WorldWideScience

Sample records for denaturation temperature polymerase

  1. Coamplification at lower denaturation temperature polymerase chain reaction enables selective identification of K-Ras mutations in formalin-fixed, paraffin-embedded tumor tissues without tumor-cell enrichment.

    Science.gov (United States)

    Yu, Shaorong; Xie, Li; Hou, Zhibo; Qian, Xiaoping; Yu, Lixia; Wei, Jia; Ding, Yitao; Liu, Baorui

    2011-09-01

    Conventional polymerase chain reaction-based Sanger sequencing is the standard assay for the detection of K-Ras mutations. However, this method is deficient in identifying small numbers of mutation-bearing cells, and tumor-cell enrichment methods such as microdissection or macrodissection are labor intensive and not always achievable. We applied the recently described coamplification at lower denaturation temperature polymerase chain reaction, which amplifies minority alleles selectively, to detect K-Ras mutations directly in 29 formalin-fixed, paraffin-embedded pancreatic specimens and compared the results with those of conventional polymerase chain reaction. To avoid a false-negative result from the coamplification at lower denaturation temperature polymerase chain reaction assay, we applied a more sensitive peptide nucleic acid polymerase chain reaction method as the gold standard. Dilution experiments indicated an approximately 5-fold improvement in sensitivity with coamplification at lower denaturation temperature polymerase chain reaction-based Sanger sequencing. Conventional polymerase chain reaction detected K-Ras mutations in 11 formalin-fixed, paraffin-embedded pancreatic specimens (37.9%), whereas coamplification at lower denaturation temperature polymerase chain reaction could identify all of those mutations as well as mutations in 10 additional samples, for a total of 21 (72.4%, P = .002) of 29. Unlike peptide nucleic acid polymerase chain reaction, coamplification at lower denaturation temperature polymerase chain reaction identified all K-Ras mutations in specimens in which tumor cells accounted for at least 20% of the total. Adoption of coamplification at lower denaturation temperature polymerase chain reaction is straightforward and requires no additional reagents or instruments. The technique is a good strategy to detect K-Ras mutations selectively in formalin-fixed, paraffin-embedded tissues without tumor-cell enrichment.

  2. Temperature induced denaturation of collagen in acidic solution.

    Science.gov (United States)

    Mu, Changdao; Li, Defu; Lin, Wei; Ding, Yanwei; Zhang, Guangzhao

    2007-07-01

    The denaturation of collagen solution in acetic acid has been investigated by using ultra-sensitive differential scanning calorimetry (US-DSC), circular dichroism (CD), and laser light scattering (LLS). US-DSC measurements reveal that the collagen exhibits a bimodal transition, i.e., there exists a shoulder transition before the major transition. Such a shoulder transition can recover from a cooling when the collagen is heated to a temperature below 35 degrees C. However, when the heating temperature is above 37 degrees C, both the shoulder and major transitions are irreversible. CD measurements demonstrate the content of triple helix slowly decreases with temperature at a temperature below 35 degrees C, but it drastically decreases at a higher temperature. Our experiments suggest that the shoulder transition and major transition arise from the defibrillation and denaturation of collagen, respectively. LLS measurements show the average hydrodynamic radius R(h), radius of gyration R(g)of the collagen gradually decrease before a sharp decrease at a higher temperature. Meanwhile, the ratio R(g)/R(h) gradually increases at a temperature below approximately 34 degrees C and drastically increases in the range 34-40 degrees C, further indicating the defibrillation of collagen before the denaturation.

  3. Theoretical Study on Effects of Salt and Temperature on Denaturation Transition of Double-stranded DNA

    Institute of Scientific and Technical Information of China (English)

    DONG Rui-Xin; YAN Xun-Ling; PANG Xiao-Feng; JIANG Shan; LIU Sheng-Gang

    2004-01-01

    We investigate the statistical mechanics properties of a nonlinear dynamics model of the denaturation of the DNA double-helix and study the effects of salt concentration and temperature on denaturation transition of DNA. The specific heat, entropy, and denaturation temperature of the system versus salt concentration are obtained. These results show that the denaturation of DNA not only depends on the temperature but also is influenced by the salt concentration in the solution of DNA, which are in agreement with experimental measurement.

  4. Fluorescence-based temperature control for polymerase chain reaction.

    Science.gov (United States)

    Sanford, Lindsay N; Wittwer, Carl T

    2014-03-01

    The ability to accurately monitor solution temperature is important for the polymerase chain reaction (PCR). Robust amplification during PCR is contingent on the solution reaching denaturation and annealing temperatures. By correlating temperature to the fluorescence of a passive dye, noninvasive monitoring of solution temperatures is possible. The temperature sensitivity of 22 fluorescent dyes was assessed. Emission spectra were monitored and the change in fluorescence between 45 and 95°C was quantified. Seven dyes decreased in intensity as the temperature increased, and 15 were variable depending on the excitation wavelength. Sulforhodamine B (monosodium salt) exhibited a fold change in fluorescence of 2.85. Faster PCR minimizes cycling times and improves turnaround time, throughput, and specificity. If temperature measurements are accurate, no holding period is required even at rapid speeds. A custom instrument using fluorescence-based temperature monitoring with dynamic feedback control for temperature cycling amplified a fragment surrounding rs917118 from genomic DNA in 3min and 45s using 35 cycles, allowing subsequent genotyping by high-resolution melting analysis. Gold-standard thermocouple readings and fluorescence-based temperature differences were 0.29±0.17 and 0.96±0.26°C at annealing and denaturation, respectively. This new method for temperature cycling may allow faster speeds for PCR than currently considered possible.

  5. Urea-temperature phase diagrams capture the thermodynamics of denatured state expansion that accompany protein unfolding.

    Science.gov (United States)

    Tischer, Alexander; Auton, Matthew

    2013-09-01

    We have analyzed the thermodynamic properties of the von Willebrand factor (VWF) A3 domain using urea-induced unfolding at variable temperature and thermal unfolding at variable urea concentrations to generate a phase diagram that quantitatively describes the equilibrium between native and denatured states. From this analysis, we were able to determine consistent thermodynamic parameters with various spectroscopic and calorimetric methods that define the urea-temperature parameter plane from cold denaturation to heat denaturation. Urea and thermal denaturation are experimentally reversible and independent of the thermal scan rate indicating that all transitions are at equilibrium and the van't Hoff and calorimetric enthalpies obtained from analysis of individual thermal transitions are equivalent demonstrating two-state character. Global analysis of the urea-temperature phase diagram results in a significantly higher enthalpy of unfolding than obtained from analysis of individual thermal transitions and significant cross correlations describing the urea dependence of ΔH0 and ΔCP0 that define a complex temperature dependence of the m-value. Circular dichroism (CD) spectroscopy illustrates a large increase in secondary structure content of the urea-denatured state as temperature increases and a loss of secondary structure in the thermally denatured state upon addition of urea. These structural changes in the denatured ensemble make up ∼40% of the total ellipticity change indicating a highly compact thermally denatured state. The difference between the thermodynamic parameters obtained from phase diagram analysis and those obtained from analysis of individual thermal transitions illustrates that phase diagrams capture both contributions to unfolding and denatured state expansion and by comparison are able to decipher these contributions.

  6. Biophysical analysis of phaseolin denaturation induced by urea, guanidinium chloride, pH, and temperature.

    Science.gov (United States)

    Dyer, J M; Nelson, J W; Murai, N

    1992-06-01

    The structural stability of phaseolin was determined by using absorbance, circular dichroism (CD), fluorescence emission, and fluorescence polarization anisotropy to monitor denaturation induced by urea, guanidinium chloride (GdmCl), pH changes, increasing temperature, or a combination thereof. Initial results indicated that phaseolin remained folded to a similar extent in the presence or absence of 6.0 M urea or GdmCl at room temperature. In 6.0 M GdmCl, phaseolin denatures at approximately 65 degrees C when probed with absorbance, CD, and fluorescence polarization anisotropy. The transition occurs at lower temperatures by decreasing pH. Kinetic measurements of denaturation using CD indicated that the denaturation is slow below 55 degrees C and is associated with an activation energy of 52 kcal/mol in 6.0 M GdmCl. In addition, kinetic measurement using fluorescence emission indicated that the single tryptophan residue was sensitive to at least two steps of the denaturation process. The fluorescence emission appeared to reflect some other structural perturbation than protein denaturation, as fluorescence inflection occurred approximately 5 degrees C prior to the changes observed in absorbance, CD, and fluorescence polarization anisotropy.

  7. Impact of organic modifier and temperature on protein denaturation in hydrophobic interaction chromatography.

    Science.gov (United States)

    Bobaly, Balázs; Beck, Alain; Veuthey, Jean-Luc; Guillarme, Davy; Fekete, Szabolcs

    2016-11-30

    The goal of this study was to better understand the chromatographic conditions in which monoclonal antibodies (mAbs) of broad hydrophobicity scale and a cysteine conjugated antibody-drug conjugate (ADCs), namely brentuximab-vedotin, could denaturate. For this purpose, some experiments were carried out in HIC conditions using various organic modifier in natures and proportions, different mobile phase temperatures and also different pHs. Indeed, improper analytical conditions in hydrophobic interaction chromatography (HIC) may create reversed-phase (RP) like harsh conditions and therefore protein denaturation. In terms of organic solvents, acetonitrile (ACN) and isopropanol (IPA) were tested with proportions ranging from 0 to 40%. It appeared that IPA was a less denaturating solvent than ACN, but should be used in a reasonable range (10-15%). Temperature should also be kept reasonable (below 40°C), to limit denaturation under HIC conditions. However, the combined increase of temperature and organic content induced denaturation of protein biopharmaceuticals in all cases. Indeed, above 30-40°C and 10-15% organic modifier in mobile phase B, heavy chain (HC) and light chain (LC) fragments dissociated. Mobile phase pH was also particularly critical and denaturation was significant even under moderately acidic conditions (pH of 5.4). Today, HIC is widely used for measuring drug-to-antibody ratio (DAR) of ADCs, which is a critical quality attribute of such samples. Here, we demonstrated that the estimation of average DAR can be dependent on the amount of organic modifier in the mobile phase under HIC conditions, due to the better recovery of the most hydrophobic proteins in presence of organic solvent (IPA). So, special care should be taken when measuring the average DAR of ADCs in HIC. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Detection of the End Point Temperature of Thermal Denatured Protein in Fish and Chicken Meat Through SDS-PAGE Electrophoresis

    Institute of Scientific and Technical Information of China (English)

    GAO Hongwei; MAO Mao; LIANG Chengzhu; LIN Chao; XIANG Jianhai

    2009-01-01

    Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) was applied in the detection of the end point temperature (EPT) of thermal denatured protein in fish and meat in this study. It was also used in studying the thermal denatured temperature range of proteins in salmon and chicken meat. The results show that the temperature ranges of denatured proteins were from 65℃ to 75℃, and these temperature ranges were influenced by the processing methods. Through SDS-PAGE, the features of repeated heating thermal denatured proteins under the same temperature and processing time were studied. The electrophoresis pat-terns of thermal denatured proteins determined through repeated heating at the same temperature did not exhibit any change. For the detection of cooked fish and meat samples, they were subjected to applying the SDS-PAGE method, which revealed an EPT ranging from 60℃ to 80℃.

  9. Two-dimensional salt and temperature DNA denaturation analysis using a magnetoresistive sensor

    DEFF Research Database (Denmark)

    Rizzi, Giovanni; Dufva, Martin; Hansen, Mikkel Fougt

    2017-01-01

    . The results demonstrate that concentration melting provides an attractive alternative to temperature melting in on-chip DNA denaturation experiments and further show that the magnetoresistive platform is attractive due to its low cross-sensitivity to temperature and liquid composition....... temperature as well as salt concentration. The salt concentration melting curves were found to be more reliable than temperature melting curves. We performed a two-dimensional mapping of the melting profiles of a target to probes targeting its wild type (WT) and mutant type (MT) variants in the temperature...

  10. Detecting and resolving position-dependent temperature effects in real-time quantitative polymerase chain reaction.

    Science.gov (United States)

    von Kanel, Thomas; Gerber, Dominik; Wittwer, Carl T; Hermann, Mark; Gallati, Sabina

    2011-12-15

    Real-time quantitative polymerase chain reaction (qPCR) depends on precise temperature control of the sample during cycling. In the current study, we investigated how temperature variation in plate-based qPCR instruments influences qPCR results. Temperature variation was measured by amplicon melting analysis as a convenient means to assess well-to-well differences. Multiple technical replicates of several SYBR Green I-based qPCR assays allowed correlation of relative well temperature to quantification cycle. We found that inadequate template denaturation results in an inverse correlation and requires increasing the denaturation temperature, adding a DNA destabilizing agent, or pretreating with a restriction enzyme. In contrast, inadequate primer annealing results in a direct correlation and requires lowering the annealing temperature. Significant correlations were found in 18 of 25 assays. The critical nature of temperature-dependent effects was shown in a blinded study of 29 patients for the diagnosis of Prader-Willy and Angelman syndromes, where eight diagnoses were incorrect unless temperature-dependent effects were controlled. A method to detect temperature-dependent effects by pairwise comparisons of replicates in routine experiments is presented and applied. Systematic temperature errors in qPCR instruments can be recognized and their effects eliminated when high precision is required in quantitative genetic diagnostics and critical complementary DNA analyses. Copyright © 2011 Elsevier Inc. All rights reserved.

  11. Selection for Protein Kinetic Stability Connects Denaturation Temperatures to Organismal Temperatures and Provides Clues to Archaean Life

    Science.gov (United States)

    Romero-Romero, M. Luisa; Risso, Valeria A.; Martinez-Rodriguez, Sergio; Gaucher, Eric A.; Ibarra-Molero, Beatriz; Sanchez-Ruiz, Jose M.

    2016-01-01

    The relationship between the denaturation temperatures of proteins (Tm values) and the living temperatures of their host organisms (environmental temperatures: TENV values) is poorly understood. Since different proteins in the same organism may show widely different Tm’s, no simple universal relationship between Tm and TENV should hold, other than Tm≥TENV. Yet, when analyzing a set of homologous proteins from different hosts, Tm’s are oftentimes found to correlate with TENV’s but this correlation is shifted upward on the Tm axis. Supporting this trend, we recently reported Tm’s for resurrected Precambrian thioredoxins that mirror a proposed environmental cooling over long geological time, while remaining a shocking ~50°C above the proposed ancestral ocean temperatures. Here, we show that natural selection for protein kinetic stability (denaturation rate) can produce a Tm↔TENV correlation with a large upward shift in Tm. A model for protein stability evolution suggests a link between the Tm shift and the in vivo lifetime of a protein and, more specifically, allows us to estimate ancestral environmental temperatures from experimental denaturation rates for resurrected Precambrian thioredoxins. The TENV values thus obtained match the proposed ancestral ocean cooling, support comparatively high Archaean temperatures, and are consistent with a recent proposal for the environmental temperature (above 75°C) that hosted the last universal common ancestor. More generally, this work provides a framework for understanding how features of protein stability reflect the environmental temperatures of the host organisms. PMID:27253436

  12. Selection for Protein Kinetic Stability Connects Denaturation Temperatures to Organismal Temperatures and Provides Clues to Archaean Life.

    Directory of Open Access Journals (Sweden)

    M Luisa Romero-Romero

    Full Text Available The relationship between the denaturation temperatures of proteins (Tm values and the living temperatures of their host organisms (environmental temperatures: TENV values is poorly understood. Since different proteins in the same organism may show widely different Tm's, no simple universal relationship between Tm and TENV should hold, other than Tm≥TENV. Yet, when analyzing a set of homologous proteins from different hosts, Tm's are oftentimes found to correlate with TENV's but this correlation is shifted upward on the Tm axis. Supporting this trend, we recently reported Tm's for resurrected Precambrian thioredoxins that mirror a proposed environmental cooling over long geological time, while remaining a shocking ~50°C above the proposed ancestral ocean temperatures. Here, we show that natural selection for protein kinetic stability (denaturation rate can produce a Tm↔TENV correlation with a large upward shift in Tm. A model for protein stability evolution suggests a link between the Tm shift and the in vivo lifetime of a protein and, more specifically, allows us to estimate ancestral environmental temperatures from experimental denaturation rates for resurrected Precambrian thioredoxins. The TENV values thus obtained match the proposed ancestral ocean cooling, support comparatively high Archaean temperatures, and are consistent with a recent proposal for the environmental temperature (above 75°C that hosted the last universal common ancestor. More generally, this work provides a framework for understanding how features of protein stability reflect the environmental temperatures of the host organisms.

  13. Determining Annealing Temperatures for Polymerase Chain Reaction

    Science.gov (United States)

    Porta, Angela R.; Enners, Edward

    2012-01-01

    The polymerase chain reaction (PCR) is a common technique used in high school and undergraduate science teaching. Students often do not fully comprehend the underlying principles of the technique and how optimization of the protocol affects the outcome and analysis. In this molecular biology laboratory, students learn the steps of PCR with an…

  14. A noncontact temperature measurement method in polymerase chain reaction reactors

    Science.gov (United States)

    Sochivko, D. G.; Varlamov, D. A.; Fedorov, A. A.; Kurochkin, V. E.

    2016-04-01

    A new noncontact method for measuring temperatures of liquids, which is based on the fluorescent probes, is proposed. The method is intended for measuring temperatures of reaction media in reactors of devices for polymerase chain reactions in real time and can be used for determining dynamic temperature parameters.

  15. Analysis of phosphate-accumulating organisms cultivated under different carbon sources with polymerase chain reaction-denaturing gradient gel electrophoresis assay

    Institute of Scientific and Technical Information of China (English)

    YU Shui-li; LIU Ya-nan; JING Guo-lin; ZHAO Bing-jie; GUO Si-yuan

    2005-01-01

    To investigate the microbial communities of microorganisms cultivated under different carbon sources, three sequencing batch reactors were operated. They were supplied with sewage, glucose and sodium acetate as carbon sources respectively and showed high phosphorus removal performance. The results of denaturing gradient gel electrophoresis(DGGE) of polymerase chain reaction-amplified (PCR) 16S rDNA fragments demonstrated that β-protebacteria, Actinomyces sp. and γ-protebacteria only exited in 1 # reactor. The microbiological diversity of 1 # reactor exceeded the other two reactors. Flavobacterium, Bacillales, Actinomyces, Actinobacteridae and uncultured bacteria(AF527584, AF502204, AY592749, AB076862, AJ619051, AF495454 and AY133070) could be detected in the biological phosphorus removal reactors.

  16. Analysis of microbial diversity on deli slicers using polymerase chain reaction and denaturing gradient gel electrophoresis technologies.

    Science.gov (United States)

    Koo, O K; Mertz, A W; Akins, E L; Sirsat, S A; Neal, J A; Morawicki, R; Crandall, P G; Ricke, S C

    2013-02-01

    Cross-contamination of pathogenic and spoilage bacteria from food-contact surfaces to food products is a serious public health issue. Bacteria may survive and attach to food-contact surfaces by residual food components and/or background bacteria which may subsequently transfer to other food products. Deli slicers, generally used for slicing ready-to-eat products, can serve as potential sources for considerable bacterial transfer. The objective of this study was to assess the extent and distribution of microbial diversity of deli slicers by identification of pathogenic and background bacteria. Slicer-swab samples were collected from restaurants in Arkansas and Texas in the United States. Ten surface areas for each slicer were swabbed using sterile sponges. Denaturing gradient gel electrophoresis (DGGE) was applied to investigate the fingerprint of samples, and each band was further identified by sequence analysis. Pseudomonads were identified as the dominant bacteria followed by Enterobacteriaceae family, and lactic acid bacteria such as Lactococcus lactis and Streptococcus thermophilus were also found. Bacterial distribution was similar for all surface areas, while the blade guard exhibited the greatest diversity. This study provides a profile of the microbial ecology of slicers using DGGE to develop more specific sanitation practices and to reduce cross-contamination during slicing.

  17. Intermolecular hydrogen bonds: From temperature-driven proton transfer in molecular crystals to denaturation of DNA

    Indian Academy of Sciences (India)

    Mark Johnson

    2008-11-01

    We have combined neutron scattering and a range of numerical simulations to study hydrogen bonds in condensed matter. Two examples from a recent thesis will be presented. The first concerns proton transfer with increasing temperature in short inter-molecular hydrogen bonds [1,2]. These bonds have unique physical and chemical properties and are thought to play a fundamental role in processes like enzymatic catalysis. By combining elastic and inelastic neutron scattering results with ab initio, lattice dynamics and molecular dynamics simulations, low frequency lattice modes are identified which modulate the potential energy surface of the hydrogen bond proton and drive proton transfer. The second example concerns base-pair opening in DNA which is the fundamental physical process underlying biological processes like denaturation and transcription. We have used an emprical force field and a large scale, all-atom phonon calculation to gain insight into the base-pair opening modes and the apparent `energy gap' between the accepted frequencies for these modes (∼ 100 cm-1 or ∼ 140 K) and the temperature of the biological processes (room temperature to 100° C) [3]. Inelastic neutron scattering spectra on aligned, highly crystalline DNA samples, produced at the ILL, provide the reference data for evaluating the precision of these simulation results.

  18. Dynamic changes of yak ( gut microbiota during growth revealed by polymerase chain reaction-denaturing gradient gel electrophoresis and metagenomics

    Directory of Open Access Journals (Sweden)

    Yuanyang Nie

    2017-07-01

    Full Text Available Objective To understand the dynamic structure, function, and influence on nutrient metabolism in hosts, it was crucial to assess the genetic potential of gut microbial community in yaks of different ages. Methods The denaturing gradient gel electrophoresis (DGGE profiles and Illumina-based metagenomic sequencing on colon contents of 15 semi-domestic yaks were investigated. Unweighted pairwise grouping method with mathematical averages (UPGMA clustering and principal component analysis (PCA were used to analyze the DGGE fingerprint. The Illumina sequences were assembled, predicted to genes and functionally annotated, and then classified by querying protein sequences of the genes against the Kyoto encyclopedia of genes and genomes (KEGG database. Results Metagenomic sequencing showed that more than 85% of ribosomal RNA (rRNA gene sequences belonged to the phylum Firmicutes and Bacteroidetes, indicating that the family Ruminococcaceae (46.5%, Rikenellaceae (11.3%, Lachnospiraceae (10.0%, and Bacteroidaceae (6.3% were dominant gut microbes. Over 50% of non-rRNA gene sequences represented the metabolic pathways of amino acids (14.4%, proteins (12.3%, sugars (11.9%, nucleotides (6.8%, lipids (1.7%, xenobiotics (1.4%, coenzymes, and vitamins (3.6%. Gene functional classification showed that most of enzyme-coding genes were related to cellulose digestion and amino acids metabolic pathways. Conclusion Yaks’ age had a substantial effect on gut microbial composition. Comparative metagenomics of gut microbiota in 0.5-, 1.5-, and 2.5-year-old yaks revealed that the abundance of the class Clostridia, Bacteroidia, and Lentisphaeria, as well as the phylum Firmicutes, Bacteroidetes, Lentisphaerae, Tenericutes, and Cyanobacteria, varied more greatly during yaks’ growth, especially in young animals (0.5 and 1.5 years old. Gut microbes, including Bacteroides, Clostridium, and Lentisphaeria, make a contribution to the energy metabolism and synthesis of amino

  19. Nonlinear acoustic properties of ex vivo bovine liver and the effects of temperature and denaturation.

    Science.gov (United States)

    Jackson, E J; Coussios, C-C; Cleveland, R O

    2014-06-21

    Thermal ablation by high intensity focused ultrasound (HIFU) has a great potential for the non-invasive treatment of solid tumours. Due to the high pressure amplitudes involved, nonlinear acoustic effects must be understood and the relevant medium property is the parameter of nonlinearity B/A. Here, B/A was measured in ex vivo bovine liver, over a heating/cooling cycle replicating temperatures reached during HIFU ablation, adapting a finite amplitude insertion technique, which also allowed for measurement of sound-speed and attenuation. The method measures the nonlinear progression of a plane wave through liver and B/A was chosen so that numerical simulations matched the measured waveforms. To create plane-wave conditions, sinusoidal bursts were transmitted by a 100 mm diameter 1.125 MHz unfocused transducer and measured using a 15 mm diameter 2.25 MHz broadband transducer in the near field. Attenuation and sound-speed were calculated using a reflected pulse from the smaller transducer using the larger transducer as the reflecting interface. Results showed that attenuation initially decreased with heating then increased after denaturation, the sound-speed initially increased with temperature and then decreased, and B/A showed an increase with temperature but no significant post-heating change. The B/A data disagree with other reports that show a significant change and we suggest that any nonlinear enhancement in the received ultrasound signal post-treatment is likely due to acoustic cavitation rather than changes in tissue nonlinearity.

  20. Detection of Helicobacter species in liver and stomach tissues of patients with chronic liver diseases using polymerase chain reaction-denaturing gradient gel electrophoresis and immunohistochemistry.

    Science.gov (United States)

    Stalke, Piotr; Al-Soud, Waleed Abu; Bielawski, Krzysztof P; Bakowska, Alicja; Trocha, Hanna; Stepinski, Jan; Wadström, Torkel

    2005-09-01

    Helicobacter DNA has been detected in the hepatobiliary tree of patients with chronic liver diseases (CLD). The presence of H. pylori in the stomach compared with in the liver of the same patients with CLD has not been studied, therefore to the aim of this study was to investigate the presence of Helicobacter DNA and antigens in the liver and stomach of Polish patients with chronic liver diseases using molecular and immunological methods. Gastric mucosa and liver tissue samples and sera were collected from 97 Polish patients with CLD. Anti-H. pylori antibodies were detected by enzyme immunoassay (EIA), and H. pylori-like antigens detected by immunohistochemistry. Helicobacter DNA was detected in stomach and liver samples using a semi-nested Helicobacter genus-specific polymerase chain reaction (PCR) assay, and Helicobacter species identified by denaturing gradient gel electrophoresis (DGGE) and sequencing analysis of amplified PCR products. H. pylori was identified by DGGE and sequence analysis in 60/62 (97%) and 25/25 (100%) of the gastric and liver Helicobacter genus-positive samples, respectively, whereas DNA of H. heilmannii was detected in 2/62 (3%) of the Helicobacter genus-positive gastric samples. H. pylori cagA gene was detected in 23/62 (36%) and 3/25 (12%) gastric and liver tissue samples, respectively. H. pylori-like antigens were detected in 61/97 (63%) gastric mucosa and in 40/97 (41%) liver tissue samples. H. pylori-like organisms appeared to dominate the gastric mucosa and liver tissue of Polish patients with CLD. The prevalence of the cagA gene was higher in stomach compared with liver samples, which suggests a possible role of cagA negative H. pylori-like organisms in CLD. On the other hand, no significant correlation was found between the presence of H. pylori-like DNA and antigens in the liver and liver function tests.

  1. Thermodynamics of protein denaturation at temperatures over 100 °C: CutA1 mutant proteins substituted with hydrophobic and charged residues

    National Research Council Canada - National Science Library

    Matsuura, Yoshinori; Takehira, Michiyo; Joti, Yasumasa; Ogasahara, Kyoko; Tanaka, Tomoyuki; Ono, Naoko; Kunishima, Naoki; Yutani, Katsuhide

    2015-01-01

    Although the thermodynamics of protein denaturation at temperatures over 100 °C is essential for the rational design of highly stable proteins, it is not understood well because of the associated technical difficulties...

  2. Sorbitol counteracts temperature- and chemical-induced denaturation of a recombinant α-amylase from alkaliphilic Bacillus sp. TS-23.

    Science.gov (United States)

    Chi, Meng-Chun; Wu, Tai-Jung; Chen, Hsing-Ling; Lo, Huei-Fen; Lin, Long-Liu

    2012-12-01

    Enzymes are highly complex systems with a substantial degree of structural variability in their folded state. In the presence of cosolvents, fluctuations among vast numbers of folded and unfolded conformations occur via many different pathways; alternatively, certain conformations can be stabilized or destabilized. To understand the contribution of osmolytes to the stabilization of structural changes and enzymatic activity of a truncated Bacillus sp. TS-23 α-amylase (BACΔNC), we monitored amylolytic activity, circular dichroism, and fluorescence as a function of osmolytes. In the presence of trimethylamine N-oxide (TMAO) and sorbitol, BACΔNC activity was retained significantly at elevated temperatures. As compared to the control, the secondary structures of this enzyme were essentially conserved upon the addition of these two kinds of osmolytes. Fluorescence results revealed that the temperature-induced conformational change of BACΔNC was prevented by TMAO and sorbitol. However, glycerol did not provide profound protection against thermal denaturation of the enzyme. Sorbitol was further found to counteract guanidine hydrochloride- and SDS-induced denaturation of BACΔNC. Thus, some well-known naturally occurring osmolytes make a dominant contribution to the stabilization of BACΔNC.

  3. An approach for protein to be completely reversible to thermal denaturation even at autoclave temperatures.

    Science.gov (United States)

    Iwakura, M; Nakamura, D; Takenawa, T; Mitsuishi, Y

    2001-08-01

    Reversibility of protein denaturation is a prerequisite for all applications that depend on reliable enzyme catalysis, particularly, for using steam to sterilize enzyme reactors or enzyme sensor tips, and for developing protein-based devices that perform on-off switching of the protein function such as enzymatic activity, ligand binding and so on. In this study, we have successfully constructed an immobilized protein that retains full enzymatic activity even after thermal treatments as high as 120 degrees C. The key for the complete reversibility was the development of a new reaction that allowed a protein to be covalently attached to a surface through its C-terminus and the protein engineering approach that was used to make the protein compatible with the new attachment chemistry.

  4. A comparison of the pH, urea, and temperature-denatured states of barnase by heteronuclear NMR: implications for the initiation of protein folding.

    Science.gov (United States)

    Arcus, V L; Vuilleumier, S; Freund, S M; Bycroft, M; Fersht, A R

    1995-11-24

    The denatured states of barnase that are induced by urea, acid, and high temperature and acid have been assigned and characterised by high resolution heteronuclear NMR. The assignment was completed using a combination of triple-resonance and magnetisation-transfer methods. The latter was facilitated by selecting a suitable mutant of barnase (Ile-->Val51) which has an appropriate rate of interconversion between native and denatured states in urea. 3J NH-C alpha H coupling constants were determined for pH and urea-denatured barnase and intrinsic "random coil" coupling constants are shown to be different for different residue types. All the denatured states are highly unfolded. But, a consistent series of weak correlations in chemical shift, NOESY and coupling constant data provides evidence that the acid-denatured state has some residual structure in regions that form the first and second helices and the central strands of beta-sheet in the native protein. The acid/temperature-denatured states has less structure in these regions, and the urea-denatured state, less still. These observations may be combined with detailed analyses of the folding pathway of barnase from kinetic studies to illuminate the relevance of residual structure in the denatured states of proteins to the mechanism of protein folding. First, the folding of barnase is known to proceed in its later stages through structures in which the first helix and centre of the beta-sheet are extensively formed. Thus, embryonic initiation sites for these do exist in the denatured states and so could well develop into true nuclei. Second, it has been clearly established that the second helix is unfolded in these later states, and so residual structure in this region of the protein is non-productive. These data fit a model of protein folding in which local nucleation sites are latent in the denatured state and develop only when they make interactions elsewhere in the protein that stabilise them during the folding

  5. Detection of CAPN10 copy number variation in Thai patients with type 2 diabetes by denaturing high performance liquid chromatography and real-time quantitative polymerase chain reaction

    Science.gov (United States)

    Plengvidhya, Nattachet; Chanprasert, Kanjana; Tangjittipokin, Watip; Thongnoppakhun, Wanna; Yenchitsomanus, Pa-thai

    2015-01-01

    Aims/Introduction A combination of multiple genetic and environmental factors contribute to the pathogenesis of type 2 diabetes. Copy number variations (CNVs) are associated with complex human diseases. However, CNVs can cause genotype deviation from the Hardy–Weinberg equilibrium (HWE). A genetic case–control association study in 216 Thai diabetic patients and 192 non-diabetic controls found that, after excluding genotyping errors, genotype distribution of calpain 10 (CAPN10) SNP44 (rs2975760) deviated from HWE. Here, we aimed to detect CNV within the CAPN10 SNP44 region. Materials and Methods CNV within the CAPN10 SNP44 region was detected using denaturing high-performance liquid chromatography, and the results confirmed by real-time quantitative polymerase chain reaction with SYBR Green I. Results Both methods successfully identified CNV in the CAPN10 SNP44 region, obtaining concordant results. Correction of genotype calling based on the status of identified CNVs showed that the CAPN10 SNP44 genotype is in good agreement with HWE (P > 0.05). However, no association between CNV genotypes and risk of type 2 diabetes was observed. Conclusions Identified CNVs for CAPN10 SNP44 genotypes lead to deviation from HWE. Furthermore, both denaturing high-performance liquid chromatography and real-time quantitative polymerase chain reaction are useful for detecting CNVs. PMID:26543536

  6. [Denaturalized psychoanalysts].

    Science.gov (United States)

    Peglau, Andreas

    2011-01-01

    This paper presents hitherto unknown material from the German Foreign Office referring to the denaturalization of Therese Benedek, Bruno Bettelheim, Adolf Storfer and Wilhelm Reich by Nazi Germany. It corroborates the finding that nobody was persecuted by the Nazis solely on the basis of psychoanalytic activities or membership in a psychoanalytic organization.

  7. A temperature control method for shortening thermal cycling time to achieve rapid polymerase chain reaction (PCR) in a disposable polymer microfluidic device

    Science.gov (United States)

    Bu, Minqiang; Perch-Nielsen, Ivan R.; Sørensen, Karen S.; Skov, Julia; Sun, Yi; Duong Bang, Dang; Pedersen, Michael E.; Hansen, Mikkel F.; Wolff, Anders

    2013-07-01

    We present a temperature control method capable of effectively shortening the thermal cycling time of polymerase chain reaction (PCR) in a disposable polymer microfluidic device with an external heater and a temperature sensor. The method employs optimized temperature overshooting and undershooting steps to achieve a rapid ramping between the temperature steps for DNA denaturation, annealing and extension. The temperature dynamics within the microfluidic PCR chamber was characterized and the overshooting and undershooting parameters were optimized using the temperature-dependent fluorescence signal from Rhodamine B. The method was validated with the PCR amplification of mecA gene (162 bp) from methicillin-resistant Staphylococcus aureus bacterium (MRSA), where the time for 30 cycles was reduced from 50 min (without over- and undershooting) to 20 min.

  8. Influences of Different DNA Polymerase for Denaturing Gradient Gel Electrophoresis(DGGE)%不同DNA聚合酶对PCR-DGGE技术的影响

    Institute of Scientific and Technical Information of China (English)

    张敏; 蔡俊鹏

    2011-01-01

    [目的]研究不同DNA聚合酶对PCR-DGGE技术的影响.[方法]选用3种不同的DNA聚合酶对单一的7株菌进行PCR扩增,通过DGGE图谱分析探讨不同的DNA聚合酶对PCR-DGGE技术的影响.[结果]用相同的DNA聚合酶1时,上游引物使用357F1比357F2的效果要好.当357F1作为上游引物时,DNA聚合酶2明显好于DNA聚合酶1,但仍有干扰结果出现;当357F2作为上游引物时,使用DNA聚合酶1和DNA聚合酶2都不能使各菌株分离开来.使用高质量的DNA聚合酶3时,上游引物所加入的无论是40 bp还是只有18 bp的"GC"夹,都能够使不同的DNA片段分离开来.[结论]不同的DNA聚合酶对PCR-DGGE技术的影响是很大的,选择合适的DNA聚合酶是至关重要的.%[ Objective ] The research aimed to study the influences of different DNA polymerase for DGGE. [ Method ] 7 strains were PCR amplified by using three different DNA polymerase ,through the analysis of profiles to compare the influence of different DNA polymerase for DGGE.[ Result] When using the same DNA polymerase 1, the effects of forward primer 357F1 was better than 357F2. When the forward primer was 357F1 ,the effects of DNA polymerase 2 was.better DNA polymerase l ,but still had interference. When the forward primer was 357F2,DNA polymerase 1 and DNA polymerase 2 could both separate 7 strains. When high quality DNA polymerase 3 was used,whatever the forward primer was 40 bp and 18 bp GC-clamp the DNA fragment could all be separated. [Conclusion] Different DNA polymerase has big influence on PCR- DGGE,and it is important to selecting suitable DNA polymerase.

  9. Utility of birefringence changes due to collagen thermal denaturation rate process analysis: vessel wall temperature estimation for new short term heating balloon angioplasty

    Science.gov (United States)

    Kaneko, Kenji; Shimazaki, Natsumi; Gotoh, Maya; Nakatani, Eriko; Arai, Tsunenori

    2007-02-01

    Our photo thermal reaction heating architecture balloon realizes less than 10 s short term heating that can soften vessel wall collagen without damaging surrounding tissue thermally. New thermal balloon angioplasty, photo-thermo dynamic balloon angioplasty (PTDBA) has experimentally shown sufficient opening with 2 atm low pressure dilation and prevention of chronic phase restenosis and acute phase thrombus in vivo. Even though PTDBA has high therapeutic potential, the most efficient heating condition is still under study, because relationship of treatment and thermal dose to vessel wall is not clarified yet. To study and set the most efficient heating condition, we have been working on establishment of temperature history estimation method from our previous experimental results. Heating target of PTDBA, collagen, thermally denatures following rate process. Denaturation is able to be quantified with measured collagen birefringence value. To express the denaturation with equation of rate process, the following ex vivo experiments were performed. Porcine extracted carotid artery was soaked in two different temperature saline baths to enforce constant temperature heating. Higher temperature bath was set to 40 to 80 degree Celsius and soaking duration was 5 to 40 s. Samples were observed by a polarizing microscope and a scanning electron microscope. The birefringence was measured by polarizing microscopic system using Brace-Koehler compensator 1/30 wavelength. The measured birefringence showed temperature dependency and quite fit with the rate process equation. We think vessel wall temperature is able to be estimated using the birefringence changes due to thermal denaturation.

  10. Comparative Analysis of Denaturing Gradient Gel Electrophoresis and Temporal Temperature Gradient Gel Electrophoresis Profiles as a Tool for the Differentiation of Candida Species.

    Science.gov (United States)

    Mohammadi, Parisa; Hamidkhani, Aida; Asgarani, Ezat

    2015-10-01

    Candida species are usually opportunistic organisms that cause acute to chronic infections when conditions in the host are favorable. Accurate identification of Candida species is an essential pre-requisite for improved therapeutic strategy. Identification of Candida species by conventional methods is time-consuming with low sensitivity, yet molecular approaches have provided an alternative way for early diagnosis of invasive candidiasis. Denaturing gradient gel electrophoresis (DGGE) and temporal temperature gradient gel electrophoresis (TTGE) are polymerase chain reaction (PCR)-based approaches that are used for studying the community structure of microorganisms. By using these methods, simultaneous identification of multiple yeast species will be possible and reliable results will be obtained quickly. In this study, DGGE and TTGE methods were set up and evaluated for the detection of different Candida species, and their results were compared. Five different Candida species were cultured on potato dextrose agar medium for 24 hours. Next, total DNA was extracted by the phenol-chloroform method. Two sets of primers, ITS3-GC/ITS4 and NL1-GC/LS2 were applied to amplify the desired regions. The amplified fragments were then used to analyze DGGE and TTGE profiles. The results showed that NL1-GC/LS2 primer set could yield species-specific amplicons, which were well distinguished and allowed better species discrimination than that generated by the ITS3-GC/ITS4 primer set, in both DGGE and TTGE profiles. All five Candida species were discriminated by DGGE and TTGE using the NL1-GC/LS2 primer set. Comparison of DGGE and TTGE profiles obtained from NL1-GC/LS2 amplicons exhibited the same patterns. Although both DGGE and TTGE techniques are capable of detecting Candida species, TTGE is recommended because of easier performance and lower costs.

  11. Elongation of mouse prion protein amyloid-like fibrils: effect of temperature and denaturant concentration.

    Directory of Open Access Journals (Sweden)

    Katazyna Milto

    Full Text Available Prion protein is known to have the ability to adopt a pathogenic conformation, which seems to be the basis for protein-only infectivity. The infectivity is based on self-replication of this pathogenic prion structure. One of possible mechanisms for such replication is the elongation of amyloid-like fibrils. We measured elongation kinetics and thermodynamics of mouse prion amyloid-like fibrils at different guanidine hydrochloride (GuHCl concentrations. Our data show that both increases in temperature and GuHCl concentration help unfold monomeric protein and thus accelerate elongation. Once the monomers are unfolded, further increases in temperature raise the rate of elongation, whereas the addition of GuHCl decreases it. We demonstrated a possible way to determine different activation energies of amyloid-like fibril elongation by using folded and unfolded protein molecules. This approach separates thermodynamic data for fibril-assisted monomer unfolding and for refolding and formation of amyloid-like structure.

  12. Numerical study of DNA denaturation with self-avoidance: pseudo-critical temperatures and finite size behaviour

    Science.gov (United States)

    Coluzzi, Barbara; Yeramian, Edouard

    2016-04-01

    We perform an extensive numerical study of the disordered Poland-Scheraga (PS) model for DNA denaturation in which self-avoidance is completely taken into account. To complement to our previous work, we focus here on the finite size scaling in terms of pseudo-critical temperatures. Notably, we find that the mean value and the fluctuations of the pseudo-T c scale with the same exponent, the correlation length exponent {ν\\text{r}} (for which we provide the refined evaluation {ν\\text{r}}=2.9+/- 0.4 ). This result (coherent with the typical picture that describes random ferromagnets when disorder is relevant) is at variance with the numerical results reported in the literature for the PS model with self-avoidance, leading to an alternative scenario with a pseudo-first-order transition. We moreover introduce a crossover chain length N *, which we evaluate, appropriate for characterizing the approach to the asymptotic regime in this model. Essentially, below N *, the behaviour of the model in our study could also agree with such an alternative scenario. Based on an approximate prediction of the dependence of N * on the parameters of the model, we show that following the choice of such parameters it would not be possible to reach the asymptotic regime in practice. In such a context it becomes then possible to reconcile the apparently contradictory numerical studies.

  13. Thermodynamics of protein denaturation at temperatures over 100 °C: CutA1 mutant proteins substituted with hydrophobic and charged residues.

    Science.gov (United States)

    Matsuura, Yoshinori; Takehira, Michiyo; Joti, Yasumasa; Ogasahara, Kyoko; Tanaka, Tomoyuki; Ono, Naoko; Kunishima, Naoki; Yutani, Katsuhide

    2015-10-26

    Although the thermodynamics of protein denaturation at temperatures over 100 °C is essential for the rational design of highly stable proteins, it is not understood well because of the associated technical difficulties. We designed certain hydrophobic mutant proteins of CutA1 from Escherichia coli, which have denaturation temperatures (Td) ranging from 101 to 113 °C and show a reversible heat denaturation. Using a hydrophobic mutant as a template, we successfully designed a hyperthermostable mutant protein (Td = 137 °C) by substituting six residues with charged ones. Thermodynamic analyses of these mutant proteins indicated that the hydrophobic mutants were stabilized by the accumulation of denaturation enthalpy (ΔH) with no entropic gain from hydrophobic solvation around 100 °C, and that the stabilization due to salt bridges resulted from both the increase in ΔH from ion-ion interactions and the entropic effect of the electrostatic solvation over 113 °C. This is the first experimental evidence that has successfully overcome the typical technical difficulties.

