WorldWideScience

Sample records for denervated soleus muscles

  1. Effect of salbutamol on innervated and denervated rat soleus muscle

    Directory of Open Access Journals (Sweden)

    ?oic-Vranic T.

    2005-01-01

    Full Text Available The objective of the present investigation was to perform a 14-day time-course study of treatment with salbutamol, a ß2 adrenoceptor agonist, on rat soleus muscle in order to assess fiber type selectivity in the hypertrophic response and fiber type composition. Male Wistar rats were divided into four groups: control (N = 10, treated with salbutamol (N = 30, denervated (N = 30, and treated with salbutamol after denervation (N = 30. Salbutamol was injected intraperitoneally in the rats of the 2nd and 4th groups at a concentration of 0.3 mg/kg twice a day for 2 weeks. The muscles were denervated using the crush method with pean. The animals were sacrificed 3, 6, 9, 12, and 14 days after treatment. Frozen cross-sections of soleus muscle were stained for myosin ATPase, pH 9.4. Cross-sectional area and percent of muscle fibers were analyzed morphometrically by computerized image analysis. Treatment with salbutamol induced hypertrophy of all fiber types and a higher percentage of type II fibers (21% in the healthy rat soleus muscle. Denervation caused marked atrophy of all fibers and conversion from type I to type II muscle fibers. Denervated muscles treated with salbutamol showed a significantly larger cross-sectional area of type I muscle fibers, 28.2% compared to the denervated untreated muscle. Moreover, the number of type I fibers was increased. These results indicate that administration of salbutamol is able to induce changes in cross-sectional area and fiber type distribution in the early phase of treatment. Since denervation-induced atrophy and conversion from type I to type II fibers were improved by salbutamol treatment we propose that salbutamol, like other ß2 adrenoceptor agonists, may have a therapeutic potential in improving the condition of skeletal muscle after denervation.

  2. The time course of denervation-induced changes is similar in soleus muscles of adult and old rats.

    NARCIS (Netherlands)

    Degens, H.; Kosar, S.N.; Hopman, M.T.E.; Haan, A. de

    2008-01-01

    Muscle denervation is accompanied by atrophy and a decline in oxidative capacity. We investigated whether the time course of adaptations following denervation of the soleus muscle differs in adult (5 months old) and older adult (25 months old) rats. We denervated the soleus muscle of the left leg, w

  3. Effect of denervation or unweighting on GLUT-4 protein in rat soleus muscle

    Science.gov (United States)

    Henriksen, Erik J.; Rodnick, Kenneth J.; Mondon, Carl E.; James, David E.; Holloszy, John O.

    1991-01-01

    The study is intended to test the hypothesis that the decreased capacity for glucose transport in the denervated rat soleus and the increased capacity for glucose transport in the unweighted rat soleus are related to changes in the expression of the regulatable glucose transporter protein in skeletal muscle (GLUT-4). Results obtained indicate that altered GLUT-4 expression may be a major contributor to the changes in insulin-stimulated glucose transport that are observed with denervation and unweighting. It is concluded that muscle activity is an important factor in the regulation of the GLUT-4 expression in skeletal muscle.

  4. Mechanisms of accelerated proteolysis in rat soleus muscle atrophy induced by unweighting or denervation

    Science.gov (United States)

    Tischler, Marc E.; Kirby, Christopher; Rosenberg, Sara; Tome, Margaret; Chase, Peter

    1991-01-01

    A hypothesis proposed by Tischler and coworkers (Henriksen et al., 1986; Tischler et al., 1990) concerning the mechanisms of atrophy induced by unweighting or denervation was tested using rat soleus muscle from animals subjected to hindlimb suspension and denervation of muscles. The procedure included (1) measuring protein degradation in isolated muscles and testing the effects of lysosome inhibitors, (2) analyzing the lysosome permeability and autophagocytosis, (3) testing the effects of altering calcium-dependent proteolysis, and (4) evaluating in vivo the effects of various agents to determine the physiological significance of the hypothesis. The results obtained suggest that there are major differences between the mechanisms of atrophies caused by unweighting and denervation, though slower protein synthesis is an important feature common for both.

  5. Cyclic Adenosine Monophosphate Accumulation and beta-Adrenergic Binding in Unweighted and Denervated Rat Soleus Muscle

    Science.gov (United States)

    Kirby, Christopher R.; Woodman, Christopher R.; Woolridge, Dale; Tischler, Marc E.

    1992-01-01

    Unweighting, but not denervation, of muscle reportedly "spares" insulin receptors, increasing insulin sensitivity. Unweighting also increases beta-adrenergic responses of carbohydrate metabolism. These differential characteristics were studied further by comparing cyclic adenosine monophosphate (cAMP) accumulation and beta-adrenergic binding in normal and 3-day unweighted or denervated soleus muscle. Submaximal amounts of isoproterenol, a p-agonist, increased cAMP accumulation in vitro and in vivo (by intramuscular (IM) injection) to a greater degree (P less than .05) in unweighted muscles. Forskolin or maximal isoproterenol had similar in vitro effects in all muscles, suggesting increased beta-adrenergic sensitivity following unweighting. Increased sensitivity was confirmed by a greater receptor density (B(sub max)) for iodo-125(-)-pindolol in particulate preparations of unweighted (420 x 10(exp -18) mol/mg muscle) than of control or denervated muscles (285 x 10(exp-18) mol/mg muscle). The three dissociation constant (Kd) values were similar (20.3 to 25.8 pmol/L). Total binding capacity (11.4 fmol/muscle) did not change during 3 days of unweighting, but diminished by 30% with denervation. This result illustrates the "sparing" and loss of receptors, respectively, in these two atrophy models. In diabetic animals, IM injection of insulin diminished CAMP accumulation in the presence of theophylline in unweighted muscle (-66% +/- 2%) more than in controls (-42% +'- 6%, P less than .001). These results show that insulin affects CAMP formation in muscle, and support a greater in vivo insulin response following unweighting atrophy. These various data support a role for lysosomal proteolysis in denervation, but not in unweighting, atrophy.

  6. MRI appearance of muscle denervation

    Energy Technology Data Exchange (ETDEWEB)

    Kamath, S. [University Hospital of Wales, Department of Radiology, Cardiff (United Kingdom); Venkatanarasimha, N.; Walsh, M.A.; Hughes, P.M. [Derriford Hospital, Department of Radiology, Plymouth (United Kingdom)

    2008-05-15

    Muscle denervation results from a variety of causes including trauma, neoplasia, neuropathies, infections, autoimmune processes and vasculitis. Traditionally, the diagnosis of muscle denervation was based on clinical examination and electromyography. Magnetic resonance imaging (MRI) offers a distinct advantage over electromyography, not only in diagnosing muscle denervation, but also in determining its aetiology. MRI demonstrates characteristic signal intensity patterns depending on the stage of muscle denervation. The acute and subacutely denervated muscle shows a high signal intensity pattern on fluid sensitive sequences and normal signal intensity on T1-weighted MRI images. In chronic denervation, muscle atrophy and fatty infiltration demonstrate high signal changes on T1-weighted sequences in association with volume loss. The purpose of this review is to summarise the MRI appearance of denervated muscle, with special emphasis on the signal intensity patterns in acute and subacute muscle denervation. (orig.)

  7. Improved functional recovery of denervated skeletal muscle after temporary sensory nerve innervation.

    Science.gov (United States)

    Bain, J R; Veltri, K L; Chamberlain, D; Fahnestock, M

    2001-01-01

    Prolonged muscle denervation results in poor functional recovery after nerve repair. The possible protective effect of temporary sensory innervation of denervated muscle, prior to motor nerve repair, has been examined in the rat. Soleus and gastrocnemius muscles were denervated by cutting the tibial nerve, and the peroneal nerve was then sutured to the transected distal tibial nerve stump either immediately or after two, four or six months. In half of the animals with delayed repair, the saphenous (sensory) nerve was temporarily attached to the distal nerve stump. Muscles were evaluated three months after the peroneal-to-tibial union, and were compared with each other, with unoperated control muscles and with untreated denervated muscles. After four to six months of sensory "protection", gastrocnemius muscles weighed significantly more than unprotected muscles, and both gastrocnemius and soleus muscles exhibited better preservation of their structure, with less fiber atrophy and connective tissue hyperplasia. The maximum compound action potentials were significantly larger in gastrocnemius and soleus muscles following sensory protection, irrespective of the delay in motor nerve union. Isometric force, although less than in control animals and in those with immediate nerve repair, remained reasonably constant after sensory protection, while in unprotected muscles there was a progressive and significant decline as the period of denervation lengthened. We interpret these results as showing that, although incapable of forming excitable neuromuscular junctions, sensory nerves can nevertheless exert powerful trophic effects on denervated muscle fibers. We propose that these findings indicate a useful strategy for improving the outcome of peripheral nerve surgery.

  8. Quantitative ultrasound of denervated hand muscles.

    Science.gov (United States)

    Simon, Neil G; Ralph, Jeffrey W; Lomen-Hoerth, Catherine; Poncelet, Ann N; Vucic, Steve; Kiernan, Matthew C; Kliot, Michel

    2015-08-01

    Presentations to the neuromuscular clinic commonly involve hand muscle denervation, but few studies have evaluated hand muscle ultrasound. Ultrasound studies of abductor pollicis brevis, first dorsal interosseous, and abductor digit minimi were prospectively performed in a cohort of 34 patients (77 muscles) with electromyography (EMG)-confirmed denervation, compared with 58 healthy control subjects. In control subjects, muscle thickness was highly reproducible [intraclass correlation coefficient (ICC) = 0.88-0.98], and echogenicity was moderately reproducible (ICC = 0.542-0.686). Age, gender, and body mass index influenced muscle thickness and echogenicity. Ultrasound changes in denervated muscles correlated with the severity of EMG abnormalities. A z-score cutoff of 0 identified denervated muscles with a sensitivity of 100% and 89% for echogenicity and muscle thickness, respectively. Hand muscle ultrasound provides a noninvasive method to quantify muscle denervation and may be useful as a screening tool before EMG studies. © 2014 Wiley Periodicals, Inc.

  9. Muscular hypertrophy and atrophy in normal rats provoked by the administration of normal and denervated muscle extracts.

    Science.gov (United States)

    Agüera, Eduardo; Castilla, Salvador; Luque, Evelio; Jimena, Ignacio; Leiva-Cepas, Fernando; Ruz-Caracuel, Ignacio; Peña, José

    2016-12-01

    This study was conducted to determine the effects of extracts obtained from both normal and denervated muscles on different muscle types. Wistar rats were used and were divided into a control group and four experimental groups. Each experimental group was treated intraperitoneally during 10 consecutive days with a different extract. These extracts were obtained from normal soleus muscle, denervated soleus, normal extensor digitorum longus, and denervated extensor digitorum longus. Following treatment, the soleus and extensor digitorum longus muscles were obtained for study under optic and transmission electron microscope; morphometric parameters and myogenic responses were also analyzed. The results demonstrated that the treatment with normal soleus muscle and denervated soleus muscle extracts provoked hypertrophy and increased myogenic activity. In contrast, treatment with extracts from the normal and denervated EDL had a different effect depending on the muscle analyzed. In the soleus muscle it provoked hypertrophy of type I fibers and increased myogenic activity, while in the extensor digitorum longus atrophy of the type II fibers was observed without changes in myogenic activity. This suggests that the muscular responses of atrophy and hypertrophy may depend on different factors related to the muscle type which could be related to innervation.

  10. Forkhead box O1 and muscle RING finger 1 protein expression in atrophic and hypertrophic denervated mouse skeletal muscle

    Science.gov (United States)

    2014-01-01

    Background Forkhead box O (FoxO) transcription factors and E3 ubiquitin ligases such as Muscle RING finger 1 (MuRF1) are believed to participate in the regulation of skeletal muscle mass. The function of FoxO transcription factors is regulated by post-translational modifications such as phosphorylation and acetylation. In the present study FoxO1 protein expression, phosphorylation and acetylation as well as MuRF1 protein expression, were examined in atrophic and hypertrophic denervated skeletal muscle. Methods Protein expression, phosphorylation and acetylation were studied semi-quantitatively using Western blots. Muscles studied were 6-days denervated mouse hind-limb muscles (anterior tibial as well as pooled gastrocnemius and soleus muscles, all atrophic), 6-days denervated mouse hemidiaphragm muscles (hypertrophic) and innervated control muscles. Total muscle homogenates were used as well as separated nuclear and cytosolic fractions of innervated and 6-days denervated anterior tibial and hemidiaphragm muscles. Results Expression of FoxO1 and MuRF1 proteins increased 0.3-3.7-fold in all 6-days denervated muscles studied, atrophic as well as hypertrophic. Phosphorylation of FoxO1 at S256 increased about 0.8-1-fold after denervation in pooled gastrocnemius and soleus muscles and in hemidiaphragm but not in unfractionated anterior tibial muscle. A small (0.2-fold) but statistically significant increase in FoxO1 phosphorylation was, however, observed in cytosolic fractions of denervated anterior tibial muscle. A statistically significant increase in FoxO1 acetylation (0.8-fold) was observed only in denervated anterior tibial muscle. Increases in total FoxO1 and in phosphorylated FoxO1 were only seen in cytosolic fractions of denervated atrophic anterior tibial muscle whereas in denervated hypertrophic hemidiaphragm both total FoxO1 and phosphorylated FoxO1 increased in cytosolic as well as in nuclear fractions. MuRF1 protein expression increased in cytosolic as well

  11. Acupuncture plus low-frequency electrical stimulation (Acu-LFES) attenuates denervation-induced muscle atrophy.

    Science.gov (United States)

    Su, Zhen; Hu, Li; Cheng, Jinzhong; Klein, Janet D; Hassounah, Faten; Cai, Hui; Li, Min; Wang, Haidong; Wang, Xiaonan H

    2016-02-15

    Muscle wasting occurs in a variety of clinical situations, including denervation. There is no effective pharmacological treatment for muscle wasting. In this study, we used a tibial nerve denervation model to test acupuncture plus low-frequency electric stimulation (Acu-LFES) as a therapeutic strategy for muscle atrophy. Acupuncture needles were connected to an SDZ-II electronic acupuncture device delivering pulses at 20 Hz and 1 mA; the treatment was 15 min daily for 2 wk. Acu-LFES prevented soleus and plantaris muscle weight loss and increased muscle cross-sectional area in denervated mice. The abundances of Pax7, MyoD, myogenin, and embryonic myosin heavy chain were significantly increased by Acu-LFES in both normal and denervated muscle. The number of central nuclei was increased in Acu-LFES-treated muscle fibers. Phosphorylation of Akt was downregulated by denervation leading to a decline in muscle mass; however, Acu-LFES prevented the denervation-induced decline largely by upregulation of the IGF-1 signaling pathway. Acu-LFES reduced the abundance of muscle catabolic proteins forkhead O transcription factor and myostatin, contributing to the attenuated muscle atrophy. Acu-LFES stimulated the expression of macrophage markers (F4/80, IL-1b, and arginase-1) and inflammatory cytokines (IL-6, IFNγ, and TNFα) in normal and denervated muscle. Acu-LFES also stimulated production of the muscle-specific microRNAs miR-1 and miR-206. We conclude that Acu-LFES is effective in counteracting denervation-induced skeletal muscle atrophy and increasing muscle regeneration. Upregulation of IGF-1, downregulation of myostatin, and alteration of microRNAs contribute to the attenuation of muscle atrophy in denervated mice. Copyright © 2016 the American Physiological Society.

  12. Glucose metabolism in rats submitted to skeletal muscle denervation

    Directory of Open Access Journals (Sweden)

    Wilton Marlindo Santana Nunes

    2005-07-01

    Full Text Available This study analyzed the local and systemic effects of immobilization by denervation of the skeletal muscle on glucose metabolism. The rats were submitted to section of the right paw sciatic nerve. A reduction was observed in glucose uptake by the isolated soleus muscle of the denervated paw after 3 and 7 days, but not after 28 days in relation to the control animals. There was no difference after 3 and 7 days in glucose uptake by the soleus muscle of the opposite intact paw in relation to the control. There was increased glucose uptake in the same paw 28 days after denervation. The rate of glucose removal in response to exogenous insulin after 28 days of denervation was significantly higher than in control animals and those observed after 3 and 7 days of denervation. These results suggest that immobilization by denervation interfered not only in glucose metabolism in the skeletal muscle involved but also in other tissues.O estudo analisou os efeitos locais e sistêmicos da imobilização por desnervação do músculo esquelético sobre o metabolismo glicidico. Ratos foram submetidos à secção do nervo ciático da pata direita. Observou-se redução da captação de glicose pelo músculo sóleo isolado da pata desnervada após 3 e 7 mas não após 28 dias em relação a animais controle. Não houve diferença após 3 e 7 dias na captação de glicose pelo músculo sóleo da pata contralateral intacta em relação ao controle. Houve aumento da captação de glicose nesta mesma pata 28 dias após a desnervação. A taxa de remoção da glicose em resposta à insulina exógena após 28 dias de desnervação foi significantemente superior à do controle e àquelas observadas após 3 e 7 dias da desnervação. Esses resultados sugerem que a imobilização por desnervação interfere não só no metabolismo da glicose no músculo esquelético envolvido como também em outros tecidos.

  13. Soleus muscle injury: sensitivity of ultrasound patterns

    Energy Technology Data Exchange (ETDEWEB)

    Balius, Ramon [Sport Catalan Council, Generalitat de Catalunya, Barcelona (Spain); Clinica CMI Diagonal, Barcelona (Spain); Rodas, Gil [F.C. Barcelona Medical Services, Barcelona (Spain); Pedret, Carles [Clinica CMI Diagonal, Barcelona (Spain); Clinica Mapfre de Medicina del Tenis, Sports Medicine and Imaging Department, Barcelona (Spain); Centre de Diagnostic per Imatge de Tarragona, Tarragona (Spain); Capdevila, Lluis [Universitat Autonoma de Barcelona, Laboratory of Sport Psychology, Barcelona (Spain); Alomar, Xavier [Clinica Creu Blanca, Barcelona (Spain); Bong, David A. [Instituto Poal de Reumatologia, Barcelona (Spain)

    2014-06-15

    To assess the sensitivity of ultrasound in detecting soleus muscle lesions diagnosed on magnetic resonance imaging (MRI) and to characterize their location, ultrasound pattern, and evolution. Ultrasound and MRI studies were performed between May 2009 and February 2013 on all patients who presented to the Medical Services Clinic of the Catalan Sport Council with the initial onset of sharp pain in the calf compatible with injury of the soleus muscle. An inter-observer ultrasound reliability study was also performed. A total of 55 cases of soleus injury were studied prospectively (22 with right leg involvement, 33 left) by ultrasound and MRI, which was utilized as the ''gold standard.'' In MRI studies, 24 cases (43.7 %) had myofascial injuries that were localized in the posterior aponeurosis (PMF) in 15 cases (27.3 %) and in the anterior aponeurosis (AMF) in 9 (16.4 %). Thirty-one cases (56.3 %) were musculotendinous injuries, with 9 cases (16.4 %) in the medial aponeurosis (MMT), 11 cases (20 %) in the lateral aponeurosis (LMT), and 11 cases (20 %) in the central tendon (CMT). In comparison to MRI, ultrasound was able to detect injury to the soleus in 27.2 % of cases. No injuries were detected by ultrasound alone. Posterior myofascial injuries were more likely to be detected by ultrasound than anterior myofascial injuries or all types of musculotendinous injuries. Ultrasound patterns for each type of injury were described. Ultrasound is not a sensitive technique for detecting and assessing soleus traumatic tears compared with MRI, although the sensitivity is enhanced by a thorough anatomically based ultrasound examination. Timing of the ultrasound examination may be of importance. Each type of soleus injury appears to have a characteristic ultrasound pattern based on a defect of connective expansions, the existence of small myofascial filiform collections, and the rarefaction of the fibrillar area. (orig.)

  14. Changes following denervation to the masseter muscle

    Institute of Scientific and Technical Information of China (English)

    Lei Zhang

    2008-01-01

    BACKGROUND: Masseter muscle nerve is often injured in mandible osteotomy. What changes in food intake and masseter muscle will be brought after masseter muscle nerve injury?OBJECTIVE: This study was designed to selectively establish animal models of denervated masseter muscle and investigate the effects of severing masseter muscular nerve on masseter muscle and animal's food intake. DESIGN, TIME AND SETTING: A randomized controlled animal experiment was performed at the Laboratory Animal Center, Nanfang Hospital, Southern Medical University from September to November 2005. MATERIALS: A total of 50 healthy, adult, SPF-grade, New Zealand rabbits, of both genders, were used to develop an animal model of selectively denervated masseter muscle.METHODS: Five rabbits were randomly selected as normal controls. According to various mutilation methods, the remaining animals were randomly divided into 3 experimental groups, with 15 rabbits in each group: masseter muscular neural stem denervated, masseter muscular neural superior branch-denervated, and masseter muscular neural inferior branch-denervated groups. Self-control comparison was performed on each animal. The right masseter muscle served as the experimental side, and the left masseter muscle served as the control side. In each group, 3 time points (2, 8, and 24 weeks post-surgery) were allotted for observation. MAIN OUTCOME MEASURES: At the pre-set time points, masseter muscular thickness was measured with a Logic 500 color Doppler ultrasonic diagnostic apparatus. Masseter muscle tissue was resected for hematoxylin eosin staining. Masseter muscular fiber diameter and area were measured with an optical microscope. Masseter muscle tissue was sectioned and nicotinamide adenine dinucleotide tetrazolium oxidoreductase (NADH-TR) and adenosine triphosphatase staining were performed. Following staining, the sections were quantitatively analyzed using an IBAS200 image analyzer.RESULTS: Post-surgery food intake: No abnormal

  15. miRNA targeted signaling pathway in the early stage of denervated fast and slow muscle atrophy

    Directory of Open Access Journals (Sweden)

    Gang Li

    2016-01-01

    Full Text Available Denervation often results in skeletal muscle atrophy. Different mechanisms seem to be involved in the determination between denervated slow and fast skeletal muscle atrophy. At the epigenetic level, miRNAs are thought to be highly involved in the pathophysiological progress of denervated muscles. We used miRNA microarrays to determine miRNA expression profiles from a typical slow muscle (soleus muscle and a typical fast muscle (tibialis anterior muscle at an early denervation stage in a rat model. Results showed that miR-206, miR-195, miR-23a, and miR-30e might be key factors in the transformation process from slow to fast muscle in denervated slow muscles. Additionally, certain miRNA molecules (miR-214, miR-221, miR-222, miR-152, miR-320, and Let-7e could be key regulatory factors in the denervated atrophy process involved in fast muscle. Analysis of signaling pathway networks revealed the miRNA molecules that were responsible for regulating certain signaling pathways, which were the final targets (e.g., p38 MAPK pathway; Pax3/Pax7 regulates Utrophin and follistatin by HDAC4; IGF1/PI3K/Akt/mTOR pathway regulates atrogin-1 and MuRF1 expression via FoxO phosphorylation. Our results provide a better understanding of the mechanisms of denervated skeletal muscle pathophysiology.

  16. High association between accessory soleus muscle and achilles tendonopathy

    Energy Technology Data Exchange (ETDEWEB)

    Luck, Michael D.; Gordon, Andrew G.; Blebea, Judy S.; Dalinka, Murray K. [Hospital of the University of Pennsylvania, Department of Radiology, Philadelphia, PA (United States)

    2008-12-15

    This study investigated the association between accessory soleus muscle and abnormalities of the Achilles tendon. The authors reviewed 15 consecutive cases with a diagnosis of accessory soleus muscle from a computerized database of ankle magnetic resonance (MR) examinations reported between January 1998 and January 2007. On review, two cases were eliminated because of an incorrect initial diagnosis: One patient had a low lying soleus attachment to the Achilles tendon, while the other had a prominent flexor hallucis longus tendon partially obliterating Kager's fat. The remaining 13 cases with accessory soleus muscles were evaluated for Achilles tendon abnormalities. There were 13 cases of accessory soleus muscles in 11 patients; two patients had bilateral accessory soleus muscles (the only study patients with bilateral MR examinations in our sample). There were five male and six female patients ranging from 15 to 81 years of age (mean 48). There were nine cases (69.2%) in which Achilles tendonopathy was associated with accessory soleus muscle, including tendonopathy of each Achilles tendon in the two patients with bilateral accessory muscles. In our small patient population, there was a high association between accessory soleus muscle and Achilles tendonopathy. (orig.)

  17. Centrifugal intensity and duration as countermeasures to soleus muscle atrophy

    Science.gov (United States)

    D'Aunno, Dominick S.; Thomason, Donald B.; Booth, Frank W.

    1990-01-01

    The effects of artificially induced gravity on the atrophy process of slow-twitch soleus muscle are studied in order to determine whether centrifugation could be an effective countermeasure to nonweight bearing at 1 G. It is observed that the soleus muscle atrophied 32 percent during seven days of nonweight bearing without countermeasures, and centrifugation treatment did not completely prevent atrophy relative to precontrol wet weight of the soleus muscle. Nonweight-bearing groups receiving treatments of 1, 1.5, or 2.6 G had 48, 56, and 65 percent, respectively, of the atrophy observed in a nonweight-bearing-only group compared with the precontrol group. It is concluded that, as a countermeasure to nonweight-bearing-induced atrophy of the soleus muscle, centrifugation at 2.6 G is no more effective than exposure to 1 or 1.5 G.

  18. Protective Effects of Ciliary Neurotrophic Factor on Denervated Skeletal Muscle

    Institute of Scientific and Technical Information of China (English)

    黄仕龙; 王发斌; 洪光祥; 万圣祥; 康皓

    2002-01-01

    Summary: To study the effects of ciliary neurotrophic factor (CNTF) on denervated skeletal muscle atrophy and to find a new approach to ameliorate atrophy of denervated muscle, a model was estab lished by cutting the right sciatic nerve in 36 Wistar mice, with the left side serving as control. Then they were divided into two groups randomly. CNTF (1 U/ml) 0. 1 ml was injected into the right tib-ial muscle every day in experimental group, and saline was used into another group for comparison.The muscle wet weight, muscle total protein, Ca2+, physiological response and morphology were an alyzed on the 7th, 14th and 28th day after operation. Our results showed that compared to control group, there was a significant increase in muscle wet weight, total protein, Ca2+ , muscle fiber cross section area in CNTF group (P< 0. 05). CNTF could ameliorate the decrease of tetanic tension (PO), post-tetanic twitch potentiation (PTP), and the prolonged muscle relaxation time (RT)caused by denervation (P<0. 05). The motor end-plate areas 7 days and 14 days after denervation was similar (P>0. 05), but significantly larger 28 days after the denervation (P<0.05). Our re-sults suggest that CNTF exerts myotrophic effects by attenuating the morphological and functional changes associated with denervation of rat muscles and has protective effects on denervated muscle and motor end plate.

  19. Perlecan and synaptophysin changes in denervated skeletal muscle

    Institute of Scientific and Technical Information of China (English)

    Kai Ma; Zhifeng Huang; Jianfeng Ma; Longquan Shao; Huiming Wang; Yanliang Wang

    2012-01-01

    The present study observed sciatic nerve and gastrocnemius muscle changes in denervated rats using morphology methods, and assessed expression of perlecan, an extracellular matrix com-ponent, which is located at the skeletal muscle cell surface as acetylcholine esterase, as well as synaptophysin, a synaptic marker. Results showed degeneration and inflammation following transection of the sciatic nerve. In addition, the sciatic nerve-dominated skeletal muscle degen-erated with mild inflammation, indicating that skeletal muscle atrophy primarily contributed to denervation-induced nutritional disturbances. With prolonged injury time (1-4 weeks post-injury), perlecan expression gradually decreased and reached the lowest level at 4 weeks, but synap-tophysin expression remained unchanged after denervation. Results suggested that perlecan expression was more sensitive to denervation and reflected regional extracellular matrix changes following denervation.

  20. Differential Responses of Soleus and Plantaris Muscle Fibers to Overloading

    Science.gov (United States)

    Kawano, Fuminori; Shibaguchi, Tsubasa; Ohira, Takashi; Nakai, Naoya; Ohira, Yoshinobu

    2013-02-01

    Responses of slow and fast fibers in soleus and plantaris muscles of adult rats to overloading by the tendon transection of synergists were studied. Overloading-related hypertrophy was noted in the slow fibers of plantaris and soleus, although the magnitude was greater in plantaris. Five genes with minor expression in slow soleus muscle were identified by microarray analysis. Base-line expressions of these genes in slow fibers of plantaris were also low. Further, repressive effects of overloading on these genes were seen in some fast fibers of plantaris, not in whole plantaris and soleus. The data suggested that the repression of particular genes might be related to the pronounced morphological response of fibers expressing type II, including I+II, myosin heavy chain (MyHC), although these genes with lower base-line expression in slow fibers did not respond to overloading.

  1. Investigation of the Expression of Myogenic Transcription Factors, microRNAs and Muscle-Specific E3 Ubiquitin Ligases in the Medial Gastrocnemius and Soleus Muscles following Peripheral Nerve Injury.

    Directory of Open Access Journals (Sweden)

    Rebecca Wiberg

    Full Text Available Despite surgical innovation, the sensory and motor outcome after a peripheral nerve injury remains incomplete. One contributing factor to the poor outcome is prolonged denervation of the target organ, leading to apoptosis of both mature myofibres and satellite cells with subsequent replacement of the muscle tissue with fibrotic scar and adipose tissue. In this study, we investigated the expression of myogenic transcription factors, muscle specific microRNAs and muscle-specific E3 ubiquitin ligases at several time points following denervation in two different muscles, the gastrocnemius (containing predominantly fast type fibres and soleus (slow type muscles, since these molecules may influence the degree of atrophy following denervation. Both muscles exhibited significant atrophy (compared with the contra-lateral sides at 7 days following either a nerve transection or crush injury. In the crush model, the soleus muscle showed significantly increased muscle weights at days 14 and 28 which was not the case for the gastrocnemius muscle which continued to atrophy. There was a significantly more pronounced up-regulation of MyoD expression in the denervated soleus muscle compared with the gastrocnemius muscle. Conversely, myogenin was more markedly elevated in the gastrocnemius versus soleus muscles. The muscles also showed significantly contrasting transcriptional regulation of the microRNAs miR-1 and miR-206. MuRF1 and Atrogin-1 showed the highest levels of expression in the denervated gastrocnemius muscle. This study provides further insights regarding the intracellular regulatory molecules that generate and maintain distinct patterns of gene expression in different fibre types following peripheral nerve injury.

  2. Biochemical response to chronic shortening in unloaded soleus muscles

    Science.gov (United States)

    Jaspers, S. R.; Fagan, J. M.; Tischler, M. E.

    1985-01-01

    One leg of tail-casted suspended rats was immobilized in a plantar-flexed position to test whether chronic shortening of posterior leg muscles affected the metabolic response to unloading. The immobilized plantaris and gastrocnemius muscles of these animals showed approximately 20 percent loss of muscle mass in contrast to simply a slower growth rate with unloading. Loss of mass of the soleus muscle during suspension was not accentuated by chronic shortening. Although protein degradation in the isolated soleus muscle of the plantar-flexed limb was slightly faster than in the contralateral free limb, this difference was offset by faster synthesis of the myofibrillar protein fraction of the chronically shortened muscle. Total adenine nucleotides were 17 percent lower (P less than 0.005) in the chronically shortened soleus muscle following incubation. Glutamate, glutamine, and alanine metabolism showed little response to chronic shortening. These results suggest that, in the soleus muscle, chronic shortening did not alter significantly the metabolic responses to unloading and reduced activity.

  3. Functional Echomyography of the human denervated muscle: first results

    Directory of Open Access Journals (Sweden)

    Riccardo Zanato

    2011-03-01

    Full Text Available In this study we followed with ultrasound three patients with permanent denervation to evaluate changes in morphology, thickness, contraction and vascularisation of muscles undergoing the home-based electrical stimulation program of the Rise2-Italy project. During a period of 1 year for the first subject, 6 months for the second subject and 3 months for the third subject we studied with ultrasound the denervated muscle comparing it (if possible to the contralateral normal muscle. We evaluated: 1. Changes in morphology and sonographic structure of the pathologic muscle; 2. Muscular thickness in response to the electrical stimulation therapy; 3. Short-term modifications in muscle perfusion and arterial flow patterns after stimulation; 4. Contraction-relaxation kinetic induced by volitional activity or electrical stimulation. Morphology and ultrasonographic structure of the denervated muscles changed during the period of stimulation from a pattern typical of complete muscular atrophy to a pattern which might be considered “normal” when detected in an old patient. Thickness improved significantly more in the middle third than in the proximal and distal third of the denervated muscle, reaching in the last measurements of the first subject approximately the same thickness as the contralateral normal muscle. In all the measurements done within this study, arterial flow of the denervated muscle showed at rest a low-resistance pattern with Doppler Ultra Sound (US, and a pulsed pattern after electrical stimulation. The stimulation- induced pattern is similar to the trifasic high-resistance pattern of the normal muscle. Contraction- relaxation kinetic, measured by recording the muscular movements during electrical stimulation, showed an abnormal behaviour of the denervated muscle during the relaxation phase, which resulted to be significantly longer than in normal muscle (880 msec in the denervated muscle vs 240 msec in the contralateral normal one

  4. Influence of muscle length on muscle atrophy in the mouse tibialis anterior and soleus muscles.

    Science.gov (United States)

    Fujita, Naoto; Fujimoto, Taro; Tasaki, Hiromitsu; Arakawa, Takamitsu; Matsubara, Takako; Miki, Akinori

    2009-02-01

    The tibialis anterior and soleus muscles were fixed at the stretched or shortened positions to examine the influence of muscle length on muscle atrophy. Mice were divided into control (C), hindlimb suspension (HS), hindlimb suspension with ankle joint fixation at the maximum dorsiflexion (HSD), and hindlimb suspension with ankle joint fixation at the maximum plantarflexion (HSP). During the hindlimb suspension, the length of these muscles in the HS and HSP groups was very similar. Fourteen days after the hindlimb suspension, the atrophy of the tibialis anterior muscle in the HS and HSP groups was evidently milder than that in the HSD group, and that in the HS and HSP groups was very similar, suggesting that atrophy of the tibialis anterior muscle might largely depend on muscle length. Atrophy of the soleus muscle in the HSD group was milder than that in the HS and HSP groups, indicating that atrophy of the soleus muscle might also depend on muscle length. But atrophy of this muscle in the HSP group was milder than that in the HS group. These results demonstrate that some factors induced by the joint immobilization might be effective in preventing atrophy of the soleus muscle.

  5. Intermittent acceleration as a countermeasure to soleus muscle atrophy

    Science.gov (United States)

    D'Aunno, Dominick S.; Robinson, Ronald R.; Smith, Gregory S.; Thomason, Donald B.; Booth, Frank W.

    1992-01-01

    The effectiveness of using intermittent acceleration as a countermeasure to muscle atrophy was investigated in rats subjected to 7 days of hindlimb suspension interrupted by daily periods of 1.2 g acceleration, for 15-min periods evenly spaced over 12-hr interval. It was found that this regimen, when repeated for 7 days, failed to completely maintain the mass of soleus muscle, which was 84 percent of control.

  6. Direct optical activation of skeletal muscle fibres efficiently controls muscle contraction and attenuates denervation atrophy.

    Science.gov (United States)

    Magown, Philippe; Shettar, Basavaraj; Zhang, Ying; Rafuse, Victor F

    2015-10-13

    Neural prostheses can restore meaningful function to paralysed muscles by electrically stimulating innervating motor axons, but fail when muscles are completely denervated, as seen in amyotrophic lateral sclerosis, or after a peripheral nerve or spinal cord injury. Here we show that channelrhodopsin-2 is expressed within the sarcolemma and T-tubules of skeletal muscle fibres in transgenic mice. This expression pattern allows for optical control of muscle contraction with comparable forces to nerve stimulation. Force can be controlled by varying light pulse intensity, duration or frequency. Light-stimulated muscle fibres depolarize proportionally to light intensity and duration. Denervated triceps surae muscles transcutaneously stimulated optically on a daily basis for 10 days show a significant attenuation in atrophy resulting in significantly greater contractile forces compared with chronically denervated muscles. Together, this study shows that channelrhodopsin-2/H134R can be used to restore function to permanently denervated muscles and reduce pathophysiological changes associated with denervation pathologies.

  7. Afferent-mediated modulation of the soleus muscle activity during the stance phase of human walking

    DEFF Research Database (Denmark)

    Nazarena, Mazzaro; Grey, Michael James; do Nascimento, Omar Feix

    2006-01-01

    modifications. Blocking sensory feedback from the foot did not have an effect on the soleus muscle activity. Changes in body load affected the ongoing soleus activity level; however, it did not affect the amplitude of the soleus EMG responses to the ankle trajectory modifications. These results suggest...

  8. Functional recovery of completely denervated muscle: implications for innervation of tissue-engineered muscle.

    Science.gov (United States)

    Kang, Sung-Bum; Olson, Jennifer L; Atala, Anthony; Yoo, James J

    2012-09-01

    Tissue-engineered muscle has been proposed as a solution to repair volumetric muscle defects and to restore muscle function. To achieve functional recovery, engineered muscle tissue requires integration of the host nerve. In this study, we investigated whether denervated muscle, which is analogous to tissue-engineered muscle tissue, can be reinnervated and can recover muscle function using an in vivo model of denervation followed by neurotization. The outcomes of this investigation may provide insights on the ability of tissue-engineered muscle to integrate with the host nerve and acquire normal muscle function. Eighty Lewis rats were classified into three groups: a normal control group (n=16); a denervated group in which sciatic innervations to the gastrocnemius muscle were disrupted (n=32); and a transplantation group in which the denervated gastrocnemius was repaired with a common peroneal nerve graft into the muscle (n=32). Neurofunctional behavior, including extensor postural thrust (EPT), withdrawal reflex latency (WRL), and compound muscle action potential (CMAP), as well as histological evaluations using alpha-bungarotoxin and anti-NF-200 were performed at 2, 4, 8, and 12 weeks (n=8) after surgery. We found that EPT was improved by transplantation of the nerve grafts, but the EPT values in the transplanted animals at 12 weeks postsurgery were still significantly lower than those measured for the normal control group at 4 weeks (EPT, 155.0±38.9 vs. 26.3±13.8 g, ptissue is able to regenerate neuromuscular junctions within denervated muscle, and thus the muscle can recover partial function. However, the function of the denervated muscle remains in the subnormal range even at 12 weeks after direct nerve transplantation. These results suggest that tissue-engineered muscle, which is similarly denervated, could be innervated and become functional in vivo if it is properly integrated with the host nerve.

  9. Atrophy of the soleus muscle by hindlimb unweighting

    Science.gov (United States)

    Thomason, Donald B.; Booth, Frank W.

    1990-01-01

    This paper reviews data derived from the animal hindlimb unweighting model. The review presents the following information about the unweighted soleus muscle: electromyogram activity, the amount and type of protein lost, capillarization, oxidative capacity, glycolytic enzyme activities, fiber cross section, contractile properties, glucose uptake, sensitivity to insulin, the rates of protein synthesis and degradation, the glucocorticoid receptor numbers, the responses of specific mRNAs, and changes in metabolic concentrations. Data of all these studies show that the stress response of the animal to hindlimb suspension is transient and minimal in magnitude (though somewhat variable) and that, after one week of unweighting, the animal exhibits no chronic signs of stress.

  10. Denervation produces different single fiber phenotypes in fast- and slow-twitch hindlimb muscles of the rat.

    Science.gov (United States)

    Patterson, M F; Stephenson, G M M; Stephenson, D G

    2006-09-01

    Using a single, mechanically skinned fiber approach, we tested the hypothesis that denervation (0 to 50 days) of skeletal muscles that do not overlap in fiber type composition [extensor digitorum longus (EDL) and soleus (SOL) muscles of Long-Evans hooded rats] leads to development of different fiber phenotypes. Denervation (50 day) was accompanied by 1) a marked increase in the proportion of hybrid IIB/D fibers (EDL) and I/IIA fibers (SOL) from 30% to >75% in both muscles, and a corresponding decrease in the proportion of pure fibers expressing only one myosin heavy chain (MHC) isoform; 2) complex muscle- and fiber-type specific changes in sarcoplasmic reticulum Ca(2+)-loading level at physiological pCa approximately 7.1, with EDL fibers displaying more consistent changes than SOL fibers; 3) decrease by approximately 50% in specific force of all fiber types; 4) decrease in sensitivity to Ca(2+), particularly for SOL fibers (by approximately 40%); 5) decrease in the maximum steepness of the force-pCa curves, particularly for the hybrid I/IIA SOL fibers (by approximately 35%); and 6) increased occurrence of biphasic behavior with respect to Sr(2+) activation in SOL fibers, indicating the presence of both slow and fast troponin C isoforms. No fiber types common to the two muscles were detected at any time points (day 7, 21, and 50) after denervation. The results provide strong evidence that not only neural factors, but also the intrinsic properties of a muscle fiber, influence the structural and functional properties of a particular muscle cell and explain important functional changes induced by denervation at both whole muscle and single cell levels.

  11. Suction-modified needle biopsy technique for the human soleus muscle.

    Science.gov (United States)

    Cotter, Joshua A; Yu, Alvin; Kreitenberg, Arthur; Haddad, Fadia H; Baker, Michael J; Fox, John C; Adams, Gregory R

    2013-10-01

    The needle biopsy technique for the soleus muscle is of particular interest because of the muscle's unique fiber type distribution, contractile properties, and sensitivity to unloading. Unlike other commonly biopsied muscles, the soleus is not fully superficial and is in close proximity to neurovascular structures, resulting in a more challenging biopsy. Because of this, a standardized protocol for performing needle biopsies on the human soleus muscle that is safe, reliable, and repeatable is presented. Ultrasonography was used on an initial set of 12 subjects to determine the optimal biopsy zone, thereby guiding the location of the incision site. There were 45 subjects recruited who attended 2 separate biopsy sessions. Each biopsy session incorporated 3 passes of the biopsy needle proximal, posterior, and distal using suction from a portable vacuum source producing 3 separate muscle specimens. There were 84 soleus muscle biopsy procedures which were successfully conducted yielding 252 total samples without complication. Ultrasonography was used to confirm biopsy needle infiltration of the soleus muscle. Average sample weight obtained per pass was 61.5 +/- 15.7 mg. Histochemistry and molecular analyses demonstrated a considerably higher amount of slow type I MHC in comparison to the vastus lateralis, providing verification for the successful sampling of the soleus muscle. The procedure presented consists of a detailed protocol to accurately and consistently obtain muscle biopsy samples from the human soleus muscle. We have demonstrated that the human soleus biopsy is a safe, reliable, and repeatable procedure providing ample tissue for multiple types of analyses.

  12. Impaired translocation of GLUT4 results in insulin resistance of atrophic soleus muscle.

    Science.gov (United States)

    Xu, Peng-Tao; Song, Zhen; Zhang, Wen-Cheng; Jiao, Bo; Yu, Zhi-Bin

    2015-01-01

    Whether or not the atrophic skeletal muscle induces insulin resistance and its mechanisms are not resolved now. The antigravity soleus muscle showed a progressive atrophy in 1-week, 2-week, and 4-week tail-suspended rats. Hyperinsulinemic-euglycemic clamp showed that the steady-state glucose infusion rate was lower in 4-week tail-suspended rats than that in the control rats. The glucose uptake rates under insulin- or contraction-stimulation were significantly decreased in 4-week unloaded soleus muscle. The key protein expressions of IRS-1, PI3K, and Akt on the insulin-dependent pathway and of AMPK, ERK, and p38 on the insulin-independent pathway were unchanged in unloaded soleus muscle. The unchanged phosphorylation of Akt and p38 suggested that the activity of two signal pathways was not altered in unloaded soleus muscle. The AS160 and GLUT4 expression on the common downstream pathway also was not changed in unloaded soleus muscle. But the GLUT4 translocation to sarcolemma was inhibited during insulin stimulation in unloaded soleus muscle. The above results suggest that hindlimb unloading in tail-suspended rat induces atrophy in antigravity soleus muscle. The impaired GLUT4 translocation to sarcolemma under insulin stimulation may mediate insulin resistance in unloaded soleus muscle and further affect the insulin sensitivity of whole body in tail-suspended rats.

  13. Impaired Translocation of GLUT4 Results in Insulin Resistance of Atrophic Soleus Muscle

    Directory of Open Access Journals (Sweden)

    Peng-Tao Xu

    2015-01-01

    Full Text Available Whether or not the atrophic skeletal muscle induces insulin resistance and its mechanisms are not resolved now. The antigravity soleus muscle showed a progressive atrophy in 1-week, 2-week, and 4-week tail-suspended rats. Hyperinsulinemic-euglycemic clamp showed that the steady-state glucose infusion rate was lower in 4-week tail-suspended rats than that in the control rats. The glucose uptake rates under insulin- or contraction-stimulation were significantly decreased in 4-week unloaded soleus muscle. The key protein expressions of IRS-1, PI3K, and Akt on the insulin-dependent pathway and of AMPK, ERK, and p38 on the insulin-independent pathway were unchanged in unloaded soleus muscle. The unchanged phosphorylation of Akt and p38 suggested that the activity of two signal pathways was not altered in unloaded soleus muscle. The AS160 and GLUT4 expression on the common downstream pathway also was not changed in unloaded soleus muscle. But the GLUT4 translocation to sarcolemma was inhibited during insulin stimulation in unloaded soleus muscle. The above results suggest that hindlimb unloading in tail-suspended rat induces atrophy in antigravity soleus muscle. The impaired GLUT4 translocation to sarcolemma under insulin stimulation may mediate insulin resistance in unloaded soleus muscle and further affect the insulin sensitivity of whole body in tail-suspended rats.

  14. Neurotrophin-3 mRNA expression in rat intrafusal muscle fibres after denervation and reinnervation

    NARCIS (Netherlands)

    Copray, JCVM; Brouwer, N

    1997-01-01

    We have studied the regulation of the expression of neurotrophin-3 (NT-3) mRNA in neonatal and adult rat muscle spindles after denervation and after denervation followed by reinnervation. Denervation of the intrafusal fibres did not result in an upregulation of the NT-3 mRNA expression but decreased

  15. Excitation-induced force recovery in potassium-inhibited rat soleus muscle

    Science.gov (United States)

    Nielsen, Ole Bækgaard; Hilsted, Linda; Clausen, Torben

    1998-01-01

    Excitation markedly stimulates the Na+-K+ pump in skeletal muscle. The effect of this stimulation on contractility was examined in rat soleus muscles exposed to high extracellular K+ concentration ([K+]o).At a [K+]o of 10 mm, tetanic force declined to 58 % of the force in standard buffer with 5.9 mm K+. Subsequent direct stimulation of the muscle at 1 min intervals with 30 Hz pulse trains of 2 s duration induced a 97 % recovery of force within 14 min. Force recovery could also be elicited by stimulation via the nerve. In muscles exposed to 12.5 mm K+, 30 Hz pulse trains of 2 s duration at 1 min intervals induced a recovery of force from 16 ± 2 to 62 ± 4 % of the initial control force at a [K+]o of 5.9 mm.The recovery of force was associated with a decrease in intracellular Na+ and was blocked by ouabain. This indicates that the force recovery was secondary to activation of the Na+-K+ pump.Excitation stimulates the release of calcitonin gene-related peptide (CGRP) from nerves in the muscle. Since CGRP stimulates the Na+-K+ pump, this may contribute to the excitation-induced force recovery. Indeed, reducing CGRP content by capsaicin pre-treatment or prior denervation prevented both the excitation-induced force recovery and the drop in intracellular Na+.The data suggest that activation of the Na+-K+ pump in contracting muscles counterbalances the depressing effect of reductions in the chemical gradients for Na+ and K+ on excitability. PMID:9769424

  16. Nandrolone reduces activation of Notch signaling in denervated muscle associated with increased Numb expression

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xin-Hua [Center of Excellence for the Medical Consequences of Spinal Cord Injury, James J. Peter VA Medical Center, Bronx, NY 10468 (United States); Department of Medicine, Mount Sinai School of Medicine, New York, NY 10029 (United States); Yao, Shen; Qiao, Rui-Fang; Levine, Alice C. [Department of Medicine, Mount Sinai School of Medicine, New York, NY 10029 (United States); Kirschenbaum, Alexander [Department of Urology, Mount Sinai School of Medicine, New York, NY 10029 (United States); Pan, Jiangping; Wu, Yong [Center of Excellence for the Medical Consequences of Spinal Cord Injury, James J. Peter VA Medical Center, Bronx, NY 10468 (United States); Qin, Weiping [Center of Excellence for the Medical Consequences of Spinal Cord Injury, James J. Peter VA Medical Center, Bronx, NY 10468 (United States); Department of Medicine, Mount Sinai School of Medicine, New York, NY 10029 (United States); Bauman, William A. [Center of Excellence for the Medical Consequences of Spinal Cord Injury, James J. Peter VA Medical Center, Bronx, NY 10468 (United States); Department of Medicine, Mount Sinai School of Medicine, New York, NY 10029 (United States); Rehabilitation Medicine, Mount Sinai School of Medicine, New York, NY 10029 (United States); Cardozo, Christopher P., E-mail: chris.cardozo@mssm.edu [Center of Excellence for the Medical Consequences of Spinal Cord Injury, James J. Peter VA Medical Center, Bronx, NY 10468 (United States); Department of Medicine, Mount Sinai School of Medicine, New York, NY 10029 (United States); Rehabilitation Medicine, Mount Sinai School of Medicine, New York, NY 10029 (United States)

    2011-10-14

    Highlights: {yields} Nerve transection increased Notch signaling in paralyzed muscle. {yields} Nandrolone prevented denervation-induced Notch signaling. {yields} Nandrolone induced the expression of an inhibitor of the Notch signaling, Numb. {yields} Reduction of denervation-induced Notch signaling by nandrolone is likely through upregulation of Numb. -- Abstract: Nandrolone, an anabolic steroid, slows denervation-atrophy in rat muscle. The molecular mechanisms responsible for this effect are not well understood. Androgens and anabolic steroids activate Notch signaling in animal models of aging and thereby mitigate sarcopenia. To explore the molecular mechanisms by which nandrolone prevents denervation-atrophy, we investigated the effects of nandrolone on Notch signaling in denervated rat gastrocnemius muscle. Denervation significantly increased Notch activity reflected by elevated levels of nuclear Notch intracellular domain (NICD) and expression of Hey1 (a Notch target gene). Activation was greatest at 7 and 35 days after denervation but remained present at 56 days after denervation. Activation of Notch in denervated muscle was prevented by nandrolone associated with upregulated expression of Numb mRNA and protein. These data demonstrate that denervation activates Notch signaling, and that nandrolone abrogates this response associated with increased expression of Numb, suggesting a potential mechanism by which nandrolone reduces denervation-atrophy.

  17. Susceptibility of Skeletal Muscle to Coxsackie A2 Virus Infection: Effects of Botulinum Toxin and Denervation

    Science.gov (United States)

    Andrew, Clifford G.; Drachman, Daniel B.; Pestronk, Alan; Narayan, Opendra

    1984-02-01

    Coxsackie A viruses can infect denervated but not innervated mature skeletal muscles. The role of synaptic transmission in preventing susceptibility to Coxsackievirus infection was studied by surgically denervating leg muscles of mice or injecting the muscles with botulinum toxin to block quantal release of acetylcholine. Control muscles were injected with heat-inactivated toxin. Subsequent injection of Coxsackie A2 virus resulted in extensive virus replication and tissue destruction in the denervated and botulinum toxin-treated muscles, while the control muscles showed only minimal changes. This suggests that the susceptibility of skeletal muscle to Coxsackievirus infection is regulated by synaptic transmission.

  18. Effect of passive stretching on the immobilized soleus muscle fiber morphology

    Directory of Open Access Journals (Sweden)

    Coutinho E.L.

    2004-01-01

    Full Text Available The aim of the present study was to determine the effect of stretching applied every 3 days to the soleus muscle immobilized in the shortened position on muscle fiber morphology. Eighteen 16-week-old Wistar rats were used and divided into three groups of 6 animals each: a the left soleus muscle was immobilized in the shortened position for 3 weeks; b during immobilization, the soleus was stretched for 40 min every 3 days; c the non-immobilized soleus was only stretched. Left and right soleus muscles were examined. One portion of the soleus was frozen for histology and muscle fiber area evaluation, while the other portion was used to identify the number and length of serial sarcomeres. Immobilized muscles (group A showed a significant decrease in weight (44 ± 6%, length (19 ± 7%, serial sarcomere number (23 ± 15%, and fiber area (37 ± 31% compared to the contralateral muscles (P < 0.05, paired Student t-test. The immobilized and stretched soleus (group B showed a similar reduction but milder muscle fiber atrophy compared to the only immobilized group (22 ± 40 vs 37 ± 31%, respectively; P < 0.001, ANOVA test. Muscles submitted only to stretching (group C significantly increased the length (5 ± 2%, serial sarcomere number (4 ± 4%, and fiber area (16 ± 44% compared to the contralateral muscles (P < 0.05, paired Student t-test. In conclusion, stretching applied every 3 days to immobilized muscles did not prevent the muscle shortening, but reduced muscle atrophy. Stretching sessions induced hypertrophic effects in the control muscles. These results support the use of muscle stretching in sports and rehabilitation.

  19. [Denervation of mimic muscles during endoscopic lifting of the upper part of face].

    Science.gov (United States)

    Pinchuk, V D; Tkach, O S

    2013-08-01

    Endoscopic lifting of the upper part of face carry out in 28 patients Chemical or surgical denervation had been done for decreasing of mimic muscles activity. Medical glue with folic acid had been used for tissues fixation. Use of medical glue in conjunction with preliminary chemical denervation of mimic muscles with botulin toxin application decreases surgery duration, prevents complications and increases satisfaction of patients.

  20. Severely atrophic human muscle fibers with nuclear misplacement survive many years of permanent denervation

    Directory of Open Access Journals (Sweden)

    Ugo Carraro

    2016-06-01

    Full Text Available Likewise in rodents, after complete spinal cord injury (SCI the lower motor neuron (LMN denervated human muscle fibers lose completely the myofibrillar apparatus and the coil distribution of myonuclei that are relocated in groups (nuclear clumps in the center of severely atrophic muscle fibers. Up to two years of LMN denervation the muscle fibers with nuclear clumps are very seldom, but in this cohort of patients the severely atrophic muscle fibers are frequent in muscle biopsies harvested three to six years after SCI. Indeed, the percentage increased to 27 ± 9% (p< 0.001, and then abruptly decreased from the 6th year onward, when fibrosis takes over to neurogenic muscle atrophy. Immunohistochemical analyses shown that nuclear misplacements occurred in both fast and slow muscle fibers. In conclusion, human muscle fibers survive permanent denervation much longer than generally accepted and relocation of nuclei is a general behavior in long term denervated muscle fibers.

  1. Severe neuromuscular denervation of clinically relevant muscles in a mouse model of spinal muscular atrophy.

    Science.gov (United States)

    Ling, Karen K Y; Gibbs, Rebecca M; Feng, Zhihua; Ko, Chien-Ping

    2012-01-01

    Spinal muscular atrophy (SMA), a motoneuron disease caused by a deficiency of the survival of motor neuron (SMN) protein, is characterized by motoneuron loss and muscle weakness. It remains unclear whether widespread loss of neuromuscular junctions (NMJs) is involved in SMA pathogenesis. We undertook a systematic examination of NMJ innervation patterns in >20 muscles in the SMNΔ7 SMA mouse model. We found that severe denervation (<50% fully innervated endplates) occurs selectively in many vulnerable axial muscles and several appendicular muscles at the disease end stage. Since these vulnerable muscles were located throughout the body and were comprised of varying muscle fiber types, it is unlikely that muscle location or fiber type determines susceptibility to denervation. Furthermore, we found a similar extent of neurofilament accumulation at NMJs in both vulnerable and resistant muscles before the onset of denervation, suggesting that neurofilament accumulation does not predict subsequent NMJ denervation. Since vulnerable muscles were initially innervated, but later denervated, loss of innervation in SMA may be attributed to defects in synapse maintenance. Finally, we found that denervation was amendable by trichostatin A (TSA) treatment, which increased innervation in clinically relevant muscles in TSA-treated SMNΔ7 mice. Our findings suggest that neuromuscular denervation in vulnerable muscles is a widespread pathology in SMA, and can serve as a preparation for elucidating the biological basis of synapse loss, and for evaluating therapeutic efficacy.

  2. EMG-normalised kinase activation during exercise is higher in human gastrocnemius compared to soleus muscle.

    Directory of Open Access Journals (Sweden)

    Thomas E Jensen

    Full Text Available In mice, certain proteins show a highly confined expression in specific muscle groups. Also, resting and exercise/contraction-induced phosphorylation responses are higher in rat skeletal muscle with low mitochondrial content compared to muscles with high mitochondrial content, possibly related to differential reactive oxygen species (ROS-scavenging ability or resting glycogen content. To evaluate these parameters in humans, biopsies from soleus, gastrocnemius and vastus lateralis muscles were taken before and after a 45 min inclined (15% walking exercise bout at 69% VO2(max aimed at simultaneously activating soleus and gastrocnemius in a comparable dynamic work-pattern. Hexokinase II and GLUT4 were 46-59% and 26-38% higher (p<0.05 in soleus compared to the two other muscles. The type I muscle fiber percentage was highest in soleus and lowest in vastus lateralis. No differences were found in protein expression of signalling proteins (AMPK subunits, eEF2, ERK1/2, TBC1D1 and 4, mitochondrial markers (F1 ATPase and COX1 or ROS-handling enzymes (SOD2 and catalase. Gastrocnemius was less active than soleus measured as EMG signal and glycogen use yet gastrocnemius displayed larger increases than soleus in phosphorylation of AMPK Thr172, eEF2 Thr56 and ERK 1/2 Thr202/Tyr204 when normalised to the mean relative EMG-signal. In conclusion, proteins with muscle-group restricted expression in mice do not show this pattern in human lower extremity muscle groups. Nonetheless the phosphorylation-response is greater for a number of kinase signalling pathways in human gastrocnemius than soleus at a given activation-intensity. This may be due to the combined subtle effects of a higher type I muscle fiber content and higher training status in soleus compared to gastrocnemius muscle.

  3. Eccentric exercise training as a countermeasure to non-weight-bearing soleus muscle atrophy

    Science.gov (United States)

    Kirby, Christopher R.; Ryan, Mirelle J.; Booth, Frank W.

    1992-01-01

    This investigation tested whether eccentric resistance training could prevent soleus muscle atrophy during non-weight bearing. Adult female rats were randomly assigned to either weight bearing +/- intramuscular electrodes or non-weight bearing +/- intramuscular electrodes groups. Electrically stimulated maximal eccentric contractions were performed on anesthetized animals at 48-h intervals during the 10-day experiment. Non-weight bearing significantly reduced soleus muscle wet weight (28-31 percent) and noncollagenous protein content (30-31 percent) compared with controls. Eccentric exercise training during non-weight bearing attenuated but did not prevent the loss of soleus muscle wet weight and noncollagenous protein by 77 and 44 percent, respectively. The potential of eccentric exercise training as an effective and highly efficient counter-measure to non-weight-bearing atrophy is demonstrated in the 44 percent attenuation of soleus muscle noncollagenous protein loss by eccentric exercise during only 0.035 percent of the total non-weight-bearing time period.

  4. Eccentric exercise training as a countermeasure to non-weight-bearing soleus muscle atrophy

    Science.gov (United States)

    Kirby, Christopher R.; Ryan, Mirelle J.; Booth, Frank W.

    1992-01-01

    This investigation tested whether eccentric resistance training could prevent soleus muscle atrophy during non-weight bearing. Adult female rats were randomly assigned to either weight bearing +/- intramuscular electrodes or non-weight bearing +/- intramuscular electrodes groups. Electrically stimulated maximal eccentric contractions were performed on anesthetized animals at 48-h intervals during the 10-day experiment. Non-weight bearing significantly reduced soleus muscle wet weight (28-31 percent) and noncollagenous protein content (30-31 percent) compared with controls. Eccentric exercise training during non-weight bearing attenuated but did not prevent the loss of soleus muscle wet weight and noncollagenous protein by 77 and 44 percent, respectively. The potential of eccentric exercise training as an effective and highly efficient counter-measure to non-weight-bearing atrophy is demonstrated in the 44 percent attenuation of soleus muscle noncollagenous protein loss by eccentric exercise during only 0.035 percent of the total non-weight-bearing time period.

  5. Soleus muscle in glycosylation-deficient muscular dystrophy is protected from contraction-induced injury.

    Science.gov (United States)

    Gumerson, Jessica D; Kabaeva, Zhyldyz T; Davis, Carol S; Faulkner, John A; Michele, Daniel E

    2010-12-01

    The glycosylation of dystroglycan is required for its function as a high-affinity laminin receptor, and loss of dystroglycan glycosylation results in congenital muscular dystrophy. The purpose of this study was to investigate the functional defects in slow- and fast-twitch muscles of glycosylation-deficient Large(myd) mice. While a partial alteration in glycosylation of dystroglycan in heterozygous Large(myd/+) mice was not sufficient to alter muscle function, homozygous Large(myd/myd) mice demonstrated a marked reduction in specific force in both soleus and extensor digitorum longus (EDL) muscles. Although EDL muscles from Large(myd/myd) mice were highly susceptible to lengthening contraction-induced injury, Large(myd/myd) soleus muscles surprisingly showed no greater force deficit compared with wild-type soleus muscles even after five lengthening contractions. Despite no increased susceptibility to injury, Large(myd/myd) soleus muscles showed loss of dystroglycan glycosylation and laminin binding activity and dystrophic pathology. Interestingly, we show that soleus muscles have a markedly higher sarcolemma expression of β(1)-containing integrins compared with EDL and gastrocnemius muscles. Therefore, we conclude that β(1)-containing integrins play an important role as matrix receptors in protecting muscles containing slow-twitch fibers from contraction-induced injury in the absence of dystroglycan function, and that contraction-induced injury appears to be a separable phenotype from the dystrophic pathology of muscular dystrophy.

  6. Effect of one stretch a week applied to the immobilized soleus muscle on rat muscle fiber morphology

    Directory of Open Access Journals (Sweden)

    Gomes A.R.S.

    2004-01-01

    Full Text Available We determined the effect of stretching applied once a week to the soleus muscle immobilized in the shortened position on muscle fiber morphology. Twenty-six male Wistar rats weighing 269 ± 26 g were divided into three groups. Group I, the left soleus was immobilized in the shortened position for 3 weeks; group II, the soleus was immobilized in the shortened position and stretched once a week for 3 weeks; group III, the soleus was submitted only to stretching once a week for 3 weeks. The medial part of the soleus muscle was frozen for histology and muscle fiber area evaluation and the lateral part was used for the determination of number and length of serial sarcomeres. Soleus muscle submitted only to immobilization showed a reduction in weight (44 ± 6%, P = 0.002, in serial sarcomere number (23 ± 15% and in cross-sectional area of the fibers (37 ± 31%, P < 0.001 compared to the contralateral muscles. The muscle that was immobilized and stretched showed less muscle fiber atrophy than the muscles only immobilized (P < 0.05. Surprisingly, in the muscles submitted only to stretching, fiber area was decreased compared to the contralateral muscle (2548 ± 659 vs 2961 ± 806 µm², respectively, P < 0.05. In conclusion, stretching applied once a week for 40 min to the soleus muscle immobilized in the shortened position was not sufficient to prevent the reduction of muscle weight and of serial sarcomere number, but provided significant protection against muscle fiber atrophy. In contrast, stretching normal muscles once a week caused a reduction in muscle fiber area.

  7. Dietary Genistein Prevents Denervation-Induced Muscle Atrophy in Male Rodents via Effects on Estrogen Receptor-α.

    Science.gov (United States)

    Aoyama, Shinya; Jia, Huijuan; Nakazawa, Kyoko; Yamamura, Junki; Saito, Kenji; Kato, Hisanori

    2016-06-01

    Genistein has high estrogenic activity. Previous studies have shown beneficial effects of estrogen or hormone replacement therapy on muscle mass and muscle atrophy. We investigated the preventive effects and underlying mechanisms of genistein on muscle atrophy. In Expt. 1, male Wistar rats were fed a diet containing no genistein [control (CON)] or 0.05% genistein (GEN; wt:wt diet) for 24 d. On day 14, the sciatic nerve in the left hind leg was severed, and the right hind leg was sham-treated. In Expt. 2, male C57BL6J mice were subcutaneously administered a vehicle (Veh group) or the estrogen receptor (ER) antagonist ICI 182,780 (ICI group) via an osmotic pump for 27 d, and each group was subsequently fed CON or GEN diets from day 3 to day 27. Muscle atrophy was induced on day 17 as in Expt. 1. In Expt. 3, male C57BL6J mice were subcutaneously administered vehicle or a selective ER agonist-ER-α [4,4',4'-(4-propyl-[1H]-pyrazole-1,3,5-triyl)trisphenol (PPT)] or ER-β [2,3-bis(4-hydroxyphenyl)-propionitrile (DPN)]-or genistein (GEN-sc-i) via an osmotic pump for 13 d, and muscle atrophy was induced on day 3 as in Expt. 1. The ratio of denervated soleus muscle weight to sham-operated soleus muscle weight (d/s ratio) was used as the index of muscle atrophy. Expt. 1: The d/s ratio in the GEN group was 20% higher than that in the CON group (P muscle atrophy. ER-α was related to the preventive effect of genistein on muscle atrophy. © 2016 American Society for Nutrition.

  8. Effects of low-level laser therapy after nerve reconstruction in rat denervated soleus muscle adaptation Efeitos do laser de baixa potência após reconstrução nervosa na adaptação do músculo sóleo de rato

    Directory of Open Access Journals (Sweden)

    Marcela A Silva-Couto

    2012-08-01

    Full Text Available BACKGROUND: Peripheral nerve injury (PNI rehabilitation remains a challenge for physical therapists because PNI effects are very disabling. Low-level laser therapy (LLLT has been described as a physical resource that is able to influence enzymes called metallopeptidases (MMPs associated with extracellular matrix (ECM turnover, thus accelerating neuromuscular recovery after nerve crush injuries. However, the effects of LLLT in the treatment of severe nerve injuries and denervated slow-twitch muscles are still inconclusive. OBJECTIVES: The aim of this study was to evaluate the effects of different wavelengths and energy densities of LLLT irradiation, applied to a severe nerve injury after reconstruction, on denervated slow-twitch skeletal muscle adaptation. METHOD: Rats were submitted to a neurotmesis of the sciatic nerve followed by end-to-end neurorrhaphy. They received transcutaneous LLLT irradiation at the lesion site. The LLLT parameters were: wavelengths - 660 or 780 nm; energy densities - 10, 60 or 120 J/cm²; power - 40 mW; spot - 4 mm². Sciatic functional index (SFI, histological, morphometric, and zymographic analyses were performed. One-way ANOVA followed by Tukey's test was used (pCONTEXTUALIZAÇÃO: A reabilitaçao das lesões nervosas periféricas (LNP ainda é um desafio para a fisioterapia. A terapia com o laser de baixa potência (LBP é descrita como um recurso físico capaz de interagir com enzimas relacionadas à alteração da matrix extracelular. Denominadas metalopeptidases (MMPs, essas enzimas atuam durante a recuperação neuromuscular após LNP. No entanto, os efeitos da LBP no tratamento de músculos desnervados de contração lenta após LNP graves ainda são inconclusivos. OBJETIVO: Avaliar os efeitos de diferentes comprimentos de onda e densidades de energia de irradiação de LBP, aplicado sobre o local do nervo após LNP grave e reconstrução. MÉTODO: Ratos foram submetidos a neurotmese do nervo isquiático e

  9. Comparative decline of the protein profiles of nebulin in response to denervation in skeletal muscle

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Jih-Hua [Department of Internal Medicine, Min-Sheng General Hospital, Taoyuan, Taiwan (China); Chang, Nen-Chung [Division of Cardiology, Department of Internal Medicine, College of Medicine, Taipei Medical University Hospital, Taipei, Taiwan (China); Chen, Sy-Ping [Department of Nursing, Chang Gung University of Science and Technology, Taoyuan, Taiwan (China); Geraldine, Pitchairaj [Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu (India); Jayakumar, Thanasekaran, E-mail: tjaya_2002@yahoo.co.in [Department of Pharmacology and Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan (China); Fong, Tsorng-Harn, E-mail: thfong@tmu.edu.tw [Department of Anatomy and Cell Biology, College of Medicine, Taipei Medical University, Taipei, Taiwan (China)

    2015-10-09

    The sliding filament model of the sarcomere was developed more than half a century ago. This model, consisting only of thin and thick filaments, has been efficacious in elucidating many, but not all, features of skeletal muscle. Work during the 1980s revealed the existence of two additional filaments: the giant filamentous proteins titin and nebulin. Nebulin, a giant myofibrillar protein, acts as a protein ruler to maintain the lattice arrays of thin filaments and plays a role in signal transduction and contractile regulation. However, the change of nebulin and its effect on thin filaments in denervation-induced atrophic muscle remains unclear. The purpose of this study is to examine the content and pattern of nebulin, myosin heavy chain (MHC), actin, and titin in innervated and denervated tibialis anterior (TA) muscles of rats using sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), densitometry and electron microscopic (EM) analyses. The results revealed that denervation induced muscle atrophy is accompanied by decreased nebulin content in a time-dependent manner. For instant, the levels of nebulin in denervated muscles were markedly (P < 0.05) decreased, about 24.6% and 40.2% in comparison with innervated muscle after denervation of 28 and 56 days, respectively. The nebulin/MHC, nebulin/actin, and nebulin/titin ratios were decreased, suggesting a concomitant reduction of nebulin in denervated muscle. Moreover, a western blotting assay proved that nebulin declined faster than titin on 28 and 56 days of denervated muscle. In addition, EM study revealed that the disturbed arrangements of myofilaments and a disorganized contractile apparatus were also observed in denervated muscle. Overall, the present study provides evidence that nebulin is more sensitive to the effect of denervation than MHC, actin, and titin. Nebulin decline indeed resulted in disintegrate of thin filaments and shortening of sarcomeres. - Highlights: • We successfully

  10. Is fast fiber innervation responsible for increased acetylcholinesterase activity in reinnervating soleus muscles?

    Science.gov (United States)

    Misulis, K. E.; Dettbarn, W. D.

    1985-01-01

    An investigation was conducted as to whether the predominantly slow SOL, which is low in AChE activity, is initially reinnervated by axons that originally innervated fast muscle fibers with high AChE activity, such as those of the EDL. Local denervation of the SOL in the guinea pig was performed because this muscle is composed solely of slow (type I) fibers; thereby virtually eliminating the possibility of homologous muscle fast fiber innervation. The overshoot in this preparation was qualitatively similar to that seen with distal denervation in the guinea pig and local and distal denervation in the rat. Thus, initial fast fiber innvervation is not responsible for the patterns of change in AChE activity seen with reinnervation in the SOL. It is concluded that the neural control of AChe is different in these two muscles and may reflect specific differences in the characteristics of AChE regulation in fast and slow muscle.

  11. The effect of acute denervation on the microcirculation of skeletal muscle: rat cremaster model.

    Science.gov (United States)

    Chen, L E; Seaber, A V; Bossen, E; Urbaniak, J R

    1991-03-01

    Although tissue is denervated during replantation of a severed part, tissue transfer, or muscle transplantation, there are few studies concerning the effects of acute denervation on muscle microcirculation. We have described a surgical procedure that totally denervates the rat cremaster muscle. Histological examination of the denervated tissue has given convincing evidence of nerve degeneration and skeletal muscle atrophy, accompanied by electrophysiological evidence of total denervation. The diameters of each component of the microcirculation were measured before and after denervation. Arterioles and arteries ranging in size from 10 to 70 microns in diameter were found to increase significantly in size immediately after acute denervation. Larger arteries and veins did not undergo significant diametrical increases. These findings suggest that total acute denervation significantly increases the diameter of small arteries and arterioles, thereby decreasing the resistance in the arterial bed and increasing blood flow. Since this phenomenon is of limited duration (20 min), it would appear to be ineffective in enhancing reperfusion and oxygenation at the time of reattachment of amputated parts or during vascularized tissue transfers, until methods of prolonging it for several hours or more are found.

  12. Heat shock transcription factor 1-deficiency attenuates overloading-associated hypertrophy of mouse soleus muscle.

    Science.gov (United States)

    Koya, Tomoyuki; Nishizawa, Sono; Ohno, Yoshitaka; Goto, Ayumi; Ikuta, Akihiro; Suzuki, Miho; Ohira, Tomotaka; Egawa, Tatsuro; Nakai, Akira; Sugiura, Takao; Ohira, Yoshinobu; Yoshioka, Toshitada; Beppu, Moroe; Goto, Katsumasa

    2013-01-01

    Hypertrophic stimuli, such as mechanical stress and overloading, induce stress response, which is mediated by heat shock transcription factor 1 (HSF1), and up-regulate heat shock proteins (HSPs) in mammalian skeletal muscles. Therefore, HSF1-associated stress response may play a key role in loading-associated skeletal muscle hypertrophy. The purpose of this study was to investigate the effects of HSF1-deficiency on skeletal muscle hypertrophy caused by overloading. Functional overloading on the left soleus was performed by cutting the distal tendons of gastrocnemius and plantaris muscles for 4 weeks. The right muscle served as the control. Soleus muscles from both hindlimbs were dissected 2 and 4 weeks after the operation. Hypertrophy of soleus muscle in HSF1-null mice was partially inhibited, compared with that in wild-type (C57BL/6J) mice. Absence of HSF1 partially attenuated the increase of muscle wet weight and fiber cross-sectional area of overloaded soleus muscle. Population of Pax7-positive muscle satellite cells in HSF1-null mice was significantly less than that in wild-type mice following 2 weeks of overloading (pmuscle hypertrophy might be attributed to the greater and prolonged enhancement of IL-6 expression. HSF1 and/or HSF1-mediated stress response may, in part, play a key role in loading-induced skeletal muscle hypertrophy.

  13. Acute and chronic changes in rat soleus muscle after high-fat high-sucrose diet.

    Science.gov (United States)

    Collins, Kelsey H; Hart, David A; Smith, Ian C; Issler, Anthony M; Reimer, Raylene A; Seerattan, Ruth A; Rios, Jaqueline L; Herzog, Walter

    2017-05-01

    The effects of obesity on different musculoskeletal tissues are not well understood. The glycolytic quadriceps muscles are compromised with obesity, but due to its high oxidative capacity, the soleus muscle may be protected against obesity-induced muscle damage. To determine the time-course relationship between a high-fat/high-sucrose (HFS) metabolic challenge and soleus muscle integrity, defined as intramuscular fat invasion, fibrosis and molecular alterations over six time points. Male Sprague-Dawley rats were fed a HFS diet (n = 64) and killed at serial short-term (3 days, 1 week, 2 weeks, 4 weeks) and long-term (12 weeks, 28 weeks) time points. Chow-fed controls (n = 21) were killed at 4, 12, and 28 weeks. At sacrifice, animals were weighed, body composition was calculated (DXA), and soleus muscles were harvested and flash-frozen. Cytokine and adipokine mRNA levels for soleus muscles were assessed, using RT-qPCR Histological assessment of muscle fibrosis and intramuscular fat was conducted, CD68(+) cell number was determined using immunohistochemistry, and fiber typing was assessed using myosin heavy chain protein analysis. HFS animals demonstrated significant increases in body fat by 1 week, and this increase in body fat was sustained through 28 weeks on the HFS diet. Short-term time-point soleus muscles demonstrated up-regulated mRNA levels for inflammation, atrophy, and oxidative stress molecules. However, intramuscular fat, fibrosis, and CD68(+) cell number were similar to their respective control group at all time points evaluated. Therefore, the oxidative capacity of the soleus may be protective against diet-induced alterations to muscle integrity. Increasing oxidative capacity of muscles using aerobic exercise may be a beneficial strategy for mitigating obesity-induced muscle damage, and its consequences. © 2017 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American

  14. Effects of muscle activation on shear between human soleus and gastrocnemius muscles.

    Science.gov (United States)

    Finni, T; Cronin, N J; Mayfield, D; Lichtwark, G A; Cresswell, A G

    2017-01-01

    Lateral connections between muscles provide pathways for myofascial force transmission. To elucidate whether these pathways have functional roles in vivo, we examined whether activation could alter the shear between the soleus (SOL) and lateral gastrocnemius (LG) muscles. We hypothesized that selective activation of LG would decrease the stretch-induced shear between LG and SOL. Eleven volunteers underwent a series of knee joint manipulations where plantar flexion force, LG, and SOL muscle fascicle lengths and relative displacement of aponeuroses between the muscles were obtained. Data during a passive full range of motion were recorded, followed by 20° knee extension stretches in both passive conditions and with selective electrical stimulation of LG. During active stretch, plantar flexion force was 22% greater (P muscles, at least at flexed knee joint angles, which may serve to facilitate myofascial force transmission. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  15. Diagnostic signs of motor neuropathy in MR neurography: Nerve lesions and muscle denervation

    Energy Technology Data Exchange (ETDEWEB)

    Schwarz, Daniel; Pham, Mirko; Bendszus, Martin; Baeumer, Philipp [Heidelberg University Hospital, Department of Neuroradiology, Heidelberg (Germany); Weiler, Markus [Heidelberg University Hospital, Department of Neurology, Heidelberg (Germany); German Cancer Research Center (DKFZ), Clinical Cooperation Unit Neurooncology, Heidelberg (Germany); Heiland, Sabine [Heidelberg University Hospital, Section of Experimental Radiology, Department of Neuroradiology, Heidelberg (Germany)

    2015-05-01

    To investigate the diagnostic contribution of T2-w nerve lesions and of muscle denervation in peripheral motor neuropathies by magnetic resonance neurography (MRN). Fifty-one patients with peripheral motor neuropathies underwent high-resolution MRN by large coverage axial T2-w sequences of the upper arm, elbow, and forearm. Images were evaluated by two blinded readers for T2-w signal alterations of median, ulnar, and radial nerves, and for denervation in respective target muscle groups. All 51 patients displayed nerve lesions in at least one of three nerves, and 43 out of 51 patients showed denervation in at least one target muscle group of these nerves. In 21 out of 51 patients, the number of affected nerves matched the number of affected target muscle groups. In the remaining 30 patients, T2-w lesions were encountered more frequently than target muscle group denervation. In 153 nerve-muscle pairs, 72 showed denervation, but only one had increased muscle signal without a lesion in the corresponding nerve. MRN-based diagnosis of peripheral motor neuropathies is more likely by visualization of peripheral nerve lesions than by denervation in corresponding target muscles. Increased muscular T2-w signal without concomitant nerve lesions should raise suspicion of an etiology other than peripheral neuropathy. (orig.)

