimensional structure determinations, have been obtained

  10. Antiviral activity of four types of bioflavonoid against dengue virus type-2

    Directory of Open Access Journals (Sweden)

    Zandi Keivan

    2011-12-01

    Full Text Available Abstract Background Dengue is a major mosquito-borne disease currently with no effective antiviral or vaccine available. Effort to find antivirals for it has focused on bioflavonoids, a plant-derived polyphenolic compounds with many potential health benefits. In the present study, antiviral activity of four types of bioflavonoid against dengue virus type -2 (DENV-2 in Vero cell was evaluated. Anti-dengue activity of these compounds was determined at different stages of DENV-2 infection and replication cycle. DENV replication was measured by Foci Forming Unit Reduction Assay (FFURA and quantitative RT-PCR. Selectivity Index value (SI was determined as the ratio of cytotoxic concentration 50 (CC50 to inhibitory concentration 50 (IC50 for each compound. Results The half maximal inhibitory concentration (IC50 of quercetin against dengue virus was 35.7 μg mL-1 when it was used after virus adsorption to the cells. The IC50 decreased to 28.9 μg mL-1 when the cells were treated continuously for 5 h before virus infection and up to 4 days post-infection. The SI values for quercetin were 7.07 and 8.74 μg mL-1, respectively, the highest compared to all bioflavonoids studied. Naringin only exhibited anti-adsorption effects against DENV-2 with IC50 = 168.2 μg mL-1 and its related SI was 1.3. Daidzein showed a weak anti-dengue activity with IC50 = 142.6 μg mL-1 when the DENV-2 infected cells were treated after virus adsorption. The SI value for this compound was 1.03. Hesperetin did not exhibit any antiviral activity against DENV-2. The findings obtained from Foci Forming Unit Reduction Assay (FFURA were corroborated by findings of the qRT-PCR assays. Quercetin and daidzein (50 μg mL-1 reduced DENV-2 RNA levels by 67% and 25%, respectively. There was no significant inhibition of DENV-2 RNA levels with naringin and hesperetin. Conclusion Results from the study suggest that only quercetin demonstrated significant anti-DENV-2 inhibitory activities. Other

  11. Losartan and enalapril decrease viral absorption and interleukin 1 beta production by macrophages in an experimental dengue virus infection.

    Science.gov (United States)

    Hernández-Fonseca, Juan Pablo; Durán, Anyelo; Valero, Nereida; Mosquera, Jesús

    2015-11-01

    The role of angiotensin II (Ang II) in dengue virus infection remains unknown. The aim of this study was to determine the effect of losartan, an antagonist of the angiotensin II type 1 receptor (AT1 receptor), and enalapril, an inhibitor of angiotensin I-converting enzyme (ACE), on viral antigen expression and IL-1β production in peritoneal macrophages infected with dengue virus type 2. Mice treated with losartan or enalapril and untreated controls were infected intraperitoneally with the virus, and macrophages were analyzed. Infection resulted in increased IL-1β production and a high percentage of cells expressing viral antigen, and this was decreased by treatment with anti-Ang II drugs, suggesting a role for Ang II in dengue virus infection.

  12. Identification of natural antimicrobial agents to treat dengue infection: In vitro analysis of latarcin peptide activity against dengue virus.

    Science.gov (United States)

    Rothan, Hussin A; Bahrani, Hirbod; Rahman, Noorsaadah Abd; Yusof, Rohana

    2014-05-31

    Although there have been considerable advances in the study of dengue virus, no vaccines or anti-dengue drugs are currently available for humans. Therefore, new approaches are necessary for the development of potent anti-dengue drugs. Natural antimicrobial peptides (AMPs) with potent antiviral activities are potential hits-to-leads for antiviral drug discovery. We performed this study to identify and characterise the inhibitory potential of the latarcin peptide (Ltc 1, SMWSGMWRRKLKKLRNALKKKLKGE) against dengue virus replication in infected cells. The Ltc 1 peptide showed a significantly inhibitory effect against the dengue protease NS2B-NS3pro at 37°C, a physiological human temperature, (IC50, 12.68 ± 3.2 μM), and greater inhibitory effect was observed at 40°C, a temperature similar to a high fever (IC50, 6.58 ± 4.1 μM). A greater reduction in viral load (p.f.u./ml) was observed at simultaneous (0.7 ± 0.3 vs. 7.2 ± 0.5 control) and post-treatment (1.8 ± 0.7 vs. 6.8 ± 0.6 control) compared to the pre-treatment (4.5 ± 0.6 vs. 6.9 ± 0.5 control). Treatment with the Ltc 1 peptide reduced the viral RNA in a dose-dependent manner with EC50 values of 8.3 ± 1.2, 7.6 ± 2.7 and 6.8 ± 2.5 μM at 24, 48 and 72 h, respectively. The Ltc 1 peptide exhibited significant inhibitory effects against dengue NS2B-NS3pro and virus replication in the infected cells. Therefore, further investigation is necessary to develop the Ltc 1 peptide as a new anti-dengue therapeutic.

  13. Identification of dengue viruses in naturally infected Aedes aegypti females captured with BioGents (BG-Sentinel traps in Manaus, Amazonas, Brazil

    Directory of Open Access Journals (Sweden)

    Regina Maria Pinto de Figueiredo

    2013-04-01

    Full Text Available Introduction In Manaus, the first autochthonous cases of dengue fever were registered in 1998. Since then, dengue cases were diagnosed by the isolation of viruses 1, 2, 3, and 4. Methods One hundred eighty-seven mosquitoes were collected with BioGents (BG-Sentinel traps in 15 urban residential areas in the Northern Zone of Manaus and processed by molecular tests. Results Infections with dengue viruses 1, 2, 3, and 4 and a case of co-infection with dengue viruses 2 and 3 were identified. Conclusions These findings corroborate the detection of dengue in clinical samples and reinforce the need for epidemiological surveillance by the Health authorities.

  14. Optical diagnosis of dengue virus infection in human blood serum using Raman spectroscopy

    International Nuclear Information System (INIS)

    Saleem, M; Bilal, M; Anwar, S; Rehman, A; Ahmed, M

    2013-01-01

    We present the optical diagnosis of dengue virus infection in human blood serum using Raman spectroscopy. Raman spectra were acquired from 18 blood serum samples using a laser at 532 nm as the excitation source. A multivariate regression model based on partial least-squares regression is developed that uses Raman spectra to predict dengue infection with leave-one-sample-out cross validation. The prediction of dengue infection by our model yields correlation coefficient r 2 values of 0.9998 between the predicted and reference clinical results. The model was tested for six unknown human blood sera and found to be 100% accurate in accordance with the clinical results. (letter)

  15. Dengue virus activates polyreactive, natural IgG B cells after primary and secondary infection.

    Directory of Open Access Journals (Sweden)

    Thavamalar Balakrishnan

    Full Text Available BACKGROUND: Dengue virus is transmitted by mosquitoes and has four serotypes. Cross-protection to other serotypes lasting for a few months is observed following infection with one serotype. There is evidence that low-affinity T and/or B cells from primary infections contribute to the severe syndromes often associated with secondary dengue infections. such pronounced immune-mediated enhancement suggests a dengue-specific pattern of immune cell activation. This study investigates the acute and early convalescent B cell response leading to the generation of cross-reactive and neutralizing antibodies following dengue infection. METHODOLOGY/PRINCIPAL FINDINGS: We assayed blood samples taken from dengue patients with primary or secondary infection during acute disease and convalescence and compared them to samples from patients presenting with non-dengue related fever. Dengue induced massive early plasmablast formation, which correlated with the appearance of polyclonal, cross-reactive IgG for both primary and secondary infection. Surprisingly, the contribution of IgG to the neutralizing titer 4-7 days after fever onset was more than 50% even after primary infection. CONCLUSIONS/SIGNIFICANCE: Poly-reactive and virus serotype cross-reactive IgG are an important component of the innate response in humans during both primary and secondary dengue infection, and "innate specificities" seem to constitute part of the adaptive response in dengue. While of potential importance for protection during secondary infection, cross-reactive B cells will also compete with highly neutralizing B cells and possibly interfere with their development.

  16. Seroprevalence of Anti-Dengue Virus 2 Serocomplex antibodies in ...

    African Journals Online (AJOL)

    Introduction: There has been a recent increase in the spread of dengue to rural areas. Rural parts of western kenya are naturally prone to mosquito-borne diseases, however, limited research has been documented on infections with dengue. This study therefore investigated the presence of antibodies against dengue virus ...

  17. Role of antibodies in controlling dengue virus infection

    NARCIS (Netherlands)

    van der Schaar, Hilde M.; Wilschut, Jan C.; Smit, Jolanda M.

    The incidence and disease burden of arthropod-borne flavivirus infections have dramatically increased during the last decades due to major societal and economic changes, including massive urbanization, lack of vector control, travel, and international trade. Specifically, in the case of dengue virus

  18. Proteomic analysis reveals the enhancement of human serum apolipoprotein A-1(APO A-1) in individuals infected with multiple dengue virus serotypes.

    Science.gov (United States)

    Manchala, Nageswar Reddy; Dungdung, Ranjeet; Pilankatta, Rajendra

    2017-10-01

    Human serum protein profiling of the individual infected with multiple dengue virus serotypes for identifying the potential biomarkers and to investigate the cause for the severity of dengue virus infection. Dengue virus NS1-positive serum samples were pooled into two groups (S2 and S3) based on the molecular serotyping and number of heterotypic infections. The pooled serum samples were subjected to two-dimensional gel electrophoresis (2DGE) to identify the differentially expressed proteins. The peptide masses of upregulated protein were detected by matrix-assisted laser desorption-ionisation time-of-flight MALDI-TOF mass spectrometry and analysed by MASCOT search engine. The results were compared with the control group (S1). The commonly upregulated protein was validated by quantitative ELISA and compared with control as well as single serotypic infected samples. Based on 2DGE, total thirteen proteins were differentially upregulated in S2 and S3 groups as compared to control. Some of the upregulated proteins were involved in mediating the complement activation of immune response. The apolipoprotein A-1 (APO A-1) was upregulated in S2 and S3 groups. Upon validation, APO A-1 levels were increased in line with the number of heterotypic infection of dengue viruses. Heterotypic infection of dengue viruses upregulate the serum proteins involved in the complement pathway in the early phase of infection. There was a significant increase in the level of APO A-1 in three different serotypic infections of dengue virus as compared to control. Further, the role of APO-A1 can be explored in elucidating the mechanism of dengue pathogenesis. © 2017 John Wiley & Sons Ltd.

  19. PATHOGENESIS OF HEMORRHAGIC DUE TO DENGUE VIRUS

    Directory of Open Access Journals (Sweden)

    Arief Suseno

    2015-01-01

    Full Text Available Dengue is a viral disease that is mediated by a mosquito, which causes morbidity and mortality. Viruses can increase vascular permeability which can lead to hemorrhagic diathesis or disseminated intravascular coagulation (DIC known as dengue hemorrhagic fever (DHF. In Indonesia, dengue hemorrhagic fever (DHF are caused by dengue virus infection which was found to be endemic accompanied by an explosion of extraordinary events that appear at various specified period. The diagnosis of dengue is determined based on the criteria of the World Health Organization (WHO, 1999, which are sudden high fever accompanied by a marked tendency to hemorrhage positive tourniquet test, petechiae, ecchymosis, purpura, mucosal hemorrhagic, hematemesis or melena and thrombocytopenia. The problem that still exists today is the mechanism of thrombocytopenia in patients with varying degrees of dengue involving levels of vWF (von Willebrand factor and prostaglandin I2 (PGI2 can not be explained. The mechanism of hemorrhagic in dengue virus infections acquired as a result of thrombocytopenia, platelet disfunction decreased coagulation factors, vasculopathy with endothelial injury and disseminated intravascular coagulation (DIC.

  20. MAIT cells are activated in acute Dengue virus infection and after in vitro Zika virus infection.

    Directory of Open Access Journals (Sweden)

    Dominic Paquin-Proulx

    2018-01-01

    Full Text Available Dengue virus (DENV and Zika virus (ZIKV are members of the Flaviviridae and are predominantly transmitted via mosquito bites. Both viruses are responsible for a growing number of infections in tropical and subtropical regions. DENV infection can cause lethargy with severe morbidity and dengue shock syndrome leading to death in some cases. ZIKV is now linked with Guillain-Barré syndrome and fetal malformations including microcephaly and developmental disorders (congenital Zika syndrome. The protective and pathogenic roles played by the immune response in these infections is unknown. Mucosal-associated invariant T (MAIT cells are a population of innate T cells with potent anti-bacterial activity. MAIT cells have also been postulated to play a role in the immune response to viral infections. In this study, we evaluated MAIT cell frequency, phenotype, and function in samples from subjects with acute and convalescent DENV infection. We found that in acute DENV infection, MAIT cells had elevated co-expression of the activation markers CD38 and HLA-DR and had a poor IFNγ response following bacterial stimulation. Furthermore, we found that MAIT cells can produce IFNγ in response to in vitro infection with ZIKV. This MAIT cell response was independent of MR1, but dependent on IL-12 and IL-18. Our results suggest that MAIT cells may play an important role in the immune response to Flavivirus infections.

  1. Suppression of chikungunya virus replication and differential innate responses of human peripheral blood mononuclear cells during co-infection with dengue virus

    NARCIS (Netherlands)

    Silva, Mariana Ruiz; Briseno, Jose A. Aguilar; Upasani, Vinit; van der Ende-Metselaar, Heidi; Smit, Jolanda M.; Rodenhuis-Zybert, Izabela A.

    2017-01-01

    Dengue and chikungunya are viral diseases transmitted to humans by infected Aedes spp. mosquitoes. With an estimated 390 million infected people per year dengue virus (DENV) currently causes the most prevalent arboviral disease. During the last decade chikungunya virus (CHIKV) has caused large

  2. Transcriptome analysis of Aedes aegypti in response to mono-infections and co-infections of dengue virus-2 and chikungunya virus.

    Science.gov (United States)

    Shrinet, Jatin; Srivastava, Pratibha; Sunil, Sujatha

    2017-10-28

    Chikungunya virus (CHIKV) and Dengue virus (DENV) spread via the bite of infected Aedes mosquitoes. Both these viruses exist as co-infections in the host as well as the vector and are known to exploit their cellular machinery for their replication. While there are studies reporting the changes in Aedes transcriptome when infected with DENV and CHIKV individually, the effect both these viruses have on the mosquitoes when present as co-infections is not clearly understood. In the present study, we infected Aedes aegypti mosquitoes with DENV and CHIKV individually and as co-infection through nanoinjections. We performed high throughput RNA sequencing of the infected Aedes aegypti to understand the changes in the Aedes transcriptome during the early stages of infection, i.e., 24 h post infection and compared the transcriptome profiles during DENV and CHIKV mono-infections with that of co-infections. We identified 190 significantly regulated genes identified in CHIKV infected library, 37 genes from DENV library and 100 genes from co-infected library and they were classified into different pathways. Our study reveal that distinct pathways and transcripts are being regulated during the three types of infection states in Aedes aegypti mosquitoes. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Dengue Fever/Dengue Haemorrhagic Fever : Case Management

    OpenAIRE

    Nimmannitya, Suchitra

    1995-01-01

    Dengue infections caused by the four antigenically distinct dengue virus serotypes (dengue virus 1, dengue virus 2, dengue virus 3, dengue virus 4) of the family Flavivindae, are the most important arbovirus disease in man, both in terms of morbidity and mortality. The infection is transmitted from man to man by Aedes mosquitoes. Since 1956, dengue virus infection has resulted in more than 3 million hospital admissions and more than 50,000 deaths in Southeast Asia, Western Pacific countries, ...

  4. Antibody Prophylaxis Against Dengue Virus 2 Infection in Non-Human Primates.

    Science.gov (United States)

    Simmons, Monika; Putnak, Robert; Sun, Peifang; Burgess, Timothy; Marasco, Wayne A

    2016-11-02

    Passive immunization with anti-dengue virus (DENV) immune serum globulin (ISG) or monoclonal antibodies (Mabs) may serve to supplement or replace vaccination for short-term dengue immune prophylaxis. In the present study, we sought to establish proof-of-concept by evaluating several DENV-neutralizing antibodies for their ability to protect rhesus macaques against viremia following live virus challenge, including human anti-dengue ISG, and a human Mab (Mab11/wt) and its genetically engineered variant (Mab11/mutFc) that is unable to bind to cells with Fc gamma receptors (FcγR) and potentiate antibody-dependent enhancement (ADE). In the first experiment, groups of animals received ISG or Mab11/wt at low doses (3-10 mg/kg) or a saline control followed by challenge with DENV-2 at day 10 or 30. After passive immunization, only low-titered circulating virus-neutralizing antibody titers were measured in both groups, which were undetectable by day 30. After challenge at day 10, a reduction in viremia duration compared with the control was seen only in the ISG group (75%). However, after a day 30 challenge, no reduction in viremia was observed in both immunized groups. In a second experiment to test the effect of higher antibody doses on short-term protection, groups received either ISG, Mab11/wt, Mab11/mutFc (each at 25 mg/kg) or saline followed by challenge with DENV-2 on day 10. Increased virus-neutralizing antibody titers were detected in all groups at day 5 postinjection, with geometric mean titers (GMTs) of 464 (ISG), 313 (Mab11/wt), and 309 (Mab11/mutFc). After challenge, there was complete protection against viremia in the group that received ISG, and a reduction in viremia duration of 89% and 83% in groups that received Mab11/wt and Mab11/mutFc, respectively. An in vitro ADE assay in Fcγ receptor-bearing K562 cells with sera collected immediately before challenge showed increased DENV-2 infection levels in the presence of both ISG and Mab11/wt, which peaked at a

  5. First record in America of Aedes albopictus naturally infected with dengue virus during the 1995 outbreak at Reynosa, Mexico.

    Science.gov (United States)

    Ibáñez-Bernal, S; Briseño, B; Mutebi, J P; Argot, E; Rodríguez, G; Martínez-Campos, C; Paz, R; de la Fuente-San Román, P; Tapia-Conyer, R; Flisser, A

    1997-10-01

    Mosquito collections were conducted during a dengue outbreak in Reynosa, Tamaulipas, Mexico, July-December 1995. A total of 6694 adult mosquitoes (four genera and nine species) were captured, of which 2986 (78.3% females and 21.7% males) were Aedes albopictus and 2339 (39.7% females and 60.3% males) were Ae.aegypti. These two species comprised 84.2% of the total collection. Specimens were grouped into pools, nearly 50% of them processed for detection of virus by cythopathic effect in C6-36 and VERO cell cultures and by haemagglutination test. Five pools gave positive haemagglutination reactions and were examined by immunofluorescence using monoclonal antibodies to flavivirus and to dengue virus. One pool of ten Ae.albopictus males was positive for dengue virus: serotypes 2 and 3 were identified by serotype-specific monoclonal antibodies and confirmed by RT-PCR. This is the first report of Ae.albopictus naturally infected with dengue virus in America. Also, it is the very first time Ae.albopictus males have been found infected with dengue virus in the wild.

  6. Dengue viral infections

    Directory of Open Access Journals (Sweden)

    Gurugama Padmalal

    2010-01-01

    Full Text Available Dengue viral infections are one of the most important mosquito-borne diseases in the world. Presently dengue is endemic in 112 countries in the world. It has been estimated that almost 100 million cases of dengue fever and half a million cases of dengue hemorrhagic fever (DHF occur worldwide. An increasing proportion of DHF is in children less than 15 years of age, especially in South East and South Asia. The unique structure of the dengue virus and the pathophysiologic responses of the host, different serotypes, and favorable conditions for vector breeding have led to the virulence and spread of the infections. The manifestations of dengue infections are protean from being asymptomatic to undifferentiated fever, severe dengue infections, and unusual complications. Early recognition and prompt initiation of appropriate supportive treatment are often delayed resulting in unnecessarily high morbidity and mortality. Attempts are underway for the development of a vaccine for preventing the burden of this neglected disease. This review outlines the epidemiology, clinical features, pathophysiologic mechanisms, management, and control of dengue infections.

  7. Dengue virus life cycle : viral and host factors modulating infectivity

    NARCIS (Netherlands)

    Rodenhuis-Zybert, Izabela A.; Wilschut, Jan; Smit, Jolanda M.

    Dengue virus (DENV 1-4) represents a major emerging arthropod-borne pathogen. All four DENV serotypes are prevalent in the (sub) tropical regions of the world and infect 50-100 million individuals annually. Whereas the majority of DENV infections proceed asymptomatically or result in self-limited

  8. Dengue virus infection-enhancing antibody activities against Indonesian strains in inhabitants of central Thailand.

    Science.gov (United States)

    Yamanaka, Atsushi; Oddgun, Duangjai; Chantawat, Nantarat; Okabayashi, Tamaki; Ramasoota, Pongrama; Churrotin, Siti; Kotaki, Tomohiro; Kameoka, Masanori; Soegijanto, Soegeng; Konishi, Eiji

    2016-04-01

    Dengue virus (DENV) infection-enhancing antibodies are a hypothetic factor to increase the dengue disease severity. In this study, we investigated the enhancing antibodies against Indonesian strains of DENV-1-4 in 50 healthy inhabitants of central Thailand (Bangkok and Uthai Thani). Indonesia and Thailand have seen the highest dengue incidence in Southeast Asia. The infection history of each subject was estimated by comparing his/her neutralizing antibody titers against prototype DENV-1-4 strains. To resolve the difficulty in obtaining foreign live viruses for use as assay antigens, we used a recombinant system to prepare single-round infectious dengue viral particles based on viral sequence information. Irrespective of the previously infecting serotype(s), most serum samples showed significantly higher enhancement titers against Indonesian DENV-2 strains than against Thai DENV-2 strains, whereas the opposite effect was observed for the DENV-3 strains. Equivalent enhancing activities were observed against both DENV-1 and DENV-4. These results suggest that the genotype has an impact on enhancing antibody activities against DENV-2 and DENV-3, because the predominant circulating genotypes of each serotype differ between Indonesia and Thailand. Copyright © 2015 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  9. Co-circulation and co-infections of all dengue virus serotypes in Hyderabad, India 2014.

    Science.gov (United States)

    Vaddadi, K; Gandikota, C; Jain, P K; Prasad, V S V; Venkataramana, M

    2017-09-01

    The burden of dengue virus infections increased globally during recent years. Though India is considered as dengue hyper-endemic country, limited data are available on disease epidemiology. The present study includes molecular characterization of dengue virus strains occurred in Hyderabad, India, during the year 2014. A total of 120 febrile cases were recruited for this study, which includes only children and 41 were serologically confirmed for dengue positive infections using non-structural (NS1) and/or IgG/IgM ELISA tests. RT-PCR, nucleotide sequencing and evolutionary analyses were carried out to identify the circulating serotypes/genotypes. The data indicated a high percent of severe dengue (63%) in primary infections. Simultaneous circulation of all four serotypes and co-infections were observed for the first time in Hyderabad, India. In total, 15 patients were co-infected with more than one dengue serotype and 12 (80%) of them had severe dengue. One of the striking findings of the present study is the identification of serotype Den-1 as the first report from this region and this strain showed close relatedness to the Thailand 1980 strains but not to any of the strains reported from India until now. Phylogenetically, all four strains of the present study showed close relatedness to the strains, which are reported to be high virulent.

  10. Dengue Virus Genome Uncoating Requires Ubiquitination.

    Science.gov (United States)

    Byk, Laura A; Iglesias, Néstor G; De Maio, Federico A; Gebhard, Leopoldo G; Rossi, Mario; Gamarnik, Andrea V

    2016-06-28

    The process of genome release or uncoating after viral entry is one of the least-studied steps in the flavivirus life cycle. Flaviviruses are mainly arthropod-borne viruses, including emerging and reemerging pathogens such as dengue, Zika, and West Nile viruses. Currently, dengue virus is one of the most significant human viral pathogens transmitted by mosquitoes and is responsible for about 390 million infections every year around the world. Here, we examined for the first time molecular aspects of dengue virus genome uncoating. We followed the fate of the capsid protein and RNA genome early during infection and found that capsid is degraded after viral internalization by the host ubiquitin-proteasome system. However, proteasome activity and capsid degradation were not necessary to free the genome for initial viral translation. Unexpectedly, genome uncoating was blocked by inhibiting ubiquitination. Using different assays to bypass entry and evaluate the first rounds of viral translation, a narrow window of time during infection that requires ubiquitination but not proteasome activity was identified. In this regard, ubiquitin E1-activating enzyme inhibition was sufficient to stabilize the incoming viral genome in the cytoplasm of infected cells, causing its retention in either endosomes or nucleocapsids. Our data support a model in which dengue virus genome uncoating requires a nondegradative ubiquitination step, providing new insights into this crucial but understudied viral process. Dengue is the most significant arthropod-borne viral infection in humans. Although the number of cases increases every year, there are no approved therapeutics available for the treatment of dengue infection, and many basic aspects of the viral biology remain elusive. After entry, the viral membrane must fuse with the endosomal membrane to deliver the viral genome into the cytoplasm for translation and replication. A great deal of information has been obtained in the last decade

  11. Immature dengue virus: a veiled pathogen?

    Directory of Open Access Journals (Sweden)

    Izabela A Rodenhuis-Zybert

    2010-01-01

    Full Text Available Cells infected with dengue virus release a high proportion of immature prM-containing virions. In accordance, substantial levels of prM antibodies are found in sera of infected humans. Furthermore, it has been recently described that the rates of prM antibody responses are significantly higher in patients with secondary infection compared to those with primary infection. This suggests that immature dengue virus may play a role in disease pathogenesis. Interestingly, however, numerous functional studies have revealed that immature particles lack the ability to infect cells. In this report, we show that fully immature dengue particles become highly infectious upon interaction with prM antibodies. We demonstrate that prM antibodies facilitate efficient binding and cell entry of immature particles into Fc-receptor-expressing cells. In addition, enzymatic activity of furin is critical to render the internalized immature virus infectious. Together, these data suggest that during a secondary infection or primary infection of infants born to dengue-immune mothers, immature particles have the potential to be highly infectious and hence may contribute to the development of severe disease.

  12. Clinical and laboratory features of dengue virus-infected travellers previously vaccinated against yellow fever

    NARCIS (Netherlands)

    Teichmann, Dieter; Göbels, Klaus; Niedrig, Matthias; Grobusch, Martin P.

    2003-01-01

    Dengue is a mosquito-borne viral infection endemic throughout the tropics and subtropics. The global prevalence of dengue has grown dramatically in recent years and it has become a major international public health concern. The close taxonomic relationships between yellow fever and dengue viruses

  13. Progress in the Identification of Dengue Virus Entry/Fusion Inhibitors

    Directory of Open Access Journals (Sweden)

    Carolina De La Guardia

    2014-01-01

    Full Text Available Dengue fever, a reemerging disease, is putting nearly 2.5 billion people at risk worldwide. The number of infections and the geographic extension of dengue fever infection have increased in the past decade. The disease is caused by the dengue virus, a flavivirus that uses mosquitos Aedes sp. as vectors. The disease has several clinical manifestations, from the mild cold-like illness to the more serious hemorrhagic dengue fever and dengue shock syndrome. Currently, there is no approved drug for the treatment of dengue disease or an effective vaccine to fight the virus. Therefore, the search for antivirals against dengue virus is an active field of research. As new possible receptors and biological pathways of the virus biology are discovered, new strategies are being undertaken to identify possible antiviral molecules. Several groups of researchers have targeted the initial step in the infection as a potential approach to interfere with the virus. The viral entry process is mediated by viral proteins and cellular receptor molecules that end up in the endocytosis of the virion, the fusion of both membranes, and the release of viral RNA in the cytoplasm. This review provides an overview of the targets and progress that has been made in the quest for dengue virus entry inhibitors.

  14. Chloroquine Inhibits Dengue Virus Type 2 Replication in Vero Cells but Not in C6/36 Cells

    OpenAIRE

    Farias, Kleber Juvenal Silva; Machado, Paula Renata Lima; da Fonseca, Benedito Antônio Lopes

    2013-01-01

    Dengue viruses are the most important arthropod-borne viruses in terms of morbidity and mortality in the world. Since there is no dengue vaccine available for human use, we have set out to investigate the use of chloroquine as an antiviral drug against dengue. Chloroquine, an amine acidotropic drug known to affect intracellular exocytic pathways by increasing endosomal pH, was used in the in vitro treatment of Vero and C6/36 cells infected with dengue virus type 2 (DENV-2). Real-time RT-PCR a...

  15. Sophoraflavenone G Restricts Dengue and Zika Virus Infection via RNA Polymerase Interference.

    Science.gov (United States)

    Sze, Alexandre; Olagnier, David; Hadj, Samar Bel; Han, Xiaoying; Tian, Xiao Hong; Xu, Hong-Tao; Yang, Long; Shi, Qingwen; Wang, Penghua; Wainberg, Mark A; Wu, Jian Hui; Lin, Rongtuan

    2017-10-03

    Flaviviruses including Zika, Dengue and Hepatitis C virus cause debilitating diseases in humans, and the former are emerging as global health concerns with no antiviral treatments. We investigated Sophora Flavecens , used in Chinese medicine, as a source for antiviral compounds. We isolated Sophoraflavenone G and found that it inhibited Hepatitis C replication, but not Sendai or Vesicular Stomatitis Virus. Pre- and post-infection treatments demonstrated anti-flaviviral activity against Dengue and Zika virus, via viral RNA polymerase inhibition. These data suggest that Sophoraflavenone G represents a promising candidate regarding anti-Flaviviridae research.

  16. Translation efficiency determines differences in cellular infection among dengue virus type 2 strains

    International Nuclear Information System (INIS)

    Edgil, Dianna; Diamond, Michael S.; Holden, Katherine L.; Paranjape, Suman M.; Harris, Eva

    2003-01-01

    We have investigated the molecular basis for differences in the ability of natural variants of dengue virus type 2 (DEN2) to replicate in primary human cells. The rates of virus binding, virus entry, input strand translation, and RNA stability of low-passage Thai and Nicaraguan and prototype DEN2 strains were compared. All strains exhibited equivalent binding, entry, and uncoating, and displayed comparable stability of positive strand viral RNA over time in primary cells. However, the low-passage Nicaraguan isolates were much less efficient in their ability to translate viral proteins. Sequence analysis of the full-length low-passage Nicaraguan and Thai viral genomes identified specific differences in the 3' untranslated region (3'UTR). Substitution of the different sequences into chimeric RNA reporter constructs demonstrated that the changes in the 3'UTR directly affected the efficiency of viral translation. Thus, differences in infectivity among closely related DEN2 strains correlate with efficiency of translation of input viral RNA

  17. Chloroquine Inhibits Dengue Virus Type 2 Replication in Vero Cells but Not in C6/36 Cells

    Directory of Open Access Journals (Sweden)

    Kleber Juvenal Silva Farias

    2013-01-01

    Full Text Available Dengue viruses are the most important arthropod-borne viruses in terms of morbidity and mortality in the world. Since there is no dengue vaccine available for human use, we have set out to investigate the use of chloroquine as an antiviral drug against dengue. Chloroquine, an amine acidotropic drug known to affect intracellular exocytic pathways by increasing endosomal pH, was used in the in vitro treatment of Vero and C6/36 cells infected with dengue virus type 2 (DENV-2. Real-time RT-PCR and plaque assays were used to quantify the DENV-2 load in infected Vero and C6/36 cells after chloroquine treatment. Our results showed that a dose of 50 μg/ml of chloroquine was not toxic to the cells and induced a statistically significant inhibition of virus production in infected Vero cells when compared to untreated cells. In C6/36 cells, chloroquine does not induce a statistically significant difference in viral replication when compared to untreated cells, showing that this virus uses an unlikely pathway of penetration in these cells, and results were also confirmed by the plaque assay (PFU. These data suggest that the inhibition of virus infection induced by chloroquine is due to interference with acidic vesicles in mammalian cells.

  18. Chloroquine inhibits dengue virus type 2 replication in Vero cells but not in C6/36 cells.

    Science.gov (United States)

    Farias, Kleber Juvenal Silva; Machado, Paula Renata Lima; da Fonseca, Benedito Antônio Lopes

    2013-01-01

    Dengue viruses are the most important arthropod-borne viruses in terms of morbidity and mortality in the world. Since there is no dengue vaccine available for human use, we have set out to investigate the use of chloroquine as an antiviral drug against dengue. Chloroquine, an amine acidotropic drug known to affect intracellular exocytic pathways by increasing endosomal pH, was used in the in vitro treatment of Vero and C6/36 cells infected with dengue virus type 2 (DENV-2). Real-time RT-PCR and plaque assays were used to quantify the DENV-2 load in infected Vero and C6/36 cells after chloroquine treatment. Our results showed that a dose of 50 μg/ml of chloroquine was not toxic to the cells and induced a statistically significant inhibition of virus production in infected Vero cells when compared to untreated cells. In C6/36 cells, chloroquine does not induce a statistically significant difference in viral replication when compared to untreated cells, showing that this virus uses an unlikely pathway of penetration in these cells, and results were also confirmed by the plaque assay (PFU). These data suggest that the inhibition of virus infection induced by chloroquine is due to interference with acidic vesicles in mammalian cells.

  19. Dengue virus transovarial transmission by Aedes aegypti

    Directory of Open Access Journals (Sweden)

    Monica Dwi Hartanti

    2016-02-01

    Full Text Available Dengue is a disease that is caused by dengue virus and transmitted to humans through the bite of infected Aedes mosquitoes, especially Aedes aegypti. The disease is hyper-endemic in Southeast Asia, where a more severe form, dengue hemorrhagic fever (DHF and dengue shock syndrome (DSS, is a major public health concern. The purpose of the present study was to find evidence of dengue virus transovarial transmision in local vectors in Jakarta. Fifteen Aedes larvae were collected in 2009 from two areas in Tebet subdistrict in South Jakarta, namely one area with the highest and one with the lowest DHF prevalence. All mosquitoes were reared inside two cages in the laboratory, eight mosquitoes in one cage and seven mosquitoes in another cage and given only sucrose solution as their food. The results showed that 20% of the mosquitoes were positive for dengue virus. Dengue virus detection with an immunohistochemical method demonstrated the occurrence of transovarial transmission in local DHF vectors in Tebet subdistrict. Transovarial dengue infection in Ae.aegypti larvae appeared to maintain or enhance epidemics. Further research is needed to investigate the relation of dengue virus transovarial transmission with DHF endemicity in Jakarta.

  20. Dengue virus transovarial transmission by Aedes aegypti

    Directory of Open Access Journals (Sweden)

    Monica Dwi Hartanti

    2010-08-01

    Full Text Available Dengue is a disease that is caused by dengue virus and transmitted to humans through the bite of infected Aedes mosquitoes, especially Aedes aegypti. The disease is hyper-endemic in Southeast Asia, where a more severe form, dengue hemorrhagic fever (DHF and dengue shock syndrome (DSS, is a major public health concern. The purpose of the present study was to find evidence of dengue virus transovarial transmision in local vectors in Jakarta. Fifteen Aedes larvae were collected in 2009 from two areas in Tebet subdistrict in South Jakarta, namely one area with the highest and one with the lowest DHF prevalence. All mosquitoes were reared inside two cages in the laboratory, eight mosquitoes in one cage and seven mosquitoes in another cage and given only sucrose solution as their food. The results showed that 20% of the mosquitoes were positive for dengue virus. Dengue virus detection with an immunohistochemical method demonstrated the occurrence of transovarial transmission in local DHF vectors in Tebet subdistrict. Transovarial dengue infection in Ae.aegypti larvae appeared to maintain or enhance epidemics. Further research is needed to investigate the relation of dengue virus transovarial transmission with DHF endemicity in Jakarta.

  1. A DNA Microarray-Based Assay to Detect Dual Infection with Two Dengue Virus Serotypes

    Directory of Open Access Journals (Sweden)

    Alvaro Díaz-Badillo

    2014-04-01

    Full Text Available Here; we have described and tested a microarray based-method for the screening of dengue virus (DENV serotypes. This DNA microarray assay is specific and sensitive and can detect dual infections with two dengue virus serotypes and single-serotype infections. Other methodologies may underestimate samples containing more than one serotype. This technology can be used to discriminate between the four DENV serotypes. Single-stranded DNA targets were covalently attached to glass slides and hybridised with specific labelled probes. DENV isolates and dengue samples were used to evaluate microarray performance. Our results demonstrate that the probes hybridized specifically to DENV serotypes; with no detection of unspecific signals. This finding provides evidence that specific probes can effectively identify single and double infections in DENV samples.

  2. Dengue virus requires the CC-chemokine receptor CCR5 for replication and infection development.

    Science.gov (United States)

    Marques, Rafael E; Guabiraba, Rodrigo; Del Sarto, Juliana L; Rocha, Rebeca F; Queiroz, Ana Luiza; Cisalpino, Daniel; Marques, Pedro E; Pacca, Carolina C; Fagundes, Caio T; Menezes, Gustavo B; Nogueira, Maurício L; Souza, Danielle G; Teixeira, Mauro M

    2015-08-01

    Dengue is a mosquito-borne disease that affects millions of people worldwide yearly. Currently, there is no vaccine or specific treatment available. Further investigation on dengue pathogenesis is required to better understand the disease and to identify potential therapeutic targets. The chemokine system has been implicated in dengue pathogenesis, although the specific role of chemokines and their receptors remains elusive. Here we describe the role of the CC-chemokine receptor CCR5 in Dengue virus (DENV-2) infection. In vitro experiments showed that CCR5 is a host factor required for DENV-2 replication in human and mouse macrophages. DENV-2 infection induces the expression of CCR5 ligands. Incubation with an antagonist prevents CCR5 activation and reduces DENV-2 positive-stranded (+) RNA inside macrophages. Using an immunocompetent mouse model of DENV-2 infection we found that CCR5(-/-) mice were resistant to lethal infection, presenting at least 100-fold reduction of viral load in target organs and significant reduction in disease severity. This phenotype was reproduced in wild-type mice treated with CCR5-blocking compounds. Therefore, CCR5 is a host factor required for DENV-2 replication and disease development. Targeting CCR5 might represent a therapeutic strategy for dengue fever. These data bring new insights on the association between viral infections and the chemokine receptor CCR5. © 2015 John Wiley & Sons Ltd.

  3. Formation of infectious dengue virus-antibody immune complex in vivo in marmosets (Callithrix jacchus) after passive transfer of anti-dengue virus monoclonal antibodies and infection with dengue virus.

    Science.gov (United States)

    Moi, Meng Ling; Ami, Yasushi; Shirai, Kenji; Lim, Chang-Kweng; Suzaki, Yuriko; Saito, Yuka; Kitaura, Kazutaka; Saijo, Masayuki; Suzuki, Ryuji; Kurane, Ichiro; Takasaki, Tomohiko

    2015-02-01

    Infection with a dengue virus (DENV) serotype induces cross-reactive, weakly neutralizing antibodies to different dengue serotypes. It has been postulated that cross-reactive antibodies form a virus-antibody immune complex and enhance DENV infection of Fc gamma receptor (FcγR)-bearing cells. We determined whether infectious DENV-antibody immune complex is formed in vivo in marmosets after passive transfer of DENV-specific monoclonal antibody (mAb) and DENV inoculation and whether infectious DENV-antibody immune complex is detectable using FcγR-expressing cells. Marmosets showed that DENV-antibody immune complex was exclusively infectious to FcγR-expressing cells on days 2, 4, and 7 after passive transfer of each of the mAbs (mAb 4G2 and mAb 6B6C) and DENV inoculation. Although DENV-antibody immune complex was detected, contribution of the passively transferred antibody to overall viremia levels was limited in this study. The results indicate that DENV cross-reactive antibodies form DENV-antibody immune complex in vivo, which is infectious to FcγR-bearing cells but not FcγR-negative cells. © The American Society of Tropical Medicine and Hygiene.

  4. Factors contributing to the disturbance of coagulation and fibrinolysis in dengue virus infection

    Directory of Open Access Journals (Sweden)

    Yung-Chun Chuang

    2013-01-01

    Full Text Available Hemorrhage is one of the hallmarks of dengue hemorrhagic fever. However, the mechanisms that cause hemorrhage are unclear. In this review we focus on the possible factors that may be involved in the disturbance of coagulation and fibrinolysis during dengue virus (DENV infection. Factors such as autoantibodies and cytokines induced by DENV infection as well as hemostatic molecules expressed on DENV-infected cells, and DENV viral proteins may all contribute to the defect of hemostasis during DENV infection. It is the combination of these viral and host factors that may tilt the balance of coagulation and fibrinolysis toward bleeding in dengue patients.

  5. Activation of peripheral blood mononuclear cells by dengue virus infection depotentiates balapiravir.

    Science.gov (United States)

    Chen, Yen-Liang; Abdul Ghafar, Nahdiyah; Karuna, Ratna; Fu, Yilong; Lim, Siew Pheng; Schul, Wouter; Gu, Feng; Herve, Maxime; Yokohama, Fumiaki; Wang, Gang; Cerny, Daniela; Fink, Katja; Blasco, Francesca; Shi, Pei-Yong

    2014-02-01

    In a recent clinical trial, balapiravir, a prodrug of a cytidine analog (R1479), failed to achieve efficacy (reducing viremia after treatment) in dengue patients, although the plasma trough concentration of R1479 remained above the 50% effective concentration (EC(50)). Here, we report experimental evidence to explain the discrepancy between the in vitro and in vivo results and its implication for drug development. R1479 lost its potency by 125-fold when balapiravir was used to treat primary human peripheral blood mononuclear cells (PBMCs; one of the major cells targeted for viral replication) that were preinfected with dengue virus. The elevated EC(50) was greater than the plasma trough concentration of R1479 observed in dengue patients treated with balapiravir and could possibly explain the efficacy failure. Mechanistically, dengue virus infection triggered PBMCs to generate cytokines, which decreased their efficiency of conversion of R1479 to its triphosphate form (the active antiviral ingredient), resulting in decreased antiviral potency. In contrast to the cytidine-based compound R1479, the potency of an adenosine-based inhibitor of dengue virus (NITD008) was much less affected. Taken together, our results demonstrate that viral infection in patients before treatment could significantly affect the conversion of the prodrug to its active form; such an effect should be calculated when estimating the dose efficacious for humans.

  6. An in vitro model for dengue virus infection that exhibits human monocyte infection, multiple cytokine production and dexamethasone immunomodulation

    Directory of Open Access Journals (Sweden)

    Sônia Regina Nogueira Ignácio Reis

    2007-12-01

    Full Text Available An important cytokine role in dengue fever pathogenesis has been described. These molecules can be associated with haemorrhagic manifestations, coagulation disorders, hypotension and shock, all symptoms implicated in vascular permeability and disease worsening conditions. Several immunological diseases have been treated by cytokine modulation and dexamethasone is utilized clinically to treat pathologies with inflammatory and autoimmune ethiologies. We established an in vitro model with human monocytes infected by dengue virus-2 for evaluating immunomodulatory and antiviral activities of potential pharmaceutical products. Flow cytometry analysis demonstrated significant dengue antigen detection in target cells two days after infection. TNF-alpha, IFN-alpha, IL-6 and IL-10 are produced by in vitro infected monocytes and are significantly detected in cell culture supernatants by multiplex microbead immunoassay. Dexamethasone action was tested for the first time for its modulation in dengue infection, presenting optimistic results in both decreasing cell infection rates and inhibiting TNF-alpha, IFN-alpha and IL-10 production. This model is proposed for novel drug trials yet to be applyed for dengue fever.

  7. AWARENESS OF USING RINGER LACTAT SOLUTION IN DENGUE VIRUS INFECTION CASES COULD INDUCE SEVERITY

    Directory of Open Access Journals (Sweden)

    Soegeng Soegijanto

    2013-10-01

    Full Text Available Background:In 2012, serotype ofDengue Virus had changed from Den-2 and Den-3 to Den-1. In 5–10 years ago, serotype ofDen-1 case showed a mild clinical manifestation; but now as a primary case it can also show severe clinical manifestation. One findicator is an increasing liver enzyme, AST and ALT, with level more than 100–200 U/L. Aim: To getting a better solutions for this problem. Method: Obsevasional Study had been done in medical faculty ofAirlangga University (Dr. Soetomo and Soerya hospital Surabaya on Mei–August 2012. There were 10 cases ofdengue virus infection were studied, 5 cases got Ringer Acetate solution (Group A and 5 cases got Ringer Lactate solution (Group B. The diagnosis was based on criteria WHO 2009. Result: Five cases ofDengue Virus Infection had showed a liver damage soon after using Ringer Lactate solution; AST and ALT were increasing more than 100–200 U/L; but the other 5 cases showed better condition. It might be due to use Ringer Acetate that did not have effect for inducing liver damage. By managing carefully, all of the cases had shown full recovery and healthy condition when being discharged. Conclusion: Using Ringer Acetate as fluid therapy in Dengue Virus Infection is better to prevent liver damage than using Ringer Lactate.

  8. Utility of humanized BLT mice for analysis of dengue virus infection and antiviral drug testing.

    Science.gov (United States)

    Frias-Staheli, Natalia; Dorner, Marcus; Marukian, Svetlana; Billerbeck, Eva; Labitt, Rachael N; Rice, Charles M; Ploss, Alexander

    2014-02-01

    Dengue virus (DENV) is the cause of a potentially life-threatening disease that affects millions of people worldwide. The lack of a small animal model that mimics the symptoms of DENV infection in humans has slowed the understanding of viral pathogenesis and the development of therapies and vaccines. Here, we investigated the use of humanized "bone marrow liver thymus" (BLT) mice as a model for immunological studies and assayed their applicability for preclinical testing of antiviral compounds. Human immune system (HIS) BLT-NOD/SCID mice were inoculated intravenously with a low-passage, clinical isolate of DENV-2, and this resulted in sustained viremia and infection of leukocytes in lymphoid and nonlymphoid organs. In addition, DENV infection increased serum cytokine levels and elicited DENV-2-neutralizing human IgM antibodies. Following restimulation with DENV-infected dendritic cells, in vivo-primed T cells became activated and acquired effector function. An adenosine nucleoside inhibitor of DENV decreased the circulating viral RNA when administered simultaneously or 2 days postinfection, simulating a potential treatment protocol for DENV infection in humans. In summary, we demonstrate that BLT mice are susceptible to infection with clinical DENV isolates, mount virus-specific adaptive immune responses, and respond to antiviral drug treatment. Although additional refinements to the model are required, BLT mice are a suitable platform to study aspects of DENV infection and pathogenesis and for preclinical testing of drug and vaccine candidates. IMPORTANCE Infection with dengue virus remains a major medical problem. Progress in our understanding of the disease and development of therapeutics has been hampered by the scarcity of small animal models. Here, we show that humanized mice, i.e., animals engrafted with components of a human immune system, that were infected with a patient-derived dengue virus strain developed clinical symptoms of the disease and mounted

  9. Dengue viral infections

    OpenAIRE

    Gurugama Padmalal; Garg Pankaj; Perera Jennifer; Wijewickrama Ananda; Seneviratne Suranjith

    2010-01-01

    Dengue viral infections are one of the most important mosquito-borne diseases in the world. Presently dengue is endemic in 112 countries in the world. It has been estimated that almost 100 million cases of dengue fever and half a million cases of dengue hemorrhagic fever (DHF) occur worldwide. An increasing proportion of DHF is in children less than 15 years of age, especially in South East and South Asia. The unique structure of the dengue virus and the pathophysiologic responses of the host...

  10. Infection of epithelial cells with dengue virus promotes the expression of proteins favoring the replication of certain viral strains.

    Science.gov (United States)

    Martínez-Betancur, Viviana; Marín-Villa, Marcel; Martínez-Gutierrez, Marlén

    2014-08-01

    Dengue virus (DENV) is the causative agent of dengue and severe dengue. To understand better the dengue virus-host interaction, it is important to determine how the expression of cellular proteins is modified due to infection. Therefore, a comparison of protein expression was conducted in Vero cells infected with two different DENV strains, both serotype 2: DENV-2/NG (associated with dengue) and DENV-2/16681 (associated with severe dengue). The viability of the infected cells was determined, and neither strain induced cell death at 48 hr. In addition, the viral genomes and infectious viral particles were quantified, and the genome of the DENV-2/16681 strain was determined to have a higher replication rate compared with the DENV-2/NG strain. Finally, the proteins from infected and uninfected cultures were separated using two-dimensional gel electrophoresis, and the differentially expressed proteins were identified by mass spectrometry. Compared with the uninfected controls, the DENV-2/NG- and DENV-2/16681-infected cultures had five and six differentially expressed proteins, respectively. The most important results were observed when the infected cultures were compared to each other (DENV-2/NG vs. DENV-2/16681), and 18 differentially expressed proteins were identified. Based on their cellular functions, many of these proteins were linked to the increase in the replication efficiency of DENV. Among the proteins were calreticulin, acetyl coenzyme A, acetyl transferase, and fatty acid-binding protein. It was concluded that the infection of Vero cells with DENV-2/NG or DENV-2/16681 differentially modifies the expression of certain proteins, which can, in turn, facilitate infection. © 2013 Wiley Periodicals, Inc.

  11. Human Immune Response to Dengue Infections

    Science.gov (United States)

    1991-06-30

    had been immunized with yellow fever vaccine and later became infected with dengue 3 virus, responded best to dengue 3 antigen but also responded to...effective dengue virus subunit vaccines . We found evidence of marked T cell activation in patients with DHF. T cell activation in patients with DF was similar...Treatment and Control of Dengue Hemorrhagic Fever. World Health Organization, Geneva, Switzerland 7. Sabin AB (1952) Research on dengue during World

  12. An outbreak of dengue virus (DENV) type 2 Cosmopolitan genotype in Israeli travellers returning from the Seychelles, April 2017.

    Science.gov (United States)

    Lustig, Yaniv; Wolf, Dana; Halutz, Ora; Schwartz, Eli

    2017-06-29

    Dengue virus infection was diagnosed in six Israeli travellers returning from the Seychelles in April 2017. Phylogenetic analysis identified identical sequences belonging to the Cosmopolitan genotype of dengue virus type 2 in all samples sequenced, thus providing evidence for a probable dengue type 2 outbreak in the Seychelles. This report further demonstrates the role of travellers as sentinels for arboviral infections, especially in countries with limited diagnostic capabilities. This article is copyright of The Authors, 2017.

  13. Therapeutic Effects of Monoclonal Antibody against Dengue Virus NS1 in a STAT1 Knockout Mouse Model of Dengue Infection.

    Science.gov (United States)

    Wan, Shu-Wen; Chen, Pei-Wei; Chen, Chin-Yu; Lai, Yen-Chung; Chu, Ya-Ting; Hung, Chia-Yi; Lee, Han; Wu, Hsuan Franziska; Chuang, Yung-Chun; Lin, Jessica; Chang, Chih-Peng; Wang, Shuying; Liu, Ching-Chuan; Ho, Tzong-Shiann; Lin, Chiou-Feng; Lee, Chien-Kuo; Wu-Hsieh, Betty A; Anderson, Robert; Yeh, Trai-Ming; Lin, Yee-Shin

    2017-10-15

    Dengue virus (DENV) is the causative agent of dengue fever, dengue hemorrhagic fever, and dengue shock syndrome and is endemic to tropical and subtropical regions of the world. Our previous studies showed the existence of epitopes in the C-terminal region of DENV nonstructural protein 1 (NS1) which are cross-reactive with host Ags and trigger anti-DENV NS1 Ab-mediated endothelial cell damage and platelet dysfunction. To circumvent these potentially harmful events, we replaced the C-terminal region of DENV NS1 with the corresponding region from Japanese encephalitis virus NS1 to create chimeric DJ NS1 protein. Passive immunization of DENV-infected mice with polyclonal anti-DJ NS1 Abs reduced viral Ag expression at skin inoculation sites and shortened DENV-induced prolonged bleeding time. We also investigated the therapeutic effects of anti-NS1 mAb. One mAb designated 2E8 does not recognize the C-terminal region of DENV NS1 in which host-cross-reactive epitopes reside. Moreover, mAb 2E8 recognizes NS1 of all four DENV serotypes. We also found that mAb 2E8 caused complement-mediated lysis in DENV-infected cells. In mouse model studies, treatment with mAb 2E8 shortened DENV-induced prolonged bleeding time and reduced viral Ag expression in the skin. Importantly, mAb 2E8 provided therapeutic effects against all four serotypes of DENV. We further found that mAb administration to mice as late as 1 d prior to severe bleeding still reduced prolonged bleeding time and hemorrhage. Therefore, administration with a single dose of mAb 2E8 can protect mice against DENV infection and pathological effects, suggesting that NS1-specific mAb may be a therapeutic option against dengue disease. Copyright © 2017 by The American Association of Immunologists, Inc.

  14. Correlation of Serotype-Specific Dengue Virus Infection with Clinical Manifestations

    Science.gov (United States)

    Halsey, Eric S.; Marks, Morgan A.; Gotuzzo, Eduardo; Fiestas, Victor; Suarez, Luis; Vargas, Jorge; Aguayo, Nicolas; Madrid, Cesar; Vimos, Carlos; Kochel, Tadeusz J.; Laguna-Torres, V. Alberto

    2012-01-01

    Background Disease caused by the dengue virus (DENV) is a significant cause of morbidity throughout the world. Although prior research has focused on the association of specific DENV serotypes (DENV-1, DENV-2, DENV-3, and DENV-4) with the development of severe outcomes such as dengue hemorrhagic fever and dengue shock syndrome, relatively little work has correlated other clinical manifestations with a particular DENV serotype. The goal of this study was to estimate and compare the prevalence of non-hemorrhagic clinical manifestations of DENV infection by serotype. Methodology and Principal Findings Between the years 2005–2010, individuals with febrile disease from Peru, Bolivia, Ecuador, and Paraguay were enrolled in an outpatient passive surveillance study. Detailed information regarding clinical signs and symptoms, as well as demographic information, was collected. DENV infection was confirmed in patient sera with polyclonal antibodies in a culture-based immunofluorescence assay, and the infecting serotype was determined by serotype-specific monoclonal antibodies. Differences in the prevalence of individual and organ-system manifestations were compared across DENV serotypes. One thousand seven hundred and sixteen individuals were identified as being infected with DENV-1 (39.8%), DENV-2 (4.3%), DENV-3 (41.5%), or DENV-4 (14.4%). When all four DENV serotypes were compared with each other, individuals infected with DENV-3 had a higher prevalence of musculoskeletal and gastrointestinal manifestations, and individuals infected with DENV-4 had a higher prevalence of respiratory and cutaneous manifestations. Conclusions/Significance Specific clinical manifestations, as well as groups of clinical manifestations, are often overrepresented by an individual DENV serotype. PMID:22563516

  15. Correlation of serotype-specific dengue virus infection with clinical manifestations.

    Directory of Open Access Journals (Sweden)

    Eric S Halsey

    Full Text Available Disease caused by the dengue virus (DENV is a significant cause of morbidity throughout the world. Although prior research has focused on the association of specific DENV serotypes (DENV-1, DENV-2, DENV-3, and DENV-4 with the development of severe outcomes such as dengue hemorrhagic fever and dengue shock syndrome, relatively little work has correlated other clinical manifestations with a particular DENV serotype. The goal of this study was to estimate and compare the prevalence of non-hemorrhagic clinical manifestations of DENV infection by serotype.Between the years 2005-2010, individuals with febrile disease from Peru, Bolivia, Ecuador, and Paraguay were enrolled in an outpatient passive surveillance study. Detailed information regarding clinical signs and symptoms, as well as demographic information, was collected. DENV infection was confirmed in patient sera with polyclonal antibodies in a culture-based immunofluorescence assay, and the infecting serotype was determined by serotype-specific monoclonal antibodies. Differences in the prevalence of individual and organ-system manifestations were compared across DENV serotypes. One thousand seven hundred and sixteen individuals were identified as being infected with DENV-1 (39.8%, DENV-2 (4.3%, DENV-3 (41.5%, or DENV-4 (14.4%. When all four DENV serotypes were compared with each other, individuals infected with DENV-3 had a higher prevalence of musculoskeletal and gastrointestinal manifestations, and individuals infected with DENV-4 had a higher prevalence of respiratory and cutaneous manifestations.Specific clinical manifestations, as well as groups of clinical manifestations, are often overrepresented by an individual DENV serotype.

  16. The Influence of Dengue Virus Serotype-2 Infection on Aedes aegypti (Diptera: Culicidae) Motivation and Avidity to Blood Feed

    OpenAIRE

    Maciel-de-Freitas, Rafael; Sylvestre, Gabriel; Gandini, Mariana; Koella, Jacob C.

    2013-01-01

    BACKGROUND: Dengue virus (DENV) is transmitted by Aedes aegypti, a species that lives in close association with human dwellings. The behavior of DENV-infected mosquitoes needs further investigation, especially regarding the potential influence of DENV on mosquito biting motivation and avidity. METHODOLOGY/PRINCIPAL FINDINGS: We orally challenged 4-5 day-old Ae. aegypti females with a low passage DENV serotype -2 (DENV-2) to test whether the virus influences motivation to feed (the likelihood ...

  17. Prevention and Control Strategies to Counter Dengue Virus Infection

    Directory of Open Access Journals (Sweden)

    Irfan A. Rather

    2017-07-01

    Full Text Available Dengue is currently the highest and rapidly spreading vector-borne viral disease, which can lead to mortality in its severe form. The globally endemic dengue poses as a public health and economic challenge that has been attempted to suppress though application of various prevention and control techniques. Therefore, broad spectrum techniques, that are efficient, cost-effective, and environmentally sustainable, are proposed and practiced in dengue-endemic regions. The development of vaccines and immunotherapies have introduced a new dimension for effective dengue control and prevention. Thus, the present study focuses on the preventive and control strategies that are currently employed to counter dengue. While traditional control strategies bring temporary sustainability alone, implementation of novel biotechnological interventions, such as sterile insect technique, paratransgenesis, and production of genetically modified vectors, has improved the efficacy of the traditional strategies. Although a large-scale vector control strategy can be limited, innovative vaccine candidates have provided evidence for promising dengue prevention measures. The use of tetravalent dengue vaccine (CYD-TDV has been the most effective so far in treating dengue infections. Nonetheless, challenges and limitation hinder the progress of developing integrated intervention methods and vaccines; while the improvement in the latest techniques and vaccine formulation continues, one can hope for a future without the threat of dengue virus.

  18. Prevention and Control Strategies to Counter Dengue Virus Infection.

    Science.gov (United States)

    Rather, Irfan A; Parray, Hilal A; Lone, Jameel B; Paek, Woon K; Lim, Jeongheui; Bajpai, Vivek K; Park, Yong-Ha

    2017-01-01

    Dengue is currently the highest and rapidly spreading vector-borne viral disease, which can lead to mortality in its severe form. The globally endemic dengue poses as a public health and economic challenge that has been attempted to suppress though application of various prevention and control techniques. Therefore, broad spectrum techniques, that are efficient, cost-effective, and environmentally sustainable, are proposed and practiced in dengue-endemic regions. The development of vaccines and immunotherapies have introduced a new dimension for effective dengue control and prevention. Thus, the present study focuses on the preventive and control strategies that are currently employed to counter dengue. While traditional control strategies bring temporary sustainability alone, implementation of novel biotechnological interventions, such as sterile insect technique, paratransgenesis, and production of genetically modified vectors, has improved the efficacy of the traditional strategies. Although a large-scale vector control strategy can be limited, innovative vaccine candidates have provided evidence for promising dengue prevention measures. The use of tetravalent dengue vaccine (CYD-TDV) has been the most effective so far in treating dengue infections. Nonetheless, challenges and limitation hinder the progress of developing integrated intervention methods and vaccines; while the improvement in the latest techniques and vaccine formulation continues, one can hope for a future without the threat of dengue virus.

  19. A model of immunomodulatory for dengue infection mm

    Science.gov (United States)

    Zulfa, Annisa; Handayani, Dewi; Nuraini, Nuning

    2018-03-01

    An immunomodulatory model for dengue infection is constructed in this paper. This study focuses on T-cell compartments and B cells that are immune cells involved in the dengue infection process. Dengue virus-infected monocyte cells release interferons to signal T-cells to activate B-cells and produce antibodies. Immunomodulator acts as a treatment control and aims to increase the numbers of antibodies so it is expected to reduce the number of infected monocyte cells by dengue virus. Numerical simulation shows that the greater the rate of f (t) the immune cells will be stimulated to suppress the number of infected cells.

  20. Dengue Virus Genome Uncoating Requires Ubiquitination

    Directory of Open Access Journals (Sweden)

    Laura A. Byk

    2016-06-01

    Full Text Available The process of genome release or uncoating after viral entry is one of the least-studied steps in the flavivirus life cycle. Flaviviruses are mainly arthropod-borne viruses, including emerging and reemerging pathogens such as dengue, Zika, and West Nile viruses. Currently, dengue virus is one of the most significant human viral pathogens transmitted by mosquitoes and is responsible for about 390 million infections every year around the world. Here, we examined for the first time molecular aspects of dengue virus genome uncoating. We followed the fate of the capsid protein and RNA genome early during infection and found that capsid is degraded after viral internalization by the host ubiquitin-proteasome system. However, proteasome activity and capsid degradation were not necessary to free the genome for initial viral translation. Unexpectedly, genome uncoating was blocked by inhibiting ubiquitination. Using different assays to bypass entry and evaluate the first rounds of viral translation, a narrow window of time during infection that requires ubiquitination but not proteasome activity was identified. In this regard, ubiquitin E1-activating enzyme inhibition was sufficient to stabilize the incoming viral genome in the cytoplasm of infected cells, causing its retention in either endosomes or nucleocapsids. Our data support a model in which dengue virus genome uncoating requires a nondegradative ubiquitination step, providing new insights into this crucial but understudied viral process.

  1. AN APPROPRIATE DIAGNOSIS OF DENGUE VIRUS INFECTION IN SOME CASES WHO HAD AND WERE BEING TREATED IN SOERYA HOSPITAL SEPANJANG – INDONESIA

    Directory of Open Access Journals (Sweden)

    Soegeng Soegijanto

    2015-09-01

    Full Text Available Since January 2014, Soerya Hospital has found many cases with positive result of NS or IgM and IgG Dengue. The clinical manifestations mostly were high fever with headache, vomiting and also malaise convulsion and unconsciousness. Aim of the study is to find out an appropriate diagnosis of Dengue Virus Infection. Observasional study had been done since January–April 2014 with 50 cases of dengue Virus Infection. The diagnostic procedure was made based on the WHO 2011 criteria. Result Many cases had come with fever within couple days, some of them showed convulsions. Therefore, it should be made a differential diagnosis with other disease, such as acute tonsilopharingitis, etc. The patient also had to be tested with NS1 if the patient come in the first, second and third day of fever and followed by IgM/IgG dengue on the fourth, fifth or sixth days of fever. The diagnosis of Dengue Virus Infection was made based on the WHO criteria 2011. This study showed that not all cases showed positive result of NS1 or IgM/IgG dengue on the first or second test. For the negative result, we should not think that the case is not a case of Dengue Virus Infection, especially if it happens at Aedes aegypti breeding season, the patient should be observed and performed the test again to get a proper diagnosis for Dengue Virus Infection. Monitoring clinical manifestation should always be done, to predict the appropriate diagnosis of Dengue Virus Infection.

  2. Molecular Responses of Human Retinal Cells to Infection with Dengue Virus.

    Science.gov (United States)

    Carr, Jillian M; Ashander, Liam M; Calvert, Julie K; Ma, Yuefang; Aloia, Amanda; Bracho, Gustavo G; Chee, Soon-Phaik; Appukuttan, Binoy; Smith, Justine R

    2017-01-01

    Recent clinical reports indicate that infection with dengue virus (DENV) commonly has ocular manifestations. The most serious threat to vision is dengue retinopathy, including retinal vasculopathy and macular edema. Mechanisms of retinopathy are unstudied, but observations in patients implicate retinal pigment epithelial cells and retinal endothelial cells. Human retinal cells were inoculated with DENV-2 and monitored for up to 72 hours. Epithelial and endothelial cells supported DENV replication and release, but epithelial cells alone demonstrated clear cytopathic effect, and infection was more productive in those cells. Infection induced type I interferon responses from both cells, but this was stronger in epithelial cells. Endothelial cells increased expression of adhesion molecules, with sustained overexpression of vascular adhesion molecule-1. Transcellular impedance decreased for epithelial monolayers, but not endothelial monolayers, coinciding with cytopathic effect. This reduction was accompanied by disorganization of intracellular filamentous-actin and decreased expression of junctional molecules, zonula occludens 1, and catenin- β 1. Changes in endothelial expression of adhesion molecules are consistent with the retinal vasculopathy seen in patients infected with DENV; decreases in epithelial junctional protein expression, paralleling loss of integrity of the epithelium, provide a molecular basis for DENV-associated macular edema. These molecular processes present potential therapeutic targets for vision-threatening dengue retinopathy.

  3. Molecular Responses of Human Retinal Cells to Infection with Dengue Virus

    Directory of Open Access Journals (Sweden)

    Jillian M. Carr

    2017-01-01

    Full Text Available Recent clinical reports indicate that infection with dengue virus (DENV commonly has ocular manifestations. The most serious threat to vision is dengue retinopathy, including retinal vasculopathy and macular edema. Mechanisms of retinopathy are unstudied, but observations in patients implicate retinal pigment epithelial cells and retinal endothelial cells. Human retinal cells were inoculated with DENV-2 and monitored for up to 72 hours. Epithelial and endothelial cells supported DENV replication and release, but epithelial cells alone demonstrated clear cytopathic effect, and infection was more productive in those cells. Infection induced type I interferon responses from both cells, but this was stronger in epithelial cells. Endothelial cells increased expression of adhesion molecules, with sustained overexpression of vascular adhesion molecule-1. Transcellular impedance decreased for epithelial monolayers, but not endothelial monolayers, coinciding with cytopathic effect. This reduction was accompanied by disorganization of intracellular filamentous-actin and decreased expression of junctional molecules, zonula occludens 1, and catenin-β1. Changes in endothelial expression of adhesion molecules are consistent with the retinal vasculopathy seen in patients infected with DENV; decreases in epithelial junctional protein expression, paralleling loss of integrity of the epithelium, provide a molecular basis for DENV-associated macular edema. These molecular processes present potential therapeutic targets for vision-threatening dengue retinopathy.

  4. Aedes albopictus (Skuse, 1894) infected with the American-Asian genotype of dengue type 2 virus in Medellín suggests its possible role as vector of dengue fever in Colombia.

    Science.gov (United States)

    Gómez-Palacio, Andrés; Suaza-Vasco, Juan; Castaño, Sandra; Triana, Omar; Uribe, Sandra

    2017-03-29

    Aedes aegypti and Ae. albopictus are recognized vectors of dengue, yellow fever, chikungunya and Zika arboviruses in several countries worldwide. In Colombia, Ae. albopictus geographical distribution has increased to include highly populated cities such as Cali and Medellín. Although this species has been frequently found in urban and semi-urban zones in the country, its role as vector of the dengue fever is poorly known. To identify the presence of Ae. albopictus specimens naturally infected with dengue virus collected in Medellín. Insects were collected in the Universidad Nacional de Colombia campus in Medellín. Individuals were classified as Ae. albopictus and confirmed by DNA barcode region analysis. Mosquitoes were processed for dengue virus identification, and a fragment of the NS3 gen was sequenced and compared with DENV-2 genotypes reported in the literature. Sequence analysis of COI indicated Ae. albopictus individuals were similar to those recently reported in Colombia, and genetically close to those from other regions worldwide. Among the pools tested one was positive for DENV-2, and the NS3 analysis indicated it belonged to the Asian-American clade. We report the presence Ae. albopictus naturally infected with the Asian-American genotype of DENV-2 in Colombia. The presence of Ae. albopictus specimens carrying the most common genotype infecting humans in a highly populated city such as Medellín indicates its potential role as dengue vector in Colombia and highlights the relevance of including it in current vector surveillance strategies.

  5. Aedes mosquito salivary immune peptides: boost or block dengue viral infections

    Directory of Open Access Journals (Sweden)

    Natthanej Luplertlop

    2014-02-01

    Full Text Available Dengue virus, one of the most important arthropod-borne viruses, infected to human can severely cause dengue hemorrhagic fever and dengue shock syndrome. There are expected about 50 million dengue infections and 500 000 individuals are hospitalized with dengue hemorrhagic fever, mainly in Southeast Asia, Pacific, and in Americas reported each year. The rapid expansion of global dengue is one of a major public health challenge, together with not yet successful solutions of dengue epidemic control strategies. Thus, these dynamic dengue viral infections exhibited high demographic, societal, and public health infrastructure impacts on human. This review aimed to highlight the current understanding of dengue mosquito immune responses and role of mosquito salivary glands on dengue infection. These information may provide a valuable knowledge of disease pathogenesis, especially in mosquito vector and dengue virus interaction, which may help to control and prevent dengue distribution.

  6. Co-circulation of Dengue and Chikungunya Viruses, Al Hudaydah, Yemen, 2012.

    Science.gov (United States)

    Rezza, Giovanni; El-Sawaf, Gamal; Faggioni, Giovanni; Vescio, Fenicia; Al Ameri, Ranya; De Santis, Riccardo; Helaly, Ghada; Pomponi, Alice; Metwally, Dalia; Fantini, Massimo; Qadi, Hussein; Ciccozzi, Massimo; Lista, Florigio

    2014-08-01

    We investigated 400 cases of dengue-like illness in persons hospitalized during an outbreak in Al Hudaydah, Yemen, in 2012. Overall, 116 dengue and 49 chikungunya cases were diagnosed. Dengue virus type 2 was the predominant serotype. The co-circulation of these viruses indicates that mosquitoborne infections represent a public health threat in Yemen.

  7. Heterologous prime-boost strategy in non-human primates combining the infective dengue virus and a recombinant protein in a formulation suitable for human use.

    Science.gov (United States)

    Valdés, Iris; Hermida, Lisset; Gil, Lázaro; Lazo, Laura; Castro, Jorge; Martín, Jorge; Bernardo, Lídice; López, Carlos; Niebla, Olivia; Menéndez, Tamara; Romero, Yaremis; Sánchez, Jorge; Guzmán, María G; Guillén, Gerardo

    2010-05-01

    The aim of the present work was to test the concept of the heterologous prime-boost strategy combining an infective dengue virus with a recombinant chimeric protein carrying domain III of the envelope protein. Two studies in monkeys, combining recombinant protein PD5 (domain III of the envelope protein from dengue-2 virus, fused to the protein carrier P64k) and the infective dengue virus in the same immunization schedules were carried out. Humoral and cell-mediated immunity were evaluated. In the first study, monkeys received four doses of the protein PD5 and were subsequently infected with one dose of dengue virus. Antibody response measured after virus inoculation was significantly higher compared to that in non-primed monkeys and comparable to that elicited after two doses of infective virus. In a second study, monkeys were infected with one dose of the virus and subsequently boosted with one dose of the recombinant protein, reaching high levels of neutralizing antibodies, which were still detectable 14 months after the last immunization. In addition, the cellular immune response was also recalled. The results obtained in the present work support the approach of heterologous prime-boosting, in either order prime or boost, combining the chimeric protein PD5 (formulated in alum-CPS-A) and an infective dengue virus. The latter could potentially be replaced by an attenuated vaccine candidate. Copyright 2009 International Society for Infectious Diseases. Published by Elsevier Ltd. All rights reserved.

  8. Virus isolation for diagnosing dengue virus infections in returning travelers

    NARCIS (Netherlands)

    Teichmann, D.; Göbels, K.; Niedrig, M.; Sim-Brandenburg, J.-W.; Làge-Stehr, J.; Grobusch, M. P.

    2003-01-01

    Dengue fever is recognized as one of the most frequent imported acute febrile illnesses affecting European tourists returning from the tropics. In order to assess the value of virus isolation for the diagnosis of dengue fever, 70 cases of dengue fever confirmed in German travelers during the period

  9. Co-Infection of Mosquitoes with Chikungunya and Dengue Viruses Reveals Modulation of the Replication of Both Viruses in Midguts and Salivary Glands of Aedes aegypti Mosquitoes.

    Science.gov (United States)

    Le Coupanec, Alain; Tchankouo-Nguetcheu, Stéphane; Roux, Pascal; Khun, Huot; Huerre, Michel; Morales-Vargas, Ronald; Enguehard, Margot; Lavillette, Dimitri; Missé, Dorothée; Choumet, Valérie

    2017-08-04

    Arthropod-borne virus (arbovirus) infections cause several emerging and resurgent infectious diseases in humans and animals. Chikungunya-affected areas often overlap with dengue-endemic areas. Concurrent dengue virus (DENV) and chikungunya virus (CHIKV) infections have been detected in travelers returning from regions of endemicity. CHIKV and DENV co-infected Aedes albopictus have also been collected in the vicinity of co-infected human cases, emphasizing the need to study co-infections in mosquitoes. We thus aimed to study the pathogen-pathogen interaction involved in these co-infections in DENV/CHIKV co-infected Aedes aegypti mosquitoes. In mono-infections, we detected CHIKV antigens as early as 4 days post-virus exposure in both the midgut (MG) and salivary gland (SG), whereas we detected DENV serotype 2 (DENV-2) antigens from day 5 post-virus exposure in MG and day 10 post-virus exposure in SG. Identical infection rates were observed for singly and co-infected mosquitoes, and facilitation of the replication of both viruses at various times post-viral exposure. We observed a higher replication for DENV-2 in SG of co-infected mosquitoes. We showed that mixed CHIKV and DENV infection facilitated viral replication in Ae. aegypti . The outcome of these mixed infections must be further studied to increase our understanding of pathogen-pathogen interactions in host cells.

  10. Experimental in vitro and in vivo systems for studying the innate immune response during dengue virus infections.

    Science.gov (United States)

    Kitab, Bouchra; Kohara, Michinori; Tsukiyama-Kohara, Kyoko

    2018-03-08

    Dengue is the most prevalent arboviral disease in humans and leads to significant morbidity and socioeconomic burden in tropical and subtropical areas. Dengue is caused by infection with any of the four closely related serotypes of dengue virus (DENV1-4) and usually manifests as a mild febrile illness, but may develop into fatal dengue hemorrhagic fever and shock syndrome. There are no specific antiviral therapies against dengue because understanding of DENV biology is limited. A tetravalent chimeric dengue vaccine, Dengvaxia, has finally been licensed for use, but its efficacy was significantly lower against DENV-2 infections and in dengue-naïve individuals. The identification of mechanisms underlying the interactions between DENV and immune responses will help to determine efficient therapeutic and preventive options. It has been well established how the innate immune system responds to DENV infection and how DENV overcomes innate antiviral defenses, however further progress in this field remains hampered by the absence of appropriate experimental dengue models. Herein, we review the available in vitro and in vivo approaches to study the innate immune responses to DENV.

  11. Isolation of Ancestral Sylvatic Dengue Virus Type 1, Malaysia

    Science.gov (United States)

    Teoh, Boon-Teong; Sam, Sing-Sin; Abd-Jamil, Juraina

    2010-01-01

    Ancestral sylvatic dengue virus type 1, which was isolated from a monkey in 1972, was isolated from a patient with dengue fever in Malaysia. The virus is neutralized by serum of patients with endemic DENV-1 infection. Rare isolation of this virus suggests a limited spillover infection from an otherwise restricted sylvatic cycle. PMID:21029545

  12. Dengue virus markers of virulence and pathogenicity

    OpenAIRE

    Rico-Hesse, Rebeca

    2009-01-01

    The increased spread of dengue fever and its more severe form, dengue hemorrhagic fever, have made the study of the mosquito-borne dengue viruses that cause these diseases a public health priority. Little is known about how or why the four different (serotypes 1–4) dengue viruses cause pathology in humans only, and there have been no animal models of disease to date. Therefore, there are no vaccines or antivirals to prevent or treat infection and mortality rates of dengue hemorrhagic fever pa...