  14. Triggered isothermal PCR by denaturation bubble-mediated strand exchange amplification.

    Science.gov (United States)

    Shi, Chao; Shang, Fanjin; Zhou, Meiling; Zhang, Pansong; Wang, Yifan; Ma, Cuiping

    2016-10-04

    Here, we introduced the concept of strand exchange amplification (SEA) mediated by denaturation bubbles. Similar to traditional PCR, it only employed a DNA polymerase and a pair of common primers to realize a three-step cycle process, but the entire SEA reaction was performed at a single temperature.

  15. [Software and hardware design for the temperature control system of quantitative polymerase chain reaction].

    Science.gov (United States)

    Qiu, Xian-bo; Yuan, Jing-qi; Li, Qi

    2005-07-01

    A temperature control system for quantitive polymerase chain reaction (PCR) is presented in the paper with both software and hardware configuration. The performance of the control system has been improved by optimizing the software and hardware design according to the system's properties. The control system has been proven to have a good repeatability and reliability as well as high control precision.

  16. Single DNA denaturation and bubble dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Metzler, Ralf [Physics Department, Technical University of Munich, James Franck Strasse, 85747 Garching (Germany); Ambjoernsson, Tobias [Chemistry Department, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139 (United States); Hanke, Andreas [Department of Physics and Astronomy, University of Texas, 80 Fort Brown, Brownsville (United States); Fogedby, Hans C [Department of Physics and Astronomy, University of Arhus, Ny Munkegade, 8000 Arhus C (Denmark)], E-mail: metz@ph.tum.de

    2009-01-21

    While the Watson-Crick double-strand is the thermodynamically stable state of DNA in a wide range of temperature and salt conditions, even at physiological conditions local denaturation bubbles may open up spontaneously due to thermal activation. By raising the ambient temperature, titration, or by external forces in single molecule setups bubbles proliferate until full denaturation of the DNA occurs. Based on the Poland-Scheraga model we investigate both the equilibrium transition of DNA denaturation and the dynamics of the denaturation bubbles with respect to recent single DNA chain experiments for situations below, at, and above the denaturation transition. We also propose a new single molecule setup based on DNA constructs with two bubble zones to measure the bubble coalescence and extract the physical parameters relevant to DNA breathing. Finally we consider the interplay between denaturation bubbles and selectively single-stranded DNA binding proteins.

  17. Single DNA denaturation and bubble dynamics

    DEFF Research Database (Denmark)

    Metzler, Ralf; Ambjörnsson, Tobias; Hanke, Andreas

    2009-01-01

    for situations below, at, and above the denaturation transition. We also propose a new single molecule setup based on DNA constructs with two bubble zones to measure the bubble coalescence and extract the physical parameters relevant to DNA breathing. Finally we consider the interplay between denaturation......While the Watson-Crick double-strand is the thermodynamically stable state of DNA in a wide range of temperature and salt conditions, even at physiological conditions local denaturation bubbles may open up spontaneously due to thermal activation. By raising the ambient temperature, titration......, or by external forces in single molecule setups bubbles proliferate until full denaturation of the DNA occurs. Based on the Poland-Scheraga model we investigate both the equilibrium transition of DNA denaturation and the dynamics of the denaturation bubbles with respect to recent single DNA chain experiments...

  18. The dynamics of the DNA denaturation transition

    CERN Document Server

    van Erp, Titus S

    2012-01-01

    The dynamics of the DNA denaturation is studied using the Peyrard-Bishop-Dauxois model. The denaturation rate of double stranded polymers decreases exponentially as function of length below the denaturation temperature. Above Tc, the rate shows a minimum, but then increases as function of length. We also examine the influence of sequence and solvent friction. Molecules having the same number of weak and strong base-pairs can have significantly different opening rates depending on the order of base-pairs.

  19. Temperature-mediated heteroduplex analysis for the detection of drug-resistant gene mutations in clinical isolates of Mycobacterium tuberculosis by denaturing HPLC, SURVEYOR nuclease.

    Science.gov (United States)

    Shi, Ruiru; Otomo, Koji; Yamada, Hiroyuki; Tatsumi, Taiga; Sugawara, Isamu

    2006-01-01

    Denaturing high-performance liquid chromatography (DHPLC) is a relatively new technique, which utilizes heteroduplex formation between wild-type and mutated DNA strands to identify point mutations. Heteroduplex molecules are separated from homoduplex molecules by ion-pair, reverse-phase liquid chromatography on a special column matrix with partial heat denaturation of the DNA strands. In order to investigate the application of this method for point mutation detection in drug-resistant genes of Mycobacterium tuberculosis, katG, rpoB, embB, gyrA, pncA and rpsL genes, which are responsible for isoniazid, rifampicin, ethambutol, fluoroquinolone, pyrazinamide and streptomycin resistance, respectively, were detected by temperature-mediated DHPLC in 10 multidrug-resistant and 10 drug-susceptible clinical isolates. The DHPLC data were compared with those from a conventional MIC test. The results show that DHPLC is cost-effective with high capacity and accuracy, and is potentially useful for genotypic screening for mutations associated with anti-tuberculosis drug resistance.

  20. Evidence of alpha fluctuations in myoglobin's denaturation in the high temperature region: Average relaxation time from an Adam-Gibbs perspective.

    Science.gov (United States)

    Olivares-Quiroz, Luis; Garcia-Colin, Leopoldo S

    2009-10-01

    In this work, we derive an analytical expression for the relaxation time tau as a function of temperature T for myoglobin protein (Mb, PDB:1MBN) in the high temperature limit (T>T(g)=200K). The method is based on a modified version of the Adam-Gibbs theory (AG theory) for the glass transition in supercooled liquids and an implementation of differential geometry techniques. This modified version of the AG theory takes into account that the entropic component in protein's denaturation has two major sources: a configurational contribution DeltaS(c) due to the unfolding of the highly ordered native state N and a hydration contribution DeltaS(hyd) arising from the exposure of non-polar residues to direct contact with solvent polar molecules. Our results show that the configurational contribution DeltaS(c) is temperature-independent and one order of magnitude smaller than its hydration counterpart DeltaS(hyd) in the temperature range considered. The profile obtained for log tau(T) from T=200 K to T=300 K exhibits a non-Arrhenius behavior characteristic of alpha relaxation mechanisms in hydrated proteins and glassy systems. This result is in agreement with recent dielectric spectroscopy data obtained for hydrated myoglobin, where at least two fast relaxation processes in the high temperature limit have been observed. The connection between the relaxation process calculated here and the experimental results is outlined.

  1. Low-Cost Temperature Logger for a Polymerase Chain Reaction Thermal Cycler

    Directory of Open Access Journals (Sweden)

    Chan-Young Park

    2016-10-01

    Full Text Available Polymerase chain reaction (PCR is a method of amplifying DNA which is normally carried out with a thermal cycler. To obtain more accurate and reliable PCR results, the temperature change within the chamber of the thermal cycler needs to be verified and calibrated regularly. Commercially available temperature loggers commonly used for temperature verification tests usually require a graphical user interface (GUI attached to the logger for convenience and straightforward understanding of the device. In this study, a host-local architecture for the temperature logger that significantly reduces the development time and cost is proposed. Employing standard computing devices as the host gives better development environment and user-friendly GUI. This paper presents the hardware and software design of the host-local temperature logger, and demonstrates the use of the local temperature logger connected to a personal computer with a Windows operating system. The probe design, thermistor resistance measurement, temperature filtering, and temperature calibration is described in detail. The thermistor self-heating problem was investigated in particular to determine the reference resistor that was serially connected to the thermistor. The temperature accuracy and temporal precision of the proposed system was 0.1 K.

  2. [Influence of temperature on the preferential extraction of RNA polymerase I from hepatic nuclei of the rat].

    Science.gov (United States)

    Zoncheddu, A; Accomando, R; Pertica, M; Orunesu, M

    1979-11-15

    RNA polymerase I has been extracted from rat liver nuclei by three consecutive washings at 0 degrees C with a medium of relatively low ionic strength (0.15 M KCl) containing Mg++ rather than by incubating the organelles at 37 degrees C in the same medium, as originally proposed by Chesterton and Butterworth. The modified technique, which has the advantage of preventing a temperature-mediated conversion of form IB to IA, gives similar yields of RNA polymerase I and retains the capacity of preferentially extracting the enzyme with respect to the other forms of nuclear RNA polymerase.

  3. Temperature sensitive influenza A virus genome replication results from low thermal stability of polymerase-cRNA complexes

    Directory of Open Access Journals (Sweden)

    Tiley Laurence S

    2006-08-01

    Full Text Available Abstract Background The RNA-dependent RNA polymerase of Influenza A virus is a determinant of viral pathogenicity and host range that is responsible for transcribing and replicating the negative sense segmented viral genome (vRNA. Transcription produces capped and polyadenylated mRNAs whereas genome replication involves the synthesis of an alternative plus-sense transcript (cRNA with unmodified termini that is copied back to vRNA. Viral mRNA transcription predominates at early stages of viral infection, while later, negative sense genome replication is favoured. However, the "switch" that regulates the transition from transcription to replication is poorly understood. Results We show that temperature strongly affects the balance between plus and minus-sense RNA synthesis with high temperature causing a large decrease in vRNA accumulation, a moderate decrease in cRNA levels but (depending on genome segment either increased or unchanged levels of mRNA. We found no evidence implicating cellular heat shock protein activity in this effect despite the known association of hsp70 and hsp90 with viral polymerase components. Temperature-shift experiments indicated that polymerase synthesised at 41°C maintained transcriptional activity even though genome replication failed. Reduced polymerase association with viral RNA was seen in vivo and in confirmation of this, in vitro binding assays showed that temperature increased the rate of dissociation of polymerase from both positive and negative sense promoters. However, the interaction of polymerase with the cRNA promoter was particularly heat labile, showing rapid dissociation even at 37°C. This suggested that vRNA synthesis fails at elevated temperatures because the polymerase does not bind the promoter. In support of this hypothesis, a mutant cRNA promoter with vRNA-like sequence elements supported vRNA synthesis at higher temperatures than the wild-type promoter. Conclusion The differential stability of

  4. A novel temperature control method for shortening thermal cycling time to achieve rapid polymerase chain reaction (PCR) in a disposable polymer microfluidic device

    DEFF Research Database (Denmark)

    Bu, Minqiang; R. Perch-Nielsen, Ivan; Sørensen, Karen Skotte

    We present a new temperature control method capable of effectively shortening the thermal cycling time of polymerase chain reaction (PCR) in a disposable polymer microfluidic device with external heater and temperature sensor. The method employs optimized temperature overshooting and undershooting...

  5. DSC study of denaturation of β-lactoglobulin B

    Institute of Scientific and Technical Information of China (English)

    王邦宁; 谈夫

    1995-01-01

    The denaturation of bovine β-lactoglobulin B (β-Lg B) has been studied in phosphate solutions with various concentrations of GuHCl with differential scanning calorimetry The experiments demonstrated that the presence of GuHCl made the β-Lg B undergo both cold denaturation and heat denaturation under the condition of a high concentration of the protein. The enthalpy changes of both kinds of denaturation exhibit opposite signs. Both the cold denaturation and the renaturation of the protein are reproducible, but its heat denaturation is irreversible. The cooperation among monomer molecules of the protein is involved in its heat denaturation The heat denaturation of the protein can be represented by the thermodynamic model Nc D→F. The activation energy of heat denaturation is 285 kJ/mol, which imples that the depression of temperature and enthalpy of heat denaturation of the P-Lg B does not result from decreasing considerably the activation energy by GuHCl As for the cold denaturation of the protein, es

  6. Accuracy of replication in the polymerase chain reaction. Comparison between Thermotoga maritima DNA polymerase and Thermus aquaticus DNA polymerase

    Directory of Open Access Journals (Sweden)

    R.S. Diaz

    1998-10-01

    Full Text Available For certain applications of the polymerase chain reaction (PCR, it may be necessary to consider the accuracy of replication. The breakthrough that made PCR user friendly was the commercialization of Thermus aquaticus (Taq DNA polymerase, an enzyme that would survive the high temperatures needed for DNA denaturation. The development of enzymes with an inherent 3' to 5' exonuclease proofreading activity, lacking in Taq polymerase, would be an improvement when higher fidelity is needed. We used the forward mutation assay to compare the fidelity of Taq polymerase and Thermotoga maritima (ULTMA™ DNA polymerase, an enzyme that does have proofreading activity. We did not find significant differences in the fidelity of either enzyme, even when using optimal buffer conditions, thermal cycling parameters, and number of cycles (0.2% and 0.13% error rates for ULTMA™ and Taq, respectively, after reading about 3,000 bases each. We conclude that for sequencing purposes there is no difference in using a DNA polymerase that contains an inherent 3' to 5' exonuclease activity for DNA amplification. Perhaps the specificity and fidelity of PCR are complex issues influenced by the nature of the target sequence, as well as by each PCR component.

  7. DNA denaturation in ionic solution

    Science.gov (United States)

    Maity, Arghya; Singh, Amar; Singh, Navin

    2016-05-01

    Salt or cations, present in solution play an important role in DNA denaturation and folding kinetics of DNA helix. In this work we study the thermal melting of double stranded DNA (dsDNA) molecule using Peyrard Bishop Dauxois (PBD) model. We modify the potential of H-bonding between the bases of the complimentary strands to introduce the salt and solvent effect. We choose different DNA sequences having different contents of GC pairs and calculate the melting temperatures. The melting temperature increases logarithmically with the salt concentration of the solution. The more GC base pairs in the chain enhance the stability of DNA chain at a fix salt concentration. The obtained results are in good accordance with experimental findings.

  8. Microwave-enhanced folding and denaturation of globular proteins

    DEFF Research Database (Denmark)

    Bohr, Henrik; Bohr, Jakob

    2000-01-01

    It is shown that microwave irradiation can affect the kinetics of the folding process of some globular proteins, especially beta-lactoglobulin. At low temperature the folding from the cold denatured phase of the protein is enhanced, while at a higher temperature the denaturation of the protein from...... its folded state is enhanced. In the latter case, a negative temperature gradient is needed for the denaturation process, suggesting that the effects of the microwaves are nonthermal. This supports the notion that coherent topological excitations can exist in proteins. The application of microwaves...

  9. Stability of collagen during denaturation.

    Science.gov (United States)

    Penkova, R; Goshev, I; Gorinstein, S; Nedkov, P

    1999-05-01

    The stability of calf skin collagen (CSC) type I during thermal and chemical denaturation in the presence of glycerol was investigated. Thermal denaturation of type I collagen was performed in the presence of glycerol or in combination with urea and sodium chloride. The denaturation curves obtained in the presence of urea or sodium chloride retained their original shape without glycerol. These curves were shifted upward proportionally to the glycerol concentration in the reaction medium. This means that glycerol and the denaturants act independently. The explanation is based on the difference in the mechanism of their action on the collagen molecule.

  10. Automated polymerase chain reaction in capillary tubes with hot air.

    Science.gov (United States)

    Wittwer, C T; Fillmore, G C; Hillyard, D R

    1989-06-12

    We describe a simple, compact, inexpensive thermal cycler that can be used for the polymerase chain reaction. Based on heat transfer with air to samples in sealed capillary tubes, the apparatus resembles a recirculating hair dryer. The temperature is regulated via thermocouple input to a programmable set-point process controller that provides proportional output to a solid state relay controlling a heating coil. For efficient cooling after the denaturation step, the controller activates a solenoid that opens a door to vent hot air and allows cool air to enter. Temperature-time profiles and amplification results approximate those obtained using water baths and microfuge tubes.

  11. 牙周牙髓联合病变菌群的PCR-DGGE分析%Bacterial analysis of combined periodontal-endodontic lesions using polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE)

    Institute of Scientific and Technical Information of China (English)

    夏明慧; 亓庆国

    2012-01-01

    目的 利用变性梯度凝胶电泳(DGGE)技术观察牙周牙髓联合病变患牙牙周组织和根管中原始菌群分布状况及其异同,并通过克隆测序技术来试图探讨两部位可能存在的优势菌.方法 从13例牙周牙髓联合病变患牙分别采集患牙根尖1/3处牙周细菌和根管牙髓细菌,提取细菌总DNA,扩增16S rRNA基因可变区,再进行变性梯度凝胶电泳.应用SPSS17.0软件和Quantity One软件对DGGE图谱菌种条带进行统计学分析和聚类分析.对DGGE凝胶中有代表性的条带进行回收和克隆测序.结果 两取菌部位的菌种条带数间有明显的统计学差异(P<0.01),但二者之间无正相关性.二者间的相似系数为13.1% ~62.5%.牙周牙髓联合病变患牙根尖区1/3处牙周菌属可能有弯曲菌属(Campylobacter)、梭杆菌属(Fusobacterium)、奈瑟菌属(Neisseria)等,该处对应根管中菌属可能有优杆菌属(Mogibacterium)、棒状杆菌属(Corynebacterium)、放线菌属(Actinomyces)等.结论 牙周牙髓联合病变(牙周来源)中牙周组织和邻近根管牙髓组织中菌种在数目和结构上有明显不同.该病变牙周组织和根管中可能存在目前尚未被认知的优势菌种.%Objective To compare the bacterial community profiles present in periodontium and root canals of the same tooth diagnosed as combined periodontal-endodontic lesions by using denaturing gradient gel electrophoresis (DGGE).Methods Samples were collected from 13 extracted teeth with advanced periodontitis,endodontic samples from root tip 1/3 root canal,and periodontal samples from the corresponding neighboring periodontium.Genomic DNA was collected for the following universal bacterial primersPCR.The PCR products were then loaded on the DGGE gels to gain separate bands.The typical DGGE bands were excised,PCR-cloned and sequenced.Results The number of bands,which was indicative of the number of bacterial species,was compared intra-group (periodontal and

  12. A temperature control method for shortening thermal cycling time to achieve rapid polymerase chain reaction (PCR) in a disposable polymer microfluidic device

    DEFF Research Database (Denmark)

    Bu, Minqiang; Perch-Nielsen, Ivan R.; Sørensen, Karen Skotte

    2013-01-01

    We present a temperature control method capable of effectively shortening the thermal cycling time of polymerase chain reaction (PCR) in a disposable polymer microfluidic device with an external heater and a temperature sensor. The method employs optimized temperature overshooting and undershooting...

  13. Predicting the distribution of whey protein fouling in a plate heat exchanger using the kinetic parameters of the thermal denaturation reaction of β-lactoglobulin and the bulk temperature profiles.

    Science.gov (United States)

    Blanpain-Avet, P; André, C; Khaldi, M; Bouvier, L; Petit, J; Six, T; Jeantet, R; Croguennec, T; Delaplace, G

    2016-12-01

    Fouling of plate heat exchangers (PHE) is a severe problem in the dairy industry, notably because the relationship between the build-up of protein fouling deposits and the chemical reactions taking place in the fouling solution has not yet been fully elucidated. Experiments were conducted at pilot scale in a corrugated PHE, and fouling deposits were generated using a model β-lactoglobulin (β-LG) fouling solution for which the β-LG thermal denaturation reaction constants had been previously determined experimentally. Then 18 different bulk temperature profiles within the PHE were imposed. Analysis of the fouling runs shows that the dry deposit mass per channel versus the ratio R=kunf/kagg (with kunf and kagg representing, respectively, the unfolding and aggregation rate constants computed from both the identification of the β-LG thermal denaturation process and knowledge of the imposed bulk temperature profile into the PHE channel) is able to gather reasonably well the experimental fouling mass data into a unique master curve. This type of representation of the results clearly shows that the heat-induced reactions (unfolding and aggregation) of the various β-LG molecular species in the bulk fluid are essential to capture the trend of the fouling mass distribution inside a PHE. This investigation also illustrates unambiguously that the release of the unfolded β-LG (also called β-LG molten globule) within the bulk fluid (and the absence of its consumption in the form of aggregates) is a key phenomenon that controls the extent of protein fouling as well as its location inside the PHE. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  14. Hysteresis in pressure-driven DNA denaturation.

    Directory of Open Access Journals (Sweden)

    Enrique Hernández-Lemus

    Full Text Available In the past, a great deal of attention has been drawn to thermal driven denaturation processes. In recent years, however, the discovery of stress-induced denaturation, observed at the one-molecule level, has revealed new insights into the complex phenomena involved in the thermo-mechanics of DNA function. Understanding the effect of local pressure variations in DNA stability is thus an appealing topic. Such processes as cellular stress, dehydration, and changes in the ionic strength of the medium could explain local pressure changes that will affect the molecular mechanics of DNA and hence its stability. In this work, a theory that accounts for hysteresis in pressure-driven DNA denaturation is proposed. We here combine an irreversible thermodynamic approach with an equation of state based on the Poisson-Boltzmann cell model. The latter one provides a good description of the osmotic pressure over a wide range of DNA concentrations. The resulting theoretical framework predicts, in general, the process of denaturation and, in particular, hysteresis curves for a DNA sequence in terms of system parameters such as salt concentration, density of DNA molecules and temperature in addition to structural and configurational states of DNA. Furthermore, this formalism can be naturally extended to more complex situations, for example, in cases where the host medium is made up of asymmetric salts or in the description of the (helical-like charge distribution along the DNA molecule. Moreover, since this study incorporates the effect of pressure through a thermodynamic analysis, much of what is known from temperature-driven experiments will shed light on the pressure-induced melting issue.

  15. Thermal denaturation of type I collagen vitrified gels

    Energy Technology Data Exchange (ETDEWEB)

    Xia, Zhiyong, E-mail: zhiyong.xia@jhuapl.edu [The Johns Hopkins University, Applied Physics Laboratory, Laurel, MD 20723 (United States); Calderon-Colon, Xiomara [The Johns Hopkins University, Applied Physics Laboratory, Laurel, MD 20723 (United States); Trexler, Morgana, E-mail: morgana.trexler@jhuapl.edu [The Johns Hopkins University, Applied Physics Laboratory, Laurel, MD 20723 (United States); Elisseeff, Jennifer; Guo, Qiongyu [The Johns Hopkins University, Department of Biomedical Engineering, Baltimore, MD 21231 (United States)

    2012-01-10

    Highlights: Black-Right-Pointing-Pointer We analyzed the denaturation of vitrigels synthesized under different conditions. Black-Right-Pointing-Pointer Overall denaturation kinetics consisted of both reversible and irreversible steps. Black-Right-Pointing-Pointer More stable vitrigels were formed under high level of vitrification. - Abstract: The denaturation kinetics of type I collagen vitrigels synthesized under different vitrification time and temperature were analyzed by the classical Kissinger approach and the advanced model free kinetics (AMFK) using the Vyazovkin algorithm. The AMFK successfully elucidated the overall denaturation into reversible and irreversible processes. Depending on vitrification conditions, the activation energy for the irreversible process ranged from 100 to 200 kJ/mol, and the reversible enthalpy ranged from 250 to 300 kJ/mol. All of these values increased with the vitrification time and temperature, indicating that a more stable and complex structure formed with increased vitrification. The classical Kissinger method predicted the presence of a critical temperate of approximately 60 Degree-Sign C for the transition between reversible and irreversible processes. Scanning electron microscopy revealed the presence of fibril structures in vitrigels both before and after full denaturation; however the fibrils had became thicker and rougher after denaturation.

  16. PCR performance of a thermostable heterodimeric archaeal DNA polymerase

    Directory of Open Access Journals (Sweden)

    Tom eKillelea

    2014-05-01

    Full Text Available DNA polymerases are versatile tools used in numerous important molecular biological core technologies like the ubiquitous polymerase chain reaction (PCR, cDNA cloning, genome sequencing and nucleic acid based diagnostics. Taking into account the multiple DNA amplification techniques in use, different DNA polymerases must be optimized for each type of application. One of the current tendencies is to reengineer or to discover new DNA polymerases with increased performance and broadened substrate spectra. At present, there is a great demand for such enzymes in applications, e.g., forensics or paleogenomics. Current major limitations hinge on the inability of conventional PCR enzymes, such as Taq, to amplify degraded or low amounts of template DNA. Besides, a wide range of PCR inhibitors can also impede reactions of nucleic acid amplification. Here we looked at the PCR performances of the proof-reading D-type DNA polymerase from P. abyssi, Pab-polD. Fragments, 3 kilobases in length, were specifically PCR-amplified in its optimized reaction buffer. Pab-polD showed not only a greater resistance to high denaturation temperatures than Taq during cycling, but also a superior tolerance to the presence of potential inhibitors. Proficient proof-reading Pab-polD enzyme could also extend a primer containing up to two mismatches at the 3’ primer termini. Overall, we found valuable biochemical properties in Pab-polD compared to the conventional Taq, which makes the enzyme ideally suited for cutting-edge PCR-applications.

  17. PCR performance of a thermostable heterodimeric archaeal DNA polymerase

    Science.gov (United States)

    Killelea, Tom; Ralec, Céline; Bossé, Audrey; Henneke, Ghislaine

    2014-01-01

    DNA polymerases are versatile tools used in numerous important molecular biological core technologies like the ubiquitous polymerase chain reaction (PCR), cDNA cloning, genome sequencing, and nucleic acid based diagnostics. Taking into account the multiple DNA amplification techniques in use, different DNA polymerases must be optimized for each type of application. One of the current tendencies is to reengineer or to discover new DNA polymerases with increased performance and broadened substrate spectra. At present, there is a great demand for such enzymes in applications, e.g., forensics or paleogenomics. Current major limitations hinge on the inability of conventional PCR enzymes, such as Taq, to amplify degraded or low amounts of template DNA. Besides, a wide range of PCR inhibitors can also impede reactions of nucleic acid amplification. Here we looked at the PCR performances of the proof-reading D-type DNA polymerase from P. abyssi, Pab-polD. Fragments, 3 kilobases in length, were specifically PCR-amplified in its optimized reaction buffer. Pab-polD showed not only a greater resistance to high denaturation temperatures than Taq during cycling, but also a superior tolerance to the presence of potential inhibitors. Proficient proof-reading Pab-polD enzyme could also extend a primer containing up to two mismatches at the 3' primer termini. Overall, we found valuable biochemical properties in Pab-polD compared to the conventional Taq, which makes the enzyme ideally suited for cutting-edge PCR-applications. PMID:24847315

  18. PCR performance of a thermostable heterodimeric archaeal DNA polymerase.

    Science.gov (United States)

    Killelea, Tom; Ralec, Céline; Bossé, Audrey; Henneke, Ghislaine

    2014-01-01

    DNA polymerases are versatile tools used in numerous important molecular biological core technologies like the ubiquitous polymerase chain reaction (PCR), cDNA cloning, genome sequencing, and nucleic acid based diagnostics. Taking into account the multiple DNA amplification techniques in use, different DNA polymerases must be optimized for each type of application. One of the current tendencies is to reengineer or to discover new DNA polymerases with increased performance and broadened substrate spectra. At present, there is a great demand for such enzymes in applications, e.g., forensics or paleogenomics. Current major limitations hinge on the inability of conventional PCR enzymes, such as Taq, to amplify degraded or low amounts of template DNA. Besides, a wide range of PCR inhibitors can also impede reactions of nucleic acid amplification. Here we looked at the PCR performances of the proof-reading D-type DNA polymerase from P. abyssi, Pab-polD. Fragments, 3 kilobases in length, were specifically PCR-amplified in its optimized reaction buffer. Pab-polD showed not only a greater resistance to high denaturation temperatures than Taq during cycling, but also a superior tolerance to the presence of potential inhibitors. Proficient proof-reading Pab-polD enzyme could also extend a primer containing up to two mismatches at the 3' primer termini. Overall, we found valuable biochemical properties in Pab-polD compared to the conventional Taq, which makes the enzyme ideally suited for cutting-edge PCR-applications.

  19. Combination of differential growth at two different temperatures with a quantitative real-time polymerase chain reaction to determine temperature-sensitive phenotype of Mycoplasma synoviae.

    Science.gov (United States)

    Shahid, Muhammad A; Ghorashi, Seyed A; Agnew-Crumpton, Rebecca; Markham, Philip F; Marenda, Marc S; Noormohammadi, Amir H

    2013-04-01

    Mycoplasma synoviae infections result in significant economic losses in the chicken and turkey industries. A commercially available live temperature-sensitive (ts (+)) vaccine strain MS-H has been found to be effective in controlling M. synoviae infections in commercial layer and broiler breeder farms in various countries, including Australia. Detection and differentiation of MS-H from field strains (ts (-)) and from ts (-) MS-H reisolates in vaccinated flocks is vital in routine flock status monitoring. At present microtitration is the only available technique to determine the ts phenotype of M. synoviae. This technique is time consuming and not amenable to automation. In the present study, a quantitative real-time polymerase chain reaction (Q-PCR) was combined with simultaneous culturing of M. synoviae at two different temperatures (33°C and 39.5°C) to determine the ts phenotype of 22 Australian M. synoviae strains/isolates. The M. synoviae type strain WVU-1853 was also included for comparison. A ratio of the copy numbers of the variable lipoprotein haemagglutinin (vlhA) gene at the two temperatures was calculated and a cut-off value was determined and used to delineate the ts phenotype. In all M. synoviae strains/isolates tested in this study, the ts phenotype determined using Q-PCR was in agreement with that determined using conventional microtitration. Combination of Q-PCR with differential growth at two different temperatures is a rapid, reliable and accurate technique that could be used as an effective tool in laboratories actively involved in ts phenotyping of M. synoviae strains/isolates.

  20. Collagen thermal denaturation study for thermal angioplasty based on modified kinetic model: relation between the artery mechanical properties and collagen denaturation rate

    Science.gov (United States)

    Shimazaki, N.; Hayashi, T.; Kunio, M.; Arai, T.

    2010-02-01

    We have been developing the novel short-term heating angioplasty in which sufficient artery lumen-dilatation was attained with thermal softening of collagen fiber in artery wall. In the present study, we investigated on the relation between the mechanical properties of heated artery and thermal denaturation fractures of arterial collagen in ex vivo. We employed Lumry-Eyring model to estimate temperature- and time-dependent thermal denaturation fractures of arterial collagen fiber during heating. We made a kinetic model of arterial collagen thermal denaturation by adjustment of K and k in this model, those were the equilibrium constant of reversible denaturation and the rate constant of irreversible denaturation. Meanwhile we demonstrated that the change of reduced scattering coefficient of whole artery wall during heating reflected the reversible denaturation of the collagen in artery wall. Based on this phenomenon, the K was determined experimentally by backscattered light intensity measurement (at 633nm) of extracted porcine carotid artery during temperature elevation and descending (25°C-->80°C-->25°C). We employed the value of according to our earlier report in which the time-and temperature- dependent irreversible denaturation amount of the artery collagen fiber that was assessed by the artery birefringence. Then, the time- and temperature- dependent reversible (irreversible) denaturation fraction defined as the reversible ((irreversible) denatured collagen amount) / (total collagen amount) was calculated by the model. Thermo-mechanical analysis of artery wall was performed to compare the arterial mechanical behaviors (softening, shrinkage) during heating with the calculated denaturation fraction with the model. In any artery temperature condition in 70-80°, the irreversible denaturation fraction at which the artery thermal shrinkage started was estimated to be around 20%. On the other hand, the calculated irreversible denaturation fraction remained below

  1. MicroRNA-23b Inhibits the Proliferation and Migration of Heat-Denatured Fibroblasts by Targeting Smad3.

    Directory of Open Access Journals (Sweden)

    Xipeng Zhang

    Full Text Available Skin grafting with the preservation of denatured dermis is a novel strategy for the treatment of burn-injured skin. Denatured dermis has the ability to restore to the morphology and function of normal skin, but the underlying molecular mechanism is elusive. MicroRNAs (miRNA are small noncoding RNAs and regulate normal physiology as well as disease development. In this study, we assessed the potential role of miRNA-23b (miR-23b in the regulation of cell proliferation and migration of heat-denatured fibroblasts and identified the underlying mechanism.The expression of miR-23b in denatured dermis and heat-denatured fibroblasts was detected by quantitative real-time polymerase chain reaction (RT-PCR. The effects of miR-23b on cell proliferation and migration of heat-denatured fibroblasts were assessed by transient transfection of miR-23b mimics and inhibitor. The target gene of miR-23b and the downstream pathway were further investigated.miR-23b was downregulated in denatured dermis and heat-denatured fibroblasts. Downregulation of miR-23b dramatically promoted the proliferation and migration of heat-denatured fibroblasts. Subsequent analyses demonstrated that Smad3 was a direct and functional target of miR-23b in heat-denatured fibroblasts, which was validated by the dual luciferase reporter assay. Moreover, immunohistochemistry analysis showed that denatured dermis from rats displayed enhanced staining of Smad3. In addition, miR-23b modulated denatured dermis by activating the Notch1 and TGF-β signaling pathways.Our findings suggest that downregulation of miR-23b contributes to the recovery of denatured dermis, which may be valuable for treatment of skin burns.

  2. Ion-Mediated Polymerase Chain Reactions Performed with an Electronically Driven Microfluidic Device.

    Science.gov (United States)

    Zhang, Yi; Li, Qian; Guo, Linjie; Huang, Qing; Shi, Jiye; Yang, Yang; Liu, Dongsheng; Fan, Chunhai

    2016-09-26

    The polymerase chain reaction (PCR) is a powerful method for exponentially amplifying very low amounts of target DNA from genetic, clinical, and forensic samples. However, the heating and cooling steps in PCR largely hamper the miniaturization of thermocyclers for on-site detection of pathogens and point-of-care tests. Herein, we devise an ion-mediated PCR (IM-PCR) strategy by exploiting ion-induced DNA denaturation/renaturation cycles. DNA duplexes are effectively denatured in alkaline solutions; whereas, the denatured single-stranded DNA strands readily reform duplexes at neutral pH. By using an integrated microchip that can programmably control the solution pH simply switching the potential in a range of several hundred millivolts, we can trigger IM-PCR at a constant temperature. Analogously to thermal cycling, 30 cycles of pH-induced denaturation/renaturation were used to amplify protein DNA fragments as confirmed by DNA sequencing. We anticipate that this portable, low-cost, and scalable IM-PCR holds great promise for widespread biological, clinical, and environmental applications.

  3. Roles of the Y-family DNA polymerase Dbh in accurate replication of the Sulfolobus genome at high temperature.

    Science.gov (United States)

    Sakofsky, Cynthia J; Foster, Patricia L; Grogan, Dennis W

    2012-04-01

    The intrinsically thermostable Y-family DNA polymerases of Sulfolobus spp. have revealed detailed three-dimensional structure and catalytic mechanisms of trans-lesion DNA polymerases, yet their functions in maintaining their native genomes remain largely unexplored. To identify functions of the Y-family DNA polymerase Dbh in replicating the Sulfolobus genome under extreme conditions, we disrupted the dbh gene in Sulfolobus acidocaldarius and characterized the resulting mutant strains phenotypically. Disruption of dbh did not cause any obvious growth defect, sensitivity to any of several DNA-damaging agents, or change in overall rate of spontaneous mutation at a well-characterized target gene. Loss of dbh did, however, cause significant changes in the spectrum of spontaneous forward mutation in each of two orthologous target genes of different sequence. Relative to wild-type strains, dbh(-) constructs exhibited fewer frame-shift and other small insertion-deletion mutations, but exhibited more base-pair substitutions that converted G:C base pairs to T:A base pairs. These changes, which were confirmed to be statistically significant, indicate two distinct activities of the Dbh polymerase in Sulfolobus cells growing under nearly optimal culture conditions (78-80°C and pH 3). The first activity promotes slipped-strand events within simple repetitive motifs, such as mononucleotide runs or triplet repeats, and the second promotes insertion of C opposite a potentially miscoding form of G, thereby avoiding G:C to T:A transversions.

  4. Modelling of Serpentine Continuous Flow Polymerase Chain Reaction Microfluidics

    Directory of Open Access Journals (Sweden)

    Abubakar Mohammed

    2012-03-01

    Full Text Available The continuous flow Polymerase Chain Reaction (PCR microfluidics DNA amplification device is a recent discovery aimed at eliminating the cyclic hold experienced while using the alternative stationary device.The Application of Computational Fluid Dynamics is increasingly growing and can help achieve optimal designs before actual fabrication. This paper presents a CFD modelling of a continuous flow serpentine PCR device with narrow and wider channels. There are two temperature regions at 950C and 600C for denaturation and annealing respectively. Extension is achieved along the middle of the channel at 720C owing to temperature gradient. The model require a pressure of 42.6KPa for a 30 cycle amplification.

  5. Bubbles and denaturation in DNA

    CERN Document Server

    Van Erp, T S; Peyrard, M; Erp, Titus S. van; Cuesta-Lopez, Santiago; Peyrard, Michel

    2006-01-01

    The local opening of DNA is an intriguing phenomenon from a statistical physics point of view, but is also essential for its biological function. For instance, the transcription and replication of our genetic code can not take place without the unwinding of the DNA double helix. Although these biological processes are driven by proteins, there might well be a relation between these biological openings and the spontaneous bubble formation due to thermal fluctuations. Mesoscopic models, like the Peyrard-Bishop-Dauxois model, have fairly accurately reproduced some experimental denaturation curves and the sharp phase transition in the thermodynamic limit. It is, hence, tempting to see whether these models could be used to predict the biological activity of DNA. In a previous study, we introduced a method that allows to obtain very accurate results on this subject, which showed that some previous claims in this direction, based on molecular dynamics studies, were premature. This could either imply that the present...

  6. Nonisothermal denaturation kinetics of human hair and the effects of oxidation.

    Science.gov (United States)

    Wortmann, F-J; Popescu, C; Sendelbach, G

    2006-12-15

    Human hair as alpha-keratin fiber exhibits a complex morphology, which for the context of this investigation is considered as a filament/matrix-composite, comprising the intermediate filaments (IF) and a variety of amorphous protein components as matrix. Differential scanning calorimetry (DSC) under aqueous conditions was used to analyze the denaturation of the alpha-helical material in the IFs and to assess the changes imparted by repeated, oxidative bleaching processes. The DSC curves were submitted to kinetic analysis by applying the Friedman method and assuming first order kinetics. It was found that the course of the denaturation process remains largely unchanged through oxidation, despite the fact that pronounced decreases of denaturation temperature as well as of enthalpy occur. In parallel, the reaction rate constant at the denaturation temperature, k(TD), increases with repeated treatments, that is with cumulative chemical modification. However, this effect is in fact small compared to the overall change of k(T) through the denaturation process. This leads to conclude that once the temperature rise in combination with the chemical change has induced a suitable drop of the viscosity of the matrix around the IFs, denaturation of the remaining helical material occurs along a pathway that is largely independent of temperature and of the pretreatment history. This emphasizes the kinetic control of the matrix over the denaturation process of the helical segments in the filament/matrix composite. Copyright 2006 Wiley Periodicals, Inc.

  7. Heat Denaturation of Protein Structures and Chlorophyll States in PSII Membranes

    Institute of Scientific and Technical Information of China (English)

    李冬海; 阮翔; 许强; 王可玢; 公衍道; 匡廷云; 赵南明

    2002-01-01

    Heat denaturation is an important technique in the study of the structure and function of photosynthetic proteins. Heat denaturation of photosystem II (PSII) membrane was studied using circular dichroism (CD) spectroscopy, differential scanning calorimetry (DSC) and oxygen electrode. Complete loss of oxygen-evolving activity of the PSII membrane was observed at temperatures below 45℃. The decrease of excitonic interaction between chlorophyll molecules occurred more rapidly than the change of the protein secondary structure of the PSII membrane at temperatures above 45℃. The results indicate that the protein secondary structure of the membrane proteins in PSII membranes is more stable than the excitonic interaction between chlorophyll molecules during heat denaturation.

  8. Protein denaturation and functional properties of Lenient Steam Injection heat treated whey protein concentrate

    DEFF Research Database (Denmark)

    Dickow, Jonatan Ahrens; Kaufmann, Niels; Wiking, Lars

    2012-01-01

    Whey protein concentrate (WPC) was heat treated by use of the novel heat treatment method of Lenient Steam Injection (LSI) to elucidate new functional properties in relation to heat-induced gelation of heat treated WPC. Denaturation was measured by both DSC and FPLC, and the results of the two...... methods were highly correlated. Temperatures of up to 90 °C were applicable using LSI, whereas only 68 °C could be reached by plate heat exchange before coagulation/fouling. Denaturation of whey proteins increased with increasing heat treatment temperature up to a degree of 30–35% denaturation at 90 °C...

  9. On the Effect of Sodium Chloride and Sodium Sulfate on Cold Denaturation.

    Directory of Open Access Journals (Sweden)

    Andrea Pica

    Full Text Available Both sodium chloride and sodium sulfate are able to stabilize yeast frataxin, causing an overall increase of its thermodynamic stability curve, with a decrease in the cold denaturation temperature and an increase in the hot denaturation one. The influence of low concentrations of these two salts on yeast frataxin stability can be assessed by the application of a theoretical model based on scaled particle theory. First developed to figure out the mechanism underlying cold denaturation in water, this model is able to predict the stabilization of globular proteins provided by these two salts. The densities of the salt solutions and their temperature dependence play a fundamental role.

  10. Irreversible denaturation of maltodextrin glucosidase studied by differential scanning calorimetry, circular dichroism, and turbidity measurements.

    Science.gov (United States)

    Goyal, Megha; Chaudhuri, Tapan K; Kuwajima, Kunihiro

    2014-01-01

    Thermal denaturation of Escherichia coli maltodextrin glucosidase was studied by differential scanning calorimetry, circular dichroism (230 nm), and UV-absorption measurements (340 nm), which were respectively used to monitor heat absorption, conformational unfolding, and the production of solution turbidity. The denaturation was irreversible, and the thermal transition recorded at scan rates of 0.5-1.5 K/min was significantly scan-rate dependent, indicating that the thermal denaturation was kinetically controlled. The absence of a protein-concentration effect on the thermal transition indicated that the denaturation was rate-limited by a mono-molecular process. From the analysis of the calorimetric thermograms, a one-step irreversible model well represented the thermal denaturation of the protein. The calorimetrically observed thermal transitions showed excellent coincidence with the turbidity transitions monitored by UV-absorption as well as with the unfolding transitions monitored by circular dichroism. The thermal denaturation of the protein was thus rate-limited by conformational unfolding, which was followed by a rapid irreversible formation of aggregates that produced the solution turbidity. It is thus important to note that the absence of the protein-concentration effect on the irreversible thermal denaturation does not necessarily means the absence of protein aggregation itself. The turbidity measurements together with differential scanning calorimetry in the irreversible thermal denaturation of the protein provided a very effective approach for understanding the mechanisms of the irreversible denaturation. The Arrhenius-equation parameters obtained from analysis of the thermal denaturation were compared with those of other proteins that have been reported to show the one-step irreversible thermal denaturation. Maltodextrin glucosidase had sufficiently high kinetic stability with a half-life of 68 days at a physiological temperature (37°C).

  11. In situ observation of collagen thermal denaturation by second harmonic generation microscopy

    Science.gov (United States)

    Liao, C.-S.; Zhuo, Z.-Y.; Yu, J.-Y.; Chao, P.-H. G.; Chu, S.-W.