  16. Bilateral additional bellies of the soleus muscle: anatomical and clinical insight

    Directory of Open Access Journals (Sweden)

    Singh S

    2009-01-01

    Full Text Available Bilateral additional musculo-tendinous bellies of soleus muscle were encountered during undergraduate gross anatomy teaching program. The additional bellies were found to arise from infero-lateral aspect of the soleus muscle. Distally, this muscle belly tapered into a long tendon measuring 4.3 cm and 4.6 cm on left and right sides, respectively. The tendons on both sides, inserted to the lateral aspect of respective tendo-Achilles. The additional musculo-tendinous bellies had no demonstrable bony attachments and no separate vascular or nerve supply. The clinical relevance of soleus muscle flap in reparative and reconstructive surgeries of distal third of leg is discussed and a possible role of this accessory belly in tendon transfer is being emphasized.

  17. Connexin hemichannels explain the ionic imbalance and lead to atrophy in denervated skeletal muscles.

    Science.gov (United States)

    Cisterna, Bruno A; Vargas, Aníbal A; Puebla, Carlos; Sáez, Juan C

    2016-11-01

    Denervated fast skeletal muscles undergo atrophy, which is associated with an increase in sarcolemma permeability and protein imbalance. However, the mechanisms responsible for these alterations remain largely unknown. Recently, a close association between de novo expression of hemichannels formed by connexins 43 and 45 and increase in sarcolemma permeability of denervated fast skeletal myofibers was demonstrated. However, it remains unknown whether these connexins cause the ionic imbalance of denervates fast myofibers. To elucidate the latter and the role of hemichannels formed by connexins (Cx HCs) in denervation-induced atrophy, skeletal myofibers deficient in Cx43 and Cx45 expression (Cx43(fl/fl)Cx45(fl/fl):Myo-Cre mice) and control (Cx43(fl/fl)Cx45(fl/fl) mice) were denervated and several muscle features were systematically analyzed at different post-denervation (PD) times (1, 3, 5, 7 and 14days). The following sequence of events was found in denervated myofibers of Cx43(fl/fl)Cx45(fl/fl) mice: 1) from day 3 PD, increase in sarcolemmal permeability, 2) from day 5 PD, increases of intracellular Ca(2+) and Na(+) signals as well as a significant increase in protein synthesis and degradation, yielding a negative protein balance and 3) from day 7 PD, a fall in myofibers cross-section area. All the above alterations were either absent or drastically reduced in denervated myofibers of Cx43(fl/fl)Cx45(fl/fl):Myo-Cre mice. Thus, the denervation-induced Cx HCs expression is an early event that precedes the electrochemical gradient dysregulation across the sarcolemma and critically contributes to the progression of skeletal muscle atrophy. Consequently, Cx HCs could be a therapeutic target to drastically prevent the denervation-induced atrophy of fast skeletal muscles. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Motor unit firing behaviour of soleus muscle in isometric and dynamic contractions

    DEFF Research Database (Denmark)

    Kallio, Jouni; Søgaard, Karen; Avela, Janne

    2013-01-01

    Understanding the detailed control of human locomotion and balance can be improved, when individual motor units can be isolated and their firing rates followed in natural movement of large, fuctionally important muscles. For this reason the present study investigated the motor unit discharge rate...... (MUDR) in isometric and dynamic contractions of the soleus muscle....

  19. Regenerated soleus muscle shows reduced creatine kinase efflux after contractile activity in vitro.

    Science.gov (United States)

    Baltusnikas, Juozas; Kilikevicius, Audrius; Venckunas, Tomas; Fokin, Andrej; Lionikas, Arimantas; Ratkevicius, Aivaras

    2015-02-01

    Regenerated skeletal muscles show less muscle damage after strenuous muscle exercise. The aim of the studies was to investigate if the regeneration is associated with reduced muscle creatine kinase (CK) efflux immediately after the exercise. Cryolesion was applied to the soleus muscle of 3-month-old C57BL/6J male mice. Then total CK efflux was assessed in vitro in the regenerated muscles without exercise or after 100 eccentric contractions. The same measurements were performed in the control muscles, which were not exposed to cryolesion. Regenerated muscles generated weaker (P resistance to damage after eccentric exercise.

  20. Diffusion-weighted MRI of denervated muscle: a clinical and experimental study

    Energy Technology Data Exchange (ETDEWEB)

    Holl, Nathalie; Bierry, Guillaume; Moser, Thomas; Dietemann, Jean-Louis; Kremer, Stephane [Hopitaux Universitaires de Strasbourg, Service de Radiologie 2, Strasbourg (France); Echaniz-Laguna, Andoni [Hopitaux Universitaires de Strasbourg, Departement de Neurologie, BP 426, Strasbourg (France); Mohr, Michel [Hopitaux Universitaires de Strasbourg, Departement d' Anatomie Pathologique, Strasbourg (France); Loeffler, Jean-Philippe [INSERM U692, Laboratoire de Signalisations Moleculaires et Neurodegenerescence, Faculte de Medecine, Strasbourg (France)

    2008-12-15

    The aim of this study was to investigate skeletal muscle denervation using diffusion-weighted magnetic resonance imaging (DWMRI). Sciatic nerve axotomy was performed in a group of nine New Zealand White rabbits, and electromyographic (EMG), pathological, and DWMRI studies were conducted on ipsilateral hamstring muscles 1 and 8 days after axotomy. In addition, DWMRI studies were carried out on leg muscles of ten patients with acute and subacute lumbosacral radiculopathy. High intensity signals on short tau inversion recovery (STIR) magnetic resonance imaging and an increased apparent diffusion coefficient (ADC) were observed in denervated muscles of the animals 1 and 8 days after axotomy as well as in denervated muscles of the patients with radiculopathy. In the clinical study, ADC was 1.26{+-}0.18 x 10{sup -9} m{sup 2}/s in normal muscle and increased to 1.56{+-}0.23 x 10{sup -9} m{sup 2}/s in denervated muscles (p =0.0016). In animals, EMG and muscle pathological studies were normal 1 day after axotomy, and the muscles demonstrated spontaneous activity on EMG and neurogenic atrophy on histological studies 7 days later. This DWMRI study demonstrates that enlargement of extracellular fluid space in muscle denervation is an early phenomenon occurring several days before the appearance of EMG and histological abnormalities. (orig.)

  1. Increase in ubiquitin-protein conjugates concomitant with the increase in proteolysis in rat skeletal muscle during starvation and atrophy denervation

    Science.gov (United States)

    Wing, S. S.; Haas, A. L.; Goldberg, A. L.

    1995-01-01

    The rapid loss of skeletal-muscle protein during starvation and after denervation occurs primarily through increased rates of protein breakdown and activation of a non-lysosomal ATP-dependent proteolytic process. To investigate whether protein flux through the ubiquitin (Ub)-proteasome pathway is enhanced, as was suggested by related studies, we measured, using specific polyclonal antibodies, the levels of Ub-conjugated proteins in normal and atrophying muscles. The content of these critical intermediates had increased 50-250% after food deprivation in the extensor digitorum longus and soleus muscles 2 days after denervation. Like rates of proteolysis, the amount of Ub-protein conjugates and the fraction of Ub conjugated to proteins increased progressively during food deprivation and returned to normal within 1 day of refeeding. During starvation, muscles of adrenalectomized rats failed to increase protein breakdown, and they showed 50% lower levels of Ub-protein conjugates than those of starved control animals. The changes in the pools of Ub-conjugated proteins (the substrates for the 26S proteasome) thus coincided with and can account for the alterations in overall proteolysis. In this pathway, large multiubiquitinated proteins are preferentially degraded, and the Ub-protein conjugates that accumulated in atrophying muscles were of high molecular mass (> 100 kDa). When innervated and denervated gastrocnemius muscles were fractionated, a significant increase in ubiquitinated proteins was found in the myofibrillar fraction, the proteins of which are preferentially degraded on denervation, but not in the soluble fraction. Thus activation of this proteolytic pathway in atrophying muscles probably occurs initially by increasing Ub conjugation to cell proteins. The resulting accumulation of Ub-protein conjugates suggests that their degradation by the 26S proteasome complex subsequently becomes rate-limiting in these catabolic states.

  2. Denervation causes fiber atrophy and myosin heavy chain co-expression in senescent skeletal muscle.

    Directory of Open Access Journals (Sweden)

    Sharon L Rowan

    Full Text Available Although denervation has long been implicated in aging muscle, the degree to which it is causes the fiber atrophy seen in aging muscle is unknown. To address this question, we quantified motoneuron soma counts in the lumbar spinal cord using choline acetyl transferase immunhistochemistry and quantified the size of denervated versus innervated muscle fibers in the gastrocnemius muscle using the in situ expression of the denervation-specific sodium channel, Nav₁.₅, in young adult (YA and senescent (SEN rats. To gain insights into the mechanisms driving myofiber atrophy, we also examined the myofiber expression of the two primary ubiquitin ligases necessary for muscle atrophy (MAFbx, MuRF1. MN soma number in lumbar spinal cord declined 27% between YA (638±34 MNs×mm⁻¹ and SEN (469±13 MNs×mm⁻¹. Nav₁.₅ positive fibers (1548±70 μm² were 35% smaller than Nav₁.₅ negative fibers (2367±78 μm²; P<0.05 in SEN muscle, whereas Nav₁.₅ negative fibers in SEN were only 7% smaller than fibers in YA (2553±33 μm²; P<0.05 where no Nav₁.₅ labeling was seen, suggesting denervation is the primary cause of aging myofiber atrophy. Nav₁.₅ positive fibers had higher levels of MAFbx and MuRF1 (P<0.05, consistent with involvement of the proteasome proteolytic pathway in the atrophy of denervated muscle fibers in aging muscle. In summary, our study provides the first quantitative assessment of the contribution of denervation to myofiber atrophy in aging muscle, suggesting it explains the majority of the atrophy we observed. This striking result suggests a renewed focus should be placed on denervation in seeking understanding of the causes of and treatments for aging muscle atrophy.

  3. Catalase-positive microperoxisomes in rat soleus and extensor digitorum longus muscle fiber types

    Science.gov (United States)

    Riley, Danny A.; Bain, James L. W.; Ellis, Stanley

    1988-01-01

    The size, distribution, and content of catalase-reactive microperoxisomes were investigated cytochemically in three types of muscle fibers from the soleus and the extensor digitorum longus (EDL) of male rats. Muscle fibers were classified on the basis of the mitochondrial content and distribution, the Z-band widths, and the size and shape of myofibrils as the slow-twitch oxidative (SO), the fast-twitch oxidative glycolytic (FOG), and the fast-twitch glycolytic (FG) fibers. It was found that both the EDL and soleus SO fibers possessed the largest microperoxisomes. A comparison of microperoxisome number per muscle fiber area or the microperoxisome area per fiber area revealed following ranking, starting from the largest number and the area-ratio values: soleus SO, EDL SO, EDL FOG, and EDL FG.

  4. MRI diagnosis of muscle denervation from herpes zoster with discordant distribution of the skin rash

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, Amit; Sundaram, Murali [Cleveland Clinic, Section of Musculoskeletal Radiology, Imaging Institute, Cleveland, OH (United States); Winalski, Carl S. [Cleveland Clinic, Section of Musculoskeletal Radiology, Imaging Institute, Cleveland, OH (United States); Cleveland Clinic, Department of Biomedical Engineering, Lerner Research Institute, Cleveland, OH (United States)

    2014-10-15

    Herpes zoster is a common disorder characterized by a painful rash along a dermatome caused by reactivation of the varicella zoster virus (VZV). Muscle denervation injury from motor involvement is an uncommon phenomenon. Discordant distribution of the skin rash and motor nerve involvement, presenting as a skin rash in one body part and muscle weakness or pain from nerve involvement in another body part is an even more uncommonly reported finding. We present an unusual case of muscle denervation injury resulting from motor involvement of a peripheral nerve by VZV diagnosed by magnetic resonance imaging with cutaneous manifestations in a different dermatomal distribution. To the best of our knowledge, there has been no similar case reported in the English radiology literature. We suggest that whenever a radiologist notices MRI findings suggesting denervation injury and a cause not readily identified, VZV-related denervation injury should be included in the differential diagnosis, especially in an older immunocompromised patient. (orig.)

  5. AMP-activated kinase α2 deficiency protects mice from denervation-induced skeletal muscle atrophy.

    Science.gov (United States)

    Guo, Yuting; Meng, Jin; Tang, Yinglong; Wang, Ting; Wei, Bin; Feng, Run; Gong, Bing; Wang, Huiwen; Ji, Guangju; Lu, Zhongbing

    2016-06-15

    AMP-activated protein kinase (AMPK) is a master regulator of skeletal muscle metabolic pathways. Recently, AMPK activation by AICAR has been shown to increase myofibrillar protein degradation in C2C12 myotubes via stimulating autophagy and ubiquitin proteasome system. However, the impact of AMPKα on denervation induced muscle atrophy has not been tested. In this study, we performed sciatic denervation on hind limb muscles in both wild type (WT) and AMPKα2(-/-) mice. We found that AMPKα was phosphorylated in atrophic muscles following denervation. In addition, deletion of AMPKα2 significantly attenuated denervation induced skeletal muscle wasting and protein degradation, as evidenced by preserved muscle mass and myofiber area, as well as lower levels of ubiquitinated protein, Atrogin-1 and MuRF-1 expression, and LC3-II/I ratio in tibial anterior (TA) muscles. Interestingly, the phosphorylated FoxO3a at Ser253 was significantly decreased in atrophic TA muscles, which was preserved in AMPKα2(-/-) mice. Collectively, our data support the notion that the activation of AMPKα2 contributes to the atrophic effects of denervation. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Effects of weightlessness and movement restriction on the structure and metabolism of the soleus muscle in monkeys after space flight.

    Science.gov (United States)

    Shenkman, B S; Belozerova, I N; Lee, Peter; Nemirovskaya, T L; Kozlovskaya, I B

    2003-09-01

    After humans and animals have been in conditions of real and modeled weightlessness, the most marked changes are seen in the "slow" tonic muscles, particularly soleus. Studies of the effects of weightlessness and movement restriction on the soleus muscle in monkeys demonstrated significant reductions in the sizes of slow and rapid fibers due mainly to the actions of real weightlessness (rather than movement restriction in the space capsule). Protein loss in soleus muscle fibers in monkeys following space flight was more marked than loss of other components, including water. The level of atrophy of soleus muscle fibers in these conditions was greater than the decrease in the number of capillaries. Succinate dehydrogenase activity in soleus muscle fibers decreased proportionally to the reduction in fiber size.

  7. Balanced Diet-Fed Fat-1 Transgenic Mice Exhibit Lower Hindlimb Suspension-Induced Soleus Muscle Atrophy.

    Science.gov (United States)

    Marzuca-Nassr, Gabriel Nasri; Murata, Gilson Masahiro; Martins, Amanda Roque; Vitzel, Kaio Fernando; Crisma, Amanda Rabello; Torres, Rosângela Pavan; Mancini-Filho, Jorge; Kang, Jing Xuan; Curi, Rui

    2017-10-06

    The consequences of two-week hindlimb suspension (HS) on skeletal muscle atrophy were investigated in balanced diet-fed Fat-1 transgenic and C57BL/6 wild-type mice. Body composition and gastrocnemius fatty acid composition were measured. Skeletal muscle force, cross-sectional area (CSA), and signaling pathways associated with protein synthesis (protein kinase B, Akt; ribosomal protein S6, S6, eukaryotic translation initiation factor 4E-binding protein 1, 4EBP1; glycogen synthase kinase3-beta, GSK3-beta; and extracellular-signal-regulated kinases 1/2, ERK 1/2) and protein degradation (atrophy gene-1/muscle atrophy F-box, atrogin-1/MAFbx and muscle RING finger 1, MuRF1) were evaluated in the soleus muscle. HS decreased soleus muscle wet and dry weights (by 43% and 26%, respectively), muscle isotonic and tetanic force (by 29% and 18%, respectively), CSA of the soleus muscle (by 36%), and soleus muscle fibers (by 45%). Fat-1 transgenic mice had a decrease in the ω-6/ω-3 polyunsaturated fatty acids (PUFAs) ratio as compared with C57BL/6 wild-type mice (56%, p Fat-1 mice had lower soleus muscle dry mass loss (by 10%) and preserved absolute isotonic force (by 17%) and CSA of the soleus muscle (by 28%) after HS as compared with C57BL/6 wild-type mice. p-GSK3B/GSK3B ratio was increased (by 70%) and MuRF-1 content decreased (by 50%) in the soleus muscle of Fat-1 mice after HS. Balanced diet-fed Fat-1 mice are able to preserve in part the soleus muscle mass, absolute isotonic force and CSA of the soleus muscle in a disuse condition.

  8. Fine-mapping of genes determining extrafusal fiber properties in murine soleus muscle.

    Science.gov (United States)

    Carroll, A M; Cheng, R; Collie-Duguid, E S R; Meharg, C; Scholz, M E; Fiering, S; Fields, J L; Palmer, A A; Lionikas, A

    2017-03-01

    Muscle fiber cross-sectional area (CSA) and proportion of different fiber types are important determinants of muscle function and overall metabolism. Genetic variation plays a substantial role in phenotypic variation of these traits; however, the underlying genes remain poorly understood. This study aimed to map quantitative trait loci (QTL) affecting differences in soleus muscle fiber traits between the LG/J and SM/J mouse strains. Fiber number, CSA, and proportion of oxidative type I fibers were assessed in the soleus of 334 genotyped female and male mice of the F34 generation of advanced intercross lines (AIL) derived from the LG/J and SM/J strains. To increase the QTL detection power, these data were combined with 94 soleus samples from the F2 intercross of the same strains. Transcriptome of the soleus muscle of LG/J and SM/J females was analyzed by microarray. Genome-wide association analysis mapped four QTL (genome-wide P < 0.05) affecting the properties of muscle fibers to chromosome 2, 3, 4, and 11. A 1.5-LOD QTL support interval ranged between 2.36 and 4.67 Mb. On the basis of the genomic sequence information and functional and transcriptome data, we identified candidate genes for each of these QTL. The combination of analyses in F2 and F34 AIL populations with transcriptome and genomic sequence data in the parental strains is an effective strategy for refining QTL and nomination of the candidate genes.

  9. Persistent muscle fiber regeneration in long term denervation. Past, present, future

    Directory of Open Access Journals (Sweden)

    Ugo Carraro

    2015-03-01

    Full Text Available Despite the ravages of long term denervation there is structural and ultrastructural evidence for survival of muscle fibers in mammals, with some fibers surviving at least ten months in rodents and 3-6 years in humans. Further, in rodents there is evidence that muscle fibers may regenerate even after repeated damage in the absence of the nerve, and that this potential is maintained for several months after denervation. While in animal models permanently denervated muscle sooner or later loses the ability to contract, the muscles may maintain their size and ability to function if electrically stimulated soon after denervation. Whether in mammals, humans included, this is a result of persistent de novo formation of muscle fibers is an open issue we would like to explore in this review. During the past decade, we have studied muscle biopsies from the quadriceps muscle of Spinal Cord Injury (SCI patients suffering with Conus and Cauda Equina syndrome, a condition that fully and irreversibly disconnects skeletal muscle fibers from their damaged innervating motor neurons. We have demonstrated that human denervated muscle fibers survive years of denervation and can be rescued from severe atrophy by home-based Functional Electrical Stimulation (h-bFES. Using immunohistochemistry with both non-stimulated and the h-bFES stimulated human muscle biopsies, we have observed the persistent presence of muscle fibers which are positive to labeling by an antibody which specifically recognizes the embryonic myosin heavy chain (MHCemb. Relative to the total number of fibers present, only a small percentage of these MHCemb positive fibers are detected, suggesting that they are regenerating muscle fibers and not pre-existing myofibers re-expressing embryonic isoforms. Although embryonic isoforms of acetylcholine receptors are known to be re-expressed and to spread from the end-plate to the sarcolemma of muscle fibers in early phases of muscle denervation, we suggest

  10. Morphological Alterations in Gastrocnemius and Soleus Muscles in Male and Female Mice in a Fibromyalgia Model.

    Directory of Open Access Journals (Sweden)

    Gabriel Alejandro Bonaterra

    Full Text Available Fibromyalgia (FM is a chronic musculoskeletal pain disorder, characterized by chronic widespread pain and bodily tenderness and is often accompanied by affective disturbances, however often with unknown etiology. According to recent reports, physical and psychological stress trigger FM. To develop new treatments for FM, experimental animal models for FM are needed to be development and characterized. Using a mouse model for FM including intermittent cold stress (ICS, we hypothesized that ICS leads to morphological alterations in skeletal muscles in mice.Male and female ICS mice were kept under alternating temperature (4 °C/room temperature [22 °C]; mice constantly kept at room temperature served as control. After scarification, gastrocnemius and soleus muscles were removed and snap-frozen in liquid nitrogen-cooled isopentane or fixed for electron microscopy.In gastrocnemius/soleus muscles of male ICS mice, we found a 21.6% and 33.2% decrease of fiber cross sectional area (FCSA, which in soleus muscle concerns the loss of type IIa and IIx FCSA. This phenomenon was not seen in muscles of female ICS mice. However, this loss in male ICS mice was associated with an increase in gastrocnemius of the density of MIF+ (8.6%-, MuRF+ (14.7%-, Fbxo32+ (17.8%-cells, a 12.1% loss of capillary contacts/muscle fiber as well as a 30.7% increase of damaged mitochondria in comparison with male control mice. Moreover, significant positive correlations exist among densities (n/mm(2 of MIF+, MuRF+, Fbxo32+-cells in gastrocnemius/ soleus muscles of male ICS mice; these cell densities inversely correlate with FCSA especially in gastrocnemius muscle of male ICS mice.The ICS-induced decrease of FCSA mainly concerns gastrocnemius muscle of male mice due to an increase of inflammatory and atrogenic cells. In soleus muscle of male ICS and soleus/gastrocnemius muscles of female ICS mice morphological alterations seem to occur not at all or delayed. The sex-specificity of

  11. Morphological Alterations in Gastrocnemius and Soleus Muscles in Male and Female Mice in a Fibromyalgia Model

    Science.gov (United States)

    Oezel, Lisa; Schwarzbach, Hans; Ocker, Matthias; Thieme, Kati; Di Fazio, Pietro; Kinscherf, Ralf

    2016-01-01

    Background Fibromyalgia (FM) is a chronic musculoskeletal pain disorder, characterized by chronic widespread pain and bodily tenderness and is often accompanied by affective disturbances, however often with unknown etiology. According to recent reports, physical and psychological stress trigger FM. To develop new treatments for FM, experimental animal models for FM are needed to be development and characterized. Using a mouse model for FM including intermittent cold stress (ICS), we hypothesized that ICS leads to morphological alterations in skeletal muscles in mice. Methods Male and female ICS mice were kept under alternating temperature (4°C/room temperature [22°C]); mice constantly kept at room temperature served as control. After scarification, gastrocnemius and soleus muscles were removed and snap-frozen in liquid nitrogen–cooled isopentane or fixed for electron microscopy. Results In gastrocnemius/soleus muscles of male ICS mice, we found a 21.6% and 33.2% decrease of fiber cross sectional area (FCSA), which in soleus muscle concerns the loss of type IIa and IIx FCSA. This phenomenon was not seen in muscles of female ICS mice. However, this loss in male ICS mice was associated with an increase in gastrocnemius of the density of MIF+ (8.6%)-, MuRF+ (14.7%)-, Fbxo32+ (17.8%)-cells, a 12.1% loss of capillary contacts/muscle fiber as well as a 30.7% increase of damaged mitochondria in comparison with male control mice. Moreover, significant positive correlations exist among densities (n/mm2) of MIF+, MuRF+, Fbxo32+-cells in gastrocnemius/ soleus muscles of male ICS mice; these cell densities inversely correlate with FCSA especially in gastrocnemius muscle of male ICS mice. Conclusion The ICS-induced decrease of FCSA mainly concerns gastrocnemius muscle of male mice due to an increase of inflammatory and atrogenic cells. In soleus muscle of male ICS and soleus/gastrocnemius muscles of female ICS mice morphological alterations seem to occur not at all or

  12. INFLUENCE OF SHORTENED AND LENGTHENED IMMOBILIZATION ON RAT SOLEUS MUSCLE ATROPHY

    Institute of Scientific and Technical Information of China (English)

    邢国刚; 樊小力; 吴苏娣; 宋新爱; 朱保恭; 唐斌

    2001-01-01

    Objective: To study the possible mechanism and prevention of disuse muscle atrophy. Methods: The shortened immobilization (plaster fixation) of rat' s soleus muscle (SOL) was used as the model of muscle and the lengthened immobilization of rat' s SOL muscle as "passive stretch" method. Types of skeletal muscle fibers were differentiated with m - ATPase staining technique. The changes of rat' s SOL muscle weight (wet weight) as well as the types and the mean cross - sectional area (CSA) of muscle fibers were examined respectively on day 2, 4,7, 14 and 21 under both shortened and lengthened immobilization and then the effect of passive stretch on soleus muscle atrophy in immobilized rats was observed. Results: When shortened immobilization was applied for 4 days, SOL muscle weight (wet weight) became lighter; the fiber crosssectional area (CSA) shrank and type Ⅰ muscle fibers started transforming into type Ⅱ, which all indicated immobilized muscles began to atrophy and as immobilization proceeded, muscle atrophy proceeded toward higher level. In contrast to that, when lengthened immobilization was applied, SOL muscle didn' t show any sign of atrophy until 7th day, and reached its highest level on day 14 and maintained that level even though immobilization continued. Conclusion: From the results, we conclude that passive stretch can either relieve or defer disuse muscle atrophy.

  13. Mild Hyperbaric Oxygen Improves Decreased Oxidative Capacity of Spinal Motoneurons Innervating the Soleus Muscle of Rats with Type 2 Diabetes.

    Science.gov (United States)

    Takemura, Ai; Ishihara, Akihiko

    2016-09-01

    Rats with type 2 diabetes exhibit decreased oxidative capacity, such as reduced oxidative enzyme activity, low-intensity staining for oxidative enzymes in fibers, and no high-oxidative type IIA fibers, in the skeletal muscle, especially in the soleus muscle. In contrast, there are no data available concerning the oxidative capacity of spinal motoneurons innervating skeletal muscle of rats with type 2 diabetes. This study examined the oxidative capacity of motoneurons innervating the soleus muscle of non-obese rats with type 2 diabetes. In addition, this study examined the effects of mild hyperbaric oxygen at 1.25 atmospheres absolute with 36 % oxygen for 10 weeks on the oxidative capacity of motoneurons innervating the soleus muscle because mild hyperbaric oxygen improves the decreased oxidative capacity of the soleus muscle in non-obese rats with type 2 diabetes. Spinal motoneurons innervating the soleus muscle were identified using nuclear yellow, a retrograde fluorescent neuronal tracer. Thereafter, the cell body sizes and succinate dehydrogenase activity of identified motoneurons were analyzed. Decreased succinate dehydrogenase activity of small-sized alpha motoneurons innervating the soleus muscle was observed in rats with type 2 diabetes. The decreased succinate dehydrogenase activity of these motoneurons was improved by mild hyperbaric oxygen. Therefore, we concluded that rats with type 2 diabetes have decreased oxidative capacity in motoneurons innervating the soleus muscle and this decreased oxidative capacity is improved by mild hyperbaric oxygen.

  14. Functional Echomyography: thickness, ecogenicity, contraction and perfusion of the LMN denervated human muscle before and during h-bFES

    Directory of Open Access Journals (Sweden)

    Riccardo Zanato

    2010-03-01

    Full Text Available Permanent denervated muscles were evaluated by ultrasound to monitor changes in morphology, thickness, contraction-relaxation kinetics and perfusion due to the electrical stimulation program of the Rise2-Italy project. In a case of monolateral lesion, morphology and ultrasonographic structure of the denervated muscles changed during the period of stimulation from a pattern typical of complete denervation-induced muscle atrophy to a pattern which might be considered “normal” when detected in an old patient. Thickness improved significantly more in the middle third of the denervated muscle, reaching the same value as the contralateral innervated muscle. Contraction-relaxation kinetics, measured by recording the muscle movements during electrical stimulation, showed an abnormal behavior of the chronically denervated muscle during the relaxation phase, which resulted to be significantly longer than in normal muscle. The long-term denervated muscles analyzed with Echo Doppler showed at rest a low resistance arterial flow that became pulsed during and after electrical stimulation. As expected, the ultra sound measured electrical stimulation-induced hyperemia lasted longer than the stimulation period. The higher than normal energy of the delivered electrical stimuli of the Vienna home-based Functional Electrical Stimulation strategy (h-b FES demonstrate that the explored muscles were still almost completely denervated during the one-year of training. In conclusion, this pilot study confirms the usefulness of Functional Echomyography in the follow-up and the positive effects of h-b FES of denervated muscles.

  15. O efeito do estrógeno nas reservas glicogênicas de musculoesqueléticos desnervados de ratas The estrogen effect on glycogen reserves of denervated skeletal muscles of female rats

    Directory of Open Access Journals (Sweden)

    MTM Severi

    2007-02-01

    Full Text Available OBJETIVO: Avaliar o efeito muscular do estrógeno em ratas submetidas à desnervação de membro posterior. MÉTODO: Ratas Wistar foram divididas em 5 grupos (n=6: Controle, Desnervado 7 dias, Desnervado 15 dias, Desnervado tratado com estrógeno (200µg/rato, via subcutânea, diariamente durante 7 dias e Desnervado tratado com estrógeno durante 15 dias. Após os períodos experimentais, foi realizada a avaliação de glicogênio (GLI dos músculos sóleo (S, gastrocnêmio branco (GB e vermelho (GV, além da avaliação do peso do sóleo. A análise estatística foi feita através do teste de normalidade, ANOVA e teste de Tukey (pOBJECTIVE: To evaluate the effects of estrogen on muscles in female rats subjected to hindlimb denervation. METHODS: Female Wistar rats were divided into five groups (n=6: control; denervated 7 days; denervated 15 days; denervated treated with estrogen (200µg/rat, subcutaneously, daily for 7 days; and denervated treated with estrogen for 15 days. After the experimental periods, glycogen (GLY evaluations were performed on the soleus (S, white gastrocnemius (WG and red gastrocnemius (RG, and the soleus was weighed. The statistical analysis was performed using the normality test, ANOVA and Tukey test (p<0.05. RESULTS: The denervation caused a reduction (p<0.05 in GLY over a 7-day period (S: 44%, WG: 32%; RG: 32% and 15-day period (S: 62%, WG: 44%; RG: 53%, and also S weight reduction (7 days: 29.7%; 15 days: 36.6%. However, the estrogen treatment caused elevation (p<0.05 of GLY under this condition, both over 7 days (S: 19%; WG: 60%; RG: 18% and over 15 days (S: 52%; WG: 51%; RG: 11%, but it was not enough to minimize the muscle weight reduction. CONCLUSIONS: The treatment with low doses of estrogen minimized the metabolic alterations induced by denervation, but it was not effective in interfering in the weight loss of the soleus muscle. This suggests that the hormone acts by enabling chemical-metabolic protection that

  16. EMG-normalised kinase activation during exercise is higher in human gastrocnemius compared to soleus muscle

    DEFF Research Database (Denmark)

    Jensen, Thomas Elbenhardt; Leutert, Robin; Rasmussen, Søren T;

    2012-01-01

    to differential reactive oxygen species (ROS)-scavenging ability or resting glycogen content. To evaluate these parameters in humans, biopsies from soleus, gastrocnemius and vastus lateralis muscles were taken before and after a 45 min inclined (15%) walking exercise bout at 69% VO2(max) aimed at simultaneously...

  17. Contribution of afferent feedback to the soleus muscle activity during human locomotion

    DEFF Research Database (Denmark)

    Mazzaro, Nazarena; Grey, Michael James; Sinkjær, Thomas

    2005-01-01

    During the stance phase of the human step cycle, the ankle undergoes a natural dorsiflexion that stretches the soleus muscle. The afferent feedback resulting from this stretch enhances the locomotor drive. In this study a robotic actuator was used to slightly enhance or reduce the natural ankle...... dorsiflexion, in essence, mimicking the small variations in the ankle dorsiflexion movement that take place during the stance phase of the step cycle. The soleus (SOL) and tibialis anterior EMG were analyzed in response to the ankle trajectory modifications. The dorsiflexion enhancements and reductions...

  18. The effect of muscle length on force depression after active shortening in soleus muscle of mice.

    Science.gov (United States)

    Van Noten, Pieter; Van Leemputte, Marc

    2011-07-01

    Isometric muscle force after active shortening is reduced [force depression (FD)]. The mechanism is incompletely understood but work delivered during shortening has been suggested to be the main determinant of FD. However, whether muscle length affects the sensitivity of FD to work is unknown, although this information might add to the understanding of the phenomenon. The aim of this study is to investigate the length dependence of the FD/work ratio (Q). Therefore, isometric force production (ISO) of 10 incubated mouse soleus muscles was compared to isometric force after 0.6, 1.2, and 2.4 mm shortening (IAS) at different end lengths ranging from L(0) - 3 to L(0) + 1.8 mm in steps of 0.6 mm. FD was calculated as the force difference between an ISO and IAS contraction at the same activation time (6 s) and end length. We confirm the strong relation between FD and work at L(0) (R² = 0.92) and found that FD is length dependent with a maximum of 8.8 ± 0.3% at L(0) + 1.2 mm for 0.6 mm shortening amplitude. Q was only constant for short muscle lengths (muscle length. The observed length dependence of Q indicates that FD is not only determined by work produced during shortening but also by a length-dependent factor, possibly actin compliance, which should be incorporated in any mechanism explaining FD.

  19. Vitamin E levels in soleus muscles of experimentally induced hyperthyroid rats differ consequent to feeding of edible oils.

    Science.gov (United States)

    Merican, Z; Suboh, B; Marzuki, A; Khalid, B A

    1999-12-01

    It has been shown that lipid peroxidation product levels in the soleus muscles of rats fed palm olein were lower than in the soleus muscles of rats fed soya bean oil. A study was carried out to test our hypothesis that the lower level of lipid peroxidation products in the soleus muscle of palm olein-fed rats is due, at least partly, to the higher amount of vitamin E in their soleus muscles. Experimentally induced hyperthyroid rats were fed either ground rat chow or ground rat chow mixed with palm olein oil or soya bean oil for a period of 8 weeks. Euthyroid rats fed ground rat chow for a similar period served as controls. At the end of the 8-week period, the rats were sacrificed and the α-tocopherol and tocotrienol levels in their soleus muscles were measured using high pressure liquid chromatography. It was found that the levels of α-tocopherol (23.682 ± 0.363), α-tocotrienol (1.974 ± 0.040) and γ-tocotrienol (1.418 ± 0.054) in μg/g tissue wet weight in the soleus muscles of hyperthyroid rats fed palm olein oil were statistically significantly higher than those found in the soleus muscles of hyperthyroid rats fed soya bean oil, which were 14.299 ± 0.378, 0.053 ± 0.053 and 0.184 ± 0.120μg/g tissue wet weight, respectively. The result shows that the increased level of a-tocopherol and tocotrienols found in the soleus muscles of hyperthyroid rats fed palm olein oil is responsible, at least partly, for the lower amount of lipid peroxidation products in these muscles compared with the soleus muscles of hyperthyroid rats fed soya bean oil in our earlier study.

  20. Implantation of muscle satellite cells overexpressing myogenin improves denervated muscle atrophy in rats

    Directory of Open Access Journals (Sweden)

    H. Shen

    2016-01-01

    Full Text Available This study evaluated the effect of muscle satellite cells (MSCs overexpressing myogenin (MyoG on denervated muscle atrophy. Rat MSCs were isolated and transfected with the MyoG-EGFP plasmid vector GV143. MyoG-transfected MSCs (MTMs were transplanted into rat gastrocnemius muscles at 1 week after surgical denervation. Controls included injections of untransfected MSCs or the vehicle only. Muscles were harvested and analyzed at 2, 4, and 24 weeks post-transplantation. Immunofluorescence confirmed MyoG overexpression in MTMs. The muscle wet weight ratio was significantly reduced at 2 weeks after MTM injection (67.17±6.79 compared with muscles injected with MSCs (58.83±5.31 or the vehicle (53.00±7.67; t=2.37, P=0.04 and t=3.39, P=0.007, respectively. The muscle fiber cross-sectional area was also larger at 2 weeks after MTM injection (2.63×103±0.39×103 compared with MSC injection (1.99×103±0.58×103 or the vehicle only (1.57×103±0.47×103; t=2.24, P=0.049 and t=4.22, P=0.002, respectively. At 4 and 24 weeks post-injection, the muscle mass and fiber cross-sectional area were similar across all three experimental groups. Immunohistochemistry showed that the MTM group had larger MyoG-positive fibers. The MTM group (3.18±1.13 also had higher expression of MyoG mRNA than other groups (1.41±0.65 and 1.03±0.19 at 2 weeks after injection (t=2.72, P=0.04. Transplanted MTMs delayed short-term atrophy of denervated muscles. This approach can be optimized as a novel stand-alone therapy or as a bridge to surgical re-innervation of damaged muscles.

  1. Implantation of muscle satellite cells overexpressing myogenin improves denervated muscle atrophy in rats.

    Science.gov (United States)

    Shen, H; Lv, Y; Shen, X Q; Xu, J H; Lu, H; Fu, L C; Duan, T

    2016-02-01

    This study evaluated the effect of muscle satellite cells (MSCs) overexpressing myogenin (MyoG) on denervated muscle atrophy. Rat MSCs were isolated and transfected with the MyoG-EGFP plasmid vector GV143. MyoG-transfected MSCs (MTMs) were transplanted into rat gastrocnemius muscles at 1 week after surgical denervation. Controls included injections of untransfected MSCs or the vehicle only. Muscles were harvested and analyzed at 2, 4, and 24 weeks post-transplantation. Immunofluorescence confirmed MyoG overexpression in MTMs. The muscle wet weight ratio was significantly reduced at 2 weeks after MTM injection (67.17±6.79) compared with muscles injected with MSCs (58.83±5.31) or the vehicle (53.00±7.67; t=2.37, P=0.04 and t=3.39, P=0.007, respectively). The muscle fiber cross-sectional area was also larger at 2 weeks after MTM injection (2.63×10³±0.39×10³) compared with MSC injection (1.99×10³±0.58×10³) or the vehicle only (1.57×10³±0.47×10³; t=2.24, P=0.049 and t=4.22, P=0.002, respectively). At 4 and 24 weeks post-injection, the muscle mass and fiber cross-sectional area were similar across all three experimental groups. Immunohistochemistry showed that the MTM group had larger MyoG-positive fibers. The MTM group (3.18±1.13) also had higher expression of MyoG mRNA than other groups (1.41±0.65 and 1.03±0.19) at 2 weeks after injection (t=2.72, P=0.04). Transplanted MTMs delayed short-term atrophy of denervated muscles. This approach can be optimized as a novel stand-alone therapy or as a bridge to surgical re-innervation of damaged muscles.

  2. Action of vanillin (Vanilla planifolia) on the morphology of tibialis anterior and soleus muscles after nerve injury.

    Science.gov (United States)

    Peretti, Ana Luiza; Antunes, Juliana Sobral; Lovison, Keli; Kunz, Regina Inês; Castor, Lidyane Regina Gomes; Brancalhão, Rose Meire Costa; Bertolini, Gladson Ricardo Flor; Ribeiro, Lucinéia de Fátima Chasko

    2017-01-01

    To evaluate the action of vanillin (Vanilla planifolia) on the morphology of tibialis anterior and soleus muscles after peripheral nerve injury. Wistar rats were divided into four groups, with seven animals each: Control Group, Vanillin Group, Injury Group, and Injury + Vanillin Group. The Injury Group and the Injury + Vanillin Group animals were submitted to nerve injury by compression of the sciatic nerve; the Vanillin Group and Injury + Vanillin Group, were treated daily with oral doses of vanillin (150mg/kg) from the 3rd to the 21st day after induction of nerve injury. At the end of the experiment, the tibialis anterior and soleus muscles were dissected and processed for light microscopy and submitted to morphological analysis. The nerve compression promoted morphological changes, typical of denervation, and the treatment with vanillin was responsible for different responses in the studied muscles. For the tibialis anterior, there was an increase in the number of satellite cells, central nuclei and fiber atrophy, as well as fascicular disorganization. In the soleus, only increased vascularization was observed, with no exacerbation of the morphological alterations in the fibers. The treatment with vanillin promoted increase in intramuscular vascularization for the muscles studied, with pro-inflammatory potential for tibialis anterior, but not for soleus muscle. Avaliar a ação da vanilina (Vanilla planifolia) sobre a morfologia dos músculos tibial anterior e sóleo após lesão nervosa periférica. Ratos Wistar foram divididos em quatro grupos, com sete animais cada, sendo Grupo Controle, Grupo Vanilina, Grupo Lesão e Grupo Lesão + Vanilina. Os animais dos Grupos Lesão e Grupo Lesão + Vanilina foram submetidos à lesão nervosa por meio da compressão do nervo isquiático, e os Grupos Vanilina e Grupo Lesão + Vanilina foram tratados diariamente com doses orais de vanilina (150mg/kg) do 3o ao 21o dia após a indução da lesão nervosa. Ao término do

  3. Effects of electrical stimulation and stretching on the adaptation of denervated skeletal muscle: implications for physical therapy.

    Science.gov (United States)

    Salvini, Tania F; Durigan, João L Q; Peviani, Sabrina M; Russo, Thiago L

    2012-06-01

    This review will describe the main cellular mechanisms involved in the reduction and increase of myoproteins synthesis commonly associated with muscle atrophy and hypertrophy, respectively. We analyzed the effects of electrical stimulation (ES) and stretching exercise on the molecular pathways involved in muscle atrophy and hypertrophy. We also described the main effects and limits of these resources in the skeletal muscle, particularly on the denervated muscle. Recently, our studies showed that the ES applied in a similar manner as performed in clinical practice is able to attenuate the increase of genes expression involved in muscle atrophy. However, ES was not effective to prevent the loss of muscle mass caused by denervation. Regarding to stretching exercises, their mechanisms of action on the denervated muscle are not fully understood and studies on this area are scarce. Studies from our laboratory have found that stretching exercise increased the extracellular matrix remodeling and decreased genes expression related to atrophy in denervated muscle. Nevertheless, it was not enough to prevent muscle atrophy after denervation. In spite of the use of stretching exercise and ES in clinical practice in order to minimize the atrophy of denervated muscle, there is still lack of scientific evidence to justify the effectiveness of these resources to prevent muscle atrophy in denervated muscle.

  4. EFFECTS OF PASSIVE STRETCH ON SOLEUS MUSCLE ATROPHY IN IMMOBILIZED RATS

    Institute of Scientific and Technical Information of China (English)

    邢国刚; 樊小力; 吴苏娣; 宋新爱; 朱保恭; 唐斌

    2002-01-01

    Objective To study the possible mechanism and prevention of disused muscle atrophy. Methods The shortened immobilization (plaster fixation) of rat's soleus muscle(SOL) was used as the model of muscle "disuse" and the lengthened immobilization of rat's SOL muscle as "passive stretch" method. Types of skeletal muscle fibers were differentiated with m-ATPase staining technique. The changes of rat's SOL weight (wet weight) as well as the types and the mean cross sectional area (CSA) of muscle fibers were examined respectively on days 2,4,7,14 and 21 under both shortened and lengthened immobilization, and then the effect of passive stretch on soleus muscle atrophy in immobilized rats was observed. Results When shortened immobilization was applied for 4 days, SOL weight (wet weight ) became lighter, the fiber cross-sectional area (CSA) shrank, and type Ⅰ muscle fibers started to transform into type Ⅱ, which all indicated that immobilized muscles began to atrophy, and as immobilization proceeded, muscle atrophy proceeded toward higher level. In contrast to that, when lengthened immobilization was applied, SOL didn't show any signs of atrophy until day 7, the sign reached its highest level on day 14 and maintained that level even though immobilization continued. Conclusion From the results, we conclude that the passive stretch can either relieve or retard the disused muscle atrophy.

  5. Intermittent stretch training of rabbit plantarflexor muscles increases soleus mass and serial sarcomere number.

    Science.gov (United States)

    De Jaeger, Dominique; Joumaa, Venus; Herzog, Walter

    2015-06-15

    In humans, enhanced joint range of motion is observed after static stretch training and results either from an increased stretch tolerance or from a change in the biomechanical properties of the muscle-tendon unit. We investigated the effects of an intermittent stretch training on muscle biomechanical and structural variables. The left plantarflexors muscles of seven anesthetized New Zealand (NZ) White rabbits were passively and statically stretched three times a week for 4 wk, while the corresponding right muscles were used as nonstretched contralateral controls. Before and after the stretching protocol, passive torque produced by the left plantarflexor muscles as a function of the ankle angle was measured. The left and right plantarflexor muscles were harvested from dead rabbits and used to quantify possible changes in muscle structure. Significant mass and serial sarcomere number increases were observed in the stretched soleus but not in the plantaris or medial gastrocnemius. This difference in adaptation between the plantarflexors is thought to be the result of their different fiber type composition and pennation angles. Neither titin isoform nor collagen amount was modified in the stretched compared with the control soleus muscle. Passive torque developed during ankle dorsiflexion was not modified after the stretch training on average, but was decreased in five of the seven experimental rabbits. Thus, an intermittent stretching program similar to those used in humans can produce a change in the muscle structure of NZ White rabbits, which was associated in some rabbits with a change in the biomechanical properties of the muscle-tendon unit.

  6. Acute rhabdomyolysis of the soleus muscle induced by a lightning strike: magnetic resonance and scintigraphic findings

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, Naofumi; Inaoka, Tsutomu; Shuke, Noriyuki; Takahashi, Koji; Aburano, Tamio [Asahikawa Medical College, Department of Radiology, Asahikawa (Japan); Chisato, Naoyuki; Go, Kazutomo [Asahikawa Medical College, Department of Emergency Medicine, Asahikawa (Japan); Nochi, Hitoshi [Asahikawa Medical College, Department of Orthopaedic Surgery, Asahikawa (Japan)

    2007-07-15

    Among natural disasters, a lightning strike is a rare but potentially life-threatening phenomenon. If victims survive a cardiac arrest due to instantaneous passage of an exceptionally high voltage electric charge through the whole body, they may be afflicted with various complications such as muscle necrosis resulting in acute renal failure. In this article, we report a case of a 54-year-old man with acute rhabdomyolysis of the left soleus muscle associated with a lightning strike. T2-weighted and short-tau inversion recovery MR images showed a high signal intensity in the left soleus muscle. A whole-body bone scintigram showed abnormal uptakes in the left soleus muscle and the dorsal aspect of the left foot. MR and scintigraphic evaluations were very useful in depicting the site and extent of muscle damage. Since the patient showed a surprisingly high level of serum creatine kinase, the added information was very valuable for determining the patient's management. (orig.)

  7. Expression of TGF-β1 and CTGF Is Associated with Fibrosis of Denervated Sternocleidomastoid Muscles in Mice.

    Science.gov (United States)

    Liu, Fei; Tang, Weifang; Chen, Donghui; Li, Meng; Gao, Yinna; Zheng, Hongliang; Chen, Shicai

    2016-01-01

    Injury to the recurrent laryngeal nerve often leads to permanent vocal cord paralysis, which has a significant negative impact on the quality of life. Long-term denervation can induce laryngeal muscle fibrosis, which obstructs the muscle recovery after laryngeal reinnervation. However, the mechanisms of fibrosis remain unclear. In this study, we aimed to analyze the changes in the expression of fibrosis-related factors, including transforming growth factor-β1 (TGF-β1), connective tissue growth factor (CTGF), and α-smooth muscle actin (α-SMA) in denervated skeletal muscles using a mouse model of accessory nerve transection. Because of the small size, we used sternocleidomastoid muscles instead of laryngeal muscles for denervation experiments. Masson's trichrome staining showed that the grade of atrophy and fibrosis of muscles became more severe with time, but showed a plateau at 4 weeks after denervation, followed by a slow decrease. Quantitative assessment and immunohistochemistry showed that TGF-β1 expression peaked at 1 week after denervation (p muscle cells were detected at 1 week after denervation, peaked at 2 weeks (p muscle fibrosis. They may induce the differentiation of myoblasts into myofibroblasts, as characterized by the activation of α-SMA. These findings may provide insights on key pathological processes in denervated skeletal muscle fibrosis and develop novel therapeutic strategies.

  8. Excitation-contraction coupling and mechano-sensitivity in denervated skeletal muscles

    Directory of Open Access Journals (Sweden)

    Fabio Francini

    2010-09-01

    Full Text Available Skeletal muscle atrophy can be defined as a wasting or decrease in muscle mass and muscle force generation owing lack of use, ageing, injury or disease. Thus, the etiology of atrophy can be different. Atrophy in denervated muscle is a consequence of two factors: 1 the complete lack of motoneuron activity inducing the deficiency of neurotransmitter release and 2 the muscles disuse. The balance of the muscular functions depends on extra- and intra-muscular signals. In the balance are involved the excitation-contraction coupling (ECC, local growth factors, Ca2+-dependent and independent intracellular signals, mechano-sensitivity and mechano-transduction that activate Ca2+-dependent signaling proteins and cytoskeleton- nucleus pathways to the nucleus, that regulate the gene expression. Moreover, retrograde signal from intracellular compartments and cytoskeleton to the sarcolemma are additional factors that regulate the muscle function. Proteolytic systems that operate in atrophic muscles progressively reduce the muscle protein content and so the sarcolemma, ECC and the force generation. In this review we will focus on the more relevant changes of the sarcolemma, excitation-contraction coupling, ECC and mechano-transduction evaluated by electrophysiological methods and observed from early- to long-term denervated skeletal muscles. This review put in particular evidence that long-term denervated muscle maintain a sub-population of fibers with ECC and contractile machinery able to be activated, albeit in lesser amounts, by electrical and mechanical stimulation. Accordingly, this provides a potential molecular explanation of the muscle recovery that occurs in response to rehabilitation strategy as transcutaneous electrical stimulation and passive stretching of denervated muscles, which wre developed as a result of empirical clinical observations.

  9. Accessory soleus muscle: a case report and review of the literature

    Energy Technology Data Exchange (ETDEWEB)

    Palaniappan, M. (Leicester Royal Infirmary (United Kingdom). Dept. of Radiology Royal Liverpool Children' s Hospital (United Kingdom). Dept. of Radiology); Rajesh, A.; Rickett, A. (Leicester Royal Infirmary (United Kingdom). Dept. of Radiology); Kershaw, C.J. (Leicester Royal Infirmary (United Kingdom). Dept. of Orthopaedics)

    1999-08-01

    Accessory soleus muscle is a rare condition which presents as a soft-tissue mass medial to the calcaneum and distal Achilles tendon. Though congenital in origin, it manifests in the second and third decades of life as a soft-tissue mass due to muscle hypertrophy. Patients may be asymptomatic or present with a painful ankle mass. It is important to be aware of this condition when interpreting CT or MRI of the ankle, which show characteristic findings of a normal muscle in an abnormal location. (orig.) With 4 figs., 12 refs.

  10. Impaired growth of denervated muscle contributes to contracture formation following neonatal brachial plexus injury.

    Science.gov (United States)

    Nikolaou, Sia; Peterson, Elizabeth; Kim, Annie; Wylie, Christopher; Cornwall, Roger

    2011-03-02

    The etiology of shoulder and elbow contractures following neonatal brachial plexus injury is incompletely understood. With use of a mouse model, the current study tests the novel hypothesis that reduced growth of denervated muscle contributes to contractures following neonatal brachial plexus injury. Unilateral brachial plexus injuries were created in neonatal mice by supraclavicular C5-C6 nerve root excision. Shoulder and elbow range of motion was measured four weeks after injury. Fibrosis, cross-sectional area, and functional length of the biceps, brachialis, and subscapularis muscles were measured over four weeks following injury. Muscle satellite cells were cultured from denervated and control biceps muscles to assess myogenic capability. In a comparison group, shoulder motion and subscapularis length were assessed following surgical excision of external rotator muscles. Shoulder internal rotation and elbow flexion contractures developed on the involved side within four weeks following brachial plexus injury. Excision of the biceps and brachialis muscles relieved the elbow flexion contractures. The biceps muscles were histologically fibrotic, whereas fatty infiltration predominated in the brachialis and rotator cuff muscles. The biceps and brachialis muscles displayed reduced cross-sectional and longitudinal growth compared with the contralateral muscles. The upper subscapularis muscle similarly displayed reduced longitudinal growth, with the subscapularis shortening correlating with internal rotation contracture. However, excision of the external rotators without brachial plexus injury caused no contractures or subscapularis shortening. Myogenically capable satellite cells were present in denervated biceps muscles despite impaired muscle growth in vivo. Injury of the upper trunk of the brachial plexus leads to impaired growth of the biceps and brachialis muscles, which are responsible for elbow flexion contractures, and impaired growth of the subscapularis

  11. Electrical Stimulation of Denervated Rat Skeletal Muscle Retards Capillary and Muscle Loss in Early Stages of Disuse Atrophy

    Directory of Open Access Journals (Sweden)

    Kouki Nakagawa

    2017-01-01

    Full Text Available The purpose of the present study is to investigate the effects of low-frequency electrical muscle stimulation (ES on the decrease in muscle mass, fiber size, capillary supply, and matrix metalloproteinase (MMP immunoreactivity in the early stages of denervation-induced limb disuse. Direct ES was performed on the tibialis anterior muscle following denervation in seven-week-old male rats. The rats were divided into the following groups: control (CON, denervation (DN, and denervation with direct ES (DN + ES. Direct ES was performed at an intensity of 16 mA and a frequency of 10 Hz for 30 min per day, six days a week, for one week. We performed immunohistochemical staining to determine the expression of dystrophin, CD34, and MMP-2 in transverse sections of TA muscles. The weight, myofiber cross-sectional area (FCSA, and capillary-to-fiber (C/F ratio of the tibialis anterior (TA muscle were significantly reduced in the DN group compared to the control and DN + ES groups. The MMP-2 positive area was significantly greater in DN and DN + ES groups compared to the control group. These findings suggest beneficial effects of direct ES in reducing muscle atrophy and capillary regression without increasing MMP-2 immunoreactivity in the early stages of DN-induced muscle disuse in rat hind limbs.

  12. Fatigue modulates synchronous but not asynchronous soleus activation during stimulation of paralyzed muscle.

    Science.gov (United States)

    Shields, Richard K; Dudley-Javoroski, Shauna

    2013-09-01

    Electrical stimulation over a motor nerve yields muscle force via a combination of direct and reflex-mediated activation. We determined the influence of fatigue on reflex-mediated responses induced during supra-maximal electrical stimulation in humans with complete paralysis. We analyzed soleus electromyographic (EMG) activity during repetitive stimulation (15 Hz, 125 contractions) in 22 individuals with complete paralysis. The bout of stimulation caused significant soleus muscle fatigue (53.1% torque decline). Before fatigue, EMG at all latencies after the M-wave was less than 1% of the maximal M-wave amplitude (% MaxM). After fatigue there was a fourfold (p random asynchronous reflex activation does not change during repetitive supra-maximal stimulation, offering a clinical strategy to consistently dose stress to paralyzed tissues. Published by Elsevier Ireland Ltd.

  13. Abnormalities in the Fiber Composition and Capillary Architecture in the Soleus Muscle of Type 2 Diabetic Goto-Kakizaki Rats

    Directory of Open Access Journals (Sweden)

    Shinichiro Murakami

    2012-01-01

    Full Text Available Type 2 diabetes mellitus is linked to impaired skeletal muscle glucose uptake and storage. This study aimed to investigate the fiber type distributions and the three-dimensional (3D architecture of the capillary network in the skeletal muscles of type 2 diabetic rats. Muscle fiber type transformation, succinate dehydrogenase (SDH activity, capillary density, and 3D architecture of the capillary network in the soleus muscle were determined in 36-week-old Goto-Kakizaki (GK rats as an animal model of nonobese type 2 diabetes and age-matched Wistar (Cont rats. Although the soleus muscle of Cont rats comprised both type I and type IIA fibers, the soleus muscle of GK rats had only type I fibers. In addition, total SDH activity in the soleus muscle of GK rats was significantly lower than that in Cont rats because GK rats had no high-SDH activity type IIA fiber in the soleus muscle. Furthermore, the capillary diameter, capillary tortuosity, and microvessel volume in GK rats were significantly lower than those in Cont rats. These results indicate that non-obese diabetic GK rats have muscle fiber type transformation, low SDH activity, and reduced skeletal muscle capillary content, which may be related to the impaired glucose metabolism characteristic of type 2 diabetes.

  14. Decreased contribution from afferent feedback to the soleus muscle during walking in patients with spastic stroke

    DEFF Research Database (Denmark)

    Mazzaro, Nazarena; Nielsen, Jørgen Feldbæk; Grey, Michael James

    2007-01-01

    We investigated the contribution of afferent feedback to the soleus (SOL) muscle activity during the stance phase of walking in patients with spastic stroke. A total of 24 patients with hemiparetic spastic stroke and age-matched healthy volunteers participated in the study. A robotic actuator...... by the Ashworth score. These results indicate that although the stretch reflex response is facilitated during spastic gait, the contribution of afferent feedback to the ongoing locomotor SOL activity is depressed in patients with spastic stroke....

  15. Concurrent deficits of soleus and gastrocnemius muscle fascicles and Achilles tendon post stroke.

    Science.gov (United States)

    Zhao, Heng; Ren, Yupeng; Roth, Elliot J; Harvey, Richard L; Zhang, Li-Qun

    2015-04-01

    Calf muscles and Achilles tendon play important roles in functional activities. However, it is not clear how biomechanical properties of the uniarticular soleus (SOL) and biarticular gastrocnemius muscle and Achilles tendon, including the fascicle length, pennation angle, and stiffness, change concurrently post stroke. Biomechanical properties of the medial gastrocnemius (GM) and soleus muscles were evaluated bilaterally in 10 hemiparetic stroke survivors using combined ultrasonography-biomechanical measurements. Biomechanical properties of the Achilles tendon including the length, cross-sectional area (CSA), stiffness, and Young's modulus were evaluated, together with calf muscle biomechanical properties. Gastrocnemius and SOL contributions were separated using flexed and extended knee positions. The impaired side showed decreased fascicle length (GM: 6%, P = 0.002 and SOL: 9%, P = 0.03, at full knee extension and 0° ankle dorsiflexion) and increased fascicular stiffness (GM: 64%, P = 0.005 and SOL: 19%, P = 0.012, at a common 50 N force level). In contrast, Achilles tendon on the impaired side showed changes in the opposite direction as the muscle fascicles with increased tendon length (5%, P Young's modulus (30%, P muscle fascicles and Achilles tendon biomechanical properties help us better understand concurrent changes of fascicles and tendon as part of the calf muscle-tendon unit and facilitate development of more effective treatments. Copyright © 2015 the American Physiological Society.

  16. Acute effects of stretching exercise on the soleus muscle of female aged rats.

    Science.gov (United States)

    Zotz, Talita Gnoato; Capriglione, Luiz Guilherme A; Zotz, Rafael; Noronha, Lucia; Viola De Azevedo, Marina Louise; Fiuza Martins, Hilana Rickli; Silveira Gomes, Anna Raquel

    2016-01-01

    It has been shown that stretching exercises can improve the flexibility and independence of the elderly. However, although these exercises commonly constitute training programs, the morphological adaptations induced by stretching exercises in aged skeletal muscle are still unclear. To assess the acute effects of passive mechanical static stretching on the morphology, sarcomerogenesis and modulation of important components of the extracellular matrix of the soleus muscle of aged female rats. Fifteen old female rats with 26 months were divided into two groups: stretching (n=8, SG) and control (n=7, CG): The stretching protocol consisted of 4 repetitions each of 1 min with 30s interval between sets. Stretching was performed on the left soleus muscle, 3 times a week for 1 week. After three sessions, the rats were anesthetized to remove the left soleus muscle, and then euthanized. The following analyses were carried out: muscle fiber cross-sectional area and serial sarcomere number; immunohistochemistry for the quantification of collagen I, III and TGFβ-1. a decrease in muscle fiber cross-sectional area of the SG was observed when compared to the CG (p=0.0001, Kruskal-Wallis); the percentage of type I collagen was significantly lower in the SG when compared to the CG (p=0.01, Kruskal-Wallis), as well as the percentage of TGFβ-1 (p=0.04, Kruskal-Wallis); collagen III was significantly higher in the SG than in the CG (7.06±6.88% vs 4.92±5.30%, p=0.01, Kruskal-Wallis). Although the acute stretching induced muscle hypotrophy, an antifibrotic action was detected. Copyright © 2015 Elsevier GmbH. All rights reserved.

  17. Muscle, tendons, and bone: structural changes during denervation and FES treatment.

    Science.gov (United States)

    Gargiulo, Paolo; Reynisson, Páll Jens; Helgason, Benedikt; Kern, Helmut; Mayr, Winfried; Ingvarsson, Páll; Helgason, Thordur; Carraro, Ugo

    2011-09-01

    This paper describes a novel approach to determine structural changes in bone, muscle, and tendons using medical imaging, finite element models, and processing techniques to evaluate and quantify: (1) progression of atrophy in permanently lower motor neuron (LMN) denervated human muscles, and tendons; (2) their recovery as induced by functional electrical stimulation (FES); and (3) changes in bone mineral density and bone strength as effect of FES treatment. Briefly, we used three-dimensional reconstruction of muscle belly, tendons, and bone images to study the structural changes occurring in these tissues in paralysed subjects after complete lumbar-ischiadic spinal cord injury (SCI). These subjects were recruited through the European project RISE, an endeavour designed to establish a novel clinical rehabilitation method for patients who have permanent and non-recoverable muscle LMN denervation in the lower extremities. This paper describes the use of segmentation techniques to study muscles, tendons, and bone in several states: healthy, LMN denervated-degenerated but not stimulated, and LMN denervated-stimulated. Here, we have used medical images to develop three-dimensional models and advanced imaging, including computational tools to display tissue density. Different tissues are visualized associating proper Hounsfield intervals defined experimentally to fat, connective tissue, and muscle. Finite element techniques are used to calculate Young's modulus on the patella bone and to analyse correlation between muscle contraction and bone strength changes. These analyses show restoration of muscular structures, tendons, and bone after FES as well as decline of the same tissues when treatment is not performed. This study suggests also a correlation between muscle growth due to FES treatment and increase in density and strength in patella bone. Segmentation techniques and finite element analysis allow the study of the structural changes of human skeletal muscle

  18. Interaction of thyroid state and denervation on skeletal myosin heavy chain expression

    Science.gov (United States)

    Haddad, F.; Arnold, C.; Zeng, M.; Baldwin, K.

    1997-01-01

    The goal of this study was to examine the effects of altered thyroid state and denervation (Den) on skeletal myosin heavy chain (MHC) expression in the plantaris and soleus muscles. Rats were subjected to unilateral denervation (Den) and randomly assigned to one of three groups: (1) euthyroid; (2) hyperthyroid; (3) and hypothyroid. Denervation caused severe muscle atrophy and muscle-type specific MHC transformation. Denervation transformed the soleus to a faster muscle, and its effects required the presence of circulating thyroid hormone. In contrast, denervation transformed the plantaris to a slower muscle independently of thyroid state. Furthermore, thyroid hormone effects did not depend upon innervation status in the soleus, while they required the presence of the nerve in the plantaris. Collectively, these findings suggest that both thyroid hormone and intact nerve (a) differentially affect MHC transformations in fast and slow muscle; and (b) are important factors in regulating the optimal expression of both type I and IIB MHC genes. This research suggests that for patients with nerve damage and/or paralysis, both muscle mass and biochemical properties can also be affected by the thyroid state.

  19. Interaction of thyroid state and denervation on skeletal myosin heavy chain expression

    Science.gov (United States)

    Haddad, F.; Arnold, C.; Zeng, M.; Baldwin, K.

    1997-01-01

    The goal of this study was to examine the effects of altered thyroid state and denervation (Den) on skeletal myosin heavy chain (MHC) expression in the plantaris and soleus muscles. Rats were subjected to unilateral denervation (Den) and randomly assigned to one of three groups: (1) euthyroid; (2) hyperthyroid; (3) and hypothyroid. Denervation caused severe muscle atrophy and muscle-type specific MHC transformation. Denervation transformed the soleus to a faster muscle, and its effects required the presence of circulating thyroid hormone. In contrast, denervation transformed the plantaris to a slower muscle independently of thyroid state. Furthermore, thyroid hormone effects did not depend upon innervation status in the soleus, while they required the presence of the nerve in the plantaris. Collectively, these findings suggest that both thyroid hormone and intact nerve (a) differentially affect MHC transformations in fast and slow muscle; and (b) are important factors in regulating the optimal expression of both type I and IIB MHC genes. This research suggests that for patients with nerve damage and/or paralysis, both muscle mass and biochemical properties can also be affected by the thyroid state.

  20. Ultra structure of the denervated vocal muscle mechanically in hogs (sus scrofa domestica

    Directory of Open Access Journals (Sweden)

    Leão, Henrique Zaquia

    2010-03-01

    Full Text Available Introduction: The literature is not clear in the ultra-structural manifestations of the vocal wrinkles after neural wound. Objective: To verify the alterations that occur in a vocal fold mechanically denervated. Method: In this prospective study, it were utilized 15 hogs of commercial race (Sus scrofa domesticates, with age of 4 to 12 weeks. The animals were distributed in three groups, chosen at random. Everybody was submitted to the denervation of the right vocal fold, with surgical removal of a segment with three centimeters of the recurring right laryngeal nerve. After 45, 90 and 180 days of the operations, it was proceeded the biopsy of the vocal muscles, it was prosecuted the samples for transmission electron microscopy and, for the ultra-structural study, utilized the transmission electron microscopy Philips, model EM208S. Results: The biopsied groups with 45 and 90 days after operation of mechanical denervation, presented disorganization miofibrilar, only vestigial lines Z in many samples, as well like altered mithochondrions presenting limited sizes, and matrix mithocondrial rarefied with rare mithocondrial cristae present. The biopsied group with 180 days after operation of denervation, presented regular sarcomeres, mithocondrions with sizes and regular number with correct positioning between the sarcomerical units. Conclusion: The finds in the ultra-structure of the vocal muscles suggest to re enervation of the muscle being that the muscular mithochondrions were the most sensible structures to the denervated condition, successions by the cytoarchiteture of the miofibrilas; the finds in the ultra-structure of the vocal muscles suggests to reinervation of the muscle in the period of approximately six months.

  1. An action potential-driven model of soleus muscle activation dynamics for locomotor-like movements

    Science.gov (United States)

    Kim, Hojeong; Sandercock, Thomas G.; Heckman, C. J.

    2015-08-01

    Objective. The goal of this study was to develop a physiologically plausible, computationally robust model for muscle activation dynamics (A(t)) under physiologically relevant excitation and movement. Approach. The interaction of excitation and movement on A(t) was investigated comparing the force production between a cat soleus muscle and its Hill-type model. For capturing A(t) under excitation and movement variation, a modular modeling framework was proposed comprising of three compartments: (1) spikes-to-[Ca2+]; (2) [Ca2+]-to-A; and (3) A-to-force transformation. The individual signal transformations were modeled based on physiological factors so that the parameter values could be separately determined for individual modules directly based on experimental data. Main results. The strong dependency of A(t) on excitation frequency and muscle length was found during both isometric and dynamically-moving contractions. The identified dependencies of A(t) under the static and dynamic conditions could be incorporated in the modular modeling framework by modulating the model parameters as a function of movement input. The new modeling approach was also applicable to cat soleus muscles producing waveforms independent of those used to set the model parameters. Significance. This study provides a modeling framework for spike-driven muscle responses during movement, that is suitable not only for insights into molecular mechanisms underlying muscle behaviors but also for large scale simulations.

  2. Three-O-methylglucose transport in soleus muscle of bacteremic rats

    Energy Technology Data Exchange (ETDEWEB)

    Westfall, M.V.; Sayeed, M.M.

    1987-07-01

    Basal and insulin-stimulated soleus muscle 3-O-(/sup 14/C)merhylglucose ((/sup 14/C)-3-O-MG) transport was studied in vitro and in vivo during bacteremia in rats. Fasted rats were injected with Escherichia coli to produce bacteremia (B), and controls (C) received saline. In vitro studies using soleus muscles were carried out 8 of 12 hr after bacterial injection, and transport was measured using the rate coefficient (lambda = min/sup /minus/1/). Although insulin-stimulated (/sup 14/C)-3-O-MG transport was decreased in 12-h bacteremic rat muscles the basal (/sup 14/C)-3-O-MG transport was rate coefficient was elevated. For in vivo studies, (/sup 14/C)-3-O-MG with or without insulin was injected into rats 10-40 min prior to removing soleus muscles at 12 h postbacterial or postsaline injection. Transport was measured as the ratio of (/sup 14/C)-3-O-MG/sub intracell//(/sup 14/C)-3-O-MG/sub extracell/. Basal ratios were not different and muscles from both control and bacteremic rats responded comparably to insulin with increased (/sup 14/C)-3-O-MG transport during the initial 30 min. At 35-40 min postinsulin injection there was a further stimulation of (/sup 14/C)-3-O-MG transport in control but not in 12-h bacteremic rat muscles. The changes in (/sup 14/C)-3-O-MG transport observed in vitro and in vivo after 12 h of bacteremia may be due to circulating mediators and/or changes in membrane function.

  3. Motor unit firing behaviour of soleus muscle in isometric and dynamic contractions.

    Directory of Open Access Journals (Sweden)

    Jouni Kallio

    Full Text Available INTRODUCTION: Understanding the detailed control of human locomotion and balance can be improved, when individual motor units can be isolated and their firing rates followed in natural movement of large, fuctionally important muscles. For this reason the present study investigated the motor unit discharge rate (MUDR in isometric and dynamic contractions of the soleus muscle. METHODS: Eleven males performed isometric (10-100% MVC and dynamic (10-40% MVC plantar flexions. Intramuscular EMG was measured from Soleus with bipolar wire-electrodes and decomposed with custom built "Daisy" software. RESULTS: The Soleus MUDR was significantly higher in concentric compared to isometric or eccentric contractions at all submaximal force levels (P<0.05. In isometric contractions MUDR increased up to 100% MVC. CONCLUSION: Motor unit discharge properties of a large plantarflexor can be measured in dynamic and maximal contractions. For a given torque output, MUDR is dependent upon contraction type, as set by the major mechanical differences between concentric and eccentric actions.

  4. Ulnar nerve injuries of the hand producing intrinsic muscle denervation of magnetic resonance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Barberie, J.E.; Connell, D.G.; Munk, P.L.; Janzen, D.L. [Vancouver General Hospital and University of British Columbia, Vancouver, British Columbia, (Canada). Department of Radiology

    1999-08-01

    Muscle and nerve injuries in the hand may be difficult to detect and diagnose clinically. Two cases are reported in which magnetic resonance imaging showed ulnar nerve injury and intrinsic hand muscle denervation. The clinical, anatomical and radiological features of injury to the deep motor branch of the ulnar nerve and associated muscle denervation are discussed and illustrated. Compression of the deep motor branch of the ulnar nerve is a rare cause of hand dysfunction. This condition produces a clinical syndrome characterized by weakness of the muscles innervated by the deep branch of the ulnar nerve, with normal sensation in the hand. Denervation of the intrinsic hand muscles is variable, depending on the site and severity of the nerve injury. The anatomy of the ulnar nerve is complex and ulnar nerve compression syndrome is difficult to detect and localize clinically. Multiple causes exist, including ganglions; repeated trauma, typically occupationally related; calcification adjacent to the pisiform and the pisotriquetral joint; anomalous muscle bellies; fractures or dislocations affecting the ulnar side of the wrist; vascular anomalies of the ulnar artery; and oedema of the hand, requiring differing surgical treatments. We report two patients who presented with ulnar nerve compression syndrome secondary to post-traumatic neuromas as a result of blunt trauma to the palm. Copyright (1999) Blackwell Science Pty Ltd 12 refs., 2 figs.

  5. Reflex response and control of the human soleus and gastrocnemius muscles during walking and running at increasing velocity

    DEFF Research Database (Denmark)

    Simonsen, Erik B; Alkjær, Tine; Raffalt, Peter C

    2012-01-01

    than the soleus H-reflex. In both muscles the H-reflex increased significantly from walking to running but also with increasing running speed. The peak of EMG activity increased in both muscles with increasing speed. The V-wave of both muscles was absent or rather low during walking, but it increased...... significantly from walking to running with increasing running speed in the soleus but not in the medial gastrocnemius. In both muscles the V-wave was highest just prior to heel strike. It is suggested that this was due to a high firing frequency of the motoneurones in this phase of the movement. It is concluded...

  6. Shape reconstruction and subsequent deformation of soleus muscle models using B-spline solid primitives

    Science.gov (United States)

    Ng-Thow-Hing, Victor; Agur, Anne; Ball, Kevin A.; Fiume, Eugene; McKee, Nancy

    1998-05-01

    We introduce a mathematical primitive called the B-spline solid that can be used to create deformable models of muscle shape. B-spline solids can be used to model skeletal muscle for the purpose of building a data library of reusable, deformable muscles that are reconstructed from actual muscle data. Algorithms are provided for minimizing shape distortions that may be caused when fitting discrete sampled data to a continuous B-spline solid model. Visible Human image data provides a good indication of the perimeter of a muscle, but is not suitable for providing internal muscle fiber bundle arrangements which are important for physical simulation of muscle function. To obtain these fiber bundle orientations, we obtain 3-D muscle fiber bundle coordinates by triangulating optical images taken from three different camera views of serially dissected human soleus specimens. B-spline solids are represented as mathematical three-dimensional vector functions which can parameterize an enclosed volume as well as its boundary surface. They are based on B-spline basis functions, allowing local deformations via adjustable control points and smooth continuity of shape. After the B-spline solid muscle model is fitted with its external surface and internal volume arrangements, we can subsequently deform its shape to allow simulation of animated muscle tissue.

  7. Changes of contractile responses due to simulated weightlessness in rat soleus muscle

    Science.gov (United States)

    Elkhammari, A.; Noireaud, J.; Léoty, C.

    1994-08-01

    Some contractile and electrophysiological properties of muscle fibers isolated from the slow-twitch soleus (SOL) and fast-twitch extensor digitorum longus (EDL) muscles of rats were compared with those measured in SOL muscles from suspended rats. In suspendede SOL (21 days of tail-suspension) membrane potential (Em), intracellular sodium activity (aiNa) and the slope of the relationship between Em and log [K]o were typical of fast-twitch muscles. The relation between the maximal amplitude of K-contractures vs Em was steeper for control SOL than for EDL and suspended SOL muscles. After suspension, in SOL muscles the contractile threshold and the inactivation curves for K-contractures were shifted to more positive Em. Repriming of K-contractures was unaffected by suspencion. The exposure of isolated fibers to perchlorate (ClO4-)-containing (6-40 mM) solutions resulted ina similar concentration-dependent shift to more negative Em of activation curves for EDL and suspended SOL muscles. On exposure to a Na-free TEA solution, SOL from control and suspended rats, in contrast to EDL muscles, generated slow contractile responses. Suspended SOL showed a reduced sensitivity to the contracture-producing effect of caffeine compared to control muscles. These results suggested that the modification observed due to suspension could be encounted by changes in the characteristics of muscle fibers from slow to fast-twitch type.

  8. Three-Dimensional Muscle Architecture and Comprehensive Dynamic Properties of Rabbit Gastrocnemius, Plantaris and Soleus: Input for Simulation Studies.