  13. Nine year trends of dengue virus infection in Mumbai, Western India

    Directory of Open Access Journals (Sweden)

    Jayanthi Shastri

    2017-01-01

    Methods and Results: During the nine year period of this study analysis, 6767 strongly suspected cases were tested by RT-PCR. 1685 (24.9% were Dengue PCR positive and confirmed as Dengue cases. Observations on the seasonality were based on the nine year's data as the intensity of sampling was at its maximum during monsoon season. Dengue typing was done on 100 positive samples after storage of Dengue RNA at – 80°C. Dengue serotypes were detected in 69 samples of which Dengue 2 was most predominant. 576 samples were processed for NS1 antigen and PCR simultaneously. 19/576 were positive (3.3 % for NS1 as well as by PCR . 23/576 samples were negative for NS1 antigen, but were positive by RT-PCR. The remaining 534 samples which were negative for NS1 antigen were also negative by Dengue RT-PCR. Conclusion: In this study we sought to standardize rapid, sensitive, and specific fluorogenic probe-based RT-PCR assay to screen and serotype a representative range of Dengue viruses that are found in and around Mumbai. Qualitative Dengue virus TaqMan assays could have tremendous utility for the epidemiological investigation of Dengue illness and especially for the study of the viremic response with candidate live-attenuated dengue virus vaccines.

  14. A Simple Reverse Transcription-Polymerase Chain Reaction for Dengue Type 2 Virus Identification

    Directory of Open Access Journals (Sweden)

    Luiz Tadeu M Figueiredo

    1997-05-01

    Full Text Available We show here a simplified reverse transcription-polymerase chain reaction (RT-PCR for identification of dengue type 2 virus. Three dengue type 2 virus strains, isolated from Brazilian patients, and yellow fever vaccine 17DD, as a negative control, were used in this study. C6/36 cells were infected with the virus, and tissue culture fluids were collected after 7 days of infection period. The RT-PCR, a combination of RT and PCR done after a single addition of reagents in a single reaction vessel was carried out following a digestion of virus with 1% Nonidet P-40. The 50ml assay reaction mixture included 50 pmol of a dengue type 2 specific primer pair amplifying a 210 base pair sequence of the envelope protein gene, 0.1 mM of the four deoxynucleoside triphosphates, 7.5U of reverse transcriptase, and 1U of thermostable Taq DNA polymerase. The reagent mixture was incubated for 15 min at 37oC for RT followed by a variable amount of cycles of two-step PCR amplification (92oC for 60 sec, 53oC for 60 sec with slow temperature increment. The PCR products were subjected to 1.7% agarose gel electrophoresis and visualized with UV light after gel incubation in ethidium bromide solution. DNA bands were observed after 25 and 30 cycles of PCR. Virus amount as low as 102.8 TCID50/ml was detected by RT-PCR. Specific DNA amplification was observed with the three dengue type 2 strains. This assay has advantages compared to other RT-PCRs: it avoids laborious extraction of virus RNA; the combination of RT and PCR reduces assay time, facilitates the performance and reduces risk of contamination; the two-step PCR cycle produces a clear DNA amplification, saves assay time and simplifies the technique

  15. Molecular epidemiology of type 1 and 2 dengue viruses in Brazil from 1988 to 2001.

    Science.gov (United States)

    Pires Neto, R J; Lima, D M; de Paula, S O; Lima, C M; Rocco, I M; Fonseca, B A L

    2005-06-01

    Dengue is a mosquito-borne viral infection that in recent decades has become a major international public health concern. Epidemic dengue fever reemerged in Brazil in 1981. Since 1990 more than one dengue virus serotype has been circulating in this tropical country and increasing rates of dengue hemorrhagic fever and dengue shock syndrome have been detected every year. Some evidence supports the association between the introduction of a new serotype and/or genotype in a region and the appearance of dengue hemorrhagic fever. In order to study the evolutionary relationships and possible detection of the introduction of new dengue virus genotypes in Brazil in the last years, we analyzed partial nucleotide sequences of 52 Brazilian samples of both dengue type 1 and dengue type 2 isolated from 1988 to 2001 from highly endemic regions. A 240-nucleotide-long sequence from the envelope/nonstructural protein 1 gene junction was used for phylogenetic analysis. After comparing the nucleotide sequences originally obtained in this study to those previously studied by others, and analyzing the phylogenetic trees, we conclude that, after the initial introduction of the currently circulating dengue-1 and dengue-2 genotypes in Brazil, there has been no evidence of introduction of new genotypes since 1988. The increasing number of dengue hemorrhagic fever cases seen in Brazil in the last years is probably associated with secondary infections or with the introduction of new serotypes but not with the introduction of new genotypes.

  16. Molecular epidemiology of type 1 and 2 dengue viruses in Brazil from 1988 to 2001

    Directory of Open Access Journals (Sweden)

    Pires Neto R.J.

    2005-01-01

    Full Text Available Dengue is a mosquito-borne viral infection that in recent decades has become a major international public health concern. Epidemic dengue fever reemerged in Brazil in 1981. Since 1990 more than one dengue virus serotype has been circulating in this tropical country and increasing rates of dengue hemorrhagic fever and dengue shock syndrome have been detected every year. Some evidence supports the association between the introduction of a new serotype and/or genotype in a region and the appearance of dengue hemorrhagic fever. In order to study the evolutionary relationships and possible detection of the introduction of new dengue virus genotypes in Brazil in the last years, we analyzed partial nucleotide sequences of 52 Brazilian samples of both dengue type 1 and dengue type 2 isolated from 1988 to 2001 from highly endemic regions. A 240-nucleotide-long sequence from the envelope/nonstructural protein 1 gene junction was used for phylogenetic analysis. After comparing the nucleotide sequences originally obtained in this study to those previously studied by others, and analyzing the phylogenetic trees, we conclude that, after the initial introduction of the currently circulating dengue-1 and dengue-2 genotypes in Brazil, there has been no evidence of introduction of new genotypes since 1988. The increasing number of dengue hemorrhagic fever cases seen in Brazil in the last years is probably associated with secondary infections or with the introduction of new serotypes but not with the introduction of new genotypes.

  17. Molecular mechanisms of dengue virus infection : cell tropism, antibody-dependent enhancement, and cytokines

    NARCIS (Netherlands)

    Flipse, Jacobus

    2015-01-01

    Dengue is the most prevalent mosquito-borne viral disease in humans. Although most infections occur in the (sub)tropical areas, recent outbreaks in Italy and Madeira indicate that the virus is spreading into Europe. Despite its relevance, no vaccine or medications are available against this virus.

  18. Acute disseminated encephalomyelitis in dengue viral infection.

    Science.gov (United States)

    Wan Sulaiman, Wan Aliaa; Inche Mat, Liyana Najwa; Hashim, Hasnur Zaman; Hoo, Fan Kee; Ching, Siew Mooi; Vasudevan, Ramachandran; Mohamed, Mohd Hazmi; Basri, Hamidon

    2017-09-01

    Dengue is the most common arboviral disease affecting many countries worldwide. An RNA virus from the flaviviridae family, dengue has four antigenically distinct serotypes (DEN-1-DEN-4). Neurological involvement in dengue can be classified into dengue encephalopathy immune-mediated syndromes, encephalitis, neuromuscular or dengue muscle dysfunction and neuro-ophthalmic involvement. Acute disseminated encephalomyelitis (ADEM) is an immune mediated acute demyelinating disorder of the central nervous system following recent infection or vaccination. This monophasic illness is characterised by multifocal white matter involvement. Many dengue studies and case reports have linked ADEM with dengue virus infection but the association is still not clear. Therefore, this article is to review and discuss concerning ADEM in dengue as an immune-medicated neurological complication; and the management strategy required based on recent literature. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Olive baboons: a non-human primate model for testing dengue virus type 2 replication.

    Science.gov (United States)

    Valdés, Iris; Gil, Lázaro; Castro, Jorge; Odoyo, Damián; Hitler, Rikoi; Munene, Elephas; Romero, Yaremis; Ochola, Lucy; Cosme, Karelia; Kariuki, Thomas; Guillén, Gerardo; Hermida, Lisset

    2013-12-01

    This study evaluated the use of a non-human primate, the olive baboon (Papio anubis), as a model of dengue infection. Olive baboons closely resemble humans genetically and physiologically and have been used extensively for assessing novel vaccine formulations. Two doses of dengue virus type 2 (DENV-2) were tested in baboons: 10(3) and 10(4) pfu. Similarly, African green monkeys received the same quantity of virus and acted as positive controls. Following exposure, high levels of viremia were detected in both animal species. There was a trend to detect more days of viremia and more homogeneous viral titers in animals receiving the low viral dose. In addition, baboons infected with the virus generally exhibited positive virus isolation 1 day later than African green monkeys. Humoral responses consisting of antiviral and neutralizing antibodies were detected in all animals after infection. We conclude that baboons provide an alternative non-human primate species for experimental DENV-2 infection and we recommend their use for further tests of vaccines, administering the lowest dose assayed: 10(3) pfu. Copyright © 2013 International Society for Infectious Diseases. Published by Elsevier Ltd. All rights reserved.

  20. Differential Gene Expression Changes in Children with Severe Dengue Virus Infections

    NARCIS (Netherlands)

    de Kruif, Martijn D.; Setiati, Tatty E.; Mairuhu, Albertus T. A.; Koraka, Penelopie; Aberson, Hella A.; Spek, C. Arnold; Osterhaus, Albert D. M. E.; Reitsma, Pieter H.; Brandjes, Dees P. M.; Soemantri, Augustinus; van Gorp, Eric C. M.

    2008-01-01

    Background: The host response to dengue virus infection is characterized by the production of numerous cytokines, but the overall picture appears to be complex. It has been suggested that a balance may be involved between protective and pathologic immune responses. This study aimed to define

  1. Plasmablasts During Acute Dengue Infection Represent a Small Subset of a Broader Virus-specific Memory B Cell Pool

    Directory of Open Access Journals (Sweden)

    Ramapraba Appanna

    2016-10-01

    Full Text Available Dengue is endemic in tropical countries worldwide and the four dengue virus serotypes often co-circulate. Infection with one serotype results in high titers of cross-reactive antibodies produced by plasmablasts, protecting temporarily against all serotypes, but impairing protective immunity in subsequent infections. To understand the development of these plasmablasts, we analyzed virus-specific B cell properties in patients during acute disease and at convalescence. Plasmablasts were unrelated to classical memory cells expanding in the blood during early recovery. We propose that only a small subset of memory B cells is activated as plasmablasts during repeat infection and that plasmablast responses are not representative of the memory B cell repertoire after dengue infection.

  2. Autophagic machinery activated by dengue virus enhances virus replication

    International Nuclear Information System (INIS)

    Lee, Y.-R.; Lei, H.-Y.; Liu, M.-T.; Wang, J.-R.; Chen, S.-H.; Jiang-Shieh, Y.-F.; Lin, Y.-S.; Yeh, T.-M.; Liu, C.-C.; Liu, H.-S.

    2008-01-01

    Autophagy is a cellular response against stresses which include the infection of viruses and bacteria. We unravel that Dengue virus-2 (DV2) can trigger autophagic process in various infected cell lines demonstrated by GFP-LC3 dot formation and increased LC3-II formation. Autophagosome formation was also observed under the transmission electron microscope. DV2-induced autophagy further enhances the titers of extracellular and intracellular viruses indicating that autophagy can promote viral replication in the infected cells. Moreover, our data show that ATG5 protein is required to execute DV2-induced autophagy. All together, we are the first to demonstrate that DV can activate autophagic machinery that is favorable for viral replication

  3. A non mouse-adapted dengue virus strain as a new model of severe dengue infection in AG129 mice.

    Directory of Open Access Journals (Sweden)

    Grace K Tan

    Full Text Available The spread of dengue (DEN worldwide combined with an increased severity of the DEN-associated clinical outcomes have made this mosquito-borne virus of great global public health importance. Progress in understanding DEN pathogenesis and in developing effective treatments has been hampered by the lack of a suitable small animal model. Most of the DEN clinical isolates and cell culture-passaged DEN virus strains reported so far require either host adaptation, inoculation with a high dose and/or intravenous administration to elicit a virulent phenotype in mice which results, at best, in a productive infection with no, few, or irrelevant disease manifestations, and with mice dying within few days at the peak of viremia. Here we describe a non-mouse-adapted DEN2 virus strain (D2Y98P that is highly infectious in AG129 mice (lacking interferon-alpha/beta and -gamma receptors upon intraperitoneal administration. Infection with a high dose of D2Y98P induced cytokine storm, massive organ damage, and severe vascular leakage, leading to haemorrhage and rapid death of the animals at the peak of viremia. In contrast, very interestingly and uniquely, infection with a low dose of D2Y98P led to asymptomatic viral dissemination and replication in relevant organs, followed by non-paralytic death of the animals few days after virus clearance, similar to the disease kinetic in humans. Spleen damage, liver dysfunction and increased vascular permeability, but no haemorrhage, were observed in moribund animals, suggesting intact vascular integrity, a cardinal feature in DEN shock syndrome. Infection with D2Y98P thus offers the opportunity to further decipher some of the aspects of dengue pathogenesis and provides a new platform for drug and vaccine testing.

  4. Vectors expressing chimeric Japanese encephalitis dengue 2 viruses.

    Science.gov (United States)

    Wei, Y; Wang, S; Wang, X

    2014-01-01

    Vectors based on self-replicating RNAs (replicons) of flaviviruses are becoming powerful tool for expression of heterologous genes in mammalian cells and development of novel antiviral and anticancer vaccines. We constructed two vectors expressing chimeric viruses consisting of attenuated SA14-14-2 strain of Japanese encephalitis virus (JEV) in which the PrM/M-E genes were replaced fully or partially with those of dengue 2 virus (DENV-2). These vectors, named pJED2 and pJED2-1770 were transfected to BHK-21 cells and produced chimeric viruses JED2V and JED2-1770V, respectively. The chimeric viruses could be passaged in C6/36 but not BHK-21 cells. The chimeric viruses produced in C6/36 cells CPE 4-5 days after infection and RT-PCR, sequencing, immunofluorescence assay (IFA) and Western blot analysis confirmed the chimeric nature of produced viruses. The immunogenicity of chimeric viruses in mice was proved by detecting DENV-2 E protein-specific serum IgG antibodies with neutralization titer of 10. Successful preparation of infectious clones of chimeric JEV-DENV-2 viruses showed that JEV-based expression vectors are fully functional.

  5. Secretion of Galectin-9 as a DAMP during Dengue Virus Infection in THP-1 Cells.

    Science.gov (United States)

    Dapat, Isolde C; Pascapurnama, Dyshelly Nurkartika; Iwasaki, Hiroko; Labayo, Hannah Karen; Chagan-Yasutan, Haorile; Egawa, Shinichi; Hattori, Toshio

    2017-07-28

    Damage-associated molecular patterns (DAMPs) are endogenous cellular molecules released to the extracellular environment in response to stress conditions such as virus infection. Galectins are β-galactoside-binding proteins that are widely expressed in cells and tissues of the immune system, are localized in the cell cytoplasm, and have roles in inflammatory responses and immune responses against infection. Elevated levels of galectin-9 (Gal-9) in natural human infections have been documented in numerous reports. To investigate the effect of dengue virus (DENV) infection on expression of endogenous Gal-9, monocytic THP-1 cells were infected with varying doses of DENV-3 (multiplicity of infection (MOI) 0.01, 0.03 and 0.1) and incubated at varying time points (Day 1, Day 2, Day 3). Results showed augmentation of Gal-9 levels in the supernatant, reduction of Gal-9 levels in the cells and decreased expression of LGALS9 mRNA, while DENV-3 mRNA copies for all three doses remained stable through time. Dengue virus induced the secretion of Gal-9 as a danger response; in turn, Gal-9 and other inflammatory factors, and stimulated effector responses may have limited further viral replication. The results in this pilot experiment add to the evidence of Gal-9 as a potential DAMP.

  6. Neutralizing and non-neutralizing monoclonal antibodies against dengue virus E protein derived from a naturally infected patient

    Directory of Open Access Journals (Sweden)

    Isern Sharon

    2010-02-01

    Full Text Available Abstract Background Antibodies produced in response to infection with any of the four serotypes of dengue virus generally provide homotypic immunity. However, prior infection or circulating maternal antibodies can also mediate a non-protective antibody response that can enhance the course of disease in a subsequent heterotypic infection. Naturally occurring human monoclonal antibodies can help us understand the protective and pathogenic roles of the humoral immune system in dengue virus infection. Results Epstein-Barr Virus (EBV transformation of B cells isolated from the peripheral blood of a human subject with previous dengue infection was performed. B cell cultures were screened by ELISA for antibodies to dengue (DENV envelope (E protein. ELISA positive cultures were cloned by limiting dilution. Three IgG1 human monoclonal antibodies (HMAbs were purified and their binding specificity to E protein was verified by ELISA and biolayer interferometry. Neutralization and enhancement assays were conducted in epithelial and macrophage-like cell lines, respectively. All three HMAbs bound to E from at least two of the four DENV serotypes, one of the HMAbs was neutralizing, and all were able to enhance DENV infection. Conclusions HMAbs against DENV can be successfully generated by EBV transformation of B cells from patients at least two years after naturally acquired DENV infections. These antibodies show different patterns of cross-reactivity, neutralizing, and enhancement activity.

  7. Clinical and laboratory profile of Zika virus infection in dengue suspected patients: A case series.

    Science.gov (United States)

    Fernanda Estofolete, Cássia; Terzian, Ana Carolina Bernardes; Parreira, Ricardo; Esteves, Aida; Hardman, Lucas; Greque, Gilmar Valdir; Rahal, Paula; Nogueira, Maurício Lacerda

    2016-08-01

    The Zika virus (ZIKV) is an emerging arthropod-borne virus related to the dengue virus (DENV), and shows a similar clinical profile as other arboviral diseases, such as dengue and chikungunya virus (CHIKV). Historically, ZIKV has been associated with sporadic cases of human infection, but is now responsible for outbreaks worldwide. In Brazil, cases have been reported since 2015, with some cases causing severe disease. To identify clinical symptoms of Zika in patients in Dengue suspected patients. Description of a series of cases, wherein we analyzed 100 clinical samples collected from patients who exhibited acute febrile disease for ≤5days, from January to February 2016. In this study, we report 13 cases of ZIKV infection in adults presenting dengue-like symptoms in a DENV endemic area. All patients presented with fever, with myalgia being the second most frequently observed symptom. Two patients had rashes, but none of them had conjunctivitis. Other less frequent manifestations included headache, arthralgia, diarrhea, and nausea. The co-circulation of ZIKV and DENV is a serious public health concern, since it represents both a clinical and diagnostic challenge in endemic areas, as well as in the field of travel medicine. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. The cellular bases of antibody responses during dengue virus infection

    Directory of Open Access Journals (Sweden)

    Juan Carlos Yam-Puc

    2016-06-01

    Full Text Available Dengue virus (DENV is one of the most significant human viral pathogens transmitted by mosquitoes and can cause from an asymptomatic disease to mild undifferentiated fever, classical dengue, and severe dengue. Neutralizing memory antibody (Ab responses are one of the most important mechanisms that counteract reinfections and are therefore the main aim of vaccination. However, it has also been proposed that in dengue, some of these class-switched (IgG memory Abs might worsen the disease. Although these memory Abs derive from B cells by T-cell dependent processes, we know rather little about the (acute, chronic or memory B cell responses and the complex cellular mechanisms generating these Abs during DENV infections.This review aims to provide an updated and comprehensive perspective of the B cell responses during DENV infection, starting since the very early events like the cutaneous DENV entrance and the arrival into draining lymph nodes, to the putative B cell activation, proliferation and germinal centers (GCs formation (the source of affinity-matured class-switched memory Abs, till the outcome of GC reactions such as the generation of plasmablasts, Ab-secreting plasma cells and memory B cells. We discuss topics very poorly explored such as the possibility of B cell infection by DENV or even activation-induced B cell death. The current information about the nature of the Ab responses to DENV is also illustrated.

  9. Dengue virus infection among long-term travelers from the Netherlands: A prospective study, 2008-2011

    NARCIS (Netherlands)

    Overbosch, Femke W.; Schinkel, Janke; Stolte, Ineke G.; Prins, Maria; Sonder, Gerard J. B.

    2018-01-01

    Dengue is increasing rapidly in endemic regions. Data on incidence among travelers to these areas are limited. Five prospective studies have been performed thus far, mainly among short-term travelers. To obtain the attack and incidence rate (AR, IR) of dengue virus (DENV) infection among long-term

  10. Host cell responses to dengue virus infection

    NARCIS (Netherlands)

    Diosa Toro, Mayra

    2017-01-01

    Dengue (ook wel knokkelkoorts) is de meest voorkomende virale infectieziekte dat wordt overgedragen door muggen in de wereld met naar schatting 390 miljoen infecties per jaar. Ondanks de grote klinische impact en economische schade van het dengue virus is er nog steeds geen behandeling beschikbaar.

  11. Dengue viruses – an overview

    Directory of Open Access Journals (Sweden)

    Anne Tuiskunen Bäck

    2013-08-01

    Full Text Available Dengue viruses (DENVs cause the most common arthropod-borne viral disease in man with 50–100 million infections per year. Because of the lack of a vaccine and antiviral drugs, the sole measure of control is limiting the Aedes mosquito vectors. DENV infection can be asymptomatic or a self-limited, acute febrile disease ranging in severity. The classical form of dengue fever (DF is characterized by high fever, headache, stomach ache, rash, myalgia, and arthralgia. Severe dengue, dengue hemorrhagic fever (DHF, and dengue shock syndrome (DSS are accompanied by thrombocytopenia, vascular leakage, and hypotension. DSS, which can be fatal, is characterized by systemic shock. Despite intensive research, the underlying mechanisms causing severe dengue is still not well understood partly due to the lack of appropriate animal models of infection and disease. However, even though it is clear that both viral and host factors play important roles in the course of infection, a fundamental knowledge gap still remains to be filled regarding host cell tropism, crucial host immune response mechanisms, and viral markers for virulence.

  12. Evaluation of two new commercial tests for the diagnosis of acute dengue virus infection using NS1 antigen detection in human serum.

    Science.gov (United States)

    Dussart, Philippe; Petit, Laure; Labeau, Bhety; Bremand, Laetitia; Leduc, Alexandre; Moua, David; Matheus, Séverine; Baril, Laurence

    2008-08-20

    We compared the performance of two new commercial tests for the detection of dengue NS1 protein during the clinical phase of dengue virus (DENV) infection-an immunochromatographic test allowing rapid detection of the NS1 antigen, Dengue NS1 Ag STRIP (Bio-Rad Laboratories - Marnes La Coquette, France), and a two-step sandwich-format microplate enzyme-linked immunosorbent assay (ELISA), pan-E Dengue Early ELISA (Panbio - Brisbane, Australia)-with a one-step sandwich-format microplate ELISA, the Platelia Dengue NS1 Ag test (Bio-Rad). We tested 272 serum samples from patients with dengue disease. Of these, 222 were from patients with acute infection of one of the four dengue serotypes, detected by RT-PCR and/or virus isolation. Forty-eight acute-phase serum samples from patients not infected with dengue virus were also included. The sensitivity of the Platelia Dengue NS1 Ag test on acute serum samples (n = 222) was 87.4% (95% confidence interval: 82.3% to 91.5%); that of Dengue NS1 Ag STRIP was 81.5% (95% CI: 75.8% to 86.4%) after 15 minutes and 82.4% (95% CI: 76.8% to 87.2%) after 30 minutes. Both tests had a specificity of 100% (97.5% CI, one-sided test: 92.6% to 100.0%). The pan-E Dengue Early ELISA had a sensitivity of 60.4% (95% CI: 53.4% to 66.8%) and a specificity of 97.9% (95% CI: 88.9% to 99.9%). Our findings support the use of diagnostic tools based on the NS1 antigen detection for the diagnosis of acute DENV infection. The immunochromatographic test, Dengue NS1 Ag STRIP-the first rapid diagnostic test for DENV infection-was highly sensitive and specific, and would therefore be a suitable first-line test in the field. The pan-E Dengue Early ELISA was less sensitive than the Platelia test; this two-step ELISA should be combined with DENV IgM antibody detection for the diagnosis of DENV infection.

  13. Evaluation of two new commercial tests for the diagnosis of acute dengue virus infection using NS1 antigen detection in human serum.

    Directory of Open Access Journals (Sweden)

    Philippe Dussart

    Full Text Available BACKGROUND: We compared the performance of two new commercial tests for the detection of dengue NS1 protein during the clinical phase of dengue virus (DENV infection-an immunochromatographic test allowing rapid detection of the NS1 antigen, Dengue NS1 Ag STRIP (Bio-Rad Laboratories - Marnes La Coquette, France, and a two-step sandwich-format microplate enzyme-linked immunosorbent assay (ELISA, pan-E Dengue Early ELISA (Panbio - Brisbane, Australia-with a one-step sandwich-format microplate ELISA, the Platelia Dengue NS1 Ag test (Bio-Rad. METHODS: We tested 272 serum samples from patients with dengue disease. Of these, 222 were from patients with acute infection of one of the four dengue serotypes, detected by RT-PCR and/or virus isolation. Forty-eight acute-phase serum samples from patients not infected with dengue virus were also included. RESULTS: The sensitivity of the Platelia Dengue NS1 Ag test on acute serum samples (n = 222 was 87.4% (95% confidence interval: 82.3% to 91.5%; that of Dengue NS1 Ag STRIP was 81.5% (95% CI: 75.8% to 86.4% after 15 minutes and 82.4% (95% CI: 76.8% to 87.2% after 30 minutes. Both tests had a specificity of 100% (97.5% CI, one-sided test: 92.6% to 100.0%. The pan-E Dengue Early ELISA had a sensitivity of 60.4% (95% CI: 53.4% to 66.8% and a specificity of 97.9% (95% CI: 88.9% to 99.9%. CONCLUSION: Our findings support the use of diagnostic tools based on the NS1 antigen detection for the diagnosis of acute DENV infection. The immunochromatographic test, Dengue NS1 Ag STRIP-the first rapid diagnostic test for DENV infection-was highly sensitive and specific, and would therefore be a suitable first-line test in the field. The pan-E Dengue Early ELISA was less sensitive than the Platelia test; this two-step ELISA should be combined with DENV IgM antibody detection for the diagnosis of DENV infection.

  14. Dengue virus receptor

    OpenAIRE

    Hidari, Kazuya I.P.J.; Suzuki, Takashi

    2011-01-01

    Dengue virus is an arthropod-borne virus transmitted by Aedes mosquitoes. Dengue virus causes fever and hemorrhagic disorders in humans and non-human primates. Direct interaction of the virus introduced by a mosquito bite with host receptor molecule(s) is crucial for virus propagation and the pathological progression of dengue diseases. Therefore, elucidation of the molecular mechanisms underlying the interaction between dengue virus and its receptor(s) in both humans and mosquitoes is essent...

  15. Characteristics and predictors for gastrointestinal hemorrhage among adult patients with dengue virus infection: Emphasizing the impact of existing comorbid disease(s.

    Directory of Open Access Journals (Sweden)

    Wen-Chi Huang

    Full Text Available Gastrointestinal (GI bleeding is a leading cause of death in dengue. This study aims to identify predictors for GI bleeding in adult dengue patients, emphasizing the impact of existing comorbid disease(s.Of 1300 adults with dengue virus infection, 175 (mean age, 56.5±13.7 years patients with GI bleeding and 1,125 (mean age, 49.2±15.6 years without GI bleeding (controls were retrospectively analyzed.Among 175 patients with GI bleeding, dengue hemorrhagic fever was found in 119 (68% patients; the median duration from onset dengue illness to GI bleeding was 5 days. Gastric ulcer, erythematous gastritis, duodenal ulcer, erosive gastritis, and hemorrhagic gastritis were found in 52.3%, 33.3%, 28.6%, 28.6%, and 14.3% of 42 patients with GI bleeding who had undergone endoscopic examination, respectively. Overall, nine of the 175 patients with GI bleeding died, giving an in-hospital mortality rate of 5.1%. Multivariate analysis showed age ≥60 years (cases vs. controls: 48% vs. 28.3% (odds ratio [OR]: 1.663, 95% confidence interval [CI]: 1.128-2.453, end stage renal disease with additional comorbidities (cases vs. controls: 1.7% vs. 0.2% (OR: 9.405, 95% CI: 1.4-63.198, previous stroke with additional comorbidities (cases vs. controls: 7.4% vs. 0.6% (OR: 9.772, 95% CI: 3.302-28.918, gum bleeding (cases vs. controls: 27.4% vs. 11.5% (OR: 1.732, 95% CI: 1.1-2.727, petechiae (cases vs. controls: 56.6% vs. 29.1% (OR: 2.109, 95% CI: 1.411-3.153, and platelet count <50×109 cells/L (cases vs. controls: 53.1% vs. 25.8% (OR: 3.419, 95% CI: 2.103-5.558 were independent predictors of GI bleeding in patients with dengue virus infection.Our study is the first to disclose that end stage renal disease and previous stroke, with additional comorbidities, were strongly significant associated with the risk of GI bleeding in patients with dengue virus infection. Identification of these risk factors can be incorporated into the patient assessment and management protocol

  16. Functionality of Dengue Virus Specific Memory T Cell Responses in Individuals Who Were Hospitalized or Who Had Mild or Subclinical Dengue Infection

    Science.gov (United States)

    Jeewandara, Chandima; Adikari, Thiruni N.; Gomes, Laksiri; Fernando, Samitha; Fernando, R. H.; Perera, M. K. T.; Ariyaratne, Dinuka; Kamaladasa, Achala; Salimi, Maryam; Prathapan, Shamini

    2015-01-01

    Background Although antibody responses to dengue virus (DENV) in naturally infected individuals have been extensively studied, the functionality of DENV specific memory T cell responses in relation to clinical disease severity is incompletely understood. Methodology/Principal findings Using ex vivo IFNγ ELISpot assays, and by determining cytokines produced in ELISpot supernatants, we investigated the functionality of DENV-specific memory T cell responses in a large cohort of individuals from Sri Lanka (n=338), who were naturally infected and were either hospitalized due to dengue or had mild or sub clinical dengue infection. We found that T cells of individuals with both past mild or sub clinical dengue infection and who were hospitalized produced multiple cytokines when stimulated with DENV-NS3 peptides. However, while DENV-NS3 specific T cells of those with mild/sub clinical dengue infection were more likely to produce only granzyme B (p=0.02), those who were hospitalized were more likely to produce both TNFα and IFNγ (p=0.03) or TNFα alone. We have also investigated the usefulness of a novel T cell based assay, which can be used to determine the past infecting DENV serotype. 92.4% of DENV seropositive individuals responded to at least one DENV serotype of this assay and none of the seronegatives responded. Individuals who were seronegative, but had received the Japanese encephalitis vaccine too made no responses, suggesting that the peptides used in this assay did not cross react with the Japanese encephalitis virus. Conclusions/significance The types of cytokines produced by DENV-specific memory T cells appear to influence the outcome of clinical disease severity. The novel T cell based assay, is likely to be useful in determining the past infecting DENV serotype in immune-epidemiological studies and also in dengue vaccine trials. PMID:25875020

  17. Dengue fever with hepatitis E and hepatitis A infection.

    Science.gov (United States)

    Yakoob, Javed; Jafri, Wasim; Siddiqui, Shaheer; Riaz, Mehmood

    2009-03-01

    Infection with dengue viruses produces a spectrum of clinical illness ranging from a nonspecific viral syndrome to severe and fatal haemorrhagic disease. Important risk factors include the strain and serotype of the infecting virus, as well as the age, immune status, and genetic predisposition of the patient. The teaching point in this case study was Dengue fever which occurred concomitantly with Hepatitis A and Hepatitis E virus infection.

  18. Changing haematological parameters in dengue viral infections

    International Nuclear Information System (INIS)

    Jamil, T.; Mehmood, K.; Mujtaba, G.; Choudhry, N.

    2012-01-01

    Background: Dengue Fever is the most common arboviral disease in the world, and presents cyclically in tropical and subtropical regions of the world. The four serotypes of dengue virus, 1, 2, 3, and 4, form an antigenic subgroup of the flaviviruses (Group B arboviruses). Transmission to humans of any of these serotypes initiates a spectrum of host responses, from in apparent to severe and sometimes lethal infections. Complete Blood count (CBC) is an important part of the diagnostic workup of patients. Comparison of various finding in CBC including peripheral smear can help the physician in better management of the patient. Material and Methods: This cross sectional study was carried out on a series of suspected patients of Dengue viral infection reporting in Ittefaq Hospital (Trust). All were investigated for serological markers of acute infection. Results Out of 341 acute cases 166 (48.7%) were confirmed by IgM against Dengue virus. IgG anti-dengue was used on 200 suspected re-infected patients. Seventy-one (39.5%) were positive and 118 (59%) were negative. Among 245 confirmed dengue fever patients 43 (17.6%) were considered having dengue hemorrhagic fever on the basis of lab and clinical findings. Raised haematocrit, Leukopenia with relative Lymphocytosis and presence atypical lymphocytes along with plasmacytoid cells was consistent finding at presentation in both the patterns of disease, i.e., Dengue Haemorrhagic fever (DHF) and Dengue fever (DF). Conclusion: Changes in relative percentage of cells appear with improvement in the symptoms and recovery from the disease. These findings indicate that in the course of the disease, there are major shifts within cellular component of blood. (author)

  19. Characterization of Dengue Virus Infections Among Febrile Children Clinically Diagnosed With a Non-Dengue Illness, Managua, Nicaragua.

    Science.gov (United States)

    Waggoner, Jesse J; Gresh, Lionel; Mohamed-Hadley, Alisha; Balmaseda, Angel; Soda, K James; Abeynayake, Janaki; Sahoo, Malaya K; Liu, Yuanyuan; Kuan, Guillermina; Harris, Eva; Pinsky, Benjamin A

    2017-06-15

    We sought to characterize dengue virus (DENV) infections among febrile children enrolled in a pediatric cohort study who were clinically diagnosed with a non-dengue illness ("C cases"). DENV infections were detected and viral load quantitated by real-time reverse transcription-polymerase chain reaction in C cases presenting between January 2007 and January 2013. One hundred forty-one of 2892 C cases (4.88%) tested positive for DENV. Of all febrile cases in the study, DENV-positive C cases accounted for an estimated 52.0% of patients with DENV viremia at presentation. Compared with previously detected, symptomatic dengue cases, DENV-positive C cases were significantly less likely to develop long-lasting humoral immune responses to DENV, as measured in healthy annual serum samples (79.7% vs 47.8%; P dengue. These findings have important implications for DENV transmission modeling, immunology, and epidemiologic surveillance. © The Author 2017. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail: journals.permissions@oup.com.

  20. Vector competence of Malaysian Aedes albopictus with and without Wolbachia to four dengue virus serotypes.

    Science.gov (United States)

    Joanne, Sylvia; Vythilingam, Indra; Teoh, Boon-Teong; Leong, Cherng-Shii; Tan, Kim-Kee; Wong, Meng-Li; Yugavathy, Nava; AbuBakar, Sazaly

    2017-09-01

    To determine the susceptibility status of Aedes albopictus with and without Wolbachia to the four dengue virus serotypes. Two newly colonised colonies of Ae. albopictus from the wild were used for the study. One colony was naturally infected with Wolbachia while in the other Wolbachia was removed by tetracycline treatment. Both colonies were orally infected with dengue virus-infected fresh blood meal. Dengue virus load was measured using quantitative RT-PCR at four-time intervals in the salivary glands, midguts and ovaries. Wolbachia did not significantly affect Malaysian Ae. albopictus dengue infection or the dissemination rate for all four dengue virus serotypes. Malaysian Ae. albopictus had the highest replication kinetics for DENV-1 and the highest salivary gland and midgut infection rate for DENV-4. Wolbachia, which naturally exists in Malaysian Ae. albopictus, does not significantly affect dengue virus replication. Malaysian Ae. albopictus is susceptible to dengue virus infections and capable of transmitting dengue virus, especially DENV-1 and DENV-4. Removal of Wolbachia from Malaysian Ae. albopictus would not reduce their susceptibility status. © 2017 John Wiley & Sons Ltd.

  1. Phospholipase A2 isolated from the venom of Crotalus durissus terrificus inactivates dengue virus and other enveloped viruses by disrupting the viral envelope.

    Directory of Open Access Journals (Sweden)

    Vanessa Danielle Muller

    Full Text Available The Flaviviridae family includes several virus pathogens associated with human diseases worldwide. Within this family, Dengue virus is the most serious threat to public health, especially in tropical and sub-tropical regions of the world. Currently, there are no vaccines or specific antiviral drugs against Dengue virus or against most of the viruses of this family. Therefore, the development of vaccines and the discovery of therapeutic compounds against the medically most important flaviviruses remain a global public health priority. We previously showed that phospholipase A2 isolated from the venom of Crotalus durissus terrificus was able to inhibit Dengue virus and Yellow fever virus infection in Vero cells. Here, we present evidence that phospholipase A2 has a direct effect on Dengue virus particles, inducing a partial exposure of genomic RNA, which strongly suggests inhibition via the cleavage of glycerophospholipids at the virus lipid bilayer envelope. This cleavage might induce a disruption of the lipid bilayer that causes a destabilization of the E proteins on the virus surface, resulting in inactivation. We show by computational analysis that phospholipase A2 might gain access to the Dengue virus lipid bilayer through the pores found on each of the twenty 3-fold vertices of the E protein shell on the virus surface. In addition, phospholipase A2 is able to inactivate other enveloped viruses, highlighting its potential as a natural product lead for developing broad-spectrum antiviral drugs.

  2. Clinical Features and Laboratory Findings of Travelers Returning to South Australia with Dengue Virus Infection

    Directory of Open Access Journals (Sweden)

    Emma J. Quinn

    2018-01-01

    Full Text Available Reported cases of dengue are rising in South Australia (SA in travellers returning from dengue-endemic regions. We have undertaken a retrospective analysis to identify the clinical and laboratory characteristics of patients returning to SA with suspected dengue virus (DENV infection. From 488 requests, 49 (10% were defined by serology as acute dengue, with the majority of patients (75% testing as non-structural protein 1 (NS1 and/or IgM positive. Dengue was most commonly acquired in Indonesia (42.9% with clinical features of fever (95%, headache (41% and myalgia/arthralgia (56%. The presence of rash (36% and laboratory findings of neutropenia, leukopenia, thrombocytopenia, but not elevated C-reactive protein, were distinct from findings in DENV-seronegative patients. Available dengue seropositive samples were analysed by RT-PCR, with 14/32 (43.8% positive by a serotype non-specific DENV assay, but 28/32 positive (87.5% when also assessed by serotype-specific RT-PCR. Serotype analysis revealed the predominance of DENV-1 and DENV-2 and the presence of DENV-3, but not DENV-4 or Zika virus (ZIKV. Thus, dengue in returned travellers in SA presents in a manner consistent with World Health Organization (WHO definitions, with symptoms, travel history and laboratory results useful in prioritising the likelihood of dengue. This definition will assist the future management in DENV-non-endemic regions, such as SA.

  3. Complement-mediated neutralization of dengue virus requires mannose-binding lectin

    DEFF Research Database (Denmark)

    Avirutnan, Panisadee; Hauhart, Richard E; Marovich, Mary A

    2011-01-01

    -dependent activation of the complement cascade neutralized insect cell-derived West Nile virus (WNV) in cell culture and restricted pathogenesis in mice. Here, we investigated the antiviral activity of MBL in infection by dengue virus (DENV), a related flavivirus. Using a panel of naïve sera from mouse strains...... with lower levels. Our studies suggest that allelic variation of MBL in humans may impact complement-dependent control of DENV pathogenesis. IMPORTANCE Dengue virus (DENV) is a mosquito-transmitted virus that causes a spectrum of clinical disease in humans ranging from subclinical infection to dengue...... hemorrhagic fever and dengue shock syndrome. Four serotypes of DENV exist, and severe illness is usually associated with secondary infection by a different serotype. Here, we show that mannose-binding lectin (MBL), a pattern recognition molecule that initiates the lectin pathway of complement activation...

  4. Transmission spectroscopy of dengue viral infection

    International Nuclear Information System (INIS)

    Firdous, S; Ahmed, M; Rehman, A; Nawaz, M; Anwar, S; Murtaza, S

    2012-01-01

    We presented the rapid diagnostic test for dengue infection based on light spectrum of human blood. The transmission spectra of dengue infected whole blood samples have been recorded in ultra violet to near infrared range (400 – 800 nm) of about 30 conformed infected patients and compared to normal blood samples. Transmission spectra of dengue infected blood illustrate a strong band from 400 – 600 nm with prominant peaks at 540 and 580 nm, where is in case of normal blood below 600 nm, total absorption has been observed. These prominent peaks from 400 – 600 nm are characteristics of cells damage and dangue virus antibodies immunoglobulin G (IgG) and immunoglobulin M (IgM) produced against dengue antigen. The presented diagnostic method is non invasive, cost effective, easy and fast screening technique for dengue infected patients

  5. Characterization of dengue virus 2 growth in megakaryocyte–erythrocyte progenitor cells

    Energy Technology Data Exchange (ETDEWEB)

    Clark, Kristina B. [Division of Microbiology and Immunology, Yerkes National Primate Research Center, Emory University, Atlanta, GA (United States); Hsiao, Hui-Mien; Bassit, Leda [Center for AIDS Research, Department of Pediatrics, Emory University School of Medicine and Veterans Affairs Medical Center, Atlanta, GA (United States); Crowe, James E. [Departments of Pediatrics, Pathology, Microbiology, and Immunology, Vanderbilt University, Nashville, TN (United States); Schinazi, Raymond F. [Center for AIDS Research, Department of Pediatrics, Emory University School of Medicine and Veterans Affairs Medical Center, Atlanta, GA (United States); Perng, Guey Chuen [Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan (China); Villinger, Francois [Division of Microbiology and Immunology, Yerkes National Primate Research Center, Emory University, Atlanta, GA (United States); New Iberia Research Center, University of Louisiana at Lafayette, New Iberia, LA (United States)

    2016-06-15

    Megakaryocyte–erythrocyte progenitor (MEP) cells are potential in vivo targets of dengue virus (DENV); the virus has been found associated with megakaryocytes ex vivo and platelets during DENV-induced thrombocytopenia. We report here that DENV serotype 2 (DENV2) propagates well in human nondifferentiated MEP cell lines (Meg01 and K562). In comparison to virus propagated in Vero cells, viruses from MEP cell lines had similar structure and buoyant density. However, differences in MEP-DENV2 stability and composition were suggested by distinct protein patterns in western blot analysis. Also, antibody neutralization of envelope domain I/II on MEP-DENV2 was reduced relative to that on Vero-DENV2. Infectious DENV2 was produced at comparable kinetics and magnitude in MEP and Vero cells. However, fewer virion structures appeared in electron micrographs of MEP cells. We propose that DENV2 infects and produces virus efficiently in megakaryocytes and that megakaryocyte impairment might contribute to dengue disease pathogenesis. - Highlights: • DenV replicates efficiently in undifferentiated megakaryocyte–erythrocyte progenitors. • MEP produced DenV differs in protein content from Vero produced DenV. • MEP produced DenV may be more difficult to neutralize relative to Vero DenV.

  6. Characterization of dengue virus 2 growth in megakaryocyte–erythrocyte progenitor cells

    International Nuclear Information System (INIS)

    Clark, Kristina B.; Hsiao, Hui-Mien; Bassit, Leda; Crowe, James E.; Schinazi, Raymond F.; Perng, Guey Chuen; Villinger, Francois

    2016-01-01

    Megakaryocyte–erythrocyte progenitor (MEP) cells are potential in vivo targets of dengue virus (DENV); the virus has been found associated with megakaryocytes ex vivo and platelets during DENV-induced thrombocytopenia. We report here that DENV serotype 2 (DENV2) propagates well in human nondifferentiated MEP cell lines (Meg01 and K562). In comparison to virus propagated in Vero cells, viruses from MEP cell lines had similar structure and buoyant density. However, differences in MEP-DENV2 stability and composition were suggested by distinct protein patterns in western blot analysis. Also, antibody neutralization of envelope domain I/II on MEP-DENV2 was reduced relative to that on Vero-DENV2. Infectious DENV2 was produced at comparable kinetics and magnitude in MEP and Vero cells. However, fewer virion structures appeared in electron micrographs of MEP cells. We propose that DENV2 infects and produces virus efficiently in megakaryocytes and that megakaryocyte impairment might contribute to dengue disease pathogenesis. - Highlights: • DenV replicates efficiently in undifferentiated megakaryocyte–erythrocyte progenitors. • MEP produced DenV differs in protein content from Vero produced DenV. • MEP produced DenV may be more difficult to neutralize relative to Vero DenV.

  7. Protective Role of Cross-Reactive CD8 T Cells Against Dengue Virus Infection

    Directory of Open Access Journals (Sweden)

    Annie Elong Ngono

    2016-11-01

    Full Text Available Infection with one of the four dengue virus serotypes (DENV1-4 presumably leads to lifelong immunity against the infecting serotype but not against heterotypic reinfection, resulting in a greater risk of developing Dengue Hemorrhagic Fever/Dengue Shock Syndrome (DHF/DSS during secondary infection. Both antibodies and T cell responses have been implicated in DHF/DSS pathogenesis. According to the T cell-based hypothesis termed “original antigenic sin,” secondary DENV infection is dominated by non-protective, cross-reactive T cells that elicit an aberrant immune response. The goal of our study was to compare the roles of serotype-specific and cross-reactive T cells in protection vs. pathogenesis during DENV infection in vivo. Specifically, we utilized IFN-α/βR−/− HLA*B0702 transgenic mice in the context of peptide vaccination with relevant human CD8 T cell epitopes. IFN-α/βR−/− HLA*B0702 transgenic mice were immunized with DENV serotype 2 (DENV2-specific epitopes or variants found in any of the other three serotypes (DENV1, DENV3 or DENV4, followed by challenge with DENV. Although cross-reactive T cell responses were lower than responses elicited by serotype-specific T cells, immunization with either serotype-specific or variant peptide epitopes enhanced viral clearance, demonstrating that both serotype-specific and cross-reactive T cells can contribute to protection in vivo against DENV infection.

  8. Two complex, adenovirus-based vaccines that together induce immune responses to all four dengue virus serotypes.

    Science.gov (United States)

    Holman, David H; Wang, Danher; Raviprakash, Kanakatte; Raja, Nicholas U; Luo, Min; Zhang, Jianghui; Porter, Kevin R; Dong, John Y

    2007-02-01

    Dengue virus infections can cause hemorrhagic fever, shock, encephalitis, and even death. Worldwide, approximately 2.5 billion people live in dengue-infested regions with about 100 million new cases each year, although many of these infections are believed to be silent. There are four antigenically distinct serotypes of dengue virus; thus, immunity from one serotype will not cross-protect from infection with the other three. The difficulties that hamper vaccine development include requirements of the natural conformation of the envelope glycoprotein to induce neutralizing immune responses and the necessity of presenting antigens of all four serotypes. Currently, the only way to meet these requirements is to use a mixture of four serotypes of live attenuated dengue viruses, but safety remains a major problem. In this study, we have developed the basis for a tetravalent dengue vaccine using a novel complex adenovirus platform that is capable of expressing multiple antigens de novo. This dengue vaccine is constructed as a pair of vectors that each expresses the premembrane and envelope genes of two different dengue virus serotypes. Upon vaccination, the vaccine expressed high levels of the dengue virus antigens in cells to mimic a natural infection and induced both humoral and cellular immune responses against multiple serotypes of dengue virus in an animal model. Further analyses show the humoral responses were indeed neutralizing against all four serotypes. Our studies demonstrate the concept of mimicking infections to induce immune responses by synthesizing dengue virus membrane antigens de novo and the feasibility of developing an effective tetravalent dengue vaccine by vector-mediated expression of glycoproteins of the four serotypes.

  9. Phylogenetic analysis of Dengue virus 1 isolated from South Minas Gerais, Brazil

    OpenAIRE

    Drumond, Betania Paiva; Fagundes, Luiz Gustavo da Silva; Rocha, Raissa Prado; Fumagalli, Marcilio Jorge; Araki, Carlos Shigueru; Colombo, Tatiana Elisa; Nogueira, Mauricio Lacerda; Castilho, Thiago Elias; Silveira, Nelson José Freitas da; Malaquias, Luiz Cosme Cotta; Coelho, Luiz Felipe Leomil

    2016-01-01

    Abstract Dengue is a major worldwide public health problem, especially in the tropical and subtropical regions of the world. Primary infection with a single Dengue virus serotype causes a mild, self-limiting febrile illness called dengue fever. However, a subset of patients who experience secondary infection with a different serotype can progress to a more severe form of the disease, called dengue hemorrhagic fever. The four Dengue virus serotypes (1–4) are antigenically and genetically...

  10. Molecular classification of outcomes from dengue virus -3 infections.

    Science.gov (United States)

    Brasier, Allan R; Zhao, Yingxin; Wiktorowicz, John E; Spratt, Heidi M; Nascimento, Eduardo J M; Cordeiro, Marli T; Soman, Kizhake V; Ju, Hyunsu; Recinos, Adrian; Stafford, Susan; Wu, Zheng; Marques, Ernesto T A; Vasilakis, Nikos

    2015-03-01

    Dengue virus (DENV) infection is a significant risk to over a third of the human population that causes a wide spectrum of illness, ranging from sub-clinical disease to intermediate syndrome of vascular complications called dengue fever complicated (DFC) and severe, dengue hemorrhagic fever (DHF). Methods for discriminating outcomes will impact clinical trials and understanding disease pathophysiology. We integrated a proteomics discovery pipeline with a heuristics approach to develop a molecular classifier to identify an intermediate phenotype of DENV-3 infectious outcome. 121 differentially expressed proteins were identified in plasma from DHF vs dengue fever (DF), and informative candidates were selected using nonparametric statistics. These were combined with markers that measure complement activation, acute phase response, cellular leak, granulocyte differentiation and viral load. From this, we applied quantitative proteomics to select a 15 member panel of proteins that accurately predicted DF, DHF, and DFC using a random forest classifier. The classifier primarily relied on acute phase (A2M), complement (CFD), platelet counts and cellular leak (TPM4) to produce an 86% accuracy of prediction with an area under the receiver operating curve of >0.9 for DHF and DFC vs DF. Integrating discovery and heuristic approaches to sample distinct pathophysiological processes is a powerful approach in infectious disease. Early detection of intermediate outcomes of DENV-3 will speed clinical trials evaluating vaccines or drug interventions. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Vectorial capacity of Aedes aegypti for dengue virus type 2 is reduced with co-infection of Metarhizium anisopliae.

    Science.gov (United States)

    Garza-Hernández, Javier A; Rodríguez-Pérez, Mario A; Salazar, Ma Isabel; Russell, Tanya L; Adeleke, Monsuru A; de Luna-Santillana, Erik de J; Reyes-Villanueva, Filiberto

    2013-01-01

    Aedes aegypti, is the major dengue vector and a worldwide public health threat combated basically by chemical insecticides. In this study, the vectorial competence of Ae. aegypti co-infected with a mildly virulent Metarhizium anisopliae and fed with blood infected with the DENV-2 virus, was examined. The study encompassed three bioassays (B). In B1 the median lethal time (LT50) of Ae. aegypti exposed to M. anisopliae was determined in four treatments: co-infected (CI), single-fungus infection (SF), single-virus infection (SV) and control (C). In B2, the mortality and viral infection rate in midgut and in head were registered in fifty females of CI and in SV. In B3, the same treatments as in B1 but with females separated individually were tested to evaluate the effect on fecundity and gonotrophic cycle length. Survival in CI and SF females was 70% shorter than the one of those in SV and control. Overall viral infection rate in CI and SV were 76 and 84% but the mortality at day six post-infection was 78% (54% infected) and 6% respectively. Survivors with virus in head at day seven post-infection were 12 and 64% in both CI and SV mosquitoes. Fecundity and gonotrophic cycle length were reduced in 52 and 40% in CI compared to the ones in control. Fungus-induced mortality for the CI group was 78%. Of the survivors, 12% (6/50) could potentially transmit DENV-2, as opposed to 64% (32/50) of the SV group, meaning a 5-fold reduction in the number of infective mosquitoes. This is the first report on a fungus that reduces the vectorial capacity of Ae. aegypti infected with the DENV-2 virus.

  12. Dengue virus in blood donations, Puerto Rico, 2005.

    Science.gov (United States)

    Mohammed, Hamish; Linnen, Jeffrey M; Muñoz-Jordán, Jorge L; Tomashek, Kay; Foster, Gregory; Broulik, Amy S; Petersen, Lyle; Stramer, Susan L

    2008-07-01

    A single instance of transfusion-transmitted dengue infection has been reported. The high incidence of dengue in endemic countries, the high proportion of asymptomatic infection, and the median 5-day viremia, however, suggest that transfusion-associated dengue transmission may be more widespread than documented. The prevalence of dengue virus (DENV) RNA was determined in all blood donations to the American Red Cross in Puerto Rico from September 20 to December 4, 2005, using a specific type of nucleic acid amplification test called transcription-mediated amplification (TMA). TMA-positive donations were defined as those having two repeatedly reactive TMA results. TMA-positive donations were tested by enzyme-linked immunosorbent assay for immunoglobulin M (IgM) antibodies, by reverse transcription-polymerase chain reaction (RT-PCR), and by viral culture. Twelve (0.07%) of 16,521 blood donations tested were TMA-positive. Four were positive by RT-PCR (DENV serotypes 2 and 3). Virus was cultured from 3 of 4 RT-PCR-positive donations. One of the 12 TMA-positive donations was IgM-positive. Only 5 donations remained TMA-positive when diluted 1:16, as is done for routine minipool screening for other transfusion-transmissible viral infections (hepatitis C, human immunodeficiency, West Nile viruses [WNVs]). Nearly 1 in 1000 blood donations contained DENV RNA, and virus could be cultured from TMA-positive donations, suggesting a transfusion transmission risk similar to that which existed in the United States for WNV before universal donation screening. Similar to WNV, IgM antibody screening is likely to be ineffective, and some potentially infectious donations will be missed by minipool screening. Transfusion transmission should be considered in patients with dengue after blood transfusion.

  13. Dengue virus detection by using reverse transcription-polymerase chain reaction in saliva and progeny of experimentally infected Aedes albopictus from Brazil

    Directory of Open Access Journals (Sweden)

    Márcia Gonçalves de Castro

    2004-12-01

    Full Text Available Oral susceptibility and vertical transmission of dengue virus type 2 (DENV-2 in an Aedes albopictus sample from Rio de Janeiro was estimated. The infection (36.7% and transmission (83.3% rates for Ae. albopictus were higher than those of an Ae. aegypti colony used as control, 32.8 and 60%, respectively. Fourth instar larvae and females descendants of 48.5 and 39.1% of experimentally infected Ae. albopictus showed to harbor the virus. The oral susceptibility and the high capacity to assure vertical transmission exhibited by Ae. albopictus from Brazil reinforce that this species may play a role in the maintenance of the virus in nature and be a threat for dengue control in the country.

  14. Anti-Idiotypic Antibodies Specific to prM Monoantibody Prevent Antibody Dependent Enhancement of Dengue Virus Infection

    Directory of Open Access Journals (Sweden)

    Miao Wang

    2017-05-01

    Full Text Available Dengue virus (DENV co-circulates as four serotypes (DENV1-4. Primary infection only leads to self-limited dengue fever. But secondary infection with another serotype carries a higher risk of increased disease severity, causing life-threatening dengue hemorrhagic fever/dengue shock syndrome (DHF/DSS. Serotype cross-reactive antibodies facilitate DENV infection in Fc-receptor-bearing cells by promoting virus entry via Fcγ receptors (FcγR, a process known as antibody dependent enhancement (ADE. Most studies suggested that enhancing antibodies were mainly specific to the structural premembrane protein (prM of DENV. However, there is still no effective drugs or vaccines to prevent ADE. In this study, we firstly confirmed that both DENV-2 infected human sera (anti-DENV-2 and DENV-2 prM monoclonal antibody (prM mAb could significantly enhance DENV-1 infection in K562 cells. Then we developed anti-idiotypic antibodies (prM-AIDs specific to prM mAb by immunizing of Balb/c mice. Results showed that these polyclonal antibodies can dramatically reduce ADE phenomenon of DENV-1 infection in K562 cells. To further confirm the anti-ADE effect of prM-AIDs in vivo, interferon-α and γ receptor-deficient mice (AG6 were used as the mouse model for DENV infection. We found that administration of DENV-2 prM mAb indeed caused a higher DENV-1 titer as well as interleukin-10 (IL-10 and alaninea minotransferase (ALT in mice infected with DENV-1, similar to clinical ADE symptoms. But when we supplemented prM-AIDs to DENV-1 challenged AG6 mice, the viral titer, IL-10 and ALT were obviously decreased to the negative control level. Of note, the number of platelets in peripheral blood of prM-AIDs group were significantly increased at day 3 post infection with DENV-1 compared that of prM-mAb group. These results confirmed that our prM-AIDs could prevent ADE not only in vitro but also in vivo, suggested that anti-idiotypic antibodies might be a new choice to be considered to

  15. Anti-Idiotypic Antibodies Specific to prM Monoantibody Prevent Antibody Dependent Enhancement of Dengue Virus Infection.

    Science.gov (United States)

    Wang, Miao; Yang, Fan; Huang, Dana; Huang, Yalan; Zhang, Xiaomin; Wang, Chao; Zhang, Shaohua; Zhang, Renli

    2017-01-01

    Dengue virus (DENV) co-circulates as four serotypes (DENV1-4). Primary infection only leads to self-limited dengue fever. But secondary infection with another serotype carries a higher risk of increased disease severity, causing life-threatening dengue hemorrhagic fever/dengue shock syndrome (DHF/DSS). Serotype cross-reactive antibodies facilitate DENV infection in Fc-receptor-bearing cells by promoting virus entry via Fcγ receptors (FcγR), a process known as antibody dependent enhancement (ADE). Most studies suggested that enhancing antibodies were mainly specific to the structural premembrane protein (prM) of DENV. However, there is still no effective drugs or vaccines to prevent ADE. In this study, we firstly confirmed that both DENV-2 infected human sera (anti-DENV-2) and DENV-2 prM monoclonal antibody (prM mAb) could significantly enhance DENV-1 infection in K562 cells. Then we developed anti-idiotypic antibodies (prM-AIDs) specific to prM mAb by immunizing of Balb/c mice. Results showed that these polyclonal antibodies can dramatically reduce ADE phenomenon of DENV-1 infection in K562 cells. To further confirm the anti-ADE effect of prM-AIDs in vivo , interferon-α and γ receptor-deficient mice (AG6) were used as the mouse model for DENV infection. We found that administration of DENV-2 prM mAb indeed caused a higher DENV-1 titer as well as interleukin-10 (IL-10) and alaninea minotransferase (ALT) in mice infected with DENV-1, similar to clinical ADE symptoms. But when we supplemented prM-AIDs to DENV-1 challenged AG6 mice, the viral titer, IL-10 and ALT were obviously decreased to the negative control level. Of note, the number of platelets in peripheral blood of prM-AIDs group were significantly increased at day 3 post infection with DENV-1 compared that of prM-mAb group. These results confirmed that our prM-AIDs could prevent ADE not only in vitro but also in vivo , suggested that anti-idiotypic antibodies might be a new choice to be considered to treat

  16. Understanding Oxidative Stress in Aedes during Chikungunya and Dengue Virus Infections Using Integromics Analysis

    Directory of Open Access Journals (Sweden)

    Jatin Shrinet

    2018-06-01

    Full Text Available Arboviral infection causes dysregulation of cascade of events involving numerous biomolecules affecting fitness of mosquito to combat virus. In response of the viral infection mosquito’s defense mechanism get initiated. Oxidative stress is among the first host responses triggered by the vector. Significant number of information is available showing changes in the transcripts and/or proteins upon Chikungunya virus and Dengue virus mono-infections and as co-infections. In the present study, we collected different -omics data available in the public database along with the data generated in our laboratory related to mono-infections or co-infections of these viruses. We analyzed the data and classified them into their respective pathways to study the role of oxidative stress in combating arboviral infection in Aedes mosquito. The analysis revealed that the oxidative stress related pathways functions in harmonized manner.

  17. Elevated levels of total and dengue virus-specific immunoglobulin E in patients with varying disease severity

    NARCIS (Netherlands)

    Koraka, Penelopie; Murgue, Bernadette; Deparis, Xavier; Setiati, Tatty E.; Suharti, Catarina; van Gorp, Eric C. M.; Hack, C. E.; Osterhaus, Albert D. M. E.; Groen, Jan

    2003-01-01

    The kinetics of total and dengue virus-specific immunoglobulin E (IgE) were studied in serial serum samples obtained from 168 patients, 41 of whom suffered from primary dengue virus infection and 127 suffered from secondary dengue virus infection. Seventy-one patients were classified as dengue

  18. Elevated levels of total and dengue virus-specific immunoglobulin E in patients with varying disease severity.

    NARCIS (Netherlands)

    Koraka, P.; Murgue, B.; Deparis, X.; Setiati, T.E.; Suharti, C.; Gorp, E. van; Hack, C.E.; Osterhaus, A.D.; Groen, J.

    2003-01-01

    The kinetics of total and dengue virus-specific immunoglobulin E (IgE) were studied in serial serum samples obtained from 168 patients, 41 of whom suffered from primary dengue virus infection and 127 suffered from secondary dengue virus infection. Seventy-one patients were classified as dengue

  19. Superior infectivity for mosquito vectors contributes to competitive displacement among strains of dengue virus

    Directory of Open Access Journals (Sweden)

    Schirtzinger Erin E

    2008-02-01

    Full Text Available Abstract Background Competitive displacement of a weakly virulent pathogen strain by a more virulent strain is one route to disease emergence. However the mechanisms by which pathogens compete for access to hosts are poorly understood. Among vector-borne pathogens, variation in the ability to infect vectors may effect displacement. The current study focused on competitive displacement in dengue virus serotype 3 (DENV3, a mosquito-borne pathogen of humans. In Sri Lanka in the 1980's, a native DENV3 strain associated with relatively mild dengue disease was displaced by an invasive DENV3 strain associated with the most severe disease manifestations, dengue hemorrhagic fever/dengue shock syndrome (DHF/DSS, resulting in an outbreak of DHF/DSS. Here we tested the hypothesis that differences between the invasive and native strain in their infectivity for Aedes aegypti mosquitoes, the primary vector of DENV, contributed to the competitive success of the invasive strain Results To be transmitted by a mosquito, DENV must infect and replicate in the midgut, disseminate into the hemocoel, infect the salivary glands, and be released into the saliva. The ability of the native and invasive DENV3 strains to complete the first three steps of this process in Aedes aegypti mosquitoes was measured in vivo. The invasive strain infected a similar proportion of mosquitoes as the native strain but replicated to significantly higher titers in the midgut and disseminated with significantly greater efficiency than the native strain. In contrast, the native and invasive strain showed no significant difference in replication in cultured mosquito, monkey or human cells. Conclusion The invasive DENV3 strain infects and disseminates in Ae. aegypti more efficiently than the displaced native DENV3 strain, suggesting that the invasive strain is transmitted more efficiently. Replication in cultured cells did not adequately characterize the known phenotypic differences between

  20. Peptides as Therapeutic Agents for Dengue Virus.

    Science.gov (United States)

    Chew, Miaw-Fang; Poh, Keat-Seong; Poh, Chit-Laa

    2017-01-01

    Dengue is an important global threat caused by dengue virus (DENV) that records an estimated 390 million infections annually. Despite the availability of CYD-TDV as a commercial vaccine, its long-term efficacy against all four dengue virus serotypes remains unsatisfactory. There is therefore an urgent need for the development of antiviral drugs for the treatment of dengue. Peptide was once a neglected choice of medical treatment but it has lately regained interest from the pharmaceutical industry following pioneering advancements in technology. In this review, the design of peptide drugs, antiviral activities and mechanisms of peptides and peptidomimetics (modified peptides) action against dengue virus are discussed. The development of peptides as inhibitors for viral entry, replication and translation is also described, with a focus on the three main targets, namely, the host cell receptors, viral structural proteins and viral non-structural proteins. The antiviral peptides designed based on these approaches may lead to the discovery of novel anti-DENV therapeutics that can treat dengue patients.

  1. Characterization of retrovirus-based reporter viruses pseudotyped with the precursor membrane and envelope glycoproteins of four serotypes of dengue viruses

    International Nuclear Information System (INIS)

    Hu, H.-P.; Hsieh, S.-C.; King, C.-C.; Wang, W.-K.

    2007-01-01

    In this study, we successfully established retrovirus-based reporter viruses pseudotyped with the precursor membrane and envelope (PrM/E) proteins of each of the four serotypes of dengue viruses, which caused the most important arboviral diseases in this century. Co-sedimentation of the dengue E protein and HIV-1 core proteins by sucrose gradient analysis of the pseudotype reporter virus of dengue virus type 2, D2(HIVluc), and detection of HIV-1 core proteins by immunoprecipitation with anti-E monoclonal antibody suggested that dengue viral proteins were incorporated into the pseudotype viral particles. The infectivity in target cells, as assessed by the luciferase activity, can be inhibited by the lysosomotropic agents, suggesting a pH-dependent mechanism of entry. Amino acid substitutions of the leucine at position 107, a critical residue at the fusion loop of E protein, with lysine resulted in severe impairment in infectivity, suggesting that entry of the pseudotype reporter virus is mediated through the fusogenic properties of E protein. With more and more dengue viral sequences available from different outbreaks worldwide, this sensitive and convenient tool has the potential to facilitate molecular characterization of the PrM/E proteins of dengue field isolates

  2. PEMERIKSAAN VIRUS DENGUE-3 PADA NYAMUK Aedes aegypti YANG DIINFEKSI SECARA INTRATHORAKAL DENGAN TEKNIK IMUNOSITOKIMIA MENGGUNAKAN ANTIBODI DSSE10

    Directory of Open Access Journals (Sweden)

    Dyah Widiastuti

    2013-09-01

    Full Text Available ABSTRACTDengue viruses, globally the most prevalent arboviruses, are transmitted to humans by persistently infectedAedes mosquitoes. The most important vector of Dengue virus is the mosquito Ae.aegypti, which should be the main targetof surveillance and control activities. Virologic surveillance for dengue viruses in its vector has been used as an earlywarning system to predict outbreaks. Detection of Dengue virus antigen in mosquito head squash usingimmunocytochemical streptavidin biotin peroxidase complex (SBPC assay is an alternative method for dengue vectorsurveillance. The study aimed to develope immunocytochemical SBPC assay to detect Dengue virus infection in headsquash of Ae.aegypti. The study design was experimental. Artificially-infected adult Ae. aegypti mosquitoes of DENV 3were used as infectious samples and non-infected adult Ae. aegypti mosquitoes were used as normal ones. Theimmunocytochemical SBPC assay using monoclonal antibody DSSE10 then was applied in mosquito head squash todetect Dengue virus antigen. The results were analyzed by descriptive analysis. The immunocytochemical SBPC assaycan detect Dengue virus antigen in mosquito head squash at day 2 postinfection. There are some false positive resultsfound in immunocytochemical SBPC assay.Key Word: Dengue, immunocytochemistry, DSSE10

  3. Interferon lambda inhibits dengue virus replication in epithelial cells.

    Science.gov (United States)

    Palma-Ocampo, Helen K; Flores-Alonso, Juan C; Vallejo-Ruiz, Verónica; Reyes-Leyva, Julio; Flores-Mendoza, Lilian; Herrera-Camacho, Irma; Rosas-Murrieta, Nora H; Santos-López, Gerardo

    2015-09-28

    In viral disease, infection is controlled at the cellular level by type I interferon (IFN-I), but dengue virus (DENV) has the ability to inhibit this response. Type III interferon, also known as lambda IFN (IFN-III or IFN-λ), is a complementary pathway to the antiviral response by IFN-I. This work analyzed the IFN-λ (IFN-III) mediated antiviral response against DENV serotype 2 (DENV-2) infection. Dengue fever patients were sampled to determine their IFN-λ levels by ELISA. To study the IFN-λ response during DENV infection we selected the epithelial cell line C33-A, and we demonstrated that it is permissive to DENV-2 infection. The effect of IFN-λ on virus replication was determined in these cells, in parallel to the expression of IFN-stimulated genes (ISGs), and Suppressor of Cytokine Signaling (SOCS), genes measured by RT-qPCR. We found increased (~1.8 times) serological IFN-λ in dengue fever patients compared to healthy blood donors. IFN-λ inhibited DENV-2 replication in a dose-dependent manner in vitro. The reduction of viral titer corresponded with increased ISG mRNA levels (MX1 and OAS1), with the highest inhibition occurring at ISG's peak expression. Presence of IFN-negative regulators, SOCS1 and SOCS3, during DENV-2 infection was associated with reduced IFN-λ1 expression. Evidence described here suggests that IFN-λ is a good candidate inhibitor of viral replication in dengue infection. Mechanisms for the cellular and organismal interplay between DENV and IFN- λ need to be further studied as they could provide insights into strategies to treat this disease. Furthermore, we report a novel epithelial model to study dengue infection in vitro.

  4. All Serotypes of Dengue Viruses Circulating in Kuala Lumpur, Malaysia

    OpenAIRE

    M.H. Chew; M.M. Rahman; J. Jelip; M.R. Hassan; I. Isahak

    2012-01-01

    Dengue is a severe disease caused by dengue virus (DENV), transmitted to human being by infected Aedes mosquitoes. It is a major public health concern in Southeast Asia due to its fatality in the form of hemorrhagic fever (DHF) and dengue shock syndrome (DSS). The objective of the study was to isolate and identify dengue virus serotypes prevalent in endemic areas of Kuala Lumpur and Selangor in Malaysia by virus culture, indirect immunoflurecent assay and molecular techniques. A total number ...

  5. Elevated levels of cell-free circulating DNA in patients with acute dengue virus infection.

    Directory of Open Access Journals (Sweden)

    Tran Thi Ngoc Ha

    Full Text Available BACKGROUND: Apoptosis is thought to play a role in the pathogenesis of severe dengue and the release of cell-free DNA into the circulatory system in several medical conditions. Therefore, we investigated circulating DNA as a potential biomarker for severe dengue. METHODS AND FINDINGS: A direct fluorometric degradation assay using PicoGreen was performed to quantify cell-free DNA from patient plasma. Circulating DNA levels were significantly higher in patients with dengue virus infection than with other febrile illnesses and healthy controls. Remarkably, the increase of DNA levels correlated with the severity of dengue. Additionally, multivariate logistic regression analysis showed that circulating DNA levels independently correlated with dengue shock syndrome. CONCLUSIONS: Circulating DNA levels were increased in dengue patients and correlated with dengue severity. Additional studies are required to show the benefits of this biomarker in early dengue diagnosis and for the prognosis of shock complication.

  6. Microparticles provide a novel biomarker to predict severe clinical outcomes of dengue virus infection.

    Science.gov (United States)

    Punyadee, Nuntaya; Mairiang, Dumrong; Thiemmeca, Somchai; Komoltri, Chulaluk; Pan-Ngum, Wirichada; Chomanee, Nusara; Charngkaew, Komgrid; Tangthawornchaikul, Nattaya; Limpitikul, Wannee; Vasanawathana, Sirijitt; Malasit, Prida; Avirutnan, Panisadee

    2015-02-01

    Shedding of microparticles (MPs) is a consequence of apoptotic cell death and cellular activation. Low levels of circulating MPs in blood help maintain homeostasis, whereas increased MP generation is linked to many pathological conditions. Herein, we investigated the role of MPs in dengue virus (DENV) infection. Infection of various susceptible cells by DENV led to apoptotic death and MP release. These MPs harbored a viral envelope protein and a nonstructural protein 1 (NS1) on their surfaces. Ex vivo analysis of clinical specimens from patients with infections of different degrees of severity at multiple time points revealed that MPs generated from erythrocytes and platelets are two major MP populations in the circulation of DENV-infected patients. Elevated levels of red blood cell-derived MPs (RMPs) directly correlated with DENV disease severity, whereas a significant decrease in platelet-derived MPs was associated with a bleeding tendency. Removal by mononuclear cells of complement-opsonized NS1-anti-NS1 immune complexes bound to erythrocytes via complement receptor type 1 triggered MP shedding in vitro, a process that could explain the increased levels of RMPs in severe dengue. These findings point to the multiple roles of MPs in dengue pathogenesis. They offer a potential novel biomarker candidate capable of differentiating dengue fever from the more serious dengue hemorrhagic fever. Dengue is the most important mosquito-transmitted viral disease in the world. No vaccines or specific treatments are available. Rapid diagnosis and immediate treatment are the keys to achieve a positive outcome. Dengue virus (DENV) infection, like some other medical conditions, changes the level and composition of microparticles (MPs), tiny bag-like structures which are normally present at low levels in the blood of healthy individuals. This study investigated how MPs in culture and patients' blood are changed in response to DENV infection. Infection of cells led to programmed

  7. Aedes aegypti D7 Saliva Protein Inhibits Dengue Virus Infection.

    Directory of Open Access Journals (Sweden)

    Michael J Conway

    2016-09-01

    Full Text Available Aedes aegypti is the primary vector of several medically relevant arboviruses including dengue virus (DENV types 1-4. Ae. aegypti transmits DENV by inoculating virus-infected saliva into host skin during probing and feeding. Ae. aegypti saliva contains over one hundred unique proteins and these proteins have diverse functions, including facilitating blood feeding. Previously, we showed that Ae. aegypti salivary gland extracts (SGEs enhanced dissemination of DENV to draining lymph nodes. In contrast, HPLC-fractionation revealed that some SGE components inhibited infection. Here, we show that D7 proteins are enriched in HPLC fractions that are inhibitory to DENV infection, and that recombinant D7 protein can inhibit DENV infection in vitro and in vivo. Further, binding assays indicate that D7 protein can directly interact with DENV virions and recombinant DENV envelope protein. These data reveal a novel role for D7 proteins, which inhibits arbovirus transmission to vertebrates through a direct interaction with virions.

  8. Dengue Virus-Infected Dendritic Cells, but Not Monocytes, Activate Natural Killer Cells through a Contact-Dependent Mechanism Involving Adhesion Molecules.