    2010-02-01

    Collagen denaturation is of fundamental importance for clinical treatment. Conventionally, the denaturation process is quantified by the shrinkage of collagen fibers, but the underlying molecular origin has not been fully understood. Since second harmonic generation (SHG) is related to the molecular packing of the triple helix in collagen fibers, this nonlinear signal provides an insight of molecular dynamics during thermal denaturation. With the aid of SHG microscopy, we found a new step in collagen thermal denaturation process, de-crimp. During the de-crimp step, the characteristic crimp pattern of collagen fascicles disappeared due to the breakage of interconnecting bonds between collagen fibrils, while SHG intensity remained unchanged, suggesting the intactness of the triple helical molecules. At higher temperature, shrinkage is observed with strongly reduced SHG intensity, indicating denaturation at the molecular level.

  12. Assessment of collagen crosslinking and denaturation for the design of regenerative scaffolds.

    Science.gov (United States)

    Madaghiele, Marta; Calò, Emanuela; Salvatore, Luca; Bonfrate, Valentina; Pedone, Deborah; Frigione, Mariaenrica; Sannino, Alessandro

    2016-01-01

    Crosslinking and denaturation were two variables that deeply affected the performance of collagen-based scaffolds designed for tissue regeneration. If crosslinking enhances the mechanical properties and the enzymatic resistance of collagen, while masking or reducing the available cell binding sites, denaturation has very opposite effects, as it impairs the mechanical and the enzymatic stability of collagen, but increases the number of exposed cell adhesive domains. The quantification of both crosslinking and denaturation was thus fundamental to the design of collagen-based scaffolds for selected applications. The aim of this work was to investigate the extents of crosslinking and denaturation of collagen-based films upon dehydrothermal (DHT) treatment, that is, one of the most commonly employed methods for zero-length crosslinking that shows the unique ability to induce partial denaturation. Swelling measurements, differential scanning calorimetry, Fourier transform infrared spectroscopy, colorimetric assays for the quantification of primary amines, and mechanical tests were performed to analyze the effect of the DHT temperature on crosslinking and denaturation. In particular, chemically effective and elastically effective crosslink densities were evaluated. Both crosslinking and denaturation were found to increase with the DHT temperature, although according to different trends. The results also showed that DHT treatments performed at temperatures up to 120°C maintained the extent of denaturation under 25%. Coupling a mild DHT treatment with further crosslinking may thus be very useful not only to modulate the crosslink density, but also to induce a limited amount of denaturation, which shows potential to partially compensate the loss of cell binding sites caused by crosslinking.

  13. Relaxation rate for an ultrafast folding protein is independent of chemical denaturant concentration.

    Science.gov (United States)

    Cellmer, Troy; Henry, Eric R; Kubelka, Jan; Hofrichter, James; Eaton, William A

    2007-11-28

    The connection between free-energy surfaces and chevron plots has been investigated in a laser temperature jump kinetic study of a small ultrafast folding protein, the 35-residue subdomain from the villin headpiece. Unlike all other proteins that have been studied so far, no measurable dependence of the unfolding/refolding relaxation rate on denaturant concentration was observed over a wide range of guanidinium chloride concentration. Analysis with a simple Ising-like theoretical model shows that this denaturant-invariant relaxation rate can be explained by a large movement of the major free energy barrier, together with a denaturant- and reaction coordinate-dependent diffusion coefficient.

  14. Thermal denaturation of A-DNA

    Science.gov (United States)

    Valle-Orero, J.; Wildes, A. R.; Theodorakopoulos, N.; Cuesta-López, S.; Garden, J.-L.; Danilkin, S.; Peyrard, M.

    2014-11-01

    The DNA molecule can take various conformational forms. Investigations focus mainly on the so-called ‘B-form’, schematically drawn in the famous paper by Watson and Crick [1]. This is the usual form of DNA in a biological environment and is the only form that is stable in an aqueous environment. Other forms, however, can teach us much about DNA. They have the same nucleotide base pairs for ‘building blocks’ as B-DNA, but with different relative positions, and studying these forms gives insight into the interactions between elements under conditions far from equilibrium in the B-form. Studying the thermal denaturation is particularly interesting because it provides a direct probe of those interactions which control the growth of the fluctuations when the ‘melting’ temperature is approached. Here we report such a study on the ‘A-form’ using calorimetry and neutron scattering. We show that it can be carried further than a similar study on B-DNA, requiring the improvement of thermodynamic models for DNA.

  15. Development of novel short-term heating angioplasty: thermal denaturation dynamics of collagen in artery wall

    Science.gov (United States)

    Shimazaki, N.; Tokunaga, H.; Katou, Y.; Hayashi, T.; Arai, T.

    2009-02-01

    We have studied to develop the new thermal angioplasty methodology, photo-thermo dynamic balloon angioplasty (PTDBA), which provides artery dilatation with short-term (collagen in artery media may be the important factor to attain sufficient artery dilatation for the PTDBA. In order to predict the optimum heating condition i.e. the balloon temperature and heating duration, we investigated the thermal denaturation dynamics of artery collagen in ex vivo. The extracted fresh porcine carotid artery was used. The temperature-dependent light scattering property and mechanical property of the artery specimen were simultaneously measured during artery temperature rising by specially made setup to assess the denaturation of arterial collagen. The change rate of the backscattered light intensity from the artery specimen; I(T)/I0 with 633nm was measured to evaluate the artery scattering property change with the thermal denaturation. The artery specimen was heated from 25°C to 80°C with constant temperature rising rate of 3°C/min. The measured I(T)/I0 was suddenly increased over 48°C. This boundary temperature might be the initiation temperature of the arterial collagen denaturation. We defined the variation of the I(T)/I0 as the collagen denaturation ratio, and calculated the reactive enthalpy by the chemical equilibrium theory. Since the calculated enthalpy was similar to the enthalpy in literature report, the variety of I(T)/I0 during the temperature rising might be attributed to the collagen conformational change due to the denaturation. In terms of the artery internal force measurement, the artery force was decreased with increasing of the artery temperature up to 65°C (i.e. softening), and increased over 65°C (i.e. shrinkage). We confirmed that the changes of the backscattered light (at 633nm in wavelength) from the artery might represent the artery collagen thermal denaturation degree.

  16. How water contributes to pressure and cold denaturation of proteins

    CERN Document Server

    Bianco, Valentino

    2015-01-01

    The mechanisms of cold- and pressure-denaturation of proteins are matter of debate and are commonly understood as due to water-mediated interactions. Here we study several cases of proteins, with or without a unique native state, with or without hydrophilic residues, by means of a coarse-grain protein model in explicit solvent. We show, using Monte Carlo simulations, that taking into account how water at the protein interface changes its hydrogen bond properties and its density fluctuations is enough to predict protein stability regions with elliptic shapes in the temperature-pressure plane, consistent with previous theories. Our results clearly identify the different mechanisms with which water participates to denaturation and open the perspective to develop advanced computational design tools for protein engineering.

  17. Reversible denaturation of Brazil nut 2S albumin (Ber e1) and implication of structural destabilization on digestion by pepsin

    NARCIS (Netherlands)

    Koppelman, S.J.; Nieuwenhuizen, W.F.; Gaspari, M.; Knippels, L.M.J.; Penninks, A.H.; Knol, E.F.; Hefle, S.L.; Jongh, H.H.J.de

    2005-01-01

    The high resistance of Brazil nut 2S albumin, previously identified as an allergen, against proteolysis by pepsin was examined in this work. Although the denaturation temperature of this protein exceeds the 110 °C at neutral pH, at low pH a fully reversible thermal denaturation was observed at ∼82 °

  18. Thermal denaturation behavior of collagen fibrils in wet and dry environment.

    Science.gov (United States)

    Suwa, Yosuke; Nam, Kwangwoo; Ozeki, Kazuhide; Kimura, Tsuyoshi; Kishida, Akio; Masuzawa, Toru

    2016-04-01

    We have developed a new minimally invasive technique--integrated low-level energy adhesion technique (ILEAT)--which uses heat, pressure, and low-frequency vibrations for binding living tissues. Because the adhesion mechanism of the living tissues is not fully understood, we investigated the effect of thermal energy on the collagen structure in living tissues using ILEAT. To study the effect of thermal energy and heating time on the structure of the collagen fibril, samples were divided in two categories-wet and dry. Further, atomic force microscopy was used to analyze the collagen fibril structure before and after heating. Results showed that collagen fibrils in water denatured after 1 minute at temperatures higher than 80 °C, while partial denaturation was observed at temperatures of 80 °C and a heating time of 1 min. Furthermore, complete denaturation was achieved after 90 min, suggesting that the denaturation rate is temperature and time dependent. Moreover, the collagen fibrils in dry condition maintained their native structure even after being heated to 120 °C for 90 min in the absence of water, which specifically suppressed denaturation. However, partial denaturation of collagen fibrils could not be prevented, because this determines the adhesion between the collagen molecules, and stabilizes tissue bonding.

  19. Comprehensive TP53-denaturing gradient gel electrophoresis mutation detection assay also applicable to archival paraffin-embedded tissue

    NARCIS (Netherlands)

    Hayes, V M; Bleeker, W; Verlind, E; Timmer, T; Karrenbeld, A; Plukker, J T; Marx, M P; Hofstra, R M; Buys, C H

    1999-01-01

    A comprehensive mutation detection assay is described for the entire coding region and all splice site junctions of TP53. The assay is based on denaturing gradient gel electrophoresis, which follows either multiplex polymerase chain reaction (PCR) applied to DNA extracted from fresh or frozen tissue

  20. Comparison of chemical and thermal protein denaturation by combination of computational and experimental approaches. II

    Science.gov (United States)

    Wang, Qian; Christiansen, Alexander; Samiotakis, Antonios; Wittung-Stafshede, Pernilla; Cheung, Margaret S.

    2011-11-01

    Chemical and thermal denaturation methods have been widely used to investigate folding processes of proteins in vitro. However, a molecular understanding of the relationship between these two perturbation methods is lacking. Here, we combined computational and experimental approaches to investigate denaturing effects on three structurally different proteins. We derived a linear relationship between thermal denaturation at temperature Tb and chemical denaturation at another temperature Tu using the stability change of a protein (ΔG). For this, we related the dependence of ΔG on temperature, in the Gibbs-Helmholtz equation, to that of ΔG on urea concentration in the linear extrapolation method, assuming that there is a temperature pair from the urea (Tu) and the aqueous (Tb) ensembles that produces the same protein structures. We tested this relationship on apoazurin, cytochrome c, and apoflavodoxin using coarse-grained molecular simulations. We found a linear correlation between the temperature for a particular structural ensemble in the absence of urea, Tb, and the temperature of the same structural ensemble at a specific urea concentration, Tu. The in silico results agreed with in vitro far-UV circular dichroism data on apoazurin and cytochrome c. We conclude that chemical and thermal unfolding processes correlate in terms of thermodynamics and structural ensembles at most conditions; however, deviations were found at high concentrations of denaturant.

  1. Denatured Thermodynamics of Proteins in Weak Cation-exchange Chromatography

    Institute of Scientific and Technical Information of China (English)

    LI Rong; CHEN Guo-Liang

    2003-01-01

    The thermostability of some proteins in weak cation-exchange chromatography was investigated at 20-80 ℃. The results show that there is a fixed thermal denaturation transition temperature for each protein. The appearance of the thermal transition temperature indicates that the conformations of the proteins are destroyed seriously. The thermal behavior of the proteins in weak cation-exchange and hydrophobic interaction chromatographies were compared in a wide temperature range. It was found that the proteins have a higher thermostability in a weak cation-exchange chromatography system. The thermodynamic parameters(ΔH0, ΔS0) of those proteins were determined by means of Vant Hoff relationship(lnk-1/T). According to standard entropy change(ΔS0), the conformational change of the proteins was judged in the chromatographic process. The linear relationships between ΔH0 and ΔS0 can be used to evaluate "compensation temperature"(β) at the protein denaturation and identify the identity of the protein retention mechanism in weak cation-exchange chromatography.

  2. Correlated parameter fit of arrhenius model for thermal denaturation of proteins and cells.

    Science.gov (United States)

    Qin, Zhenpeng; Balasubramanian, Saravana Kumar; Wolkers, Willem F; Pearce, John A; Bischof, John C

    2014-12-01

    Thermal denaturation of proteins is critical to cell injury, food science and other biomaterial processing. For example protein denaturation correlates strongly with cell death by heating, and is increasingly of interest in focal thermal therapies of cancer and other diseases at temperatures which often exceed 50 °C. The Arrhenius model is a simple yet widely used model for both protein denaturation and cell injury. To establish the utility of the Arrhenius model for protein denaturation at 50 °C and above its sensitivities to the kinetic parameters (activation energy E a and frequency factor A) were carefully examined. We propose a simplified correlated parameter fit to the Arrhenius model by treating E a, as an independent fitting parameter and allowing A to follow dependently. The utility of the correlated parameter fit is demonstrated on thermal denaturation of proteins and cells from the literature as a validation, and new experimental measurements in our lab using FTIR spectroscopy to demonstrate broad applicability of this method. Finally, we demonstrate that the end-temperature within which the denaturation is measured is important and changes the kinetics. Specifically, higher E a and A parameters were found at low end-temperature (50 °C) and reduce as end-temperatures increase to 70 °C. This trend is consistent with Arrhenius parameters for cell injury in the literature that are significantly higher for clonogenics (45-50 °C) vs. membrane dye assays (60-70 °C). Future opportunities to monitor cell injury by spectroscopic measurement of protein denaturation are discussed.

  3. Analysis of bacterial diversity during the fermentation of inyu, a high-temperature fermented soy sauce, using nested PCR-denaturing gradient gel electrophoresis and the plate count method.

    Science.gov (United States)

    Wei, Chia-Li; Chao, Shiou-Huei; Tsai, Wen-Bin; Lee, Pei-Shan; Tsau, Nai-Hung; Chen, Jhih-Shan; Lai, Wen-Lin; Tu, James Ching-Yueh; Tsai, Ying-Chieh

    2013-04-01

    The diversity of bacteria associated with the fermentation of inyu, also known as black soy sauce, was studied through the nested PCR-denaturing gradient gel electrophoresis (DGGE) of samples collected from the fermentation stages of the inyu production process. The DGGE profiles targeted the bacterial 16S rDNA and revealed the presence of Citrobacter farmeri, Enterobacter cloacae, Enterobacter hormaechei, Enterococcus faecium, Klebsiella pneumoniae, Pantoea agglomerans, Salmonella enterica, Serratia marcescens, Staphylococcus sciuri and Weissella confusa. The bacterial compositions of 4 fermented samples were further elucidated using the plate count method. The bacteria isolated from the koji-making stage exhibited the highest diversity; Brachybacterium rhamnosum, E. hormaechei, K. pneumoniae, Kurthia gibsonii, Pantoea dispersa, Staphylococcus gallinarum, Staphylococcus kloosii and S. sciuri were identified. Koji collected during the preincubation stage presented the largest cell counts, and E. hormaechei, K. pneumoniae, E. cloacae and Enterobacter pulveris were identified. In brine samples aged for 7 and 31 days, the majority of the bacteria isolated belonged to 4 Bacillus species, but 4 Staphylococcus species and Delftia tsuruhatensis were also detected. This study demonstrates the benefits of using a combined approach to obtain a more complete picture of microbial populations and provides useful information for the control or development of bacterial flora during inyu fermentation.

  4. Effects of protein and phosphate buffer concentrations on thermal denaturation of lysozyme analyzed by isoconversional method.

    Science.gov (United States)

    Cao, X M; Tian, Y; Wang, Z Y; Liu, Y W; Wang, C X

    2016-07-03

    Thermal denaturation of lysozymes was studied as a function of protein concentration, phosphate buffer concentration, and scan rate using differential scanning calorimetry (DSC), which was then analyzed by the isoconversional method. The results showed that lysozyme thermal denaturation was only slightly affected by the protein concentration and scan rate. When the protein concentration and scan rate increased, the denaturation temperature (Tm) also increased accordingly. On the contrary, the Tm decreased with the increase of phosphate buffer concentration. The denaturation process of lysozymes was accelatated and the thermal stability was reduced with the increase of phosphate concentration. One part of degeneration process was not reversible where the aggregation occurred. The other part was reversible. The apparent activation energy (Ea) was computed by the isoconversional method. It decreased with the increase of the conversion ratio (α). The observed denaturation process could not be described by a simple reaction mechanism. It was not a process involving 2 standard reversible states, but a multi-step process. The new opportunities for investigating the kinetics process of protein denaturation can be supplied by this novel isoconversional method.

  5. Calcium Binding and Disulfide Bonds Regulate the Stability of Secretagogin towards Thermal and Urea Denaturation

    Science.gov (United States)

    Weiffert, Tanja; Ní Mhurchú, Niamh; O’Connell, David; Linse, Sara

    2016-01-01

    Secretagogin is a calcium-sensor protein with six EF-hands. It is widely expressed in neurons and neuro-endocrine cells of a broad range of vertebrates including mammals, fishes and amphibia. The protein plays a role in secretion and interacts with several vesicle-associated proteins. In this work, we have studied the contribution of calcium binding and disulfide-bond formation to the stability of the secretagogin structure towards thermal and urea denaturation. SDS-PAGE analysis of secretagogin in reducing and non-reducing conditions identified a tendency of the protein to form dimers in a redox-dependent manner. The denaturation of apo and Calcium-loaded secretagogin was studied by circular dichroism and fluorescence spectroscopy under conditions favoring monomer or dimer or a 1:1 monomer: dimer ratio. This analysis reveals significantly higher stability towards urea denaturation of Calcium-loaded secretagogin compared to the apo protein. The secondary and tertiary structure of the Calcium-loaded form is not completely denatured in the presence of 10 M urea. Reduced and Calcium-loaded secretagogin is found to refold reversibly after heating to 95°C, while both oxidized and reduced apo secretagogin is irreversibly denatured at this temperature. Thus, calcium binding greatly stabilizes the structure of secretagogin towards chemical and heat denaturation. PMID:27812162

  6. ASP53, a thermostable protein from Acacia erioloba seeds that protects target proteins against thermal denaturation

    CSIR Research Space (South Africa)

    Mtwisha, L

    2007-02-01

    Full Text Available stages of protein thermal denaturation. ASP53 decreased the rate of loss of alcohol dehydrogenase activity at 55°C, decreased the rate of temperature-dependent loss of secondary structure of haemoglobin and completely inhibited the temperature...

  7. Chemical shift prediction for denatured proteins

    Energy Technology Data Exchange (ETDEWEB)

    Prestegard, James H., E-mail: jpresteg@ccrc.uga.edu; Sahu, Sarata C.; Nkari, Wendy K.; Morris, Laura C.; Live, David; Gruta, Christian

    2013-02-15

    While chemical shift prediction has played an important role in aspects of protein NMR that include identification of secondary structure, generation of torsion angle constraints for structure determination, and assignment of resonances in spectra of intrinsically disordered proteins, interest has arisen more recently in using it in alternate assignment strategies for crosspeaks in {sup 1}H-{sup 15}N HSQC spectra of sparsely labeled proteins. One such approach involves correlation of crosspeaks in the spectrum of the native protein with those observed in the spectrum of the denatured protein, followed by assignment of the peaks in the latter spectrum. As in the case of disordered proteins, predicted chemical shifts can aid in these assignments. Some previously developed empirical formulas for chemical shift prediction have depended on basis data sets of 20 pentapeptides. In each case the central residue was varied among the 20 amino common acids, with the flanking residues held constant throughout the given series. However, previous choices of solvent conditions and flanking residues make the parameters in these formulas less than ideal for general application to denatured proteins. Here, we report {sup 1}H and {sup 15}N shifts for a set of alanine based pentapeptides under the low pH urea denaturing conditions that are more appropriate for sparse label assignments. New parameters have been derived and a Perl script was created to facilitate comparison with other parameter sets. A small, but significant, improvement in shift predictions for denatured ubiquitin is demonstrated.

  8. Rousseau's Philosophy of Transformative, "Denaturing" Education

    Science.gov (United States)

    Riley, Patrick

    2011-01-01

    Rousseau's political philosophy presents the great legislator as a civic educator who must over time transform naturally self-loving egoists into citizens animated by a general will without destroying freedom. This is an educational process which is "denaturing" but which aims to produce autonomous adults who can ultimately say to their teacher…

  9. [Characterization of thermal denaturation process of proteinase K by spectrometry].

    Science.gov (United States)

    Zhang, Qi-Bing; Na, Xin-Zhu; Yin, Zong-Ning

    2013-07-01

    The effect of different temperatures on the activity and conformational changes of proteinase K was studied. Methods Proteinase K was treated with different temperatures, then denatured natural substrate casein was used to assay enzyme activity, steady-state and time-resolved fluorescence spectroscopy was used to study tertiary structure, and circular dichroism was used to study secondary structure. Results show with the temperature rising from 25 to 65 degrees C, the enzyme activity and half-life of proteinase K dropped, maximum emission wavelength red shifted from 335 to 354 nm with fluorescence intensity decreasing. Synchronous fluorescence intensity of tryptophan residues decreased and that of tyrosine residues increased. Fluorescence lifetime of tryptophan residues reduced from 4. 427 1 to 4. 032 4 ns and the fraction of alpha-helix dropped. It was concluded that it is simple and accurate to use steady-state/time-resolved fluorescence spectroscopy and circular dichroism to investigate thermal stability of proteinase K. Thermal denaturation of proteinase K followed a three-state process. Fluorescence intensity of proteinase K was affected by fluorescence resonance energy transfer from tyrosine to tryptophan residues. The alpha-helix was the main structure to maintain conformational stability of enzyme active site of proteinase K.

  10. Second-harmonic generation investigation of collagen thermal denaturation

    Science.gov (United States)

    Chen, Wei-Liang; Sun, Yen; Lin, Sung-Jan; Jee, Shiou-Hwa; Chen, Yang-Fang; Lin, Ling-Chih; So, Peter T. C.; Dong, Chen-Yuan

    2007-02-01

    Using the technique of second-harmonic generation (SHG) microscopy we obtained large area image of type I collagen from rat tail tendon as it is heated from 40°C to 70°C for 0 to 180 minutes. The high resolution images allowed us to investigate the collagen structural change. We observed that heating the tendon below the temperature of 54°C does not produce any change in the averaged SHG intensity. At the heating temperature of 54°C and above, we find that increasing the heating temperature and time leads to decreasing SHG intensity. As the tendon is heated above 54°C, a decrease in the SHG signal occurs uniformly throughout the tendon, but the regions where the SHG signal vanishes form a tiger-tail like pattern. By comparing the relative SHG intensities in small and large areas, we found that the denaturation process responsible for forming the tiger-tail like pattern occurs at a higher rate than the global denaturation process occurring throughout the tendon. Our results show that second-harmonic generation microscopy is effective in monitoring the thermal damage to collagen and has potential applications in biomedicine.

  11. Assessment of the yeast species composition of cocoa bean fermentations in different cocoa-producing regions using denaturing gradient gel electrophoresis.

    Science.gov (United States)

    Papalexandratou, Zoi; De Vuyst, Luc

    2011-11-01

    The yeast species composition of 12 cocoa bean fermentations carried out in Brazil, Ecuador, Ivory Coast and Malaysia was investigated culture-independently. Denaturing gradient gel electrophoresis of 26S rRNA gene fragments, obtained through polymerase chain reaction with universal eukaryotic primers, was carried out with two different commercial apparatus (the DCode and CBS systems). In general, this molecular method allowed a rapid monitoring of the yeast species prevailing during fermentation. Under similar and optimal denaturing gradient gel electrophoresis conditions, the CBS system allowed a better separated band pattern than the DCode system and an unambiguous detection of the prevailing species present in the fermentation samples. The most frequent yeast species were Hanseniaspora sp., followed by Pichia kudriavzevii and Saccharomyces cerevisiae, independent of the origin of the cocoa. This indicates a restricted yeast species composition of the cocoa bean fermentation process. Exceptionally, the Ivorian cocoa bean box fermentation samples showed a wider yeast species composition, with Hyphopichia burtonii and Meyerozyma caribbica among the main representatives. Yeasts were not detected in the samples when the temperature inside the fermenting cocoa pulp-bean mass reached values higher than 45 °C or under early acetic acid production conditions.

  12. Drying and denaturation characteristics of whey protein isolate in the presence of lactose and trehalose.

    Science.gov (United States)

    Haque, M Amdadul; Chen, Jie; Aldred, Peter; Adhikari, Benu

    2015-06-15

    The denaturation kinetics of whey protein isolate (WPI), in the presence and absence of lactose and trehalose, was quantified in a convective air-drying environment. Single droplets of WPI, WPI-lactose and WPI-trehalose were dried in conditioned air (2.5% RH, 0.5m/s air velocity) at two temperatures (65°C and 80°C) for 500s. The initial solid concentration of these solutions was 10% (w/v) in all the samples. Approximately 68% of WPI was denatured when it was dried in the absence of sugars. Addition of 20% trehalose prevented the irreversible denaturation of WPI at both temperatures. Thirty percent lactose was required to prevent denaturation of WPI at 65°C and the same amount of lactose protected only 70% of WPI from denaturation at 80°C. The secondary structures of WPI were found to be altered by the drying-induced stresses, even in the presence of 20% trehalose and 30% lactose.

  13. Denaturation of milk proteins and their influence on the yield of fresh cheese

    Directory of Open Access Journals (Sweden)

    Ana Mejía-López

    2017-03-01

    Full Text Available To determine the denaturation of milk proteins by the effects of heat treatment on pasteurization and to establish their influence on the yield of the fresh cheese manufactured, 20 laboratory- scale controlled trials and 40 plant productions were made. Crude and treated milk was used at 65 ° C for 30 minutes, 72 ° C for 15 seconds and boiled for 2 seconds, and the protein was quantified in milk to calculate percent denaturation. In the cheese the moisture content was determined and the amount of cheese obtained was quantified. The data were processed by Tukey's mean analysis (p> 0.05. The results at the laboratory level showed that the increase in temperature caused higher denaturation of the proteins, a higher yield and an increase in moisture in the cheese compared to that obtained with raw milk. However, statistically the results showed that the heat treatment does influence the denaturation of the proteins but not the performance of the cheese. The results obtained in the factory investigation revealed that at 65 and 72 ° C the yield decreases relative to the production with raw milk, but statistically does not present significant differences in the yield, concluding that the pasteurization at different temperatures denature the protein But does not influence the performance of fresh processed cheese.

  14. Experimental and Modelling Study of the Denaturation of Milk Protein by Heat Treatment

    Science.gov (United States)

    Qian, Fang; Sun, Jiayue; Cao, Di; Tuo, Yanfeng; Jiang, Shujuan; Mu, Guangqing

    2017-01-01

    Heat treatment of milk aims to inhibit the growth of microbes, extend the shelf-life of products and improve the quality of the products. Heat treatment also leads to denaturation of whey protein and the formation of whey protein-casein polymer, which has negative effects on milk product. Hence the milk heat treatment conditions should be controlled in milk processing. In this study, the denaturation degree of whey protein and the combination degree of whey protein and casein when undergoing heat treatment were also determined by using the Native-PAGE and SDS-PAGE analysis. The results showed that the denaturation degree of whey protein and the combination degree of whey protein with casein extended with the increase of the heat-treated temperature and time. The effects of the heat-treated temperature and heat-treated time on the denaturation degree of whey protein and on the combination degree of whey protein and casein were well described using the quadratic regression equation. The analysis strategy used in this study reveals an intuitive and effective measure of the denaturation degree of whey protein, and the changes of milk protein under different heat treatment conditions efficiently and accurately in the dairy industry. It can be of great significance for dairy product proteins following processing treatments applied for dairy product manufacturing. PMID:28316470

  15. Guanidinium-induced denaturation by breaking of salt bridges

    NARCIS (Netherlands)

    Meuzelaar, H.; Panman, M.R.; Woutersen, S.

    2015-01-01

    Despite its wide use as a denaturant, the mechanism by which guanidinium (Gdm+) induces protein unfolding remains largely unclear. Herein, we show evidence that Gdm+ can induce denaturation by disrupting salt bridges that stabilize the folded conformation. We study the Gdm+-​induced denaturation of

  16. Optical real-time measurement of collagen denaturation

    Science.gov (United States)

    Sankaran, Vanitha; Walsh, Joseph T., Jr.

    1997-06-01

    Linear birefringence is a property of collagenous tissue that results from both its composition and structure. Previous investigations have shown that birefringence provides an indication of structural changes in collagen during slow heating. We now report the birefringent response of both mature and young rat tail tendon to laser-heating. The results indicate that denaturation of collagen from mature rats induced by a 200-microsecond(s) -long Ho:YAG laser pulse may not be described accurately by kinetic parameters. Several second-long pulses of CO2 laser pulse may not be described from young rats fit an Arrhenius model with Ea equals 12.1 kcal/mol and A equals e18.03 s-1. Typically, for slow-heating of collagen, Ea equals kcal/mol and A equals e120 s-1. Thus, it seems likely that the temperature and energy needed to initiate collagen denaturation is lower in young collagen, possibly due to its decreased hydroxyproline content and consequent decreased thermal stability.

  17. Thermal denaturation of protein studied by terahertz time-domain spectroscopy

    Science.gov (United States)

    Fu, Xiuhua; Li, Xiangjun; Liu, Jianjun; Du, Yong; Hong, Zhi

    2012-12-01

    In this study, the absorption spectra of native or thermal protein were measured in 0.2-1.4THz using terahertz time-domain spectroscopy (THz-TDS) system at room temperature, their absorption spectra and the refractive spectra were obtained. Experimental results indicate that protein both has strong absorption but their characteristics were not distinct in the THz region, and the absorption decreased during thermal denatured state. In order to prove protein had been denatured, we used Differential scanning calorimeter (DSC) measured their denatured temperature, from their DSC heating traces, collagen Td=101℃, Bovine serum albumin Td=97℃. While we also combined the Fourier transform infrared spectrometer (FTIR) to investigate their secondary and tertiary structure before and after denatuation, but the results did not have the distinct changes. We turned the absorption spectra and the refractive spectra to the dielectric spectra, and used the one-stage Debye model simulated the terahertz dielectric spectra of protein before and after denaturation. This research proved that the terahertz spectrum technology is feasible in testing protein that were affected by temperature or other factors which can provide theoretical foundation in the further study about the THz spectrum of protein and peptide temperature stability.

  18. Surprisingly high stability of barley lipid transfer protein, LTP1, towards denaturant, heat and proteases

    DEFF Research Database (Denmark)

    Lindorff-Larsen, Kresten; Winther, J R

    2001-01-01

    Barley LTP1 belongs to a large family of plant proteins termed non-specific lipid transfer proteins. The in vivo function of these proteins is unknown, but it has been suggested that they are involved in responses towards stresses such as pathogens, drought, heat, cold and salt. Also, the proteins...... have been suggested as transporters of monomers for cutin synthesis. We have analysed the stability of LTP1 towards denaturant, heat and proteases and found it to be a highly stable protein, which apparently does not denature at temperatures up to 100 degrees C. This high stability may be important...

  19. Impact of Delivery Mode on Intestinal Microbiota in Early Neonates by Polymerase Chain Reaction - Denaturing Gradient Gel Electrophoresis%聚合酶链反应-变性梯度凝胶电泳技术动态分析不同分娩方式对新生儿早期肠道菌群的影响

    Institute of Scientific and Technical Information of China (English)

    刘彩霞; 胡燕; 周东蕊; 蒋犁

    2012-01-01

    Objective To investigate the effects of delivery mode on the dynamic changes of early gut microflora by using polymerase chain reaction - degeneration gradient gel electrophoresis (PCR - DGGE) method. Methods Thirty - two normal term neonates were enrolled in the study (including vaginal delivery group and caesarean section group,each group including 16 neonates) ,and feces samples were collected on the first day( > 12 h) ,3th day and 5th day after birth. After bacterial DNAs were extracted from the feces of the 2 groups,bacterial communities in 2 groups were examined by PCR of 16S rDNA V3 region and DGGE. After DGGE profilings were obtained,the diversity and similarity related indices were used to analyze diversity differences of the gut bacterium structure between 2 groups and the similar degrees between individuals within each group. Results 1. There were few species and quantities in the intestinal microbiota during the first day of life, and the early intestinal bacterial colonization of neonates had a complex individual specificity and presented dynamic changes. 2. The diversity analysis between 2 groups showed that there were no obvious diversity differences between the 2 groups on 3' day after birth. While on 5' day after birth,the Shannon - Weaver Diversity Index(H') and the simpson index(D) in caesarean section group were lower significandy than those in vaginal delivery group(Pa <0.05).3. The similarity analysis showed that the dice similarity coefficient(Cs)between individuals in cesarean section group was higher than that in vaginal delivery group on 3th day after birth, and the Cs lower than (or equal to)0. 30 took up 21.4% of the total Cs in cesarean section group and 76.0%in vaginal delivery group,which had all significant differences between 2 groups (P <0.05). On 5th day after birth,there were no obvious differences between groups in Cs total level and its distribution. Conclusions The intra - group similarity of gut bacterium structure is

  20. Supercoiling induces denaturation bubbles in circular DNA.

    Science.gov (United States)

    Jeon, Jae-Hyung; Adamcik, Jozef; Dietler, Giovanni; Metzler, Ralf

    2010-11-12

    We present a theoretical framework for the thermodynamic properties of supercoiling-induced denaturation bubbles in circular double-stranded DNA molecules. We explore how DNA supercoiling, ambient salt concentration, and sequence heterogeneity impact on the bubble occurrence. An analytical derivation of the probability distribution to find multiple bubbles is derived and the relevance for supercoiled DNA discussed. We show that in vivo sustained DNA bubbles are likely to occur due to partial twist release in regions rich in weaker AT base pairs. Single DNA plasmid imaging experiments clearly demonstrate the existence of bubbles in free solution.

  1. Joule Heating and Thermal Denaturation of Proteins in Nano-ESI Theta Tips

    Science.gov (United States)

    Zhao, Feifei; Matt, Sarah M.; Bu, Jiexun; Rehrauer, Owen G.; Ben-Amotz, Dor; McLuckey, Scott A.

    2017-10-01

    Electro-osmotically induced Joule heating in theta tips and its effect on protein denaturation were investigated. Myoglobin, equine cytochrome c, bovine cytochrome c, and carbonic anhydrase II solutions were subjected to electro-osmosis in a theta tip and all of the proteins were denatured during the process. The extent of protein denaturation was found to increase with the applied square wave voltage and electrolyte concentration. The solution temperature at the end of a theta tip was measured directly by Raman spectroscopy and shown to increase with the square wave voltage, thereby demonstrating the effect of Joule heating through an independent method. The electro-osmosis of a solution comprised of myoglobin, bovine cytochrome c, and ubiquitin demonstrated that the magnitude of Joule heating that causes protein denaturation is positively correlated with protein melting temperature. This allows for a quick determination of a protein's relative thermal stability. This work establishes a fast, novel method for protein conformation manipulation prior to MS analysis and provides a temperature-controllable platform for the study of processes that take place in solution with direct coupling to mass spectrometry. [Figure not available: see fulltext.

  2. DNA Polymerase e - More Than a Polymerase

    Directory of Open Access Journals (Sweden)

    Helmut Pospiech

    2003-01-01

    Full Text Available This paper presents a comprehensive review of the structure and function of DNA polymerase e. Together with DNA polymerases a and d, this enzyme replicates the nuclear DNA in the eukaryotic cell. During this process, DNA polymerase a lays down RNA-DNA primers that are utilized by DNA polymerases d and e for the bulk DNA synthesis. Attempts have been made to assign these two enzymes specifically to the synthesis of the leading and the lagging strand. Alternatively, the two DNA polymerases may be needed to replicate distinct regions depending on chromatin structure. Surprisingly, the essential function of DNA polymerase e does not depend on its catalytic activity, but resides in the nonenzymatic carboxy-terminal domain. This domain not only mediates the interaction of the catalytic subunit with the three smaller regulatory subunits, but also links the replication machinery to the S phase checkpoint. In addition to its role in DNA replication, DNA polymerase e fulfils roles in the DNA synthesis step of nucleotide excision and base excision repair, and has been implicated in recombinational processes in the cell.

  3. 27 CFR 21.151 - List of denaturants authorized for denatured spirits.

    Science.gov (United States)

    2010-04-01

    ... TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY LIQUORS FORMULAS FOR DENATURED ALCOHOL AND RUM... (Glycerol), U.S.P S.D.A. 31-A. Green soap, U.S.P S.D.A. 27-B. Guaiacol, N.F.X S.D.A. 38-B. Heptane C.D.A....

  4. 78 FR 38628 - Reclassification of Specially Denatured Spirits and Completely Denatured Alcohol Formulas and...

    Science.gov (United States)

    2013-06-27

    ... alcohol. 13-A 10 gallons of ethyl ether. 19 100 gallons of ethyl ether. 23-A 8 gallons of acetone, U.S.P... alcohol. 32 5 gallons of ethyl ether. 35-A 4.25 gallons of ethyl acetate having an ester content of 100... regulations regarding the production, warehousing, denaturing, distribution, sale, export, and use...

  5. Partially folded intermediates during trypsinogen denaturation

    Directory of Open Access Journals (Sweden)

    Martins N.F.

    1999-01-01

    Full Text Available The equilibrium unfolding of bovine trypsinogen was studied by circular dichroism, differential spectra and size exclusion HPLC. The change in free energy of denaturation was = 6.99 ± 1.40 kcal/mol for guanidine hydrochloride and = 6.37 ± 0.57 kcal/mol for urea. Satisfactory fits of equilibrium unfolding transitions required a three-state model involving an intermediate in addition to the native and unfolded forms. Size exclusion HPLC allowed the detection of an intermediate population of trypsinogen whose Stokes radii varied from 24.1 ± 0.4 Å to 26.0 ± 0.3 Å for 1.5 M and 2.5 M guanidine hydrochloride, respectively. During urea denaturation, the range of Stokes radii varied from 23.9 ± 0.3 Å to 25.7 ± 0.6 Å for 4.0 M and 6.0 M urea, respectively. Maximal intrinsic fluorescence was observed at about 3.8 M urea with 8-aniline-1-naphthalene sulfonate (ANS binding. These experimental data indicate that the unfolding of bovine trypsinogen is not a simple transition and suggest that the equilibrium intermediate population comprises one intermediate that may be characterized as a molten globule. To obtain further insight by studying intermediates representing different stages of unfolding, we hope to gain a better understanding of the complex interrelations between protein conformation and energetics.

  6. Denaturant-Dependent Conformational Changes in a [beta]-Trefoil Protein: Global and Residue-Specific Aspects of an Equilibrium Denaturation Process

    Energy Technology Data Exchange (ETDEWEB)

    Latypov, Ramil F.; Liu, Dingjiang; Jacob, Jaby; Harvey, Timothy S.; Bondarenko, Pavel V.; Kleemann, Gerd R.; Brems, David N.; Raibekas, Andrei A.; (Amgen)

    2010-01-12

    Conformational properties of the folded and unfolded ensembles of human interleukin-1 receptor antagonist (IL-1ra) are strongly denaturant-dependent as evidenced by high-resolution two-dimensional nuclear magnetic resonance (NMR), limited proteolysis, and small-angle X-ray scattering (SAXS). The folded ensemble was characterized in detail in the presence of different urea concentrations by 1H-15N HSQC NMR. The {beta}-trefoil fold characteristic of native IL-1ra was preserved until the unfolding transition region beginning at 4 M urea. At the same time, a subset of native resonances disappeared gradually starting at low denaturant concentrations, indicating noncooperative changes in the folded state. Additional evidence of structural perturbations came from the chemical shift analysis, nonuniform and bell-shaped peak intensity profiles, and limited proteolysis. In particular, the following nearby regions of the tertiary structure became progressively destabilized with increasing urea concentrations: the {beta}-hairpin interface of trefoils 1 and 2 and the H2a-H2 helical region. These regions underwent small-scale perturbations within the native baseline region in the absence of populated molten globule-like states. Similar regions were affected by elevated temperatures known to induce irreversible aggregation of IL-1ra. Further evidence of structural transitions invoking near-native conformations came from an optical spectroscopy analysis of its single-tryptophan variant W17A. The increase in the radius of gyration was associated with a single equilibrium unfolding transition in the case of two different denaturants, urea and guanidine hydrochloride (GuHCl). However, the compactness of urea- and GuHCl-unfolded molecules was comparable only at high denaturant concentrations and deviated under less denaturing conditions. Our results identified the role of conformational flexibility in IL-1ra aggregation and shed light on the nature of structural transitions within the

  7. Comparative study of denaturation of whey protein isolate (WPI) in convective air drying and isothermal heat treatment processes.

    Science.gov (United States)

    Haque, M Amdadul; Aldred, Peter; Chen, Jie; Barrow, Colin J; Adhikari, Benu

    2013-11-15

    The extent and nature of denaturation of whey protein isolate (WPI) in convective air drying environments was measured and analysed using single droplet drying. A custom-built, single droplet drying instrument was used for this purpose. Single droplets having 5±0.1μl volume (initial droplet diameter 1.5±0.1mm) containing 10% (w/v) WPI were dried at air temperatures of 45, 65 and 80°C for 600s at constant air velocity of 0.5m/s. The extent and nature of denaturation of WPI in isothermal heat treatment processes was measured at 65 and 80°C for 600s and compared with those obtained from convective air drying. The extent of denaturation of WPI in a high hydrostatic pressure environment (600MPa for 600s) was also determined. The results showed that at the end of 600s of convective drying at 65°C the denaturation of WPI was 68.3%, while it was only 10.8% during isothermal heat treatment at the same medium temperature. When the medium temperature was maintained at 80°C, the denaturation loss of WPI was 90.0% and 68.7% during isothermal heat treatment and convective drying, respectively. The bovine serum albumin (BSA) fraction of WPI was found to be more stable in the convective drying conditions than β-lactoglobulin and α-lactalbumin, especially at longer drying times. The extent of denaturation of WPI in convective air drying (65 and 80°C) and isotheral heat treatment (80°C) for 600s was found to be higher than its denaturation in a high hydrostatic pressure environment at ambient temperature (600MPa for 600s).

  8. Brownian dynamics simulations of sequence-dependent duplex denaturation in dynamically superhelical DNA

    Science.gov (United States)

    Mielke, Steven P.; Grønbech-Jensen, Niels; Krishnan, V. V.; Fink, William H.; Benham, Craig J.

    2005-09-01

    The topological state of DNA in vivo is dynamically regulated by a number of processes that involve interactions with bound proteins. In one such process, the tracking of RNA polymerase along the double helix during transcription, restriction of rotational motion of the polymerase and associated structures, generates waves of overtwist downstream and undertwist upstream from the site of transcription. The resulting superhelical stress is often sufficient to drive double-stranded DNA into a denatured state at locations such as promoters and origins of replication, where sequence-specific duplex opening is a prerequisite for biological function. In this way, transcription and other events that actively supercoil the DNA provide a mechanism for dynamically coupling genetic activity with regulatory and other cellular processes. Although computer modeling has provided insight into the equilibrium dynamics of DNA supercoiling, to date no model has appeared for simulating sequence-dependent DNA strand separation under the nonequilibrium conditions imposed by the dynamic introduction of torsional stress. Here, we introduce such a model and present results from an initial set of computer simulations in which the sequences of dynamically superhelical, 147 base pair DNA circles were systematically altered in order to probe the accuracy with which the model can predict location, extent, and time of stress-induced duplex denaturation. The results agree both with well-tested statistical mechanical calculations and with available experimental information. Additionally, we find that sites susceptible to denaturation show a propensity for localizing to supercoil apices, suggesting that base sequence determines locations of strand separation not only through the energetics of interstrand interactions, but also by influencing the geometry of supercoiling.