    Directory of Open Access Journals (Sweden)

    Tobias Siebert

    Full Text Available The vastly increasing number of neuro-muscular simulation studies (with increasing numbers of muscles used per simulation is in sharp contrast to a narrow database of necessary muscle parameters. Simulation results depend heavily on rough parameter estimates often obtained by scaling of one muscle parameter set. However, in vivo muscles differ in their individual properties and architecture. Here we provide a comprehensive dataset of dynamic (n = 6 per muscle and geometric (three-dimensional architecture, n = 3 per muscle muscle properties of the rabbit calf muscles gastrocnemius, plantaris, and soleus. For completeness we provide the dynamic muscle properties for further important shank muscles (flexor digitorum longus, extensor digitorum longus, and tibialis anterior; n = 1 per muscle. Maximum shortening velocity (normalized to optimal fiber length of the gastrocnemius is about twice that of soleus, while plantaris showed an intermediate value. The force-velocity relation is similar for gastrocnemius and plantaris but is much more bent for the soleus. Although the muscles vary greatly in their three-dimensional architecture their mean pennation angle and normalized force-length relationships are almost similar. Forces of the muscles were enhanced in the isometric phase following stretching and were depressed following shortening compared to the corresponding isometric forces. While the enhancement was independent of the ramp velocity, the depression was inversely related to the ramp velocity. The lowest effect strength for soleus supports the idea that these effects adapt to muscle function. The careful acquisition of typical dynamical parameters (e.g. force-length and force-velocity relations, force elongation relations of passive components, enhancement and depression effects, and 3D muscle architecture of calf muscles provides valuable comprehensive datasets for e.g. simulations with neuro-muscular models, development of more realistic

  9. Evaluation of follistatin as a therapeutic in models of skeletal muscle atrophy associated with denervation and tenotomy.

    Science.gov (United States)

    Sepulveda, Patricio V; Lamon, Séverine; Hagg, Adam; Thomson, Rachel E; Winbanks, Catherine E; Qian, Hongwei; Bruce, Clinton R; Russell, Aaron P; Gregorevic, Paul

    2015-12-11

    Follistatin is an inhibitor of TGF-β superfamily ligands that repress skeletal muscle growth and promote muscle wasting. Accordingly, follistatin has emerged as a potential therapeutic to ameliorate the deleterious effects of muscle atrophy. However, it remains unclear whether the anabolic effects of follistatin are conserved across different modes of non-degenerative muscle wasting. In this study, the delivery of a recombinant adeno-associated viral vector expressing follistatin (rAAV:Fst) to the hind-limb musculature of mice two weeks prior to denervation or tenotomy promoted muscle hypertrophy that was sufficient to preserve muscle mass comparable to that of untreated sham-operated muscles. However, administration of rAAV:Fst to muscles at the time of denervation or tenotomy did not prevent subsequent muscle wasting. Administration of rAAV:Fst to innervated or denervated muscles increased protein synthesis, but markedly reduced protein degradation only in innervated muscles. Phosphorylation of the signalling proteins mTOR and S6RP, which are associated with protein synthesis, was increased in innervated muscles administered rAAV:Fst, but not in treated denervated muscles. These results demonstrate that the anabolic effects of follistatin are influenced by the interaction between muscle fibres and motor nerves. These findings have important implications for understanding the potential efficacy of follistatin-based therapies for non-degenerative muscle wasting.

  10. GENE RESPONSE OF THE GASTROCNEMIUS AND SOLEUS MUSCLES TO AN ACUTE AEROBIC RUN IN RATS

    Directory of Open Access Journals (Sweden)

    Michael J. McKenzie

    2011-06-01

    Full Text Available Genes can be activated or inhibited by signals within the tissues in response to an acute bout of exercise. It is unclear how a particular aerobic exercise bout may influence two muscles with similar actions to the activity. Therefore, the purposes of this investigation was to determine the gene response of selected genes involved in the "stress" response of the gastrocnemius (fast-twitch and soleus (slow-twitch muscles to a single two hour aerobic exercise bout in female Sprague-Dawley Rats at the 1 hour time point after the exercise. Exercised rats were run (n=8 for 2 hours at 20 m.min-1 and one hour after the completion of the bout had their soleus (S and gastrocnemius (G muscles removed. Age and timed matched sedentary control rats had both S and G muscles removed also. RNA was isolated from all muscles. Real-time PCR analysis was performed on the following genes: NFκB, TNFα, and Atf3. GAPDH was used as the housekeeping gene for both muscles. S muscle showed more genes altered (n = 52 vs G (n = 26. NFκB gene expression was 0.83 ± 0.14 in the exercised S but was + 1.36 ± 0.58 in the exercised G and was not significantly different between the muscles. TNFα was altered 1.30 ± 0. 34 in the exercised S and 1.36 ± 0.71 in the exercised G and was not significantly different between the muscles. The gene Atf3 was significantly altered at 4.97 ± 1.01 in the exercised S, while it was not significantly altered in the exercised G (0.70 ± 0.55. This study demonstrates that an acute bout of aerobic exercise can alter gene expression to a different extent in both the S and G muscles. It is highly likely that muscle recruitment was a factor which influenced the gene expression in theses muscles. It is interesting to note that some genes were similarly activated in these two muscles but other genes may demonstrate a varied response to the same exercise bout depending on the type of muscle

  11. Diffusion-weighted MRI, dynamic susceptibility contrast MRI and ultrasound perfusion quantification of denervated muscle in rabbits

    Energy Technology Data Exchange (ETDEWEB)

    Goyault, G.; Beregi, J.P. [University Hospital, Department of Cardiovascular imaging, Cardiologic Hospital, Lille (France); Bierry, G.; Holl, N.; Dietemann, J.L.; Kremer, S. [University Hospital, Department of Neuroradiology, Strasbourg (France); Lhermitte, B. [University Hospital, Department of Pathology, Strasbourg (France)

    2012-01-15

    The purpose of this study was to assess denervated muscle perfusion using dynamic susceptibility contrast MRI (DSCMRI) and contrast-enhanced ultrasound (CEUS), and to measure denervated muscle apparent diffusion coefficient (ADC) on b1000 diffusion-weighted MRI (DWMRI) at 3 T in order to clarify whether muscle denervation leads to an increase in the extracellular extravascular space, or an increase in blood flow - or both. Axotomy of the right sciatic nerve of six white rabbits was performed at day 0. At day 9, hind limb muscles MRI and CEUS were performed to assess the consequences of denervation and both semimembranosus muscles of each rabbit were explanted for histological studies. Signal intensity on T2- and T1-weighted MRI, ADC on DWMRI, maximum signal drop (MSD) on DSCMRI and the area under the curve (AUC) on CEUS were measured over circular regions of interest (ROI), in both semimembranosus muscles. Non-parametric Wilcoxon matched-pairs tests were used to assess the mean differences between denervated and normal muscles. T2 fat-saturated (FS) MRI studies showed a strong signal in the right semimembranosus muscles compared with the left side, and gadolinium enhancement was observed on T1 FS MRI. Denervated muscles show a significant increase in ADC on DWMRI (p < 0.01) and a significant signal enhancement on DSCMR imaging (p < 0.05) and on first-pass CEUS (p < 0.05). The results of this study - based on perfusion- and diffusion-weighted images - suggest that, after denervation, both increased blood flow through muscle tissue and expansion of the extracellular water volume are present. (orig.)

  12. Contributions of the soleus and gastrocnemius muscles to the anterior cruciate ligament loading during single-leg landing.

    Science.gov (United States)

    Mokhtarzadeh, Hossein; Yeow, Chen Hua; Hong Goh, James Cho; Oetomo, Denny; Malekipour, Fatemeh; Lee, Peter Vee-Sin

    2013-07-26

    The aim of this study was to identify the contribution of the Soleus and Gastrocnemius (Gastroc) muscles' forces to anterior cruciate ligament (ACL) loading during single-leg landing. Although Quadriceps (Quads) and Hamstrings (Hams) muscles were recognized as the main contributors to the ACL loading, less is known regarding the role of ankle joint plantarflexors during landing. Eight healthy subjects performed single-landing tasks from 30 and 60cm heights. Scaled generic musculoskeletal models were developed in OpenSim to calculate lower limb muscle forces. The model consisted of 10 segments with 23 degrees of freedom and 92 lower body muscle-tendon units. Knee joint reaction forces were calculated based on the estimated muscle forces and used to predict ACL forces. We hypothesized that Soleus and Gastrocs muscle forces have opposite effects on tibial loading in the anterior/posterior directions. In situations where greater landing height would lead to an increase in GRF and risk of ACL injury, we further hypothesized that posterior forces of the Soleus and Hams would increase correspondingly to help protect the ACL during a safe landing maneuver. Our results demonstrated the antagonistic and agonistic roles of Gastrocs and Soleus respectively in ACL loading. The posterior force of Soleus reached 28-32% of Ham's posterior force for both landing heights at peak GRF while the posterior force of Gastrocs on femur was negligible. ACL injury risk during single-leg landing is not only dependent on knee musculature but also influenced by muscles that do not span the knee joint, such as the Soleus. In conclusion, the role of the ankle plantarflexors should be considered when developing training strategies for ACL injury prevention.

  13. Expression of atrophy-related transcription factors in the process of intrinsic laryngeal muscle atrophy after denervation.

    Science.gov (United States)

    Sei, Hirofumi; Taguchi, Aki; Nishida, Naoya; Hato, Naohito; Gyo, Kiyofumi

    2015-01-01

    We examined changes in the expressions of three atrophy-related transcription factors (FOXO3a, P-FOXO3a, and PGC-1α) in the process of intrinsic laryngeal muscle atrophy after denervation. In total, 51 Wistar rats were used. After transection of the unilateral recurrent laryngeal nerve, the thyroarytenoid (TA) muscle and the posterior cricoarytenoid (PCA) muscle were excised and subjected to histological and Western blot studies. Relationships between the expressions of transcription factors during atrophy of the intrinsic laryngeal muscles were investigated by comparing the results of the treated side (T) with those of the untreated side (U), and sequential changes in the T/U ratio after denervation were assessed. Loss of wet muscle weight, together with a decrease in muscle fiber cross-sectional area and increase in the number of muscle fibers/mm(2), occurred more quickly in TA muscle than in PCA muscle. Muscle atrophy progressed rapidly between 7 and 28 days after denervation, while expression of FOXO3a was maximal on day 7, in both TA and PCA muscles. By contrast, P-FOXO3a expression decreased gradually after denervation. Expression of PGC-1α increased slowly until day 7, and then it declined. Denervation-induced atrophy of the intrinsic laryngeal muscles was closely linked with the expression of FOXO3a and PGC-1α, suggesting that atrophy of these muscles may involve the actions of these transcription factors. In addition, muscle atrophy progressed faster in TA muscle than in PCA muscle, due mainly to differences in muscle fiber composition.

  14. Lecithin Prevents Cortical Cytoskeleton Reorganization in Rat Soleus Muscle Fibers under Short-Term Gravitational Disuse.

    Science.gov (United States)

    Ogneva, Irina V; Biryukov, Nikolay S

    2016-01-01

    The aim of this study was to prevent the cortical cytoskeleton reorganization of rat soleus muscle fibers under short-term gravitational disuse. Once a day, we injected the right soleus muscle with 0.5 ml lecithin at a concentration of 200 mg/ml and the left soleus muscle with a diluted solution in an equal volume for 3 days prior to the experiment. To simulate microgravity conditions in rats, an anti-orthostatic suspension was used according to the Ilyin-Novikov method modified by Morey-Holton et al. for 6 hours. The following groups of soleus muscle tissues were examined: "C", "C+L", "HS", and "HS+L". The transversal stiffness of rat soleus muscle fibers after 6 hours of suspension did not differ from that of the control group for the corresponding legs; there were no differences between the groups without lecithin «C» and «HS» or between the groups with lecithin "C+L" and "HS+L". However, lecithin treatment for three days resulted in an increase in cell stiffness; in the "C+L" group, cell stiffness was significantly higher by 22.7% (p lecithin treatment: the beta-actin and gamma-actin mRNA content in group "C+L" increased by 200% compared with that of group "C", and beta-tubulin increased by 100% (as well as the mRNA content of tubulin-binding proteins Ckap5, Tcp1, Cct5 and Cct7). In addition, desmin mRNA content remained unchanged in all of the experimental groups. As a result of the lecithin injections, there was a redistribution of the mRNA content of genes encoding actin monomer- and filament-binding proteins in the direction of increasing actin polymerization and filament stability; the mRNA content of Arpc3 and Lcp1 increased by 3- and 5-fold, respectively, but the levels of Tmod1 and Svil decreased by 2- and 5-fold, respectively. However, gravitational disuse did not result in changes in the mRNA content of Arpc3, Tmod1, Svil or Lcp1. Anti-orthostatic suspension for 6 hours resulted in a decrease in the mRNA content of alpha-actinin-4 (Actn4) and

  15. The effects of gastrocnemius-soleus muscle forces on ankle biomechanics during triple arthrodesis.

    Science.gov (United States)

    Hejazi, S; Rouhi, G; Rasmussen, J

    2017-02-01

    This paper presents a finite element model of the ankle, taking into account the effects of muscle forces, determined by a musculoskeletal analysis, to investigate the contact stress distribution in the tibio-talar joint in patients with triple arthrodesis and in normal subjects. Forces of major ankle muscles were simulated and corresponded well with the trend of their EMG signals. These forces were applied to the finite element model to obtain stress distributions for patients with triple arthrodesis and normal subjects in three stages of the gait cycle, i.e. heel strike, midstance, and heel rise. The results demonstrated that the stress distribution patterns of the tibio-talar joint in patients with triple arthrodesis differ from those of normal subjects in investigated gait cycle stages. The mean and standard deviations for maximum stresses in the tibo-talar joint in the stance phase for patients and normal subjects were 9.398e7 ± 1.75e7 and 7.372e7 ± 4.43e6 Pa, respectively. The maximum von Mises stresses of the tibio-talar joint for all subjects in the stance phase found to be on the lateral side of the inferior surface of the joint. The results also indicate that, in patients with triple arthrodesis, increasing gastrocnemius-soleus muscle force reduces the stress on the medial malleolus compared with normal subjects. Most of stresses in this area are between 45 and 109 kPa, and will decrease to almost 32 kPa in patients after increasing of 40% in gastrocnemius-soleus muscle force.

  16. Muscle Degeneration Associated With Rotator Cuff Tendon Release and/or Denervation in Sheep.

    Science.gov (United States)

    Gerber, Christian; Meyer, Dominik C; Flück, Martin; Valdivieso, Paola; von Rechenberg, Brigitte; Benn, Mario C; Wieser, Karl

    2017-03-01

    The effect of an additional neurological injury (suprascapular nerve traction injury) to a chronically retracted rotator cuff muscle is incompletely understood and warrants clarification. To investigate the microscopic and macroscopic muscle degeneration patterns caused by tendon release and/or muscle denervation in a sheep rotator cuff model. Controlled laboratory study. Infraspinatus muscle biopsy specimens (for histological analysis) were obtained from 18 Swiss alpine sheep before and 16 weeks after release of the infraspinatus tendon (tenotomy [T] group; n = 6), transection of the suprascapular nerve (neurectomy [N] group; n = 6), or tendon release plus nerve transection (tenotomy + neurectomy [T&N] group; n = 6). Magnetic resonance imaging (MRI) and computed tomography (CT) were used to assess retraction (CT), muscle density (CT), volume (MRI T2), and fat fraction (MRI Dixon). Stiffness of the infraspinatus was measured with a spring scale. At 16 weeks postoperatively, the mean infraspinatus muscle volume had decreased significantly more after neurectomy (to 47% ± 7% of the original volume; P = .001) and tenotomy plus neurectomy (48% ± 13%; P = .005) than after tenotomy alone (78% ± 11%). Conversely, the mean amount of intramuscular fat (CT/MRI Dixon) was not significantly different in the 3 groups (T group: 50% ± 9%; N group: 40% ± 11%; T&N group: 46% ± 10%) after 16 weeks. The mean myotendinous retraction (CT) was not significantly different in the T and T&N groups (5.8 ± 1.0 cm and 6.4 ± 0.4 cm, respectively; P = .26). Stiffness was, however, most increased after additional neurectomy. In contrast to muscle changes after tendon release, denervation of the muscle led to a decrease in the pennation angle of lengthened muscle fibers, with a reduced mean cross-sectional area of pooled muscle fibers, a slow- to fast-type transformation, and an increase in the area percentage of hybrid fibers, leading to overall significantly greater atrophy of the

  17. The Effects of Ligustrazine on the Ca2+ Concentration of Soleus and Gastrocnemius Muscle Fibers in Hindlimb Unloaded Rat

    Science.gov (United States)

    Gao, Yunfang; Goswami, Nandu; Du, Bei; Hu, Huanxin; Wu, Xue

    Background:Spaceflight or inactivity (bed rest, limb immobilization, hindlimb unloading) causes skeletal muscle atrophy. Recent studies show that an increase in protein degradation is an important mechanism for disuse atrophy. Furthermore, the calcium overload of disuse-atrophied muscle fiber has been shown to initiate the skeletal muscle proteolysis in disuse atrophy. Ligustrazine (tetramethylpyrazine, TMP), one of the important active ingredient extracted from Chuanxiong, has been shown by our group to increase muscle fiber cross-sectional area in atrophied soleus induced by 14 days hindlimb unloading. However, the underlying mechanisms of ligustrazine effects on disuse-atrophied muscle fibers remain unknown. Objective: We investigated the effects of ligustrazine on the cytoplasmic calcium overloading in soleus and gastrocnemius in 14 days hindlimb unloaded (HU) rats. Methods: Adult female Sprague-Dawley rats were matched for body mass and randomly assigned to three groups (n=8, each group): 1) synchronous control (CON); HU + intragastric water instillation (HU+W); HU + intragastric 60.0 mg kg-1 ligustrazine instillation (HU+Tmp). Laser scanning confocal microscope assessed the concentrations of cytoplasmic calcium ions. Spaceflight disuse atrophy was simulated by hindlimb unloading, provided by tail suspension. Results: 1) Compared with CON, the concentration of soleus intracellular calcium ion in HU+W and HU+Tmp increased 330% and 86% respectively(P<0.01). Compared with HU+W, the concentration of soleus intracellular calcium ion in HU+Tmp decreased by 130%(P<0.01). 2) Compared with CON, the concentration of gastrocnemius intracellular calcium ion in HU+W and HU+Tmp increased 189.8% and 32.1% respectively(P<0.01). Compared with HU+W, the concentration of gastrocnemius intracellular calcium ion in HU+Tmp decreased by 119.3% (P<0.01). Conclusion: After 14 days of hindlimb unloading, cytoplasmic calcium of soleus (slow-twitch muscle) and gastrocnemius (fast

  18. Electrical Stimulation of Denervated Rat Skeletal Muscle Ameliorates Bone Fragility and Muscle Loss in Early-Stage Disuse Musculoskeletal Atrophy.

    Science.gov (United States)

    Tamaki, Hiroyuki; Yotani, Kengo; Ogita, Futoshi; Hayao, Keishi; Nakagawa, Kouki; Sugawara, Kazuhiro; Kirimoto, Hikari; Onishi, Hideaki; Kasuga, Norikatsu; Yamamoto, Noriaki

    2017-04-01

    We tested whether daily muscle electrical stimulation (ES) can ameliorate the decrease in cortical bone strength as well as muscle and bone geometric and material properties in the early stages of disuse musculoskeletal atrophy. 7-week-old male F344 rats were randomly divided into three groups: age-matched control group (Cont); a sciatic denervation group (DN); and a DN + direct electrical stimulation group (DN + ES). Denervated tibialis anterior (TA) muscle in the DN + ES group received ES with 16 mA at 10 Hz for 30 min/day, 6 days/week. Micro CT, the three-point bending test, and immunohistochemistry were used to characterize cortical bone mechanical, structural, and material properties of tibiae. TA muscle in the DN + ES group showed significant improvement in muscle mass and myofiber cross-sectional area relative to the DN group. Maximal load and stiffness of tibiae, bone mineral density estimated by micro CT, and immunoreactivity of DMP1 in the cortical bone tissue were also significantly greater in the DN + ES group than in the DN group. These results suggest that daily ES-induced muscle contraction treatment reduced the decrease in muscle mass and cortical bone strength in early-stage disuse musculoskeletal atrophy and is associated with a beneficial effect on material properties such as mineralization of cortical bone tissue.

  19. Changes in the soleus muscle architecture after exhausting stretch-shortening cycle exercise in humans.

    Science.gov (United States)

    Ishikawa, M; Dousset, E; Avela, J; Kyröläinen, H; Kallio, J; Linnamo, V; Kuitunen, S; Nicol, C; Komi, P V

    2006-06-01

    This study focused on the architectural changes in the muscle-tendon complex during the immediate and secondary (delayed) reductions of performance (bimodal recovery) caused by an exhaustive rebound type stretch-shortening cycle (SSC) exercise. The isometric plantar flexor torque during maximum voluntary contraction (MVC) was measured together with recording of electromyography (EMG) and ultrasonography from the soleus muscle before (BEF), after (AFT), 2 h (2H), 2 and 8 days (2D, 8D) after the SSC exercise (n=8). The performance variables (MVC torque and EMG activation) followed the bimodal recovery patterns. This was not the case in the changes of the fascicle length and muscle thickness. The relative torque changes in MVC correlated positively (R=0.78, P=0.02) to the corresponding averaged EMG changes between BEF and 2H (BEF-->2H); the significance disappeared in the comparison between 2H and 2D (2H-->2D), during which period MVC showed a secondary reduction. The relative torque changes in MVC showed no correlation with the changes in muscle thickness between BEF-2H. However, this correlation between 2H-2D was negative (R=-0.85, PMVC increased at 2H, and then decreased more at 2D than 2H (PMVC could be related to the increase in muscle volume.

  20. Use of botulinum toxin type A in symptomatic accessory soleus muscle: first five cases.

    Science.gov (United States)

    Isner-Horobeti, M-E; Muff, G; Lonsdorfer-Wolf, E; Deffinis, C; Masat, J; Favret, F; Dufour, S P; Lecocq, J

    2016-11-01

    Symptomatic accessory soleus muscle (ASM) can cause exercise-induced leg pain due to local nerve/vascular compression, muscle spasm, or local compartment syndrome. As intramuscular injections of botulinum toxin type A (BTX-A) can reduce muscle tone and mass, we investigated whether local BTX-A injections relieve the pain associated with symptomatic ASM. We describe five patients presenting peri/retromalleolar exertional pain and a contractile muscle mass in the painful region. Com-pression neuropathy was ruled out by electromyo-graphic analysis of the lower limb muscles. Doppler ultrasonography was normal, excluding a local vascular compression. ASM was confirmed by magnetic resonance imaging. After a treadmill stress test, abnormal intramuscular pressure values in the ASM, confirmed the diagnosis of compartment syndrome only in one patient. All five patients received BTX-A injections in two points of the ASM. The treatment efficacy was evaluated based on the disappearance of exercise-induced pain and the resumption of normal physical and sports activities. After BTX-A injection, exertional pain disappeared and all five patients resumed their normal level of physical and sports performances. Neither side effects nor motor deficits were observed. BTX-A is well tolerated in patients with ASM and could be used as a new conservative therapeutic strategy for the treatment of symptomatic ASM before surgery.

  1. Changes in calpains and calpastatin in the soleus muscle of Daurian ground squirrels during hibernation.

    Science.gov (United States)

    Yang, Chen-Xi; He, Yue; Gao, Yun-Fang; Wang, Hui-Ping; Goswami, Nandu

    2014-10-01

    We investigated changes in muscle mass, calpains, calpastatin and Z-disk ultrastructure in the soleus muscle (SOL) of Daurian ground squirrels (Spermophilus dauricus) after hibernation or hindlimb suspension to determine possible mechanisms by which muscle atrophy is prevented in hibernators. Squirrels (n=30) were divided into five groups: no hibernation group (PRE, n=6); hindlimb suspension group (HLS, n=6); two month hibernation group (HIB, n=6); two day group after 90±12 days of hibernation (POST, n=6); and forced exercise group (one time forced, moderate-intensity treadmill exercise) after arousal (FE, n=6). Activity and protein expression of calpains were determined by casein zymography and western blotting, and Z-disk ultrastructure was observed by transmission electron microscopy. The following results were found. Lower body mass and higher SOL muscle mass (mg) to total body mass (g) ratio were observed in HIB and POST; calpain-1 activity increased significantly by 176% (P=0.034) in HLS compared to the PRE group; no significant changes were observed in calpain-2 activity. Protein expression of calpain-1 and calpain-2 increased by 83% (P=0.041) and 208% (P=0.029) in HLS compared to the PRE group, respectively; calpastatin expression increased significantly by 180% (Pcalpain activity and consequently calpain-mediated protein degradation by highly elevated calpastatin protein expression levels may be an important mechanism for preventing muscle protein loss during hibernation and ensuring that Z-lines remained ultrastructurally intact.

  2. The effect of a physiological concentration of caffeine on the endurance of maximally and submaximally stimulated mouse soleus muscle.

    Science.gov (United States)

    Tallis, Jason; James, Rob S; Cox, Val M; Duncan, Michael J

    2013-03-01

    The use of caffeine as an ergogenic aid to promote endurance has been widely studied, with human literature showing the greatest benefit during submaximal muscle activities. Recent evidence suggests that the acute treatment of skeletal muscle with physiological concentrations of caffeine (70 μM maximum) will directly potentiate force production. The aims of the present study are: firstly, to assess the effects of a physiological concentration (70 μM) of caffeine on endurance in maximally activated mouse soleus (relatively slow) muscle; and secondly, to examine whether endurance changes when muscle is activated submaximally during caffeine treatment. Maximally stimulated soleus muscle treated with 70 μM caffeine resulted in a significant (17.6 %) decrease in endurance. In contrast, at a submaximal stimulation frequency, caffeine treatment significantly prolonged endurance (by 19.2 %). Findings are activation-dependent such that, during high frequency stimulation, caffeine accelerates fatigue, whereas, during low frequency stimulation, caffeine delays fatigue.

  3. Two weeks of metformin treatment induces AMPK dependent enhancement of insulin-stimulated glucose uptake in mouse soleus muscle

    DEFF Research Database (Denmark)

    Kristensen, Jonas Møller; Treebak, Jonas Thue; Schjerling, Peter;

    2014-01-01

    Background: Metformin-induced activation of AMPK has been associated with enhanced glucose uptake in skeletal muscle but so far no direct causality has been examined. We hypothesized that an effect of in vivo metformin treatment on glucose uptake in mouse skeletal muscles is dependent upon AMPK...... signaling. Methods: Oral doses of metformin or saline treatment were given muscle-specific kinase α2 dead AMPK mice (KD) and wild type (WT) littermates either once or chronically for 2 weeks. Soleus and Extensor Digitorum Longus (EDL) muscles were used for measurements of glucose transport and Western blot...... analyzes. Results: Chronic treatment with metformin enhanced insulin-stimulated glucose uptake in soleus muscles of WT (45%, P...

  4. Distinct muscle apoptotic pathways are activated in muscles with different fiber types a rat model of critical illness myopathy

    OpenAIRE

    Barnes, Benjamin T.; Confides, Amy L.; Rich, Mark M.; Dupont-Versteegden, Esther E.

    2015-01-01

    Critical illness myopathy (CIM) is associated with severe muscle atrophy and fatigue in affected patients. Apoptotic signaling is involved in atrophy and is elevated in muscles from patients with CIM. In this study we investigated underlying mechanisms of apoptosis-related pathways in muscles with different fiber type composition in a rat model of CIM using denervation and glucocorticoid administration (denervation and steroid-induced myopathy, DSIM). Soleus and tibialis anterior (TA) muscles...

  5. Muscle fiber regeneration in human permanent lower motoneuron denervation: relevance to safety and effectiveness of FES-training, which induces muscle recovery in SCI subjects.

    Science.gov (United States)

    Carraro, Ugo; Rossini, Katia; Mayr, Winfried; Kern, Helmut

    2005-03-01

    Morphologic characteristics of the long-term denervated muscle in animals suggest that some original fibers are lost and some of those seen are the result of repeated cycles of fiber regeneration. Muscle biopsies from lower motoneuron denervated patients enrolled in the EU Project RISE show the characteristics of long-term denervation. They present a few atrophic or severely atrophic myofibers dispersed among adipocytes and connective tissue (denervated degenerated muscle, DDM). Monoclonal antibody for embryonic myosin shows that regenerative events are present from 1- to 37-years postspinal cord injury (SCI). After 2- to 10-years FES-training the muscle cryosections present mainly large round myofibers. In the FES-trained muscles the regenerative events are present, but at a lower rate than long-term denervated muscles (myofiber per mm2 of cryosection area: 0.8 +/- 1.3 in FES vs. 2.3 +/- 2.3 in DDM, mean +/- SD, P = 0.011). In our opinion this is a sound additional evidence of effectiveness of the Kern's electrical stimulation protocol for FES of DDM. In any case, the overall results demonstrate that the FES-training is safe: at least it does not induce more myofiber damage/regeneration than denervation per se.

  6. Microtransplantation of acetylcholine receptors from normal or denervated rat skeletal muscles to frog oocytes

    Science.gov (United States)

    Bernareggi, Annalisa; Reyes-Ruiz, Jorge Mauricio; Lorenzon, Paola; Ruzzier, Fabio; Miledi, Ricardo

    2011-01-01

    Cell membranes, carrying neurotransmitter receptors and ion channels, can be ‘microtransplanted’ into frog oocytes. This technique allows a direct functional characterization of the original membrane proteins, together with any associated molecules they may have, still embedded in their natural lipid environment. This approach has been previously demonstrated to be very useful to study neurotransmitter receptors and ion channels contained in cell membranes isolated from human brains. Here, we examined the possibility of using the microtransplantation method to study acetylcholine receptors from normal and denervated rat skeletal muscles. We found that the muscle membranes, carrying their fetal or adult acetylcholine receptor isoforms, could be efficiently microtransplanted to the oocyte membrane, making the oocytes become sensitive to acetylcholine. These results show that oocytes injected with skeletal muscle membranes efficiently incorporate functional acetylcholine receptors, thus making the microtransplantation approach a valuable tool to further investigate receptors and ion channels of human muscle diseases. PMID:21224230

  7. Electrical stimulation attenuates morphological alterations and prevents atrophy of the denervated cranial tibial muscle.

    Science.gov (United States)

    Bueno, Cleuber Rodrigo de Souza; Pereira, Mizael; Favaretto, Idvaldo Aparecido; Bortoluci, Carlos Henrique Fachin; Santos, Thais Caroline Pereira Dos; Dias, Daniel Ventura; Daré, Letícia Rossi; Rosa, Geraldo Marco

    2017-01-01

    To investigate if electrical stimulation through Russian current is able to maintain morphology of the cranial tibial muscle of experimentally denervated rats. Thirty-six Wistar rats were divided into four groups: the Initial Control Group, Final Control Group, Experimental Denervated and Treated Group, Experimental Denervated Group. The electrostimulation was performed with a protocol of Russian current applied three times per week, for 45 days. At the end, the animals were euthanized and histological and morphometric analyses were performed. Data were submitted to statistical analysis with a significance level of pmorfologia do músculo tibial cranial de ratos desnervados experimentalmente. Foram utilizados 36 ratos Wistar, distribuídos em quatro grupos: Grupo Controle Inicial, Grupo Controle Final, Grupo Experimental Desnervado Tratado, Grupo Experimental Desnervado. A eletroestimulação foi realizada com um protocolo de corrente russa aplicada três vezes por semanas, durante 45 dias. Ao final, os animais foram eutanasiados e, em seguida, foram realizadas as análises histológica e morfométrica. Os dados foram submetidos à análise estatística, com nível de significância de pmorfologia do músculo tibial cranial desnervado experimentalmente, minimizando a atrofia muscular.

  8. Upregulation of HARP during in vitro myogenesis and rat soleus muscle regeneration.

    Science.gov (United States)

    Caruelle, Danièle; Mazouzi, Zohra; Husmann, Irene; Delbé, Jean; Duchesnay, Arlette; Gautron, Jean; Martelly, Isabelle; Courty, José

    2004-01-01

    Heparin affin regulatory peptide (HARP) is a heparin binding growth factor that belongs to a family of molecule whose biological function in myogenesis has been suspected without formal demonstration. In the present study, we investigated the expression and the distribution of HARP and its mRNA during soleus muscle regeneration using a crushed-induced regeneration model and also during differentiation of muscle satellite cells in primary cultures. We show that HARP mRNA and protein expression are increased during the regeneration process with a peak at day 5 after muscle crushing when new myotubes are formed. In situ hybridization and immunohistochemical studies showed that activated myoblasts expressed HARP at day two after crushing. Five days after muscle lesion, HARP is localised in newly formed myotubes as well as in prefused activated myoblasts. In regenerated myofibers, 15 days after crushing, expression of HARP was reduced. In vitro experiments using primary cultures of rat satellite cells indicated that HARP expression level increased during the differentiation process and peaked on fusion of myoblasts into myotubes. This is the first study demonstrating the presence of HARP in fusing myogenic cells suggests that this growth factor could play a function in myogenic differentiation.

  9. [Structural changes in the soleus muscle of rats on the Kosmos-series biosatellites and in hypokinesia].

    Science.gov (United States)

    Il'ina-Kakueva, E I; Portugalov, V V

    1981-01-01

    Structural changes in the soleus muscle of rats used in flight and synchronous experiments of the Cosmos program and hypokinetic studies have been investigated. It is hypothesized that focal edema and dystrophic changes observed in flight, synchronous and hypokinetic rats can be caused by circulation disorders of different etiology. In flight and synchronous rats they develop two days postflight due to the deconditioning of the muscle tissue and intraorgan vascular system which fail to meet the requirements after transition from 0 g to 1 g. In hypokinetic rats circulation disorders occur on the first experimental day due to mechanical causes (paws are pressed against the cage floor impeding venous outflow) and muscle pump deficiency. In all cases circulation disorders seem to be associated with peculiar features of angioarchitectonics of the soleus muscle.

  10. Melatonin is as effective as testosterone in the prevention of soleus muscle atrophy induced by castration in rats.

    Science.gov (United States)

    Oner, Jale; Oner, Hakan; Sahin, Zeliha; Demir, Ramazan; Ustünel, Ismail

    2008-04-01

    The purpose of this experiment was to compare the weight, insulin-like growth factor-I (IGF-I) expression, and ultrastructure of the soleus muscle in growing castrated rats treated with testosterone or melatonin. In this study, adult male Wistar albino rats were used. The groups were arranged as sham, castrated, and testosterone- or melatonin-injected groups after castration. The soleus muscle samples were fixed in Bouin's solution for immunohistochemistry, and in 2.5% gluteraldehyde in 0.1 M phosphate buffer (pH 7.4). Whereas castration reduced the soleus weight and fiber diameter, testosterone and melatonin administration increased them. IGF-I immunostaining observed in the satellite cells and periphery of the myofibers was least intense in the castrated group. Strong staining of IGF-I was observed in the testosterone- and melatonin-administered groups. The ultrastructure of the soleus muscle in castrated animals showed the important ultrastructural modifications related to degeneration. In these groups, degenerative mitochondria, glycogen clusters under the sarcolemma, irregular Z lines, and loss of lamina externa were observed. The ultrastructure of myofibrils in the testosterone- and melatonin-injected groups was similar to that in sham groups in view of structure. In conclusion, we suggest that melatonin is as effective as testosterone in the prevention of atrophy induced by castration through the IGF-I axis.

  11. Detrimental effects of reloading recovery on force, shortening velocity, and power of soleus muscles from hindlimb-unloaded rats.

    Science.gov (United States)

    Widrick, J J; Maddalozzo, G F; Hu, H; Herron, J C; Iwaniec, U T; Turner, R T

    2008-11-01

    To better understand how atrophied muscles recover from prolonged nonweight-bearing, we studied soleus muscles (in vitro at optimal length) from female rats subjected to normal weight bearing (WB), 15 days of hindlimb unloading (HU), or 15 days HU followed by 9 days of weight bearing reloading (HU-R). HU reduced peak tetanic force (P(o)), increased maximal shortening velocity (V(max)), and lowered peak power/muscle volume. Nine days of reloading failed to improve P(o), while depressing V(max) and intrinsic power below WB levels. These functional changes appeared intracellular in origin as HU-induced reductions in soleus mass, fiber cross-sectional area, and physiological cross-sectional area were partially or completely restored by reloading. We calculated that HU-induced reductions in soleus fiber length were of sufficient magnitude to overextend sarcomeres onto the descending limb of their length-tension relationship upon the resumption of WB activity. In conclusion, the force, shortening velocity, and power deficits observed after 9 days of reloading are consistent with contraction-induced damage to the soleus. HU-induced reductions in fiber length indicate that sarcomere hyperextension upon the resumption of weight-bearing activity may be an important mechanism underlying this response.

  12. Artificial facial nerve reflex restores eyelid closure following orbicularis oculi muscle denervation

    Institute of Scientific and Technical Information of China (English)

    Yujuan Wang; Keyong Li; Jingquan Liu; Dongyue Xu; Yuefeng Rui; Chunsheng Yang

    2010-01-01

    To date, treatment of peripheral facial paralysis has focused on preservation of facial nerve integrity. However, with seriously damaged facial nerve cases, it is difficult to recover anatomical and functional integrity using present therapies. Therefore, the present study utilized artificial facial nerve reflex to obtain orbicularis oculi muscle (OOM) electromyography signals on the uninjured side through the use of implanted recording electrodes. The implanted electrical chips analyzed facial muscle motion on the uninjured side and triggered an electrical stimulator to emit current pulses, which resulted in stimulation of injured OOM contraction and maintained bilateral symmetry and consistency. Following signal recognition, extraction, and computer analysis, electromyography signals in the uninjured OOM resulted in complete eyelid closure, which was consistent with the voltage threshold for eye closure. These findings suggested that artificial facial nerve reflex through the use of implanted microelectronics in unilateral peripheral facial paralysis could restore eyelid closure following orbicularis oculi muscle denervation.

  13. Peripheral benzodiazepine binding sites on striated muscles of the rat: Properties and effect of denervation

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, W.E.; Ickstadt, A. (Mainz Univ. (Germany, F.R.). Pharmakologisches Inst.); Hopf, H.Ch. (Mainz Univ. (Germany, F.R.))

    1985-01-01

    In order to test the hypothesis that peripheral benzodiazepine binding sites mediate some direct effects of benzodiazepines on striated muscles, the properties of specific /sup 3/H-Ro 5-4864 binding to rat biceps and rat diaphragm homogenates were investigated. In both tissues a single population of sites was found with a Ksub(D) value of 3 nmol/l. The density of these sites in both muscles was higher than the density in rat brain, but was considerably lower than in rat kidney. Competition experiments indicate a substrate specificity of specific /sup 3/H-Ro 5-4864 binding similar to the properties already demonstrated for the specific binding of this ligand to peripheral benzodiazepine binding sites in many other tissues. The properties of these sites in the rat diaphragm are not changed after motoric denervation by phrenicectomy. It is concluded that peripheral benzodiazepine binding sites are not involved in direct effects of benzodiazepines on striated muscles.

  14. The effects of denervation, reinnervation, and muscle imbalance on functional muscle length and elbow flexion contracture following neonatal brachial plexus injury.

    Science.gov (United States)

    Weekley, Holly; Nikolaou, Sia; Hu, Liangjun; Eismann, Emily; Wylie, Christopher; Cornwall, Roger

    2012-08-01

    The pathophysiology of paradoxical elbow flexion contractures following neonatal brachial plexus injury (NBPI) is incompletely understood. The current study tests the hypothesis that this contracture occurs by denervation-induced impairment of elbow flexor muscle growth. Unilateral forelimb paralysis was created in mice in four neonatal (5-day-old) BPI groups (C5-6 excision, C5-6 neurotomy, C5-6 neurotomy/repair, and C5-T1 global excision), one non-neonatal BPI group (28-day-old C5-6 excision), and two neonatal muscle imbalance groups (triceps tenotomy ± C5-6 excision). Four weeks post-operatively, motor function, elbow range of motion, and biceps/brachialis functional lengths were assessed. Musculocutaneous nerve (MCN) denervation and reinnervation were assessed immunohistochemically. Elbow flexion motor recovery and elbow flexion contractures varied inversely among the neonatal BPI groups. Contracture severity correlated with biceps/brachialis shortening and MCN denervation (relative axon loss), with no contractures occurring in mice with MCN reinnervation (presence of growth cones). No contractures or biceps/brachialis shortening occurred following non-neonatal BPI, regardless of denervation or reinnervation. Neonatal triceps tenotomy did not cause contractures or biceps/brachialis shortening, nor did it worsen those following neonatal C5-6 excision. Denervation-induced functional shortening of elbow flexor muscles leads to variable elbow flexion contractures depending on the degree, permanence, and timing of denervation, independent of muscle imbalance. Copyright © 2012 Orthopaedic Research Society.

  15. Cold exposure increases slow-type myosin heavy chain 1 (MyHC1) composition of soleus muscle in rats.

    Science.gov (United States)

    Mizunoya, Wataru; Iwamoto, Yohei; Sato, Yusuke; Tatsumi, Ryuichi; Ikeuchi, Yoshihide

    2014-03-01

    The aim of this study was to examine the effects of cold exposure on rat skeletal muscle fiber type, according to myosin heavy chain (MyHC) isoform and metabolism-related factors. Male Wistar rats (7 weeks old) were housed individually at 4 ± 2°C as a cold-exposed group or at room temperature (22 ± 2°C) as a control group for 4 weeks. We found that cold exposure significantly increased the slow-type MyHC1 content in the soleus muscle (a typical slow-type fiber), while the intermediate-type MyHC2A content was significantly decreased. In contrast to soleus, MyHC composition of extensor digitorum longus (EDL, a typical fast-type fiber) and gastrocnemius (a mix of slow-type and fast-type fibers) muscle did not change from cold exposure. Cold exposure increased mRNA expression of mitochondrial uncoupling protein 3 (UCP3) in both the soleus and EDL. Cold exposure also increased mRNA expression of myoglobin, peroxisome proliferator-activated receptor gamma coactivator 1α (PGC1α) and forkhead box O1 (FOXO1) in the soleus. Upregulation of UCP3 and PGC1α proteins were observed with Western blotting in the gastrocnemius. Thus, cold exposure increased metabolism-related factors in all muscle types that were tested, but MyHC isoforms changed only in the soleus. © 2013 Japanese Society of Animal Science.

  16. Myostatin dysfunction impairs force generation in extensor digitorum longus muscle and increases exercise-induced protein efflux from extensor digitorum longus and soleus muscles.

    Science.gov (United States)

    Baltusnikas, Juozas; Kilikevicius, Audrius; Venckunas, Tomas; Fokin, Andrej; Bünger, Lutz; Lionikas, Arimantas; Ratkevicius, Aivaras

    2015-08-01

    Myostatin dysfunction promotes muscle hypertrophy, which can complicate assessment of muscle properties. We examined force generating capacity and creatine kinase (CK) efflux from skeletal muscles of young mice before they reach adult body and muscle size. Isolated soleus (SOL) and extensor digitorum longus (EDL) muscles of Berlin high (BEH) mice with dysfunctional myostatin, i.e., homozygous for inactivating myostatin mutation, and with a wild-type myostatin (BEH+/+) were studied. The muscles of BEH mice showed faster (P contraction times compared with BEH+/+ mice, but only EDL displayed lower (P muscle force generating capacity in EDL and increases susceptibility of SOL and EDL to protein loss after exercise.

  17. Comportamento das reservas de glicogênio no músculo desnervado de ratas tratadas com diferentes doses de estrógeno Glycogen reserve behavior in denervated muscles of female rats treated with different estrogen doses

    Directory of Open Access Journals (Sweden)

    MTM Severi

    2009-04-01

    Full Text Available OBJETIVO: Avaliar a ação estrogênica sobre o perfil glicogênico do músculo esquelético desnervado de ratas. MÉTODOS: Os animais foram divididos em seis grupos experimentais (n=6: controle; desnervado durante 15 dias; desnervado tratado com estrógeno na concentração de 20µg/peso/dia; desnervado tratado com estrógeno na concentração de 40µg/peso/dia; desnervado tratado com estrógeno na concentração de 80µg/peso/dia e desnervado tratado com estrógeno na concentração de 160µg/peso/dia. Os animais foram tratados com a substância cipionato de estradiol durante 15 dias. As análises realizadas foram: conteúdo de glicogênio dos músculos sóleo, gastrocnêmio branco e gastrocnêmio vermelho (misto, realizadas por meio do método do fenol sulfúrico, além do peso corporal e do músculo sóleo. A análise estatística incluiu ANOVA e teste post-hoc de Tukey (pOBJECTIVE: To evaluate the action of estrogen on the glycogen profile of denervated skeletal muscle in female rats. METHODS: The animals were divided into six experimental groups (n=6: control; denervated for 15 days; denervated and treated with estrogen at a concentration of 20µg/weight/day; denervated and treated with estrogen at a concentration of 40µg/weight/day; denervated and treated with estrogen at a concentration of 80µg/weight/day; and denervated and treated with estrogen at a concentration of 160µg/weight/day. The animals were treated with estradiol cypionate for 15 days. The following analyses were carried out: glycogen content of the soleus, white gastrocnemius and red (mixed gastrocnemius, by means of the phenol-sulfuric acid method as well as body weight and soleus muscle weight. The statistical analysis included ANOVA and the post-hoc Tukey test (p<0.05. RESULTS: The denervation induced a reduction in glycogen content in the soleus and the white and mixed gastrocnemius muscles. In contrast, there was a progressive elevation of glycogen content

  18. Permanent LMN denervation of human skeletal muscle and recovery by h-b FES: management and monitoring

    Directory of Open Access Journals (Sweden)

    Helmut Kern

    2010-09-01

    Full Text Available Denervation of a defined skeletal muscle is due to lower motor neuron (LMN or peripheral nerve lesions that have major consequences on the muscle tissue. After early atrophy, the mid- and late-phases presents two very contrasting myofibers populations: beside those severely atrophic with internalized groups of myonuclei, large fast-type muscle fibers continue to be present 4 to 6 years after Spinal Cord Injury (SCI. Recent results of rat experiments provides the rational basis for understanding the residual functional characteristics of the long-term denervated muscle and the molecular explanation of its ability to respond to home-base functional electrical stimulation (h-b FES using custom-designed electrodes and stimulators. Further outcomes of the Vienna-Padova ten-year collaboration are: 1. a world-unique Myo- Bank of muscle biopsies and 2. improved imaging procedures (Color Computer Tomography (CT scan and Functional Echomyography, all demonstrating that h-b FES induces improvements in muscle contractility, tissue composition and mass, despite permanent LMN denervation. The benefits of h-b FES could be extended from patents suffering with complete Conus-Cauda Syndrome to the numerous patients with incomplete LMN denervation of skeletal muscles to determine whether h-b FES reduces secondary complications related to disuse and impaired blood perfusion (reduction in bone density, risk of bone fracture, decubitus ulcers, and pulmonary thromboembolism. We are confident that translation of the results of a clinical experiment, the EU Project RISE, to the larger cohort of incomplete LMN denervated muscles will provide the wanted results.

  19. Prevention of disuse muscle atrophy by dietary ingestion of 8-prenylnaringenin in denervated mice.

    Directory of Open Access Journals (Sweden)

    Rie Mukai

    Full Text Available Flavonoids have attracted considerable attention in relation to their effects upon health. 8-Prenylnaringenin (8-PN is found in the common hop (Humulus lupulus and assumed to be responsible for the health impact of beer consumption. We wanted to clarify the effects of prenylation on the physiological functions of dietary flavonoids by comparing the effects of 8-PN with that of intact naringenin in the prevention of disuse muscle atrophy using a model of denervation in mice. Consumption of 8-PN (but not naringenin prevented loss of weight in the gastrocnemius muscle further supported by the lack of induction of the protein content of a key ubiquitin ligase involved in muscle atrophy, atrogin-1, and by the activation of Akt phosphorylation. 8-PN content in the gastrocnemius muscle was tenfold higher than that of naringenin. These results suggested that, compared with naringenin, 8-PN was effectively concentrated into skeletal muscle to exert its preventive effects upon disuse muscle atrophy. It is likely that prenylation generates novel functions for 8-PN by enhancing its accumulation into muscle tissue through dietary intake.

  20. Differences in the interaction of acetylcholine receptor antibodies with receptor from normal, denervated and myasthenic human muscle.

    OpenAIRE

    Lefvert, A. K.

    1982-01-01

    The interaction of acetylcholine receptor antibodies with different kinds of human skeletal muscle receptor was investigated. The reaction of most receptor antibodies was strongest with receptor from a patient with myasthenia gravis and with receptor from denervated muscle. Results obtained with these receptors were well correlated. The binding of most receptor antibodies to receptor from functionally normal muscle was much weaker and also qualitatively different. In a few patients with moder...

  1. Shortening amplitude affects the incomplete force recovery after active shortening in mouse soleus muscle.

    Science.gov (United States)

    Van Noten, Pieter; Van Leemputte, Marc

    2009-12-11

    Compared to isometric contraction, the force producing capacity of muscle is reduced (force depression, FD) after a work producing shortening phase. It has been suggested that FD results from an inhibition of cross-bridge binding. Because the rate constants of the exponential force (re)development are thought to be primarily determined by cross-bridge attachment/detachment rate, we aimed to investigate the components of force redevelopment (REDEV) after 0.6, 1.2 and 2.4mm shortening, resulting in varying amounts of FD (from about 5% to about 16%), in mouse soleus muscle (n=11). Compared to isometric force development (DEV), the time to reach steady-state during REDEV was about 3 times longer (370 versus 1261ms) increasing with increasing amplitude. Contrary to a single, a double exponential function with one component set equal to the rate constant of DEV (14.3s(-1)), accurately described REDEV (RMSshortening amplitude and was associated with work delivered during shortening (R(2)=0.75) and FD (R(2)=0.77). We concluded that a work related slow exponential component is induced to the trajectory of incomplete force recovery after shortening, causing FD. These results suggest that after shortening, aside from cross-bridges with normal attachment/detachment rate, cross-bridges with reduced cycling rate are active.

  2. Sensory denervation of the plantar lumbrical muscle spindles in pyridoxine neuropathy.

    Science.gov (United States)

    Krinke, G; Heid, J; Bittiger, H; Hess, R

    1978-09-15

    Male albino rats treated with excessive amounts of pyridoxine developed an impairment of neuromuscular function. The equatorial region of the plantar lumbrical intrafusal muscle fibres was studied in the electron microscope and the calibre of the nerve fibres was determined in semi-thin sections of the posterior tibial nerves. Degeneration of the primary sensory endings coincided with the onset of ataxia, and in more advanced stages of the neuropathy as well as after a 2-month treatment-free period the equatorial region was denervated. There was a corresponding decrease in the number of large nerve fibres. It is considered essential that primary sensory endings of lumbrical muscle spindles should be included in studies of distally accentuated sensory neuropathies.

  3. Astaxanthin Supplementation Delays Physical Exhaustion and Prevents Redox Imbalances in Plasma and Soleus Muscles of Wistar Rats

    Directory of Open Access Journals (Sweden)

    Tatiana G. Polotow

    2014-12-01

    Full Text Available Astaxanthin (ASTA is a pinkish-orange carotenoid commonly found in marine organisms, especially salmon. ASTA is a powerful antioxidant and suggested to provide benefits for human health, including the inhibition of LDL oxidation, UV-photoprotection, and prophylaxis of bacterial stomach ulcers. Exercise is associated to overproduction of free radicals in muscles and plasma, with pivotal participation of iron ions and glutathione (GSH. Thus, ASTA was studied here as an auxiliary supplement to improve antioxidant defenses in soleus muscles and plasma against oxidative damage induced by exhaustive exercise. Long-term 1 mg ASTA/kg body weight (BW supplementation in Wistar rats (for 45 days significantly delayed time to exhaustion by 29% in a swimming test. ASTA supplementation increased scavenging/iron-chelating capacities (TEAC/FRAP and limited exercise-induced iron overload and its related pro-oxidant effects in plasma of exercising animals. On the other hand, ASTA induced significant mitochondrial Mn-dependent superoxide dismutase and cytosolic glutathione peroxidase antioxidant responses in soleus muscles that, in turn, increased GSH content during exercise, limited oxidative stress, and delayed exhaustion. We also provided significant discussion about a putative “mitochondrial-targeted” action of ASTA based on previous publications and on the positive results found in the highly mitochondrial populated (oxidative-type soleus muscles here.

  4. Force depression and relaxation kinetics after active shortening and deactivation in mouse soleus muscle.

    Science.gov (United States)

    Van Noten, P; Van Leemputte, M

    2013-03-15

    After active shortening, isometric force production capacity of muscle is reduced (force depression, FD). The mechanism is incompletely understood but increasing cross-bridge detachment and/or decreasing attachment rate might be involved. Therefore we aimed to investigate the relation between work delivered during shortening (W), and change in half-relaxation time (Δ0.5RT) and change in the slow phase of muscle relaxation (Δkslow), considered as a marker for cross-bridge detachment rate, after shortening and after a short (0.7s) interruption of activation (deactivation). We hypothesized that shortening induces an accelerated relaxation related to W which is, similar to FD, largely abolished by a short deactivation. In 10 incubated supra-maximally stimulated mouse soleus muscles, we varied the amount of FD at L0 by varying shortening amplitude (0.6, 1.2 and 2.4mm). We found that W not only induces FD (R(2)=0.92) but also a dose dependent accelerated relaxation (R(2)=0.88 and R(2)=0.77 for respectively Δkslow and Δ0.5RT). In cyclic movements this is of functional significance, because the loss in force generating capacity might be (partially) compensated by faster relaxation. After a short deactivation, both FD and Δkslow were largely abolished but Δ0.5RT remained largely present. Under the assumption that Δkslow reflects a change in cross-bridge detachment rate, these results support the idea that FD is an intrinsic sarcomeric property originating from a work induced reduction of the number of force generating cross-bridges, however not via decreased attachment but via increased detachment rate. Copyright © 2013. Published by Elsevier Ltd.

  5. Analysis by two-dimensional Blue Native/SDS-PAGE of membrane protein alterations in rat soleus muscle after hindlimb unloading.

    Science.gov (United States)

    Basco, Davide; Nicchia, Grazia Paola; Desaphy, Jean-François; Camerino, Diana Conte; Frigeri, Antonio; Svelto, Maria

    2010-12-01

    Muscle atrophy occurring in several pathophysiological conditions determines decreases in muscle protein synthesis, increases in the rate of proteolysis and changes in muscle fiber composition. To determine the effect of muscle atrophy induced by hindlimb unloading (HU) on membrane proteins from rat soleus, a proteomic approach based on two-dimensional Blue Native/SDS-PAGE was performed. Proteomic analysis of normal and HU soleus muscle demonstrates statistically significant changes in the relative level of 36 proteins. Among the proteins identified by mass spectrometry, most are involved in pathways associated with muscle fuel utilization, indicating a shift in metabolism from oxidative to glycolytic. Moreover, immunoblotting analysis revealed an increase in aquaporin-4 (AQP4) water channel and an alteration of proteins belonging to the dystrophin-glycoprotein complex (DGC). AQP4 and DGC are regulated in soleus muscle subjected to simulated microgravity in response to compensatory mechanisms induced by muscle atrophy, and they parallel the slow-to-fast twitch conversion that occurs in soleus fibers during HU. In conclusion, the alterations of soleus muscle membrane proteome may play a pivotal role in the mechanisms involved in disuse-induced muscle atrophy.

  6. Oedema and fatty degeneration of the soleus and gastrocnemius muscles on MR images in patients with achilles tendon abnormalities

    Energy Technology Data Exchange (ETDEWEB)

    Hoffmann, Adrienne [University Hospital Balgrist Zuerich, Radiology Department, Zuerich (Switzerland); Hirslanden Klinik Aarau, Radiology Department, Aarau (Switzerland); Mamisch, Nadja; Buck, Florian M.; Pfirrmann, Christian W.A.; Zanetti, Marco [University Hospital Balgrist Zuerich, Radiology Department, Zuerich (Switzerland); Espinosa, Norman [University Hospital Balgrist Zuerich, Orthopedic Surgery Department, Zuerich (Switzerland)

    2011-09-15

    The purpose of this study was to evaluate the frequency of oedema and fatty degeneration of the soleus and gastrocnemius muscles in patients with Achilles tendon abnormalities. Forty-five consecutive patients (mean 51 years; range 14-84 years) with achillodynia were examined with magnetic resonance (MR) images of the calf. The frequency of oedema and fatty degeneration in the soleus and gastrocnemius muscles was determined in patients with normal tendons, tendinopathy and in patients with a partial tear or a complete tear of the Achilles tendon. Oedema was encountered in 35% (7/20) of the patients with tendinopathy (n = 20; range 13-81 years), and in 47% (9/19) of the patients with partial tears or complete tears (n = 19; 28-78 years). Fatty degeneration was encountered in 10% (2/20) of the patients with tendinopathy, and in 32% (6/19) of the patients with tears. The prevalence of fatty degeneration was significantly more common in patients with a partial or complete tear compared with the patients with a normal Achilles tendon (p = 0.032 and p = 0.021, respectively). Oedema and fatty degeneration of the soleus and gastrocnemius muscles are common in patients with Achilles tendon abnormalities. (orig.)

  7. Denervation and high-fat diet reduce insulin signaling in T-tubules in skeletal muscle of living mice

    DEFF Research Database (Denmark)

    Lauritzen, Hans P M; Ploug, Thorkil; Ai, Hua

    2008-01-01

    OBJECTIVE: Insulin stimulates muscle glucose transport by translocation of GLUT4 to sarcolemma and T-tubules. Despite muscle glucose uptake playing a major role in insulin resistance and type 2 diabetes, the temporal and spatial changes in insulin signaling and GLUT4 translocation during...... these conditions are not well described. RESEARCH DESIGN AND METHODS: We used time-lapse confocal imaging of green fluorescent protein (GFP) ADP-ribosylation factor nucleotide-binding site opener (ARNO) (evaluation of phosphatidylinositide 3-kinase activation) and GLUT4-GFP-transfected quadriceps muscle in living...... receptors. RESULTS: Denervation and high-fat diet reduced insulin-mediated glucose transport. In denervated muscle, insulin-stimulated phosphatidylinositol 3,4,5 P(3) (PIP3) production was abolished in T-tubules, while PIP3 production at sarcolemma was increased 2.6-fold. Correspondingly, GLUT4-GFP...

  8. Inhibition of Stat3 signaling ameliorates atrophy of the soleus muscles in mice lacking the vitamin D receptor.

    Science.gov (United States)

    Gopinath, Suchitra D

    2017-01-25

    Although skeletal muscle wasting has long been observed as a clinical outcome of impaired vitamin D signaling, precise molecular mechanisms that mediate the loss of muscle mass in the absence of vitamin D signaling are less clear. To determine the molecular consequences of vitamin D signaling, we analyzed the role of signal transducer and activator of transcription 3 (Stat3) signaling, a known contributor to various muscle wasting pathologies, in skeletal muscles. We isolated soleus (slow) and tibialis anterior (fast) muscles from mice lacking the vitamin D receptor (VDR(-/-)) and used western blot analysis, quantitative RTPCR, and pharmacological intervention to analyze muscle atrophy in VDR(-/-) mice. We found that slow and fast subsets of muscles of the VDR(-/-) mice displayed elevated levels of phosphorylated Stat3 accompanied by an increase in Myostatin expression and signaling. Consequently, we observed reduced activity of mammalian target of rapamycin (mTOR) signaling components, ribosomal S6 kinase (p70S6K) and ribosomal S6 protein (rpS6), that regulate protein synthesis and cell size, respectively. Concomitantly, we observed an increase in atrophy regulators and a block in autophagic gene expression. An examination of the upstream regulation of Stat3 levels in VDR(-/-) muscles revealed an increase in IL-6 protein expression in the soleus, but not in the tibialis anterior muscles. To investigate the involvement of satellite cells (SCs) in atrophy in VDR(-/-) mice, we found that there was no significant deficit in SC numbers in VDR(-/-) muscles compared to the wild type. Unlike its expression within VDR(-/-) fibers, Myostatin levels in VDR(-/-) SCs from bulk muscles were similar to those of wild type. However, VDR(-/-) SCs induced to differentiate in culture displayed increased p-Stat3 signaling and Myostatin expression. Finally, VDR(-/-) mice injected with a Stat3 inhibitor displayed reduced Myostatin expression and function and restored active p70S6K and

  9. Does the speed of shortening affect steady-state force depression in cat soleus muscle?

    Science.gov (United States)

    Leonard, T R; Herzog, W

    2005-11-01

    It has been stated repeatedly for the past 50 years that the steady-state force depression following shortening of an activated muscle depends on the speed of shortening. However, these statements were based on results from experiments in which muscles were shortened at different speeds but identical activation levels. Therefore, the force during shortening was changed in accordance with the force-velocity relationship of muscles: that is, increasing speeds of shortening were associated with decreasing forces, and vice versa. Consequently, it is not possible at present to distinguish whether force depression is caused by the changes in speed, as frequently stated, or the associated changes in force, or both. The purpose of this study was to test if force depression depends on the speed of shortening. We hypothesized that force depression was dependent on the force but not the speed of contraction. Our prediction is that the amount of force depression after shortening contractions at different speeds could be similar if the force during contraction was controlled at a similar level. Cat soleus muscles (n=7) were shortened by 9 or 12 mm at speeds of 3, 9, and 27 mm/s, first with a constant activation during shortening (30Hz), then with activation levels that were reduced (shortening forces of the fast speed contractions (27 mm/s). If done properly, force depression could be precisely matched at the three different speeds, indicating that force depression was related to the force during the shortening contraction but not to the speed. However, in order to match force depression, the forces during shortening had to be systematically greater for the slow compared to the fast speeds of shortening, suggesting that force depression also depends on the level of activation, as force depression at constant activation levels can only be matched if the force during shortening, evaluated by the mechanical work, is identical. Therefore, we conclude that force depression depends

  10. Contraction-induced muscle fiber damage is increased in soleus muscle of streptozotocin-diabetic rats and is associated with elevated expression of brain-derived neurotrophic factor mRNA in muscle fibers and activated satellite cells

    NARCIS (Netherlands)

    Copray, S; Liem, R; Brouwer, N; Greenhaff, P; Habens, F; Fernyhough, P

    The expression of brain-derived neurotrophic factor (BDNF) is elevated in the soleus muscle of streptozotocin-diabetic rats. To determine whether this diabetes-induced elevation was associated with or enhanced by muscle activity we have induced high-intensity muscle contraction by electrically

  11. Contraction-induced muscle fiber damage is increased in soleus muscle of streptozotocin-diabetic rats and is associated with elevated expression of brain-derived neurotrophic factor mRNA in muscle fibers and activated satellite cells

    NARCIS (Netherlands)

    Copray, S; Liem, R; Brouwer, N; Greenhaff, P; Habens, F; Fernyhough, P

    2000-01-01

    The expression of brain-derived neurotrophic factor (BDNF) is elevated in the soleus muscle of streptozotocin-diabetic rats. To determine whether this diabetes-induced elevation was associated with or enhanced by muscle activity we have induced high-intensity muscle contraction by electrically stimu

  12. Effect of tibiotarsal joint inflammation on gene expression and cross-sectional area in rat soleus muscle

    Directory of Open Access Journals (Sweden)

    Carolina Ramírez

    2013-07-01

    Full Text Available BACKGROUND: Joint inflammation is a common clinical problem in patients treated by physical therapists. The hypothesis of this study is that joint inflammation induces molecular and structural changes in the soleus muscle, which is composed mainly of slow-twitch muscle fibers. OBJECTIVE: To study the effect of tibiotarsal joint inflammation on muscle fiber cross-sectional area (CSA, gene expression levels (atrogin-1, MuRF1, MyoD, myostatin, p38MAPK, NFκB, TNF-alpha, and TNF-alpha protein in the soleus muscle. METHOD: Wistar rats were randomly divided into 3 periods (2, 7 and 15 days and assigned to 4 groups (control, sham, inflammation, and immobilization. RESULTS: In the inflammation group at 2 days, MuRF1 and p38MAPK expression had increased, and NFκB mRNA levels had decreased. At 7 days, myostatin expression had decreased. At 7 and 15 days, this group had muscle fiber CSA reduction. At 2 days, the immobilization group showed increased atrogin-1, MuRF1, NFκB, MyoD, and p38MAPK expressions and reduced muscle fiber CSA. At 7 and 15 days, myostatin mRNA levels had increased, and the CSA had decreased. The sham group showed increased p38MAPK and myostatin expressions at 2 and 7 days, respectively. No changes occurred in TNF-alpha gene or protein expression. CONCLUSION: Acute joint inflammation induces gene expression related to the proteolytic pathway without reduction in muscle fiber CSA. Chronic joint inflammation induced muscle atrophy without up-regulation of important genes belonging to the proteolytic pathway. Thus, muscle adaptation may differ according to the stage of joint inflammation, which suggests that the therapeutic modalities used by physical therapists at each stage should also be different.

  13. Electromyographic studies regarding denervation potentials in skeletal muscles at sites near and distant from the burn in rats.

    Science.gov (United States)

    Sajadi, Simin; Mansoori, Korosh; Forogh, Bijan; Fatemi, Mohammad Javad; Ahadi, Tannaz; Chahardoli Razji, Mahnaz

    2016-04-01

    Changes in membrane AChRs in skeletal muscles located near or distant from burn injury similar to denervated muscles may make electrodiagnostic features indistinguishable from true neuropathic changes. The aim of this study was to examine electrodiagnostic changes of muscles at sites local and distant from the burn after thermal injuries due to neuromuscular junction dysfunction. A total of 40 adult male rats were randomly allocated to four groups. Rats in group 1 received thermal burn injury over gastrocnemius muscle of one leg and sham burn on the other leg. A 20-25% and 30-35% surface body area burn and also 30-35% surface body area sham burn were produced at distant site from gastrocnemius muscle in group 2, 3 and 4, respectively. To explore any fibrillation potential, the rats underwent serial electromyographic studies of bilateral gastrocnemius muscles over 5 weeks after burn injury. There were no denervation potentials either in muscles at sites distant from 20-25% and 30-35% of total body surface area burns or in muscles beneath the burn. In the present study on rats, thermal burn injury could not make fibrillation potentials in the electrodiagnostic study of muscles located near and distant from the burn site.

  14. In vivo 1D and 2D correlation MR spectroscopy of the soleus muscle at 7T

    Science.gov (United States)

    Ramadan, Saadallah; Ratai, Eva-Maria; Wald, Lawrence L.; Mountford, Carolyn E.

    2010-05-01

    AimThis study aims to (1) undertake and analyse 1D and 2D MR correlation spectroscopy from human soleus muscle in vivo at 7T, and (2) determine T1 and T2 relaxation time constants at 7T field strength due to their importance in sequence design and spectral quantitation. MethodSix healthy, male volunteers were consented and scanned on a 7T whole-body scanner (Siemens AG, Erlangen, Germany). Experiments were undertaken using a 28 cm diameter detunable birdcage coil for signal excitation and an 8.5 cm diameter surface coil for signal reception. The relaxation time constants, T1 and T2 were recorded using a STEAM sequence, using the 'progressive saturation' method for the T1 and multiple echo times for T2. The 2D L-Correlated SpectroscopY (L-COSY) method was employed with 64 increments (0.4 ms increment size) and eight averages per scan, with a total time of 17 min. ResultsT1 and T2 values for the metabolites of interest were determined. The L-COSY spectra obtained from the soleus muscle provided information on lipid content and chemical structure not available, in vivo, at lower field strengths. All molecular fragments within multiple lipid compartments were chemically shifted by 0.20-0.26 ppm at this field strength. 1D and 2D L-COSY spectra were assigned and proton connectivities were confirmed with the 2D method. ConclusionIn vivo 1D and 2D spectroscopic examination of muscle can be successfully recorded at 7T and is now available to assess lipid alterations as well as other metabolites present with disease. T1 and T2 values were also determined in soleus muscle of male healthy volunteers.

  15. Efflux of creatine kinase from isolated soleus muscle depends on age, sex and type of exercise in mice.

    Science.gov (United States)

    Baltusnikas, Juozas; Venckunas, Tomas; Kilikevicius, Audrius; Fokin, Andrej; Ratkevicius, Aivaras

    2015-06-01

    Elevated plasma creatine kinase (CK) activity is often used as an indicator of exercise-induced muscle damage. Our aim was to study effects of contraction type, sex and age on CK efflux from isolated skeletal muscles of mice. The soleus muscle (SOL) of adult (7.5-month old) female C57BL/6J mice was subjected to either 100 passive stretches, isometric contractions or eccentric contractions, and muscle CK efflux was assessed after two-hour incubation in vitro. SOL of young (3-month old) male and female mice was studied after 100 eccentric contractions. For adult females, muscle CK efflux was larger (p resistance to exercise-induced CK efflux depends on age and sex of mice. Key pointsMuscle lengthening contractions induce the highest CK efflux in vitro compared with similar protocol of isometric contractions or passive stretches.Muscle CK efflux in vitro is applicable in studying changes of sarcolemma permeability/integrity, a proxy of muscle damage, in response to muscle contractile activity.Isolated muscle resistance to exercise-induced CK efflux is greater in female compared to male mice of young age and is further increased in adult female mice.

  16. Effects of 8 wk of voluntary unloaded wheel running on K+ tolerance and excitability of soleus muscles in rat.

    Science.gov (United States)

    Broch-Lips, Martin; de Paoli, Frank; Pedersen, Thomas Holm; Overgaard, Kristian; Nielsen, Ole Bækgaard

    2011-07-01

    During intense exercise, efflux of K(+) from working muscles increases extracellular K(+) ([K(+)](o)) to levels that can compromise muscle excitability and hence cause fatigue. In this context, the reduction in the exercise-induced elevation of [K(+)](o) observed after training in humans is suggested to contribute to the increased performance after training. Although a similar effect could be obtained by an increase in the tolerance of muscle to elevated [K(+)](o), this possibility has not been investigated. To examine this, isolated soleus muscles from sedentary (sedentary) rats and from rats that had voluntarily covered 13.1 ± 0.7 km/day in an unloaded running wheel for 8 wk (active) were compared. In muscles from active rats, the loss of force induced by exposure to an elevated [K(+)](o) of 9 mM was 42% lower than in muscles from sedentary rats (P fibers (P fiber action potentials (AP), and higher Na(+)/K(+) pump content. When stimulated intermittently at 6.5 mM K(+), muscles from active rats displayed better endurance than muscles from sedentary rats, whereas no difference was found when the muscles were stimulated continuously at 30 or 120 Hz. We conclude that voluntary running increases muscle excitability, leading to improved tolerance to elevated [K(+)](o).

  17. The response of denervated muscle to long-term stimulation (1985, revisited here in 2014

    Directory of Open Access Journals (Sweden)

    Terje Lomo

    2014-03-01

    Full Text Available In 1985, at a meeting in Abano, I presented results showing that direct stimulation of skeletal muscles with appropriate stimulus patterns prevents the effects of denervation on non-junctional properties of muscle fibers. Hence, it appeared unnecessary to postulate that unknown nerve-derived trophic factors control such properties, as posited by the (anterograde neurotrophic hypothesis. Here I discuss this conclusion in the light of what we know today, particularly with respect to the many lines of evidence that were then taken to support the trophic hypothesis, but which today have alternative interpretations consistent with control by evoked impulse activity. Despite much effort, no one has yet identified any nerve-derived factor consistent with the neurotrophic hypothesis. Reports favoring the existence of neurotrophic factors were numerous before 2000. Now they have essentially disappeared from the literature, including original research papers, textbooks and handbooks, suggesting that the hypothesis is no longer arguable. Thus, the results that I presented in our paper in 1985 seem to have held up rather well.

  18. Collagen content in the vastus lateralis and the soleus muscle following a 90-day bed rest period with or without resistance exercises

    DEFF Research Database (Denmark)

    Nielsen, Rasmus Oestergaard; Schjerling, Peter; Tesch, Per;

    2016-01-01

    training serves as a proxy for the conditions in space. Therefore, ground-based studies may improve the understanding of the consequences of long-term inactivity. PURPOSE: the purpose is to compare the change in collagen protein in the vastus lateralis (VL) and the soleus (SOL) muscle amongst persons...... inactive during follow-up. Muscle biopsies from vastus lateralis and soleus were taken at baseline (pre) and after 90-days' follow-up (post). Muscle collagen (μg collagen/mg protein) was quantified. Two-way repeated measurements ANOVA was used to compare the interaction between the intervention (BRE...

  19. Does ankle joint power reflect type of muscle action of soleus and gastrocnemius during walking in cats and humans?

    Science.gov (United States)

    Cronin, Neil J; Prilutsky, Boris I; Lichtwark, Glen A; Maas, Huub

    2013-04-26

    The main objective of this paper is to highlight the difficulties of identifying shortening and lengthening contractions based on analysis of power produced by resultant joint moments. For that purpose, we present net ankle joint powers and muscle fascicle/muscle-tendon unit (MTU) velocities for medial gastrocnemius (MG) and soleus (SO) muscles during walking in species of different size (humans and cats). For the cat, patterns of ankle joint power and MTU velocity of MG and SO during stance were similar: negative power (ankle moment×angular velocitypower (generation of mechanical energy) was found during MTU shortening. This was also found for the general fascicle velocity pattern in SO. In contrast, substantial differences between ankle joint power and fascicle velocity patterns were observed for MG muscle. In humans, like cats, the patterns of ankle joint power and MTU velocity of SO and MG were similar. Unlike the cat, there were substantial differences between patterns of fascicle velocity and ankle joint power during stance in both muscles. These results indicate that during walking, only a small fraction of mechanical work of the ankle moment is either generated or absorbed by the muscle fascicles, thus confirming the contribution of in-series elastic structures and/or energy transfer via two-joint muscles. We conclude that ankle joint negative power does not necessarily indicate eccentric action of muscle fibers and that positive power cannot be exclusively attributed to muscle concentric action, especially in humans.

  20. Administration of Recombinant Heat Shock Protein 70 Delays Peripheral Muscle Denervation in the SOD1G93A Mouse Model of Amyotrophic Lateral Sclerosis

    Directory of Open Access Journals (Sweden)

    David J. Gifondorwa

    2012-01-01

    Full Text Available A prominent clinical feature of ALS is muscle weakness due to dysfunction, denervation and degeneration of motoneurons (MNs. While MN degeneration is a late stage event in the ALS mouse model, muscle denervation occurs significantly earlier in the disease. Strategies to prevent this early denervation may improve quality of life by maintaining muscle control and slowing disease progression. The precise cause of MN dysfunction and denervation is not known, but several mechanisms have been proposed that involve potentially toxic intra- and extracellular changes. Many cells confront these changes by mounting a stress response that includes increased expression of heat shock protein 70 (Hsp70. MNs do not upregulate Hsp70, and this may result in a potentially increased vulnerability. We previously reported that recombinant human hsp70 (rhHsp70 injections delayed symptom onset and increased lifespan in SOD1G93A mice. The exogenous rhHsp70 was localized to the muscle and not to spinal cord or brain suggesting it modulates peripheral pathophysiology. In the current study, we focused on earlier administration of Hsp70 and its effect on initial muscle denervation. Injections of the protein appeared to arrest denervation with preserved large myelinated peripheral axons, and reduced glial activation.

  1. Efflux of Creatine Kinase from Isolated Soleus Muscle Depends on Age, Sex and Type of Exercise in Mice

    Directory of Open Access Journals (Sweden)

    Juozas Baltusnikas, Tomas Venckunas, Audrius Kilikevicius, Andrej Fokin, Aivaras Ratkevicius

    2015-06-01

    Full Text Available Elevated plasma creatine kinase (CK activity is often used as an indicator of exercise-induced muscle damage. Our aim was to study effects of contraction type, sex and age on CK efflux from isolated skeletal muscles of mice. The soleus muscle (SOL of adult (7.5-month old female C57BL/6J mice was subjected to either 100 passive stretches, isometric contractions or eccentric contractions, and muscle CK efflux was assessed after two-hour incubation in vitro. SOL of young (3-month old male and female mice was studied after 100 eccentric contractions. For adult females, muscle CK efflux was larger (p < 0.05 after eccentric contractions than after incubation without exercise (698 ± 344 vs. 268 ± 184 mU·h−1, respectively, but smaller (p < 0.05 than for young females after the same type of exercise (1069 ± 341 mU·h−1. Eccentric exercise-induced CK efflux was larger in muscles of young males compared to young females (2046 ± 317 vs 1069 ± 341 mU · h−1, respectively, p < 0.001. Our results show that eccentric contractions induce a significant increase in muscle CK efflux immediately after exercise. Isolated muscle resistance to exercise-induced CK efflux depends on age and sex of mice.

  2. Load rather than length sensitive feedback contributes to soleus muscle activity during human treadmill walking

    DEFF Research Database (Denmark)

    af Klint, Richard; Mazzaro, Nazarena; Nielsen, Jens Bo

    2010-01-01

    Walking requires a constant adaptation of locomotor output from sensory afferent feedback mechanisms to ensure efficient and stable gait. We investigated the nature of the sensory afferent feedback contribution to the soleus motoneuronal drive and to the corrective stretch reflex by manipulating...

  3. Myostatin propeptide gene delivery by gene gun ameliorates muscle atrophy in a rat model of botulinum toxin-induced nerve denervation.