    Science.gov (United States)

    Costa, Vivian Vasconcelos; Ye, Weijian; Chen, Qingfeng; Teixeira, Mauro Martins; Preiser, Peter; Ooi, Eng Eong; Chen, Jianzhu

    2017-08-01

    Natural killer (NK) cells play a protective role against dengue virus (DENV) infection, but the cellular and molecular mechanisms are not fully understood. Using an optimized humanized mouse model, we show that human NK cells, through the secretion of gamma interferon (IFN-γ), are critical in the early defense against DENV infection. Depletion of NK cells or neutralization of IFN-γ leads to increased viremia and more severe thrombocytopenia and liver damage in humanized mice. In vitro studies using autologous human NK cells show that DENV-infected monocyte-derived dendritic cells (MDDCs), but not monocytes, activate NK cells in a contact-dependent manner, resulting in upregulation of CD69 and CD25 and secretion of IFN-γ. Blocking adhesion molecules (LFA-1, DNAM-1, CD2, and 2β4) on NK cells abolishes NK cell activation, IFN-γ secretion, and the control of DENV replication. NK cells activated by infected MDDCs also inhibit DENV infection in monocytes. These findings show the essential role of human NK cells in protection against acute DENV infection in vivo , identify adhesion molecules and dendritic cells required for NK cell activation, and delineate the sequence of events for NK cell activation and protection against DENV infection. IMPORTANCE Dengue is a mosquito-transmitted viral disease with a range of symptoms, from mild fever to life-threatening dengue hemorrhagic fever. The diverse disease manifestation is thought to result from a complex interplay between viral and host factors. Using mice engrafted with a human immune system, we show that human NK cells inhibit virus infection through secretion of the cytokine gamma interferon and reduce disease pathogenesis, including depletion of platelets and liver damage. During a natural infection, DENV initially infects dendritic cells in the skin. We find that NK cells interact with infected dendritic cells through physical contact mediated by adhesion molecules and become activated before they can control

  9. Mathematical analysis of dengue virus antibody dynamics

    Science.gov (United States)

    Perera, Sulanie; Perera, SSN

    2018-03-01

    Dengue is a mosquito borne viral disease causing over 390 million infections worldwide per annum. Even though information on how infection is controlled and eradicated from the body is lacking, antibodies are thought to play a major role in clearing the virus. In this paper, a non-linear conceptual dynamical model with humoral immune response and absorption effect has been proposed for primary dengue infection. We have included the absorption of pathogens into uninfected cells since this effect causes the virus density in the blood to decrease. The time delay that arises in the production of antibodies was accounted and is introduced through a continuous function. The basic reproduction number R0 is computed and a detailed stability analysis is done. Three equilibrium states, namely the infection free equilibrium, no immune equilibrium and the endemic equilibrium were identified and the existence and the stability conditions of these steady states were obtained. Numerical simulations proved the results that were obtained. By establishing the characteristic equation of the model at infection free equilibrium, it was observed that the infection free equilibrium is locally asymptotically stable if R0 1. Stability regions are identified for infection free equilibrium state with respect to the external variables and it is observed as the virus burst rate increases, the stability regions would decrease. These results implied that for higher virus burst rates, other conditions in the body must be strong enough to eliminate the disease completely from the host. The effect of time delay of antibody production on virus dynamics is discussed. It was seen that as the time delay in production of antibodies increases, the time for viral decline also increased. Also it was observed that the virus count goes to negligible levels within 7 - 14 days after the onset of symptoms as seen in dengue infections.

  10. A heparin-functionalized carbon nanotube-based affinity biosensor for dengue virus.

    Science.gov (United States)

    Wasik, Daniel; Mulchandani, Ashok; Yates, Marylynn V

    2017-05-15

    Dengue virus is an arthropod-borne virus transmitted primarily by Aedes mosquitos and is major cause of disease in tropical and subtropical regions. Colloquially known as Dengue Fever, infection can cause hemorrhagic disorders and death in humans and non-human primates. We report a novel electronic biosensor based on a single-walled carbon nanotube network chemiresistive transducer that is functionalized with heparin for low-cost, label-free, ultra-sensitive, and rapid detection of whole dengue virus (DENV). Heparin, an analog of the heparan sulfate proteoglycans that are receptors for dengue virus during infection of Vero cells and hepatocytes, was used for the first time in a biosensor as a biorecognition element instead of traditional antibody. Detection of DENV in viral culture supernatant has similar sensitivity as the corresponding viral titer in phosphate buffer despite the presence of growth media and Vero cell lysate. The biosensor demonstrated sensitivity within the clinically relevant range for humans and infected Aedes aegypti. It has potential application in clinical diagnosis and can improve point-of-care diagnostics of dengue infection. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Properties and Functions of the Dengue Virus Capsid Protein.

    Science.gov (United States)

    Byk, Laura A; Gamarnik, Andrea V

    2016-09-29

    Dengue virus affects hundreds of millions of people each year around the world, causing a tremendous social and economic impact on affected countries. The aim of this review is to summarize our current knowledge of the functions, structure, and interactions of the viral capsid protein. The primary role of capsid is to package the viral genome. There are two processes linked to this function: the recruitment of the viral RNA during assembly and the release of the genome during infection. Although particle assembly takes place on endoplasmic reticulum membranes, capsid localizes in nucleoli and lipid droplets. Why capsid accumulates in these locations during infection remains unknown. In this review, we describe available data and discuss new ideas on dengue virus capsid functions and interactions. We believe that a deeper understanding of how the capsid protein works during infection will create opportunities for novel antiviral strategies, which are urgently needed to control dengue virus infections.

  12. Molecular epidemiology of type 1 and 2 dengue viruses in Brazil from 1988 to 2001

    OpenAIRE

    Pires Neto,R.J.; Lima,D.M.; de Paula,S.O.; Lima,C.M.; Rocco,I.M.; Fonseca,B.A.L.

    2005-01-01

    Dengue is a mosquito-borne viral infection that in recent decades has become a major international public health concern. Epidemic dengue fever reemerged in Brazil in 1981. Since 1990 more than one dengue virus serotype has been circulating in this tropical country and increasing rates of dengue hemorrhagic fever and dengue shock syndrome have been detected every year. Some evidence supports the association between the introduction of a new serotype and/or genotype in a region and the appeara...

  13. Natural vertical transmission of dengue viruses by Aedes aegypti in Bolivia

    Science.gov (United States)

    Le Goff, G.; Revollo, J.; Guerra, M.; Cruz, M.; Barja Simon, Z.; Roca, Y.; Vargas Florès, J.; Hervé, J.P.

    2011-01-01

    The natural transmission of dengue virus from an infected female mosquito to its progeny, namely the vertical transmission, was researched in wild caught Aedes aegypti during an important outbreak in the town of Santa Cruz de la Sierra, Bolivia. Mosquitoes were collected at the preimaginal stages (eggs, larvae and pupae) then reared up to adult stage for viral detection using molecular methods. Dengue virus serotypes 1 and 3 were found to be co-circulating with significant higher prevalence in male than in female mosquitoes. Of the 97 pools of Ae. aegypti (n = 635 male and 748 female specimens) screened, 14 pools, collected in February-May in 2007, were found positive for dengue virus infection: five DEN-1 and nine DEN-3. The average true infection rate (TIR) and minimum infection rate (MIR) were respectively 1.08% and 1.01%. These observations suggest that vertical transmission of dengue virus may be detected in vectors at the peak of an outbreak as well as several months before an epidemic occurs in human population. PMID:21894270

  14. Human antibodies to the dengue virus E-dimer epitope have therapeutic activity against Zika virus infection.

    Science.gov (United States)

    Fernandez, Estefania; Dejnirattisai, Wanwisa; Cao, Bin; Scheaffer, Suzanne M; Supasa, Piyada; Wongwiwat, Wiyada; Esakky, Prabagaran; Drury, Andrea; Mongkolsapaya, Juthathip; Moley, Kelle H; Mysorekar, Indira U; Screaton, Gavin R; Diamond, Michael S

    2017-11-01

    The Zika virus (ZIKV) epidemic has resulted in congenital abnormalities in fetuses and neonates. Although some cross-reactive dengue virus (DENV)-specific antibodies can enhance ZIKV infection in mice, those recognizing the DENV E-dimer epitope (EDE) can neutralize ZIKV infection in cell culture. We evaluated the therapeutic activity of human monoclonal antibodies to DENV EDE for their ability to control ZIKV infection in the brains, testes, placentas, and fetuses of mice. A single dose of the EDE1-B10 antibody given 3 d after ZIKV infection protected against lethality, reduced ZIKV levels in brains and testes, and preserved sperm counts. In pregnant mice, wild-type or engineered LALA variants of EDE1-B10, which cannot engage Fcg receptors, diminished ZIKV burden in maternal and fetal tissues, and protected against fetal demise. Because neutralizing antibodies to EDE have therapeutic potential against ZIKV, in addition to their established inhibitory effects against DENV, it may be possible to develop therapies that control disease caused by both viruses.

  15. The impact of temperature and Wolbachia infection on vector competence of potential dengue vectors Aedes aegypti and Aedes albopictus in the transmission of dengue virus serotype 1 in southern Taiwan.

    Science.gov (United States)

    Tsai, Cheng-Hui; Chen, Tien-Huang; Lin, Cheo; Shu, Pei-Yun; Su, Chien-Ling; Teng, Hwa-Jen

    2017-11-07

    We evaluated the impact of temperature and Wolbachia infection on vector competence of the local Aedes aegypti and Ae. albopictus populations of southern Taiwan in the laboratory. After oral infection with dengue serotype 1 virus (DENV-1), female mosquitoes were incubated at temperatures of 10, 16, 22, 28 and 34 °C. Subsequently, salivary gland, head, and thorax-abdomen samples were analyzed for their virus titer at 0, 5, 10, 15, 20, 25 and 30 days post-infection (dpi) by real-time RT-PCR. The results showed that Ae. aegypti survived significantly longer and that dengue viral genome levels in the thorax-abdomen (10 3.25 ± 0.53 -10 4.09 ± 0.71 PFU equivalents/ml) and salivary gland samples (10 2.67 ± 0.33 -10 3.89 ± 0.58 PFU equivalents/ml) were significantly higher at high temperature (28-34 °C). The survival of Ae. albopictus was significantly better at 16 or 28 °C, but the virus titers from thorax-abdomen (10 0.70 -10 2.39 ± 1.31 PFU equivalents/ml) and salivary gland samples (10 0.12 ± 0.05 -10 1.51 ± 0.31 PFU equivalents/ml) were significantly higher at 22-28 °C. Within viable temperature ranges, the viruses were detectable after 10 dpi in salivary glands and head tissues in Ae. aegypti and after 5-10 dpi in Ae. albopictus. Vector competence was measured in Ae. albopictus with and without Wolbachia at 28 °C. Wolbachia-infected mosquitoes survived significantly better and carried lower virus titers than Wolbachia-free mosquitoes. Wolbachia coinfections (92.8-97.2%) with wAlbA and wAlbB strains were commonly found in a wild population of Ae. albopictus. In southern Taiwan, Ae. aegypti is the main vector of dengue and Ae. albopictus has a non-significant role in the transmission of dengue virus due to the high prevalence of Wolbachia infection in the local mosquito population of southern Taiwan.

  16. Preliminary study of dengue virus infection in Iran

    DEFF Research Database (Denmark)

    Chinikar, Sadegh; Ghiasi, Seyed Mojtaba; Shah-Hosseini, Nariman

    2012-01-01

    Dengue fever is one of the most important arthropod-borne viral diseases of public health significance. It is endemic in most tropical and subtropical parts of the world, many of which are popular tourist destinations. The presence of dengue infection was examined in Iranian patients who were...... abroad. Of these, six cases were from the Sistan and Baluchistan province in southeast Iran and neighbouring Pakistan. Travellers play a key role in the epidemiology of dengue infection in Iran and it is recommended that travellers to endemic areas take precautionary measures to avoid mosquito bites....

  17. Perturbed cholesterol and vesicular trafficking associated with dengue blocking in Wolbachia-infected Aedes aegypti cells.

    Science.gov (United States)

    Geoghegan, Vincent; Stainton, Kirsty; Rainey, Stephanie M; Ant, Thomas H; Dowle, Adam A; Larson, Tony; Hester, Svenja; Charles, Philip D; Thomas, Benjamin; Sinkins, Steven P

    2017-09-13

    Wolbachia are intracellular maternally inherited bacteria that can spread through insect populations and block virus transmission by mosquitoes, providing an important approach to dengue control. To better understand the mechanisms of virus inhibition, we here perform proteomic quantification of the effects of Wolbachia in Aedes aegypti mosquito cells and midgut. Perturbations are observed in vesicular trafficking, lipid metabolism and in the endoplasmic reticulum that could impact viral entry and replication. Wolbachia-infected cells display a differential cholesterol profile, including elevated levels of esterified cholesterol, that is consistent with perturbed intracellular cholesterol trafficking. Cyclodextrins have been shown to reverse lipid accumulation defects in cells with disrupted cholesterol homeostasis. Treatment of Wolbachia-infected Ae. aegypti cells with 2-hydroxypropyl-β-cyclodextrin restores dengue replication in Wolbachia-carrying cells, suggesting dengue is inhibited in Wolbachia-infected cells by localised cholesterol accumulation. These results demonstrate parallels between the cellular Wolbachia viral inhibition phenotype and lipid storage genetic disorders. Wolbachia infection of mosquitoes can block dengue virus infection and is tested in field trials, but the mechanism of action is unclear. Using proteomics, Geoghegan et al. here identify effects of Wolbachia on cholesterol homeostasis and dengue virus replication in Aedes aegypti.

  18. Modulation of inflammation and pathology during dengue virus infection by p38 MAPK inhibitor SB203580.

    Science.gov (United States)

    Fu, Yilong; Yip, Andy; Seah, Peck Gee; Blasco, Francesca; Shi, Pei-Yong; Hervé, Maxime

    2014-10-01

    Dengue virus (DENV) infection could lead to dengue fever (DF), dengue hemorrhagic fever (DHF) or dengue shock syndrome (DSS). The disease outcome is controlled by both viral and host factors. Inflammation mediators from DENV-infected cells could contribute to increased vascular permeability, leading to severe DHF/DSS. Therefore, suppression of inflammation could be a potential therapeutic approach for treatment of dengue patients. In this context, p38 MAPK (mitogen-activated protein kinase) is a key enzyme that modulates the initiation of stress and inflammatory responses. Here we show that SB203580, a p38 MAPK inhibitor, suppressed the over production of DENV-induced pro-inflammatory mediators such as TNF-α, IL-8, and RANTES from human PBMCs, monocytic THP-1, and granulocyte KU812 cell lines. Oral administration of SB203580 in DENV-infected AG129 mice prevented hematocrit rise and lymphopenia, limited the development of inflammation and pathology (including intestine leakage), and significantly improved survival. These results, for the first time, have provided experimental evidence to imply that a short term inhibition of p38 MAPK may be beneficial to reduce disease symptoms in dengue patients. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Small RNA Profiling in Dengue Virus 2-Infected Aedes Mosquito Cells Reveals Viral piRNAs and Novel Host miRNAs.

    Science.gov (United States)

    Miesen, Pascal; Ivens, Alasdair; Buck, Amy H; van Rij, Ronald P

    2016-02-01

    In Aedes mosquitoes, infections with arthropod-borne viruses (arboviruses) trigger or modulate the expression of various classes of viral and host-derived small RNAs, including small interfering RNAs (siRNAs), PIWI interacting RNAs (piRNAs), and microRNAs (miRNAs). Viral siRNAs are at the core of the antiviral RNA interference machinery, one of the key pathways that limit virus replication in invertebrates. Besides siRNAs, Aedes mosquitoes and cells derived from these insects produce arbovirus-derived piRNAs, the best studied examples being viruses from the Togaviridae or Bunyaviridae families. Host miRNAs modulate the expression of a large number of genes and their levels may change in response to viral infections. In addition, some viruses, mostly with a DNA genome, express their own miRNAs to regulate host and viral gene expression. Here, we perform a comprehensive analysis of both viral and host-derived small RNAs in Aedes aegypti Aag2 cells infected with dengue virus 2 (DENV), a member of the Flaviviridae family. Aag2 cells are competent in producing all three types of small RNAs and provide a powerful tool to explore the crosstalk between arboviral infection and the distinct RNA silencing pathways. Interestingly, besides the well-characterized DENV-derived siRNAs, a specific population of viral piRNAs was identified in infected Aag2 cells. Knockdown of Piwi5, Ago3 and, to a lesser extent, Piwi6 results in reduction of vpiRNA levels, providing the first genetic evidence that Aedes PIWI proteins produce DENV-derived small RNAs. In contrast, we do not find convincing evidence for the production of virus-derived miRNAs. Neither do we find that host miRNA expression is strongly changed upon DENV2 infection. Finally, our deep-sequencing analyses detect 30 novel Aedes miRNAs, complementing the repertoire of regulatory small RNAs in this important vector species.

  20. Dendritic cells in dengue virus infection: Targets of virus replication and mediators of immunity

    Directory of Open Access Journals (Sweden)

    Michael A. Schmid

    2014-12-01

    Full Text Available Dendritic cells (DCs are sentinels of the immune system and detect pathogens at sites of entry, such as the skin. In addition to the ability of DCs to control infections directly via their innate immune functions, DCs help to prime adaptive B and T cell responses via antigen presentation in lymphoid tissues. Infected Aedes aegypti or Ae. albopictus mosquitoes transmit the four dengue virus (DENV serotypes to humans while probing for small blood vessels in the skin. DENV causes the most prevalent arthropod-borne viral disease in humans, yet no vaccine or specific therapeutic is currently approved. Although primary DENV infection confers life-long protective immunity against re-infection with the same DENV serotype, secondary infection with a different DENV serotype can lead to increased disease severity via cross-reactive T cells or enhancing antibodies. This review summarizes recent findings in humans and animal models about DENV infection of DCs, monocytes and macrophages. We discuss the dual role of DCs as both targets of DENV replication and mediators of innate and adaptive immunity, and summarize immune evasion strategies whereby DENV impairs the function of infected DCs. We suggest that DCs play a key role in priming DENV-specific neutralizing or potentially harmful memory B and T cell responses, and that future DC-directed therapies may help induce protective memory responses and reduce dengue pathogenesis.

  1. Re-emergence of dengue virus serotype 2 strains in the 2013 outbreak in Nepal

    Science.gov (United States)

    Gupta, Birendra Prasad; Singh, Sneha; Kurmi, Roshan; Malla, Rajani; Sreekumar, Easwaran; Manandhar, Krishna Das

    2015-01-01

    Background & objectives: Epidemiological interventions and mosquito control are the available measures for dengue control. The former approach uses serotype and genetic information on the circulating virus strains. Dengue has been frequently reported from Nepal, but this information is mostly lacking. The present study was done to generate a comprehensive clinical and virological picture of a dengue outbreak in Nepal during 2013. Methods: A hospital-based study involving patients from five districts of Nepal was carried out. Demographic information, clinical details and dengue serological status were obtained. Viral RNA was characterized at the molecular level by reverse-transcription polymerase chain reaction (RT-PCR), nucleotide sequencing and phylogenetic analysis. Results: From among the 2340 laboratory-confirmed dengue cases during the study period, 198 patients consented for the study. Clinically they had fever (100%), headache (59.1%), rashes (18.2%), retro-orbital pain (30.3%), vomiting (15.1%), joint pain (28.8%) and thrombocytopenia (74.3%). Fifteen (7.5%) of them had mucosal bleeding manifestations, and the rest were uncomplicated dengue fever. The patients were mostly adults with a mean age of 45.75 ± 38.61 yr. Of the 52 acute serum samples tested, 15 were positive in RT-PCR. The causative virus was identified as DENV serotype 2 belonging to the Cosmopolitan genotype. Interpretations & conclusions: We report here the involvement of DENV serotype 2 in an outbreak in Nepal in 2013. Earlier outbreaks in the region in 2010 were attributed to serotype 1 virus. As serotype shifts are frequently associated with secondary infections and severe disease, there is a need for enhancing surveillance especially in the monsoon and post-monsoon periods to prevent large-scale, severe dengue outbreaks in the region. PMID:26905233

  2. Incidence of dengue virus infections in febrile episodes in Ile-Ife ...

    African Journals Online (AJOL)

    While dengue infection is accompanied by little or no subclinical signs in many, about 1-2% may produce clinically severe Dengue Haemorrhagic Fever/Dengue Shock Syndrome. Early recognition, appropriate treatment and elimination of mosquito vectors will help control it. The study is aimed at determining the incidence ...

  3. Attenuation and immunogenicity of recombinant yellow fever 17D-dengue type 2 virus for rhesus monkeys

    Directory of Open Access Journals (Sweden)

    Galler R.

    2005-01-01

    Full Text Available A chimeric yellow fever (YF-dengue serotype 2 (dengue 2 virus was constructed by replacing the premembrane and envelope genes of the YF 17D virus with those from dengue 2 virus strains of Southeast Asian genotype. The virus grew to high titers in Vero cells and, after passage 2, was used for immunogenicity and attenuation studies in rhesus monkeys. Subcutaneous immunization of naive rhesus monkeys with the 17D-D2 chimeric virus induced a neutralizing antibody response associated with the protection of 6 of 7 monkeys against viremia by wild-type dengue 2 virus. Neutralizing antibody titers to dengue 2 were significantly lower in YF-immune animals than in YF-naive monkeys and protection against challenge with wild-type dengue 2 virus was observed in only 2 of 11 YF-immune monkeys. An anamnestic response to dengue 2, indicated by a sharp increase of neutralizing antibody titers, was observed in the majority of the monkeys after challenge with wild-type virus. Virus attenuation was demonstrated using the standard monkey neurovirulence test. The 17D-D2 chimera caused significantly fewer histological lesions than the YF 17DD virus. The attenuated phenotype could also be inferred from the limited viremias compared to the YF 17DD vaccine. Overall, these results provide further support for the use of chimeric viruses for the development of a new live tetravalent dengue vaccine.

  4. Three cases of imported dengue virus infection from Madeira to Belgium, 2012.

    Science.gov (United States)

    Cnops, Lieselotte; Franco, Leticia; Van Meensel, Britt; Van den Ende, Jef; Paz Sanchez-Seco, Maria; Van Esbroeck, Marjan

    2014-01-01

    We report three laboratory-confirmed dengue virus (DENV) infections imported to Belgium by travelers returning from Madeira (Portugal). Despite the use of a mosquito-repellent spray as reported by two patients, the infection could not be prevented. Diagnosis was made by antigen detection and real-time reverse transcriptase polymerase chain reaction (RT-PCR) in two cases and by serology 1 month after onset of symptoms in a third one. The responsible virus was identified as DENV serotype 1, American/African genotype (genotype V). The close relationship to isolates from Colombia supports the previous findings that a South American strain originated the outbreak in Madeira in 2012. © 2014 International Society of Travel Medicine.

  5. Identification of RNA Binding Proteins Associated with Dengue Virus RNA in Infected Cells Reveals Temporally Distinct Host Factor Requirements.

    Directory of Open Access Journals (Sweden)

    Olga V Viktorovskaya

    2016-08-01

    Full Text Available There are currently no vaccines or antivirals available for dengue virus infection, which can cause dengue hemorrhagic fever and death. A better understanding of the host pathogen interaction is required to develop effective therapies to treat DENV. In particular, very little is known about how cellular RNA binding proteins interact with viral RNAs. RNAs within cells are not naked; rather they are coated with proteins that affect localization, stability, translation and (for viruses replication.Seventy-nine novel RNA binding proteins for dengue virus (DENV were identified by cross-linking proteins to dengue viral RNA during a live infection in human cells. These cellular proteins were specific and distinct from those previously identified for poliovirus, suggesting a specialized role for these factors in DENV amplification. Knockdown of these proteins demonstrated their function as viral host factors, with evidence for some factors acting early, while others late in infection. Their requirement by DENV for efficient amplification is likely specific, since protein knockdown did not impair the cell fitness for viral amplification of an unrelated virus. The protein abundances of these host factors were not significantly altered during DENV infection, suggesting their interaction with DENV RNA was due to specific recruitment mechanisms. However, at the global proteome level, DENV altered the abundances of proteins in particular classes, including transporter proteins, which were down regulated, and proteins in the ubiquitin proteasome pathway, which were up regulated.The method for identification of host factors described here is robust and broadly applicable to all RNA viruses, providing an avenue to determine the conserved or distinct mechanisms through which diverse viruses manage the viral RNA within cells. This study significantly increases the number of cellular factors known to interact with DENV and reveals how DENV modulates and usurps

  6. Comparative proteomics reveals that YK51, a 4-Hydroxypandurantin-A analogue, downregulates the expression of proteins associated with dengue virus infection.

    Science.gov (United States)

    Tan, Wei-Lian; Lee, Yean Kee; Ho, Yen Fong; Yusof, Rohana; Abdul Rahman, Noorsaadah; Karsani, Saiful Anuar

    2018-01-01

    Dengue is endemic throughout tropical and subtropical regions of the world. Currently, there is no clinically approved therapeutic drug available for this acute viral infection. Although the first dengue vaccine Dengvaxia has been approved for use in certain countries, it is limited to those without a previous dengue infection while the safety and efficacy of the vaccine in those elderly and younger children still need to be identified. Therefore, it is becoming increasingly important to develop therapeutics/drugs to combat dengue virus (DENV) infection. YK51 is a synthetic analogue of 4-Hydroxypandurantin A (a compound found in the crude extract of the rhizomes of Boesenbergia rotunda ) that has been extensively studied by our research group. It has been shown to possess outstanding antiviral activity due to its inhibitory activity against NS2B/NS3 DENV2 protease. However, it is not known how YK51 affects the proteome of DENV infected cells. Therefore, we performed a comparative proteomics analysis to identify changes in protein expression in DENV infected HepG2 cells treated with YK51. Classical two-dimensional gel electrophoresis followed by protein identification using tandem mass spectrometry was employed in this study. Thirty proteins were found to be down-regulated with YK51 treatment. In silico analysis predicted that the down-regulation of eight of these proteins may inhibit viral infection. Our results suggested that apart from inhibiting the NS2B/NS3 DENV2 protease, YK51 may also be causing the down-regulation of a number of proteins that may be responsible in, and/or essential to virus infection. However, functional characterization of these proteins will be necessary before we can conclusively determine their roles in DENV infection.

  7. Comparative proteomics reveals that YK51, a 4-Hydroxypandurantin-A analogue, downregulates the expression of proteins associated with dengue virus infection

    Directory of Open Access Journals (Sweden)

    Wei-Lian Tan

    2018-01-01

    Full Text Available Dengue is endemic throughout tropical and subtropical regions of the world. Currently, there is no clinically approved therapeutic drug available for this acute viral infection. Although the first dengue vaccine Dengvaxia has been approved for use in certain countries, it is limited to those without a previous dengue infection while the safety and efficacy of the vaccine in those elderly and younger children still need to be identified. Therefore, it is becoming increasingly important to develop therapeutics/drugs to combat dengue virus (DENV infection. YK51 is a synthetic analogue of 4-Hydroxypandurantin A (a compound found in the crude extract of the rhizomes of Boesenbergia rotunda that has been extensively studied by our research group. It has been shown to possess outstanding antiviral activity due to its inhibitory activity against NS2B/NS3 DENV2 protease. However, it is not known how YK51 affects the proteome of DENV infected cells. Therefore, we performed a comparative proteomics analysis to identify changes in protein expression in DENV infected HepG2 cells treated with YK51. Classical two-dimensional gel electrophoresis followed by protein identification using tandem mass spectrometry was employed in this study. Thirty proteins were found to be down-regulated with YK51 treatment. In silico analysis predicted that the down-regulation of eight of these proteins may inhibit viral infection. Our results suggested that apart from inhibiting the NS2B/NS3 DENV2 protease, YK51 may also be causing the down-regulation of a number of proteins that may be responsible in, and/or essential to virus infection. However, functional characterization of these proteins will be necessary before we can conclusively determine their roles in DENV infection.

  8. Development, characterization and application of monoclonal antibodies against Brazilian Dengue virus isolates.

    Directory of Open Access Journals (Sweden)

    Camila Zanluca

    Full Text Available Dengue is the most prevalent human arboviral disease. The morbidity related to dengue infection supports the need for an early, quick and effective diagnostic test. Brazil is a hotspot for dengue, but no serological diagnostic test has been produced using Brazilian dengue virus isolates. This study aims to improve the development of immunodiagnostic methods for dengue virus (DENV detection through the production and characterization of 22 monoclonal antibodies (mAbs against Brazilian isolates of DENV-1, -2 and -3. The mAbs include IgG2bκ, IgG2aκ and IgG1κ isotypes, and most were raised against the envelope or the pre-membrane proteins of DENV. When the antibodies were tested against the four DENV serotypes, different reactivity patterns were identified: group-specific, subcomplex specific (DENV-1, -3 and -4 and DENV-2 and -3 and dengue serotype-specific (DENV-2 or -3. Additionally, some mAbs cross-reacted with yellow fever virus (YFV, West Nile virus (WNV and Saint Louis encephalitis virus (SLEV. None of the mAbs recognized the alphavirus Venezuelan equine encephalitis virus (VEEV. Furthermore, mAbs D3 424/8G, D1 606/A12/B9 and D1 695/12C/2H were used to develop a capture enzyme-linked immunosorbent assay (ELISA for anti-dengue IgM detection in sera from patients with acute dengue. To our knowledge, these are the first monoclonal antibodies raised against Brazilian DENV isolates, and they may be of special interest in the development of diagnostic assays, as well as for basic research.

  9. Identification and characterization of a virus-specific continuous B-cell epitope on the PrM/M protein of Japanese Encephalitis Virus: potential application in the detection of antibodies to distinguish Japanese Encephalitis Virus infection from West Nile Virus and Dengue Virus infections

    OpenAIRE

    Hua, Rong-Hong; Chen, Na-Sha; Qin, Cheng-Feng; Deng, Yong-Qiang; Ge, Jin-Ying; Wang, Xi-Jun; Qiao, Zu-Jian; Chen, Wei-Ye; Wen, Zhi-Yuan; Liu, Wen-Xin; Hu, Sen; Bu, Zhi-Gao

    2010-01-01

    Abstract Background Differential diagnose of Japanese encephalitis virus (JEV) infection from other flavivirus especially West Nile virus (WNV) and Dengue virus (DV) infection was greatly hindered for the serological cross-reactive. Virus specific epitopes could benefit for developing JEV specific antibodies detection methods. To identify the JEV specific epitopes, we fully mapped and characterized the continuous B-cell epitope of the PrM/M protein of JEV. Results To map the epitopes on the P...

  10. The dengue virus type 2 envelope protein fusion peptide is essential for membrane fusion

    International Nuclear Information System (INIS)

    Huang, Claire Y.-H.; Butrapet, Siritorn; Moss, Kelly J.; Childers, Thomas; Erb, Steven M.; Calvert, Amanda E.; Silengo, Shawn J.; Kinney, Richard M.; Blair, Carol D.; Roehrig, John T.

    2010-01-01

    The flaviviral envelope (E) protein directs virus-mediated membrane fusion. To investigate membrane fusion as a requirement for virus growth, we introduced 27 unique mutations into the fusion peptide of an infectious cDNA clone of dengue 2 virus and recovered seven stable mutant viruses. The fusion efficiency of the mutants was impaired, demonstrating for the first time the requirement for specific FP AAs in optimal fusion. Mutant viruses exhibited different growth kinetics and/or genetic stabilities in different cell types and adult mosquitoes. Virus particles could be recovered following RNA transfection of cells with four lethal mutants; however, recovered viruses could not re-infect cells. These viruses could enter cells, but internalized virus appeared to be retained in endosomal compartments of infected cells, thus suggesting a fusion blockade. Mutations of the FP also resulted in reduced virus reactivity with flavivirus group-reactive antibodies, confirming earlier reports using virus-like particles.

  11. Dengue-2 and yellow fever 17DD viruses infect human dendritic cells, resulting in an induction of activation markers, cytokines and chemokines and secretion of different TNF-α and IFN-α profiles

    Directory of Open Access Journals (Sweden)

    Mariana Gandini

    2011-08-01

    Full Text Available Flaviviruses cause severe acute febrile and haemorrhagic infections, including dengue and yellow fever and the pathogenesis of these infections is caused by an exacerbated immune response. Dendritic cells (DCs are targets for dengue virus (DENV and yellow fever virus (YF replication and are the first cell population to interact with these viruses during a natural infection, which leads to an induction of protective immunity in humans. We studied the infectivity of DENV2 (strain 16681, a YF vaccine (YF17DD and a chimeric YF17D/DENV2 vaccine in monocyte-derived DCs in vitro with regard to cell maturation, activation and cytokine production. Higher viral antigen positive cell frequencies were observed for DENV2 when compared with both vaccine viruses. Flavivirus-infected cultures exhibited dendritic cell activation and maturation molecules. CD38 expression on DCs was enhanced for both DENV2 and YF17DD, whereas OX40L expression was decreased as compared to mock-stimulated cells, suggesting that a T helper 1 profile is favoured. Tumor necrosis factor (TNF-α production in cell cultures was significantly higher in DENV2-infected cultures than in cultures infected with YF17DD or YF17D/DENV. In contrast, the vaccines induced higher IFN-α levels than DENV2. The differential cytokine production indicates that DENV2 results in TNF induction, which discriminates it from vaccine viruses that preferentially stimulate interferon expression. These differential response profiles may influence the pathogenic infection outcome.

  12. The influence of dengue virus serotype-2 infection on Aedes aegypti (Diptera: Culicidae motivation and avidity to blood feed.

    Directory of Open Access Journals (Sweden)

    Rafael Maciel-de-Freitas

    Full Text Available BACKGROUND: Dengue virus (DENV is transmitted by Aedes aegypti, a species that lives in close association with human dwellings. The behavior of DENV-infected mosquitoes needs further investigation, especially regarding the potential influence of DENV on mosquito biting motivation and avidity. METHODOLOGY/PRINCIPAL FINDINGS: We orally challenged 4-5 day-old Ae. aegypti females with a low passage DENV serotype -2 (DENV-2 to test whether the virus influences motivation to feed (the likelihood that a mosquito obtains a blood-meal and the size of its blood meal and avidity (the likelihood to re-feed after an interrupted first blood-meal. To assay motivation, we offered mosquitoes an anesthetized mouse for 2, 3, 4 or 5 minutes 7 or 14 days after the initial blood meals and measured the time they started feeding. 60.5% of the unexposed mosquitoes fed on the mouse, but only 40.5% of the positive ones did. Exposed but negative mosquitoes behaved similarly to unexposed ones (55.0% feeding. Thus DENV-2 infection decreased the mosquitoes' motivation to feed. To assay avidity, we offered the same mosquitoes a mouse two hours after the first round of feeding, and we measured the time at which they started probing. The exposed (positive or negative mosquitoes were more likely to re-feed than the unexposed ones and, in particular, the size of the previous blood-meal that kept mosquitoes from re-feeding was larger in the exposed than in the unexposed mosquitoes. Thus, DENV-2 infection increased mosquito avidity. CONCLUSIONS/SIGNIFICANCE: DENV-2 significantly decreased the mosquitoes' motivation to feed, but increased their avidity (even after taking account the amount of blood previously imbibed. As these are important components of transmission, we expect that the changes of the blood-feeding behaviour impact the vectorial capacity Ae. aegypti for dengue.

  13. The influence of dengue virus serotype-2 infection on Aedes aegypti (Diptera: Culicidae) motivation and avidity to blood feed.

    Science.gov (United States)

    Maciel-de-Freitas, Rafael; Sylvestre, Gabriel; Gandini, Mariana; Koella, Jacob C

    2013-01-01

    Dengue virus (DENV) is transmitted by Aedes aegypti, a species that lives in close association with human dwellings. The behavior of DENV-infected mosquitoes needs further investigation, especially regarding the potential influence of DENV on mosquito biting motivation and avidity. We orally challenged 4-5 day-old Ae. aegypti females with a low passage DENV serotype -2 (DENV-2) to test whether the virus influences motivation to feed (the likelihood that a mosquito obtains a blood-meal and the size of its blood meal) and avidity (the likelihood to re-feed after an interrupted first blood-meal). To assay motivation, we offered mosquitoes an anesthetized mouse for 2, 3, 4 or 5 minutes 7 or 14 days after the initial blood meals and measured the time they started feeding. 60.5% of the unexposed mosquitoes fed on the mouse, but only 40.5% of the positive ones did. Exposed but negative mosquitoes behaved similarly to unexposed ones (55.0% feeding). Thus DENV-2 infection decreased the mosquitoes' motivation to feed. To assay avidity, we offered the same mosquitoes a mouse two hours after the first round of feeding, and we measured the time at which they started probing. The exposed (positive or negative) mosquitoes were more likely to re-feed than the unexposed ones and, in particular, the size of the previous blood-meal that kept mosquitoes from re-feeding was larger in the exposed than in the unexposed mosquitoes. Thus, DENV-2 infection increased mosquito avidity. DENV-2 significantly decreased the mosquitoes' motivation to feed, but increased their avidity (even after taking account the amount of blood previously imbibed). As these are important components of transmission, we expect that the changes of the blood-feeding behaviour impact the vectorial capacity Ae. aegypti for dengue.

  14. Humoral immune responses of dengue fever patients using epitope-specific serotype-2 virus-like particle antigens.

    Directory of Open Access Journals (Sweden)

    Wayne D Crill

    Full Text Available Dengue virus (DENV is a serious mosquito-borne pathogen causing significant global disease burden, either as classic dengue fever (DF or in its most severe manifestation dengue hemorrhagic fever (DHF. Nearly half of the world's population is at risk of dengue disease and there are estimated to be millions of infections annually; a situation which will continue to worsen with increasing expansion of the mosquito vectors and epidemic DF/DHF. Currently there are no available licensed vaccines or antivirals for dengue, although significant effort has been directed toward the development of safe and efficacious dengue vaccines for over 30 years. Promising vaccine candidates are in development and testing phases, but a better understanding of immune responses to DENV infection and vaccination is needed. Humoral immune responses to DENV infection are complex and may exacerbate pathogenicity, yet are essential for immune protection. In this report, we develop DENV-2 envelope (E protein epitope-specific antigens and measure immunoglobulin responses to three distinct epitopes in DENV-2 infected human serum samples. Immunoglobulin responses to DENV-2 infection exhibited significant levels of individual variation. Antibody populations targeting broadly cross-reactive epitopes centered on the fusion peptide in structural domain II were large, highly variable, and greater in primary than in secondary DENV-2 infected sera. E protein domain III cross-reactive immunoglobulin populations were similarly variable and much larger in IgM than in IgG. DENV-2 specific domain III IgG formed a very small proportion of the antibody response yet was significantly correlated with DENV-2 neutralization, suggesting that the highly protective IgG recognizing this epitope in murine studies plays a role in humans as well. This report begins to tease apart complex humoral immune responses to DENV infection and is thus important for improving our understanding of dengue disease

  15. Transcytosis Involvement in Transport System and Endothelial Permeability of Vascular Leakage during Dengue Virus Infection

    Directory of Open Access Journals (Sweden)

    Chanettee Chanthick

    2018-02-01

    Full Text Available The major role of endothelial cells is to maintain homeostasis of vascular permeability and to preserve the integrity of vascular vessels to prevent fluid leakage. Properly functioning endothelial cells promote physiological balance and stability for blood circulation and fluid components. A monolayer of endothelial cells has the ability to regulate paracellular and transcellular pathways for transport proteins, solutes, and fluid. In addition to the paracellular pathway, the transcellular pathway is another route of endothelial permeability that mediates vascular permeability under physiologic conditions. The transcellular pathway was found to be associated with an assortment of disease pathogeneses. The clinical manifestation of severe dengue infection in humans is vascular leakage and hemorrhagic diatheses. This review explores and describes the transcellular pathway, which is an alternate route of vascular permeability during dengue infection that corresponds with the pathologic finding of intact tight junction. This pathway may be the route of albumin transport that causes endothelial dysfunction during dengue virus infection.

  16. The Role of Heterotypic DENV-specific CD8+T Lymphocytes in an Immunocompetent Mouse Model of Secondary Dengue Virus Infection.

    Science.gov (United States)

    Talarico, Laura B; Batalle, Juan P; Byrne, Alana B; Brahamian, Jorge M; Ferretti, Adrián; García, Ayelén G; Mauri, Aldana; Simonetto, Carla; Hijano, Diego R; Lawrence, Andrea; Acosta, Patricio L; Caballero, Mauricio T; Paredes Rojas, Yésica; Ibañez, Lorena I; Melendi, Guillermina A; Rey, Félix A; Damonte, Elsa B; Harris, Eva; Polack, Fernando P

    2017-06-01

    Dengue is the most prevalent arthropod-borne viral disease worldwide and is caused by the four dengue virus serotypes (DENV-1-4). Sequential heterologous DENV infections can be associated with severe disease manifestations. Here, we present an immunocompetent mouse model of secondary DENV infection using non mouse-adapted DENV strains to investigate the pathogenesis of severe dengue disease. C57BL/6 mice infected sequentially with DENV-1 (strain Puerto Rico/94) and DENV-2 (strain Tonga/74) developed low platelet counts, internal hemorrhages, and increase of liver enzymes. Cross-reactive CD8 + T lymphocytes were found to be necessary and sufficient for signs of severe disease by adoptively transferring of DENV-1-immune CD8 + T lymphocytes before DENV-2 challenge. Disease signs were associated with production of tumor necrosis factor (TNF)-α and elevated cytotoxicity displayed by heterotypic anti-DENV-1 CD8 + T lymphocytes. These findings highlight the critical role of heterotypic anti-DENV CD8 + T lymphocytes in manifestations of severe dengue disease. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  17. Satellite based hydroclimatic understanding of evolution of Dengue and Zika virus

    Science.gov (United States)

    Khan, R.; Jutla, A.; Colwell, R. R.

    2017-12-01

    Vector-borne diseases are prevalent in tropical and subtropical regions especially in Africa, South America, and Asia. Vector eradication is perhaps not possible since pathogens adapt to local environment. In absence of appropriate vaccinations for Dengue and Zika virus, burden of these two infections continue to increase in several geographical locations. Aedes spp. is one of the major vectors for Dengue and Zika viruses. Etiologies on Dengue and Zika viruses are evolving, however the key question remains as to how one species of mosquito can transmit two different infections? We argue that a set of conducive environmental condition, modulated by regional climatic and weather processes, may lead to abundance of a specific virus. Using satellite based rainfall (TRMM/GPM), land surface temperature (MODIS) and dew point temperature (AIRS/MERRA), we have identified appropriate thresholds that can provide estimate on risk of abundance of Dengue or Zika viruses at least few weeks in advance. We will discuss a framework coupling satellite derived hydroclimatic and societal processes to predict environmental niches of favorability of conditions of Dengue or Zika risk in human population on a global scale.

  18. Epidemic dengue 2 in the city of Djibouti 1991-1992.

    Science.gov (United States)

    Rodier, G R; Gubler, D J; Cope, S E; Cropp, C B; Soliman, A K; Polycarpe, D; Abdourhaman, M A; Parra, J P; Maslin, J; Arthur, R R

    1996-01-01

    From October 1991 to February 1992, an outbreak of acute fever (in which thick blood films were negative for malaria) spread rapidly in the city of Djibouti, Djibouti Republic, affecting all age groups and both nationals and foreigners. The estimated number of cases was 12,000. The clinical features were consistent with a non-haemorrhagic dengue-like illness. Serum samples from 91 patients were analysed serologically for flavivirus infection (dengue 1-4, West Nile, yellow fever, Zika, Banzi, and Uganda-S), and virus isolation was attempted. Twelve strains of dengue 2 virus were isolated. Dengue infection was confirmed by a 4-fold or greater rise in immunoglobulin (Ig) G antibody in paired serum specimens, the presence of IgM antibody, or isolation of the virus. Overall, 46 of the suspected cases (51%) were confirmed virologically or had serological evidence of a recent flavivirus infection. Statistical analysis showed that the presence of a rash was the best predictor of flavivirus seropositivity. In November 1992, Aedes aegypti was widespread and abundant in several districts of Djibouti city. A serological study of serum samples collected from Djiboutian military personnel 5 months before the epidemic showed that only 15/177 (8.5%) had flavivirus antibodies. These findings, together with a negative serosurvey for dengue serotypes 1-4 and yellow fever virus performed in 1987, support the conclusion that dengue 2 virus has only recently been introduced to Djibouti.

  19. The estimation of imported dengue virus from Thailand.

    Science.gov (United States)

    Polwiang, Sittisede

    2015-01-01

    Dengue fever is one of the important causes of illness among travelers returning from Thailand. The risk of infection depends on the length of stay, activities, and arrival time. Due to globalization, there is a concern that infected travelers may carry dengue virus (DENV) to their country of residence and cause an outbreak. To estimate the infective person-days of travelers returning from Thailand, we developed a model with the following parameters: the probability of travelers being infected, number of arrivals, length of stay of travelers, incubation period, and duration of the infective period. The data used in this study were the dengue incidences in Thailand during 2004-2013 and foreign traveler arrivals in 2013. We estimated the highest infective person-days for each country group. The highest value was from June to August during the rainy season in Thailand for all groups. Infective person-days ranged from 87 to 112 per 100,000 travelers each year. Our results provided a fundamental step toward estimation of the risk of the secondary transmission of DENV in non-epidemic countries via travelers, which can serve as an early warning of a dengue outbreak. The highest infective person-day is associated with the rainy season in Thailand. The increasing number of overseas travelers may increase the risk of global transmission of the DENV. Better understanding of the virus transmission dynamics will enable further quantitative predictions of epidemic risk. © 2015 International Society of Travel Medicine.

  20. Elevation of soluble VCAM-1 plasma levels in children with acute dengue virus infection of varying severity.

    NARCIS (Netherlands)

    Koraka, P.; Murgue, B.; Deparis, X.; Gorp, E. van; Setiati, T.E.; Osterhaus, A.D.; Groen, J.

    2004-01-01

    Approximately 1,000 million infections with dengue viruses are estimated to occur annually. The majority of the cases develop mild disease, whereas only small proportion of the infected individuals develop severe hemorrhagic manifestations at the end of the acute phase of illness. In this study, the

  1. Spatial and temporal clustering of dengue virus transmission in Thai villages.

    OpenAIRE

    Mammen P Mammen; Chusak Pimgate; Constantianus J M Koenraadt; Alan L Rothman; Jared Aldstadt; Ananda Nisalak; Richard G Jarman; James W Jones; Anon Srikiatkhachorn; Charity Ann Ypil-Butac; Arthur Getis; Suwich Thammapalo; Amy C Morrison; Daniel H Libraty; Sharone Green

    2008-01-01

    Editors' Summary Background. Every year, over 50 million people living in tropical and subtropical urban and semi-urban areas become infected with dengue (a mosquito-borne viral infection) and several hundred thousand develop a potentially lethal complication called dengue hemorrhagic fever. Dengue is caused by four closely related viruses that are transmitted to people through the bites of infected female Aedes aegypti mosquitoes. These day-biting insects, which breed in household water cont...

  2. Antibody-dependent enhancement of dengue virus infection is inhibited by SA-17, a doxorubicin derivative

    NARCIS (Netherlands)

    Ayala Nunez, Vanesa; Jarupathirun, Patsaporn; Kaptein, Suzanne; Neyts, Johan; Smit, Jolanda

    2013-01-01

    Antibody-dependent enhancement (ADE) is thought to play a critical role in the exacerbation of dengue virus (DENV)-induced disease during a heterologous re-infection. Despite ADE's clinical impact, only a few antiviral compounds have been assessed for their anti-ADE activity. We reported earlier

  3. Detection of immune-complex-dissociated nonstructural-1 antigen in patients with acute dengue virus infections

    NARCIS (Netherlands)

    P. Koraka (Penelope); C.P. Burghoorn-Maas; A. Falconar; T.E. Setiati (Tatty); K. Djamiatun; J. Groen (Jan); A.D.M.E. Osterhaus (Albert)

    2003-01-01

    textabstractAccurate and timely diagnosis of dengue virus (DEN) infections is essential for the differential diagnosis of patients with febrile illness and hemorrhagic fever. In the present study, the diagnostic value of a newly developed immune-complex dissociated nonstructural-1 (NS-1) antigen dot

  4. Detection of immune-complex-dissociated nonstructural-1 antigen in patients with acute dengue virus infections.

    NARCIS (Netherlands)

    Koraka, P.; Burghoorn-Maas, C.P.; Falconar, A.; Setiati, T.E.; Djamiatun, K.; Groen, J.; Osterhaus, A.D.

    2003-01-01

    Accurate and timely diagnosis of dengue virus (DEN) infections is essential for the differential diagnosis of patients with febrile illness and hemorrhagic fever. In the present study, the diagnostic value of a newly developed immune-complex dissociated nonstructural-1 (NS-1) antigen dot blot

  5. Occurrence of concurrent infections with multiple serotypes of dengue viruses during 2013–2015 in northern Kerala, India

    Directory of Open Access Journals (Sweden)

    Manchala Nageswar Reddy

    2017-03-01

    Full Text Available Background Dengue is a global human public health threat, causing severe morbidity and mortality. The occurrence of sequential infection by more than one serotype of dengue virus (DENV is a major contributing factor for the induction of Dengue Hemorrhagic Fever (DHF and Dengue Shock Syndrome (DSS, two major medical conditions caused by DENV infection. However, there is no specific drug or vaccine available against dengue infection. There are reports indicating the increased incidence of concurrent infection of dengue in several tropical and subtropical regions. Recently, increasing number of DHF and DSS cases were reported in India indicating potential enhancement of concurrent DENV infections. Therefore, accurate determination of the occurrence of DENV serotype co-infections needs to be conducted in various DENV prone parts of India. In this context, the present study was conducted to analyse the magnitude of concurrent infection in northern Kerala, a southwest state of India, during three consecutive years from 2013 to 2015. Methods A total of 120 serum samples were collected from the suspected dengue patients. The serum samples were diagnosed for the presence of dengue NS1 antigen followed by the isolation of dengue genome from NS1 positive samples. The isolated dengue genome was further subjected to RTPCR based molecular serotyping. The phylogenetic tree was constructed based on the sequence of PCR amplified products. Results Out of the total number of samples collected, 100 samples were positive for dengue specific antigen (NS1 and 26 of them contained the dengue genome. The RTPCR based molecular serotyping of the dengue genome revealed the presence of all four serotypes with different combinations. However, serotypes 1 and 3 were predominant combinations of concurrent infection. Interestingly, there were two samples with all four serotypes concurrently infected in 2013. Discussion All samples containing dengue genome showed the presence of

  6. 18F-FDG as an inflammation biomarker for imaging dengue virus infection and treatment response.

    Science.gov (United States)

    Chacko, Ann-Marie; Watanabe, Satoru; Herr, Keira J; Kalimuddin, Shirin; Tham, Jing Yang; Ong, Joanne; Reolo, Marie; Serrano, Raymond M F; Cheung, Yin Bun; Low, Jenny G H; Vasudevan, Subhash G

    2017-05-04

    Development of antiviral therapy against acute viral diseases, such as dengue virus (DENV), suffers from the narrow window of viral load detection in serum during onset and clearance of infection and fever. We explored a biomarker approach using 18F-fluorodeoxyglucose (18F-FDG) PET in established mouse models for primary and antibody-dependent enhancement infection with DENV. 18F-FDG uptake was most prominent in the intestines and correlated with increased virus load and proinflammatory cytokines. Furthermore, a significant temporal trend in 18F-FDG uptake was seen in intestines and selected tissues over the time course of infection. Notably, 18F-FDG uptake and visualization by PET robustly differentiated treatment-naive groups from drug-treated groups as well as nonlethal from lethal infections with a clinical strain of DENV2. Thus, 18F-FDG may serve as a novel DENV infection-associated inflammation biomarker for assessing treatment response during therapeutic intervention trials.

  7. Circulating serotypes of dengue virus and their incursion into non-endemic areas of Pakistan; a serious threat.

    Science.gov (United States)

    Ali, Amjad; Ahmad, Habib; Idrees, Muhammad; Zahir, Fazli; Ali, Ijaz

    2016-08-26

    Dengue virus is circulating in Pakistan since 1994, which causes major and minor outbreaks in many areas of the country. The incidence of dengue in Pakistan in past years mainly restricted to parts of Sindh and Punjab provinces. As such, a severe dengue outbreak appeared in Pakistan in 2011, particularly in Punjab province with Lahore as the most hit city (290 deaths). In 2013, for the first time in the history of Pakistan, dengue outbreak erupted in Swat District, Khyber Pakhtunkhwa, which claimed more than 57 lives. Hence this study was conducted to document circulating serotypes of dengue virus in Pakistan in 2011 and 2013 dengue outbreaks in two different territories/areas of the country. In total, 1340 blood samples from people having dengue (ELISA positive) and/or dengue like symptoms from various cities/areas of Punjab and Swat, Khyber Pakhtunkhwa (KP) were collected and analyzed by reverse transcription polymerase chain reaction (RT-PCR) using serotype specific primers. The results indicated that all the four dengue virus serotypes were circulating in Punjab Province with highest frequency of DENV-2 (41.64 %) and DENV-3 (41.05 %). Similarly, DENV-2 (41.66 %) and DENV-3 (35.0 %) were dominant serotypes detected in KP-based people lived in Punjab. On the other hand only DENV-2 (40.0 %) and DENV-3 (60.0 %) were detected in Swat District. Furthermore an important observation noted in this study was mixed infection of DENV-2 and DENV-3 in Punjab in 2011 (3.81 %) and in people from KP infected in Punjab (8.33 %) which may account for the high mortality and morbidity rates as compared to previous outbreaks. Over all male population was mostly infected as compared to females and people in the age group between 15 to 45 was the highest infected group. The findings of this study indicate that all four serotypes of dengue virus are circulating in Punjab whereas serotypes 2 and 3 introduced for the first time into Swat, KP in 2013; about 600 km away from Lahore

  8. Identification of bioflavonoid as fusion inhibitor of dengue virus using molecular docking approach

    Directory of Open Access Journals (Sweden)

    Asif Mir

    Full Text Available Dengue virus with four distinct serotypes belongs to Flavivirus, poses a significant threat to human health and becomes an emerging global problem. Membrane fusion is a central molecular event during viral entry into host cell. To prevent viral infection it is necessary to interrupt the virus replication at an early stage of attachment. Dengue Virus (DENV envelope protein experiences conformational changes and it causes the virus to fuse with host cell. Hinge region movement of domain I and II in envelope protein facilitates the fusion process. Small molecules that bind in this pocket may have the ability to interrupt the conformational changes that trigger fusion process. We chose different flavonoids (baicalein, fisetin, hesperetin, naringenin/ naringin, quercetin and rutin that possess anti dengue activity. Molecular docking analysis was done to examine the inhibitory effect of flavonoids against envelope protein of DENV-2. Results manifest quercetin (flavonoid found in Carica papaya, apple and even in lemon as the only flavone that can interrupt the fusion process of virus by inhibiting the hinge region movement and by blocking the conformational rearrangement in envelope protein. These novel findings using computational approach are worthwhile and will be a bridge to check the efficacy of compounds using appropriate animal model under In vivo studies. This information can be used by new techniques and provides a way to control dengue virus infection. Keywords: Dengue virus, Inhibitor identification, Molecular docking, Interaction analysis

  9. Dengue Virus Infection Differentially Regulates Endothelial Barrier Function over Time through Type I Interferon Effects

    Science.gov (United States)

    Liu, Ping; Woda, Marcia; Ennis, Francis A.; Libraty, Daniel H.

    2013-01-01

    Background The morbidity and mortality resulting from dengue hemorrhagic fever (DHF) are largely caused by endothelial barrier dysfunction and a unique vascular leakage syndrome. The mechanisms that lead to the location and timing of vascular leakage in DHF are poorly understood. We hypothesized that direct viral effects on endothelial responsiveness to inflammatory and angiogenesis mediators can explain the DHF vascular leakage syndrome. Methods We used an in vitro model of human endothelium to study the combined effects of dengue virus (DENV) type 2 (DENV2) infection and inflammatory mediators on paracellular macromolecule permeability over time. Results Over the initial 72 h after infection, DENV2 suppressed tumor necrosis factor (TNF)–α–mediated hyperpermeability in human umbilical vein endothelial cell (HUVEC) monolayers. This suppressive effect was mediated by type I interferon (IFN). By 1 week, TNF-α stimulation of DENV2-infected HUVECs synergistically increased cell cycling, angiogenic changes, and macromolecule permeability. This late effect could be prevented by the addition of exogenous type I IFN. Conclusions DENV infection of primary human endothelial cells differentially modulates TNF-α–driven angiogenesis and hyperpermeability over time. Type I IFN plays a central role in this process. Our findings suggest a rational model for the DHF vascular leakage syndrome. PMID:19530939

  10. First evidence of dengue infection in domestic dogs living in different ecological settings in Thailand.

    Directory of Open Access Journals (Sweden)

    Suporn Thongyuan

    Full Text Available Dengue is a vector-borne disease transmitted by Aedes mosquitoes. It is considered an important public health problem in many countries worldwide. However, only a few studies have been conducted on primates and domestic animals that could potentially be a reservoir of dengue viruses. Since domestic dogs share both habitats and vectors with humans, this study aimed to investigate whether domestic dogs living in different ecological settings in dengue endemic areas in Thailand could be naturally infected with dengue viruses.Serum samples were collected from domestic dogs in three different ecological settings of Thailand: urban dengue endemic areas of Nakhon Sawan Province; rubber plantation areas of Rayong Province; and Koh Chang, an island tourist spot of Trat Province. These samples were screened for dengue viral genome by using semi-nested RT-PCR. Positive samples were then inoculated in mosquito and dog cell lines for virus isolation. Supernatant collected from cell culture was tested for the presence of dengue viral genome by semi-nested RT-PCR, then double-strand DNA products were double-pass custom-sequenced. Partial nucleotide sequences were aligned with the sequences already recorded in GenBank, and a phylogenetic tree was constructed. In the urban setting, 632 domestic dog serum samples were screened for dengue virus genome by RT-PCR, and six samples (0.95% tested positive for dengue virus. Four out of six dengue viruses from positive samples were successfully isolated. Dengue virus serotype 2 and serotype 3 were found to have circulated in domestic dog populations. One of 153 samples (0.65% collected from the rubber plantation area showed a PCR-positive result, and dengue serotype 3 was successfully isolated. Partial gene phylogeny revealed that the isolated dengue viruses were closely related to those strains circulating in human populations. None of the 71 samples collected from the island tourist spot showed a positive result

  11. Diabetes mellitus increases severity of thrombocytopenia in dengue-infected patients.

    Science.gov (United States)

    Chen, Chung-Yuan; Lee, Mei-Yueh; Lin, Kun-Der; Hsu, Wei-Hao; Lee, Yaun-Jinn; Hsiao, Pi-Jung; Shin, Shyi-Jang

    2015-02-10

    Diabetes mellitus is known to exacerbate bacterial infection, but its effect on the severity of viral infection has not been well studied. The severity of thrombocytopenia is an indicator of the severity of dengue virus infection. We investigated whether diabetes is associated with thrombocytopenia in dengue-infected patients. We studied clinical characteristics of 644 patients with dengue infection at a university hospital during the epidemic on 1 June 2002 to 31 December 2002 in Taiwan. Platelet counts and biochemical data were compared between patients with and without diabetes. Potential risk factors associated with thrombocytopenia were explored using regression analyses. Dengue-infected patients with diabetes had lower platelet counts than patients without diabetes during the first three days (54.54±51.69 vs. 86.58±63.4 (p≤0.001), 43.98±44.09 vs. 64.52±45.06 (p=0.002), 43.86±35.75 vs. 62.72±51.2 (p=0.012)). Diabetes mellitus, death, dengue shock syndrome (DSS) and dengue hemorrhagic fever (DHF) and increased glutamic-pyruvate transaminase (GPT) levels were significantly associated with lower platelet counts during the first day of hospitalization for dengue fever with regression β of -13.981 (95% confidence interval (CI) -27.587, -0.374), -26.847 (95% CI -37.562, -16.132), and 0.054 (95% CI 0.015, 0.094) respectively. Older age, hypoalbuminemia, and hypertriglyceridemia were independently correlated with thrombocytopenia in dengue patients with or without diabetes with regression β of -2.947 (p=0.004), 2.801 (p=0.005), and -3.568 (p≤0.001), respectively. Diabetic patients with dengue had a higher rate of dengue hemorrhagic fever (DHF)/dengue shock syndrome (DSS) than non-diabetic patients. They also had lower blood albumin, were older, and higher triglyceride levels. Older age, hypoalbuminemia, and hypertriglyceridemia were independently correlated with thrombocytopenia in dengue patients. Dengue patients with diabetes tended to have more severe

  12. Acute neuromuscular weakness associated with dengue infection

    Directory of Open Access Journals (Sweden)

    Harmanjit Singh Hira

    2012-01-01

    Full Text Available Background: Dengue infections may present with neurological complications. Whether these are due to neuromuscular disease or electrolyte imbalance is unclear. Materials and Methods: Eighty-eight patients of dengue fever required hospitalization during epidemic in year 2010. Twelve of them presented with acute neuromuscular weakness. We enrolled them for study. Diagnosis of dengue infection based on clinical profile of patients, positive serum IgM ELISA, NS1 antigen, and sero-typing. Complete hemogram, kidney and liver functions, serum electrolytes, and creatine phosphokinase (CPK were tested. In addition, two patients underwent nerve conduction velocity (NCV test and electromyography. Results: Twelve patients were included in the present study. Their age was between 18 and 34 years. Fever, myalgia, and motor weakness of limbs were most common presenting symptoms. Motor weakness developed on 2 nd to 4 th day of illness in 11 of 12 patients. In one patient, it developed on 10 th day of illness. Ten of 12 showed hypokalemia. One was of Guillain-Barré syndrome and other suffered from myositis; they underwent NCV and electromyography. Serum CPK and SGOT raised in 8 out of 12 patients. CPK of patient of myositis was 5098 IU. All of 12 patients had thrombocytopenia. WBC was in normal range. Dengue virus was isolated in three patients, and it was of serotype 1. CSF was normal in all. Within 24 hours, those with hypokalemia recovered by potassium correction. Conclusions: It was concluded that the dengue virus infection led to acute neuromuscular weakness because of hypokalemia, myositis, and Guillain-Barré syndrome. It was suggested to look for presence of hypokalemia in such patients.

  13. The Medicinal Chemistry of Dengue Virus.

    Science.gov (United States)

    Behnam, Mira A M; Nitsche, Christoph; Boldescu, Veaceslav; Klein, Christian D

    2016-06-23

    The dengue virus and related flaviviruses are an increasing global health threat. In this perspective, we comment on and review medicinal chemistry efforts aimed at the prevention or treatment of dengue infections. We include target-based approaches aimed at viral or host factors and results from phenotypic screenings in cellular assay systems for viral replication. This perspective is limited to the discussion of results that provide explicit chemistry or structure-activity relationship (SAR), or appear to be of particular interest to the medicinal chemist for other reasons. The discovery and development efforts discussed here may at least partially be extrapolated toward other emerging flaviviral infections, such as West Nile virus. Therefore, this perspective, although not aimed at flaviviruses in general, should also be able to provide an overview of the medicinal chemistry of these closely related infectious agents.

  14. Glycosylation of dengue virus glycoproteins and their interactions with carbohydrate receptors: possible targets for antiviral therapy.

    Science.gov (United States)

    Idris, Fakhriedzwan; Muharram, Siti Hanna; Diah, Suwarni

    2016-07-01

    Dengue virus, an RNA virus belonging to the genus Flavivirus, affects 50 million individuals annually, and approximately 500,000-1,000,000 of these infections lead to dengue hemorrhagic fever or dengue shock syndrome. With no licensed vaccine or specific antiviral treatments available to prevent dengue infection, dengue is considered a major public health problem in subtropical and tropical regions. The virus, like other enveloped viruses, uses the host's cellular enzymes to synthesize its structural (C, E, and prM/M) and nonstructural proteins (NS1-5) and, subsequently, to glycosylate these proteins to produce complete and functional glycoproteins. The structural glycoproteins, specifically the E protein, are known to interact with the host's carbohydrate receptors through the viral proteins' N-glycosylation sites and thus mediate the viral invasion of cells. This review focuses on the involvement of dengue glycoproteins in the course of infection and the virus' exploitation of the host's glycans, especially the interactions between host receptors and carbohydrate moieties. We also discuss the recent developments in antiviral therapies that target these processes and interactions, focusing specifically on the use of carbohydrate-binding agents derived from plants, commonly known as lectins, to inhibit the progression of infection.

  15. Dengue Virus Glycosylation: What Do We Know?

    Directory of Open Access Journals (Sweden)

    Sally S. L. Yap

    2017-07-01

    Full Text Available In many infectious diseases caused by either viruses or bacteria, pathogen glycoproteins play important roles during the infection cycle, ranging from entry to successful intracellular replication and host immune evasion. Dengue is no exception. Dengue virus glycoproteins, envelope protein (E and non-structural protein 1 (NS1 are two popular sub-unit vaccine candidates. E protein on the virion surface is the major target of neutralizing antibodies. NS1 which is secreted during DENV infection has been shown to induce a variety of host responses through its binding to several host factors. However, despite their critical role in disease and protection, the glycosylated variants of these two proteins and their biological importance have remained understudied. In this review, we seek to provide a comprehensive summary of the current knowledge on protein glycosylation in DENV, and its role in virus biogenesis, host cell receptor interaction and disease pathogenesis.

  16. Gefitinib and pyrrolidine dithiocarbamate decrease viral replication and cytokine production in dengue virus infected human monocyte cultures.

    Science.gov (United States)

    Duran, Anyelo; Valero, Nereida; Mosquera, Jesús; Fuenmayor, Edgard; Alvarez-Mon, Melchor

    2017-12-15

    The epidermal growth factor receptor (EGFR) and nucleotide-binding and oligomerization-domain containing 2 (NOD2) are important in cancer and in microbial recognition, respectively. These molecules trigger intracellular signaling pathways inducing the expression of inflammatory genes by NF-kB translocation. Gefitinib (GBTC) and pyrrolidine dithiocarbamate (PDTC) are capable of inhibiting EGFR/NOD2 and NF-kB, respectively. In earlier stages of dengue virus (DENV) infection, monocytes are capable of sustaining viral replication and increasing cytokine production, suggesting that monocyte/macrophages play an important role in early DENV replication. GBTC and PDTC have not been used to modify the pathogenesis of DENV in infected cells. This study was aimed to determine the effect of GBTC and PDTC on viral replication and cytokine production in DENV serotype 2 (DENV2)-infected human monocyte cultures. GBTC and PDTC were used to inhibit EGFR/NOD2 and NF-kB, respectively. Cytokine production was measured by ELISA and viral replication by plaque forming unit assay. Increased DENV2 replication and anti-viral cytokine production (IFN-α/β, TNF-α, IL-12 and IL-18) in infected cultures were found. These parameters were decreased after EGFR/NOD2 or NF-kB inhibitions. The inhibitory effects of GBTC and PDTC on viral replication and cytokine production can be beneficial in the treatment of patients infected by dengue and suggest a possible role of EGFR/NOD2 receptors and NF-kB in dengue pathogenesis. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Mathematical modeling on T-cell mediated adaptive immunity in primary dengue infections.

    Science.gov (United States)

    Sasmal, Sourav Kumar; Dong, Yueping; Takeuchi, Yasuhiro

    2017-09-21

    At present, dengue is the most common mosquito-borne viral disease in the world, and the global dengue incidence is increasing day by day due to climate changing. Here, we present a mathematical model of dengue viruses (DENVs) dynamics in micro-environment (cellular level) consisting of healthy cells, infected cells, virus particles and T-cell mediated adaptive immunity. We have considered the explicit role of cytokines and antibody in our model. We find that the virus load goes down to zero within 6 days as it is common for DENV infection. From our analysis, we have identified the important model parameters and done the numerical simulation with respect to such important parameters. We have shown that the cytokine mediated virus clearance plays a very important role in dengue dynamics. It can change the dynamical behavior of the system and causes essential extinction of the virus. Finally, we have incorporated the antiviral treatment for dengue in our model and shown that the basic reproduction number is directly proportional to the antiviral treatment effects. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Dengue Virus NS2B/NS3 Protease Inhibitors Exploiting the Prime Side.

    Science.gov (United States)

    Lin, Kuan-Hung; Ali, Akbar; Rusere, Linah; Soumana, Djade I; Kurt Yilmaz, Nese; Schiffer, Celia A

    2017-05-15

    The mosquito-transmitted dengue virus (DENV) infects millions of people in tropical and subtropical regions. Maturation of DENV particles requires proper cleavage of the viral polyprotein, including processing of 8 of the 13 substrate cleavage sites by dengue virus NS2B/NS3 protease. With no available direct-acting antiviral targeting DENV, NS2/NS3 protease is a promising target for inhibitor design. Current design efforts focus on the nonprime side of the DENV protease active site, resulting in highly hydrophilic and nonspecific scaffolds. However, the prime side also significantly modulates DENV protease binding affinity, as revealed by engineering the binding loop of aprotinin, a small protein with high affinity for DENV protease. In this study, we designed a series of cyclic peptides interacting with both sides of the active site as inhibitors of dengue virus protease. The design was based on two aprotinin loops and aimed to leverage both key specific interactions of substrate sequences and the entropic advantage driving aprotinin's high affinity. By optimizing the cyclization linker, length, and amino acid sequence, the tightest cyclic peptide achieved a K i value of 2.9 μM against DENV3 wild-type (WT) protease. These inhibitors provide proof of concept that both sides of DENV protease active site can be exploited to potentially achieve specificity and lower hydrophilicity in the design of inhibitors targeting DENV. IMPORTANCE Viruses of the flaviviral family, including DENV and Zika virus transmitted by Aedes aegypti , continue to be a threat to global health by causing major outbreaks in tropical and subtropical regions, with no available direct-acting antivirals for treatment. A better understanding of the molecular requirements for the design of potent and specific inhibitors against flaviviral proteins will contribute to the development of targeted therapies for infections by these viruses. The cyclic peptides reported here as DENV protease inhibitors

  19. Risk factors for the incidence of dengue virus infection in preschool children.

    Science.gov (United States)

    Teixeira, Maria G; Morato, Vanessa; Barreto, Florisneide R; Mendes, Carlos M C; Barreto, Maurício L; Costa, Maria da Conceição N

    2012-11-01

    To estimate the seroincidence of dengue in children living in Salvador, Bahia, Brazil and to evaluate the factors associated.   A prospective serological survey was carried out in a sample of children 0-3 years of age. A multilevel logistic model was used to identify the determinants of seroincidence. The seroprevalence of dengue was 26.6% in the 625 children evaluated. A second survey detected an incidence of 33.2%. Multilevel logistic regression showed a statistically significant association between the seroincidence of dengue and age and the premises index. In Salvador, the dengue virus is in active circulation during early childhood; consequently, children have heterotypic antibodies and run a high risk of developing dengue haemorrhagic fever, because the sequence and intensity of the three dengue virus serotypes currently circulating in this city are very similar to those that were circulating in Rio de Janeiro, Brazil, in 2008. Therefore, the authors strongly recommend that the health authorities in cities with a similar epidemiological scenario be aware of this risk and implement improvements in health care, particularly targeting the paediatric age groups. In addition, information should be provided to the population and actions should be implemented to combat this vector. © 2012 Blackwell Publishing Ltd.

  20. Clinical predictors of dengue fever co-infected with leptospirosis among patients admitted for dengue fever - a pilot study.

    Science.gov (United States)

    Suppiah, Jeyanthi; Chan, Shie-Yien; Ng, Min-Wern; Khaw, Yam-Sim; Ching, Siew-Mooi; Mat-Nor, Lailatul Akmar; Ahmad-Najimudin, Naematul Ain; Chee, Hui-Yee

    2017-06-28

    Dengue and leptospirosis infections are currently two major endemics in Malaysia. Owing to the overlapping clinical symptoms between both the diseases, frequent misdiagnosis and confusion of treatment occurs. As a solution, the present work initiated a pilot study to investigate the incidence related to co-infection of leptospirosis among dengue patients. This enables the identification of more parameters to predict the occurrence of co-infection. Two hundred sixty eight serum specimens collected from patients that were diagnosed for dengue fever were confirmed for dengue virus serotyping by real-time polymerase chain reaction. Clinical, laboratory and demographic data were extracted from the hospital database to identify patients with confirmed leptospirosis infection among the dengue patients. Thus, frequency of co-infection was calculated and association of the dataset with dengue-leptospirosis co-infection was statistically determined. The frequency of dengue co-infection with leptospirosis was 4.1%. Male has higher preponderance of developing the co-infection and end result of shock as clinical symptom is more likely present among co-infected cases. It is also noteworthy that, DENV 1 is the common dengue serotype among all cases identified as dengue-leptospirosis co-infection in this study. The increasing incidence of leptospirosis among dengue infected patients has posed the need to precisely identify the presence of co-infection for the betterment of treatment without mistakenly ruling out either one of them. Thus, anticipating the possible clinical symptoms and laboratory results of dengue-leptospirosis co-infection is essential.

  1. Bilateral rectus sheath haematoma complicating dengue virus infection in a patient on warfarin for mechanical aortic valve replacement: a case report.

    Science.gov (United States)

    Rosa, Chamith Thushanga; Navinan, Mitrakrishnan Rayno; Samarawickrama, Sincy; Hamza, Himam; Gunarathne, Maheshika; Arulanantham, Arulprashanth; Subba, Neeha; Samarasiri, Udari; Mathias, Thushara; Kulatunga, Aruna

    2017-01-07

    The management of Dengue virus infection can be challenging. Varied presentations and numerous complications intrinsic to dengue by itself increase the complexity of treatment and potential mortality. When burdened with the presence of additional comorbidities and the need to continue compulsory medications, clear stepwise definitive guidance is lacking and patients tend to have more complex complications and outcomes calling to question the clinical decisions that may have been taken. The use and continuation of warfarin in dengue virus infection is one such example. We report a 65 year old South Asian female who presented with dengue fever. She had a history bronchial asthma, a prior abdominal surgery, and was on warfarin and maintained a therapeutically appropriate internationalized normalized ratio for a mechanical aortic valve replacement. Though preemptive decision to stop warfarin was taken with decreasing platelet counts, her clinical course was complicated with the development of bilateral rectus sheath haematoma's requiring resuscitation with blood transfusions. Though management of dengue viral fever has seen drastic evolution with recent updated guidance, clinical scenarios seen in the course of the illness still pose challenges to the managing physician. The need to continue obligatory anticoagulation which may seem counterintuitive during a complex disease such as dengue virus infection must be considered after understanding the potential risks versus that of its benefits. Though case by case decisions maybe warranted, a clear protocol would be very helpful in making clinical decisions, as the correct preemptive decision may potentially avert catastrophic and unpredictable bleeding events.

  2. Dengue virus infection induces broadly cross-reactive human IgM antibodies that recognize intact virions in humanized BLT-NSG mice.

    Science.gov (United States)

    Jaiswal, Smita; Smith, Kenneth; Ramirez, Alejandro; Woda, Marcia; Pazoles, Pamela; Shultz, Leonard D; Greiner, Dale L; Brehm, Michael A; Mathew, Anuja

    2015-01-01

    The development of small animal models that elicit human immune responses to dengue virus (DENV) is important since prior immunity is a major risk factor for developing severe dengue disease. This study evaluated anti-DENV human antibody (hAb) responses generated from immortalized B cells after DENV-2 infection in NOD-scid IL2rγ(null) mice that were co-transplanted with human fetal thymus and liver tissues (BLT-NSG mice). DENV-specific human antibodies predominantly of the IgM isotype were isolated during acute infection and in convalescence. We found that while a few hAbs recognized the envelope protein produced as a soluble recombinant, a number of hAbs only recognized epitopes on intact virions. The majority of the hAbs isolated during acute infection and in immune mice were serotype-cross-reactive and poorly neutralizing. Viral titers in immune BLT-NSG mice were significantly decreased after challenge with a clinical strain of dengue. DENV-specific hAbs generated in BLT-NSG mice share some of the characteristics of Abs isolated in humans with natural infection. Humanized BLT-NSG mice provide an attractive preclinical platform to assess the immunogenicity of candidate dengue vaccines. © 2014 by the Society for Experimental Biology and Medicine.