  9. Stability of RNA chain elongation complexes formed with RNA polymerase and denatured DNA templates.

    Directory of Open Access Journals (Sweden)

    Misumi,Hiromasa

    1989-12-01

    Full Text Available In vivo inactivation of cystathionine gamma-lyase by D,L-propargylglycine, a suicide inhibitor, was found to be less profound in rat kidney than in the liver. We investigated the cause of this difference using rat tissues. We fractionated kidney extract to characterize the substance which protected enzyme, and found that cysteine exhibits protecting action. Addition of 0.3 mM L-cysteine to the incubation mixture containing dialyzed kidney supernatant and 0.5 mM D,L-propargylglycine resulted in the protection of cystathionine gamma-lyase from the inactivation by the inhibitor. The content of cysteine in the kidney was six-fold higher than that in the liver. Thus, we have concluded that one of the reasons why the in vivo inactivation of cystathionine gamma-lyase in rat kidney was less than that in the liver is the presence of a higher concentration of cysteine in the kidney. S-Carboxymethylcysteine, a cysteine derivative, exhibited a similar, but weaker, protective effect.

  10. Small angle neutron scattering studies on protein denaturation induced by different methods

    Indian Academy of Sciences (India)

    S Chodankar; V K Aswal; J Kohlbrecher; R Vavrin; A G Wagh

    2008-11-01

    Small angle neutron scattering (SANS) has been used to study conformational changes in protein bovine serum albumin (BSA) as induced by varying temperature and in the presence of protein denaturating agents urea and surfactant. BSA has pro-late ellipsoidal shape and is found to be stable up to 60°C above which it denaturates and subsequently leads to aggregation. The protein solution exhibits a fractal structure at temperatures above 64°C, with fractal dimension increasing with temperature. BSA protein is found to unfold in the presence of urea at concentrations greater than 4 M and acquires a random coil Gaussian chain conformation. The conformation of the unfolded protein in the presence of surfactant has been determined directly using contrast variation SANS measurements by contrast matching surfactant molecules. The protein acquires a random coil Gaussian conformation on unfolding with its radius of gyration increasing with increase in surfactant concentration

  11. Can A Denaturant Stabilize DNA? Pyridine Reverses DNA Denaturation in Acidic pH.

    Science.gov (United States)

    Portella, Guillem; Terrazas, Montserrat; Villegas, Núria; González, Carlos; Orozco, Modesto

    2015-09-01

    The stability of DNA is highly dependent on the properties of the surrounding solvent, such as ionic strength, pH, and the presence of denaturants and osmolytes. Addition of pyridine is known to unfold DNA by replacing π-π stacking interactions between bases, stabilizing conformations in which the nucleotides are solvent exposed. We show here experimental and theoretical evidences that pyridine can change its role and in fact stabilize the DNA under acidic conditions. NMR spectroscopy and MD simulations demonstrate that the reversal in the denaturing role of pyridine is specific, and is related to its character as pseudo groove binder. The present study sheds light on the nature of DNA stability and on the relationship between DNA and solvent, with clear biotechnological implications.

  12. Kinetically controlled refolding of a heat-denatured hyperthermostable protein

    NARCIS (Netherlands)

    Koutsopoulos, Sotirios; van der Oost, John; Norde, Willem

    2007-01-01

    The thermal denaturation of endo-beta-1,3-glucanase from the hyperthermophilic microorganism Pyrococcus furiosus was studied by calorimetry. The calorimetric profile revealed two transitions at 109 and 144 degrees C, corresponding to protein denaturation and complete unfolding, respectively, as

  13. Kinetically controlled refolding of a heat denatured hyperthermostable protein

    NARCIS (Netherlands)

    Koutsopoulos, S.; Oost, van der J.; Norde, W.

    2007-01-01

    The thermal denaturation of endo-ß-1,3-glucanase from the hyperthermophilic microorganism Pyrococcus furiosus was studied by calorimetry. The calorimetric profile revealed two transitions at 109 and 144¿°C, corresponding to protein denaturation and complete unfolding, respectively, as shown by

  14. 19 CFR 10.56 - Vegetable oils, denaturing; release.

    Science.gov (United States)

    2010-04-01

    ... 19 Customs Duties 1 2010-04-01 2010-04-01 false Vegetable oils, denaturing; release. 10.56 Section... Vegetable Oils § 10.56 Vegetable oils, denaturing; release. (a) Olive, palm-kernel, rapeseed, sunflower, and sesame oil shall be classifiable under subheadings 1509.10.20, 1509.10.40, 1509.90.20, 1509.90.40,...

  15. 27 CFR 19.464 - Denatured spirits inventories.

    Science.gov (United States)

    2010-04-01

    ... inventories. 19.464 Section 19.464 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE... of Articles Inventories § 19.464 Denatured spirits inventories. Each proprietor shall take a physical inventory of all denatured spirits in the processing account at the close of each calendar quarter and...

  16. 27 CFR 20.144 - Packages of completely denatured alcohol.

    Science.gov (United States)

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Packages of completely denatured alcohol. 20.144 Section 20.144 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY LIQUORS DISTRIBUTION AND USE OF DENATURED ALCOHOL AND RUM...

  17. 27 CFR 20.261 - Records of completely denatured alcohol.

    Science.gov (United States)

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Records of completely denatured alcohol. 20.261 Section 20.261 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY LIQUORS DISTRIBUTION AND USE OF DENATURED ALCOHOL AND...

  18. Mesoscopic modeling of DNA denaturation rates: Sequence dependence and experimental comparison

    Energy Technology Data Exchange (ETDEWEB)

    Dahlen, Oda, E-mail: oda.dahlen@ntnu.no; Erp, Titus S. van, E-mail: titus.van.erp@ntnu.no [Department of Chemistry, Norwegian University of Science and Technology (NTNU), Høgskoleringen 5, Realfagbygget D3-117 7491 Trondheim (Norway)

    2015-06-21

    Using rare event simulation techniques, we calculated DNA denaturation rate constants for a range of sequences and temperatures for the Peyrard-Bishop-Dauxois (PBD) model with two different parameter sets. We studied a larger variety of sequences compared to previous studies that only consider DNA homopolymers and DNA sequences containing an equal amount of weak AT- and strong GC-base pairs. Our results show that, contrary to previous findings, an even distribution of the strong GC-base pairs does not always result in the fastest possible denaturation. In addition, we applied an adaptation of the PBD model to study hairpin denaturation for which experimental data are available. This is the first quantitative study in which dynamical results from the mesoscopic PBD model have been compared with experiments. Our results show that present parameterized models, although giving good results regarding thermodynamic properties, overestimate denaturation rates by orders of magnitude. We believe that our dynamical approach is, therefore, an important tool for verifying DNA models and for developing next generation models that have higher predictive power than present ones.

  19. Sustaines high throughput polymerase chain reaction diagnostics during the European epidemic of Bluetongue serotype 8

    NARCIS (Netherlands)

    Rijn, van P.A.; Heutink, C.G.; Boonstra, J.; Kramps, J.A.; Gennip, van H.G.P.

    2012-01-01

    A real-time reverse transcription polymerase chain reaction assay (PCR test) based on genome segment 10 of Bluetongue virus (BTV) was developed. The PCR test consists of robotized viral RNA isolation from blood samples and an all-in-one method including initial denaturation of genomic

  20. Are There Mutator Polymerases?

    Directory of Open Access Journals (Sweden)

    Miguel Garcia-Diaz

    2003-01-01

    Full Text Available DNA polymerases are involved in different cellular events, including genome replication and DNA repair. In the last few years, a large number of novel DNA polymerases have been discovered, and the biochemical analysis of their properties has revealed a long list of intriguing features. Some of these polymerases have a very low fidelity and have been suggested to play mutator roles in different processes, like translesion synthesis or somatic hypermutation. The current view of these processes is reviewed, and the current understanding of DNA polymerases and their role as mutator enzymes is discussed.

  1. Structural properties of cyanase. Denaturation, renaturation, and role of sulfhydryls and oligomeric structure in catalytic activity.

    Science.gov (United States)

    Little, R M; Anderson, P M

    1987-07-25

    Cyanase is an inducible enzyme in Escherichia coli that catalyzes bicarbonate-dependent decomposition of cyanate to give ammonia and bicarbonate. The enzyme is composed of 8-10 identical subunits (Mr = 17,008). The objective of this study was to clarify some of the structural properties of cyanase for the purpose of understanding the relationship between oligomeric structure and catalytic activity. Circular dichroism studies showed that cyanase has a significant amount of alpha-helix and beta-sheet structure. The one sulfhydryl group per subunit does not react with 5,5'-dithiobis-(2-nitrobenzoic acid) (DTNB) unless cyanase is denatured. Denaturation is apparently complete in 10 M urea or 6 M guanidine hydrochloride, but is significantly reduced in 10 M urea by the presence of azide (analog of cyanate) and is incomplete in 8 M urea. Denatured cyanase could be renatured and reactivated (greater than 85%) by removal of denaturants. Reactivation was greatly facilitated by the presence of certain anions, particularly bicarbonate, and by high ionic strength and protein concentration. The catalytic activity of renatured cyanase was associated only with oligomer. Cyanase that had been denatured in the presence of DTNB to give a cyanase-DTNB derivative could also be renatured at 26 degrees C to give active cyanase-DTNB oligomer. The active oligomeric form of the cyanase-DTNB derivative could be converted reversibly to inactive dimer by lowering the temperature to 4 degrees C or by reduction of the ionic strength and removal of monoanions. These results provide evidence that free sulfhydryl groups are not required for catalytic activity and that catalytic activity may be dependent upon oligomeric structure.

  2. Exact Solution to the Extended Zwanzig Model for Quasi-Sigmoidal Chemically Induced Denaturation Profiles: Specific Heat and Configurational Entropy

    Directory of Open Access Journals (Sweden)

    G. E. Aguilar-Pineda

    2014-01-01

    Full Text Available Temperature and chemically induced denaturation comprise two of the most characteristic mechanisms to achieve the passage from the native state N to any of the unstructured states Dj in the denatured ensemble in proteins and peptides. In this work we present a full analytical solution for the configurational partition function qs of a homopolymer chain poly-X in the extended Zwanzig model (EZM for a quasisigmoidal denaturation profile. This solution is built up from an EZM exact solution in the case where the fraction α of native contacts follows exact linear dependence on denaturant’s concentration ζ; thus an analytical solution for L in the case of an exact linear denaturation profile is also provided. A recently established connection between the number ν of potential nonnative conformations per residue and temperature-independent helical propensity ω complements the model in order to identify specific proteinogenic poly-X chains, where X represents any of the twenty naturally occurring aminoacid residues. From qs, equilibrium thermodynamic potentials like entropy and average internal energy 〈E〉 and thermodynamic susceptibilities like specific heat C are calculated for poly-valine (poly-V and poly-alanine (poly-A chains. The influence of the rate at which native contacts denature as function of ζ on thermodynamic stability is also discussed.

  3. Glassy behavior of denatured DNA films studied by differential scanning calorimetry.

    Science.gov (United States)

    Valle-Orero, Jessica; Garden, Jean-Luc; Richard, Jacques; Wildes, Andrew; Peyrard, Michel

    2012-04-12

    We use differential scanning calorimetry (DSC) to study the properties of DNA films, made of oriented fibers, heated above the thermal denaturation temperature of the double helical form. The films show glassy properties that we investigate in two series of experiments, a slow cooling at different rates followed by a DSC scan upon heating and aging at a temperature below the glass transition. Introducing the fictive temperature to characterize the glass allows us to derive quantitative information on the relaxations of the DNA films, in particular to evaluate their enthalpy barrier. A comparison with similar aging studies on PVAc highlights some specificities of the DNA samples.

  4. Automation and integration of polymerase chain reaction with capillary electrophoresis for high throughput genotyping and disease diagnosis

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, N.

    1999-02-12

    Genotyping is to detect specific loci in the human genome. These loci provide important information for forensic testing, construction of genetic linkage maps, gene related disease diagnosis and pharmacogenetic research. Genotyping is becoming more and more popular after these loci can be easily amplified by polymerase chain reaction (PCR). Capillary electrophoresis has its unique advantages for DNA analysis due to its fast heat dissipation and ease of automation. Four projects are described in which genotyping is performed by capillary electrophoresis emphasizing different aspects. First, the author demonstrates a principle to determine the genotype based on capillary electrophoresis system. VNTR polymorphism in the human D1S80 locus was studied. Second, the separation of four short tandem repeat (STR) loci vWF, THO1, TPOX and CSF1PO (CTTv) by using poly(ethylene oxide) (PEO) was studied in achieving high resolution and preventing rehybridization of the DNA fragments. Separation under denaturing, non-denaturing conditions and at elevated temperature was discussed. Third, a 250 {micro}m i.d., 365 {micro}m o.d. fused silica capillary was used as the microreactor for PCR. Fourth, direct PCR from blood was studied to simplify the sample preparation for genotyping to minimum.

  5. Effect of heating strategies on whey protein denaturation--Revisited by liquid chromatography quadrupole time-of-flight mass spectrometry.

    Science.gov (United States)

    Akkerman, M; Rauh, V M; Christensen, M; Johansen, L B; Hammershøj, M; Larsen, L B

    2016-01-01

    Previous standards in the area of effect of heat treatment processes on milk protein denaturation were based primarily on laboratory-scale analysis and determination of denaturation degrees by, for example, electrophoresis. In this study, whey protein denaturation was revisited by pilot-scale heating strategies and liquid chromatography quadrupole time-of-flight mass spectrometer (LC/MC Q-TOF) analysis. Skim milk was heat treated by the use of 3 heating strategies, namely plate heat exchanger (PHE), tubular heat exchanger (THE), and direct steam injection (DSI), under various heating temperatures (T) and holding times. The effect of heating strategy on the degree of denaturation of β-lactoglobulin and α-lactalbumin was determined using LC/MC Q-TOF of pH 4.5-soluble whey proteins. Furthermore, effect of heating strategy on the rennet-induced coagulation properties was studied by oscillatory rheometry. In addition, rennet-induced coagulation of heat-treated micellar casein concentrate subjected to PHE was studied. For skim milk, the whey protein denaturation increased significantly as T and holding time increased, regardless of heating method. High denaturation degrees were obtained for T >100°C using PHE and THE, whereas DSI resulted in significantly lower denaturation degrees, compared with PHE and THE. Rennet coagulation properties were impaired by increased T and holding time regardless of heating method, although DSI resulted in less impairment compared with PHE and THE. No significant difference was found between THE and PHE for effect on rennet coagulation time, whereas the curd firming rate was significantly larger for THE compared with PHE. Micellar casein concentrate possessed improved rennet coagulation properties compared with skim milk receiving equal heat treatment.

  6. Isothermal DNA origami folding: avoiding denaturing conditions for one-pot, hybrid-component annealing

    Science.gov (United States)

    Kopielski, Andreas; Schneider, Anne; Csáki, Andrea; Fritzsche, Wolfgang

    2015-01-01

    The DNA origami technique offers great potential for nanotechnology. Using biomolecular self-assembly, defined 2D and 3D nanoscale DNA structures can be realized. DNA origami allows the positioning of proteins, fluorophores or nanoparticles with an accuracy of a few nanometers and enables thereby novel nanoscale devices. Origami assembly usually includes a thermal denaturation step at 90 °C. Additional components used for nanoscale assembly (such as proteins) are often thermosensitive, and possibly damaged by such harsh conditions. They have therefore to be attached in an extra second step to avoid defects. To enable a streamlined one-step nanoscale synthesis - a so called one-pot folding - an adaptation of the folding procedures is required. Here we present a thermal optimization of this process for a 2D DNA rectangle-shaped origami resulting in an isothermal assembly protocol below 60 °C without thermal denaturation. Moreover, a room temperature protocol is presented using the chemical additive betaine, which is biocompatible in contrast to chemical denaturing approaches reported previously.The DNA origami technique offers great potential for nanotechnology. Using biomolecular self-assembly, defined 2D and 3D nanoscale DNA structures can be realized. DNA origami allows the positioning of proteins, fluorophores or nanoparticles with an accuracy of a few nanometers and enables thereby novel nanoscale devices. Origami assembly usually includes a thermal denaturation step at 90 °C. Additional components used for nanoscale assembly (such as proteins) are often thermosensitive, and possibly damaged by such harsh conditions. They have therefore to be attached in an extra second step to avoid defects. To enable a streamlined one-step nanoscale synthesis - a so called one-pot folding - an adaptation of the folding procedures is required. Here we present a thermal optimization of this process for a 2D DNA rectangle-shaped origami resulting in an isothermal assembly

  7. Statistical mechanics of thermal denaturation of DNA oligomers

    Indian Academy of Sciences (India)

    Navin Singh; Yashwant Singh

    2003-08-01

    Double stranded DNA chain is known to have non-trivial elasticity. We study the effect of this elasticity on the denaturation profile of DNA oligomer by constraining one base pair at one end of the oligomer to remain in unstretched (or intact) state. The effect of this constraint on the denaturation profile of the oligomer has been calculated using the Peyrard–Bishop Hamiltonian. The denaturation profile is found to be very different from the free (i.e. without the constraint) oligomer. We have also examined how this constraint affects the denaturation profile of the oligomer having a segment of defect sites located at different parts of the chain.

  8. Dissociative mechanism of F-actin thermal denaturation.

    Science.gov (United States)

    Mikhailova, V V; Kurganov, B I; Pivovarova, A V; Levitsky, D I

    2006-11-01

    We have applied differential scanning calorimetry to investigate thermal unfolding of F-actin. It has been shown that the thermal stability of F-actin strongly depends on ADP concentration. The transition temperature, T(m), increases with increasing ADP concentration up to 1 mM. The T(m) value also depends on the concentration of F-actin: it increases by almost 3 degrees C as the F-actin concentration is increased from 0.5 to 2.0 mg/ml. Similar dependence of the T(m) value on protein concentration was demonstrated for F-actin stabilized by phalloidin, whereas it was much less pronounced in the presence of AlF4(-). However, T(m) was independent of protein concentration in the case of monomeric G-actin. The results suggest that at least two reversible stages precede irreversible thermal denaturation of F-actin; one of them is dissociation of ADP from actin subunits, and another is dissociation of subunits from the ends of actin filaments. The model explains why unfolding of F-actin depends on both ADP and protein concentration.

  9. Interchange of L polymerase protein between two strains of viral hemorrhagic septicemia virus (VHSV) genotype IV alters temperature sensitivities in vitro.

    Science.gov (United States)

    Kim, Sung-Hyun; Yusuff, Shamila; Vakharia, Vikram N; Evensen, Øystein

    2015-01-02

    Viral hemorrhagic septicemia virus (VHSV) has four genotypes (I-IV) and sub-lineages within genotype I and IV. Using a reverse genetics approach, we explored the importance of the L gene for growth characteristics at different temperatures following interchange of the L gene within genotype IV (IVa and IVb) strains. VHSV strains harboring heterologous L gene were recovered and we show that the L gene determines growth characteristics at different temperatures in permissive cell lines.

  10. Thermal and mechanical denaturation properties of a DNA model with three sites per nucleotide

    CERN Document Server

    Florescu, Ana-Maria; 10.1063/1.3626870

    2011-01-01

    In this paper, we show that the coarse grain model for DNA, which has been proposed recently by Knotts, Rathore, Schwartz and de Pablo (J. Chem. Phys. 126, 084901 (2007)), can be adapted to describe the thermal and mechanical denaturation of long DNA sequences by adjusting slightly the base pairing contribution. The adjusted model leads to (i) critical temperatures for long homogeneous sequences that are in good agreement with both experimental ones and those obtained from statistical models, (ii) a realistic step-like denaturation behaviour for long inhomogeneous sequences, and (iii) critical forces at ambient temperature of the order of 10 pN, close to measured values. The adjusted model furthermore supports the conclusion that the thermal denaturation of long homogeneous sequences corresponds to a first-order phase transition and yields a critical exponent for the critical force equal to sigma=0.70. This model is both geometrically and energetically realistic, in the sense that the helical structure and th...

  11. Protective role of salt in catalysis and maintaining structure of halophilic proteins against denaturation

    Directory of Open Access Journals (Sweden)

    Rajeshwari eSinha

    2014-04-01

    Full Text Available Search for new enzymes of industrial relevance, bestowed with novel properties continues to be a desirable pursuit in enzyme research. Halophilism is the unusual existence of life in saline/ hypersaline habitats and haloenzymes, are the proteins from such origin, naturally endowed with unique structural features which enable them to sustain functionality under high salt. Driven by industrial requirements, halophilic enzymes have been explored for their stability and catalytic abilities under harsh operational conditions. These have been documented to withstand high temperature, pH, organic solvents, and chaotropic agents. However, this stability is modulated by salt. Understanding the basis of salt mediated protection amidst a denaturing milieu will add significantly to the existing knowledge about structure function relationships in halophilic proteins. Exploring their protein architecture may provide template for rationale design of stable enzymes. The article encompasses the current level of understanding about haloadaptations in halophiles and structural basis of their stability against classical denaturants.

  12. PROTECTIVE EFFECT OF PROLACTIN INDUCED PROTEIN ON ZINC α2-GLYCOPROTEIN AGAINST VARIOUS DENATURANTS

    Directory of Open Access Journals (Sweden)

    Md. Imtaiyaz Hassan

    2012-12-01

    Full Text Available Zinc α2-glycoprotein (ZAG and Prolactin induced protein (PIP are considered as important elements for fertility and biomarker for prostate and breast carcinomas. The stabilities of ZAG alone and its naturally occurring complex with PIP were compared. A significant difference in CD signal was recorded for native ZAG and ZAG-PIP complex against pH-, GdnHCl- and temperature-induced denaturation. These finding suggests that PIP plays a protective role for ZAG against several denaturants. PIP contributes to the hydrophobic as well as electrostatic interactions on ZAG for the complex formation. Moreover, the observed changes in far-UV spectra between ZAG and ZAG-PIP complex in the presence of PEG support the hydrophobic nature of the forces governing the formation of complex. This pH dependent study provides evidence that formation of the complex is a natural event required for physiological function.

  13. Heat-induced denaturation and aggregation of ovalbumin at neutral pH described by irreversible first-order kinetics

    NARCIS (Netherlands)

    Weijers, M.; Barneveld, P.A.; Cohen Stuart, M.A.; Visschers, R.W.

    2003-01-01

    The heat-induced denaturation kinetics of two different sources of ovalbumin at pH 7 was studied by chromatography and differential scanning calorimetry. The kinetics was found to be independent of protein concentration and salt concentration, but was strongly dependent on temperature. For highly

  14. New Primers for Denaturing Gradient Gel Electrophoresis Analysis of Nitrate-Reducing Bacterial Community in Soil

    Institute of Scientific and Technical Information of China (English)

    R.PASTORELLI; R.PICCOLO; S.SIMONCINI; S.LANDI

    2013-01-01

    The narG gene is frequently used as a molecular marker for bacterial nitrate-reducing community analysis.In this study,a new set of primers targeting the narG gene was designed and applied to semi-nested polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) assay.The potential of the new primers was verified on DNA directly extracted from soils from five different experimental sites distributed in Central and Southern Italy.Specificity of the primers was determined by excision,amplification,and sequencing of bands resolved by DGGE.A phylogenetic analysis showed the correlation between the sequences retrieved from the soils studied and the narG sequences from β and γ-Proteobacteria.These primers expanded the existing molecular tools for ecological study on the size and diversity of nitrate-reducing bacterial community in soil.

  15. Denaturation and Oxidative Stability of Hemp Seed (Cannabis sativa L.) Protein Isolate as Affected by Heat Treatment.

    Science.gov (United States)

    Raikos, Vassilios; Duthie, Garry; Ranawana, Viren

    2015-09-01

    The present study investigated the impact of heat treatments on the denaturation and oxidative stability of hemp seed protein during simulated gastrointestinal digestion (GID). Heat-denatured hemp protein isolate (HPI) solutions were prepared by heating HPI (2 mg/ml, pH 6.8) to 40, 60, 80 and 100 °C for 10 min. Heat-induced denaturation of the protein isolates was monitored by polyacrylamide gel electrophoresis. Heating HPI at temperatures above 80 °C significantly reduced solubility and led to the formation of large protein aggregates. The isolates were then subjected to in vitro GID and the oxidative stability of the generated peptides was investigated. Heating did not significantly affect the formation of oxidation products during GID. The results suggest that heat treatments should ideally remain below 80 °C if heat stability and solubility of HPI are to be preserved.

  16. Deoxyribonucleic acid polymerase III of Escherichia coli. Purification and properties.

    Science.gov (United States)

    Livingston, D M; Hinkle, D C; Richardson, C C

    1975-01-25

    DNA polymerase III has been purified 4,500-fold from the Escherichis coli mutant, HMS83, which lacks DNA polymerases I and II. When subjected to disc gel electrophoresis, the most purified fraction exhibits a single major protein band from which enzymatic activity may be recovered. Polyacrylamide gel electrophoresis under denaturing conditions produces two protein bands with molecular weights of 140,000 and 40,000. The sedimentation coefficient of the enzyme is 7.0 S, and the Stokes radius is 62 A. Taken together these tow parameters indicate a native molecular weight of 180,000. Purified DNA polymerase III catalyzes the polymerization of nucleotides into DNA when provided with both a DNA template and a complementary primer strand. The newly synthesized DNA is covalently attached to the 3' terminus of the primer strand. Because the extent of polymerization is only 10 to 100 nucleotides, the best substrates are native DNA molecules with small single-stranded regions. The most purified enzyme preparation is devoid of endonuclease activities. In addition to the two exonuclease activities described in the accompanying paper, purified polymerase III also catalyzes pyrophosphorolysis and the exchange of pyrophosphate into deoxynucleoside triphosphates. DNA polymerase III has also been isolated from wild type E. coli containing the other two known DNA polymerases. Futhermore, the enzyme purified from three different polC mutants exhibits altered polymerase III activity, confirming that polC is the structural gene for DNA polymerase III (Gefter, M., Hirota, Y., Kornberb, T., Wechsler, J., and Barnoux, C. (1971) Proc. Natl. Acad. Sci. U. S. A. 68, 3150-3153).

  17. 27 CFR 19.57 - Recovery and reuse of denatured spirits in manufacturing processes.

    Science.gov (United States)

    2010-04-01

    ... denatured spirits in manufacturing processes. 19.57 Section 19.57 Alcohol, Tobacco Products and Firearms... denatured spirits in manufacturing processes. The following persons are not, by reason of the activities...) Manufacturers who use denatured spirits, or articles or substances containing denatured spirits, in a process...

  18. Detection of CpG methylations in human mismatch repair gene hMLH1 promoter by denaturing high-performance liquid chromatography (DHPLC)

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Objectives: To develop a novel method to detect CpG methylation by DHPLC. Methods: After DNA was treated with sodium bisulfite, mismatch repair gene hMLH1 promoter was amplified by polymerase chain reaction (PCR). DHPLC was used to separate the PCR products at their partially denaturing temperatures. BstUI digestion assay was also used for comparison study. Results: A 294bp band was obtained by PCR from each DNA samples of colon cancer cell line RKO and gastric cancer cell line PACM82. These two bands could be separated completely by DHPLC at 53° C (retention time 6.7 min for RKO vs. 6.2 min for PACM82). We concluded that the hMLH1 promoter in RKO cells is methylated, while PACM82 is not methylated, since methylation can protect the conversion of C to T and keep higher C/G content after bisulfite treatment, leading to the delayed time. These results consistent with those from BstUI digestion assay. Conclusion: Methylation in CpG islands of hMLH1 could be detected conveniently by DHPLC after bisulfite modification.

  19. The influence of applied heat treatments on whey protein denaturation

    Directory of Open Access Journals (Sweden)

    Fetahagić Safet

    2002-01-01

    . Distribution of nitrogen matter from milk 8%+3%DWP heat treated at 85ºC/10 min, 90ºC/10 min and 95ºC/10 min to sera samples were 9.64%, 8.66% and 8.67%, respectively. Whey protein denaturation increased with increasing of the temperature of the applied heat treatment. Denaturation was the most significant for milk sample 11%.

  20. Effects of high pressure freezing (HPF) on denaturation of natural actomyosin extracted from prawn (Metapenaeus ensis).

    Science.gov (United States)

    Cheng, Lina; Sun, Da-Wen; Zhu, Zhiwei; Zhang, Zhihang

    2017-08-15

    Effects of protein denaturation caused by high pressure freezing, involving Pressure-Factors (pressure, time) and Freezing-Factors (temperature, phase transition, recrystallization, ice crystal types), are complicated. In the current study, the conformation and functional changes of natural actomyosin (NAM) under pressure assisted freezing (PAF, (100,150,300,400,500MPa)P-20°C/25min), pressure shift freezing (PSF, (200MPa)P-20°C/25min), and immersion freezing ((0.1MPa)P-20°C/5min) after pressure was released to 0.1MPa, as compared to normal immersion freezing process (IF, (0.1MPa)P-20°C/30min). Results indicated that PSF ((200MPa)P-20°C/30min) could reduce the denaturation of frozen NAM and a pressure of 300MPa was the critical point to induce such a denaturation. During the periods of B→D in PSF or B→C→D in PAF, the generation and growth of ice crystals played an important role on changing the secondary and tertiary structure of the treated NAM. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Denaturation Kinetics of Whey Protein Isolate Solutions and Fouling Mass Distribution in a Plate Heat Exchanger

    Directory of Open Access Journals (Sweden)

    Marwa Khaldi

    2015-01-01

    Full Text Available Few investigations have attempted to connect the mechanism of dairy fouling to the chemical reaction of denaturation (unfolding and aggregation occurring in the bulk. The objective of this study is to contribute to this aspect in order to propose innovative controls to limit fouling deposit formation. Experimental investigations have been carried out to observe the relationship between the deposit mass distribution generated in plate heat exchangers (PHE by a whey protein isolate (WPI mainly composed of β-lactoglobulin (β-Lg and the ratio between the unfolding and aggregation rate constants. Experiments using a PHE were carried out at a pilot scale to identify the deposit distribution of a model fouling solution with different calcium contents. In parallel, laboratory experiments were performed to determine the unfolding/aggregation rate constants. Data analysis showed that (i β-Lg denaturation is highly dependent on the calcium content, (ii for each fouling solution, irrespective of the imposed temperature profile, the deposit mass in each channel and the ratio between the unfolding and aggregation rate constants seem to be well correlated. This study demonstrates that both the knowledge of the thermal profile and the β-Lg denaturation rate constants are required in order to predict accurately the deposit distribution along the PHE.

  2. Dodine as a transparent protein denaturant for circular dichroism and infrared studies.

    Science.gov (United States)

    Guin, Drishti; Sye, Kori; Dave, Kapil; Gruebele, Martin

    2016-05-01

    The fungicide dodine combines the cooperative denaturation properties of guanidine with the mM denaturation activity of SDS. It was previously tested only on two small model proteins. Here we show that it can be used as a chemical denaturant for phosphoglycerate kinase (PGK), a much larger two-domain enzyme. In addition to its properties as a chemical denaturant, dodine facilitates thermal denaturation of PGK, and we show for the first time that it also facilitates pressure denaturation of a protein. Much higher quality circular dichroism and amide I' infrared spectra of PGK can be obtained in dodine than in guanidine, opening the possibility for use of dodine as a denaturant when UV or IR detection is desirable. One caution is that dodine denaturation, like other detergent-based denaturants, is less reversible than guanidine denaturation. © 2016 The Protein Society.

  3. Thermal stability of chemically denatured green fluorescent protein (GFP) A preliminary study

    Energy Technology Data Exchange (ETDEWEB)

    Nagy, Attila; Malnasi-Csizmadia, Andras; Somogyi, Bela; Lorinczy, Denes

    2004-02-09

    Green fluorescent protein (GFP) is a light emitter in the bioluminescence reaction of the jellyfish Aequorea victoria. The protein consist of 238 amino acids and produces green fluorescent light ({lambda}{sub max}=508 nm), when irradiated with near ultraviolet light. The fluorescence is due to the presence of chromophore consisting of an imidazolone ring, formed by a post-translational modification of the tripeptide -Ser{sup 65}-Tyr{sup 66}-Gly{sup 67}-, which buried into {beta}-barrel. GFP is extremely compact and heat stable molecule. In this work, we present data for the effect of chemical denaturing agent on the thermal stability of GFP. When denaturing agent is applied, global thermal stability and the melting point of the molecule is decreases, that can be monitored with differential scanning calorimetry. The results indicate, that in 1-6 M range of GuHCl the melting temperature is decreasing continuously from 83 to 38 deg. C. Interesting finding, that the calculated calorimetric enthalpy decreases with GuHCl concentration up to 3 M (5.6-0.2 kJ mol{sup -1}), but at 4 M it jumps to 8.4 and at greater concentration it is falling down to 1.1 kJ mol{sup -1}. First phenomena, i.e. the decrease of melting point with increasing GuHCl concentration can be easily explained by the effect of the extended chemical denaturation, when less and less amount of heat required to diminish the remaining hydrogen bonds in {beta}-barrel. The surprising increase of calorimetric enthalpy at 4 M concentration of GuHCl could be the consequence of a dimerization or a formation of stable complex between GFP and denaturing agent as well as a precipitation at an extreme GuHCl concentration. We are planning further experiments to elucidate fluorescent consequence of these processes.

  4. One-heater flow-through polymerase chain reaction device by heat pipes cooling.

    Science.gov (United States)

    Chen, Jyh Jian; Liao, Ming Huei; Li, Kun Tze; Shen, Chia Ming

    2015-01-01

    This study describes a novel microfluidic reactor capable of flow-through polymerase chain reactions (PCR). For one-heater PCR devices in previous studies, comprehensive simulations and experiments for the chip geometry and the heater arrangement were usually needed before the fabrication of the device. In order to improve the flexibility of the one-heater PCR device, two heat pipes with one fan are used to create the requisite temperature regions in our device. With the integration of one heater onto the chip, the high temperature required for the denaturation stage can be generated at the chip center. By arranging the heat pipes on the opposite sides of the chip, the low temperature needed for the annealing stage is easy to regulate. Numerical calculations and thermal measurements have shown that the temperature distribution in the five-temperature-region PCR chip would be suitable for DNA amplification. In order to ensure temperature uniformity at specific reaction regions, the Re of the sample flow is less than 1. When the microchannel width increases and then decreases gradually between the denaturation and annealing regions, the extension region located in the enlarged part of the channel can be observed numerically and experimentally. From the simulations, the residence time at the extension region with the enlarged channel is 4.25 times longer than that without an enlarged channel at a flow rate of 2 μl/min. The treated surfaces of the flow-through microchannel are characterized using the water contact angle, while the effects of the hydrophilicity of the treated polydimethylsiloxane (PDMS) microchannels on PCR efficiency are determined using gel electrophoresis. By increasing the hydrophilicity of the channel surface after immersing the PDMS substrates into Tween 20 (20%) or BSA (1 mg/ml) solutions, efficient amplifications of DNA segments were proved to occur in our chip device. To our knowledge, our group is the first to introduce heat pipes into

  5. A study of the thermal denaturation of the S-layer protein from Lactobacillus salivarius

    Science.gov (United States)

    Lighezan, Liliana; Georgieva, Ralitsa; Neagu, Adrian

    2012-09-01

    Surface layer (S-layer) proteins display an intrinsic self-assembly property, forming monomolecular crystalline arrays, identified in outermost structures of the cell envelope in many organisms, such as bacteria and archaea. Isolated S-layer proteins also possess the ability to recrystallize into regular lattices, being used in biotechnological applications, such as controlling the architecture of biomimetic surfaces. To this end, the stability of the S-layer proteins under high-temperature conditions is very important. In this study, the S-layer protein has been isolated from Lactobacillus salivarius 16 strain of human origin, and purified by cation-exchange chromatography. Using circular dichroism (CD) spectroscopy, we have investigated the thermal denaturation of the S-layer protein. The far- and near-UV CD spectra have been collected, and the temperature dependence of the CD signal in these spectral domains has been analyzed. The variable temperature results show that the secondary and tertiary structures of the S-layer protein change irreversibly due to the heating of the sample. After the cooling of the heated protein, the secondary and tertiary structures are partially recovered. The denaturation curves show that the protein unfolding depends on the sample concentration and on the heating rate. The secondary and tertiary structures of the protein suffer changes in the same temperature range. We have also detected an intermediate state in the protein denaturation pathway. Our results on the thermal behavior of the S-layer protein may be important for the use of S-layer proteins in biotechnological applications, as well as for a better understanding of the structure and function of S-layer proteins.

  6. Virus inactivation by protein denaturants used in affinity chromatography.

    Science.gov (United States)

    Roberts, Peter L; Lloyd, David

    2007-10-01

    Virus inactivation by a number of protein denaturants commonly used in gel affinity chromatography for protein elution and gel recycling has been investigated. The enveloped viruses Sindbis, herpes simplex-1 and vaccinia, and the non-enveloped virus polio-1 were effectively inactivated by 0.5 M sodium hydroxide, 6 M guanidinium thiocyanate, 8 M urea and 70% ethanol. However, pH 2.6, 3 M sodium thiocyanate, 6 M guanidinium chloride and 20% ethanol, while effectively inactivating the enveloped viruses, did not inactivate polio-1. These studies demonstrate that protein denaturants are generally effective for virus inactivation but with the limitation that only some may inactivate non-enveloped viruses. The use of protein denaturants, together with virus reduction steps in the manufacturing process should ensure that viral cross contamination between manufacturing batches of therapeutic biological products is prevented and the safety of the product ensured.

  7. Unusual cold denaturation of a small protein domain.

    Science.gov (United States)

    Buchner, Ginka S; Shih, Natalie; Reece, Amy E; Niebling, Stephan; Kubelka, Jan

    2012-08-21

    A thermal unfolding study of the 45-residue α-helical domain UBA(2) using circular dichroism is presented. The protein is highly thermostable and exhibits a clear cold unfolding transition with the onset near 290 K without denaturant. Cold denaturation in proteins is rarely observed in general and is quite unique among small helical protein domains. The cold unfolding was further investigated in urea solutions, and a simple thermodynamic model was used to fit all thermal and urea unfolding data. The resulting thermodynamic parameters are compared to those of other small protein domains. Possible origins of the unusual cold unfolding of UBA(2) are discussed.

  8. OBSERVATION OF DNA PARTIAL DENATURATION BY ATOMIC FORCE MICROSCOPY

    Institute of Scientific and Technical Information of China (English)

    Xin-hua Dai; Zhi-gang Wang; Bo Xiao; Yong-jun Zhang; Chen Wang; Chun-li Bai; Xiao-li Zhang; Jian Xu

    2004-01-01

    Atomic force microscopy was used to investigate the DNA-cetyltrimethylammonium bromide (CTAB) complexes adsorbed on highly ordered pyrolytic graphite (HOPG). These complexes, at low concentrations, can automatically spread out on the surface of HOPG. The DNA-CTAB complexes display a typically extended structure rather than a globular structure. Partially denaturated DNA produced by binding CTAB to DNA is directly observed by AFM with high resolution.The three-dimensional resolution of partially denaturated DNA obtained by AFM is not available by any other technique at present.

  9. Single-molecule denaturation mapping of DNA in nanofluidic channels

    DEFF Research Database (Denmark)

    Reisner, Walter; Larsen, Niels Bent; Silahtaroglu, Asli

    2010-01-01

    Here we explore the potential power of denaturation mapping as a single-molecule technique. By partially denaturing YOYO (R)-1-labeled DNA in nanofluidic channels with a combination of formamide and local heating, we obtain a sequence-dependent "barcode" corresponding to a series of local dips....... Consequently, the technique is sensitive to sequence variation without requiring enzymatic labeling or a restriction step. This technique may serve as the basis for a new mapping technology ideally suited for investigating the long-range structure of entire genomes extracted from single cells....

  10. Immobilization of denatured DNA to macroporous supports: II. Steric and kinetic parameters of heterogeneous hybridization reactions.

    OpenAIRE

    Bünemann, H

    1982-01-01

    The accessibility of immobilized DNA has been shown to depend more crucially on the method of immobilization than on the type of support used for fixation. When sonicated denatured DNA is coupled via diazotization or via cyanogen bromide reaction to solid Sephadex G-25 and Cellex 410 or to macroporous Sephacryl S-500 and Sepharose C1-6B its accessibility varies from 100 to 24 percent. Generally the loss of accessibility is linked to a depression of the melting temperature of DNA helices forme...

  11. Protein denaturation due to the action of surfactants: a study by SAXS and ITC

    Energy Technology Data Exchange (ETDEWEB)

    Oseliero Filho, Pedro Leonidas; Oliveira, Cristiano Luis Pinto de [Universidade de Sao Paulo (USP), SP (Brazil); Pedersen, Jan Skov; Otzen, Daniel Erik [University of Aarhus (Denmark)

    2012-07-01

    Full text: Proteins are the major constituent of biological systems along with carbohydrates, lipids and nucleic acids (DNA and RNA). According to their structure and composition, proteins perform several functions in the organism, starting from the macroscopic level, with participation on the olfaction of animals, down to the cellular level, allocated in the membrane and making the connection between extra and intracellular environment. The function of a protein (which may be enzymatic, hormonal, structural, energetic, transport etc) is related to several factors including its structure (primary, secondary, tertiary or quaternary). Denaturation occurs when the secondary structure and/or tertiary is lost, which is almost always followed by the loss of the associated biological function. Temperature, pH and the action of surfactants influence the process of the denaturation. The influence of surfactants to the protein structure and function is the aim of this work. Therefore we are using an isolated protein, {alpha}-lactalbumin, that is found in the milk and whose function is related to the synthesis of galactose. The purpose is to characterize, in a thermodynamic-structural point of view, the denaturation of alpha-lactalbumin in the presence of surfactants anionic (sodium dodecyl sulfate - SDS), cationic (tetradecyltrimethylammonium bromide - TTAB), zwitterionic (2-diheptanoyl-sn-glycero-3- phosphocholine - DHPC) and nonionic (decyl-{beta}-D-Maltopyranoside - DM). The isothermal titration calorimetry (ITC) technique, which provides information of structural changes from changes in energy, represents the starting point for the study, while the technique of small angle X-ray scattering (SAXS) provides information about the structural characteristics of surfactant-protein complexes formed at each step of the denaturation process. The data analysis is in the initial stage, but it was possible to obtain general parameters related to the complex formed from the

  12. Differential Scanning Calorimetry Analysis of the Effects of Heat and Pressure on Protein Denaturation in Soy Flour Mixed with Various Types of Plasticizers.

    Science.gov (United States)

    Kweon, Meera; Slade, Louise; Levine, Harry

    2017-02-01

    The effects of heat and pressure on protein denaturation in soy flour were explored by an experimental design that used pressure (atmospheric to 600 MPa), temperature (room to 90 °C), time (1 to 60 min), and type of aqueous plasticizer (NaCl, sucrose, betaine, and lactobionic acid (LBA)) as factors. When 50% (w/w) soy flour-water paste was high hydrostatic pressure (HHP)-treated for 20 min at 25 °C, the treatment at 200 MPa showed a small effect on denaturation of only the 7S soy globulin, but the treatment at 600 MPa showed a significant effect on denaturation of both the 7S and 11S soy globulins. The treatment at 60 °C showed a less-pronounced effect on denaturation of the 11S globulin, even at 600 MPa, but that at 90 °C showed a similar extent of denaturation of the 11S globulin at 600 MPa to that at 25 °C. Chaotropic 2N NaCl, 50% sucrose-, 50% betaine-, or 50% LBA-water solutions showed protective effects on protein denaturation during HHP treatment at 25 °C. Although LBA enhanced the extent of thermostability of soy protein less than did 2N NaCl, LBA exhibited better stabilization against pressure. The results from DSC analysis demonstrated that thermostable soy proteins were not always barostable. © 2017 Institute of Food Technologists®.