    Science.gov (United States)

    Tsai, Sen-Wei; Tung, Yu-Tang; Chen, Hsiao-Ling; Yang, Shang-Hsun; Liu, Chia-Yi; Lu, Michelle; Pai, Hui-Jing; Lin, Chi-Chen; Chen, Chuan-Mu

    2016-02-01

    Muscle atrophy is a common symptom after nerve denervation. Myostatin propeptide, a precursor of myostatin, has been documented to improve muscle growth. However, the mechanism underlying the muscle atrophy attenuation effects of myostatin propeptide in muscles and the changes in gene expression are not well established. We investigated the possible underlying mechanisms associated with myostatin propeptide gene delivery by gene gun in a rat denervation muscle atrophy model, and evaluated gene expression patterns. In a rat botulinum toxin-induced nerve denervation muscle atrophy model, we evaluated the effects of wild-type (MSPP) and mutant-type (MSPPD75A) of myostatin propeptide gene delivery, and observed changes in gene activation associated with the neuromuscular junction, muscle and nerve. Muscle mass and muscle fiber size was moderately increased in myostatin propeptide treated muscles (pmuscle regulatory factors, neurite outgrowth factors (IGF-1, GAP43) and acetylcholine receptors was observed. Our results demonstrate that myostatin propeptide gene delivery, especially the mutant-type of MSPPD75A, attenuates muscle atrophy through myogenic regulatory factors and acetylcholine receptor regulation. Our data concluded that myostatin propeptide gene therapy may be a promising treatment for nerve denervation induced muscle atrophy. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Collagen content in the vastus lateralis and the soleus muscle following a 90-day bed rest period with or without resistance exercises

    DEFF Research Database (Denmark)

    Nielsen, Rasmus Oestergaard; Schjerling, Peter; Tesch, Per

    2015-01-01

    INTRODUCTION: spaceflight seems associated with deterioration of the function of the skeletal muscles. Since muscle collagen is critical for muscle function, an improved understanding of the content of the muscle collagen during long-term inactivity seems important. Bed-rest with in-bed resistance...... training serves as a proxy for the conditions in space. Therefore, ground-based studies may improve the understanding of the consequences of long-term inactivity. PURPOSE: the purpose is to compare the change in collagen protein in the vastus lateralis (VL) and the soleus (SOL) muscle amongst persons...... inactive during follow-up. Muscle biopsies from vastus lateralis and soleus were taken at baseline (pre) and after 90-days' follow-up (post). Muscle collagen (μg collagen/mg protein) was quantified. Two-way repeated measurements ANOVA was used to compare the interaction between the intervention (BRE...

  5. 3D Modelling and monitoring of denervated muscle under Functional Electrical Stimulation treatment and associated bone structural changes

    Directory of Open Access Journals (Sweden)

    Paolo Gargiulo

    2011-03-01

    Full Text Available A novel clinical rehabilitation method for patients who have permanent and non recoverable muscle denervation in the legs was developed in the frame of the European Project RISE. The technique is based on FES and the project results shows, in these severely disabled patients, restoration of muscle tissue and function. This study propose novel methods based on image processing technique and medical modelling to monitor growth in denervated muscle treated with FES. Geometrical and structural changes in muscle and bone are studied and modelled. Secondary effects on the bone mineral density produced by the stimulation treatment and due the elicited muscle contraction are also investigated. The restoration process in DDM is an important object of discussion since there isn’t yet a complete understanding of the mechanisms regulating growth in denervated muscle. This study approaches the problem from a macroscopic point of view, developing 3-dimensional models of the whole stimulated muscles and following changes in volume, geometry and density very accurately. The method is based on the acquisition of high resolution Spiral CT scans from patients who have long-term flaccid paraplegia and the use of special image processing tools allowing tissue discriminations and muscle segmentation. Three patients were measured at different points of time during 4 years of electrical stimulation treatment. In this study is quantitatively demonstrated the influences of FES treatment on the different quadriceps bellies. The rectus femoris muscle is positioned in the middle of the quadriceps and responds (in general better to stimulation. In a patient with abundant adipose tissue surrounding the quadriceps, rectus femoris almost doubled the volume during the FES treatment while in the other bellies the changes measured were minimal. The analysis of the density shows clearly a restoration of the muscular structure in the growing muscle. The remarkable increase of

  6. Medial gastrocnemius and soleus muscle-tendon unit, fascicle, and tendon interaction during walking in children with cerebral palsy.

    Science.gov (United States)

    Barber, Lee; Carty, Chris; Modenese, Luca; Walsh, John; Boyd, Roslyn; Lichtwark, Glen

    2017-08-01

    This study investigates the in vivo function of the medial gastrocnemius and soleus muscle-tendon units (MTU), fascicles, and tendons during walking in children with cerebral palsy (CP) and an equinus gait pattern. Fourteen children with CP (9 males, 5 females; mean age 10y 6mo, standard deviation [SD] 2y 11mo; GMFCS level I=8, II=6), and 10 typically developing (6 males, 4 females; mean age 10y, SD 2y 1mo) undertook full body 3D gait analysis and simultaneous B-mode ultrasound images of the medial gastrocnemius and soleus fascicles during level walking. Fascicle lengths were analysed using a semi-automated tracking algorithm and MTUs using OpenSim. Statistical parametric mapping (two-sample t-test) was used to compare differences between groups (pwalking is consistent with reduced volume and neuromuscular control of impaired muscle. Reduced ankle push-off power and positive work in the children with CP may be attributed to reduced active medial gastrocnemius fascicle shortening. These findings suggest a reliance on passive force generation for forward propulsion during equinus gait. © 2017 Mac Keith Press.

  7. Akt-dependent and Akt-independent pathways are involved in protein synthesis activation during reloading of disused soleus muscle.

    Science.gov (United States)

    Mirzoev, Timur M; Tyganov, Sergey A; Shenkman, Boris S

    2017-03-01

    The purpose of our study was to assess the contribution of insulin growth factor-1-dependent and phosphatidic acid-dependent signaling pathways to activation of protein synthesis (PS) in rat soleus muscle during early recovery from unloading. Wistar rats were divided into: Control, 14HS [14-day hindlimb suspension (HS)], 3R+placebo (3-day reloading + saline administration), 3R+Wort (3-day reloading + wortmannin administration), 3R+But (3-day reloading + 1-butanol administration). SUnSET and Western blot analyses were used in this study. Wortmannin and 1-butanol induced a decrease in protein kinase B (phospho-Akt) and the rate of PS (P Muscle Nerve 55: 393-399, 2017. © 2016 Wiley Periodicals, Inc.

  8. Contribution of denervated muscle to contractures after neonatal brachial plexus injury: not just muscle fibrosis.

    Science.gov (United States)

    Nikolaou, Sia; Liangjun, Hu; Tuttle, Lori J; Weekley, Holly; Christopher, Wylie; Lieber, Richard L; Cornwall, Roger

    2014-03-01

    We investigated the contribution of muscle fibrosis to elbow flexion contractures in a murine model of neonatal brachial plexus injury (NBPI). Four weeks after NBPI, biceps and brachialis fibrosis were assessed histologically and compared with the timing of contracture development and the relative contribution of each muscle to contractures. Modulus of elasticity and hydroxyproline (collagen) content were measured and correlated with contracture severity. The effect of halofuginone antifibrotic therapy on fibrosis and contractures was investigated. Elbow contractures preceded muscle fibrosis development. The brachialis was less fibrotic than the biceps, yet contributed more to contractures. Modulus and hydroxyproline content increased in both elbow flexors, but neither correlated with contracture severity. Halofuginone reduced biceps fibrosis but did not reduce contracture severity. Contractures after NBPI cannot be explained solely by muscle fibrosis, arguing for investigation of alternate pathophysiologic targets for contracture prevention and treatment. Copyright © 2013 Wiley Periodicals, Inc.

  9. Force-Velocity and Power Characteristics of Rat Soleus Muscle Fibers after Hindlimb Suspension

    Science.gov (United States)

    McDonald, K. S.; Blaser, C. A.; Fitts, R. H.

    1994-01-01

    The effects of 1, 2, and 3 wk of Hindlimb Suspension (HS) on force-velocity and power characteristics of single rat soleus fibers were determined. After 1, 2, or 3 wk of HS, small fiber bundles were isolated, placed in skinning solution, and stored at -20 C until studied. Single fibers were isolated and placed between a motor arm and force transducer, functional properties were studied, and fiber protein content was subsequently analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). Additional fibers were isolated from soleus of control and after 1 and 3 wk of HS, and fiber type distribution and myosin light chain stoichiometry were determined from SDS-PAGE analysis. After 1 wk of HS, percent type I fibers declined from 82 to 74%, whereas hybrid fibers increased from 10 to 18%. Percent fast type 11 fibers increased from 8% in control and 1 wk of HS to 26% by 3 wk of HS. Most fibers showed an increased unloaded maximal shortening velocity (V(sub 0)), but myosin heavy chain remained entirely slow type I. The mechanism for increased V(sub 0) is unknown. There was a progressive decrease in fiber diameter (14, 30, and 38%) and peak force (38, 56, and 63%) after 1, 2, and 3 wk of HS, respectively. One week of HS resulted in a shift of the force-velocity curve, and between 2 and 3 wk of HS the curve shifted further such that V(sub 0) was higher than control at all relative loads less than 45% peak isometric force. Peak absolute power output of soleus fibers progressively decreased through 2 wk of HS but showed no further change at 3 wk. The results suggest that between 2 and 3 wk the HS-induced alterations in the force-velocity relationship act to maintain the power output of single soleus fibers despite a continued reduction in fiber force.

  10. Size and metabolic properties of single muscle fibers in rat soleus after hindlimb suspension

    Science.gov (United States)

    Hauschka, Edward O.; Roy, Roland R.; Edgerton, V. Reggie

    1987-01-01

    The effect of 28-day-long hind-limb suspension (HS) combined with 10 daily forceful lengthening contractions of the limb on the morphological and metabolic properties of individual fibers of the soleus was studied in rats, using quantitative histochemical techniques. Compared with nonsuspended controls (CON), soleus wet weights of HS rats were decreased by 49 percent; the fibers staining lightly for myosin ATPase ('light-ATPase' fibers) atrophied more than the 'dark-ATPase' fibers. Single-fiber alpha-glycerophosphate dehydrogenase (GPD) and succinate dehydrogenase (SDH) activities were higher in HS than in CON rats. Daily forceful lengthening contractions did not prevent the HS-induced changes. The results support the view that the soleus fibers can change from a slow-twitch oxidative to a fast-twitch oxidative-glycolytic profile, but rarely to a fast-twitch glycolytic one, and that the SDH and GPD activities per volume of tissue can be increased even when there are severe losses of contractile proteins.

  11. Increased postexercise insulin sensitivity is accompanied by increased AS160 phosphorylation in slow-twitch soleus muscle.

    Science.gov (United States)

    Iwabe, Maiko; Kawamoto, Emi; Koshinaka, Keiichi; Kawanaka, Kentaro

    2014-12-01

    A single bout of exercise can enhance insulin-stimulated glucose uptake in both fast-twitch (type II) and slow-twitch (type I) skeletal muscle for several hours postexercise. Akt substrate of 160 kDa (AS160) is most distal insulin signaling proteins that have been proposed to contribute to the postexercise enhancement of insulin action in fast-twitch muscle. In this study, we examined whether the postexercise increase in insulin action of glucose uptake in slow-twitch muscle is accompanied by increased phosphorylation of AS160 and its paralog TBC1D1. Male Wistar rats (~1-month-old) were exercised on a treadmill for 180 min (9 m/min). Insulin (50 μU/mL)-stimulated glucose uptake was increased at 2 h after cessation of exercise in soleus muscle composed of predominantly slow-twitch fibers. This postexercise increase in insulin action of glucose uptake was accompanied by increased phosphorylation of AS160 (detected by phospho-Thr642 and phospho-Ser588 antibody). On the other hand, prior exercise did not increase phosphorylation of TBC1D1 (detected by phospho-Thr590) at 2 h postexercise. These results suggest the possibility that an enhancement in AS160 phosphorylation but not TBC1D1 phosphorylation is involved with increased postexercise insulin action of glucose uptake in slow-twitch muscle.

  12. Modulation of soleus H-reflex during shortening and lengthening muscle actions in young and older adults.

    Science.gov (United States)

    Chen, Yung-Sheng; Zhou, Shi; Cartwright, Colleen

    2015-02-28

    The H-reflex is dependently modulated during isometric and anisometric muscle actions. However, the manner of the H-reflex modulation during dynamic muscle movements in relation to ageing is less stated in the literature. This study was designed to investigate the effects of ageing on soleus (SOL) H-reflex modulation during dynamic muscle actions. Twenty young (24 ± 4 years of age) and 20 older adults (73 ± 5 years of age) voluntarily participated in the study. The SOL H-reflex was measured during passive and active shortening and lengthening muscle actions in a sitting position. The older group showed a lower ratio of the maximal amplitude of H-reflex to M-wave (SOL Hmax/Mmax) during the passive lengthening than that during the passive shortening (shortening: 0.40 ± 0.22 vs. lengthening: 0.15 ± 0.10, P shortening than that during the lengthening contractions at maximal effort (shortening: 0.51 ± 0.26 vs. lengthening: 0.37 ± 0.18, P muscle actions between young and older adults.

  13. Comparative proteomic profiling of soleus, extensor digitorum longus, flexor digitorum brevis and interosseus muscles from the mdx mouse model of Duchenne muscular dystrophy.

    Science.gov (United States)

    Carberry, Steven; Brinkmeier, Heinrich; Zhang, Yaxin; Winkler, Claudia K; Ohlendieck, Kay

    2013-09-01

    Duchenne muscular dystrophy is due to genetic abnormalities in the dystrophin gene and represents one of the most frequent genetic childhood diseases. In the X-linked muscular dystrophy (mdx) mouse model of dystrophinopathy, different subtypes of skeletal muscles are affected to a varying degree albeit the same single base substitution within exon 23 of the dystrophin gene. Thus, to determine potential muscle subtype-specific differences in secondary alterations due to a deficiency in dystrophin, in this study, we carried out a comparative histological and proteomic survey of mdx muscles. We intentionally included the skeletal muscles that are often used for studying the pathomechanism of muscular dystrophy. Histological examinations revealed a significantly higher degree of central nucleation in the soleus and extensor digitorum longus muscles compared with the flexor digitorum brevis and interosseus muscles. Muscular hypertrophy of 20-25% was likewise only observed in the soleus and extensor digitorum longus muscles from mdx mice, but not in the flexor digitorum brevis and interosseus muscles. For proteomic analysis, muscle protein extracts were separated by fluorescence two-dimensional (2D) gel electrophoresis. Proteins with a significant change in their expression were identified by mass spectrometry. Proteomic profiling established an altered abundance of 24, 17, 19 and 5 protein species in the dystrophin-deficient soleus, extensor digitorum longus, flexor digitorum brevis and interosseus muscle, respectively. The key proteomic findings were verified by immunoblot analysis. The identified proteins are involved in the contraction-relaxation cycle, metabolite transport, muscle metabolism and the cellular stress response. Thus, histological and proteomic profiling of muscle subtypes from mdx mice indicated that distinct skeletal muscles are differentially affected by the loss of the membrane cytoskeletal protein, dystrophin. Varying degrees of perturbed protein

  14. Apoptosis and Id2 expression in diaphragm and soleus muscle from the emphysematous hamster

    NARCIS (Netherlands)

    Degens, H.; Swisher, A.K.; Heijdra, Y.F.; Siu, P.M.; Dekhuijzen, P.N.R.; Alway, S.E.

    2007-01-01

    During chronic obstructive pulmonary disease (COPD) diaphragm and peripheral muscle weakness occur. Muscle remodeling and wasting may be a result of apoptosis and changes in muscle-specific transcription factors, such as MyoD, altering muscle-specific gene transcription and muscle regenerative

  15. PGC1-α over-expression prevents metabolic alterations and soleus muscle atrophy in hindlimb unloaded mice.

    Science.gov (United States)

    Cannavino, Jessica; Brocca, Lorenza; Sandri, Marco; Bottinelli, Roberto; Pellegrino, Maria Antonietta

    2014-10-15

    Prolonged skeletal muscle inactivity causes muscle fibre atrophy. Redox imbalance has been considered one of the major triggers of skeletal muscle disuse atrophy, but whether redox imbalance is actually the major cause or simply a consequence of muscle disuse remains of debate. Here we hypothesized that a metabolic stress mediated by PGC-1α down-regulation plays a major role in disuse atrophy. First we studied the adaptations of soleus to mice hindlimb unloading (HU) in the early phase of disuse (3 and 7 days of HU) with and without antioxidant treatment (trolox). HU caused a reduction in cross-sectional area, redox status alteration (NRF2, SOD1 and catalase up-regulation), and induction of the ubiquitin proteasome system (MuRF-1 and atrogin-1 mRNA up-regulation) and autophagy (Beclin1 and p62 mRNA up-regulation). Trolox completely prevented the induction of NRF2, SOD1 and catalase mRNAs, but not atrophy or induction of catabolic systems in unloaded muscles, suggesting that oxidative stress is not a major cause of disuse atrophy. HU mice showed a marked alteration of oxidative metabolism. PGC-1α and mitochondrial complexes were down-regulated and DRP1 was up-regulated. To define the link between mitochondrial dysfunction and disuse muscle atrophy we unloaded mice overexpressing PGC-1α. Transgenic PGC-1α animals did not show metabolic alteration during unloading, preserving muscle size through the reduction of autophagy and proteasome degradation. Our results indicate that mitochondrial dysfunction plays a major role in disuse atrophy and that compounds inducing PGC-1α expression could be useful to treat/prevent muscle atrophy. © 2014 The Authors. The Journal of Physiology © 2014 The Physiological Society.

  16. Abnormalities in three-dimensional capillary architecture and imbalance between vascular endothelial growth factor-A and thrombospondin-1 in soleus muscle of ovariectomized rat.

    Science.gov (United States)

    Tanaka, Masayuki; Kanazashi, Miho; Maezawa, Toshiyuki; Kondo, Hiroyo; Fujino, Hidemi

    2015-09-01

    Reduced ovarian hormone levels associated with menopause or ovariectomy (OVX) not only result in vascular dysfunction but also lead to structural abnormalities in capillaries. Therefore, the effect of OVX on the three-dimensional (3-D) architecture of capillary networks and the underlying molecular mechanisms were investigated in rat soleus muscle. Seven-week-old female Wistar rats were divided into the OVX and sham-treated (Sham) groups. The OVX group exhibited lower endurance exercise capacity compared to the sham group and resulted in decreased capillary diameter, number of anastomoses and capillary/anastomosis volume in soleus muscle, indicating 3-D structural abnormalities of capillary networks. Furthermore, OVX led to increased concentrations of thrombospondin-1 (TSP-1) protein and a decreased VEGF-A/TSP-1 ratio, an indicator of angio-adaptations, in soleus muscle compared with the Sham group. These results indicate OVX may induce 3-D capillary regression in soleus muscle through an imbalance between VEGF-A and TSP-1 expression, possibly associated with decreased exercise tolerance in ovariectomized rats.

  17. [Parameters of fibers cell respiration and desmin content in rat soleus muscle at early stages of gravitational unloading].

    Science.gov (United States)

    Mirzoev, T M; Biriukov, N S; Veselova, O M; Larina, I M; Shenkman, B S; Ogneva, I V

    2012-01-01

    The aim of the work was to study the parameters of fibers cell respiration and desmin content in Wistar rat soleus muscle after 1, 3, 7 and 14 days of gravitational unloading. Gravitational unloading was simulated by antiorthostatic hindlimb suspension. The parameters of cell respiration were determined using the polarography, and desmin content was assessed by means of Western blotting. The results showed that the intensity of cell respiration is reduced after three days of gravitational unloading, reaches a minimum level after seven days and slightly increases by the fourteenth day of hindlimb unloading, as well as the content of desmin, which, however, to the fourteenth day returns to the control level. Taking into account that mitochondrial function depends on the state of cytoskeleton the data allow us to assume that early reduction of the intensity of cell respiration under unloading could be caused by degradation of the protein desmin that determines intracellular localization of mitochondria.

  18. Contraction level-related modulation of corticomuscular coherence differs between the tibialis anterior and soleus muscles in humans.

    Science.gov (United States)

    Ushiyama, Junichi; Masakado, Yoshihisa; Fujiwara, Toshiyuki; Tsuji, Tetsuya; Hase, Kimitaka; Kimura, Akio; Liu, Meigen; Ushiba, Junichi

    2012-04-01

    The sensorimotor cortex activity measured by scalp EEG shows coherence with electromyogram (EMG) activity within the 15- to 35-Hz frequency band (β-band) during weak to moderate intensity of isometric voluntary contraction. This coupling is known to change its frequency band to the 35- to 60-Hz band (γ-band) during strong contraction. This study aimed to examine whether such contraction level-related modulation of corticomuscular coupling differs between muscles with different muscle compositions and functions. In 11 healthy young adults, we quantified the coherence between EEG over the sensorimotor cortex and rectified EMG during tonic isometric voluntary contraction at 10-70% of maximal voluntary contraction of the tibialis anterior (TA) and soleus (SOL) muscles, respectively. In the TA, the EEG-EMG coherence shifted from the β-band to the γ-band with increasing contraction level. Indeed, the magnitude of β-band EEG-EMG coherence was significantly decreased, whereas that of γ-band coherence was significantly increased, when the contraction level was above 60% of maximal voluntary contraction. In contrast to the TA, the SOL showed no such frequency changes of EEG-EMG coherence with alterations in the contraction levels. In other words, the maximal peak of EEG-EMG coherence in the SOL existed within the β-band, irrespective of the contraction levels. These findings suggest that the central nervous system regulates the frequency of corticomuscular coupling to exert the desired levels of muscle force and, notably, that the applicable rhythmicity of the coupling for performing strong contractions differs between muscles, depending on the physiological muscle compositions and functions of the contracting muscle.

  19. Amelioration of capillary regression and atrophy of the soleus muscle in hindlimb-unloaded rats by astaxanthin supplementation and intermittent loading.

    Science.gov (United States)

    Kanazashi, Miho; Tanaka, Masayuki; Murakami, Shinichiro; Kondo, Hiroyo; Nagatomo, Fumiko; Ishihara, Akihiko; Roy, Roland R; Fujino, Hidemi

    2014-08-01

    A chronic decrease in neuromuscular activity (activation and/or loading) results in muscle atrophy and capillary regression that are due, in part, to the overproduction of reactive oxygen species. We have reported that antioxidant treatment with astaxanthin attenuates the overexpression of reactive oxygen species in atrophied muscles that, in turn, ameliorates capillary regression in hindlimb-unloaded rats. Astaxanthin supplementation, however, had little effect on muscle mass and fibre cross-sectional area. In contrast, intermittent loading of the hindlimbs of hindlimb-unloaded rats ameliorates muscle atrophy. Therefore, we hypothesized that the combination of astaxanthin supplementation and intermittent loading would attenuate both muscle atrophy and capillary regression during hindlimb unloading. As expected, 2 weeks of hindlimb unloading resulted in atrophy, a decrease in capillary volume and a shift towards smaller-diameter capillaries in the soleus muscle. Intermittent loading alone (1 h of cage ambulation per day) attenuated atrophy of the soleus, while astaxanthin treatment alone maintained the capillary network to near control levels. The combination of intermittent loading and astaxanthin treatment, however, ameliorated atrophy of the soleus and maintained the capillary volume and luminal diameters and the superoxide dismutase-1 protein levels near control values. These results indicate that intermittent loading combined with astaxanthin supplementation could be an effective therapy for both the muscle atrophy and the capillary regression associated with a chronic decrease in neuromuscular activity.

  20. Effects of adrenomedullin on tumour necrosis factor alpha, interleukins, endothelin-1, leptin, and adiponectin in the epididymal fat and soleus muscle of the rat.

    Science.gov (United States)

    Liao, S B; Wong, P F; Cheung, B M Y; Tang, F

    2013-01-01

    Adrenomedullin (ADM) is a peptide hormone, which participates in the development of metabolic syndrome. In this study, we have investigated the interaction of ADM and cytokines, endothelin-1 (EDN-1) and adipokines in the epididymal fat and the soleus muscle. Epididymal fat and soleus muscles from adult male Sprague-Dawley rat were incubated with ADM at concentration of 100 nM for the study of the gene expression and secretion of tumour necrosis factor (TNF-α), EDN-1, leptin, adiponectin, interleukin 1β (IL-1β), and IL-6. The effects of TNF-α and EDN-1 on ADM gene expression and secretion were also investigated. The results showed that ADM decreased the gene expression and protein secretion of TNF-α in both the epididymal fat and the soleus muscle and decreased IL-1β gene expression and secretion in the soleus muscle. It also decreased endothelin gene expression and adiponectin gene expression and release and increased IL-6 and leptin gene expression and secretion in the epididymal fat. These effects were effectively blocked by the calcitonin gene-related peptide (CGRP) receptor antagonist, hCGRP8-37, but not by the ADM receptor antagonist, hADM22-52. The reduction of inflammatory cytokines and EDN-1 may help to decrease insulin resistance and increase glucose uptake. As TNF-α also increases ADM levels in the epididymal fat and the soleus muscle and EDN-1 also increases ADM levels in the epididymal fat, they may form a feedback loop with ADM in these tissues. The increase in leptin and the decrease in adiponectin by ADM in the epididymal fat may have opposite effects on metabolism. © Georg Thieme Verlag KG Stuttgart · New York.

  1. Effects of Mechanical Overloading on the Properties of Soleus Muscle Fibers, with or without Damage in MDX and Wild Type Mice

    Science.gov (United States)

    Terada, Masahiro; Kawano, Fuminori; Ohira, Takashi; Oke, Yoshihiko; Nakai, Naoya; Ohira, Yoshinobu

    2008-06-01

    Effects of mechanical overloading on the characteristics of regenerating or not-regenerating soleus muscle fibers were studied. The muscle fibers of mdx mice were characterized by the localization of myonuclei. Muscle damage was also induced in wild type (WT) mice by injection of cardiotoxin (CTX) into soleus muscle. Overloading was applied for 14 days to the left soleus muscle in mdx and intact and CTX-injected WT mice by removing the distal tendons of plantaris and gastrocnemius muscles. The contralateral muscle served as the normal control. These animals were then allowed ambulation recovery in the cage. Central myonuclei were noted in many fibers of mdx and CTX-injected mice with or without overloading. In general, the fibers with central nuclei were considered as regenerating fibers. The fibers with more central nuclei were increased in mdx mice, but the fibers with more peripheral nuclei were increased in CTX-injected WT mice by overloading. The muscle satellite cells, neuromuscular junctions (NMJ), and myonuclei were stained. Most of the properties, such as number of myonuclei and satellite cells, size of NMJ, and fiber length, were not influenced by mechanical overloading in all mice. Approximately 0.6% branched fibers were seen in the intact soleus of mdx mice, although these fibers were not detected in WT mice. However, the percentage of these fibers was increased by overloading especially in mdx mice (~50% vs. ~2.5% in WT). In CTX-injected WT mice, these fibers were ~15% with or without overloading. The fiber cross sectional area in normal WT, but not in mdx and CTX-injected WT mice, was increased by overloading (pmuscle damage in mdx mice, but promoted the regeneration in CTX-injected WT mice.

  2. Hypotrophy of the soleus muscle in man after achilles tendon rupture. Discussion of findings obtained by computed tomography and morphologic studies.

    Science.gov (United States)

    Häggmark, T; Eriksson, E

    1979-01-01

    Seven athletes (age range, 35 to 43 years), who sustained total subcutaneous ruptures of the Achilles tendon 2 to 5 cm above its distal insertion, were treated surgically with suturing of the tendon, immobilization of the leg and foot for 6 weeks, and cast changes so as to increase the dorsiflexion of the foot. Needle biopsies were obtained several times from the soleus muscles of both the injured and uninjured legs at a depth of about 5 cm. The cross-sectional area was measured by computed tomography at the same level the tissue was obtained by biopsy. Results of morphologic studies revealed a selective Type I fiber atrophy of the soleus muscle. Computed tomography revealed a 23% decrease in the area of the calf muscles and a 11% total reduction in the cross-sectional area of the calf (about the middle, where the gastrocnemius muscle is transformed into a tendon and where the soleus lies superficially). Mere measurement of the circumference of the calf is judged to be a poor criterion of muscle atrophy when compared with these other means of evaluation of atrophy. The evidence compiled during this study suggests that prompt surgical treatment of Achilles tendon ruptures, with cast changes several times during the period of immobilization and with tension maintained on the muscle, is the most effective treatment regimen we have found for this injury.

  3. REPETITIVE PERIPHERAL MAGNETIC STIMULATION (15 HZ RPMS OF THE HUMAN SOLEUS MUSCLE DID NOT AFFECT SPINAL EXCITABILITY

    Directory of Open Access Journals (Sweden)

    Martin Behrens

    2011-03-01

    Full Text Available The electric field induced by repetitive peripheral magnetic stimulation (RPMS is able to activate muscles artificially due to the stimulation of deep intramuscular motor axons. RPMS applied to the muscle induces proprioceptive input to the central nervous system in different ways. Firstly, the indirect activation of mechanoreceptors and secondly, direct activation of afferent nerve fibers. The purpose of the study was to examine the effects of RPMS applied to the soleus. Thirteen male subjects received RPMS once and were investigated before and after the treatment regarding the parameters maximal M wave (Mmax, maximal H-reflex (Hmax, Hmax/Mmax-ratio, Hmax and Mmax onset latencies and plantar flexor peak twitch torque associated with Hmax (PTH. Eleven male subjects served as controls. No significant changes were observed for Hmax and PTH of the treatment group but the Hmax/Mmax-ratio increased significantly (p = 0.015 on account of a significantly decreased Mmax (p = 0.027. Hmax onset latencies were increased for the treatment group (p = 0.003 as well as for the control group (p = 0.011 while Mmax onset latencies did not change. It is concluded that the RPMS protocol did not affect spinal excitability but acted on the muscle fibres which are part of fast twitch units and mainly responsible for the generation of the maximal M wave. RPMS probably modified the integrity of neuromuscular propagation.

  4. Calcineurin-NFAT Signaling and Neurotrophins Control Transformation of Myosin Heavy Chain Isoforms in Rat Soleus Muscle in Response to Aerobic Treadmill Training

    Directory of Open Access Journals (Sweden)

    Wenfeng Liu, Gan Chen, Fanling Li, Changfa Tang

    2014-12-01

    Full Text Available This study elucidated the role of CaN-NFAT signaling and neurotrophins on the transformation of myosin heavy chain isoforms in the rat soleus muscle fiber following aerobic exercise training. To do so, we examined the content and distribution of myosin heavy chain (MyHC isoforms in the rat soleus muscle fiber, the activity of CaN and expression of NFATc1 in these fibers, and changes in the expression of nerve growth factor (NGF, brain-derived neurotrophic factor (BDNF and neutrophin-3 (NT-3 in the soleus and striatum following high-and medium-intensity aerobic treadmill training. Specific pathogen-free 2 month old male Sprague-Dawley (SD rats were randomly divided into three groups: Control group (Con, n = 8, moderate-intensity aerobic exercise group (M-Ex, n = 8 and high-intensity aerobic exercise group (H-Ex, n = 8. We used ATPase staining to identify the muscle fiber type I and II, SDS-PAGE to separate and analyze the isoforms MyHCI, MyHCIIA, MyHCIIB and MyHCIIx, and performed western blots to determine the expression of NFATc1, NGF, BDNF and NT-3. CaN activity was measured using a colorimetric assay. In the soleus muscle, 8 weeks of moderate-intensity exercise can induce transformation of MyHC IIA and MyHC IIB to MyHC IIX and MyHC I (p < 0.01, while high-intensity treadmill exercise can induce transform MyHC IIx to MyHC IIB, MyHC IIA and MyHC I (p < 0.01. In comparison to the control group, CaN activity and NFATcl protein level were significantly increased in both the M-Ex and H-Ex groups (p < 0.05, p < 0.01, with a more pronounced upregulation in the M-Ex group (p < 0.05. Eight weeks of moderate- and high-intensity aerobic exercise induced the expression of NGF, BDNF and NT-3 in the soleus muscle and the striatum (p < 0.01, with the most significant increase in the H-Ex group (p < 0.01. In the rat soleus muscle, (1 CaN–NFATcl signaling contributes to the conversion of MyHC I isoform in response to moderate-intensity exercise; (2

  5. Elevated interstitial fluid volume in rat soleus muscles by hindlimb unweighting

    DEFF Research Database (Denmark)

    Kandarian, S C; Boushel, Robert Christopher; Schulte, Lars

    1991-01-01

    Hindlimb unweighting is a commonly used model to study skeletal muscle atrophy associated with disuse and exposure to microgravity. However, a discrepancy in findings between single fibers and whole muscle has been observed. In unweighted solei, specific tension deficits are greater in whole musc...

  6. Decreased rate of protein synthesis, caspase-3 activity, and ubiquitin-proteasome proteolysis in soleus muscles from growing rats fed a low-protein, high-carbohydrate diet.

    Science.gov (United States)

    Batistela, Emanuele; Pereira, Mayara Peron; Siqueira, Juliany Torres; Paula-Gomes, Silvia; Zanon, Neusa Maria; Oliveira, Eduardo Brandt; Navegantes, Luiz Carlos Carvalho; Kettelhut, Isis C; Andrade, Claudia Marlise Balbinotti; Kawashita, Nair Honda; Baviera, Amanda Martins

    2014-06-01

    The aim of this study was to investigate the changes in the rates of both protein synthesis and breakdown, and the activation of intracellular effectors that control these processes in soleus muscles from growing rats fed a low-protein, high-carbohydrate (LPHC) diet for 15 days. The mass and the protein content, as well as the rate of protein synthesis, were decreased in the soleus from LPHC-fed rats. The availability of amino acids was diminished, since the levels of various essential amino acids were decreased in the plasma of LPHC-fed rats. Overall rate of proteolysis was also decreased, explained by reductions in the mRNA levels of atrogin-1 and MuRF-1, ubiquitin conjugates, proteasome activity, and in the activity of caspase-3. Soleus muscles from LPHC-fed rats showed increased insulin sensitivity, with increased levels of insulin receptor and phosphorylation levels of AKT, which probably explains the inhibition of both the caspase-3 activity and the ubiquitin-proteasome system. The fall of muscle proteolysis seems to represent an adaptive response that contributes to spare proteins in a condition of diminished availability of dietary amino acids. Furthermore, the decreased rate of protein synthesis may be the driving factor to the lower muscle mass gain in growing rats fed the LPHC diet.

  7. Role of gastrocnemius-soleus muscle in forefoot force transmission at heel rise - A 3D finite element analysis.

    Science.gov (United States)

    Chen, Wen-Ming; Park, Jaeyoung; Park, Seung-Bum; Shim, Victor Phyau-Wui; Lee, Taeyong

    2012-06-26

    The functions of the gastrocnemius-soleus (G-S) complex and other plantar flexor muscles are to stabilize and control major bony joints, as well as to provide primary coordination of the foot during the stance phase of gait. Geometric positioning of the foot and transferring of plantar loads can be adversely affected when muscular control is abnormal (e.g., equinus contracture). Although manipulation of the G-S muscle complex by surgical intervention (e.g., tendo-Achilles lengthening) is believed to be effective in restoring normal plantar load transfer in the foot, there is lack of quantitative data supporting that notion. Thus, the objective of this study is to formulate a three-dimensional musculoskeletal finite element model of the foot to quantify the precise role of the G-S complex in terms of biomechanical response of the foot. The model established corresponds to a muscle-demanding posture during heel rise, with simulated activation of major extrinsic plantar flexors. In the baseline (reference) case, required muscle forces were determined from what would be necessary to generate the targeted resultant ground reaction forces. The predicted plantar load transfer through the forefoot plantar surface, as indicated by plantar pressure distribution, was verified by comparison with experimental observations. This baseline model served as a reference for subsequent parametric analysis, where muscle forces applied by the G-S complex were decreased in a step-wise manner. Adaptive changes of the foot mechanism, in terms of internal joint configurations and plantar stress distributions, in response to altered muscular loads were analyzed. Movements of the ankle and metatarsophalangeal joints, as well as forefoot plantar pressure peaks and pressure distribution under the metatarsal heads (MTHs), were all found to be extremely sensitive to reduction in the muscle load in the G-S complex. A 40% reduction in G-S muscle stabilization can result in dorsal-directed rotations

  8. Lectins binding during alloxan-induced diabetes in rat soleus muscle

    African Journals Online (AJOL)

    SERVER

    2008-04-17

    Apr 17, 2008 ... Diabetes mellitus is a metabolic disorder of multiple aetiology characterized by ... aortic smooth muscle cell of rabbits (Alpui et al., 1993). The mechanism of ... Lectins used and their carbohydrate specificities. Source of lectin.

  9. Insulin Signaling and Glucose Uptake in the Soleus Muscle of 30-Month-Old Rats After Calorie Restriction With or Without Acute Exercise.

    Science.gov (United States)

    Wang, Haiyan; Sharma, Naveen; Arias, Edward B; Cartee, Gregory D

    2016-03-01

    Exercise and calorie restriction (CR) can each improve insulin sensitivity in older individuals, but benefits of combining these treatments on skeletal muscle insulin signaling and glucose uptake are poorly understood, especially in predominantly slow-twitch muscles (eg, soleus). Accordingly, our purpose was to determine independent and combined effects of prior acute exercise and CR (beginning at 14 weeks old) on insulin signaling and glucose uptake in insulin-stimulated soleus muscles of 30-month-old rats. CR alone (but not exercise alone) versus ad libitum sedentary controls induced greater insulin-stimulated glucose uptake. There was a main effect of diet (CR > ad libitum) for insulin-stimulated Akt(Ser473) and Akt(Thr308) phosphorylation. CR alone versus ad libitum sedentary increased Akt substrate of 160 kDa (AS160) Ser(588) phosphorylation and TBC1D1 Thr(596), but not AS160 Thr(642) phosphorylation or abundance of GLUT4, GLUT1, or hexokinase II proteins. Combined CR and exercise versus CR alone did not further increase insulin-stimulated glucose uptake although phosphorylation of Akt(Ser473), Akt(Thr308), TBC1D1(Thr596), and AMPK(Thr172) for the combined group exceeded values for CR and/or exercise alone. These results revealed that although the soleus was highly responsive to a CR-induced enhancement of insulin-stimulated glucose uptake, the exercise protocol did not elevate insulin-stimulated glucose uptake, either alone or when combined with CR.

  10. Reinnervation of muscles after transection of the sciatic nerve in adult rats

    NARCIS (Netherlands)

    Ijkema-Paassen, J; Meek, MF; Gramsbergen, A

    2002-01-01

    Functional recovery after transection of the sciatic nerve in adult rats is poor, probably because of abnormalities in reinnervation. Denervation and reinnervation patterns were studied morphologically in the lateral gastrocnemius (LGC), tibialis anterior (TA), and soleus (SOL) muscles for 21 weeks

  11. Time Course of the Response of Myofibrillar and Sarcoplasmic Protein Metabolism to Unweighting of the Soleus Muscle

    Science.gov (United States)

    Munoz, Kathryn A.; Satarug, Soisungwan; Tischler, Marc E.

    1993-01-01

    Contributions of altered in vivo protein synthesis and degradation to unweighting atrophy of the soleus muscle in tail-suspended young female rats were analyzed daily for up to 6 days. Specific changes in myofibrillar and sarcoplasmic proteins were also evaluated to assess their contributions to the loss of total protein. Synthesis of myofibrillar and sarcoplasmic proteins was estimated by intramuscular (IM) injection and total protein by intraperitoneal (IP) injection of flooding doses of H-3-phenylaianine. Total protein loss was greatest during the first 3 days following suspension and was a consequence of the loss of myofibrillar rather than sarcoplasmic proteins. However, synthesis of total myofibrillar and sarcoplasmic proteins diminished in parallel beginning in the first 24 hours. Therefore sarcoplasmic proteins must be spared due to a decrease in their degradation. In contrast, myofibrillar protein degradation increased, thus explaining the elevated degradation of the total pool. Following 72 hours of suspension, protein synthesis remained low, but the rate of myofibrillar protein loss diminished, suggesting a slowing of degradation. These various results show acute loss of protein during unweighting atrophy is a consequence of decreased synthesis and increased degradation of myofibrillar proteins, and sarcoplasmic proteins are spared due to slower degradation, likely explaining the sparing of plasma membrane receptors. Based on other published data, we propose that the slowing of atrophy after the initial response may be attributed to an increased effect of insulin.

  12. The role of subscapularis muscle denervation in the pathogenesis of shoulder internal rotation contracture after neonatal brachial plexus palsy: a study in a rat model.

    Science.gov (United States)

    Mascarenhas, Vasco V; Casaccia, Marcelo; Fernandez-Martin, Alejandra; Marotta, Mario; Fontecha, Cesar G; Haddad, Sleiman; Knörr, Jorge; Soldado, Francisco

    2014-12-01

    We assessed the role of subscapularis muscle denervation in the development of shoulder internal rotation contracture in neonatal brachial plexus injury. Seventeen newborn rats underwent selective denervation of the subscapular muscle. The rats were evaluated at weekly intervals to measure passive shoulder external rotation. After 4 weeks, the animals were euthanized. The subscapularis thickness was measured using 7.2T MRI axial images. The subscapularis muscle was then studied grossly, and its mass was registered. The fiber area and the area of fibrosis were measured using collagen-I inmunostained muscle sections. Significant progressive decrease in passive shoulder external rotation was noted with a mean loss of 58° at four weeks. A significant decrease in thickness and mass of the subscapularis muscles in the involved shoulders was also found with a mean loss of 69%. Subscapularis muscle fiber size decreased significantly, while the area of fibrosis remained unchanged. Our study shows that subscapularis denervation, per se, could explain shoulder contracture after neonatal brachial plexus injury, though its relevance compared to other pathogenic factors needs further investigation. © 2014 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  13. Pyrroloquinoline Quinone Resists Denervation-Induced Skeletal Muscle Atrophy by Activating PGC-1α and Integrating Mitochondrial Electron Transport Chain Complexes.

    Directory of Open Access Journals (Sweden)

    Yung-Ting Kuo

    Full Text Available Denervation-mediated skeletal muscle atrophy results from the loss of electric stimulation and leads to protein degradation, which is critically regulated by the well-confirmed transcriptional co-activator peroxisome proliferator co-activator 1 alpha (PGC-1α. No adequate treatments of muscle wasting are available. Pyrroloquinoline quinone (PQQ, a naturally occurring antioxidant component with multiple functions including mitochondrial modulation, demonstrates the ability to protect against muscle dysfunction. However, it remains unclear whether PQQ enhances PGC-1α activation and resists skeletal muscle atrophy in mice subjected to a denervation operation. This work investigates the expression of PGC-1α and mitochondrial function in the skeletal muscle of denervated mice administered PQQ. The C57BL6/J mouse was subjected to a hindlimb sciatic axotomy. A PQQ-containing ALZET® osmotic pump (equivalent to 4.5 mg/day/kg b.w. was implanted subcutaneously into the right lower abdomen of the mouse. In the time course study, the mouse was sacrificed and the gastrocnemius muscle was prepared for further myopathological staining, energy metabolism analysis, western blotting, and real-time quantitative PCR studies. We observed that PQQ administration abolished the denervation-induced decrease in muscle mass and reduced mitochondrial activities, as evidenced by the reduced fiber size and the decreased expression of cytochrome c oxidase and NADH-tetrazolium reductase. Bioenergetic analysis demonstrated that PQQ reprogrammed the denervation-induced increase in the mitochondrial oxygen consumption rate (OCR and led to an increase in the extracellular acidification rate (ECAR, a measurement of the glycolytic metabolism. The protein levels of PGC-1α and the electron transport chain (ETC complexes were also increased by treatment with PQQ. Furthermore, PQQ administration highly enhanced the expression of oxidative fibers and maintained the type II glycolytic

  14. Relationship between cortisone and muscle work in determining muscle size

    Science.gov (United States)

    Goldberg, A. L.; Goodman, H. M.

    1969-01-01

    1. Large doses of cortisone caused marked atrophy of the plantaris muscle and other pale muscles of hind limbs of hypophysectomized rats, but hormone treatment had little effect on the size of the red soleus muscle. 2. Denervation increased the sensitivity of the soleus and plantaris to the catabolic effects of cortisone. 3. Increased work induced by tenotomy of the synergistic gastrocnemius made the plantaris muscle less sensitive to cortisone-induced atrophy. 4. Since the catabolic effects of cortisone are more pronounced in the less active muscles, it is suggested that in mobilizing body protein for gluconeogenesis the hormone spares those muscles physiologically most active. 5. The rapidity with which muscles lose weight in response to cortisone indicates that the hormone must decrease protein half-lives as well as decrease protein synthesis. PMID:5765854

  15. Reduced sarcoplasmic reticulum content of releasable Ca2+ in rat soleus muscle fibres after eccentric contractions

    DEFF Research Database (Denmark)

    Nielsen, J S; Sahlin, K; Ørtenblad, N

    2007-01-01

    AIM: The purpose was to evaluate the effects of fatiguing eccentric contractions (EC) on calcium (Ca2+) handling properties in mammalian type I muscles. We hypothesized that EC reduces both endogenous sarcoplasmic reticulum (SR) content of releasable Ca2+ (eSRCa2+) and myofibrillar Ca2+ sensitivity...

  16. The effects of gastrocnemius-soleus muscle forces on ankle biomechanics during triple arthrodesis

    DEFF Research Database (Denmark)

    Hejazi, Shima; Rouhi, Gholamreza; Rasmussen, John

    2016-01-01

    This paper presents a finite element model of the ankle, taking into account the effects of muscle forces, determined by a musculoskeletal analysis, to investigate the contact stress distribution in the tibio-talar joint in patients with triple arthrodesis and in normal subjects. Forces of major a...

  17. 3D false color computed tomography for diagnosis and follow-up of permanent denervated human muscles submitted to home-based Functional Electrical Stimulation

    Directory of Open Access Journals (Sweden)

    Ugo Carraro

    2015-03-01

    Full Text Available This report outlines the use of a customized false-color 3D computed tomography (CT protocol for the imaging of the rectus femoris of spinal cord injury (SCI patients suffering from complete and permanent denervation, as characterized by complete Conus and Cauda Equina syndrome. This muscle imaging method elicits the progression of the syndrome from initial atrophy to eventual degeneration, as well as the extent to which patients' quadriceps could be recovered during four years of home-based functional electrical stimulation (h-b FES. Patients were pre-selected from several European hospitals and functionally tested by, and enrolled in the EU Commission Shared Cost Project RISE (Contract n. QLG5-CT-2001-02191 at the Department of Physical Medicine, Wilhelminenspital, Vienna, Austria. Denervated muscles were electrically stimulated using a custom-designed stimulator, large surface electrodes, and customized progressive stimulation settings. Spiral CT images and specialized computational tools were used to isolate the rectus femoris muscle and produce 3D and 2D reconstructions of the denervated muscles. The cross sections of the muscles were determined by 2D Color CT, while muscle volumes were reconstructed by 3D Color CT. Shape, volume, and density changes were measured over the entirety of each rectus femoris muscle. Changes in tissue composition within the muscle were visualized by associating different colors to specified Hounsfield unit (HU values for fat, (yellow: [-200; -10], loose connective tissue or atrophic muscle, (cyan: [-9; 40], and normal muscle, fascia and tendons included, (red: [41; 200]. The results from this analysis are presented as the average HU values within the rectus femoris muscle reconstruction, as well as the percentage of these tissues with respect to the total muscle volume. Results from this study demonstrate that h-b FES induces a compliance-dependent recovery of muscle volume and size of muscle fibers, as

  18. Hoffmann reflex is increased after 14 days of daily repeated Achilles tendon vibration for the soleus but not for the gastrocnemii muscles.

    Science.gov (United States)

    Lapole, Thomas; Pérot, Chantal

    2012-02-01

    In a previous study, Achilles tendon vibrations were enough to improve the triceps surae (TS) activation capacities and also to slightly increase TS Hoffmann reflex (H-reflex) obtained by summing up soleus (Sol) and gastrocnemii (GM and GL) EMGs. The purpose of the present study was to analyze separately Sol and GM or GL reflexes to account for different effects of the vibrations on the reflex excitability of the slow soleus and of the gastrocnemii muscles. A control group (n = 13) and a vibration group (n = 16) were tested in pre-test and post-test conditions. The Achilles tendon vibration program consisted of 1 h of daily vibration (frequency: 50 Hz) applied during 14 days. Maximal Sol, GM and GL H-reflexes, and M-waves were recorded, and their H(max)/M(max) ratios gave the index of reflex excitability. After the vibration protocol, only Sol H(max)/M(max) was enhanced (p vibration is in favor of a decrease in the pre-synaptic inhibition due to the repeated vibrations and the high solicitation of the reflex pathway. Those results of a short period of vibration applied at rest may be limited to the soleus because of its high density in muscle spindles and slow motor units, both structures being very sensitive to vibrations.

  19. Effects of insulin on diacylglycerol-protein kinase C signaling in rat diaphragm and soleus muscles and relationship to glucose transport.

    Science.gov (United States)

    Ishizuka, T; Cooper, D R; Hernandez, H; Buckley, D; Standaert, M; Farese, R V

    1990-02-01

    Insulin was found to provoke rapid increases in diacylglycerol (DAG) content and [3H]glycerol incorporation into DAG and other lipids during incubations of rat hemidiaphragms and soleus muscles. Insulin also rapidly increased phosphatidic acid and total glycerolipid labeling by [3H]glycerol, suggesting that insulin increases DAG production at least partly through stimulation of the de novo pathway. Increased DAG production may activate protein kinase C (PKC) as reported previously in the rat diaphragm. We also observed apparent insulin-induced translocation of PKC from cytosol to membrane in the rat soleus muscle. The importance of insulin-induced increases in DAG-PKC signaling in the stimulation of glucose transport in rat diaphragm and soleus muscles was suggested by 1) PKC activators phorbol esters and phospholipase C stimulation of [3H]-2-deoxyglucose (DOG) uptake and 2) PKC inhibitors staurosporine and polymixin B inhibition of insulin effects on [3H]-2-DOG uptake. Although phorbol ester was much less effective than insulin in the diaphragm, phospholipase C provoked increases in [3H]-2-DOG uptake that equaled or exceeded those of insulin. In the soleus muscle, phorbol ester, like phospholipase C, was only slightly but not significantly less effective than insulin. Similar variability in effectiveness of phorbol ester has also been noted previously in rat adipocytes (weak) and BC3H1 myocytes (strong), whereas DAG, added exogenously or generated by phospholipase C treatment, stimulates glucose transport to a degree that is quantitatively more comparable to that of insulin in each of the four tissues. Differences in effectiveness of phorbol ester and DAG could not be readily explained by postulating that the latter acts independently of PKC, because DAG provoked the apparent translocation of the enzyme from cytosol to membranes in rat adipocytes, and effects of DAG on [3H]-2-DOG uptake were blocked by inhibitors of PKC in both rat adipocytes and BC3H1 myocytes

  20. Jumping in aquatic environment after sciatic nerve compression: nociceptive evaluation and morphological characteristics of the soleus muscle of Wistar rats.

    Science.gov (United States)

    Malanotte, Jéssica Aline; Kakihata, Camila Mayumi Martin; Karvat, Jhenifer; Brancalhão, Rose Meire Costa; Ribeiro, Lucinéia de Fátima Chasko; Bertolini, Gladson Ricardo Flor

    2017-01-01

    To evaluate the effect of jumping in aquatic environment on nociception and in the soleus muscle of trained and not trained Wistar rats, in the treatment of compressive neuropathy of the sciatic nerve. Twenty-five Wistar rats were distributed into five groups: Control, Lesion, Trained + Lesion, Lesion + Exercise, and Trained + Lesion + Exercise. The training was jumping exercise in water environment for 20 days prior to injury, and treatment after the injury. Nociception was evaluated in two occasions, before injury and seven after injury. On the last day of the experiment, the right soleus muscles were collected, processed and analyzed as to morphology and morphometry. In the assessment of nociception in the injury site, the Control Group had higher average than the rest, and the Lesion Group was larger than the Trained + Lesion and Lesion + Exercise Groups. The Control Group showed higher nociceptive threshold in paw, compared to the others. In the morphometric analysis, in relation to Control Group, all the injured groups showed decreased muscle fiber area, and in the Lesion Group was lower than in the Lesion + Exercise Group and Trained + Lesion Group. Considering the diameter of the muscle fiber, the Control Group had a higher average than the Trained + Lesion Group and the Trained + Lesion + Exercise Group; and the Lesion Group showed an average lower than the Trained + Lesion and Lesion + Exercise Groups. Resistance exercise produced increased nociception. When performed prior or after nerve damage, it proved effective in avoiding hypotrophy. The combination of the two protocols led to decrease in diameter and area of the muscle fiber. Avaliar os efeitos do salto em meio aquático, na nocicepção e no músculo sóleo, em ratos Wistar treinados e não treinados, no tratamento de neuropatia compressiva do nervo isquiático. Foram distribuídos em cinco grupos 25 ratos Wistar: Controle, Lesão, Treinado + Lesão, Lesão + Exercício e Treinado + Lesão + Exerc

  1. MicroRNA-1/133a在大鼠失神经骨骼肌中的初步研究%Expression of microRNA-1/133a in denervated skeletal muscle preliminary study

    Institute of Scientific and Technical Information of China (English)

    冯小宁; 李文斌; 李永平; 谷造华; 贾英伟; 梁炳生; 李刚; 冯勇

    2014-01-01

    目的 探讨MicroRNA-1/133a在失神经骨骼肌萎缩过程中不同部位及时段的表达. 方法 2012年4月-2012年12月,取SD大鼠54只,体质量(200±10)g.随机分成9组,每组6只.切断大鼠右侧坐骨神经(实验组),左侧行假手术(对照组),分别于术后0h、8h、1d、3d、1周、2周、3周、4周、8周脊椎脱臼法处死1组大鼠,取其各组大鼠的快肌(腓肠肌、趾长伸肌)和慢肌(比目鱼肌)称重后,保存于-70℃冰箱.分别使用实时荧光定量RT-PCR法对各样本中的MicroRNA-1/133a进行检测并用电镜观察肌纤维超微结构的变化. 结果 大鼠失神经支配后肌肉湿重比随时间推移持续下降;电镜观察肌纤维结构排列逐渐紊乱;RT-PCR观察快慢肌对照组中miRNA-133a和miRNA-1表达均维持在一定的水平,实验组同对照组比较有差异;随时间延长,比目鱼肌实验组miRNA-133a和miRNA-1表达均是先降低后升高,4周时表达最低,8周时高表达;腓肠肌和趾长伸肌实验组中miRNA-133a在1周时表达最低,始终处于低表达,miRNA-1在3d时表达最低,始终处于低表达;快肌中miRNA-133a、miRNA-1表达降低的趋势更早.实验组与对照组比较,差异有统计学意义(P<0.05). 结论 MicroRNA-1/133a在大鼠快、慢肌失神经萎缩过程中的表达不同,推测可能是调控快、慢肌本质区别的一个关键点.%Objective To investigate the expression of MicroRNA-1/133a in denervated skeletal muscle at different periods.Methods From April 2012 to December 2012,a total of 54 Sprague-Dawle rats weighted (200 ± 10) g were used.They were randomly divided into 9 groups,each group of 6.The right sciatic nerve was cut off in rats (experimental group),with the left one being sham operation(control group)at various time points(0 h,8 h,1 d,3 d,1 weeks,2 weeks,3 weeks,4 weeks,8 weeks).Then after rats were sacrificed by spinal dislocation,the muscle sample(gastrocnemius,extensor digitorum longus and soleus

  2. Different sensitivity of miniature endplate currents of the rat extensor digitorum longus, soleus and diaphragm muscles to a novel acetylcholinesterase inhibitor C-547.

    Science.gov (United States)

    Petrov, K A; Kovyazina, L V; Zobov, V V; Bukharaeva, E A; Nikolsky, E E; Vyskocil, F

    2006-01-01

    A novel derivative of 6-methyluracil, C-547, increased the amplitude and prolonged the duration of miniature endplate currents (MEPCs) which is typical for acetylcholinesterase inhibition. In the soleus and extensor digitorum longus significant potentiation was detected at nanomolar concentrations. In contrast, in the diaphragm muscle, the increase in the amplitudes of the MEPCs and the decay time constant appeared only when the concentration of C-547 was elevated to 1 x 10(-7) M. Possible consequences for the exploitation of this drug, which can selectively inhibit AChE in particular synapses, are discussed.

  3. Distinct muscle apoptotic pathways are activated in muscles with different fiber types a rat model of critical illness myopathy

    Science.gov (United States)

    Barnes, Benjamin T.; Confides, Amy L.; Rich, Mark M.; Dupont-Versteegden, Esther E.

    2015-01-01

    Critical illness myopathy (CIM) is associated with severe muscle atrophy and fatigue in affected patients. Apoptotic signaling is involved in atrophy and is elevated in muscles from patients with CIM. In this study we investigated underlying mechanisms of apoptosis-related pathways in muscles with different fiber type composition in a rat model of CIM using denervation and glucocorticoid administration (denervation and steroid-induced myopathy, DSIM). Soleus and tibialis anterior (TA) muscles showed severe muscle atrophy (40–60% of control muscle weight) and significant apoptosis in interstitial as well as myofiber nuclei that was similar between the two muscles with DSIM. Caspase-3 and −8 activities, but not caspase-9 and −12, were elevated in TA and not in soleus muscle, while the caspase-independent proteins endonuclease G (EndoG) and apoptosis inducing factor (AIF) were not changed in abundance nor differentially localized in either muscle. Anti-apoptotic proteins HSP70, −27, and apoptosis repressor with a caspase recruitment domain (ARC) were elevated in soleus compared to TA muscle and ARC was significantly decreased with induction of DSIM in soleus. Results indicate that apoptosis is a significant process associated with DSIM in both soleus and TA muscles, and that apoptosis-associated processes are differentially regulated in muscles of different function and fiber type undergoing atrophy due to DSIM. We conclude that interventions combating apoptosis with CIM may need to be directed towards inhibiting caspase-dependent as well as -independent mechanisms to be able to affect muscles of all fiber types. PMID:25740800

  4. Distinct muscle apoptotic pathways are activated in muscles with different fiber types in a rat model of critical illness myopathy.

    Science.gov (United States)

    Barnes, Benjamin T; Confides, Amy L; Rich, Mark M; Dupont-Versteegden, Esther E

    2015-06-01

    Critical illness myopathy (CIM) is associated with severe muscle atrophy and fatigue in affected patients. Apoptotic signaling is involved in atrophy and is elevated in muscles from patients with CIM. In this study we investigated underlying mechanisms of apoptosis-related pathways in muscles with different fiber type composition in a rat model of CIM using denervation and glucocorticoid administration (denervation and steroid-induced myopathy, DSIM). Soleus and tibialis anterior (TA) muscles showed severe muscle atrophy (40-60% of control muscle weight) and significant apoptosis in interstitial as well as myofiber nuclei that was similar between the two muscles with DSIM. Caspase-3 and -8 activities, but not caspase-9 and -12, were elevated in TA and not in soleus muscle, while the caspase-independent proteins endonuclease G (EndoG) and apoptosis inducing factor (AIF) were not changed in abundance nor differentially localized in either muscle. Anti-apoptotic proteins HSP70, -27, and apoptosis repressor with a caspase recruitment domain (ARC) were elevated in soleus compared to TA muscle and ARC was significantly decreased with induction of DSIM in soleus. Results indicate that apoptosis is a significant process associated with DSIM in both soleus and TA muscles, and that apoptosis-associated processes are differentially regulated in muscles of different function and fiber type undergoing atrophy due to DSIM. We conclude that interventions combating apoptosis with CIM may need to be directed towards inhibiting caspase-dependent as well as -independent mechanisms to be able to affect muscles of all fiber types.

  5. Similarities and Differences of the Soleus and Gastrocnemius H-reflexes during Varied Body Postures, Foot Positions, and Muscle Function: Multifactor Designs for Repeated Measures

    Directory of Open Access Journals (Sweden)

    Sabbahi Mohamed A

    2011-06-01

    Full Text Available Abstract Background Although the soleus (Sol, medial gastrocnemius (MG, and lateral gastrocnemius (LG muscles differ in function, composition, and innervations, it is a common practice is to investigate them as single H-reflex recording. The purpose of this study was to compare H-reflex recordings between these three sections of the triceps surae muscle group of healthy participants while lying and standing during three different ankle positions. Methods The Sol, MG and LG muscles' H-reflexes were recorded from ten participants during prone lying and standing with the ankle in neutral, maximum dorsiflexion, and maximum plantarflexion positions. Four traces were averaged for each combination of conditions. Three-way ANOVAs (posture X ankle position X muscle with planned comparisons were used for statistical comparisons. Results Although the H-reflex in the three muscle sections differed in latency and amplitude, its dependency on posture and ankle position was similar. The H-reflex amplitudes and maximum H-reflex to M-response (H/M ratios were significantly 1 lower during standing compared to lying with the ankle in neutral, 2 greater during standing with the ankle in plantarflexion compared to neutral, and 3 less with the ankle in dorsiflexion compared to neutral during lying and standing for all muscles (p ≤ .05. Conclusion Varying demands are required for muscles activated during distinctly different postures and ankle movement tasks.

  6. Denervation and atrophy of paraspinal muscles after open lumbar interbody fusion is associated with clinical outcome--electromyographic and CT-volumetric investigation of 30 patients.

    Science.gov (United States)

    Waschke, Albrecht; Hartmann, Christin; Walter, Jan; Dünisch, Pedro; Wahnschaff, Falko; Kalff, Rolf; Ewald, Christian

    2014-02-01

    Different studies have shown that atrophy of paraspinal muscles arises after open dorsal lumbar fusion, and the reasons for this atrophy are still not yet fully clarified. This prospective study investigates the extent of atrophy of the lumbar paraspinal muscles after open lumbar interbody fusion, its possible causes, and their association with clinical outcome measures. Thirty consecutive patients were prospectively included (13 male, 17 female, median age 60.5 years, range 33-80 years). Mono or bisegmental, posterior lumbar interbody fusion and instrumentation was performed applying a conventional, open lumbar midline approach. Clinical outcome was assessed by the Short Form (36) Health Survey (SF-36) questionnaire and visual analogue scale. Needle electromyography of paraspinal muscles was performed preoperatively, at 6 and 12 months. Serum values of creatine kinase, lactate dehydrogenase and myoglobin were determined preoperatively, at day 2 after surgery and at discharge. Paraspinal muscle volume was determined by volumetric analysis of thin-slice computed tomography scans preoperatively and 1 year after surgery. There was a significant increase of electromyographic denervation activity (p =0.024) and reduced recruitment of motor units (p = 0.001) after 1 year. Laboratory studies showed a significant increase of CK (p muscle volume decreased from 67.8 to 60.4 % (p muscle volume (K = -0.219, p = 0.002). Paraspinal muscle volume is significantly correlated with physical outcome (K = 0.169, p = 0.020), mental outcome (K = 0.214, p = 0.003), and pain (K = 0.382, p Atrophy of paraspinal muscles after open, posterior lumbar interbody fusion seems to be associated with denervation, as well as direct muscle trauma during surgery. While muscle atrophy is also correlated with a worse clinical outcome, it seems to be a determining factor for successful lumbar spine surgery.

  7. Molecular Aspects of Muscle Damage and Denervation with Public Access Tools

    Science.gov (United States)

    2005-12-01

    Hyperresponsiveness LUNG 776 52 PGA Murine Calories Restriction LUNG 689 36 WSilk Macular Degeneration EYE 657 80 DMD temporal profiling MUSCLE 563 15 PGA... rehabilitation medicine. This is a core facility to provide DNA, mRNA, proteomics, and database services to grantees of the NICHD Medical Rehabilitation

  8. Anti-skeletal muscle atrophy effect of Oenothera odorata root extract via reactive oxygen species-dependent signaling pathways in cellular and mouse model.

    Science.gov (United States)

    Lee, Yong-Hyeon; Kim, Wan-Joong; Lee, Myung-Hun; Kim, Sun-Young; Seo, Dong-Hyun; Kim, Han-Sung; Gelinsky, Michael; Kim, Tack-Joong

    2015-01-01

    Skeletal muscle atrophy can be defined as a decrease of muscle volume caused by injury or lack of use. This condition is associated with reactive oxygen species (ROS), resulting in various muscular disorders. We acquired 2D and 3D images using micro-computed tomography in gastrocnemius and soleus muscles of sciatic-denervated mice. We confirmed that sciatic denervation-small animal model reduced muscle volume. However, the intraperitoneal injection of Oenothera odorata root extract (EVP) delayed muscle atrophy compared to a control group. We also investigated the mechanism of muscle atrophy's relationship with ROS. EVP suppressed expression of SOD1, and increased expression of HSP70, in both H2O2-treated C2C12 myoblasts and sciatic-denervated mice. Moreover, EVP regulated apoptotic signals, including caspase-3, Bax, Bcl-2, and ceramide. These results indicate that EVP has a positive effect on reducing the effect of ROS on muscle atrophy.

  9. The effects of elevated levels of sodium bicarbonate (NaHCO₃) on the acute power output and time to fatigue of maximally stimulated mouse soleus and EDL muscles.

    Science.gov (United States)

    Higgins, M F; Tallis, J; Price, M J; James, R S

    2013-05-01

    This study examined the effects of elevated buffer capacity [~32 mM HCO₃(-)] through administration of sodium bicarbonate (NaHCO₃) on maximally stimulated isolated mouse soleus (SOL) and extensor digitorum longus (EDL) muscles undergoing cyclical length changes at 37 °C. The elevated buffering capacity was of an equivalent level to that achieved in humans with acute oral supplementation. We evaluated the acute effects of elevated [HCO₃(-)] on (1) maximal acute power output (PO) and (2) time to fatigue to 60 % of maximum control PO (TLIM60), the level of decline in muscle PO observed in humans undertaking similar exercise, using the work loop technique. Acute PO was on average 7.0 ± 4.8 % greater for NaHCO₃-treated EDL muscles (P muscles (P muscle performance was variable, suggesting that there might be inter-individual differences in response to NaHCO₃ supplementation. These results present the best indication to date that NaHCO₃ has direct peripheral effects on mammalian skeletal muscle resulting in increased acute power output.

  10. QTL Analysis of Type I and Type IIA Fibers in Soleus Muscle in a Cross between LG/J and SM/J Mouse Strains.

    Science.gov (United States)

    Carroll, Andrew M; Palmer, Abraham A; Lionikas, Arimantas

    2011-01-01

    Properties of muscle fibers, i.e., their type, number and size, are important determinants of functional characteristics of skeletal muscle, and of the quality of meat in livestock. Genetic factors play an important role in determining variation in fiber properties, however, specific genes remain largely elusive. We examined histological properties of soleus muscle fibers in two strains of mice exhibiting a twofold difference in muscle mass, LG/J and SM/J, and their F2 intercross. The total number of muscle fibers (555 ± 106; mean ± SD) did not differ between the strains or between males and females. A higher percentage of type I fibers was observed in the LG/J compared to the SM/J strain (P LG/J strain (strain-by-sex interaction, P LG/J than the SM/J strain (1365 ± 268 vs. 825 ± 229 μm(2), P LG/J strains is a promising model to search for genes affecting muscle fiber properties.

  11. Denervation of the infraspinatus and release of the posterior deltoid muscles in the management of dyskinetic external shoulder rotation in cerebral palsy.

    Science.gov (United States)

    Blaszczyk, Izabela; Granström, Anna Cecilia; Wiberg, Mikael

    2015-04-01

    The dyskinetic subtype of cerebral palsy is difficult to manage, and there is no established gold standard for treatment. External rotation of the shoulder(s) is often managed nonsurgically using injections of botulinum toxin A into the external rotator muscles. This article reports a new surgical technique for managing external rotation when botulinum toxin A treatment is not sufficient or possible. Six patients with dyskinetic cerebral palsy underwent denervation of the infraspinatus muscle and release of the posterior part of the deltoid muscle. Postoperative questionnaires were given to the patients/caregivers, and video recordings were made both pre- and postoperatively. Preoperative and postoperative Assisting Hand Assessment was possible in only 1 case. Five patients were very satisfied with their outcome. Four patients' video recordings showed improvement in their condition. One patient developed postoperative complications. The results indicate that denervation of the infraspinatus muscle and posterior deltoid release can be an option for patients with dyskinetic cerebral palsy to manage external rotation of the shoulder when other treatment alternatives are insufficient.

  12. CT-guided injection of botulinic toxin for percutaneous therapy of piriformis muscle syndrome with preliminary MRI results about denervative process

    Energy Technology Data Exchange (ETDEWEB)

    Fanucci, E.; Masala, S.; Sodani, G.; Varrucciu, V.; Romagnoli, A.; Squillaci, E.; Simonetti, G. [Dept. of Radiology, Univ. of Rome (Italy)

    2001-12-01

    Piriformis muscle syndrome (PMS) is a cause of sciatica, leg or buttock pain and disability. The pain is usually increased by muscular contraction, palpation or prolonged sitting. The aim of our paper was to evaluate the feasibility of CT-guided percutaneous botulinic toxin (BTX) injection for the purpose of PMS treatment. Thirty patients suffering from PMS, suspected with clinical and electrophysiological criteria, after imaging examinations excluding other causes of sciatic pain, resulted positive at the lidocaine test and were treated by intramuscular injection of BTX type A under CT guidance. The follow-up (12 months) was performed with clinical examination in all cases and with MR 3 months after the procedure in 9 patients to evaluate the denervative process entity of the treated muscle. In 26 cases relief of symptoms was obtained after 5-7 days. In 4 patients an insufficient relief of pain justified a second percutaneous treatment which was clinically successful. No complications or side effects were recorded after BTX injection. The MR examination showed a signal intensity change of the treated muscle in 7 patients due to the denervative process of PM, whereas in the remaining 2 cases only an atrophy of the treated muscle was detected. Larger series are necessary to confirm these MRI preliminary results. The CT-guided BTX injection in the PMS is an emergent and feasible technique that obtains an excellent local therapeutic effect without risk of imprecise inoculation. (orig.)

  13. Denervation of the Tensor Veli Palatini Muscle and Effusion in the Tympanic Cavity.

    Science.gov (United States)

    Kent, Marc; Talarico, Lauren R; Glass, Eric N; de Lahunta, Alexander; Platt, Simon R; Haley, Allison C

    2015-01-01

    An English springer spaniel was presented for right-sided atrophy of the muscles of mastication, analgesia and paralysis of the face, and vestibular dysfunction. Neurological signs were consistent with a lesion involving the pons and rostral medulla resulting in deficits in the function of the trigeminal, facial, and vestibular nerves. MRI disclosed a right-sided extraparenchymal mass consistent with a trigeminal nerve sheath neoplasm that was compressing and invading the pons and medulla. Atrophy of the muscles of mastication, innervated by the trigeminal nerve, was also observed on MRI. Additionally, effusion was present in the ipsilateral tympanic cavity. Gross and microscopic evaluation of the right tensor veli palatini muscle (TVPM) was consistent with neurogenic atrophy. Effusion in the tympanic cavity was likely the result of an inability to open the auditory tube as a consequence of paralysis of the TVPM. Without the ability to open the auditory tube, gases present within the auditory tube and tympanic cavity may be absorbed, creating a negative pressure environment that leads to fluid transudation and effusion build up. To the authors' knowledge, this is the first report to document neurogenic atrophy of the TVPM with concurrent effusion in the ipsilateral tympanic cavity.

  14. Home-based Functional Electrical Stimulation for long-term denervated human muscle: History, basics, results and perspectives of the Vienna Rehabilitation Strategy

    Directory of Open Access Journals (Sweden)

    Helmut Kern

    2014-03-01

    Full Text Available We will here discuss the following points related to Home-based Functional Electrical Stimulation (h-b FES as treatment for patients with permanently denervated muscles in their legs: 1. Upper (UMN and lower motor neuron (LMN damage to the lower spinal cord; 2. Muscle atrophy/hypertrophy versus processes of degeneration, regeneration, and recovery; 3. Recovery of twitch- and tetanic-contractility by h-b FES; 4. Clinical effects of h-b FES using the protocol of the “Vienna School”; 5. Limitations and perspectives. Arguments in favor of using the Vienna protocol include: 1. Increased muscle size in both legs; 2. Improved tetanic force production after 3-5 months of percutaneous stimulation using long stimulus pulses (> 100 msec of high amplitude (> 80 mAmp, tolerated only in patients with no pain sensibility; 3. Histological and electron microscopic evidence that two years of h-b FES return muscle fibers to a state typical of two weeks denervated muscles with respect to atrophy, disrupted myofibrillar structure, and disorganized Excitation-Contraction Coupling (E-CC structures; 4. The excitability never recovers to that typical of normal or reinnervated muscles where pulses less than 1 msec in duration and 25 mAmp in intensity excite axons and thereby muscle fibres. It is important to motivate these patients for chronic stimulation throughout life, preferably standing up against the load of the body weight rather than sitting. Only younger and low weight patients can expect to be able to stand-up and do some steps more or less independently. Some patients like to maintain the h-b FES training for decades. Limitations of the procedure are obvious, in part related to the use of multiple, large surface electrodes and the amount of time patients are willing to use for such muscle training.

  15. Home-Based Functional Electrical Stimulation for Long-Term Denervated Human Muscle: History, Basics, Results and Perspectives of the Vienna Rehabilitation Strategy

    Science.gov (United States)

    Kern, Helmut

    2014-01-01

    We will here discuss the following points related to Home-based Functional Electrical Stimulation (h-b FES) as treatment for patients with permanently denervated muscles in their legs: 1. Upper (UMN) and lower motor neuron (LMN) damage to the lower spinal cord; 2. Muscle atrophy/hypertrophy versus processes of degeneration, regeneration, and recovery; 3. Recovery of twitch- and tetanic-contractility by h-b FES; 4. Clinical effects of h-b FES using the protocol of the “Vienna School”; 5. Limitations and perspectives. Arguments in favor of using the Vienna protocol include: 1. Increased muscle size in both legs; 2. Improved tetanic force production after 3-5 months of percutaneous stimulation using long stimulus pulses (> 100 msec) of high amplitude (> 80 mAmp), tolerated only in patients with no pain sensibility; 3. Histological and electron microscopic evidence that two years of h-b FES return muscle fibers to a state typical of two weeks denervated muscles with respect to atrophy, disrupted myofibrillar structure, and disorganized Excitation-Contraction Coupling (E-CC) structures; 4. The excitability never recovers to that typical of normal or reinnervated muscles where pulses less than 1 msec in duration and 25 mAmp in intensity excite axons and thereby muscle fibres. It is important to motivate these patients for chronic stimulation throughout life, preferably standing up against the load of the body weight rather than sitting. Only younger and low weight patients can expect to be able to stand-up and do some steps more or less independently. Some patients like to maintain the h-b FES training for decades. Limitations of the procedure are obvious, in part related to the use of multiple, large surface electrodes and the amount of time patients are willing to use for such muscle training. PMID:26913127

  16. Effects of denervation on expression of carbonic anhydrase Ⅲ and its phosphatase activity in skeletal muscle of rats%去神经对大鼠骨骼肌碳酸酐酶Ⅲ表达和磷酸酶活性的影响

    Institute of Scientific and Technical Information of China (English)

    黄河; 任惠民

    2011-01-01

    longus (EDL, mainly composed by fast fibers) and soleus (Sol, mainly composed by slow fibers) were cut off by operation of denervation.Levels and phosphatase activities of CAⅢ were analyzed at 7, 14, 28, and 56 d after denervation by Western blot and specific enzyme staining on the membrane following SDS-polyacrylamide gel electrophoresis, respectively.Results (1) Levels of CAⅢ in Sol of normal side (eg denervated contralateral) were much higher than that in EDL of normal side, and the levels in both Sol and EDL had an enhanced tendency with time (age) increase, especially for Sol.After denervation, the levels of CAⅢ in EDL were gradual increased, however, the level in Sol was 14 d after denervation as the boundary of ascension and then decline.( 2) The phosphatase activities of CAⅢ in Sol of normal sides were much higher than that in EDL of normal sides, and there were an enhanced tendency with time (age) increase in Sol, but no significant changes were found in EDL The enzyme activities in denervated Sol were lower(in the 14, 28, and 56 days after denervation: 14.39 ±1.93, 11.48 ±1.46, 9.04 ±1.46) much than their contralaterals(22.75 ± 1.80, 25.26 ±3.15, 25.82 ± 2.97; t = 0.002, 0.005, 0.002, all P < 0.05), the enzyme activities in denervated EDL were also lower than their contralaterals, however, no significant differences were found.(3)It was consistent for CAⅢ levels and phosphatase activities in both Sol and EDL of normal sides.After denervation, however, the deviation of the CAⅢ levels and phosphatase activities happened, the levels of CAⅢ were increased, but the phosphatase activities were decreased.Conclusions The effect of nerve impulse transferring obstructed by denervation on CAⅢ expression of skeletal muscles is different from that by MG auto-antibody.The decrease of CAⅢ protein in the MG muscles may be not resulted from the nerve impulse transferring obstructed by MG auto-antibody.

  17. Comparison of the validity of Hill and Huxley muscle-tendon complex models using experimental data obtained from rat m. soleus in situ.