  3. piRNA Profiling of Dengue Virus Type 2-Infected Asian Tiger Mosquito and Midgut Tissues

    Directory of Open Access Journals (Sweden)

    Yanhai Wang

    2018-04-01

    Full Text Available The Asian tiger mosquito, Aedes albopictus, is a competent vector for the majority of arboviruses. The mosquito innate immune response is a primary determinant for arthropod-borne virus transmission, and the midgut is the first barrier to pathogen transmission. Mosquito antiviral immunity is primarily mediated by the small interfering RNA pathway. However, the roles that the P-element induced wimpy testis (PIWI-interacting RNA (piRNA pathway play in antiviral immunity in Ae. albopictus and its midgut still need further exploration. This study aimed to explore the profiles of both viral-derived and host-originated piRNAs in the whole body and midgut infected with Dengue virus 2 (DENV-2 in Ae. albopictus, and to elucidate gene expression profile differences of the PIWI protein family between adult females and their midguts. A deep sequencing-based method was used to identify and analyze small non-coding RNAs, especially the piRNA profiles in DENV-2-infected Ae. albopictus and its midgut. The top-ranked, differentially-expressed piRNAs were further validated using Stem-loop qRT-PCR. Bioinformatics analyses and reverse-transcription PCR (RT-PCR methods were used to detect PIWI protein family members, and their expression profiles. DENV-2 derived piRNAs (vpiRNA, 24–30 nts were observed in both infected Ae. albopictus and its midgut; however, only vpiRNA in the whole-body library had a weak preference for adenine at position 10 (10A in the sense molecules as a feature of secondary piRNA. These vpiRNAs were not equally distributed, instead they were derived from a few specific regions of the genome, especially several hot spots, and displayed an obvious positive strand bias. We refer to the differentially expressed host piRNAs after DENV infection as virus-induced host endogenous piRNAs (vepiRNAs. However, we found that vepiRNAs were abundant in mosquito whole-body tissue, but deficient in the midgut. A total of eleven PIWI family genes were

  4. Simultaneous outbreaks of dengue, chikungunya and Zika virus infections: diagnosis challenge in a returning traveller with nonspecific febrile illness

    Directory of Open Access Journals (Sweden)

    E. Moulin

    2016-05-01

    Full Text Available Zika virus is an emerging flavivirus that is following the path of dengue and chikungunya. The three Aedes-borne viruses cause simultaneous outbreaks with similar clinical manifestations which represents a diagnostic challenge in ill returning travellers. We report the first Zika virus infection case imported to Switzerland and present a diagnostic algorithm.

  5. Pathogenesis of vascular leak in dengue virus infection.

    Science.gov (United States)

    Malavige, Gathsaurie Neelika; Ogg, Graham S

    2017-07-01

    Endothelial dysfunction leading to vascular leak is the hallmark of severe dengue. Vascular leak typically becomes clinically evident 3-6 days after the onset of illness, which is known as the critical phase. This critical phase follows the period of peak viraemia, and lasts for 24-48 hr and usually shows rapid and complete reversal, suggesting that it is likely to occur as a result of inflammatory mediators, rather than infection of the endothelium. Cytokines such as tumour necrosis factor-α, which are known to be elevated in the critical phase of dengue, are likely to be contributing factors. Dengue NS1, a soluble viral protein, has also been shown to disrupt the endothelial glycocalyx and thus contribute to vascular leak, although there appears to be a discordance between the timing of NS1 antigenaemia and occurrence of vascular leak. In addition, many inflammatory lipid mediators are elevated in acute dengue viral infection such as platelet activating factor (PAF) and leukotrienes. Furthermore, many other inflammatory mediators such as vascular endothelial growth factor and angiopoietin-2 have been shown to be elevated in patients with dengue haemorrhagic fever, exerting their action in part by inducing the activity of phospholipases, which have diverse inflammatory effects including generation of PAF. Platelets have also been shown to significantly contribute to endothelial dysfunction by production of interleukin-1β through activation of the NLRP3 inflammasome and also by inducing production of inflammatory cytokines by monocytes. Drugs that block down-stream immunological mediator pathways such as PAF may also be beneficial in the treatment of severe disease. © 2017 John Wiley & Sons Ltd.

  6. Dengue-associated kidney disease.

    Science.gov (United States)

    Lizarraga, Karlo J; Nayer, Ali

    2014-01-01

    A mosquito-borne viral illness highly prevalent in the tropics and subtropics, dengue is considered a major global health threat by the World Health Organization. Directory of Open Access Journals (DOAJ), Google Scholar, PubMed (NLM), LISTA (EBSCO) and Web of Science have been searched. An RNA virus from the genus Flavivirus, dengue virus is transmitted by Aedes aegypti,the yellow fever mosquito. Dengue is asymptomatic in as many as one half of infected individuals. Dengue fever is an acute febrile illness accompanied by constitutional symptoms. Dengue hemorrhagic fever and dengue shock syndrome are the severe forms of dengue infection.Dengue infection has been associated with a variety of renal disorders. Acute renal failure is a potential complication of severe dengue infection and is typically associated with hypotension, rhabdomyolysis, or hemolysis. Acute renal failure complicates severe dengue infection in 2-5% of the cases and carries a high mortality rate. Proteinuria has been detected in as high as 74% of patients with severe dengue infection. Hematuria has been reported in up to 12.5% of patients. Various types of glomerulonephritis have been reported during or shortly after dengue infection in humans and mouse models of dengue infection. Mesangial proliferation and immune complex deposition are the dominant histologic features of dengue-associated glomerulonephritis. On a rare occasion, dengue infection is associated with systemic autoimmune disorders involving the kidneys. In the vast majority of cases, dengue infection and associated renal disorders are self-limited.

  7. Comparison of real-time SYBR green dengue assay with real-time taqman RT-PCR dengue assay and the conventional nested PCR for diagnosis of primary and secondary dengue infection

    Science.gov (United States)

    Paudel, Damodar; Jarman, Richard; Limkittikul, Kriengsak; Klungthong, Chonticha; Chamnanchanunt, Supat; Nisalak, Ananda; Gibbons, Robert; Chokejindachai, Watcharee

    2011-01-01

    Background: Dengue fever and dengue hemorrhagic fever are caused by dengue virus. Dengue infection remains a burning problem of many countries. To diagnose acute dengue in the early phase we improve the low cost, rapid SYBR green real time assay and compared the sensitivity and specificity with real time Taqman® assay and conventional nested PCR assay. Aims: To develop low cost, rapid and reliable real time SYBR green diagnostic dengue assay and compare with Taqman real-time assay and conventional nested PCR (modified Lanciotti). Materials and Methods: Eight cultured virus strains were diluted in tenth dilution down to undetectable level by the PCR to optimize the primer, temperature (annealing, and extension and to detect the limit of detection of the assay. Hundred and ninety three ELISA and PCR proved dengue clinical samples were tested with real time SYBR® Green assay, real time Taqman® assay to compare the sensitivity and specificity. Results: Sensitivity and specificity of real time SYBR® green dengue assay (84% and 66%, respectively) was almost comparable to those (81% and 74%) of Taqman real time PCR dengue assay. Real time SYBR® green RT-PCR was equally sensitive in primary and secondary infection while real time Taqman was less sensitive in the secondary infection. Sensitivity of real time Taqman on DENV3 (87%) was equal to SYBR green real time PCR dengue assay. Conclusion: We developed low cost rapid diagnostic SYBR green dengue assay. Further study is needed to make duplex primer assay for the serotyping of dengue virus. PMID:22363089

  8. Diabetes Mellitus Increases Severity of Thrombocytopenia in Dengue-Infected Patients

    Directory of Open Access Journals (Sweden)

    Chung-Yuan Chen

    2015-02-01

    Full Text Available Background: Diabetes mellitus is known to exacerbate bacterial infection, but its effect on the severity of viral infection has not been well studied. The severity of thrombocytopenia is an indicator of the severity of dengue virus infection. We investigated whether diabetes is associated with thrombocytopenia in dengue-infected patients. Methods: We studied clinical characteristics of 644 patients with dengue infection at a university hospital during the epidemic on 1 June 2002 to 31 December 2002 in Taiwan. Platelet counts and biochemical data were compared between patients with and without diabetes. Potential risk factors associated with thrombocytopenia were explored using regression analyses. Results: Dengue-infected patients with diabetes had lower platelet counts than patients without diabetes during the first three days (54.54 ± 51.69 vs. 86.58 ± 63.4 (p ≤ 0.001, 43.98 ± 44.09 vs. 64.52 ± 45.06 (p = 0.002, 43.86 ± 35.75 vs. 62.72 ± 51.2 (p = 0.012. Diabetes mellitus, death, dengue shock syndrome (DSS and dengue hemorrhagic fever (DHF and increased glutamic-pyruvate transaminase (GPT levels were significantly associated with lower platelet counts during the first day of hospitalization for dengue fever with regression β of −13.981 (95% confidence interval (CI −27.587, −0.374, −26.847 (95% CI −37.562, −16.132, and 0.054 (95% CI 0.015, 0.094 respectively. Older age, hypoalbuminemia, and hypertriglyceridemia were independently correlated with thrombocytopenia in dengue patients with or without diabetes with regression β of −2.947 (p = 0.004, 2.801 (p = 0.005, and −3.568 (p ≤ 0.001, respectively. Diabetic patients with dengue had a higher rate of dengue hemorrhagic fever (DHF/dengue shock syndrome (DSS than non-diabetic patients. They also had lower blood albumin, were older, and higher triglyceride levels. Older age, hypoalbuminemia, and hypertriglyceridemia were independently correlated with thrombocytopenia in

  9. A brief review on dengue molecular virology, diagnosis, treatment and prevalence in Pakistan

    OpenAIRE

    Idrees, Sobia; Ashfaq, Usman A

    2012-01-01

    Dengue virus infection is a serious health problem infecting 2.5 billion people worldwide. Dengue is now endemic in more than 100 countries, including Pakistan. Each year hundreds of people get infected with dengue in Pakistan. Currently, there is no vaccine available for the prevention of Dengue virus infection due to four viral serotypes. Dengue infection can cause death of patients in its most severity, meanwhile many antiviral compounds are being tested against dengue virus infection to e...

  10. Dengue viruses in Brazil, 1986-2006 Virus del dengue en Brasil, 1986-2006

    Directory of Open Access Journals (Sweden)

    Rita Maria Ribeiro Nogueira

    2007-11-01

    Full Text Available A total of 4 243 049 dengue cases have been reported in Brazil between 1981 and 2006, including 5 817 cases of dengue hemorrhagic fever/dengue shock syndrome (DHF/DSS and a total of 338 fatal cases. Although all Brazilian regions have been affected, the Northeast and Southeast regions have registered the highest number of notifications. DENV-1 and DENV-4 were isolated for the first time in the Amazon region of Brazil in 1981 and 1982. The disease became a nationwide public health problem following outbreaks of DENV-1 and DENV-2 in the state of Rio de Janeiro in 1986 and 1990, respectively. The introduction of DENV-3 in 2000, also in the state of Rio de Janeiro, led to a severe epidemic with 288 245 reported dengue cases, including 91 deaths. Virus strains that were typed during the 2002 epidemic show that DENV-3 has displaced other dengue virus serotypes and entered new areas, a finding that warrants closer evaluation. Unusual clinical symptoms, including central nervous system involvement, have been observed in dengue patients in at least three regions of the country.En Brasil se han notificado 4 243 049 casos de dengue entre 1981 y 2006, de ellos 5 817 casos de dengue hemorrágico/síndrome de choque por dengue (DH/SCD y un total de 338 casos mortales. A pesar de que la enfermedad ha afectado a todas las regiones brasileñas, el mayor número de casos se ha notificado en las regiones nororiental y suroriental. Los virus del dengue (DENV 1 y 4 se aislaron por primera vez en la región amazónica de Brasil en 1981 y 1982. La enfermedad se convirtió en un problema nacional de salud pública después de los brotes de DENV-1 y DENV-2 en el Estado de Río de Janeiro en 1986 y 1990, respectivamente. La introducción del DENV-3 en 2000, también en el Estado de Río de Janeiro, llevó a una grave epidemia con 288 245 casos notificados de dengue y 91 muertes. Las cepas del virus identificadas durante la epidemia de 2002 demostraron que el DENV-3 ha

  11. Investigating Potential Effects of Dengue Virus Infection and Pre-exposure to DEET on Aedes aegypti Behaviors

    Science.gov (United States)

    2016-02-05

    Investigating Potential Effects of Dengue Virus Infection and Pre-exposure to DEET on Aedes aegypti Behaviors by Victor A...exposure to DEET on Aedes aegypti Behaviors" Name of Candidate: Victor Sugiharto Doctor of Philosophy Degree February 5, 2016 DISSERTATION AND...Infection and Pre-exposure to DEET on Aedes aegypti Behaviors" is appropriately acknowledged and. beyond brief excerpts , is with the permission of

  12. Phylogenetic analysis of Dengue virus 1 isolated from South Minas Gerais, Brazil.

    Science.gov (United States)

    Drumond, Betania Paiva; Fagundes, Luiz Gustavo da Silva; Rocha, Raissa Prado; Fumagalli, Marcilio Jorge; Araki, Carlos Shigueru; Colombo, Tatiana Elisa; Nogueira, Mauricio Lacerda; Castilho, Thiago Elias; da Silveira, Nelson José Freitas; Malaquias, Luiz Cosme Cotta; Coelho, Luiz Felipe Leomil

    2016-01-01

    Dengue is a major worldwide public health problem, especially in the tropical and subtropical regions of the world. Primary infection with a single Dengue virus serotype causes a mild, self-limiting febrile illness called dengue fever. However, a subset of patients who experience secondary infection with a different serotype can progress to a more severe form of the disease, called dengue hemorrhagic fever. The four Dengue virus serotypes (1-4) are antigenically and genetically distinct and each serotype is composed of multiple genotypes. In this study we isolated one Dengue virus 1 serotype, named BR/Alfenas/2012, from a patient with dengue hemorrhagic fever in Alfenas, South Minas Gerais, Brazil and molecular identification was performed based on the analysis of NS5 gene. Swiss mice were infected with this isolate to verify its potential to induce histopathological alterations characteristic of dengue. Liver histopathological analysis of infected animals showed the presence of inflammatory infiltrates, hepatic steatosis, as well as edema, hemorrhage and necrosis focal points. Phylogenetic and evolutionary analyses based on the envelope gene provided evidence that the isolate BR/Alfenas/2012 belongs to genotype V, lineage I and it is probably derived from isolates of Rio de Janeiro, Brazil. The isolate BR/Alfenas/2012 showed two unique amino acids substitutions (SER222THRE and PHE306SER) when compared to other Brazilian isolates from the same genotype/lineage. Molecular models were generated for the envelope protein indicating that the amino acid alteration PHE 306 SER could contribute to a different folding in this region located within the domain III. Further genetic and animal model studies using BR/Alfenas/2012 and other isolates belonging to the same lineage/genotype could help determine the relation of these genetic alterations and dengue hemorrhagic fever in a susceptible population. Copyright © 2015 Sociedade Brasileira de Microbiologia. Published by

  13. Phylogenetic analysis of Dengue virus 1 isolated from South Minas Gerais, Brazil

    Directory of Open Access Journals (Sweden)

    Betania Paiva Drumond

    2016-03-01

    Full Text Available Abstract Dengue is a major worldwide public health problem, especially in the tropical and subtropical regions of the world. Primary infection with a single Dengue virus serotype causes a mild, self-limiting febrile illness called dengue fever. However, a subset of patients who experience secondary infection with a different serotype can progress to a more severe form of the disease, called dengue hemorrhagic fever. The four Dengue virus serotypes (1–4 are antigenically and genetically distinct and each serotype is composed of multiple genotypes. In this study we isolated one Dengue virus 1 serotype, named BR/Alfenas/2012, from a patient with dengue hemorrhagic fever in Alfenas, South Minas Gerais, Brazil and molecular identification was performed based on the analysis of NS5 gene. Swiss mice were infected with this isolate to verify its potential to induce histopathological alterations characteristic of dengue. Liver histopathological analysis of infected animals showed the presence of inflammatory infiltrates, hepatic steatosis, as well as edema, hemorrhage and necrosis focal points. Phylogenetic and evolutionary analyses based on the envelope gene provided evidence that the isolate BR/Alfenas/2012 belongs to genotype V, lineage I and it is probably derived from isolates of Rio de Janeiro, Brazil. The isolate BR/Alfenas/2012 showed two unique amino acids substitutions (SER222THRE and PHE306SER when compared to other Brazilian isolates from the same genotype/lineage. Molecular models were generated for the envelope protein indicating that the amino acid alteration PHE 306 SER could contribute to a different folding in this region located within the domain III. Further genetic and animal model studies using BR/Alfenas/2012 and other isolates belonging to the same lineage/genotype could help determine the relation of these genetic alterations and dengue hemorrhagic fever in a susceptible population.

  14. Spatial and temporal clustering of dengue virus transmission in Thai villages.

    Science.gov (United States)

    Mammen, Mammen P; Pimgate, Chusak; Koenraadt, Constantianus J M; Rothman, Alan L; Aldstadt, Jared; Nisalak, Ananda; Jarman, Richard G; Jones, James W; Srikiatkhachorn, Anon; Ypil-Butac, Charity Ann; Getis, Arthur; Thammapalo, Suwich; Morrison, Amy C; Libraty, Daniel H; Green, Sharone; Scott, Thomas W

    2008-11-04

    Transmission of dengue viruses (DENV), the leading cause of arboviral disease worldwide, is known to vary through time and space, likely owing to a combination of factors related to the human host, virus, mosquito vector, and environment. An improved understanding of variation in transmission patterns is fundamental to conducting surveillance and implementing disease prevention strategies. To test the hypothesis that DENV transmission is spatially and temporally focal, we compared geographic and temporal characteristics within Thai villages where DENV are and are not being actively transmitted. Cluster investigations were conducted within 100 m of homes where febrile index children with (positive clusters) and without (negative clusters) acute dengue lived during two seasons of peak DENV transmission. Data on human infection and mosquito infection/density were examined to precisely (1) define the spatial and temporal dimensions of DENV transmission, (2) correlate these factors with variation in DENV transmission, and (3) determine the burden of inapparent and symptomatic infections. Among 556 village children enrolled as neighbors of 12 dengue-positive and 22 dengue-negative index cases, all 27 DENV infections (4.9% of enrollees) occurred in positive clusters (p availability of piped water in negative clusters (p < 0.01) and greater number of Ae. aegypti pupae per person in positive clusters (p = 0.04). During primarily DENV-4 transmission seasons, the ratio of inapparent to symptomatic infections was nearly 1:1 among child enrollees. Study limitations included inability to sample all children and mosquitoes within each cluster and our reliance on serologic rather than virologic evidence of interval infections in enrollees given restrictions on the frequency of blood collections in children. Our data reveal the remarkably focal nature of DENV transmission within a hyperendemic rural area of Thailand. These data suggest that active school-based dengue case detection

  15. System Dynamics based Dengue modeling environment to simulate evolution of Dengue infection under different climate scenarios

    Science.gov (United States)

    Anwar, R.; Khan, R.; Usmani, M.; Colwell, R. R.; Jutla, A.

    2017-12-01

    Vector borne infectious diseases such as Dengue, Zika and Chikungunya remain a public health threat. An estimate of the World Health Organization (WHO) suggests that about 2.5 billion people, representing ca. 40% of human population,are at increased risk of dengue; with more than 100 million infection cases every year. Vector-borne infections cannot be eradicated since disease causing pathogens survive in the environment. Over the last few decades dengue infection has been reported in more than 100 countries and is expanding geographically. Female Ae. Aegypti mosquito, the daytime active and a major vector for dengue virus, is associated with urban population density and regional climatic processes. However, mathematical quantification of relationships on abundance of vectors and climatic processes remain a challenge, particularly in regions where such data are not routinely collected. Here, using system dynamics based feedback mechanism, an algorithm integrating knowledge from entomological, meteorological and epidemiological processes is developed that has potential to provide ensemble simulations on risk of occurrence of dengue infection in human population. Using dataset from satellite remote sensing, the algorithm was calibrated and validated using actual dengue case data of Iquitos, Peru. We will show results on model capabilities in capturing initiation and peak in the observed time series. In addition, results from several simulation scenarios under different climatic conditions will be discussed.

  16. Understanding the Dengue Viruses and Progress towards Their Control

    Science.gov (United States)

    Gould, Ernest A.

    2013-01-01

    Traditionally, the four dengue virus serotypes have been associated with fever, rash, and the more severe forms, haemorrhagic fever and shock syndrome. As our knowledge as well as understanding of these viruses increases, we now recognise not only that they are causing increasing numbers of human infections but also that they may cause neurological and other clinical complications, with sequelae or fatal consequences. In this review we attempt to highlight some of these features in the context of dengue virus pathogenesis. We also examine some of the efforts currently underway to control this “scourge” of the tropical and subtropical world. PMID:23936833

  17. Potensi Kurkumin dan Pentagamavunon-0 sebagai Anti Viral Dengue - 2

    Directory of Open Access Journals (Sweden)

    Dewi Marbawati

    2015-07-01

    Full Text Available AbstractMore than 40% of the world's population who live in tropical and subtropical regions at risk for dengue infection. Specific and effective antiviral therapies to treat dengue infection has not been found yet. Many researches proved that curcumin has preventive activity againts viruses, such as vasicular stomatis (VSV, HSV 1 and 2, parainfluenza-3, reovirus-1, feline corona virus, feline herpes virus. Curcumin also known to perform the inhibition of ubiquitin - proteasome system that decreasethe production of Japanese encephalitis in neuroblastoma cells. Pentagamavunon-0 (PGV-0 is expected to have better activity than curcumin. This study aims to determine the cytotoxic effect andthe potential of curcumin and PGV-0 as antiviral Dengue-2 on vero cells. Including experimental study. Cytotoxic test performed to obtain a safe concentration of curcumin and PGV-0 on vero cells followed by antiviral test using immunocytochemistry SBPC (Streptavidin Biotin Peroxidase Complex. The results showed that the safe concentrations for curcumin is 6.25 ppm and PGV-0 is 1.5625 ppm based on cytotoxic test to vero cell. The positive rate from Immunocytochemistry test showed that no significant difference between curcumin and PGV-0 treatment. However, when compared with the positive control results are significantly different. We concluded both curcumin and PGV-0 can reduce the positive rate caused Dengue-2 infection at one day incubation.Keywords : Dengue-2, curcumin, pentagamavunon-0 (PGV-0, ImmunocytochemistryAbstrakLebih dari 40 % populasi dunia yang tinggal di daerah tropis dan subtropis mempunyai risiko untuk terjangkit infeksi Dengue. Terapi yang spesifik dan efektif untuk mengobati infeksi Dengue belum ditemukan. Kurkumin terbukti memiliki aktivitas preventif terhadap beberapa virus, antara lain:vasicular stomatis (VSV, HSV 1 dan 2, parainfluenza-3, reovirus-1, feline corona virus, feline herpes virus. Kurkumin juga diketahui mampu melakukan

  18. Antibody Recognition of the Dengue Virus Proteome and Implications for Development of Vaccines

    Science.gov (United States)

    2011-04-01

    Parvovirus B19 empty capsids as antigen carriers for presentation of antigenic detenninants of dengue 2 virus. J. Infect. Dis. 194:790-794. 3... reactiv - ity against other DENV serotypes (1, 35). In contrast to DF, dengue hemorrhagic fever (DHF) is an infrequent but far more serious consequence of...recipients of the tetrava- lent DENV vaccine or from dengue cases owing to antibody cross- reactivity among serotypes (29). Furthermore, as results from

  19. Activation of TLR2 and TLR6 by Dengue NS1 Protein and Its Implications in the Immunopathogenesis of Dengue Virus Infection.

    Directory of Open Access Journals (Sweden)

    Jincheng Chen

    2015-07-01

    Full Text Available Dengue virus (DV infection is the most prevalent mosquito-borne viral disease and its manifestation has been shown to be contributed in part by the host immune responses. In this study, pathogen recognition receptors, Toll-like receptor (TLR 2 and TLR6 were found to be up-regulated in DV-infected human PBMC using immunofluorescence staining, flow cytometry and Western blot analyses. Using ELISA, IL-6 and TNF-α, cytokines downstream of TLR2 and TLR6 signaling pathways were also found to be up-regulated in DV-infected PBMC. IL-6 and TNF-α production by PBMC were reduced when TLR2 and TLR6 were blocked using TLR2 and TLR6 neutralizing antibodies during DV infection. These results suggested that signaling pathways of TLR2 and TLR6 were activated during DV infection and its activation contributed to IL-6 and TNF-α production. DV NS1 protein was found to significantly increase the production of IL-6 and TNF-α when added to PBMC. The amount of IL-6 and TNF-α stimulated by DV NS1 protein was reduced when TLR2 and TLR6 were blocked, suggesting that DV NS1 protein is the viral protein responsible for the activation of TLR2 and TLR6 during DV infection. Secreted alkaline phosphatase (SEAP reporter assay was used to further confirm activation of TLR2 and TLR6 by DV NS1 protein. In addition, DV-infected and DV NS1 protein-treated TLR6-/- mice have higher survivability compared to DV-infected and DV NS1 protein-treated wild-type mice. Hence, activation of TLR6 via DV NS1 protein could potentially play an important role in the immunopathogenesis of DV infection.

  20. Ficus septica plant extracts for treating Dengue virus in vitro

    Directory of Open Access Journals (Sweden)

    Nan-Chieh Huang

    2017-06-01

    Full Text Available Dengue virus types 1-4 (DENV-1-4 are positive-strand RNA viruses with an envelope that belongs to the Flaviviridae. DENV infection threatens human health worldwide. However, other than supportive treatments, no specific therapy is available for the infection. In order to discover novel medicine against DENV, we tested 59 crude extracts, without cytotoxicity, from 23 plants in vitro; immunofluorescence assay revealed that the methanol extracts of fruit, heartwood, leaves and stem from Ficus septica Burm. f. had a promising anti-DENV-1 and DENV-2 effect. However, infection with the non-envelope picornavirus, Aichi virus, was not inhibited by treatment with F. septica extracts. F. septica may be a candidate antiviral drug against an enveloped virus such as DENV.

  1. T-cell Responses in Individuals Infected with Zika Virus and in Those Vaccinated Against Dengue Virus

    Directory of Open Access Journals (Sweden)

    Dominic Paquin-Proulx

    2017-06-01

    Full Text Available Background: The outbreak of Zika virus (ZIKV infection in Brazil has raised concerns that infection during pregnancy could cause microcephaly and other severe neurodevelopmental malformations in the fetus. The mechanisms by which ZIKV causes fetal abnormalities are largely unknown. The importance of pre-infection with dengue virus (DENV, or other flaviviruses endemic to Brazil, remains to be investigated. It has been reported that antibodies directed against DENV can increase ZIKV infectivity by antibody dependent enhancement (ADE, suggesting that a history of prior DENV infection might worsen the outcome of ZIKV infection. Methods: We used bioinformatics tools to design 18 peptides from the ZIKV envelope containing predicted HLA-I T-cell epitopes and investigated T-cell cross-reactivity between ZIKV-infected individuals and DENV-vaccinated subjects by IFNg ELISPOT. Results: Three peptides induced IFNg production in both ZIKV-infected subjects and in DENV-vaccinated individuals. Flow cytometry indicated that 1 ZIKV peptide induced a CD4+ T-cell response in DENV-vaccinated subjects. Conclusions: We demonstrated that vaccination against DENV induced a T-cell response against ZIKV and identified one such CD4+ T-cell epitope. The ZIKV-reactive CD4+ T cells induced by DENV vaccination and identified in this study could contribute to the appearance of cross-reactive antibodies mediating ADE.

  2. T-cell Responses in Individuals Infected with Zika Virus and in Those Vaccinated Against Dengue Virus.

    Science.gov (United States)

    Paquin-Proulx, Dominic; Leal, Fabio E; Terrassani Silveira, Cassia G; Maestri, Alvino; Brockmeyer, Claudia; Kitchen, Shannon M; Cabido, Vinicius D; Kallas, Esper G; Nixon, Douglas F

    2017-01-01

    The outbreak of Zika virus (ZIKV) infection in Brazil has raised concerns that infection during pregnancy could cause microcephaly and other severe neurodevelopmental malformations in the fetus. The mechanisms by which ZIKV causes fetal abnormalities are largely unknown. The importance of pre-infection with dengue virus (DENV), or other flaviviruses endemic to Brazil, remains to be investigated. It has been reported that antibodies directed against DENV can increase ZIKV infectivity by antibody dependent enhancement (ADE), suggesting that a history of prior DENV infection might worsen the outcome of ZIKV infection. We used bioinformatics tools to design 18 peptides from the ZIKV envelope containing predicted HLA-I T-cell epitopes and investigated T-cell cross-reactivity between ZIKV-infected individuals and DENV-vaccinated subjects by IFNγ ELISPOT. Three peptides induced IFNγ production in both ZIKV-infected subjects and in DENV-vaccinated individuals. Flow cytometry indicated that 1 ZIKV peptide induced a CD4+ T-cell response in DENV-vaccinated subjects. We demonstrated that vaccination against DENV induced a T-cell response against ZIKV and identified one such CD4+ T-cell epitope. The ZIKV-reactive CD4+ T cells induced by DENV vaccination and identified in this study could contribute to the appearance of cross-reactive antibodies mediating ADE.

  3. Longitudinal extensive transverse myelitis with cervical epidural haematoma following dengue virus infection.

    Science.gov (United States)

    Fong, Choong Yi; Hlaing, Chaw Su; Tay, Chee Geap; Kadir, Khairul Azmi Abdul; Goh, Khean Jin; Ong, Lai Choo

    2016-05-01

    Longitudinal extensive transverse myelitis associated with dengue infection is rare with no reported paediatric cases. We report a 12-year-old girl who presented with flaccid quadriplegia 8 days after onset of acute dengue fever. MRI spine showed T2 hyperintensity associated with epidural hematoma at C3-C6 level of the spinal cord. Transcranial magnetic brain stimulation revealed absent motor evoked potentials bilaterally. We also summarise and compare the reported cases of transverse myelitis associated with dengue infection. Immunomodulatory treatment was given which included pulse methylprednisolone, intravenous immunoglobulin and plasmapharesis. Six months post-admission, there was a good (near-complete) clinical recovery with the repeat MRI showing mild residual hyperintensity at C4 level and complete resolution of epidural haematoma. This is the first reported paediatric case of longitudinal extensive transverse myelitis following dengue infection. It is also the first to illustrate that in patients with concomitant epidural haematoma a good outcome is possible despite not having surgical decompression. Clinicians should be aware of parainfectious dengue-related longitudinal extensive transverse myelitis in children and consider prompt immunomodulatory treatment. Copyright © 2016 European Paediatric Neurology Society. Published by Elsevier Ltd. All rights reserved.

  4. Detection of Immune-Complex Dissociated Nonstructural-1 (NS-1) Antigen in Patients with Acute Dengue Virus Infections

    NARCIS (Netherlands)

    P. Koraka (Penelope); C.P. Burghoorn-Maas; A. Falconar; T.E. Setiati (Tatty); K. Djamiatun; J. Groen (Jan); A.D.M.E. Osterhaus (Albert)

    2003-01-01

    textabstractAccurate and timely diagnosis of dengue virus (DEN) infections is essential for the differential diagnosis of patients with febrile illness and hemorrhagic fever. In the present study, the diagnostic value of a newly developed immune-complex dissociated nonstructural-1 (NS-1) antigen dot

  5. Performance of commercial dengue NS1 ELISA and molecular analysis of NS1 gene of dengue viruses obtained during surveillance in Indonesia.

    Science.gov (United States)

    Aryati, Aryati; Trimarsanto, Hidayat; Yohan, Benediktus; Wardhani, Puspa; Fahri, Sukmal; Sasmono, R Tedjo

    2013-12-29

    Early diagnosis of dengue infection is crucial for better management of the disease. Diagnostic tests based on the detection of dengue virus (DENV) Non Structural Protein 1 (NS1) antigen are commercially available with different sensitivities and specificities observed in various settings. Dengue is endemic in Indonesia and clinicians are increasingly using the NS1 detection for dengue confirmation. This study described the performance of Panbio Dengue Early NS1 and IgM Capture ELISA assays for dengue detection during our surveillance in eight cities in Indonesia as well as the genetic diversity of DENV NS1 genes and its relationship with the NS1 detection. The NS1 and IgM/IgG ELISA assays were used for screening and confirmation of dengue infection during surveillance in 2010-2012. Collected serum samples (n = 440) were subjected to RT-PCR and virus isolation, in which 188 samples were confirmed for dengue infection. The positivity of the ELISA assays were correlated with the RT-PCR results to obtain the sensitivity of the assays. The NS1 genes of 48 Indonesian virus isolates were sequenced and their genetic characteristics were studied. Using molecular data as gold standard, the sensitivity of NS1 ELISA assay for samples from Indonesia was 56.4% while IgM ELISA was 73.7%. When both NS1 and IgM results were combined, the sensitivity increased to 89.4%. The NS1 sensitivity varied when correlated with city/geographical origins and DENV serotype, in which the lowest sensitivity was observed for DENV-4 (19.0%). NS1 sensitivity was higher in primary (67.6%) compared to secondary infection (48.2%). The specificity of NS1 assay for non-dengue samples were 100%. The NS1 gene sequence analysis of 48 isolates revealed the presence of polymorphisms of the NS1 genes which apparently did not influence the NS1 sensitivity. We observed a relatively low sensitivity of NS1 ELISA for dengue detection on RT-PCR-positive dengue samples. The detection rate increased significantly

  6. Immunopathogenesis of Dengue Virus-Induced Redundant Cell Death: Apoptosis and Pyroptosis.

    Science.gov (United States)

    Suwanmanee, San; Luplertlop, Natthanej

    Dengue virus infection is a self-limited condition, which is of particular importance in tropical and subtropical regions and for which no specific treatment or effective vaccine is available. There are several hypotheses explaining dengue pathogenesis. These usually refer to host immune responses, including antibody-dependent enhancement, cytokine expression, and dengue virus particles including NS1 protein, which lead to cell death by both apoptosis and pyroptosis. A clear understanding of the pathogenesis should facilitate the development of vaccines and therapies. This review focuses on the immunopathogenesis in relation to clinical manifestations and patterns of cell death, focusing on the pathogenesis of severe dengue.

  7. Catalase protects Aedes aegypti from oxidative stress and increases midgut infection prevalence of Dengue but not Zika.

    Science.gov (United States)

    Oliveira, José Henrique M; Talyuli, Octávio A C; Goncalves, Renata L S; Paiva-Silva, Gabriela Oliveira; Sorgine, Marcos Henrique F; Alvarenga, Patricia Hessab; Oliveira, Pedro L

    2017-04-01

    Digestion of blood in the midgut of Aedes aegypti results in the release of pro-oxidant molecules that can be toxic to the mosquito. We hypothesized that after a blood meal, the antioxidant capacity of the midgut is increased to protect cells against oxidative stress. Concomitantly, pathogens present in the blood ingested by mosquitoes, such as the arboviruses Dengue and Zika, also have to overcome the same oxidative challenge, and the antioxidant program induced by the insect is likely to influence infection status of the mosquito and its vectorial competence. We found that blood-induced catalase mRNA and activity in the midgut peaked 24 h after feeding and returned to basal levels after the completion of digestion. RNAi-mediated silencing of catalase (AAEL013407-RB) reduced enzyme activity in the midgut epithelia, increased H2O2 leakage and decreased fecundity and lifespan when mosquitoes were fed H2O2. When infected with Dengue 4 and Zika virus, catalase-silenced mosquitoes showed no alteration in infection intensity (number of plaque forming units/midgut) 7 days after the infectious meal. However, catalase knockdown reduced Dengue 4, but not Zika, infection prevalence (percent of infected midguts). Here, we showed that blood ingestion triggers an antioxidant response in the midgut through the induction of catalase. This protection facilitates the establishment of Dengue virus in the midgut. Importantly, this mechanism appears to be specific for Dengue because catalase silencing did not change Zika virus prevalence. In summary, our data suggest that redox balance in the midgut modulates mosquito vectorial competence to arboviral infections.

  8. Detection of dengue virus type 4 in Easter Island, Chile.

    Science.gov (United States)

    Fernández, J; Vera, L; Tognarelli, J; Fasce, R; Araya, P; Villagra, E; Roos, O; Mora, J

    2011-10-01

    We report the detection of dengue virus type 4 (DENV-4) for the first time in Easter Island, Chile. The virus was detected in serum samples of two patients treated at the Hospital in Easter Island. The two samples were IgM positive, and the infection was confirmed by RT-PCR and genetic sequencing; viral isolation was possible with one of them. The Easter Island isolates were most closely related to genotype II of dengue type 4.

  9. Prevalence of dengue and chikungunya virus infections in north-eastern Tanzania

    DEFF Research Database (Denmark)

    Kajeguka, Debora C; Kaaya, Robert D; Mwakalinga, Steven

    2016-01-01

    BACKGROUND: In spite of increasing reports of dengue and chikungunya activity in Tanzania, limited research has been done to document the general epidemiology of dengue and chikungunya in the country. This study aimed at determining the sero-prevalence and prevalence of acute infections of dengue......-like symptoms at health facilities at Bondo dispensary (Bondo, Tanga), Hai hospital (Hai, Kilimanjaro) and TPC hospital (Lower Moshi). Participants who were malaria negative using rapid diagnostic tests (mRDT) were screened for sero-positivity towards dengue and chikungunya Immunoglobulin G and M (IgG and Ig......M) using ELISA-based kits. Participants with specific symptoms defined as probable dengue and/or chikungunya by WHO (fever and various combinations of symptoms such as headache, rash, nausea/vomit, and joint pain) were further screened for acute dengue and chikungunya infections by PCR. RESULTS: Out...

  10. Evidence of dengue virus transmission and factors associated with the presence of anti-dengue virus antibodies in humans in three major towns in Cameroon.

    Science.gov (United States)

    Demanou, Maurice; Pouillot, Régis; Grandadam, Marc; Boisier, Pascal; Kamgang, Basile; Hervé, Jean Pierre; Rogier, Christophe; Rousset, Dominique; Paupy, Christophe

    2014-07-01

    Dengue is not well documented in Africa. In Cameroon, data are scarce, but dengue infection has been confirmed in humans. We conducted a study to document risk factors associated with anti-dengue virus Immunoglobulin G seropositivity in humans in three major towns in Cameroon. A cross sectional survey was conducted in Douala, Garoua and Yaounde, using a random cluster sampling design. Participants underwent a standardized interview and were blood sampled. Environmental and housing characteristics were recorded. Randomized houses were prospected to record all water containers, and immature stages of Aedes mosquitoes were collected. Sera were screened for anti-dengue virus IgG and IgM antibodies. Risk factors of seropositivity were tested using logistic regression methods with random effects. Anti-dengue IgG were found from 61.4% of sera in Douala (n = 699), 24.2% in Garoua (n = 728) and 9.8% in Yaounde (n = 603). IgM were found from 0.3% of Douala samples, 0.1% of Garoua samples and 0.0% of Yaounde samples. Seroneutralization on randomly selected IgG positive sera showed that 72% (n = 100) in Douala, 80% (n = 94) in Garoua and 77% (n = 66) in Yaounde had antibodies specific for dengue virus serotype 2 (DENV-2). Age, temporary house walls materials, having water-storage containers, old tires or toilets in the yard, having no TV, having no air conditioning and having travelled at least once outside the city were independently associated with anti-dengue IgG positivity in Douala. Age, having uncovered water containers, having no TV, not being born in Garoua and not breeding pigs were significant risk factors in Garoua. Recent history of malaria, having banana trees and stagnant water in the yard were independent risk factors in Yaounde. In this survey, most identified risk factors of dengue were related to housing conditions. Poverty and underdevelopment are central to the dengue epidemiology in Cameroon.

  11. Evidence of dengue virus transmission and factors associated with the presence of anti-dengue virus antibodies in humans in three major towns in Cameroon.

    Directory of Open Access Journals (Sweden)

    Maurice Demanou

    2014-07-01

    Full Text Available Dengue is not well documented in Africa. In Cameroon, data are scarce, but dengue infection has been confirmed in humans. We conducted a study to document risk factors associated with anti-dengue virus Immunoglobulin G seropositivity in humans in three major towns in Cameroon.A cross sectional survey was conducted in Douala, Garoua and Yaounde, using a random cluster sampling design. Participants underwent a standardized interview and were blood sampled. Environmental and housing characteristics were recorded. Randomized houses were prospected to record all water containers, and immature stages of Aedes mosquitoes were collected. Sera were screened for anti-dengue virus IgG and IgM antibodies. Risk factors of seropositivity were tested using logistic regression methods with random effects. Anti-dengue IgG were found from 61.4% of sera in Douala (n = 699, 24.2% in Garoua (n = 728 and 9.8% in Yaounde (n = 603. IgM were found from 0.3% of Douala samples, 0.1% of Garoua samples and 0.0% of Yaounde samples. Seroneutralization on randomly selected IgG positive sera showed that 72% (n = 100 in Douala, 80% (n = 94 in Garoua and 77% (n = 66 in Yaounde had antibodies specific for dengue virus serotype 2 (DENV-2. Age, temporary house walls materials, having water-storage containers, old tires or toilets in the yard, having no TV, having no air conditioning and having travelled at least once outside the city were independently associated with anti-dengue IgG positivity in Douala. Age, having uncovered water containers, having no TV, not being born in Garoua and not breeding pigs were significant risk factors in Garoua. Recent history of malaria, having banana trees and stagnant water in the yard were independent risk factors in Yaounde.In this survey, most identified risk factors of dengue were related to housing conditions. Poverty and underdevelopment are central to the dengue epidemiology in Cameroon.

  12. Roles of Interferons in Pregnant Women with Dengue Infection: Protective or Dangerous Factors

    Directory of Open Access Journals (Sweden)

    Hao Zhang

    2017-01-01

    Full Text Available Dengue infection is a serious public health problem in tropical and subtropical areas. With the recent outbreaks of Zika disease and its reported correlation with microcephaly, the large number of pregnancies with dengue infection has become a serious concern. This review describes the epidemiological characteristics of pregnancy with dengue and the initial immune response to dengue infection, especially in IFNs production in this group of patients. Dengue is much more prevalent in pregnant women compared with other populations. The severity of dengue is correlated with the level of IFNs, while the serum IFN level must be sufficiently high to maintain the pregnancy and to inhibit virus replication.

  13. Estimates of dengue force of infection in children in Colombo, Sri Lanka.

    Directory of Open Access Journals (Sweden)

    Clarence C Tam

    Full Text Available Dengue is the most important vector-borne viral disease worldwide and a major cause of childhood fever burden in Sri Lanka, which has experienced a number of large epidemics in the past decade. Despite this, data on the burden and transmission of dengue virus in the Indian Subcontinent are lacking. As part of a longitudinal fever surveillance study, we conducted a dengue seroprevalence survey among children aged <12 years in Colombo, Sri Lanka. We used a catalytic model to estimate the risk of primary infection among seronegative children. Over 50% of children had IgG antibodies to dengue virus and seroprevalence increased with age. The risk of primary infection was 14.1% per year (95% CI: 12.7%-15.6%, indicating that among initially seronegative children, approximately 1 in 7 experience their first infection within 12 months. There was weak evidence to suggest that the force of primary infection could be lower for children aged 6 years and above. We estimate that there are approximately 30 primary dengue infections among children <12 years in the community for every case notified to national surveillance, although this ratio is closer to 100:1 among infants. Dengue represents a considerable infection burden among children in urban Sri Lanka, with levels of transmission comparable to those in the more established epidemics of Southeast Asia.

  14. Dengue

    Science.gov (United States)

    Dengue is an infection caused by a virus. You can get it if an infected mosquito bites you. Dengue does not spread from person to person. It ... the world. Outbreaks occur in the rainy season. Dengue is rare in the United States. Symptoms include ...

  15. Coinfection with influenza A(H1N1)pdm09 and dengue virus in fatal cases.

    Science.gov (United States)

    Perdigão, Anne Carolinne Bezerra; Ramalho, Izabel Letícia Cavalcante; Guedes, Maria Izabel Florindo; Braga, Deborah Nunes Melo; Cavalcanti, Luciano Pamplona Góes; Melo, Maria Elisabeth Lisboa de; Araújo, Rafael Montenegro de Carvalho; Lima, Elza Gadelha; Silva, Luciene Alexandre Bié da; Araújo, Lia de Carvalho; Araújo, Fernanda Montenegro de Carvalho

    2016-09-01

    We report on four patients with fatal influenza A(H1N1)pdm09 and dengue virus coinfections. Clinical, necropsy and histopathologic findings presented in all cases were characteristic of influenza-dengue coinfections, and all were laboratory-confirmed for both infections. The possibility of influenza and dengue coinfection should be considered in locations where these two viruses' epidemic periods coincide to avoid fatal outcomes. Dengue is a mosquito-borne viral infection caused by one of the four dengue viruses (DENV-1 to 4). Each of these viruses is capable of causing nonspecific febrile illnesses, classic dengue fever and dengue haemorrhagic fever (Gubler 1998). As a result, dengue is often difficult to diagnose clinically, especially because peak dengue season often coincides with that of other common febrile illnesses in tropical regions (Chacon et al. 2015). In April 2009, a new virus, influenza A/H1N1/pandemic (FluA/H1N1/09pdm), caused a severe outbreak in Mexico. The virus quickly spread throughout the world, and in June 2009, the World Health Organization declared a pandemic (WHO 2010). In Brazil, the first laboratory confirmed case of FluA/H1N1/09pdm was in July 2009 (Pires Neto et al. 2013). The state of Ceará, in Northeast Brazil, is a dengue endemic area. In this state, the virus influenza A(H1N1)pdm09 has circulated since 2009, and through the first half of 2012, 11 deaths caused by the virus were confirmed (Pires Neto et al. 2013). The influenza and dengue seasons in Ceará overlap, which led to diagnostic difficulties. We report four cases of laboratory-confirmed coinfection of deadly influenza A(H1N1)pdm09 with DENV, which occurred during the dengue and influenza season in 2012 and 2013 in Ceará.

  16. PERK Signal-Modulated Protein Translation Promotes the Survivability of Dengue 2 Virus-Infected Mosquito Cells and Extends Viral Replication.

    Science.gov (United States)

    Hou, Jiun-Nan; Chen, Tien-Huang; Chiang, Yi-Hsuan; Peng, Jing-Yun; Yang, Tsong-Han; Cheng, Chih-Chieh; Sofiyatun, Eny; Chiu, Cheng-Hsun; Chiang-Ni, Chuan; Chen, Wei-June

    2017-09-20

    Survival of mosquitoes from dengue virus (DENV) infection is a prerequisite of viral transmission to the host. This study aimed to see how mosquito cells can survive the infection during prosperous replication of the virus. In C6/36 cells, global protein translation was shut down after infection by DENV type 2 (DENV2). However, it returned to a normal level when infected cells were treated with an inhibitor of the protein kinase RNA (PKR)-like ER kinase (PERK) signaling pathway. Based on a 7-Methylguanosine 5'-triphosphate (m7GTP) pull-down assay, the eukaryotic translation initiation factor 4F (eIF4F) complex was also identified in DENV2-infected cells. This suggests that most mosquito proteins are synthesized via canonical cap-dependent translation. When the PERK signal pathway was inhibited, both accumulation of reactive oxygen species and changes in the mitochondrial membrane potential increased. This suggested that ER stress response was alleviated through the PERK-mediated shutdown of global proteins in DENV2-infected C6/36 cells. In the meantime, the activities of caspases-9 and -3 and the apoptosis-related cell death rate increased in C6/36 cells with PERK inhibition. This reflected that the PERK-signaling pathway is involved in determining cell survival, presumably by reducing DENV2-induced ER stress. Looking at the PERK downstream target, α-subunit of eukaryotic initiation factor 2 (eIF2α), an increased phosphorylation status was only shown in infected C6/36 cells. This indicated that recruitment of ribosome binding to the mRNA 5'-cap structure could have been impaired in cap-dependent translation. It turned out that shutdown of cellular protein translation resulted in a pro-survival effect on mosquito cells in response to DENV2 infection. As synthesis of viral proteins was not affected by the PERK signal pathway, an alternate mode other than cap-dependent translation may be utilized. This finding provides insights into elucidating how the PERK signal

  17. Cytotoxic CD4 T Cells: Differentiation, Function, and Application to Dengue Virus Infection.

    Science.gov (United States)

    Tian, Yuan; Sette, Alessandro; Weiskopf, Daniela

    2016-01-01

    Dengue virus (DENV) has spread through most tropical and subtropical areas of the world and represents a serious public health problem. The control of DENV infection has not yet been fully successful due to lack of effective therapeutics or vaccines. Nevertheless, a better understanding of the immune responses against DENV infection may reveal new strategies for eliciting and improving antiviral immunity. T cells provide protective immunity against various viral infections by generating effector cells that cooperate to eliminate antigens and memory cells that can survive for long periods with enhanced abilities to control recurring pathogens. Following activation, CD8 T cells can migrate to sites of infection and kill infected cells, whereas CD4 T cells contribute to the elimination of pathogens by trafficking to infected tissues and providing help to innate immune responses, B cells, as well as CD8 T cells. However, it is now evident that CD4 T cells can also perform cytotoxic functions and induce the apoptosis of target cells. Importantly, accumulating studies demonstrate that cytotoxic CD4 T cells develop following DENV infections and may play a crucial role in protecting the host from severe dengue disease. We review our current understanding of the differentiation and function of cytotoxic CD4 T cells, with a focus on DENV infection, and discuss the potential of harnessing these cells for the prevention and treatment of DENV infection and disease.

  18. A lethal model of disseminated dengue virus type 1 infection in AG129 mice.

    Science.gov (United States)

    Milligan, Gregg N; Sarathy, Vanessa V; White, Mellodee M; Greenberg, M Banks; Campbell, Gerald A; Pyles, Richard B; Barrett, Alan D T; Bourne, Nigel

    2017-10-01

    The mosquito-borne disease dengue is caused by four serologically and genetically related flaviviruses termed DENV-1 to DENV-4. Dengue is a global public health concern, with both the geographical range and burden of disease increasing rapidly. Clinically, dengue ranges from a relatively mild self-limiting illness to a severe life-threatening and sometimes fatal disease. Infection with one DENV serotype produces life-long homotypic immunity, but incomplete and short-term heterotypic protection. The development of small-animal models that recapitulate the characteristics of the disseminated disease seen clinically has been difficult, slowing the development of vaccines and therapeutics. The AG129 mouse (deficient in interferon alpha/beta and gamma receptor signalling) has proven to be valuable for this purpose, with the development of models of disseminated DENV-2,-3 and -4 disease. Recently, a DENV-1 AG129 model was described, but it requires antibody-dependent enhancement (ADE) to produce lethality. Here we describe a new AG129 model utilizing a non-mouse-adapted DENV-1 strain, West Pacific 74, that does not require ADE to induce lethal disease. Following high-titre intraperitoneal challenge, animals experience a virus infection with dissemination to multiple visceral tissues, including the liver, spleen and intestine. The animals also become thrombocytopenic, but vascular leakage is less prominent than in AG129 models with other DENV serotypes. Taken together, our studies demonstrate that this model is an important addition to dengue research, particularly for understanding the pathological basis of the disease between DENV serotypes and allowing the full spectrum of activity to test comparisons for putative vaccines and antivirals.

  19. Dengue Virus Infection of Aedes aegypti Requires a Putative Cysteine Rich Venom Protein.

    Directory of Open Access Journals (Sweden)

    Berlin Londono-Renteria

    2015-10-01

    Full Text Available Dengue virus (DENV is a mosquito-borne flavivirus that causes serious human disease and mortality worldwide. There is no specific antiviral therapy or vaccine for DENV infection. Alterations in gene expression during DENV infection of the mosquito and the impact of these changes on virus infection are important events to investigate in hopes of creating new treatments and vaccines. We previously identified 203 genes that were ≥5-fold differentially upregulated during flavivirus infection of the mosquito. Here, we examined the impact of silencing 100 of the most highly upregulated gene targets on DENV infection in its mosquito vector. We identified 20 genes that reduced DENV infection by at least 60% when silenced. We focused on one gene, a putative cysteine rich venom protein (SeqID AAEL000379; CRVP379, whose silencing significantly reduced DENV infection in Aedes aegypti cells. Here, we examine the requirement for CRVP379 during DENV infection of the mosquito and investigate the mechanisms surrounding this phenomenon. We also show that blocking CRVP379 protein with either RNAi or specific antisera inhibits DENV infection in Aedes aegypti. This work identifies a novel mosquito gene target for controlling DENV infection in mosquitoes that may also be used to develop broad preventative and therapeutic measures for multiple flaviviruses.

  20. Differential oxidative stress induced by dengue virus in monocytes from human neonates, adult and elderly individuals.

    Directory of Open Access Journals (Sweden)

    Nereida Valero

    Full Text Available Changes in immune response during lifespan of man are well known. These changes involve decreased neonatal and elderly immune response. In addition, it has been shown a relationship between immune and oxidative mechanisms, suggesting that altered immune response could be associated to altered oxidative response. Increased expression of nitric oxide (NO has been documented in dengue and in monocyte cultures infected with different types of dengue virus. However, there is no information about the age-dependent NO oxidative response in humans infected by dengue virus. In this study, monocyte cultures from neonatal, elderly and adult individuals (n = 10 each group were infected with different dengue virus types (DENV- 1 to 4 and oxidative/antioxidative responses and apoptosis were measured at days 1 and 3 of culture. Increased production of NO, lipid peroxidation and enzymatic and nonenzymatic anti-oxidative responses in dengue infected monocyte cultures were observed. However, neonatal and elderly monocytes had lower values of studied parameters when compared to those in adult-derived cultures. Apoptosis was present in infected monocytes with higher values at day 3 of culture. This reduced oxidant/antioxidant response of neonatal and elderly monocytes could be relevant in the pathogenesis of dengue disease.

  1. Role of CD137 signaling in dengue virus-mediated apoptosis

    International Nuclear Information System (INIS)

    Nagila, Amar; Netsawang, Janjuree; Srisawat, Chatchawan; Noisakran, Sansanee; Morchang, Atthapan; Yasamut, Umpa; Puttikhunt, Chunya; Kasinrerk, Watchara

    2011-01-01

    Highlights: → For the first time the role of CD137 in dengue virus (DENV) infection. → Induction of DENV-mediated apoptosis by CD137 signaling. → Sensitization to CD137-mediated apoptosis by dengue virus capsid protein (DENV C). → Nuclear localization of DENV C is required for CD137-mediated apoptosis. -- Abstract: Hepatic dysfunction is a well recognized feature of dengue virus (DENV) infection. However, molecular mechanisms of hepatic injury are still poorly understood. A complex interaction between DENV and the host immune response contributes to DENV-mediated tissue injury. DENV capsid protein (DENV C) physically interacts with the human death domain-associated protein Daxx. A double substitution mutation in DENV C (R85A/K86A) abrogates Daxx interaction, nuclear localization and apoptosis. Therefore we compared the expression of cell death genes between HepG2 cells expressing DENV C and DENV C (R85A/K86A) using a real-time PCR array. Expression of CD137, which is a member of the tumor necrosis factor receptor family, increased significantly in HepG2 cells expressing DENV C compared to HepG2 cells expressing DENV C (R85A/K86A). In addition, CD137-mediated apoptotic activity in HepG2 cells expressing DENV C was significantly increased by anti-CD137 antibody compared to that of HepG2 cells expressing DENV C (R85A/K86A). In DENV-infected HepG2 cells, CD137 mRNA and CD137 positive cells significantly increased and CD137-mediated apoptotic activity was increased by anti-CD137 antibody. This work is the first to demonstrate the contribution of CD137 signaling to DENV-mediated apoptosis.

  2. Role of CD137 signaling in dengue virus-mediated apoptosis

    Energy Technology Data Exchange (ETDEWEB)

    Nagila, Amar [Medical Molecular Biology Unit, Office for Research and Development, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok (Thailand); Department of Biochemistry, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok (Thailand); Netsawang, Janjuree [Faculty of Medical Technology, Rangsit University, Bangkok (Thailand); Srisawat, Chatchawan [Department of Biochemistry, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok (Thailand); Noisakran, Sansanee [Dengue Hemorrhagic Fever Research Unit, Office for Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok (Thailand); Medical Biotechnology Unit, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Bangkok (Thailand); Morchang, Atthapan; Yasamut, Umpa [Medical Molecular Biology Unit, Office for Research and Development, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok (Thailand); Department of Immunology, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok (Thailand); Puttikhunt, Chunya [Dengue Hemorrhagic Fever Research Unit, Office for Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok (Thailand); Medical Biotechnology Unit, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Bangkok (Thailand); Kasinrerk, Watchara [Division of Clinical Immunology, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai (Thailand); Biomedical Technology Research Center, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency at Chiang Mai University, Chiang Mai (Thailand); and others

    2011-07-08

    Highlights: {yields} For the first time the role of CD137 in dengue virus (DENV) infection. {yields} Induction of DENV-mediated apoptosis by CD137 signaling. {yields} Sensitization to CD137-mediated apoptosis by dengue virus capsid protein (DENV C). {yields} Nuclear localization of DENV C is required for CD137-mediated apoptosis. -- Abstract: Hepatic dysfunction is a well recognized feature of dengue virus (DENV) infection. However, molecular mechanisms of hepatic injury are still poorly understood. A complex interaction between DENV and the host immune response contributes to DENV-mediated tissue injury. DENV capsid protein (DENV C) physically interacts with the human death domain-associated protein Daxx. A double substitution mutation in DENV C (R85A/K86A) abrogates Daxx interaction, nuclear localization and apoptosis. Therefore we compared the expression of cell death genes between HepG2 cells expressing DENV C and DENV C (R85A/K86A) using a real-time PCR array. Expression of CD137, which is a member of the tumor necrosis factor receptor family, increased significantly in HepG2 cells expressing DENV C compared to HepG2 cells expressing DENV C (R85A/K86A). In addition, CD137-mediated apoptotic activity in HepG2 cells expressing DENV C was significantly increased by anti-CD137 antibody compared to that of HepG2 cells expressing DENV C (R85A/K86A). In DENV-infected HepG2 cells, CD137 mRNA and CD137 positive cells significantly increased and CD137-mediated apoptotic activity was increased by anti-CD137 antibody. This work is the first to demonstrate the contribution of CD137 signaling to DENV-mediated apoptosis.

  3. Inhibitory effect of glutathione on oxidative liver injury induced by dengue virus serotype 2 infections in mice.

    Directory of Open Access Journals (Sweden)

    Juan Wang

    Full Text Available The pathogenesis of dengue virus (DV infection has not been completely defined and change of redox status mediated by depletion of glutathione (GSH in host cell is a common result of viral infection. Our previous study has demonstrated that DV serotype 2 (DV2 infection alters host intracellular GSH levels, and exogenous GSH inhibits viral production by modulating the activity of NF-κB in HepG2 cells. GSH is the most powerful intracellular antioxidant and involved in viral infections. Thus, this study was to investigate whether DV2 infection can induce alteration in redox balance and effect of GSH on the disease in HepG2 xenografts SCID mice. Our results revealed that mice infected with DV2 showed alterations in oxidative stress by increasing the level of malondialdehyde (MDA, an end product of lipid peroxidation, and GSSG/GSH ratio. DV2-infected mice also showed a decrease in the activity of catalase (CAT and total superoxide dismutase (T-SOD in the serum and/or observed organs, especially the liver. Moreover, DV2 infection resulted in elevated serum levels of the cytokines tumor necrosis factor-α and interlukin-6 and obvious histopathological changes in the liver. The administration of exogenous GSH significantly reversed all of the aforementioned pathological changes and prevented significant liver damage. Furthermore, in vitro treatment of HepG2 cells with antioxidants such as GSH inhibited viral entry as well as the production of reactive oxygen species in HepG2 cells. These results suggest that GSH prevents DV2-induced oxidative stress and liver injury in mice by inhibiting proinflammatory cytokine production, and GSH and may be a promising therapeutic agent for prevention of oxidative liver damage during DV infection.

  4. Phage-Displayed Peptides Selected to Bind Envelope Glycoprotein Show Antiviral Activity against Dengue Virus Serotype 2

    Directory of Open Access Journals (Sweden)

    Carolina de la Guardia

    2017-01-01

    Full Text Available Dengue virus is a growing public health threat that affects hundreds of million peoples every year and leave huge economic and social damage. The virus is transmitted by mosquitoes and the incidence of the disease is increasing, among other causes, due to the geographical expansion of the vector’s range and the lack of effectiveness in public health interventions in most prevalent countries. So far, no highly effective vaccine or antiviral has been developed for this virus. Here we employed phage display technology to identify peptides able to block the DENV2. A random peptide library presented in M13 phages was screened with recombinant dengue envelope and its fragment domain III. After four rounds of panning, several binding peptides were identified, synthesized, and tested against the virus. Three peptides were able to block the infectivity of the virus while not being toxic to the target cells. Blind docking simulations were done to investigate the possible mode of binding, showing that all peptides appear to bind domain III of the protein and may be mostly stabilized by hydrophobic interactions. These results are relevant to the development of novel therapeutics against this important virus.

  5. Coinfection with influenza A(H1N1pdm09 and dengue virus in fatal cases

    Directory of Open Access Journals (Sweden)

    Anne Carolinne Bezerra Perdigão

    2016-01-01

    Full Text Available Abstract We report on four patients with fatal influenza A(H1N1pdm09 and dengue virus coinfections. Clinical, necropsy and histopathologic findings presented in all cases were characteristic of influenza-dengue coinfections, and all were laboratory-confirmed for both infections. The possibility of influenza and dengue coinfection should be considered in locations where these two viruses’ epidemic periods coincide to avoid fatal outcomes. Dengue is a mosquito-borne viral infection caused by one of the four dengue viruses (DENV-1 to 4. Each of these viruses is capable of causing nonspecific febrile illnesses, classic dengue fever and dengue haemorrhagic fever (Gubler 1998. As a result, dengue is often difficult to diagnose clinically, especially because peak dengue season often coincides with that of other common febrile illnesses in tropical regions (Chacon et al. 2015. In April 2009, a new virus, influenza A/H1N1/pandemic (FluA/H1N1/09pdm, caused a severe outbreak in Mexico. The virus quickly spread throughout the world, and in June 2009, the World Health Organization declared a pandemic (WHO 2010. In Brazil, the first laboratory confirmed case of FluA/H1N1/09pdm was in July 2009 (Pires Neto et al. 2013. The state of Ceará, in Northeast Brazil, is a dengue endemic area. In this state, the virus influenza A(H1N1pdm09 has circulated since 2009, and through the first half of 2012, 11 deaths caused by the virus were confirmed (Pires Neto et al. 2013. The influenza and dengue seasons in Ceará overlap, which led to diagnostic difficulties. We report four cases of laboratory-confirmed coinfection of deadly influenza A(H1N1pdm09 with DENV, which occurred during the dengue and influenza season in 2012 and 2013 in Ceará.

  6. Dengue Virus 1 Outbreak in Buenos Aires, Argentina, 2016.

    Science.gov (United States)

    Tittarelli, Estefanía; Lusso, Silvina B; Goya, Stephanie; Rojo, Gabriel L; Natale, Mónica I; Viegas, Mariana; Mistchenko, Alicia S; Valinotto, Laura E

    2017-10-01

    The largest outbreak of dengue in Buenos Aires, Argentina, occurred during 2016. Phylogenetic, phylodynamic, and phylogeographic analyses of 82 samples from dengue patients revealed co-circulation of 2 genotype V dengue virus lineages, suggesting that this virus has become endemic to the Buenos Aires metropolitan area.

  7. Towards a Casa Segura: A Consumer Product Study of the Effect of Insecticide-Treated Curtains on Aedes aegypti and Dengue Virus Infections in the Home

    Science.gov (United States)

    Loroño-Pino, María Alba; García-Rejón, Julián E.; Machain-Williams, Carlos; Gomez-Carro, Salvador; Nuñez-Ayala, Guadalupe; del Rosario Nájera-Vázquez, Maria; Losoya, Arturo; Aguilar, Lyla; Saavedra-Rodriguez, Karla; Lozano-Fuentes, Saul; Beaty, Meaghan K.; Black, William C.; Keefe, Thomas J.; Eisen, Lars; Beaty, Barry J.

    2013-01-01

    The home, or domicile, is the principal environment for transmission of dengue virus (DENV) between humans and mosquito vectors. Community-wide distribution of insecticide-treated curtains (ITCs), mimicking vector control program-driven interventions, has shown promise to reduce DENV infections. We conducted a Casa Segura consumer product intervention study in Mérida, Mexico to determine the potential to reduce intradomicillary DENV transmission through ITC use in individual homes. Dengue virus infections in mosquitoes and in humans were reduced in homes with ITCs in one of two study subareas. Overall, ITCs reduced intradomicillary DENV transmission; ITC homes were significantly less likely to experience multiple DENV infections in humans than NTC homes. Dengue virus–infected Aedes aegypti females were reduced within the ITC homes where curtain use was highest. Some homes yielded up to nine infected Ae. aegypti females. This study provides insights regarding best practices for Casa Segura interventions to protect homes from intradomicillary DENV transmission. PMID:23732254

  8. Detection of dengue group viruses by fluorescence in situ hybridization

    Directory of Open Access Journals (Sweden)

    Raquin Vincent

    2012-10-01

    Full Text Available Abstract Background Dengue fever (DF and dengue hemorrhagic fever (DHF represent a global challenge in public health. It is estimated that 50 to 100 million infections occur each year causing approximately 20,000 deaths that are usually linked to severe cases like DHF and dengue shock syndrome. The causative agent of DF is dengue virus (genus Flavivirus that comprises four distinct serotypes (DENV-1 to DENV-4. Fluorescence in situ hybridization (FISH has been used successfully to detect pathogenic agents, but has not been implemented in detecting DENV. To improve our understanding of DENV infection and dissemination in host tissues, we designed specific probes to detect DENV in FISH assays. Methods Oligonucleotide probes were designed to hybridize with RNA from the broadest range of DENV isolates belonging to the four serotypes, but not to the closest Flavivirus genomes. Three probes that fit the criteria defined for FISH experiments were selected, targeting both coding and non-coding regions of the DENV genome. These probes were tested in FISH assays against the dengue vector Aedes albopictus (Diptera: Culicidae. The FISH experiments were led in vitro using the C6/36 cell line, and in vivo against dissected salivary glands, with epifluorescence and confocal microscopy. Results The three 60-nt oligonucleotides probes DENV-Probe A, B and C cover a broad range of DENV isolates from the four serotypes. When the three probes were used together, specific fluorescent signals were observed in C6/36 infected with each DENV serotypes. No signal was detected in either cells infected with close Flavivirus members West Nile virus or yellow fever virus. The same protocol was used on salivary glands of Ae. albopictus fed with a DENV-2 infectious blood-meal which showed positive signals in the lateral lobes of infected samples, with no significant signal in uninfected mosquitoes. Conclusion Based on the FISH technique, we propose a way to design and use

  9. Catalase protects Aedes aegypti from oxidative stress and increases midgut infection prevalence of Dengue but not Zika.

    Directory of Open Access Journals (Sweden)

    José Henrique M Oliveira

    2017-04-01

    Full Text Available Digestion of blood in the midgut of Aedes aegypti results in the release of pro-oxidant molecules that can be toxic to the mosquito. We hypothesized that after a blood meal, the antioxidant capacity of the midgut is increased to protect cells against oxidative stress. Concomitantly, pathogens present in the blood ingested by mosquitoes, such as the arboviruses Dengue and Zika, also have to overcome the same oxidative challenge, and the antioxidant program induced by the insect is likely to influence infection status of the mosquito and its vectorial competence.We found that blood-induced catalase mRNA and activity in the midgut peaked 24 h after feeding and returned to basal levels after the completion of digestion. RNAi-mediated silencing of catalase (AAEL013407-RB reduced enzyme activity in the midgut epithelia, increased H2O2 leakage and decreased fecundity and lifespan when mosquitoes were fed H2O2. When infected with Dengue 4 and Zika virus, catalase-silenced mosquitoes showed no alteration in infection intensity (number of plaque forming units/midgut 7 days after the infectious meal. However, catalase knockdown reduced Dengue 4, but not Zika, infection prevalence (percent of infected midguts.Here, we showed that blood ingestion triggers an antioxidant response in the midgut through the induction of catalase. This protection facilitates the establishment of Dengue virus in the midgut. Importantly, this mechanism appears to be specific for Dengue because catalase silencing did not change Zika virus prevalence. In summary, our data suggest that redox balance in the midgut modulates mosquito vectorial competence to arboviral infections.

  10. Evolutionary Analysis of Dengue Serotype 2 Viruses Using Phylogenetic and Bayesian Methods from New Delhi, India.

    Directory of Open Access Journals (Sweden)

    Nazia Afreen

    2016-03-01

    Full Text Available Dengue fever is the most important arboviral disease in the tropical and sub-tropical countries of the world. Delhi, the metropolitan capital state of India, has reported many dengue outbreaks, with the last outbreak occurring in 2013. We have recently reported predominance of dengue virus serotype 2 during 2011-2014 in Delhi. In the present study, we report molecular characterization and evolutionary analysis of dengue serotype 2 viruses which were detected in 2011-2014 in Delhi. Envelope genes of 42 DENV-2 strains were sequenced in the study. All DENV-2 strains grouped within the Cosmopolitan genotype and further clustered into three lineages; Lineage I, II and III. Lineage III replaced lineage I during dengue fever outbreak of 2013. Further, a novel mutation Thr404Ile was detected in the stem region of the envelope protein of a single DENV-2 strain in 2014. Nucleotide substitution rate and time to the most recent common ancestor were determined by molecular clock analysis using Bayesian methods. A change in effective population size of Indian DENV-2 viruses was investigated through Bayesian skyline plot. The study will be a vital road map for investigation of epidemiology and evolutionary pattern of dengue viruses in India.

  11. Dengue Virus and Its Inhibitors: A Brief Review

    OpenAIRE

    Tian, Yu-Shi; Zhou, Yi; Takagi, Tatsuya; Kameoka, Masanori; Kawashita, Norihito

    2018-01-01

    The global occurrence of viral infectious diseases poses a significant threat to human health. Dengue virus (DENV) infection is one of the most noteworthy of these infections. According to a WHO survey, approximately 400 million people are infected annually; symptoms deteriorate in approximately one percent of cases. Numerous foundational and clinical investigations on viral epidemiology, structure and function analysis, infection source and route, therapeutic targets, vaccines, and therapeut...

  12. Enhancing the sensitivity of Dengue virus serotype detection by RT-PCR among infected children in India.

    Science.gov (United States)

    Ahamed, Syed Fazil; Vivek, Rosario; Kotabagi, Shalini; Nayak, Kaustuv; Chandele, Anmol; Kaja, Murali-Krishna; Shet, Anita

    2017-06-01

    Dengue surveillance relies on reverse transcription-polymerase chain reaction (RT-PCR), for confirmation of dengue virus (DENV) serotypes. We compared efficacies of published and modified primer sets targeting envelope (Env) and capsid-premembrane (C-prM) genes for detection of circulating DENV serotypes in southern India. Acute samples from children with clinically-diagnosed dengue were used for RT-PCR testing. All samples were also subjected to dengue serology (NS1 antigen and anti-dengue-IgM/IgG rapid immunochromatographic assay). Nested RT-PCR was performed on viral RNA using three methods targeting 654bp C-prM, 511bp C-prM and 641bp Env regions, respectively. RT-PCR-positive samples were validated by population sequencing. Among 171 children with suspected dengue, 121 were dengue serology-positive and 50 were dengue serology-negative. Among 121 serology-positives, RT-PCR detected 91 (75.2%) by CprM654, 72 (59.5%) by CprM511, and 74 (61.1%) by Env641. Among 50 serology-negatives, 10 (20.0%) were detected by CprM654, 12 (24.0%) by CprM511, and 11 (22.0%) by Env641. Overall detection rate using three methods sequentially was 82.6% (100/121) among serology-positive and 40.0% (20/50) among serology-negative samples; 6.6% (8/120) had co-infection with multiple DENV serotypes. We conclude that detection of acute dengue was enhanced by a modified RT-PCR method targeting the 654bp C-prM region, and further improved by using all three methods sequentially. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. A three year retrospective study on the increasing trend in seroprevalence of dengue infection from southern Odisha, India

    Directory of Open Access Journals (Sweden)

    Sanghamitra Padhi

    2014-01-01

    Full Text Available Background & objectives: In Odisha, several cases of dengue virus infection were detected for the first time in 2010, the importance of dengue as a serious mosquito-borne viral infection was felt only in 2011 with the reporting of many more positive cases. This retrospective three year study was done to find out the seroprevalence of dengue Ig m0 antibody and to know the predominant serotype of dengue virus among the patients suspected to have dengue virus infection in a tertiary care hospital in southern Odisha, India. Methods: Blood samples from clinically suspected dengue cases admitted in the Medicine and Paediatrics departments of a tertiary care hospital were collected. These were processed for detection of dengue specific IgM antibody, carried out by the ELISA method. Dengue IgM antibody positive serum samples were tested for serotypic identification. Results: o0 f the 5102 samples tested, 1074 (21.05 % were positive for dengue IgM. Maximum numbers of cases were found in 2012. Majority (47.86 % of cases were detected in the month of September. The most common affected age group was 11 to 20 yr. DENV1 and DENV2 were the detected serotypes. Interpretation & conclusions: Rapid increase in the dengue cases in 2012 became a public health concern as majority of cases were affecting the young adolescents. Most of the cases were reported in post-monsoon period indicating a need for acceleration of vector control programmes prior to arrival of monsoon.

  14. Decrease in Dengue virus-2 infection and reduction of cytokine/chemokine production by Uncaria guianensis in human hepatocyte cell line Huh-7

    Directory of Open Access Journals (Sweden)

    Cíntia da Silva Mello

    Full Text Available ABSTRACT BACKGROUND Dengue fever may present hemorrhages and cavitary effusions as result of exacerbated immune responses. We investigated hydro-alcoholic extracts from leaves (UGL and bark (UGB of the medicinal species Uncaria guinanensis with respect to antiviral effects in Dengue virus (DENV infection and in immunological parameters associated with in vivo physiopathological features. METHODS Chemical profiles from UGB or UGL were compared in thin layer chromatography and 1H nuclear magnetic resonance using flavonoid compounds and a pentacyclic oxindole alkaloid-enriched fraction as references. DENV-2-infected hepatocytes (Huh-7 were treated with extracts. Cell viability, DENV antigens and immunological factors were detected by enzyme-linked immunosorbent assay (ELISA or flow cytometry. FINDINGS The UGL mainly differed from UGB by selectively containing the flavonoid kaempferitrin. UGB and UGL improved hepatocyte viability. Both extracts reduced intracellular viral antigen and inhibited the secretion of viral non-structural protein (NS1, which is indicative of viral replication. Reduction in secretion of macrophage migration inhibitory factor was achieved by UGB, of interleukin-6 by UGL, and of interleukin-8 by both UGB and UGL. MAIN CONCLUSIONS The U. guianensis extracts presented, antiviral and immunomodulatory effects for DENV and possibly a hepatocyte-protective activity. Further studies may be performed to consider these products as potential candidates for the development of an herbal product for the future treatment of dengue.