  13. Denaturation of membrane proteins and hyperthermic cell killing

    NARCIS (Netherlands)

    Burgman, Paulus Wilhelmus Johannes Jozef

    1993-01-01

    Summarizing: heat induced denaturation of membrane proteins is probably related to hyperthermic cell killing. Induced resistance of heat sensitive proteins seems to be involved in the development of thermotolerance. Although many questions remain still to be answered, it appears that HSP72, when

  14. High-intensity focused ultrasound monitoring using harmonic motion imaging for focused ultrasound (HMIFU) under boiling or slow denaturation conditions.

    Science.gov (United States)

    Hou, Gary Y; Marquet, Fabrice; Wang, Shutao; Apostolakis, Iason-Zacharias; Konofagou, Elisa E

    2015-07-01

    Harmonic motion imaging for focused ultrasound (HMIFU) is a recently developed high-intensity focused ultrasound (HIFU) treatment monitoring method that utilizes an amplitude-modulated therapeutic ultrasound beam to induce an oscillatory radiation force at the HIFU focus and estimates the focal tissue displacement to monitor the HIFU thermal treatment. In this study, the performance of HMIFU under acoustic, thermal, and mechanical effects was investigated. The performance of HMIFU was assessed in ex vivo canine liver specimens (n = 13) under slow denaturation or boiling regimes. A passive cavitation detector (PCD) was used to assess the acoustic cavitation activity, and a bare-wire thermocouple was used to monitor the focal temperature change. During lesioning with slow denaturation, high quality displacements (correlation coefficient above 0.97) were observed under minimum cavitation noise, indicating the tissue initial-softening-then- stiffening property change. During HIFU with boiling, HMIFU monitored a consistent change in lesion-to-background displacement contrast (0.46 ± 0.37) despite the presence of strong cavitation noise due to boiling during lesion formation. Therefore, HMIFU effectively monitored softening-then-stiffening during lesioning under slow denaturation, and detected lesioning under boiling with a distinct change in displacement contrast under boiling in the presence of cavitation. In conclusion, HMIFU was shown under both boiling and slow denaturation regimes to be effective in HIFU monitoring and lesioning identification without being significantly affected by cavitation noise.

  15. Steady-State Kinetic Analysis of DNA Polymerase Single-Nucleotide Incorporation Products

    Science.gov (United States)

    O'Flaherty, Derek K.

    2014-01-01

    This unit describes the experimental procedures for the steady-state kinetic analysis of DNA synthesis across DNA nucleotides (native or modified) by DNA polymerases. In vitro primer extension experiments with a single nucleoside triphosphate species followed by denaturing polyacrylamide gel electrophoresis of the extended products is described. Data analysis procedures and fitting to steady-state kinetic models is presented to highlight the kinetic differences involved in the bypass of damaged versus undamaged DNA. Moreover, explanations concerning problems encountered in these experiments are addressed. This approach provides useful quantitative parameters for the processing of damaged DNA by DNA polymerases. PMID:25501593

  16. Urea Induced Denaturation of Pre-Q1 Riboswitch

    Science.gov (United States)

    Yoon, Jeseong; Thirumalai, Devarajan; Hyeon, Changbong

    2013-01-01

    Urea, a polar molecule with a large dipole moment, not only destabilizes the folded RNA structures, but can also enhance the folding rates of large ribozymes. Unlike the mechanism of urea-induced unfolding of proteins, which is well understood, the action of urea on RNA has barely been explored. We performed extensive all atom molecular dynamics (MD) simulations to determine the molecular underpinnings of urea-induced RNA denaturation. Urea displays its denaturing power in both secondary and tertiary motifs of the riboswitch (RS) structure. Our simulations reveal that the denaturation of RNA structures is mainly driven by the hydrogen bonds and stacking interactions of urea with the bases. Through detailed studies of the simulation trajectories, we found that geminate pairs between urea and bases due to hydrogen bonds and stacks persist only ~ (0.1-1) ns, which suggests that urea-base interaction is highly dynamic. Most importantly, the early stage of base pair disruption is triggered by penetration of water molecules into the hydrophobic domain between the RNA bases. The infiltration of water into the narrow space between base pairs is critical in increasing the accessibility of urea to transiently disrupted bases, thus allowing urea to displace inter base hydrogen bonds. This mechanism, water-induced disruption of base-pairs resulting in the formation of a "wet" destabilized RNA followed by solvation by urea, is the exact opposite of the two-stage denaturation of proteins by urea. In the latter case, initial urea penetration creates a dry-globule, which is subsequently solvated by water penetration leading to global protein unfolding. Our work shows that the ability to interact with both water and polar, non-polar components of nucleotides makes urea a powerful chemical denaturant for nucleic acids.

  17. DNA polymerase activity of tomato fruit chromoplasts.

    Science.gov (United States)

    Serra, E C; Carrillo, N

    1990-11-26

    DNA polymerase activity was measured in chromoplasts of ripening tomato fruits. Plastids isolated from young leaves or mature red fruits showed similar DNA polymerase activities. The same enzyme species was present in either chloroplasts or chromoplasts as judged by pH and temperature profiles, sensitivities towards different inhibitors and relative molecular mass (Mr 88 kDa). The activities analyzed showed the typical behaviour of plastid-type polymerases. The results presented here suggest that chromoplast maintain their DNA synthesis potential in fruit tissue at chloroplast levels. Consequently, the sharp decrease of the plastid chromosome transcription observed at the onset of fruit ripening could not be due to limitations in the availability of template molecules. Other mechanisms must be involved in the inhibition of chromoplast RNA synthesis.

  18. Temperature inactivation of Feline calicivirus vaccine strain FCV F-9 in comparison with human noroviruses using an RNA exposure assay and reverse transcribed quantitative real-time polymerase chain reaction-A novel method for predicting virus infectivity.

    Science.gov (United States)

    Topping, J R; Schnerr, H; Haines, J; Scott, M; Carter, M J; Willcocks, M M; Bellamy, K; Brown, D W; Gray, J J; Gallimore, C I; Knight, A I

    2009-03-01

    A one-step reverse transcription quantitative real-time polymerase chain reaction (RT-QPCR) method in combination with RNase treatment and low copy number samples was developed in order to examine the effect of temperature on the ability of virus capsids to protect their RNA content. The method was applied to a non-cultivable virus (GII.4 norovirus) and Feline calicivirus vaccine strain F-9 (FCV) which is often used as a norovirus surrogate. Results demonstrated that FCV RNA is exposed maximally after 2min at 63.3 degrees C and this correlated with a greater than 4.5log reduction in infectivity as assessed by plaque assay. In contrast human GII.4 norovirus RNA present in diluted clinical specimens was not exposed maximally until 76.6 degrees C, at least 13.3 degrees C greater than that for FCV. These data suggest that norovirus possesses greater thermostability than this commonly used surrogate. Further, these studies indicate that current food processing regimes for pasteurisation are insufficient to achieve inactivation of GII.4 NoVs. The method provides a novel molecular method for predicting virus infectivity.

  19. 用于基因扩增热循环温度跟踪的前馈变结构PID控制技术%Feedforward Variable Structural Proportional-Integral-Derivative for Temperature Control of Polymerase Chain Reaction

    Institute of Scientific and Technical Information of China (English)

    邱宪波; 袁景淇; 汪志锋

    2006-01-01

    To track the rapidly changing temperature profiles of thermal cycling of polymerase chain reaction (PCR) accurately, an innovative feedforward variable structural proportional-integral-derivative (FVSPID) controller was developed. Based on the step response test data of the heat block, a reduced first order model was established at different operating points. Based on the reduced model, the FVSPID controller combined a feedforward path with the variable structural proportional-integral-derivative (PID) control. The modified feedforward action provided directly the optimal predictive power for the desired setpoint to speed up the dynamic response. To cooperate with the feedforward action, a variable structural PID was applied, where the P mode was used in the case of the largest errors to speed up response, whereas the PD mode was used in the case of larger errors to suppress overshoot, and finally the PID mode was applied for small error conditions to eliminate the steady state offset. Experimental results illustrated that compared to the conventional PID controller, the FVSPID controller can not only reduce the time taken to complete a standard PCR protocol, but also improve the accuracy of gene amplification.

  20. Mapping between the order of thermal denaturation and the shape of the critical line of mechanical unzipping in 1-dimensional DNA models

    CERN Document Server

    Buyukdagli, Sahin; 10.1016/j.cplett.2009.11.061

    2010-01-01

    In this Letter, we investigate the link between thermal denaturation and mechanical unzipping for two models of DNA, namely the Dauxois-Peyrard-Bishop model and a variant thereof we proposed recently. We show that the critical line that separates zipped from unzipped DNA sequences in mechanical unzipping experiments is a power-law in the temperature-force plane. We also prove that for the investigated models the corresponding critical exponent is proportional to the critical exponent alpha, which characterizes the behaviour of the specific heat in the neighbourhood of the critical temperature for thermal denaturation.

  1. Microbial Community Structure of Korean Cabbage Kimchi and Ingredients with Denaturing Gradient Gel Electrophoresis.

    Science.gov (United States)

    Hong, Sung Wook; Choi, Yun-Jeong; Lee, Hae-Won; Yang, Ji-Hee; Lee, Mi-Ai

    2016-06-28

    Kimchi is a traditional Korean fermented vegetable food, the production of which involves brining of Korean cabbage, blending with various other ingredients (red pepper powder, garlic, ginger, salt-pickled seafood, etc.), and fermentation. Recently, kimchi has also become popular in the Western world because of its unique taste and beneficial properties such as antioxidant and antimutagenic activities, which are derived from the various raw materials and secondary metabolites of the fermentative microorganisms used during production. Despite these useful activities, analysis of the microbial community present in kimchi has received relatively little attention. The objective of this study was to evaluate the bacterial community structure from the raw materials, additives, and final kimchi product using the culture-independent method. Specifically, polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) was used to analyze the 16S rRNA partial sequences of the microflora. One primer set for bacteria, 341F(GC)-518R, reliably produced amplicons from kimchi and its raw materials, and these bands were clearly separated on a 35-65% denaturing gradient gel. Overall, 117 16S rRNA fragments were identified by PCR-DGGE analysis. Pediococcus pentosaceus, Leuconostoc citreum, Leuconostoc gelidum, and Leuconostoc mesenteroides were the dominant bacteria in kimchi. The other strains identified were Tetragenococcus, Pseudomonas, Weissella, and uncultured bacterium. Comprehensive analysis of these microorganisms could provide a more detailed understanding of the biologically active components of kimchi and help improve its quality. PCR-DGGE analysis can be successfully applied to a fermented food to detect unculturable or other species.

  2. Denaturing and non-denaturing gel electrophoresis as methods for the detection ofjunctional diversity in rearranged T cell receptor sequences

    NARCIS (Netherlands)

    Offermans, M.T.C.; Sonneveld, R.D.; Bakker, E.; Deutz-Terlouw, P.P.; Geus, B. de; Rozing, J.

    1995-01-01

    Two nucleic acid gel electrophoresis techniques were tested as a possible tool for analyzing junctional diversity in rearranged T cell receptor (TcR) sequences in order to define the extent of T cell heterogeneity. For this purpose denaturing gradient gel electrophoresis (DGGE) as well as

  3. Study of dynamical process of heat denaturation in optically trapped single microorganisms by near-infrared Raman spectroscopy

    Science.gov (United States)

    Xie, Changan; Li, Yong-qing; Tang, Wei; Newton, Ronald J.

    2003-11-01

    The development of laser traps has made it possible to investigate single cells and record real-time Raman spectra during a heat-denaturation process when the temperature of the surrounding medium is increased. Large changes in the phenylalanine band (1004 cm-1) of near-infrared spectra between living and heat-treated cells were observed in yeast and Escerichia coli and Enterobacter aerogenes bacteria. This change appears to reflect the change in environment of phenylalanine as proteins within the cells unfold as a result of increasing temperatures. As a comparison, we measured Raman spectra of native and heat-denatured solutions of bovine serum albumin proteins, and a similar change in the phenylalanine band of spectra was observed. In addition, we measured Raman spectra of native and heat-treated solutions of pure phenylalanine molecules; no observable difference in vibrational spectra was observed. These findings may make it possible to study conformational changes in proteins within single cells.

  4. Pressure-assisted cold denaturation of hen egg white lysozyme: the influence of co-solvents probed by hydrogen exchange nuclear magnetic resonance

    Directory of Open Access Journals (Sweden)

    Vogtt K.

    2005-01-01

    Full Text Available COSY proton nuclear magnetic resonance was used to measure the exchange rates of amide protons of hen egg white lysozyme (HEWL in the pressure-assisted cold-denatured state and in the heat-denatured state. After dissolving lysozyme in deuterium oxide buffer, labile protons exchange for deuterons in such a way that exposed protons are substituted rapidly, whereas "protected" protons within structured parts of the protein are substituted slowly. The exchange rates k obs were determined for HEWL under heat treatment (80ºC and under high pressure conditions at low temperature (3.75 kbar, -13ºC. Moreover, the influence of co-solvents (sorbitol, urea on the exchange rate was examined under pressure-assisted cold denaturation conditions, and the corresponding protection factors, P, were determined. The exchange kinetics upon heat treatment was found to be a two-step process with initial slow exchange followed by a fast one, showing residual protection in the slow-exchange state and P-factors in the random-coil-like range for the final temperature-denatured state. Addition of sorbitol (500 mM led to an increase of P-factors for the pressure-assisted cold denatured state, but not for the heat-denatured state. The presence of 2 M urea resulted in a drastic decrease of the P-factors of the pressure-assisted cold denatured state. For both types of co-solvents, the effect they exert appears to be cooperative, i.e., no particular regions within the protein can be identified with significantly diverse changes of P-factors.

  5. α,β-D-constrained nucleic acids are strong terminators of thermostable DNA polymerases in polymerase chain reaction.

    Directory of Open Access Journals (Sweden)

    Olivier Martínez

    Full Text Available (S(C5', R(P α,β-D- Constrained Nucleic Acids (CNA are dinucleotide building blocks that can feature either B-type torsional angle values or non-canonical values, depending on their 5'C and P absolute stereochemistry. These CNA are modified neither on the nucleobase nor on the sugar structure and therefore represent a new class of nucleotide with specific chemical and structural characteristics. They promote marked bending in a single stranded DNA so as to preorganize it into a loop-like structure, and they have been shown to induce rigidity within oligonucleotides. Following their synthesis, studies performed on CNA have only focused on the constraints that this family of nucleotides introduced into DNA. On the assumption that bending in a DNA template may produce a terminator structure, we investigated whether CNA could be used as a new strong terminator of polymerization in PCR. We therefore assessed the efficiency of CNA as a terminator in PCR, using triethylene glycol phosphate units as a control. Analyses were performed by denaturing gel electrophoresis and several PCR products were further analysed by sequencing. The results showed that the incorporation of only one CNA was always skipped by the polymerases tested. On the other hand, two CNA units always stopped proofreading polymerases, such as Pfu DNA polymerase, as expected for a strong replication terminator. Non-proofreading enzymes, e.g. Taq DNA polymerase, did not recognize this modification as a strong terminator although it was predominantly stopped by this structure. In conclusion, this first functional use of CNA units shows that these modified nucleotides can be used as novel polymerization terminators of proofreading polymerases. Furthermore, our results lead us to propose that CNA and their derivatives could be useful tools for investigating the behaviour of different classes of polymerases.

  6. α,β-D-Constrained Nucleic Acids Are Strong Terminators of Thermostable DNA Polymerases in Polymerase Chain Reaction

    Science.gov (United States)

    Mahéo, Sabrina; Gross, Grégori; Bodin, Pierre; Teissié, Justin; Escudier, Jean-Marc; Paquereau, Laurent

    2011-01-01

    (SC5′, RP) α,β-D- Constrained Nucleic Acids (CNA) are dinucleotide building blocks that can feature either B-type torsional angle values or non-canonical values, depending on their 5′C and P absolute stereochemistry. These CNA are modified neither on the nucleobase nor on the sugar structure and therefore represent a new class of nucleotide with specific chemical and structural characteristics. They promote marked bending in a single stranded DNA so as to preorganize it into a loop-like structure, and they have been shown to induce rigidity within oligonucleotides. Following their synthesis, studies performed on CNA have only focused on the constraints that this family of nucleotides introduced into DNA. On the assumption that bending in a DNA template may produce a terminator structure, we investigated whether CNA could be used as a new strong terminator of polymerization in PCR. We therefore assessed the efficiency of CNA as a terminator in PCR, using triethylene glycol phosphate units as a control. Analyses were performed by denaturing gel electrophoresis and several PCR products were further analysed by sequencing. The results showed that the incorporation of only one CNA was always skipped by the polymerases tested. On the other hand, two CNA units always stopped proofreading polymerases, such as Pfu DNA polymerase, as expected for a strong replication terminator. Non-proofreading enzymes, e.g. Taq DNA polymerase, did not recognize this modification as a strong terminator although it was predominantly stopped by this structure. In conclusion, this first functional use of CNA units shows that these modified nucleotides can be used as novel polymerization terminators of proofreading polymerases. Furthermore, our results lead us to propose that CNA and their derivatives could be useful tools for investigating the behaviour of different classes of polymerases. PMID:21991314

  7. Thermal, chemical and pH induced denaturation of a multimeric β-galactosidase reveals multiple unfolding pathways.

    Directory of Open Access Journals (Sweden)

    Devesh Kishore

    Full Text Available BACKGROUND: In this case study, we analysed the properties of unfolded states and pathways leading to complete denaturation of a multimeric chick pea β-galactosidase (CpGAL, as obtained from treatment with guanidium hydrochloride, urea, elevated temperature and extreme pH. METHODOLOGY/PRINCIPAL FINDINGS: CpGAL, a heterodimeric protein with native molecular mass of 85 kDa, belongs to α+β class of protein. The conformational stability and thermodynamic parameters of CpGAL unfolding in different states were estimated and interpreted using circular dichroism and fluorescence spectroscopic measurements. The enzyme was found to be structurally and functionally stable in the entire pH range and upto 50 °C temperature. Further increase in temperature induces unfolding followed by aggregation. Chemical induced denaturation was found to be cooperative and transitions were irreversible, non-coincidental and sigmoidal. Free energy of protein unfolding (ΔG(0 and unfolding constant (K(obs were also calculated for chemically denatured CpGAL. SIGNIFICANCE: The protein seems to use different pathways for unfolding in different environments and is a classical example of how the environment dictates the path a protein might take to fold while its amino acid sequence only defines its final three-dimensional conformation. The knowledge accumulated could be of immense biotechnological significance as well.

  8. 以低变性脱脂豆粉为原料生产大豆组织蛋白的研究%Study on the Preparation of the Soya Cell Protein With the Material of Low-denatured and Low-temperature Soybean Powder of the Degrease

    Institute of Scientific and Technical Information of China (English)

    韩玉洁; 张亚丽; 徐忠

    2000-01-01

    以低变性脱脂豆粉为原料生产大豆组织蛋白,详细讨论了原料的质量对生产工艺和产品质量的影响,指出了生产高质量的大豆组织蛋白的较适宜的工艺条件。%The preparation of the soya cell protein with the material of the low-denatured soybean powder of the degrease, study on the influence of quality of material on the production technology and the quality of the production. Point out that the optimal conditions of the technology for produce the soya cell protein of high quality.

  9. Rheological properties of sweet potato starch before and after denaturalization

    Institute of Scientific and Technical Information of China (English)

    肖华西; 林亲录; 夏新剑; 李丽辉; 林利忠; 吴卫国

    2008-01-01

    Based on the sweet potato starch,cationic starch,acetic starch and cationic-acetic compoundedly modified starch were made through chemical denaturalization.The above three kinds of static rheological parameter and dynamic rheological parameter were measured,respectively.The experimental result reveals that the thermal stability of starchy viscosity increases after chemical denaturalization.Under the condition of identical shearing rate,the shear stress of cationic-acetic ester compoundedly modified sweet potato starch paste is the largest among these kinds of sweet potato starch.This attributes to a phenomenon of shearing thinning.Furthermore,raw sweet potato starch has a larger gel intensity than that of modified starch.

  10. Influence of Ficoll on urea induced denaturation of fibrinogen

    Science.gov (United States)

    Sankaranarayanan, Kamatchi; Meenakshisundaram, N.

    2016-03-01

    Ficoll is a neutral, highly branched polymer used as a molecular crowder in the study of proteins. Ficoll is also part of Ficoll-Paque used in biology laboratories to separate blood to its components (erythrocytes, leukocytes etc.,). Role of Ficoll in the urea induced denaturation of protein Fibrinogen (Fg) has been analyzed using fluorescence, circular dichroism, molecular docking and interfacial studies. Fluorescence studies show that Ficoll prevents quenching of Fg in the presence of urea. From the circular dichroism spectra, Fg shows conformational transition to random coil with urea of 6 M concentration. Ficoll helps to shift this denaturation concentration to 8 M and thus constraints by shielding Fg during the process. Molecular docking studies indicate that Ficoll interacts favorably with the protein than urea. The surface tension and shear viscosity analysis shows clearly that the protein is shielded by Ficoll.

  11. [DNA degradation during standard alkaline of thermal denaturation].

    Science.gov (United States)

    Drozhdeniuk, A P; Sulimova, G E; Vaniushin, B F

    1976-01-01

    Essential degradation 8 DNA (up to 10 per cent) with liberation of acid-soluble fragments takes place on the standard alkaline (0,01 M sodium phosphate, pH 12, 60 degrees, 15 min) or thermal (0.06 M sodium phosphate buffer, pH 6.8, 102 degrees C, 15 min) denaturation. This degradation is more or less selective: fraction of low molecular weight fragments, isolated by hydroxyapatite cromatography and eluted by 0.06 M sodium phosphate buffer, pH 6.8 is rich in adenine and thymine and contains about 2 times less 5-methylcytosine than the total wheat germ DNA. The degree of degradation of DNA on thermal denaturation is higher than on alkaline degradation. Therefore while studying reassociation of various DNA, one and the same standard method of DNA denaturation should be used. Besides, both the level of DNA degradation and the nature of the resulting products (fragments) should be taken into account.

  12. Protein's native state stability in a chemically induced denaturation mechanism.

    Science.gov (United States)

    Olivares-Quiroz, L; Garcia-Colin, L S

    2007-05-21

    In this work, we present a generalization of Zwanzig's protein unfolding analysis [Zwanzig, R., 1997. Two-state models of protein folding kinetics. Proc. Natl Acad. Sci. USA 94, 148-150; Zwanzig, R., 1995. Simple model of protein folding kinetics. Proc. Natl Acad. Sci. USA 92, 9801], in order to calculate the free energy change Delta(N)(D)F between the protein's native state N and its unfolded state D in a chemically induced denaturation. This Extended Zwanzig Model (EZM) is both based on an equilibrium statistical mechanics approach and the inclusion of experimental denaturation curves. It enables us to construct a suitable partition function Z and to derive an analytical formula for Delta(N)(D)F in terms of the number K of residues of the macromolecule, the average number nu of accessible states for each single amino acid and the concentration C(1/2) where the midpoint of the ND transition occurs. The results of the EZM for proteins where chemical denaturation follows a sigmoidal-type profile, as it occurs for the case of the T70N human variant of lysozyme (PDB code: T70N) [Esposito, G., et al., 2003. J. Biol. Chem. 278, 25910-25918], can be splitted into two lines. First, EZM shows that for sigmoidal denaturation profiles, the internal degrees of freedom of the chain play an outstanding role in the stability of the native state. On the other hand, that under certain conditions DeltaF can be written as a quadratic polynomial on concentration C(1/2), i.e., DeltaF approximately aC(1/2)(2)+bC(1/2)+c, where a,b,c are constant coefficients directly linked to protein's size K and the averaged number of non-native conformations nu. Such functional form for DeltaF has been widely known to fit experimental measures in chemically induced protein denaturation [Yagi, M., et al., 2003. J. Biol. Chem. 278, 47009-47015; Asgeirsson, B., Guojonsdottir, K., 2006. Biochim. Biophys. Acta 1764, 190-198; Sharma, S., et al., 2006. Protein Pept. Lett. 13(4), 323-329; Salem, M., et al

  13. Molecular monitoring of the intestinal flora by denaturing high performance liquid chromatography.

    Science.gov (United States)

    Goldenberg, Oliver; Herrmann, Stefanie; Marjoram, Gina; Noyer-Weidner, Mario; Hong, George; Bereswill, Stefan; Göbel, Ulf B

    2007-01-01

    Gut flora analysis is hampered by the complexity of the intestinal microbiota and by inherent limitations of culture-based approaches. Therefore, culture-independent molecular methods based upon 16S rRNA gene analysis were applied successfully for the analysis of complex microbial communities. However, generally accepted and validated profiling methods such as denaturing and temperature gradient gel electrophoresis (DGGE/TGGE) are still laborious and time consuming. Thus, we adapted the separation of amplified bacterial 16S rRNA gene fragments by denaturing high performance liquid chromatography (DHPLC) using the WAVE Microbial Analysis System as a rapid and convenient means to display complex intestinal bacterial communities and to monitor changes in the gut flora. The separation of 16S rRNA gene fragments amplified from reference strains representing main gut bacterial populations and from human stool samples revealed that DHPLC analysis effectively detects bacterial groups predominant in the human gut flora. The investigation of faecal samples from hospitalized patients before, during and after antibiotic therapy showed that PCR-based DHPLC can be used to monitor gut flora changes. Results from DHPLC analysis were comparable with DGGE profiles generated from the same samples, demonstrating that the adapted DHPLC protocol is well suited for the analysis of complex microbial communities.

  14. Ultrafast folding of WW domains without structured aromatic clusters in the denatured state.

    Science.gov (United States)

    Ferguson, N; Johnson, C M; Macias, M; Oschkinat, H; Fersht, A

    2001-11-06

    Ultrafast-folding proteins are important for combining experiment and simulation to give complete descriptions of folding pathways. The WW domain family comprises small proteins with a three-stranded antiparallel beta-sheet topology. Previous studies on the 57-residue YAP 65 WW domain indicate the presence of residual structure in the chemically denatured state. Here we analyze three minimal core WW domains of 38-44 residues. There was little spectroscopic or thermodynamic evidence for residual structure in either their chemically or thermally denatured states. Folding and unfolding kinetics, studied by using rapid temperature-jump and continuous-flow techniques, show that each domain folds and unfolds very rapidly in a two-state transition through a highly compact transition state. Folding half-times were as short as 17 micros at 25 degrees C, within an order of magnitude of the predicted maximal rate of loop formation. The small size and topological simplicity of these domains, in conjunction with their very rapid two-state folding, may allow us to reduce the difference in time scale between experiment and theoretical simulation.

  15. Increasing protein stability: Importance of ΔCp and the denatured state

    Science.gov (United States)

    Fu, Hailong; Grimsley, Gerald; Scholtz, J Martin; Pace, C Nick

    2010-01-01

    Increasing the conformational stability of proteins is an important goal for both basic research and industrial applications. In vitro selection has been used successfully to increase protein stability, but more often site-directed mutagenesis is used to optimize the various forces that contribute to protein stability. In previous studies, we showed that improving electrostatic interactions on the protein surface and improving the β-turn sequences were good general strategies for increasing protein stability, and used them to increase the stability of RNase Sa. By incorporating seven of these mutations in RNase Sa, we increased the stability by 5.3 kcal/mol. Adding one more mutation, D79F, gave a total increase in stability of 7.7 kcal/mol, and a melting temperature 28°C higher than the wild-type enzyme. Surprisingly, the D79F mutation lowers the change in heat capacity for folding, ΔCp, by 0.6 kcal/mol/K. This suggests that this mutation stabilizes structure in the denatured state ensemble. We made other mutants that give some insight into the structure present in the denatured state. Finally, the thermodynamics of folding of these stabilized variants of RNase Sa are compared with those observed for proteins from thermophiles. PMID:20340133

  16. Immobilization of denatured DNA to macroporous supports: II. Steric and kinetic parameters of heterogeneous hybridization reactions.

    Science.gov (United States)

    Bünemann, H

    1982-11-25

    The accessibility of immobilized DNA has been shown to depend more crucially on the method of immobilization than on the type of support used for fixation. When sonicated denatured DNA is coupled via diazotization or via cyanogen bromide reaction to solid Sephadex G-25 and Cellex 410 or to macroporous Sephacryl S-500 and Sepharose C1-6B its accessibility varies from 100 to 24 percent. Generally the loss of accessibility is linked to a depression of the melting temperature of DNA helices formed on the support. This correlation shows a characteristic course for a particular coupling method. DNA coupled under denaturing conditions may become totally inaccessible when only 3 percent of its bases are involved in the covalent linkage. Kinetic experiments with sonicated E.coli DNA have shown that the rate constants for renaturation or hybridization reactions are very similar for DNA immobilized by different methods to solid or macroporous supports. Generally the second order rate constant for a heterogeneous reaction (between mobile and immobilized DNA) is about one order of magnitude smaller than that of the analogous homogeneous reaction (in solution).

  17. An assessment of the use of native and denatured forms of okra seed proteins as coagulants in drinking water treatment.

    Science.gov (United States)

    Jones, Alfred Ndahi; Bridgeman, John

    2016-10-01

    The effects of temperature, storage time and water pH on the coagulation performance of okra seed protein in water treatment were assessed. In a jar test experiment, okra salt extract achieved a notable improvement in treatment efficiency with storage time and showed good performance in quality after thermal treatment at 60, 97 and 140 °C temperatures for 6, 4 and 2 hours, respectively. The performance improvement of more than 8% is considered to be due to the denaturation and subsequent removal of coagulation-hindering proteins in okra seed. Furthermore, the results of a sodium dodecyl sulphate polyacrylamide gel electrophoresis analysis show two distinctive bands of protein responsible for the coagulation process after denaturation. It was further shown that at optimal coagulant dose, the pH of the treated water remained unaffected as a result of the protein's buffering capability during coagulation. Therefore, denatured okra seed exhibited improved performance compared to the native crude extract and offers clear benefits as a water treatment coagulant.

  18. Assessment of microbial populations in methyl ethyl ketone degrading biofilters by denaturing gradient gel electrophoresis.

    Science.gov (United States)

    Li, C; Moe, W M

    2004-05-01

    Denaturing gradient gel electrophoresis (DGGE) analysis of polymerase chain reaction-amplified genes coding for 16S rRNA was used to assess differences in bacterial community structure as a function of spatial location along the height of two biofilters used to treat a model waste gas stream containing methyl ethyl ketone (MEK). One of the laboratory-scale biofilters was operated as a conventional continuous-flow biofilter (CFB) and the other was operated as a sequencing batch biofilter (SBB). Both biofilters, inoculated with an identical starting culture and operated over a period lasting more than 300 days, received the same influent MEK concentration and same mass of MEK on a daily basis. The systems differed, however, in terms of the fraction of time during which contaminated air was supplied and the overall operating strategy employed. DGGE analysis indicated that microbial community structures differed as a function of height in each of the biofilters. The DGGE banding patterns also differed between the two biofilters, suggesting that operating strategies imposed on the biofilters imparted a sufficiently large selective pressure to influence microbial community structures. This may explain, in part, the superior performance of the SBB over the CFB during model transient loading conditions, and it may open new possibilities for purposely manipulating the microbial populations in biofilters treating gas-phase contaminants in a manner that leads to more favorable treatment performance.

  19. Analysis of microsatellite instability in stool DNA of patients with colorectal cancer using denaturing high performance liquid chromatography

    Institute of Scientific and Technical Information of China (English)

    Seok-Byung Lim; Yong Shin; Sang-Geun Jang; Jae-Hyun Park; Jae-Gahb Park; Seung-Yong Jeong; Il-Jin Kim; Dae Yong Kim; Kyung Hae Jung; Hee Jin Chang; Hyo Seong Choi; Dae Kyung Sohn; Hio Chung Kang

    2006-01-01

    AIM: To evaluate the usefulness of denaturing high performance liquid chromatography (DHPLC) for analyzing microsatellite instability (MSI) status in stool DNA of patients with colorectal cancer.METHODS: A total of 80 cancer tissues from patients with primary sporadic colorectal tumor (proximal cancer:27, distal cancer: 53) and matched stool (which were employed for comparison with the tissues) were analyzed for MSI status in BAT 26. DNA samples extracted from stool were evaluated by nested polymerase chain reaction (PCR) and DHPLC for MSI analysis.RESULTS: Six cases (7.5%) of MSI were identified in BAT 26 from 80 cancer tissues. All the stool DNA samples from patients whose cancer tissue showed MSI also displayed MSI in BAT 26.CONCLUSION: As MSI is one of the established fecal DNA markers to screen colorectal cancer, we propose to use DHPLC for the MSI analysis in fecal DNA.

  20. Norovirus Proteinase-Polymerase and Polymerase Are Both Active Forms of RNA-Dependent RNA Polymerase

    OpenAIRE

    Belliot, Gaël; Sosnovtsev, Stanislav V.; Chang, Kyeong-Ok; Babu, Vijay; Uche, Uzo; Arnold, Jamie J.; Cameron, Craig E.; Green, Kim Y.

    2005-01-01

    In vitro mapping studies of the MD145 norovirus (Caliciviridae) ORF1 polyprotein identified two stable cleavage products containing the viral RNA-dependent RNA polymerase (RdRp) domains: ProPol (a precursor comprised of both the proteinase and polymerase) and Pol (the mature polymerase). The goal of this study was to identify the active form (or forms) of the norovirus polymerase. The recombinant ProPol (expressed as Pro−Pol with an inactivated proteinase domain to prevent autocleavage) and r...

  1. The RNA polymerase of marine cyanophage Syn5.

    Science.gov (United States)

    Zhu, Bin; Tabor, Stanley; Raytcheva, Desislava A; Hernandez, Alfredo; King, Jonathan A; Richardson, Charles C

    2013-02-01

    A single subunit DNA-dependent RNA polymerase was identified and purified to apparent homogeneity from cyanophage Syn5 that infects the marine cyanobacteria Synechococcus. Syn5 is homologous to bacteriophage T7 that infects Escherichia coli. Using the purified enzyme its promoter has been identified by examining transcription of segments of Syn5 DNA and sequencing the 5'-termini of the transcripts. Only two Syn5 RNAP promoters, having the sequence 5'-ATTGGGCACCCGTAA-3', are found within the Syn5 genome. One promoter is located within the Syn5 RNA polymerase gene and the other is located close to the right genetic end of the genome. The purified enzyme and its promoter have enabled a determination of the requirements for transcription. Unlike the salt-sensitive bacteriophage T7 RNA polymerase, this marine RNA polymerase requires 160 mm potassium for maximal activity. The optimal temperature for Syn5 RNA polymerase is 24 °C, much lower than that for T7 RNA polymerase. Magnesium is required as a cofactor although some activity is observed with ferrous ions. Syn5 RNA polymerase is more efficient in utilizing low concentrations of ribonucleotides than T7 RNA polymerase.

  2. Denatured ethanol release into gasoline residuals, Part 1: Source behaviour

    Science.gov (United States)

    Freitas, Juliana G.; Barker, James F.

    2013-05-01

    With the increasing use of ethanol in fuels, it is important to evaluate its fate when released into the environment. While ethanol is less toxic than other organic compounds present in fuels, one of the concerns is the impact ethanol might have on the fate of gasoline hydrocarbons in groundwater. One possible concern is the spill of denatured ethanol (E95: ethanol containing 5% denaturants, usually hydrocarbons) in sites with pre-existing gasoline contamination. In that scenario, ethanol is expected to increase the mobility of the NAPL phase by acting as a cosolvent and decreasing interfacial tension. To evaluate the E95 behaviour and its impacts on pre-existing gasoline, a field test was performed at the CFB-Borden aquifer. Initially gasoline contamination was created releasing 200 L of E10 (gasoline with 10% ethanol) into the unsaturated zone. One year later, 184 L of E95 was released on top of the gasoline contamination. The site was monitored using soil cores, multilevel wells and one glass access tube. At the end of the test, the source zone was excavated and the compounds remaining were quantified. E95 ethanol accumulated and remained within the capillary fringe and unsaturated zone for more than 200 days, despite ~ 1 m oscillations in the water table. The gasoline mobility increased and it was redistributed in the source zone. Gasoline NAPL saturations in the soil increased two fold in the source zone. However, water table oscillations caused a separation between the NAPL and ethanol: NAPL was smeared and remained in deeper positions while ethanol moved upwards following the water table rise. Similarly, the E95 denaturants that initially were within the ethanol-rich phase became separated from ethanol after the water table oscillation, remaining below the ethanol rich zone. The separation between ethanol and hydrocarbons in the source after water table oscillation indicates that ethanol's impact on hydrocarbon residuals is likely limited to early times.

  3. Strategies for denaturing the weapons-grade plutonium stockpile

    Energy Technology Data Exchange (ETDEWEB)

    Buckner, M.R.; Parks, P.B.

    1992-10-01

    In the next few years, approximately 50 metric tons of weapons-grade plutonium and 150 metric tons of highly-enriched uranium (HEU) may be removed from nuclear weapons in the US and declared excess. These materials represent a significant energy resource that could substantially contribute to our national energy requirements. HEU can be used as fuel in naval reactors, or diluted with depleted uranium for use as fuel in commercial reactors. This paper proposes to use the weapons-grade plutonium as fuel in light water reactors. The first such reactor would demonstrate the dual objectives of producing electrical power and denaturing the plutonium to prevent use in nuclear weapons.

  4. RNA Denaturation: Excluded Volume, Pseudoknots, and Transition Scenarios

    Science.gov (United States)

    Baiesi, M.; Orlandini, E.; Stella, A. L.

    2003-11-01

    A lattice model of RNA denaturation which fully accounts for the excluded volume effects among nucleotides is proposed. A numerical study shows that interactions forming pseudoknots must be included in order to get a sharp continuous transition. Otherwise a smooth crossover occurs from the swollen linear polymer behavior to highly ramified, almost compact conformations with secondary structures. In the latter scenario, which is appropriate when these structures are much more stable than pseudoknot links, probability distributions for the lengths of both loops and main branches obey scaling with nonclassical exponents.

  5. DSC study of cold and heat denaturation processes of β-lactoglobulin A with guanidine hydrochloride

    Institute of Scientific and Technical Information of China (English)

    王邦宁; 谈夫

    1997-01-01

    The cold and heat denaturations of bovine β-lactoglobuhn A (β-lg A) has been studied in solutions of guanidine hydrochloride (GuHCl) by differential scanning calorimelry (DSC) The experimental results are presented and discussed.It is shown that the number of protons bound by the monomeric molecules of β-lg A was unchanged before and after its heat denaturation below pH 3,and that the activation energy of the heat denaturation was depressed owing to the presence of GuHCl.In the solutions with 2.50 and 3.06 mol/L of GuHCl,both the cold and heat denat-urations of β-lg A were observed.In comparison with the heat denaturation,the activation energy of cold denaturation was far lower and the number of GuHCl molecules bound by the unfolded polypeptide chains after cold denaturation increased a lot.The absolute value of the enthalpy of cold denaturation was larger than that of heat denaturation It was found by the analysis that the contribution to the total denaturational enthalpy of conformational change i

  6. Combination of native and denaturing PAGE for the detection of protein binding regions in long fragments of genomic DNA

    Directory of Open Access Journals (Sweden)

    Metsis Madis

    2008-06-01

    Full Text Available Abstract Background In a traditional electrophoresis mobility shift assay (EMSA a 32P-labeled double-stranded DNA oligonucleotide or a restriction fragment bound to a protein is separated from the unbound DNA by polyacrylamide gel electrophoresis (PAGE in nondenaturing conditions. An extension of this method uses the large population of fragments derived from long genomic regions (approximately 600 kb for the identification of fragments containing protein binding regions. With this method, genomic DNA is fragmented by restriction enzymes, fragments are amplified by PCR, radiolabeled, incubated with nuclear proteins and the resulting DNA-protein complexes are separated by two-dimensional PAGE. Shifted DNA fragments containing protein binding sites are identified by using additional procedures, i. e. gel elution, PCR amplification, cloning and sequencing. Although the method allows simultaneous analysis of a large population of fragments, it is relatively laborious and can be used to detect only high affinity protein binding sites. Here we propose an alternative and straightforward strategy which is based on a combination of native and denaturing PAGE. This strategy allows the identification of DNA fragments containing low as well as high affinity protein binding regions, derived from genomic DNA ( Results We have combined an EMSA-based selection step with subsequent denaturing PAGE for the localization of protein binding regions in long (up to10 kb fragments of genomic DNA. Our strategy consists of the following steps: digestion of genomic DNA with a 4-cutter restriction enzyme (AluI, BsuRI, TruI, etc, separation of low and high molecular weight fractions of resultant DNA fragments, 32P-labeling with Klenow polymerase, traditional EMSA, gel elution and identification of the shifted bands (or smear by denaturing PAGE. The identification of DNA fragments containing protein binding sites is carried out by running the gel-eluted fragments alongside

  7. A Proposed Mechanism for the Thermal Denaturation of a Recombinant Bacillus Halmapalus Alpha-amylase - the Effect of Calcium Ions

    Science.gov (United States)

    Nielsen, Anders D.; Pusey, Marc L.; Fuglsang, Claus C.; Westh, Peter

    2003-01-01

    The thermal stability of a recombinant alpha-amylase from Bacillus halmapalus alpha-amylase (BHA) has been investigated using circular dichroism spectroscopy (CD) and differential scanning calorimetry (DSC). This alpha-amylase is homologous to other Bacillus alpha-amylases where previous crystallographic studies have identified the existence of 3 calcium binding sites in the structure. Denaturation of BHA is irreversible with a Tm of approximately 89 C, and DSC thermograms can be described using a one-step irreversible model. A 5 C increase in T(sub m) in the presence of 10 fold excess CaCl2 was observed. However, a concomitant increase in the tendency to aggregate was also observed. The presence of 30-40 fold excess calcium chelator (EDTA or EGTA) results in a large destabilization of BHA corresponding to about 40 C lower T(sub m), as determined by both CD and DSC. Ten fold excess EGTA reveals complex DSC thermograms corresponding to both reversible and irreversible transitions, which possibly originate from different populations of BHA:calcium complexes. The observations in the present study have, in combination with structural information of homologous alpha-amylases, provided the basis for the proposal of a simple denaturation mechanism of BHA. The proposed mechanism describes the irreversible thermal denaturation of different BHA:calcium complexes and the calcium binding equilibrium involved. Furthermore, the model accounts for a temperature induced reversible structural change associated with calcium binding.

  8. High Intensity Focused Ultrasound Monitoring using Harmonic Motion Imaging for Focused Ultrasound (HMIFU) under boiling or slow denaturation conditions

    Science.gov (United States)

    Hou, Gary Y.; Marquet, Fabrice; Wang, Shutao; Apostolakis, Iason-Zacharias; Konofagou, Elisa E.