    Science.gov (United States)

    Lemaire, Koen K; Baan, Guus C; Jaspers, Richard T; van Soest, A J Knoek

    2016-04-01

    The relationship between mechanical and metabolic behaviour in the widely used Hill muscle-tendon complex (MTC) model is not straightforward, whereas this is an integral part of the Huxley model. In this study, we assessed to what extent Huxley- and Hill-type MTC models yield adequate predictions of mechanical muscle behaviour during stretch-shortening cycles (SSCs). In fully anaesthetized male Wistar rats (N=3), m. soleus was dissected completely free, except for the insertion. Cuff electrodes were placed over the n. ischiadicus. The distal end of the tendon was connected to a servo motor, via a force transducer. The setup allowed for full control over muscle stimulation and length, while force was measured. Quick-release and isovelocity contractions (part 1), and SSCs (part 2) were imposed. Simulations of part 2 were made with both a Hill and a Huxley MTC model, using parameter values determined from part 1. Modifications to the classic two-state Huxley model were made to incorporate series elasticity, activation dynamics, and active and passive force-length relationships. Results were similar for all rats. Fitting of the free parameters to the data of part 1 was near perfect (R(2)>0.97). During SSCs, predicted peak force and force during relaxation deviated from the experimental data for both models. Overall, both models yielded similarly adequate predictions of the experimental data. We conclude that Huxley and Hill MTC models are equally valid with respect to mechanical behaviour.

  18. Group II muscle afferents probably contribute to the medium latency soleus stretch reflex during walking in humans

    DEFF Research Database (Denmark)

    Grey, Michael James; Ladouceur, Michel; Andersen, Jacob B.

    2001-01-01

    1. The objective of this study was to determine which afferents contribute to the medium latency response of the soleus stretch reflex resulting from an unexpected perturbation during human walking. 2. Fourteen healthy subjects walked on a treadmill at approximately 3.5 km h(-1) with the left ankle...... component (P = 0.004), whereas the medium latency component was unchanged (P = 0.437). 6. Two hours after the ingestion of tizanidine, an alpha(2)-adrenergic receptor agonist known to selectively depress the transmission in the group II afferent pathway, the medium latency reflex was strongly depressed (P...... = 0.007), whereas the short latency component was unchanged (P = 0.653). 7. An ankle block with lidocaine hydrochloride was performed to suppress the cutaneous afferents of the foot and ankle. Neither the short (P = 0.453) nor medium (P = 0.310) latency reflexes were changed. 8. Our results support...

  19. MiR-206 Attenuates Denervation-Induced Skeletal Muscle Atrophy in Rats Through Regulation of Satellite Cell Differentiation via TGF-β1, Smad3, and HDAC4 Signaling.

    Science.gov (United States)

    Huang, Qiang Kai; Qiao, Hu-Yuan; Fu, Ming-Huan; Li, Gang; Li, Wen-Bin; Chen, Zhi; Wei, Jian; Liang, Bing-Sheng

    2016-04-07

    BACKGROUND Denervation-induced skeletal muscle atrophy results in significant biochemical and physiological changes potentially leading to devastating outcomes including increased mortality. Effective treatments for skeletal muscle diseases are currently not available. Muscle-specific miRNAs, such as miR-206, play an important role in the regulation of muscle regeneration. The aim of the present study was to examine the beneficial effects of miR-206 treatment during the early changes in skeletal muscle atrophy, and to study the underlying signaling pathways in a rat skeletal muscle atrophy model. MATERIAL AND METHODS The rat denervation-induced skeletal muscle atrophy model was established. miRNA-206 was overexpressed with or without TGF-β1 inhibitor in the rats. The mRNA and protein expression of HDAC4, TGF-β1, and Smad3 was determined by real-time PCR and western blot. The gastrocnemius muscle cross-sectional area and relative muscle mass were measured. MyoD1, TGF-β1, and Pax7 were determined by immunohistochemical staining. RESULTS After sciatic nerve surgical transection, basic muscle characteristics, such as relative muscle weight, deteriorated continuously during a 2-week period. Injection of miR-206 (30 μg/rat) attenuated morphological and physiological deterioration of muscle characteristics, prevented fibrosis effectively, and inhibited the expression of TGF-β1 and HDAC4 as assessed 2 weeks after denervation. Moreover, miR-206 treatment increased the number of differentiating (MyoD1+/Pax7+) satellite cells, thereby protecting denervated muscles from atrophy. Interestingly, the ability of miR-206 to govern HDAC4 expression and to attenuate muscle atrophy was weakened after pharmacological blockage of the TGF-b1/Smad3 axis. CONCLUSIONS TGF-β1/Smad3 signaling pathway is one of the crucial signaling pathways by which miR-206 counteracts skeletal muscle atrophy by affecting proliferation and differentiation of satellite cells. miR-206 may be a potential

  20. Imaging of denervation in the head and neck

    Energy Technology Data Exchange (ETDEWEB)

    Borges, Alexandra [Radiology Department, Instituto Portugues de Oncologia Francisco Gentil, Centro de Lisboa, Rua Prof. Lima Basto, 1093 Lisboa (Portugal)], E-mail: borgalexandra@gmail.com

    2010-05-15

    Denervation changes maybe the first sign of a cranial nerve injury. Recognition of denervation patterns can be used to determine the site and extent of a lesion and to tailor imaging studies according to the most likely location of an insult along the course of the affected cranial nerve(s). In addition, the extent of denervation can be used to predict functional recovery after treatment. On imaging, signs of denervation can be misleading as they often mimic recurrent neoplasm or inflammatory conditions. Imaging can both depict denervation related changes and establish its cause. This article briefly reviews the anatomy of the extracranial course of motor cranial nerves with particular emphasis on the muscles supplied by each nerve, the imaging features of the various stages of denervation, the different patterns of denervation that maybe helpful in the topographic diagnosis of nerve lesions and the most common causes of cranial nerve injuries leading to denervation.

  1. Role of the muscle belly and tendon of soleus, gastrocnemius, and plantaris in mechanical energy absorption and generation during cat locomotion.

    Science.gov (United States)

    Prilutsky, B I; Herzog, W; Leonard, T R; Allinger, T L

    1996-04-01

    The functional significance of tendons, and the differences in tendon properties among synergistic muscles, is not well established for normal locomotion. Previous studies have suggested that tendons may store mechanical energy during the early phase of support, and then release this energy during the late phase of support. The storage and release of mechanical energy by tendons may modify the velocity of shortening and elongation and the power produced by the muscle belly and the fibers, and may influence the metabolic cost of locomotion. The aims of this study were (1) to estimate the amount of negative and positive work done by the tendon and the muscle belly of the cat soleus (SO), gastrocnemius (GA), and plantaris (PL), and (2) to determine the relative contribution of the elastic energy stored in the tendons to the total mechanical work done by these three muscles during walking and trotting. Forces of SO, GA, and PL muscles were measured using standard force transducers in three cats walking and trotting at speeds of 0.4-1.8 ms-1 on a motor-driven treadmill. Video records and a geometrical model of the cat hindlimb were used for calculating length of the muscle-tendon complexes of SO, GA, and PL during locomotion. Instantaneous lengths of the tendons of SO, GA, and PL during a step cycle were estimated from the stress-strain properties, the effective lengths, the cross-sectional areas, and the instantaneous forces of the tendons. Stress-strain properties for the tendons were obtained experimentally from one animal. The length of the belly was defined as the difference between the muscle-tendon complex length and the tendon length. Mechanical power of the tendon and the muscle belly was calculated as the product of the measured muscle force and the calculated rates of change in tendon and muscle belly lengths, respectively. Mechanical power and work of the tendons and bellies of SO, GA, and PL were calculated for 144 step cycles. During a step cycle, peak

  2. Increased postexercise insulin sensitivity is accompanied by increased AS160 phosphorylation in slow‐twitch soleus muscle

    OpenAIRE

    Iwabe, Maiko; Kawamoto, Emi; Koshinaka, Keiichi; Kawanaka, Kentaro

    2014-01-01

    Abstract A single bout of exercise can enhance insulin‐stimulated glucose uptake in both fast‐twitch (type II) and slow‐twitch (type I) skeletal muscle for several hours postexercise. Akt substrate of 160 kDa (AS160) is most distal insulin signaling proteins that have been proposed to contribute to the postexercise enhancement of insulin action in fast‐twitch muscle. In this study, we examined whether the postexercise increase in insulin action of glucose uptake in slow‐twitch muscle is accom...

  3. Locomotor adaptation to a soleus EMG-controlled antagonistic exoskeleton.

    Science.gov (United States)

    Gordon, Keith E; Kinnaird, Catherine R; Ferris, Daniel P

    2013-04-01

    Locomotor adaptation in humans is not well understood. To provide insight into the neural reorganization that occurs following a significant disruption to one's learned neuromuscular map relating a given motor command to its resulting muscular action, we tied the mechanical action of a robotic exoskeleton to the electromyography (EMG) profile of the soleus muscle during walking. The powered exoskeleton produced an ankle dorsiflexion torque proportional to soleus muscle recruitment thus limiting the soleus' plantar flexion torque capability. We hypothesized that neurologically intact subjects would alter muscle activation patterns in response to the antagonistic exoskeleton by decreasing soleus recruitment. Subjects practiced walking with the exoskeleton for two 30-min sessions. The initial response to the perturbation was to "fight" the resistive exoskeleton by increasing soleus activation. By the end of training, subjects had significantly reduced soleus recruitment resulting in a gait pattern with almost no ankle push-off. In addition, there was a trend for subjects to reduce gastrocnemius recruitment in proportion to the soleus even though only the soleus EMG was used to control the exoskeleton. The results from this study demonstrate the ability of the nervous system to recalibrate locomotor output in response to substantial changes in the mechanical output of the soleus muscle and associated sensory feedback. This study provides further evidence that the human locomotor system of intact individuals is highly flexible and able to adapt to achieve effective locomotion in response to a broad range of neuromuscular perturbations.

  4. Differential response of skeletal muscles to mTORC1 signaling during atrophy and hypertrophy

    Science.gov (United States)

    2013-01-01

    Background Skeletal muscle mass is determined by the balance between protein synthesis and degradation. Mammalian target of rapamycin complex 1 (mTORC1) is a master regulator of protein translation and has been implicated in the control of muscle mass. Inactivation of mTORC1 by skeletal muscle-specific deletion of its obligatory component raptor results in smaller muscles and a lethal dystrophy. Moreover, raptor-deficient muscles are less oxidative through changes in the expression PGC-1α, a critical determinant of mitochondrial biogenesis. These results suggest that activation of mTORC1 might be beneficial to skeletal muscle by providing resistance to muscle atrophy and increasing oxidative function. Here, we tested this hypothesis by deletion of the mTORC1 inhibitor tuberous sclerosis complex (TSC) in muscle fibers. Method Skeletal muscles of mice with an acute or a permanent deletion of raptor or TSC1 were examined using histological, biochemical and molecular biological methods. Response of the muscles to changes in mechanical load and nerve input was investigated by ablation of synergistic muscles or by denervation . Results Genetic deletion or knockdown of raptor, causing inactivation of mTORC1, was sufficient to prevent muscle growth and enhance muscle atrophy. Conversely, short-term activation of mTORC1 by knockdown of TSC induced muscle fiber hypertrophy and atrophy-resistance upon denervation, in both fast tibialis anterior (TA) and slow soleus muscles. Surprisingly, however, sustained activation of mTORC1 by genetic deletion of Tsc1 caused muscle atrophy in all but soleus muscles. In contrast, oxidative capacity was increased in all muscles examined. Consistently, TSC1-deficient soleus muscle was atrophy-resistant whereas TA underwent normal atrophy upon denervation. Moreover, upon overloading, plantaris muscle did not display enhanced hypertrophy compared to controls. Biochemical analysis indicated that the atrophy response of muscles was based on the

  5. Rimmed vacuoles with beta-amyloid and ubiquitinated filamentous deposits in the muscles of patients with long-standing denervation (postpoliomyelitis muscular atrophy): similarities with inclusion body myositis.

    Science.gov (United States)

    Semino-Mora, C; Dalakas, M C

    1998-10-01

    In the chronically denervated muscles of patients with prior paralytic poliomyelitis, there are secondary myopathic features, including endomysial inflammation and rare vacuolated fibers. To assess the frequency and characteristics of the vacuoles and their similarities with those seen in inclusion body myositis (IBM), we examined 58 muscle biopsy specimens from patients with prior paralytic poliomyelitis for (1) the presence of rimmed vacuoles; (2) acid-phosphatase reactivity; (3) Congo-red-positive amyloid deposits; (4) electron microscopy, searching for tubulofilaments; and (5) immunoelectron microscopy, using antibodies against beta-amyloid and ubiquitin. We found vacuolated muscle fibers in 18 of 58 (31%) biopsies, with a mean frequency of 2.06 +/- 0.42 fibers per specimen. The vacuoles contained acid phosphatase-positive material in 6 of the 18 (33.30%) specimens and stained positive for Congo red in five (27.80%). By immunoelectron microscopy, the vacuoles contained 5.17 +/- 0.13 nm fibrils and 14.9 +/- 0.31 nm filaments that immunoreacted with antibodies to beta-amyloid and ubiquitin in a pattern identical to the one seen in IBM. We conclude that vacuolated muscle fibers containing filamentous inclusions positive for amyloid and ubiquitin are not unique to IBM and the other vacuolar myopathies but can also occur in a chronic neurogenic condition, such as postpoliomyelitis. The chronicity of the underlying disease, rather than the cause, may lead to vacuolar formation, amyloid deposition, and accumulation of ubiquitinated filaments.

  6. Stimulation of glucose uptake in murine soleus muscle and adipocytes by 5-(4-phenoxybutoxypsoralen (PAP-1 may be mediated by Kv1.5 rather than Kv1.3

    Directory of Open Access Journals (Sweden)

    Robert A. Ngala

    2014-10-01

    Full Text Available Kv1 channels are shaker-related potassium channels that influence insulin sensitivity. Kv1.3−/− mice are protected from diet-induced insulin resistance and some studies suggest that Kv1.3 inhibitors provide similar protection. However, it is unclear whether blockade of Kv1.3 in adipocytes or skeletal muscle increases glucose uptake. There is no evidence that the related channel Kv1.5 has any influence on insulin sensitivity and its expression in adipose tissue has not been reported. PAP-1 is a selective inhibitor of Kv1.3, with 23-fold, 32-fold and 125-fold lower potencies as an inhibitor of Kv1.5, Kv1.1 and Kv1.2 respectively. Soleus muscles from wild-type and genetically obese ob/ob mice were incubated with 2-deoxy[1-14C]-glucose for 45 min and formation of 2-deoxy[1-14C]-glucose-6-phosphate was measured. White adipocytes were incubated with D-[U-14C]-glucose for 1 h. TNFα and Il-6 secretion from white adipose tissue pieces were measured by enzyme-linked-immunoassay. In the absence of insulin, a high concentration (3 µM of PAP-1 stimulated 2-deoxy[1-14C]-glucose uptake in soleus muscle of wild-type and obese mice by 30% and 40% respectively, and in adipocytes by 20% and 50% respectively. PAP-1 also stimulated glucose uptake by adipocytes at the lower concentration of 1 µM, but at 300 nM, which is still 150-fold higher than its EC50 value for inhibition of the Kv1.3 channel, it had no effect. In the presence of insulin, PAP-1 (3 µM had a significant effect only in adipocytes from obese mice. PAP-1 (3 µM reduced the secretion of TNFα by adipose tissue but had no effect on the secretion of IL-6. Expression of Kv1.1, Kv1.2, Kv1.3 and Kv1.5 was determined by RT-PCR. Kv1.3 and Kv1.5 mRNA were detected in liver, gastrocnemius muscle, soleus muscle and white adipose tissue from wild-type and ob/ob mice, except that Kv1.3 could not be detected in gastrocnemius muscle, nor Kv1.5 in liver, of wild-type mice. Expression of both genes was

  7. Does a physiological concentration of taurine increase acute muscle power output, time to fatigue, and recovery in isolated mouse soleus (slow) muscle with or without the presence of caffeine?

    Science.gov (United States)

    Tallis, Jason; Higgins, Matthew F; Cox, Val M; Duncan, Michael J; James, Rob S

    2014-01-01

    High concentrations of caffeine and taurine are key constituents of many ergogenic supplements ingested acutely to provide legal enhancements in athlete performance. Despite this, there is little evidence supporting the claims for the performance-enhancing effects of acute taurine supplementation. In-vitro models have demonstrated that a caffeine-induced muscle contracture can be further potentiated when combined with a high concentration of taurine. However, the high concentrations of caffeine used in previous research would be toxic for human consumption. Therefore, this study aimed to investigate whether a physiological dose of caffeine and taurine would directly potentiate skeletal muscle performance. Isolated mouse soleus muscle was used to examine the effects of physiological taurine (TAU), caffeine (CAF), and taurine-caffeine combined (TC) on (i) acute muscle power output; (ii) time to fatigue; and (iii) recovery from fatigue, compared with the untreated controls (CON). Treatment with TAU failed to elicit any significant difference in the measured parameters. Treatment with TC resulted in a significant increase in acute muscle power output and faster time to fatigue. The ergogenic benefit posed by TC was not different from the effects of caffeine alone, suggesting no acute ergogenic benefit of taurine.

  8. Differential half-maximal effects of human insulin and its analogs for in situ glucose transport and protein synthesis in rat soleus muscle

    Science.gov (United States)

    Weinstein, Randi B.; Eleid, Noura; LeCesne, Catherine; Durando, Bianca; Crawford, Julie T.; Heffner, Michelle; Layton, Christle; O'Keefe, Matthew; Robinson, Jennifer; Rudinsky, Suzy; Henriksen, Erik J.; Tischler, Marc E.

    2002-01-01

    Analogs of human insulin have been used to discriminate between responses of metabolic and mitogenic (growth-related) pathways. This study compared the stimulatory effects of human insulin (HI) and 2 analogs (X2, B-Asp(9), B-Glu(27) and H2, A-His(8),B-His(4),B-Glu(10), B-His(27)) on glucose uptake and protein synthesis in rat soleus muscle in situ. Glucose uptake, estimated by intramuscular (IM) injection of 2-deoxy[1,2-3H]glucose with or without insulin, was maximally increased at 10(-6) mol/L for HI and X2 and 10(-7) mol/L for H2. HI had a larger effect (318%) than either X2 (156%) or H2 (124%). The half-maximal effect (ED(50)) values for HI, X2, and H2 were 3.3 x10(-8) mol/L, 1.7 x 10(-7) mol/L, and 1.6 x 10(-9) mol/L, respectively. Protein synthesis, estimated by protein incorporation of [(3)H]phenylalanine injected into muscles with or without insulin, was maximally increased at 10(-5) mol/L for HI and 10(-6) for X2 and H2. HI had a larger effect in stimulating protein synthesis (34%) than either X2 (25%) or H2 (19.8%). The ED(50) values for HI, X2, and H2 were 3.0 x 10(-7) mol/L, 3.2 x 10(-7) mol/L, and 1.0 x 10(-9) mol/L, respectively. The biological potency of each analog (ED(50)insulin/ED(50)analog) showed X2 to be less potent than HI for both glucose uptake (0.2) and protein synthesis (0.9), whereas H2 is more potent than HI with ratios of 20 and 300, respectively. These data suggest that this approach for studying insulin responsiveness in a single muscle in situ may be a useful tool for investigating insulin signaling in muscle in vivo. Copyright 2002, Elsevier Science (USA). All rights reserved.

  9. Effects of stretching and disuse on amino acids in muscles of rat hind limbs

    Science.gov (United States)

    Jaspers, Stephen R.; Henriksen, Erik J.; Satarug, Soisungwan; Tischler, Marc E.

    1989-01-01

    The effects of disuse and passive stretch on the concentrations of amino acids and ammonia in the unloaded soleus muscle was investigated in hindquarter-suspended (for six days by casting one foot in dorsiflexion) tail-casted rats. For a comparison with the condition of unloading, amino acids and ammonia were also measured in shortened extensor digitorum longus in the same casted limb and in denervated leg muscles. The results obtained suggest that passive stretch diminishes some of the characteristic alterations of amino acid concentrations due to unloading. This effect of stretch is considered to be due to the maintenance of muscle tension.

  10. To Evaluate the Effectiveness of TBTS - A Novel Device to do Self-Stretching of Gastroc-Soleus Muscle in Patients with Equinus Deformity.

    Science.gov (United States)

    Muzaffar, Tufail; Rather, Abdul Hamid; Haque, Kaleem Ul; Ahmad, Sheikh Javeed

    2017-06-01

    Various methods have been used for management of equinus deformity. However, stretching gastroc-soleus muscle and achilles tendon is a difficult task. It is labour intensive, which makes the provision of treatment difficult for many patients. To study the effectiveness of Tension Bar Tendon Stretch (TBTS) compared to conventional stretching in patients with equinus deformity in terms of improvement in equinus angle and spasticity. A prospective randomised case control study was done on 16 patients of both the sexes in the age group four years to 56 years. Patients were stratified based on presence or absence of spasticity. Patients were further randomly allotted to the study or control group. Study group received stretching with TBTS in addition to the conventional rehabilitation programme. Patients were assessed in terms of improvement in equinus deformity and spasticity (modified Ashworth scale). These indices were measured at 0 month (pre-treatment), 1 month (post-treatment), and 6 months (follow up). Equinus deformity in patients with spastic equinus changed from 22.4° to 12° in study group while in control group change was from 21° to 17°. The difference was statistically significant with p-value of 0.001. Non-spastic (post accidental) changed from 30° to 15° in study group while in control group change was from 31° to 23° with p-value of 0.001. Modified Ashworth Score (MAS) was assessed only in spastic equinus, while in study group MAS changed from 2.8 to 1.5 and MAS change was 2.6 to 2 in control group; this difference after six months of therapy was statistically significant with a p-value of 0.001. TBTS can be an effective tool in rehabilitation of patients having equinus deformity; it provides an effective and patient controlled stretching and no need for a physical therapist. TBTS is a novel but simple instrument that can be made locally by the patient or the family.

  11. Enteric Neuronal Damage, Intramuscular Denervation and Smooth Muscle Phenotype Changes as Mechanisms of Chagasic Megacolon: Evidence from a Long-Term Murine Model of Tripanosoma cruzi Infection.

    Directory of Open Access Journals (Sweden)

    Camila França Campos

    hypothesize that the long-term inflammatory process mediates neuronal damage and intramuscular and intramural denervation, leading to phenotypic changes in smooth muscle cells associated with fibrosis. These long-term structural changes may represent the basic mechanism for the formation of the Chagasic megacolon.

  12. Enteric Neuronal Damage, Intramuscular Denervation and Smooth Muscle Phenotype Changes as Mechanisms of Chagasic Megacolon: Evidence from a Long-Term Murine Model of Tripanosoma cruzi Infection

    Science.gov (United States)

    Duz, Ana Luiza Cassin; Cartelle, Christiane Teixeira; Noviello, Maria de Lourdes; Veloso, Vanja Maria; Bahia, Maria Terezinha; Almeida-Leite, Camila Megale; Arantes, Rosa Maria Esteves

    2016-01-01

    -term inflammatory process mediates neuronal damage and intramuscular and intramural denervation, leading to phenotypic changes in smooth muscle cells associated with fibrosis. These long-term structural changes may represent the basic mechanism for the formation of the Chagasic megacolon. PMID:27045678

  13. Stable atrogin-1 (Fbxo32 and MuRF1 (Trim63 gene expression is involved in the protective mechanism in soleus muscle of hibernating Daurian ground squirrels (Spermophilus dauricus

    Directory of Open Access Journals (Sweden)

    Kai Dang

    2016-01-01

    Full Text Available Understanding the mechanisms that protect against or limit muscle atrophy in hibernators during prolonged inactivity has important implications for its treatment. We examined whether external factors influence the pathways regulating protein synthesis and degradation, leading to muscle atrophy prevention in Daurian ground squirrels (Spermophilus dauricus. We investigated the effects of 14-day hindlimb-unloading (HU in different seasons and two-month hibernation on the soleus (SOL muscle wet mass, muscle-to-body mass ratio, fiber cross sectional area (CSA, fiber distribution and muscle ultrastructure. We also measured changes in the protein expression and activation states of Akt, mTOR and FoxO1 and the mRNA expression of atrogin-1 and MuRF1. Compared with the control groups, autumn and winter HU significantly lowered SOL muscle wet mass and muscle-to-body mass ratio, decreased type I and II fiber CSA and induced ultrastructural anomalies. However, these measured indices were unchanged between Pre-hibernation and Hibernation groups. Furthermore, phosphorylation levels of Akt and mTOR significantly decreased, while the phosphorylation level of FoxO1 and mRNA expression of atrogin-1 and MuRF1 increased after HU. During hibernation, the phosphorylation levels of Akt and mTOR significantly decreased, but the phosphorylation level of FoxO1 and mRNA expression of atrogin-1 and MuRF1 remained unchanged. Overall, our findings suggest that disuse and seasonality may not be sufficient to initiate the innate protective mechanism that prevents SOL atrophy during prolonged periods of hibernation inactivity. The stable expression of atrogin-1 and MuRF1 may facilitate to prevent SOL atrophy via controlling ubiquitination of muscle proteins during hibernation.

  14. Lack of on-going adaptations in the soleus muscle activity during walking in patients affected by large-fiber neuropathy

    DEFF Research Database (Denmark)

    Nazarena, Mazzaro; Grey, Michael James; Sinkjær, Thomas;

    2005-01-01

    applied during the stance phase of the gait cycle to mimic the normal variability of the ankle trajectory during walking. Patients with demyelination of large sensory fibers (Charcot-Marie-Tooth type 1A and antibodies to myelin-associated glycoprotein neuropathy) and age-matched controls participated...... in this study. The patients had absent light-touch sense in the toes and feet and absent quadriceps and Achilles tendon reflexes, indicating functional loss of large sensory fibers. Moreover, their soleus stretch reflex response consisted of a single electromyographic (EMG) burst with delayed onset and longer...... duration (P

  15. Eligibility for renal denervation

    DEFF Research Database (Denmark)

    Persu, Alexandre; Jin, Yu; Baelen, Marie;

    2014-01-01

    -resistant hypertension (ENCOReD). The analysis included 731 patients. Age averaged 61.6 years, office blood pressure at screening was 177/96 mm Hg, and the number of blood pressure-lowering drugs taken was 4.1. Specialists referred 75.6% of patients. The proportion of patients eligible for renal denervation according......Based on the SYMPLICITY studies and CE (Conformité Européenne) certification, renal denervation is currently applied as a novel treatment of resistant hypertension in Europe. However, information on the proportion of patients with resistant hypertension qualifying for renal denervation after...... undetected secondary causes of hypertension (11.1%). In conclusion, after careful screening and treatment adjustment at hypertension expert centers, only ≈40% of patients referred for renal denervation, mostly by specialists, were eligible for the procedure. The most frequent cause of ineligibility...

  16. Expression of heat shock protein 72 in atrophied rat skeletal muscles

    Science.gov (United States)

    Oishi, Y.; Ishihara, A.; Talmadge, R. J.; Ohira, Y.; Taniguchi, K.; Matsumoto, H.; Roy, R. R.; Edgerton, V. R.

    2001-01-01

    Changes in the expression of heat shock protein 72 (HSP72) in response to atrophic-inducing perturbations of muscle involving chronic mechanical unloading and denervation were determined. Adult male Wistar rats were assigned randomly to a sedentary cage control (CON), hind limb unloading (HU, via tail suspension), HU plus tenotomy (HU + TEN), HU plus denervation (HU + DEN), or HU + TEN + DEN group. Tenotomy and DEN involved cutting the Achilles tendon and removing a segment of the sciatic nerve, respectively. After 5 days, HSP72 levels in the soleus of the HU + DEN and HU + TEN + DEN groups were 42 (P rat plantarflexor are responsive to a chronic decrease in the levels of loading and/or activation and suggest that the neuromuscular activity level and the presence of innervation of a muscle are important factors that induce HSP72 expression.

  17. Evaluation of the endogenous glucocorticoid hypothesis of denervation atrophy

    Science.gov (United States)

    Konagaya, Masaaki; Konagaya, Yoko; Max, Stephen R.

    1988-01-01

    The effects are studied of the oral administration of RU38486, a potent selective glucocorticoid antagonist, on muscle weight, non-collagen protein content, and selected enzyme activities (choline acetyltransferase, glucose 6-phosphate dehydrogenase, and glutamine synthetase) following denervation of rat skeletal muscle. Neither decreases in muscle weight, protein content, and choline acetyltransferase activity, nor increases in the activities of glucose 6-phosphate dehydrogernase and glutamine synthetase were affected by RU38486. These data do not support the hypothesis that denervation atrophy results from enhanced sensitivity of muscle to endogenous glucocorticoids.

  18. High-fat diet-induced reduction of peroxisome proliferator-activated receptor-γ coactivator-1α messenger RNA levels and oxidative capacity in the soleus muscle of rats with metabolic syndrome.

    Science.gov (United States)

    Nagatomo, Fumiko; Fujino, Hidemi; Kondo, Hiroyo; Takeda, Isao; Tsuda, Kinsuke; Ishihara, Akihiko

    2012-02-01

    Animal models of type 2 diabetes exhibit reduced peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α) messenger RNA (mRNA) levels, which are associated with decreased oxidative capacity, in skeletal muscles. In contrast, animal models with metabolic syndrome show normal PGC-1α mRNA levels. We hypothesized that a high-fat diet decreases PGC-1α mRNA levels in skeletal muscles of rats with metabolic syndrome, reducing muscle oxidative capacity and accelerating metabolic syndrome or inducing type 2 diabetes. We examined mRNA levels and fiber profiles in the soleus muscles of rats with metabolic syndrome (SHR/NDmcr-cp [cp/cp]; CP) fed a high-fat diet. Five-week-old CP rats were assigned to a sedentary group (CP-N) that was fed a standard diet (15.1 kJ/g, 23.6% protein, 5.3% fat, and 54.4% carbohydrates) or a sedentary group (CP-H) that was fed a high-fat diet (21.6 kJ/g, 23.6% protein, 34.9% fat, and 25.9% carbohydrates) and were housed for 10 weeks. Body weight, energy intake, and systolic blood pressure were higher in the CP-H group than in the CP-N group. Nonfasting glucose, triglyceride, total cholesterol, and leptin levels were higher in the CP-H group than in the CP-N group. There was no difference in insulin levels between the CP-N and CP-H groups. Muscle PGC-1α mRNA levels and succinate dehydrogenase activity were lower in the CP-H group than in the CP-N group. We concluded that a high-fat diet reduces PGC-1α mRNA levels and oxidative capacity in skeletal muscles and accelerates metabolic syndrome.

  19. Metabolic stabilization of acetylcholine receptors in vertebrate neuromuscular junction by muscle activity

    Energy Technology Data Exchange (ETDEWEB)

    Rotzler, S.; Brenner, H.R. (Univ. of Basel (Switzerland))

    1990-08-01

    The effects of muscle activity on the growth of synaptic acetylcholine receptor (AChR) accumulations and on the metabolic AChR stability were investigated in rat skeletal muscle. Ectopic end plates induced surgically in adult soleus muscle were denervated early during development when junctional AChR number and stability were still low and, subsequently, muscles were either left inactive or they were kept active by chronic exogenous stimulation. AChR numbers per ectopic AChR cluster and AChR stabilities were estimated from the radioactivity and its decay with time, respectively, of end plate sites whose AChRs had been labeled with {sup 125}I-alpha-bungarotoxin (alpha-butx). The results show that the metabolic stability of the AChRs in ectopic clusters is reversibly increased by muscle activity even when innervation is eliminated very early in development. 1 d of stimulation is sufficient to stabilize the AChRs in ectopic AChR clusters. Muscle stimulation also produced an increase in the number of AChRs at early denervated end plates. Activity-induced cluster growth occurs mainly by an increase in area rather than in AChR density, and for at least 10 d after denervation is comparable to that in normally developing ectopic end plates. The possible involvement of AChR stabilization in end plate growth is discussed.

  20. Efeitos da corrida em esteira em músculos sóleos de ratos encurtados por imobilização Effects of running on treadmill in soleus muscles of rats shortened by immobilization

    Directory of Open Access Journals (Sweden)

    Luiz Henrique Natali

    2008-12-01

    Full Text Available O objetivo deste trabalho foi verificar as adaptações de peso e comprimento do músculo sóleo de ratos Wistar machos, além da estimativa do total de sarcômeros em série e comprimento médio dos sarcômeros, quando submetidos a um processo de remobilização em esteira. Foram utilizados 18 ratos (Wistar, divididos em três grupos: GC - músculo sóleo esquerdo (MSE imobilizado e remobilizado solto; G10 - MSE imobilizado e remobilizado em velocidade de 10m/min; e G12 (n = 6 - MSE imobilizado e remobilizado em velocidade de 12m/min. Os resultados mostraram as seguintes variações, peso muscular: GC -22,35% (p = 0,0089, G10 -12,52% (p = 0,0623, G12 -12,07%, (p = 0,0004; comprimento muscular: GC -5,47% (p = 0,0120, G10 -3,31% (p = 0,2868, G12 0,41% (p = 0,8987; estimativa de sarcômeros em série: GC -15,42% (p = 0,0047, G10 -10,87% (p = 0,0193, G12 -4,97 (p = 0,2409; comprimento de sarcômeros GC 11,16% (p = 0,0142, G10 9,31% (p = 0,1270, G12 5,58% (p = 0,1327. Conclui-se que G12 obteve maior eficácia após o período de imobilização, pois apresentou maior semelhança com o membro não imobilizado.The aim of this work was to compare weight and length adaptations of the soleus muscle of male Wistar rats as well as estimation of the total number of serial sarcomere and mean sarcomere length, when they are submitted to remobilization on treadmill. 18 Wistar male rats were used and divided in the three following groups: CG - left soleus (LS muscle immobilized and remobilized free in the cage; G10 - LS muscle immobilized and remobilized in speed of 10 m/min on treadmill; and G12 - LS muscle immobilized and remobilized in speed of 12 m/min. The right muscles (RS of each animal were used for comparison. The results showed the following variations, muscular weigh: CG -22.35% (p = 0.0089, G10 -12.52% (p = 0.0623, G12 -12.07%, (p = 0.0004; muscle length: CG -5.47% (p = 0.0120, G10 -3.31% (p = 0.2868, G12 0.41% (p = 0.8987; estimation of number of

  1. O efeito do intervalo da estimulação elétrica no músculo desnervado de rato The effect of time interval between electrical stimulation on the denervated rat muscle

    Directory of Open Access Journals (Sweden)

    QM Caierão

    2008-04-01

    Full Text Available OBJETIVO: Comparar o efeito da estimulação elétrica (EE aplicada diariamente e em dias alternados na densidade de área do tecido conjuntivo (TC e na área de secção transversa (AST das fibras do músculo desnervado. MATERIAIS E MÉTODOS: Trinta e cinco ratos foram divididos em grupos controle (C, desnervado (D, desnervado + eletroestimulado diariamente (EED e desnervado + eletroestimulado em dias alternados (EEA. A aplicação da EE no músculo gastrocnêmio teve início 24 horas após lesão nervosa do tipo axoniotmese, sendo a mesma aplicada durante 20 e 30 dias. Cortes transversais foram corados com HE para mensurações da AST e densidade de área de TC. Análise estatística: teste Shapiro Wilk, seguido pela análise de variância (ANOVA F (one-way e teste de Tukey (5%. RESULTADOS: Na análise da densidade de área do TC, observou-se que somente o Grupo EED apresentou valores similares ao Grupo C nos dois períodos analisados. No Grupo 20 dias, não houve diferença na AST quando comparados os grupos submetidos à EE com o Grupo D (p> 0,05, e após 30 dias todos os grupos experimentais alcançaram valores similares ao Grupo C. CONCLUSÕES: A EE não foi eficiente para minimizar a atrofia das fibras musculares. Entretanto, o TC foi responsivo à EE, sendo a aplicação diária mais benéfica ao músculo do que a aplicação em dias alternados, sugerindo que o intervalo de aplicação da EE em músculo desnervado é variável importante para as adaptações do TC.OBJECTIVE: To compare the effect of electrical stimulation (ES applied daily and on alternate days, on the area density of the connective tissue (CT and on the cross-sectional area (CSA of the denervated muscle fibers. METHODS: Thirty-five rats were divided into the following groups: control (C, denervated (D, denervated + daily electrical stimulation (D+DES and denervated + alternate-day electrical stimulation (D+ES. The application of ES on the gastrocnemius was started 24

  2. Comportamento quimiometabólico do músculo sóleo na fase aguda da imobilização articular Chemical metabolic behaviour of the soleus muscle during the acute phase of joint immobilisation

    Directory of Open Access Journals (Sweden)

    Luciano Júlio Chingui

    2008-01-01

    Full Text Available O objetivo foi avaliar o perfil fisiológico do músculo sóleo na fase aguda da imobilização articular na posição de 90o. Ratos Wistar foram divididos em 4 grupos (n=6 cada: controle (C, imobilizado por 1 (Im1, 2 (Im2 e 3 dias (Im3. Após o período experimental, o músculo sóleo foi retirado e foram mensurados: o peso muscular, o índice de hidratação, a concentração de glicogênio e a concentração de DNA/proteínas totais. Os dados foram submetidos a análise estatística, com nível de significância fixado em pThe purpose of this study was to outline a physiological profile of the soleus muscle during the acute phase of joint immobilization at a 90º position. Male Wistar rats were divided into four groups (n=6: Control (C, immobilised for 1 (Im1, 2 (Im2, and 3 (Im3 days. After the experimental period, the soleus muscle was obtained in order to assess: glycogen content, muscle weight, hydration index, and protein-DNA interactions. Data were statistically analysed and significance level set at p<0.05. On the first day, no changes were observed on glycogen content, but progressive reduction was witnessed along the following days -53% on the second day and 65% on the third day of immobilization. Muscle weight suffered a reduction of 28.57% only on the third day, while hydration index increased 6.44% on the second day and 8.58% on the third day. Concentrations of DNA raised 43.18% on the first day, 59.09% on the second, and 75% on the third day. Protein concentrations also increased, reaching values of 45.9% on the first day, 32.25% on the second day, and 58.95% on the third day. These results suggest that muscular hypotrophy is an early-developing process, involving chemical-physiological alterations that are launched during the acute phase of immobilization.

  3. Effect of denervation of the myenteric plexus on gastroduodenal motility in turkeys.

    Science.gov (United States)

    Chaplin, S B; Duke, G E

    1990-09-01

    The effect of denervation of portions of the myenteric plexus on initiation and coordination of gastric and duodenal contractions was examined in domestic turkeys. Three areas of the muscular stomach (MS), the isthmus between the glandular stomach (GS) and MS, and the pylorus were denervated by application of 1% benzalkonium chloride. Motor activity of the gastroduodenal organs was monitored for 1 h every other day for 13 days using strain gauge transducers implanted at selected sites. Denervation of the isthmus reduced the frequency of MS and duodenal contractions by 50% and abolished GS contractions. Pyloric denervation did not affect the frequency of GS or MS contractions but abolished duodenal contractions. These results suggest that 1) a driving pacemaker for the gastroduodenal cycle is located in the isthmus, and 2) the myenteric plexus is essential for conduction from the pacemaker to the GS and to the duodenum. Denervation of the medial commissure of the myenteric plexus of the MS significantly impaired the function of the ventral half of the MS. It caused atrophy of the underlying medial thick muscle and significantly decreased contraction amplitude. Denervation at this site also caused an enlargement and impaction of the adjacent caudal thin muscle with food and a significant decrease in contraction amplitude. In contrast, denervation of the lateral commissure enlarged the underlying lateral thick muscle and significantly increased its contraction amplitude. Denervation of the cranial thin muscle delayed contractions of that muscle, causing an asynchronization of thin muscle pair.(ABSTRACT TRUNCATED AT 250 WORDS)

  4. 失神经支配骨骼肌的萎缩机制%Mechanism of skeletal muscle atrophy due to denervation

    Institute of Scientific and Technical Information of China (English)

    赵磊; 严志强; 吕广明

    2007-01-01

    目的:探索失神经支配骨骼肌萎缩的机制已经成为21世纪周围神经领域内的重要任务和研究热点.就血管床重塑、肌细胞凋亡、肌卫星细胞耗竭及成肌因子调控等四个方面对该领域做一归纳.资料来源:应用计算机检索Medline数据库1990-01/2005-01期间的相关文章,检索词为"denervation,muscle atrophy,histology,ultrastructure,motor end-plate,RT-PCR MyoD,myogenin,myostatin,immunohistochemistry,apoptosis",限定文章语言种类为英文.同时计算机检索中国期刊全文数据库1990-01/2005-01期间的相关文章,检索词"失神经,肌萎缩,形态学,运动终板,超微结构,免疫组化,凋亡",限定文章语言种类为中文.资料选择:对约330篇文献资料进行初审,纳入研究失神经支配骨骼肌萎缩机制的文献;随机、对照和盲法等论证推荐的文章.排除综述类及重复研究.资料提炼:共收到50余篇关于失神经支配骨骼肌萎缩机制的相关文章.排除20篇综述类及重复研究,对符合标准的27篇文献进行分析.资料综合:失神经支配骨骼肌萎缩机制的研究是多角度、多方面的.血管床重塑、肌细胞凋亡、肌卫星细胞耗竭及成肌因子调控等都是其中重要的作用因素.目前仍不能明确在整个失神经肌萎缩的发生中,是各种因素共同起作用,还是其中哪种因素起主导作用,抑或还有别的什么因素,这些尚待深入研究.结论:血管床重塑、肌细胞凋亡、肌卫星细胞耗竭及成肌因子凋控等是骨骼肌失神经支配以后发生萎缩的重要机制.

  5. 神经干细胞移植延缓失神经肌萎的作用机制%The mechanism of neural stem cell transplantation in delaying muscle denervation atrophy

    Institute of Scientific and Technical Information of China (English)

    顾施辉; 徐建光; 徐文东; 徐雷; 陆九州; 沈云东

    2009-01-01

    目的 研究脊髓神经干细胞移植到外周神经后延缓失神经肌萎的作用及机制.方法 取孕10~12 d的SD孕鼠,提取、培养及纯化脊髓神经干细胞,传2~3代后,将分散成单细胞的神经干细胞(106/μl×5μl)移植到胫神经切断模型的远端;设立对照组,移植5μl干细胞培养液.术后分别于3、5个月取材,观察移植神经干细胞的分化;比较干细胞移植能否延缓失神经肌萎;观察靶肌肉中突触(神经肌肉接头)的变化情况.结果 移植后3、5个月,发现移植组小腿三头肌萎缩较对照组减轻(P<0.05);移植组中的突触后膜退变萎缩明显好于对照组,术后5个月出现了新的突触结构.结论 神经干细胞移植可以延缓失神经肌萎的程度,有效保护失神经肌肉突触后膜的结构,并能形成新的突触.%Objective To study the effect and mechanism of transplanting spinal fetal neural stem cells (NSCs) into the peripheral nerve for delaying muscle denervation atrophy. Methods Spinal. fetal NSCs were separated from spinal cord of enceinte 10 to 12 days SD rats, cultured and purified. After three passages, the formed NSC spheres were blew into single cell suspension ( 106/μl×5 μl) and transplanted into the distal part of the transected tibial nerve. 5 μl of cell culture medium was injected into the distal tibial nerve in the control group. Three and 5 months after the transplantation, the distal part of the tibial nerve and the triceps suraes were harvested and identified with specific markers, by means of indirect immunofluorescent staining to evaluate survival and differentiation of transplanted NSCs in the nerve, and to observe the neuromuscular junctions.Results Compare to the control group, atrophy of the triceps suraes muscle was less severe 3 and 5 months after NSCs transplantation. Postsynaptic membrane was also better preserved in NSCs transplanted group. Five months after NSCs transplantation, new synapses (neuromuscular

  6. 脐带间充质干细胞移植可延缓大鼠失神经肌肉的萎缩%Human umbilical cord mesenchymal stem cells transplantation delays denervated muscle atrophy in rats

    Institute of Scientific and Technical Information of China (English)

    陈传煌; 杨万章; 杨涛; 吴芳; 李文庆; 李楚炎; 毛仁群; 余志才; 张国雷; 肖振兴

    2014-01-01

    背景:周围神经断伤后生长缓慢,失神经支配的肌肉萎缩及运动终板纤维化,导致肢体功能不可逆障碍。脐带间充质干细胞已经广泛应用于多学科研究,但应用于周围神经损伤中延缓大鼠失神经肌肉萎缩鲜有报道。目的:观察异种异基因脐带间充干细胞移植于大鼠离断坐骨神经断端,延缓失神经肌肉萎缩的效果。  方法:新鲜脐带采集于健康足月产妇,分离鉴定脐带间充质干细胞。制备大鼠坐骨神经SunderlandⅣ度损伤模型,去神经束5 mm,神经外膜修复,5 mm小间隙移植脐带间充质干细胞模型,对照组仅在小间隙内注入同体积生理盐水。测定大鼠坐骨神经功能指数,小腿三头肌湿质量,坐骨神经干潜伏期、动作电位传导速度、波幅,以及骨骼肌纤维横截面积维持率。  结果与结论:造模后4,8及12周,脐带间充质干细胞组大鼠坐骨神经功能指数、右侧小腿三头肌湿质量及骨骼肌纤维横截面积维持率均显著高于对照组(P OBJECTIVE:To observe the value of human umbilical cord mesenchymal stem cells transplantation to delay denervated muscle atrophy of rats after sciatic nerve injury. METHODS:Umbilical cord blood was col ected from healthy parturient woman after ful-term delivery. In the experimental group, the rat’s Sunderland IV degree sciatic nerve injury model was established by 5 mm denervation, epineurial repair, and 5 mm smal gap transplantation of umbilical cord mesenchymal stem cells. In the control group, after modeling, the same volume of normal saline was injected into the smal gap. The main outcome measures included the sciatic nerve function index, the wet weight of triceps surae,sciatic nerve latency, action potential conduction velocity and amplitude,and skeletal muscle fiber cross section area maintenance rate. RESULTS AND CONCLUSION:After 4, 8 and 12 weeks of modeling, the sciatic nerve

  7. Correlation between structural changes of facial muscle after denervation and rehabilitation of facial muscle function%失神经支配后面肌结构变化与面肌功能恢复的相关性

    Institute of Scientific and Technical Information of China (English)

    惠莲; 魏宏权; 李笑天; 任重

    2005-01-01

    BACKGROUND: It is of significance to imitate facial nerve paralysis of temporal trauma, establish the model of facial nerve paralysis, and study the histopathologic changes of facial muscle after denervation and the effect on rehabilitation of facial muscle function.OBJECTIVE: To investigate the relationship between rehabilitation of facial muscle function and the structural changes of mitochondria and succinate dehydrogenase (SDH) of oris muscles after denervation.DESIGN: A randomized controlled trail based on experimental animals.SETTING: Department of otolaryngology in a hospital of a university.MATERIALS: The experiments were conducted in the Center of Animal Experiment, the Department of Histoembryology, and the Second Electron Microscope(EM) Center, China Medical University. Sixty white guinea pigs provided by the Center of Animal Experiment, China Medical University [certification No: SCXK (liao) 2003-0009 ], were randomly divided into three groups, 5 s squeezed group( n = 15, 10 tested for the function of facial muscle, 5 for EM specimen 15 days after operation), 15 s squeezed group( n =20, 10 tested, 5 for EM specimen 15 days and 30 days after operation), and 30 s squeezed group( n = 25, 10 tested, 5 for EM specimen 15 days after operation and 10 for EM specimen 30 days after operation).INTERVENTIONS: Models of facial paralysis were established. The threshold of facial nerve was detected with electroneurogram(ENoG) before and after squeezed, and the duration of the functional recovery of facial muscle was observed with blink reflex. Orbicularis oris was taken for SDH cytochemical staining, and the ultrastructural changes of SDH positive reaction granules,mitochondria and muscle fibers were observed under transmission electroscope.MAIN OUTCOME MEASURES: ENoG threshold value, tine for recovery of facial muscle function, SDH positive reaction granules and ultrastructural changes of mitochondria and muscle fibers.RESULTS: In 5 s squeezed group, the average

  8. Experimental Study of Regeneration of the Denervated Muscle Transplantation in Rabbits%去神经带血管肌肉移植后肌肉再生的实验研究

    Institute of Scientific and Technical Information of China (English)

    陈迪祥; 刘贵麟; 王德文

    1997-01-01

    目的:为了研究去神经带血管肌肉移植后的肌肉再生过程和再生机制.方法:以大耳白兔为实验研究对象,经过对移植肌不同时期的组织学、组织化学、电子显微镜和肌电图观察,可以得出如下结论:①去神经带血管肌肉移植后可以通过连续再生与不连续再生两种机制获得再生.②移植肌的点片状坏死以术后14天明显,术后30天再生达到高潮,术后90天肌电图可以记录到明确的运动电位.③术后90天与180天肌肉的纤维排列方式以型组为主,而不是正常的镶嵌型.④去神经带血管肌肉移植后90天移植肌获得了新的功能.%Objective:To investigate the regeneration of the denervated transplantation muscles.Methods:The regeneration of musculus flexor digitorum profundus as a pedicled graft after the median nerve dissection on rabbit models was studied by histology,histochemistry,electromicroseopy and electromyogram at different intervals after operation.Results:Degeneration and patchy necrosis of the muscle appeared on the 14th day and reached the climax on the 30th day.The regeneration followed and almost completed on the 90th day by the continuous and discontinuous patterns.In the regenerated muscle fiber arrangements,grouping pattern predominated over the mosaic pattern on the 90th and 180th days after operation.EMG showed potential action in 90 days as a sign of muscle contraction and functional recovery.Conclusions:Satisfactory morpholo gic and functional recovery of the transplanted muscles can be seen in experimental models.So denervated muscular transplantation can be used as a reliable procedure in clinical practice.

  9. Nerve-dependent changes in skeletal muscle myosin heavy chain after experimental denervation, cross-reinnervation and in a demyelinating mouse model of Charcot-Marie-Tooth disease type 1A

    Science.gov (United States)

    Maggs, Alison M.; Huxley, Clare; Hughes, Simon M.

    2010-01-01

    Innervation regulates the contractile properties of vertebrate muscle fibers, in part through the effect of electrical activity on expression of distinct myosins. Here we analyse the role of innervation in regulating the accumulation of the general, maturational and adult forms of rodent slow myosin heavy chain (MyHC) that are defined by the presence of distinct antigenic epitopes. Denervation increases the number of fibers that express general slow MyHC, but it decreases the adult slow MyHC epitope. Cross-reinnervation of slow muscle by a fast nerve leads to an increase in the number of fibers that express fast MyHC. In both cases, there is an increase in fibers that express slow and fast IIA MyHCs but without the adult slow MyHC epitope. The data suggest that innervation is required for maturation and maintenance of diversity of both slow and fast fibers. The sequence of slow MyHC epitope transitions is a useful biomarker, and it may play a significant role during nerve-dependent changes in muscle fiber function. We applied this detailed muscle analysis to a transgenic mouse model of Human Motor and Sensory Neuropathy IA, also known as Charcot-Marie-Tooth disease Type 1A (CMT1A), in which electrical conduction in some motor neurons is poor due to demyelination. The mice display atrophy of some muscle fibers and changes in slow and fast MyHC epitope expression suggestive of a progressive increase in innervation of muscle fibers by fast motor neurons, even at early stages. The potential role of these early changes in disease pathogenesis is discussed. PMID:19016545

  10. Neurotization of Denervated Muscle With Preserved Blood Supply%去神经带血管肌肉移植后神经再支配的实验研究

    Institute of Scientific and Technical Information of China (English)

    苏刚; 刘贵麟; 王德文

    1994-01-01

    研究了大白鼠去神经带血管骨骼肌移植后的神经再生过程,同时对切除肌膜和保留肌膜神经再生的结果进行了比较.经过术后不同时期进行的肌电图、组织学、组织化学及电子显微镜等项检查,结果显示:①去神经带血管移植肌可以通过一个正常神经支配的肌肉获得神经支配.②这一过程是通过肌肉神经再支配的方式进行.③去神经带血管肌肉移植后4周即出现初期神经再支配的证据,14周后神经再支配已比较完全.④移植肌的筋膜妨碍神经再生过程,移植前必须予以切除.%This study was designed to search for some further information about the reinnervtion of the denervated but vascular preserved skeletal muscle by muscular neurotization.In our experiment,rats were assigned randomly to either of two groups:the group with the muscle fascia intact and the group with the muscle fascia removed.The fibularis nerve being removed,the fibularis longus muscle was transplanted to the gastrocnemiu muscle.At different times after operation,the grafted muscle was studied under electromyogram,electronic microscope and histological and histochemical examination.The results showed that the grafted muscle was reinnervated completely by tibialis nerve in the group with muscle fascia removed,however only few reinnervation occurred in the group with muscle fascia intact.It is concluded that muscle fascia is an obstacle to reinnervation.In order to achieve a successful reinnervation,the muscle fascia must be removed.The findings agree with the clinical results.

  11. 转化生长因子受体Ⅱ与去神经性肌萎缩的相关性研究%Correlation between TβRⅡ and Denervation-induced Skeletal Muscle Atrophy

    Institute of Scientific and Technical Information of China (English)

    王旭; 王璐; 刘红菊; 李莉; 李景龙; 范明; 陈晓萍

    2012-01-01

    目的 研究去神经致肌萎缩和纤维类型转化的分子机制,探讨TβRⅡ-SMAD信号通路在此过程中的相关性.方法 取10只C57 BL/6小鼠,右后肢坐骨神经离断,左后肢假手术对照.Real Time PCR(RT-PCR)检测术后14 d比目鱼肌和跖肌萎缩基因MAFbx,MuRF-1,及PGC-1α,MHCⅡb,TβRⅡ的表达变化.结果 去坐骨神经后萎缩基因MAFbx,MuRF-1及MHCⅡb在比目鱼肌和跖肌明显上调;PGC-1α,TβRⅡ的表达在比目鱼肌和跖肌呈现差异性变化.结论 MAFbx,MuRF-1和PGC-1α在肌萎缩过程中发挥重要作用,TβRⅡ可能参与了对肌萎缩的调节.%Objective To research the mechanisms of the denervation-induced muscle atrophy,fiber-type switching,and the correlation between TβRII-SMAD and its mechanisms.Methods Sciatic nerves were cut off by 5 mm in the right hind legs of 10 C57B1/6 mice with the sham on the left.QRT-PCR was performed 14 d later for quantification of mRNA expression of genes: MAFbx,MuRF-1,PGC-lα,MHCIIb,and TβRII.Results Relative mRNA levels of MAFbx,MuRF-1,MHCIIb in denervated Sol and Plan muscles were significantly increased and the change of the genes,PGC-1α and TβRII,were significant in Sol and Plan muscles when compared with those in sham-operated contralateral muscles.Conclusion Genes MAFbx,MuRF-1 and PGC-lα play important roles in muscular atrophy,and the gene TβRII may be involved in the adjustment course of it.

  12. Modification of motoneuron size after partial denervation in neonatal rats.

    Science.gov (United States)

    Tyc, F; Vrbová, G

    2007-11-01

    Our previous studies have shown that partial denervation of extensor digitorum longus muscle (EDL) in the rat at 3 days of age causes an increase in the activity of the intact motoneurons. The originally phasic pattern of activity of EDL became tonic after partial denervation. These modifications of motoneuron activity were associated with the change in the phenotype of the muscle from fast to slow contracting and with a conversion of the muscle fibres from a fast to a slow type. The present study investigates whether the size of the cell body of the active EDL motoneurons change in parallel with the altered muscular activity. The study involved partial denervation of rat EDL muscle by section of the L4 spinal nerve at 3 days of age. Then the remaining motoneurons from L5 spinal nerve supplying the EDL muscle were retrogradly labelled with horseradish peroxidase two months later. The results show a reduction in motoneuron size in parallel with an increase in activity of the motoneurons after partial denervation of EDL muscle.

  13. Effects of muscle activity and fiber composition on glucose transport and GLUT-4.

    Science.gov (United States)

    Megeney, L A; Neufer, P D; Dohm, G L; Tan, M H; Blewett, C A; Elder, G C; Bonen, A

    1993-04-01

    We examined glucose uptake and GLUT-4 in rat muscles [soleus (Sol), plantaris (PL), extensor digitorum longus (EDL), tibialis anterior, and the red and white gastrocnemius (WG)]. In the normally innervated perfused rat hindlimb muscles the proportion of oxidative fibers was highly correlated with the muscle's insulin-stimulated 3-O-methyl-D-glucose (3-MG) uptake (R2 = 0.78) and GLUT-4 content (r = 0.94). Insulin-stimulated 3-MG uptake and GLUT-4 were also highly correlated (R2 = 0.996). In 3-day denervated muscles, insulin-stimulated 3-MG uptake was reduced in all six muscles (-41 to -14.6%, P 0.05). A very high correlation was observed between the decrements in GLUT-4 (%) and the decrements in 3-MG uptake (%; r = 0.99). The relatively greater loss in muscle activity (%) due to denervation in the Sol compared with the PL coincided with the reductions (%) in GLUT-4 and 3-MG uptake. These studies demonstrate that glucose uptake and GLUT-4 are regulated by insulin-independent means, namely the oxidative capacity of the muscle and the normal activity level of the muscle.

  14. Modulation of Muscle Atrophy, Fatigue and MLC Phosphorylation by MuRF1 as Indicated by Hindlimb Suspension Studies on MuRF1-KO Mice

    Directory of Open Access Journals (Sweden)

    Siegfried Labeit

    2010-01-01

    Full Text Available MuRF1 is a member of the TRIM/RBCC superfamily, a gene family that encompasses a large variety of proteins, all sharing the conserved TRIM (Tripartite Motive sequential array of RING, B-box, and coiled-coil domains. Within this family, MuRF1(also named TRIM63 is a specialized member that contributes to the development of muscle atrophy and sarcopenia. Here we studied MuRF1's role in muscle atrophy during muscle unloading induced by hindlimb suspension. Consistent with previous studies, we found that MuRF1 inactivation leads to an attenuated muscle atrophy response. The amount of protection was higher as compared to the denervation model, and within the 10 day-suspension period the soleus muscle was spared from atrophy in MuRF1-KO mice. Contractility studies on hindlimb suspended muscle tissues suggested that MuRF1's functions extend beyond muscle trophicity and implicate MuRF1 in muscle fatigue and MLC phosphorylation control: soleus muscle from MuRF1-KO mice fatigued significantly faster and in addition showed a reduced posttetanic twitch potentiation. Thus the present work further established the role of MuRF1 in muscle atrophy and for the first time shows that MuRF1 plays a role in muscle fatigue and twitch potentiation.

  15. Exacerbated potassium-induced paralysis of mouse soleus muscle at 37°C vis-à-vis 25°C: implications for fatigue. K+ -induced paralysis at 37°C.

    Science.gov (United States)

    Cairns, Simeon P; Leader, John P; Loiselle, Denis S

    2011-04-01

    The main aim was to investigate the effects of raised [K+](o) on contraction of isolated non-fatigued skeletal muscle at 37°C and 25°C to assess the physiological significance of K+ in fatigue. Mouse soleus muscles equilibrated at 25°C had good mechanical stability when temperature was elevated to 37°C. The main findings at 37°C vis-à-vis 25°C were as follows. When [K+](o) was raised from 4 to 7 mM, there was greater twitch potentiation, but no significant difference in peak tetanic force. At 10 mM [K+](o) there was (1) a faster time course for the decline of peak tetanic force, (2) a greater steady-state depression of twitches and tetani, (3) an increase of peak force over 50-200 Hz (whereas it decreased at 25°C), (4) significant tetanus restoration when stimulus pulse duration increased from 0.1 to 0.25 ms and (5) greater depolarisation of layer-2 fibres, with no repolarisation of surface fibres. These combined data strengthen the proposal that a large run-down of the K+ gradient contributes to severe fatigue at physiological temperatures via depolarisation and impaired sarcolemmal excitability. Moreover, terbutaline, a β(2)-adrenergic agonist, induced a slightly greater and more rapid, but transient, restoration of peak tetanic force at 10 mM [K+](o) at 37°C vis-à-vis 25°C. A right shift of the twitch force-stimulation strength relationship at 10 mM [K+](o) was partially reversed with terbutaline to confer the protective effect. Thus, catecholamines are likely to stimulate the Na+ -K+ pump more powerfully at 37°C to restore excitability and attenuate, but not prevent, the detrimental effects of K+.

  16. 感觉神经(元)对失神经骨骼肌超微结构保护作用的实验研究%Experimental study of the influence of sensory nerve (neuron) protection on the ultrastructure of denervated skeletal muscles

    Institute of Scientific and Technical Information of China (English)

    王欢; 李继峰; 钟慈声; 顾玉东

    2001-01-01

    Objective To observe the influence of sensory nerve (neuron)protection on the ultrastructure of denervated skeletal muscle. Methods 60 SD rats were randomly divided into 10 groups, with 6 each. Group A of simple complete denervation of biceps brachii served as control. Groups B ~ E were experimental groups which standed for complete denervation with sensory nerve implantation, complete denervation with sensory nerve “ baby - sitting”, complete denervation with dorsal root ganglia implantation, and complete denervation with implantation of preganglionically avulsed sensory nerve respectively. 1 month and 3 months postoperatively, electron microscopic observation of the muscles was done. Results Compared to the control, less degenerated nucleus, minor mitochondria edema and sarcoplasmic reticulum enlargement, higher capillary/myofiber ratio, less interstitial fibroblast and collagen fibers, better oriented myomere and myofilament were seen in the experimental groups. Conclusions Sensory nerves or neurons can protect the ultrastructure of denervated skeletal muscle.%目的观察感觉神经(元)对失神经骨骼肌超微结构的保护作用。方法60只SD大鼠,按手术先后顺序随机分成10组,每组6只。A组(对照组):肱二头肌完全失神经支配。B~E组(实验组):B组为失神经支配加感觉神经种植组,C组为失神经支配加感觉神经寄养组,D组为失神经支配加背根神经节种植组,E组为节前撕脱的感觉神经种植组。术后1、3个月取材,各组又分为二个时间组。用透射电镜观察肌肉超微结构的变化。结果与对照组相比,各实验组肌肉退变核数少、线粒体肿胀及肌质网扩张程度轻、毛细血管/肌纤维数比值大、间质胶原纤维和成纤维细胞少、肌丝肌节排列整齐。结论感觉神经(元)对失神经骨骼肌超微结构有保护作用。

  17. Effects of electrical stimulation and stretching on the adaptation of denervated skeletal muscle: implications for physical therapy Efeitos da eletroestimulação e do alongamento muscular sobre a adaptação do músculo desnervado: implicações para a fisioterapia

    Directory of Open Access Journals (Sweden)

    Tania F. Salvini

    2012-06-01

    Full Text Available BACKGROUND: This review will describe the main cellular mechanisms involved in the reduction and increase of myoproteins synthesis commonly associated with muscle atrophy and hypertrophy, respectively. OBJECTIVE: We analyzed the effects of electrical stimulation (ES and stretching exercise on the molecular pathways involved in muscle atrophy and hypertrophy. We also described the main effects and limits of these resources in the skeletal muscle, particularly on the denervated muscle. DISCUSSION: Recently, our studies showed that the ES applied in a similar manner as performed in clinical practice is able to attenuate the increase of genes expression involved in muscle atrophy. However, ES was not effective to prevent the loss of muscle mass caused by denervation. Regarding to stretching exercises, their mechanisms of action on the denervated muscle are not fully understood and studies on this area are scarce. Studies from our laboratory have found that stretching exercise increased the extracellular matrix remodeling and decreased genes expression related to atrophy in denervated muscle. Nevertheless, it was not enough to prevent muscle atrophy after denervation. CONCLUSIONS: In spite of the use of stretching exercise and ES in clinical practice in order to minimize the atrophy of denervated muscle, there is still lack of scientific evidence to justify the effectiveness of these resources to prevent muscle atrophy in denervated muscle.CONTEXTUALIZAÇÃO: Esta revisão abordará os principais mecanismos celulares envolvidos na redução e aumento da síntese de mioproteínas comumente associadas às situações de atrofia e hipertrofia muscular, respectivamente. OBJETIVO: Analisaremos os efeitos da estimulação elétrica (EE e do exercício de alongamento sobre as vias moleculares envolvidas na atrofia e hipertrofia muscular. Serão descritos os principais efeitos e os limites desses recursos no músculo esquelético, particularmente sobre o m

  18. Renal denervation and hypertension.

    Science.gov (United States)

    Schlaich, Markus P; Krum, Henry; Sobotka, Paul A; Esler, Murray D

    2011-06-01

    Essential hypertension remains one of the biggest challenges in medicine with an enormous impact on both individual and society levels. With the exception of relatively rare monogenetic forms of hypertension, there is now general agreement that the condition is multifactorial in nature and hence requires therapeutic approaches targeting several aspects of the underlying pathophysiology. Accordingly, all major guidelines promote a combination of lifestyle interventions and combination pharmacotherapy to reach target blood pressure (BP) levels in order to reduce overall cardiovascular risk in affected patients. Although this approach works for many, it fails in a considerable number of patients for various reasons including drug-intolerance, noncompliance, physician inertia, and others, leaving them at unacceptably high cardiovascular risk. The quest for additional therapeutic approaches to safely and effectively manage hypertension continues and expands to the reappraisal of older concepts such as renal denervation. Based on the robust preclinical and clinical data surrounding the role of renal sympathetic nerves in various aspects of BP control very recent efforts have led to the development of a novel catheter-based approach using radiofrequency (RF) energy to selectively target and disrupt the renal nerves. The available evidence from the limited number of uncontrolled hypertensive patients in whom renal denervation has been performed are auspicious and indicate that the procedure has a favorable safety profile and is associated with a substantial and presumably sustained BP reduction. Although promising, a myriad of questions are far from being conclusively answered and require our concerted research efforts to explore the full potential and possible risks of this approach. Here we briefly review the science surrounding renal denervation, summarize the current data on safety and efficacy of renal nerve ablation, and discuss some of the open questions that need

  19. Betulinic acid and 1,25(OH)₂ vitamin D₃ share intracellular signal transduction in glucose homeostasis in soleus muscle.

    Science.gov (United States)

    Castro, Allisson Jhonatan Gomes; Frederico, Marisa Jádna Silva; Cazarolli, Luisa Helena; Bretanha, Lizandra Czermainski; Tavares, Luciana de Carvalho; Buss, Ziliani da Silva; Dutra, Márcio Ferreira; de Souza, Ariane Zamoner Pacheco; Pizzolatti, Moacir Geraldo; Silva, Fátima Regina Mena Barreto

    2014-03-01

    The effect of betulinic acid on glycemia and its mechanism of action compared with 1,25(OH)2 vitamin D3 in rat muscle were investigated. Betulinic acid improved glycemia, induced insulin secretion and increased the glycogen content and glucose uptake in muscle tissue. Additionally, the integrity of both PI3K and the cytoskeleton is necessary for the stimulatory action of betulinic acid in glucose uptake. The genomic effect was apparent, since cycloheximide and PD98059 nullified the stimulatory effect of betulinic acid on glucose uptake. Therefore, although this compound did not modify the DNA transcription, the protein translation was significantly improved. Also, betulinic acid increased the GLUT4 immunocontent and its translocation was corroborated by GLUT4 localization at the plasma membrane (after 180 min). On the other hand, the effect of 1,25(OH)2 vitamin D3 on glucose uptake is not mediated by PI3K and microtubule activity. In contrast, the nuclear activity of 1,25(OH)2 vitamin D3 is necessary to trigger glucose uptake. In addition, the increased DNA transcription and GLUT4 immunocontent provide evidence of a mechanism by which 1,25(OH)2 vitamin D3 contributes to glycemia. In conclusion, betulinic acid acts as an insulin secretagogue and insulinomimetic agent via PI3K, MAPK and mRNA translation and partially shares the genomic pathway with 1,25(OH)2 vitamin D3 to upregulate the GLUT4. In summary, betulinic acid regulates glycemia through classical insulin signaling by stimulating GLUT4 synthesis and translocation. In addition, it does not cause hypercalcemia, which is highly significant from the drug discovery perspective.

  20. CCR2 elimination in mice results in larger and stronger tibial bones but bone loss is not attenuated following ovariectomy or muscle denervation.

    Science.gov (United States)

    Mader, Tara L; Novotny, Susan A; Lin, Angela S; Guldberg, Robert E; Lowe, Dawn A; Warren, Gordon L

    2014-11-01

    Bone loss due to age and disuse contributes to osteoporosis and increases fracture risk. It has been hypothesized that such bone loss can be attenuated by modulation of the C-C chemokine receptor 2 (CCR2) and/or its ligands. The objectives of this study were to examine the effects of genetic elimination of CCR2 on cortical and trabecular bones in the mouse tibia and how bone loss was impacted following disuse and estrogen loss. Female CCR2 knockout (CCR2(-/-)) and wildtype mice underwent ovariectomy (OVX) or denervation of musculature adjacent to the tibia (DEN) to induce bone loss. Cortical and trabecular structural properties as well as mechanical properties (i.e., strength) of tibial bones were measured. Compared to wildtype mice, CCR2(-/-) mice had tibiae that were up to 9% larger and stronger; these differences could be explained mainly by the 17% greater body mass (P bone loss per se. These findings indicate that while CCR2(-/-) mice do have larger and stronger bones than do wildtype mice, there is minimal evidence that CCR2 elimination provides protection against bone loss during disuse and estrogen loss.

  1. Triceps surae contractile properties and firing rates in the soleus of young and old men.

    Science.gov (United States)

    Dalton, Brian H; Harwood, Brad; Davidson, Andrew W; Rice, Charles L

    2009-12-01

    Mean maximal motor unit firing rates (MUFRs) of the human soleus are lower (5-20 Hz) than other limb muscles (20-50 Hz) during brief sustained contractions. With healthy adult aging, maximal MUFRs are 20-40% lower and twitch contractile speed of lower limb muscles are 10-40% slower compared with young adults. However, it is unknown whether the inherently low maximal MUFRs for the soleus are further reduced with aging in association with age-related slowing in contractile properties. The purpose of the present study was to compare the changes in triceps surae contractile properties and MUFRs of the soleus throughout a variety of contraction intensities in six old ( approximately 75 yr old) and six young ( approximately 24 yr old) men. Neuromuscular measures were collected from the soleus and triceps surae during repeated sessions (2-6 sessions). Populations of single MUFR trains were recorded from the soleus with tungsten microelectrodes during separate sustained 6- to 10-s isometric contractions of varying intensities [25%, 50%, 75%, and 100% maximal voluntary isometric contraction (MVC)]. The old men had weaker triceps surae strength (MVC; 35% lower) and slower contractile properties (contraction duration; 20% longer) than the young men. However, there was no difference in average MUFRs of the soleus at 75% and 100% MVC ( approximately 14.5 Hz and approximately 16.5 Hz, respectively). At 25% and 50% MVC, average rates were 10% and 20% lower in the old men compared with young, respectively. Despite a significant slowing in triceps surae contraction duration, there was no age-related change in MUFRs recorded at high contractile intensities in the soleus. Thus the relationship between the whole muscle contractile properties and MUFRs found in other muscle groups may not exist between the triceps surae and soleus and may be muscle dependent.

  2. Soleus stretch reflex during cycling

    DEFF Research Database (Denmark)

    Grey, Michael James; Pierce, C. W.; Milner, T. E.

    2001-01-01

    The modulation and strength of the human soleus short latency stretch reflex was investigated by mechanically perturbing the ankle during an unconstrained pedaling task. Eight subjects pedaled at 60 rpm against a preload of 10 Nm. A torque pulse was applied to the crank at various positions durin...

  3. Absence of a growth hormone effect on rat soleus atrophy during a 4-day spaceflight

    Science.gov (United States)

    Jiang, Bian; Roy, Roland R.; Navarro, Christine; Edgerton, V. R.

    1993-01-01

    The effect of a 4-day-long spaceflight on the size and the enzyme properties of soleus fibers of rats and the effects of exogenous growth hormone (GH) on the atrophic response of the soleus muscle were investigated in four groups of rats: (1) control, (2) control plus GH treatment, (3) flight, and (4) flight plus GH treatment. Results showed that the fiber size and the type of myosin heavy chain expressed fibers (but not the metabolic properties) of the soleus were affected by four days of weightlessness and that the effects were not ameliorated by the administration of growth hormone.

  4. SIRT1 Protein, by Blocking the Activities of Transcription Factors FoxO1 and FoxO3, Inhibits Muscle Atrophy and Promotes Muscle Growth*

    Science.gov (United States)

    Lee, Donghoon; Goldberg, Alfred L.

    2013-01-01

    In several cell types, the protein deacetylase SIRT1 regulates the activities of FoxO transcription factors whose activation is critical in muscle atrophy. However, the possible effects of SIRT1 on the activity of FoxOs in skeletal muscle and on the regulation of muscle size have not been investigated. Here, we show that after food deprivation, SIRT1 levels fall dramatically in type II skeletal muscles (tibialis anterior), which show marked atrophy, unlike in the liver (where SIRT1 rises) or heart or the soleus, a type I muscle (where SIRT1 is unchanged). Maintenance of high SIRT1 levels by electroporation in mouse muscle inhibits markedly the muscle wasting induced by fasting as well as by denervation, and these protective effects require its deacetylase activity. SIRT1 overexpression reduces muscle wasting by blocking the activation of FoxO1 and 3. It thus prevents the induction of key atrogenes, including the muscle-specific ubiquitin ligases, atrogin1 and MuRF1, and multiple autophagy (Atg) genes and the increase in overall proteolysis. In normal muscle, SIRT1 overexpression by electroporation causes rapid fiber hypertrophy without, surprisingly, activation of the PI3K-AKT signaling pathway. Thus, SIRT1 activation favors postnatal muscle growth, and its fall appears to be critical for atrophy during fasting. Consequently, SIRT1 activation represents an attractive possible pharmacological approach to prevent muscle wasting and cachexia. PMID:24003218

  5. Glucose transporters and maximal transport are increased in endurance-trained rat soleus

    Science.gov (United States)

    Slentz, C. A.; Gulve, E. A.; Rodnick, K. J.; Henriksen, E. J.; Youn, J. H.; Holloszy, J. O.

    1992-01-01

    Voluntary wheel running induces an increase in the concentration of the regulatable glucose transporter (GLUT4) in rat plantaris muscle but not in soleus muscle (K. J. Rodnick, J. O. Holloszy, C. E. Mondon, and D. E. James. Diabetes 39: 1425-1429, 1990). Wheel running also causes hypertrophy of the soleus in rats. This study was undertaken to ascertain whether endurance training that induces enzymatic adaptations but no hypertrophy results in an increase in the concentration of GLUT4 protein in rat soleus (slow-twitch red) muscle and, if it does, to determine whether there is a concomitant increase in maximal glucose transport activity. Female rats were trained by treadmill running at 25 m/min up a 15% grade, 90 min/day, 6 days/wk for 3 wk. This training program induced increases of 52% in citrate synthase activity, 66% in hexokinase activity, and 47% in immunoreactive GLUT4 protein concentration in soleus muscles without causing hypertrophy. Glucose transport activity stimulated maximally with insulin plus contractile activity was increased to roughly the same extent (44%) as GLUT4 protein content in soleus muscle by the treadmill exercise training. In a second set of experiments, we examined whether a swim-training program increases glucose transport activity in the soleus in the presence of a maximally effective concentration of insulin. The swimming program induced a 44% increase in immunoreactive GLUT4 protein concentration. Glucose transport activity maximally stimulated with insulin was 62% greater in soleus muscle of the swimmers than in untrained controls. Training did not alter the basal rate of 2-deoxyglucose uptake.(ABSTRACT TRUNCATED AT 250 WORDS).

  6. Blood vessels and desmin control the positioning of nuclei in skeletal muscle fibers.

    Science.gov (United States)

    Ralston, E; Lu, Z; Biscocho, N; Soumaka, E; Mavroidis, M; Prats, C; Lømo, T; Capetanaki, Y; Ploug, T

    2006-12-01

    Skeletal muscle fibers contain hundreds to thousands of nuclei which lie immediately under the plasmalemma and are spaced out along the fiber, except for a small cluster of specialized nuclei at the neuromuscular junction. How the nuclei attain their positions along the fiber is not understood. Here we show that the nuclei are preferentially localized near blood vessels (BV), particularly in slow-twitch, oxidative fibers. Thus, in rat soleus muscle fibers, 81% of the nuclei appear next to BV. Lack of desmin markedly perturbs the distribution of nuclei along the fibers but does not prevent their close association with BV. Consistent with a role for desmin in the spacing of nuclei, we show that denervation affects the organization of desmin filaments as well as the distribution of nuclei. During chronic stimulation of denervated muscles, new BV form, along which muscle nuclei align themselves. We conclude that the positioning of nuclei along muscle fibers is plastic and that BV and desmin intermediate filaments each play a distinct role in the control of this positioning.

  7. [Effect of weightlessness and movement restraint on structure and metabolism of M. soleus in monkeys after space flight].

    Science.gov (United States)

    Shenkman, B S; Belozerova, I N; Lee, P; Nemirovskaia, T L; Kozlovskaia, I B

    2002-03-01

    After staying in real and simulated weightlessness, the most obvious changes were recorded in the "slow" tonic muscles like m. soleus, the protein loss in the fibres being greater than the loss of other components, water included.