  15. Decrease in Dengue virus-2 infection and reduction of cytokine/chemokine production by Uncaria guianensis in human hepatocyte cell line Huh-7.

    Science.gov (United States)

    Mello, Cíntia da Silva; Valente, Ligia Maria Marino; Wolff, Thiago; Lima-Junior, Raimundo Sousa; Fialho, Luciana Gomes; Marinho, Cintia Ferreira; Azeredo, Elzinandes Leal; Oliveira-Pinto, Luzia Maria; Pereira, Rita de Cássia Alves; Siani, Antonio Carlos; Kubelka, Claire Fernandes

    2017-06-01

    Dengue fever may present hemorrhages and cavitary effusions as result of exacerbated immune responses. We investigated hydro-alcoholic extracts from leaves (UGL) and bark (UGB) of the medicinal species Uncaria guinanensis with respect to antiviral effects in Dengue virus (DENV) infection and in immunological parameters associated with in vivo physiopathological features. Chemical profiles from UGB or UGL were compared in thin layer chromatography and 1H nuclear magnetic resonance using flavonoid compounds and a pentacyclic oxindole alkaloid-enriched fraction as references. DENV-2-infected hepatocytes (Huh-7) were treated with extracts. Cell viability, DENV antigens and immunological factors were detected by enzyme-linked immunosorbent assay (ELISA) or flow cytometry. The UGL mainly differed from UGB by selectively containing the flavonoid kaempferitrin. UGB and UGL improved hepatocyte viability. Both extracts reduced intracellular viral antigen and inhibited the secretion of viral non-structural protein (NS1), which is indicative of viral replication. Reduction in secretion of macrophage migration inhibitory factor was achieved by UGB, of interleukin-6 by UGL, and of interleukin-8 by both UGB and UGL. MAIN. The U. guianensis extracts presented, antiviral and immunomodulatory effects for DENV and possibly a hepatocyte-protective activity. Further studies may be performed to consider these products as potential candidates for the development of an herbal product for the future treatment of dengue.

  16. Deeper understanding about the genetic structure of dengue virus using SVM

    Directory of Open Access Journals (Sweden)

    Choi Subin

    2016-01-01

    Full Text Available Dengue fever, mainly found in the tropical and subtropical regions, is carried by mosquitoes. With the help of greenhouse effect, places considered to be a Dengue safe-zone are becoming more and more dangerous. Dengue fever shows similar aspects to MERS, which caused heavy casualties in South Korea; Dengue virus does not have clear treatments nor vaccines like MERS. Development of Dengue vaccine is actively investigated lately. However, it is not easy to succeed; the fact that Dengue’s 4 serotypes have different properties and that repeated infections worsen the symptoms. This research aims to analyze the 4 serotypes (DENV1, DENV2, DENV3, DENV4 using SVM and ANN algorithms to investigate the constraints in the development of Dengue’s vaccines and treatments.

  17. Effect of Wolbachia on Dengue infection in Endemic districts of Odisha

    Directory of Open Access Journals (Sweden)

    Ipsita Mohanty

    2017-10-01

    Full Text Available Dengue is the most important arboviral disease posing considerable threat to human and animal health in tropical and subtropical countries. The causative agent for dengue viruses (DENV are primarily the infectious female Aedes aegypti mosquitoes and to a lesser extent its sister taxon infectious female Aedes albopictus mosquitoes. Persistent DENV infections play a role in the cycling pattern of dengue outbreaks. Due to lack of proper treatment, strategies for blocking pathogen transmission by mosquito vectors have been proposed as a means of augmenting current control measures to reduce the growing burden of vector-borne diseases. In this scenario, the use of Wolbachia has been proposed to reduce dengue transmission. Wolbachia, a gram negative endosymbiont bacterium is naturally present in over 20% of all insects including Aedes albopictus mosquito. In our study, polymerase chain reaction (PCR was used to determine the presence of Wolbachia from field collected Ae. albopictus from various parts of the Odisha using wsp primers. Ae. albopictus had Wolbachia infection ranging from 65 to 100%. Field collected Wolbachia infected mosquitoes were challenged with DENV infection. At seven days following infected blood-feeding, an increase in Wolbachia densities was displayed to a greater extent compared to control mosquitoes. Our result indicates that virus-blocking is likely to persist in Wolbachia-infected mosquitoes suggesting that Wolbachia may serve as a successful biocontrol strategy for reducing dengue transmission in the field.

  18. Spatial and temporal clustering of dengue virus transmission in Thai villages.

    Directory of Open Access Journals (Sweden)

    Mammen P Mammen

    2008-11-01

    Full Text Available Transmission of dengue viruses (DENV, the leading cause of arboviral disease worldwide, is known to vary through time and space, likely owing to a combination of factors related to the human host, virus, mosquito vector, and environment. An improved understanding of variation in transmission patterns is fundamental to conducting surveillance and implementing disease prevention strategies. To test the hypothesis that DENV transmission is spatially and temporally focal, we compared geographic and temporal characteristics within Thai villages where DENV are and are not being actively transmitted.Cluster investigations were conducted within 100 m of homes where febrile index children with (positive clusters and without (negative clusters acute dengue lived during two seasons of peak DENV transmission. Data on human infection and mosquito infection/density were examined to precisely (1 define the spatial and temporal dimensions of DENV transmission, (2 correlate these factors with variation in DENV transmission, and (3 determine the burden of inapparent and symptomatic infections. Among 556 village children enrolled as neighbors of 12 dengue-positive and 22 dengue-negative index cases, all 27 DENV infections (4.9% of enrollees occurred in positive clusters (p < 0.01; attributable risk [AR] = 10.4 per 100; 95% confidence interval 1-19.8 per 100]. In positive clusters, 12.4% of enrollees became infected in a 15-d period and DENV infections were aggregated centrally near homes of index cases. As only 1 of 217 pairs of serologic specimens tested in positive clusters revealed a recent DENV infection that occurred prior to cluster initiation, we attribute the observed DENV transmission subsequent to cluster investigation to recent DENV transmission activity. Of the 1,022 female adult Ae. aegypti collected, all eight (0.8% dengue-infected mosquitoes came from houses in positive clusters; none from control clusters or schools. Distinguishing features between

  19. Pichia pastoris-expressed dengue 2 envelope forms virus-like particles without pre-membrane protein and induces high titer neutralizing antibodies.

    Directory of Open Access Journals (Sweden)

    Shailendra Mani

    Full Text Available Dengue is a mosquito-borne viral disease with a global prevalence. It is caused by four closely-related dengue viruses (DENVs 1-4. A dengue vaccine that can protect against all four viruses is an unmet public health need. Live attenuated vaccine development efforts have encountered unexpected interactions between the vaccine viruses, raising safety concerns. This has emphasized the need to explore non-replicating dengue vaccine options. Virus-like particles (VLPs which can elicit robust immunity in the absence of infection offer potential promise for the development of non-replicating dengue vaccine alternatives. We have used the methylotrophic yeast Pichia pastoris to develop DENV envelope (E protein-based VLPs. We designed a synthetic codon-optimized gene, encoding the N-terminal 395 amino acid residues of the DENV-2 E protein. It also included 5' pre-membrane-derived signal peptide-encoding sequences to ensure proper translational processing, and 3' 6× His tag-encoding sequences to facilitate purification of the expressed protein. This gene was integrated into the genome of P. pastoris host and expressed under the alcohol oxidase 1 promoter by methanol induction. Recombinant DENV-2 protein, which was present in the insoluble membrane fraction, was extracted and purified using Ni(2+-affinity chromatography under denaturing conditions. Amino terminal sequencing and detection of glycosylation indicated that DENV-2 E had undergone proper post-translational processing. Electron microscopy revealed the presence of discrete VLPs in the purified protein preparation after dialysis. The E protein present in these VLPs was recognized by two different conformation-sensitive monoclonal antibodies. Low doses of DENV-2 E VLPs formulated in alum were immunogenic in inbred and outbred mice eliciting virus neutralizing titers >1,1200 in flow cytometry based assays and protected AG129 mice against lethal challenge (p<0.05. The formation of immunogenic DENV-2 E

  20. Garlic Organosulfur Compounds Reduce Inflammation and Oxidative Stress during Dengue Virus Infection

    Science.gov (United States)

    Hall, Alex; Troupin, Andrea; Londono-Renteria, Berlin; Colpitts, Tonya M.

    2017-01-01

    Dengue virus (DENV) is a mosquito-borne flavivirus that causes significant global human disease and mortality. One approach to develop treatments for DENV infection and the prevention of severe disease is through investigation of natural medicines. Inflammation plays both beneficial and harmful roles during DENV infection. Studies have proposed that the oxidative stress response may be one mechanism responsible for triggering inflammation during DENV infection. Thus, blocking the oxidative stress response could reduce inflammation and the development of severe disease. Garlic has been shown to both reduce inflammation and affect the oxidative stress response. Here, we show that the garlic active compounds diallyl disulfide (DADS), diallyl sulfide (DAS) and alliin reduced inflammation during DENV infection and show that this reduction is due to the effects on the oxidative stress response. These results suggest that garlic could be used as an alternative treatment for DENV infection and for the prevention of severe disease development. PMID:28644404

  1. Garlic Organosulfur Compounds Reduce Inflammation and Oxidative Stress during Dengue Virus Infection.

    Science.gov (United States)

    Hall, Alex; Troupin, Andrea; Londono-Renteria, Berlin; Colpitts, Tonya M

    2017-06-23

    Dengue virus (DENV) is a mosquito-borne flavivirus that causes significant global human disease and mortality. One approach to develop treatments for DENV infection and the prevention of severe disease is through investigation of natural medicines. Inflammation plays both beneficial and harmful roles during DENV infection. Studies have proposed that the oxidative stress response may be one mechanism responsible for triggering inflammation during DENV infection. Thus, blocking the oxidative stress response could reduce inflammation and the development of severe disease. Garlic has been shown to both reduce inflammation and affect the oxidative stress response. Here, we show that the garlic active compounds diallyl disulfide (DADS), diallyl sulfide (DAS) and alliin reduced inflammation during DENV infection and show that this reduction is due to the effects on the oxidative stress response. These results suggest that garlic could be used as an alternative treatment for DENV infection and for the prevention of severe disease development.

  2. Luteolin restricts dengue virus replication through inhibition of the proprotein convertase furin.

    Science.gov (United States)

    Peng, Minhua; Watanabe, Satoru; Chan, Kitti Wing Ki; He, Qiuyan; Zhao, Ya; Zhang, Zhongde; Lai, Xiaoping; Luo, Dahai; Vasudevan, Subhash G; Li, Geng

    2017-07-01

    In many countries afflicted with dengue fever, traditional medicines are widely used as panaceas for illness, and here we describe the systematic evaluation of a widely known natural product, luteolin, originating from the "heat clearing" class of herbs. We show that luteolin inhibits the replication of all four serotypes of dengue virus, but the selectivity of the inhibition was weak. In addition, ADE-mediated dengue virus infection of human cell lines and primary PBMCs was inhibited. In a time-of-drug-addition study, luteolin was found to reduce infectious virus particle formation, but not viral RNA synthesis, in Huh-7 cells. During the virus life cycle, the host protease furin cleaves the pr moiety from prM protein of immature virus particles in the trans-Golgi network to produce mature virions. Analysis of virus particles from luteolin-treated cells revealed that prM was not cleaved efficiently. Biochemical interrogation of human furin showed that luteolin inhibited the enzyme activity in an uncompetitive manner, with Ki value of 58.6 μM, suggesting that treatment may restrict the virion maturation process. Luteolin also exhibited in vivo antiviral activity in mice infected with DENV, causing reduced viremia. Given the mode of action of luteolin and its widespread source, it is possible that it can be tested in combination with other dengue virus inhibitors. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Dengue virus infection in a French traveller to the hilly region of Nepal in 2015: a case report.

    Science.gov (United States)

    Gupta, Birendra Prasad; Adhikari, Anurag; Rauniyar, Ramanuj; Kurmi, Roshan; Upadhya, Bishnu Prasad; Jha, Bimlesh Kumar; Pandey, Basudev; Das Manandhar, Krishna

    2016-03-21

    Dengue viral infections are known to pose a significant risk during travel to tropical regions, but it is surprising to find dengue transmission in the hilly region of Nepal, which is over 1800mtr above sea level. A 43-year-old Caucasian female traveler from France presented with fever and abdominal pain following a diarrheal illness while visiting the central hilly region of Nepal. Over the course of 9 days, she developed fever, body aches, and joint pain, with hemorrhagic manifestation. She was hospitalized in India and treated with supportive care, with daily monitoring of her platelets. An assessment by enzyme-linked immunosorbent assay showed that she was positive for dengue non-structural protein 1. Upon her return to France, dengue virus was confirmed by reverse transcriptase-polymerase chain reaction. The district where this dengue case was reported is in the hilly region of Nepal, neighboring the capital city Kathmandu. To the best of our knowledge, there has previously been no dengue cases reported from the district. This study is important because it aims to establish a potential region of dengue virus circulation not only in the tropics, but also in the subtropics as well, which in Nepal may exceed elevations of 1800mtr. This recent case report has raised alarm among concerned health personnel, researchers, and organizations that this infectious disease is now on the way to becoming established in a temperate climate.

  4. Enhanced severity of secondary dengue-2 infections: death rates in 1981 and 1997 Cuban outbreaks Aumento de la gravedad de las infecciones secundarias por dengue-2: tasas de mortalidad en los brotes cubanos de 1981 y 1997

    Directory of Open Access Journals (Sweden)

    María G. Guzmán

    2002-04-01

    Full Text Available Objective. To understand the possible effect that length of time has on disease severity with sequential dengue infections. Methods. Death and hospitalization rates for dengue hemorrhagic fever/dengue shock syndrome (DHF/DSS per 10 000 secondary dengue-2 infections were compared in the same age group for two dengue-2 (DEN-2 epidemics in Cuba. The first DEN-2 epidemic affected all of Cuba in 1981; the second one, in 1997, impacted only the city of Santiago de Cuba. The sensitizing infection for DHF/DSS for each of the DEN-2 epidemics was dengue-1 (DEN-1 serotype virus, which was transmitted in 1977-1979, that is, 4 years and 20 years before the two DEN-2 epidemics. Using published seroepidemiological data from the cities of Havana and Santiago de Cuba, we estimated the rates at which persons aged 15-39 years old and those 40 years and older were hospitalized or died of DHF/DSS in Havana and in all of Cuba in 1981 and in just Santiago de Cuba in 1997. Results. Among adults 15-39 years old the death rate per 10 000 secondary DEN-2 infections was 38.5 times as high in Santiago de Cuba in 1997 as in Havana in 1981. As a further indication of the increased severity coming with a longer period between the initial DEN-1 infection and the secondary DEN-2 infection, the case fatality rate for that same age group was 4.7 times as high in Santiago in 1997 as it was in Havana in 1981. Conclusion. We found a marked increase in severity with the longer of the two intervals (20 years between an initial DEN-1 infection and a secondary DEN-2 infection. Such a difference may be due to subtle shifts in causative dengue strains or to changes with the passage of time in the circulating population of human dengue antibodies. These observations have important implications for dengue control, pathogenic mechanisms, and vaccine development.Objetivos. Investigar el posible efecto del tiempo sobre la gravedad de la enfermedad en sucesivas infecciones por dengue. M

  5. AEGY-28 Cell Line of Aedes aegypti (Diptera Culicidae is Infection Refractory to Dengue 2 and Yellow Fever Virus

    Directory of Open Access Journals (Sweden)

    Nadia Y. Castañeda

    2007-07-01

    Full Text Available Mosquito cell derived cultures are useful tools for arbovirus isolation, identification or characterization. For studying dengue (DENV and yellow fever viruses (YFV Aedes albopictus C6/36 or Aedes pseudoscutellaris AP-61 cell lines, are normally used. The Aedes aegypti AEGY-28 cell line was obtained from embryonic tissues and characterized previously by one of us. In order to evaluate its susceptibility to two Flavivirus, AEGY- 28 cells were inoculated with different multiplicity of infection (MOI with type 2 DENV (COL-789, MOI: 1 and 5 and YFV clinical isolates (V-341, MOI 0,02 then processed at different times post infection (p.i.. Immunostai ning and fluorometric cell-ELISA were carried out to identify and quantify viral antigens. C6/36 and Vero cells were used as positive controls. Unexpectedly, immunoreactivity was not found in inoculated AEGY-28 cells, even in higher MOI or late times p.i., therefore antigen quantification using fluorometric cell-ELISA were not  plausible. Reverse transcriptase PCR with specific primers did not detect viral RNA in AEGY-28 inoculated cells. We can conclude that Aedes aegypti AEGY-28 cell line is not susceptible to dengue and yellow fever Flavivirus, a finding possibly related with the lacking of specific molecules at the plasma membrane or absence of cell machinery necessary for viral replication.

  6. Molecular surveillance of dengue in Semarang, Indonesia revealed the circulation of an old genotype of dengue virus serotype-1.

    Directory of Open Access Journals (Sweden)

    Sukmal Fahri

    Full Text Available Dengue disease is currently a major health problem in Indonesia and affects all provinces in the country, including Semarang Municipality, Central Java province. While dengue is endemic in this region, only limited data on the disease epidemiology is available. To understand the dynamics of dengue in Semarang, we conducted clinical, virological, and demographical surveillance of dengue in Semarang and its surrounding regions in 2012. Dengue cases were detected in both urban and rural areas located in various geographical features, including the coastal and highland areas. During an eight months' study, a total of 120 febrile patients were recruited, of which 66 were serologically confirmed for dengue infection using IgG/IgM ELISA and/or NS1 tests. The cases occurred both in dry and wet seasons. Majority of patients were under 10 years old. Most patients were diagnosed as dengue hemorrhagic fever, followed by dengue shock syndrome and dengue fever. Serotyping was performed in 31 patients, and we observed the co-circulation of all four dengue virus (DENV serotypes. When the serotypes were correlated with the severity of the disease, no direct correlation was observed. Phylogenetic analysis of DENV based on Envelope gene sequence revealed the circulation of DENV-2 Cosmopolitan genotype and DENV-3 Genotype I. A striking finding was observed for DENV-1, in which we found the co-circulation of Genotype I with an old Genotype II. The Genotype II was represented by a virus strain that has a very slow mutation rate and is very closely related to the DENV strain from Thailand, isolated in 1964 and never reported in other countries in the last three decades. Moreover, this virus was discovered in a cool highland area with an elevation of 1,001 meters above the sea level. The discovery of this old DENV strain may suggest the silent circulation of old virus strains in Indonesia.

  7. Inhibitory potential of geraniin and its metabolites extracted from the rind of rambutan (Nephelium lappaceum) against dengue virus type-2

    OpenAIRE

    SITI AISYAH ABDUL AHMAD

    2017-01-01

    Just as rambutan is a common seasonal fruit, dengue is a common seasonal disease to the Southeast Asians. The four types of dengue viruses (DENV-1 to 4) are causing havoc across the globe as there is no specific treatment exists to treat the infections. Our study was thus, aimed at investigating the potential of a compound called geraniin, which is extracted from the rind of rambutan, in inhibiting DENV-2. Through a series of experiments, we had proven that geraniin can inhibit DENV-2 in-vitr...

  8. Transmission potential of Zika virus infection in the South Pacific

    Directory of Open Access Journals (Sweden)

    Hiroshi Nishiura

    2016-04-01

    Conclusions: The transmissibility of Zika virus infection appears to be comparable to those of dengue and chikungunya viruses. Considering that Aedes species are a shared vector, this finding indicates that Zika virus replication within the vector is perhaps comparable to dengue and chikungunya.

  9. Single-virus tracking approach to reveal the interaction of Dengue virus with autophagy during the early stage of infection

    Science.gov (United States)

    Chu, Li-Wei; Huang, Yi-Lung; Lee, Jin-Hui; Huang, Long-Ying; Chen, Wei-Jun; Lin, Ya-Hsuan; Chen, Jyun-Yu; Xiang, Rui; Lee, Chau-Hwang; Ping, Yueh-Hsin

    2014-01-01

    Dengue virus (DENV) is one of the major infectious pathogens worldwide. DENV infection is a highly dynamic process. Currently, no antiviral drug is available for treating DENV-induced diseases since little is known regarding how the virus interacts with host cells during infection. Advanced molecular imaging technologies are powerful tools to understand the dynamics of intracellular interactions and molecular trafficking. This study exploited a single-virus particle tracking technology to address whether DENV interacts with autophagy machinery during the early stage of infection. Using confocal microscopy and three-dimensional image analysis, we showed that DENV triggered the formation of green fluorescence protein-fused microtubule-associated protein 1A/1B-light chain 3 (GFP-LC3) puncta, and DENV-induced autophagosomes engulfed DENV particles within 15-min postinfection. Moreover, single-virus particle tracking revealed that both DENV particles and autophagosomes traveled together during the viral infection. Finally, in the presence of autophagy suppressor 3-methyladenine, the replication of DENV was inhibited and the location of DENV particles spread in cytoplasma. In contrast, the numbers of newly synthesized DENV were elevated and the co-localization of DENV particles and autophagosomes was detected while the cells were treated with autophagy inducer rapamycin. Taken together, we propose that DENV particles interact with autophagosomes at the early stage of viral infection, which promotes the replication of DENV.

  10. Detection of Hepatitis C Virus Coinfection in Patients with Dengue Diagnosis

    Directory of Open Access Journals (Sweden)

    Carlos Machain-Williams

    2014-01-01

    Full Text Available Coinfection produced by dengue virus (DENV and hepatitis C virus (HCV is a serious problem of public health in Mexico, as they both circulate in tropical zones and may lead to masking or complicating symptoms. In this research, we detected active coinfected patients by HCV residing in the endemic city of Mérida, Yucatán, Mexico, with positive diagnosis to dengue during the acute phase. We performed a retrospective analysis of 240 serum samples from dengue patients. The IgM-ELISA serological test was used for dengue diagnosis, as well as viral isolation to confirm infection. DENV and HCV were detected by RT-PCR. Thus, 31 (12.9% samples showed DENV-HCV coinfection, but interestingly the highest frequency of coinfection cases was found in male patients presenting hemorrhagic dengue in 19/31 (61.29%, with a predominance of 12 : 7 in males. Firstly, coinfection of DENV-HCV in Mérida, Mexico, was detected in young dengue patients, between 11 and 20 years old (38.7%, followed by those between 21 and 30 years old (32%; only 16.13% were between 0 and 10 years of age. Diagnosis of HCV infection in patients with dengue is highly recommended in order to establish potential risk in clinical manifestations as well as dictate patients' special care.

  11. Dengue-2 Structural Proteins Associate with Human Proteins to Produce a Coagulation and Innate Immune Response Biased Interactome

    Directory of Open Access Journals (Sweden)

    Soares Luis RB

    2011-01-01

    Full Text Available Abstract Background Dengue virus infection is a public health threat to hundreds of millions of individuals in the tropical regions of the globe. Although Dengue infection usually manifests itself in its mildest, though often debilitating clinical form, dengue fever, life-threatening complications commonly arise in the form of hemorrhagic shock and encephalitis. The etiological basis for the virus-induced pathology in general, and the different clinical manifestations in particular, are not well understood. We reasoned that a detailed knowledge of the global biological processes affected by virus entry into a cell might help shed new light on this long-standing problem. Methods A bacterial two-hybrid screen using DENV2 structural proteins as bait was performed, and the results were used to feed a manually curated, global dengue-human protein interaction network. Gene ontology and pathway enrichment, along with network topology and microarray meta-analysis, were used to generate hypothesis regarding dengue disease biology. Results Combining bioinformatic tools with two-hybrid technology, we screened human cDNA libraries to catalogue proteins physically interacting with the DENV2 virus structural proteins, Env, cap and PrM. We identified 31 interacting human proteins representing distinct biological processes that are closely related to the major clinical diagnostic feature of dengue infection: haemostatic imbalance. In addition, we found dengue-binding human proteins involved with additional key aspects, previously described as fundamental for virus entry into cells and the innate immune response to infection. Construction of a DENV2-human global protein interaction network revealed interesting biological properties suggested by simple network topology analysis. Conclusions Our experimental strategy revealed that dengue structural proteins interact with human protein targets involved in the maintenance of blood coagulation and innate anti

  12. Multiple recombinants in two dengue virus, serotype-2 isolates from patients from Oaxaca, Mexico.

    Science.gov (United States)

    Perez-Ramirez, Gerardo; Diaz-Badillo, Alvaro; Camacho-Nuez, Minerva; Cisneros, Alejandro; Munoz, Maria de Lourdes

    2009-12-15

    Dengue (DEN) is a serious cause of mortality and morbidity in the world including Mexico, where the infection is endemic. One of the states with the highest rate of dengue cases is Oaxaca. The cause of DEN is a positive-sense RNA virus, the dengue virus (DENV) that evolves rapidly increasing its variability due to the absence of a repair mechanism that leads to approximately one mutational event per genome replication; which results in enhancement of viral adaptation, including the escape from host immune responses. Additionally, recombination may play a role in driving the evolution of DENV, which may potentially affect virulence and cause host tropism changes. Recombination in DENV has not been described in Mexican strains, neither has been described the relevance in virus evolution in an endemic state such as Oaxaca where the four serotypes of DENV are circulating. To study whether there are isolates from Oaxaca having recombination, we obtained the sequence of 6 different isolates of DENV-2 Asian/American genotype from the outbreak 2005-6, one clone of the C(91)-prM-E-NS1(2400) structural genes, and 10 clones of the E gene from the isolate MEX_OAX_1656_05. Evidence of recombination was found by using different methods along with two softwares: RDP3 and GARD. The Oaxaca MEX_OAX_1656_05 and MEX_OAX_1038_05 isolates sequenced in this study were recombinant viruses that incorporate the genome sequence from the Cosmopolitan genotype. Furthermore, the clone of the E gene namely MEX_OAX_165607_05 from this study was also recombinant, incorporating genome sequence from the American genotype. This is the first report of recombination in DENV-2 in Mexico. Given such a recombinant activity new genomic combinations were produced, this could play a significant role in the DENV evolution and must be considered as a potentially important mechanism generating genetic variation in this virus with serious implications for the vaccines and drugs formulation as occurs for other

  13. Multiple recombinants in two dengue virus, serotype-2 isolates from patients from Oaxaca, Mexico

    Directory of Open Access Journals (Sweden)

    Cisneros Alejandro

    2009-12-01

    Full Text Available Abstract Background Dengue (DEN is a serious cause of mortality and morbidity in the world including Mexico, where the infection is endemic. One of the states with the highest rate of dengue cases is Oaxaca. The cause of DEN is a positive-sense RNA virus, the dengue virus (DENV that evolves rapidly increasing its variability due to the absence of a repair mechanism that leads to approximately one mutational event per genome replication; which results in enhancement of viral adaptation, including the escape from host immune responses. Additionally, recombination may play a role in driving the evolution of DENV, which may potentially affect virulence and cause host tropism changes. Recombination in DENV has not been described in Mexican strains, neither has been described the relevance in virus evolution in an endemic state such as Oaxaca where the four serotypes of DENV are circulating. Results To study whether there are isolates from Oaxaca having recombination, we obtained the sequence of 6 different isolates of DENV-2 Asian/American genotype from the outbreak 2005-6, one clone of the C(91-prM-E-NS1(2400 structural genes, and 10 clones of the E gene from the isolate MEX_OAX_1656_05. Evidence of recombination was found by using different methods along with two softwares: RDP3 and GARD. The Oaxaca MEX_OAX_1656_05 and MEX_OAX_1038_05 isolates sequenced in this study were recombinant viruses that incorporate the genome sequence from the Cosmopolitan genotype. Furthermore, the clone of the E gene namely MEX_OAX_165607_05 from this study was also recombinant, incorporating genome sequence from the American genotype. Conclusions This is the first report of recombination in DENV-2 in Mexico. Given such a recombinant activity new genomic combinations were produced, this could play a significant role in the DENV evolution and must be considered as a potentially important mechanism generating genetic variation in this virus with serious implications for

  14. Integrated analysis of miRNAs and transcriptomes in Aedes albopictus midgut reveals the differential expression profiles of immune-related genes during dengue virus serotype-2 infection.

    Science.gov (United States)

    Liu, Yan-Xia; Li, Fen-Xiang; Liu, Zhuan-Zhuan; Jia, Zhi-Rong; Zhou, Yan-He; Zhang, Hao; Yan, Hui; Zhou, Xian-Qiang; Chen, Xiao-Guang

    2016-06-01

    Mosquito microRNAs (miRNAs) are involved in host-virus interaction, and have been reported to be altered by dengue virus (DENV) infection in Aedes albopictus (Diptera: Culicidae). However, little is known about the molecular mechanisms of Aedes albopictus midgut-the first organ to interact with DENV-involved in its resistance to DENV. Here we used high-throughput sequencing to characterize miRNA and messenger RNA (mRNA) expression patterns in Aedes albopictus midgut in response to dengue virus serotype 2. A total of three miRNAs and 777 mRNAs were identified to be differentially expressed upon DENV infection. For the mRNAs, we identified 198 immune-related genes and 31 of them were differentially expressed. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses also showed that the differentially expressed immune-related genes were involved in immune response. Then the differential expression patterns of six immune-related genes and three miRNAs were confirmed by real-time reverse transcription polymerase chain reaction. Furthermore, seven known miRNA-mRNA interaction pairs were identified by aligning our two datasets. These analyses of miRNA and mRNA transcriptomes provide valuable information for uncovering the DENV response genes and provide a basis for future study of the resistance mechanisms in Aedes albopictus midgut. © 2016 Institute of Zoology, Chinese Academy of Sciences.

  15. A Rapid and Improved Method to Generate Recombinant Dengue Virus Vaccine Candidates.

    Science.gov (United States)

    Govindarajan, Dhanasekaran; Guan, Liming; Meschino, Steven; Fridman, Arthur; Bagchi, Ansu; Pak, Irene; ter Meulen, Jan; Casimiro, Danilo R; Bett, Andrew J

    2016-01-01

    Dengue is one of the most important mosquito-borne infections accounting for severe morbidity and mortality worldwide. Recently, the tetravalent chimeric live attenuated Dengue vaccine Dengvaxia® was approved for use in several dengue endemic countries. In general, live attenuated vaccines (LAV) are very efficacious and offer long-lasting immunity against virus-induced disease. Rationally designed LAVs can be generated through reverse genetics technology, a method of generating infectious recombinant viruses from full length cDNA contained in bacterial plasmids. In vitro transcribed (IVT) viral RNA from these infectious clones is transfected into susceptible cells to generate recombinant virus. However, the generation of full-length dengue virus cDNA clones can be difficult due to the genetic instability of viral sequences in bacterial plasmids. To circumvent the need for a single plasmid containing a full length cDNA, in vitro ligation of two or three cDNA fragments contained in separate plasmids can be used to generate a full-length dengue viral cDNA template. However, in vitro ligation of multiple fragments often yields low quality template for IVT reactions, resulting in inconsistent low yield RNA. These technical difficulties make recombinant virus recovery less efficient. In this study, we describe a simple, rapid and efficient method of using LONG-PCR to recover recombinant chimeric Yellow fever dengue (CYD) viruses as potential dengue vaccine candidates. Using this method, we were able to efficiently generate several viable recombinant viruses without introducing any artificial mutations into the viral genomes. We believe that the techniques reported here will enable rapid and efficient recovery of recombinant flaviviruses for evaluation as vaccine candidates and, be applicable to the recovery of other RNA viruses.

  16. Domestic dengue infection with hemophagocytic lymphohistiocytosis successfully treated by early steroid therapy.

    Science.gov (United States)

    Yoshifuji, Kota; Oshina, Takahiro; Sonokawa, Saeko; Noguchi, Yuma; Suzuki, Sayaka; Tanaka, Keisuke; Kumagai, Takashi

    2016-07-01

    A 34-year-old man, working at a park in Tokyo, Japan, was repeatedly bitten by mosquitoes while cutting grass. He was hospitalized with sudden fever, fatigue, and weakness. He was eventually diagnosed with dengue virus infection, detected using reverse transcription polymerase chain reaction for the genome and by the presence of nonstructural protein 1 in his peripheral blood. Symptomatic treatments such as acetaminophen for the fever were not effective. Moreover, peripheral blood examination showed drastically decreased white blood cells and platelets, as well as marked elevations of ferritin and soluble interleukin 2 receptor. Furthermore, bone marrow examination revealed increased macrophages with hemophagocytosis. Dengue infection with hemophagocytic lymphohistiocytosis (HLH) was ultimately diagnosed. Half-dose steroid pulse therapy for three days dramatically reduced his temperature, thereby ameliorating physical symptoms and restoring normal peripheral blood data. He was discharged 12 days after admission. Dengue infection with HLH is rare and this is the first report, to our knowledge, of domestic dengue infection with HLH in Japan. Early steroid therapy may be effective in such cases.

  17. Time-Varying, Serotype-Specific Force of Infection of Dengue Virus

    Science.gov (United States)

    2014-05-20

    Barraquer I, et al. (2011) From re-emergence to hyperendemicity: The natural history of the dengue epidemic in Brazil . PLoS Negl Trop Dis 5(1):e935. 14...Negl Trop Dis 5(9):e1322. 22. Egger JR, et al. (2008) Reconstructing historical changes in the force of infection of dengue fever in Singapore...documented outbreak of dengue in the Peruvian amazon region . Bull Pan Am Health Organ 26(3):201–207. 26. Watts DM, et al. (1999) Failure of secondary

  18. Virus del dengue: estructura y ciclo viral Dengue virus: structure and viral cycle

    Directory of Open Access Journals (Sweden)

    Myriam L Velandia

    2011-03-01

    Full Text Available El virus del dengue (DENV es el agente causal de la enfermedad conocida como dengue, que es la principal enfermedad viral transmitida por artrópodos en el mundo. El DENV es un flavivirus que ingresa por endocitosis y se replica en el citoplasma de la célula infectada, originando tres proteínas estructurales y siete proteínas no estructurales, sobre las cuales se conocen sólo algunas de sus funciones en la replicación viral o en la infección. El ciclo viral que ocurre en las células infectadas hasta ahora está comenzando a aclararse y su conocimiento permitirá en el futuro próximo diseñar racionalmente moléculas que lo intervengan y eviten la replicación del virus. Durante la infección, el individuo puede presentar fiebre indiferenciada o, en otros casos, puede presentar un proceso generalizado de activación de la respuesta inmunitaria innata y adquirida, lo cual provoca la liberación de factores inflamatorios solubles que alteran la fisiología de los tejidos, principalmente el endotelio, conllevando al desarrollo de manifestaciones clínicas graves. Aunque se ha identificado un gran número de factores del individuo asociados al desarrollo de la enfermedad por DENV, queda por identificar el papel de las diferentes proteínas virales en la patogenia de la enfermedad. En la presente revisión, se presenta una breve actualización sobre la estructura y biología del DENV, de su ciclo viral intracelular y, finalmente, se introducen algunos conceptos sobre la inmunopatogenia de la enfermedad producida por este agente.Dengue virus (DENV is responsible for the clinical entity known as dengue that is a great concern for economy and public health of tropical countries. This flavivirus is a single strand RNA virus that after their translation and replication in host cells produces three structural and seven non-structural proteins with specific function in replication or cell binding process that we will describe here. Intracellular

  19. Dengue Virus Serotype 2 Established in Northern Mozambique (2015-2016).

    Science.gov (United States)

    Oludele, John; Lesko, Birgitta; Mahumane Gundane, Isabel; de Bruycker-Nogueira, Fernanda; Muianga, Argentina; Ali, Sadia; Mula, Flora; Chelene, Imelda; Falk, Kerstin I; Barreto Dos Santos, Flávia; Gudo, Eduardo Samo

    2017-11-01

    After the report of an outbreak of dengue virus serotype 2 in 2014 in Nampula and Pemba cities, northern Mozambique, a surveillance system was established by the National Institute of Health. A study was performed during 2015-2016 to monitor the trend of the outbreak and confirm the circulating serotype of dengue virus (DENV). After the inclusion of consenting patients who met the case definition, samples from 192 patients were tested for the presence of nonstructural protein 1 antigen, and 60/192 (31%) samples were positive. Further analysis included DENV IgM antibodies, with 39 (20%) IgM positive cases. Reverse transcriptase (RT) PCR was performed for identification of the prevailing DENV serotype; 21/23 tested samples were DENV-2 positive, with DENV-2 present in both affected cities. When sequencing DENV, phenotype Cosmopolitan was identified. The surveillance indicates ongoing spread of DENV-2 in northern Mozambique 2 years after the first report of the outbreak.

  20. Dengue virus 2 American-Asian genotype identified during the 2006/2007 outbreak in Piauí, Brazil reveals a Caribbean route of introduction and dissemination of dengue virus in Brazil.

    Directory of Open Access Journals (Sweden)

    Leandra Barcelos Figueiredo

    Full Text Available Dengue virus (DENV is the most widespread arthropod-borne virus, and the number and severity of outbreaks has increased worldwide in recent decades. Dengue is caused by DENV-1, DENV- 2, DENV-3 and DENV-4 which are genetically distant. The species has been subdivided into genotypes based on phylogenetic studies. DENV-2, which was isolated from dengue fever patients during an outbreak in Piaui, Brazil in 2006/2007 was analyzed by sequencing the envelope (E gene. The results indicated a high similarity among the isolated viruses, as well as to other DENV-2 from Brazil, Central America and South America. A phylogenetic and phylogeographic analysis based on DENV-2E gene sequences revealed that these viruses are grouped together with viruses of the American-Asian genotype in two distinct lineages. Our results demonstrate the co-circulation of two American-Asian genotype lineages in northeast Brazil. Moreover, we reveal that DENV-2 lineage 2 was detected in Piauí before it disseminated to other Brazilian states and South American countries, indicating the existence of a new dissemination route that has not been previously described.

  1. Hematological and biochemical indicators for the early diagnosis of dengue viral infection

    International Nuclear Information System (INIS)

    Butt, N.; Abbasi, A.; Sheikh, Q.H.

    2008-01-01

    To determine the haematological and biochemical indicators for the early diagnosis of dengue viral infection. Patients presenting with a fever of less than 2 weeks duration, generalized morbiliform rash and bleeding manifestations were included. Clinical history was recorded and patients were placed on fluid and haematological support. Diagnosis was established by Polymerase Chain Reaction (PCR) for dengue virus or detection of dengue virus specific IgM and IgG. One hundred and four patients met the inclusion criteria during the study period. Sixty six patients had clinical and haematological features suggestive of grade I Dengue Hemorrhagic Fever (DHF); 34 patients had grade II DHF and 4 had grade III DHF out of whom 3 progressed to grade IV DHF. All the patients presented with fever followed by generalized morbiliform rash (81.73%), vomiting (79.8%), abdominal pain (65.38%), backache (62.5%), depression (60.6%) and mucosal bleeding manifestations (34.6%). Clinically, conjunctival infection was present in 93 patients (89.4%), hepatomegaly 59 (56.7%), lymphadenopathy in 17 (16.3%), splenomegaly in 13 (12.5%), pleural effusion in 11 (10.5%) and ascites in 8 (7.6%). Common laboratory findings were thrombocytopenia in 100% patients, leucopenia in 55 (52.8%), raised hematocrit in 52 (50%), and elevated aminotransferases, gamma GT in 100 (96%) patients. The overall mortality was 2.88%. In this series clinical history and examination supported by the triad of thrombocytopenia, raised hematocrit and elevated liver enzymes was sufficient for the early diagnosis of dengue hemorrhagic fever without waiting for dengue serology. (author)

  2. Complexity of Human Antibody Response to Dengue Virus: Implication for Vaccine Development.

    Science.gov (United States)

    Tsai, Wen-Yang; Lin, Hong-En; Wang, Wei-Kung

    2017-01-01

    The four serotypes of dengue virus (DENV) are the leading cause of arboviral diseases in humans. Decades of efforts have made remarkable progress in dengue vaccine development. Despite the first dengue vaccine (dengvaxia from Sanofi Pasteur), a live-attenuated tetravalent chimeric yellow fever-dengue vaccine, has been licensed by several countries since 2016, its overall moderate efficacy (56.5-60.8%) in the presence of neutralizing antibodies during the Phase 2b and 3 trials, lower efficacy among dengue naïve compared with dengue experienced individuals, and increased risk of hospitalization among young children during the follow-up highlight the need for a better understanding of humoral responses after natural DENV infection. Recent studies of more than 300 human monoclonal antibodies (mAbs) against DENV have led to the discovery of several novel epitopes on the envelope protein recognized by potent neutralizing mAbs. This information together with in-depth studies on polyclonal sera and B-cells following natural DENV infection has tremendous implications for better immunogen design for a safe and effective dengue vaccine. This review outlines the progress in our understanding of mouse mAbs, human mAbs, and polyclonal sera against DENV envelope and precursor membrane proteins, two surface proteins involved in vaccine development, following natural infection; analyses of these discoveries have provided valuable insight into new strategies involving molecular technology to induce more potent neutralizing antibodies and less enhancing antibodies for next-generation dengue vaccine development.

  3. Complexity of Human Antibody Response to Dengue Virus: Implication for Vaccine Development

    Directory of Open Access Journals (Sweden)

    Wen-Yang Tsai

    2017-07-01

    Full Text Available The four serotypes of dengue virus (DENV are the leading cause of arboviral diseases in humans. Decades of efforts have made remarkable progress in dengue vaccine development. Despite the first dengue vaccine (dengvaxia from Sanofi Pasteur, a live-attenuated tetravalent chimeric yellow fever-dengue vaccine, has been licensed by several countries since 2016, its overall moderate efficacy (56.5–60.8% in the presence of neutralizing antibodies during the Phase 2b and 3 trials, lower efficacy among dengue naïve compared with dengue experienced individuals, and increased risk of hospitalization among young children during the follow-up highlight the need for a better understanding of humoral responses after natural DENV infection. Recent studies of more than 300 human monoclonal antibodies (mAbs against DENV have led to the discovery of several novel epitopes on the envelope protein recognized by potent neutralizing mAbs. This information together with in-depth studies on polyclonal sera and B-cells following natural DENV infection has tremendous implications for better immunogen design for a safe and effective dengue vaccine. This review outlines the progress in our understanding of mouse mAbs, human mAbs, and polyclonal sera against DENV envelope and precursor membrane proteins, two surface proteins involved in vaccine development, following natural infection; analyses of these discoveries have provided valuable insight into new strategies involving molecular technology to induce more potent neutralizing antibodies and less enhancing antibodies for next-generation dengue vaccine development.

  4. Dengue virus infection among long-term travelers from the Netherlands: A prospective study, 2008-2011.

    Directory of Open Access Journals (Sweden)

    Femke W Overbosch

    Full Text Available Dengue is increasing rapidly in endemic regions. Data on incidence among travelers to these areas are limited. Five prospective studies have been performed thus far, mainly among short-term travelers.To obtain the attack and incidence rate (AR, IR of dengue virus (DENV infection among long-term travelers and identify associated risk factors.A prospective study was performed among long-term travelers (12-52 weeks attending the Public Health Service in Amsterdam. Clients planning to travel to (subtropical countries were invited to participate. Participants kept a travel diary, recording itinerary, symptoms, and physician visits. Pre- and post-travel blood samples were serologically tested for the presence of Anti-DENV IgG antibodies. Seroconversion was considered suggestive of a primary DENV infection. Anti-DENV IgG present in both corresponding samples in combination with a post-/pre-travel ratio of ≥4:1 was suggestive of a secondary infection. Risk factors for a DENV infection were studied using poisson regression.In total, 600 participants were included; median age was 25 years (IQR: 23-29, 35.5% were male, and median travel duration was 20 weeks (IQR: 15-25. In 39 of 600 participants (AR: 6.5%; 95% CI 4.5-8.5% anti-DENV IgG test results were suggestive of a recent infection, yielding an IR of 13.9 per 1,000 person-months traveling (95%CI: 9.9-19.1. No secondary infections were found. IR for Asia, Africa, and America were comparable and 13.5, 15.8, and 13.6 per 1,000 person-months respectively. Of participants with a recent DENV infection, 51% did not report dengue-like illness (DLI or fever, but 10% were hospitalized. In multivariable analysis, travelers who seroconverted were significantly more likely to be vaccinated with ≥2 flavivirus vaccines for the current trip or to have reported DLI in >1 consecutive weeks.Long-term travelers are at substantial risk of DENV infection. Half of those with a DENV infection reported no symptoms, but 10

  5. First record of natural vertical transmission of dengue virus in Aedes aegypti from Cuba.

    Science.gov (United States)

    Gutiérrez-Bugallo, Gladys; Rodriguez-Roche, Rosmari; Díaz, Gisell; Vázquez, Antonio A; Alvarez, Mayling; Rodríguez, Magdalena; Bisset, Juan A; Guzman, Maria G

    2017-10-01

    While horizontal transmission (human-mosquito-human) of dengue viruses largely determines the epidemiology of the disease, vertical transmission (infected female mosquito- infected offspring) has been suggested as a mechanism that ensures maintenance of the virus during adverse conditions for horizontal transmission to occur. The purpose of this study was to analyze the natural infection of larval stages of Aedes aegypti (Diptera: Culicidae) with the dengue virus (DENV) in Cuba. Here, we report vertical transmission of DENV-3 genotype III in natural populations of Ae. aegypti through RT-PCR detection and serotyping plus sequencing. Our report constitutes the first record of vertical transmission of DENV in Ae. aegypti from Cuba with details of its serotype and genotype. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Dengue viruses binding proteins from Aedes aegypti and Aedes polynesiensis salivary glands

    Directory of Open Access Journals (Sweden)

    Cao-Lormeau Van-Mai

    2009-03-01

    Full Text Available Abstract Dengue virus (DENV, the etiological agent of dengue fever, is transmitted to the human host during blood uptake by an infective mosquito. Infection of vector salivary glands and further injection of infectious saliva into the human host are key events of the DENV transmission cycle. However, the molecular mechanisms of DENV entry into the mosquito salivary glands have not been clearly identified. Otherwise, although it was demonstrated for other vector-transmitted pathogens that insect salivary components may interact with host immune agents and impact the establishment of infection, the role of mosquito saliva on DENV infection in human has been only poorly documented. To identify salivary gland molecules which might interact with DENV at these key steps of transmission cycle, we investigated the presence of proteins able to bind DENV in salivary gland extracts (SGE from two mosquito species. Using virus overlay protein binding assay, we detected several proteins able to bind DENV in SGE from Aedes aegypti (L. and Aedes polynesiensis (Marks. The present findings pave the way for the identification of proteins mediating DENV attachment or entry into mosquito salivary glands, and of saliva-secreted proteins those might be bound to the virus at the earliest step of human infection. The present findings might contribute to the identification of new targets for anti-dengue strategies.

  7. Enhanced humoral and HLA-A2-restricted dengue virus-specific T-cell responses in humanized BLT NSG mice

    Science.gov (United States)

    Jaiswal, Smita; Pazoles, Pamela; Woda, Marcia; Shultz, Leonard D; Greiner, Dale L; Brehm, Michael A; Mathew, Anuja

    2012-01-01

    Dengue is a mosquito-borne viral disease of humans, and animal models that recapitulate human immune responses or dengue pathogenesis are needed to understand the pathogenesis of the disease. We recently described an animal model for dengue virus (DENV) infection using humanized NOD-scid IL2rγnull mice (NSG) engrafted with cord blood haematopoietic stem cells. We sought to further improve this model by co-transplantation of human fetal thymus and liver tissues into NSG (BLT-NSG) mice. Enhanced DENV-specific antibody titres were found in the sera of BLT-NSG mice compared with human cord blood haematopoietic stem cell-engrafted NSG mice. Furthermore, B cells generated during the acute phase and in memory from splenocytes of immunized BLT-NSG mice secreted DENV-specific IgM antibodies with neutralizing activity. Human T cells in engrafted BLT-NSG mice secreted interferon-γ in response to overlapping DENV peptide pools and HLA-A2 restricted peptides. The BLT-NSG mice will allow assessment of human immune responses to DENV vaccines and the effects of previous immunity on subsequent DENV infections. PMID:22384859

  8. A Rapid and Improved Method to Generate Recombinant Dengue Virus Vaccine Candidates.

    Directory of Open Access Journals (Sweden)

    Dhanasekaran Govindarajan

    Full Text Available Dengue is one of the most important mosquito-borne infections accounting for severe morbidity and mortality worldwide. Recently, the tetravalent chimeric live attenuated Dengue vaccine Dengvaxia® was approved for use in several dengue endemic countries. In general, live attenuated vaccines (LAV are very efficacious and offer long-lasting immunity against virus-induced disease. Rationally designed LAVs can be generated through reverse genetics technology, a method of generating infectious recombinant viruses from full length cDNA contained in bacterial plasmids. In vitro transcribed (IVT viral RNA from these infectious clones is transfected into susceptible cells to generate recombinant virus. However, the generation of full-length dengue virus cDNA clones can be difficult due to the genetic instability of viral sequences in bacterial plasmids. To circumvent the need for a single plasmid containing a full length cDNA, in vitro ligation of two or three cDNA fragments contained in separate plasmids can be used to generate a full-length dengue viral cDNA template. However, in vitro ligation of multiple fragments often yields low quality template for IVT reactions, resulting in inconsistent low yield RNA. These technical difficulties make recombinant virus recovery less efficient. In this study, we describe a simple, rapid and efficient method of using LONG-PCR to recover recombinant chimeric Yellow fever dengue (CYD viruses as potential dengue vaccine candidates. Using this method, we were able to efficiently generate several viable recombinant viruses without introducing any artificial mutations into the viral genomes. We believe that the techniques reported here will enable rapid and efficient recovery of recombinant flaviviruses for evaluation as vaccine candidates and, be applicable to the recovery of other RNA viruses.

  9. Vaccination with dengue virus-like particles induces humoral and cellular immune responses in mice

    Directory of Open Access Journals (Sweden)

    Zhang Quanfu

    2011-06-01

    Full Text Available Abstract Background The incidence of dengue, an infectious disease caused by dengue virus (DENV, has dramatically increased around the world in recent decades and is becoming a severe public health threat. However, there is currently no specific treatment for dengue fever, and licensed vaccine against dengue is not available. Vaccination with virus-like particles (VLPs has shown considerable promise for many viral diseases, but the effect of DENV VLPs to induce specific immune responses has not been adequately investigated. Results By optimizing the expression plasmids, recombinant VLPs of four antigenically different DENV serotypes DENV1-4 were successfully produced in 293T cells. The vaccination effect of dengue VLPs in mice showed that monovalent VLPs of each serotype stimulated specific IgG responses and potent neutralizing antibodies against homotypic virus. Tetravalent VLPs efficiently enhanced specific IgG and neutralizing antibodies against all four serotypes of DENV. Moreover, vaccination with monovalent or tetravalent VLPs resulted in the induction of specific cytotoxic T cell responses. Conclusions Mammalian cell expressed dengue VLPs are capable to induce VLP-specific humoral and cellular immune responses in mice, and being a promising subunit vaccine candidate for prevention of dengue virus infection.

  10. Transmission of dengue virus from deceased donors to solid organ transplant recipients: case report and literature review.

    Science.gov (United States)

    Rosso, Fernando; Pineda, Juan C; Sanz, Ana M; Cedano, Jorge A; Caicedo, Luis A

    Dengue fever is a vector-transmitted viral infection. Non-vectorial forms of transmission can occur through organ transplantation. We reviewed medical records of donors and recipients with suspected dengue in the first post-transplant week. We used serologic and molecular analysis to confirm the infection. Herein, we describe four cases of dengue virus transmission through solid organ transplantation. The recipients had positive serology and RT-PCR. Infection in donors was detected through serology. All cases presented with fever within the first week after transplantation. There were no fatal cases. After these cases, we implemented dengue screening with NS1 antigen detection in donors during dengue outbreaks, and no new cases were detected. In the literature review, additional cases had been published through August 2017. Transmission of Dengue virus can occur through organ donation. In endemic regions, it is important to suspect and screen for dengue in febrile and thrombocytopenic recipients in the postoperative period. Copyright © 2018 Sociedade Brasileira de Infectologia. Published by Elsevier Editora Ltda. All rights reserved.

  11. Performance Evaluation of Commercial Dengue Diagnostic Tests for Early Detection of Dengue in Clinical Samples

    Directory of Open Access Journals (Sweden)

    Tuan Nur Akmalina Mat Jusoh

    2017-01-01

    Full Text Available The shattering rise in dengue virus infections globally has created a need for an accurate and validated rapid diagnostic test for this virus. Rapid diagnostic test (RDT and reverse transcription-polymerase chain reaction (RT-PCR diagnostic detection are useful tools for diagnosis of early dengue infection. We prospectively evaluated the diagnostic performance of nonstructural 1 (NS1 RDT and real-time RT-PCR diagnostic kits in 86 patient serum samples. Thirty-six samples were positive for dengue NS1 antigen while the remaining 50 were negative when tested with enzyme-linked immunosorbent assay (ELISA. Commercially available RDTs for NS1 detection, RTK ProDetect™, and SD Bioline showed high sensitivity of 94% and 89%, respectively, compared with ELISA. GenoAmp® Trioplex Real-Time RT-PCR and RealStar® Dengue RT-PCR tests presented a comparable kappa agreement with 0.722. The result obtained from GenoAmp® Real-Time RT-PCR Dengue test showed that 14 samples harbored dengue virus type 1 (DENV-1, 8 samples harbored DENV-2, 2 samples harbored DENV-3, and 1 sample harbored DENV-4. 1 sample had a double infection with DENV-1 and DENV-2. The NS1 RDTs and real-time RT-PCR tests were found to be a useful diagnostic for early and rapid diagnosis of acute dengue and an excellent surveillance tool in our battle against dengue.

  12. Anti-GBM disease and ANCA during dengue infection.

    Science.gov (United States)

    Lizarraga, Karlo J; Florindez, Jorge A; Daftarian, Pirouz; Andrews, David M; Ortega, Luis M; Mendoza, Jair Munoz; Contreras, Gabriel N; Nayer, Ali

    2015-02-01

    Anti-glomerular basement membrane (GBM) disease is a severe inflammatory renal disorder due to pathogenic autoantibodies directed mainly against the α3 chain of type IV collagen. In ~1/4 of patients with anti-GBM disease, antineutrophil cytoplasmic antibodies (ANCA) predominantly with myeloperoxidase (MPO) specificity can be detected. Although the inciting stimuli leading to the development of an immune response against the type IV collagen and neutrophils are unknown, evidence indicates that both genetic and environmental factors play a role. Of note, molecular mimicry between self-antigens and nonself-antigens such as antigenic determinants of microorganisms has been implicated in the pathogenesis of anti-GBM disease and ANCA-associated vasculitis. A mosquito-borne viral illness highly prevalent in the tropics and subtropics, dengue can be complicated by acute renal failure, proteinuria, hematuria and glomerulonephritis. We present a 66-year-old woman who was diagnosed with dengue infection and rapidly progressive glomerulonephritis during an outbreak of dengue in Honduras in the summer of 2013. Renal biopsy revealed severe crescentic glomerulonephritis. Immunofluorescence examination demonstrated strong linear IgG deposition along glomerular capillary walls. Serologic tests demonstrated antibodies against GBM, MPO and platelet glycoproteins. The patient was diagnosed with anti-GBM disease associated with p-ANCA with MPO specificity. Despite heavy immunosuppression and plasmapheresis, IgG titers against dengue virus continued to rise confirming the diagnosis of acute dengue infection. We present the first reported case of anti-GBM disease associated with p-ANCA with MPO specificity during dengue infection. This report calls for a heightened awareness of autoimmunity leading to crescentic glomerulonephritis in patients with dengue infection.

  13. Unusual dengue virus 3 epidemic in Nicaragua, 2009.

    Directory of Open Access Journals (Sweden)

    Gamaliel Gutierrez

    2011-11-01

    Full Text Available The four dengue virus serotypes (DENV1-4 cause the most prevalent mosquito-borne viral disease affecting humans worldwide. In 2009, Nicaragua experienced the largest dengue epidemic in over a decade, marked by unusual clinical presentation, as observed in two prospective studies of pediatric dengue in Managua. From August 2009-January 2010, 212 dengue cases were confirmed among 396 study participants at the National Pediatric Reference Hospital. In our parallel community-based cohort study, 170 dengue cases were recorded in 2009-10, compared to 13-65 cases in 2004-9. In both studies, significantly more patients experienced "compensated shock" (poor capillary refill plus cold extremities, tachycardia, tachypnea, and/or weak pulse in 2009-10 than in previous years (42.5% [90/212] vs. 24.7% [82/332] in the hospital study (p<0.001 and 17% [29/170] vs. 2.2% [4/181] in the cohort study (p<0.001. Signs of poor peripheral perfusion presented significantly earlier (1-2 days in 2009-10 than in previous years according to Kaplan-Meier survival analysis. In the hospital study, 19.8% of subjects were transferred to intensive care, compared to 7.1% in previous years - similar to the cohort study. DENV-3 predominated in 2008-9, 2009-10, and 2010-11, and full-length sequencing revealed no major genetic changes from 2008-9 to 2010-11. In 2008-9 and 2010-11, typical dengue was observed; only in 2009-10 was unusual presentation noted. Multivariate analysis revealed only "2009-10" as a significant risk factor for Dengue Fever with Compensated Shock. Interestingly, circulation of pandemic influenza A-H1N1 2009 in Managua was shifted such that it overlapped with the dengue epidemic. We hypothesize that prior influenza A H1N1 2009 infection may have modulated subsequent DENV infection, and initial results of an ongoing study suggest increased risk of shock among children with anti-H1N1-2009 antibodies. This study demonstrates that parameters other than serotype, viral

  14. Autoimmunity in dengue pathogenesis

    Directory of Open Access Journals (Sweden)

    Shu-Wen Wan

    2013-01-01

    Full Text Available Dengue is one of the most important vector-borne viral diseases. With climate change and the convenience of travel, dengue is spreading beyond its usual tropical and subtropical boundaries. Infection with dengue virus (DENV causes diseases ranging widely in severity, from self-limited dengue fever to life-threatening dengue hemorrhagic fever and dengue shock syndrome. Vascular leakage, thrombocytopenia, and hemorrhage are the major clinical manifestations associated with severe DENV infection, yet the mechanisms remain unclear. Besides the direct effects of the virus, immunopathogenesis is also involved in the development of dengue disease. Antibody-dependent enhancement increases the efficiency of virus infection and may suppress type I interferon-mediated antiviral responses. Aberrant activation of T cells and overproduction of soluble factors cause an increase in vascular permeability. DENV-induced autoantibodies against endothelial cells, platelets, and coagulatory molecules lead to their abnormal activation or dysfunction. Molecular mimicry between DENV proteins and host proteins may explain the cross-reactivity of DENV-induced autoantibodies. Although no licensed dengue vaccine is yet available, several vaccine candidates are under development. For the development of a safe and effective dengue vaccine, the immunopathogenic complications of dengue disease need to be considered.

  15. Oral receptivity of Aedes aegypti from Cape Verde for yellow fever, dengue, and chikungunya viruses.

    Science.gov (United States)

    Vazeille, Marie; Yébakima, André; Lourenço-de-Oliveira, Ricardo; Andriamahefazafy, Barrysson; Correira, Artur; Rodrigues, Julio Monteiro; Veiga, Antonio; Moreira, Antonio; Leparc-Goffart, Isabelle; Grandadam, Marc; Failloux, Anna-Bella

    2013-01-01

    At the end of 2009, 21,313 cases of dengue-3 virus (DENV-3) were reported in the islands of Cape Verde, an archipelago located in the Atlantic Ocean 570 km from the coast of western Africa. It was the first dengue outbreak ever reported in Cape Verde. Mosquitoes collected in July 2010 in the city of Praia, on the island of Santiago, were identified morphologically as Aedes aegypti formosus. Using experimental oral infections, we found that this vector showed a moderate ability to transmit the epidemic dengue-3 virus, but was highly susceptible to chikungunya and yellow fever viruses.

  16. Dengue Infection in Children in Ratchaburi, Thailand: A Cohort Study. I. Epidemiology of Symptomatic Acute Dengue Infection in Children, 2006–2009

    Science.gov (United States)

    Sabchareon, Arunee; Sirivichayakul, Chukiat; Limkittikul, Kriengsak; Chanthavanich, Pornthep; Suvannadabba, Saravudh; Jiwariyavej, Vithaya; Dulyachai, Wut; Pengsaa, Krisana; Margolis, Harold S.; Letson, G. William

    2012-01-01

    Background There is an urgent need to field test dengue vaccines to determine their role in the control of the disease. Our aims were to study dengue epidemiology and prepare the site for a dengue vaccine efficacy trial. Methods and Findings We performed a prospective cohort study of children in primary schools in central Thailand from 2006 through 2009. We assessed the epidemiology of dengue by active fever surveillance for acute febrile illness as detected by school absenteeism and telephone contact of parents, and dengue diagnostic testing. Dengue accounted for 394 (6.74%) of the 5,842 febrile cases identified in 2882, 3104, 2717 and 2312 student person-years over the four years, respectively. Dengue incidence was 1.77% in 2006, 3.58% in 2007, 5.74% in 2008 and 3.29% in 2009. Mean dengue incidence over the 4 years was 3.6%. Dengue virus (DENV) types were determined in 333 (84.5%) of positive specimens; DENV serotype 1 (DENV-1) was the most common (43%), followed by DENV-2 (29%), DENV-3 (20%) and DENV-4 (8%). Disease severity ranged from dengue hemorrhagic fever (DHF) in 42 (10.5%) cases, dengue fever (DF) in 142 (35.5%) cases and undifferentiated fever (UF) in 210 (52.5%) cases. All four DENV serotypes were involved in all disease severity. A majority of cases had secondary DENV infection, 95% in DHF, 88.7% in DF and 81.9% in UF. Two DHF (0.5%) cases had primary DENV-3 infection. Conclusion The results illustrate the high incidence of dengue with all four DENV serotypes in primary school children, with approximately 50% of disease manifesting as mild clinical symptoms of UF, not meeting the 1997 WHO criteria for dengue. Severe disease (DHF) occurred in one tenth of cases. Data of this type are required for clinical trials to evaluate the efficacy of dengue vaccines in large scale clinical trials. PMID:22860141

  17. Serodiagnosis of dengue infection using rapid immunochromatography test in patients with probable dengue infection.

    Science.gov (United States)

    Kidwai, Aneela Altaf; Jamal, Qaiser; Saher; Mehrunnisa; Farooqi, Faiz-ur-rehman; Saleem-Ullah

    2010-11-01

    To determine the frequency of seropositive dengue infection using rapid immunochromatographic assay in patients with probable dengue infection as per WHO criteria. A cross-sectional observational study was conducted at Abbasi Shaheed Hospital, Karachi from July 2008 to January 2009. Patients presenting with acute febrile illness, rashes, bleeding tendencies, leucopenia and or thrombocytopenia were evaluated according to WHO criteria for probable dengue infection. Acute phase sera were collected after 5 days of the onset of fever as per WHO criteria. Serology was performed using rapid immunochromatographic (ICT) assay with differential detection of IgM and IgG. A primary dengue infection was defined by a positive IgM band and a negative IgG band whereas secondary infection was defined by a positive IgG band with or without positive IgM band. Among 599 patients who met the WHO criteria for dengue infection, 251(41.9%) were found to be ICT reactive among whom 42 (16.73%) had primary infection. Secondary infection was reported in 209 (83.26%). Acute phase sera of 348 (58.09%) were ICT non reactive. Four patients died because of dengue shock syndrome among which three had secondary infection. Early identification of secondary infection in acute phase sera using rapid ICT is valuable in terms of disease progression and mortality. However in highly suspected cases of dengue infection clinical management should not rely on negative serological results.

  18. Human T Lymphocytes Are Permissive for Dengue Virus Replication.

    Science.gov (United States)

    Silveira, Guilherme F; Wowk, Pryscilla F; Cataneo, Allan H D; Dos Santos, Paula F; Delgobo, Murilo; Stimamiglio, Marco A; Lo Sarzi, Maria; Thomazelli, Ana Paula F S; Conchon-Costa, Ivete; Pavanelli, Wander R; Antonelli, Lis R V; Báfica, André; Mansur, Daniel S; Dos Santos, Claudia N Duarte; Bordignon, Juliano

    2018-05-15

    Dengue virus (DV) infection can cause either a self-limiting flu-like disease or a threatening hemorrhage that may evolve to shock and death. A variety of cell types, such as dendritic cells, monocytes, and B cells, can be infected by DV. However, despite the role of T lymphocytes in the control of DV replication, there remains a paucity of information on possible DV-T cell interactions during the disease course. In the present study, we have demonstrated that primary human naive CD4 + and CD8 + T cells are permissive for DV infection. Importantly, both T cell subtypes support viral replication and secrete viable virus particles. DV infection triggers the activation of both CD4 + and CD8 + T lymphocytes, but preactivation of T cells reduces the susceptibility of T cells to DV infection. Interestingly, the cytotoxicity-inducing protein granzyme A is highly secreted by human CD4 + but not CD8 + T cells after exposure to DV in vitro Additionally, using annexin V and polycaspase assays, we have demonstrated that T lymphocytes, in contrast to monocytes, are resistant to DV-induced apoptosis. Strikingly, both CD4 + and CD8 + T cells were found to be infected with DV in acutely infected dengue patients. Together, these results show that T cells are permissive for DV infection in vitro and in vivo , suggesting that this cell population may be a viral reservoir during the acute phase of the disease. IMPORTANCE Infection by dengue virus (DV) causes a flu-like disease that can evolve to severe hemorrhaging and death. T lymphocytes are important cells that regulate antibody secretion by B cells and trigger the death of infected cells. However, little is known about the direct interaction between DV and T lymphocytes. Here, we show that T lymphocytes from healthy donors are susceptible to infection by DV, leading to cell activation. Additionally, T cells seem to be resistant to DV-induced apoptosis, suggesting a potential role as a viral reservoir in humans. Finally, we show

  19. Dengue and Severe Dengue

    Science.gov (United States)

    ... all regions of WHO in recent years. Dengue virus is transmitted by female mosquitoes mainly of the species Aedes aegypti and, to a lesser extent, Ae. albopictus . This mosquito also transmits chikungunya, yellow fever and Zika infection. Dengue is widespread throughout the tropics, with ...

  20. Dengue viral infections

    OpenAIRE

    Malavige, G; Fernando, S; Fernando, D; Seneviratne, S

    2004-01-01

    Dengue viral infections are one of the most important mosquito borne diseases in the world. They may be asymptomatic or may give rise to undifferentiated fever, dengue fever, dengue haemorrhagic fever (DHF), or dengue shock syndrome. Annually, 100 million cases of dengue fever and half a million cases of DHF occur worldwide. Ninety percent of DHF subjects are children less than 15 years of age. At present, dengue is endemic in 112 countries in the world. No vaccine is available for preventing...

  1. Amino acid changes within the E protein hinge region that affect dengue virus type 2 infectivity and fusion

    International Nuclear Information System (INIS)

    Butrapet, Siritorn; Childers, Thomas; Moss, Kelley J.; Erb, Steven M.; Luy, Betty E.; Calvert, Amanda E.; Blair, Carol D.; Roehrig, John T.; Huang, Claire Y.-H.

    2011-01-01

    Fifteen mutant dengue viruses were engineered and used to identify AAs in the molecular hinge of the envelope protein that are critical to viral infection. Substitutions at Q52, A54, or E133 reduced infectivity in mammalian cells and altered the pH threshold of fusion. Mutations at F193, G266, I270, or G281 affected viral replication in mammalian and mosquito cells, but only I270W had reduced fusion activity. T280Y affected the pH threshold for fusion and reduced replication in C6/36 cells. Three different mutations at L135 were lethal in mammalian cells. Among them, L135G abrogated fusion and reduced replication in C6/36 cells, but only slightly reduced the mosquito infection rate. Conversely, L135W replicated well in C6/36 cells, but had the lowest mosquito infection rate. Possible interactions between hinge residues 52 and 277, or among 53, 135, 170, 186, 265, and 276 required for hinge function were discovered by sequence analysis to identify compensatory mutations.

  2. A Role for Human Skin Mast Cells in Dengue Virus Infection and Systemic Spread.

    Science.gov (United States)

    Troupin, Andrea; Shirley, Devon; Londono-Renteria, Berlin; Watson, Alan M; McHale, Cody; Hall, Alex; Hartstone-Rose, Adam; Klimstra, William B; Gomez, Gregorio; Colpitts, Tonya M

    2016-12-01

    Dengue virus (DENV) is a mosquito-borne flavivirus that causes serious global human disease and mortality. Skin immune cells are an important component of initial DENV infection and systemic spread. Here, we show that mast cells are a target of DENV in human skin and that DENV infection of skin mast cells induces degranulation and alters cytokine and growth factor expression profiles. Importantly, to our knowledge, we also demonstrate for the first time that DENV localizes within secretory granules in infected skin mast cells. In addition, DENV within extracellular granules was infectious in vitro and in vivo, trafficking through lymph to draining lymph nodes in mice. We demonstrate an important role for human skin mast cells in DENV infection and identify a novel mechanism for systemic spread of DENV infection from the initial peripheral mosquito injection site. Copyright © 2016 by The American Association of Immunologists, Inc.

  3. Predictive diagnostic value of the tourniquet test for the diagnosis of dengue infection in adults

    Science.gov (United States)

    Mayxay, Mayfong; Phetsouvanh, Rattanaphone; Moore, Catrin E; Chansamouth, Vilada; Vongsouvath, Manivanh; Sisouphone, Syho; Vongphachanh, Pankham; Thaojaikong, Thaksinaporn; Thongpaseuth, Soulignasack; Phongmany, Simmaly; Keolouangkhot, Valy; Strobel, Michel; Newton, Paul N

    2011-01-01

    Objective To examine the accuracy of the admission tourniquet test in the diagnosis of dengue infection among Lao adults. Methods Prospective assessment of the predictive diagnostic value of the tourniquet test for the diagnosis of dengue infection, as defined by IgM, IgG and NS1 ELISAs (Panbio Ltd, Australia), among Lao adult inpatients with clinically suspected dengue infection. Results Of 234 patients with clinically suspected dengue infection on admission, 73% were serologically confirmed to have dengue, while 64 patients with negative dengue serology were diagnosed as having scrub typhus (39%), murine typhus (11%), undetermined typhus (12%), Japanese encephalitis virus (5%), undetermined flavivirus (5%) and typhoid fever (3%); 25% had no identifiable aetiology. The tourniquet test was positive in 29.1% (95% CI = 23.2–34.9%) of all patients and in 34.1% (95% CI = 27.0–41.2%) of dengue-seropositive patients, in 32.7% (95% CI = 23.5–41.8) of those with dengue fever and in 36.4% (95% CI = 24.7–48.0) of those with dengue haemorrhagic fever. Interobserver agreement for the tourniquet test was 90.2% (95% CI = 86.4–94.0) (Kappa = 0.76). Using ELISAs as the diagnostic gold standard, the sensitivity of the tourniquet test was 33.5–34%; its specificity was 84–91%. The positive and negative predictive values were 85–90% and 32.5–34%, respectively. Conclusions The admission tourniquet test has low sensitivity and adds relatively little value to the diagnosis of dengue among Lao adult inpatients with suspected dengue. Although a positive tourniquet test suggests dengue and that treatment of alternative diagnoses may not be needed, a negative test result does not exclude dengue. PMID:20958892

  4. Comparative Infectivity Determinations of Dengue Virus Vaccine Candidates in Rhesus Monkeys, Mosquitoes, and Cell Cultures

    Science.gov (United States)

    1993-01-28

    34 are required for the evaluation of these vaccine candidates. RE: DAMDI7-89-C-9175 Page 16 REFERENCES 1. Sabin AB, Sclesinger RW, 1945. Production of...AD-A261 892 CONTRACT NO: DAMD17-89-C-9 175 \\II\\IllI\\I\\I1\\\\~il\\ TITLE: COMPARATIVE INFECTIVITY DETERMINATIONS OF DENGUE VIRUS VACCINE CANDIDATES IN... Vaccine Candidates in Rhesus Monkeys, 63002A Mosquitoes, and Cell Cultures 3M263002D870 AC 6. AUTHOR(S) DA335475 Edmundo Kraiselburd 7. PERFORMING

  5. Dengue virus infection down-regulates differentiation markers in neuroblastoma cells

    OpenAIRE

    Rincón Forero, Verónica; Alvear Gómez, Diana; Solano Orjuela, Oscar; Prada-Arismendy, Jeanette; Castellanos Parra, Jaime Eduardo

    2011-01-01

    Introducción: cerca del 5% de los pacientes con dengue hemorrágico pueden presentar manifestaciones neurológicas; sin embargo, existe poca información sobre la infección directa por el virus dengue (DENV) en neuronas. Objetivo: determinar el papel del fenotipo neuronal en la infección por DENV en células de neuroblastoma SH-SY5Y inducidas o no a la diferenciación con ácido retinoico (AR). Materiales y métodos: células SH-SY5Y fueron inducidas con AR a diferenciarse e infectadas con DENV. Post...

  6. Dengue encephalitis–A rare manifestation of dengue fever

    OpenAIRE

    Madi, Deepak; Achappa, Basavaprabhu; Ramapuram, John T; Chowta, Nityananda; Laxman, Mridula; Mahalingam, Soundarya

    2014-01-01

    The clinical spectrum of dengue fever ranges from asymptomatic infection to dengue shock syndrome. Dengue is classically considered a non-neurotropic virus. Neurological complications are not commonly seen in dengue. The neurological manifestations seen in dengue are encephalitis, meningitis, encephalopathy, stroke and Guillain-Barré syndrome. Dengue encephalitis is a rare disease. We report an interesting case of dengue encephalitis from Southern India. A 49-year-old gentleman presented with...