    2015-01-01

    Harmonic Motion Imaging for Focused Ultrasound (HMIFU) is a recently developed High-Intensity Focused Ultrasound (HIFU) treatment monitoring method that utilizes an amplitude-modulated therapeutic ultrasound beam to induce an oscillatory radiation force at the HIFU focus and estimates the focal tissue displacement to monitor the HIFU thermal treatment. In this study, the performance of HMIFU under acoustic, thermal and mechanical effects were investigated. The performance of HMIFU was assessed in ex vivo canine liver specimens (n=13) under slow denaturation or boiling regimes. Passive Cavitation Detector (PCD) was used to assess the acoustic cavitation activity while a bare-wire thermocouple was used to monitor the focal temperature change. During lesioning with slow denaturation, high quality displacements (correlation coefficient above 0.97) were observed under minimum cavitation noise, indicating tissue the initial-softening-then-stiffening property change. During HIFU with boiling, HMIFU monitored a consistent change in lesion-to-background displacement contrast (0.46±0.37) despite the presence of strong cavitation noise due to boiling during lesion formation. Therefore, HMIFU effectively monitored softening-then-stiffening during lesioning under slow denaturation, and detected lesioning under boiling with a distinct change in displacement contrast under boiling in the presence of cavitation. In conclusion, HMIFU was shown effective in HIFU monitoring and lesioning identification without being significantly affected by cavitation noise. PMID:26168177

  9. Calorimetric Study of Thermal Denaturation of Superoxide Dismutase

    Institute of Scientific and Technical Information of China (English)

    王邦宁; 谈夫

    1994-01-01

    The thermal denaturation of superoxide dismutase (SOD) from bovine erythrocytes was studied at various pH values of different buffers and at various concentrations of solutions of two neutral salts by differential scanning calorimetry. The experiments performed indicate that the PIPES is a buffer non-coordinating with the SOD, and that the binding of the anions studied influences more or less the thermal denaturation of SOD, but the effect on the oxidation form of SOD is more apparent. A new conformer of SOD with lower thermostability was discovered by the experiments performed in different buffers at certain pH values higher than the isoelectric point of SOD, or at higher concentrations of neutral salt solutions. The new conformer may be converted irreversibly into the usual conformer with high thermostability during heating. Based on the thermodynamic parameters obtained in distilled water and by thermodynamic analysis using the Ooi’s model, it is revealed that the large enthalpy △Hdc contributed by

  10. The regulatory subunit of PKA-I remains partially structured and undergoes β-aggregation upon thermal denaturation.

    Directory of Open Access Journals (Sweden)

    Khanh K Dao

    Full Text Available BACKGROUND: The regulatory subunit (R of cAMP-dependent protein kinase (PKA is a modular flexible protein that responds with large conformational changes to the binding of the effector cAMP. Considering its highly dynamic nature, the protein is rather stable. We studied the thermal denaturation of full-length RIα and a truncated RIα(92-381 that contains the tandem cyclic nucleotide binding (CNB domains A and B. METHODOLOGY/PRINCIPAL FINDINGS: As revealed by circular dichroism (CD and differential scanning calorimetry, both RIα proteins contain significant residual structure in the heat-denatured state. As evidenced by CD, the predominantly α-helical spectrum at 25°C with double negative peaks at 209 and 222 nm changes to a spectrum with a single negative peak at 212-216 nm, characteristic of β-structure. A similar α→β transition occurs at higher temperature in the presence of cAMP. Thioflavin T fluorescence and atomic force microscopy studies support the notion that the structural transition is associated with cross-β-intermolecular aggregation and formation of non-fibrillar oligomers. CONCLUSIONS/SIGNIFICANCE: Thermal denaturation of RIα leads to partial loss of native packing with exposure of aggregation-prone motifs, such as the B' helices in the phosphate-binding cassettes of both CNB domains. The topology of the β-sandwiches in these domains favors inter-molecular β-aggregation, which is suppressed in the ligand-bound states of RIα under physiological conditions. Moreover, our results reveal that the CNB domains persist as structural cores through heat-denaturation.

  11. Thermal, chemical and pH induced unfolding of turmeric root lectin: modes of denaturation.

    Directory of Open Access Journals (Sweden)

    Himadri Biswas

    Full Text Available Curcuma longa rhizome lectin, of non-seed origin having antifungal, antibacterial and α-glucosidase inhibitory activities, forms a homodimer with high thermal stability as well as acid tolerance. Size exclusion chromatography and dynamic light scattering show it to be a dimer at pH 7, but it converts to a monomer near pH 2. Circular dichroism spectra and fluorescence emission maxima are virtually indistinguishable from pH 7 to 2, indicating secondary and tertiary structures remain the same in dimer and monomer within experimental error. The tryptophan environment as probed by acrylamide quenching data yielded very similar data at pH 2 and pH 7, implying very similar folding for monomer and dimer. Differential scanning calorimetry shows a transition at 350.3 K for dimer and at 327.0 K for monomer. Thermal unfolding and chemical unfolding induced by guanidinium chloride for dimer are both reversible and can be described by two-state models. The temperatures and the denaturant concentrations at which one-half of the protein molecules are unfolded, are protein concentration-dependent for dimer but protein concentration-independent for monomer. The free energy of unfolding at 298 K was found to be 5.23 Kcal mol-1 and 14.90 Kcal mol-1 for the monomer and dimer respectively. The value of change in excess heat capacity upon protein denaturation (ΔCp is 3.42 Kcal mol-1 K-1 for dimer. The small ΔCp for unfolding of CLA reflects a buried hydrophobic core in the folded dimeric protein. These unfolding experiments, temperature dependent circular dichroism and dynamic light scattering for the dimer at pH 7 indicate its higher stability than for the monomer at pH 2. This difference in stability of dimeric and monomeric forms highlights the contribution of inter-subunit interactions in the former.

  12. Heterogeneity of mitochondrial DNA from Saccharomyces carlsbergensis. Denaturation mapping by electron microscopy.

    DEFF Research Database (Denmark)

    Christiansen, Gunna; Christiansen, C; Bak, AL

    1975-01-01

    Electronmicroscopic observation of the denaturation pattern of 130 partially denaturated linear mitochondrial DNA molecules from Saccharomyces carlsbergensis was used to investigate the distribution of AT-rich sequences within the mitochondrial genome. The molecules were observed after heating...... denaturated sequences in the mitochondrial DNA. These sequences which presumably correspond to the very AT-rich regions, known to exist in the yeast mitochondrial DNA, were found at intervals of about 0.5 - 3 mum on the map....

  13. 27 CFR 21.92 - Denaturants listed as U.S.P. or N.F.

    Science.gov (United States)

    2010-04-01

    ....P. or N.F. 21.92 Section 21.92 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND... for Denaturants § 21.92 Denaturants listed as U.S.P. or N.F. Denaturing materials and products listed in this part as “U.S.P.” or “N.F.” shall meet the specifications set forth in the current...

  14. Electrochemical behaviour of denatured ethanol for use in direct ethanol fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Bayer, Domnik; Kintzel, Birgit; Joos, Martin; Cremers, Carsten; Tuebke, Jens [Fraunhofer-Institut fuer Chemische Technologie (ICT), Pfinztal (Germany)

    2010-07-01

    In the present study, two denaturing agents, an adjuvant to a denaturing agent and a mixture of a denaturing agend and the adjuvant were tested with regard to their fuel cell compatibility. Therefore, various electrochemical tests including cyclic voltammetry, chronoamperometry and differential electrochemical mass spectroscopy have been conducted at platinum as model catalyst in acidic and alkaline medium. In addition, the most promising denaturing agent, a mixture of tert-butyl ethyl ether (ETBE) with the adjuvant Bitrex {sup registered}, has also been tested at commercial fuel cell catalysts in both acidic and alkaline media. (orig.)

  15. Visualization of early events in acetic acid denaturation of HIV-1 protease: a molecular dynamics study.

    Directory of Open Access Journals (Sweden)

    Aditi Narendra Borkar

    Full Text Available Protein denaturation plays a crucial role in cellular processes. In this study, denaturation of HIV-1 Protease (PR was investigated by all-atom MD simulations in explicit solvent. The PR dimer and monomer were simulated separately in 9 M acetic acid (9 M AcOH solution and water to study the denaturation process of PR in acetic acid environment. Direct visualization of the denaturation dynamics that is readily available from such simulations has been presented. Our simulations in 9 M AcOH reveal that the PR denaturation begins by separation of dimer into intact monomers and it is only after this separation that the monomer units start denaturing. The denaturation of the monomers is flagged off by the loss of crucial interactions between the α-helix at C-terminal and surrounding β-strands. This causes the structure to transit from the equilibrium dynamics to random non-equilibrating dynamics. Residence time calculations indicate that denaturation occurs via direct interaction of the acetic acid molecules with certain regions of the protein in 9 M AcOH. All these observations have helped to decipher a picture of the early events in acetic acid denaturation of PR and have illustrated that the α-helix and the β-sheet at the C-terminus of a native and functional PR dimer should maintain both the stability and the function of the enzyme and thus present newer targets for blocking PR function.

  16. Thermal denaturation studies of collagen by microthermal analysis and atomic force microscopy.

    Science.gov (United States)

    Bozec, Laurent; Odlyha, Marianne

    2011-07-06

    The structural properties of collagen have been the subject of numerous studies over past decades, but with the arrival of new technologies, such as the atomic force microscope and related techniques, a new era of research has emerged. Using microthermal analysis, it is now possible to image samples as well as performing localized thermal measurements without damaging or destroying the sample itself. This technique was successfully applied to characterize the thermal response between native collagen fibrils and their denatured form, gelatin. Thermal transitions identified at (150 ± 10)°C and (220 ± 10)°C can be related to the process of gelatinization of the collagen fibrils, whereas at higher temperatures, both the gelatin and collagen samples underwent two-stage transitions with a common initial degradation temperature at (300 ± 10)°C and a secondary degradation temperature of (340 ± 10)°C for the collagen and of (420 ± 10)°C for the gelatin, respectively. The broadening and shift in the secondary degradation temperature was linked to the spread of thermal degradation within the gelatin and collagen fibrils matrix further away from the point of contact between probe and sample. Finally, similar measurements were performed inside a bone resorption lacuna, suggesting that microthermal analysis is a viable technique for investigating the thermomechanical response of collagen for in situ samples that would be, otherwise, too challenging or not possible using bulk techniques.

  17. The non-uniform early structural response of globular proteins to cold denaturing conditions: A case study with Yfh1

    Energy Technology Data Exchange (ETDEWEB)

    Chatterjee, Prathit; Bagchi, Sayan, E-mail: n.sengupta@ncl.res.in, E-mail: s.bagchi@ncl.res.in; Sengupta, Neelanjana, E-mail: n.sengupta@ncl.res.in, E-mail: s.bagchi@ncl.res.in [Physical Chemistry Division, CSIR-National Chemical Laboratory, Pune 411008 (India)

    2014-11-28

    The mechanism of cold denaturation in proteins is often incompletely understood due to limitations in accessing the denatured states at extremely low temperatures. Using atomistic molecular dynamics simulations, we have compared early (nanosecond timescale) structural and solvation properties of yeast frataxin (Yfh1) at its temperature of maximum stability, 292 K (T{sub s}), and the experimentally observed temperature of complete unfolding, 268 K (T{sub c}). Within the simulated timescales, discernible “global” level structural loss at T{sub c} is correlated with a distinct increase in surface hydration. However, the hydration and the unfolding events do not occur uniformly over the entire protein surface, but are sensitive to local structural propensity and hydrophobicity. Calculated infrared absorption spectra in the amide-I region of the whole protein show a distinct red shift at T{sub c} in comparison to T{sub s}. Domain specific calculations of IR spectra indicate that the red shift primarily arises from the beta strands. This is commensurate with a marked increase in solvent accessible surface area per residue for the beta-sheets at T{sub c}. Detailed analyses of structure and dynamics of hydration water around the hydrophobic residues of the beta-sheets show a more bulk water like behavior at T{sub c} due to preferential disruption of the hydrophobic effects around these domains. Our results indicate that in this protein, the surface exposed beta-sheet domains are more susceptible to cold denaturing conditions, in qualitative agreement with solution NMR experimental results.

  18. Consistent View of Polypeptide Chain Expansion in Chemical Denaturants from Multiple Experimental Methods.

    Science.gov (United States)

    Borgia, Alessandro; Zheng, Wenwei; Buholzer, Karin; Borgia, Madeleine B; Schüler, Anja; Hofmann, Hagen; Soranno, Andrea; Nettels, Daniel; Gast, Klaus; Grishaev, Alexander; Best, Robert B; Schuler, Benjamin

    2016-09-14

    There has been a long-standing controversy regarding the effect of chemical denaturants on the dimensions of unfolded and intrinsically disordered proteins: A wide range of experimental techniques suggest that polypeptide chains expand with increasing denaturant concentration, but several studies using small-angle X-ray scattering (SAXS) have reported no such increase of the radius of gyration (Rg). This inconsistency challenges our current understanding of the mechanism of chemical denaturants, which are widely employed to investigate protein folding and stability. Here, we use a combination of single-molecule Förster resonance energy transfer (FRET), SAXS, dynamic light scattering (DLS), and two-focus fluorescence correlation spectroscopy (2f-FCS) to characterize the denaturant dependence of the unfolded state of the spectrin domain R17 and the intrinsically disordered protein ACTR in two different denaturants. Standard analysis of the primary data clearly indicates an expansion of the unfolded state with increasing denaturant concentration irrespective of the protein, denaturant, or experimental method used. This is the first case in which SAXS and FRET have yielded even qualitatively consistent results regarding expansion in denaturant when applied to the same proteins. To more directly illustrate this self-consistency, we used both SAXS and FRET data in a Bayesian procedure to refine structural ensembles representative of the observed unfolded state. This analysis demonstrates that both of these experimental probes are compatible with a common ensemble of protein configurations for each denaturant concentration. Furthermore, the resulting ensembles reproduce the trend of increasing hydrodynamic radius with denaturant concentration obtained by 2f-FCS and DLS. We were thus able to reconcile the results from all four experimental techniques quantitatively, to obtain a comprehensive structural picture of denaturant-induced unfolded state expansion, and to

  19. A Novel Low Temperature PCR Assured High-Fidelity DNA Amplification

    Directory of Open Access Journals (Sweden)

    Shaoxia Zhou

    2013-06-01

    Full Text Available As previously reported, a novel low temperature (LoTemp polymerase chain reaction (PCR catalyzed by a moderately heat-resistant (MHR DNA polymerase with a chemical-assisted denaturation temperature set at 85 °C instead of the conventional 94–96 °C can achieve high-fidelity DNA amplification of a target DNA, even after up to 120 PCR thermal cycles. Furthermore, such accurate amplification is not achievable with conventional PCR. Now, using a well-recognized L1 gene segment of the human papillomavirus (HPV type 52 (HPV-52 as the template for experiments, we demonstrate that the LoTemp high-fidelity DNA amplification is attributed to an unusually high processivity and stability of the MHR DNA polymerase whose high fidelity in template-directed DNA synthesis is independent of non-existent 3'–5' exonuclease activity. Further studies and understanding of the characteristics of the LoTemp PCR technology may facilitate implementation of DNA sequencing-based diagnostics at the point of care in community hospital laboratories.

  20. Application of denaturing gradient gel electrophoresis (DGGE) to the analysis of endodontic infections.

    Science.gov (United States)

    Siqueira, José F; Rôças, Isabela N; Rosado, Alexandre S

    2005-11-01

    The recent expanding use of cultivation-independent techniques for bacterial identification is reliant on the lack of knowledge of the conditions under which most bacteria are growing in their natural habitat and the difficulty to develop culture media that accurately reproduce these conditions. A molecular method that has been recently used in several areas to examine the bacterial diversity living in diverse environments is the denaturing gradient gel electrophoresis (DGGE). In DGGE, polymerase chain reaction (PCR)-generated DNA fragments of the same length but with different base-pair sequences can be separated. Separation is based on electrophorectic mobility of a partially melted double-strand DNA molecule in polyacrylamide gels, which is decreased when compared with that of the completely helical form of the molecule. Molecules with different sequences may have a different melting behavior and will therefore stop migrating at different positions in the gel. Application of the PCR-DGGE method in endodontic research has revealed that there are significant differences in the predominant bacterial composition between asymptomatic and symptomatic cases. This suggests that the structure of the bacterial community can play a role in the development of symptoms. In addition, new bacterial phylotypes have been disclosed in primary endodontic infections. PCR-DGGE has also confirmed that intra-radicular infections are a common finding in root-filled teeth associated with persistent periradicular lesions. The microbiota in failed cases significantly vary from teeth to teeth, with a mean number of species far higher than previously shown by culturing approaches. Application of the PCR-DGGE technique in endodontic microbiology research has the potential to shed light on several aspects of the different types of endodontic infection as well as on the effects of treatment procedures with regard to infection control.

  1. Thermodynamic denaturation of {beta}-lactoglobulin in the presence of cetylpyridinium chloride

    Energy Technology Data Exchange (ETDEWEB)

    Sahihi, M. [Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of); Bordbar, A.K., E-mail: bordbar@chem.ui.ac.i [Department of Chemistry, University of Isfahan, Isfahan 81746-73441 (Iran, Islamic Republic of); Ghayeb, Y. [Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of)

    2010-12-15

    In this work, we determined the stability parameters of bovine {beta}-lactoglobulin, variant A, (BLG-A), in relation to their transition curves induced by cetylpyridinium chloride (CPC) as a cationic surfactant. The experiments took place over the temperature range of 298 K to 358 K. For each transition curve at any specific temperature, the conventional method of analysis, which assumes a linear concentration dependence of the pre- and post-transition base lines, gave the most realistic values for {Delta}G{sub D}(H{sub 2}O). Results show that the minimum value of {Delta}G{sub D}(H{sub 2}O) occurs at T = 328 K. Using the Gibbs-Helmholtz equation, the values of enthalpy, {Delta}H{sub D}, and entropy, {Delta}S{sub D}, of denaturation have been calculated considering temperature dependence of {Delta}G{sub D} at any specified concentration of CPC. The values of 12.05 kJ . mol{sup -1}, 18.54 kJ . mol{sup -1}, and 18.32 J . mol{sup -1} . K{sup -1}, were obtained for {Delta}G{sub D}(H{sub 2}O), {Delta}H{sub D}(H{sub 2}O), and {Delta}S{sub D}(H{sub 2}O), respectively. The results show that the enthalpy term dominates the entropy term.

  2. Residual ordered structure in denatured proteins and the problem of protein folding.

    Science.gov (United States)

    Basharov, Mahmud A

    2012-02-01

    Structural characteristics of numerous globular proteins in the denatured state have been reviewed using literature data. Recent more precise experiments show that in contrast to the conventional standpoint, proteins under strongly denaturing conditions do not unfold completely and adopt a random coil state, but contain significant residual ordered structure. These results cast doubt on the basis of the conventional approach representing the process of protein folding as a spontaneous transition of a polypeptide chain from the random coil state to the unique globular structure. The denaturation of proteins is explained in terms of the physical properties of proteins such as stability, conformational change, elasticity, irreversible denaturation, etc. The spontaneous renaturation of some denatured proteins most probably is merely the manifestation of the physical properties (e.g., the elasticity) of the proteins per se, caused by the residual structure present in the denatured state. The pieces of the ordered structure might be the centers of the initiation of renaturation, where the restoration of the initial native conformation of denatured proteins begins. Studies on the denaturation of proteins hardly clarify how the proteins fold into the native conformation during the successive residue-by-residue elongation of the polypeptide chain on the ribosome.

  3. The generation of denatured reactor plutonium by different options of the fuel cycle

    Energy Technology Data Exchange (ETDEWEB)

    Broeders, C.H.M.; Kessler, G. [Inst. for Neutron Physics and Reactor Technology, Research Center Karlsruhe (Germany)

    2006-11-15

    Denatured (proliferation resistant) reactor plutonium can be generated in a number of different fuel cycle options. First denatured reactor plutonium can be obtained if, instead of low enriched U-235 PWR fuel, re-enriched U-235/U-236 from reprocessed uranium is used (fuel type A). Also the envisaged existing 2,500 t of reactor plutonium (being generated world wide up to the year 2010), mostly stored in intermediate fuel storage facilities at present, could be converted during a transition phase into denatured reactor plutonium by the options fuel type B and D. Denatured reactor plutonium could have the same safeguards standard as present low enriched (<20% U-235) LWR fuel. It could be incinerated by recycling once or twice in PWRs and subsequently by multi-recycling in FRs (CAPRA type or IFRs). Once denatured, such reactor plutonium could remain denatured during multiple recycling. In a PWR, e.g., denatured reactor plutonium could be destroyed at a rate of about 250 kg/GWey. While denatured reactor plutonium could be recycled and incinerated under relieved IAEA safeguards, neptunium would still have to be monitored by the IAEA in future for all cases in which considerable amounts of neptunium are produced. (orig.)

  4. Characterization of the native and denatured herceptin by enzyme linked immunosorbent assay and quartz crystal microbalance using a high-affinity single chain fragment variable recombinant antibody.

    Science.gov (United States)

    Shang, Yuqin; Mernaugh, Ray; Zeng, Xiangqun

    2012-10-02

    Herceptin/Trastuzumab is a humanized IgG1κ light chain antibody used to treat some forms of breast cancer. A phage-displayed recombinant antibody library was used to obtain a single chain fragment variable (scFv, designated 2B4) to a linear synthetic peptide representing Herceptin's heavy chain CDR3. Enzyme linked immunosorbent assays (ELISAs) and piezoimmunosensor/quartz crystal microbalance (QCM) assays were used to characterize 2B4-binding activity to both native and heat denatured Herceptin. The 2B4 scFv specifically bound to heat denatured Herceptin in a concentration dependent manner over a wide (35-220.5 nM) dynamic range. Herceptin denatures and forms significant amounts of aggregates when heated. UV-vis characterization confirms that Herceptin forms aggregates as the temperature used to heat Herceptin increases. QCM affinity assay shows that binding stoichiometry between 2B4 scFv and Herceptin follows a 1:2 relationship proving that 2B4 scFv binds strongly to the dimers of heat denatured Herceptin aggregates and exhibits an affinity constant of 7.17 × 10(13) M(-2). The 2B4-based QCM assay was more sensitive than the corresponding ELISA. Combining QCM with ELISA can be used to more fully characterize nonspecific binding events in assays. The potential theoretical and clinical implications of these results and the advantages of the use of QCM to characterize human therapeutic antibodies in samples are also discussed.

  5. In Vitro Reassembly of Tobacco Ribulose-1,5-bisphosphate Carboxylase/ Oxygenase from Fully Denatured Subunits

    Institute of Scientific and Technical Information of China (English)

    Zhen-Hua YONG; Gen-Yun CHEN; Jiao-Nai SHI; Da-Quan XU

    2006-01-01

    It has been generally proved impossible to reassemble ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) from fully denatured subunits in vitro in higher plant, because large subunit of fully denatured Rubisco is liable to precipitate when the denaturant is removed by common methods of direct dilution and one-step dialysis. In our experiment, the problem of precipitation was resolved by an improved gradual dialysis method, which gradually decreased the concentration of denaturant. However, fully denatured Rubisco subunits still could not be reassembled into holoenzyme using gradual dialysis unless chaperonin 60was added. The restored activity of reassembled Rubisco was approximately 8% of natural enzyme. The quantity of reassembled Rubisco increased greatly when heat shock protein 70 was present in the reassembly process. ATP and Mg2+ were unnecessary for in vitro reassembly of Rubisco, and Mg2+ inhibited the reassembly process. The reassembly was weakened when ATP, Mg2+ and K+ existed together in the reassembly process.

  6. Dynamic light scattering study of peanut agglutinin: Size, shape and urea denaturation

    Indian Academy of Sciences (India)

    Sagarika Dev; Avadhesha Surolia

    2006-12-01

    Peanut agglutinin (PNA) is a homotetrameric protein with a unique open quaternary structure. PNA shows non-two state profile in chaotrope induced denaturation. It passes through a monomeric molten globule like state before complete denaturation (Reddy et al 1999). This denaturation profile is associated with the change in hydrodynamic radius of the native protein. Though the molten globule-like state is monomeric in nature it expands in size due to partial denaturation. The size and shape of the native PNA as well as the change in hydrodynamic radius of the protein during denaturation has been studied by dynamic light scattering (DLS). The generation of two species is evident from the profile of hydrodynamic radii. This study also reveals the extent of compactness of the intermediate state.

  7. Refolding of detergent-denatured lysozyme using β-cyclodextrin-assisted ion exchange chromatography.

    Science.gov (United States)

    Zhang, Li; Zhang, Qinming; Wang, Chaozhan

    2013-03-01

    Chromatography-based protein refolding is widely used. Detergent is increasingly used for protein solubilization from inclusion bodies. Therefore, it is necessary to develop a refolding method for detergent-denatured/solubilized proteins based on liquid chromatography. In the present work, sarkosyl-denatured/dithiothreitol-reduced lysozyme was used as a model, and a refolding method based on ion exchange chromatography, assisted by β-cyclodextrin, was developed for refolding detergent-denatured proteins. Many factors affecting the refolding, such as concentration of urea, concentration of β-cyclodextrin, pH and flow rate of mobile phases, were investigated to optimize the refolding conditions for sarkosyl-denatured lysozymes. The results showed that the sarkosyl-denatured lysozyme could be successfully refolded using β-cyclodextrin-assisted ion exchange chromatography.

  8. Numerical study of the disordered Poland Scheraga model of DNA denaturation

    Science.gov (United States)

    Garel, Thomas; Monthus, Cécile

    2005-06-01

    We numerically study the binary disordered Poland-Scheraga model of DNA denaturation, in the regime where the pure model displays a first-order transition (loop exponent c = 2.15>2). We use a Fixman-Freire scheme for the entropy of loops and consider chain length up to N = 4 × 105, with averages over 104 samples. We present in parallel the results of various observables for two boundary conditions, namely bound-bound (bb) and bound-unbound (bu), because they present very different finite-size behaviours, both in the pure case and in the disordered case. Our main conclusion is that the transition remains first order in the disordered case: in the (bu) case, the disorder averaged energy and contact densities present crossings for different values of N without rescaling. In addition, we obtain that these disorder averaged observables do not satisfy finite-size scaling, as a consequence of strong sample to sample fluctuations of the pseudo-critical temperature. For a given sample, we propose a procedure to identify its pseudo-critical temperature, and show that this sample then obeys first order transition finite-size scaling behaviour. Finally, we obtain that the disorder averaged critical loop distribution is still governed by P(l)~1/lc in the regime l \\ll N , as in the pure case.

  9. Pre-Steady-State Kinetic Analysis of Single-Nucleotide Incorporation by DNA Polymerases.

    Science.gov (United States)

    Su, Yan; Peter Guengerich, F

    2016-06-01

    Pre-steady-state kinetic analysis is a powerful and widely used method to obtain multiple kinetic parameters. This protocol provides a step-by-step procedure for pre-steady-state kinetic analysis of single-nucleotide incorporation by a DNA polymerase. It describes the experimental details of DNA substrate annealing, reaction mixture preparation, handling of the RQF-3 rapid quench-flow instrument, denaturing polyacrylamide DNA gel preparation, electrophoresis, quantitation, and data analysis. The core and unique part of this protocol is the rationale for preparation of the reaction mixture (the ratio of the polymerase to the DNA substrate) and methods for conducting pre-steady-state assays on an RQF-3 rapid quench-flow instrument, as well as data interpretation after analysis. In addition, the methods for the DNA substrate annealing and DNA polyacrylamide gel preparation, electrophoresis, quantitation and analysis are suitable for use in other studies. © 2016 by John Wiley & Sons, Inc.

  10. Studies on the refolding of the reduced-denatured insulin with size exclusion chromatography

    Institute of Scientific and Technical Information of China (English)

    BAI Quan; KONG Yu; DONG Cuihua; GENG Xindu

    2005-01-01

    The refolding of the reduced-denatured insulin from bovine pancreas was investigated with the size exclusion chromatography (SEC). It was shown that the reduced-denatured insulin originally denatured with 7.0 mol·L-1 guanidine hydrochloride (GuHCl) or 8.0 mol·L-1 urea could not be refolded with a non-oxidized mobile phase. Although the oxidized and reduced glutathione (GSSG and GSH) were employed in the oxidized mobile phase, the reduced-denatured insulin still could not be renatured. However, in the presence of 2.0 mol·L-1 urea in the oxidized mobile phase employed, the reduced-denatured insulin can be refolded with SEC, and the aggregation of denatured insulin can be diminished by urea. In addition, the disulfide exchange of reduced-denatured insulin also can be accelerated with GSSG/GSH in the oxidized mobile phase. The three disulfide bridges of insulin were formed correctly and the reduced-unfolded insulin can be renatured completely. The results were further tested with reversed-phase liquid chromatography (RPLC) and hydrophobic interaction chromatography (HIC).

  11. Hydrophobic collapse and cold denaturation in the Jagla model of water

    Energy Technology Data Exchange (ETDEWEB)

    Buldyrev, Sergey V; Weiner, Saul [Department of Physics, Yeshiva University, 500 West 185th Street, New York, NY 10033 (United States); Kumar, Pradeep [Center for Studies in Physics and Biology, University of Texas at Austin, Austin, TX 78712-1167 (United States); Sastry, Srikanth [Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064, Karnataka (India); Eugene Stanley, H [Center for Polymer Studies and Department of Physics, Boston University, Boston, MA 02215 (United States)

    2010-07-21

    The Jagla model is a coarse-grained model of water which describes interactions between groups of water molecules by a spherically symmetric potential characterized by a hard core, a linear repulsive ramp and a long-range attractive ramp. The Jagla model qualitatively reproduces the thermodynamics and dynamics of liquid water including density and diffusion anomalies as well as certain chemical properties such the increase of solubility of small hydrophobic particles upon cooling. We examine, via molecular dynamics simulation, the behavior of the bead-on-a-string polymers of various lengths in the Jagla model. We find that such polymers exhibit swelling upon cooling similar to cold denaturation of proteins in water. We show that while for short polymers the swelling is gradual, longer polymers exhibit a first-order-like phase transition between a globular phase at high temperatures to a random coil state at cold temperatures. This transition is associated with the formation of a liquid-polymer phase boundary surrounding the globule and complete dewetting of the central parts of the globule at high temperatures. We study thermodynamics of this transition and find that the entropy, volume, and potential energy of the solvent-random coil system is lower than those of the globule-solvent system. Accordingly the slope of the coil-globule transition line on a PT plane has positive slope. We present simple thermodynamic considerations similar to classical nucleation theory, which relate the temperature of the cold swelling transition to polymer length and relate the dewetting of the globule to its diameter and to the Egelstaff-Widom length scale.

  12. Hydrophobic collapse and cold denaturation in the Jagla model of water

    Science.gov (United States)

    Buldyrev, Sergey V.; Kumar, Pradeep; Sastry, Srikanth; Stanley, H. Eugene; Weiner, Saul

    2010-07-01

    The Jagla model is a coarse-grained model of water which describes interactions between groups of water molecules by a spherically symmetric potential characterized by a hard core, a linear repulsive ramp and a long-range attractive ramp. The Jagla model qualitatively reproduces the thermodynamics and dynamics of liquid water including density and diffusion anomalies as well as certain chemical properties such the increase of solubility of small hydrophobic particles upon cooling. We examine, via molecular dynamics simulation, the behavior of the bead-on-a-string polymers of various lengths in the Jagla model. We find that such polymers exhibit swelling upon cooling similar to cold denaturation of proteins in water. We show that while for short polymers the swelling is gradual, longer polymers exhibit a first-order-like phase transition between a globular phase at high temperatures to a random coil state at cold temperatures. This transition is associated with the formation of a liquid-polymer phase boundary surrounding the globule and complete dewetting of the central parts of the globule at high temperatures. We study thermodynamics of this transition and find that the entropy, volume, and potential energy of the solvent-random coil system is lower than those of the globule-solvent system. Accordingly the slope of the coil-globule transition line on a PT plane has positive slope. We present simple thermodynamic considerations similar to classical nucleation theory, which relate the temperature of the cold swelling transition to polymer length and relate the dewetting of the globule to its diameter and to the Egelstaff-Widom length scale.

  13. Norovirus proteinase-polymerase and polymerase are both active forms of RNA-dependent RNA polymerase.

    Science.gov (United States)

    Belliot, Gaël; Sosnovtsev, Stanislav V; Chang, Kyeong-Ok; Babu, Vijay; Uche, Uzo; Arnold, Jamie J; Cameron, Craig E; Green, Kim Y

    2005-02-01

    In vitro mapping studies of the MD145 norovirus (Caliciviridae) ORF1 polyprotein identified two stable cleavage products containing the viral RNA-dependent RNA polymerase (RdRp) domains: ProPol (a precursor comprised of both the proteinase and polymerase) and Pol (the mature polymerase). The goal of this study was to identify the active form (or forms) of the norovirus polymerase. The recombinant ProPol (expressed as Pro(-)Pol with an inactivated proteinase domain to prevent autocleavage) and recombinant Pol were purified after synthesis in bacteria and shown to be active RdRp enzymes. In addition, the mutant His-E1189A-ProPol protein (with active proteinase but with the natural ProPol cleavage site blocked) was active as an RdRp, confirming that the norovirus ProPol precursor could possess two enzymatic activities simultaneously. The effects of several UTP analogs on the RdRp activity of the norovirus and feline calicivirus Pro(-)Pol enzymes were compared and found to be similar. Our data suggest that the norovirus ProPol is a bifunctional enzyme during virus replication. The availability of this recombinant ProPol enzyme might prove useful in the development of antiviral drugs for control of the noroviruses associated with acute gastroenteritis.

  14. Protein folding by distributed computing and the denatured state ensemble.

    Science.gov (United States)

    Marianayagam, Neelan J; Fawzi, Nicolas L; Head-Gordon, Teresa

    2005-11-15

    The distributed computing (DC) paradigm in conjunction with the folding@home (FH) client server has been used to study the folding kinetics of small peptides and proteins, giving excellent agreement with experimentally measured folding rates, although pathways sampled in these simulations are not always consistent with the folding mechanism. In this study, we use a coarse-grain model of protein L, whose two-state kinetics have been characterized in detail by using long-time equilibrium simulations, to rigorously test a FH protocol using approximately 10,000 short-time, uncoupled folding simulations starting from an extended state of the protein. We show that the FH results give non-Poisson distributions and early folding events that are unphysical, whereas longer folding events experience a correct barrier to folding but are not representative of the equilibrium folding ensemble. Using short-time, uncoupled folding simulations started from an equilibrated denatured state ensemble (DSE), we also do not get agreement with the equilibrium two-state kinetics because of overrepresented folding events arising from higher energy subpopulations in the DSE. The DC approach using uncoupled short trajectories can make contact with traditionally measured experimental rates and folding mechanism when starting from an equilibrated DSE, when the simulation time is long enough to sample the lowest energy states of the unfolded basin and the simulated free-energy surface is correct. However, the DC paradigm, together with faster time-resolved and single-molecule experiments, can also reveal the breakdown in the two-state approximation due to observation of folding events from higher energy subpopulations in the DSE.

  15. DIFFERENT RESULTS BY DIFFERENT COMMERCIAL TAQ DNA POLYMERASE IN RAPD

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    @@ RAPD (Random Amplified Polymorphic DNA) technique has been widely used in animal, plant, human and microorganism research since it was first established by Williams in 1990[1-3]. But, because of low annealed temperature and short 10-nt primers, the resolution and repetition is low in RAPD. The stability of RAPD is influenced by many factors such as the concentration of template, primers, dNTP, Mg++,and Taq DNA polymerase[4-6]. The influence on amplified products of different commercial Taq DNA polymerase in RAPD was studied in this paper.

  16. Denaturing gradient gel electrophoresis profiling of bacterial communities composition in Arabian Sea

    Digital Repository Service at National Institute of Oceanography (India)

    Singh, S.K.; Ramaiah, N.

    Denaturing gradient gel electrophoresis (DGGE) was used to elucidate spatial and temporal variations in bacterial community composition (BCC) from four locations along the central west coast of India. DNA extracts from 36 water samples collected...

  17. Streptokinase Recovery by Cross-Flow Microfiltration: Study of Enzyme Denaturation

    National Research Council Canada - National Science Library

    HERNANDEZ-PINZON, Inmaculada; MILLAN, Francisco; BAUTISTA, Juan

    1997-01-01

    ...% remained in the retentate. Immunological experiments using polyclonal antibodies against SK have demonstrated that SK activity loss during CFMF processes could be related to denaturation of SK, forming molecules of lower or no activity...

  18. Single molecule study of the DNA denaturation phase transition in the force-torsion space

    CERN Document Server

    Salerno, D; Mai, I; Brogioli, D; Ziano, R; Cassina, V; Mantegazza, F

    2012-01-01

    We use the "magnetic tweezers" technique to reveal the structural transitions that DNA undergoes in the force-torsion space. In particular, we focus on regions corresponding to negative supercoiling. These regions are characterized by the formation of so-called denaturation bubbles, which have an essential role in the replication and transcription of DNA. We experimentally map the region of the force-torsion space where the denaturation takes place. We observe that large fluctuations in DNA extension occur at one of the boundaries of this region, i.e., when the formation of denaturation bubbles and of plectonemes are competing. To describe the experiments, we introduce a suitable extension of the classical model. The model correctly describes the position of the denaturation regions, the transition boundaries, and the measured values of the DNA extension fluctuations.

  19. How Chain Length and Charge Affect Surfactant Denaturation of Acyl Coenzyme A Binding Protein (ACBP)

    DEFF Research Database (Denmark)

    Andersen, Kell Kleiner; Otzen, Daniel

    2009-01-01

    Using intrinsic tryptophan fluorescence, equilibria and kinetics of unfolding of acyl coenzyme A binding protein (ACBP) have been investigated in sodium alkyl sulfate surfactants of different chain length (8-16 carbon atoms) and with different proportions of the nonionic surfactant dodecyl...... maltoside (DDM). The aim has been to determine how surfactant chain length and micellar charge affect the denaturation mechanism. ACBP denatures in two steps irrespective of surfactant chain length, but with increasing chain length, the potency of the denaturant rises more rapidly than the critical micelle...... constants increases linearly with denaturant concentration below the cmc but declines at higher concentrations. Both shortening chain length and decreasing micellar charge reduce the overall kinetics of unfolding and makes the dependence of unfolding rate constants on surfactant concentration more complex...

  20. Unfaithful DNA polymerase caught in the act

    OpenAIRE

    2004-01-01

    The 3D structures of all 12 mispairs formed in the active site of a DNA polymerase help explain their differential effects on polymerase stalling and on translocation of the primer terminus to the enzyme's proofreading site.

  1. Cyclitols protect glutamine synthetase and malate dehydrogenase against heat induced deactivation and thermal denaturation.

    Science.gov (United States)

    Jaindl, Martina; Popp, Marianne

    2006-06-30

    The accumulation of cyclitols in plants is a widespread response that provides protection against various environmental stresses. The capacity of myo-Inositol, pinitol, quercitol, and other compatible solutes (i.e., sorbitol, proline, and glycinebetaine) to protect proteins against thermally induced denaturation and deactivation was examined. Enzymatic activity measurements of L-glutamine synthetase from Escherichia coli and Hordeum vulgare showed that the presence of cyclitols during heat treatment resulted in a significantly higher percentage of residual activity. CD spectroscopy experiments were used to study thermal stabilities of protein secondary structures upon the addition of myo-Inositol, pinitol, and glucose. 0.4 M myo-Inositol was observed to raise the melting temperature (Tm) of GS from E. coli by 3.9 degrees C and MDH from pig heart by 3.4 degrees C, respectively. Pinitol showed an increase in Tm of MDH by 3.8 degrees C, whereas glucose was not effective. Our results show a great potential of stabilizing proteins by the addition of cyclitols.

  2. Evidence of β-sheet structure induced kinetic stability of papain upon thermal and sodium dodecyl sulphate denaturation

    Directory of Open Access Journals (Sweden)

    Rašković Brankica

    2015-01-01

    Full Text Available Papain is a protease that consists of α-helical and β-sheet domains which unfold almost independently. Both, papain considerable thermal stability and sodium dodecyl sulphate (SDS resistance have been shown. However, the ability of each domain to unfold upon thermal and SDS denaturation has never been studied. This work shows that fruit papain has slightly higher thermal inactivation resistance when it is compared to stem papain with rather high activation energy (Ea of 223 ± 16 kJmol-1 and Tm50 value of 79 ± 2 °C. SDS resistance of fruit papain was estimated by SDS-PAGE analysis and activity staining. It has been noted that, in the presence of SDS, unless heat energy was applied in order to unfold papain, the protein remained active. Furthermore, it has been proven via Fourier transform infrared spectroscopy (FT-IR that α-helical domain of fruit papain is more prone to unfolding at elevated temperatures and in the presence of SDS then β-sheet rich domain. Thermal denaturation of papain without detergent present led to accelerated formation of aggregation specific intermolecular β-sheets as compared to native protein. Presented results are both, of fundamental and application importance. [Projekat Ministarstva nauke Republike Srbije, br. 172049

  3. Effect of mechanical denaturation on surface free energy of protein powders

    OpenAIRE

    Mohammad, Mohammad Amin; Grimsey, Ian M.; Forbes, Robert T.; Blagbrough, Ian S; Barbara R. Conway

    2016-01-01

    Globular proteins are important both as therapeutic agents and excipients. However, their fragile native\\ud conformations can be denatured during pharmaceutical processing, which leads to modification of\\ud the surface energy of their powders and hence their performance. Lyophilized powders of hen eggwhite\\ud lysozyme and �-galactosidase from Aspergillus oryzae were used as models to study the effects\\ud of mechanical denaturation on the surface energies of basic and acidic protein powders, r...

  4. Avoiding adsorption of DNA to polypropylene tubes and denaturation of short DNA fragments

    OpenAIRE

    Gaillard, Claire; Strauss, Francois

    1998-01-01

    Two problems can arise when working with small quantities of DNA in polypropylene tubes: first, significant amounts of DNA can become lost by sticking to the tube walls; second, short DNA fragments tend to denature when binding to polypropylene. In addition, DNA also tends to denature upon dehydration. We have found that a simple way to solve these problems is by using polyallomer tubes instead of polypropylene and by avoiding certain salts, such as sodium acetate, when drying DNA.

  5. Interim assessment of the denatured /sup 233/U fuel cycle: feasibility and nonproliferation characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Abbott, L.S.; Bartine, D.E.; Burns, T.J. (eds.)

    1978-12-01

    A fuel cycle that employs /sup 233/U denatured with /sup 238/U and mixed with thorium fertile material is examined with respect to its proliferation-resistance characteristics and its technical and economic feasibility. The rationale for considering the denatured /sup 233/U fuel cycle is presented, and the impact of the denatured fuel on the performance of Light-Water Reactors, Spectral-Shift-Controlled Reactors, Gas-Cooled Reactors, Heavy-Water Reactors, and Fast Breeder Reactors is discussed. The scope of the R, D and D programs to commercialize these reactors and their associated fuel cycles is also summarized and the resource requirements and economics of denatured /sup 233/U cycles are compared to those of the conventional Pu/U cycle. In addition, several nuclear power systems that employ denatured /sup 233/U fuel and are based on the energy center concept are evaluated. Under this concept, dispersed power reactors fueled with denatured or low-enriched uranium fuel are supported by secure energy centers in which sensitive activities of the nuclear cycle are performed. These activities include /sup 233/U production by Pu-fueled transmuters (thermal or fast reactors) and reprocessing. A summary chapter presents the most significant conclusions from the study and recommends areas for future work.