  8. Increase in norepinephrine-induced formation of phosphatidic acid in rat vas deferens after denervation.

    Science.gov (United States)

    Takenawa, T; Masaki, T; Goto, K

    1983-01-01

    Surgical denervation of rat vas deferens causes supersensitivity in that the tissue sensitivity and the maximum response to a variety of agonists increase. To understand the molecular mechanism of supersensitivity in smooth muscle, norepinephrine(NE)-induced alteration in phospholipid metabolism was studied using control and denervated vasa deferentia. When the tissue was stimulated by NE, only [32P]Pi incorporation into phosphatidic acid(PA) was increased in proportion to the increase in NE concentration without any significant effect on that into other phospholipids. This PA labeling was significantly accelerated by denervation. In the denervated tissue, PA labeling was stimulated by lower concentrations of NE and the maximum response to NE was increased compared to the control. The breakdown of phosphatidylinositol 4-monophosphate(DPI) and phosphatidylinositol 4,5-diphosphate (TPI) was also accelerated by NE. But the influence of denervation on this NE-induced DPI and TPI was not marked. Therefore, it is likely that denervation clearly enhanced NE-induced PA labeling without an appreciable effect on that of the other phospholipids. Furthermore, the absolute amount of PA was also increased by NE, and this increase was exaggerated by denervation. Considering that PA can behave as a Ca2+ ionophore in the plasma membrane, these results suggest that the stimulated accumulation of PA plays an important role in receptor-linked supersensitivity in smooth muscle.

  9. The soleus syndrome. A cause of medial tibial stress (shin splints).

    Science.gov (United States)

    Michael, R H; Holder, L E

    1985-01-01

    Radionuclide bone scans have demonstrated linear uptake along the posterior medial border of the tibia in patients with shin splints. This area was investigated by anatomical dissection (14 human cadavers), electromyographic (EMG) and muscle stimulation studies (10 patients), and open biopsy (1 patient). Histologically, the increased metabolic activity manifested on the radionuclide scan is due to a periostitis with new bone formation. The soleus muscle and its investing fascia are anatomically and biomechanically implicated in the production of these stress changes, particularly when the heel is in the pronated position. The soleus muscle and fascia form a tough "soleus bridge" over the deep compartment which is thought to be important in patients requiring surgical decompression.

  10. PPM1B and P-IKKβ expression levels correlated inversely with rat gastrocnemius atrophy after denervation

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Jian; Liang, Bing-Sheng [Department of Orthopedics, the Second Hospital, Shanxi Medical University, Taiyuan (China)

    2012-05-18

    Activated inhibitor of nuclear factor-κB kinase β (IKKβ) is necessary and sufficient for denervated skeletal muscle atrophy. Although several studies have shown that Mg{sup 2+}/Mn{sup 2+}-dependent protein phosphatase 1B (PPM1B) inactivated IKKβ, few studies have investigated the role of PPM1B in denervated skeletal muscle. In this study, we aim to explore the expression and significance of PPM1B and phosphorylated IKKβ (P-IKKβ) during atrophy of the denervated gastrocnemius. Thirty young adult female Wistar rats were subjected to right sciatic nerve transection and were sacrificed at 0 (control), 2, 7, 14, and 28 days after denervation surgery. The gastrocnemius was removed from both the denervated and the contralateral limb. The muscle wet weight ratio was calculated as the ratio of the wet weight of the denervated gastrocnemius to that of the contralateral gastrocnemius. RT-PCR and Western blot analysis showed that mRNA and protein levels of PPM1B were significantly lower than those of the control group at different times after the initiation of denervation, while P-IKKβ showed the opposite trends. PPM1B protein expression persistently decreased while P-IKKβ expression persistently increased for 28 days after denervation. PPM1B expression correlated negatively with P-IKKβ expression by the Spearman test, whereas decreasing PPM1B expression correlated positively with the muscle wet weight ratio. The expression levels of PPM1B and P-IKKβ were closely associated with atrophy in skeletal denervated muscle. These results suggest that PPM1B and P-IKKβ could be markers in skeletal muscle atrophy.

  11. Side-To-Side Nerve Bridges Support Donor Axon Regeneration Into Chronically Denervated Nerves and Are Associated With Characteristic Changes in Schwann Cell Phenotype.

    Science.gov (United States)

    Hendry, J Michael; Alvarez-Veronesi, M Cecilia; Snyder-Warwick, Alison; Gordon, Tessa; Borschel, Gregory H

    2015-11-01

    Chronic denervation resulting from long nerve regeneration times and distances contributes greatly to suboptimal outcomes following nerve injuries. Recent studies showed that multiple nerve grafts inserted between an intact donor nerve and a denervated distal recipient nerve stump (termed "side-to-side nerve bridges") enhanced regeneration after delayed nerve repair. To examine the cellular aspects of axon growth across these bridges to explore the "protective" mechanism of donor axons on chronically denervated Schwann cells. In Sprague Dawley rats, 3 side-to-side nerve bridges were placed over a 10-mm distance between an intact donor tibial (TIB) nerve and a recipient denervated common peroneal (CP) distal nerve stump. Green fluorescent protein-expressing TIB axons grew across the bridges and were counted in cross section after 4 weeks. Immunofluorescent axons and Schwann cells were imaged over a 4-month period. Denervated Schwann cells dedifferentiated to a proliferative, nonmyelinating phenotype within the bridges and the recipient denervated CP nerve stump. As donor TIB axons grew across the 3 side-to-side nerve bridges and into the denervated CP nerve, the Schwann cells redifferentiated to the myelinating phenotype. Bridge placement led to an increased mass of hind limb anterior compartment muscles after 4 months of denervation compared with muscles whose CP nerve was not "protected" by bridges. This study describes patterns of donor axon regeneration and myelination in the denervated recipient nerve stump and supports a mechanism where these donor axons sustain a proregenerative state to prevent deterioration in the face of chronic denervation.

  12. Short-term locomotor adaptation to a robotic ankle exoskeleton does not alter soleus Hoffmann reflex amplitude

    Directory of Open Access Journals (Sweden)

    Ferris Daniel P

    2010-07-01

    Full Text Available Abstract Background To improve design of robotic lower limb exoskeletons for gait rehabilitation, it is critical to identify neural mechanisms that govern locomotor adaptation to robotic assistance. Previously, we demonstrated soleus muscle recruitment decreased by ~35% when walking with a pneumatically-powered ankle exoskeleton providing plantar flexor torque under soleus proportional myoelectric control. Since a substantial portion of soleus activation during walking results from the stretch reflex, increased reflex inhibition is one potential mechanism for reducing soleus recruitment when walking with exoskeleton assistance. This is clinically relevant because many neurologically impaired populations have hyperactive stretch reflexes and training to reduce the reflexes could lead to substantial improvements in their motor ability. The purpose of this study was to quantify soleus Hoffmann (H- reflex responses during powered versus unpowered walking. Methods We tested soleus H-reflex responses in neurologically intact subjects (n=8 that had trained walking with the soleus controlled robotic ankle exoskeleton. Soleus H-reflex was tested at the mid and late stance while subjects walked with the exoskeleton on the treadmill at 1.25 m/s, first without power (first unpowered, then with power (powered, and finally without power again (second unpowered. We also collected joint kinematics and electromyography. Results When the robotic plantar flexor torque was provided, subjects walked with lower soleus electromyographic (EMG activation (27-48% and had concomitant reductions in H-reflex amplitude (12-24% compared to the first unpowered condition. The H-reflex amplitude in proportion to the background soleus EMG during powered walking was not significantly different from the two unpowered conditions. Conclusion These findings suggest that the nervous system does not inhibit the soleus H-reflex in response to short-term adaption to exoskeleton assistance

  13. FGF-2 is required to prevent astrogliosis in the facial nucleus after facial nerve injury and mechanical stimulation of denervated vibrissal muscles.

    Science.gov (United States)

    Hizay, Arzu; Seitz, Mark; Grosheva, Maria; Sinis, Nektarios; Kaya, Yasemin; Bendella, Habib; Sarikcioglu, Levent; Dunlop, Sarah A; Angelov, Doychin N

    2016-03-01

    Recently, we have shown that manual stimulation of paralyzed vibrissal muscles after facial-facial anastomosis reduced the poly-innervation of neuromuscular junctions and restored vibrissal whisking. Using gene knock outs, we found a differential dependence of manual stimulation effects on growth factors. Thus, insulin-like growth factor-1 and brain-derived neurotrophic factor are required to underpin manual stimulation-mediated improvements, whereas FGF-2 is not. The lack of dependence on FGF-2 in mediating these peripheral effects prompted us to look centrally, i.e. within the facial nucleus where increased astrogliosis after facial-facial anastomosis follows "synaptic stripping". We measured the intensity of Cy3-fluorescence after immunostaining for glial fibrillary acidic protein (GFAP) as an indirect indicator of synaptic coverage of axotomized neurons in the facial nucleus of mice lacking FGF-2 (FGF-2(-/-) mice). There was no difference in GFAP-Cy3-fluorescence (pixel number, gray value range 17-103) between intact wildtype mice (2.12±0.37×10(7)) and their intact FGF-2(-/-) counterparts (2.12±0.27×10(7)) nor after facial-facial anastomosis +handling (wildtype: 4.06±0.32×10(7); FGF-2(-/-): 4.39±0.17×10(7)). However, after facial-facial anastomosis, GFAP-Cy3-fluorescence remained elevated in FGF-2(-/-)-animals (4.54±0.12×10(7)), whereas manual stimulation reduced the intensity of GFAP-immunofluorescence in wild type mice to values that were not significantly different from intact mice (2.63±0.39×10). We conclude that FGF-2 is not required to underpin the beneficial effects of manual stimulation at the neuro-muscular junction, but it is required to minimize astrogliosis in the brainstem and, by implication, restore synaptic coverage of recovering facial motoneurons.

  14. Sex differences in soleus strength may predispose middle age women to falls.

    Science.gov (United States)

    Chimera, Nicole J; Manal, Kurt T

    2013-09-01

    This study investigated middle age healthy adults to elucidate if plantar flexion (PF) strength differences exist because of the triceps surae or the soleus when comparing between sexes. A random population sample was stratified by sex and included 25 healthy (12 women and 13 men) subjects who volunteered for participation. Dorsiflexion range of motion was measured using a biplane goniometer. Self-reported function was assessed using the Foot and Ankle Ability Measure. Ankle PF strength was assessed using the Biodex System 3. To determine triceps surae vs. soleus strength, testing positions included (1) full ankle dorsiflexion with the knee in full extension and (2) full ankle dorsiflexion with 90° of knee flexion. Results indicated that women were significantly weaker than men in absolute PF strength for both triceps surae and soleus testing positions. Furthermore, even with normalizing PF strength to body mass PF strength deficits persisted. Additionally, when the contribution of the soleus was accounted for in the full knee extended position (triceps surae), normalized strength differences no longer existed between sexes. Therefore, these results indicate that what appeared as triceps surae complex strength deficits in middle age women compared with men was actually soleus weakness. This may suggest that middle age women are predisposed to increased falls at an early age than previously reported. Additionally, this may indicate that the soleus muscle should be a focus of strength training for women during middle age.

  15. Relationship between function recovery and the changes of mitochondria after facial muscles denervation%面肌失神经支配后线粒体变化与功能康复的关系

    Institute of Scientific and Technical Information of China (English)

    于何; 魏宏权; 白伟良; 任重

    2003-01-01

    目的:探讨不同程度面神经失神经支配后口轮匝肌线粒体结构、琥珀酸脱氢酶( SDH)的变化与面肌功能恢复的关系. 方法:制造颞骨内面神经麻痹模型,分为面神经压榨 5 s组( 11例)、 15 s组( 10例)、 30 s组( 10例),应用神经电图测试 3组的平均阈值差值, SDH染色后,透射电镜观察面神经损伤 15, 30 d后口轮匝肌线粒体结构和 SDH阳性反应产物的变化. 结果:压榨持续时间越长,反应阈值差值越大, 5 s组、 15 s组、 30 s组的反应阈值差值分别为 0.443± 0.024, 12.174± 1.532, 15.720± 1.536,组间比较差异有显著性意义( F=461.560, P< 0.0001).面神经压榨 5 s组的平均神经兴奋传导抑制时间为( 35± 17) min; 15 s组瞬目反射恢复正常需( 47± 15) d; 30 s组半年内未恢复. 15 s组面神经损伤 15 d后 ,线粒体嵴断裂, SDH阳性反应颗粒减少,损伤 30 d基本恢复正常. 30 s组面神经损伤 15 d后 ,线粒体空泡变性, SDH颗粒明显减少,损伤 30 d后的线粒体结构和 SDH颗粒有轻度恢复. 结论:面神经受损伤时间越长,失神经支配程度越重,线粒体病变也越重,面肌功能恢复越难,应早期行面神经减压术.%AIM:To explore the relationship between the functional recovery of facial muscles and the changes of the structure of mitochondria and succinate dehydrogenase (SDH) of oris muscles after different degree of denervation. METHODS:Models of facial paralysis were obtained, all 72 guinea pigs were divided into 5 s-pinching group,15 s-pinching group and 30 s-pinching group respectively.Eletroneurogram (ENoG) was used to measure the average threshold differences of the facial nerves of the guinea pigs in each group.The mitochondria structures of oris muscle and positive products of SDH were observed with transmitting electron microscope after facial nerve injuries for 15,30 s respectively. RESULTS:The longer of pinching, the more of threshold difference, 5 s-pinching group (11

  16. Cytoskeleton, L-type Ca2+ and stretch activated channels in injured skeletal muscle

    Directory of Open Access Journals (Sweden)

    Fabio Francini

    2013-07-01

    Full Text Available The extra-sarcomeric cytoskeleton (actin microfilaments and anchoring proteins is involved in maintaining the sarco-membrane stiffness and integrity and in turn the mechanical stability and function of the intra- and sub-sarcoplasmic proteins. Accordingly, it regulates Ca2+ entry through the L-type Ca2+ channels and the mechano-sensitivity of the stretch activated channels (SACs. Moreover, being intra-sarcomeric cytoskeleton bound to costameric proteins and other proteins of the sarcoplasma by intermediate filaments, as desmin, it integrates the properties of the sarcolemma with the skeletal muscle fibres contraction. The aim of this research was to compare the cytoskeleton, SACs and the ECC alterations in two different types of injured skeletal muscle fibres: by muscle denervation and mechanical overload (eccentric contraction. Experiments on denervation were made in isolated Soleus muscle of male Wistar rats; forced eccentric-contraction (EC injury was achieved in Extensor Digitorum Longus muscles of Swiss mice. The method employed conventional intracellular recording with microelectrodes inserted in a single fibre of an isolated skeletal muscle bundle. The state of cytoskeleton was evaluated by recording SAC currents and by evaluating the resting membrane potential (RMP value determined in current-clamp mode. The results demonstrated that in both injured skeletal muscle conditions the functionality of L-type Ca2+ current, ICa, was affected. In parallel, muscle fibres showed an increase of the resting membrane permeability and of the SAC current. These issues, together with a more depolarized RMP are an index of altered cytoskeleton. In conclusion, we found a symilar alteration of ICa, SAC and cytoskeleton in both injured skeletal muscle conditions.

  17. Effects of microgravity and tail suspension on enzymes of individual soleus and tibialis anterior fibers

    Science.gov (United States)

    Chi, Maggie M.-Y.; Choski, Rati; Nemeth, Patti; Krasnov, Igor'; Il'ina-Kakueva, E. I.; Manchester, Jill K.; Lowry, Oliver H.

    1992-01-01

    Selected enzymes of energy metabolism were measured in random individual fibers of soleus and tibialis anterior (TA) muscles from rats exposed for 2 wk to spaceflight (F) aboard Cosmos 2044 or tail suspension (T) and from synchronous controls. Average size of soleus fibers (dry weight per unit length) was reduced 37 percent in F and T fibers; there was little change in Ta fibers. Enzyme changes were more pronounced in soleus than in TA fibers. Three enzymes characteristic of fast-twitch muscles, pyruvate kinase, glycerol-3-phosphate dehydrogenase, and 1-phosphofructokinase, were elevated in F and T soleus fibers, but changes in phosphofructokinase were not statistically significant. In TA fibers analyzed for hexokinase, malate dehydrogenase, phosphohexoisomerase, and pyruvate kinase, only hexokinase and malate dehydrogenase showed significant changes. Hexokinase incresed 83 percent in one of two T muscles. Enzyme data for TA fibers typed by myosin adenosinetriphosphatase were more informative: phosphofructokinase, phosphorylase, and glycerol-3-phosphate dehydrogenase were increased in type IIn fibers of either F or T muscles or both. Malate dehydrogenase was not changed in fibers of any type in either F or T muscle.

  18. Efficacy of the "baby-sitter" procedure after prolonged denervation.

    Science.gov (United States)

    Mersa, B; Tiangco, D A; Terzis, J K

    2000-01-01

    This study was undertaken to evaluate whether 40 percent of the hypoglossal nerve, which showed optimal efficacy in restoring orbicularis oculi muscle (OOM) function after different percentages of partial neurectomy in a previous study would be effective after prolonged denervation time. Twenty Sprague-Dawley rats were divided into four groups. In first-stage surgery the left facial nerve of all animals was transected at the level of the stylomastoid foramen and main zygomatic branch. Group A (controls) consisted of animals with only left facial nerves transected (no repair). In Groups B, C, and D the facial nerve was transected and the facial musculature was denervated for a period of 4, 8, and 12 weeks respectively. During a second-stage procedure, a 40 percent neurectomy was performed on the hypoglossal nerve. Subsequently, a nerve transfer was performed by coaptations of a saphenous nerve graft to the neurectomized hypoglossal nerve and the main zygomatic branch of the facial nerve that innervated the OOM. Behavioral analysis of blink reflex, electrophysiology, and axon and motor end-plate counts in Groups B, C, and D showed superior results compared to Group A. There was no statistically significant difference observed among Groups B, C, and D (p > 0.05). Despite the diminished number of axons in the zygomatic branch and motor end-plates in the orbicularis oculi muscle after 12 weeks of denervation, there was still sufficient muscle target recovery to effect some eye closure in all groups except the controls. This study demonstrated in this model that the 40 percent partial neurectomy of the XII to VII component of the "baby-sitter" procedure was effective even after prolonged denervation.

  19. Denervation syndromes of the shoulder girdle: MR imaging with electrophysiologic correlation

    Energy Technology Data Exchange (ETDEWEB)

    Bredella, M.A.; Wischer, T.K.; Stork, A.; Genant, H.K. [Dept. of Radiology, University of California, San Francisco (United States); Tirman, P.F.J. [San Francisco Magnetic Resonance Center, CA (United States); Fritz, R.C. [National Orthopaedic Imaging Associates, Greenbrae, CA (United States)

    1999-10-01

    Objective. To investigate the use of MR imaging in the characterization of denervated muscle of the shoulder correlated with electrophysiologic studies.Design and patients. We studied with MR imaging five patients who presented with shoulder weakness and pain and who underwent electrophysiologic studies. On MR imaging the distribution of muscle edema and fatty infiltration was recorded, as was the presence of masses impinging on a regional nerve.Results. Acute/subacute denervation was best seen on T2-weighted fast spin-echo images with fat saturation, showing increased SI related to neurogenic edema. Chronic denervation was best seen on T1-weighted spin-echo images, demonstrating loss of muscle bulk and diffuse areas of increased signal intensity within the muscle. Three patients showed MR imaging and electrophysiologic findings of Parsonage Turner syndrome. One patient demonstrated an arteriovenous malformation within the spinoglenoid notch, impinging on the suprascapular nerve with associated atrophy of the infraspinatus muscle. The fifth patient demonstrated fatty atrophy of the teres minor muscle caused by compression by a cyst of the axillary nerve and electrophysiologic findings of an incomplete axillary nerve block.Conclusion. MR imaging is useful in detecting and characterizing denervation atrophy and neurogenic edema in shoulder muscles. MR imaging can provide additional information to electrophysiologic studies by estimating the age (acute/chronic) and identifying morphologic causes for shoulder pain and atrophy. (orig.)

  20. Early alterations in soleus GLUT-4, glucose transport, and glycogen in voluntary running rats

    Science.gov (United States)

    Henriksen, Erik J.; Halseth, Amy E.

    1994-01-01

    Voluntary wheel running (WR) by juvenile female rats was used as a noninterventional model of soleus muscle functional overload to study the regulation of insulin-stimulated glucose transport activity by the glucose transporter (GLUT-4 isoform) protein level and glycogen concentration. Soleus total protein content was significantly greater (+18%;P greater than 0.05) than in age-matched controls after 1 wk of WR, and this hypertrophic response continued in weeks 2-4 (+24-32%). GLUT-4 protein was 39% greater than in controls in 1-wk WR soleus, and this adaptation was accompanied by a similar increase in in vitro insulin-stimulated glucose transport activity(+29%). After 2 and 4 wk of WR, however, insulin-stimulated glucose transport activity had returned to control levels, despite a continued elevation (+25-28%) of GLUT-4 protein. At these two time points, glycogen concentration was significantly enhanced in WR soleus (+21-42%), which coincided with significant reductions in glycogen synthase activity ratios (-23 to-41%). These results indicate that, in this model of soleus muscle functional overload, the GLUT-4 protein level may initially regulate insulin-stimulated glucose transport activity in the absence of changes in other modifying factors. However,this regulation of glucose transport activity by GLUT-4 protein may be subsequently overridden by elevated glycogen concentration.

  1. Facilitation of soleus but not tibialis anterior motor evoked potentials before onset of antagonist contraction

    DEFF Research Database (Denmark)

    Geertsen, Svend Sparre; Zuur, Abraham Theodore; Nielsen, Jens Bo

    2008-01-01

    the MEP is evoked. Methods: Seated subjects (n=11) were instructed to react to an auditory cue by contracting either the tibialis anterior (TA) or soleus muscle of the left ankle to 30% of their maximal dorsiflexion voluntary contraction (MVC) or plantar flexion MVC, respectively. Focal TMS at 1.2 x motor...

  2. Renal denervation for resistant hypertension.

    Science.gov (United States)

    Almeida, Manuel de Sousa; Gonçalves, Pedro de Araújo; Oliveira, Eduardo Infante de; Carvalho, Henrique Cyrne de

    2015-02-01

    There is a marked contrast between the high prevalence of hypertension and the low rates of adequate control. A subset of patients with suboptimal blood pressure control have drug-resistant hypertension, in the pathophysiology of which chronic sympathetic hyperactivation is significantly involved. Sympathetic renal denervation has recently emerged as a device-based treatment for resistant hypertension. In this review, the pathophysiological mechanisms linking the sympathetic nervous system and cardiovascular disease are reviewed, focusing on resistant hypertension and the role of sympathetic renal denervation. An update on experimental and clinical results is provided, along with potential future indications for this device-based technique in other cardiovascular diseases. Copyright © 2014 Sociedade Portuguesa de Cardiologia. Published by Elsevier España. All rights reserved.

  3. Renal sympathetic nervous system and the effects of denervation on renal arteries

    Institute of Scientific and Technical Information of China (English)

    Arun; Kannan; Raul; Ivan; Medina; Nagapradeep; Nagajothi; Saravanan; Balamuthusamy

    2014-01-01

    Resistant hypertension is associated with chronic activation of the sympathetic nervous system resulting in various comorbidities. The prevalence of resistant hypertension is often under estimated due to various reasons. Activation of sympathetic nervous system at the renal-as well as systemic-level contributes to the increased level of catecholamines and resulting increase in the blood pressure. This increased activity was demonstrated by increased muscle sympathetic nerve activity and renal and total body noradrenaline spillover. Apart from the hypertension, it is hypothesized to be associated with insulin resistance, congestive heart failure and obstructive sleep apnea. Renal denervation is a novel procedure where the sympathetic afferent and efferent activity is reduced by various techniques and has been used successfully to treat drug-resistant hypertension improvement of various metabolic derangements.Renal denervation has the unique advantage of offering the denervation at the renal level, thus mitigating the systemic side effects. Renal denervation can be done by various techniques including radiofrequency ablation, ultrasound guided ablation and chemical ablation. Various trials evaluated the role of renal denervation in the management of resistant hypertension and have found promising results. More studies are underway to evaluate the role of renal denervation in patients presenting with resistant hypertension in different scenarios. Appropriate patient selection might be the key in determining the effectiveness of the procedure.

  4. Spinal inhibition of descending command to soleus motoneurons is removed prior to dorsiflexion

    DEFF Research Database (Denmark)

    Geertsen, Svend Sparre; van de Ruit, Mark; Grey, Michael James;

    2011-01-01

    of 40-45 ms, the LLF was significantly more inhibited compared to the SLF when taking the effect on the H-reflex into account. Finally, we investigated how the CPN-induced inhibition and facilitation of the soleus MEP were modulated prior to dorsiflexion. Whereas the late facilitation (CT interval: 55...... stimulation of the posterior tibial nerve (PTN) were conditioned by prior stimulation of the common peroneal nerve (CPN) at a variety of conditioning-test (CT) intervals.MEPs in the precontracted soleus muscle were inhibited when the TMS pulse was preceded by CPN stimulation with a CT interval of 35 ms......, and they were facilitated for CT intervals of 50-55 ms. A similar inhibition of the soleus H-reflex was not observed. To investigate which descending pathways might be responsible for the afferent-evoked inhibition and facilitation, we examined the effect of CPN stimulation on short-latency facilitation (SLF...

  5. Different pattern of aquaporin-4 expression in extensor digitorum longus and soleus during early development.

    Science.gov (United States)

    Nicchia, Grazia P; Mola, Maria G; Pisoni, Michela; Frigeri, Antonio; Svelto, Maria

    2007-05-01

    Aquaporin-4 (AQP4) is the neuromuscular water channel expressed at the sarcolemma of mammalian fast-twitch fibers that mediates a high water transport rate, which is important during muscle activity. Clinical interest in the neuromuscular expression of AQP4 has increased as it is associated with the protein complex formed by dystrophin, the product of the gene affected in Duchenne muscular dystrophy. The expression of AQP4 during development has not been characterized. In this study, we analyzed the expression of AQP4 in extensor digitorum longus (EDL) and soleus, a fast- and slow-twitch muscle, respectively, during the first weeks after birth. The results show that AQP4 expression in both types of skeletal muscle occurs postnatally. The time course of expression of AQP4 in the two types of muscles was also different. Whereas the expression of AQP4 protein levels in the EDL showed a progressive increase during the first month after birth, reaching levels found in adults by day 24, the levels of the protein in the soleus showed a transient peak between day 12 and day 24 and declined thereafter, an effect that may be related to the transient high number of fast motor units innervating the soleus muscle during this time. The results suggest that AQP4 expression in skeletal muscle is under neuronal influence and contribute to the understanding of the molecular events of fiber differentiation during development.

  6. Morphological alterations in small intestine of rats with myenteric plexus denervation.

    Science.gov (United States)

    Deniz, M; Kilinç, M; Hatipoğlu, E S

    2004-01-01

    We aimed to investigate the effect of myenteric denervation by benzalkonium chloride (BAC) on small intestine morphology in the rat, and whether segmental myenteric denervation alters morphology elsewhere in the small intestine. Forty male Sprague-Dawley rats were equally divided into 4 groups: control (0.9% NaCl); denervation (0.062% BAC); chemical inflammation (5% acetic acid), and intraluminal stasis produced by partial obstruction. 28 days after operation tissue samples were taken from the treated segment, 10 cm distal to the treated segment, and 20 cm proximal to the treated segment. Morphological changes and the number of ganglion cells were examined under the light microscope. BAC application reduced the number of myenteric neurons by 85% in the treated segment. Denervation increased villus height and crypt depth in the treated and proximal segments. But changes in muscle thickness were seen throughout the intestine. As a result, although myenteric plexus denervation caused mucosa morphology in the treated and proximal segments, it caused smooth muscle changes throughout the small intestine.

  7. Reversible bladder denervation in acute polyradiculitis

    DEFF Research Database (Denmark)

    Kamper, A L; Andersen, J T

    1982-01-01

    A case of reversible bladder denervation in acute polyradiculitis is presented, in which both motor and sensory bladder involvement could be demonstrated using cystometry and denervation-hypersensitivity testing. Attention is drawn to the differential diagnosis to cauda equina syndromes of other ...

  8. Renal denervation for resistant hypertension.

    Science.gov (United States)

    Coppolino, Giuseppe; Pisano, Anna; Rivoli, Laura; Bolignano, Davide

    2017-02-21

    Resistant hypertension is highly prevalent among the general hypertensive population and the clinical management of this condition remains problematic. Different approaches, including a more intensified antihypertensive therapy, lifestyle modifications, or both, have largely failed to improve patients' outcomes and to reduce cardiovascular and renal risk. As renal sympathetic hyperactivity is a major driver of resistant hypertension, renal sympathetic ablation (renal denervation) has been recently proposed as a possible therapeutic alternative to treat this condition. We sought to evaluate the short- and long-term effects of renal denervation in individuals with resistant hypertension on clinical end points, including fatal and non-fatal cardiovascular events, all-cause mortality, hospital admissions, quality of life, blood pressure control, left ventricular hypertrophy, cardiovascular and metabolic profile, and kidney function, as well as the potential adverse events related to the procedure. We searched the following databases to 17 February 2016 using relevant search terms: the Cochrane Hypertension Group Specialised Register, the Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE, EMBASE and ClinicalTrials.gov SELECTION CRITERIA: We considered randomised controlled trials (RCTs) that compared renal denervation to standard therapy or sham procedure to treat resistant hypertension, without language restriction. Two authors independently extracted data and assessed study risks of bias. We summarised treatment effects on available clinical outcomes and adverse events using random-effects meta-analyses. We assessed heterogeneity in estimated treatment effects using Chi² and I² statistics. We calculated summary treatment estimates as a mean difference (MD) or standardised mean difference (SMD) for continuous outcomes, and a risk ratio (RR) for dichotomous outcomes, together with their 95% confidence intervals (CI). We found 12 eligible studies (1149

  9. Imaging of muscular denervation secondary to motor cranial nerve dysfunction

    Energy Technology Data Exchange (ETDEWEB)

    Connor, S.E.J. [Neuroradiology Department, Kings College Hospital, Denmark Hill, London SE5 9RS (United Kingdom)]. E-mail: sejconnor@tiscali.co.uk; Chaudhary, N. [Neuroradiology Department, Kings College Hospital, Denmark Hill, London SE5 9RS (United Kingdom); Fareedi, S. [Neuroradiology Department, Kings College Hospital, Denmark Hill, London SE5 9RS (United Kingdom); Woo, E.K. [Neuroradiology Department, Kings College Hospital, Denmark Hill, London SE5 9RS (United Kingdom)

    2006-08-15

    The effects of motor cranial nerve dysfunction on the computed tomography (CT) and magnetic resonance imaging (MRI) appearances of head and neck muscles are reviewed. Patterns of denervation changes are described and illustrated for V, VII, X, XI and XII cranial nerves. Recognition of the range of imaging manifestations, including the temporal changes in muscular appearances and associated muscular grafting or compensatory hypertrophy, will avoid misinterpretation as local disease. It will also prompt the radiologist to search for underlying cranial nerve pathology, which may be clinically occult. The relevant cranial nerve motor division anatomy will be described to enable a focussed search for such a structural abnormality.

  10. Human soleus sarcomere lengths measured using in vivo microendoscopy at two ankle flexion angles.

    Science.gov (United States)

    Chen, Xuefeng; Delp, Scott L

    2016-12-08

    The forces generated by the soleus muscle play an important role in standing and locomotion. The lengths of the sarcomeres of the soleus affect its force-generating capacity, yet it is unknown how sarcomere lengths in the soleus change as a function of ankle flexion angle. In this study, we used microendoscopy to measure resting sarcomere lengths at 10° plantarflexion and 20° dorsiflexion in 7 healthy individuals. Mean sarcomere lengths at 10° plantarflexion were 2.84±0.09µm (mean±S.E.M.), near the optimal length for sarcomere force generation. Sarcomere lengths were 3.43±0.09µm at 20° dorsiflexion, indicating that they were longer than optimal length when the ankle was in dorsiflexion and the muscle was inactive. Our results indicate a smaller sarcomere length difference between two ankle flexion angles compared to estimates from musculoskeletal models and suggest why these models frequently underestimate the force-generating capacity of the soleus.

  11. Calf muscle volume estimates: Implications for Botulinum toxin treatment?

    DEFF Research Database (Denmark)

    Bandholm, Thomas Quaade; Sonne-Holm, Stig; Thomsen, Carsten;

    2007-01-01

    An optimal botulinum toxin dose may be related to the volume of the targeted muscle. We investigated the suitability of using ultrasound and anthropometry to estimate gastrocnemius and soleus muscle volume. Gastrocnemius and soleus muscle thickness was measured in 11 cadaveric human legs, using u...

  12. Estudo morfométrico do músculo sóleo de ratos da linhagem wistar pós–imobilização articular = Morphometric study of post-joint immobilization of soleus muscle on wistar lineage rats

    Directory of Open Access Journals (Sweden)

    Sônia Maria Marques Gomes Bertolini

    2010-01-01

    Full Text Available Todos os tipos de imobilização contribuem para a atrofia muscular e, em apenas alguns dias, os músculos passam por diminuição de volume ou perda de função, conhecidos como atrofia. Assim, com uma ou duas semanas de imobilização, as atividades metabólicas são consideravelmente reduzidas e suas fibras musculares substituídas por tecido cicatricial fibroso denso. Dessa forma, este estudo teve como objetivo analisar o efeito da imobilização articular do músculo sóleo do membro posterior de ratos no perfil morfométrico, em diferentes períodos. Foram utilizados dez Rattus navergicus albinus machos, variedade Wistar, que foram divididos em dois grupos com cinco animais cada, sendo o primeiro grupo submetido à imobilização por sete dias e o segundo por 14 dias. O controle do experimento foi obtido a partir do membro contralateral direito do respectivo animal. A imobilização do membro posterior esquerdo foi por meio de uma órtese adaptada. A análise morfométrica do sóleo foi realizada por meio de cortes transversais não seriados de 5 μm de espessura. Foram analisadas, por meio das imagens obtidas, a área das fibras musculares, juntamente com a densidade do tecido conjuntivo, comparando-as ao Grupo-controle, referentes à perna contralateral. Com sete e 14 dias de imobilização, pode-se observar redução significativa (p All types of immobilization contribute to muscular atrophy and, in a few days, the muscles undergo volume reduction or loss of function, known as atrophy. Thus, with one or two weeks of immobilization, metabolic activities are considerably reduced and muscle fibers are replaced by dense fibrous scar tissue. This study has as objective to analyze the effect of joint immobilization of the soleus muscle of posterior members of rats on morphometric profile view, at periods of 7 and 14 days. Ten male Rattus navergicus albinus, Wistar variety, were used, separated into two groups of 5 animals each, with the first

  13. Denervation atrophy is independent from Akt and mTOR activation and is not rescued by myostatin inhibition

    Science.gov (United States)

    MacDonald, Elizabeth M.; Andres-Mateos, Eva; Mejias, Rebeca; Simmers, Jessica L.; Mi, Ruifa; Park, Jae-Sung; Ying, Stephanie; Hoke, Ahmet; Lee, Se-Jin; Cohn, Ronald D.

    2014-01-01

    The purpose of our study was to compare two acquired muscle atrophies and the use of myostatin inhibition for their treatment. Myostatin naturally inhibits skeletal muscle growth by binding to ActRIIB, a receptor on the cell surface of myofibers. Because blocking myostatin in an adult wild-type mouse induces profound muscle hypertrophy, we applied a soluble ActRIIB receptor to models of disuse (limb immobilization) and denervation (sciatic nerve resection) atrophy. We found that treatment of immobilized mice with ActRIIB prevented the loss of muscle mass observed in placebo-treated mice. Our results suggest that this protection from disuse atrophy is regulated by serum and glucocorticoid-induced kinase (SGK) rather than by Akt. Denervation atrophy, however, was not protected by ActRIIB treatment, yet resulted in an upregulation of the pro-growth factors Akt, SGK and components of the mTOR pathway. We then treated the denervated mice with the mTOR inhibitor rapamycin and found that, despite a reduction in mTOR activation, there is no alteration of the atrophy phenotype. Additionally, rapamycin prevented the denervation-induced upregulation of the mTORC2 substrates Akt and SGK. Thus, our studies show that denervation atrophy is not only independent from Akt, SGK and mTOR activation but also has a different underlying pathophysiological mechanism than disuse atrophy. PMID:24504412

  14. Metformina minimiza as alterações morfométricas no músculo sóleo de ratos submetidos à imobilização articular Metformin minimizes the morphometric alterations in the soleus muscle of rats submitted to articular immobilization

    Directory of Open Access Journals (Sweden)

    Paula Lima Bosi

    2008-10-01

    Full Text Available A proposta deste trabalho foi avaliar o músculo sóleo (S de ratos submetidos à imobilização articular por sete dias, associado ou não ao tratamento com metformina (MET, 1,4mg.ml-1 por meio de análises morfométricas. Ratos adultos Wistar (n = 5 foram divididos nos grupos: controle (C, imobilizado em posição neutra do tornozelo (I, tratado com metformina (M, imobilizado tratado com metformina (I + MET. Foram avaliadas a área das fibras, a densidade de área do tecido conjuntivo intramuscular e a massa muscular do S. A análise estatística foi realizada pelo teste de normalidade, ANOVA e de Tukey (p The aim of this study was to evaluate the effect of metformin treatment on the muscle mass, fibers area and connective tissue area density in soleus (S muscle under articular immobilization. METHODS AND RESULTS: Male Wistar rats (250-300g were divided in 4 groups (n=5: control, treated with metformin, immobilized and immobilized treated with metformin. Immobilization was performed by acrylic resin orthoses on the left hindlimb keeping the ankle in neutral position during 7 days. The animals were euthanatized and the S muscle was dissected and weighed. Samples of its ventral portion were treated for inclusion in paraffin and stained in Hematoxylin-Eosin (H:E. The results were obtained through analyses of the muscular fiber area (images analyzed - Image Pró-plus 4,0, as well as of intramuscular connective tissue by means of planimetry. The statistical analysis was performed by normality test followed by ANOVA and Tukey (p<0.05. Hindlimb immobilization during 7 days promoted significant reduction (p<0.05 of 35% in the muscular mass; 44% (p<0.05 in the fiber area and increase of 216% (p<0.05 in the intramuscular connective tissue. The metformin in immobilized group promoted significant alterations (p<0.05 in the muscular mass. In addiction, it was observed significant increase (p<0.05 of 29.6% in the fibers area and significant reduction (p<0

  15. Changes in FDB and soleus muscle activity after a train of stimuli during upright stance Alterações pós-trem de estímulo, na atividade dos músculos FDB e sóleus durante a postura ortostática

    Directory of Open Access Journals (Sweden)

    Liria A. Okai

    2012-06-01

    Full Text Available BACKGROUND: Evidence of self-sustained muscle activation following a brief electrical stimulation has been reported in the literature for certain muscles. OBJECTIVES: This report shows that the foot muscle (Flexor Digitorum Brevis - FDB shows a self-sustained increase in muscle activity during upright stance in some subjects following a train of stimuli to the tibial nerve. METHODS: Healthy subjects were requested to stand upright and surface EMG electrodes were placed on the FDB, Soleus and Tibialis Anterior muscles. After background muscle activity (BGA acquisition, a 50 Hz train of stimuli was applied to the tibial nerve at the popliteal fossa. The root mean square values (RMS of the BGA and the post-stimulus muscle activation were computed. RESULTS: There was a 13.8% average increase in the FDB muscle EMG amplitude with respect to BGA after the stimulation was turned off. The corresponding post-stimulus Soleus EMG activity decreased by an average of 9.2%. We hypothesize that the sustained contraction observed in the FDB following stimulus may be evidence of persistent inward currents (PIC generated in FDB spinal motoneurons. The post-stimulus decrease in soleus activity may have occurred due to the action of inhibitory interneurons caused by the PICs, which were triggered by the stimulus train. CONCLUSIONS: These sustained post-stimulation changes in postural muscle activity, found in different levels in different subjects, may be part of a set of possible responses that contribute to overall postural control.CONTEXTUALIZAÇÃO: Existem evidências de ativação autossustentada em certos músculos pós-estimulação elétrica. OBJETIVOS: Mostrar que, em alguns sujeitos, o músculo do pé (Flexor Digitorum Brevis - FDB também pode apresentar aumento de atividade autossustentada na posição ortostática pós-trem de estímulo no nervo tibial. MÉTODOS: Sujeitos foram solicitados a permanecer na posição ortostática e sinais eletromiogr

  16. Soleus stretch reflex inhibition in the early swing phase of gait using deep peroneal nerve stimulation in spastic stroke participants

    NARCIS (Netherlands)

    Voormolen, Marco M.; Ladouceur, Michel; Veltink, Petrus H.; Sinkjaer, Thomas

    2000-01-01

    Objectives: To investigate the feasibility of inhibiting the stretch reflex of the soleus muscle by a conditioning stimulus applied to the deep peroneal nerve in spastic stroke participants during the early swing phase of gait. - Materials and Methods: This study investigated the effect of an

  17. STRUCTURAL-CHANGES OF THE SOLEUS AND THE TIBIALIS ANTERIOR MOTONEURON POOL DURING DEVELOPMENT IN THE RAT

    NARCIS (Netherlands)

    WESTERGA, J; GRAMSBERGEN, A

    1992-01-01

    The morphological development of motoneuron pools of two hindlimb muscles of the rat, soleus (SOL) and tibialis anterior (TA), was studied in rats ranging in age between 8 and 30 postnatal days (P8-P30). Motoneurons were retrogradely labelled by injecting a cholera toxin B subunit solution directly

  18. Measures of bulbar and spinal motor function, muscle innervation, and mitochondrial function in ALS rats.

    Science.gov (United States)

    Smittkamp, Susan E; Spalding, Heather N; Brown, Jordan W; Gupte, Anisha A; Chen, Jie; Nishimune, Hiroshi; Geiger, Paige C; Stanford, John A

    2010-07-29

    Symptom onset in amyotrophic lateral sclerosis (ALS) may occur in the muscles of the limbs (spinal onset) or those of the head and neck (bulbar onset). Most preclinical studies have focused on spinal symptoms, despite the prevalence of and increased morbidity and mortality associated with bulbar disease. We measured lick rhythm and tongue force to evaluate bulbar disease in the SOD1-G93A rat model of familial ALS. Body weight and grip strength were measured concomitantly. Testing spanned the early (maturation), middle (pre-symptomatic), and late (symptomatic and end-stage) phases of the disease. We measured a persistent tongue motility deficit that became apparent in the early phase of the disease, providing behavioral evidence of bulbar pathology. At end-stage, however, cytochrome oxidase (CO) activity was normal in the hypoglossal nucleus, and in the tongue, neuromuscular innervation, citrate synthase (CS) protein levels and activity, and uncoupling protein 3 (UCP3) protein levels remained unchanged. Interestingly, significant denervation and atrophy were evident in the end-stage sternomastoid muscle, providing peripheral anatomical evidence of bulbar pathology. Changes in body weight and grip strength occurred in the late phase of the disease. Extensive atrophy and denervation were observed in the end-stage gastrocnemius muscle. In contrast to our findings in the tongue, CS protein levels were decreased in the extensor digitorum longus (EDL) and soleus, although CS activity was maintained or increased. UCP3 protein was decreased also in the EDL. These data provide evidence of differential effects in muscles that were more or less affected by disease.

  19. Efeitos da estimulação elétrica neuromuscular no músculo sóleo de ratos: análise morfométrica e metabólica Effects of neuromuscular electric stimulation on rats' soleus muscle: a morphometric and metabolic analysis

    Directory of Open Access Journals (Sweden)

    João Luiz Quagliotti Durigan

    2008-01-01

    Full Text Available O objetivo desse trabalho foi avaliar o efeito da estimulação elétrica neuromuscular (EE fásica sobre os parâmetros morfométrico e metabólico do músculo sóleo de ratos, nos períodos de 3, 7 e 15 dias. Ratos Wistar foram divididos em 4 grupos (n=5: controle (C, EE por 3 dias (EE-3, 7 dias (EE-7 e 15 dias (EE-15. Foram analisado o conteúdo de glicogênio, massa muscular, área das fibras e densidade de área do tecido conjuntivo intramuscular. A análise estatística foi realizada pela ANOVA e Tukey (pThe aim of this work was to evaluate the effect of phasic neuromuscular electric stimulation (ES on morphometric and metabolic parameters of rats' soleus muscles for 3, 7and 15 days. Wistar rats were divided into four groups (n=5: control (C, ES for 3 days (ES-3, ES for 7 days (ES-7 and ES for 15 days (ES-15. Glycogen content, muscle mass, fibers area and area fraction of the intramuscular connective tissue were assessed. The statistical analysis was performed by ANOVA and Tukey (p<0.05. Regarding muscle mass, there was a significant increase in ES-15 (11.55% compared to C. The glycogen content didn't show significant changes in ES-3 when compared to C. ES-7 and ES-15 showed the significant increase of 74.19% and 80.64%, respectively, compared to C. In the morphometric analysis, a significant increase in ES-15 (16.23% compared to C was found. The area fraction of the intramuscular connective tissue didn't present significant changes in all groups submitted to ES when compared to C. The ES fostered an increase of the glycogen content in 7 and 15 days, as well as increased muscle mass, fibers area and glycogen content in 15 days.

  20. Avaliação da inibição recíproca em humanos durante contrações isométricas dos músculos tibial anterior e sóleo Assessment of reciprocal inhibition in humans during isometric contractions of the tibialis anterior and soleus muscles

    Directory of Open Access Journals (Sweden)

    José Eduardo Pompeu

    2009-09-01

    Full Text Available Os objetivos do presente trabalho foram: (1 desenvolver um método para estimar o grau de inibição recíproca (IR entre músculos antagonistas em humanos (sóleo e tibial anterior e (2 comparar os níveis de IR no repouso, na dorsiflexão (DF e na flexão plantar (FP. Participaram nove sujeitos saudáveis com idade entre 20 e 30 anos, quatro homens e cinco mulheres. Os sujeitos permaneceram sentados numa cadeira com o pé direito apoiado e fixo num pedal acoplado a um torquímetro; as medições foram feitas no repouso e durante contração isométrica dos músculos dorsiflexores e flexores plantares do tornozelo. A onda H do músculo sóleo foi captada por eletrodos de superfície. O reflexo H (RH "teste" do músculo sóleo foi medido aplicando-se um estímulo na fossa poplítea (nervo tibial. O reflexo H "condicionado" foi obtido pelo pareamento de dois estímulos: o primeiro aplicado sobre a cabeça da fíbula e o segundo, na fossa poplítea, após 1 a 3 ms.. As amplitudes pico-a-pico dos RH teste e condicionado foram utilizadas para o cálculo da IR. Os valores de IR foram: 16,41%±8,68 no repouso; 21,94%±5,39 na DF e 3,12%±11,84 na FP. Foi constatada menor inibição recíproca na FP quando comparada às demais condições (pThe purposes of the present study were (1 to develop a method to estimate the level of reciprocal inhibition (RI between antagonist (soleus and anterior tibial muscles in humans, and (2 to compare RI levels during rest, dorsiflexion (DF and plantar flexion (PF. Nine healthy subjects (four men, five women aged between 20 and 30 years were assessed. Each subject remained seated with his/her right foot strapped to a rigid foot plate coupled to a torquemeter; measurements were taken at rest and during isometric contraction of the ankle dorsiflexor and plantar flexor muscles. The soleus muscle H-wave was captured by surface electrodes. A "test" H- reflex was elicited by a stimulus (electrical pulse to the popliteal fossa

  1. Chemical Renal Denervation in the Rat

    Energy Technology Data Exchange (ETDEWEB)

    Consigny, Paul M., E-mail: paul.consigny@av.abbott.com; Davalian, Dariush, E-mail: dariush.davalian@av.abbott.com [Abbott Vascular, Innovation Incubator (United States); Donn, Rosy, E-mail: rosy.donn@av.abbott.com; Hu, Jie, E-mail: jie.hu@av.abbott.com [Abbott Vascular, Bioanalytical and Material Characterization (United States); Rieser, Matthew, E-mail: matthew.j.rieser@abbvie.com; Stolarik, DeAnne, E-mail: deanne.f.stolarik@abbvie.com [Abbvie, Analytical Pharmacology (United States)

    2013-12-03

    Introduction: The recent success of renal denervation in lowering blood pressure in drug-resistant hypertensive patients has stimulated interest in developing novel approaches to renal denervation including local drug/chemical delivery. The purpose of this study was to develop a rat model in which depletion of renal norepinephrine (NE) could be used to determine the efficacy of renal denervation after the delivery of a chemical to the periadventitial space of the renal artery. Methods: Renal denervation was performed on a single renal artery of 90 rats (n = 6 rats/group). The first study determined the time course of renal denervation after surgical stripping of a renal artery plus the topical application of phenol in alcohol. The second study determined the efficacy of periadventitial delivery of hypertonic saline, guanethidine, and salicylic acid. The final study determined the dose–response relationship for paclitaxel. In all studies, renal NE content was determined by liquid chromatography–mass spectrometry. Results: Renal NE was depleted 3 and 7 days after surgical denervation. Renal NE was also depleted by periadventitial delivery of all agents tested (hypertonic saline, salicylic acid, guanethidine, and paclitaxel). A dose response was observed after the application of 150 μL of 10{sup −5} M through 10{sup −2} M paclitaxel. Conclusion: We developed a rat model in which depletion of renal NE was used to determine the efficacy of renal denervation after perivascular renal artery drug/chemical delivery. We validated this model by demonstrating the efficacy of the neurotoxic agents hypertonic saline, salicylic acid, and guanethidine and increasing doses of paclitaxel.

  2. Chronic bilateral renal denervation attenuates renal injury in a transgenic rat model of diabetic nephropathy.

    Science.gov (United States)

    Yao, Yimin; Fomison-Nurse, Ingrid C; Harrison, Joanne C; Walker, Robert J; Davis, Gerard; Sammut, Ivan A

    2014-08-01

    Bilateral renal denervation (BRD) has been shown to reduce hypertension and improve renal function in both human and experimental studies. We hypothesized that chronic intervention with BRD may also attenuate renal injury and fibrosis in diabetic nephropathy. This hypothesis was examined in a female streptozotocin-induced diabetic (mRen-2)27 rat (TGR) shown to capture the cardinal features of human diabetic nephropathy. Following diabetic induction, BRD/sham surgeries were conducted repeatedly (at the week 3, 6, and 9 following induction) in both diabetic and normoglycemic animals. Renal denervation resulted in a progressive decrease in systolic blood pressure from first denervation to termination (at 12 wk post-diabetic induction) in both normoglycemic and diabetic rats. Renal norepinephrine content was significantly raised following diabetic induction and ablated in denervated normoglycemic and diabetic groups. A significant increase in glomerular basement membrane thickening and mesangial expansion was seen in the diabetic kidneys; this morphological appearance was markedly reduced by BRD. Immunohistochemistry and protein densitometric analysis of diabetic innervated kidneys confirmed the presence of significantly increased levels of collagens I and IV, α-smooth muscle actin, the ANG II type 1 receptor, and transforming growth factor-β. Renal denervation significantly reduced protein expression of these fibrotic markers. Furthermore, BRD attenuated albuminuria and prevented the loss of glomerular podocin expression in these diabetic animals. In conclusion, BRD decreases systolic blood pressure and reduces the development of renal fibrosis, glomerulosclerosis, and albuminuria in this model of diabetic nephropathy. The evidence presented strongly suggests that renal denervation may serve as a therapeutic intervention to attenuate the progression of renal injury in diabetic nephropathy.

  3. RNA干扰介导的FoxO3a基因下调延缓大鼠失神经骨骼肌萎缩%Delaying of denervated muscle atrophy by means of gene downregulation of FoxO3a by RNA

    Institute of Scientific and Technical Information of China (English)

    张鉴; 秦春耀; 韦健; 张小丽; 李刚; 冯勇; 杜利兵; 梁炳生

    2015-01-01

    Objective To Explore the effect of delaying atrophy of rat denervted skeletal muscles by RNAi- mediated gene downregulation of FoxO3a.Methods Thitry-six SD rats were randomly divided control group and experimental group.Models of extensor digitorum longus muscle denervation atrophy were established at the right lower limb by cutting sciatic nerve.Denervated extensor digitorum longus muscles of experimental groups were administered with 50 μl of recombinant lentivirs vector carrying FoxO3a.50μl lenti-GFP solution was administered into Denervated extensor digitorum longus muscles of control groups.One and 3 weeks after the transfection.the right intact extensor digitorum longus muscles of 3 rats of each group and timepoint were excised to observe green fluorescent under fluorescent microscope. The right intact extensor digitorum longus muscles of 6 rats of each group and timepoint were excised to observe ultrastructure of muscle cells under the transmission electron microscope and measure the total protein content of extensor digitorum longus,muscle wet weight preservation rate,total protein content of extensor digitorum longus and muscle fiber cross-sectional.Results One and three weeks after transfection strong GFP green fluorescent was observed in the extensor digitorum longus muscles of both Groups. One weeks after transfection,wet weight preservation rate,total protein content and muscle fiber cross-seetional area of the denervated muscles in the experimental group were,(90.87±1.56)%,(93.20±1.33) mg/ml and(937.63.42±17.63) μm2 respectively,being obviously greater than those parameters of the control group,which were(77.73±2.21)%,(74.74±1.45) mg/ml and(721.50±14.40) μm2respectively(allP<0.01). After 1 and 3 weeks RT-PCR showed significantly reduced expression of gene FoxO3a in the experimental group compared with the control group(P<0.01). After 3 weeks,the above-mentioned parameters were (86.69±1.31)%,(80.39±2.34) mg/mland(843.10±16.44) μm2

  4. Presynaptic inhibition of soleus Ia afferents does not vary with center of pressure displacements during upright standing.

    Science.gov (United States)

    Johannsson, J; Duchateau, J; Baudry, S

    2015-07-09

    The present work was designed to investigate the presynaptic modulation of soleus Ia afferents with the position and the direction of the displacement of the center of pressure (CoP) during unperturbed upright standing and exaggerated CoP displacements in young adults. Hoffmann (H) reflex was evoked in the soleus by stimulating the tibial nerve at the knee level. Modulation of Ia presynaptic inhibition was assessed by conditioning the H reflex with fibular nerve (D1 inhibition) and femoral nerve (heteronymous facilitation) stimulation. Leg muscle activity was assessed by electromyography (EMG). The results indicate that in unperturbed standing and exaggerated CoP displacements, the H-reflex amplitude was greater during forward than backward CoP direction (pEMG was greater during forward than backward CoP direction and during anterior than posterior position in both experimental conditions (pmodulation of the unconditioned H reflex with CoP direction was positively associated with the corresponding changes in soleus EMG (r(2)>0.34). The tibialis anterior EMG did not change during unperturbed standing, but was greater for backward than forward CoP direction during exaggerated CoP displacements. In this experimental condition, soleus EMG was negatively associated with tibialis anterior EMG (r(2)=0.81). These results indicate that Ia presynaptic inhibition is not modulated with CoP direction and position, but rather suggest that CoP displacements induced changes in excitability of the soleus motor neuron pool.

  5. Differential alterations in gene expression profiles contribute to time-dependent effects of nandrolone to prevent denervation atrophy

    Directory of Open Access Journals (Sweden)

    Bauman William A

    2010-10-01

    Full Text Available Abstract Background Anabolic steroids, such as nandrolone, slow muscle atrophy, but the mechanisms responsible for this effect are largely unknown. Their effects on muscle size and gene expression depend upon time, and the cause of muscle atrophy. Administration of nandrolone for 7 days beginning either concomitantly with sciatic nerve transection (7 days or 29 days later (35 days attenuated denervation atrophy at 35 but not 7 days. We reasoned that this model could be used to identify genes that are regulated by nandrolone and slow denervation atrophy, as well as genes that might explain the time-dependence of nandrolone effects on such atrophy. Affymetrix microarrays were used to profile gene expression changes due to nandrolone at 7 and 35 days and to identify major gene expression changes in denervated muscle between 7 and 35 days. Results Nandrolone selectively altered expression of 124 genes at 7 days and 122 genes at 35 days, with only 20 genes being regulated at both time points. Marked differences in biological function of genes regulated by nandrolone at 7 and 35 days were observed. At 35, but not 7 days, nandrolone reduced mRNA and protein levels for FOXO1, the mTOR inhibitor REDD2, and the calcineurin inhibitor RCAN2 and increased those for ApoD. At 35 days, correlations between mRNA levels and the size of denervated muscle were negative for RCAN2, and positive for ApoD. Nandrolone also regulated genes for Wnt signaling molecules. Comparison of gene expression at 7 and 35 days after denervation revealed marked alterations in the expression of 9 transcriptional coregulators, including Ankrd1 and 2, and many transcription factors and kinases. Conclusions Genes regulated in denervated muscle after 7 days administration of nandrolone are almost entirely different at 7 versus 35 days. Alterations in levels of FOXO1, and of genes involved in signaling through calcineurin, mTOR and Wnt may be linked to the favorable action of nandrolone on

  6. Cytokine responses during chronic denervation

    Directory of Open Access Journals (Sweden)

    Olsson Tomas

    2005-11-01

    Full Text Available Abstract Background The aim of the present study was to examine inflammatory responses during Wallerian degeneration in rat peripheral nerve when the regrowth of axons was prevented by suturing. Methods Transected rat sciatic nerve was sutured and ligated to prevent reinnervation. The samples were collected from the left sciatic nerve distally and proximally from the point of transection. The endoneurium was separated from the surrounding epi- and perineurium to examine the expression of cytokines in both of these compartments. Macrophage invasion into endoneurium was investigated and Schwann cell proliferation was followed as well as the expression of cytokines IL-1β, IL-10, IFN-γ and TNF-α mRNA. The samples were collected from 1 day up to 5 weeks after the primary operation. Results At days 1 to 3 after injury in the epi-/perineurium of the proximal and distal stump, a marked expression of the pro-inflammatory cytokines TNF-α and IL-1β and of the anti-inflammatory cytokine IL-10 was observed. Concurrently, numerous macrophages started to gather into the epineurium of both proximal and distal stumps. At day 7 the number of macrophages decreased in the perineurium and increased markedly in the endoneurium of both stumps. At this time point marked expression of TNF-α and IFN-γ mRNA was observed in the endo- and epi-/perineurium of the proximal stump. At day 14 a marked increase in the expression of IL-1β could be noted in the proximal stump epi-/perineurium and in the distal stump endoneurium. At that time point many macrophages were observed in the longitudinally sectioned epineurium of the proximal 2 area as well as in the cross-section slides from the distal stump. At day 35 TNF-α, IL-1β and IL-10 mRNA appeared abundantly in the proximal epi-/perineurium together with macrophages. Conclusion The present studies show that even during chronic denervation there is a cyclic expression pattern for the studied cytokines. Contrary to the

  7. Renal Sympathetic Denervation: Hibernation or Resurrection?

    Science.gov (United States)

    Papademetriou, Vasilios; Doumas, Michael; Tsioufis, Costas

    2016-01-01

    The most current versions of renal sympathetic denervation have been invented as minimally invasive approaches for the management of drug-resistant hypertension. The anatomy, physiology and pathophysiology of renal sympathetic innervation provide a strong background supporting an important role of the renal nerves in the regulation of blood pressure (BP) and volume. In addition, historical data with surgical sympathectomy and experimental data with surgical renal denervation indicate a beneficial effect on BP levels. Early clinical studies with transcatheter radiofrequency ablation demonstrated impressive BP reduction, accompanied by beneficial effects in target organ damage and other disease conditions characterized by sympathetic overactivity. However, the failure of the SYMPLICITY 3 trial to meet its primary efficacy end point raised a lot of concerns and put the field of renal denervation into hibernation. This review aims to translate basic research into clinical practice by presenting the anatomical and physiological basis for renal sympathetic denervation, critically discussing the past and present knowledge in this field, where we stand now, and also speculating about the future of the intervention and potential directions for research. © 2016 S. Karger AG, Basel.

  8. Renal Denervation: Past, Present, and Future

    Directory of Open Access Journals (Sweden)

    Negiin Pourafshar

    2016-05-01

    Full Text Available Over the past decade, percutaneous renal denervation has been vigorously investigated as a treatment for resistant hypertension. The SYMPLICITY radiofrequency catheter system (Medtronic CardioVascular Inc., Santa Rosa, CA, USA is the most tested device in clinical trials. After the positive results of small phase I and II clinical trials, SYMPLICITY HTN-3 (a phase III, multi-center, blinded, sham-controlled randomized clinical trial was completed in 2014, but did not show significant blood pressure lowering effect with renal denervation compared to medical therapy and caused the investigators and industry to revisit both the basic science elements of renal denervation as well as the design of related clinical trials. This review summarizes the SYMPLICITY trials, analyzes the SYMPLICITY HTN-3 data, and provides insights gained from this trial in the design of the most recent clinical trial, the SPYRAL HTN Global clinical trial. Other than hypertension, the role of renal denervation in the management of other disease processes such as systolic and diastolic heart failure, metabolic syndrome, arrhythmia, and obstructive sleep apnea with the common pathophysiologic pathway of sympathetic overactivity is also discussed.

  9. Time-Dependent Changes in the Structure of Calcified Fibrocartilage in the Rat Achilles Tendon-Bone Interface With Sciatic Denervation.

    Science.gov (United States)

    Takahashi, Hideaki; Tamaki, Hiroyuki; Oyama, Mineo; Yamamoto, Noriaki; Onishi, Hideaki

    2017-09-13

    The enthesis transmits a physiological load from soft to hard tissue via fibrocartilage. The histological alterations induced by this physiological loading remain unclear. This study was performed to examine the histomorphological alterations in the collagen fiber bundle alignment and depth of collagen interdigitation between the calcified fibrocartilage and the bone. We examined the Achilles enthesis of rats with sciatic denervation to explore the mechanical effects of structural changes in the enthesis. The parallelism of the collagen fiber bundles was significantly reduced 8 weeks after denervation. However, the depth of collagen interdigitation significantly increased at 2 and 4 weeks after denervation and then significantly decreased 8 weeks after denervation. In conclusion, a lack of muscle loading induced structural alterations in the distal calcified fibrocartilage. These findings suggest that while structural changes in the enthesis are necessary for the development of physiological loading, structural deformities are required in the long term. Anat Rec, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  10. Influence of different degrees of bilateral emulated contractures at the triceps surae on gait kinematics: The difference between gastrocnemius and soleus.

    Science.gov (United States)

    Attias, M; Bonnefoy-Mazure, A; De Coulon, G; Cheze, L; Armand, S

    2017-07-31

    Ankle plantarflexion contracture results from a permanent shortening of the muscle-tendon complex. It often leads to gait alterations. The objective of this study was to compare the kinematic adaptations of different degrees of contractures and between isolated bilateral gastrocnemius and soleus emulated contractures using an exoskeleton. Eight combinations of contractures were emulated bilaterally on 10 asymptomatic participants using an exoskeleton that was able to emulate different degrees of contracture of gastrocnemius (biarticular muscle) and soleus (monoarticular muscle), corresponding at 0°, 10°, 20°, and 30° ankle plantarflexion contracture (knee-flexed and knee-extended). Range of motion was limited by ropes attached for soleus on heel and below the knee and for gastrocnemius on heel and above the knee. A gait analysis session was performed to evaluate the effect of these different emulated contractures on the Gait Profile Score, walking speed and gait kinematics. Gastrocnemius and soleus contractures influence gait kinematics, with an increase of the Gait Profile Score. Significant differences were found in the kinematics of the ankles, knees and hips. Contractures of soleus cause a more important decrease in the range of motion at the ankle than the same degree of gastrocnemius contractures. Gastrocnemius contractures cause greater knee flexion (during the stance phase) and hip flexion (during all the gait cycle) than the same level of soleus contractures. These results can support the interpretation of the Clinical Gait Analysis data by providing a better understanding of the effect of isolate contracture of soleus and gastrocnemius on gait kinematics. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Morphology of orbicularis muscle and orbicularis oris motor end plat of experimentally denervated and reinnervated guinea pigs facial nerve%不同程度失神经支配后眼轮匝肌和口轮匝肌运动终板的形态学研究

    Institute of Scientific and Technical Information of China (English)

    惠莲; 杨宁; 姜学钧; 任重

    2013-01-01

    目的 探讨不同程度失神经支配后眼轮匝肌(眼肌)和口轮匝肌(口肌)运动终板的形态学变化.方法 建立豚鼠右侧面神经阻断15s、30 s和切断的动物模型.于术后1周和1月切取口肌和眼肌患侧和健侧组织,应用乙酰胆碱酯酶组织化学染色,分析光镜和电镜下口肌和眼肌运动终板的病理变化,探讨乙酰胆碱酯酶活性变化与肌肉种属和肌纤维类型的关系.结果 光镜下,正常情况下,眼肌和口肌的AchE活性接近;神经损伤1周时,眼肌和口肌AchE活性均没有明显变化;神经损伤1月时,口肌AchE活性仍没有明显变化,而眼肌出现变化:断组<30 s组<15 s组.电镜下,正常组MEP接头褶宽大,AchE阳性反应产物为均匀一致的高电子密度颗粒,定位于突触前膜和突触后膜.失神经支配后1周,突触后膜和神经末梢萎缩,初级和次级皱褶均变浅,眼肌与口肌MEP结构相似.失神经支配后1月口肌,断组,初级和次级皱褶继续变浅;15 s和30 s组,初级突触间隙接近正常.失神经支配后1月眼肌,30 s组和断组初级和次级皱褶继续变浅,有些次级皱褶消失.结论 不同程度神经支配后,口肌MEP处的AchE含量一定时间内保持稳定,MEP处的AchE活性变化与肌肉种属和肌纤维类型不同有关.面肌间受伤存在差异,支持面神经瘫部分评价系统的合理性.%Objective To Explore the morphological changes of the orbicularis muscle and orbicularis oris motor end plate (MEP)of experimentally denervated and reinnervated guinea pigs facial nerve. Methods The animal model was estabished that the guinea pig right facial nerve block for 15 seconds, 30 seconds, and cut. Cut ipsilateral and contralateral tissue of orbicularis muscle and orbicularis oris a week and a month after surgery, we analyse the pathological changes of MEP in orbicularis muscle and orbicularis oris by acetylcholinesterase (AchE) staining in light microscope (LM) and electron

  12. Efeitos da remobilização em duas semanas com natação sobre o músculo sóleo de ratos submetidos à imobilização Effects of remobilization in two weeks of swimming on the soleus muscle of rats submitted to immobilization

    Directory of Open Access Journals (Sweden)

    Fabielle Sant'Ana Volpi

    2008-06-01

    Full Text Available Uma importante questão para a reabilitação é como proteger o músculo esquelético dos efeitos da imobilização, pois, o músculo é o mais mutável dentre os tecidos biológicos e responde às demandas normais ou alteradas com adaptações morfológicas e funcionais. O objetivo deste artigo foi verificar o efeito de duas diferentes intensidades de carga de natação sobre a morfologia do músculo sóleo, e se são eficazes para reverter o processo de atrofia causado pela imobilização durante o período de 15 dias. Foram utilizados 10 ratos, com idade de 10±2 semanas, divididos em 2 grupos: G1 (imobilização/natação sem peso e G2 (imobilização/natação com sobrecarga de 10% do peso corporal. Dentro das variáveis analisadas ao comparar o membro esquerdo (submetido à imobilização com o direito (não submetido foram observados: para peso muscular em G1=-20,55% (p=0,0344 e G2= -17,02% (p=0,0053; comprimento muscular em G1= -10,66% (p=0,0011 e G2= -6,55% (p=0,1016; estimativa de sarcômeros em série no músculo para G1= -14,18% (p=0,0101 e G2= -10,99% (p=0,0043; e para comprimento de sarcômeros em G1= 3,51% (p=0,3989 e G2= 5,28% (p=0,1771. Conclui-se que duas semanas de remobilização através da natação, com diferentes tipos de sobrecarga não foram suficientes para reverter totalmente o processo de atrofia causado pela imobilização.An important issue in rehabilitation is how to protect the skeletal muscle from immobilization effects, since it is the most changeable tissue amongst the biological tissues and responds to normal or modified demands with morphological and functional adaptations. The objective of this paper was to check the effect of two different swimming load intensities on the morphological properties of the soleus muscle, and if the different degrees of swimming are effective to reverse the process of atrophy caused by immobilization during 15 days. Ten rats, 10±2 weeks were used and divided in 2 groups:G1

  13. Changes in soleus H-reflex during walking in middle-aged, healthy subjects

    DEFF Research Database (Denmark)

    Raffalt, Peter C; Alkjær, Tine; Simonsen, Erik B

    2015-01-01

    and tibialis anterior muscles, and EMG/H-reflex gain were measured during 4-km/h treadmill walking. RESULTS: The normalized H-reflex amplitude was lower in the swing phase for the middle-aged group, and there was no difference in muscle activity. EMG/H-reflex gain did not differ between groups. CONCLUSIONS: H......-reflex amplitude during walking was affected by aging, and changes during the swing phase could be seen in the middle-aged subjects. Subdividing the 2 age groups into groups of facilitated or suppressed swing-phase H-reflex revealed that the H-reflex amplitude modulation pattern in the group with facilitated swing......INTRODUCTION: To assess the effect of aging on stretch reflex modulation during walking, soleus H-reflexes obtained in 15 middle-aged (mean age 56.4±6.9 years) and 15 young (mean age 23.7±3.9 years) subjects were compared. METHODS: The H-reflex amplitude, muscle activity (EMG) of the soleus...

  14. Neurohumoral indicators of efficacy radiofrequency cardiac denervation

    Science.gov (United States)

    Evtushenko, A. V.; Evtushenko, V. V.; Saushkina, Yu. V.; Lishmanov, Yu. B.; Pokushalov, E. A.; Sergeevichev, D. S.; Gusakova, A. M.; Suslova, T. E.; Dymbrylova, O. N.; Bykov, A. N.; Syryamkin, V. I.; Kistenev, Yu. V.; Anfinogenova, Ya. D.; Smyshlyaev, K. A.; Lotkov, A. I.; Kurlov, I. O.

    2015-11-01

    In this study, we compared pre- and postoperative parameters of the cardiac sympathetic innervation. The aim of the study was to examine the approaches to evaluating the quality of radiofrequency (RF)-induced cardiac denervation by using non-invasive and laboratory methods. The study included 32 people with long-lasting persistent atrial fibrillation (AF). The patients were divided into 2 groups according to the objectives of the study: group 1 (main) - 21 patients with mitral valve diseases, which simultaneously with radiofrequency ablation (RFA) AF carried out on the effects of the paraganglionic nervous plexuses by C. Pappone (2004) and N. Doll (2008) schemes. The second group (control) contained 11 patients with heart diseases in sinus rhythm (the RF denervation not been performed). All patients, who underwent surgical treatment, were received examination of cardiac sympathetic tone by using 123I-MIBG. All of them made blood analysis from ascending aorta and coronary sinus to determine the level of norepinephrine and its metabolites before and after cardiac denervation. Data of radionuclide examination are correlating with laboratory data.

  15. Neurohumoral indicators of efficacy radiofrequency cardiac denervation

    Energy Technology Data Exchange (ETDEWEB)

    Evtushenko, A. V., E-mail: ave@cardio-tomsk.ru; Evtushenko, V. V. [National Research Tomsk State University, Tomsk (Russian Federation); Federal State Budgetary Scientific Institution “Research Institute for Cardiology”, Tomsk (Russian Federation); Saushkina, Yu. V.; Gusakova, A. M.; Suslova, T. E.; Dymbrylova, O. N.; Smyshlyaev, K. A.; Kurlov, I. O. [Federal State Budgetary Scientific Institution “Research Institute for Cardiology”, Tomsk (Russian Federation); Lishmanov, Yu. B.; Anfinogenova, Ya. D. [National Research Tomsk Polytechnic University, Tomsk (Russian Federation); Federal State Budgetary Scientific Institution “Research Institute for Cardiology”, Tomsk (Russian Federation); Sergeevichev, D. S. [Academician E.N. Meshalkin State Research Institute of Circulation Pathology, Novosibirsk (Russian Federation); Bykov, A. N.; Syryamkin, V. I.; Kistenev, Yu. V. [National Research Tomsk State University, Tomsk (Russian Federation); Lotkov, A. I. [Institute of Strength Physics and Materials Science of the Siberian Branch of the RAS, Tomsk (Russian Federation); Pokushalov, E. A.

    2015-11-17

    In this study, we compared pre- and postoperative parameters of the cardiac sympathetic innervation. The aim of the study was to examine the approaches to evaluating the quality of radiofrequency (RF)-induced cardiac denervation by using non-invasive and laboratory methods. The study included 32 people with long-lasting persistent atrial fibrillation (AF). The patients were divided into 2 groups according to the objectives of the study: group 1 (main) - 21 patients with mitral valve diseases, which simultaneously with radiofrequency ablation (RFA) AF carried out on the effects of the paraganglionic nervous plexuses by C. Pappone (2004) and N. Doll (2008) schemes. The second group (control) contained 11 patients with heart diseases in sinus rhythm (the RF denervation not been performed). All patients, who underwent surgical treatment, were received examination of cardiac sympathetic tone by using {sup 123}I-MIBG. All of them made blood analysis from ascending aorta and coronary sinus to determine the level of norepinephrine and its metabolites before and after cardiac denervation. Data of radionuclide examination are correlating with laboratory data.

  16. Basal and insulin-stimulated skeletal muscle sugar transport in endotoxic and bacteremic rats

    Energy Technology Data Exchange (ETDEWEB)

    Westfall, M.V.; Sayeed, M.M.

    1988-04-01

    Membrane glucose transport with and without insulin was studied in soleus muscle from 5-h endotoxic rats (40 mg/kg Salmonella enteritidis lipopolysaccharide), and in soleus and epitrochlearis muscles from 12-h bacteremic (Escherichia coli, 4 X 10(10) CFU/kg) rats. Glucose transport was measured in muscles by evaluating the fractional efflux of /sup 14/C-labeled 3-O-methylglucose (/sup 14/C-3-MG) after loading muscles with /sup 14/C-3-MG. Basal 3-MG transport was elevated in soleus muscles from endotoxic as well as in soleus and epitrochlearis muscles from bacteremic rats compared with time-matched controls. Low insulin concentrations stimulated /sup 14/C-3-MG transport more in bacteremic and endotoxic rat muscles than in controls. However, sugar transport in the presence of high insulin dose was attenuated in soleus and epitrochlearis muscles from bacteremic rats and soleus muscles from endotoxic rats compared with controls. Analysis of the dose-response relationship with ALLFIT revealed that the maximal transport response to insulin was significantly decreased in both models of septic shock. Sensitivity to insulin (EC50) was increased in endotoxic rat muscles, and a somewhat similar tendency was observed in bacteremic rat soleus muscles. Neural and humoral influences and/or changes in cellular metabolic energy may contribute to the increase in basal transport. Shifts in insulin-mediated transport may be due to alterations in insulin-receptor-effector coupling and/or the number of available glucose transporters.

  17. The rise, fall, and possible resurrection of renal denervation.

    Science.gov (United States)

    Gulati, Rajiv; Raphael, Claire E; Negoita, Manuela; Pocock, Stuart J; Gersh, Bernard J

    2016-04-01

    Renal denervation has a chequered history. Dramatic reductions in blood pressure after denervation of the renal arteries were observed in early trials, but later trials in which denervation was tested against a sham procedure produced neutral results. Although a sound pathophysiological basis exists for interruption of the renal sympathetic nervous system as a treatment for hypertension, trial data to date are insufficient to support renal denervation as an established clinical therapy. In this Perspectives article, we summarize the currently available trial data, device development, and trials in progress, and provide recommendations for future trial design.

  18. Análise longitudinal de músculos sóleos, de ratos, submetidos a alongamento passivo com uso prévio de ultrassom terapêutico Longitudinal analysis of soleus muscles of rats submitted to passive stretching with previous use of therapeutic ultrasound

    Directory of Open Access Journals (Sweden)

    Gladson Ricardo Flor Bertolini

    2009-04-01

    anabolic effects. The aim of this study was to analyze the static passive stretching effects in left soleus muscle (LSM of rats, associated to the therapeutic ultrasound use on muscular tissue longitudinal alterations. Forty-two Wistar rats, divided in therapeutic ultrasound treated groups, with thermal and non-thermal doses, and subsequent static stretching in 3 sets of 30 s, besides groups just treated with ultrasound or stretched, for 15 days were used. The variations found between LSM and RSM of each group were compared. The variables were: muscular length, serial sarcomere estimation in the fiber and along the muscle, and sarcomere length. The analyzed variables results showed alterations in rest muscular length in the groups with therapeutic ultrasound in thermal dose associated to static stretching. However, there were not significant differences for the other analyzed variables. It is concluded that static passive stretching associated to therapeutic ultrasound in thermal dose just produced increase in rest muscular length.

  19. Esteróide anabolizante inibe a angiogênese induzida pelo treinamento físico de natação em músculo sóleo de ratos normotensos Anabolic steroid impairs the angiogenesis induced by swimming training in soleus muscle of normotensive rats

    Directory of Open Access Journals (Sweden)

    Ursula Paula Reno Soci

    2009-09-01

    damaging. To study the effects of EAA on the cardiovascular system, Wistar rats were randomized into Sedentary Control (SC, Sedentary Steroid (SA, Trained Control (TC and Trained Steroid (TA groups. We evaluated the effects of swimming training (60min/day, 5x/week during 10 week and AAS (nandrolone decanoate - 5 mg/kg sc, 2x/week on cardiac output, basal blood flow (Qb, DC basal and after injection of a vasodilator to observe the endothelium dependent vasodilatation (acetylcholine - Q Ach(Q Ach, DC Ach, capillary to fiber ratio (r c/f and vascular-endothelial growth factor expression (VEGF in soleus muscle (oxidative fibers. Serum testosterone increased in SA and TA. Exercise training significantly decreased resting heart rate. Qb was not different among groups, and QAch was higher in TC group, however in TA group this beneficial effect of swimming exercise training was lost by association with EAA. Rc/f and VEGF were higher only in TC group. These results suggest that swimming training associated with EAA inhibit angiogenesis and arteriogenesis observed as effects of aerobic training, and impairs the red skeletal muscle blood flow which predispose physically active AAS users to vascular diseases.