  7. Hemoterapia e febre Dengue Blood banking e Dengue fever

    Directory of Open Access Journals (Sweden)

    Estácio F. Ramos

    2008-02-01

    Full Text Available Dengue is an endemic/epidemic arboviral disease with a variable symptomatic benign course, but potentially fatal. Once in an inhabited area, the disease will exist forever, with the best achievement being to keep vectors suppressed and the disease under control. Tiger mosquitoes (aedes aegypti, aedes albopictus are active breeders and urban hunters, becoming resistant to pesticides. Global warming and population growth are propelling the disease worldwide at tropical and subtropical regions, victimizing new populations. Dengue virus is very infective, and has been transmitted by needlestick, intrapartum, through blood transfusion and mucosal contact with blood. One patient got dengue while undergoing bone marrow transplantation. We address the growing dengue epidemics in Brazil, with more than half a million official cases in 2007, to estimate the risks of transfusion transmitted dengue. Calculations however were surpassed by reality: the major Blood Center in Brazil (FHSP-USP has found dengue virus in one out of each thousand blood units. In 2007, industry sold 2,6 million disposable blood bags in Brazil. Plotting data from FHSP-USP to the whole country, 2600 blood units would have been infective. Through blood components, around 5000 patients must have received dengue virus intravenously. Beatty et al. estimated to be 1:1300 the risk for dengue transmission through blood transfusion in Puerto Rico, close to what has been demonstrated in Sao Paulo. Throughout Brazil, the average risk may be lower, but the epidemics grows towards a worst scenario. Whatever the risk is, it imposes that all blood units in Brazil (and wherever dengue is endemic must be EIA tested for dengue NS1 antigen. This marker appears early after infection, and the EIA testing platform is available at all blood banks. Also, donors must report febrile states up to two weeks after donation. Morbidity from dengue virus injected in hospitalized patients is unknown, but it may lead

  8. Defining New Therapeutics Using a More Immunocompetent Mouse Model of Antibody-Enhanced Dengue Virus Infection.

    Science.gov (United States)

    Pinto, Amelia K; Brien, James D; Lam, Chia-Ying Kao; Johnson, Syd; Chiang, Cindy; Hiscott, John; Sarathy, Vanessa V; Barrett, Alan D; Shresta, Sujan; Diamond, Michael S

    2015-09-15

    With over 3.5 billion people at risk and approximately 390 million human infections per year, dengue virus (DENV) disease strains health care resources worldwide. Previously, we and others established models for DENV pathogenesis in mice that completely lack subunits of the receptors (Ifnar and Ifngr) for type I and type II interferon (IFN) signaling; however, the utility of these models is limited by the pleotropic effect of these cytokines on innate and adaptive immune system development and function. Here, we demonstrate that the specific deletion of Ifnar expression on subsets of murine myeloid cells (LysM Cre(+) Ifnar(flox/flox) [denoted as Ifnar(f/f) herein]) resulted in enhanced DENV replication in vivo. The administration of subneutralizing amounts of cross-reactive anti-DENV monoclonal antibodies to LysM Cre(+) Ifnar(f/f) mice prior to infection with DENV serotype 2 or 3 resulted in antibody-dependent enhancement (ADE) of infection with many of the characteristics associated with severe DENV disease in humans, including plasma leakage, hypercytokinemia, liver injury, hemoconcentration, and thrombocytopenia. Notably, the pathogenesis of severe DENV-2 or DENV-3 infection in LysM Cre(+) Ifnar(f/f) mice was blocked by pre- or postexposure administration of a bispecific dual-affinity retargeting molecule (DART) or an optimized RIG-I receptor agonist that stimulates innate immune responses. Our findings establish a more immunocompetent animal model of ADE of infection with multiple DENV serotypes in which disease is inhibited by treatment with broad-spectrum antibody derivatives or innate immune stimulatory agents. Although dengue virus (DENV) infects hundreds of millions of people annually and results in morbidity and mortality on a global scale, there are no approved antiviral treatments or vaccines. Part of the difficulty in evaluating therapeutic candidates is the lack of small animal models that are permissive to DENV and recapitulate the clinical features

  9. Rational design of a live attenuated dengue vaccine: 2'-o-methyltransferase mutants are highly attenuated and immunogenic in mice and macaques.

    Directory of Open Access Journals (Sweden)

    Roland Züst

    Full Text Available Dengue virus is transmitted by Aedes mosquitoes and infects at least 100 million people every year. Progressive urbanization in Asia and South-Central America and the geographic expansion of Aedes mosquito habitats have accelerated the global spread of dengue, resulting in a continuously increasing number of cases. A cost-effective, safe vaccine conferring protection with ideally a single injection could stop dengue transmission. Current vaccine candidates require several booster injections or do not provide protection against all four serotypes. Here we demonstrate that dengue virus mutants lacking 2'-O-methyltransferase activity are highly sensitive to type I IFN inhibition. The mutant viruses are attenuated in mice and rhesus monkeys and elicit a strong adaptive immune response. Monkeys immunized with a single dose of 2'-O-methyltransferase mutant virus showed 100% sero-conversion even when a dose as low as 1,000 plaque forming units was administrated. Animals were fully protected against a homologous challenge. Furthermore, mosquitoes feeding on blood containing the mutant virus were not infected, whereas those feeding on blood containing wild-type virus were infected and thus able to transmit it. These results show the potential of 2'-O-methyltransferase mutant virus as a safe, rationally designed dengue vaccine that restrains itself due to the increased susceptibility to the host's innate immune response.

  10. Role of the chemokine receptors CCR1, CCR2 and CCR4 in the pathogenesis of experimental dengue infection in mice.

    Directory of Open Access Journals (Sweden)

    Rodrigo Guabiraba

    Full Text Available Dengue virus (DENV, a mosquito-borne flavivirus, is a public health problem in many tropical countries. Recent clinical data have shown an association between levels of different chemokines in plasma and severity of dengue. We evaluated the role of CC chemokine receptors CCR1, CCR2 and CCR4 in an experimental model of DENV-2 infection in mice. Infection of mice induced evident clinical disease and tissue damage, including thrombocytopenia, hemoconcentration, lymphopenia, increased levels of transaminases and pro-inflammatory cytokines, and lethality in WT mice. Importantly, infected WT mice presented increased levels of chemokines CCL2/JE, CCL3/MIP-1α and CCL5/RANTES in spleen and liver. CCR1⁻/⁻ mice had a mild phenotype with disease presentation and lethality similar to those of WT mice. In CCR2⁻/⁻ mice, lethality, liver damage, levels of IL-6 and IFN-γ, and leukocyte activation were attenuated. However, thrombocytopenia, hemoconcentration and systemic TNF-α levels were similar to infected WT mice. Infection enhanced levels of CCL17/TARC, a CCR4 ligand. In CCR4⁻/⁻ mice, lethality, tissue injury and systemic inflammation were markedly decreased. Despite differences in disease presentation in CCR-deficient mice, there was no significant difference in viral load. In conclusion, activation of chemokine receptors has discrete roles in the pathogenesis of dengue infection. These studies suggest that the chemokine storm that follows severe primary dengue infection associates mostly to development of disease rather than protection.

  11. Non-Canonical Roles of Dengue Virus Non-Structural Proteins

    Directory of Open Access Journals (Sweden)

    Julianna D. Zeidler

    2017-03-01

    Full Text Available The Flaviviridae family comprises a number of human pathogens, which, although sharing structural and functional features, cause diseases with very different outcomes. This can be explained by the plurality of functions exerted by the few proteins coded by viral genomes, with some of these functions shared among members of a same family, but others being unique for each virus species. These non-canonical functions probably have evolved independently and may serve as the base to the development of specific therapies for each of those diseases. Here it is discussed what is currently known about the non-canonical roles of dengue virus (DENV non-structural proteins (NSPs, which may account for some of the effects specifically observed in DENV infection, but not in other members of the Flaviviridae family. This review explores how DENV NSPs contributes to the physiopathology of dengue, evasion from host immunity, metabolic changes, and redistribution of cellular components during infection.

  12. Advances and new insights in the neuropathogenesis of dengue infection

    Directory of Open Access Journals (Sweden)

    Marzia Puccioni-Sohler

    2015-08-01

    Full Text Available Dengue virus (DENV infects approximately 390 million persons every year in more than 100 countries. Reports of neurological complications are more frequently. The objective of this narrative review is to bring up the advances in the dengue neuropathogenesis. DENV can access the nervous system through blood-brain barrier disturbance mediated by cytokine. The blood-cerebrospinal fluid (CSF barrier seems to be also involved, considering the presence of the virus in the CSF of patients with neurological manifestations. As for neurotropism, several studies showed the presence of RNA and viral antigens in brain tissue and CSF in humans. In murine model, different virus mutations were associated to neurovirulence. Despite the advances in the dengue neuropathogenesis, it is still necessary to determine a more appropriate animal model and increase the number of cases of autopsy. The detection of neurovirulence markers may contribute to establish a prognosis, the disease control and vaccine development.

  13. Increasing usage of rapid diagnostics for Dengue virus detection in Pakistan

    International Nuclear Information System (INIS)

    Hasan, Z.; Razzak, S.; Farhan, M.; Rahim, M.; Islam, N.; Samreen, A.; Khan, E.

    2017-01-01

    To evaluate the trends in usage of dengue virus diagnostics in Pakistan. Methods: This retrospective study was conducted at the Aga Khan University Hospital, Karachi, and comprised data for specimens tested for dengue virus from January 2012 to December 2015. Test for dengue virus ribonucleic acid by reverse transcription polymerase chain reaction, dengue virus antigen by immunochromatic assay and for human immunoglobulin M against dengue virus by enzyme-linked immunosorbent assay were reviewed. SPSS 17 was used for data analysis. Results: Overall, 33,577 specimens tested for dengue virus. Of them, 11,995 (35.7%) were positive. among them, 1,039(8.66%) were reported in 2012; 5,791(48.28%) in 2013; 1,027(8.56%) in 2014; and 4,138(34.49%) in 2015. In 2012, 966(93%) of the positive samples were diagnosed by immunoglobulin M-based method and 73(7%) by non-structural protein-1 antigen. In 2013, 4,401(76%) samples were tested positive by immunoglobulin M, 1,332(23%) by antigen and 58(1%) by polymerase chain reaction. The trend continued in 2014, but in 2015, 2,111(51%) of all dengue positive tests were determined by antigen testing, 1,969(47.6%) by immunoglobulin M and 58(1.4%) by polymerase chain reaction. Conclusion: There was a shift in usage of direct virus identification for rapid diagnosis of dengue virus compared with host immunoglobulin M testing. (author)

  14. Serodiagnosis of dengue infection using rapid immuno chromatography test in patients with probable dengue infection

    International Nuclear Information System (INIS)

    Kidwai, A.A.; Jamal, Q.; Mehrunnisa, S.; Farooqi, F.R.

    2010-01-01

    Objective: To determine the frequency of seropositive dengue infection using rapid immuno chromatographic assay in patients with probable dengue infection as per WHO criteria. Method: A cross-sectional observational study was conducted at Abbasi Shaheed Hospital, Karachi from July 2008 to January 2009. Patients presenting with acute febrile illness, rashes, bleeding tendencies, leucopenia and or thrombocytopenia were evaluated according to WHO criteria for probable dengue infection. Acute phase sera were collected after 5 days of the onset of fever as per WHO criteria. Serology was performed using rapid immuno chromatographic (ICT) assay with differential detection of IgM and IgG. A primary dengue infection was defined by a positive IgM band and a negative IgG band whereas secondary infection was defined by a positive IgG band with or without positive IgM band. Result: Among 599 patients who met the WHO criteria for dengue infection, 251(41.9%) were found to be ICT reactive among whom 42 (16.73%) had primary infection. Secondary infection was reported in 209 (83.26%). Acute phase sera of 348 (58.09%) were ICT non reactive. Four patients died because of dengue shock syndrome among which three had secondary infection. Conclusion: Early identification of secondary infection in acute phase sera using rapid ICT is valuable in terms of disease progression and mortality. However in highly suspected cases of dengue infection clinical management should not rely on negative serological results. (author)

  15. Stability Analysis Susceptible, Exposed, Infected, Recovered (SEIR) Model for Spread Model for Spread of Dengue Fever in Medan

    Science.gov (United States)

    Side, Syafruddin; Molliq Rangkuti, Yulita; Gerhana Pane, Dian; Setia Sinaga, Marlina

    2018-01-01

    Dengue fever is endemic disease which spread through vector, Aedes Aegypty. This disease is found more than 100 countries, such as, United State, Africa as well Asia, especially in country that have tropic climate. Mathematical modeling in this paper, discusses the speed of the spread of dengue fever. The model adopting divided over four classes, such as Susceptible (S), Exposed (E), Infected (I) and Recovered (R). SEIR model further analyzed to detect the re-breeding value based on the number reported case by dengue in Medan city. Analysis of the stability of the system in this study is asymptotically stable indicating a case of endemic and unstable that show cases the endemic cases. Simulation on the mathematical model of SEIR showed that require a very long time to produce infected humans will be free of dengue virus infection. This happens because of dengue virus infection that occurs continuously between human and vector populations.

  16. Synchrony of sylvatic dengue isolations: a multi-host, multi-vector SIR model of dengue virus transmission in Senegal.

    Directory of Open Access Journals (Sweden)

    Benjamin M Althouse

    Full Text Available Isolations of sylvatic dengue-2 virus from mosquitoes, humans and non-human primates in Senegal show synchronized multi-annual dynamics over the past 50 years. Host demography has been shown to directly affect the period between epidemics in other pathogen systems, therefore, one might expect unsynchronized multi-annual cycles occurring in hosts with dramatically different birth rates and life spans. However, in Senegal, we observe a single synchronized eight-year cycle across all vector species, suggesting synchronized dynamics in all vertebrate hosts. In the current study, we aim to explore two specific hypotheses: 1 primates with different demographics will experience outbreaks of dengue at different periodicities when observed as isolated systems, and that coupling of these subsystems through mosquito biting will act to synchronize incidence; and 2 the eight-year periodicity of isolations observed across multiple primate species is the result of long-term cycling in population immunity in the host populations. To test these hypotheses, we develop a multi-host, multi-vector Susceptible, Infected, Removed (SIR model to explore the effects of coupling multiple host-vector systems of dengue virus transmission through cross-species biting rates. We find that under small amounts of coupling, incidence in the host species synchronize. Long-period multi-annual dynamics are observed only when prevalence in troughs reaches vanishingly small levels (< 10(-10, suggesting that these dynamics are inconsistent with sustained transmission in this setting, but are consistent with local dengue virus extinctions followed by reintroductions. Inclusion of a constant introduction of infectious individuals into the system causes the multi-annual periods to shrink, while the effects of coupling remain the same. Inclusion of a stochastic rate of introduction allows for multi-annual periods at a cost of reduced synchrony. Thus, we conclude that the eight-year period

  17. Zika, dengue, and chikungunya co-infection in a pregnant woman from Colombia

    Directory of Open Access Journals (Sweden)

    Wilmer E. Villamil-Gómez

    2016-10-01

    Full Text Available The clinical findings of a pregnant woman from Colombia with a triple co-infection caused by dengue, chikungunya, and Zika viruses are described. Weekly obstetric ultrasounds from 14.6 to 29 weeks of gestation were normal. She remains under follow-up and management according to the standard guidelines for the management of Zika virus-infected pregnant women.

  18. Phylogenetic and evolutionary analyses of dengue viruses isolated in Jakarta, Indonesia.

    Science.gov (United States)

    Lestari, C S Whinie; Yohan, Benediktus; Yunita, Anisa; Meutiawati, Febrina; Hayati, Rahma Fitri; Trimarsanto, Hidayat; Sasmono, R Tedjo

    2017-12-01

    Dengue has affected Indonesia for the last five decades and become a major health problem in many cities in the country. Jakarta, the capital of Indonesia, reports dengue cases annually, with several outbreaks documented. To gain information on the dynamic and evolutionary history of dengue virus (DENV) in Jakarta, we conducted phylogenetic and evolutionary analyses of DENV isolated in 2009. Three hundred thirty-three dengue-suspected patients were recruited. Our data revealed that dengue predominantly affected young adults, and the majority of cases were due to secondary infection. A total of 171 virus isolates were successfully serotyped. All four DENV serotypes were circulating in the city, and DENV-1 was the predominant serotype. The DENV genotyping of 17 isolates revealed the presence of Genotypes I and IV in DENV-1, while DENV-2 isolates were grouped into the Cosmopolitan genotype. The grouping of isolates into Genotype I and II was seen for DENV-3 and DENV-4, respectively. Evolutionary analysis revealed the relatedness of Jakarta isolates with other isolates from other cities in Indonesia and isolates from imported cases in other countries. We revealed the endemicity of DENV and the role of Jakarta as the potential source of imported dengue cases in other countries. Our study provides genetic information regarding DENV from Jakarta, which will be useful for upstream applications, such as the study of DENV epidemiology and evolution and transmission dynamics.

  19. Epitope Sequences in Dengue Virus NS1 Protein Identified by Monoclonal Antibodies

    Directory of Open Access Journals (Sweden)

    Leticia Barboza Rocha

    2017-10-01

    Full Text Available Dengue nonstructural protein 1 (NS1 is a multi-functional glycoprotein with essential functions both in viral replication and modulation of host innate immune responses. NS1 has been established as a good surrogate marker for infection. In the present study, we generated four anti-NS1 monoclonal antibodies against recombinant NS1 protein from dengue virus serotype 2 (DENV2, which were used to map three NS1 epitopes. The sequence 193AVHADMGYWIESALNDT209 was recognized by monoclonal antibodies 2H5 and 4H1BC, which also cross-reacted with Zika virus (ZIKV protein. On the other hand, the sequence 25VHTWTEQYKFQPES38 was recognized by mAb 4F6 that did not cross react with ZIKV. Lastly, a previously unidentified DENV2 NS1-specific epitope, represented by the sequence 127ELHNQTFLIDGPETAEC143, is described in the present study after reaction with mAb 4H2, which also did not cross react with ZIKV. The selection and characterization of the epitope, specificity of anti-NS1 mAbs, may contribute to the development of diagnostic tools able to differentiate DENV and ZIKV infections.

  20. Dengue virus specific IgY provides protection following lethal dengue virus challenge and is neutralizing in the absence of inducing antibody dependent enhancement.

    Science.gov (United States)

    Fink, Ashley L; Williams, Katherine L; Harris, Eva; Alvine, Travis D; Henderson, Thomas; Schiltz, James; Nilles, Matthew L; Bradley, David S

    2017-07-01

    Dengue hemorrhagic fever (DHF) and dengue shock syndrome (DSS) are severe disease manifestations that can occur following sequential infection with different dengue virus serotypes (DENV1-4). At present, there are no licensed therapies to treat DENV-induced disease. DHF and DSS are thought to be mediated by serotype cross-reactive antibodies that facilitate antibody-dependent enhancement (ADE) by binding to viral antigens and then Fcγ receptors (FcγR) on target myeloid cells. Using genetically engineered DENV-specific antibodies, it has been shown that the interaction between the Fc portion of serotype cross-reactive antibodies and FcγR is required to induce ADE. Additionally, it was demonstrated that these antibodies were as neutralizing as their non-modified variants, were incapable of inducing ADE, and were therapeutic following a lethal, antibody-enhanced infection. Therefore, we hypothesized that avian IgY, which do not interact with mammalian FcγR, would provide a novel therapy for DENV-induced disease. We demonstrate here that goose-derived anti-DENV2 IgY neutralized DENV2 and did not induce ADE in vitro. Anti-DENV2 IgY was also protective in vivo when administered 24 hours following a lethal DENV2 infection. We were also able to demonstrate via epitope mapping that both full-length and alternatively spliced anti-DENV2 IgY recognized different epitopes, including epitopes that have not been previously identified. These observations provide evidence for the potential therapeutic applications of goose-derived anti-DENV2 IgY.

  1. Dengue virus specific IgY provides protection following lethal dengue virus challenge and is neutralizing in the absence of inducing antibody dependent enhancement.

    Directory of Open Access Journals (Sweden)

    Ashley L Fink

    2017-07-01

    Full Text Available Dengue hemorrhagic fever (DHF and dengue shock syndrome (DSS are severe disease manifestations that can occur following sequential infection with different dengue virus serotypes (DENV1-4. At present, there are no licensed therapies to treat DENV-induced disease. DHF and DSS are thought to be mediated by serotype cross-reactive antibodies that facilitate antibody-dependent enhancement (ADE by binding to viral antigens and then Fcγ receptors (FcγR on target myeloid cells. Using genetically engineered DENV-specific antibodies, it has been shown that the interaction between the Fc portion of serotype cross-reactive antibodies and FcγR is required to induce ADE. Additionally, it was demonstrated that these antibodies were as neutralizing as their non-modified variants, were incapable of inducing ADE, and were therapeutic following a lethal, antibody-enhanced infection. Therefore, we hypothesized that avian IgY, which do not interact with mammalian FcγR, would provide a novel therapy for DENV-induced disease. We demonstrate here that goose-derived anti-DENV2 IgY neutralized DENV2 and did not induce ADE in vitro. Anti-DENV2 IgY was also protective in vivo when administered 24 hours following a lethal DENV2 infection. We were also able to demonstrate via epitope mapping that both full-length and alternatively spliced anti-DENV2 IgY recognized different epitopes, including epitopes that have not been previously identified. These observations provide evidence for the potential therapeutic applications of goose-derived anti-DENV2 IgY.

  2. Optimization of a method for the detection of immunopotentiating antibodies against serotype 1 of dengue virus

    International Nuclear Information System (INIS)

    Soto Garita, Claudio

    2014-01-01

    An immunopotentiation trial has used sera from dengue seropositive patients from Costa Rica's endemic areas. The detection and semi-quantification of immunopotentiating antibodies were optimized against dengue virus serotype 1. The cell line K562 (human erythromyeloblastoid leukemia cells) has been more efficient than the U937 (human histiocytic lymphoma cells). A more adequate detection of immunopotentiating antibodies was determined. The optimal infection and virus-antibody incubation parameters are demonstrated for the detection of immunopotentiating antibodies with the immunostaining technique. The immuno-optimized assay has allowed the detection and semi-quantification of immunopotentiating antibodies against serotype 1 of dengue virus. Samples of strong positive, weak positive and dengue negative sera are analyzed. The end has been to evaluate the usefulness in the detection and semi-quantification of immunopotentiating antibodies. The presence of immunopotentiating antibodies was demonstrated against dengue virus serotype 1 in endemic zones of Costa Rica, to complement with the evaluation of the other existing serotypes is recommended [es

  3. Characterization of Dengue Virus Resistance to Brequinar in Cell Culture▿

    Science.gov (United States)

    Qing, Min; Zou, Gang; Wang, Qing-Yin; Xu, Hao Ying; Dong, Hongping; Yuan, Zhiming; Shi, Pei-Yong

    2010-01-01

    Brequinar is an inhibitor of dihydroorotate dehydrogenase, an enzyme that is required for de novo pyrimidine biosynthesis. Here we report that brequinar has activity against a broad spectrum of viruses. The compound not only inhibits flaviviruses (dengue virus, West Nile virus, yellow fever virus, and Powassan virus) but also suppresses a plus-strand RNA alphavirus (Western equine encephalitis virus) and a negative-strand RNA rhabdovirus (vesicular stomatitis virus). Using dengue virus serotype 2 (DENV-2) as a model, we found that brequinar suppressed the viral infection cycle mainly at the step of RNA synthesis. Supplementing the culture medium with pyrimidines (cytidine or uridine) but not purines (adenine or guanine) could be used to reverse the inhibitory effect of the compound. Continuous culturing of DENV-2 in the presence of brequinar generated viruses that were partially resistant to the inhibitor. Sequencing of the resistant viruses revealed two amino acid mutations: one mutation (M260V) located at a helix in the domain II of the viral envelope protein and another mutation (E802Q) located at the priming loop of the nonstructural protein 5 (NS5) polymerase domain. Functional analysis of the mutations suggests that the NS5 mutation exerts resistance through enhancement of polymerase activity. The envelope protein mutation reduced the efficiency of virion assembly/release; however, the mutant virus became less sensitive to brequinar inhibition at the step of virion assembly/release. Taken together, the results indicate that (i) brequinar blocks DENV RNA synthesis through depletion of intracellular pyrimidine pools and (ii) the compound may also exert its antiviral activity through inhibition of virion assembly/release. PMID:20606073

  4. A comparative hospital-based observational study of mono- and co-infections of malaria, dengue virus and scrub typhus causing acute undifferentiated fever.

    Science.gov (United States)

    Ahmad, S; Dhar, M; Mittal, G; Bhat, N K; Shirazi, N; Kalra, V; Sati, H C; Gupta, V

    2016-04-01

    Positive serology for dengue and/or scrub typhus infection with/without positive malarial smear (designated as mixed or co-infection) is being increasingly observed during epidemics of acute undifferentiated febrile illnesses (AUFIs). We planned to study the clinical and biochemical spectrum of co-infections with Plasmodium sp., dengue virus and scrub typhus and compare these with mono-infection by the same organisms. During the period from December 2012 to December 2013, all cases presenting with AUFIs to a single medical unit of a referral centre in Garhwal region of the north Indian state of Uttarakhand were retrospectively selected and categorised aetiologically as co-infections, malaria, dengue or scrub typhus. The groups thus created were compared in terms of demographic, clinical, biochemical and outcome parameters. The co-infection group (n = 49) was associated with milder clinical manifestations, fewer, milder and non-progressive organ dysfunction, and lesser need for intensive care, mechanical ventilation and dialysis as compared to mono-infections. When co-infections were sub-grouped and compared with the relevant mono-infections, there were differences in certain haematological and biochemical parameters; however, this difference did not translate into differential outcomes. Scrub typhus mono-infection was associated with severe disease in terms of both morbidity and mortality. Malaria, dengue and scrub typhus should be routinely tested in all patients with AUFIs. Co-infections, whether true or due to serological cross-reactivity, appear to be a separate entity so far as presentation and morbidity is concerned. Further insight is needed into the mechanism and identification of the protective infection.

  5. Dengue Virus Specific Immune Response: Implications for laboratory diagnosis and vaccine development

    NARCIS (Netherlands)

    P. Koraka (Penelope)

    2007-01-01

    textabstractDengue viruses (DENV 1-4) belong to the family Flaviviridae, genus Flavivirus. They are transmitted to humans through the bite of infected mosquitoes of the Aedes species. An estimated 100 million people are annually infected with DENV and over two billion people are at risk in

  6. Dengue infection in pregnancy and its impact on the placenta

    Directory of Open Access Journals (Sweden)

    Christiane Fernandes Ribeiro

    2017-02-01

    Full Text Available A histopathological and immunohistochemical study was conducted in placental tissues and retained products of conception from 24 patients with confirmed dengue infection during pregnancy. The immunohistochemical assay was positive for dengue virus in 19 placental and three ovular remnants analyzed. The light microscopic findings were signs of hypoxia, choriodeciduitis, deciduitis and intervillositis and the viral antigens were found in cytoplasmic of the trophoblast, villous stroma and decidua. Our results suggest that immunohistochemistry could be used as a laboratory confirmation method for dengue in pregnant women, especially in endemic areas when embedded material is the only material available.

  7. Competitive advantage of a dengue 4 virus when co-infecting the mosquito Aedes aegypti with a dengue 1 virus.

    Science.gov (United States)

    Vazeille, Marie; Gaborit, Pascal; Mousson, Laurence; Girod, Romain; Failloux, Anna-Bella

    2016-07-08

    Dengue viruses (DENV) are comprised in four related serotypes (DENV-1 to 4) and are critically important arboviral pathogens affecting human populations in the tropics. South American countries have seen the reemergence of DENV since the 1970's associated with the progressive re-infestation by the mosquito vector, Aedes aegypti. In French Guiana, DENV is now endemic with the co-circulation of different serotypes resulting in viral epidemics. Between 2009 and 2010, a predominant serotype change occurred from DENV-1 to DENV-4 suggesting a competitive displacement. The aim of the present study was to evaluate the potential role of the mosquito in the selection of the new epidemic serotype. To test this hypothesis of competitive displacement of one serotype by another in the mosquito vector, we performed mono- and co-infections of local Ae. aegypti collected during the inter-epidemic period with both viral autochthonous epidemic serotypes and compared infection, dissemination and transmission rates. We performed oral artificial infections of F1 populations in BSL-3 conditions and analyzed infection, dissemination and transmission rates. When two populations of Ae. aegypti from French Guiana were infected with either serotype, no significant differences in dissemination and transmission were observed between DENV-1 and DENV-4. However, in co-infection experiments, a strong competitive advantage for DENV-4 was seen at the midgut level leading to a much higher dissemination of this serotype. Furthermore only DENV-4 was present in Ae. aegypti saliva and therefore able to be transmitted. In an endemic context, mosquito vectors may be infected by several DENV serotypes. Our results suggest a possible competition between serotypes at the midgut level in co-infected mosquitoes leading to a drastically different transmission potential and, in this case, favoring the competitive displacement of DENV-1 by DENV-4. This phenomenon was observed despite a similar replicative fitness

  8. Introducing dengue vaccine: Implications for diagnosis in dengue vaccinated subjects.

    Science.gov (United States)

    Alagarasu, Kalichamy

    2016-05-27

    Diagnosis of dengue virus infections is complicated by preference for different diagnostic tests in different post onset days of illness and the presence of multiple serotypes leading to secondary and tertiary infections. The sensitivity of the most commonly employed diagnostic assays such as anti dengue IgM capture (MAC) ELISA and non structural protein (NS) 1 capture ELISA are lower in secondary and subsequent infections. Introduction of dengue vaccine in endemic regions will affect the way how dengue is diagnosed in vaccinated subjects. This viewpoint article discusses implications of introduction of dengue vaccine on the diagnosis of dengue infections in vaccinated subjects and the strategies that are needed to tackle the issue. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Modulation of Dengue/Zika Virus Pathogenicity by Antibody-Dependent Enhancement and Strategies to Protect Against Enhancement in Zika Virus Infection

    Directory of Open Access Journals (Sweden)

    Rekha Khandia

    2018-04-01

    Full Text Available Antibody-dependent enhancement (ADE is a phenomenon in which preexisting poorly neutralizing antibodies leads to enhanced infection. It is a serious concern with mosquito-borne flaviviruses such as Dengue virus (DENV and Zika virus (ZIKV. In vitro experimental evidences have indicated the preventive, as well as a pathogenicity-enhancing role, of preexisting DENV antibodies in ZIKV infections. ADE has been confirmed in DENV but not ZIKV infections. Principally, the Fc region of the anti-DENV antibody binds with the fragment crystallizable gamma receptor (FcγR, and subsequent C1q interactions and immune effector functions are responsible for the ADE. In contrast to normal DENV infections, with ADE in DENV infections, inhibition of STAT1 phosphorylation and a reduction in IRF-1 gene expression, NOS2 levels, and RIG-1 and MDA-5 expression levels occurs. FcγRIIA is the most permissive FcγR for DENV-ADE, and under hypoxic conditions, hypoxia-inducible factor-1 alpha transcriptionally enhances expression levels of FcγRIIA, which further enhances ADE. To produce therapeutic antibodies with broad reactivity to different DENV serotypes, as well as to ZIKV, bispecific antibodies, Fc region mutants, modified Fc regions, and anti-idiotypic antibodies may be engineered. An in-depth understanding of the immunological and molecular mechanisms of DENV-ADE of ZIKV pathogenicity will be useful for the design of common and safe therapeutics and prophylactics against both viral pathogens. The present review discusses the role of DENV antibodies in modulating DENV/ZIKV pathogenicity/infection and strategies to counter ADE to protect against Zika infection.

  10. Dengue in the Americas and Southeast Asia: do they differ?

    Science.gov (United States)

    Halstead, Scott B

    2006-12-01

    The populations of Southeast Asia (SE Asia) and tropical America are similar, and all four dengue viruses of Asian origin are endemic in both regions. Yet, during comparable 5-year periods, SE Asia experienced 1.16 million cases of dengue hemorrhagic fever (DHF), principally in children, whereas in the Americas there were 2.8 million dengue fever (DF) cases, principally in adults, and only 65,000 DHF cases. This review aims to explain these regional differences. In SE Asia, World War II amplified Aedes aegypti populations and the spread of dengue viruses. In the Americas, efforts to eradicate A. aegypti in the 1940s and 1950s contained dengue epidemics mainly to the Caribbean Basin. Cuba escaped infections with the American genotype dengue-2 and an Asian dengue-3 endemic in the 1960s and 1970s. Successive infections with dengue-1 and an Asian genotype dengue-2 resulted in the 1981 DHF epidemic. When this dengue-2 virus was introduced in other Caribbean countries, it encountered populations highly immune to the American genotype dengue-2. During the 1980s and 1990s, rapidly expanding populations of A. aegypti in Brazil permitted successive epidemics of dengue-1, -2, and -3. These exposures, however, resulted mainly in DF, with surprisingly few cases of DHF. The absence of high rates of severe dengue disease in Brazil, as elsewhere in the Americas, may be partly explained by the widespread prevalence of human dengue resistance genes. Understanding the nature and distribution of these genes holds promise for containing severe dengue. Future research on dengue infections should emphasize population-based designs.

  11. Dengue in the Americas and Southeast Asia: do they differ?

    Directory of Open Access Journals (Sweden)

    Scott B. Halstead

    2006-12-01

    Full Text Available The populations of Southeast Asia (SE Asia and tropical America are similar, and all four dengue viruses of Asian origin are endemic in both regions. Yet, during comparable 5-year periods, SE Asia experienced 1.16 million cases of dengue hemorrhagic fever (DHF, principally in children, whereas in the Americas there were 2.8 million dengue fever (DF cases, principally in adults, and only 65 000 DHF cases. This review aims to explain these regional differences. In SE Asia, World War II amplified Aedes aegypti populations and the spread of dengue viruses. In the Americas, efforts to eradicate A. aegypti in the 1940s and 1950s contained dengue epidemics mainly to the Caribbean Basin. Cuba escaped infections with the American genotype dengue-2 and an Asian dengue-3 endemic in the 1960s and 1970s. Successive infections with dengue-1 and an Asian genotype dengue-2 resulted in the 1981 DHF epidemic. When this dengue-2 virus was introduced in other Caribbean countries, it encountered populations highly immune to the American genotype dengue-2. During the 1980s and 1990s, rapidly expanding populations of A. aegypti in Brazil permitted successive epidemics of dengue-1, -2, and -3. These exposures, however, resulted mainly in DF, with surprisingly few cases of DHF. The absence of high rates of severe dengue disease in Brazil, as elsewhere in the Americas, may be partly explained by the widespread prevalence of human dengue resistance genes. Understanding the nature and distribution of these genes holds promise for containing severe dengue. Future research on dengue infections should emphasize population-based designs.

  12. Antiviral effect of compounds derived from the seeds of Mammea americana and Tabernaemontana cymosa on Dengue and Chikungunya virus infections.

    Science.gov (United States)

    Gómez-Calderón, Cecilia; Mesa-Castro, Carol; Robledo, Sara; Gómez, Sergio; Bolivar-Avila, Santiago; Diaz-Castillo, Fredyc; Martínez-Gutierrez, Marlen

    2017-01-18

    The transmission of Dengue virus (DENV) and Chikungunya virus (CHIKV) has increased worldwide, due in part to the lack of a specific antiviral treatment. For this reason, the search for compounds with antiviral potential, either as licensed drugs or in natural products, is a research priority. The objective of this study was to identify some of the compounds that are present in Mammea americana (M. americana) and Tabernaemontana cymosa (T. cymosa) plants and, subsequently, to evaluate their cytotoxicity in VERO cells and their potential antiviral effects on DENV and CHIKV infections in those same cells. Dry ethanolic extracts of M. americana and T. cymosa seeds were subjected to open column chromatographic fractionation, leading to the identification of four compounds: two coumarins, derived from M. americana; and lupeol acetate and voacangine derived from T. cymosa.. The cytotoxicity of each compound was subsequently assessed by the MTT method (at concentrations from 400 to 6.25 μg/mL). Pre- and post-treatment antiviral assays were performed at non-toxic concentrations; the resulting DENV inhibition was evaluated by Real-Time PCR, and the CHIKV inhibition was tested by the plating method. The results were analyzed by means of statistical analysis. The compounds showed low toxicity at concentrations ≤ 200 μg/mL. The compounds coumarin A and coumarin B, which are derived from the M. americana plant, significantly inhibited infection with both viruses during the implementation of the two experimental strategies employed here (post-treatment with inhibition percentages greater than 50%, p treatment with percentages of inhibition greater than 40%, p treatment strategy (at inhibition percentages greater than 70%, p treating Dengue and Chikungunya fever. Additionally, lupeol acetate and voacangine efficiently inhibit infection with DENV, also turning them into promising antivirals for Dengue fever.

  13. A community-based prospective cohort study of dengue viral infection in Malaysia: the study protocol.

    Science.gov (United States)

    Jahan, Nowrozy Kamar; Ahmad, Mohtar Pungut; Dhanoa, Amreeta; Meng, Cheong Yuet; Ming, Lau Wee; Reidpath, Daniel D; Allotey, Pascale; Zaini, Anuar; Phipps, Maude Elvira; Fatt, Quek Kia; Rabu, Aman Bin; Sirajudeen, Rowther; Fatan, Ahmad AbdulBasitz Ahmad; Ghafar, Faidzal Adlee; Ahmad, Hamdan Bin; Othman, Iekhsan; SyedHassan, Sharifah

    2016-08-11

    Globally, dengue infections constitute a significant public health burden. In recent decades, Malaysia has become a dengue hyper-endemic country with the co-circulation of the four dengue virus serotypes. The cyclical dominance of sub-types contributes to a pattern of major outbreaks. The consequences can be observed in the rising incidence of reported dengue cases and dengue related deaths. Understanding the complex interaction of the dengue virus, its human hosts and the mosquito vectors at the community level may help develop strategies for addressing the problem. A prospective cohort study will be conducted in Segamat district of Johor State in Peninsular Malaysia. Researchers received approval from the Malaysian Medical Research Ethics Committee and Monash University Human Research Ethics Committee. The study will be conducted at a Malaysian based health and demographic surveillance site over a 1 year period in three different settings (urban, semi-urban and rural). The study will recruit healthy adults (male and female) aged 18 years and over, from three ethnic groups (Malay, Chinese and Indian). The sample size calculated using the Fleiss method with continuity correction is 333. Sero-surveillance of participants will be undertaken to identify asymptomatic, otherwise healthy cases; cases with dengue fever who are managed as out-patients; and cases with dengue fever admitted to a hospital. A genetic analysis of the participants will be undertaken to determine whether there is a relationship between genetic predisposition and disease severity. A detailed medical history, past history of dengue infection, vaccination history against other flaviviruses such as Japanese encephalitis and Yellow fever, and the family history of dengue infection will also be collected. In addition, a mosquito surveillance will be carried out simultaneously in recruitment areas to determine the molecular taxonomy of circulating vectors. The research findings will estimate the burden

  14. Production of recombinant dengue non-structural 1 (NS1) proteins from clinical virus isolates.

    Science.gov (United States)

    Yohan, Benediktus; Wardhani, Puspa; Aryati; Trimarsanto, Hidayat; Sasmono, R Tedjo

    2017-01-01

    Dengue is a febrile disease caused by infection of dengue virus (DENV). Early diagnosis of dengue infection is important for better management of the disease. The DENV Non-Structural Protein 1 (NS1) antigen has been routinely used for the early dengue detection. In dengue epidemic countries such as Indonesia, clinicians are increasingly relying on the NS1 detection for confirmation of dengue infection. Various NS1 diagnostic tests are commercially available, however different sensitivities and specificities were observed in various settings. This study was aimed to generate dengue NS1 recombinant protein for the development of dengue diagnostic tests. Four Indonesian DENV isolates were used as the source of the NS1 gene cloning, expression, and purification in bacterial expression system. Recombinant NS1 proteins were successfully purified and their antigenicities were assessed. Immunization of mice with recombinant proteins observed the immunogenicity of the NS1 protein. The generated recombinant proteins can be potentially used in the development of NS1 diagnostic test. With minimal modifications, this method can be used for producing NS1 recombinant proteins from isolates obtained from other geographical regions. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Dengue infection and miscarriage: a prospective case control study.

    Directory of Open Access Journals (Sweden)

    Peng Chiong Tan

    Full Text Available BACKGROUND: Dengue is the most prevalent mosquito borne infection worldwide. Vertical transmissions after maternal dengue infection to the fetus and pregnancy losses in relation to dengue illness have been reported. The relationship of dengue to miscarriage is not known. METHOD: We aimed to establish the relationship of recent dengue infection and miscarriage. Women who presented with miscarriage (up to 22 weeks gestation to our hospital were approached to participate in the study. For each case of miscarriage, we recruited 3 controls with viable pregnancies at a similar gestation. A brief questionnaire on recent febrile illness and prior dengue infection was answered. Blood was drawn from participants, processed and the frozen serum was stored. Stored sera were thawed and then tested in batches with dengue specific IgM capture ELISA, dengue non-structural protein 1 (NS1 antigen and dengue specific IgG ELISA tests. Controls remained in the analysis if their pregnancies continued beyond 22 weeks gestation. Tests were run on 116 case and 341 control sera. One case (a misdiagnosed viable early pregnancy plus 45 controls (39 lost to follow up and six subsequent late miscarriages were excluded from analysis. FINDINGS: Dengue specific IgM or dengue NS1 antigen (indicating recent dengue infection was positive in 6/115 (5·2% cases and 5/296 (1·7% controls RR 3·1 (95% CI 1·0-10 P = 0·047. Maternal age, gestational age, parity and ethnicity were dissimilar between cases and controls. After adjustments for these factors, recent dengue infection remained significantly more frequently detected in cases than controls (AOR 4·2 95% CI 1·2-14 P = 0·023. INTERPRETATION: Recent dengue infections were more frequently detected in women presenting with miscarriage than in controls whose pregnancies were viable. After adjustments for confounders, the positive association remained.

  16. Dengue Virus Capsid Protein Binds Core Histones and Inhibits Nucleosome Formation in Human Liver Cells

    Science.gov (United States)

    Colpitts, Tonya M.; Barthel, Sebastian; Wang, Penghua; Fikrig, Erol

    2011-01-01

    Dengue virus (DENV) is a member of the Flaviviridae and a globally (re)emerging pathogen that causes serious human disease. There is no specific antiviral or vaccine for dengue virus infection. Flavivirus capsid (C) is a structural protein responsible for gathering the viral RNA into a nucleocapsid that forms the core of a mature virus particle. Flaviviral replication is known to occur in the cytoplasm yet a large portion of capsid protein localizes to the nucleus during infection. The reasons for the nuclear presences of capsid are not completely understood. Here, we expressed mature DENV C in a tandem affinity purification assay to identify potential binding partners in human liver cells. DENV C targeted the four core histones, H2A, H2B, H3 and H4. DENV C bound recombinant histones in solution and colocalized with histones in the nucleus and cytoplasm of liver cells during DENV infection. We show that DENV C acts as a histone mimic, forming heterodimers with core histones, binding DNA and disrupting nucleosome formation. We also demonstrate that DENV infection increases the amounts of core histones in livers cells, which may be a cellular response to C binding away the histone proteins. Infection with DENV additionally alters levels of H2A phosphorylation in a time-dependent manner. The interactions of C and histones add an interesting new role for the presence of C in the nucleus during DENV infection. PMID:21909430

  17. Seroprevalence of dengue virus antibodies in asymptomatic Costa Rican children, 2002-2003: a pilot study La seroprevalencia de anticuerpos contra el virus del dengue en niños costarricenses asintomáticos, 2002-2003: estudio piloto

    Directory of Open Access Journals (Sweden)

    Roberto Iturrino-Monge

    2006-07-01

    Full Text Available OBJECTIVES: Since 1993 dengue has become more frequent in Costa Rica. Adults have been the most affected population, while children have remained virtually unharmed. So far no studies have investigated how many asymptomatic children have been affected by this virus. This pilot study documents the seroprevalence, measured as the presence of IgG antibodies, of dengue virus in asymptomatic children from two different geographical areas. METHODS: This descriptive, prospective epidemiologic study compared the presence of antibodies in children who live in a coastal region of a tropical country where dengue is endemic, and an inland area where dengue is not endemic. An enzyme-linked immunosorbent assay was used to test the serum for dengue virus IgG antibodies. None of the children had a prior history of dengue, fever, immunosuppressive therapy or underlying disease. RESULTS: During the period from July 2002 to July 2003, 103 children were recruited from each area. In the costal region we found a seroprevalence of 36.9%. In the inland area seroprevalence was 2.9% CONCLUSIONS: We found a substantial number of asymptomatic infections in Costa Rican children. This greatly increases the risk of dengue hemorrhagic fever or dengue shock syndrome in these children, in whom previous dengue infection had gone undetected. Preventive efforts should be targeted at the costal region due to the higher prevalence in this area.OBJETIVOS: Desde 1993, la frecuencia de dengue en Costa Rica ha venido aumentando. La población de adultos ha sido la más afectada, mientras que en los niños apenas se han presentado casos. Hasta el momento no se han realizado estudios para determinar cuántos niños asintomáticos se han visto afectados por el virus de la enfermedad. Este estudio piloto documenta la seroprevalencia de anticuerpos de tipo IgG contra el virus del dengue en niños asintomáticos procedentes de dos zonas geográficas distintas. MÉTODOS: En este estudio

  18. Seroprevalence of Infections with Dengue, Rift Valley Fever and Chikungunya Viruses in Kenya, 2007.

    Directory of Open Access Journals (Sweden)

    Caroline Ochieng

    Full Text Available Arthropod-borne viruses are a major constituent of emerging infectious diseases worldwide, but limited data are available on the prevalence, distribution, and risk factors for transmission in Kenya and East Africa. In this study, we used 1,091 HIV-negative blood specimens from the 2007 Kenya AIDS Indicator Survey (KAIS 2007 to test for the presence of IgG antibodies to dengue virus (DENV, chikungunya virus (CHIKV and Rift Valley fever virus (RVFV.The KAIS 2007 was a national population-based survey conducted by the Government of Kenya to provide comprehensive information needed to address the HIV/AIDS epidemic. Antibody testing for arboviruses was performed on stored blood specimens from KAIS 2007 through a two-step sandwich IgG ELISA using either commercially available kits or CDC-developed assays. Out of the 1,091 samples tested, 210 (19.2% were positive for IgG antibodies against at least one of the three arboviruses. DENV was the most common of the three viruses tested (12.5% positive, followed by RVFV and CHIKV (4.5% and 0.97%, respectively. For DENV and RVFV, the participant's province of residence was significantly associated (P≤.01 with seropositivity. Seroprevalence of DENV and RVFV increased with age, while there was no correlation between province of residence/age and seropositivity for CHIKV. Females had twelve times higher odds of exposure to CHIK as opposed to DENV and RVFV where both males and females had the same odds of exposure. Lack of education was significantly associated with a higher odds of previous infection with either DENV or RVFV (p <0.01. These data show that a number of people are at risk of arbovirus infections depending on their geographic location in Kenya and transmission of these pathogens is greater than previously appreciated. This poses a public health risk, especially for DENV.

  19. Problem of presently available diagnostic tests for Zika virus infection: View from Thailand

    Institute of Scientific and Technical Information of China (English)

    Beuy Joob; Viroj Wiwanitkit

    2016-01-01

    Dear Editor,Zika virus infection is the present global issue due to the finding of occurrence of congenital defect relating to this infection[1,2].The disease is a dengue-like infection,hence,it is well-known that the missed and under diagnosis is possible[1,2].However,the big concern is on the reliability of the presently available diagnostic tests for diagnosing Zika virus infection.Here,the authors appraise on previous published

  20. Nordihydroguaiaretic acid (NDGA) inhibits replication and viral morphogenesis of dengue virus.

    Science.gov (United States)

    Soto-Acosta, Rubén; Bautista-Carbajal, Patricia; Syed, Gulam H; Siddiqui, Aleem; Del Angel, Rosa M

    2014-09-01

    Dengue is the most common mosquito borne viral disease in humans. The infection with any of the 4 dengue virus serotypes (DENV) can either be asymptomatic or manifest in two clinical forms, the mild dengue fever or the more severe dengue hemorrhagic fever that may progress into dengue shock syndrome. A DENV replicative cycle relies on host lipid metabolism; specifically, DENV infection modulates cholesterol and fatty acid synthesis, generating a lipid-enriched cellular environment necessary for viral replication. Thus, the aim of this work was to evaluate the anti-DENV effect of the Nordihydroguaiaretic acid (NDGA), a hypolipidemic agent with antioxidant and anti-inflammatory properties. A dose-dependent inhibition in viral yield and NS1 secretion was observed in supernatants of infected cells treated for 24 and 48 h with different concentrations of NDGA. To evaluate the effect of NDGA in DENV replication, a DENV4 replicon transfected Vero cells were treated with different concentrations of NDGA. NDGA treatment significantly reduced DENV replication, reiterating the importance of lipids in viral replication. NDGA treatment also led to reduction in number of lipid droplets (LDs), the neutral lipid storage organelles involved in DENV morphogenesis that are known to increase in number during DENV infection. Furthermore, NDGA treatment resulted in dissociation of the C protein from LDs. Overall our results suggest that NDGA inhibits DENV infection by targeting genome replication and viral assembly. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. The endosymbiotic bacterium Wolbachia induces resistance to dengue virus in Aedes aegypti.

    Directory of Open Access Journals (Sweden)

    Guowu Bian

    2010-04-01

    Full Text Available Genetic strategies that reduce or block pathogen transmission by mosquitoes have been proposed as a means of augmenting current control measures to reduce the growing burden of vector-borne diseases. The endosymbiotic bacterium Wolbachia has long been promoted as a potential vehicle for introducing disease-resistance genes into mosquitoes, thereby making them refractory to the human pathogens they transmit. Given the large overlap in tissue distribution and intracellular localization between Wolbachia and dengue virus in mosquitoes, we conducted experiments to characterize their interactions. Our results show that Wolbachia inhibits viral replication and dissemination in the main dengue vector, Aedes aegypti. Moreover, the virus transmission potential of Wolbachia-infected Ae. aegypti was significantly diminished when compared to wild-type mosquitoes that did not harbor Wolbachia. At 14 days post-infection, Wolbachia completely blocked dengue transmission in at least 37.5% of Ae. aegypti mosquitoes. We also observed that this Wolbachia-mediated viral interference was associated with an elevated basal immunity and increased longevity in the mosquitoes. These results underscore the potential usefulness of Wolbachia-based control strategies for population replacement.

  2. Simultaneous circulation of genotypes I and III of dengue virus 3 in Colombia

    Directory of Open Access Journals (Sweden)

    Domingo Cristina

    2008-09-01

    Full Text Available Abstract Background Dengue is a major health problem in tropical and subtropical regions. In Colombia, dengue viruses (DENV cause about 50,000 cases annually, 10% of which involve Dengue Haemorrhagic Fever/Dengue Shock Syndrome. The picture is similar in other surrounding countries in the Americas, with recent outbreaks of severe disease, mostly associated with DENV serotype 3, strains of the Indian genotype, introduced into the Americas in 1994. Results The analysis of the 3'end (224 bp of the envelope gene from 32 DENV-3 strains recently recovered in Colombia confirms the circulation of the Indian genotype, and surprisingly the co-circulation of an Asian-Pacific genotype only recently described in the Americas. Conclusion These results have important implications for epidemiology and surveillance of DENV infection in Central and South America. Molecular surveillance of the DENV genotypes infecting humans could be a very valuable tool for controlling/mitigating the impact of the DENV infection.

  3. Zika virus infection: The resurgence of a neglected disease

    Directory of Open Access Journals (Sweden)

    Tushar Kambale

    2016-01-01

    Full Text Available "Zika virus" (ZIKV is an enveloped, icosahedral virus and has a positive-sense, single-stranded RNA genome approximately 11 kb in length. Genetic studies have revealed three ZIKV lineages: East African, West African, and Asian. Serologic studies and virus isolations have demonstrated that the virus has a wide geographic distribution, spanning East and West Africa, the Americas, Indian subcontinent, and Southeast Asia. ZIKV can cause complications such as Guillain-Barré syndrome, meningitis, meningoencephalitis, and myelitis. During pregnancy ZIKV infection can lead to miscarriages and microcephaly, cerebral calcifications, macular neuroretinal atrophy, and loss of foveal reflex in the fetus. A clinically suspected case of infection with dengue negative result should be further tested for Flavivirus, including Zika. Immunofluorescence or enzyme-linked immunosorbent assay is used to detect specific IgM or IgG antibodies against ZIKV. In cases of positive ZIKV infection, symptomatic treatment should be given after excluding other condition such as dengue, malaria, and bacterial infections.

  4. Fatal invasive aspergillosis: a rare co-infection with an unexpected image presentation in a patient with dengue shock syndrome.

    Science.gov (United States)

    Wang, Hui-Ching; Chang, Ko; Lu, Po-Liang; Tsai, Kun-Bow; Chen, Huang-Chi

    2017-03-01

    Pulmonary infiltration and pleural effusion caused by permeability syndrome are the hallmark of pulmonary manifestation of dengue cases. We report a 95-year-old chronic obstructive pulmonary disease case having dengue shock syndrome. Chest X-ray examination revealed diffuse lung infiltration. However, bilateral pneumotoceles were unexpectedly found in computed tomography (CT) images. Dengue virus type 2 infection was confirmed by virus culture, serology and reverse transcriptase-polymerase chain reaction. Profound shock with bilateral lung infiltration developed rapidly in 2 days with supportive care and empirical ampicillin/ sulbactam. Bronchoscopy revealed a whitish plaque over bilateral upper bronchi. Biopsy via bronchoscopy revealed moulds with vascular invasion. Culture of bronchial alveolar lavage yielded Aspergillus flavus. The patient died despite amphotericin B treatment, which was started since finding the whitish plaque with bronchoscopy examination. Besides to considering capillary leakage syndrome, our case report and literature review alert clinicians that CT and bronchoscopy may help to identify the true pathogen though all cases with concurrent dengue and Aspergillus infections had fatal outcomes. © 2015 John Wiley & Sons Ltd.

  5. Comparison of dengue virus type 2-specific small RNAs from RNA interference-competent and -incompetent mosquito cells.

    Directory of Open Access Journals (Sweden)

    Jaclyn C Scott

    2010-10-01

    Full Text Available The exogenous RNA interference (RNAi pathway is an important antiviral defense against arboviruses in mosquitoes, and virus-specific small interfering (siRNAs are key components of this pathway. Understanding the biogenesis of siRNAs in mosquitoes could have important ramifications in using RNAi to control arbovirus transmission. Using deep sequencing technology, we characterized dengue virus type 2 (DENV2-specific small RNAs produced during infection of Aedes aegypti mosquitoes and A. aegypti Aag2 cell cultures and compared them to those produced in the C6/36 Aedes albopictus cell line. We show that the size and mixed polarity of virus-specific small RNAs from DENV-infected A. aegypti cells indicate that they are products of Dicer-2 (Dcr2 cleavage of long dsRNA, whereas C6/36 cells generate DENV2-specific small RNAs that are longer and predominantly positive polarity, suggesting that they originate from a different small RNA pathway. Examination of virus-specific small RNAs after infection of the two mosquito cell lines with the insect-only flavivirus cell fusing agent virus (CFAV corroborated these findings. An in vitro assay also showed that Aag2 A. aegypti cells are capable of siRNA production, while C6/36 A. albopictus cells exhibit inefficient Dcr2 cleavage of long dsRNA. Defective expression or function of Dcr2, the key initiator of the RNAi pathway, might explain the comparatively robust growth of arthropod-borne viruses in the C6/36 cell line, which has been used frequently as a surrogate for studying molecular interactions between arboviruses and cells of their mosquito hosts.

  6. Ability To Serologically Confirm Recent Zika Virus Infection in Areas with Varying Past Incidence of Dengue Virus Infection in the United States and U.S. Territories in 2016.

    Science.gov (United States)

    Lindsey, Nicole P; Staples, J Erin; Powell, Krista; Rabe, Ingrid B; Fischer, Marc; Powers, Ann M; Kosoy, Olga I; Mossel, Eric C; Munoz-Jordan, Jorge L; Beltran, Manuela; Hancock, W Thane; Toews, Karrie-Ann E; Ellis, Esther M; Ellis, Brett R; Panella, Amanda J; Basile, Alison J; Calvert, Amanda E; Laven, Janeen; Goodman, Christin H; Gould, Carolyn V; Martin, Stacey W; Thomas, Jennifer D; Villanueva, Julie; Mataia, Mary L; Sciulli, Rebecca; Gose, Remedios; Whelen, A Christian; Hills, Susan L

    2018-01-01

    Cross-reactivity within flavivirus antibody assays, produced by shared epitopes in the envelope proteins, can complicate the serological diagnosis of Zika virus (ZIKAV) infection. We assessed the utility of the plaque reduction neutralization test (PRNT) to confirm recent ZIKAV infections and rule out misleading positive immunoglobulin M (IgM) results in areas with various levels of past dengue virus (DENV) infection incidence. We reviewed PRNT results of sera collected for diagnosis of ZIKAV infection from 1 January through 31 August 2016 with positive ZIKAV IgM results, and ZIKAV and DENV PRNTs were performed. PRNT result interpretations included ZIKAV, unspecified flavivirus, DENV infection, or negative. For this analysis, ZIKAV IgM was considered false positive for samples interpreted as a DENV infection or negative. In U.S. states, 208 (27%) of 759 IgM-positive results were confirmed to be ZIKAV compared to 11 (21%) of 52 in the U.S. Virgin Islands (USVI), 15 (15%) of 103 in American Samoa, and 13 (11%) of 123 in Puerto Rico. In American Samoa and Puerto Rico, more than 80% of IgM-positive results were unspecified flavivirus infections. The false-positivity rate was 27% in U.S. states, 18% in the USVI, 2% in American Samoa, and 6% in Puerto Rico. In U.S. states, the PRNT provided a virus-specific diagnosis or ruled out infection in the majority of IgM-positive samples. Almost a third of ZIKAV IgM-positive results were not confirmed; therefore, providers and patients must understand that IgM results are preliminary. In territories with historically higher rates of DENV transmission, the PRNT usually could not differentiate between ZIKAV and DENV infections. This is a work of the U.S. Government and is not subject to copyright protection in the United States. Foreign copyrights may apply.

  7. Phylogenetic Analysis of Dengue Virus in Bangkalan, Madura Island, East Java Province, Indonesia.

    Science.gov (United States)

    Sucipto, Teguh Hari; Kotaki, Tomohiro; Mulyatno, Kris Cahyo; Churrotin, Siti; Labiqah, Amaliah; Soegijanto, Soegeng; Kameoka, Masanori

    2018-01-01

    Dengue virus (DENV) infection is a major health issue in tropical and subtropical areas. Indonesia is one of the biggest dengue endemic countries in the world. In the present study, the phylogenetic analysis of DENV in Bangkalan, Madura Island, Indonesia, was performed in order to obtain a clearer understanding of its dynamics in this country. A total of 359 blood samples from dengue-suspected patients were collected between 2012 and 2014. Serotyping was conducted using a multiplex Reverse Transcriptase-Polymerase Chain Reaction and a phylogenetic analysis of E gene sequences was performed using the Bayesian Markov chain Monte Carlo (MCMC) method. 17 out of 359 blood samples (4.7%) were positive for the isolation of DENV. Serotyping and the phylogenetic analysis revealed the predominance of DENV-1 genotype I (9/17, 52.9%), followed by DENV-2 Cosmopolitan type (7/17, 41.2%) and DENV-3 genotype I (1/17, 5.9%) . DENV-4 was not isolated. The Madura Island isolates showed high nucleotide similarity to other Indonesian isolates, indicating frequent virus circulation in Indonesia. The results of the present study highlight the importance of continuous viral surveillance in dengue endemic areas in order to obtain a clearer understanding of the dynamics of DENV in Indonesia.

  8. Anti-Dengue Virus Constituents from Formosan Zoanthid Palythoa mutuki

    Science.gov (United States)

    Lee, Jin-Ching; Chang, Fang-Rong; Chen, Shu-Rong; Wu, Yu-Hsuan; Hu, Hao-Chun; Wu, Yang-Chang; Backlund, Anders; Cheng, Yuan-Bin

    2016-01-01

    A new marine ecdysteroid with an α-hydroxy group attaching at C-4 instead of attaching at C-2 and C-3, named palythone A (1), together with eight known compounds (2–9) were obtained from the ethanolic extract of the Formosan zoanthid Palythoa mutuki. The structures of those compounds were mainly determined by NMR spectroscopic data analyses. The absolute configuration of 1 was further confirmed by comparing experimental and calculated circular dichroism (CD) spectra. Anti-dengue virus 2 activity and cytotoxicity of five isolated compounds were evaluated using virus infectious system and [3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium, inner salt (MTS) assays, respectively. As a result, peridinin (9) exhibited strong antiviral activity (IC50 = 4.50 ± 0.46 μg/mL), which is better than that of the positive control, 2′CMC. It is the first carotene-like substance possessing anti-dengue virus activity. In addition, the structural diversity and bioactivity of the isolates were compared by using a ChemGPS–NP computational analysis. The ChemGPS–NP data suggested natural products with anti-dengue virus activity locate closely in the chemical space. PMID:27517937

  9. Discovery of Dengue Virus NS4B Inhibitors

    Science.gov (United States)

    Wang, Qing-Yin; Dong, Hongping; Zou, Bin; Karuna, Ratna; Wan, Kah Fei; Zou, Jing; Susila, Agatha; Yip, Andy; Shan, Chao; Yeo, Kim Long; Xu, Haoying; Ding, Mei; Chan, Wai Ling; Gu, Feng; Seah, Peck Gee; Liu, Wei; Lakshminarayana, Suresh B.; Kang, CongBao; Lescar, Julien; Blasco, Francesca; Smith, Paul W.

    2015-01-01

    ABSTRACT The four serotypes of dengue virus (DENV-1 to -4) represent the most prevalent mosquito-borne viral pathogens in humans. No clinically approved vaccine or antiviral is currently available for DENV. Here we report a spiropyrazolopyridone compound that potently inhibits DENV both in vitro and in vivo. The inhibitor was identified through screening of a 1.8-million-compound library by using a DENV-2 replicon assay. The compound selectively inhibits DENV-2 and -3 (50% effective concentration [EC50], 10 to 80 nM) but not DENV-1 and -4 (EC50, >20 μM). Resistance analysis showed that a mutation at amino acid 63 of DENV-2 NS4B (a nonenzymatic transmembrane protein and a component of the viral replication complex) could confer resistance to compound inhibition. Genetic studies demonstrate that variations at amino acid 63 of viral NS4B are responsible for the selective inhibition of DENV-2 and -3. Medicinal chemistry improved the physicochemical properties of the initial “hit” (compound 1), leading to compound 14a, which has good in vivo pharmacokinetics. Treatment of DENV-2-infected AG129 mice with compound 14a suppressed viremia, even when the treatment started after viral infection. The results have proven the concept that inhibitors of NS4B could potentially be developed for clinical treatment of DENV infection. Compound 14a represents a potential preclinical candidate for treatment of DENV-2- and -3-infected patients. IMPORTANCE Dengue virus (DENV) threatens up to 2.5 billion people and is now spreading in many regions in the world where it was not previously endemic. While there are several promising vaccine candidates in clinical trials, approved vaccines or antivirals are not yet available. Here we describe the identification and characterization of a spiropyrazolopyridone as a novel inhibitor of DENV by targeting the viral NS4B protein. The compound potently inhibits two of the four serotypes of DENV (DENV-2 and -3) both in vitro and in vivo. Our

  10. Disruption of predicted dengue virus type 3 major outbreak cycle coincided with switching of the dominant circulating virus genotype.

    Science.gov (United States)

    Tan, Kim-Kee; Zulkifle, Nurul-Izzani; Abd-Jamil, Juraina; Sulaiman, Syuhaida; Yaacob, Che Norainon; Azizan, Noor Syahida; Che Mat Seri, Nurul Asma Anati; Samsudin, Nur Izyan; Mahfodz, Nur Hidayana; AbuBakar, Sazaly

    2017-10-01

    Dengue is hyperendemic in most of Southeast Asia. In this region, all four dengue virus serotypes are persistently present. Major dengue outbreak cycle occurs in a cyclical pattern involving the different dengue virus serotypes. In Malaysia, since the 1980s, the major outbreak cycles have involved dengue virus type 3 (DENV3), dengue virus type 1 (DENV1) and dengue virus type 2 (DENV2), occurring in that order (DENV3/DENV1/DENV2). Only limited information on the DENV3 cycles, however, have been described. In the current study, we examined the major outbreak cycle involving DENV3 using data from 1985 to 2016. We examined the genetic diversity of DENV3 isolates obtained during the period when DENV3 was the dominant serotype and during the inter-dominant transmission period. Results obtained suggest that the typical DENV3/DENV1/DENV2 cyclical outbreak cycle in Malaysia has recently been disrupted. The last recorded major outbreak cycle involving DENV3 occurred in 2002, and the expected major outbreak cycle involving DENV3 in 2006-2012 did not materialize. DENV genome analyses revealed that DENV3 genotype II (DENV3/II) was the predominant DENV3 genotype (67%-100%) recovered between 1987 and 2002. DENV3 genotype I (DENV3/I) emerged in 2002 followed by the introduction of DENV3 genotype III (DENV3/III) in 2008. These newly emerged DENV3 genotypes replaced DENV3/II, but there was no major upsurge of DENV3 cases that accompanied the emergence of these viruses. DENV3 remained in the background of DENV1 and DENV2 until now. Virus genome sequence analysis suggested that intrinsic differences within the different dengue virus genotypes could have influenced the transmission efficiency of DENV3. Further studies and continuous monitoring of the virus are needed for better understanding of the DENV transmission dynamics in hyperendemic regions. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Elevated Dengue Virus Nonstructural Protein 1 Serum Levels and Altered Toll-Like Receptor 4 Expression, Nitric Oxide, and Tumor Necrosis Factor Alpha Production in Dengue Hemorrhagic Fever Patients

    Directory of Open Access Journals (Sweden)

    Denise Maciel Carvalho

    2014-01-01

    Full Text Available Background. During dengue virus (DV infection, monocytes produce tumor necrosis factor alpha (TNF-α and nitric oxide (NO which might be critical to immunopathogenesis. Since intensity of DV replication may determine clinical outcomes, it is important to know the effects of viral nonstructural protein 1 (NS1 on innate immune parameters of infected patients. The present study investigates the relationships between dengue virus nonstructural protein 1 (NS1 serum levels and innate immune response (TLR4 expression and TNF-α/NO production of DV infected patients presenting different clinical outcomes. Methodology/Principal Findings. We evaluated NO, NS1 serum levels (ELISA, TNF-α production by peripheral blood mononuclear cells (PBMCs, and TLR4 expression on CD14+ cells from 37 dengue patients and 20 healthy controls. Early in infection, increased expression of TLR4 in monocytes of patients with dengue fever (DF was detected compared to patients with dengue hemorrhagic fever (DHF. Moreover, PBMCs of DHF patients showed higher NS1 and lower NO serum levels during the acute febrile phase and a reduced response to TLR4 stimulation by LPS (with a reduced TNF-α production when compared to DF patients. Conclusions/Significance. During DV infection in humans, some innate immune parameters change, depending on the NS1 serum levels, and phase and severity of the disease which may contribute to development of different clinical outcomes.

  12. Genetic analysis of imported dengue virus strains by Iranian travelers

    Directory of Open Access Journals (Sweden)

    Nariman Shahhosseini

    2016-11-01

    Full Text Available Dengue virus sequences used in this study were obtained from two Iranian patients who were both with a history of traveling to Malaysia. The maximum likelihood phylogenetic tree demonstrated that two sequences were grouped into dengue virus 1. Specifically, strains IranDF1 and Iran-DF2 clustered in genotype I and III, respectively.

  13. Successful treatment of thrombotic microangiopathy associated with dengue infection: A case report and literature review.

    Science.gov (United States)

    Nieto-Ríos, John Fredy; Álvarez Barreneche, María Fernanda; Penagos, Sara Catalina; Bello Márquez, Diana Carolina; Serna-Higuita, Lina Maria; Ramírez Sánchez, Isabel Cristina

    2018-02-01

    Dengue infection has been associated with multiple renal complications, including glomerulonephritis, acute tubular necrosis, tubulointerstitial nephritis, and thrombotic microangiopathy (TMA), this last one being a rare complication of dengue, with only a few reported cases. TMA associated with dengue can be explained by an alteration in the activity of the enzyme ADAMTS13, leading to thrombotic thrombocytopenic purpura; or it can be secondary to direct or indirect endothelial injury by the virus, which leads to hemolytic uremic syndrome. Here, we present a case of severe TMA, not related to ADAMTS13, which was clearly associated with dengue infection. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  14. An evaluation of asymptomatic Dengue infections among blood donors during the 2014 Dengue outbreak in Guangzhou, China.

    Science.gov (United States)

    Liao, Qiao; Shan, Zhengang; Wang, Min; Huang, Jieting; Xu, Ru; Huang, Ke; Tang, Xi; Zhang, Weiyun; Nelson, Kenrad; Li, Chengyao; Fu, Yongshui; Rong, Xia

    2017-11-01

    In 2014, an outbreak of dengue virus (DENV) infection led to 45 171 clinical cases diagnosed in Guangdong province, Southern China. However, the potential risk of blood donors asymptomatically infected with DENV has not been evaluated . In the current study we detected anti-DENV IgG antibody and RNA in volunteer Chinese blood donors. We found that anti-DENV IgG antibody was positively detected in 3.4% (51/1500) and two donors were detected as being DENV RNA positive out of 3000 blood samples. We concluded that the presence of potential DENV in blood donors might be potential risk for blood safety. Therefore, screening for DENV infection should be considered in blood donations during a period of dengue outbreak in high epidemic area of China. © 2017 Wiley Periodicals, Inc.

  15. Dengue retinochoroiditis.

    Science.gov (United States)

    Tabbara, Khalid

    2012-01-01

    Dengue is a mosquito-borne infection caused by a flavivirus. I describe the ocular findings observed in two patients infected with dengue virus who presented with acute onset of loss of vision preceded by febrile illness, malaise, generalized fatigue headache, and maculopapular rash. Ophthalmologic evaluation in each patient revealed a normal anterior segment. Vitreous cells were noted in one patient. Ophthalmoscopy revealed multiple foci of retinochoroiditis, vasculitis, cotton-wool spots, and retinal hemorrhages. The healing of the lesion showed discrete atrophic and pigmented retinochoroiditic scars. Fluorescein angiography displayed early hypofluorescence and late hyperfluorescence suggestive of leakage. The healed scars showed late staining. The serologic testing showed elevated IgG antibodies, and one had high IgM antibodies to dengue virus. Ocular findings of dengue fever consist of multifocal areas of retinochoroiditis and may lead to loss of vision. In Saudi Arabia, dengue fever should be considered in the differential diagnosis of multifocal chorioretinal lesions and retinal vasculitis.

  16. Neutralization of antibody-enhanced dengue infection by VIS513, a pan serotype reactive monoclonal antibody targeting domain III of the dengue E protein

    Science.gov (United States)

    Robinson, Luke N.; Ong, Li Ching; Rowley, Kirk J.; Winnett, Alexander; Tan, Hwee Cheng; Hobbie, Sven; Shriver, Zachary; Babcock, Gregory J.; Alonso, Sylvie; Ooi, Eng Eong

    2018-01-01

    Dengue virus (DENV) infection imposes enormous health and economic burden worldwide with no approved treatment. Several small molecules, including lovastatin, celgosivir, balapiravir and chloroquine have been tested for potential anti-dengue activity in clinical trials; none of these have demonstrated a protective effect. Recently, based on identification and characterization of cross-serotype neutralizing antibodies, there is increasing attention on the potential for dengue immunotherapy. Here, we tested the ability of VIS513, an engineered cross-neutralizing humanized antibody targeting the DENV E protein domain III, to overcome antibody-enhanced infection and high but brief viremia, which are commonly encountered in dengue patients, in various in vitro and in vivo models. We observed that VIS513 efficiently neutralizes DENV at clinically relevant viral loads or in the presence of enhancing levels of DENV immune sera. Single therapeutic administration of VIS513 in mouse models of primary infection or lethal secondary antibody-enhanced infection, reduces DENV titers and protects from lethal infection. Finally, VIS513 administration does not readily lead to resistance, either in cell culture systems or in animal models of dengue infection. The findings suggest that rapid viral reduction during acute DENV infection with a monoclonal antibody is feasible. PMID:29425203

  17. Evolution and heterogeneity of multiple serotypes of Dengue virus in Pakistan, 2006–2011

    Science.gov (United States)

    2013-01-01

    Background Even though dengue has been recognized as one of the major public health threats in Pakistan, the understanding of its molecular epidemiology is still limited. The genotypic diversity of Dengue virus (DENV) serotypes involved in dengue outbreaks since 2005 in Pakistan is not well studied. Here, we investigated the origin, diversity, genetic relationships and geographic distribution of DENV to understand virus evolution during the recent expansion of dengue in Pakistan. Methods The study included 200 sera obtained from dengue-suspected patients from 2006 to 2011. DENV infection was confirmed in 94 (47%) sera by a polymerase chain reaction assay. These included 36 (38.3%) DENV-2, 57 DENV-3 (60.6%) and 1 DENV-4 (1.1%) cases. Sequences of 13 whole genomes (6 DENV-2, 6 DENV-3 and 1 DENV-4) and 49 envelope genes (26 DENV-2, 22 DENV-3 and 1 DENV-4) were analysed to determine the origin, phylogeny, diversity and selection pressure during virus evolution. Results DENV-2, DENV-3 and DENV-4 in Pakistan from 2006 to 2011 shared 98.5-99.6% nucleotide and 99.3-99.9% amino acid similarity with those circulated in the Indian subcontinent during the last decade. Nevertheless, Pakistan DENV-2 and DENV-3 strains formed distinct clades characterized by amino acid signatures of NS2A-I116T + NS5-K861R and NS3-K590R + NS5-S895L respectively. Each clade consisted of a heterogenous virus population that circulated in Southern (2006–2009) and Northern Pakistan (2011). Conclusions DENV-2, DENV-3 and DENV-4 that circulated during 2006–2011 are likely to have first introduced via the southern route of Pakistan. Both DENV-2 and DENV-3 have undergone in-situ evolution to generate heterogenous populations, possibly driven by sustained local DENV transmission during 2006–2011 periods. While both DENV-2 and DENV-3 continued to circulate in Southern Pakistan until 2009, DENV-2 has spread in a Northern direction to establish in Punjab Province, which experienced a massive dengue

  18. Screening Analogs of β-OG Pocket Binder as Fusion Inhibitor of Dengue Virus 2.

    Science.gov (United States)

    Tambunan, Usman Sf; Zahroh, Hilyatuz; Parikesit, Arli A; Idrus, Syarifuddin; Kerami, Djati

    2015-01-01

    Dengue is an infectious disease caused by dengue virus (DENV) and transmitted between human hosts by mosquitoes. Recently, Indonesia was listed as a country with the highest cases of dengue by the Association of Southeast Asian Nations. The current treatment for dengue disease is supportive therapy; there is no antiviral drug available in the market against dengue. Therefore, a research on antiviral drug against dengue is very important, especially to prevent outbreak explosion. In this research, the development of dengue antiviral is performed through the inhibition of n-octyl-β-D-glucoside (β-OG) binding pocket on envelope protein of DENV by using analogs of β-OG pocket binder. There are 828 compounds used in this study, and all of them were screened based on the analysis of molecular docking, pharmacological character prediction of the compounds, and molecular dynamics simulation. The result of these analyses revealed that the compound that can be used as an antiviral candidate against DENV is 5-(3,4-dichlorophenyl)-N-[2-(p-tolyl) benzotriazol-5-yl]furan-2-carboxamide.

  19. Age-dependent effects of oral infection with dengue virus on Aedes aegypti (Diptera: Culicidae) feeding behavior, survival, oviposition success and fecundity.

    Science.gov (United States)

    Sylvestre, Gabriel; Gandini, Mariana; Maciel-de-Freitas, Rafael

    2013-01-01

    Aedes aegypti is the main vector of dengue, a disease that is increasing its geographical range as well as incidence rates. Despite its public health importance, the effect of dengue virus (DENV) on some mosquito traits remains unknown. Here, we investigated the impact of DENV-2 infection on the feeding behavior, survival, oviposition success and fecundity of Ae. aegypti females. After orally-challenging Ae. aegypti females with a DENV-2 strain using a membrane feeder, we monitored the feeding behavior, survival, oviposition success and fecundity throughout the mosquito lifespan. We observed an age-dependent cost of DENV infection on mosquito feeding behavior and fecundity. Infected individuals took more time to ingest blood from anesthetized mice in the 2(nd) and 3(rd) weeks post-infection, and also longer overall blood-feeding times in the 3(rd) week post-infection, when females were around 20 days old. Often, infected Ae. aegypti females did not lay eggs and when they were laid, smaller number of eggs were laid compared to uninfected controls. A reduction in the number of eggs laid per female was evident starting on the 3(rd) week post-infection. DENV-2 negatively affected mosquito lifespan, since overall the longevity of infected females was halved compared to that of the uninfected control group. The DENV-2 strain tested significantly affected Ae. aegypti traits directly correlated with vectorial capacity or mosquito population density, such as feeding behavior, survival, fecundity and oviposition success. Infected mosquitoes spent more time ingesting blood, had reduced lifespan, laid eggs less frequently, and when they did lay eggs, the clutches were smaller than uninfected mosquitoes.