  6. Effect of mechanical denaturation on surface free energy of protein powders.

    Science.gov (United States)

    Mohammad, Mohammad Amin; Grimsey, Ian M; Forbes, Robert T; Blagbrough, Ian S; Conway, Barbara R

    2016-10-01

    Globular proteins are important both as therapeutic agents and excipients. However, their fragile native conformations can be denatured during pharmaceutical processing, which leads to modification of the surface energy of their powders and hence their performance. Lyophilized powders of hen egg-white lysozyme and β-galactosidase from Aspergillus oryzae were used as models to study the effects of mechanical denaturation on the surface energies of basic and acidic protein powders, respectively. Their mechanical denaturation upon milling was confirmed by the absence of their thermal unfolding transition phases and by the changes in their secondary and tertiary structures. Inverse gas chromatography detected differences between both unprocessed protein powders and the changes induced by their mechanical denaturation. The surfaces of the acidic and basic protein powders were relatively basic, however the surface acidity of β-galactosidase was higher than that of lysozyme. Also, the surface of β-galactosidase powder had a higher dispersive energy compared to lysozyme. The mechanical denaturation decreased the dispersive energy and the basicity of the surfaces of both protein powders. The amino acid composition and molecular conformation of the proteins explained the surface energy data measured by inverse gas chromatography. The biological activity of mechanically denatured protein powders can either be reversible (lysozyme) or irreversible (β-galactosidase) upon hydration. Our surface data can be exploited to understand and predict the performance of protein powders within pharmaceutical dosage forms. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Tissue sealing device associated thermal spread: a comparison of histologic methods for detecting adventitial collagen denaturation

    Science.gov (United States)

    Jones, Ryan M.; Grisez, Brian T.; Thomas, Aaron C.; Livengood, Ryan H.; Coad, James E.

    2013-02-01

    Thermal spread (thermal tissue damage) results from heat conduction through the tissues immediately adjacent to a hyperthermic tissue sealing device. The extent of such heat conduction can be assessed by the detection of adventitial collagen denaturation. Several histologic methods have been reported to measure adventitial collagen denaturation as a marker of thermal spread. This study compared hematoxylin and eosin staining, Gomori trichrome staining and loss of collagen birefringence for the detection of collagen denaturation. Twenty-eight ex vivo porcine carotid arteries were sealed with a commercially available, FDA-approved tissue sealing device. Following formalin fixation and paraffin embedding, two 5-micron tissue sections were hematoxylin and eosin and Gomori trichrome stained. The hematoxylin and eosin-stained section was evaluated by routine bright field microscopy and under polarized light. The trichromestained section was evaluated by routine bright field microscopy. Radial and midline adventitial collagen denaturation measurements were made for both the top and bottom jaw sides of each seal. The adventitial collagen denaturation lengths were determined using these three methods and statistically compared. The results showed that thermal spread, as represented by histologically detected collagen denaturation, is technique dependent. In this study, the trichrome staining method detected significantly less thermal spread than the hematoxylin and eosin staining and birefringence methods. Of the three methods, hematoxylin and eosin staining provided the most representative results for true thermal spread along the adjacent artery.

  8. Detection and differentiation of Entamoeba histolytica and Entamoeba dispar in clinical samples through PCR-denaturing gradient gel electrophoresis

    Directory of Open Access Journals (Sweden)

    P. López-López

    Full Text Available Amebiasis is one of the twenty major causes of disease in Mexico; however, the diagnosis is difficult due to limitations of conventional microscopy-based techniques. In this study, we analyzed stool samples using polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE to differentiate between Entamoeba histolytica (pathogenic and E. dispar (non-pathogenic. The target for the PCR amplification was a small region (228 bp of the adh112 gene selected to increase the sensitivity of the test. The study involved 62 stool samples that were collected from individuals with complaints of gastrointestinal discomfort. Of the 62 samples, 10 (16.1% were positive for E. histolytica while 52 (83.9% were negative. No sample was positive for E. dispar. These results were validated by nested PCR-RFLP (restriction fragment length polymorphism and suggest that PCR-DGGE is a promising tool to differentiate among Entamoeba infections, contributing to determine the specific treatment for patients infected with E. histolytica, and therefore, avoiding unnecessary treatment of patients infected with the non-pathogenic E. dispar.

  9. Rapid genetic diagnosis and prenatal diagnosis of spinal muscular atrophy by denaturing high-performance liquid chromatography

    Institute of Scientific and Technical Information of China (English)

    ZHU Hai-yan; WU Ling-qian; PAN Qian; TANG Bei-sha; LIANG De-sheng; LONG Zhi-gao; DAI He-ping; XIA Kun; XIA Jia-hui

    2006-01-01

    @@ Spinal muscular atrophy (SMA) is a common autosomal recessive neuromuscular disorder1 (1in 6000 to 10 000 births) caused by mutations in the SMN1 gene at 5q13. More than 90%-98% of SMA patients show homozygous deletion of SMN1,2which has proved to be useful in the diagnosis of SMA. But it is hampered because of the existence of a highly homologous gene, SMN2.3 Based on nucleotide mismatches between SMN1 and SMN2,the following two DNA tests are usually performed:single-strand conformational polymorphism (SSCP)3and polymerase chain reaction (PCR) followed by a restriction enzyme digestion.4,5 In this study we developed a new method for rapid genetic diagnosis of SMA by denaturing high-performance liquid chromatography (DHPLC), which is based on different retention of homoduplexes and heteroduplexes in detecting the homozygous deletion of SMN1. Both genetic and prenatal diagnoses were performed successfully for a SMA family by DHPLC, which was confirmed as a rapid and effective technique for detecting the deletion of SMN1.

  10. Detection and differentiation of Entamoeba histolytica and Entamoeba dispar in clinical samples through PCR-denaturing gradient gel electrophoresis.

    Science.gov (United States)

    López-López, P; Martínez-López, M C; Boldo-León, X M; Hernández-Díaz, Y; González-Castro, T B; Tovilla-Zárate, C A; Luna-Arias, J P

    2017-04-03

    Amebiasis is one of the twenty major causes of disease in Mexico; however, the diagnosis is difficult due to limitations of conventional microscopy-based techniques. In this study, we analyzed stool samples using polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) to differentiate between Entamoeba histolytica (pathogenic) and E. dispar (non-pathogenic). The target for the PCR amplification was a small region (228 bp) of the adh112 gene selected to increase the sensitivity of the test. The study involved 62 stool samples that were collected from individuals with complaints of gastrointestinal discomfort. Of the 62 samples, 10 (16.1%) were positive for E. histolytica while 52 (83.9%) were negative. No sample was positive for E. dispar. These results were validated by nested PCR-RFLP (restriction fragment length polymorphism) and suggest that PCR-DGGE is a promising tool to differentiate among Entamoeba infections, contributing to determine the specific treatment for patients infected with E. histolytica, and therefore, avoiding unnecessary treatment of patients infected with the non-pathogenic E. dispar.

  11. The effects of urea and n-propanol on collagen denaturation: using DSC, circular dicroism and viscosity

    Energy Technology Data Exchange (ETDEWEB)

    Usha, R.; Ramasami, T

    2004-01-30

    The effect of urea and n-propanol on circular dichroism (CD) and viscosity of purified type1 collagen solution at various temperatures and differential scanning calorimetry (DSC) of rat-tail tendon (RTT) collagen fibre have been studied. CD reveals a spectrum with a positive peak at around 220 nm and a negative peak at 200 nm characteristics of collagen triple helix. The molar ellipticity decreases as the concentration of urea increases up to particular concentration (collagen solution treated with 265 {mu}M of urea) and after that it increases (collagen solution treated with 500 {mu}M of urea). There is a linear decrease in molar ellipticity as the concentration of n-propanol increases. Denaturation temperature of urea and n-propanol treated with purified collagen solution has been studied using viscosity method. Additives such as urea and n-propanol decrease the thermal stability of collagen triple helix in solution and in RTT collagen fibre. Thermal helix to coil transition of urea and n-propanol treated collagen depends on the degree of hydration and the concentration of these additives. Thermodynamic parameters such as the peak temperature, enthalpy of activation, and energy of activation for collagen-gelatin transition for native, urea and n-propanol treated RTT collagen fibre has been calculated using DSC. The change in the thermodynamic parameters has been observed for native, urea and n-propanol treated RTT collagen fibres. The experimental results show that the change in the water structure, dehydration and desolvation induced by different additives such as urea and n-propanol on RTT may vary with the type of denaturation.

  12. Alphavirus polymerase and RNA replication.

    Science.gov (United States)

    Pietilä, Maija K; Hellström, Kirsi; Ahola, Tero

    2017-01-16

    Alphaviruses are typically arthropod-borne, and many are important pathogens such as chikungunya virus. Alphaviruses encode four nonstructural proteins (nsP1-4), initially produced as a polyprotein P1234. nsP4 is the core RNA-dependent RNA polymerase but all four nsPs are required for RNA synthesis. The early replication complex (RC) formed by the polyprotein P123 and nsP4 synthesizes minus RNA strands, and the late RC composed of fully processed nsP1-nsP4 is responsible for the production of genomic and subgenomic plus strands. Different parts of nsP4 recognize the promoters for minus and plus strands but the binding also requires the other nsPs. The alphavirus polymerase has been purified and is capable of de novo RNA synthesis only in the presence of the other nsPs. The purified nsP4 also has terminal adenylyltransferase activity, which may generate the poly(A) tail at the 3' end of the genome. Membrane association of the nsPs is vital for replication, and alphaviruses induce membrane invaginations called spherules, which form a microenvironment for RNA synthesis by concentrating replication components and protecting double-stranded RNA intermediates. The RCs isolated as crude membrane preparations are active in RNA synthesis in vitro, but high-resolution structure of the RC has not been achieved, and thus the arrangement of viral and possible host components remains unknown. For some alphaviruses, Ras-GTPase-activating protein (Src-homology 3 (SH3) domain)-binding proteins (G3BPs) and amphiphysins have been shown to be essential for RNA replication and are present in the RCs. Host factors offer an additional target for antivirals, as only few alphavirus polymerase inhibitors have been described.

  13. Biochemical characterization of rhinovirus RNA-dependent RNA polymerase.

    Science.gov (United States)

    Hung, Magdeleine; Gibbs, Craig S; Tsiang, Manuel

    2002-11-01

    Human rhinoviruses (HRV) represent the single most important causative agent of the common cold. The HRV genome encodes an RNA-dependent RNA polymerase (RdRp) designated 3D polymerase that is required for replication of the HRV RNA genome. We have expressed and purified recombinant HRV-16 3D polymerase to near homogeneity from Escherichia coli transformed with an expression plasmid containing the full-length 460 amino acid HRV-16 3D sequence with a methionine at the N-terminus and a glycine-serine linker followed by a 6-histidine affinity tag at the C-terminus. The purified recombinant protein has rifampicin-resistant activity in a poly(A)-dependent poly(U) polymerase assay while corresponding fractions similarly purified from E. coli transformed with an expression plasmid without the HRV-16 3D sequence showed no activity. The optimal conditions for temperature, pH, divalent cations Mg(2+) and Mn(2+), and KCl were determined. The recombinant protein has RNA polymerase activity on homopolymeric templates poly(A) and poly(C) and heteropolymeric RNA templates primed with either RNA or DNA oligonucleotide primers or self-primed by a copy-back mechanism. A unique, secondary structureless heteropolymeric RNA template that is an efficient substrate was developed to facilitate kinetic characterizations of the enzyme. In the presence of Mg(2+), the enzyme displayed strong base and sugar specificity. However, when Mg(2+) was replaced by Mn(2+) specificity for ribonucleotides was lost, utilization of deoxynucleotides became possible and primer-independent activity was observed on the poly(C) template. Zn(2+) was found to inhibit HRV-16 3D polymerase with an IC(50) as low as 0.6 microM by a mechanism distinct from the magnesium ion stimulation. The activity of this 6His-tagged HRV-16 3D polymerase was compared with that of a recombinant HRV-16 3D polymerase expressed without the 6His-tag and was found to be identical. The availability of recombinant rhinovirus RdRp in a

  14. Effect of high-pressure treatment on denaturation of bovine lactoferrin and lactoperoxidase.

    Science.gov (United States)

    Mazri, C; Sánchez, L; Ramos, S J; Calvo, M; Pérez, M D

    2012-02-01

    Lactoferrin and lactoperoxidase are whey proteins with biological properties that may provide health benefits to consumers. These properties are vulnerable to potentially denaturing conditions during processing. High-pressure treatment is an appealing alternative to the traditional heat processing of foods because it exerts an antimicrobial effect without changing the sensory and nutritional quality of foods. In this work, the effect of high-pressure treatment on the denaturation of lactoferrin and lactoperoxidase present in skim milk and whey, and as isolated proteins in buffer, was studied over a pressure range of 450 to 700 MPa at 20°C. Denaturation of lactoferrin was measured by the loss of reactivity with their specific antibodies using a sandwich ELISA. Denaturation of lactoperoxidase was determined by measuring the loss of enzymatic activity using a spectrophotometric technique. No substantial inactivation of lactoperoxidase was observed in any treatment assayed. The concentration of the residual immunoreactive lactoferrin after each pressure treatment was determined, and the data were subjected to kinetic analysis to obtain D and Z values. Denaturation of lactoferrin increased with pressure and holding time, and D values were lower when lactoferrin was treated in whey than in milk, and lower in both whey and milk than in phosphate buffer. Thus, protein is denatured more slowly in buffer and in milk than in whey. Denaturation of lactoferrin in the 3 media was found to follow a reaction order of n=1.5. Volumes of activation of about -34.77, -24.35, and -24.09 mL/mol were obtained for lactoferrin treated in skim milk, whey, and buffer, respectively, indicating a decrease in protein volume under pressure.

  15. Analysis of Thermally Denatured Depth in Laser Vaporization for Benign Prostatic Hyperplasia using a Simulation of Light Propagation and Heat Transfer (secondary publication).

    Science.gov (United States)

    Takada, Junya; Honda, Norihiro; Hazama, Hisanao; Ioritani, Naomasa; Awazu, Kunio

    2016-12-30

    Background and Aims: Laser vaporization of the prostate is expected as a less invasive treatment for benign prostatic hyperplasia (BPH), via the photothermal effect. In order to develop safer and more effective laser vaporization of the prostate, it is essential to set optimal irradiation parameters based on quantitative evaluation of temperature distribution and thermally denatured depth in prostate tissue. Method: A simulation model was therefore devised with light propagation and heat transfer calculation, and the vaporized and thermally denatured depths were estimated by the simulation model. Results: The results of the simulation were compared with those of an ex vivo experiment and clinical trial. Based on the accumulated data, the vaporized depth strongly depended on the distance between the optical fiber and the prostate tissue, and it was suggested that contact laser irradiation could vaporize the prostate tissue most effectively. Additionally, it was suggested by analyzing thermally denatured depth comprehensively that laser irradiation at the distance of 3 mm between the optical fiber and the prostate tissue was useful for hemostasis. Conclusions: This study enabled quantitative and reproducible analysis of laser vaporization for BPH and will play a role in clarification of the safety and efficacy of this treatment.

  16. Human papillomavirus genotyping after denaturation of specimens for Hybrid Capture 2 testing: feasibility study for the HPV persistence and progression cohort.

    Science.gov (United States)

    LaMere, Brandon J; Kornegay, Janet; Fetterman, Barbara; Sadorra, Mark; Shieh, Jen; Castle, Philip E

    2007-12-01

    Human papillomavirus (HPV) genotyping could be clinically useful, depending on the results of large, prospective studies like the HPV persistence and progression (PaP) cohort. The cohort is based on genotyping and follow-up of Hybrid Capture-positive women at Kaiser Permanente, Northern California. HPV DNA testing by Hybrid Capture 2 requires denaturation with alkali, possibly damaging the DNA for optimal PCR-based genotyping. A feasibility study was conducted on paired aliquots of anonymized specimens from 100 women with low-grade intraepithelial lesion cytology. Test aliquots were left in denaturant for 10 or 18h at 4 degrees C and then neutralized; comparison aliquots were not denatured but diluted to match the timing, temperature, concentration and salt conditions of the treated specimens. The masked aliquots were tested using a commercialized PCR-based assay that detects of 37 HPV genotypes. There was no overall effect of treatment on test positivity or number of types. HPV16 was marginally more likely to be detected in untreated versus treated aliquots (P=0.09) but HPV45 was marginally more likely to be detected in treated than untreated aliquots (P=0.07), suggesting that these differences represented chance (intra-test variability). It can be concluded that residual Hybrid Capture-positive specimens can be genotyped by PCR after Hybrid Capture 2 processing.

  17. Influence of Temperature on Symbiotic Bacterium Composition in Successive Generations of Egg Parasitoid, Anagrus nilaparvatae

    Directory of Open Access Journals (Sweden)

    Wang Xin

    2016-07-01

    Full Text Available Anagrus nilaparvatae is the dominant egg parasitoid of rice planthoppers and plays an important role in biological control. Symbiotic bacteria can significantly influence the development, survival, reproduction and population differentiation of their hosts. To study the influence of temperature on symbiotic bacterial composition in the successive generations of A. nilaparvatae, A. nilaparvatae were raised under different constant temperatures of 22 °C, 25 °C, 28 °C, 31 °C and 34 °C. Polymerase chain reaction-denaturing gradient gel electrophoresis was used to investigate the diversity of symbiotic bacteria. Our results revealed that the endophytic bacteria of A. nilaparvatae were Pantoea sp., Pseudomonas sp. and some uncultured bacteria. The bacterial community composition in A. nilaparvatae significantly varied among different temperatures and generations, which might be partially caused by temperature, feeding behavior and the physical changes of hosts. However, the analysis of wsp gene showed that the Wolbachia in A. nilaparvatae belonged to group A, sub-group Mors and sub-group Dro. Sub-group Mors was absolutely dominant, and this Wolbachia composition remained stable in different temperatures and generations, except for the 3rd generation under 34 °C during which sub-group Dro became the dominant Wolbachia. The above results suggest that the continuous high temperature of 34 °C can influence the Wolbachia community composition in A. nilaparvatae.

  18. Alcohol-induced structural transitions in the acid-denatured Bacillus licheniformis α-amylase

    Directory of Open Access Journals (Sweden)

    Adyani Azizah Abd Halim

    2017-01-01

    Full Text Available Alcohol-induced structural changes in the acid-denatured Bacillus licheniformis α-amylase (BLA at pH 2.0 were studied by far-ultra violet circular dichroism, intrinsic, three-dimensional and 8-anilino-1-naphthalene sulfonic acid (ANS fluorescence, acrylamide quenching and thermal denaturation. All the alcohols used in this study produced partial refolding in the acid-denatured BLA as evident from the increased mean residue ellipticity at 222 nm, increased intrinsic fluorescence and decreased ANS fluorescence. The order of effectiveness of these alcohols to induce a partially folded state of BLA was found to be: 2,2,2-trifluoroethanol/tert-butanol > 1-propanol/2-propanol > 2-chloroethanol > ethanol > methanol. Three-dimensional fluorescence and acrylamide quenching results obtained in the presence of 5.5 M tert-butanol also suggested formation of a partially folded state in the acid-denatured BLA. However, 5.5 M tert-butanol-induced state of BLA showed a non-cooperative thermal transition. All these results suggested formation of a partially folded state of the acid-denatured BLA in the presence of these alcohols. Furthermore, their effectiveness was found to be guided by their chain length, position of methyl groups and presence of the substituents.

  19. A versatile protein microarray platform enabling antibody profiling against denatured proteins.

    Science.gov (United States)

    Wang, Jie; Barker, Kristi; Steel, Jason; Park, Jin; Saul, Justin; Festa, Fernanda; Wallstrom, Garrick; Yu, Xiaobo; Bian, Xiaofang; Anderson, Karen S; Figueroa, Jonine D; LaBaer, Joshua; Qiu, Ji

    2013-06-01

    We aim to develop a protein microarray platform capable of presenting both natural and denatured forms of proteins for antibody biomarker discovery. We will further optimize plasma screening protocols to improve detection. We developed a new covalent capture protein microarray chemistry using HaloTag fusion proteins and ligand. To enhance protein yield, we used HeLa cell lysate as an in vitro transcription translation (IVTT) system. Escherichia coli lysates were added to the plasma blocking buffer to reduce nonspecific background. These protein microarrays were probed with plasma samples and autoantibody responses were quantified and compared with or without denaturing buffer treatment. We demonstrated that protein microarrays using the covalent attachment chemistry endured denaturing conditions. Blocking with E. coli lysates greatly reduced the background signals and expression with IVTT based on HeLa cell lysates significantly improved the antibody signals on protein microarrays probed with plasma samples. Plasma samples probed on denatured protein arrays produced autoantibody profiles distinct from those probed on natively displayed proteins. This versatile protein microarray platform allows the display of both natural and denatured proteins, offers a new dimension to search for disease-specific antibodies, broadens the repertoire of potential biomarkers, and will potentially yield clinical diagnostics with greater performance. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Polar or apolar--the role of polarity for urea-induced protein denaturation.

    Directory of Open Access Journals (Sweden)

    Martin C Stumpe

    2008-11-01

    Full Text Available Urea-induced protein denaturation is widely used to study protein folding and stability; however, the molecular mechanism and driving forces of this process are not yet fully understood. In particular, it is unclear whether either hydrophobic or polar interactions between urea molecules and residues at the protein surface drive denaturation. To address this question, here, many molecular dynamics simulations totalling ca. 7 micros of the CI2 protein in aqueous solution served to perform a computational thought experiment, in which we varied the polarity of urea. For apolar driving forces, hypopolar urea should show increased denaturation power; for polar driving forces, hyperpolar urea should be the stronger denaturant. Indeed, protein unfolding was observed in all simulations with decreased urea polarity. Hyperpolar urea, in contrast, turned out to stabilize the native state. Moreover, the differential interaction preferences between urea and the 20 amino acids turned out to be enhanced for hypopolar urea and suppressed (or even inverted for hyperpolar urea. These results strongly suggest that apolar urea-protein interactions, and not polar interactions, are the dominant driving force for denaturation. Further, the observed interactions provide a detailed picture of the underlying molecular driving forces. Our simulations finally allowed characterization of CI2 unfolding pathways. Unfolding proceeds sequentially with alternating loss of secondary or tertiary structure. After the transition state, unfolding pathways show large structural heterogeneity.

  1. Induced refolding of a temperature denatured llama heavy-chain antibody fragment by its antigen

    NARCIS (Netherlands)

    Dolk, E.; Vliet, C. van; Perez, J.M.J.; Vriend, G.; Darbon, H.; Ferrat, G.; Cambillau, C.; Frenken, L.G.J.; Verrips, T.

    2005-01-01

    In a previous study we have shown that llama VHH antibody fragments are able to bind their antigen after a heat shock of 90°C, in contrast to the murine monoclonal antibodies. However, the molecular mechanism by which antibody:antigen interaction occurs under these extreme conditions remains unclear

  2. Antibodies with specificity for native and denatured forms of ovalbumin differ in reactivity between enzyme-linked immunosorbent assays

    DEFF Research Database (Denmark)

    Holm, B.E.; Bergmann, A.C.; Hansen, Paul Robert

    2015-01-01

    In this study, polyclonal and monoclonal antibodies to native and denatured chicken ovalbumin (OVA) were produced to compare their dependency on continuous and three-dimensional epitopes. These antibodies were characterized with respect to reactivity to native and denatured OVA by enzyme...... to native OVA reacted strongly with native and denatured OVA in both assays, but did not react with the overlapping peptides. Polyclonal antibodies to denatured OVA reacted strongly with both OVA forms and with several of the overlapping peptides. Monoclonal antibodies to native OVA reacted preferentially...... with three-dimensional epitopes on native OVA and not with denatured OVA. Monoclonal antibodies to denatured OVA showed reactivity to both OVA forms. Two of these monoclonal antibodies, HYB 94-06 and 94-07, showed reactivity to overlapping peptides and their epitopes were identified as flexible structures...

  3. Establishment of in vitro models of denatured collagen%变性胶原体外培养模型的建立

    Institute of Scientific and Technical Information of China (English)

    苏荣家; 王志勇; 刘英开; 原博; 王西樵; 董叫云; 宋菲; 姜育智; 陆树良

    2013-01-01

    目的 探讨不同温度对Ⅰ型胶原分子二级结构的影响,确定合适的胶原变性温度,研究热变性后胶原纤维排列及三维凝胶性质的改变,比较胶原变性后不同培养环境成纤维细胞形态差异,以建立变性胶原-细胞体外培养模型. 方法 Ⅰ型胶原蛋白溶液在不同温度作用后通过蛋白质圆二色光谱仪分析胶原分子二级结构改变.扫描探针显微镜观察胶原变性后纤维结构的改变.制备不同种类三维胶原凝胶并通过气相压力仪检测胶原凝胶断裂模量.将变性后的胶原进行二维包被和三维胶原凝胶制作,倒置相差显微镜及光镜下观察不同培养环境下细胞形态变化. 结果 温度达到50℃时,Ⅰ型胶原分子二级结构发生明显改变,在二维胶原包被时可见胶原纤维凝集成团,含变性胶原的三维凝胶断裂模量明显下降.在变性胶原存在环境中培养成纤维细胞,细胞形态均有显著改变. 结论 经50℃作用后Ⅰ型胶原分子二级结构发生明显改变,含变性胶原的三维凝胶断裂模量明显下降,Ⅰ型胶原包被及三维凝胶模型培养的成纤维细胞形态明显不同,可作为变性胶原影响细胞生物学活性的体外模型.%Objective To investigate influence of different temperatures on secondary structure of type Ⅰ collagen,determine the proper temperature for collagen denaturation,observe changes of collagen fibre arrangement and three dimensional collagen gel properties after thermal denaturation,compare morphological variation of fibroblasts seeded in mediums with denatured collagen and therefore establish a standardized culture model with denatured collagen in vitro.Methods Changes of the secondary structure of type Ⅰ collagen was measured by circular dichroism spectrameter after the collagen solution had been treated with different temperatures.Changes of the fibre structure after collagen denaturation were observed by scanning probe

  4. Protein thermal denaturation is modulated by central residues in the protein structure network.

    Science.gov (United States)

    Souza, Valquiria P; Ikegami, Cecília M; Arantes, Guilherme M; Marana, Sandro R

    2016-03-01

    Network structural analysis, known as residue interaction networks or graphs (RIN or RIG, respectively) or protein structural networks or graphs (PSN or PSG, respectively), comprises a useful tool for detecting important residues for protein function, stability, folding and allostery. In RIN, the tertiary structure is represented by a network in which residues (nodes) are connected by interactions (edges). Such structural networks have consistently presented a few central residues that are important for shortening the pathways linking any two residues in a protein structure. To experimentally demonstrate that central residues effectively participate in protein properties, mutations were directed to seven central residues of the β-glucosidase Sfβgly (β-D-glucoside glucohydrolase; EC 3.2.1.21). These mutations reduced the thermal stability of the enzyme, as evaluated by changes in transition temperature (Tm ) and the denaturation rate at 45 °C. Moreover, mutations directed to the vicinity of a central residue also caused significant decreases in the Tm of Sfβgly and clearly increased the unfolding rate constant at 45 °C. However, mutations at noncentral residues or at surrounding residues did not affect the thermal stability of Sfβgly. Therefore, the data reported in the present study suggest that the perturbation of the central residues reduced the stability of the native structure of Sfβgly. These results are in agreement with previous findings showing that networks are robust, whereas attacks on central nodes cause network failure. Finally, the present study demonstrates that central residues underlie the functional properties of proteins.

  5. Inhibition of thermal induced protein denaturation of extract/fractions of Withania somnifera and isolated withanolides.

    Science.gov (United States)

    Khan, Murad Ali; Khan, Haroon; Rauf, Abdul; Ben Hadda, Taibi

    2015-01-01

    This study describes the in vitro inhibition of protein denaturation of extract/fractions of Withania somnifera and isolated withanolides including 20β hydroxy-1-oxo(22R)-witha-2,5,24 trienolide (1), (20R,22R-14α,20α)-dihydroxy-1-oxowitha-2,5,16,24 tetraenolide (2). The results showed that the extract/fractions of the plant evoked profound inhibitory effect on thermal-induced protein denaturation. The chloroform fraction caused the most dominant attenuation of 68% at 500 μg/mL. The bioactivity-guided isolation from chloroform fraction led to the isolation of compounds 1 and 2 that showed profound protein inhibition with 78.05% and 80.43% effect at 500 μg/mL and thus strongly complimented the activity of extract/fractions. In conclusion, extract/fractions of W. somnifera possessed strong inhibition of protein denaturation that can be attributed to these isolated withanolides.

  6. Nonsurgical transurethral radiofrequency collagen denaturation: results at three years after treatment.

    Science.gov (United States)

    Elser, Denise M; Mitchell, Gretchen K; Miklos, John R; Nickell, Kevin G; Cline, Kevin; Winkler, Harvey; Wells, W Glen

    2011-01-01

    Objective. To assess treatment efficacy and quality of life in women with stress urinary incontinence 3 years after treatment with nonsurgical transurethral radiofrequency collagen denaturation. Methods. This prospective study included 139 women with stress urinary incontinence due to bladder outlet hypermobility. Radiofrequency collagen denaturation was performed using local anesthesia in an office setting. Assessments included incontinence quality of life (I-QOL) and urogenital distress inventory (UDI-6) instruments. Results. In total, 139 women were enrolled and 136 women were treated (mean age, 47 years). At 36 months, intent-to-treat analysis (n = 139) revealed significant improvements in quality of life. Mean I-QOL score improved 17 points from baseline (P = .0004), while mean UDI-6 score improved (decreased) 19 points (P = .0005). Conclusions. Transurethral collagen denaturation is a low-risk, office-based procedure that results in durable quality-of-life improvements in a significant proportion of women for as long as 3 years.

  7. Stabilizing Effect of Various Polyols on the Native and the Denatured States of Glucoamylase

    Directory of Open Access Journals (Sweden)

    Mohammed Suleiman Zaroog

    2013-01-01

    Full Text Available Different spectral probes were employed to study the stabilizing effect of various polyols, such as, ethylene glycol (EG, glycerol (GLY, glucose (GLC and trehalose (TRE on the native (N, the acid-denatured (AD and the thermal-denatured (TD states of Aspergillus niger glucoamylase (GA. Polyols induced both secondary and tertiary structural changes in the AD state of enzyme as reflected from altered circular dichroism (CD, tryptophan (Trp, and 1-anilinonaphthalene-8-sulfonic acid (ANS fluorescence characteristics. Thermodynamic analysis of the thermal denaturation curve of native GA suggested significant increase in enzyme stability in the presence of GLC, TRE, and GLY (in decreasing order while EG destabilized it. Furthermore, CD and fluorescence characteristics of the TD state at 71°C in the presence of polyols showed greater effectiveness of both GLC and TRE in inducing native-like secondary and tertiary structures compared to GLY and EG.

  8. Gel electrophoresis of DNA partially denatured at the ends: what are the dominant conformations?

    Science.gov (United States)

    Sean, David; Slater, Gary W

    2013-03-01

    Gel electrophoresis of a partially denatured dsDNA fragment is studied using Langevin Dynamics computer simulations. For simplicity, the denatured ssDNA sections are placed at the ends of the fragment in a symmetrical fashion. A squid-like conformation is found to sometimes cause the fragment to completely block in the gel. In fact, this conformation is the principal cause of the steep reduction in mobility observed in the simulations. As the field is increased, it is found that the occurrence of this conformation dominates the migration dynamics. Although the squid conformation seems to be more stable at high fields, the field can eventually force the fragments to thread through the gel pores regardless. We qualitatively explore the behavior of this squid-like conformation across a range of fields and degrees of denaturation, and we discuss the relevance of our findings for TGGE. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. EQUIVALENCY OF FOULING THICKNESS WITH DENATURED Β-LG IN HEATING OF MILK

    Directory of Open Access Journals (Sweden)

    Heriberto Molina-Pérez

    2015-03-01

    Full Text Available This work presents an approach to match the foaling thickness of dairy food and the concentration of denatured β-lg (β-lactoglobuline by a mathematical model. This includes, on the one hand, the dynamic simulation of fouling and, on the other hand, the generation of denatured β-lg under a kinetic model. In both cases a transient energy balance is developed, including the rigorous calculation of the global coefficient, and the properties by the Choi-Okos model. The solution was obtained by a fourth order Runge-Kutta written in Excel’s Macro language Visual Basic. The equivalence concluded with a model obtained by a non-linear multiple regression that relates the concentration of denatured β-lg and the foaling thickness. This methodology is applicable to analysis equipment cleaning in which kinetic cleaning has equality by reduction of the foaling thickness.

  10. Statistical mechanics of the denatured state of a protein using replica-averaged metadynamics.

    Science.gov (United States)

    Camilloni, Carlo; Vendruscolo, Michele

    2014-06-25

    The characterization of denatured states of proteins is challenging because the lack of permanent structure in these states makes it difficult to apply to them standard methods of structural biology. In this work we use all-atom replica-averaged metadynamics (RAM) simulations with NMR chemical shift restraints to determine an ensemble of structures representing an acid-denatured state of the 86-residue protein ACBP. This approach has enabled us to reach convergence in the free energy landscape calculations, obtaining an ensemble of structures in relatively accurate agreement with independent experimental data used for validation. By observing at atomistic resolution the transient formation of native and non-native structures in this acid-denatured state of ACBP, we rationalize the effects of single-point mutations on the folding rate, stability, and transition-state structures of this protein, thus characterizing the role of the unfolded state in determining the folding process.

  11. Nonsurgical Transurethral Radiofrequency Collagen Denaturation: Results at Three Years after Treatment

    Directory of Open Access Journals (Sweden)

    Denise M. Elser

    2011-01-01

    Full Text Available Objective. To assess treatment efficacy and quality of life in women with stress urinary incontinence 3 years after treatment with nonsurgical transurethral radiofrequency collagen denaturation. Methods. This prospective study included 139 women with stress urinary incontinence due to bladder outlet hypermobility. Radiofrequency collagen denaturation was performed using local anesthesia in an office setting. Assessments included incontinence quality of life (I-QOL and urogenital distress inventory (UDI-6 instruments. Results. In total, 139 women were enrolled and 136 women were treated (mean age, 47 years. At 36 months, intent-to-treat analysis (n=139 revealed significant improvements in quality of life. Mean I-QOL score improved 17 points from baseline (P=.0004, while mean UDI-6 score improved (decreased 19 points (P=.0005. Conclusions. Transurethral collagen denaturation is a low-risk, office-based procedure that results in durable quality-of-life improvements in a significant proportion of women for as long as 3 years.

  12. Effects of the protein denaturant guanidinium chloride on aqueous hydrophobic contact-pair interactions.

    Science.gov (United States)

    Macdonald, Ryan D; Khajehpour, Mazdak

    2015-01-01

    Guanidinium chloride (GdmCl) is one of the most common protein denaturants. Although GdmCl is well known in the field of protein folding, the mechanism by which it denatures proteins is not well understood. In fact, there are few studies looking at its effects on hydrophobic interactions. In this work the effect of GdmCl on hydrophobic interactions has been studied by observing how the denaturant influences model systems of phenyl and alkyl hydrophobic contact pairs. Contact pair formation is monitored through the use of fluorescence spectroscopy, i.e., measuring the intrinsic phenol fluorescence being quenched by carboxylate ions. Hydrophobic interactions are isolated from other interactions through a previously developed methodology. The results show that GdmCl does not significantly affect hydrophobic interactions between small moieties such as methyl groups and phenol; while on the other hand, the interaction of larger hydrophobes such as hexyl and heptyl groups with phenol is significantly destabilized.

  13. Effects of Glucides on Thermal Denaturation and Coagulation of Whey Proteins Studied by Ultraviolet Spectroscopy

    Science.gov (United States)

    Mongo Antoine, Etou; Abena, A. A.; Gbeassor, M.; Chaveron, H.

    The thermal coagulation of whey proteins concentrates was inhibited by various glucides. The disaccharides, saccharose and lactose, were most effective and the amino sugar, glucosamine, least effective in this respect. Ultraviolet absorption and light-scattering measurements on thermal denaturation and coagulation of both unfractionated and individual whey proteins (α-lactalbumin, ß-lactoglobulin and bovine serum albumin) showed that saccharose promotes the denaturation of these proteins but inhibits their subsequent coagulation. These results are interpreted in terms of the effect of saccharose on the hydrophobic interactions between solvent and protein.

  14. Refolding of Denatured/Reduced Lysozyme Using Weak-Cation Exchange Chromatography

    Institute of Scientific and Technical Information of China (English)

    Yan WANG; Bo Lin GONG; Xin Du GENG

    2003-01-01

    Oxidative refolding of the denatured/reduced lysozyme was investigated by using weak-cation exchange chromatography (WCX). The stationary phase of WCX binds to the reduced lysozyme and prevented it from forming intermolecular aggregates. At the same time urea and ammonium sulfate were added to the mobile phase to increase the elution strength for lysozyme. Ammonium sulfate can more stabilize the native protein than a common eluting agent, sodium chloride. Refolding of lysozyme by using this WCX is successfully. It was simply carried out to obtain a completely and correctly refolding of the denatured lysozyme at high concentration of 20.0 mg/mL.

  15. Effect of ethanol denaturant on gasoline RVP (revised). Topical report, June 21, 1993--December 31, 1993

    Energy Technology Data Exchange (ETDEWEB)

    Wu, L.; Timpe, R.C.

    1993-12-01

    The Clean Air Act (CAA) Amendments of 1990 require further reduction in gasoline Reid vapor pressure (RVP) to reduce pollution. This research focused on characterizing the effect of ethanol denaturant and water on the RVP of the final ethanol-blended fuel. Anectdotal stories tell of up to a 0.5-psi effect of ethanol denaturant on the RVP of the finished ethanol-blended gasoline. Additionally, earlier Energy & Environmental Research Center (EERC) data indicated water could have a significant effect on the RVP. It was necessary to scientifically verify these effects using acceptable laboratory protocols.

  16. Rapid Mutation Scanning of Genes Associated with Familial Cancer Syndromes Using Denaturing High-Performance Liquid Chromatography

    Directory of Open Access Journals (Sweden)

    Deborah J. Marsh

    2001-01-01

    Full Text Available Germline mutations in tumor suppressor genes, or less frequently oncogenes, have been identified in up to 19 familial cancer syndromes including Li-Fraumeni syndrome, familial paraganglioma, familial adenomatous polyposis coli and breast and ovarian cancers. Multiple genes have been associated with some syndromes as approximately 26 genes have been linked to the development of these familial cancers. With this increased knowledge of the molecular determinants of familial cancer comes an equal expectation for efficient genetic screening programs. We have trialled denaturing highperformance liquid chromatography (dHPLC as a tool for rapid germline mutation scanning of genes implicated in three familial cancer syndromes - Cowden syndrome (PTEN mutation, multiple endocrine neoplasia type 2 (RET mutation and von Hippel-Lindau disease (VHL mutation. Thirty-two mutations, including 21 in PTEN, 9 in RET plus a polymorphism, and 2 in VHL, were analyzed using the WAVE DNA fragment analysis system with 100% detection efficiency. In the case of the tumor suppressor gene PTEN, mutations were scattered along most of the gene. However, mutations in the RET proto-oncogene associated with multiple endocrine neoplasia type 2 were limited to specific clusters or “hot spots”. The use of GC-clamped primers to scan for mutations scattered along PTEN exons was shown to greatly enhance the sensitivity of detection of mutant hetero- and homoduplex peaks at a single denaturation temperature compared to fragments generated using non-GC-clamped primers. Thus, when scanning tumor suppressor genes for germline mutation using dHPLC, the incorporation of appropriate GCclamped primers will likely increase the efficiency of mutation detection.

  17. p53 Amino-terminus region (1-125 stabilizes and restores heat denatured p53 wild phenotype.

    Directory of Open Access Journals (Sweden)

    Anuj Kumar Sharma

    Full Text Available BACKGROUND: The intrinsically disordered N-ter domain (NTD of p53 encompasses approximately hundred amino acids that contain a transactivation domain (1-73 and a proline-rich domain (64-92 and is responsible for transactivation function and apoptosis. It also possesses an auto-inhibitory function as its removal results in remarkable reduction in dissociation of p53 from DNA. PRINCIPAL FINDINGS/METHODOLOGY: In this report, we have discovered that p53-NTD spanning amino acid residues 1-125 (NTD125 interacted with WT p53 and stabilized its wild type conformation under physiological and elevated temperatures, both in vitro and in cellular systems. NTD125 prevented irreversible thermal aggregation of heat denatured p53, enhanced p21-5'-DBS binding and further restored DBS binding activity of heat-denatured p53, in vitro, in a dose-dependent manner. In vivo ELISA and immunoprecipitation analysis of NTD125-transfected cells revealed that NTD125 shifted equilibrium from p53 mutant to wild type under heat stress conditions. Further, NTD125 initiated nuclear translocation of cytoplasmic p53 in transcriptionally active state in order to activate p53 downstream genes such as p21, Bax, PUMA, Noxa and SUMO. CONCLUSION/SIGNIFICANCE: Here, we showed that a novel chaperone-like activity resides in p53-N-ter region. This study might have significance in understanding the role of p53-NTD in p53 stabilization, conformational activation and apoptosis under heat-stress conditions.

  18. Different applications of polymerases with and without proofreading activity in single-nucleotide polymorphism analysis.

    Science.gov (United States)

    Zhang, Jia; Li, Kai; Liao, Duanfang; Pardinas, Jose R; Chen, Linling; Zhang, Xu

    2003-08-01

    With the completion of the human genome project, single-nucleotide polymorphisms (SNPs) have become the focus of intense study in biomedical research. Polymerase-mediated primer extension has been employed in a variety of SNP assays. However, these SNP assays using polymerase without proofreading function are compromised by their low reliability. Using a newly developed short amplicon harboring restriction enzyme site, EcoR-I, we were able to compare the single-base discrimination abilities of polymerases with and without proofreading function in primer extension in a broad range of annealing temperatures. Thermodynamic analysis demonstrated a striking single-nucleotide discrimination ability of polymerases with proofreading function. Using unmodified 3'-end allele-specific primers, only template-dependent products were generated by polymerase with proofreading activity. This powerful single-base discrimination ability of exo(+) polymerases was further evaluated in primer extension using three types of 3' terminally modified allele-specific primers. As compared with the poor fidelity in primer extension of polymerases lacking 3' exonuclease activity, this study provides convincing evidence that the use of proofreading polymerases in combination with 3'-end modified allele-specific primers can be a powerful new strategy for the development of SNP assays.

  19. Diagnosis of Russell-Silver syndrome by the combined bisulfite restriction analysis-denaturing high-performance liquid chromatography assay.