  20. Estudo morfométrico do músculo sóleo de ratos da linhagem wistar pós–imobilização articular - DOI: 10.4025/actascihealthsci.v32i1.5908 Morphometric study of post-joint immobilization of soleus muscle on wistar lineage rats - DOI: 10.4025/actascihealthsci.v32i1.5908

    Directory of Open Access Journals (Sweden)

    Priscila Daniele de Oliveira

    2009-12-01

    Full Text Available Todos os tipos de imobilização contribuem para a atrofia muscular e, em apenas alguns dias, os músculos passam por diminuição de volume ou perda de função, conhecidos como atrofia. Assim, com uma ou duas semanas de imobilização, as atividades metabólicas são consideravelmente reduzidas e suas fibras musculares substituídas por tecido cicatricial fibroso denso. Dessa forma, este estudo teve como objetivo analisar o efeito da imobilização articular do músculo sóleo do membro posterior de ratos no perfil morfométrico, em diferentes períodos. Foram utilizados dez Rattus navergicus albinus machos, variedade Wistar, que foram divididos em dois grupos com cinco animais cada, sendo o primeiro grupo submetido à imobilização por sete dias e o segundo por 14 dias. O controle do experimento foi obtido a partir do membro contralateral direito do respectivo animal. A imobilização do membro posterior esquerdo foi por meio de uma órtese adaptada. A análise morfométrica do sóleo foi realizada por meio de cortes transversais não seriados de 5 µm de espessura. Foram analisadas, por meio das imagens obtidas, a área das fibras musculares, juntamente com a densidade do tecido conjuntivo, comparando-as ao Grupo-controle, referentes à perna contralateral. Com sete e 14 dias de imobilização, pode-se observar redução significativa (p All types of immobilization contribute to muscular atrophy and, in a few days, the muscles undergo volume reduction or loss of function, known as atrophy. Thus, with one or two weeks of immobilization, metabolic activities are considerably reduced and muscle fibers are replaced by dense fibrous scar tissue. This study has as objective to analyze the effect of joint immobilization of the soleus muscle of posterior members of rats on morphometric profile view, at periods of 7 and 14 days. Ten male Rattus navergicus albinus, Wistar variety, were used, separated into two groups of 5 animals each, with the first

  1. Is Tadpole Pupil in an Adolescent Girl Caused by Denervation Hypersensitivity?

    Science.gov (United States)

    Hansen, Jonas Kjeldbjerg; Møller, Hans Ulrik

    2017-01-04

    Tadpole pupil is a rarely encountered phenomenon caused by episodic, segmental iris dilator muscle spasm of short duration (2-15 minutes), occurring in clusters without a known precipitating factor. It has most commonly been described in women aged 28 to 48 years. A few hypotheses on pathogenesis have been discussed but none has been proved. Here, we present an adolescent girl with bilateral tadpole pupil that appeared during physical exercise. This is the first pediatric case of tadpole pupil, not caused by preceding surgery, to be published. Based on (1) this case in which tadpole pupil developed when the norepinephrine level rose during exercise, (2) the high ratio of patients with tadpole pupil who concurrently have or later develop Horner syndrome, in which denervation hypersensitivity is well described, (3) a previous report of a patient with both tadpole pupil and Horner syndrome who had denervation hypersensitivity on pharmacological testing, (4) a 29-year-old man with unilateral tadpole pupil induced by exercise, and (5) a 19-year-old man with bilateral tadpole pupil and possible autonomic neuropathy, we suggest denervation hypersensitivity as a probable pathogenic mechanism causing tadpole pupil. In addition, a suggestion for investigations to be performed in future pediatric cases is provided.

  2. Differential gene expression of muscle-specific ubiquitin ligase MAFbx/Atrogin-1 and MuRF1 in response to immobilization-induced atrophy of slow-twitch and fast-twitch muscles.

    Science.gov (United States)

    Okamoto, Takeshi; Torii, Suguru; Machida, Shuichi

    2011-11-01

    We examined muscle-specific ubiquitin ligases MAFbx/Atrogin-1 and MuRF1 gene expression resulting from immobilization-induced skeletal muscle atrophy of slow-twitch soleus and fast-twitch plantaris muscles. Male C57BL/6 mice were subjected to hindlimb immobilization, which induced similar percentage decreases in muscle mass in the soleus and plantaris muscles. Expression of MAFbx/Atrogin-1 and MuRF1 was significantly greater in the plantaris muscle than in the soleus muscle during the early stage of atrophy. After a 3-day period of atrophy, total FOXO3a protein level had increased in both muscles, while phosphorylated FOXO3a protein had decreased in the plantaris muscle, but not in the soleus muscle. PGC-1α protein expression did not change following immobilization in both muscles, but basal PGC-1α protein in the soleus was markedly higher than that in plantaris muscles. These data suggest that although soleus and plantaris muscles atrophied to a similar extent and that muscle-specific ubiquitin protein ligases (E3) may contribute more to the atrophy of fast-twitch muscle than to that of slow-twitch muscle during immobilization.

  3. Selective peripheral denervation : comparison with pallidal stimulation and literature review

    NARCIS (Netherlands)

    Contarino, Maria Fiorella; Van den Munckhof, Pepijn; Tijssen, Marina A. J.; de Bie, Rob M. A.; Bosch, D. Andries; Schuurman, P. Richard; Speelman, Johannes D.

    2014-01-01

    Patients with cervical dystonia who are non-responders to Botulinum toxin qualify for surgery. Selective peripheral denervation (Bertrand's procedure, SPD) and deep brain stimulation of the globus pallidus (GPi-DBS) are available surgical options. Although peripheral denervation has potential advant

  4. Radiological diagnosis of abductor denervation after hip surgery

    Energy Technology Data Exchange (ETDEWEB)

    Roy, B.R.; Binns, M.S. [Dept. of Orthopaedics, Pontefract General Infirmary (United Kingdom); Horsfall, H. [Dept. of Radiology, Pontefract General Infirmary (United Kingdom)

    2001-02-01

    A case of total hip arthroplasty through a direct lateral approach is described. The patient had a markedly positive Trendelenburg test at follow-up. Radiographs showed features consistent with the denervation of the gluteus medius. This was confirmed on CT scan. The standard post-operative radiograph following a total hip replacement may suggest denervation of the gluteus medius. (orig.)

  5. Renal sympathetic denervation: MDCT evaluation of the renal arteries.

    LENUS (Irish Health Repository)

    Hutchinson, Barry D

    2013-08-01

    Percutaneous transluminal renal sympathetic denervation is a new treatment of refractory systemic hypertension. The purpose of this study was to assess the clinical utility of MDCT to evaluate the anatomic configuration of the renal arteries in the context of renal sympathetic denervation.

  6. Renal Denervation for Chronic Heart Failure: Background and Pathophysiological Rationale.

    Science.gov (United States)

    Böhm, Michael; Ewen, Sebastian; Mahfoud, Felix

    2017-01-01

    The activation of the sympathetic nervous system is associated with cardiovascular hospitalizations and death in heart failure. Renal denervation has been shown to effectively reduce sympathetic overdrive in certain patients with uncontrolled hypertension. Pilot trials investigating renal denervation as a potential treatment approach for heart failure were initiated. Heart failure comorbidities like obstructive sleep apnea, metabolic syndrome and arrhythmias could also be targets for renal denervation, because these occurrences are also mediated by the activation of the sympathetic nervous system. Therefore, renal denervation in heart failure is worthy of further investigation, although its effectiveness still has to be proven. Herein, we describe the pathophysiological rationale and the effect of renal denervation on surrogates of the heart failure syndrome.

  7. Reinnervation of Paralyzed Muscle by Nerve Muscle Endplate Band Grafting

    Science.gov (United States)

    2016-10-01

    reinnervation of paralyzed laryngeal and facial muscles11,12 as well as the extremities.8,10 However, further studies are needed to determine the...noninnervated endplates of the operated and unoperated SMmuscles in each rat were computed. The variables of the reinnervated SM muscles were expressed as...Brunelli G, Brunelli LM. Direct neurotization of severely damaged denervated muscles. Int Surg 1980;65(6):529–531 11 Hall SJ, Trachy RE, Cummings CW. Facial

  8. Denervation of the painful temporomandibular joint.

    Science.gov (United States)

    Dellon, Lee; Maloney, Christopher T

    2006-09-01

    The successful management of temporomandibular joint (TMJ) pain remains elusive. Often the initial relief of pain is complicated by recurrence of the symptoms. This time frame suggests that the pain may be related to neuromas of the nerves that innervate the TMJ. In 2003, an anatomic description of the innervation of the TMJ suggested that denervation of this joint might be the appropriate treatment for pain resistant to traditional forms of therapy. In January, 2005, this approach was used to treat recalcitrant left TMJ pain in a 21-year-old woman with congenital hearing loss who had recurrent dislocations of her TMJ articular disc. She previously had two arthroscopic surgeries and one open attempt to treat her TMJ pain. The last failed TMJ surgery created a painful neuroma that prevented her from wearing her hearing aid. A medial and lateral denervation of the TMJ joint was done. The successful results of this surgery are presented at one-year follow-up. The technical considerations of this approach and risk to the facial nerve are discussed.

  9. Muscle mechanics. The effect of stretch and shortening on skeletal muscle force

    NARCIS (Netherlands)

    Meijer, K.

    1998-01-01

    The aim of the present thesis was to study systematically the impact of history dependent effects in intact muscles. For this purpose, experiments were performed on in situ medial gastrocnemius (GM) and soleus (SOL) muscles of the rat. Furthermore, mathematical muscle models were developed that

  10. Muscle mechanics; the effect of stretch and shortening on skeletal muscle force

    NARCIS (Netherlands)

    Meijer, Kenneth

    1998-01-01

    The aim of the present thesis was to study systematically the impact of history dependent effects in intact muscles. For this purpose, experiments were performed on in situ medial gastrocnemius (GM) and soleus (SOL) muscles of the rat. Furthermore, mathematical muscle models were developed that desc

  11. Preservation of paraspinal muscle after transmuscular approach using a tubular retractor for lumbar decompression surgery

    Directory of Open Access Journals (Sweden)

    Toshiya Tachibana, MD, PhD

    2017-09-01

    Conclusion: The preservation of paraspinal muscle was greater in patients with a tubular retractor than with the subperiosteal approach. Detaching the paraspinal muscle from the lamina may cause partial denervation of the paraspinal muscle and muscle atrophy. Therefore, the transmuscular approach using a tubular retractor may be a less invasive approach for the preservation of paraspinal muscle.

  12. Renal denervation: a new therapeutic approach for resistant hypertension

    Institute of Scientific and Technical Information of China (English)

    Cao Longxing; Fu Qiang; Wang Binghui; Li Zhiliang

    2014-01-01

    Objective To review the advances in studies on renal denervation.Data sources References concerning renal denervation and resistant hypertension cited in this review were collected from PubMed published in English and those of renal denervation devices from official websites of device manufacturers up to January 2014.Study selection Articles with keywords "renal denervation" and "resistant hypertension" were selected.Results Renal and systemic sympathetic overactivity plays an important role in pathology of hypertension as well as other diseases characterized by sympathetic overactivity.Renal denervation is a new,catheter based procedure to reduce renal and systemic sympathetic overactivity by disruption of renal sympathetic efferent and afferent nerves through radiofrequency or ultrasound energy delivered to the endoluminal surface of both renal arteries.Although several studies have shown the efficacy and safety of renal denervation in the treatment of resistant hypertension and the potential benefit of the procedure in other diseases,Symplicity HTN 3 study,the most rigorous clinical trial of renal denervation to date,failed to meet its primary endpoint.The procedure also has other limitations such as the lack of long term,efficacy and safety data and the lack of the predictors for the blood pressure lowering response and nonresponse to the procedure.An overview of current renal denervation devices holding Conformité Européenne mark is also included in this review.Conclusions Renal denervation is a promising therapeutic approach in the management of resistant hypertension and other diseases characterized by sympathetic overactivity.In its early stage of clinical application,the efficacy of the procedure is still controversial.Large scale,blind,randomized,controlled clinical trials are still necessary to address the limitations of the procedure.

  13. Soleus H-reflex gain in humans walking and running under simulated reduced gravity

    Science.gov (United States)

    Ferris, D. P.; Aagaard, P.; Simonsen, E. B.; Farley, C. T.; Dyhre-Poulsen, P.

    2001-01-01

    The Hoffmann (H-) reflex is an electrical analogue of the monosynaptic stretch reflex, elicited by bypassing the muscle spindle and directly stimulating the afferent nerve. Studying H-reflex modulation provides insight into how the nervous system centrally modulates stretch reflex responses.A common measure of H-reflex gain is the slope of the relationship between H-reflex amplitude and EMG amplitude. To examine soleus H-reflex gain across a range of EMG levels during human locomotion, we used simulated reduced gravity to reduce muscle activity. We hypothesised that H-reflex gain would be independent of gravity level.We recorded EMG from eight subjects walking (1.25 m s-1) and running (3.0 m s-1) at four gravity levels (1.0, 0.75, 0.5 and 0.25 G (Earth gravity)). We normalised the stimulus M-wave and resulting H-reflex to the maximal M-wave amplitude (Mmax) elicited throughout the stride to correct for movement of stimulus and recording electrodes relative to nerve and muscle fibres. Peak soleus EMG amplitude decreased by 30% for walking and for running over the fourfold change in gravity. As hypothesised, slopes of linear regressions fitted to H-reflex versus EMG data were independent of gravity for walking and running (ANOVA, P > 0.8). The slopes were also independent of gait (P > 0.6), contrary to previous studies. Walking had a greater y-intercept (19.9% Mmax) than running (-2.5% Mmax; P EMG, walking H-reflex amplitudes were higher than running H-reflex amplitudes by a constant amount. We conclude that the nervous system adjusts H-reflex threshold but not H-reflex gain between walking and running. These findings provide insight into potential neural mechanisms responsible for spinal modulation of the stretch reflex during human locomotion.

  14. Renal denervation: Results of a single-center cohort study; Renale Denervation. Ergebnisse einer Single-Center Kohortenstudie

    Energy Technology Data Exchange (ETDEWEB)

    Luetkens, J.A.; Thomas, D.; Doerner, J.; Schild, H.H.; Naehle, C.P. [Bonn Univ. (Germany). Dept. of Radiology; Wilhelm, K. [Johanniter Hospital, Bonn (Germany). Dept. of Radiology; Duesing, R. [Hypertension Center, Bonn (Germany); Woitas, R.P.; Hundt, F. [Bonn Univ. (Germany). Dept. of Internal Medicine I

    2015-01-15

    To investigate the effect of renal denervation on office-based and 24-h ambulatory blood pressure measurements (ABPM) in a highly selective patient population with drug-resistant hypertension. Patients with drug resistant hypertension eligible for renal denervation were included in the study population. Office blood pressure and ABPM were assessed prior to and after renal denervation. To detect procedure related renal or renal artery damage, magnetic resonance imaging (MRI) and angiography (MRA) were performed pre-interventional, one day post-interventional, and one month after renal denervation. Mean follow-up time between renal denervation and blood pressure re-assessment was 9.5 ± 3.9 months. Between August 2011 and March 2013, 17 patients prospectively underwent renal denervation. Pre-interventional mean office blood pressure and ABPM were 177.3 ± 20.3/103.8 ± 20.4 mmHg and 155.2 ± 20.5/93.7 ± 14.5 mmHg, respectively. Post-interventional, office blood pressure was significantly reduced to 144.7 ± 14.9/89.5 ± 12.1 (p < 0.05). ABPM values remained unchanged (147.9 ± 20.3/90.3 ± 15.6, p > 0.05). The number of prescribed antihypertensive drugs was unchanged after renal denervation (4.7 ± 2.0 vs. 4.2 ± 1.2, p = 0.18). No renovascular complications were detected in follow-up MRI. After renal denervation, no significant decrease in ABPM was observed. These results may indicate a limited impact of renal denervation for drug resistant hypertension.

  15. Overexpression of insulin-like growth factor-1 attenuates skeletal muscle damage and accelerates muscle regeneration and functional recovery after disuse.

    Science.gov (United States)

    Ye, Fan; Mathur, Sunita; Liu, Min; Borst, Stephen E; Walter, Glenn A; Sweeney, H Lee; Vandenborne, Krista

    2013-05-01

    Skeletal muscle is a highly dynamic tissue that responds to endogenous and external stimuli, including alterations in mechanical loading and growth factors. In particular, the antigravity soleus muscle experiences significant muscle atrophy during disuse and extensive muscle damage upon reloading. Given that insulin-like growth factor-1 (IGF-1) has been implicated as a central regulator of muscle repair and modulation of muscle size, we examined the effect of virally mediated overexpression of IGF-1 on the soleus muscle following hindlimb cast immobilization and upon reloading. Recombinant IGF-1 cDNA virus was injected into one of the posterior hindlimbs of the mice, while the contralateral limb was injected with saline (control). At 20 weeks of age, both hindlimbs were immobilized for 2 weeks to induce muscle atrophy in the soleus and ankle plantarflexor muscle group. Subsequently, the mice were allowed to reambulate, and muscle damage and recovery were monitored over a period of 2-21 days. The primary finding of this study was that IGF-1 overexpression attenuated reloading-induced muscle damage in the soleus muscle, and accelerated muscle regeneration and force recovery. Muscle T2 assessed by magnetic resonance imaging, a non-specific marker of muscle damage, was significantly lower in IGF-1-injected compared with contralateral soleus muscles at 2 and 5 days reambulation (Pmuscle damage in IGF-1-injected soleus muscles was confirmed on histology, with a lower fractional area of abnormal muscle tissue in IGF-1-injected muscles at 2 days reambulation (33.2±3.3 versus 54.1±3.6%, Pmuscle regeneration included timely increases in the number of central nuclei (21% at 5 days reambulation), paired-box transcription factor 7 (36% at 5 days), embryonic myosin (37% at 10 days) and elevated MyoD mRNA (7-fold at 2 days) in IGF-1-injected limbs (Pmuscles from damage and accelerating muscle repair and regeneration.

  16. Acute Gastrocnemius-Soleus Complex Injuries in National Football League Athletes

    Science.gov (United States)

    Werner, Brian C.; Belkin, Nicole S.; Kennelly, Steve; Weiss, Leigh; Barnes, Ronnie P.; Potter, Hollis G.; Warren, Russell F.; Rodeo, Scott A.

    2017-01-01

    Background: Lower extremity muscle injuries are common in professional football. Although less common than hamstring or quadriceps injuries in National Football League (NFL) athletes, calf injuries occur with relative frequency and have not previously been studied. Purpose: To evaluate gastrocnemius-soleus complex muscle injuries over the past 13 years from a single NFL team to determine the incidence of such injuries, their imaging characteristics, and return to play after such injuries and any correlation between imaging findings and prolonged return to play. Study Design: Case series; Level of evidence, 4. Methods: A retrospective review of all acute calf muscle injuries on a single NFL team from 2003 to 2015 was performed. Player demographics and return-to-play data were obtained from the medical records. All available magnetic resonance images (MRIs) were reviewed by a musculoskeletal radiologist for specific imaging findings that correlated with return to play. Results: A total of 27 calf injuries in 24 NFL players were reviewed, yielding an incidence of 2.3 acute calf injuries per year on a single NFL team. Of these 27 injuries, 20 (74%) were isolated injuries to the gastrocnemius muscle, 4 (15%) were isolated injuries to the soleus muscle, and the remaining 3 injuries (11%) involved both. Defensive players were more likely to sustain injuries (P = .043). The mean time to return to play for all 27 players was 17.4 ± 14.6 days (range, 3-62 days). MRIs were available in 14 of the 27 injuries. The average size of the fascial defect (P = .032) and the presence of a fluid collection (P = .031) both correlated with return to play of longer than 2 weeks. Conclusion: Although less common than hamstring or quadriceps muscle injuries, calf muscle injuries occur with relative frequency in the NFL, and more so in defensive players. The majority of these injuries occur in the gastrocnemius and result in significant disability, with at least 2 weeks of missed playing

  17. Skeletal muscle cell apoptosis following motornerve injury versus sensory nerve injury

    Institute of Scientific and Technical Information of China (English)

    Lei Zhao; Ruisheng Xu; Shenyang Jiang; Guangming Lü; Zhiqiang Yan; Junming Sun; Ling Wang; Ye Xue; Donglin Jiang

    2011-01-01

    Skeletal muscle atrophy inevitably occurs in denervated skeletal muscle, and cell apoptosis plays an important role in skeletal muscle atrophy and degeneration. The present study established rat models of simple nerve injury by transecting the ventral or dorsal spinal nerve root and observed rat skeletal muscle cell apoptosis following simple motor nerve injury versus simple sensory nerve injury. Following skeletal muscle denervation for 10 weeks, cell apoptosis was detected in skeletal muscle, which was accompanied by obvious changes in rat behavior and electrophysiological responses. In addition, changes in cross-sectional area and average gray-scale of motor endplates of the gastrocnemius muscle were analyzed following sciatic nerve injury and motor nerve injury.Cell nuclei in denervated skeletal muscle tissue were more densely arranged than in normal skeletal muscle tissue. Cell nuclei were most dense in the sciatic nerve injury group, followed by the motor nerve injury group and the sensory nerve injury group. Fas/Fast expression and the number of apoptotic cells increased in denervated skeletal muscle, and apoptosis-related changes were observed. These findings suggested that motor and sensory nerves provided trophic actions following skeletal muscle and motor nerve injury, resulting in a greater influence on skeletal muscle atrophy than sensory nerve injury. Therefore, reconstruction of motor nerves should be preferentially considered for treating denervation-induced skeletal muscle atrophy.

  18. Opioid neuronal denervation in Gilles de la Tourette syndrome.

    Science.gov (United States)

    Sandyk, R

    1987-07-01

    Increased striatal dopaminergic functions with heightened postsynaptic receptor sensitivity has been proposed to underlie the major clinical symptoms of Tourette's syndrome (TS). The beneficial response of the majority of TS patients to haloperidol supports the hyperdopaminergic pathophysiological concept of TS. However, in 5 recently encountered TS patients, haloperidol failed to ameliorate self-injurious behavior (SIB) while the opiate antagonist, naloxone, attenuated SIB, implicating deranged endorphinergic mechanisms in the pathophysiology of this disorder. Brain damage is commonly associated with partial neuronal denervation, denervation supersensitivity and neuronal habituation (Cannon's Law). While the motor tics of TS possibly reflect neuronal denervation of striatal dopaminergic neurons. SIB may represent opioid denervation with alterations in opioid receptor sensitivity possibly involving striato-limbic-hypothalamic circuits. The effect of naloxone on SIB in TS could thus be explained on the basis of a modulatory effect of this drug on opioid receptor sensitivity.

  19. The relationship between dynamic balancing ability and posture-related modulation of the soleus H-reflex.

    Science.gov (United States)

    Kawaishi, Yu; Domen, Kazuhisa

    2016-02-01

    Soleus H-reflex reveals down modulation with increased postural difficulty. Role of this posture-related reflex modulation is thought to shift movement control toward higher motor centers in order to facilitate more precise postural control. Present study hypothesized that the ability to modulate H-reflex is related to one's ability to dynamically balance while in an unstable posture. This study examined the relationship between dynamic balancing ability and soleus H-reflex posture-related modulation. Thirty healthy adults participated. The soleus maximal H-reflex (Hmax), motor response (Mmax), and background EMG activity (bEMG) were obtained during three postural conditions: prone, open-legged standing, and closed-legged standing. Hmax/Mmax ratios were normalized via the corresponding bEMG in order to remove the effects of background muscle activity from the obtained H-reflex. Reflex modulation was calculated as the ratio of the normalized Hmax/Mmax ratios in one postural condition to another posture in a more difficult condition. Dynamic balancing ability was assessed by testing stability while standing on a wobble board. A significant negative correlation was observed between balancing scores and reflex modulation from open-legged standing to closed-legged standing. This suggests that the ability to modulate monosynaptic stretch reflex excitability in response to a changing posture is a significant factor for dynamic balancing.

  20. Respiratory neuroplasticity following carotid body denervation Central and peripheral adaptations

    Institute of Scientific and Technical Information of China (English)

    Matthew R. Hodges; Hubert V. Forster

    2012-01-01

    Historically, the role of the carotid bodies in ventilatory control has been understated, but the current view suggests that the carotid bodies (1) provide a tonic, facilitory input to the respiratory network, (2) serve as the major site of peripheral O2 chemoreception and minor contributor to CO2/H+ chemoreception, and (3) are required for ventilatory adaptation to high altitude. Each of these roles has been demonstrated in studies of ventilation in mammals after carotid body denervation. Following carotid body denervation, many of the compromised ventilatory "functions" show a time-dependent recovery plasticity that varies in the degree of recovery and time required for recovery. Respiratory plasticity following carotid body denervation is also dependent on species, with contributions from peripheral and central sites/mechanisms driving the respiratory plasticity. The purpose of this review is to provide a summary of the data pointing to peripheral and central mechanisms of plasticity following carotid body denervation. We speculate that after carotid body denervation there are altered excitatory and/or inhibitory neuromodulator mechanisms that contribute to the initial respiratory depression and the subsequent respiratory plasticity, and further suggest that the continued exploration of central effects of carotid body denervation might provide useful information regarding the capacity of the respiratory network for plasticity following neurologic injury in humans.

  1. Intrapericardial Denervation: Responses to Water Immersion in Rhesus Monkeys

    Science.gov (United States)

    McKeever, Kenneth H.; Keil, Lanny C.; Sandler, Harold

    1995-01-01

    Eleven anesthetized rhesus monkeys were used to study cardiovascular, renal, and endocrine alterations associated with 120 min of head-out water immersion. Five animals underwent complete intrapericardial denervation using the Randall technique, while the remaining six monkeys served as intact controls. Each animal was chronically instrumented with an electromagnetic flow probe on the ascending aorta, a strain gauge pressure transducer implanted in the apex of the left ventricle (LV), and electrocardiogram leads anchored to the chest wall and LV. During immersion, LV end-diastolic pressure, urine flow, glomerular filtration rate, sodium excretion, and circulating atrial natriuretic peptide (ANP) each increased (P less than 0.05) for intact and denervated monkeys. There were no alterations in free water clearance in either group during immersion, yet fractional excretion of free water increased (P less than 0.05) in the intact monkeys. Plasma renin activity (PRA) decreased (P less than 0.05) during immersion in intact monkeys but not the denervated animals. Plasma vasopressin (PVP) concentration decreased (P less than 0.05) during the first 30 min of immersion in both groups but was not distinguishable from control by 60 min of immersion in denervated monkeys. These data demonstrate that complete cardiac denervation does not block the rise in plasma ANP or prevent the natriuresis associated with head-out water immersion. The suppression of PVP during the first minutes of immersion after complete cardiac denervation suggests that extracardiac sensing mechanisms associated with the induced fluid shifts may be responsible for the findings.

  2. Lactate and force production in skeletal muscle

    DEFF Research Database (Denmark)

    Kristensen, Michael; Albertsen, Janni; Rentsch, Maria

    2005-01-01

    +-depressed rat soleus muscle. The pH regulation associated with lactate incubation accelerated the Na+-K+ pump. To study whether the protective effect of lactate/lactic acid is a general mechanism, we stimulated muscles to fatigue with and without pre-incubation. None of the incubation solutions improved force...

  3. Effects of simulated microgravity on microRNA and mRNA expression profile of rat soleus

    Science.gov (United States)

    Xu, Hongjie; Wu, Feng; Cao, Hongqing; Kan, Guanghan; Zhang, Hongyu; Yeung, Ella W.; Shang, Peng; Dai, Zhongquan; Li, Yinghui

    2015-02-01

    Spaceflight induces muscle atrophy but mechanism is not well understood. Here, we quantified microRNAs (miRNAs) and mRNA shifts of rat soleus in response to microgravity. MiRNAs and mRNA microarray of soleus after tail suspension (TS) for 7 and 14 days were performed followed by target gene and function annotation analysis and qRT-PCR. Relative muscle mass lost by 37.0% in TS-7 but less than 10% in the following three weeks. TS altered 23 miRNAs and 1313 mRNAs with at least 2-fold. QRT-PCR confirmed some of these changes. MiR-214, miR-486-5p and miR-221 continuously decreased. MiR-674 and Let-7e decreased only in TS-7, while miR-320b and miR-187 decreased only in TS-14. But there was no alteration of miR-320 and miR-206 in both time point. For mRNA detection, actn3 (5.1-fold and 13.8-fold) and myh4 (38-fold and 51.6-fold) increased abundantly and a3galt2 decreased. Predicted targeted genes (whyz, ywhaz and SFRP2) of altered miRNAs decreased. GO terms and cellular pathway of these alteration showed enrichment in regulation of muscle metabolism. Integration analysis of the miRNA and mRNA expression profiles confirmed that eleven genes were differently regulated by four miRNAs. This is the first study that showed expression pattern and synergistical regulation of miRNA and mRNA in rat soleus of TS for up to 14 days.

  4. Motor unit discharge rate in dynamic movements of the aging soleus

    DEFF Research Database (Denmark)

    Kallio, Jouni; Søgaard, Karen; Avela, Janne

    2014-01-01

    % in concentric (CON) and eccentric (ECC) contractions. Soleus intramuscular EMG was recorded with bipolar fine-wire electrodes and decomposed to individual trains of motor unit discharges. In ISO the MUDR increased with each force level from 40 to 100% MVC. In dynamic contractions the descriptive analysis showed......Aging is related to a variety of changes at the muscular level. It seems that the age-related changes in motor unit activation are muscle- and intensity dependent. The purpose of this study was to examine the motor unit discharge rate (MUDR) in both isometric and dynamic contractions of the aging...... a higher MUDR in CON compared to ISO or ECC. The difficulties of recording single motor units in dynamic contractions, especially in the elderly is discussed....

  5. Protein dynamics in skeletal muscle after trauma: local and systemic effects.

    Science.gov (United States)

    Downey, R S; Monafo, W W; Karl, I E; Matthews, D E; Bier, D M

    1986-03-01

    Injury is attended by accelerated skeletal muscle proteolysis. Accurate definition of this hypercatabolic response and its mediation is requisite for specific therapy. We measured protein dynamics in the incubated and intact epitrochlearis and soleus muscles excised from both forelimbs and both hindlimbs of rats 4 days after injury by either a single hind limb scald (90 degrees C water for 3 seconds; metabolic rate (MR) + 15%, urinary urea nitrogen (UUN) + 10%) or a 5% excision (dorsal skin removed to fascia; MR + 40%, UUN + 90%). Protein synthesis (3H phenylalanine incorporation) increased only in the injured soleus from the scalded hind limb (+100%). Actin and myosin breakdown (3-methylhistidine release) increased in all muscles tested and was consistently larger in epitrochlearis than in soleus muscles. Breakdown of the mixed protein pool (tyrosine release) increased but less so than 3-methylhistidine and did not reach significance in the uninjured soleus muscle of scalded rats. With respect to fiber type, white fiber epitrochlearis muscle demonstrated a more pronounced elevation of both measures of breakdown but at a lower metabolic rate than did red fiber soleus muscle. Increasing MR was associated with a linear increase in soleus proteolysis but no further change in epitrochlearis breakdown. We conclude that protein breakdown is increased in skeletal muscle distant from injury; however, even when metabolic stress is severe, synthesis is unchanged. Muscles of different fiber composition are not equally labile. Furthermore, myofibrillar protein is more labile than the mixed protein pool.

  6. Overexpression of IGF-1 attenuates skeletal muscle damage and accelerates muscle regeneration and functional recovery after disuse

    OpenAIRE

    Ye, Fan; Mathur, Sunita; Liu, Min; Stephen E Borst; Walter, Glenn A; Sweeney, H. Lee; Vandenborne, Krista

    2013-01-01

    Skeletal muscle is a highly dynamic tissue that responds to endogenous and external stimuli, including alterations in mechanical loading and growth factors. In particular, the antigravity soleus muscle experiences significant muscle atrophy during disuse and extensive muscle damage upon reloading. Since insulin-like growth factor-1 (IGF-1) has been implicated as a central regulator of muscle repair and modulation of muscle size, we examined the effect of viral mediated overexpression of IGF-1...

  7. Pseudohypertrophy of the calf muscles in a patient with diabetic neuropathy: a case report

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Eun Jin; Lee, Young Hwan; Jung, Kyung Jae; Park, Young Chan; Kim, Ho Kyun; Kim, Ok Dong [School of Medicine, Catholic University of Daegu, Daegu (Korea, Republic of)

    2007-09-15

    Partial or complete loss of innervation of skeletal muscle leads to muscle weakness and atrophic changes, resulting in decreased muscle volume with fatty replacement. Rarely, enlargement of the affected muscle may occur, related to two processes: true hypertrophy and pseudohypertrophy. We report CT and MR findings of the pseudohypertrophy of calf muscles, especially the soleus and gastrocnemius muscles, in a patient with diabetic neuropathy that showed increased muscle volume with diffuse fatty replacement and the presence of scanty muscle fibers.

  8. Treating resistant hypertension: role of renal denervation

    Directory of Open Access Journals (Sweden)

    Urban D

    2013-09-01

    Full Text Available Daniel Urban, Sebastian Ewen, Christian Ukena, Dominik Linz, Michael Böhm, Felix Mahfoud Department of Internal Medicine III, Cardiology, Angiology and Intensive Care Medicine, University Hospital of Saarland, Homburg, Saarland, Germany Abstract: Arterial hypertension is the most prevalent risk factor associated with increased cardiovascular morbidity and mortality. Although pharmacological treatment is generally well tolerated, 5%–20% of patients with hypertension are resistant to medical therapy, which is defined as blood pressure above goal (>140/90 mmHg in general; >130–139/80–85 mmHg in patients with diabetes mellitus; >130/80 mmHg in patients with chronic kidney disease despite treatment with ≥3 antihypertensive drugs of different classes, including a diuretic, at optimal doses. These patients are at significantly higher risk for cardiovascular events, in particular stroke, myocardial infarction, and heart failure, as compared with patients with nonresistant hypertension. The etiology of resistant hypertension is multifactorial and a number of risk factors have been identified. In addition, resistant hypertension might be due to secondary causes such as primary aldosteronism, chronic kidney disease, renal artery stenosis, or obstructive sleep apnea. To identify patients with resistant hypertension, the following must be excluded: pseudo-resistance, which might be due to nonadherence to medical treatment; white-coat effect; and inaccurate measurement technique. Activation of the sympathetic nervous system contributes to the development and maintenance of hypertension by increasing renal renin release, decreasing renal blood flow, and enhancing tubular sodium retention. Catheter-based renal denervation (RDN is a novel technique specifically targeting renal sympathetic nerves. Clinical trials have demonstrated that RDN significantly reduces blood pressure in patients with resistant hypertension. Experimental studies and small

  9. Human postural sway results from frequent, ballistic bias impulses by soleus and gastrocnemius.

    Science.gov (United States)

    Loram, Ian D; Maganaris, Constantinos N; Lakie, Martin

    2005-04-01

    It has been widely assumed for nearly a century, that postural muscles operate in a spring-like manner and that muscle length signals joint angle (the mechano-reflex mechanism). Here we employ automated analysis of ultrasound images to resolve calf muscle (soleus and gastrocnemius) length changes as small as 10 mum in standing subjects. Previously, we have used balancing of a real inverted pendulum to make predictions about human standing. Here we test and confirm these predictions on 10 subjects standing quietly. We show that on average the calf muscles are actively adjusted 2.6 times per second and 2.8 times per unidirectional sway of the body centre of mass (CoM). These alternating, small (30-300 microm) movements provide impulsive, ballistic regulation of CoM movement. The timing and pattern of these adjustments are consistent with multisensory integration of all information regarding motion of the CoM, pattern recognition, prediction and planning using internal models and are not consistent with control solely by local reflexes. Because the system is unstable, errors in stabilization provide a perturbation which grows into a sway which has to be reacted to and corrected. Sagittal sway results from this impulsive control of calf muscle activity rather than internal sources (e.g. the heart, breathing). This process is quite unlike the mechano-reflex paradigm. We suggest that standing is a skilled, trial and error activity that improves with experience and is automated (possibly by the cerebellum). These results complement and extend our recent demonstration that paradoxical muscle movements are the norm in human standing.

  10. The relationship between exercise-induced muscle fatigue, arterial blood flow and muscle perfusion after 56 days local muscle unloading.

    Science.gov (United States)

    Weber, Tobias; Ducos, Michel; Mulder, Edwin; Beijer, Åsa; Herrera, Frankyn; Zange, Jochen; Degens, Hans; Bloch, Wilhelm; Rittweger, Jörn

    2014-05-01

    In the light of the dynamic nature of habitual plantar flexor activity, we utilized an incremental isokinetic exercise test (IIET) to assess the work-related power deficit (WoRPD) as a measure for exercise-induced muscle fatigue before and after prolonged calf muscle unloading and in relation to arterial blood flow and muscle perfusion. Eleven male subjects (31 ± 6 years) wore the HEPHAISTOS unloading orthosis unilaterally for 56 days. It allows habitual ambulation while greatly reducing plantar flexor activity and torque production. Endpoint measurements encompassed arterial blood flow, measured in the femoral artery using Doppler ultrasound, oxygenation of the soleus muscle assessed by near-infrared spectroscopy, lactate concentrations determined in capillary blood and muscle activity using soleus muscle surface electromyography. Furthermore, soleus muscle biopsies were taken to investigate morphological muscle changes. After the intervention, maximal isokinetic torque was reduced by 23·4 ± 8·2% (PBlood flow, tissue oxygenation, lactate concentrations and EMG median frequency kinematics during the exercise test were comparable before and after the intervention, whereas the increase of RMS in response to IIET was less following the intervention (P = 0·03). In conclusion, following submaximal isokinetic muscle work exercise-induced muscle fatigue is unaffected after prolonged local muscle unloading. The observation that arterial blood flow was maintained may underlie the unchanged fatigability.

  11. Effects of Renal Denervation Documented in the Austrian National Multicentre Renal Denervation Registry

    Science.gov (United States)

    Lambert, Thomas; Steinwender, Clemens; Weber, Thomas; Suppan, Markus; Brussee, Helmut; Koppelstätter, Christian; Kerschbaum, Julia; Watschinger, Bruno; Hohenstein-Scheibenecker, Katharina; Reindl-Schwaighofer, Roman; Sturmberger, Thomas; Kindslehner, Claudia; Weiss, Thomas Werner; Rohla, Miklos; Gruener, Peter; Maister, Petra; Auer, Johann; Dechant, Cornelia; Sykora, Josef; Krismer, Christoph; Glaser, Stefan; Zweiker, Robert

    2016-01-01

    Renal denervation (RDN) is a new procedure for treatment-resistant hypertensive patients. In order to monitor all procedures undergone in Austria, the Austrian Society of Hypertension established the investigator-initiated Austrian Transcatheter Renal Denervation (TREND) Registry. From April 2011 to September 2014, 407 procedures in 14 Austrian centres were recorded. At baseline, office and mean 24-h ambulatory blood pressure (ABP) were 171/94 and 151/89 mmHg, respectively, and patients were taking a median of 4 antihypertensive medications. Mean 24-h ABP changes after 2–6 weeks, 3, 6 and 12 months were -11/-6, -8/-4, -8/-5 and -10/-6 mmHg (p<0.05 at all measurements), respectively. The periprocedural complication rate was 2.5%. Incidence of long-term complications during follow-up (median 1 year) was 0.5%. Office BP and ABP responses showed only a weak correlation (Pearson coefficient 0.303). Based on the data from the TREND registry, ambulatory blood pressure monitoring in addition to office BP should be used for patient selection as well as for monitoring response to RDN. Furthermore, criteria for optimal patient selection are suggested. PMID:27529426

  12. Adding Stiffness to the Foot Modulates Soleus Force-Velocity Behaviour during Human Walking

    Science.gov (United States)

    Takahashi, Kota Z.; Gross, Michael T.; van Werkhoven, Herman; Piazza, Stephen J.; Sawicki, Gregory S.

    2016-07-01

    Previous studies of human locomotion indicate that foot and ankle structures can interact in complex ways. The structure of the foot defines the input and output lever arms that influences the force-generating capacity of the ankle plantar flexors during push-off. At the same time, deformation of the foot may dissipate some of the mechanical energy generated by the plantar flexors during push-off. We investigated this foot-ankle interplay during walking by adding stiffness to the foot through shoes and insoles, and characterized the resulting changes in in vivo soleus muscle-tendon mechanics using ultrasonography. Added stiffness decreased energy dissipation at the foot (p muscle lever arms) (p muscle behaviour, leading to greater peak force (p shortening speed (p < 0.001). Despite this shift in force-velocity behaviour, the whole-body metabolic cost during walking increased with added foot stiffness (p < 0.001). This increased metabolic cost is likely due to the added force demand on the plantar flexors, as walking on a more rigid foot/shoe surface compromises the plantar flexors’ mechanical advantage.

  13. Comparison of Capillary Architecture between Slow and Fast Muscles in Rats Using a Confocal Laser Scanning Microscope

    Directory of Open Access Journals (Sweden)

    Kumagishi,Kanae

    2010-02-01

    Full Text Available The skeletal muscle is classified into 2 types, slow oxidative or fast glycolytic muscle. For further characterization, we investigated the capillary architecture in slow and fast muscles. The rat soleus and extensor digitorum longus (EDL muscles were used as representatives of slow and fast muscles, respectively. To investigate capillary density, sections of both types of muscle were stained with alkaline phosphatase;the soleus muscle showed more intense reactivity, indicating that it had a denser capillary structure than the EDL muscle. We then injected fluorescent contrast medium into samples of both muscle types for light and confocal-laser microscopic evaluation. The capillary density and capillary-to-fiber ratio were significantly higher, and the course of the capillaries was more tortuous, in the soleus muscle than in the EDL muscle. Capillary coursed more tortuously in the soleus than in the EDL muscle. Succinate dehydrogenase (SDH activity, an indicator of mitochondrial oxidative capacity, and vascular endothelial growth factor (VEGF expression were also significantly higher in the soleus muscle. Thus, we conclude that slow oxidative muscle possess a rich capillary structure to provide demanded oxygen, and VEGF might be involved in the formation and/or maintenance of this highly capillarized architecture.

  14. Smad2/3 Proteins Are Required for Immobilization-induced Skeletal Muscle Atrophy.

    Science.gov (United States)

    Tando, Toshimi; Hirayama, Akiyoshi; Furukawa, Mitsuru; Sato, Yuiko; Kobayashi, Tami; Funayama, Atsushi; Kanaji, Arihiko; Hao, Wu; Watanabe, Ryuichi; Morita, Mayu; Oike, Takatsugu; Miyamoto, Kana; Soga, Tomoyoshi; Nomura, Masatoshi; Yoshimura, Akihiko; Tomita, Masaru; Matsumoto, Morio; Nakamura, Masaya; Toyama, Yoshiaki; Miyamoto, Takeshi

    2016-06-03

    Skeletal muscle atrophy promotes muscle weakness, limiting activities of daily living. However, mechanisms underlying atrophy remain unclear. Here, we show that skeletal muscle immobilization elevates Smad2/3 protein but not mRNA levels in muscle, promoting atrophy. Furthermore, we demonstrate that myostatin, which negatively regulates muscle hypertrophy, is dispensable for denervation-induced muscle atrophy and Smad2/3 protein accumulation. Moreover, muscle-specific Smad2/3-deficient mice exhibited significant resistance to denervation-induced muscle atrophy. In addition, expression of the atrogenes Atrogin-1 and MuRF1, which underlie muscle atrophy, did not increase in muscles of Smad2/3-deficient mice following denervation. We also demonstrate that serum starvation promotes Smad2/3 protein accumulation in C2C12 myogenic cells, an in vitro muscle atrophy model, an effect inhibited by IGF1 treatment. In vivo, we observed IGF1 receptor deactivation in immobilized muscle, even in the presence of normal levels of circulating IGF1. Denervation-induced muscle atrophy was accompanied by reduced glucose intake and elevated levels of branched-chain amino acids, effects that were Smad2/3-dependent. Thus, muscle immobilization attenuates IGF1 signals at the receptor rather than the ligand level, leading to Smad2/3 protein accumulation, muscle atrophy, and accompanying metabolic changes. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  15. Smad2/3 Proteins Are Required for Immobilization-induced Skeletal Muscle Atrophy*

    Science.gov (United States)

    Tando, Toshimi; Hirayama, Akiyoshi; Furukawa, Mitsuru; Sato, Yuiko; Kobayashi, Tami; Funayama, Atsushi; Kanaji, Arihiko; Hao, Wu; Watanabe, Ryuichi; Morita, Mayu; Oike, Takatsugu; Miyamoto, Kana; Soga, Tomoyoshi; Nomura, Masatoshi; Yoshimura, Akihiko; Tomita, Masaru; Matsumoto, Morio; Nakamura, Masaya; Toyama, Yoshiaki; Miyamoto, Takeshi

    2016-01-01

    Skeletal muscle atrophy promotes muscle weakness, limiting activities of daily living. However, mechanisms underlying atrophy remain unclear. Here, we show that skeletal muscle immobilization elevates Smad2/3 protein but not mRNA levels in muscle, promoting atrophy. Furthermore, we demonstrate that myostatin, which negatively regulates muscle hypertrophy, is dispensable for denervation-induced muscle atrophy and Smad2/3 protein accumulation. Moreover, muscle-specific Smad2/3-deficient mice exhibited significant resistance to denervation-induced muscle atrophy. In addition, expression of the atrogenes Atrogin-1 and MuRF1, which underlie muscle atrophy, did not increase in muscles of Smad2/3-deficient mice following denervation. We also demonstrate that serum starvation promotes Smad2/3 protein accumulation in C2C12 myogenic cells, an in vitro muscle atrophy model, an effect inhibited by IGF1 treatment. In vivo, we observed IGF1 receptor deactivation in immobilized muscle, even in the presence of normal levels of circulating IGF1. Denervation-induced muscle atrophy was accompanied by reduced glucose intake and elevated levels of branched-chain amino acids, effects that were Smad2/3-dependent. Thus, muscle immobilization attenuates IGF1 signals at the receptor rather than the ligand level, leading to Smad2/3 protein accumulation, muscle atrophy, and accompanying metabolic changes. PMID:27129272

  16. Biochemical adaptations of antigravity muscle fibers to disuse atrophy

    Science.gov (United States)

    Booth, F. W.

    1978-01-01

    Studies are presented in four parts of this report. The four parts include; (1) studies to gain information on the molecular basis of atrophy by antigravity muscle; (2) studies on the work capacity of antigravity muscles during atrophy and during recovery from atrophy; (3) studies on recovery of degenerated antigravity fibers after removal of hind-limb casts; and (4) studies on the atrophy and recovery of bone. The philosophy of these studies was to identify the time sequence of events in the soleus muscle of the rat following immobilization of the hind limbs, so that the length of the soleus muscle within the fixed limb is less than its resting length. In two separate studies, no decline in the weight of the soleus muscle could be detected during the first 72 hours of limb immobilization.

  17. Chronic refractory myofascial pain and denervation supersensitivity as global public health disease.

    Science.gov (United States)

    Chu, J; Bruyninckx, F; Neuhauser, D V

    2016-01-13

    Chronic pain with a 30.3% global prevalence significantly impacts universal health. Low back pain has a 9.4% prevalence worldwide causing the most widespread disability. Neck pain ranks 4th highest regarding years lived with disability with a 4.9% prevalence worldwide. The principal cause of pain in 85% of patients visiting a tertiary pain clinic has a myofascial origin. The root cause is multifocal neuromuscular ischaemia at myofascial trigger points from muscle tightening and shortening following spondylotic radiculopathy induced partial denervation. Chronic refractory myofascial pain (CRMP) is a neuromusculoskeletal disease needing management innovations. Using electrical twitch-obtaining intramuscular stimulation (eToims), we provide objective evidence of denervation supersensitivity in multiple myotomes as cause, aggravation and maintenance of CRMP. This study underscores our previous findings that eToims is safe and efficacious for long-term use in CRMP. eToims aids potential prevention (pre-rehabilitation), simultaneous diagnosis, treatment (rehabilitation) and prognosis in real time for acute and CRMP management.

  18. Heat shock protein 70 overexpression does not attenuate atrophy in botulinum neurotoxin type A-treated skeletal muscle.

    Science.gov (United States)

    Houston, Fraser E; Hain, Brian A; Adams, Thomas J; Houston, Kati L; O'Keeffe, Roderic; Dodd, Stephen L

    2015-07-01

    Botulinum neurotoxin type A (BoNT/A) is used clinically to induce therapeutic chemical denervation of spastically contracted skeletal muscles. However, BoNT/A administration can also cause atrophy. We sought to determine whether a major proteolytic pathway contributing to atrophy in multiple models of muscle wasting, the ubiquitin proteasome system (UPS), is involved in BoNT/A-induced atrophy. Three and ten days following BoNT/A injection of rat hindlimb, soleus muscle fiber cross-sectional area was reduced 25 and 65%, respectively. The transcriptional activity of NF-κB and Foxo was significantly elevated at 3 days (2- to 4-fold) and 10 days (5- to 6-fold). Muscle RING-finger protein-1 (MuRF1) activity was elevated (2-fold) after 3 days but not 10 days, while atrogin-1 activity was not elevated at any time point. BoNT/A-induced polyubiquitination occurred after 3 days (3-fold increase) but was totally absent after 10 days. Proteasome activity was elevated (1.5- to 2-fold) after 3 and 10 days. We employed the use of heat shock protein 70 (Hsp70) to inhibit NF-κB and Foxo transcriptional activity. Electrotransfer of Hsp70 into rat soleus, before BoNT/A administration, was insufficient to attenuate atrophy. It was also insufficient to decrease BoNT/A-induced Foxo activity at 3 days, although NF-κB activity was abolished. By 10 days both NF-κB and Foxo activation were abolished by Hsp70. Hsp70-overexpression was unable to alter the levels of BoNT/A-induced effects on MuRF1/atrogin-1, polyubiquitination, or proteasome activity. In conclusion, Hsp70 overexpression is insufficient to attenuate BoNT/A-induced atrophy. It remains unclear what proteolytic mechanism/s are contributing to BoNT/A-induced atrophy, although a Foxo-MuRF1-ubiquitin-proteasome contribution may exist, at least in early BoNT/A-induced atrophy. Further clarification of UPS involvement in BoNT/A-induced atrophy is warranted. Copyright © 2015 the American Physiological Society.

  19. Maintenance of myonuclear domain size in rat soleus after overload and growth hormone/IGF-I treatment

    Science.gov (United States)

    McCall, G. E.; Allen, D. L.; Linderman, J. K.; Grindeland, R. E.; Roy, R. R.; Mukku, V. R.; Edgerton, V. R.

    1998-01-01

    The purpose of this study was to determine the effects of functional overload (FO) combined with growth hormone/insulin-like growth factor I (GH/IGF-I) administration on myonuclear number and domain size in rat soleus muscle fibers. Adult female rats underwent bilateral ablation of the plantaris and gastrocnemius muscles and, after 7 days of recovery, were injected three times daily for 14 days with GH/IGF-I (1 mg/kg each; FO + GH/IGF-I group) or saline vehicle (FO group). Intact rats receiving saline vehicle served as controls (Con group). Muscle wet weight was 32% greater in the FO than in the Con group: 162 +/- 8 vs. 123 +/- 16 mg. Muscle weight in the FO + GH/IGF-I group (196 +/- 14 mg) was 59 and 21% larger than in the Con and FO groups, respectively. Mean soleus fiber cross-sectional area of the FO + GH/IGF-I group (2,826 +/- 445 microm2) was increased compared with the Con (2,044 +/- 108 microm2) and FO (2,267 +/- 301 microm2) groups. The difference in fiber size between the FO and Con groups was not significant. Mean myonuclear number increased in FO (187 +/- 15 myonuclei/mm) and FO + GH/IGF-I (217 +/- 23 myonuclei/mm) rats compared with Con (155 +/- 12 myonuclei/mm) rats, although the difference between FO and FO + GH/IGF-I animals was not significant. The mean cytoplasmic volume per myonucleus (myonuclear domain) was similar across groups. These results demonstrate that the larger mean muscle weight and fiber cross-sectional area occurred when FO was combined with GH/IGF-I administration and that myonuclear number increased concomitantly with fiber volume. Thus there appears to be some mechanism(s) that maintains the myonuclear domain when a fiber hypertrophies.

  20. Soy Glycinin Contains a Functional Inhibitory Sequence against Muscle-Atrophy-Associated Ubiquitin Ligase Cbl-b

    Directory of Open Access Journals (Sweden)

    Tomoki Abe

    2013-01-01

    Full Text Available Background. Unloading stress induces skeletal muscle atrophy. We have reported that Cbl-b ubiquitin ligase is a master regulator of unloading-associated muscle atrophy. The present study was designed to elucidate whether dietary soy glycinin protein prevents denervation-mediated muscle atrophy, based on the presence of inhibitory peptides against Cbl-b ubiquitin ligase in soy glycinin protein. Methods. Mice were fed either 20% casein diet, 20% soy protein isolate diet, 10% glycinin diet containing 10% casein, or 20% glycinin diet. One week later, the right sciatic nerve was cut. The wet weight, cross sectional area (CSA, IGF-1 signaling, and atrogene expression in hindlimb muscles were examined at 1, 3, 3.5, or 4 days after denervation. Results. 20% soy glycinin diet significantly prevented denervation-induced decreases in muscle wet weight and myofiber CSA. Furthermore, dietary soy protein inhibited denervation-induced ubiquitination and degradation of IRS-1 in tibialis anterior muscle. Dietary soy glycinin partially suppressed the denervation-mediated expression of atrogenes, such as MAFbx/atrogin-1 and MuRF-1, through the protection of IGF-1 signaling estimated by phosphorylation of Akt-1. Conclusions. Soy glycinin contains a functional inhibitory sequence against muscle-atrophy-associated ubiquitin ligase Cbl-b. Dietary soy glycinin protein significantly prevented muscle atrophy after denervation in mice.

  1. Role(s) of Gravitational Loading on the Growth-Related Transformation of Fiber Phenotype in Rat Soleus

    Science.gov (United States)

    Ohira, Yoshinobu; Kawano, Fuminori; Goto, Katsumasa; Terada, Masahiro; Ohira, Takashi; Nakai, Naoya; Higo, Yoko; Yoshioka, Toshitada

    2008-06-01

    Effects of gravitational loading or unloading on the gain of the characteristics in soleus muscle fibers were studied in rats. The tail suspension was performed in newborn rats from the postnatal day 4 to month 3 and the reloading was allowed for 3 months in some rats. Single expression of type I myosin heavy chain (MHC) was observed in ~82% fibers in 3month old controls, but fibers expressing multiple MHC iso-forms were noted in the unloaded rats. Responses of fast or slow MHC protein expression to growth and/or unloading were not directly related to mRNA expression. Although 97% fibers in 3month old controls had a single neuromuscular junction at the central region of fiber, fibers with multiple nerve endplates were seen in the unloaded group. Faster contraction speed and lower maximal tension development, even after normalization with fiber size, were observed in the unloaded pure type I MHC fibers. These parameters generally returned to the age-matched control levels after reloading. It was suggested that antigravity-related tonic activity plays an important role in the gain of single neural innervation and of slow contractile properties and phenotype in soleus muscle fibers, which are not directly related to gene expression.

  2. Differences between young and elderly in soleus motor unit discharge rate in dynamic movements

    Directory of Open Access Journals (Sweden)

    Jouni eKallio

    2014-09-01

    Full Text Available Aging is related to changes at the muscular level, leading to a decline in motor performance increasing the risk of falling and injury. It seems that the age-related changes in motor unit activation are muscle- and intensity dependent. The purpose of this study was to examine possible differences in soleus motor unit discharge rate (MUDR in both isometric and dynamic contractions between young and elderly adults. 11 young (YOUNG and 8 elderly (OLD males participated in the study. The subjects performed isometric and dynamic plantar flexions while seated in an ankle dynamometer. The force levels studied were 10, 20, 40, 60, 80 and 100% of the isometric (ISO MVC in ISO and 10, 20 and 40% in concentric (CON and eccentric (ECC contractions. Soleus intramuscular EMG was recorded with bipolar fine-wire electrodes and decomposed to individual trains of motor unit discharges. In ISO the MUDR was higher in YOUNG in 20, 40, 60 and 80% MVC, while in the dynamic contractions no age-difference was seen. For both age-groups MUDR was higher in CON compared to ISO or ECC. The relative level of sEMG activity in SOL and GM for a given force level was in all conditions higher for OLD compared to YOUNG. The decreased MUDR in OLD may be an adaptation to an increased twitch duration in order to optimize force generation. The lack of an age-difference in dynamic contractions could be due to differences in recruitment-strategies, coactivation or a lack of recording from high force levels.

  3. Use of local muscle flaps to cover leg bone exposures

    Directory of Open Access Journals (Sweden)

    Francisco d'Avila

    2014-12-01

    Full Text Available Objective: To evaluate the use of the medial gastrocnemius muscle and/or soleus muscle flaps as surgical treatment of the leg bone exposure.Methods: We retrospectively analyzed the medical records of patients undergoing transposition of the medial gastrocnemius and / or soleus for treating exposed bone in the leg, from January 1976 to July 2009, gathering information on epidemiological data, the etiology the lesion, the time between the initial injury and muscle transposition, the muscle used to cover the lesion, the healing evolution of the skin coverage and the function of the gastrocnemius-soleus unit.Results: 53 patients were operated, the ages varying between nine and 84 years (mean age 41; 42 were male and 11 female. The main initial injury was trauma (84.8%, consisting of tibia and / or fibula fracture. The most frequently used muscle was the soleus, in 40 cases (75.5%. The rank of 49 patients (92.5% was excellent or good outcome, of three (5.6% as regular and of one (1.9% as unsatisfactory.Conclusion: the treatment of bone exposure with local muscle flaps (gastrocnemius and/or soleus enables obtaining satisfactory results in covering of exposed structures, favoring local vascularization and improving the initial injury. It offers the advantage of providing a treatment in only one surgical procedure, an earlier recovery and reduced hospital stay.

  4. Adaptation of mouse skeletal muscle to long-term microgravity in the MDS mission.

    Directory of Open Access Journals (Sweden)

    Dorianna Sandonà

    Full Text Available The effect of microgravity on skeletal muscles has so far been examined in rat and mice only after short-term (5-20 day spaceflights. The mice drawer system (MDS program, sponsored by Italian Space Agency, for the first time aimed to investigate the consequences of long-term (91 days exposure to microgravity in mice within the International Space Station. Muscle atrophy was present indistinctly in all fiber types of the slow-twitch soleus muscle, but was only slightly greater than that observed after 20 days of spaceflight. Myosin heavy chain analysis indicated a concomitant slow-to-fast transition of soleus. In addition, spaceflight induced translocation of sarcolemmal nitric oxide synthase-1 (NOS1 into the cytosol in soleus but not in the fast-twitch extensor digitorum longus (EDL muscle. Most of the sarcolemmal ion channel subunits were up-regulated, more in soleus than EDL, whereas Ca(2+-activated K(+ channels were down-regulated, consistent with the phenotype transition. Gene expression of the atrophy-related ubiquitin-ligases was up-regulated in both spaceflown soleus and EDL muscles, whereas autophagy genes were in the control range. Muscle-specific IGF-1 and interleukin-6 were down-regulated in soleus but up-regulated in EDL. Also, various stress-related genes were up-regulated in spaceflown EDL, not in soleus. Altogether, these results suggest that EDL muscle may resist to microgravity-induced atrophy by activating compensatory and protective pathways. Our study shows the extended sensitivity of antigravity soleus muscle after prolonged exposition to microgravity, suggests possible mechanisms accounting for the resistance of EDL, and individuates some molecular targets for the development of countermeasures.

  5. Hindlimb unloading-induced muscle atrophy and phenotype transition is attenuated in Smad3+/- mice

    Science.gov (United States)

    Chen, X. P.; Zhang, P.; Liu, S. H.; Wang, F.; Ge, X.; Wu, Y.; Fan, M.

    Currently it has been well defined that the microgravity-induced muscle disuse characterized by atrophy and slow-to-fast phenotype transition of the postural muscles such as soleus muscle but the basic mechanism underlying the atrophy and phenotype transition of soleus muscle is still unclear To investigate the developmental mechanisms of muscle atrophy and its phenotype transition under microgravity the soleus muscle of Smad3 and Smad3 - mice after 14 days hindlimb unloading was examined Using histology and immunohistochemistry assay we found that the soleus muscle volume and fiber number appeared a remarkable increases in Smad3 - mice compared to those in Smad3 control In addition Western blot analysis showed that the expression level of myosin heavy chain MHC -slow myofiber specific protein in soleus muscle was visibly higher in Smad3 - mice than in Smad3 mice In contrast the expression level of MHC-fast myofiber specific protein in soleus muscle was visibly lower in Smad3 - mice than in Smad3 mice Furthermore RT-PCR revealed that the expression of Smad3 and myogenic regulatory factor MRF mRNA was inversely regulated Finally we determined that either Smad3 mRNA or Smad3 protein were selectively distributed in quiescent satellite cells in vivo and in reserve cells in vitro Therefore our findings suggested that Smad3 might be a key transcriptional factor for soleus muscle atrophy and slow-to-fast phenotype transition of the slow muscle under microgravity In the future an agent that regulates Smad3 expression may be used to prevent

  6. Changes in antioxidant enzymes and lipid peroxidation in extensor digitorum longus muscles of streptozotocin-diabetic rats may contribute to muscle atrophy.

    Science.gov (United States)

    Nonaka, Koji; Une, S; Tatsuta, N; Ito, K; Akiyama, J

    2014-12-01

    We investigated muscle atrophy, major antioxidant enzymes and lipid peroxidation in the extensor digitorum longus (EDL, predominantly fast fibers) and soleus (predominantly slow fibers) muscle of streptozotocin-diabetic rats. Female Wistar rats were divided into a control (n = 5) and streptozotocin-induced diabetic group (n = 5). Eight weeks after diabetes induction the EDL and soleus muscles were removed and catalase (CAT), glutathione peroxidase (GPX) and superoxide dismutase activity (SOD), and thiobarbituric acid reactive substances (TBARS) levels measured. The CAT activity increased in both the EDL and soleus muscles of the diabetic rats (p muscle (p muscle of the diabetic rats (p muscles showed significant atrophy but the EDL muscle elicited the greatest atrophy. In conclusion, it appears that adaptive responses to oxidative stress were adequate in the soleus muscle, but not in the EDL muscle, of diabetic rats. Thus fast twitch muscle fibers may be more susceptible to oxidative stress than slow twitch muscle fibers and this may contribute to muscle atrophy under diabetic conditions.

  7. Association Between Rectus Abdominis Denervation and Ventilation Dysfunction in Patients with Amyotrophic Lateral Sclerosis

    Institute of Scientific and Technical Information of China (English)

    Hua-Gang Zhang; Shuo Zhang; Ying-Sheng Xu; Nan Zhang; Dong-Sheng Fan

    2016-01-01

    Background:Spontaneous potentials in electromyography (EMG) ofparaspinal muscles are associated with diaphragm denervation and,therefore,poor respiratory function in amyotrophic lateral sclerosis (ALS) is understandable.EMG changes in the rectus abdominis (RA)display an effect similar to those in paraspinal muscles with respect to the function of lower motor neurons in the thoracic spinal cord.The RA denervation was examined to determine its association with ventilation dysfunction in ALS.Methods:We collected the clinical data of 128 patients with sporadic ALS in Department of Neurology of Peking University Third Hospital from 2009 to 2013.EMG,Revised ALS Functional Rating Scale (ALSFRS-R) and forced vital capacity (FVC) were performed in all patients and the differences in the EMG changes in RA between those with and without FVC ≥ 80% were analysed.Results:The mean FVC value was 83.4% ± 17.1% (range:45%-131%) of the predicted value.A total of 79 patients displayed FVC ≥80%,and 49 patients displayed FVC <80%.Compared with the patients displaying a normal FVC (60/79,75.9%),spontaneous activity in RA was significantly different among those patients displaying an FVC <80% (47/49,95.9%).In addition,spontaneous potentials in RA were more frequently detected in patients exhibiting dyspnea (32/33,97.0%) than in patients without dyspnea (75/95,78.9%).Conclusion:Spontaneous potentials in RA are associated with ventilation dysfunction and dyspnea in ALS patients.

  8. Soleus aponeurosis strain distribution following chronic unloading in humans: an in vivo MR phase-contrast study.

    Science.gov (United States)

    Lee, Hae-Dong; Finni, Taija; Hodgson, John A; Lai, Alex M; Edgerton, V Reggie; Sinha, Shantanu

    2006-06-01

    The in vivo strain properties of human skeletal muscle-tendon complexes are poorly understood, particularly following chronic periods of reduced load bearing. We studied eight healthy volunteers who underwent 4 wk of unilateral lower limb suspension (ULLS) to induce chronic unloading. Before and after the ULLS, maximum isometric ankle plantar flexion torque was determined by using a magnetic resonance (MR)-compatible dynamometry. Volumes of the triceps surae muscles and strain distribution of the soleus aponeurosis and the Achilles tendon at a constant submaximal plantar flexion (20% pre-maximal voluntary contraction) were measured by using MRI and velocity-encoded, phase-contrast MRI techniques. Following ULLS, volumes of the soleus and the medial gastrocnemius and the maximum isometric ankle plantar flexion (maximum voluntary contraction) decreased by 5.5+/-1.9, 7.5+/-2.7, and 48.1+/-6.1%, respectively. The strain of the aponeurosis along the length of the muscle before the ULLS was 0.3+/-0.3%, ranging from -1.5 to 2.7% in different locations of the aponeurosis. Following ULLS, the mean strain was -6.4+/-0.3%, ranging from -1.6 to 1.3%. The strain distribution of the midregion of the aponeurosis was significantly influenced by the ULLS, whereas the more distal component showed no consistent changes. Achilles tendon strain was not affected by the ULLS. These results raise the issue as to whether these changes in strain distribution affect the functional properties of the triceps surae and whether the probability of strain injuries within the triceps surae increases following chronic unloading in those regions of this muscle complex in which unusual strains occur.

  9. Fatigue of muscles weakened by death of motoneurons

    NARCIS (Netherlands)

    Thomas, CK; Zijdewind, Inge

    2006-01-01

    Weakness is a characteristic of muscles influenced by the postpolio syndrome (PPS), amyotrophic lateral sclerosis (ALS), and spinal cord injury (SCI). The strength deficits relate to changes in muscle use and to the chronic denervation that can follow the spinal motoneuron death common to these diso

  10. Cancer cachexia decreases specific force and accelerates fatigue in limb muscle

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, B.M. [1225 Center Drive, HPNP Building Room 1142, Department of Physical Therapy, University of Florida, Gainesville, FL 32610 (United States); Frye, G.S.; Ahn, B.; Ferreira, L.F. [1864 Stadium Road, Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL 32610 (United States); Judge, A.R., E-mail: arjudge@phhp.ufl.edu [1225 Center Drive, HPNP Building Room 1142, Department of Physical Therapy, University of Florida, Gainesville, FL 32610 (United States)

    2013-06-07

    Highlights: •C-26 cancer cachexia causes a significant decrease in limb muscle absolute force. •C-26 cancer cachexia causes a significant decrease in limb muscle specific force. •C-26 cancer cachexia decreases fatigue resistance in the soleus muscle. •C-26 cancer cachexia prolongs time to peak twitch tension in limb muscle. •C-26 cancer cachexia prolongs one half twitch relaxation time in limb muscle. -- Abstract: Cancer cachexia is a complex metabolic syndrome that is characterized by the loss of skeletal muscle mass and weakness, which compromises physical function, reduces quality of life, and ultimately can lead to mortality. Experimental models of cancer cachexia have recapitulated this skeletal muscle atrophy and consequent decline in muscle force generating capacity. However, more recently, we provided evidence that during severe cancer cachexia muscle weakness in the diaphragm muscle cannot be entirely accounted for by the muscle atrophy. This indicates that muscle weakness is not just a consequence of muscle atrophy but that there is also significant contractile dysfunction. The current study aimed to determine whether contractile dysfunction is also present in limb muscles during severe Colon-26 (C26) carcinoma cachexia by studying the glycolytic extensor digitorum longus (EDL) muscle and the oxidative soleus muscle, which has an activity pattern that more closely resembles the diaphragm. Severe C-26 cancer cachexia caused significant muscle fiber atrophy and a reduction in maximum absolute force in both the EDL and soleus muscles. However, normalization to muscle cross sectional area further demonstrated a 13% decrease in maximum isometric specific force in the EDL and an even greater decrease (17%) in maximum isometric specific force in the soleus. Time to peak tension and half relaxation time were also significantly slowed in both the EDL and the solei from C-26 mice compared to controls. Since, in addition to postural control, the oxidative

  11. Tissue-specific and substrate-specific mitochondrial bioenergetics in feline cardiac and skeletal muscles

    DEFF Research Database (Denmark)

    Christiansen, Liselotte Bruun; Dela, Flemming; Koch, Jørgen;

    2015-01-01

    fibers. Biopsies of left ventricular cardiac muscle and soleus muscle, a type I-rich oxidative skeletal muscle, were obtained from 15 healthy domestic cats. Enzymatic activity of citrate synthase (CS), a biomarker of mitochondrial content, was measured. Mitochondrial OXPHOS capacity with various kinds...... of non-fatty-acid substrates and fatty-acid substrate in permeabilized muscle fiber was measured by using high-resolution respirometry. CS activity in the heart was 3 times higher than in the soleus muscle. Mitochondrial state 3 respiration, ADP-stimulated respiration, with complex I-linked and complex I...

  12. Regional thermal specialisation in a mammal: temperature affects power output of core muscle more than that of peripheral muscle in adult mice (Mus musculus).

    Science.gov (United States)

    James, Rob S; Tallis, Jason; Angilletta, Michael J

    2015-01-01

    In endotherms, such as mammals and birds, internal organs can specialise to function within a narrow thermal range. Consequently, these organs should become more sensitive to changes in body temperature. Yet, organs at the periphery of the body still experience considerable fluctuations in temperature, which could select for lower thermal sensitivity. We hypothesised that the performance of soleus muscle taken from the leg would depend less on temperature than would the performance of diaphragm muscle taken from the body core. Soleus and diaphragm muscles were isolated from mice and subjected to isometric and work-loop studies to analyse mechanical performance at temperatures between 15 and 40 °C. Across this thermal range, soleus muscle took longer to generate isometric force and longer to relax, and tended to produce greater normalised maximal force (stress) than did diaphragm muscle. The time required to produce half of maximal force during isometric tetanus and the time required to relax half of maximal force were both more sensitive to temperature in soleus than they were in diaphragm. However, thermal sensitivities of maximal force during isometric tetani were similar for both muscles. Consistent with our hypothesis, power output (the product of speed and force) was greater in magnitude and more thermally sensitive in diaphragm than it was in soleus. Our findings, when combined with previous observations of muscles from regionally endothermic fish, suggest that endothermy influences the thermal sensitivities of power output in core and peripheral muscles.

  13. The influence of flow redistribution on working rat muscle oxygenation

    NARCIS (Netherlands)

    Hoofd, L.J.C.; Degens, H.

    2009-01-01

    We applied a theoretical model of muscle tissue O2 transport to investigate the effects of flow redistribution on rat soleus muscle oxygenation. The situation chosen was the anaerobic threshold where redistribution of flow is expected to have the largest impact. In the basic situation all

  14. [Morphohistochemical study of skeletal muscles in rats after experimental flight on "Kosmos-1887"].

    Science.gov (United States)

    Il'ina-Kakueva, E I

    1990-01-01

    Morphometric and histochemical methods were used to examine the soleus, gastrocnemius (medial portion), quadriceps femoris (central portion) and biceps brachii muscles of Wistar SPF rats two days after the 13-day flight on Cosmos-1887. It was found that significant atrophy developed only in the soleus muscle. The space flight did not change the percentage content of slow (type I) and fast (type II) fibers in fast twitch muscles. During two days at 1 g the slow soleus muscle developed substantial circulation disorders, which led to interstitial edema and necrotic changes. The gastrocnemius muscle showed small foci containing necrotic myofibers. Two days after recovery no glycogen aggregates were seen in myofibers, which were previously observed in other rats examined 4--8 hours after flight. An initial stage of muscle readaptation to 1 g occurred, when NAD.H2-dehydrogenase activity was decreased.

  15. Chronic exertional compartment syndrome of the superficial posterior compartment: Soleus syndrome.

    Science.gov (United States)

    Gross, Christopher E; Parekh, Bela J; Adams, Samuel B; Parekh, Selene G

    2015-01-01

    Chronic exertional compartment syndrome (CECS) represents the second most-common cause of exertional leg pain with incidence of 27-33%. CECS of the superficial posterior compartment, or soleus syndrome, is rare and has only been discussed briefly in the literature. We discuss the management of two patients with bilateral soleus syndrome or CECS of the superficial posterior compartment.

  16. Soleus H-reflex modulation during body weight support treadmill walking in spinal cord intact and injured subjects.

    Science.gov (United States)

    Knikou, Maria; Angeli, Claudia A; Ferreira, Christie K; Harkema, Susan J

    2009-03-01

    The soleus H-reflex modulation pattern was investigated in ten spinal cord intact subjects during treadmill walking at varying levels of body weight support (BWS), and nine spinal cord injured (SCI) subjects at a BWS level that promoted the best stepping pattern. The soleus H-reflex was elicited by tibial nerve stimulation with a single 1-ms pulse at an intensity that the M-waves ranged from 4 to 8% of the maximal M-wave (M(max)). During treadmill walking, the H-reflex was elicited every four steps, and stimuli were randomly dispersed across the gait cycle which was divided into 16 equal bins. EMGs were recorded with surface electrodes from major left and right hip, knee, and ankle muscles. M-waves and H-reflexes at each bin were normalized to the M(max) elicited at 60-100 ms after the test reflex stimulus. For every subject, the integrated EMG area of each muscle was established and plotted as a function of the step cycle phase. The H-reflex gain was determined as the slope of the relationship between H-reflex and soleus EMG amplitudes at 60 ms before H-reflex elicitation for each bin. In spinal cord intact subjects, the phase-dependent H-reflex modulation, reflex gain, and EMG modulation pattern were constant across all BWS (0, 25, and 50) levels, while tibialis anterior muscle activity increased with less body loading. In three out of nine SCI subjects, a phase-dependent H-reflex modulation pattern was evident during treadmill walking at BWS that ranged from 35 to 60%. In the remaining SCI subjects, the most striking difference was an absent H-reflex depression during the swing phase. The reflex gain was similar for both subject groups, but the y-intercept was increased in SCI subjects. We conclude that the mechanisms underlying cyclic H-reflex modulation during walking are preserved in some individuals after SCI.

  17. [Ultrastructure of the blood vessels and muscle fibers in the skeletal muscle of rats flown on the Kosmos-605 and Kosmos-782 biosatellites].

    Science.gov (United States)

    Savik, Z F; Rokhlenko, K D

    1981-01-01

    Electron microscopy was used to study ultrastructures of the wall of blood vessels and muscle fibers of the red (soleus) and mixed (gastrocnemius) muscles of rats flown on Cosmos-605 for 22.5 days and on Cosmos-782 for 19,5 days and sacrificed 4-6 hours, 48 hours and 25-27 days postflight. It was demonstrated that the orbital flight did not induce significant changes in the ultrastructure of blood vessels of the soleus and gastrocnemius muscles but caused atrophy of muscle fibers and reduction of the number of functioning capillaries. Readaptation of the soleus vascular system to 1 g led to degradation of permeability of capillary and venular walls and development of edema of the perivascular connective tissue. This may be one of the factors responsible for dystrophic changes in muscle fibers.

  18. Operant conditioning of the soleus H-reflex does not induce long-term changes in the gastrocnemius H-reflexes and does not disturb normal locomotion in humans.

    Science.gov (United States)

    Makihara, Yukiko; Segal, Richard L; Wolpaw, Jonathan R; Thompson, Aiko K

    2014-09-15

    In normal animals, operant conditioning of the spinal stretch reflex or the H-reflex has lesser effects on synergist muscle reflexes. In rats and people with incomplete spinal cord injury (SCI), soleus H-reflex operant conditioning can improve locomotion. We studied in normal humans the impact of soleus H-reflex down-conditioning on medial (MG) and lateral gastrocnemius (LG) H-reflexes and on locomotion. Subjects completed 6 baseline and 30 conditioning sessions. During conditioning trials, the subject was encouraged to decrease soleus H-reflex size with the aid of visual feedback. Every sixth session, MG and LG H-reflexes were measured. Locomotion was assessed before and after conditioning. In successfully conditioned subjects, the soleus H-reflex decreased 27.2%. This was the sum of within-session (task dependent) adaptation (13.2%) and across-session (long term) change (14%). The MG H-reflex decreased 14.5%, due mainly to task-dependent adaptation (13.4%). The LG H-reflex showed no task-dependent adaptation or long-term change. No consistent changes were detected across subjects in locomotor H-reflexes, EMG activity, joint angles, or step symmetry. Thus, in normal humans, soleus H-reflex down-conditioning does not induce long-term changes in MG/LG H-reflexes and does not change locomotion. In these subjects, task-dependent adaptation of the soleus H-reflex is greater than it is in people with SCI, whereas long-term change is less. This difference from results in people with SCI is consistent with the fact that long-term change is beneficial in people with SCI, since it improves locomotion. In contrast, in normal subjects, long-term change is not beneficial and may necessitate compensatory plasticity to preserve satisfactory locomotion. Copyright © 2014 the American Physiological Society.