  20. Age-dependent effects of oral infection with dengue virus on Aedes aegypti (Diptera: Culicidae feeding behavior, survival, oviposition success and fecundity.

    Directory of Open Access Journals (Sweden)

    Gabriel Sylvestre

    Full Text Available BACKGROUND: Aedes aegypti is the main vector of dengue, a disease that is increasing its geographical range as well as incidence rates. Despite its public health importance, the effect of dengue virus (DENV on some mosquito traits remains unknown. Here, we investigated the impact of DENV-2 infection on the feeding behavior, survival, oviposition success and fecundity of Ae. aegypti females. METHODS/PRINCIPAL FINDINGS: After orally-challenging Ae. aegypti females with a DENV-2 strain using a membrane feeder, we monitored the feeding behavior, survival, oviposition success and fecundity throughout the mosquito lifespan. We observed an age-dependent cost of DENV infection on mosquito feeding behavior and fecundity. Infected individuals took more time to ingest blood from anesthetized mice in the 2(nd and 3(rd weeks post-infection, and also longer overall blood-feeding times in the 3(rd week post-infection, when females were around 20 days old. Often, infected Ae. aegypti females did not lay eggs and when they were laid, smaller number of eggs were laid compared to uninfected controls. A reduction in the number of eggs laid per female was evident starting on the 3(rd week post-infection. DENV-2 negatively affected mosquito lifespan, since overall the longevity of infected females was halved compared to that of the uninfected control group. CONCLUSIONS: The DENV-2 strain tested significantly affected Ae. aegypti traits directly correlated with vectorial capacity or mosquito population density, such as feeding behavior, survival, fecundity and oviposition success. Infected mosquitoes spent more time ingesting blood, had reduced lifespan, laid eggs less frequently, and when they did lay eggs, the clutches were smaller than uninfected mosquitoes.

  1. Anti-dengue virus serotype 2 activity and mode of action of a novel peptide.

    Science.gov (United States)

    Chew, M-F; Tham, H-W; Rajik, M; Sharifah, S H

    2015-10-01

    To identify a novel antiviral peptide against dengue virus serotype 2 (DENV-2) by screening a phage display peptide library and to evaluate its in vitro antiviral activity and mode of action. A phage display peptide library was biopanned against purified DENV-2 and resulted in the identification and selection of a peptide (peptide gg-ww) for further investigation. ELISA was performed, and peptide gg-ww was shown to possess the highest binding affinity against DENV-2. Thus, peptide gg-ww was synthesized for cytotoxicity and antiviral assays. Virus plaque reduction assay, real-time PCR and immunofluorescence assay were used to investigate the inhibitory effect of peptide gg-ww on DENV-2 infection in Vero cells. Three different assays (pre-, simultaneous and post-treatments assays) were performed to investigate the peptide's mode of action. Results indicated that peptide gg-ww possessed strong antiviral activity with a ~96% inhibition rate, which was achieved at 250 μmol l(-1) . Viral replication was inhibited during a simultaneous treatment assay, indicating that the entry of the virus was impeded by this peptide. Peptide gg-ww displayed antiviral action against DENV-2 by targeting an early stage of viral replication (i.e. during viral entry). Peptide gg-ww may represent a new therapeutic candidate for the treatment of DENV infections and is a potential candidate to be developed as a peptide drug. © 2015 The Society for Applied Microbiology.

  2. Natural transovarial transmission of dengue virus 4 in Aedes aegypti from Cuiabá, State of Mato Grosso, Brazil

    Directory of Open Access Journals (Sweden)

    Lucinéia Claudia de Toni Aquino da Cruz

    2015-02-01

    Full Text Available INTRODUCTION: Dengue is the most prevalent arboviral disease in tropical areas. In Mato Grosso, outbreaks are reported every year, but studies on dengue in this state are scarce. METHODS: Natural transovarial infection of Aedes aegypti by a flavivirus was investigated in the Jardim Industriário neighborhood of Cuiabá, Mato Grosso. Eggs were collected with ovitraps during the dry, intermediate, and rainy seasons of 2012. After the eggs hatched and the larvae developed to adulthood, mosquitoes (n = 758 were identified and allocated to pools of 1-10 specimens according to the collection location, sex, and climatic period. After RNA extraction, multiplex semi-nested RT-PCR was performed to detect the four dengue virus (DENV serotypes, yellow fever virus, West Nile virus and Saint Louis encephalitis virus. RESULTS: DENV-4 was the only flavivirus detected, and it was found in 8/50 pools (16.0%. Three of the positive pools contained females, and five contained males. Their nucleotide sequences presented 96-100% similarity with DENV-4 genotype II strains from Manaus, Amazonas. The minimum infection rate was 10.5 per 1000 specimens, and the maximum likelihood estimator of the infection rate was 11.6 (95% confidence interval: 4.8; 23.3. CONCLUSIONS: This study provides the first evidence of natural transovarial infection by DENV-4 in Ae. Aegypti in Mato Grosso, suggesting that this type of infection might serve as a mechanism of virus maintenance during interepidemic periods in Cuiabá, a city where dengue epidemics are reported every year. These results emphasize the need for efficient vector population control measures to prevent arbovirus outbreaks in the state.

  3. Reemergence of Dengue in Southern Texas, 2013

    Science.gov (United States)

    Thomas, Dana L.; Santiago, Gilberto A.; Abeyta, Roman; Hinojosa, Steven; Torres-Velasquez, Brenda; Adam, Jessica K.; Evert, Nicole; Caraballo, Elba; Hunsperger, Elizabeth; Muñoz-Jordán, Jorge L.; Smith, Brian; Banicki, Alison; Tomashek, Kay M.; Gaul, Linda

    2016-01-01

    During a dengue epidemic in northern Mexico, enhanced surveillance identified 53 laboratory-positive cases in southern Texas; 26 (49%) patients acquired the infection locally, and 29 (55%) were hospitalized. Of 83 patient specimens that were initially IgM negative according to ELISA performed at a commercial laboratory, 14 (17%) were dengue virus positive by real-time reverse transcription PCR performed at the Centers for Disease Control and Prevention. Dengue virus types 1 and 3 were identified, and molecular phylogenetic analysis demonstrated close identity with viruses that had recently circulated in Mexico and Central America. Of 51 household members of 22 dengue case-patients who participated in household investigations, 6 (12%) had been recently infected with a dengue virus and reported no recent travel, suggesting intrahousehold transmission. One household member reported having a recent illness consistent with dengue. This outbreak reinforces emergence of dengue in southern Texas, particularly when incidence is high in northern Mexico. PMID:27191223

  4. Complete Genome Sequence of an Atypical Dengue Virus Serotype 2 Lineage Isolated in Brazil

    Science.gov (United States)

    Salvador, Felipe Scassi; Amorim, Jaime Henrique; Alves, Rubens Prince Santos; Pereira, Sara A.; Ferreira, Luis Carlos Souza

    2015-01-01

    Here, we report the complete polyprotein sequence of a dengue virus 2 strain isolated in Brazil. This virus belongs to the American genotype and has the ability to cause neurovirulence in immunocompetent adult mice. The data presented here may help understand the genetic determinants responsible for neurovirulence. PMID:26184939

  5. Effects of Larval Nutrition on Wolbachia-Based Dengue Virus Interference in Aedes aegypti (Diptera: Culicidae).

    Science.gov (United States)

    Kho, Elise A; Hugo, Leon E; Lu, Guangjin; Smith, David D; Kay, Brian H

    2016-07-01

    In order to assess the broad-scale applicability of field releases of Wolbachia for the biological control of insect-transmitted diseases, we determined the relationship between the larval diet of Aedes aegypti L. mosquitoes infected with Wolbachia strains and their susceptibility to dengue virus (DENV) infection via intrathoracic injection and oral inoculation. Larvae were reared on diets that varied in the quantity of food which had the effect of modifying development time and adult body size. Wolbachia wMel infection was associated with highly significant reductions in dengue serotype 2 (DENV-2) infection rates of between 80 and 97.5% following intrathoracic injection of adults emerging from three diet levels. Reductions were 100% in two diet level treatments following oral inoculation. Similarly, wMelPop infection was associated with highly significant reductions in DENV-2 infection rates of between 95 and 100% for intrathoracic injection and 97.5 and 100% for oral inoculation across diet level treatments. Larval diet level had no significant effect on DENV-2 infection rates in the presence of Wolbachia infection in mosquitoes that were intrathoracically injected with the virus. This indicates that the effectiveness of Wolbachia on vector competence disruption within Ae. aegypti is unlikely to be compromised by variable larval nutrition in field settings. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  6. Zika virus infection acquired during brief travel to Indonesia.

    Science.gov (United States)

    Kwong, Jason C; Druce, Julian D; Leder, Karin

    2013-09-01

    Zika virus infection closely resembles dengue fever. It is possible that many cases are misdiagnosed or missed. We report a case of Zika virus infection in an Australian traveler who returned from Indonesia with fever and rash. Further case identification is required to determine the evolving epidemiology of this disease.

  7. Detection and identification of dengue virus isolates from Brazil by a simplified reverse transcription - polymerase chain reaction (RT-PCR method

    Directory of Open Access Journals (Sweden)

    FIGUEIREDO Luiz Tadeu Moraes

    1997-01-01

    Full Text Available We show here a simplified RT-PCR for identification of dengue virus types 1 and 2. Five dengue virus strains, isolated from Brazilian patients, and yellow fever vaccine 17DD as a negative control, were used in this study. C6/36 cells were infected and supernatants were collected after 7 days. The RT-PCR, done in a single reaction vessel, was carried out following a 1/10 dilution of virus in distilled water or in a detergent mixture containing Nonidet P40. The 50 µl assay reaction mixture included 50 pmol of specific primers amplifying a 482 base pair sequence for dengue type 1 and 210 base pair sequence for dengue type 2. In other assays, we used dengue virus consensus primers having maximum sequence similarity to the four serotypes, amplifying a 511 base pair sequence. The reaction mixture also contained 0.1 mM of the four deoxynucleoside triphosphates, 7.5 U of reverse transcriptase, 1U of thermostable Taq DNA polymerase. The mixture was incubated for 5 minutes at 37ºC for reverse transcription followed by 30 cycles of two-step PCR amplification (92ºC for 60 seconds, 53ºC for 60 seconds with slow temperature increment. The PCR products were subjected to 1.7% agarose gel electrophoresis and visualized by UV light after staining with ethidium bromide solution. Low virus titer around 10 3, 6 TCID50/ml was detected by RT-PCR for dengue type 1. Specific DNA amplification was observed with all the Brazilian dengue strains by using dengue virus consensus primers. As compared to other RT-PCRs, this assay is less laborious, done in a shorter time, and has reduced risk of contamination

  8. Genomic analysis and growth characteristic of dengue viruses from Makassar, Indonesia.

    Science.gov (United States)

    Sasmono, R Tedjo; Wahid, Isra; Trimarsanto, Hidayat; Yohan, Benediktus; Wahyuni, Sitti; Hertanto, Martin; Yusuf, Irawan; Mubin, Halim; Ganda, Idham J; Latief, Rachmat; Bifani, Pablo J; Shi, Pei-Yong; Schreiber, Mark J

    2015-06-01

    Dengue fever is currently the most important mosquito-borne viral disease in Indonesia. In South Sulawesi province, most regions report dengue cases including the capital city, Makassar. Currently, no information is available on the serotypes and genotypes of the viruses circulating in the area. To understand the dynamic of dengue disease in Makassar, we carried out dengue fever surveillance study during 2007-2010. A total of 455 patients were recruited, in which antigen and serological detection revealed the confirmed dengue cases in 43.3% of patients. Molecular detection confirmed the dengue cases in 27.7% of patients, demonstrating that dengue places a significant disease burden on the community. Serotyping revealed that dengue virus serotype 1 (DENV-1) was the most predominant serotype, followed by DENV-2, -3, and -4. To determine the molecular evolution of the viruses, we conducted whole-genome sequencing of 80 isolates. Phylogenetic analysis grouped DENV-2, -3 and -4 to the Cosmopolitan genotype, Genotype I and Genotype II, respectively. Intriguingly, each serotype paints a different picture of evolution and transmission. DENV-1 appears to be undergoing a clade replacement with Genotype IV being supplanted by Genotype I. The Cosmopolitan DENV-2 isolates were found to be regionally endemic and is frequently being exchanged between countries in the region. By contrast, DENV-3 and DENV-4 isolates were related to strains with a long history in Indonesia although the DENV-3 strains appear to have been following a distinct evolutionary path since approximately 1998. To assess whether the various DENV serotypes/genotypes possess different growth characteristics, we performed growth kinetic assays on selected viruses. We observed the relatively higher rate of replication for DENV-1 and -2 compared to DENV-3 and -4. Within the DENV-1, viruses from Genotype I grow faster than that of Genotype IV. This higher replication rate may underlie their ability to replace the

  9. Dengue and dengue hemorrhagic fever in the Americas: lessons and challenges.

    Science.gov (United States)

    Guzman, María G; Kouri, Gustavo

    2003-05-01

    The incidence of dengue and dengue hemorrhagic fever (DF/DHF) has increased significantly over the last decades. Yearly, an estimated 50-100 million cases of DF and about 250000-500000 cases of DHF occur worldwide. The epidemiological situation in Latin America now resembles that in Southeast Asia. Here, the main clinical, epidemiological and virological observations in the American region are presented and compared with those previously reported from Southeast Asia. During 2002, more than 30 Latin American countries reported over 1000000 DF cases. DHF occurred in 20 countries with more than 17000 DHF cases, including 225 fatalities. The co-circulation of multiple serotypes has been reported from many countries. In the Americas, DHF is observed both in children and adults; secondary infection by a different dengue virus serotype has been confirmed as an important risk factor for this severe form of the disease. However, some new risk factors such as the interval of dengue virus infections and the ethnicity and underlying chronic conditions of the patient have also been identified. The sequence of dengue virus infections and association with certain genotypes are further factors of importance. We also discuss the control and prevention strategies. In conclusion, without urgent action for the prevention and control of dengue/DHF and its vector, the current situation will worsen and, more dramatical, there is a risk of the urbanization of yellow fever.

  10. Hirsutine, an Indole Alkaloid of Uncaria rhynchophylla, Inhibits Late Step in Dengue Virus Lifecycle

    OpenAIRE

    Hishiki, Takayuki; Kato, Fumihiro; Tajima, Shigeru; Toume, Kazufumi; Umezaki, Masahito; Takasaki, Tomohiko; Miura, Tomoyuki

    2017-01-01

    Dengue virus (DENV) is transmitted to humans by Aedes mosquitoes and is a public health issue worldwide. No antiviral drugs specific for treating dengue infection are currently available. To identify novel DENV inhibitors, we analyzed a library of 95 compounds and 120 extracts derived from crude drugs (herbal medicines). In the primary screening, A549 cells infected with DENV-1 were cultured in the presence of each compound and extract at a final concentration of 10 μM (compound) and 100 μg/m...

  11. Transmission potential of Zika virus infection in the South Pacific.

    Science.gov (United States)

    Nishiura, Hiroshi; Kinoshita, Ryo; Mizumoto, Kenji; Yasuda, Yohei; Nah, Kyeongah

    2016-04-01

    Zika virus has spread internationally through countries in the South Pacific and Americas. The present study aimed to estimate the basic reproduction number, R0, of Zika virus infection as a measurement of the transmission potential, reanalyzing past epidemic data from the South Pacific. Incidence data from two epidemics, one on Yap Island, Federal State of Micronesia in 2007 and the other in French Polynesia in 2013-2014, were reanalyzed. R0 of Zika virus infection was estimated from the early exponential growth rate of these two epidemics. The maximum likelihood estimate (MLE) of R0 for the Yap Island epidemic was in the order of 4.3-5.8 with broad uncertainty bounds due to the small sample size of confirmed and probable cases. The MLE of R0 for French Polynesia based on syndromic data ranged from 1.8 to 2.0 with narrow uncertainty bounds. The transmissibility of Zika virus infection appears to be comparable to those of dengue and chikungunya viruses. Considering that Aedes species are a shared vector, this finding indicates that Zika virus replication within the vector is perhaps comparable to dengue and chikungunya. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  12. Optimizing celgosivir therapy in mouse models of dengue virus infection of serotypes 1 and 2: The search for a window for potential therapeutic efficacy.

    Science.gov (United States)

    Watanabe, Satoru; Chan, Kitti Wing-Ki; Dow, Geoffrey; Ooi, Eng Eong; Low, Jenny G; Vasudevan, Subhash G

    2016-03-01

    Although the antiviral drug celgosivir, an α-glucosidase I inhibitor, is highly protective when given twice daily to AG129 mice infected with dengue virus, a similar regimen of twice daily dosing did not significantly reduce serum viral loads in patients in a recent clinical trial. This failure presumably might reflect the initiation of treatment when patients were already viremic. To better mimic the clinical setting, we used viruses isolated from patients to develop new mouse models of DENV1 and DENV2 infection and employed the models to test the twice daily treatment, begun either on the day of infection or on the third day post-infection, when the mice had peak of viremia. We found that, although the treatment started on day 0 was effective on viral load reduction, it provided no benefit when begun on day 3, indicating that in vivo antiviral efficacy becomes less prominent once viremia reaches the peak level. To determine if the therapeutic regimen in humans could be improved, we tested regimen of four-times daily treatment and found that the treatment significantly reduced viremia, suggesting that a similar regimen may be effective in a human clinical trial. A new clinical trial to investigate an altered dosing regimen has been approved (NCT02569827). Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Production of a Recombinant Dengue Virus 2 NS5 Protein and Potential Use as a Vaccine Antigen.

    Science.gov (United States)

    Alves, Rúbens Prince Dos Santos; Pereira, Lennon Ramos; Fabris, Denicar Lina Nascimento; Salvador, Felipe Scassi; Santos, Robert Andreata; Zanotto, Paolo Marinho de Andrade; Romano, Camila Malta; Amorim, Jaime Henrique; Ferreira, Luís Carlos de Souza

    2016-06-01

    Dengue fever is caused by any of the four known dengue virus serotypes (DENV1 to DENV4) that affect millions of people worldwide, causing a significant number of deaths. There are vaccines based on chimeric viruses, but they still are not in clinical use. Anti-DENV vaccine strategies based on nonstructural proteins are promising alternatives to those based on whole virus or structural proteins. The DENV nonstructural protein 5 (NS5) is the main target of anti-DENV T cell-based immune responses in humans. In this study, we purified a soluble recombinant form of DENV2 NS5 expressed in Escherichia coli at large amounts and high purity after optimization of expression conditions and purification steps. The purified DENV2 NS5 was recognized by serum from DENV1-, DENV2-, DENV3-, or DENV4-infected patients in an epitope-conformation-dependent manner. In addition, immunization of BALB/c mice with NS5 induced high levels of NS5-specific antibodies and expansion of gamma interferon- and tumor necrosis factor alpha-producing T cells. Moreover, mice immunized with purified NS5 were partially protected from lethal challenges with the DENV2 NGC strain and with a clinical isolate (JHA1). These results indicate that the recombinant NS5 protein preserves immunological determinants of the native protein and is a promising vaccine antigen capable of inducing protective immune responses. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  14. Improving dengue viral antigens detection in dengue patient serum specimens using a low pH glycine buffer treatment.

    Science.gov (United States)

    Shen, Wen-Fan; Galula, Jedhan Ucat; Chang, Gwong-Jen J; Wu, Han-Chung; King, Chwan-Chuen; Chao, Day-Yu

    2017-04-01

    Early diagnosis of dengue virus (DENV) infection to monitor the potential progression to hemorrhagic fever can influence the timely management of dengue-associated severe illness. Nonstructural protein 1 (NS1) antigen detection in acute serum specimens has been widely accepted as an early diagnostic assay for dengue infection; however, lower sensitivity of the NS1 antigen-capture enzyme-linked immunosorbent assay (Ag-ELISA) in secondary dengue viral infection has been reported. In this study, we developed two forms of Ag-ELISA capable of detecting E-Ag containing virion and virus-like particles, and secreted NS1 (sNS1) antigens, respectively. The temporal kinetics of viral RNA, sNS1, and E-Ag were evaluated based on the in vitro infection experiment. Meanwhile, a panel of 62 DENV-2 infected patients' sera was tested. The sensitivity was 3.042 ng/mL and 3.840 ng/mL for sNS1 and E, respectively. The temporal kinetics of the appearance of viral RNA, E, NS1, and infectious virus in virus-infected tissue culture media suggested that viral RNAs and NS1 antigens could be detected earlier than E-Ag and infectious virus. Furthermore, a panel of 62 sera from patients infected by DENV Serotype 2 was tested. Treating clinical specimens with the dissociation buffer increased the detectable level of E from 13% to 92% and NS1 antigens from 40% to 85%. Inclusion of a low-pH glycine buffer treatment step in the commercially available Ag-ELISA is crucial for clinical diagnosis and E-containing viral particles could be a valuable target for acute DENV diagnosis, similar to NS1 detection. Copyright © 2015. Published by Elsevier B.V.

  15. Analysis of genotype diversity and evolution of Dengue virus serotype 2 using complete genomes

    Directory of Open Access Journals (Sweden)

    Vaishali P. Waman

    2016-08-01

    Full Text Available Background Dengue is one of the most common arboviral diseases prevalent worldwide and is caused by Dengue viruses (genus Flavivirus, family Flaviviridae. There are four serotypes of Dengue Virus (DENV-1 to DENV-4, each of which is further subdivided into distinct genotypes. DENV-2 is frequently associated with severe dengue infections and epidemics. DENV-2 consists of six genotypes such as Asian/American, Asian I, Asian II, Cosmopolitan, American and sylvatic. Comparative genomic study was carried out to infer population structure of DENV-2 and to analyze the role of evolutionary and spatiotemporal factors in emergence of diversifying lineages. Methods Complete genome sequences of 990 strains of DENV-2 were analyzed using Bayesian-based population genetics and phylogenetic approaches to infer genetically distinct lineages. The role of spatiotemporal factors, genetic recombination and selection pressure in the evolution of DENV-2 is examined using the sequence-based bioinformatics approaches. Results DENV-2 genetic structure is complex and consists of fifteen subpopulations/lineages. The Asian/American genotype is observed to be diversified into seven lineages. The Asian I, Cosmopolitan and sylvatic genotypes were found to be subdivided into two lineages, each. The populations of American and Asian II genotypes were observed to be homogeneous. Significant evidence of episodic positive selection was observed in all the genes, except NS4A. Positive selection operational on a few codons in envelope gene confers antigenic and lineage diversity in the American strains of Asian/American genotype. Selection on codons of non-structural genes was observed to impact diversification of lineages in Asian I, cosmopolitan and sylvatic genotypes. Evidence of intra/inter-genotype recombination was obtained and the uncertainty in classification of recombinant strains was resolved using the population genetics approach. Discussion Complete genome-based analysis

  16. Therapeutic efficacy of antibodies lacking Fcγ receptor binding against lethal dengue virus infection is due to neutralizing potency and blocking of enhancing antibodies [corrected].

    Directory of Open Access Journals (Sweden)

    Katherine L Williams

    2013-02-01

    Full Text Available Dengue hemorrhagic fever and dengue shock syndrome (DHF/DSS are life-threatening complications following infection with one of the four serotypes of dengue virus (DENV. At present, no vaccine or antiviral therapies are available against dengue. Here, we characterized a panel of eight human or mouse-human chimeric monoclonal antibodies (MAbs and their modified variants lacking effector function and dissected the mechanism by which some protect against antibody-enhanced lethal DENV infection. We found that neutralizing modified MAbs that recognize the fusion loop or the A strand epitopes on domains II and III of the envelope protein, respectively, act therapeutically by competing with and/or displacing enhancing antibodies. By analyzing these relationships, we developed a novel in vitro suppression-of-enhancement assay that predicts the ability of modified MAbs to act therapeutically against antibody-enhanced disease in vivo. These studies provide new insight into the biology of DENV pathogenesis and the requirements for antibodies to treat lethal DENV disease.

  17. Enhancing the Immunogenicity of a Tetravalent Dengue DNA Vaccine

    Science.gov (United States)

    2016-08-01

    season’s influenza vaccine. There is no overlap with the proposed project. Title: Serological survey for Zika virus and other vector-borne pathogen...studying human immunology and pathogenesis of dengue virus infection Time Commitments: 5% 0.6 calendar months Supporting Agency: Military Infectious...attenuated dengue virus vaccine (LAV), and (3) inactivated dengue virus vaccine. Dengue fever ranks among the top infectious diseases that afflict

  18. La epidemiología del dengue y del dengue hemorrágico en Santiago de Cuba, 1997 The epidemiology of dengue and dengue hemorrhagic fever in Santiago de Cuba, 1997

    Directory of Open Access Journals (Sweden)

    Luis Valdés

    1999-07-01

    serotype 2 of the virus. This time 344 203 clinical cases were reported, 10 312 of which were severe cases of hemorragic fever that led to 158 fatalities (101 of them among children. The reintroduction of dengue, and specifically of dengue viral serotype 2 (Jamaica genotype, was quickly detected in January 1997 through an active surveillance system with laboratory confirmation of cases in the municipality of Santiago de Cuba, in the province of the same name. The main epidemiological features of this outbreak are reported in this paper. A total of 3 012 cases were reported and serologically confirmed. These included 205 cases classified as dengue hemorrhagic fever/dengue shock syndrome (DHF/DSS, 12 of which were case fatalities (all among adults. Secondary infection with dengue virus was one of the most important risk factors for DHF/DSS. Ninety-eight percent of the DHF/DSS cases and 92% of the fatal cases had contracted a secondary infection. It was the first time dengue hemorrhagic fever was documented as a secondary infection 16 to 20 years after initial infection. Belonging to the white racial group was another important risk factor for DHF/DSS, as had been observed during the 1981 epidemic. During the most recent epidemic it was demonstrated that the so called “fever alert” is not useful for early detection of an epidemic. Measures taken by the country’s public health officials prevented spread of the epidemic to other municipalities plagued by Aedes aegypti.

  19. Novel vaccination approach for dengue infection based on recombinant immune complex universal platform.

    Science.gov (United States)

    Kim, Mi-Young; Reljic, Rajko; Kilbourne, Jacquelyn; Ceballos-Olvera, Ivonne; Yang, Moon-Sik; Reyes-del Valle, Jorge; Mason, Hugh S

    2015-04-08

    Dengue infection is on the rise in many endemic areas of the tropics. Vaccination remains the most realistic strategy for prevention of this potentially fatal viral disease but there is currently no effective vaccine that could protect against all four known serotypes of the dengue virus. This study describes the generation and testing of a novel vaccination approach against dengue based on recombinant immune complexes (RIC). We modelled the dengue RIC on the existing Ebola RIC (Phoolcharoen, et al. Proc Natl Acad Sci USA 2011;108(Dec (51)):20695) but with a key modification that allowed formation of a universal RIC platform that can be easily adapted for use for other pathogens. This was achieved by retaining only the binding epitope of the 6D8 ant-Ebola mAb, which was then fused to the consensus dengue E3 domain (cEDIII), resulting in a hybrid dengue-Ebola RIC (DERIC). We expressed human and mouse versions of these molecules in tobacco plants using a geminivirus-based expression system. Following purification from the plant extracts by protein G affinity chromatography, DERIC bound to C1q component of complement, thus confirming functionality. Importantly, following immunization of mice, DERIC induced a potent, virus-neutralizing anti-cEDIII humoral immune response without exogenous adjuvants. We conclude that these self-adjuvanting immunogens have the potential to be developed as a novel vaccine candidate for dengue infection, and provide the basis for a universal RIC platform for use with other antigens. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Novel benzoxazole inhibitor of dengue virus replication that targets the NS3 helicase.

    Science.gov (United States)

    Byrd, Chelsea M; Grosenbach, Douglas W; Berhanu, Aklile; Dai, Dongcheng; Jones, Kevin F; Cardwell, Kara B; Schneider, Christine; Yang, Guang; Tyavanagimatt, Shanthakumar; Harver, Chris; Wineinger, Kristin A; Page, Jessica; Stavale, Eric; Stone, Melialani A; Fuller, Kathleen P; Lovejoy, Candace; Leeds, Janet M; Hruby, Dennis E; Jordan, Robert

    2013-04-01

    Dengue virus (DENV) is the predominant mosquito-borne viral pathogen that infects humans with an estimated 50 to 100 million infections per year worldwide. Over the past 50 years, the incidence of dengue disease has increased dramatically and the virus is now endemic in more than 100 countries. Moreover, multiple serotypes of DENV are now found in the same geographic region, increasing the likelihood of more severe forms of disease. Despite extensive research, there are still no approved vaccines or therapeutics commercially available to treat DENV infection. Here we report the results of a high-throughput screen of a chemical compound library using a whole-virus assay that identified a novel small-molecule inhibitor of DENV, ST-610, that potently and selectively inhibits all four serotypes of DENV replication in vitro. Sequence analysis of drug-resistant virus isolates has identified a single point mutation, A263T, in the NS3 helicase domain that confers resistance to this compound. ST-610 inhibits DENV NS3 helicase RNA unwinding activity in a molecular-beacon-based helicase assay but does not inhibit nucleoside triphosphatase activity based on a malachite green ATPase assay. ST-610 is nonmutagenic, is well tolerated (nontoxic) in mice, and has shown efficacy in a sublethal murine model of DENV infection with the ability to significantly reduce viremia and viral load compared to vehicle controls.

  1. The epidemiological characteristics and genetic diversity of dengue virus during the third largest historical outbreak of dengue in Guangdong, China, in 2014.

    Science.gov (United States)

    Sun, Jiufeng; Wu, De; Zhou, Huiqiong; Zhang, Huan; Guan, Dawei; He, Xiang; Cai, Songwu; Ke, Changwen; Lin, Jinyan

    2016-01-01

    The third largest historical outbreak of dengue occurred during July to December 2014, in 20 of 21 cities of Guangdong, China. The epidemiological and molecular characteristics of the introduction, expansion and phylogeny of the DENV isolates involved in this outbreak were investigated. A combination analyses of epidemiological characteristics and genetic diversity of dengue virus was performed in this study. In total, 45,236 cases and 6 fatalities were reported. Unemployed individuals, retirees and retailers were the most affected populations. A total of 6024 cases were verified to have DENV infections by nucleic acid detection, of which 5947, 74 and 3 were confirmed to have DENV-1, -2, and -3 infections, respectively. Phylogenetic analyses of DENV-1 isolates were assigned into three genotypes (I, IV, and V). Genotype V was the predominant genotype that likely originated from Singapore. The DENV-2 isolates were assigned to the Cosmopolitan and Asian I genotypes. A unique DENV-3 isolate (genotype III) shared high similarity with isolates obtained from Guangdong in 2013. A combination analyses demonstrated the multiple geographical origins of this outbreak, and highlight the importance of early detection, the case management and vector surveillance for preventing further dengue epidemics in Guangdong. Copyright © 2015 The British Infection Association. Published by Elsevier Ltd. All rights reserved.

  2. Quantitative analysis of dengue-2 virus RNA during the extrinsic incubation period in individual Aedes aegypti.

    Science.gov (United States)

    Richardson, Jason; Molina-Cruz, Alvaro; Salazar, Ma Isabel; Black, William

    2006-01-01

    Dengue virus-2 (DENV-2) RNA was quantified from the midgut and legs of individual Aedes aegypti at each of 14 days postinfectious blood meal (dpi) in a DENV-2 susceptible strain from Chetumal, Mexico. A SYBR Green I based strand-specific, quantitative real-time reverse transcription-polymerase chain reaction (RT-PCR) assay was developed. The lower detection and quantitation limits were 20 and 200 copies per reaction, respectively. Amounts of positive and negative strand viral RNA strands were correlated. Numbers of plaque-forming units (PFU) were correlated with DENV-2 RNA copy number in both C6/36 cell cultures and mosquitoes. PFU were consistently lower than RNA copy number by 2-3 log(10). Midgut levels of DENV-2 RNA peaked 8 dpi and fluctuated erratically between 6 and 9 dpi. Copies of DENV-2 RNA varied significantly among infected mosquitoes at each time point. Quantitative real-time RT-PCR is a convenient and reliable method that provides new insights into virus-vector interactions.

  3. Validation of the Pockit Dengue Virus Reagent Set for Rapid Detection of Dengue Virus in Human Serum on a Field-Deployable PCR System.

    Science.gov (United States)

    Tsai, Jih-Jin; Liu, Li-Teh; Lin, Ping-Chang; Tsai, Ching-Yi; Chou, Pin-Hsing; Tsai, Yun-Long; Chang, Hsiao-Fen Grace; Lee, Pei-Yu Alison

    2018-05-01

    Dengue virus (DENV) infection, a mosquito-borne disease, is a major public health problem in tropical countries. Point-of-care DENV detection with good sensitivity and specificity enables timely early diagnosis of DENV infection, facilitating effective disease management and control, particularly in regions of low resources. The Pockit dengue virus reagent set (GeneReach Biotech), a reverse transcription insulated isothermal PCR (RT-iiPCR), is available to detect all four serotypes of DENV on the field-deployable Pockit system, which is ready for on-site applications. In this study, analytical and clinical performances of the assay were evaluated. The index assay did not react with 14 non-DENV human viruses, indicating good specificity. Compared to the U.S. CDC DENV-1-4 real-time quantitative RT-PCR (qRT-PCR) assay, testing with serial dilutions of virus-spiked human sera demonstrated that the index assay had detection endpoints that were separately comparable with the 4 serotypes. Excellent reproducibility was observed among repeat tests done by six operators at three sites. In clinical performance, 195 clinical sera collected around Kaohsiung city in 2012 and 21 DENV-4-spiked sera were tested with the RT-iiPCR and qRT-PCR assays in parallel. The 121 (11 DENV-1, 78 DENV-2, 11 DENV-3, and 21 DENV-4) qRT-PCR-positive and 95 qRT-PCR-negative samples were all positive and negative by the RT-iiPCR reagent results, respectively, demonstrating high (100%) interrater agreement (95% confidence interval [CI 95% ], ∼98.81% to 100%; κ = 1). With analytical and clinical performance equivalent to those of the reference qRT-PCR assay, the index PCR assay on the field-deployable system can serve as a highly sensitive and specific on-site tool for DENV detection. Copyright © 2018 American Society for Microbiology.

  4. Dengue in the Americas and Southeast Asia: do they differ? El dengue en las Américas y el sudeste asiático: ¿son diferentes?

    Directory of Open Access Journals (Sweden)

    Scott B. Halstead

    2006-12-01

    Full Text Available The populations of Southeast Asia (SE Asia and tropical America are similar, and all four dengue viruses of Asian origin are endemic in both regions. Yet, during comparable 5-year periods, SE Asia experienced 1.16 million cases of dengue hemorrhagic fever (DHF, principally in children, whereas in the Americas there were 2.8 million dengue fever (DF cases, principally in adults, and only 65 000 DHF cases. This review aims to explain these regional differences. In SE Asia, World War II amplified Aedes aegypti populations and the spread of dengue viruses. In the Americas, efforts to eradicate A. aegypti in the 1940s and 1950s contained dengue epidemics mainly to the Caribbean Basin. Cuba escaped infections with the American genotype dengue-2 and an Asian dengue-3 endemic in the 1960s and 1970s. Successive infections with dengue-1 and an Asian genotype dengue-2 resulted in the 1981 DHF epidemic. When this dengue-2 virus was introduced in other Caribbean countries, it encountered populations highly immune to the American genotype dengue-2. During the 1980s and 1990s, rapidly expanding populations of A. aegypti in Brazil permitted successive epidemics of dengue-1, -2, and -3. These exposures, however, resulted mainly in DF, with surprisingly few cases of DHF. The absence of high rates of severe dengue disease in Brazil, as elsewhere in the Americas, may be partly explained by the widespread prevalence of human dengue resistance genes. Understanding the nature and distribution of these genes holds promise for containing severe dengue. Future research on dengue infections should emphasize population-based designs.Las poblaciones de Asia suroriental y de la América tropical son similares y los cuatro tipos de virus del dengue de origen asiático son endémicos en ambas regiones. Aun así, durante períodos quinquenales comparables ocurrieron 1,16 millones de casos de dengue hemorrágico (DH en Asia suroriental, principalmente en niños, mientras que en

  5. Molecular studies with Aedes (Stegomyia) aegypti (Linnaeus, 1762), mosquito transmitting the dengue virus.

    Science.gov (United States)

    Pereira, Luciana Patrícia Lima Alves; Brito, Maria Cristiane Aranha; Araruna, Felipe Bastos; de Andrade, Marcelo Souza; Moraes, Denise Fernandes Coutinho; Borges, Antônio Carlos Romão; do Rêgo Barros Pires Leal, Emygdia Rosa

    2017-08-01

    Dengue is an infectious viral disease, which can present a wide clinical picture, ranging from oligo or asymptomatic forms, to bleeding and shock, and can progress to death. The disease problem has increased in recent years, especially in urban and suburban areas of tropical and subtropical regions. There are five dengue viruses, called serotypes (DEN-1, DEN-2, DEN-3, DEN-4, and DEN-5), which belong to the Flaviviridae family and are transmitted to humans through infected mosquito bites, with the main vector the Aedes aegypti mosquito (Linnaeus, 1762). Studies performed with Ae. aegypti, aimed at their identification and analysis of their population structure, are fundamental to improve understanding of the epidemiology of dengue, as well for the definition of strategic actions that reduce the transmission of this disease. Therefore, considering the importance of such research to the development of programs to combat dengue, the present review considers the techniques used for the molecular identification, and evaluation of the genetic variability of Ae. aegypti.

  6. Hemophagocytic syndrome in classic dengue fever

    Directory of Open Access Journals (Sweden)

    Sayantan Ray

    2011-01-01

    Full Text Available A 24-year-old previously healthy girl presented with persistent fever, headache, and jaundice. Rapid-test anti-dengue virus IgM antibody was positive but anti-dengue IgG was nonreactive, which is suggestive of primary dengue infection. There was clinical deterioration during empiric antibiotic and symptomatic therapy. Bone marrow examination demonstrated the presence of hemophagocytosis. Diagnosis of dengue fever with virus-associated hemophagocytic syndrome was made according to the diagnostic criteria of the HLH 2004 protocol of the Histiocyte Society. The patient recovered with corticosteroid therapy. A review of literature revealed only a handful of case reports that showed the evidence that this syndrome is caused by dengue virus. Our patient is an interesting case of hemophagocytic syndrome associated with classic dengue fever and contributes an additional case to the existing literature on this topic. This case highlights the need for increased awareness even in infections not typically associated with hemophagocytic syndrome.

  7. Detection of micro RNA hsa-let-7e in peripheral blood mononuclear cells infected with dengue virus serotype-2: preliminary study

    Science.gov (United States)

    Masyeni, S.; Hadi, U.; Kuntaman; Yohan, B.; Margyaningsih, N. I.; Sasmono, R. T.

    2018-03-01

    Pathogenesis of dengue infection is still obscure. Recently, the role of microRNA has been associated with the cytokine storm which leads to plasma leakage in endothelial cells. The objective of our study was to determine whether particular microRNA is overexpressed in PBMCs infected with DENV and to assess its correlation to the expression of suppressor of cytokine signaling 3 (SOCS3) proteins to increase the production of pro-inflammatory cytokines. We report the result of a preliminary study on the expression of microRNA hsa-let-7e. The peripheral blood mononuclear cells (PBMCs) from the healthy volunteer were infected with the clinical isolate of DENV-2. RNA was extracted with miRCURYLNATMExiqon. Quantitative Real-Time PCR was used to measure the relative expression of hsa-let-7e micro RNA and the mRNA of SOCS3 proteins. MicroRNA hsa-let-7e expression was increased in PBMCs upon DENV-2 infection. The relative expression of hsa-let-7e is detected at 1.46 folds relative to uninfected PBMCs in 4 hours post-infection and decreased in 19 hours post infection. In contrast, the expression of mRNA of SOCS3 was inversely expressed with hsa-let-7 expression. MicroRNA was overexpressed in PBMCs upon infection with DENV-2. This microRNA may bind the SOCS3 and contribute to the pathogenesis of dengue infection.

  8. Resveratrol treatment reveals a novel role for HMGB1 in regulation of the type 1 interferon response in dengue virus infection.

    Science.gov (United States)

    Zainal, Nurhafiza; Chang, Chih-Peng; Cheng, Yi-Lin; Wu, Yan-Wei; Anderson, Robert; Wan, Shu-Wen; Chen, Chia-Ling; Ho, Tzong-Shiann; AbuBakar, Sazaly; Lin, Yee-Shin

    2017-02-20

    Dengue is one of the most significant mosquito-borne virus diseases worldwide, particularly in tropical and subtropical regions. This study sought to examine the antiviral activity of resveratrol (RESV), a phytoalexin secreted naturally by plants, against dengue virus (DENV) infection. Our data showed that RESV inhibits the translocation of high mobility group box 1 (HMGB1), a DNA binding protein that normally resides in the nucleus, into the cytoplasm and extracellular milieu. HMGB1 migrates out of the nucleus during DENV infection. This migration is inhibited by RESV treatment and is mediated by induction of Sirt1 which leads to the retention of HMGB1 in the nucleus and consequently helps in the increased production of interferon-stimulated genes (ISGs). Nuclear HMGB1 was found to bind to the promoter region of the ISG and positively regulated the expression of ISG. The enhanced transcription of ISGs by nuclear HMGB1 thus contributes to the antiviral activity of RESV against DENV. To the best of our knowledge, this is the first report to demonstrate that RESV antagonizes DENV replication and that nuclear HMGB1 plays a role in regulating ISG production.

  9. STRUKTUR PROTEOMIK VIRUS DENGUE DAN MANFAATNYA SEBAGAI TARGET ANTIVIRUS

    Directory of Open Access Journals (Sweden)

    Novia Rachmayanti

    2014-09-01

    Full Text Available AbstrakVirus dengue (DENV telah menyebabkan sekitar 50 juta kasus infeksi demam berdarah setiap tahunnya, akan tetapi hingga saat ini belum terdapat vaksin maupun antivirus yang mampu mencegah atau mengobati penyakit tersebut. Selama pengembangan vaksin dan antivirus, diperoleh berbagai informasi tentang struktur protein DENV yang dapat dimanfaatkan sebagai target obat. Makalah membahas tentang struktur proteomik pada DENV, yaitu glikoprotein pada envelope, NS3 protease, NS3 helikase, NS5 metiltransferase, dan NS5 RNA-dependent RNA polimerase.AbstractDengue virus (DENV has caused over 50 millions infection every year. However, to date neither vaccine nor medicine could be used to prevent or cure the illness. During researches in finding the vaccine or antiviral for DENV, information on DENV protein structure has been obtained which is potentially used as drug target. This paper disscuss DENV proteomic structure that consist of envelope glicoprotein, NS3 protease, NS3 helicase, NS5 methyl-transferase, and NS5 RNA-dependent RNA polymerase.

  10. Coordination of different ligands to copper(II) and cobalt(III) metal centers enhances Zika virus and dengue virus loads in both arthropod cells and human keratinocytes.

    Science.gov (United States)

    Dutta, Shovan; Celestine, Michael J; Khanal, Supreet; Huddleston, Alexis; Simms, Colin; Arca, Jessa Faye; Mitra, Amlan; Heller, Loree; Kraj, Piotr J; Ledizet, Michel; Anderson, John F; Neelakanta, Girish; Holder, Alvin A; Sultana, Hameeda

    2018-01-01

    Trace elements such as copper and cobalt have been associated with virus-host interactions. However, studies to show the effect of conjugation of copper(II) or cobalt(III) metal centers to thiosemicarbazone ligand(s) derived from either food additives or mosquito repellent such as 2-acetylethiazole or citral, respectively, on Zika virus (ZIKV) or dengue virus (serotype 2; DENV2) infections have not been explored. In this study, we show that four compounds comprising of thiosemicarbazone ligand derived from 2-acetylethiazole viz., (E)-N-ethyl-2-[1-(thiazol-2-yl)ethylidene]hydrazinecarbothioamide (acetylethTSC) (compound 1), a copper(II) complex with acetylethTSC as a ligand (compound 2), a thiosemicarbazone ligand-derived from citral (compound 3) and a cobalt(III) complex with a citral-thiosemicarbazone ligand (compound 4) increased DENV2 and ZIKV replication in both mosquito C6/36 cells and human keratinocytes (HaCaT cells). Treatment of both cell lines with compounds 2 or 4 showed increased dengue viral titers at all three tested doses. Enhanced dengue viral plaque formation was also noted at the tested dose of 100μM, suggesting higher production of infectious viral particles. Treatment with the compounds 2 or 4 enhanced ZIKV and DENV2 RNA levels in HeLa cell line and primary cultures of mouse bone marrow derived dendritic cells. Also, pre- or post treatments with conjugated compounds 2 or 4 showed higher loads of ZIKV or DENV2 envelope (E) protein in HaCaT cells. No changes in loads of E-protein were found in ZIKV-infected C6/36 cells, when compounds were treated after infection. In addition, we tested bis(1,10-phenanthroline)copper(II) chloride ([Cu(phen) 2 ]Cl 2 , (compound 5) and tris(1,10-phenanthroline)cobalt(III) chloride ([Co(phen) 3 ]Cl 3 , (compound 6) that also showed enhanced DENV2 loads. Also, we found that copper(II) chloride dehydrate (CuCl 2 ·2H 2 O) or cobalt(II) chloride hexahydrate (CoCl 2 ·6H 2 O) alone had no effects as "free" cations

  11. Hierarchical Cluster Analysis of Three-Dimensional Reconstructions of Unbiased Sampled Microglia Shows not Continuous Morphological Changes from Stage 1 to 2 after Multiple Dengue Infections in Callithrix penicillata

    Science.gov (United States)

    Diniz, Daniel G.; Silva, Geane O.; Naves, Thaís B.; Fernandes, Taiany N.; Araújo, Sanderson C.; Diniz, José A. P.; de Farias, Luis H. S.; Sosthenes, Marcia C. K.; Diniz, Cristovam G.; Anthony, Daniel C.; da Costa Vasconcelos, Pedro F.; Picanço Diniz, Cristovam W.

    2016-01-01

    It is known that microglial morphology and function are related, but few studies have explored the subtleties of microglial morphological changes in response to specific pathogens. In the present report we quantitated microglia morphological changes in a monkey model of dengue disease with virus CNS invasion. To mimic multiple infections that usually occur in endemic areas, where higher dengue infection incidence and abundant mosquito vectors carrying different serotypes coexist, subjects received once a week subcutaneous injections of DENV3 (genotype III)-infected culture supernatant followed 24 h later by an injection of anti-DENV2 antibody. Control animals received either weekly anti-DENV2 antibodies, or no injections. Brain sections were immunolabeled for DENV3 antigens and IBA-1. Random and systematic microglial samples were taken from the polymorphic layer of dentate gyrus for 3-D reconstructions, where we found intense immunostaining for TNFα and DENV3 virus antigens. We submitted all bi- or multimodal morphological parameters of microglia to hierarchical cluster analysis and found two major morphological phenotypes designated types I and II. Compared to type I (stage 1), type II microglia were more complex; displaying higher number of nodes, processes and trees and larger surface area and volumes (stage 2). Type II microglia were found only in infected monkeys, whereas type I microglia was found in both control and infected subjects. Hierarchical cluster analysis of morphological parameters of 3-D reconstructions of random and systematic selected samples in control and ADE dengue infected monkeys suggests that microglia morphological changes from stage 1 to stage 2 may not be continuous. PMID:27047345

  12. Neutralizing activities of human immunoglobulin derived from donors in Japan against mosquito-borne flaviviruses, Japanese encephalitis virus, West Nile virus, and dengue virus

    Directory of Open Access Journals (Sweden)

    Yunoki M

    2016-07-01

    Full Text Available Mikihiro Yunoki,1-3 Takeshi Kurosu,2 Ritsuko Kubota Koketsu,2,4 Kazuo Takahashi,5 Yoshinobu Okuno,4 Kazuyoshi Ikuta2,4 1Research and Development Division, Japan Blood Products Organization, Tokyo, 2Department of Virology, Research Institute for Microbial Diseases, Osaka University, Osaka, 3Pathogenic Risk Evaluation, Graduate School of Veterinary Medicine, Rakuno Gakuen University, Hokkaido, 4Research and Development Division, The Research Foundation for Microbial Diseases of Osaka University, Kagawa, 5Osaka Prefectural Institute of Public Health, Osaka, Japan Abstract: Japanese encephalitis virus (JEV, West Nile virus (WNV, and dengue virus (DenV are causal agents of Japanese encephalitis, West Nile fever, and dengue fever, respectively. JEV is considered to be indigenized and widespread in Japan, whereas WNV and DenV are not indigenized in Japan. Globulin products seem to reflect the status of the donor population according to antivirus neutralization activity. However, the anti-JEV, -WNV, and -DenV neutralization activities of globulin products derived from donors in Japan have not been clarified. Furthermore, potential candidates for the development of an effective immunotherapeutic drug for encephalitis caused by JEV, WNV, or DenV have also not been identified. Therefore, the aim of this study was to determine the overall status of the donor population in Japan based on globulin products by evaluating anti-JEV, -WNV, and -DenV neutralizing activities of intravenous immunoglobulin. Overall, intravenous immunoglobulin products showed stable neutralizing activity against JEV but showed no or only weak activity against WNV or DenV. These results suggest that the epidemiological level against WNV and DenV in the donor population of Japan is still low, suggesting that these viruses are not yet indigenized. In addition, JEV vaccinations and/or infections in the donor population do not induce a cross-reactive antibody against WNV. Keywords

  13. Ecg manifestations in dengue infection

    International Nuclear Information System (INIS)

    Tarique, S.; Murtaza, G.; Asif, S.; Qureshi, I.H.

    2013-01-01

    To determine the frequency of ECG changes in patients with dengue fever and dengue hemorrhagic fever. Place of study: Department of Medicine, Mayo Hospital Lahore Duration of study: September to November 201 Study design: Cross sectional analytical study Patient and methods: 116 patients with dengue infection were enrolled in the study. Their clinical presentation and examination was duly noted. Each patient had baseline and then regular monitoring of blood counts, metabolic profile and fluid status. Patients with Dengue Hemorrhagic fever underwent radiological examination in form of chest radiograph and ultrasound abdomen. ECG was carried out in all patients. Results: Out of 116 patients, 61(52.6%) suffered from Dengue Fever and 55(47.4%) had Dengue Hemorrhagic Fever. Overall 78 patients had normal ECG. Abnormal ECG findings like tachycardia, bradycardia, supraventricular tachycardia, left bundle branch block, ST depression, poor progression of R wave were noted. There was no significant relationship of ECG findings with the disease. Conclusion: ECG changes can occur in dengue infection with or without cardiac symptoms. Commonly noted findings were ST depression and bradycardia. (author)

  14. Inferences from the Chronology of Dengue and Zika Outbreaks in Human Populations

    Science.gov (United States)

    McDonald, C.; Usmani, M.; Colwell, R. R.; Jutla, A.

    2017-12-01

    Dengue and Zika virus are becoming global health threats. With a recent resurgence of Zika virus in the Americas, there is a renewed interest to understand the physical pathways on interactions of vectors with human population. However, the challenge is in the availability of the vectors and viruses in regions that have suffered from outbreaks of these infections. Aedes spp. mosquitoes are the primary vectors of both Zika and Dengue viruses. The critical question is how one species of mosquito is able to transmit two different infections. Therefore, there is a need to understand the coherence and co-emergence behavior of Dengue and Zika infections. Our dominant hypothesis is that Dengue precedes Zika viruses. Here, we will show a global chronological trend of Dengue and Zika virus, or how an outbreak of dengue may lead to an outbreak of Zika virus, as regions with Zika virus outbreaks had demonstrated peak dengue incidences in prior months. We will also present global trends on key climatological and weather processes as a function of the emergence of these two viruses. We anticipate that this information can be used concurrently with geographical and meteorological information to more accurately predict the spread of Zika virus.

  15. Analysis of Individuals from a Dengue-Endemic Region Helps Define the Footprint and Repertoire of Antibodies Targeting Dengue Virus 3 Type-Specific Epitopes.

    Science.gov (United States)

    Andrade, Daniela V; Katzelnick, Leah C; Widman, Doug G; Balmaseda, Angel; de Silva, Aravinda M; Baric, Ralph S; Harris, Eva

    2017-09-19

    The four dengue virus serotypes (DENV1 to 4) cause dengue, a major public health problem worldwide. Individuals exposed to primary DENV infections develop serotype-specific neutralizing antibodies, including strongly neutralizing antibodies targeting quaternary epitopes. To date, no studies have measured the levels and kinetics of serum antibodies directed to such epitopes among populations in regions where dengue is endemic. Here, we use a recombinant DENV4 (rDENV4/3-M14) displaying a major DENV3 type-specific quaternary epitope recognized by human monoclonal antibody 5J7 to measure the proportion, magnitude, and kinetics of DENV3 type-specific neutralizing antibody responses targeting this epitope. Primary DENV3 sera from 30 individuals in a dengue hospital-based study in Nicaragua were studied 3, 6, 12, and 18 months post-infection, alongside samples collected annually 1 to 4 years post-primary DENV3 infection from 10 individuals in a cohort study in Nicaragua. We found substantial individual variation in the proportion of DENV3 type-specific neutralizing antibody titers attributed to the 5J7 epitope (range, 0 to 100%), with the mean significantly increasing from 22.6% to 41.4% from 3 to 18 months. We extended the transplanted DENV3 5J7 epitope on the virion (rDENV4/3-M16), resulting in increased recognition in several individuals, helping define the footprint of the epitope. However, 37% and 13% of the subjects still showed little to no recognition of the 5J7 epitope at 3 and 18 months, respectively, indicating that one or more additional DENV3 type-specific epitopes exist. Overall, this study demonstrates how DENV-immune plasma from populations from areas of endemicity, when coupled with structurally guided recombinant viruses, can help characterize the epitope-specific neutralizing antibody response in natural DENV infections, with direct implications for design and evaluation of dengue vaccines. IMPORTANCE The four serotypes of dengue virus cause dengue

  16. Relato de caso: transmissão vertical de dengue Case report: vertical dengue infection

    Directory of Open Access Journals (Sweden)

    Samara L. C. Maroun

    2008-12-01

    Full Text Available OBJETIVOS: Relatar um caso de transmissão vertical de dengue ocorrido durante epidemia de 2008 pelo vírus tipo II no Rio de Janeiro e revisar a literatura sobre transmissão vertical de dengue. DESCRIÇÃO: Relatamos um caso de transmissão vertical de dengue. Recém-nascido a termo do sexo feminino, peso de nascimento de 3.940 g, foi admitida na unidade de terapia intensiva neonatal com rash cutâneo, hipoatividade e febre no quinto dia de vida. O hemograma evidenciava plaquetopenia importante (38.000 plaquetas. A mãe apresentou quadro clínico compatível com dengue 3 dias antes do parto. Foram colhidos então IgM para dengue da mãe e do recém-nascido, realizados pelo método de ELISA, sendo positivos em ambos. Dengue tipo 2 foi detectado no recém-nascido através de reação em cadeia da polimerase. COMENTÁRIOS: Este relato enfatiza a importância do pediatra estar alerta para a possibilidade de transmissão vertical de dengue iniciando precocemente o tratamento.OBJECTIVES: To report a case of vertical dengue infection in a newborn from Rio de Janeiro, Brazil, and to review the literature concerning this problem. DESCRIPTION: We report a case of vertical dengue infection. Female neonate, birth weight 3,940 g, term, was admitted to a neonatal intensive care unit on the fifth day of life with fever and erythematous rash. Her mother had had dengue fever 3 days before delivery. Her platelet count was 38,000, dropping to 15,000. She did not have any hemorrhagic episodes, including cerebral hemorrhages. Anti-dengue antibodies (IgM were positive in the mother and infant. Dengue type 2 was detected in the infant using polymerase chain reaction. COMMENTS: This report emphasizes that pediatricians should be aware of the possibility of vertical dengue infection so that early management can be instituted.

  17. Dengue virus exposure among blood donors in Ghana | Narkwa ...

    African Journals Online (AJOL)

    Dengue is an urban arbovirus whose aetiologic agent is the flavivirus with four distinct antigen serotypes (DENV-1, DENV-2, DENV-3 and DENV-4) that is transmitted to humans through the bite of the mosquito Aedes aegypti. Ghana is endemic for Aedes aegypti mosquitoes and probably dengue viruses. Due to limited data ...

  18. The spatial dynamics of dengue virus in Kamphaeng Phet, Thailand.

    Directory of Open Access Journals (Sweden)

    Piraya Bhoomiboonchoo

    2014-09-01

    Full Text Available Dengue is endemic to the rural province of Kamphaeng Phet, Northern Thailand. A decade of prospective cohort studies has provided important insights into the dengue viruses and their generated disease. However, as elsewhere, spatial dynamics of the pathogen remain poorly understood. In particular, the spatial scale of transmission and the scale of clustering are poorly characterized. This information is critical for effective deployment of spatially targeted interventions and for understanding the mechanisms that drive the dispersal of the virus.We geocoded the home locations of 4,768 confirmed dengue cases admitted to the main hospital in Kamphaeng Phet province between 1994 and 2008. We used the phi clustering statistic to characterize short-term spatial dependence between cases. Further, to see if clustering of cases led to similar temporal patterns of disease across villages, we calculated the correlation in the long-term epidemic curves between communities. We found that cases were 2.9 times (95% confidence interval 2.7-3.2 more likely to live in the same village and be infected within the same month than expected given the underlying spatial and temporal distribution of cases. This fell to 1.4 times (1.2-1.7 for individuals living in villages 1 km apart. Significant clustering was observed up to 5 km. We found a steadily decreasing trend in the correlation in epidemics curves by distance: communities separated by up to 5 km had a mean correlation of 0.28 falling to 0.16 for communities separated between 20 km and 25 km. A potential explanation for these patterns is a role for human movement in spreading the pathogen between communities. Gravity style models, which attempt to capture population movement, outperformed competing models in describing the observed correlations.There exists significant short-term clustering of cases within individual villages. Effective spatially and temporally targeted interventions deployed within villages may

  19. Dengue infection severity score – improvised disease management

    Directory of Open Access Journals (Sweden)

    Mahmood SU

    2016-08-01

    Full Text Available Syed Uzair Mahmood,1 Maryam Jamil Syed,1 Aisha Jamal,1 Maria Shoaib2 1Sindh Medical College, Jinnah Sindh Medical University, Karachi, Pakistan; 2Dow Medical College, Dow University of Health Sciences, Karachi, PakistanWe would like to add our views regarding the paper “Validation of Dengue infection severity score” by Pongpan et al.1 As the paper outlines, the purpose of the Dengue Severity Score is to classify individuals with dengue infection into three levels of severity with clinically acceptable underestimation or overestimation. View the original paper by Pongpan and colleagues. 

  20. Dengue fever outbreak: a clinical management experience

    International Nuclear Information System (INIS)

    Ahmed, S.; Illyas, M.

    2008-01-01

    To determine the frequency of dengue as a cause of fever and compare the clinical and haematological characteristics of Dengue-probable and Dengue-proven cases. All patients with age above 14 years, who were either hospitalized or treated in medical outdoor clinic due to acute febrile illness, were evaluated for clinical features of Dengue Fever (DF), Dengue haemorrhagic fever (DHF) and Dengue Shock Syndrome (DSS). Patients showing typical clinical features and haematological findings suggestive of Dengue fever (As per WHO criteria) were evaluated in detail for comparison of probable and confirmed cases of Dengue fever. All other cases of acute febrile illness, not showing clinical features or haematological abnormalities of Dengue fever, were excluded. The clinical and laboratory features were recorded on SPSS 11.0 programme and graded where required, for descriptive and statistical analysis. Out of 5200 patients with febrile illness, 107 (2%) presented with typical features of DF, 40/107 (37%) were Dengue-proven while 67/107 (63%) were Dengue-probable. Out of Dengue-proven cases, 38 were of DF and 2 were of DHF. Day 1 temperature ranged from 99-105 degreeC (mean 101 degree C). Chills and rigors were noticed in 86 (80%), myalgia in 67%, headache in 54%, pharyngitis in 35%, rash in 28%, and bleeding manifestations in 2% cases. Hepatomegaly in 1(0.5%), lymphadenopathy in 1 (0.5%) and splenomegaly in 12 (11.2%) cases. Leucopoenia (count 40 U/L in 57% cases. Frequency of clinically suspected dengue virus infection was 107 (2%), while confirmed dengue fever cases were 40 (0.8%) out of 5200 fever cases. Fever with chills and rigors, body aches, headache, myalgia, rash, haemorrhagic manifestations, platelet count, total leukocyte count, and ALT, are parameters to screen the cases of suspected dengue virus infection, the diagnosis cannot be confirmed unless supported by molecular studies or dengue specific IgM. (author)

  1. Vector competence of Aedes albopictus and Aedes aegypti (Diptera: Culicidae) for the DEN2-FJ10 and DEN2-FJ11 strains of the dengue 2 virus in Fujian, China.

    Science.gov (United States)

    Guo, Xiao-Xia; Li, Chun-Xiao; Zhang, Ying-Mei; Xing, Dan; Dong, Yan-De; Zhang, Heng-Duan; Qin, Cheng-Feng; Zhao, Tong-Yan

    2016-09-01

    Dengue is an acute, emerging, infectious disease transmitted by Aedes mosquitoes that has become a serious global public health problem. The DEN2-FJ10 and DEN2-FJ11 strains of the dengue 2 virus were originally isolated from the serum of a patient with dengue fever in Fujian Province, China, in 1999. Our data provide the first assessment of the vector competence of Aedes mosquitoes with respect to the DEN2-FJ10 and DEN2-FJ11 strains of the dengue virus. There were significant differences in the replication rates of these two viral strains in Aedes albopictus and Aedes aegypti (P0.05). In summary, our results indicate that Ae. albopictus and Ae. aegypti mosquitoes are moderately competent vectors of the DEN2-FJ10 and DEN2-FJ11 strains of the dengue virus and provide the first evidence of the effect of these two viral strains on the vector competence of mosquitoes in China. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Fine Scale Spatiotemporal Clustering of Dengue Virus Transmission in Children and Aedes aegypti in Rural Thai Villages

    NARCIS (Netherlands)

    Yoon, I.K.; Getis, A.; Aldstadt, J.; Rothman, A.L.; Tannitisupawong, D.; Koenraadt, C.J.M.; Fansiri, T.; Jones, J.W.; Morrison, A.C.; Jarman, R.G.; Nisalak, A.; Mammen Jr., M.P.; Thammapalo, S.; Srikiatkhachorn, A.; Green, S.; Libraty, D.H.; Gibbons, R.V.; Endy, T.; Pimgate, C.; Scott, T.W.

    2012-01-01

    Background Based on spatiotemporal clustering of human dengue virus (DENV) infections, transmission is thought to occur at fine spatiotemporal scales by horizontal transfer of virus between humans and mosquito vectors. To define the dimensions of local transmission and quantify the factors that

  3. Inhibition of Dengue Virus Replication by a Class of Small-Molecule Compounds That Antagonize Dopamine Receptor D4 and Downstream Mitogen-Activated Protein Kinase Signaling

    Science.gov (United States)

    Smith, Jessica L.; Stein, David A.; Shum, David; Fischer, Matthew A.; Radu, Constantin; Bhinder, Bhavneet; Djaballah, Hakim; Nelson, Jay A.; Früh, Klaus

    2014-01-01

    ABSTRACT Dengue viruses (DENV) are endemic pathogens of tropical and subtropical regions that cause significant morbidity and mortality worldwide. To date, no vaccines or antiviral therapeutics have been approved for combating DENV-associated disease. In this paper, we describe a class of tricyclic small-molecule compounds—dihydrodibenzothiepines (DHBTs), identified through high-throughput screening—with potent inhibitory activity against DENV serotype 2. SKI-417616, a highly active representative of this class, displayed activity against all four serotypes of DENV, as well as against a related flavivirus, West Nile virus (WNV), and an alphavirus, Sindbis virus (SINV). This compound was characterized to determine its mechanism of antiviral activity. Investigation of the stage of the viral life cycle affected revealed that an early event in the life cycle is inhibited. Due to the structural similarity of the DHBTs to known antagonists of the dopamine and serotonin receptors, we explored the roles of two of these receptors, serotonin receptor 2A (5HTR2A) and the D4 dopamine receptor (DRD4), in DENV infection. Antagonism of DRD4 and subsequent downstream phosphorylation of epidermal growth factor receptor (EGFR)-related kinase (ERK) were found to impact DENV infection negatively, and blockade of signaling through this network was confirmed as the mechanism of anti-DENV activity for this class of compounds. IMPORTANCE The dengue viruses are mosquito-borne, reemerging human pathogens that are the etiological agents of a spectrum of febrile diseases. Currently, there are no approved therapeutic treatments for dengue-associated disease, nor is there a vaccine. This study identifies a small molecule, SKI-417616, with potent anti-dengue virus activity. Further analysis revealed that SKI-417616 acts through antagonism of the host cell dopamine D4 receptor and subsequent repression of the ERK phosphorylation pathway. These results suggest that SKI-417616, or other

  4. Identification and characterization of a virus-specific continuous B-cell epitope on the PrM/M protein of Japanese Encephalitis Virus: potential application in the detection of antibodies to distinguish Japanese Encephalitis Virus infection from West Nile Virus and Dengue Virus infections

    Directory of Open Access Journals (Sweden)

    Liu Wen-Xin

    2010-09-01

    Full Text Available Abstract Background Differential diagnose of Japanese encephalitis virus (JEV infection from other flavivirus especially West Nile virus (WNV and Dengue virus (DV infection was greatly hindered for the serological cross-reactive. Virus specific epitopes could benefit for developing JEV specific antibodies detection methods. To identify the JEV specific epitopes, we fully mapped and characterized the continuous B-cell epitope of the PrM/M protein of JEV. Results To map the epitopes on the PrM/M protein, we designed a set of 20 partially overlapping fragments spanning the whole PrM, fused them with GST, and expressed them in an expression vector. Linear epitope M14 (105VNKKEAWLDSTKATRY120 was detected by enzyme-linked immunosorbent assay (ELISA. By removing amino acid residues individually from the carboxy and amino terminal of peptide M14, we confirmed that the minimal unit of the linear epitope of PrM/M was M14-13 (108KEAWLDSTKAT118. This epitope was highly conserved across different JEV strains. Moreover, this epitope did not cross-react with WNV-positive and DENV-positive sera. Conclusion Epitope M14-13 was a JEV specific lineal B-cell epitpe. The results may provide a useful basis for the development of epitope-based virus specific diagnostic clinical techniques.

  5. Molecular epidemiology and evolutionary analysis of dengue virus type 2, circulating in Delhi, India.

    Science.gov (United States)

    Sharma, Pankaj; Mittal, Veena; Chhabra, Mala; Kumari, Roop; Singh, Priyanka; Venkatesh, Srinivas

    2016-12-01

    Dengue virus type 2 (DENV-2) has been associated with severe dengue outbreaks in many countries including India. Its predominance was recorded nearly after a decade in the capital city, Delhi in 2013. The present study characterizes DENV-2 circulated during 2013-2014. Analysis based on envelope (E) gene showed the presence of two clades (I and II) of DENV-2, within the Cosmopolitan genotype. Analysis of time of most recent common ancestor revealed the existence of clade I for more than a decade (95 % HPD 13-16 years) however, clade II showed comparatively recent emergence (95 % HPD 5-13 years). Presence of different clades is of high significance as this may result in increased virus transmission and major outbreaks. Further, the presence of a unique amino acid substitution, Q325H was also observed in an isolate; 14/D2/Del/2013 (KT717981). This substitution falls in immune epitope (epitope id: 150268) and may have important role in host immune response.

  6. First isolation of dengue virus from the 2010 epidemic in Nepal.

    Science.gov (United States)

    Pandey, Basu D; Nabeshima, Takeshi; Pandey, Kishor; Rajendra, Saroj P; Shah, Yogendra; Adhikari, Bal R; Gupta, Govinda; Gautam, Ishan; Tun, Mya M N; Uchida, Reo; Shrestha, Mahendra; Kurane, Ichiro; Morita, Kouichi

    2013-09-01

    Dengue is an emerging disease in Nepal and was first observed as an outbreak in nine lowland districts in 2006. In 2010, however, a large epidemic of dengue occurred with 4,529 suspected and 917 serologically-confirmed cases and five deaths reported in government hospitals in Nepal. The collection of demographic information was performed along with an entomological survey and clinical evaluation of the patients. A total of 280 serum samples were collected from suspected dengue patients. These samples were subjected to routine laboratory investigations and IgM-capture ELISA for dengue serological identification, and 160 acute serum samples were used for virus isolation, RT-PCR, sequencing and phylogenetic analysis. The results showed that affected patients were predominately adults, and that 10% of the cases were classified as dengue haemorrhagic fever/ dengue shock syndrome. The genetic characterization of dengue viruses isolated from patients in four major outbreak areas of Nepal suggests that the DENV-1 strain was responsible for the 2010 epidemic. Entomological studies identified Aedes aegypti in all epidemic areas. All viruses belonged to a monophyletic single clade which is phylogenetically close to Indian viruses. The dengue epidemic started in the lowlands and expanded to the highland areas. To our knowledge, this is the first dengue isolation and genetic characterization reported from Nepal.

  7. Laboratory and Molecular Characterization of Dengue Viruses in a 2014 Outbreak in Guangfo Region, Southern China.

    Science.gov (United States)

    Luo, Zhao-Fan; Hu, Bo; Zhang, Feng-Yi; Lin, Xiang-Hua; Xie, Xiao-Ying; Pan, Kun-Yi; Li, Hong-Yu; Ren, Rui-Wen; Zhao, Wen-Zhong

    2017-09-25

    Non-specific symptoms and low viremia levels make early diagnosis of dengue virus (DENV) infection challenging. This study aimed to i) identify laboratory markers that can be used to predict a DENV-positive diagnosis and ii) perform a molecular characterization of DENVs from the 2014 Guangdong epidemic. This retrospective study analyzed 1,044 patients from the Guangdong epidemic who were clinically suspected cases of dengue. Viral RNA was detected by real-time RT-PCR, and viral-specific NS1 antigen was detected using enzyme-linked immuno sorbent assay. A molecular phylogenetic analysis was performed for the with the DENV C-prM gene junction. Patients with dengue infection had leukopenia (2.8 × 10 9 /L), thrombocytopenia (109.0 × 10 9 /L), elevated aspartate aminotransferase (56.0 IU/L) and alanine aminotransferase (43.5 IU/L), and prolonged activated partial thromboplastin time (APTT, 33.5 s) (all P < 0.001) compared to patients without dengue. The positive predictive value of leukopenia and thrombocytopenia for DENV infection were 96.9% and 93.0%, respectively. Leukopenia, thrombocytopenia, elevated aminotransferases, and prolonged APTT were useful predictive markers for an early diagnosis of DENV infection. Phylogenetic analysis indicated that the DENVs from the 2014 epidemic were closely related to a 2010 New Delhi strain and a 2013 Guangzhou strain. The 2014 epidemic consisted of co-circulating DENV-1 genotypes I and V from multiple origins. Efficient dengue surveillance can facilitate rapid response to future outbreaks.

  8. Early activation of natural killer and B cells in response to primary dengue virus infection in A/J mice

    International Nuclear Information System (INIS)

    Shresta, Sujan; Kyle, Jennifer L.; Robert Beatty, P.; Harris, Eva

    2004-01-01

    Dengue virus (DEN) causes the most prevalent arthropod-borne viral illness in humans worldwide. Immune mechanisms that are involved in protection and pathogenesis of DEN infection have not been fully elucidated due largely to the lack of an adequate animal model. Therefore, as a first step, we characterized the primary immune response in immunocompetent inbred A/J mice that were infected intravenously with a non-mouse-adapted DEN type 2 (DEN2) strain. A subset (55%) of infected mice developed paralysis by 14 days post-infection (p.i.), harbored infectious DEN in the central nervous system (CNS), and had an elevated hematocrit and a decreased white blood cell (WBC) count. Immunologic studies detected (i) increased numbers of CD69 + splenic natural killer (NK) and B cells at day 3 p.i., (ii) DEN-specific IgM and IgG responses by days 3 and 7 p.i., respectively, and (iii) splenocyte production of IFNγ at day 14 p.i. We conclude that the early activities of NK cells, B cells and IgM, and later actions of IFNγ and IgG likely play a role in the defense against DEN infection

  9. Antiviral cationic peptides as a strategy for innovation in global health therapeutics for dengue virus: high yield production of the biologically active recombinant plectasin peptide.

    Science.gov (United States)

    Rothan, Hussin A; Mohamed, Zulqarnain; Suhaeb, Abdulrazzaq M; Rahman, Noorsaadah Abd; Yusof, Rohana

    2013-11-01

    Dengue virus infects millions of people worldwide, and there is no vaccine or anti-dengue therapeutic available. Antimicrobial peptides have been shown to possess effective antiviral activity against various viruses. One of the main limitations of developing these peptides as potent antiviral drugs is the high cost of production. In this study, high yield production of biologically active plectasin peptide was inexpensively achieved by producing tandem plectasin peptides as inclusion bodies in E. coli. Antiviral activity of the recombinant peptide towards dengue serotype-2 NS2B-NS3 protease (DENV2 NS2B-NS3pro) was assessed as a target to inhibit dengue virus replication in Vero cells. Single units of recombinant plectasin were collected after applying consecutive steps of refolding, cleaving by Factor Xa, and nickel column purification to obtain recombinant proteins of high purity. The maximal nontoxic dose (MNTD) of the recombinant peptide against Vero cells was 20 μM (100 μg/mL). The reaction velocity of DENV2 NS2B-NS3pro decreased significantly after increasing concentrations of recombinant plectasin were applied to the reaction mixture. Plectasin peptide noncompetitively inhibited DENV2 NS2B-NS3pro at Ki value of 5.03 ± 0.98 μM. The percentage of viral inhibition was more than 80% at the MNTD value of plectasin. In this study, biologically active recombinant plectasin which was able to inhibit dengue protease and viral replication in Vero cells was successfully produced in E. coli in a time- and cost- effective method. These findings are potentially important in the development of potent therapeutics against dengue infection.

  10. Estimating risks of importation and local transmission of Zika virus infection

    Directory of Open Access Journals (Sweden)

    Kyeongah Nah

    2016-04-01

    Full Text Available Background. An international spread of Zika virus (ZIKV infection has attracted global attention. ZIKV is conveyed by a mosquito vector, Aedes species, which also acts as the vector species of dengue and chikungunya viruses. Methods. Arrival time of ZIKV importation (i.e., the time at which the first imported case was diagnosed in each imported country was collected from publicly available data sources. Employing a survival analysis model in which the hazard is an inverse function of the effective distance as informed by the airline transportation network data, and using dengue and chikungunya virus transmission data, risks of importation and local transmission were estimated. Results. A total of 78 countries with imported case(s have been identified, with the arrival time ranging from 1 to 44 weeks since the first ZIKV was identified in Brazil, 2015. Whereas the risk of importation was well explained by the airline transportation network data, the risk of local transmission appeared to be best captured by additionally accounting for the presence of dengue and chikungunya viruses. Discussion. The risk of importation may be high given continued global travel of mildly infected travelers but, considering that the public health concerns over ZIKV infection stems from microcephaly, it is more important to focus on the risk of local and widespread transmission that could involve pregnant women. The predicted risk of local transmission was frequently seen in tropical and subtropical countries with dengue or chikungunya epidemic experience.

  11. Structural features of NS3 of Dengue virus serotypes 2 and 4 in solution and insight into RNA binding and the inhibitory role of quercetin.

    Science.gov (United States)

    Pan, Ankita; Saw, Wuan Geok; Subramanian Manimekalai, Malathy Sony; Grüber, Ardina; Joon, Shin; Matsui, Tsutomu; Weiss, Thomas M; Grüber, Gerhard

    2017-05-01

    Dengue virus (DENV), which has four serotypes (DENV-1 to DENV-4), is the causative agent of the viral infection dengue. DENV nonstructural protein 3 (NS3) comprises a serine protease domain and an RNA helicase domain which has nucleotide triphosphatase activities that are essential for RNA replication and viral assembly. Here, solution X-ray scattering was used to provide insight into the overall structure and flexibility of the entire NS3 and its recombinant helicase and protease domains for Dengue virus serotypes 2 and 4 in solution. The DENV-2 and DENV-4 NS3 forms are elongated and flexible in solution. The importance of the linker residues in flexibility and domain-domain arrangement was shown by the compactness of the individual protease and helicase domains. Swapping of the 174 PPAVP 179 linker stretch of the related Hepatitis C virus (HCV) NS3 into DENV-2 NS3 did not alter the elongated shape of the engineered mutant. Conformational alterations owing to RNA binding are described in the protease domain, which undergoes substantial conformational alterations that are required for the optimal catalysis of bound RNA. Finally, the effects of ATPase inhibitors on the enzymatically active DENV-2 and DENV-4 NS3 and the individual helicases are presented, and insight into the allosteric effect of the inhibitor quercetin is provided.

  12. VERTICAL TRANSMISSION OF DENGUE INFECTION: THE FIRST PUTATIVE CASE REPORTED IN CHINA

    Directory of Open Access Journals (Sweden)

    Xueru YIN

    Full Text Available SUMMARY Dengue is a systemic viral infection that is commonly transmitted between humans via mosquitoes. Other modes of transmission such as the vertical one are rare and have been infrequently reported in the literature. This report investigates one case of vertical transmission of dengue in Guangzhou, China. A G1P1 lady at 39 weeks of gestation was referred to the Huzhong Hospital presenting a fever for two days. She subsequently developed a skin rash on the back and lower limb and at that time she had already experienced five days of fever. She subsequently went into labor and delivered a female neonate weighting 3,500 g at birth. The neonate developed fever on the third day of life which was associated with a systemic erythematous skin rash. There was no report or evidence of mosquito bites after birth. A complete blood count showed leucopenia, thrombocytopenia and anemia and the liver function test showed elevated AST, GGT and bilirubin. Dengue was diagnosed in the mother and the neonate by the ELISA dengue virus NS1 antigen test (Wantai, Beijing, China and dengue virus fluorogenic quantitative PCR test (Liferiver, Shanghai, China.The case report illustrates the possibility of the vertical transmission of dengue. Clinicians should be alert to this possibility and institute early treatment. Further direct evidence and research are required.

  13. Construction of dengue virus protease expression plasmid and in vitro protease assay for screening antiviral inhibitors.

    Science.gov (United States)

    Lai, Huiguo; Teramoto, Tadahisa; Padmanabhan, Radhakrishnan

    2014-01-01

    Dengue virus serotypes 1-4 (DENV1-4) are mosquito-borne human pathogens of global significance causing ~390 million cases annually worldwide. The virus infections cause in general a self-limiting disease, known as dengue fever, but occasionally also more severe forms, especially during secondary infections, dengue hemorrhagic fever and dengue shock syndrome causing ~25,000 deaths annually. The DENV genome contains a single-strand positive sense RNA, approximately 11 kb in length. The 5'-end has a type I cap structure. The 3'-end has no poly(A) tail. The viral RNA has a single long open reading frame that is translated by the host translational machinery to yield a polyprotein precursor. Processing of the polyprotein precursor occurs co-translationally by cellular proteases and posttranslationally by the viral serine protease in the endoplasmic reticulum (ER) to yield three structural proteins (capsid (C), precursor membrane (prM), and envelope (E) and seven nonstructural (NS) proteins (NS1, NS2A, NS2B, NS3, NS4A, NS4B, and NS5). The active viral protease consists of both NS2B, an integral membrane protein in the ER, and the N-terminal part of NS3 (180 amino acid residues) that contains the trypsin-like serine protease domain having a catalytic triad of H51, D75, and S135. The C-terminal part of NS3, ~170-618 amino acid residues, encodes an NTPase/RNA helicase and 5'-RNA triphosphatase activities; the latter enzyme is required for the first step in 5'-capping. The cleavage sites of the polyprotein by the viral protease consist of two basic amino acid residues such as KR, RR, or QR, followed by short chain amino acid residues, G, S, or T. Since the cleavage of the polyprotein by the viral protease is absolutely required for assembly of the viral replicase, blockage of NS2B/NS3pro activity provides an effective means for designing dengue virus (DENV) small-molecule therapeutics. Here we describe the screening of small-molecule inhibitors against DENV2 protease.

  14. Treatment model of dengue hemorrhagic fever infection in human body

    Science.gov (United States)

    Handayani, D.; Nuraini, N.; Primasari, N.; Wijaya, K. P.

    2014-03-01

    The treatment model of DHF presented in this paper involves the dynamic of five time-dependent compartments, i.e. susceptible, infected, free virus particle, immune cell, and haematocrit level. The treatment model is investigated based on normalization of haematocrit level, which is expressed as intravenous fluid infusion control. We analyze the stability of the disease free equilibrium and the endemic equilibrium. The numerical simulations will explain the dynamic of each compartment in human body. These results show particularly that infected compartment and free virus particle compartment are tend to be vanished in two weeks after the onset of dengue virus. However, these simulation results also show that without the treatment, the haematocrit level will decrease even though not up to the normal level. Therefore the effective haematocrit normalization should be done with the treatment control.

  15. Multi-level analyses of spatial and temporal determinants for dengue infection.

    Science.gov (United States)

    Vanwambeke, Sophie O; van Benthem, Birgit H B; Khantikul, Nardlada; Burghoorn-Maas, Chantal; Panart, Kamolwan; Oskam, Linda; Lambin, Eric F; Somboon, Pradya

    2006-01-18

    Dengue is a mosquito-borne viral infection that is now endemic in most tropical countries. In Thailand, dengue fever/dengue hemorrhagic fever is a leading cause of hospitalization and death among children. A longitudinal study among 1750 people in two rural and one urban sites in northern Thailand from 2001 to 2003 studied spatial and temporal determinants for recent dengue infection at three levels (time, individual and household). Determinants for dengue infection were measured by questionnaire, land-cover maps and GIS. IgM antibodies against dengue were detected by ELISA. Three-level multi-level analysis was used to study the risk determinants of recent dengue infection. Rates of recent dengue infection varied substantially in time from 4 to 30%, peaking in 2002. Determinants for recent dengue infection differed per site. Spatial clustering was observed, demonstrating variation in local infection patterns. Most of the variation in recent dengue infection was explained at the time-period level. Location of a person and the environment around the house (including irrigated fields and orchards) were important determinants for recent dengue infection. We showed the focal nature of asymptomatic dengue infections. The great variation of determinants for recent dengue infection in space and time should be taken into account when designing local dengue control programs.

  16. In Vitro Study of Eight Indonesian Natural Extracts as Antiviral Against Dengue Virus

    Directory of Open Access Journals (Sweden)

    Leli Saptawati

    2017-07-01

    Full Text Available 800x600 Background: Dengue hemorrhagic fever (DHF caused by a dengue viruses is still a major problem in tropical countries, including Indonesia. World Health Organization data showed that over 40% of world population are at risk of DHF.1In 2014 there were 71.668 of DHF cases in 34 provinces with 641 death.2 In Central Java in 2013, the incidence rate and fatality rate of DHF was 45.52 in 100.000 populations and 1.21% respectively.3 Until nowadays, there is no vaccine or effective therapy is available as yet.4 Thus research on discovering specific antiviral against dengue is needed. Indonesia is rich in indigenous herbal plants, which may has potential antiviral activity, such as Psidium guajava (Jambu biji, Euphorbia hirta (Patikn kerbau, Piper bettle L (Sirih, Carica papaya (Pepaya, Curcuma longa L(Kunyit/turmeric, Phyllanthus niruri L (meniran, Andrographis paniculata (Sambiloto, Cymbopogon citrates (Serai. Previous studies show that these plants have antiviral and antibacterial properties.5However, there is only limited study of these plants against dengue virus . Objective: This study aimed to know whether these plants have potential activity against dengue virus in vitro. Method: Leave extracts of eight indigenous herbal plants as mention before were originated from Solo, Central Java, the crude extracts were tested in vitro against dengue virus serotype 2 (DENV-2 strain NGC using Huh7it-1 cell line. Those crude extracts were screened for antiviral activity using doses of 20mg/ml. Candidates that showed inhibition activity were further tested in various doses to determine IC50 and CC50. Result: From eight leave extracts tested, one of them i.e Carica papaya (pepaya inhibited virus replication up to 89,5%. Dose dependent assay with C.papaya resulted in IC50, CC50 and selectivity index 6,57 μg/mL, 244,76 μg/mL and 37, 25 μg/mL respectively. Conclusion: C.papaya has potential antiviral activity against dengue virus in vitro. Further study

  17. El citoesqueleto en la infección con virus dengue

    Directory of Open Access Journals (Sweden)

    Francisco Javier Díaz Castrillón

    2004-03-01

    de vimentina cambian su patrón reticular, formando prolongaciones celulares en donde se detecta aglomeración de haces con un aumento en inmunorreactividad.

    Estos hallazgos son compatibles con el efecto citopático del DV, pero se requieren anticuerpos que marquen específicamente los viriones, para poder vislumbrar la posible interacción entre el citoesqueleto y los virus. Estamos probando otros anticuerpos, y esperamos lograr detectar con más detalle este fenómeno. Las perspectivas son promisorias y nos darán aportes originales, pues hasta ahora no hay reportes al respecto. Además, estos datos pueden ser de utilidad para comprender la patogénesis del dengue desde la perspectiva de la biología celular.

    REFERENCIAS

    1. ARCANGELETTI MC, PINARDI F, MISSORINI S, DE CONTO F, CONTI G, PORTINCASA P, SCHERRER K, CHEZZI C. 1997. Modification of cytoskeleton and prosome networks in relation to protein synthesis in influenza A virus-infected LLC-MK2 cells. Virus Res. 51: 19-34.

    2. GALLEGO-GÓMEZ, J.C. 2003. El Dengue Hemorrágico: Emergencia, Re-emergencia y Globalización de la Pobreza. Simposio Anual “Tópicos en Enfermedades Infecciosas” del Depto. Microb. Parasit., Fac. Medicina, Universidad de Antioquia. Septiembre 24.

    3. GALLEGO-GÓMEZ, J.C., et al. “Vaccinia Virus and their Attenuated Mutants induce Epithelial to Mesenchymal Transition” XIV th International Poxvirus and Iridovirus Workshop Lake

  18. Dengue viral infections in Pakistan and other Asian countries: a comprehensive review.

    Science.gov (United States)

    Zubair, Muhammad; Ashraf, Muhammad; Ahsan, Aitezaz; Nazir, Noor-Ul-Ain; Hanif, Hina; Khan, Haider Ali

    2016-07-01

    Infections due to Dengue virus are widespread throughout the world. Disease starts with mild flu like sickness to a severe intricate condition which results in the death of the patient. Dengue illness has high morbidity and mortality in Pakistan as well as in other Asian countries. The Review article is a discourse analysis that explores the facts about the history, emergence and impact of dengue in Pakistan and other Asian countries. Data was collected from internet sources, mainly using Science Direct and PubMed. The final literature was reviewed and summarised. About 150 articles were identified and 47 articles were shortlisted for final review. Aedesaegypti was found to be a major vector for the transmission and spread of dengue illness. Treatment comprises supportive therapy as no specific treatment was available. During the last couple of years, the incidence of dengue fever was extraordinary in metropolitan cities of Pakistan.

  19. Serial Metabolome Changes in a Prospective Cohort of Subjects with Influenza Viral Infection and Comparison with Dengue Fever.

    Science.gov (United States)

    Cui, Liang; Fang, Jinling; Ooi, Eng Eong; Lee, Yie Hou

    2017-07-07

    Influenza virus infection (IVI) and dengue virus infection (DVI) are major public health threats. Between IVI and DVI, clinical symptoms can be overlapping yet infection-specific, but host metabolome changes are not well-described. Untargeted metabolomics and targeted oxylipinomic analyses were performed on sera serially collected at three phases of infection from a prospective cohort study of adult subjects with either H3N2 influenza infection or dengue fever. Untargeted metabolomics identified 26 differential metabolites, and major perturbed pathways included purine metabolism, fatty acid biosynthesis and β-oxidation, tryptophan metabolism, phospholipid catabolism, and steroid hormone pathway. Alterations in eight oxylipins were associated with the early symptomatic phase of H3N2 flu infection, were mostly arachidonic acid-derived, and were enriched in the lipoxygenase pathway. There was significant overlap in metabolome profiles in both infections. However, differences specific to IVI and DVI were observed. DVI specifically attenuated metabolites including serotonin, bile acids and biliverdin. Additionally, metabolome changes were more persistent in IVI in which metabolites such as hypoxanthine, inosine, and xanthine of the purine metabolism pathway remained significantly elevated at 21-27 days after fever onset. This study revealed the dynamic metabolome changes in IVI subjects and provided biochemical insights on host physiological similarities and differences between IVI and DVI.

  20. Dengue fever and dengue haemorrhagic fever in adolescents and adults

    OpenAIRE

    Tantawichien, Terapong

    2012-01-01

    Dengue fever (DF) is endemic in tropical and subtropical zones and the prevalence is increasing across South-east Asia, Africa, the Western Pacific and the Americas. In recent years, the spread of unplanned urbanisation, with associated substandard housing, overcrowding and deterioration in water, sewage and waste management systems, has created ideal conditions for increased transmission of the dengue virus in tropical urban centres. While dengue infection has traditionally been considered a...

  1. Systems Biology of Immune Response to Live and Inactivated Dengue Virus Vaccines

    Science.gov (United States)

    2017-09-01

    AWARD NUMBER: W81XWH-16-2-0032 TITLE: Systems Biology of Immune Response to Live and Inactivated Dengue Virus Vaccines PRINCIPAL INVESTIGATOR...CONTRACT NUMBER Systems Biology of Immune Response to Live and Inactivated Dengue Virus Vaccines 5b. GRANT NUMBER W81XWH-16-2-0032 5c. PROGRAM ELEMENT...cell) responses will be measured using molecular and cellular approaches and the data analyzed using a systems biology approach. During the first

  2. Multi-level analyses of spatial and temporal determinants for dengue infection

    Directory of Open Access Journals (Sweden)

    Oskam Linda

    2006-01-01

    Full Text Available Abstract Background Dengue is a mosquito-borne viral infection that is now endemic in most tropical countries. In Thailand, dengue fever/dengue hemorrhagic fever is a leading cause of hospitalization and death among children. A longitudinal study among 1750 people in two rural and one urban sites in northern Thailand from 2001 to 2003 studied spatial and temporal determinants for recent dengue infection at three levels (time, individual and household. Methods Determinants for dengue infection were measured by questionnaire, land-cover maps and GIS. IgM antibodies against dengue were detected by ELISA. Three-level multi-level analysis was used to study the risk determinants of recent dengue infection. Results Rates of recent dengue infection varied substantially in time from 4 to 30%, peaking in 2002. Determinants for recent dengue infection differed per site. Spatial clustering was observed, demonstrating variation in local infection patterns. Most of the variation in recent dengue infection was explained at the time-period level. Location of a person and the environment around the house (including irrigated fields and orchards were important determinants for recent dengue infection. Conclusion We showed the focal nature of asymptomatic dengue infections. The great variation of determinants for recent dengue infection in space and time should be taken into account when designing local dengue control programs.

  3. Characterization of recombinant yellow fever-dengue vaccine viruses with human monoclonal antibodies targeting key conformational epitopes.

    Science.gov (United States)

    Lecouturier, Valerie; Berry, Catherine; Saulnier, Aure; Naville, Sophie; Manin, Catherine; Girerd-Chambaz, Yves; Crowe, James E; Jackson, Nicholas; Guy, Bruno

    2018-04-26

    The recombinant yellow fever-17D-dengue virus, live, attenuated, tetravalent dengue vaccine (CYD-TDV) is licensed in several dengue-endemic countries. Although the vaccine provides protection against dengue, the level of protection differs by serotype and warrants further investigation. We characterized the antigenic properties of each vaccine virus serotype using highly neutralizing human monoclonal antibodies (hmAbs) that bind quaternary structure-dependent epitopes. Specifically, we monitored the binding of dengue virus-1 (DENV-1; 1F4), DENV-2 (2D22) or DENV-3 (5J7) serotype-specific or DENV-1-4 cross-reactive (1C19) hmAbs to the four chimeric yellow fever-dengue vaccine viruses (CYD-1-4) included in phase III vaccine formulations using a range of biochemical and functional assays (dot blot, ELISA, surface plasmon resonance and plaque reduction neutralization assays). In addition, we used the "classic" live, attenuated DENV-2 vaccine serotype, immature CYD-2 viruses and DENV-2 virus-like particles as control antigens for anti-serotype-2 reactivity. The CYD vaccine serotypes were recognized by each hmAbs with the expected specificity, moreover, surface plasmon resonance indicated a high functional affinity interaction with the CYD serotypes. In addition, the hmAbs provided similar protection against CYD and wild-type dengue viruses in the in vitro neutralization assay. Overall, these findings demonstrate that the four CYD viruses used in clinical trials display key conformational and functional epitopes targeted by serotype-specific and/or cross-reactive neutralizing human antibodies. More specifically, we showed that CYD-2 displays serotype- specific epitopes present only on the mature virus. This indicates that the CYD-TDV has the ability to elicit antibody specificities which are similar to those induced by the wild type DENV. Future investigations will be needed to address the nature of CYD-TDV-induced responses after vaccine administration, and how these

  4. Zika virus infection: Past and present of another emerging vector-borne disease.

    Science.gov (United States)

    Sakkas, Hercules; Economou, Vangelis; Papadopoulou, Chrissanthy

    2016-01-01

    Zika virus infection is an emerging mosquito-borne disease, first identified in Uganda in 1947. It is caused by the Zika arbovirus, and transmitted by the bites of infected mosquitoes of the genus Aedes. For almost half a century, the Zika virus was reported as the causative agent of sporadic human infections. In 2007, the Zika virus emerged outside Asia and Africa causing an epidemic on the Island of Yap in Micronesia. The manifestation of the newly acquired human infection varies from asymptomatic to self-limiting acute febrile illness with symptoms and clinical features similar to those caused by the Dengue virus ('Dengue-like syndrome'). The real-time PCR and serological methods have been successfully applied for the diagnosis of the disease. The treatment is symptomatic, since there is no specific antiviral treatment or a vaccine. During the recent outbreaks in French Polynesia and Brazil, incidents of Guillain-Barrι syndrome and microcephaly were associated with Zika virus infection, giving rise to fears of further global spread of the virus. Prevention and vector control strategies have to be urgently implemented by national health authorities in order to contain future outbreaks in vulnerable populations. This review summarizes the existing information on Zika virus characteristics, pathogenesis and epidemiology, the available methods for the diagnosis of Zika virus infection and recent approaches for prevention and control.

  5. Dengue serotype cross-reactive, anti-E protein antibodies confound specific immune memory for one year after infection

    Directory of Open Access Journals (Sweden)

    Ying Xiu eToh

    2014-08-01

    Full Text Available Dengue virus has four serotypes and is endemic globally in tropical countries. Neither a specific treatment nor an approved vaccine is available, and correlates of protection are not established. The standard neutralization assay cannot differentiate between serotype-specific and serotype cross-reactive antibodies in patients early after infection, leading to an overestimation of the long-term serotype-specific protection of an antibody response. It is known that the cross-reactive response in patients is temporary but few studies have assessed kinetics and potential changes in serum antibody specificity over time. To better define the specificity of polyclonal antibodies during disease and after recovery, longitudinal samples from patients with primary or secondary DENV-2 infection were collected over a period of one year. We found that serotype cross-reactive antibodies peaked three weeks after infection and subsided within one year. Since secondary patients rapidly produced antibodies specific for the virus envelope (E protein, an E-specific ELISA was superior compared to a virus particle-specific ELISA to identify patients with secondary infections. Dengue infection triggered a massive activation and mobilization of both naïve and memory B cells possibly from lymphoid organs into the blood, providing an explanation for the surge of circulating plasmablasts and the increase in cross-reactive E protein-specific antibodies.

  6. Assessing Disparities of Dengue Virus Transmission Risk across the US-Mexican Border Using a Climate Driven Vector-Epidemiological Model

    Science.gov (United States)

    Morin, Cory; Monaghan, Andrew; Quattrochi, Dale; Crosson, William; Hayden, Mary; Ernst, Kacey

    2015-01-01

    Dengue fever is a mosquito-borne viral disease reemerging throughout much of the tropical Americas. Dengue virus transmission is explicitly influenced by climate and the environment through its primary vector, Aedes aegypti. Temperature regulates Ae. aegypti development, survival, and replication rates as well as the incubation period of the virus within the mosquito. Precipitation provides water for many of the preferred breeding habitats of the mosquito, including buckets, old tires, and other places water can collect. Although transmission regularly occurs along the border region in Mexico, dengue virus transmission in bordering Arizona has not occurred. Using NASA's TRMM (Tropical Rainfall Measuring Mission) satellite for precipitation input and Daymet for temperature and supplemental precipitation input, we modeled dengue transmission along a US-Mexico transect using a dynamic dengue transmission model that includes interacting vector ecology and epidemiological components. Model runs were performed for 5 cities in Sonora, Mexico and southern Arizona. Employing a Monte Carlo approach, we performed ensembles of several thousands of model simulations in order to resolve the model uncertainty arising from using different combinations of parameter values that are not well known. For cities with reported dengue case data, the top model simulations that best reproduced dengue case numbers were retained and their parameter values were extracted for comparison. These parameter values were used to run simulations in areas where dengue virus transmission does not occur or where dengue fever case data was unavailable. Additional model runs were performed to reveal how changes in climate or parameter values could alter transmission risk along the transect. The relative influence of climate variability and model parameters on dengue virus transmission is assessed to help public health workers prepare location specific infection prevention strategies.

  7. Aedes albopictus (Skuse, 1894 infected with the American-Asian genotype of dengue type 2 virus in Medellín suggests its possible role as vector of dengue fever in Colombia

    Directory of Open Access Journals (Sweden)

    Andrés Gómez-Palacio

    2017-03-01

    Conclusion: We report the presence Ae. albopictus naturally infected with the Asian-American genotype of DENV-2 in Colombia. The presence of Ae. albopictus specimens carrying the most common genotype infecting humans in a highly populated city such as Medellín indicates its potential role as dengue vector in Colombia and highlights the relevance of including it in current vector surveillance strategies.

  8. Identification of Zika Virus and Dengue Virus Dependency Factors using Functional Genomics

    Directory of Open Access Journals (Sweden)

    George Savidis

    2016-06-01

    Full Text Available The flaviviruses dengue virus (DENV and Zika virus (ZIKV are severe health threats with rapidly expanding ranges. To identify the host cell dependencies of DENV and ZIKV, we completed orthologous functional genomic screens using RNAi and CRISPR/Cas9 approaches. The screens recovered the ZIKV entry factor AXL as well as multiple host factors involved in endocytosis (RAB5C and RABGEF, heparin sulfation (NDST1 and EXT1, and transmembrane protein processing and maturation, including the endoplasmic reticulum membrane complex (EMC. We find that both flaviviruses require the EMC for their early stages of infection. Together, these studies generate a high-confidence, systems-wide view of human-flavivirus interactions and provide insights into the role of the EMC in flavivirus replication.

  9. Aberrant monocyte responses predict and characterize dengue virus infection in individuals with severe disease.

    Science.gov (United States)

    Yong, Yean K; Tan, Hong Y; Jen, Soe Hui; Shankar, Esaki M; Natkunam, Santha K; Sathar, Jameela; Manikam, Rishya; Sekaran, Shamala D

    2017-05-31

    Currently, several assays can diagnose acute dengue infection. However, none of these assays can predict the severity of the disease. Biomarkers that predicts the likelihood that a dengue patient will develop a severe form of the disease could permit more efficient patient triage and allows better supportive care for the individual in need, especially during dengue outbreaks. We measured 20 plasma markers i.e. IFN-γ, IL-10, granzyme-B, CX3CL1, IP-10, RANTES, CXCL8, CXCL6, VCAM, ICAM, VEGF, HGF, sCD25, IL-18, LBP, sCD14, sCD163, MIF, MCP-1 and MIP-1β in 141 dengue patients in over 230 specimens and correlate the levels of these plasma markers with the development of dengue without warning signs (DWS-), dengue with warning signs (DWS+) and severe dengue (SD). Our results show that the elevation of plasma levels of IL-18 at both febrile and defervescence phase was significantly associated with DWS+ and SD; whilst increase of sCD14 and LBP at febrile phase were associated with severity of dengue disease. By using receiver operating characteristic (ROC) analysis, the IL-18, LBP and sCD14 were significantly predicted the development of more severe form of dengue disease (DWS+/SD) (AUC = 0.768, P dengue disease. Given that the elevation IL-18, LBP and sCD14 among patients with severe form of dengue disease, our findings suggest a pathogenic role for an aberrant inflammasome and monocyte activation in the development of severe form of dengue disease.

  10. Identification of Proteins Bound to Dengue Viral RNA In Vivo Reveals New Host Proteins Important for Virus Replication

    Directory of Open Access Journals (Sweden)

    Stacia L. Phillips

    2016-01-01

    Full Text Available Dengue virus is the most prevalent cause of arthropod-borne infection worldwide. Due to the limited coding capacity of the viral genome and the complexity of the viral life cycle, host cell proteins play essential roles throughout the course of viral infection. Host RNA-binding proteins mediate various aspects of virus replication through their physical interactions with viral RNA. Here we describe a technique designed to identify such interactions in the context of infected cells using UV cross-linking followed by antisense-mediated affinity purification and mass spectrometry. Using this approach, we identified interactions, several of them novel, between host proteins and dengue viral RNA in infected Huh7 cells. Most of these interactions were subsequently validated using RNA immunoprecipitation. Using small interfering RNA (siRNA-mediated gene silencing, we showed that more than half of these host proteins are likely involved in regulating virus replication, demonstrating the utility of this method in identifying biologically relevant interactions that may not be identified using traditional in vitro approaches.

  11. Dengue situation in Brazil by year 2000

    Directory of Open Access Journals (Sweden)

    Hermann G Schatzmayr

    2000-01-01

    Full Text Available Dengue virus types 1 and 2 have been isolated in Brazil by the Department of Virology, Instituto Oswaldo Cruz, in 1986 and 1990 respectively, after many decades of absence. A successful continental Aedes aegypti control program in the Americas, has been able to eradicate the vector in most countries in the 60's, but the program could not be sustained along the years. Dengue viruses were reintroduced in the American region and the infection became endemic in Brazil, like in most Central and SouthAmerican countries and in the Caribbean region, due to the weaning of the vector control programs in these countries. High demographic densities and poor housing conditions in large urban communities, made the ideal conditions for vector spreading. All four dengue types are circulating in the continent and there is a high risk of the introduction in the country of the other two dengue types in Brazil, with the development of large epidemics. After the Cuban episode in 1981, when by the first time a large epidemic of dengue hemorrhagic fever and dengue shock syndrome have been described in the Americas, both clinical presentations are observed, specially in the countries like Brazil, with circulation of more than one dengue virus type. A tetravalent potent vaccine seems to be the only possible way to control the disease in the future, besides rapid clinical and laboratory diagnosis, in order to offer supportive treatment to the more severe clinical infections.

  12. TIM-family proteins promote infection of multiple enveloped viruses through virion-associated phosphatidylserine.

    Directory of Open Access Journals (Sweden)

    Stephanie Jemielity

    2013-03-01

    Full Text Available Human T-cell Immunoglobulin and Mucin-domain containing proteins (TIM1, 3, and 4 specifically bind phosphatidylserine (PS. TIM1 has been proposed to serve as a cellular receptor for hepatitis A virus and Ebola virus and as an entry factor for dengue virus. Here we show that TIM1 promotes infection of retroviruses and virus-like particles (VLPs pseudotyped with a range of viral entry proteins, in particular those from the filovirus, flavivirus, New World arenavirus and alphavirus families. TIM1 also robustly enhanced the infection of replication-competent viruses from the same families, including dengue, Tacaribe, Sindbis and Ross River viruses. All interactions between TIM1 and pseudoviruses or VLPs were PS-mediated, as demonstrated with liposome blocking and TIM1 mutagenesis experiments. In addition, other PS-binding proteins, such as Axl and TIM4, promoted infection similarly to TIM1. Finally, the blocking of PS receptors on macrophages inhibited the entry of Ebola VLPs, suggesting that PS receptors can contribute to infection in physiologically relevant cells. Notably, infection mediated by the entry proteins of Lassa fever virus, influenza A virus and SARS coronavirus was largely unaffected by TIM1 expression. Taken together our data show that TIM1 and related PS-binding proteins promote infection of diverse families of enveloped viruses, and may therefore be useful targets for broad-spectrum antiviral therapies.

  13. Dengue fever outbreak: a clinical management experience.

    Science.gov (United States)

    Ahmed, Shahid; Ali, Nadir; Ashraf, Shahzad; Ilyas, Mohammad; Tariq, Waheed-Uz-Zaman; Chotani, Rashid A

    2008-01-01

    To determine the frequency of dengue as a cause of fever and compare the clinical and haematological characteristics of Dengue-probable and Dengue-proven cases. An observational study. The Combined Military Hospital, Malir Cantt., Karachi, from August 2005 to December 2006. All patients with age above 14 years, who were either hospitalized or treated in medical outdoor clinic due to acute febrile illness, were evaluated for clinical features of Dengue Fever (DF), Dengue haemorrhagic fever (DHF) and Dengue Shock Syndrome (DSS). Patients showing typical clinical features and haematological findings suggestive of Dengue fever (As per WHO criteria) were evaluated in detail for comparison of probable and confirmed cases of Dengue fever. All other cases of acute febrile illness, not showing clinical features or haematological abnormalities of Dengue fever, were excluded. The clinical and laboratory features were recorded on SPSS 11.0 programme and graded where required, for descriptive and statistical analysis. Out of 5200 patients with febrile illness, 107(2%) presented with typical features of DF, 40/107(37%) were Dengue-proven while 67/107(63%) were Dengue-probable. Out of Dengue-proven cases, 38 were of DF and 2 were of DHF. Day 1 temperature ranged from 99-1050C (mean 1010C). Chills and rigors were noticed in 86 (80%), myalgia in 67%, headache in 54%, pharyngitis in 35%, rash in 28%, and bleeding manifestations in 2% cases. Hepatomegaly in 1(0.5%), lymphadenopathy in 1(0.5%) and splenomegaly in 12 (11.2%) cases. Leucopoenia (count40 U/L in 57% cases. Frequency of clinically suspected dengue virus infection was 107 (2%), while confirmed dengue fever cases were 40 (0.8%) out of 5200 fever cases. Fever with chills and rigors, body aches, headache, myalgia, rash, haemorrhagic manifestations, platelet count, total leukocyte count, and ALT, are parameters to screen the cases of suspected dengue virus infection; the diagnosis cannot be confirmed unless supported by

  14. Complete genome sequencing and evolutionary analysis of Indian isolates of Dengue virus type 2

    Energy Technology Data Exchange (ETDEWEB)

    Dash, Paban Kumar, E-mail: pabandash@rediffmail.com; Sharma, Shashi; Soni, Manisha; Agarwal, Ankita; Parida, Manmohan; Rao, P.V.Lakshmana

    2013-07-05

    Highlights: •Complete genome of Indian DENV-2 was deciphered for the first time in this study. •The recent Indian DENV-2 revealed presence of many unique amino acid residues. •Genotype shift (American to Cosmopolitan) characterizes evolution of DENV-2 in India. •Circulation of a unique clade of DENV-2 in South Asia was identified. -- Abstract: Dengue is the most important arboviral infection of global public health significance. It is now endemic in most parts of the South East Asia including India. Though Dengue virus type 2 (DENV-2) is predominantly associated with major outbreaks in India, complete genome information of Indian DENV-2 is not available. In this study, the full-length genome of five DENV-2 isolates (four from 2001 to 2011 and one from 1960), from different parts of India was determined. The complete genome of the Indian DENV-2 was found to be 10,670 bases long with an open reading frame coding for 3391 amino acids. The recent Indian DENV-2 (2001–2011) revealed a nucleotide sequence identity of around 90% and 97% with an older Indian DENV-2 (1960) and closely related Sri Lankan and Chinese DENV-2 respectively. Presence of unique amino acid residues and non-conservative substitutions in critical amino acid residues of major structural and non-structural proteins was observed in recent Indian DENV-2. Selection pressure analysis revealed positive selection in few amino acid sites of the genes encoding for structural and non-structural proteins. The molecular phylogenetic analysis based on comparison of both complete coding region and envelope protein gene with globally diverse DENV-2 viruses classified the recent Indian isolates into a unique South Asian clade within Cosmopolitan genotype. A shift of genotype from American to Cosmopolitan in 1970s characterized the evolution of DENV-2 in India. Present study is the first report on complete genome characterization of emerging DENV-2 isolates from India and highlights the circulation of a

  15. Complete genome sequencing and evolutionary analysis of Indian isolates of Dengue virus type 2

    International Nuclear Information System (INIS)

    Dash, Paban Kumar; Sharma, Shashi; Soni, Manisha; Agarwal, Ankita; Parida, Manmohan; Rao, P.V.Lakshmana

    2013-01-01

    Highlights: •Complete genome of Indian DENV-2 was deciphered for the first time in this study. •The recent Indian DENV-2 revealed presence of many unique amino acid residues. •Genotype shift (American to Cosmopolitan) characterizes evolution of DENV-2 in India. •Circulation of a unique clade of DENV-2 in South Asia was identified. -- Abstract: Dengue is the most important arboviral infection of global public health significance. It is now endemic in most parts of the South East Asia including India. Though Dengue virus type 2 (DENV-2) is predominantly associated with major outbreaks in India, complete genome information of Indian DENV-2 is not available. In this study, the full-length genome of five DENV-2 isolates (four from 2001 to 2011 and one from 1960), from different parts of India was determined. The complete genome of the Indian DENV-2 was found to be 10,670 bases long with an open reading frame coding for 3391 amino acids. The recent Indian DENV-2 (2001–2011) revealed a nucleotide sequence identity of around 90% and 97% with an older Indian DENV-2 (1960) and closely related Sri Lankan and Chinese DENV-2 respectively. Presence of unique amino acid residues and non-conservative substitutions in critical amino acid residues of major structural and non-structural proteins was observed in recent Indian DENV-2. Selection pressure analysis revealed positive selection in few amino acid sites of the genes encoding for structural and non-structural proteins. The molecular phylogenetic analysis based on comparison of both complete coding region and envelope protein gene with globally diverse DENV-2 viruses classified the recent Indian isolates into a unique South Asian clade within Cosmopolitan genotype. A shift of genotype from American to Cosmopolitan in 1970s characterized the evolution of DENV-2 in India. Present study is the first report on complete genome characterization of emerging DENV-2 isolates from India and highlights the circulation of a

  16. Clinical Survey of Dengue Virus Circulation in the Republic of Djibouti between 2011 and 2014 Identifies Serotype 3 Epidemic and Recommends Clinical Diagnosis Guidelines for Resource Limited Settings.

    Directory of Open Access Journals (Sweden)

    Erwan Le Gonidec

    2016-06-01

    Full Text Available Dengue virus is endemic globally, throughout tropical and sub-tropical regions. While the number of epidemics due to the four DENV serotypes is pronounced in East Africa, the total number of cases reported in Africa (16 million infections remained at low levels compared to Asia (70 million infections. The French Armed forces Health Service provides epidemiological surveillance support in the Republic of Djibouti through the Bouffard Military hospital. Between 2011 and 2014, clinical and biological data of suspected dengue syndromes were collected at the Bouffard Military hospital and analyzed to improve Dengue clinical diagnosis and evaluate its circulation in East Africa. Examining samples from patients that presented one or more Dengue-like symptoms the study evidenced 128 Dengue cases among 354 suspected cases (36.2% of the non-malarial Dengue-like syndromes. It also demonstrated the circulation of serotypes 1 and 2 and reports the first epidemic of serotype 3 infections in Djibouti which was found in all of the hospitalized patients in this study. Based on these results we have determined that screening for Malaria and the presence of the arthralgia, gastro-intestinal symptoms and lymphopenia < 1,000cell/ mm3 allows for negative predictive value and specificity of diagnosis in isolated areas superior to 80% up to day 6. This study also provides evidence for an epidemic of Dengue virus serotype 3 previously not detected in Djibouti.

  17. Validation of dengue infection severity score

    Directory of Open Access Journals (Sweden)

    Pongpan S

    2014-03-01

    Full Text Available Surangrat Pongpan,1,2 Jayanton Patumanond,3 Apichart Wisitwong,4 Chamaiporn Tawichasri,5 Sirianong Namwongprom1,6 1Clinical Epidemiology Program, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; 2Department of Occupational Medicine, Phrae Hospital, Phrae, Thailand; 3Clinical Epidemiology Program, Faculty of Medicine, Thammasat University, Bangkok, Thailand; 4Department of Social Medicine, Sawanpracharak Hospital, Nakorn Sawan, Thailand; 5Clinical Epidemiology Society at Chiang Mai, Chiang Mai, Thailand; 6Department of Radiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand Objective: To validate a simple scoring system to classify dengue viral infection severity to patients in different settings. Methods: The developed scoring system derived from 777 patients from three tertiary-care hospitals was applied to 400 patients in the validation data obtained from another three tertiary-care hospitals. Percentage of correct classification, underestimation, and overestimation was compared. The score discriminative performance in the two datasets was compared by analysis of areas under the receiver operating characteristic curves. Results: Patients in the validation data were different from those in the development data in some aspects. In the validation data, classifying patients into three severity levels (dengue fever, dengue hemorrhagic fever, and dengue shock syndrome yielded 50.8% correct prediction (versus 60.7% in the development data, with clinically acceptable underestimation (18.6% versus 25.7% and overestimation (30.8% versus 13.5%. Despite the difference in predictive performances between the validation and the development data, the overall prediction of the scoring system is considered high. Conclusion: The developed severity score may be applied to classify patients with dengue viral infection into three severity levels with clinically acceptable under- or overestimation. Its impact when used in routine

  18. Live Cell Analysis and Mathematical Modeling Identify Determinants of Attenuation of Dengue Virus 2'-O-Methylation Mutant.

    Directory of Open Access Journals (Sweden)

    Bianca Schmid

    2015-12-01

    Full Text Available Dengue virus (DENV is the most common mosquito-transmitted virus infecting ~390 million people worldwide. In spite of this high medical relevance, neither a vaccine nor antiviral therapy is currently available. DENV elicits a strong interferon (IFN response in infected cells, but at the same time actively counteracts IFN production and signaling. Although the kinetics of activation of this innate antiviral defense and the timing of viral counteraction critically determine the magnitude of infection and thus disease, quantitative and kinetic analyses are lacking and it remains poorly understood how DENV spreads in IFN-competent cell systems. To dissect the dynamics of replication versus antiviral defense at the single cell level, we generated a fully viable reporter DENV and host cells with authentic reporters for IFN-stimulated antiviral genes. We find that IFN controls DENV infection in a kinetically determined manner that at the single cell level is highly heterogeneous and stochastic. Even at high-dose, IFN does not fully protect all cells in the culture and, therefore, viral spread occurs even in the face of antiviral protection of naïve cells by IFN. By contrast, a vaccine candidate DENV mutant, which lacks 2'-O-methylation of viral RNA is profoundly attenuated in IFN-competent cells. Through mathematical modeling of time-resolved data and validation experiments we show that the primary determinant for attenuation is the accelerated kinetics of IFN production. This rapid induction triggered by mutant DENV precedes establishment of IFN-resistance in infected cells, thus causing a massive reduction of virus production rate. In contrast, accelerated protection of naïve cells by paracrine IFN action has negligible impact. In conclusion, these results show that attenuation of the 2'-O-methylation DENV mutant is primarily determined by kinetics of autocrine IFN action on infected cells.

  19. Emergence of the Asian 1 Genotype of Dengue Virus Serotype 2 in Viet Nam: In Vivo Fitness Advantage and Lineage Replacement in South-East Asia

    Science.gov (United States)

    Ty Hang, Vu Thi; Holmes, Edward C.; Veasna, Duong; Quy, Nguyen Thien; Tinh Hien, Tran; Quail, Michael; Churcher, Carol; Parkhill, Julian; Cardosa, Jane; Farrar, Jeremy; Wills, Bridget; Lennon, Niall J.; Birren, Bruce W.; Buchy, Philippe

    2010-01-01

    A better description of the extent and structure of genetic diversity in dengue virus (DENV) in endemic settings is central to its eventual control. To this end we determined the complete coding region sequence of 187 DENV-2 genomes and 68 E genes from viruses sampled from Vietnamese patients between 1995 and 2009. Strikingly, an episode of genotype replacement was observed, with Asian 1 lineage viruses entirely displacing the previously dominant Asian/American lineage viruses. This genotype replacement event also seems to have occurred within DENV-2 in Thailand and Cambodia, suggestive of a major difference in viral fitness. To determine the cause of this major evolutionary event we compared both the infectivity of the Asian 1 and Asian/American genotypes in mosquitoes and their viraemia levels in humans. Although there was little difference in infectivity in mosquitoes, we observed significantly higher plasma viraemia levels in paediatric patients infected with Asian 1 lineage viruses relative to Asian/American viruses, a phenotype that is predicted to result in a higher probability of human-to-mosquito transmission. These results provide a mechanistic basis to a marked change in the genetic structure of DENV-2 and more broadly underscore that an understanding of DENV evolutionary dynamics can inform the development of vaccines and anti-viral drugs. PMID:20651932

  20. Consequences of the expanding global distribution of Aedes albopictus for dengue virus transmission.

    Directory of Open Access Journals (Sweden)

    Louis Lambrechts

    2010-05-01

    Full Text Available The dramatic global expansion of Aedes albopictus in the last three decades has increased public health concern because it is a potential vector of numerous arthropod-borne viruses (arboviruses, including the most prevalent arboviral pathogen of humans, dengue virus (DENV. Ae. aegypti is considered the primary DENV vector and has repeatedly been incriminated as a driving force in dengue's worldwide emergence. What remains unresolved is the extent to which Ae. albopictus contributes to DENV transmission and whether an improved understanding of its vector status would enhance dengue surveillance and prevention. To assess the relative public health importance of Ae. albopictus for dengue, we carried out two complementary analyses. We reviewed its role in past dengue epidemics and compared its DENV vector competence with that of Ae. aegypti. Observations from "natural experiments" indicate that, despite seemingly favorable conditions, places where Ae. albopictus predominates over Ae. aegypti have never experienced a typical explosive dengue epidemic with severe cases of the disease. Results from a meta-analysis of experimental laboratory studies reveal that although Ae. albopictus is overall more susceptible to DENV midgut infection, rates of virus dissemination from the midgut to other tissues are significantly lower in Ae. albopictus than in Ae. aegypti. For both indices of vector competence, a few generations of mosquito colonization appear to result in a relative increase of Ae. albopictus susceptibility, which may have been a confounding factor in the literature. Our results lead to the conclusion that Ae. albopictus plays a relatively minor role compared to Ae. aegypti in DENV transmission, at least in part due to differences in host preferences and reduced vector competence. Recent examples of rapid arboviral adaptation to alternative mosquito vectors, however, call for cautious extrapolation of our conclusion. Vector status is a dynamic

  1. Dengue viral infection monitoring from diagnostic to recovery using Raman spectroscopy

    International Nuclear Information System (INIS)

    Firdous, Shamaraz; Anwar, Shahzad

    2015-01-01

    Raman spectroscopy has been found useful for monitoring the dengue patient diagnostic and recovery after infection. In the present work, spectral changes that occurred in the blood sera of a dengue infected patient and their possible utilization for monitoring of infection and recovery were investigated using 532 nm wavelength of light. Raman spectrum peaks for normal and after recovery of dengue infection are observed at 1527, 1170, 1021 cm −1 attributed to guanine, adenine, TRP (protein) carbohydrates peak for solids, and skeletal C–C stretch of lipids acyl chains. Where in the dengue infected patient Raman peaks are at 1467, 1316, 1083, and 860 attributed to CH2/CH3 deformation of lipids and collagen, guanine (B, Z-marker), lipids and protein bands. Due to antibodies and antigen reactions the portions and lipids concentration totally changes in dengue viral infection compared to normal blood. These chemical changes in blood sera of dengue viral infection in human blood may be used as possible markers to indicate successful remission and suggest that Raman spectroscopy may provide a rapid optical method for continuous monitoring or evaluation of a protein bands and an antibodies population. Accumulate acquisition mode was used to reduce noise and thermal fluctuation and improve signal to noise ratio. This in vitro dengue infection monitoring methodology will lead in vivo noninvasive on-line monitoring and screening of viral infected patients and their recovery. (letter)

  2. A novel mosquito ubiquitin targets viral envelope protein for degradation and reduces virion production during dengue virus infection.

    Science.gov (United States)

    Troupin, Andrea; Londono-Renteria, Berlin; Conway, Michael J; Cloherty, Erin; Jameson, Samuel; Higgs, Stephen; Vanlandingham, Dana L; Fikrig, Erol; Colpitts, Tonya M

    2016-09-01

    Dengue virus (DENV) is a mosquito-borne flavivirus that causes significant human disease and mortality in the tropics and subtropics. By examining the effects of virus infection on gene expression, and interactions between virus and vector, new targets for prevention of infection and novel treatments may be identified in mosquitoes. We previously performed a microarray analysis of the Aedes aegypti transcriptome during infection with DENV and found that mosquito ubiquitin protein Ub3881 (AAEL003881) was specifically and highly down-regulated. Ubiquitin proteins have multiple functions in insects, including marking proteins for proteasomal degradation, regulating apoptosis and mediating innate immune signaling. We used qRT-PCR to quantify gene expression and infection, and RNAi to reduce Ub3881 expression. Mosquitoes were infected with DENV through blood feeding. We transfected DENV protein expression constructs to examine the effect of Ub3881 on protein degradation. We used site-directed mutagenesis and transfection to determine what amino acids are involved in Ub3881-mediated protein degradation. Immunofluorescence, Co-immunoprecipitation and Western blotting were used to examine protein interactions and co-localization. The overexpression of Ub3881, but not related ubiquitin proteins, decreased DENV infection in mosquito cells and live Ae. aegypti. The Ub3881 protein was demonstrated to be involved in DENV envelope protein degradation and reduce the number of infectious virions released. We conclude that Ub3881 has several antiviral functions in the mosquito, including specific viral protein degradation. Our data highlights Ub3881 as a target for future DENV prevention strategies in the mosquito transmission vector. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  3. Development and evaluation of one step single tube multiplex RT-PCR for rapid detection and typing of dengue viruses

    Directory of Open Access Journals (Sweden)

    Parida Manmohan

    2008-01-01

    Full Text Available Abstract Background Dengue is emerging as a major public health concern in many parts of the world. The development of a one-step, single tube, rapid, and multiplex reverse transcription polymerase chain reaction (M-RT-PCR for simultaneous detection and typing of dengue virus using serotype specific primers during acute phase of illness is reported. Results An optimal assay condition with zero background was established having no cross-reaction with closely related members of flavivirus (Japanese encephalitis, West Nile, Yellow fever and alphavirus (Chikungunya. The feasibility of M-RT-PCR assay for clinical diagnosis was validated with 620 acute phase dengue patient sera samples of recent epidemics in India. The comparative evaluation vis a vis conventional virus isolation revealed higher sensitivity. None of the forty healthy serum samples screened in the present study revealed any amplification, thereby establishing specificity of the reported assay for dengue virus only. Conclusion These findings clearly suggested that M-RT-PCR assay reported in the present study is the rapid and cost-effective method for simultaneous detection as well as typing of the dengue virus in acute phase patient serum samples. Thus, the M-RT-PCR assay developed in this study will serve as a very useful tool for rapid diagnosis and typing of dengue infections in endemic areas.

  4. Development and characterization of a reverse genetic system for studying dengue virus serotype 3 strain variation and neutralization.

    Directory of Open Access Journals (Sweden)

    William B Messer

    Full Text Available Dengue viruses (DENV are enveloped single-stranded positive-sense RNA viruses transmitted by Aedes spp. mosquitoes. There are four genetically distinct serotypes designated DENV-1 through DENV-4, each further subdivided into distinct genotypes. The dengue scientific community has long contended that infection with one serotype confers lifelong protection against subsequent infection with the same serotype, irrespective of virus genotype. However this hypothesis is under increased scrutiny and the role of DENV genotypic variation in protection from repeated infection is less certain. As dengue vaccine trials move increasingly into field-testing, there is an urgent need to develop tools to better define the role of genotypic variation in DENV infection and immunity. To better understand genotypic variation in DENV-3 neutralization and protection, we designed and constructed a panel of isogenic, recombinant DENV-3 infectious clones, each expressing an envelope glycoprotein from a different DENV-3 genotype; Philippines 1982 (genotype I, Thailand 1995 (genotype II, Sri Lanka 1989 and Cuba 2002 (genotype III and Puerto Rico 1977 (genotype IV. We used the panel to explore how natural envelope variation influences DENV-polyclonal serum interactions. When the recombinant viruses were tested in neutralization assays using immune sera from primary DENV infections, neutralization titers varied by as much as ∼19-fold, depending on the expressed envelope glycoprotein. The observed variability in neutralization titers suggests that relatively few residue changes in the E glycoprotein may have significant effects on DENV specific humoral immunity and influence antibody mediated protection or disease enhancement in the setting of both natural infection and vaccination. These genotypic differences are also likely to be important in temporal and spatial microevolution of DENV-3 in the background of heterotypic neutralization. The recombinant and synthetic tools

  5. Hirsutine, an Indole Alkaloid of Uncaria rhynchophylla, Inhibits Late Step in Dengue Virus Lifecycle

    Directory of Open Access Journals (Sweden)

    Takayuki Hishiki

    2017-08-01

    Full Text Available Dengue virus (DENV is transmitted to humans by Aedes mosquitoes and is a public health issue worldwide. No antiviral drugs specific for treating dengue infection are currently available. To identify novel DENV inhibitors, we analyzed a library of 95 compounds and 120 extracts derived from crude drugs (herbal medicines. In the primary screening, A549 cells infected with DENV-1 were cultured in the presence of each compound and extract at a final concentration of 10 μM (compound and 100 μg/mL (extract, and reduction of viral focus formation was assessed. Next, we eliminated compounds and extracts which were cytotoxic using the 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide assay. Hirsutine, an indole alkaloid of Uncaria rhynchophylla, was identified as a potent anti-DENV compound exhibiting high efficacy and low cytotoxicity. Hirsutine showed antiviral activity against all DENV serotypes. Time-of-drug-addition and time-of-drug-elimination assays indicated that hirsutine inhibits the viral particle assembly, budding, or release step but not the viral translation and replication steps in the DENV lifecycle. A subgenomic replicon system was used to confirm that hirsutine does not restrict viral genome RNA replication. Hirsutine is a novel DENV inhibitor and potential candidate for treating dengue fever.

  6. Hirsutine, an Indole Alkaloid of Uncaria rhynchophylla, Inhibits Late Step in Dengue Virus Lifecycle.

    Science.gov (United States)

    Hishiki, Takayuki; Kato, Fumihiro; Tajima, Shigeru; Toume, Kazufumi; Umezaki, Masahito; Takasaki, Tomohiko; Miura, Tomoyuki

    2017-01-01

    Dengue virus (DENV) is transmitted to humans by Aedes mosquitoes and is a public health issue worldwide. No antiviral drugs specific for treating dengue infection are currently available. To identify novel DENV inhibitors, we analyzed a library of 95 compounds and 120 extracts derived from crude drugs (herbal medicines). In the primary screening, A549 cells infected with DENV-1 were cultured in the presence of each compound and extract at a final concentration of 10 μM (compound) and 100 μg/mL (extract), and reduction of viral focus formation was assessed. Next, we eliminated compounds and extracts which were cytotoxic using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Hirsutine, an indole alkaloid of Uncaria rhynchophylla , was identified as a potent anti-DENV compound exhibiting high efficacy and low cytotoxicity. Hirsutine showed antiviral activity against all DENV serotypes. Time-of-drug-addition and time-of-drug-elimination assays indicated that hirsutine inhibits the viral particle assembly, budding, or release step but not the viral translation and replication steps in the DENV lifecycle. A subgenomic replicon system was used to confirm that hirsutine does not restrict viral genome RNA replication. Hirsutine is a novel DENV inhibitor and potential candidate for treating dengue fever.

  7. Dengue in Bali: Clinical characteristics and genetic diversity of circulating dengue viruses.

    Science.gov (United States)

    Megawati, Dewi; Masyeni, Sri; Yohan, Benediktus; Lestarini, Asri; Hayati, Rahma F; Meutiawati, Febrina; Suryana, Ketut; Widarsa, Tangking; Budiyasa, Dewa G; Budiyasa, Ngurah; Myint, Khin S A; Sasmono, R Tedjo

    2017-05-01

    A high number of dengue cases are reported annually in Bali. Despite the endemicity, limited data on dengue is available for Bali localities. Molecular surveillance study was conducted to explore the clinical and virological characteristics of dengue patients in urban Denpasar and rural Gianyar areas in Bali during the peak season in 2015. A total of 205 adult dengue-suspected patients were recruited in a prospective cross-sectional study. Demographic and clinical information were obtained, and dengue screening was performed using NS1 and IgM/IgG ELISAs. Viral RNA was subsequently extracted from patients' sera for serotyping using conventional RT-PCR and Simplexa Dengue real-time RT-PCR, followed by genotyping with sequencing method. We confirmed 161 patients as having dengue by NS1 and RT-PCR. Among 154 samples successfully serotyped, the DENV-3 was predominant, followed by DENV-1, DENV-2, and DENV-4. Serotype predominance was different between Denpasar and Gianyar. Genotyping results classify DENV-1 isolates into Genotype I and DENV-2 as Cosmopolitan Genotype. The classification grouped isolates into Genotype I and II for DENV-3 and DENV-4, respectively. Clinical parameters showed no relationship between infecting serotypes and severity. We observed the genetic diversity of circulating DENV isolates and their relatedness with historical data and importation to other countries. Our data highlights the role of this tourist destination as a potential source of dengue transmission in the region.

  8. Dengue in Rio Grande do Sul, Brazil: 2014 to 2016.

    Science.gov (United States)

    Gregianini, Tatiana Schaffer; Tumioto-Giannini, Gabriela Luchiari; Favreto, Cátia; Plentz, Luciana Ciarelli; Ikuta, Nilo; da Veiga, Ana B Gorini

    2018-01-01

    The first autochthonous dengue case in Rio Grande do Sul (RS), Southern Brazil, occurred in 2007. In 2008 and 2009, only imported cases were reported in RS, but from 2010 to 2013, reports of autochthonous infections increased significantly. This study analyzes and discusses laboratory, demographic, and clinical data regarding dengue cases in RS, from 2014 to 2016. This study analyzed 13,420 serum samples from notified patients with suspicion of dengue fever in RS from 2014 to 2016. Seasonality of positive cases, viral serotypes, and clinical and epidemiological aspects were analyzed. There was no difference in gender (P = .4); dengue fever occurred mainly in adults, with similar distribution among age groups. The number of dengue virus (DENV) cases increased from 89 cases in 2014 to 2518 in 2016. Dengue virus 1 was the most prevalent circulating serotype during this period (97.5% of cases). Dengue virus infections show peaks in March and April (late summer and early autumn), after periods of high temperatures and rainfall. In 2014, dengue cases were concentrated in the northwestern and eastern regions of RS, and in 2015 and 2016, the northern region also confirmed a high number of cases. With increase in DENV circulation in RS, a rise in the number of autochthonous infections was also observed, mainly in highly urbanized areas. This study revealed that circulation of DENV in RS increased significantly in 2015 and 2016, with a rise in the number of autochthonous infections and cocirculation with Chikungunya and Zika viruses, recently introduced into RS. Copyright © 2017 John Wiley & Sons, Ltd.

  9. DENGUE VACCINE, CHALLENGES, DEVELOPMENT AND STRATEGIES

    Directory of Open Access Journals (Sweden)

    Dewi Marbawati

    2014-08-01

    Full Text Available ABSTRAKPenyakit demam Dengue endemik di lebih dari 100 negara di dunia. Obat anti virus Dengue efektif belum ditemukan danpengendalian vektor dinilai kurang efektif, sehingga diperlukan upaya pencegahan dengan vaksinasi. Vaksin Dengue yangideal adalah murah, mencakup 4 serotipe, efektif dalam memberikan kekebalan, cukup diberikan sekali seumur hidup, aman,memberi kekebalan jangka panjang, stabil dalam penyimpanan dan stabil secara genetis (tidak bermutasi. Beberapakandidat vaksin yang telah dan sedang dikembangkan oleh para peneliti di seluruh dunia adalah tetravalent live attenuatedvaccine, vaksin Chimera (ChimeriVax, vaksin subunit dan vaksin DNA. Vaksin Dengue dipandang sebagai pendekatan yangefektif dan berkesinambungan dalam mengendalikan penyakit Dengue. Tahun 2003 telah terbentuk Pediatric DengueVaccine Initiative (PDVI, yaitu sebuah konsorsium internasional yang bergerak dalam advokasi untuk meyakinkanmasyarakat internasional akan penting dan mendesaknya vaksin Dengue. Konsorsium vaksin Dengue Indonesia saat iniberupaya mengembangkan vaksin Dengue dengan menggunakan strain virus lokal.Kata kunci: Dengue, virus, vaksinABSTRACTDengue fever is endemic in more than 100 countries in the world. The effective dengue antiviral drug has not been found yet,and vector control is considered less effective. Prevention program by vaccination is needed. An ideal dengue vaccine shouldbe inexpensive, covering four serotypes (tetravalent, effective in providing immunity, given once a lifetime, safe, stable instorage and genetically. Several vaccine candidates have been and are being developed included attenuated tetravalentvaccine, ChimeriVax, sub- unit vaccines and DNA vaccines. Dengue vaccine is seen as an effective and sustainable approachto controll Dengue infection. In 2003, Pediatric Dengue Vaccine Initiative (PDVI has been formed as an internationalconsortium involved in advocacy to convince the international community about the essence and urgency

  10. Treatment of dengue fever

    Directory of Open Access Journals (Sweden)

    Rajapakse S

    2012-07-01

    Full Text Available Senaka Rajapakse,1,2 Chaturaka Rodrigo,1 Anoja Rajapakse31Department of Clinical Medicine, Faculty of Medicine, University of Colombo, Sri Lanka; 2Lincoln County Hospital, United Lincolnshire NHS Trust, Lincoln, UK; 3Kings Mill Hospital, Sherwood Forest NHS Foundation Trust, Mansfield, UKAbstract: The endemic area for dengue fever extends over 60 countries, and approximately 2.5 billion people are at risk of infection. The incidence of dengue has multiplied many times over the last five decades at an alarming rate. In the endemic areas, waves of infection occur in epidemics, with thousands of individuals affected, creating a huge burden on the limited resources of a country's health care system. While the illness passes off as a simple febrile episode in many, a few have a severe illness marked by hypovolemic shock and bleeding. Iatrogenic fluid overload in the management may further complicate the picture. In this severe form dengue can be fatal. Tackling the burden of dengue is impeded by several issues, including a lack of understanding about the exact pathophysiology of the infection, inability to successfully control the vector population, lack of specific therapy against the virus, and the technical difficulties in developing a vaccine. This review provides an overview on the epidemiology, natural history, management strategies, and future directions for research on dengue, including the potential for development of a vaccine.Keywords: dengue, treatment, fluid resuscitation

  11. Dynamic remodeling of lipids coincides with dengue virus replication in the midgut of Aedes aegypti mosquitoes.

    Directory of Open Access Journals (Sweden)

    Nunya Chotiwan

    2018-02-01

    Full Text Available We describe the first comprehensive analysis of the midgut metabolome of Aedes aegypti, the primary mosquito vector for arboviruses such as dengue, Zika, chikungunya and yellow fever viruses. Transmission of these viruses depends on their ability to infect, replicate and disseminate from several tissues in the mosquito vector. The metabolic environments within these tissues play crucial roles in these processes. Since these viruses are enveloped, viral replication, assembly and release occur on cellular membranes primed through the manipulation of host metabolism. Interference with this virus infection-induced metabolic environment is detrimental to viral replication in human and mosquito cell culture models. Here we present the first insight into the metabolic environment induced during arbovirus replication in Aedes aegypti. Using high-resolution mass spectrometry, we have analyzed the temporal metabolic perturbations that occur following dengue virus infection of the midgut tissue. This is the primary site of infection and replication, preceding systemic viral dissemination and transmission. We identified metabolites that exhibited a dynamic-profile across early-, mid- and late-infection time points. We observed a marked increase in the lipid content. An increase in glycerophospholipids, sphingolipids and fatty acyls was coincident with the kinetics of viral replication. Elevation of glycerolipid levels suggested a diversion of resources during infection from energy storage to synthetic pathways. Elevated levels of acyl-carnitines were observed, signaling disruptions in mitochondrial function and possible diversion of energy production. A central hub in the sphingolipid pathway that influenced dihydroceramide to ceramide ratios was identified as critical for the virus life cycle. This study also resulted in the first reconstruction of the sphingolipid pathway in Aedes aegypti. Given conservation in the replication mechanisms of several

  12. Dynamic remodeling of lipids coincides with dengue virus replication in the midgut of Aedes aegypti mosquitoes.

    Science.gov (United States)

    Chotiwan, Nunya; Andre, Barbara G; Sanchez-Vargas, Irma; Islam, M Nurul; Grabowski, Jeffrey M; Hopf-Jannasch, Amber; Gough, Erik; Nakayasu, Ernesto; Blair, Carol D; Belisle, John T; Hill, Catherine A; Kuhn, Richard J; Perera, Rushika

    2018-02-01

    We describe the first comprehensive analysis of the midgut metabolome of Aedes aegypti, the primary mosquito vector for arboviruses such as dengue, Zika, chikungunya and yellow fever viruses. Transmission of these viruses depends on their ability to infect, replicate and disseminate from several tissues in the mosquito vector. The metabolic environments within these tissues play crucial roles in these processes. Since these viruses are enveloped, viral replication, assembly and release occur on cellular membranes primed through the manipulation of host metabolism. Interference with this virus infection-induced metabolic environment is detrimental to viral replication in human and mosquito cell culture models. Here we present the first insight into the metabolic environment induced during arbovirus replication in Aedes aegypti. Using high-resolution mass spectrometry, we have analyzed the temporal metabolic perturbations that occur following dengue virus infection of the midgut tissue. This is the primary site of infection and replication, preceding systemic viral dissemination and transmission. We identified metabolites that exhibited a dynamic-profile across early-, mid- and late-infection time points. We observed a marked increase in the lipid content. An increase in glycerophospholipids, sphingolipids and fatty acyls was coincident with the kinetics of viral replication. Elevation of glycerolipid levels suggested a diversion of resources during infection from energy storage to synthetic pathways. Elevated levels of acyl-carnitines were observed, signaling disruptions in mitochondrial function and possible diversion of energy production. A central hub in the sphingolipid pathway that influenced dihydroceramide to ceramide ratios was identified as critical for the virus life cycle. This study also resulted in the first reconstruction of the sphingolipid pathway in Aedes aegypti. Given conservation in the replication mechanisms of several flaviviruses transmitted

  13. Alpha-mangostin inhibits both dengue virus production and cytokine/chemokine expression.

    Science.gov (United States)

    Tarasuk, Mayuri; Songprakhon, Pucharee; Chimma, Pattamawan; Sratongno, Panudda; Na-Bangchang, Kesara; Yenchitsomanus, Pa-Thai

    2017-08-15

    Since severe dengue virus (DENV) infection in humans associates with both high viral load and massive cytokine production - referred to as "cytokine storm", an ideal drug for treatment of DENV infection should efficiently inhibit both virus production and cytokine expression. In searching for such an ideal drug, we discovered that α-mangostin (α-MG), a major bioactive compound purified from the pericarp of the mangosteen fruit (Garcinia mangostana Linn), which has been used in traditional medicine for several conditions including trauma, diarrhea, wound infection, pain, fever, and convulsion, inhibits both DENV production in cultured hepatocellular carcinoma HepG2 and Huh-7 cells, and cytokine/chemokine expression in HepG2 cells. α-MG could also efficiently inhibit all four serotypes of DENV. Treatment of DENV-infected cells with α-MG (20μM) significantly reduced the infection rates of four DENV serotypes by 47-55%. α-MG completely inhibited production of DENV-1 and DENV-3, and markedly reduced production of DENV-2 and DENV-4 by 100 folds. Furthermore, it could markedly reduce cytokine (IL-6 and TNF-α) and chemokine (RANTES, MIP-1β, and IP-10) transcription. These actions of α-MG are more potent than those of antiviral agent (ribavirin) and anti-inflammatory drug (dexamethasone). Thus, α-MG is potential to be further developed as therapeutic agent for DENV infection. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Systems Biology of the Immune Response to Live and Inactivated Dengue Virus Vaccines

    Science.gov (United States)

    2017-09-01

    AWARD NUMBER: W81XWH-16-2-0031 TITLE: Systems Biology of the Immune Response to Live and Inactivated Dengue Virus Vaccines PRINCIPAL...SUBTITLE 5a. CONTRACT NUMBER Systems Biology of the Immune Response to Live and Inactivated Dengue Virus Vaccines 5b. GRANT NUMBER W81XWH-16-2-0031 5c...adaptive (T and B cell) responses will be measured using molecular and cellular approaches and the data analyzed using a systems biology approach

  15. AR-12 suppresses dengue virus replication by down-regulation of PI3K/AKT and GRP78.

    Science.gov (United States)

    Chen, Hsin-Hsin; Chen, Chien-Chin; Lin, Yee-Shin; Chang, Po-Chun; Lu, Zi-Yi; Lin, Chiou-Feng; Chen, Chia-Ling; Chang, Chih-Peng

    2017-06-01

    Dengue virus (DENV) infection has become a public health issue of worldwide concern and is a serious health problem in Taiwan, yet there are no approved effective antiviral drugs to treat DENV. The replication of DENV requires both viral and cellular factors. Targeting host factors may provide a potential antiviral strategy. It has been known that up-regulation of PI3K/AKT signaling and GRP78 by DENV infection supports its replication. AR-12, a celecoxib derivative with no inhibiting activity on cyclooxygenase, shows potent inhibitory activities on both PI3K/AKT signaling and GRP78 expression levels, and recently has been found to block the replication of several hemorrhagic fever viruses. However the efficacy of AR-12 in treating DENV infection is still unclear. Here, we provide evidence to show that AR-12 is able to suppress DENV replication before or after virus infection in cell culture and mice. The antiviral activities of AR-12 are positive against infection of the four different DENV serotypes. AR-12 significantly down-regulates the PI3K/AKT activity and GRP78 expression in DENV infected cells whereas AKT and GRP78 rescue are able to attenuate anti-DENV effect of AR-12. Using a DENV-infected suckling mice model, we further demonstrate that treatment of AR-12 before or after DENV infection reduces virus replication and mice mortality. In conclusion, we uncover the potential efficacy of AR-12 as a novel drug for treating dengue. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Evaluation of concurrent malaria and dengue infections among febrile patients

    Directory of Open Access Journals (Sweden)

    Parul D Shah

    2017-01-01

    Full Text Available Context: Despite a wide overlap between endemic areas for two important vector-borne infections, malaria and dengue, published reports of co-infections are scarce till date. Aims: To find the incidence of dengue and malaria co-infection as well as to ascertain the severity of such dengue and malaria co-infection based on clinical and haematological parameters. Setting and Design: Observational, retrospective cross-sectional study was designed including patients who consulted the tertiary care hospital of Ahmedabad seeking treatment for fever compatible with malaria and/or dengue. Subjects and Methods: A total of 8364 serum samples from clinically suspected cases of fever compatible with malaria and/or dengue were collected. All samples were tested for dengue NS-1 antigen before 5 days of onset of illness and for dengue IgM after 5 days of onset of illness. In all samples, malaria diagnosis was based on the identification of Plasmodium parasites on a thin and thick blood films microscopy. Results: Only 10.27% (859 patients with fever were tested positive for dengue and 5.1% (434 were tested positive for malaria. 3.14% (27 dengue cases show concurrent infection with malarial parasites. Hepatomegaly and jaundice 37.03% (10, haemorrhagic manifestations 18.51% (5 and kidney failure 3.7% (1, haemoglobin <12 g/dl 100% (27 and thrombocytopenia (platelet count <150,000/cmm 96.29% (26 were common in malaria and dengue co-infections and were much more common in Plasmodium falciparum infections. Conclusion: All febrile patients must be tested for malaria and dengue, both otherwise one of them will be missed in case of concurrent infections which could lead to severe diseases with complications.

  17. Serological evidence for transmission of multiple dengue virus serotypes in Papua New Guinea and West Papua prior to 1963.

    Directory of Open Access Journals (Sweden)

    Dagwin Luang-Suarkia

    2017-04-01

    Full Text Available Little is known about the natural history of dengue in Papua New Guinea (PNG. We assessed dengue virus (DENV-specific neutralizing antibody profiles in serum samples collected from northern and southern coastal areas and the highland region of New Guinea between 1959 and 1963. Neutralizing antibodies were demonstrated in sera from the northern coast of New Guinea: from Sabron in Dutch New Guinea (now known as West Papua and from four villages in East Sepik in what is now PNG. Previous monotypic infection with DENV-1, DENV-2, and DENV-4 was identified, with a predominance of anti-DENV-2 neutralizing antibody. The majority of positive sera demonstrated evidence of multiple previous DENV infections and neutralizing activity against all four serotypes was detected, with anti-DENV-2 responses being most frequent and of greatest magnitude. No evidence of previous DENV infection was identified in the Asmat villages of the southern coast and a single anti-DENV-positive sample was identified in the Eastern Highlands of PNG. These findings indicate that multiple DENV serotypes circulated along the northern coast of New Guinea at different times in the decades prior to 1963 and support the notion that dengue has been a significant yet neglected tropical infection in PNG for many decades.

  18. Cissampelos pareira Linn: Natural Source of Potent Antiviral Activity against All Four Dengue Virus Serotypes.

    Directory of Open Access Journals (Sweden)

    Ruchi Sood

    2015-12-01

    Full Text Available Dengue, a mosquito-borne viral disease, poses a significant global public health risk. In tropical countries such as India where periodic dengue outbreaks can be correlated to the high prevalence of the mosquito vector, circulation of all four dengue viruses (DENVs and the high population density, a drug for dengue is being increasingly recognized as an unmet public health need.Using the knowledge of traditional Indian medicine, Ayurveda, we developed a systematic bioassay-guided screening approach to explore the indigenous herbal bio-resource to identify plants with pan-DENV inhibitory activity. Our results show that the alcoholic extract of Cissampelos pariera Linn (Cipa extract was a potent inhibitor of all four DENVs in cell-based assays, assessed in terms of viral NS1 antigen secretion using ELISA, as well as viral replication, based on plaque assays. Virus yield reduction assays showed that Cipa extract could decrease viral titers by an order of magnitude. The extract conferred statistically significant protection against DENV infection using the AG129 mouse model. A preliminary evaluation of the clinical relevance of Cipa extract showed that it had no adverse effects on platelet counts and RBC viability. In addition to inherent antipyretic activity in Wistar rats, it possessed the ability to down-regulate the production of TNF-α, a cytokine implicated in severe dengue disease. Importantly, it showed no evidence of toxicity in Wistar rats, when administered at doses as high as 2g/Kg body weight for up to 1 week.Our findings above, taken in the context of the human safety of Cipa, based on its use in Indian traditional medicine, warrant further work to explore Cipa as a source for the development of an inexpensive herbal formulation for dengue therapy. This may be of practical relevance to a dengue-endemic resource-poor country such as India.

  19. Efficient, trans-complementing packaging systems for chimeric, pseudoinfectious dengue 2/yellow fever viruses

    International Nuclear Information System (INIS)

    Shustov, Alexandr V.; Frolov, Ilya

    2010-01-01

    In our previous studies, we have stated to build a new strategy for developing defective, pseudoinfectious flaviviruses (PIVs) and applying them as a new type of vaccine candidates. PIVs combined the efficiency of live vaccines with the safety of inactivated or subunit vaccines. The results of the present work demonstrate further development of chimeric PIVs encoding dengue virus 2 (DEN2V) glycoproteins and yellow fever virus (YFV)-derived replicative machinery as potential vaccine candidates. The newly designed PIVs have synergistically functioning mutations in the prM and NS2A proteins, which abolish processing of the latter proteins and make the defective viruses capable of producing either only noninfectious, immature and/or subviral DEN2V particles. The PIV genomes can be packaged to high titers into infectious virions in vitro using the NS1-deficient YFV helper RNAs, and both PIVs and helpers can then be passaged as two-component genome viruses at an escalating scale.

  20. Why Zika virus infection has become a public health concern?

    Directory of Open Access Journals (Sweden)

    Hui-Lan Chen

    2016-04-01

    Full Text Available Prior to 2015, Zika Virus (ZIKV outbreaks had occurred in areas of Africa, Southeast Asia, and the Pacific Islands. Although a causal relationship between Zika infection during pregnancy and microcephaly is strongly suspected, such a connection has not yet been scientifically proven. In May 2015, the outbreak of ZIKV infection in Brazil led to reports of syndrome and pregnant women giving birth to babies with birth defects and poor pregnancy outcomes; the Pan American Health Organization (PAHO issued an alert regarding the first confirmed ZIKV infection in Brazil. Currently, ZIKV outbreaks are ongoing and it will be difficult to predict how the virus will spread over time. ZIKV is transmitted to humans primarily through the bite of infected mosquitos, Aedes aegypti and Aedes albopictus. These mosquitoes are the principle vectors of dengue, and ZIKV disease generally is reported to include symptoms associated with acute febrile illnesses that clinically resembles dengue fever. The laboratory diagnosis can be performed by using reverse-transcriptase polymerase chain reaction (RT-PCR on serum, viral nucleic acid and virus-specific immunoglobulin M. There is currently no vaccine and antiviral treatment available for ZIKV infection, and the only way to prevent congenital ZIKV infection is to prevent maternal infection. In February 2016, the Taiwan Centers for Disease Control (Taiwan CDC activated ZIKV as a Category V Notifiable Infectious Disease similar to Ebola virus disease and MERS.