  19. Avaliação do trofismo muscular de sóleos de ratos wistar após compressão nervosa e tratamento com corrente de alta voltagem Evaluación del tropismo del músculo sóleo de ratas wistar después de la compresión del nervio y tratamiento con corriente de alto voltaje Assessment of wistar rats' soleus muscle trophism after nerve compression and treatment with high-voltage current

    Directory of Open Access Journals (Sweden)

    Gladson Ricardo Flor Bertolini

    2012-12-01

    muscle. RESULTS: All groups showed lower tropism, the two forms of assessment (p 0.05. CONCLUSION: The high voltage current did not inhibit atrophy in soleus underwent nerve compression.

  20. H-reflex excitability is inhibited in soleus, but not gastrocnemius, at the short-latency response of a horizontal jump-landing task.

    Science.gov (United States)

    Thompson, Cassandra S; Schabrun, Siobhan; Marshall, Paul W

    2016-06-01

    Impaired spinal-level neuromuscular control is suggested to contribute to instability and injury during dynamic landing tasks. Despite this suggestion, spinal-level neuromuscular control is yet to be examined during a horizontal jump-landing task. The aim of the current study was to assess changes in H-reflexes and its reliability at the short-latency response of landings from short and long distances. Eight healthy individuals (five male, three female; age, 22±1.2yrs; height, 178±8.1cm; weight, 72±15.7kg) participated in the study. H-reflexes were evoked at the SLR in the soleus and medial gastrocnemius muscles, during two landing conditions: 25% and 50% of maximal broad jump distance. H-reflexes were expressed relative to the background electromyography (EMG) and maximal M-wave responses (M-max). Soleus H-reflexes were inhibited when landing from shorter distance (25%, 13.9±7.6%; 50%, 8.3±6.5%; pH-reflex excitability was observed in medial gastrocnemius. Background EMG was unaltered across landing conditions. Inhibition of soleus H-reflex excitability from 25% to 50% landing condition indicates a reduced contribution of Ia-afferent feedback to the alpha-motor neuron during landings from greater distances, which may contribute to stiffness regulation at the ankle joint. Unaltered H-reflex excitability of medial gastrocnemius is most likely attributed to its functional role during the landing task.

  1. Biochemical and histochemical changes in energy supply enzyme pattern of muscles of the rat during old age.

    Science.gov (United States)

    Bass, A; Gutmann, E; Hanzlíková, V

    1975-01-01

    Senile muscles of the rat (28-36 months) show loss of overall activity of glycolytic and aerobic enzymes. However, there is a differential loss and shift of enzyme activity pattern in the three types of muscles. The extensor digitorum longus (EDL) and diaphragm show a decrease of ratios of glycolytic to aerobic-oxidative enzymes. This shift to a more oxidative type of metabolism is not observed in the soleus muscle. Decrease of enzyme activities is least marked in the diaphragm muscle. Biochemical analysis shows a trend to levelling out of metabolic differences between the different muscle types. This trend of 'dedifferentiation' is most marked when comparing EDL and soleus, least marked when comparing EDL and diaphragm muscle. The histochemical analysis shows a shift from the original mixed to a more uniform pattern of muscle fibres in the EDL and soleus muscle; this levelling-out of differences between enzymatic activities of different muscle fibres is not observed in the diaphragm muscle. Preferential atrophy and loss of ATPase activity in II muscle fibres in the soleus muscle and the occurrence of 'type grouping' are further characteristic features of senile muscle change. The findings show general (i.e. loss of enzyme activities) and differential trends of biochemical and histochemical enzyme changes in different types of muscles.

  2. Comparison of premodulated interferential and pulsed current electrical stimulation in prevention of deep muscle atrophy in rats.

    Science.gov (United States)

    Tanaka, Minoru; Hirayama, Yusuke; Fujita, Naoto; Fujino, Hidemi

    2013-04-01

    The goal of this study was to compare the effects of electrical stimulation using pulsed current (PC) and premodulated interferential current (IC) on prevention of muscle atrophy in the deep muscle layer of the calf. Rats were randomly divided into 3 treatment groups: control, hindlimb unloading for 2 weeks (HU), and HU plus electrical stimulation for 2 weeks. The animals in the electrical stimulation group received therapeutic stimulation of the left (PC) or right (IC) calf muscles twice a day during the unloading period. Animals undergoing HU for 2 weeks exhibited significant loss of muscle mass, decreased cross-sectional area (CSA) of muscle fibers, and increased expression of ubiquitinated proteins in the gastrocnemius and soleus muscles compared with control animals. Stimulation with PC attenuated the effects on the muscle mass, fiber CSA, and ubiquitinated proteins in the gastrocnemius muscle. However, PC stimulation failed to prevent atrophy of the deep layer of the gastrocnemius muscle and the soleus muscle. In contrast, stimulation with IC inhibited atrophy of both the gastrocnemius and soleus muscles. In addition, the IC protocol inhibited the HU-induced increase in ubiquitinated protein expression in both gastrocnemius and soleus muscles. These results suggest that electrical stimulation with IC is more effective than PC in preventing muscle atrophy in the deep layer of limb muscles.

  3. Implications of Renal Denervation Therapy in Patients with Sleep Apnea

    Directory of Open Access Journals (Sweden)

    Fernando Jaén-Águila

    2015-01-01

    Full Text Available Obstructive sleep apnea (OSA syndrome is a prevalent condition characterized by repeated episodes of obstruction of the upper airway, leading to intermittent hypoxemia and important endothelial and anatomical dysfunctions that cause cardiovascular and cerebrovascular disease. The finding of the relationship between OSA and hypertension, especially resistant hypertension (RHT, has increased the interest in therapeutic strategies that affect renal sympathetic activity in these patients. The observational studies published until now demonstrated that renal denervation therapy can reduce the severity of OSA syndrome. Renal sympathetic denervation (RDN could be a future therapeutic possibility for conditions other than RHT, such as atrial fibrillation, heart failure, obesity, and OSA syndrome, where renal sympathetic system plays an important physiological role. The aim of this review was to elucidate the implications of renal sympathetic activity in OSA syndrome.

  4. Adrenergic receptors are a fallible index of adrenergic denervation hypersensitivity

    DEFF Research Database (Denmark)

    Dejgaard, Anders; Liggett, S B; Christensen, N J

    1991-01-01

    by measuring these in a group of subjects with well-documented adrenergic denervation hypersensitivity, patients with diabetic autonomic neuropathy. Mononuclear leukocyte beta 2-adrenergic receptor densities (and binding affinities), measured with 125I-labelled pindolol, and isoproterenol-stimulated cyclic AMP...... accumulation, in samples from patients with insulin-dependent diabetes mellitus (IDDM) with diabetic autonomic neuropathy (n = 8), were no different from those in samples from patients with IDDM without neuropathy (n = 8), or from non-diabetic subjects (n = 8). In addition, platelet alpha 2-adrenergic receptor...... to diabetic autonomic neuropathy. Regardless of the mechanism of adrenergic denervation hypersensitivity in such patients, these data provide further evidence that measurements of cellular adrenergic receptors (and adenylate cyclase) in vitro are a fallible index of sensitivity to catecholamines in vivo....

  5. Adrenergic receptors are a fallible index of adrenergic denervation hypersensitivity

    DEFF Research Database (Denmark)

    Dejgaard, Anders; Liggett, S B; Christensen, N J

    1991-01-01

    by measuring these in a group of subjects with well-documented adrenergic denervation hypersensitivity, patients with diabetic autonomic neuropathy. Mononuclear leukocyte beta 2-adrenergic receptor densities (and binding affinities), measured with 125I-labelled pindolol, and isoproterenol-stimulated cyclic AMP...... accumulation, in samples from patients with insulin-dependent diabetes mellitus (IDDM) with diabetic autonomic neuropathy (n = 8), were no different from those in samples from patients with IDDM without neuropathy (n = 8), or from non-diabetic subjects (n = 8). In addition, platelet alpha 2-adrenergic receptor...... to diabetic autonomic neuropathy. Regardless of the mechanism of adrenergic denervation hypersensitivity in such patients, these data provide further evidence that measurements of cellular adrenergic receptors (and adenylate cyclase) in vitro are a fallible index of sensitivity to catecholamines in vivo....

  6. Renal artery sympathetic denervation: observations from the UK experience

    OpenAIRE

    Sharp, Andrew S. P.; Davies, Justin E.; Lobo, Melvin D.; Bent, Clare L.; Mark, Patrick B.; Burchell, Amy E; Thackray, Simon D.; Martin, Una; McKane, William S.; Gerber, Robert T.; Wilkinson, James R.; Antonios, Tarek F.; Doulton, Timothy W.; Patterson, Tiffany; Clifford, Piers C.

    2016-01-01

    Background Renal denervation (RDN) may lower blood pressure (BP); however, it is unclear whether medication changes may be confounding results. Furthermore, limited data exist on pattern of ambulatory blood pressure (ABP) response—particularly in those prescribed aldosterone antagonists at the time of RDN. Methods We examined all patients treated with RDN for treatment-resistant hypertension in 18 UK centres. Results Results from 253 patients treated with five technologies are shown. Pre-proc...

  7. Aging related ER stress is not responsible for anabolic resistance in mouse skeletal muscle.

    Science.gov (United States)

    Chalil, Sreeda; Pierre, Nicolas; Bakker, Astrid D; Manders, Ralph J; Pletsers, Annelies; Francaux, Marc; Klein-Nulend, Jenneke; Jaspers, Richard T; Deldicque, Louise

    2015-12-25

    Anabolic resistance reflects the inability of skeletal muscle to maintain protein mass by appropriate stimulation of protein synthesis. We hypothesized that endoplasmic reticulum (ER) stress contributes to anabolic resistance in skeletal muscle with aging. Muscles were isolated from adult (8 mo) and old (26 mo) mice and weighed. ER stress markers in each muscle were quantified, and the anabolic response to leucine was assessed by measuring the phosphorylation state of S6K1 in soleus and EDL using an ex vivo muscle model. Aging reduced the muscle-to-body weight ratio in soleus, gastrocnemius, and plantaris, but not in EDL and tibialis anterior. Compared to adult mice, the expression of ER stress markers BiP and IRE1α was higher in EDL, and phospho-eIF2α was higher in soleus and EDL of old mice. S6K1 response to leucine was impaired in soleus, but not in EDL, suggesting that anabolic resistance contributes to soleus weight loss in old mice. Pre-incubation with ER stress inducer tunicamycin before leucine stimulation increased S6K1 phosphorylation beyond the level reached by leucine alone. Since tunicamycin did not impair leucine-induced S6K1 response, and based on the different ER stress marker regulation patterns, ER stress is probably not involved in anabolic resistance in skeletal muscle with aging.

  8. In vivo longitudinal study of rodent skeletal muscle atrophy using ultrasonography.

    Science.gov (United States)

    Mele, Antonietta; Fonzino, Adriano; Rana, Francesco; Camerino, Giulia Maria; De Bellis, Michela; Conte, Elena; Giustino, Arcangela; Conte Camerino, Diana; Desaphy, Jean-François

    2016-02-01

    Muscle atrophy is a widespread ill condition occurring in many diseases, which can reduce quality of life and increase morbidity and mortality. We developed a new method using non-invasive ultrasonography to measure soleus and gastrocnemius lateralis muscle atrophy in the hindlimb-unloaded rat, a well-accepted model of muscle disuse. Soleus and gastrocnemius volumes were calculated using the conventional truncated-cone method and a newly-designed sinusoidal method. For Soleus muscle, the ultrasonographic volume determined in vivo with either method was linearly correlated to the volume determined ex-vivo from excised muscles as muscle weight-to-density ratio. For both soleus and gastrocnemius muscles, a strong linear correlation was obtained between the ultrasonographic volume and the muscle fiber cross-sectional area determined ex-vivo on muscle cryosections. Thus ultrasonography allowed the longitudinal in vivo evaluation of muscle atrophy progression during hindlimb unloading. This study validates ultrasonography as a powerful method for the evaluation of rodent muscle atrophy in vivo, which would prove useful in disease models and therapeutic trials.

  9. CT-guided percutaneous radiofrequency denervation of the sacroiliac joint

    Energy Technology Data Exchange (ETDEWEB)

    Gevargez, A.; Schirp, S.; Braun, M. [Department of Radiology and Microtherapy, University of Witten/Herdecke, Bochum (Germany); Groenemeyer, D. [Department of Radiology and Microtherapy, University of Witten/Herdecke, Bochum (Germany); EFMT Development and Research Center for Microtherapy, Bochum (Germany)

    2002-06-01

    Defining the origin of low back pain is a challenging task. Among a variety of factors the sacroiliac joint (SIJ) is a possible pain generator, although precise diagnosis is difficult. Joint blocks may reduce pain, but are, in cases, of only temporary effect. This study was conducted to evaluate CT-guided percutaneous radiofrequency denervation of the sacroiliac joint in patients with low back pain. The procedure was performed on 38 patients who only temporarily responded to CT-guided SIJ blocks. The denervation was carried out in the posterior interosseous sacroiliac ligaments and on the dorsal rami of the fifth spinal nerve. All interventions were carried out under CT guidance as out-patient therapies. Three months after the therapy, 13 patients (34.2%) were completely free of pain. Twelve patients (31.6%) reported on a substantial pain reduction, 7 patients (18.4%) had obtained a slight and 3 patients (7.9%) no pain reduction. The data of 3 patients (7.9%) was missing. There were no intra- or postoperative complications. Computed tomography-guided percutaneous radiofrequency denervation of the sacroiliac joint appears safe and effective. The procedure may be a useful therapeutic modality, especially in patients with chronic low back pain, who only temporarily respond to therapeutic blocks. (orig.)

  10. Differential sensitivity of oxidative and glycolytic muscles to hypoxia-induced muscle atrophy.

    Science.gov (United States)

    de Theije, C C; Langen, R C J; Lamers, W H; Gosker, H R; Schols, A M W J; Köhler, S E

    2015-01-15

    Hypoxia as a consequence of acute and chronic respiratory disease has been associated with muscle atrophy. This study investigated the sensitivity of oxidative and glycolytic muscles to hypoxia-induced muscle atrophy. Male mice were exposed to 8% normobaric oxygen for up to 21 days. Oxidative soleus and glycolytic extensor digitorum longus (EDL) muscles were isolated, weighed, and assayed for expression profiles of the ubiquitin-proteasome system (UPS), the autophagy-lysosome pathway (ALP), and glucocorticoid receptor (GR) and hypoxia-inducible factor-1α (HIF1α) signaling. Fiber-type composition and the capillary network were investigated. Hypoxia-induced muscle atrophy was more prominent in the EDL than the soleus muscle. Although increased expression of HIF1α target genes showed that both muscle types sensed hypoxia, their adaptive responses differed. Atrophy consistently involved a hypoxia-specific effect (i.e., not attributable to a hypoxia-mediated reduction of food intake) in the EDL only. Hypoxia-specific activation of the UPS and ALP and increased expression of the glucocorticoid receptor (Gr) and its target genes were also mainly observed in the EDL. In the soleus, stimulation of gene expression of those pathways could be mimicked to a large extent by food restriction alone. Hypoxia increased the number of capillary contacts per fiber cross-sectional area in both muscles. In the EDL, this was due to type II fiber atrophy, whereas in the soleus the absolute number of capillary contacts increased. These responses represent two distinct modes to improve oxygen supply to muscle fibers, but may aggravate muscle atrophy in chronic obstructive pulmonary disease patients who have a predominance of type II fibers.

  11. Muscles in a mouse model of spinal muscular atrophy show profound defects in neuromuscular development even in the absence of failure in neuromuscular transmission or loss of motor neurons

    OpenAIRE

    Lee,Young Il; Mikesh, Michelle; Smith, Ian; Rimer, Mendell; Thompson, Wesley

    2011-01-01

    A mouse model of the devastating human disease "spinal muscular atrophy" (SMA) was used to investigate the severe muscle weakness and spasticity that precedes the death of these animals near the end of the 2nd postnatal week. Counts of motor units to the soleus muscle as well as of axons in the soleus muscle nerve showed no loss of motor neurons. Similarly, neither immunostaining of neuromuscular junctions nor the measurement of the tension generated by nerve stimulation gave evidence of any ...

  12. Effect of denervation on the glycolytic metabolism of the main electric organ of Electrophorus electricus (L.).

    Science.gov (United States)

    Torres-da Matta, J; Silva, C B; da Matta, A N; Hassón-Voloch, A

    1985-01-01

    Biochemical modifications of the glycolytic metabolism of the electric organ of Electrophorus electricus (L.) have been studied as a function of denervation. The activities of LDH, MDH and the concentrations of ATP, lactic and pyruvic acids were measured at intervals of zero, 15, 30 and 60 days following denervation. In parallel, CPK activity was also measured. All of these biochemical characteristics were substantially altered by denervation. The results obtained point to a change, after 15 days of denervation, from the normal anaerobic to an aerobic metabolism which remains after 30 days and reverts to anaerobic at 60 days.

  13. Changes in muscle protein composition induced by disuse atrophy - Analysis by two-dimensional electrophoresis

    Science.gov (United States)

    Ellis, S.; Giometti, C. S.; Riley, D. A.

    1985-01-01

    Using 320 g rats, a two-dimensional electrophoretic analysis of muscle proteins in the soleus and EDL muscles from hindlimbs maintained load-free for 10 days is performed. Statistical analysis of the two-dimensional patterns of control and suspended groups reveals more protein alteration in the soleus muscle, with 25 protein differences, than the EDL muscle, with 9 protein differences, as a result of atrophy. Most of the soleus differences reside in minor components. It is suggested that the EDL may also show alteration in its two-dimensional protein map, even though no significant atrophy occurred in muscle wet weight. It is cautioned that strict interpretation of data must take into account possible endocrine perturbations.

  14. Absence of lateral gastrocnemius activity and differential motor unit behavior in soleus and medial gastrocnemius during standing balance.

    Science.gov (United States)

    Héroux, Martin E; Dakin, Christopher J; Luu, Billy L; Inglis, John Timothy; Blouin, Jean-Sébastien

    2014-01-15

    In a standing position, the vertical projection of the center of mass passes in front of the ankle, which requires active plantar-flexor torque from the triceps surae to maintain balance. We recorded motor unit (MU) activity in the medial (MG) and lateral (LG) gastrocnemius muscle and the soleus (SOL) in standing balance and voluntary isometric contractions to understand the effect of functional requirements and descending drive from different neural sources on motoneuron behavior. Single MU activity was recorded in seven subjects with wire electrodes in the triceps surae. Two 3-min standing balance trials and several ramp-and-hold contractions were performed. Lateral gastrocnemius MU activity was rarely observed in standing. The lowest thresholds for LG MUs in ramp contractions were 20-35 times higher than SOL and MG MUs (P triceps surae motoneurons.

  15. Muscle dysfunction in male hypogonadism.

    Science.gov (United States)

    Chauhan, A K; Katiyar, B C; Misra, S; Thacker, A K; Singh, N K

    1986-05-01

    Twenty-eight consecutive male patients with primary and secondary hypogonadism (14 each) were evaluated clinically and electrophysiologically for muscle dysfunction. Although generalised muscle weakness was initially reported by only 9 patients, on direct questioning, it was recorded in 19. Objective weakness was found in 13 patients and it involved both the proximal and distal limb muscles. Quantitative electromyography showed evidence of myopathy in the proximal muscle in 25 patients, i.e., reduced MUP duration and amplitude with increased polyphasia in the deltoid and the gluteus maximus. There were no denervation potentials. None of the patients showed clinical neuropathy or NCV abnormalities. Thus, the profile of muscle involvement in hypogonadism closely simulates limb-girdle muscular dystrophy and other endocrine myopathies. The incidence of muscle involvement was higher in secondary hypogonadism. Diminished androgens in primary hypogonadism and diminished growth hormone in the secondary hypogonadism are probably responsible for the myopathy.

  16. Lactate/H+ transport kinetics in rat skeletal muscle related to fibre type and changes in transport capacity

    DEFF Research Database (Denmark)

    Juel; Pilegaard

    1998-01-01

    Lactate/H+ transport kinetics were determined by means of the pH-sensitive probe BCECF in sarcolemmal giant vesicles, obtained from rat skeletal muscle, and related to variations in lactate/H+ transport capacity. Vesicle preparations were made from red and white muscles, mixed muscles, denervated...

  17. Unicompartmental muscle edema: an early sign of deep venous thrombosis

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Patrick T. [Mayo Clinic Scottsdale, Department of Diagnostic Radiology, 13400 E. Shea Boulevard, Scottsdale, AZ 85259 (United States); Ilaslan, Hakan [Mayo Clinic Rochester, Department of Diagnostic Radiology, Rochester, Minnesota (United States)

    2003-01-01

    The finding of muscle edema restricted to a single muscle compartment on MRI usually indicates a diagnosis of traumatic injury, myositis, denervation or neoplasm. This case demonstrates that deep venous thrombosis can also be the cause of isolated deep posterior compartment muscle edema in the calf and should be considered in the differential diagnosis even in the absence of diffuse soft tissue or subcutaneous edema. (orig.)

  18. Twenty-Four-Hour Blood Pressure Monitoring to Predict and Assess Impact of Renal Denervation: The DENERHTN Study (Renal Denervation for Hypertension).

    Science.gov (United States)

    Gosse, Philippe; Cremer, Antoine; Pereira, Helena; Bobrie, Guillaume; Chatellier, Gilles; Chamontin, Bernard; Courand, Pierre-Yves; Delsart, Pascal; Denolle, Thierry; Dourmap, Caroline; Ferrari, Emile; Girerd, Xavier; Michel Halimi, Jean; Herpin, Daniel; Lantelme, Pierre; Monge, Matthieu; Mounier-Vehier, Claire; Mourad, Jean-Jacques; Ormezzano, Olivier; Ribstein, Jean; Rossignol, Patrick; Sapoval, Marc; Vaïsse, Bernard; Zannad, Faiez; Azizi, Michel

    2017-03-01

    The DENERHTN trial (Renal Denervation for Hypertension) confirmed the blood pressure (BP) lowering efficacy of renal denervation added to a standardized stepped-care antihypertensive treatment for resistant hypertension at 6 months. We report here the effect of denervation on 24-hour BP and its variability and look for parameters that predicted the BP response. Patients with resistant hypertension were randomly assigned to denervation plus stepped-care treatment or treatment alone (control). Average and standard deviation of 24-hour, daytime, and nighttime BP and the smoothness index were calculated on recordings performed at randomization and 6 months. Responders were defined as a 6-month 24-hour systolic BP reduction ≥20 mm Hg. Analyses were performed on the per-protocol population. The significantly greater BP reduction in the denervation group was associated with a higher smoothness index (P=0.02). Variability of 24-hour, daytime, and nighttime BP did not change significantly from baseline to 6 months in both groups. The number of responders was greater in the denervation (20/44, 44.5%) than in the control group (11/53, 20.8%; P=0.01). In the discriminant analysis, baseline average nighttime systolic BP and standard deviation were significant predictors of the systolic BP response in the denervation group only, allowing adequate responder classification of 70% of the patients. Our results show that denervation lowers ambulatory BP homogeneously over 24 hours in patients with resistant hypertension and suggest that nighttime systolic BP and variability are predictors of the BP response to denervation. URL: https://www.clinicaltrials.gov. Unique identifier: NCT01570777. © 2017 American Heart Association, Inc.

  19. Morphologic changes in the muscles of patients with postpoliomyelitis neuromuscular symptoms.

    Science.gov (United States)

    Dalakas, M C

    1988-01-01

    Thirty-five muscle biopsies were performed on 27 patients with postpoliomyelitis progressive muscular atrophy (PPMA) (8 patients had two biopsies) and 5 asymptomatic postpolio patients in an attempt to define diagnostic criteria for the newly weakening muscles and to provide insights into the mechanism of the disease. PPMA muscles that had been left weak since the original illness showed a mixture of myopathy with new and old denervation including group atrophy and nuclear clumps. Fully recovered or originally spared PPMA muscles showed signs of reinnervation and recent denervation. Perivascular or interstitial inflammatory cells (predominantly lymphocytes unrelated to phagocytosis) were noted in 40% of all the PPMA biopsies. It is concluded that (1) postpolio muscle biopsies show a spectrum of morphologic changes that depend on whether the biopsied muscle was originally affected and had fully or partially recovered, (2) the newly weakened muscles show signs of recent denervation, and (3) the presence of reinnervation in the asymptomatic muscles and the patterns of recent and old denervation in PPMA muscles provide information regarding the degree of compensation of the surviving motor neurons and their apparent failure for further reinnervation via axonal sprouting.

  20. Next generation renal denervation: chemical “perivascular” renal denervation with alcohol using a novel drug infusion catheter

    Energy Technology Data Exchange (ETDEWEB)

    Fischell, Tim A. [Borgess Heart Institute, 1521 Gull Road, Kalamazoo, MI, 49008 (United States); Ablative Solutions, 801 Hermosa Way, Menlo Park, CA, 94025 (United States); Fischell, David R.; Ghazarossian, Vartan E. [Ablative Solutions, 801 Hermosa Way, Menlo Park, CA, 94025 (United States); Vega, Félix [Preclinical Consultation, San Francisco, CA (United States); Ebner, Adrian [Clinics, Ascension (Paraguay)

    2015-06-15

    Background/Purpose: We update the pre-clinical and early clinical results using a novel endovascular approach, to perform chemical renal denervation, via peri-adventitial injection of micro-doses of dehydrated alcohol (ethanol–EtOH). Methods/Materials: A novel, three-needle delivery device (Peregrine™) was used to denervate the renal arteries of adult swine (n = 17) and in a first-in-man feasibility study (n = 18). In the pre-clinical testing EtOH was infused bilaterally with one infusion per renal artery into to the perivascular space, using EtOH doses of 0.3 ml/artery (n = 8), and 0.6 ml/artery (n = 9), and with saline sham control (0.4 ml/artery n = 3). Renal parenchymal norepinephrine (NE) concentration (performed blindly), and safety were the primary endpoints. Data from the first-in-man study (n = 18) to evaluate device performance, safety and peri-procedural pain are reported. Results: In the pre-clinical testing renal function was unchanged at 3-month follow-up. Angiography at 90 days (n = 34 arteries) demonstrated normal appearing renal arteries, unchanged from baseline, and without stenosis or other abnormalities. The reductions in mean renal parenchymal NE reductions at 3 months were 68% and 88% at doses of 0.3 and 0.6 ml, respectively (p < 0.001 vs. controls). In the first-in-man study, there was 100% device success, no complications, a mean treatment time of 4.3 ± 3 minutes/artery, and minimal or no patient discomfort during treatment. Angiography at 6-months showed no evidence of renal artery stenosis, and evidence of a reduction of blood pressure from baseline. Conclusion: Perivascular RDN using micro-doses of alcohol is a promising alternative to energy-based systems to achieve dose-dependent, predictable, safe and essentially painless renal denervation. Further clinical evaluation is warranted. Summary: (For annotated table of contents) This paper describes the preclinical results, in a porcine model, and the early first-in-man results, using

  1. Effects of Chronic Pyridostigmine Administration on Muscle Fatigue and Morphology.

    Science.gov (United States)

    1987-07-01

    1, the Experimental Paradigm. Figure 9. Muscle force, EMG and tension production, of triceps surae from anesthetized rats which had been treated with...The electrophysiological program of stimulation was chosen to test the maximal output of the running muscles ( triceps surae ), which includes the... triceps surae , gastro- cnemius, plantaris and soleus muscles) and attached to a Grass FT03 force displacement transducer. The knees and ankles were

  2. Eletroestimulação seletiva mantem estrutura e função do tibial anterior desnervado de ratos Structure and function of denervated tibialis anteriores are maintained by electrical stimulation in rats

    Directory of Open Access Journals (Sweden)

    Juliana de Tillio Polônio

    2010-01-01

    Full Text Available OBJETIVO: A eletroestimulação para tratamento de músculos desnervados deve ser aplicada através do tratamento seletivo. Este estudo avaliou o efeito da eletroestimulação seletiva do músculo desnervado sobre sua estrutura e função. MÉTODOS: Foram utilizados cinqüenta ratos Wistar distribuídos em controle, desnervado estimulado e desnervado não-estimulado. Após avaliação eletrodiagnóstica de estímulo pré-desnervação, os animais sofreram desnervação proximal completa do músculo tibial anterior unilateral. Houve reavaliação semanal para adaptação dos parâmetros de tratamento seletivo, aplicado três vezes por semana. Os animais foram mortos após 7, 14, 28 e 56 dias do pós-cirúrgico. Foram realizados procedimentos histoquímicos e estudos morfológicos e morfométricos. RESULTADOS: Os animais desnervados estimulados não apresentaram contratura da articulação do tornozelo e não houve automutilações nas patas. Alterações significativas nas áreas das fibras musculares tipo IIB (desnervados estimulados aos 7 dias e tipo IIA e híbridas (desnervados estimulados 28 e 56 dias indicaram menor atrofia. Transição do tipos de fibras musculares foi significativa, indicando uma manutenção do padrão funcional do músculo tibial anterior nos períodos de 7 e 14 dias. CONCLUSÃO: Conclui-se que houve manutenção temporária da estrutura e função do músculo tibial anterior desnervado através da eletroestimulação seletiva.OBJECTIVE: Electrical stimulation for treatment of denervated muscles should be implemented by selective treatment. This study evaluated the effect of selective electrical stimulation on the structure and function of denervated muscle. METHODS: Fifty Wistar mice were allocated to control, stimulated denervated and non-stimulated denervated groups. Following an electrodiagnostic evaluation, the animals underwent complete unilateral denervation of the proximal anterior tibialis muscle. Weekly re

  3. Effects of myenteric denervation on extracellular matrix fibers and mast cell distribution in normal stomach and gastric lesions

    Directory of Open Access Journals (Sweden)

    Estofolete Cássia F

    2010-06-01

    Full Text Available Abstract Background In this study the effect of myenteric denervation induced by benzalconium chloride (BAC on distribution of fibrillar components of extracellular matrix (ECM and inflammatory cells was investigated in gastric carcinogenesis induced by N-methyl-N'-nitro-N-nitrosoguanidine (MNNG. Rats were divided in four experimental groups: non-denervated (I and denervated stomach (II without MNNG treatment; non-denervated (III and denervated stomachs (IV treated with MNNG. For histopathological, histochemical and stereological analysis, sections of gastric fragments were stained with Hematoxylin-Eosin, Picrosirius-Hematoxylin, Gomori reticulin, Weigert's Resorcin-Fuchsin, Toluidine Blue and Alcian-Blue/Safranin (AB-SAF. Results BAC denervation causes an increase in the frequency of reticular and elastic fibers in the denervated (group II compared to the non-denervated stomachs (group I. The treatment of the animals with MNNG induced the development of adenocarcinomas in non-denervated and denervated stomachs (groups III and IV, respectively with a notable increase in the relative volume of the stroma, the frequency of reticular fibers and the inflammatory infiltrate that was more intense in group IV. An increase in the frequency of elastic fibers was observed in adenocarcinomas of denervated (group IV compared to the non-denervated stomachs (group III that showed degradation of these fibers. The development of lesions (groups III and IV was also associated with an increase in the mast cell population, especially AB and AB-SAF positives, the latter mainly in the denervated group IV. Conclusions The results show a strong association in the morphological alteration of the ECM fibrillar components, the increased density of mast cells and the development of tumors induced by MNNG in the non-denervated rat stomach or denervated by BAC. This suggests that the study of extracellular and intracellular components of tumor microenvironment contributes

  4. Effects of denervation on the sensitizing effect to noradrenaline induced by morphine in the vas deferens of mice treated chronically with morphine.

    Science.gov (United States)

    Contreras, E; Tamayo, L; Gaete, S; Juica, S

    1982-08-01

    The acute administration of morphine to the isolated vas deferens from mice chronically exposed to this analgesic, induced a facilitatory effect on the responses of the muscle to exogenous noradrenaline. It has been suggested that this sensitizing property of morphine might reflect a dependence-like state of the vas deferens. In the present paper, the capability of met- and leu-enkephalin to substitute for morphine was studied, as well as the influence of innervation on the apparent dependence state. The contractile responses to noradrenaline and to acetylcholine were increased after the administration of morphine to the bath containing a denervated vas deferences, prepared from chronically morphinized mice. Morphine administration facilitated noradrenaline- but not acetylcholine-induced contractile effects in vas deferens isolated from mice which had been chronically treated with either morphine or morphine plus guanethidine. The presence of met- or leu-enkephalin in the isolated vas deferens from chronically morphinized mice (either intact, denervated or treated with guanethidine) failed to sensitize contractile responses to noradrenaline or acetylcholine. It is concluded that (a) the sensitizing effect induced by morphine in the vas deferens from mice chronically treated with morphine is specific for the adrenergic neurotransmitter; (b) the effect of morphine is not mimicked by opiate peptides; and (c) denervation of the vas deferens of mice treated chronically with morphine does not suppress the noradrenaline-sensitizing property of morphine.

  5. Na+,K+-pump stimulation improves contractility in isolated muscles of mice with hyperkalemic periodic paralysis.

    Science.gov (United States)

    Clausen, Torben; Nielsen, Ole Bækgaard; Clausen, Johannes D; Pedersen, Thomas Holm; Hayward, Lawrence J

    2011-07-01

    In patients with hyperkalemic periodic paralysis (HyperKPP), attacks of muscle weakness or paralysis are triggered by K(+) ingestion or rest after exercise. Force can be restored by muscle work or treatment with β(2)-adrenoceptor agonists. A missense substitution corresponding to a mutation in the skeletal muscle voltage-gated Na(+) channel (Na(v)1.4, Met1592Val) causing human HyperKPP was targeted into the mouse SCN4A gene (mutants). In soleus muscles prepared from these mutant mice, twitch, tetanic force, and endurance were markedly reduced compared with soleus from wild type (WT), reflecting impaired excitability. In mutant soleus, contractility was considerably more sensitive than WT soleus to inhibition by elevated [K(+)](o). In resting mutant soleus, tetrodotoxin (TTX)-suppressible (22)Na uptake and [Na(+)](i) were increased by 470 and 58%, respectively, and membrane potential was depolarized (by 16 mV, P < 0.0001) and repolarized by TTX. Na(+),K(+) pump-mediated (86)Rb uptake was 83% larger than in WT. Salbutamol stimulated (86)Rb uptake and reduced [Na(+)](i) both in mutant and WT soleus. Stimulating Na(+),K(+) pumps with salbutamol restored force in mutant soleus and extensor digitorum longus (EDL). Increasing [Na(+)](i) with monensin also restored force in soleus. In soleus, EDL, and tibialis anterior muscles of mutant mice, the content of Na(+),K(+) pumps was 28, 62, and 33% higher than in WT, respectively, possibly reflecting the stimulating effect of elevated [Na(+)](i) on the synthesis of Na(+),K(+) pumps. The results confirm that the functional disorders of skeletal muscles in HyperKPP are secondary to increased Na(+) influx and show that contractility can be restored by acute stimulation of the Na(+),K(+) pumps. Calcitonin gene-related peptide (CGRP) restored force in mutant soleus but caused no detectable increase in (86)Rb uptake. Repeated excitation and capsaicin also restored contractility, possibly because of the release of endogenous CGRP

  6. Quantitative studies on the localization of the cholinergic receptor protein in the normal and denervated electroplaque from Electrophorus electricus

    Science.gov (United States)

    1978-01-01

    Electroplaques dissected from the electric organ of Electrophorus electricus are labeled by tritiated alpha1-isotoxin from Naja nigricollis, a highly selective reagent of the cholinergic (nicotinic) receptor site. Preincubation of the cell with an excess of unlabeled alpha-toxin and with a covalent affinity reagent or labeling in the presence of 10(-4) M decamethonium reduces the binding of [3H]alpha- toxin by at least 75%. Absolute surface densities of alpha-toxin sites are estimated by high-resolution autoradiography on the basis of silver grain distribution and taking into account the complex geopmetry of the cell surface. Binding of [3H]alpha-toxin on the noninnervated face does not differ from background. Labeled sites are observed on the innervated membrane both between the synapses and under the nerve terminals but the density of sites is approx. 100 times higher at the level of the synapses than in between. Analysis of the distance of silver grains from the innervated membrane shows a symmetrical distribution centered on the postsynaptic plasma membrane under the nerve terminal. In extrasynaptic areas, the barycenter of the distribution lies approximately 0.5 micrometer inside the cell, indicating that alpha-toxin sites are present on the membrane of microinvaginations, or caveolae, abundant in the extrajunctional areas. An absolute density of 49,600 +/- 16,000 sites/micrometer2 of postsynaptic membrane is calculated; it is in the range of that found at the crest of the folds at the neuromuscular junction and expected from a close packing of receptor molecules. Electric organs were denervated for periods up to 142 days. Nerve transmission fails after 2 days, and within a week all the nerve terminals disappear and are subsequently replaced by Schwann cell processes, whereas the morphology of the electroplaque remains unaffected. The denervated electroplaque develops some of the electrophysiological changes found with denervated muscles (increases of membrane

  7. Decrease of contractile properties and transversal stiffness of single fibers in human soleus after 7-day “dry” immersion

    Science.gov (United States)

    Ogneva, I. V.; Ponomareva, E. V.; Kartashkina, N. L.; Altaeva, E. G.; Fokina, N. M.; Kurushin, V. A.; Kozlovskaya, I. B.; Shenkman, B. S.

    2011-05-01

    The simulation model of "dry" immersion was used to evaluate the effects of plantar mechanical stimulation (PMS) and high frequency electromyostimulation (EMS) on the mechanical properties of human soleus fibers under the conditions of gravitational unloading. We examined contractile properties of single fibers by means of tensometry, transversal stiffness of sarcolemma and different areas of the contractile apparatus by means of atomic force microscopy. It was shown that there is a reduction of transversal stiffness in single muscle fibers under hypogravitational conditions. Application of different countermeasures could compensate this effect. Meanwhile pneumostimulation and electro stimulation act in quite different way. Therefore, pneumostimulation seems to be more effective. The data obtained can be considered as the evidence of the fact that such countermeasures as PMS and electromyostimulation influence on muscle fibers in quite different ways and PMS efficiency is likely to be higher. On the basis of our experimental data on transverse stiffness of mechanotransductional nodes and the contractile apparatus, we can assume that support stimulation allows prevention of destructive processes in muscle fibers. Electrostimulation seems to stimulate contractile activity only without suppression of impairment of the fiber mechanical properties.

  8. Calcineurin activation influences muscle phenotype in a muscle-specific fashion

    Directory of Open Access Journals (Sweden)

    Lees Simon J

    2004-07-01

    Full Text Available Abstract Background The calcium activated protein phosphatase 2B, also known as calcineurin, has been implicated as a cell signaling molecule involved with transduction of physiological signals (free cytosolic Ca2+ into molecular signals that influence the expression of phenotype-specific genes in skeletal muscle. In the present study we address the role of calcineurin in mediating adaptations in myosin heavy chain (MHC isoform expression and muscle mass using 3-month old wild-type (WT and transgenic mice displaying high-level expression of a constitutively active form of calcineurin (MCK-CN* mice. Results Slow muscles, e.g., soleus, were significantly larger (by ~24%, whereas fast muscles, e.g., medial gastrocnemius (MG and tibialis anterior were significantly smaller (by ~26 and ~16%, respectively in MCK-CN* mice compared to WT. The masses of mixed phenotype muscles, such as the plantaris and the extensor digitorum longus, were not significantly changed from WT. The soleus, plantaris, MG and diaphragm displayed shifts toward slower MHC isoforms, e.g., soleus from WT mice contained ~52% MHC-I, ~39% MHC-IIa, and ~9% MHC-IIx, whereas MCK-CN* mice had ~67% MHC-I, ~26% MHC-IIa, and ~7% MHC-IIx. The specific isoforms that were either up or down-regulated were muscle-specific. For instance, the proportion of MHC-IIa was decreased in the soleus and diaphragm, but increased in the plantaris and MG of MCK-CN* mice. Also, the proportion of MHC-IIx was unchanged in the soleus, decreased in the diaphragm and increased in the plantaris and MG of MCK-CN* relative to WT mice. Fast to slow shifts in fiber type proportions were evident for the plantaris, but not the soleus. Fast, but not slow, plantaris fibers of MCK-CN* mice had higher oxidative and lower glycolytic properties than WT. Conclusion These data suggest that calcineurin activation can influence muscle phenotype and that the specific influence of calcineurin activation on the phenotypic and mass

  9. [Expert consensus statement on interventional renal sympathetic denervation for hypertension treatment].

    Science.gov (United States)

    Mahfoud, F; Vonend, O; Bruck, H; Clasen, W; Eckert, S; Frye, B; Haller, H; Hausberg, M; Hoppe, U C; Hoyer, J; Hahn, K; Keller, T; Krämer, B K; Kreutz, R; Potthoff, S A; Reinecke, H; Schmieder, R; Schwenger, V; Kintscher, U; Böhm, M; Rump, L C

    2011-11-01

    This commentary summarizes the expert consensus and recommendations of the working group 'Herz und Niere' of the German Society of Cardiology (DGK), the German Society of Nephrology (DGfN) and the German Hypertension League (DHL) on renal denervation for antihypertensive treatment. Renal denervation is a new, interventional approach to selectively denervate renal afferent and efferent sympathetic fibers. Renal denervation has been demonstrated to reduce office systolic and diastolic blood pressure in patients with resistant hypertension, defined as systolic office blood pressure ≥ 160 mm Hg and ≥ 150 mm Hg in patients with diabetes type 2, which should currently be used as blood pressure thresholds for undergoing the procedure. Exclusion of secondary hypertension causes and optimized antihypertensive drug treatment is mandatory in every patient with resistant hypertension. In order to exclude pseudoresistance, 24-hour blood pressure measurements should be performed. Preserved renal function was an inclusion criterion in the Symplicity studies, therefore, renal denervation should be only considered in patients with a glomerular filtration rate > 45 ml/min. Adequate centre qualification in both, treatment of hypertension and interventional expertise are essential to ensure correct patient selection and procedural safety. Long-term follow-up after renal denervation and participation in the German Renal Denervation (GREAT) Registry are recommended to assess safety and efficacy after renal denervation over time.

  10. Skeletal muscle glucose uptake during contraction is regulated by nitric oxide and ROS independently of AMPK.

    Science.gov (United States)

    Merry, Troy L; Steinberg, Gregory R; Lynch, Gordon S; McConell, Glenn K

    2010-03-01

    Reactive oxygen species (ROS) and nitric oxide (NO) have been implicated in the regulation of skeletal muscle glucose uptake during contraction, and there is evidence that they do so via interaction with AMP-activated protein kinase (AMPK). In this study, we tested the hypothesis that ROS and NO regulate skeletal muscle glucose uptake during contraction via an AMPK-independent mechanism. Isolated extensor digitorum longus (EDL) and soleus muscles from mice that expressed a muscle-specific kinase dead AMPKalpha2 isoform (AMPK-KD) and wild-type litter mates (WT) were stimulated to contract, and glucose uptake was measured in the presence or absence of the antioxidant N-acetyl-l-cysteine (NAC) or the nitric oxide synthase (NOS) inhibitor N(G)-monomethyl-l-arginine (l-NMMA). Contraction increased AMPKalpha2 activity in WT but not AMPK-KD EDL muscles. However, contraction increased glucose uptake in the EDL and soleus muscles of AMPK-KD and WT mice to a similar extent. In EDL muscles, NAC and l-NMMA prevented contraction-stimulated increases in oxidant levels (dichloroflourescein fluorescence) and NOS activity, respectively, and attenuated contraction-stimulated glucose uptake in both genotypes to a similar extent. In soleus muscles of AMPK-KD and WT mice, NAC prevented contraction-stimulated glucose uptake and l-NMMA had no effect. This is likely attributed to the relative lack of neuronal NOS in the soleus muscles compared with EDL muscles. Contraction increased AMPKalpha Thr(172) phosphorylation in EDL and soleus muscles of WT but not AMPK-KD mice, and this was not affected by NAC or l-NMMA treatment. In conclusion, ROS and NO are involved in regulating skeletal muscle glucose uptake during contraction via an AMPK-independent mechanism.

  11. Quantitative PCR Analysis of Laryngeal Muscle Fiber Types

    Science.gov (United States)

    Van Daele, Douglas J.

    2010-01-01

    Voice and swallowing dysfunction as a result of recurrent laryngeal nerve paralysis can be improved with vocal fold injections or laryngeal framework surgery. However, denervation atrophy can cause late-term clinical failure. A major determinant of skeletal muscle physiology is myosin heavy chain (MyHC) expression, and previous protein analyses…

  12. Quantitative PCR Analysis of Laryngeal Muscle Fiber Types

    Science.gov (United States)

    Van Daele, Douglas J.

    2010-01-01

    Voice and swallowing dysfunction as a result of recurrent laryngeal nerve paralysis can be improved with vocal fold injections or laryngeal framework surgery. However, denervation atrophy can cause late-term clinical failure. A major determinant of skeletal muscle physiology is myosin heavy chain (MyHC) expression, and previous protein analyses…

  13. Tetanic contraction induces enhancement of fatigability and sarcomeric damage in atrophic skeletal muscle and its underlying molecular mechanisms.

    Science.gov (United States)

    Yu, Zhi-Bin

    2013-11-01

    Muscle unloading due to long-term exposure of weightlessness or simulated weightlessness causes atrophy, loss of functional capacity, impaired locomotor coordination, and decreased resistance to fatigue in the antigravity muscles of the lower limbs. Besides reducing astronauts' mobility in space and on returning to a gravity environment, the molecular mechanisms for the adaptation of skeletal muscle to unloading also play an important medical role in conditions such as disuse and paralysis. The tail-suspended rat model was used to simulate the effects of weightlessness on skeletal muscles and to induce muscle unloading in the rat hindlimb. Our series studies have shown that the maximum of twitch tension and the twitch duration decreased significantly in the atrophic soleus muscles, the maximal tension of high-frequency tetanic contraction was significantly reduced in 2-week unloaded soleus muscles, however, the fatigability of high-frequency tetanic contraction increased after one week of unloading. The maximal isometric tension of intermittent tetanic contraction at optimal stimulating frequency did not alter in 1- and 2-week unloaded soleus, but significantly decreased in 4-week unloaded soleus. The 1-week unloaded soleus, but not extensor digitorum longus (EDL), was more susceptible to fatigue during intermittent tetanic contraction than the synchronous controls. The changes in K+ channel characteristics may increase the fatigability during high-frequency tetanic contraction in atrophic soleus muscles. High fatigability of intermittent tetanic contraction may be involved in enhanced activity of sarcoplasmic reticulum Ca(2+)-ATPase (SERCA) and switching from slow to fast isoform of myosin heavy chain, tropomyosin, troponin I and T subunit in atrophic soleus muscles. Unloaded soleus muscle also showed a decreased protein level of neuronal nitric oxide synthase (nNOS), and the reduction in nNOS-derived NO increased frequency of calcium sparks and elevated

  14. The mRNA expression profile of metabolic genes relative to MHC isoform pattern in human skeletal muscles

    DEFF Research Database (Denmark)

    Plomgaard, Peter; Penkowa, Milena; Leick, Lotte;

    2006-01-01

    was more than twofold higher in soleus and vastus than in triceps. Contrary, phosphofructokinase and total lactate dehydrogenase (LDH) activity was approximately three- and twofold higher in triceps than in both soleus and vastus. Expression of metabolic genes was assessed by determining the mRNA content...... of a broad range of metabolic genes. The triceps muscle had two- to fivefold higher MHC IIa, phosphofructokinase, and LDH A mRNA content and two- to fourfold lower MHC I, lipoprotein lipase, CD36, hormone-sensitive lipase, and LDH B and hexokinase II mRNA than vastus lateralis or soleus. Interestingly...

  15. Korean mistletoe (Viscum album coloratum) extract regulates gene expression related to muscle atrophy and muscle hypertrophy.

    Science.gov (United States)

    Jeong, Juseong; Park, Choon-Ho; Kim, Inbo; Kim, Young-Ho; Yoon, Jae-Min; Kim, Kwang-Soo; Kim, Jong-Bae

    2017-01-21

    Korean mistletoe (Viscum album coloratum) is a semi-parasitic plant that grows on various trees and has a diverse range of effects on biological functions, being implicated in having anti-tumor, immunostimulatory, anti-diabetic, and anti-obesity properties. Recently, we also reported that Korean mistletoe extract (KME) improves endurance exercise in mice, suggesting its beneficial roles in enhancing the capacity of skeletal muscle. We examined the expression pattern of several genes concerned with muscle physiology in C2C12 myotubes cells to identify whether KME inhibits muscle atrophy or promotes muscle hypertrophy. We also investigated these effects of KME in denervated mice model. Interestingly, KME induced the mRNA expression of SREBP-1c, PGC-1α, and GLUT4, known positive regulators of muscle hypertrophy, in C2C12 cells. On the contrary, KME reduced the expression of Atrogin-1, which is directly involved in the induction of muscle atrophy. In animal models, KME mitigated the decrease of muscle weight in denervated mice. The expression of Atrogin-1 was also diminished in those mice. Moreover, KME enhanced the grip strength and muscle weight in long-term feeding mice. Our results suggest that KME has beneficial effects on muscle atrophy and muscle hypertrophy.

  16. Nucleoprotein supplementation enhances the recovery of rat soleus mass with reloading after hindlimb unloading-induced atrophy via myonuclei accretion and increased protein synthesis.

    Science.gov (United States)

    Nakanishi, Ryosuke; Hirayama, Yusuke; Tanaka, Minoru; Maeshige, Noriaki; Kondo, Hiroyo; Ishihara, Akihiko; Roy, Roland R; Fujino, Hidemi

    2016-12-01

    Hindlimb unloading results in muscle atrophy and a period of reloading has been shown to partially recover the lost muscle mass. Two of the mechanisms involved in this recovery of muscle mass are the activation of protein synthesis pathways and an increase in myonuclei number. The additional myonuclei are provided by satellite cells that are activated by the mechanical stress associated with the reloading of the muscles and eventually incorporated into the muscle fibers. Amino acid supplementation with exercise also can increase skeletal muscle mass through enhancement of protein synthesis and nucleotide supplements can promote cell cycle activity. Therefore, we hypothesized that nucleoprotein supplementation, a combination of amino acids and nucleotides, would enhance the recovery of muscle mass to a greater extent than reloading alone after a period of unloading. Adult rats were assigned to 4 groups: control, hindlimb unloaded (HU; 14 days), reloaded (5 days) after hindlimb unloading (HUR), and reloaded after hindlimb unloading with nucleoprotein supplementation (HUR + NP). Compared with the HUR group, the HUR + NP group had larger soleus muscles and fiber cross-sectional areas, higher levels of phosphorylated rpS6, and higher numbers of myonuclei and myogenin-positive cells. These results suggest that nucleoprotein supplementation has a synergistic effect with reloading in recovering skeletal muscle properties after a period of unloading via rpS6 activation and satellite cell differentiation and incorporation into the muscle fibers. Therefore, this supplement may be an effective therapeutic regimen to include in rehabilitative strategies for a variety of muscle wasting conditions such as aging, cancer cachexia, muscular dystrophy, bed rest, and cast immobilization. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Nerve-muscle interactions during flight muscle development in Drosophila

    Science.gov (United States)

    Fernandes, J. J.; Keshishian, H.

    1998-01-01

    During Drosophila pupal metamorphosis, the motoneurons and muscles differentiate synchronously, providing an opportunity for extensive intercellular regulation during synapse formation. We examined the existence of such interactions by developmentally delaying or permanently eliminating synaptic partners during the formation of indirect flight muscles. When we experimentally delayed muscle development, we found that although adult-specific primary motoneuron branching still occurred, the higher order (synaptic) branching was suspended until the delayed muscle fibers reached a favourable developmental state. In reciprocal experiments we found that denervation caused a decrease in the myoblast pool. Furthermore, the formation of certain muscle fibers (dorsoventral muscles) was specifically blocked. Exceptions were the adult muscles that use larval muscle fibers as myoblast fusion targets (dorsal longitudinal muscles). However, when these muscles were experimentally compelled to develop without their larval precursors, they showed an absolute dependence on the motoneurons for their formation. These data show that the size of the myoblast pool and early events in fiber formation depend on the presence of the nerve, and that, conversely, peripheral arbor development and synaptogenesis is closely synchronized with the developmental state of the muscle.

  18. Muscle-specific expression of hypoxia-inducible factor in human skeletal muscle

    DEFF Research Database (Denmark)

    Mounier, Rémi; Pedersen, Bente Klarlund; Plomgaard, Peter

    2010-01-01

    from triceps brachii (characterized by a high proportion of type II fibres), from soleus (characterized by a high proportion of type I fibres) and from vastus lateralis (characterized by an equal proportion of type I and II fibres). The hypothesis was that type I muscle fibres would have lower HIF-1...... a significantly higher VEGF protein content than vastus lateralis and triceps muscle. In conclusion, we have shown that there are muscle-specific differences in HIF-1alpha and VEGF expression within human skeletal muscle at rest in normoxic conditions. Recent results, when combined with the findings described...

  19. Cyclosporin A preferentially attenuates skeletal slow-twitch muscle regeneration

    Directory of Open Access Journals (Sweden)

    Miyabara E.H.

    2005-01-01

    Full Text Available Calcineurin, a Ca2+/calmodulin-dependent phosphatase, is associated with muscle regeneration via NFATc1/GATA2-dependent pathways. However, it is not clear whether calcineurin preferentially affects the regeneration of slow- or fast-twitch muscles. We investigated the effect of a calcineurin inhibitor, cyclosporin A (CsA, on the morphology and fiber diameter of regenerating slow- and fast-twitch muscles. Adult Wistar rats (259.5 ± 9 g maintained under standard conditions were treated with CsA (20 mg/kg body weight, ip for 5 days, submitted to cryolesion of soleus and tibialis anterior (TA muscles on the 6th day, and then treated with CsA for an additional 21 days. The muscles were removed, weighed, frozen, and stored in liquid nitrogen. Cryolesion did not alter the body weight gain of the animals after 21 days of regeneration (P = 0.001 and CsA significantly reduced the body weight gain (15.5%; P = 0.01 during the same period. All treated TA and soleus muscles showed decreased weights (17 and 29%, respectively, P < 0.05. CsA treatment decreased the cross-sectional area of both soleus and TA muscles of cryoinjured animals (TA: 2108 ± 930 vs 792 ± 640 µm²; soleus: 2209 ± 322 vs 764 ± 439 m²; P < 0.001. Histological sections of both muscles stained with Toluidine blue revealed similar regenerative responses after cryolesion. In addition, CsA was able to minimize these responses, i.e., centralized nuclei and split fibers, more efficiently so in TA muscle. These results indicate that calcineurin preferentially plays a role in regeneration of slow-twitch muscle.

  20. Sustained sympathetic and blood pressure reduction 1 year after renal denervation in patients with resistant hypertension.

    Science.gov (United States)

    Hering, Dagmara; Marusic, Petra; Walton, Antony S; Lambert, Elisabeth A; Krum, Henry; Narkiewicz, Krzysztof; Lambert, Gavin W; Esler, Murray D; Schlaich, Markus P

    2014-07-01

    Renal denervation (RDN) reduces muscle sympathetic nerve activity (MSNA) and blood pressure (BP) in resistant hypertension. Although a persistent BP-lowering effect has been demonstrated, the long-term effect on MSNA remains elusive. We investigated whether RDN influences MSNA over time. Office BP and MSNA were obtained at baseline, 3, 6, and 12 months after RDN in 35 patients with resistant hypertension. Office BP averaged 166±22/88±19 mm Hg, despite the use of an average of 4.8±2.1 antihypertensive drugs. Baseline MSNA was 51±11 bursts/min ≈2- to 3-fold higher than the level observed in healthy controls. Mean office systolic and diastolic BP significantly decreased by -12.6±18.3/-6.5±9.2, -16.1±25.6/-8.6±12.9, and -21.2±29.1/-11.1±12.9 mm Hg (Phypertension and high baseline MSNA. These observations are compatible with the hypothesis of a substantial contribution of afferent renal nerve signaling to increased BP in resistant hypertension and argue against a relevant reinnervation at 1 year after procedure.

  1. Neuromuscular junctions are pathological but not denervated in two mouse models of spinal bulbar muscular atrophy.

    Science.gov (United States)

    Poort, Jessica E; Rheuben, Mary B; Breedlove, S Marc; Jordan, Cynthia L

    2016-09-01

    Spinal bulbar muscular atrophy (SBMA) is a progressive, late onset neuromuscular disease causing motor dysfunction in men. While the morphology of the neuromuscular junction (NMJ) is typically affected by neuromuscular disease, whether NMJs in SBMA are similarly affected by disease is not known. Such information will shed light on whether defective NMJs might contribute to the loss of motor function and represent a potential therapeutic target for treating symptoms of SBMA. To address this gap in information, the morphology of NMJs was examined in two mouse models of SBMA, a myogenic model that overexpresses wildtype androgen receptor (AR) exclusively in muscle fibres and a knockin (KI) model expressing a humanized mutant AR gene. The tripartite motor synapse consisting of motor nerve terminal, terminal Schwann cells (tSCs) and postsynaptic specialization were visualized and analysed using confocal microscopy. Counter to expectation, we found no evidence of denervation in either model, but junctions in both models show pathological fragmentation and an abnormal synaptophysin distribution consistent with functionally weak synapses. Neurofilament accumulations were observed only in the myogenic model, even though axonal transport dysfunction is characteristic of both models. The ultrastructure of NMJs revealed additional pathology, including deficits in docked vesicles presynaptically, wider synaptic clefts, and simpler secondary folds postsynaptically. The observed pathology of NMJs in diseased SBMA mice is likely the morphological correlates of defects in synaptic function which may underlie motor impairments associated with SBMA.

  2. The effect of stretch rate and activation state on skeletal muscle force in the anatomical range.

    Science.gov (United States)

    Grover, Joel P; Corr, David T; Toumi, Hechmi; Manthei, David M; Oza, Ashish L; Vanderby, Ray; Best, Thomas M

    2007-03-01

    The effects of stretch rate and activation state on muscle mechanics require further clarification. This subject is of particular interest because of the role of skeletal muscle undergoing eccentric contractions in musculoskeletal injuries. The present study investigated the force-displacement behavior of rabbit tibialis anterior muscle at three stretch rates (2.5, 10, 25 cm/s) and three activation states (passive, tetanic, denervated). A phenomenological power law model and a dynamic systems model were used to describe the mechanical responses. The power law model showed excellent agreement with the passive and denervated responses to stretch (R(mean)=0.97). Repeated measures analysis of variance found a difference (P=0.042) in peak force between the passive and denervated states at a stretch rate of 2.5 cm/s. The dynamic systems model closely fit the tetanized muscle responses (R(mean)=0.95). There was no difference in the displacement at yield (P=0.83) for the three stretch rates of the tetanized muscle undergoing stretch. Differences between the passive and denervated responses suggest that mechanoreceptors may play a role in stimulating the muscle as it is stretched through the anatomical range. The displacement at yield did not change significantly over a decade range of stretch velocities, suggesting that a strain threshold exists beyond which cross bridges cannot remain bound. The power law and dynamic systems models presented offer mathematically tractable approaches to interpret the response of lengthening skeletal muscle. These findings on active, passive, and denervated muscle point to a possible role of the muscle spindle to tissue mechanical behavior that should be accounted for in future studies of force-elongation behavior of skeletal muscle.

  3. "Popeye muscle" morphology in OBPI elbow flexion contracture.

    Science.gov (United States)

    Coroneos, Christopher J; Maizlin, Zeev V; DeMatteo, Carol; Gjertsen, Deborah; Bain, James R

    2015-01-01

    The pathophysiology of elbow flexion contracture (EFC) in obstetrical brachial plexus injury (OBPI) is not established. In basic science models, neonatal denervation leads to impaired muscle growth. In clinical studies, diminished growth is correlated with extent of denervation, and improved with surgical repair. In EFC, the biceps are clinically short and round vs the contralateral size, termed the "Popeye muscle". The objective of this study was to determine if the biceps morphology (muscle belly and tendon length) in arms with EFC secondary to OBPI is different vs the contralateral. This is a retrospective matched-cohort study. Patients with unilateral EFC (>20°) secondary to OBPI were identified (median = 6.6 years, range = 4.7-16.8). A blinded radiologist used computed tomography to measure length of the biceps short head muscle belly, and tendon bilaterally using standardised anatomical landmarks. Twelve patients were analyzed. The biceps muscle belly in the injured arm was shorter in all patients vs contralateral, mean difference = 3.6 cm (80%), p muscle belly and overall length, but longer tendon vs normal. This is termed the "Popeye muscle" for its irregular morphology. Findings are consistent with impaired limb growth in denervation.

  4. Denervation alters protein-lipid interactions in membrane fractions from electrocytes of Electrophorus electricus (L.).

    Science.gov (United States)

    Barriviera, M L; Louro, S R; Wajnberg, E; Hasson-Voloch, A

    2001-06-15

    Protein-lipid interactions are studied in normal and denervated electrocytes from Electrophorus electricus (L.). Structural modifications of the lipid micro-environment encircling integral membrane proteins in membrane fractions presenting Na(+),K(+)-ATPase activity are investigated using ESR spectroscopy of stearic acid spin labeled at the 14th carbon (14-SASL). The microsomal fraction derived from the innervated electric organ exhibits, on a discontinuous sucrose gradient, a bimodal distribution of the Na(+),K(+)-ATPase activity, bands a and b. Band b is almost absent in microsomes from the denervated organ, and band a', with the same density as band a has lower Na(+),K(+)-ATPase activity. Band a' presents a larger ratio of protein-interacting lipids than band a. Analysis of the lipid stoichiometry at the protein interface indicates that denervation causes at least a twofold average decrease on protein oligomerization. Physical inactivity and denervation have similar effects on protein-lipid interactions. Denervation also influences the selectivity of proteins for fatty acids. Experiments in decreasing pH conditions performed to verify the influence of stearic acid negative charge on protein interaction revealed that denervation produces loss of charge selectivity. The observed modifications on molecular interactions induced by denervation may have importance to explain modulation of enzyme activity.

  5. RENAL DENERVATION IN THE TREATMENT OF RESISTANT HYPERTENSION: RESULTS OF A ONE-YEAR OBSERVATIONAL STUDY

    Directory of Open Access Journals (Sweden)

    V. A. Sulimov

    2015-09-01

    Full Text Available Aim. To study the effect of renal denervation on blood pressure (BP, myocardium function and vegetative status in patients with resistant hypertension (HT.Material and methods. Patients with a provisional resistant HT diagnosis (n=62; 41.3% male were included into the study. 17 patients were selected for renal denervation after correction of previous antihypertensive therapy and examination to exclude symptomatic HT. Two patients refused the procedure, 1 patient hadn’t undergone renal denervation due to anatomical features (renal artery diameter <4 mm. Renal denervation was performed in 14 patients. Office and average daily BP, kidney function, the severity of left ventricular hypertrophy and heart rate variability were assessed initially and after the intervention.Results. Office systolic BP (SBP decreased from 165 to 150 mm Hg (p=0.016, diastolic BP (DBP - from 110 to 95 mm Hg (p=0.019 12 months after the renal denervation. Average daily SBP decreased from 148 to 137 mm Hg (p=0.092, average daily DBP - from 90 to 80 mm Hg (p=0.401. Plasma creatinine level and glomerular filtration rate remained within the reference range at a baseline and in 12 months. Left ventricular hypertrophy measured by echocardiography has not changed significantly. No significant heart rate variability dynamics has been found.Conclusion. Renal denervation is a promising treatment for resistant HT. The effect of renal denervation on the dynamics of left ventricular hypertrophy and heart rate variability requires updating.

  6. RENAL DENERVATION IN THE TREATMENT OF RESISTANT HYPERTENSION: RESULTS OF A ONE-YEAR OBSERVATIONAL STUDY

    Directory of Open Access Journals (Sweden)

    V. A. Sulimov

    2015-01-01

    Full Text Available Aim. To study the effect of renal denervation on blood pressure (BP, myocardium function and vegetative status in patients with resistant hypertension (HT.Material and methods. Patients with a provisional resistant HT diagnosis (n=62; 41.3% male were included into the study. 17 patients were selected for renal denervation after correction of previous antihypertensive therapy and examination to exclude symptomatic HT. Two patients refused the procedure, 1 patient hadn’t undergone renal denervation due to anatomical features (renal artery diameter <4 mm. Renal denervation was performed in 14 patients. Office and average daily BP, kidney function, the severity of left ventricular hypertrophy and heart rate variability were assessed initially and after the intervention.Results. Office systolic BP (SBP decreased from 165 to 150 mm Hg (p=0.016, diastolic BP (DBP - from 110 to 95 mm Hg (p=0.019 12 months after the renal denervation. Average daily SBP decreased from 148 to 137 mm Hg (p=0.092, average daily DBP - from 90 to 80 mm Hg (p=0.401. Plasma creatinine level and glomerular filtration rate remained within the reference range at a baseline and in 12 months. Left ventricular hypertrophy measured by echocardiography has not changed significantly. No significant heart rate variability dynamics has been found.Conclusion. Renal denervation is a promising treatment for resistant HT. The effect of renal denervation on the dynamics of left ventricular hypertrophy and heart rate variability requires updating.

  7. Decrease of Na, K-ATPase Electrogenic Contribution and Resting Membrane Potential of Rat Soleus after 3 Days of Hindlimb Unloading

    Science.gov (United States)

    Krivoi, I. I.; Kravtsova, V. V.; Drabkina, T. M.; Prokofiev, A. V.; Nikolsky, E. E.; Shenkman, B. S.

    2008-06-01

    The Na,K-ATPase activity is critically important for excitability, electrogenesis and contractility of skeletal muscle expressing ? and ? isoforms of the enzyme [6, 9]. It is well known that disuse induced by hindlimb unloading (HU) leads to progressive atrophy of skeletal muscle; the muscle undergoes a number of dramatic remodeling events. In particular, changes in ion channel expression in response to muscle unweighting were observed [1, 8]. Decrease of resting membrane potential (RMP), electrogenic contribution of Na,K-ATPase and membrane resistance during 7-28 days of HU was shown [8, 10]. The intrinsic mechanisms involved in the process have not been revealed until present. At the same time, the understanding of these mechanisms could be crucial for the disclosing the mechanisms underlying the resting Ca2+ accumulation in the cytoplasm of the unloaded muscle [3, 7]. In the present study, the effect of early (3 days) HU-induced disuse of slow-twitch soleus muscle on membrane electrogenesis as well as on electrogenic contribution of Na,K-ATPase isoforms was investigated.

  8. Localized Semi-LASER Dynamic 31P Magnetic Resonance Spectroscopy of the Soleus During and Following Exercise at 7 T

    CERN Document Server

    Fiedler, Georg B; Schmid, Albrecht I; Goluch, Sigrun; Schewzow, Kiril; Laistler, Elmar; Mirzahosseini, Arash; Niess, Fabian; Unger, Ewald; Wolzt, Michael; Moser, Ewald

    2015-01-01

    Object This study demonstrates the applicability of semi-LASER localized dynamic $^{31}$P MRS to deeper lying areas of the exercising human soleus muscle (SOL). The effect of accurate localization and high temporal resolution on data specificity is investigated. Materials and Methods To achieve high signal-to-noise ratio (SNR) at a temporal resolution of 6 s, a custom-built calf coil array was used at 7T. The kinetics of phosphocreatine (PCr) and intracellular pH were quantified separately in SOL and gastrocnemius medialis (GM) muscle of 9 volunteers, during rest, plantar flexion exercise and recovery. Results The average SNR of PCr at rest was 64$\\pm$15 in SOL (83$\\pm$12 in GM). End exercise PCr depletion in SOL (19$\\pm$9%) was far lower than in GM (74$\\pm$14%). pH in SOL increased rapidly and, in contrast to GM, remained elevated until the end of exercise. Conclusion $^{31}$P MRS in single-shots every 6 s localized in the deeper lying SOL enabled quantification of PCr recovery times at low depletions and of...

  9. Electrical stimulation using sine waveform prevents unloading-induced muscle atrophy in the deep calf muscles of rat.

    Science.gov (United States)

    Tanaka, Minoru; Hirayama, Yusuke; Fujita, Naoto; Fujino, Hidemi

    2014-09-01

    The aim of this study was to compare the effects of electrical stimulation by using rectangular and sine waveforms in the prevention of deep muscle atrophy in rat calf muscles. Rats were randomly divided into the following groups: control, hindlimb unloading (HU), and HU plus electrical stimulation (ES). The animals in the ES group were electrically stimulated using rectangular waveform (RS) on the left calves and sine waveform (SS) on the right calves, twice a day, for 2 weeks during unloading. HU for 2 weeks resulted in a loss of the muscle mass, a decrease in the cross-sectional area of the muscle fibers, and overexpression of ubiquitinated proteins in the gastrocnemius and soleus muscles. In contrast, electrical stimulation with RS attenuated the HU-induced reduction in the cross-sectional area of muscle fibers and the increase of ubiquitinated proteins in the gastrocnemius muscle. However, electrical stimulation with RS failed to prevent muscle atrophy in the deep portion of the gastrocnemius and the soleus muscles. Nevertheless, electrical stimulation with SS attenuated the HU-induced muscle atrophy and the up-regulation of ubiquitinated proteins in both gastrocnemius and soleus muscles. This indicates that SS was more effective in the prevention of deep muscle atrophy than RS. Since the skin muscle layers act like the plates of a capacitor, separated by the subcutaneous adipose layer, the SS can pass through this capacitor more easily than the RS. Hence, SS can prevent the progressive loss of muscle fibers in the deep portion of the calf muscles. Copyright © 2014 Elsevier GmbH. All rights reserved.

  10. Differential displacement of the human soleus and medial gastrocnemius aponeuroses during isometric plantar flexor contractions in vivo.

    Science.gov (United States)

    Bojsen-Møller, Jens; Hansen, Philip; Aagaard, Per; Svantesson, Ulla; Kjaer, Michael; Magnusson, S Peter

    2004-11-01

    The human triceps surae muscle-tendon complex is a unique structure with three separate muscle compartments that merge via their aponeuroses into the Achilles tendon. The mechanical function and properties of these structures during muscular contraction are not well understood. The purpose of the study was to investigate the extent to which differential displacement occurs between the aponeuroses of the medial gastrocnemius (MG) and soleus (Sol) muscles during plantar flexion. Eight subjects (mean +/- SD; age 30 +/- 7 yr, body mass 76.8 +/- 5.5 kg, height 1.83 +/- 0.06 m) performed maximal isometric ramp contractions with the plantar flexor muscles. The experiment was performed in two positions: position 1, in which the knee joint was maximally extended, and position 2, in which the knee joint was maximally flexed (125 degrees ). Plantarflexion moment was assessed with a strain gauge load cell, and the corresponding displacement of the MG and Sol aponeuroses was measured by ultrasonography. Differential shear displacement of the aponeurosis was quantified by subtracting displacement of Sol from that of MG. Maximal plantar flexion moment was 36% greater in position 1 than in position 2 (132 +/- 20 vs. 97 +/- 11 N.m). In position 1, the displacement of the MG aponeurosis at maximal force exceeded that of the Sol (12.6 +/- 1.7 vs. 8.9 +/- 1.5 mm), whereas in position 2 displacement of the Sol was greater than displacement of the MG (9.6 +/- 1.0 vs. 7.9 +/- 1.2 mm). The amount and "direction" of shear between the aponeuroses differed significantly between the two positions across the entire range of contraction, indicating that the Achilles tendon may be exposed to intratendinous shear and stress gradients during human locomotion.

  11. [Effect of denervation on macromolecular metabolism in electric tissue of Electrophorus electricus (L)].

    Science.gov (United States)

    Falcato Ribeiro, A F; Chagas, C

    1975-11-10

    Unilateral denervation of the principal electric organ of the Electrophorus electricus produces in the denervated an increase of its content of RNA. This increase results, as shown by radioactive incorporation, from an increase in RNA synthesis and is followed by an increase in aminoacid incorporation by proteins. Protein concentration does not change significantly, implying that a change of the proteic pattern occurs. The increase in the RNA content follows denervation rather rapidly but comes down to approximately 10% of the initial value sixty days afterwards.

  12. Exercise-induced increase in dog adipose tissue blood flow before and after denervation

    DEFF Research Database (Denmark)

    Bülow, J; Madsen, J

    1986-01-01

    Subcutaneous adipose tissue blood flow was examined during rest and exercise in the inguinal fat pads of four female dogs using the Xe wash-out technique. The experiments were performed before and after denervation of one of the pads. No difference between the resting flows in the two pads could...... be demonstrated either before or after denervation. The flow increased about two-fold on average from rest to exercise. This response was similar before and after denervation. It is concluded that direct sympathetic innervation is not involved in the regulation of adipose tissue blood flow during exercise....

  13. Fate of 3H-thymidine labelled myogenic cells in regeneration of muscle isografts.

    Science.gov (United States)

    Gutmann, E; Mares, V; Stichová, J

    1976-03-05

    Intact and denervated extensor digitorum longus (EDL) muscles of 20-day-old inbred Lewis-Wistar rats were labelled with 3H-thymidine. Ninety minutes after the injection of the isotope 4.0% of the nuclei were labelled in the intact (i.e. innervated) and 9.6% in the muscles, denervated 3 days before administration of the isotope. The labelled EDL muscles were grafted into the bed of the previously removed EDL muscles of inbred animals and these isografts were studied 30 days later. In the EDL muscles, regenerated from innervated isografts only occasionally labelled endothelial cells were found whereas in the muscles regenerated from denervated isografts also parenchymal muscle nuclei were regularly labelled. The incidence of labelled nuclei in the regenerated EDL muscles was, however, about 20 times lower than in the donor EDL muscles. The presen experiments provide a direct proof of utilization of donor satelite cell nuclei for regeneration in grafted muscle tissue. With respect to the low incidence of labelled nuclei in regenerated EDL muscles, other sources of cells apparently also contribute to the regeneration process.

  14. Muscle-tendon interaction and elastic energy usage in human walking

    DEFF Research Database (Denmark)

    Ishikawa, Masaki; Komi, Paavo V.; Grey, Michael James;

    2005-01-01

    The present study was designed to explore how the interaction between the fascicles and tendinous tissues is involved in storage and utilization of elastic energy during human walking. Eight male subjects walked with a natural cadence (1.4 +/- 0.1 m/s) on a 10-m-long force plate system. In vivo...... techniques were employed to record the Achilles tendon force and to scan real-time fascicle lengths for two muscles (medial gastrocnemius and soleus). The results showed that tendinous tissues of both medial gastrocnemius and soleus muscles lengthened slowly throughout the single-stance phase......-stance phase. In contrast, the soleus fascicles were lengthened until the end of the single-stance phase. These findings suggest that the elastic recoil takes place not as a spring-like bouncing but as a catapult action in natural human walking. The interaction between the muscle fascicles and tendinous...

  15. Alpha-adrenergic receptors in rat skeletal muscle

    DEFF Research Database (Denmark)

    Rattigan, S; Appleby, G J; Edwards, S J;

    1986-01-01

    Sarcolemma-enriched preparations from muscles rich in slow oxidative red fibres contained specific binding sites for the alpha 1 antagonist, prazosin (e.g. soleus Kd 0.13 nM, Bmax 29 fmol/mg protein). Binding sites for prazosin were almost absent from white muscle. Displacement of prazosin bindin...... adrenergic receptors are present on the sarcolemma of slow oxidative red fibres of rat skeletal muscle. The presence provides the mechanistic basis for apparent alpha-adrenergic effects to increase glucose and oxygen uptake in perfused rat hindquarter.......Sarcolemma-enriched preparations from muscles rich in slow oxidative red fibres contained specific binding sites for the alpha 1 antagonist, prazosin (e.g. soleus Kd 0.13 nM, Bmax 29 fmol/mg protein). Binding sites for prazosin were almost absent from white muscle. Displacement of prazosin binding...... from sarcolemma of soleus muscle (phentolamine greater than phenylephrine greater than idazoxan greater than yohimbine) suggested that the receptors were alpha 1. Binding sites for dihydroalprenolol (beta antagonist) were also more concentrated on red than white muscle and outnumbered prazosin sites...

  16. Botox produces functional weakness in non-injected muscles adjacent to the target muscle.

    Science.gov (United States)

    Yaraskavitch, M; Leonard, T; Herzog, Walter

    2008-01-01

    Botulinum type-A (BTX-A) neurotoxin exerts a paralytic effect on muscles and is used increasingly to treat a variety of muscle spasticity disorders. While its pathogenesis for muscle-induced weakness has been well elucidated, the functional effects of BTX-A administration are incomplete. Specifically, weakness as a function of muscle length and stimulation frequency has only been investigated qualitatively in a few muscles and the possible effect of the toxin on non-target muscles, although considered possible based on laboratory