    Science.gov (United States)

    Hattori, Mitsu; Torii, Chiharu; Yagihashi, Tatsuhiko; Izumi, Kosuke; Suda, Naoto; Ohyama, Kimie; Takahashi, Takao; Moriyama, Keiji; Kosaki, Kenjiro

    2009-10-01

    Russell-Silver syndrome (RSS) is characterized by prenatal and postnatal growth retardation, triangular facies, and fifth-finger clinodactyly. Half of all patients with RSS have hypomethylation of the differentially methylated region of the H19 gene on chromosome 11p15.5. Hence, a quantitative methylation analysis of this region can be useful for the molecular diagnosis of RSS. However, conventional assays based on bisulfite clone sequencing are rather time and labor consuming and are not suitable for clinical use. In the present study, we investigated a possible method of quantitatively determining H19 hypomethylation in RSS patients using a combined bisulfite restriction analysis (COBRA)-denaturing high-performance liquid chromatography (DHPLC) assay; in this combined assay, polymerase chain reaction products amplified from the H19 differentially methylated region of bisulfite-treated genomic DNA were analyzed using a COBRA assay, which detects methylation-dependent sequence differences in the bisulfite-treated genomic DNA using a restriction enzyme analysis. We designed the assay so that a restriction enzyme (HinfI) would cut the methylated, but not the unmethylated, template. The molar ratio between the cut and uncut fragments was measured using DHPLC, and the construction of a calibration curve enabled the methylation index for the original genomic DNA to be estimated. An analysis of seven RSS patients using the COBRA-DHPLC assay demonstrated that three of the seven RSS patients had a low methylation index of around 10%. A comparison of the methylation indices obtained using COBRA-DHPLC and conventional bisulfite clone sequencing revealed an excellent intermethod agreement. In summary, we have developed a robust, rapid, and cost-effective COBRA-DHPLC-based screening system for RSS.

  20. Diversity and dynamics of antibiotic-resistant bacteria in cheese as determined by PCR denaturing gradient gel electrophoresis.

    Science.gov (United States)

    Flórez, Ana Belén; Mayo, Baltasar

    2015-12-01

    This work reports the composition and succession of tetracycline- and erythromycin-resistant bacterial communities in a model cheese, monitored by polymerase chain reaction denaturing gradient gel electrophoresis (PCR-DGGE). Bacterial 16S rRNA genes were examined using this technique to detect structural changes in the cheese microbiota over manufacturing and ripening. Total bacterial genomic DNA, used as a template, was extracted from cultivable bacteria grown without and with tetracycline or erythromycin (both at 25 μg ml(-1)) on a non-selective medium used for enumeration of total and viable cells (Plate Count agar with Milk; PCA-M), and from those grown on selective and/or differential agar media used for counting various bacterial groups; i.e., lactic acid bacteria (de Man, Rogosa and Sharpe agar; MRSA), micrococci and staphylococci (Baird-Parker agar; BPA), and enterobacteria (Violet Red Bile Glucose agar; VRBGA). Large numbers of tetracycline- and erythromycin-resistant bacteria were detected in cheese samples at all stages of ripening. Counts of antibiotic-resistant bacteria varied widely depending on the microbial group and the point of sampling. In general, resistant bacteria were 0.5-1.0 Log10 units fewer in number than the corresponding susceptible bacteria. The PCR-DGGE profiles obtained with DNA isolated from the plates for total bacteria and the different bacterial groups suggested Escherichia coli, Lactococcus lactis, Enterococcus faecalis and Staphylococcus spp. as the microbial types resistant to both antibiotics tested. This study shows the suitability of the PCR-DGGE technique for rapidly identifying and tracking antibiotic resistant populations in cheese and, by extension, in other foods.

  1. Molecular detection of plant pathogenic bacteria using polymerase chain reaction single-strand conformation polymorphism.

    Science.gov (United States)

    Srinivasa, Chandrashekar; Sharanaiah, Umesha; Shivamallu, Chandan

    2012-03-01

    The application of polymerase chain reaction (PCR) technology to molecular diagnostics holds great promise for the early identification of agriculturally important plant pathogens. Ralstonia solanacearum, Xanthomoans axonopodis pv. vesicatoria, and Xanthomonas oryzae pv. oryzae are phytopathogenic bacteria, which can infect vegetables, cause severe yield loss. PCR-single-strand conformation polymorphism (PCR-SSCP) is a simple and powerful technique for identifying sequence changes in amplified DNA. The technique of PCR-SSCP is being exploited so far, only to detect and diagnose human bacterial pathogens in addition to plant pathogenic fungi. Selective media and serology are the commonly used methods for the detection of plant pathogens in infected plant materials. In this study, we developed PCR-SSCP technique to identify phytopathogenic bacteria. The PCR product was denatured and separated on a non-denaturing polyacrylamide gel. SSCP banding patterns were detected by silver staining of nucleic acids. We tested over 56 isolates of R. solanacearum, 44 isolates of X. axonopodis pv. vesicatoria, and 20 isolates of X. oryzae pv. oryzae. With the use of universal primer 16S rRNA, we could discriminate such species at the genus and species levels. Species-specific patterns were obtained for bacteria R. solanacearum, X. axonopodis pv. vesicatoria, and X. oryzae pv. oryzae. The potential use of PCR-SSCP technique for the detection and diagnosis of phytobacterial pathogens is discussed in the present paper.

  2. Molecular detection of plant pathogenic bacteria using polymerase chain reaction single-strand conformation polymorphism

    Institute of Scientific and Technical Information of China (English)

    Chandrashekar Srinivasa; Umesha Sharanaiah; Chandan Shivamallu

    2012-01-01

    The application of polymerase chain reaction (PCR) technology to molecular diagnostics holds great promise for the early identification of agriculturally important plant pathogens.Ralstonia solanacearum,Xanthomoans axonopodis pv.vesicatoria,and Xanthomonas oryzae pv.oryzae are phytopathogenic bacteria,which can infect vegetables,cause severe yield loss.PCR-single-strand conformation polymorphism (PCR-SSCP) is a simple and powerful technique for identifying sequence changes in amplified DNA.The technique of PCR-SSCP is being exploited so far,only to detect and diagnose human bacterial pathogens in addition to plant pathogenic fungi.Selective media and serology are the commonly used methods for the detection of plant pathogens in infected plant materials.In this study,we developed PCR-SSCP technique to identify phytopathogenic bacteria.The PCR product was denatured and separated on a non-denaturing polyacrylamide gel.SSCP banding patterns were detected by silver staining of nucleic acids.We tested over 56 isolates of R. solanacearum,44 isolates of X. axonopodis pv.vesicatoria,and 20 isolates of X.oryzae pv.oryzae.With the use of universal primer 16S rRNA,we could discriminate such species at the genus and species levels.Speciesspecific patterns were obtained for bacteria R.solanacearum,X.axonopodis pv.vesicatoria,and X.oryzae pv.oryzae.The potential use of PCR-SSCP technique for the detection and diagnosis of phytobacterial pathogens is discussed in the present paper.

  3. The RNA polymerase II elongation complex.

    Science.gov (United States)

    Aso, T; Conaway, J W; Conaway, R C

    1995-11-01

    The initiation stage of transcription by RNA polymerase II has long been regarded as the primary site for regulation of eukaryotic gene expression. Nevertheless, a growing body of evidence reveals that the RNA polymerase II elongation complex is also a major target for regulation. Biochemical studies are implicating an increasing number of transcription factors in the regulation of elongation, and these transcription factors are being found to function by a diverse collection of mechanisms. Moreover, unexpected features of the structure and catalytic mechanism of RNA polymerase II are forcing a reconsideration of long-held views on the mechanics of some of the most basic aspects of polymerase function. In this review, we will describe recent insights into the structures and functions of RNA polymerase II and the transcription factors that control its activity during the elongation stage of eukaryotic messenger RNA synthesis.

  4. Bacteriophage T7 DNA polymerase — Sequenase

    Directory of Open Access Journals (Sweden)

    Bin eZhu

    2014-04-01

    Full Text Available An ideal DNA polymerase for chain-terminating DNA sequencing should possess the following features: 1 incorporate dideoxy- and other modified nucleotides at an efficiency similar to that of the cognate deoxynucleotides; 2 high processivity; 3 high fidelity in the absence of proofreading/exonuclease activity; and 4 production of clear and uniform signals for detection. The DNA polymerase encoded by bacteriophage T7 is naturally endowed with or can be engineered to have all these characteristics. The chemically or genetically modified enzyme (Sequenase expedited significantly the development of DNA sequencing technology. This article reviews the history of studies on T7 DNA polymerase with emphasis on the serial key steps leading to its use in DNA sequencing. Lessons from the study and development of T7 DNA polymerase have and will continue to enlighten the characterization of novel DNA polymerases from newly discovered microbes and their modification for use in biotechnology.

  5. Analysis of Translesion DNA Synthesis by the Mitochondrial DNA Polymerase γ.

    Science.gov (United States)

    Copeland, William C; Kasiviswanathan, Rajesh; Longley, Matthew J

    2016-01-01

    Mitochondrial DNA is replicated by the nuclear-encoded DNA polymerase γ (pol γ) which is composed of a single 140 kDa catalytic subunit and a dimeric 55 kDa accessory subunit. Mitochondrial DNA is vulnerable to various forms of damage, including several types of oxidative lesions, UV-induced photoproducts, chemical adducts from environmental sources, as well as alkylation and inter-strand cross-links from chemotherapy agents. Although many of these lesions block DNA replication, pol γ can bypass some lesions by nucleotide incorporation opposite a template lesion and further extension of the DNA primer past the lesion. This process of translesion synthesis (TLS) by pol γ can occur in either an error-free or an error-prone manner. Assessment of TLS requires extensive analysis of oligonucleotide substrates and replication products by denaturing polyacrylamide sequencing gels. This chapter presents protocols for the analysis of translesion DNA synthesis.

  6. Analysis of Translesion DNA Synthesis by the Mitochondrial DNA Polymerase γ

    Science.gov (United States)

    Copeland, William C.; Kasiviswanathan, Rajesh; Longley, Matthew J.

    2016-01-01

    Summary Mitochondrial DNA is replicated by the nuclear encoded DNA polymerase γ (pol γ) which is composed of a single 140 kDa catalytic subunit and a dimeric 55 kDa accessory subunit. Mitochondrial DNA is vulnerable to various forms of damage, including several types of oxidative lesions, UV-induced photoproducts, chemical adducts from environmental sources, as well as alkylation and inter-strand crosslinks from chemotherapy agents. Although many of these lesions block DNA replication, Pol γ can bypass some lesions by nucleotide incorporation opposite a template lesion and further extension of the DNA primer past the lesion. This process of translesion synthesis (TLS) by Pol γ can occur in either an error-free or an error-prone manner. Assessment of TLS requires extensive analysis of oligonucleotide substrates and replication products by denaturing polyacrylamide sequencing gels. This chapter presents protocols for the analysis of translesion DNA synthesis. PMID:26530671

  7. Design of an automated multicapillary instrument with fraction collection for DNA mutation discovery by constant denaturant capillary electrophoresis (CDCE).

    Science.gov (United States)

    Li, Qingbo; Deka, Chiranjit; Glassner, Brian J; Arnold, Kevin; Li-Sucholeiki, Xiao-Cheng; Tomita-Mitchell, Aoy; Thilly, William G; Karger, Barry L

    2005-08-01

    A fundamental goal ingenomics is the discovery of genetic variation that contributes to disease states or to differential drug responses. Single nucleotide polymorphism (SNP) detection has been the focus of much attention in the study of genetic variation over the last decade. These SNPs typically occur at a frequency greater than 1% in the human genome. Recently, low-frequency alleles are also being increasingly recognized as critical to obtain an improved understanding of the correlation between genetic variation and disease. Although many methods have been reported for the discovery and scoringof SNPs, sensitive, automated, and cost-effective methods and platforms for the discovery of low-frequency alleles are not yet readily available. We describe here an automated multicapillary instrument for high-throughput detection of low-frequency alleles from pooled samples using constant denaturant capillary electrophoresis. The instrument features high optical sensitivity (1 x 10(-12) M fluorescein detection limit), precise and stable temperature control (+/- 0.01degrees C), and automation for sample delivery, injection, matrix replacement, and fraction collection. The capillary array is divided into six groups of four capillaries, each of which can be independently set at any temperature ranging from room temperature to 90 degrees C. The key performance characteristics of the instrument are reported.

  8. Heat denaturation of soy glycinin. Structural characteristics in relation to aggregation and gel formation.

    NARCIS (Netherlands)

    Lakemond, C.M.M.

    2001-01-01

    key words: soy protein; glycinin; thermal stability; pH; ionic strength;genetic variant; solubility; gelationThe main aim of this thesis was to study structural changes of soy glycinin at different conditions (pH and ionic strength) during thermal denaturation and their effect on aggregation and gel

  9. Manifestations of native topology in the denatured state ensemble of Rhodopseudomonas palustris cytochrome c'.

    Science.gov (United States)

    Dar, Tanveer A; Schaeffer, R Dustin; Daggett, Valerie; Bowler, Bruce E

    2011-02-15

    To provide insight into the role of local sequence in the nonrandom coil behavior of the denatured state, we have extended our measurements of histidine-heme loop formation equilibria for cytochrome c' to 6 M guanidine hydrochloride. We observe that there is some reduction in the scatter about the best fit line of loop stability versus loop size data in 6 M versus 3 M guanidine hydrochloride, but the scatter is not eliminated. The scaling exponent, ν(3), of 2.5 ± 0.2 is also similar to that found previously in 3 M guanidine hydrochloride (2.6 ± 0.3). Rates of histidine-heme loop breakage in the denatured state of cytochrome c' show that some histidine-heme loops are significantly more persistent than others at both 3 and 6 M guanidine hydrochloride. Rates of histidine-heme loop formation more closely approximate random coil behavior. This observation indicates that heterogeneity in the denatured state ensemble results mainly from contact persistence. When mapped onto the structure of cytochrome c', the histidine-heme loops with slow breakage rates coincide with chain reversals between helices 1 and 2 and between helices 2 and 3. Molecular dynamics simulations of the unfolding of cytochrome c' at 498 K show that these reverse turns persist in the unfolded state. Thus, these portions of the primary structure of cytochrome c' set up the topology of cytochrome c' in the denatured state, predisposing the protein to fold efficiently to its native structure.

  10. Protecting role of cosolvents in protein denaturation by SDS: a structural study

    Directory of Open Access Journals (Sweden)

    Wouters Johan

    2008-06-01

    Full Text Available Abstract Background Recently, we reported a unique approach to preserve the activity of some proteins in the presence of the denaturing agent, Sodium Dodecyl Sulfate (SDS. This was made possible by addition of the amphipathic solvent 2,4-Methyl-2-PentaneDiol (MPD, used as protecting but also as refolding agent for these proteins. Although the persistence of the protein activity in the SDS/MPD mixture was clearly established, preservation of their structure was only speculative until now. Results In this paper, a detailed X-ray study addresses the pending question. Crystals of hen egg-white lysozyme were grown for the first time in the presence of MPD and denaturing concentrations of SDS. Depending on crystallization conditions, tetragonal crystals in complex with either SDS or MPD were collected. The conformation of both structures was very similar to the native lysozyme and the obtained complexes of SDS-lysozyme and MPD-lysozyme give some insights in the interplay of protein-SDS and protein-MPD interactions. Conclusion This study clearly established the preservation of the enzyme structure in a SDS/MPD mixture. It is hypothesized that high concentrations of MPD would change the properties of SDS and lower or avoid interactions between the denaturant and the protein. These structural data therefore support the hypothesis that MPD avoids disruption of the enzyme structure by SDS and can protect proteins from SDS denaturation.

  11. Denaturing gradient gel electrophoresis analysis to study bacterial community structure in pockets of periodontitis patients

    NARCIS (Netherlands)

    Zijnge, V.; Harmsen, H.J.M.; Kleinfelder, J.W.; Rest, M.E. van der; Degener, J.E.; Welling, G.W.

    2003-01-01

    Bacteria are involved in the onset and progression of periodontitis. A promising molecular technique, denaturing gradient gel electrophoresis (DGGE), to study microbial population dynamics in the subgingival pocket is presented. Twenty-three samples were taken from the subgingival pockets of nine pa

  12. Investigating the fermentation of cocoa by correlating denaturing gradient gel electrophoresis profiles and near infrared spectra

    DEFF Research Database (Denmark)

    Nielsen, Dennis Sandris; Snitkjær, Pia; van der Berg, Franciscus Winfried J

    2008-01-01

    of the beans and the chemical processes inside the beans have been carried out previously. Recently it has been shown that Denaturing Gradient Gel Electrophoresis (DGGE) offers an efficient tool for monitoring the microbiological changes taking place during the fermentation of cocoa. Near Infrared (NIR...

  13. A simple remedy against artifactual double bands in denaturing gradient gel electrophoresis

    NARCIS (Netherlands)

    Janse, I.; Bok, J.M.; Zwart, G.

    2004-01-01

    Denaturant gradient gel electrophoresis (DGGE) is a widely used method for mutation analysis and for studies of microbial diversity. Particular combinations of target gene fragments and primers may give rise to erroneous DGGE profiles. We report on a very straightforward means to eliminate the

  14. Affinity chromatography of chaperones based on denatured proteins: Analysis of cell lysates of different origin.

    Science.gov (United States)

    Marchenko, N Yu; Sikorskaya, E V; Marchenkov, V V; Kashparov, I A; Semisotnov, G V

    2016-03-01

    Molecular chaperones are involved in folding, oligomerization, transport, and degradation of numerous cellular proteins. Most of chaperones are heat-shock proteins (HSPs). A number of diseases of various organisms are accompanied by changes in the structure and functional activity of chaperones, thereby revealing their vital importance. One of the fundamental properties of chaperones is their ability to bind polypeptides lacking a rigid spatial structure. Here, we demonstrate that affinity chromatography using sorbents with covalently attached denatured proteins allows effective purification and quantitative assessment of their bound protein partners. Using pure Escherichia coli chaperone GroEL (Hsp60), the capacity of denatured pepsin or lysozyme-based affinity sorbents was evaluated as 1 mg and 1.4 mg of GroEL per 1 ml of sorbent, respectively. Cell lysates of bacteria (E. coli, Thermus thermophilus, and Yersinia pseudotuberculosis), archaea (Halorubrum lacusprofundi) as well as the lysate of rat liver mitochondria were analyzed using affinity carrier with denatured lysozyme. It was found that, apart from Hsp60, other proteins with a molecular weight of about 100, 50, 40, and 20 kDa are able to interact with denatured lysozyme.

  15. Reversible Dimerization of Acid-Denatured ACBP Controlled by Helix A4

    DEFF Research Database (Denmark)

    Fieber, Wolfgang; Kragelund, Birthe Brandt; Meldal, Morten Peter;

    2005-01-01

    of dimers and revealed a cooperative stabilization of helix A4 in this process. This emphasizes its special role in the structure formation in the denatured state of ACBP. No dimers are formed in the presence of guanidine hydrochloride, which underlines the fundamental difference between the nature...

  16. Sufficient minimal model for DNA denaturation: Integration of harmonic scalar elasticity and bond energies.

    Science.gov (United States)

    Singh, Amit Raj; Granek, Rony

    2016-10-14

    We study DNA denaturation by integrating elasticity - as described by the Gaussian network model - with bond binding energies, distinguishing between different base pairs and stacking energies. We use exact calculation, within the model, of the Helmholtz free-energy of any partial denaturation state, which implies that the entropy of all formed "bubbles" ("loops") is accounted for. Considering base pair bond removal single events, the bond designated for opening is chosen by minimizing the free-energy difference for the process, over all remaining base pair bonds. Despite of its great simplicity, for several known DNA sequences our results are in accord with available theoretical and experimental studies. Moreover, we report free-energy profiles along the denaturation pathway, which allow to detect stable or meta-stable partial denaturation states, composed of bubble, as local free-energy minima separated by barriers. Our approach allows to study very long DNA strands with commonly available computational power, as we demonstrate for a few random sequences in the range 200-800 base-pairs. For the latter, we also elucidate the self-averaging property of the system. Implications for the well known breathing dynamics of DNA are elucidated.

  17. Denaturing Effects of Urea and Guanidine Hydrochloride on Hyperthermophilic Esterase from Aeropyrum pernix K1

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The changes in the activity and the conformation of the hyperthermophilic esterase derived from aerobic thermophilic Aeropyrumpernix K1 (APE1547) were studied during denaturation by guanidine hydrochloride (GdnHCl)and urea. The denaturation course of APE1547 was followed by the steady-state and time resolved fluorescence methods. An increase in the denaturant concentration in the denatured system can significantly enhance the inactivation and unfolding of APE1547. The enzyme can be completely inactivated with a urea concentration of 2. 7 mol/L or a GdnHCl concentration of 7.5 mol/L. The fluorescence emission maximum of the enzyme protein red shifts in magnitude to a maximum value(355 nm) when the concentration of GdnHCl is 5.1 mol/L. The experimental results indicate that APE1547 has a high resistance to urea. Unfolding of APE1547 in GdnHCl(4.2-6.0 mol/L) was shown to be an irreversible process. The present results indicate that the ion pairs in this protein may be a key factor for the stability of this esterase.

  18. Sufficient minimal model for DNA denaturation: Integration of harmonic scalar elasticity and bond energies

    Science.gov (United States)

    Singh, Amit Raj; Granek, Rony

    2016-10-01

    We study DNA denaturation by integrating elasticity — as described by the Gaussian network model — with bond binding energies, distinguishing between different base pairs and stacking energies. We use exact calculation, within the model, of the Helmholtz free-energy of any partial denaturation state, which implies that the entropy of all formed "bubbles" ("loops") is accounted for. Considering base pair bond removal single events, the bond designated for opening is chosen by minimizing the free-energy difference for the process, over all remaining base pair bonds. Despite of its great simplicity, for several known DNA sequences our results are in accord with available theoretical and experimental studies. Moreover, we report free-energy profiles along the denaturation pathway, which allow to detect stable or meta-stable partial denaturation states, composed of bubble, as local free-energy minima separated by barriers. Our approach allows to study very long DNA strands with commonly available computational power, as we demonstrate for a few random sequences in the range 200-800 base-pairs. For the latter, we also elucidate the self-averaging property of the system. Implications for the well known breathing dynamics of DNA are elucidated.

  19. Lysozyme Thermal Denaturation and Self-Interaction: Four Integrated Thermodynamic Experiments for the Physical Chemistry Laboratory

    Science.gov (United States)

    Schwinefus, Jeffrey J.; Schaefle, Nathaniel J.; Muth, Gregory W.; Miessler, Gary L.; Clark, Christopher A.

    2008-01-01

    As part of an effort to infuse our physical chemistry laboratory with biologically relevant, investigative experiments, we detail four integrated thermodynamic experiments that characterize the denaturation (or unfolding) and self-interaction of hen egg white lysozyme as a function of pH and ionic strength. Students first use Protein Explorer to…

  20. l-Proline and RNA Duplex m-Value Temperature Dependence.

    Science.gov (United States)

    Schwinefus, Jeffrey J; Baka, Nadia L; Modi, Kalpit; Billmeyer, Kaylyn N; Lu, Shutian; Haase, Lucas R; Menssen, Ryan J

    2017-08-03

    The temperature dependence of l-proline interactions with the RNA dodecamer duplex surface exposed after unfolding was quantified using thermal and isothermal titration denaturation monitored by uv-absorbance. The m-value quantifying proline interactions with the RNA duplex surface area exposed after unfolding was measured using RNA duplexes with GC content ranging between 17 and 83%. The m-values from thermal denaturation decreased with increasing GC content signifying increasingly favorable proline interactions with the exposed RNA surface area. However, m-values from isothermal titration denaturation at 25.0 °C were independent of GC content and less negative than those from thermal denaturation. The m-value from isothermal titration denaturation for a 50% GC RNA duplex decreased (became more negative) as the temperature increased and was in nearly exact agreement with the m-value from thermal denaturation. Since RNA duplex transition temperatures increased with GC content, the more favorable proline interactions with the high GC content duplex surface area observed from thermal denaturation resulted from the temperature dependence of proline interactions rather than the RNA surface chemical composition. The enthalpy contribution to the m-value was positive and small (indicating a slight increase in duplex unfolding enthalpy with proline) while the entropic contribution to the m-value was positive and increased with temperature. Our results will facilitate proline's use as a probe of solvent accessible surface area changes during biochemical reactions at different reaction temperatures.

  1. Comparison of the fine structure of mitochondrial DNA from Saccharomyces cerevisiae and S. carlsbergensis: electron microscopy of partially denatured molecules

    DEFF Research Database (Denmark)

    Christiansen, Gunna; Christiansen, C

    1976-01-01

    Denaturation-maps of mitochondrial DNA from Saccharomyces cerevisiae and S. carlsbergensis have been derived from electron microscopic observations of partially denatured complete circular molecules and large fragments of these circles. The mitochondrial DNA from the two species differ by 6...

  2. Molecular assessment of collagen denaturation in decellularized tissues using a collagen hybridizing peptide.

    Science.gov (United States)

    Hwang, Jeongmin; San, Boi Hoa; Turner, Neill J; White, Lisa J; Faulk, Denver M; Badylak, Stephen F; Li, Yang; Yu, S Michael

    2017-04-15

    Decellularized extracellular matrix (ECM) derived from tissues and organs are emerging as important scaffold materials for regenerative medicine. Many believe that preservation of the native ECM structure during decellularization is highly desirable. However, because effective techniques to assess the structural damage in ECM are lacking, the disruptive effects of a decellularization method and the impact of the associated structural damage upon the scaffold's regenerative capacity are often debated. Using a novel collagen hybridizing peptide (CHP) that specifically binds to unfolded collagen chains, we investigated the molecular denaturation of collagen in the ECM decellularized by four commonly used cell-removing detergents: sodium dodecyl sulfate (SDS), 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate (CHAPS), sodium deoxycholate (SD), and Triton X-100. Staining of the detergent-treated porcine ligament and urinary bladder matrix with carboxyfluorescein-labeled CHP demonstrated that SDS and Triton X-100 denature the triple helical collagen molecule while CHAPS and SD do not, although second harmonic generation imaging and transmission electron microscopy (TEM) revealed that all four detergents disrupt collagen fibrils. Our findings from the CHP staining were further confirmed by the circular dichroism spectra of intact triple helical collagen molecules in CHAPS and SD solutions, and the TEM images of CHP-conjugated gold nanoparticles binding only to the SDS and Triton X-100 treated collagen fibrils. CHP is a powerful new tool for direct and reliable measurement of denatured collagen molecules in decellularized tissues. It is expected to have wide applications in the development and standardization of the tissue/organ decellularization technology. Preservation of the native ECM structure in decellularized tissues is highly desirable, since denaturation of ECM molecules (e.g., collagen) during decellularization can strongly influence the cellular response

  3. DNA polymerase preference determines PCR priming efficiency

    Science.gov (United States)

    2014-01-01

    Background Polymerase chain reaction (PCR) is one of the most important developments in modern biotechnology. However, PCR is known to introduce biases, especially during multiplex reactions. Recent studies have implicated the DNA polymerase as the primary source of bias, particularly initiation of polymerization on the template strand. In our study, amplification from a synthetic library containing a 12 nucleotide random portion was used to provide an in-depth characterization of DNA polymerase priming bias. The synthetic library was amplified with three commercially available DNA polymerases using an anchored primer with a random 3’ hexamer end. After normalization, the next generation sequencing (NGS) results of the amplified libraries were directly compared to the unamplified synthetic library. Results Here, high throughput sequencing was used to systematically demonstrate and characterize DNA polymerase priming bias. We demonstrate that certain sequence motifs are preferred over others as primers where the six nucleotide sequences at the 3’ end of the primer, as well as the sequences four base pairs downstream of the priming site, may influence priming efficiencies. DNA polymerases in the same family from two different commercial vendors prefer similar motifs, while another commercially available enzyme from a different DNA polymerase family prefers different motifs. Furthermore, the preferred priming motifs are GC-rich. The DNA polymerase preference for certain sequence motifs was verified by amplification from single-primer templates. We incorporated the observed DNA polymerase preference into a primer-design program that guides the placement of the primer to an optimal location on the template. Conclusions DNA polymerase priming bias was characterized using a synthetic library amplification system and NGS. The characterization of DNA polymerase priming bias was then utilized to guide the primer-design process and demonstrate varying amplification

  4. [Some properties of complexes formed by small heat shock proteins with denatured actin].

    Science.gov (United States)

    Pivovarova, A V; Chebotareva, N A; Guseev, N B; Levitskiĭ, D I

    2008-01-01

    We applied different methods to analyze the effects of the recombinant wild-type small heat shock protein with an apparent molecular mass of 27 kD (Hsp27-wt) and its S15,78,82D mutant (Hsp27-3D), which mimics the naturally occurring phosphorylation of this protein, on the thermal denaturation and aggregation of F-actin. It has been shown that, at the weight ratio of Hsp27/actin equal to 1/4, both Hsp27-wt and Hsp27-3D do not affect the thermal unfolding of F-actin but effectively prevent the aggregation of F-actin by forming soluble complexes with denatured actin. The formation of these complexes occurs upon heating and accompanies the F-actin thermal denaturation. It is known that Hsp27-wt forms high-molecular-mass oligomers, whereas Hsp27-3D forms small dimers or tetramers. However, the complexes formed by Hsp27-wt and Hsp27-3D with denatured actin did not differ in their size, as measured by dynamic light scattering, and demonstrated the same hydrodynamic radius of 17-18 nm. On the other hand, the sedimentation coefficients of these complexes were distributed within the range 10-45 S in the case of Hsp27-3D and 18-60 S in the case of Hsp27-wt. Thus, the ability of Hsp27 to form soluble complexes with denatured actin does not significantly depend on the initial oligomeric state of Hsp27.

  5. The anionic biosurfactant rhamnolipid does not denature industrial enzymes

    Directory of Open Access Journals (Sweden)

    Jens Kvist Madsen

    2015-04-01

    Full Text Available Biosurfactants (BS are surface-active molecules produced by microorganisms. Their combination of useful properties and sustainable production make them promising industrial alternatives to petrochemical and oleochemical surfactants. Here we compare the impact of the anionic BS rhamnolipid (RL and the conventional/synthetic anionic surfactant sodium dodecyl sulfate (SDS on the structure and stability of three different commercially used enzymes, namely the cellulase Carezyme® (CZ, the phospholipase Lecitase Ultra® (LT and the α-amylase Stainzyme® (SZ. Our data reveal a fundamental difference in their mode of interaction. SDS shows great diversity of interaction towards the different enzymes. It efficiently unfolds both LT and CZ, but LT is unfolded by SDS through formation of SDS clusters on the protein well below the cmc, while CZ is only unfolded by bulk micelles and on average binds significantly less SDS than LT. SDS binds with even lower stoichiometry to SZ and leads to an increase in thermal stability. In contrast, RL does not affect the tertiary or secondary structure of any enzyme at room temperature, has little impact on thermal stability and only binds detectably (but at low stoichiometries to SZ. Furthermore all enzymes maintain activity at both monomeric and micellar concentrations of RL. We conclude that RL, despite its anionic charge, is a surfactant that does not compromise the structural integrity of industrially relevant proteins. This makes RL a promising alternative to current synthetic anionic surfactants in a wide range of commercial applications.

  6. Terahertz spectroscopy of dry, hydrated, and thermally denatured biological macromolecules

    Science.gov (United States)

    Lipscomb, Dawn; Echchgadda, Ibtissam; Ibey, Bennett L.; Beier, Hope; Thomas, Robert J.; Peralta, Xomalin; Wilmink, Gerald J.

    2012-03-01

    Terahertz time-domain spectroscopy (THz-TDS) is an effective technique to probe the intermolecular and collective vibrational modes of biological macromolecules at THz frequencies. To date, the vast majority of spectroscopic studies have been performed on dehydrated biomolecular samples. Given the fact that all biochemical processes occur in aqueous environments and water is required for proper protein folding and function, we hypothesize that valuable information can be gained from spectroscopic studies performed on hydrated biomolecules in their native conformation. In this study, we used a THz-TDS system that exploits photoconductive techniques for THz pulse generation and freespace electro-optical sampling approaches for detection. We used the THz spectrometer to measure the time-dependent electric field of THz waves upon interaction with water, phosphate buffered saline (PBS), and collagen gels. By comparing these waveforms with references, we simultaneously determined each sample's index of refraction (n) and absorption coefficients (μa) as a function of frequency. Our data show that the properties we measure for the water, PBS and collagen are comparable to those reported in the literature. In the future, we plan to examine the effect that both temperature and pH have on the optical properties of other biological macromolecules. Studies will also be performed to compare our results to those generated using molecular dynamics simulations.

  7. Synthesis of deoxynucleoside triphosphates that include proline, urea, or sulfonamide groups and their polymerase incorporation into DNA.

    Science.gov (United States)

    Hollenstein, Marcel

    2012-10-15

    To expand the chemical array available for DNA sequences in the context of in vitro selection, I present herein the synthesis of five nucleoside triphosphate analogues containing side chains capable of organocatalysis. The synthesis involved the coupling of L-proline-containing residues (dU(tP)TP and dU(cP)TP), a dipeptide (dU(FP)TP), a urea derivative (dU(Bpu)TP), and a sulfamide residue (dU(Bs)TP) to a suitably protected common intermediate, followed by triphosphorylation. These modified dNTPs were shown to be excellent substrates for the Vent (exo(-)) and Pwo DNA polymerases, as well as the Klenow fragment of E. coli DNA polymerase I, although they were only acceptable substrates for the 9°N(m) polymerase. All of the modified dNTPs, with the exception of dU(Bpu)TP, were readily incorporated into DNA by the polymerase chain reaction (PCR). Modified oligonucleotides efficiently served as templates for PCR for the regeneration of unmodified DNA. Thermal denaturation experiments showed that these modifications are tolerated in the major groove. Overall, these heavily modified dNTPs are excellent candidates for SELEX.

  8. Physical origin of hydrophobicity studied in terms of cold denaturation of proteins: comparison between water and simple fluids.

    Science.gov (United States)

    Yoshidome, Takashi; Kinoshita, Masahiro

    2012-11-14

    A clue to the physical origin of the hydrophobicity is in the experimental observations, which show that it is weakened at low temperatures. By considering a solvophobic model protein immersed in water and three species of simple solvents, we analyze the temperature dependence of the changes in free energy, energy, and entropy of the solvent upon protein unfolding. The angle-dependent and radial-symmetric integral equation theories and the morphometric approach are employed in the analysis. Each of the changes is decomposed into two terms, which depend on the excluded volume and on the area and curvature of the solvent-accessible surface, respectively. The excluded-volume term of the entropy change is further decomposed into two components representing the protein-solvent pair correlation and the protein-solvent-solvent triplet and higher-order correlation, respectively. We show that water crowding in the system becomes more serious upon protein unfolding but this effect becomes weaker as the temperature is lowered. If the hydrophobicity originated from the water structuring near a nonpolar solute, it would be strengthened upon lowering of the temperature. Among the three species of simple solvents, considerable weakening of the solvophobicity at low temperatures is observed only for the solvent where the particles interact through a strong attractive potential and the particle size is as small as that of water. Even in the case of this solvent, however, cold denaturation of a protein cannot be reproduced. It would be reproducible if the attractive potential was substantially enhanced, but such enhancement causes the appearance of the metastability limit for a single liquid phase.

  9. Preparation of Fat Substitute using Enzymatic Denatured Potato Starch%酶解马铃薯淀粉制备脂肪模拟品的研究

    Institute of Scientific and Technical Information of China (English)

    丛美娟; 郭华

    2012-01-01

    利用马铃薯淀粉制备酶变性淀粉,在单因素试验的基础上选择了淀粉浆浓度、酶解温度、酶解时间进行三因素三水平的正交试验,确定了较优的淀粉酶解工艺条件,使酶解淀粉的DE值稍大于2.再确定酶变性淀粉的糊化温度和糊化时间,制备用来模拟油脂的变性淀粉,以减少食用者的热量摄入,更加有利于人体健康.%Potato starch was used to prepare enzymatic denatured starch. On the basis of single factor experiments, three factors( chose concentration of starch slurry, enzymatic hydrolysis temperature and enzyme hydrolysis time) were chosen for orthogonal experiment to determine the optimum process conditions of amylase solution to keep DE value being of higher than 2. And then the pasting temperature and pasting time of enzymatic denatured starch were determined. Using enzymatic modified starch to simulate the oil in food can reduce the intake of calories and was more benefit health.

  10. Essential roles of protein-solvent many-body correlation in solvent-entropy effect on protein folding and denaturation: comparison between hard-sphere solvent and water.

    Science.gov (United States)

    Oshima, Hiraku; Kinoshita, Masahiro

    2015-04-14

    In earlier works, we showed that the entropic effect originating from the translational displacement of water molecules plays the pivotal role in protein folding and denaturation. The two different solvent models, hard-sphere solvent and model water, were employed in theoretical methods wherein the entropic effect was treated as an essential factor. However, there were similarities and differences in the results obtained from the two solvent models. In the present work, to unveil the physical origins of the similarities and differences, we simultaneously consider structural transition, cold denaturation, and pressure denaturation for the same protein by employing the two solvent models and considering three different thermodynamic states for each solvent model. The solvent-entropy change upon protein folding/unfolding is decomposed into the protein-solvent pair (PA) and many-body (MB) correlation components using the integral equation theories. Each component is further decomposed into the excluded-volume (EV) and solvent-accessible surface (SAS) terms by applying the morphometric approach. The four physically insightful constituents, (PA, EV), (PA, SAS), (MB, EV), and (MB, SAS), are thus obtained. Moreover, (MB, SAS) is discussed by dividing it into two factors. This all-inclusive investigation leads to the following results: (1) the protein-water many-body correlation always plays critical roles in a variety of folding/unfolding processes; (2) the hard-sphere solvent model fails when it does not correctly reproduce the protein-water many-body correlation; (3) the hard-sphere solvent model becomes problematic when the dependence of the many-body correlation on the solvent number density and temperature is essential: it is not quite suited to studies on cold and pressure denaturating of a protein; (4) when the temperature and solvent number density are limited to the ambient values, the hard-sphere solvent model is usually successful; and (5) even at the ambient

  11. Temperature distribution effects on micro-CFPCR performance.

    Science.gov (United States)

    Chen, Pin-Chuan; Nikitopoulos, Dimitris E; Soper, Steven A; Murphy, Michael C

    2008-04-01

    Continuous flow polymerase chain reactors (CFPCRs) are BioMEMS devices that offer unique capabilities for the ultra-fast amplification of target DNA fragments using repeated thermal cycling, typically over the following temperature ranges: 90 degrees C-95 degrees C for denaturation, 50 degrees C-70 degrees C for renaturation, and 70 degrees C-75 degrees C for extension. In CFPCR, DNA cocktail is pumped through the constant temperature zones and reaches thermal equilibrium with the channel walls quickly due to its low thermal capacitance. In previous work, a polycarbonate CFPCR was designed with microchannels 150 microm deep, 50 microm wide, and 1.78 m long-including preheating and post-heating zones, fabricated with LIGA, and demonstrated. The high thermal resistance of the polycarbonate led to a high temperature gradient in the micro-device at steady-state and was partly responsible for the low amplification yield. Several steps were taken to ensure that there were three discrete, uniform temperature zones on the polycarbonate CFPCR device including: reducing the thickness of the CFPCR substrate to decrease thermal capacitance, using copper plates as heating elements to ensure a uniform temperature input, and making grooves between temperature zones to increase the resistance to lateral heat conduction between zones. Finite element analyses (FEA) were used to evaluate the macro temperature distribution in the CFPCR device and the micro temperature distribution along a single microchannel. At steady-state, the simulated CFPCR device had three discrete temperature zones, each with a uniform temperature distribution with a variation of +/-0.3 degrees C. An infrared (IR) camera was used to measure the steady-state temperature distribution in the prototype CFPCR and validated the simulation results. The temperature distributions along a microchannel at flow velocities from 0 mm/s to 6 mm/s were used to estimate the resulting temperatures of the DNA reagents in a single

  12. Effects of urea denatureation and pH on the ability of porcine myoglobin to undergo reduction.

    Science.gov (United States)

    Zhu, L G; Brewer, M S

    2003-04-01

    To determine the effects of globin moiety denaturation and pH on the ability of metmyoglobin (MetMb) to undergo reduction, MetMb isolated from porcine hearts was denatured in 8.5M urea. Both native and denatured MetMb solutions were serially reduced with Na(2)S(2)O(4) (0, 7.5, 15, 18.75, 22.5, 26.25, 30, 30.75, and 45 umol). Reduction was conducted at pH 5, 5.2, 5.4, 5.6, 6, 6.2, 6.4, 6.6, and 7. After reduction, absorbance was determined at 635 nm and the percent of the original MetMb which was reduced was calculated. The average percent MetMb reduced from the native and denatured forms was 35 and 25%, respectively. pH significantly influenced the percentage of MetMb reduced, especially when pH was <6. If the MetMb was denatured prior to reduction, the influence of pH on its ability to undergo reduction was slight. The percentage of denatured MetMb reduced was higher at pH 7 than at all other pHs. High pH enhanced the ability of MetMb to undergo reduction; while low pH decreases it. Low pH may have denatured the native globin moiety.

  13. Using the polymerase chain reaction coupled with denaturing gradient gel electrophoresis to investigate the association between bacterial translocation and systemic inflammatory response syndrome in predicted acute severe pancreatitis

    Institute of Scientific and Technical Information of China (English)

    Callum B Pearce; Vitaly Zinkevich; Iwona Beech; Viera Funjika; Ana Garcia Ruiz; Afraa Aladawi; Hamish D Duncan

    2005-01-01

    AIM: To investigate the use of PCR and DGGE to investigate the association between bacterial translocation and systemic inflammatory response syndrome in predicted severe AP.METHODS: Patients with biochemical and clinical evidence of acute pancreatitis and an APACHE Ⅱ score ≥8 were enrolled. PCR and DGGE were employed to detect bacterial translocation in blood samples collected on d1,3, and 8 after the admission. Standard microbial blood cultures were taken when there was clinical evidence of sepsis or when felt to be clinically indicated by the supervising team.RESULTS: Six patients were included. Of all the patients investigated, only one developed septic complications;the others had uneventful illness. Bacteria were detected using PCR in 4 of the 17 collected blood samples. The patient with sepsis was PCR-positive in two samples (taken on d 1 and 3), despite three negative blood cultures. Using DGGE and specific primers, the bacteria in all blood specimens which tested positive for the presence of bacterial DNA were identified as E coli.CONCLUSION: Our study confirmed thatunlike traditional microbiological techniques, PCR can detect the presence of bacteria in the blood of patients with severe AP. Therefore, this latter method in conjunction with DGGE is potentially an extremely useful tool in predicting septic morbidity and evaluating patients with the disease. Further research using increased numbers of patients, in particular those patients with necrosis and sepsis, is required to assess the reliability of PCR and DGGE in the rapid diagnosis of infection in AP.

  14. The impact of different DNA extraction methods on the analysis of microbial diversity of oral saliva from healthy youths by polymerase chain reaction-denaturing gradient gel electrophoresis

    Directory of Open Access Journals (Sweden)

    Ming Chen

    2016-03-01

    Conclusion: PCR-DGGE was more accurate in assessing oral microbial diversity by QIAamp DNA Micro Kit. Different individuals had large differences in oral microbial diversity but also had some common microbial dominant communities.

  15. On the influence of the mixture of denaturants on protein structure stability: A molecular dynamics study

    Science.gov (United States)

    Shao, Qiang; Wang, Jinan; Zhu, Weiliang

    2014-09-01

    Mixtures of osmolytes and/or inorganic salts are present in the cell. Therefore, the understanding of the interplay of mixed osmolyte molecules and inorganic salts and their combined effects on protein structure is of fundamental importance. A novel test is presented to investigate the combined effects of urea and a chaotropic inorganic salt, potassium iodide (KI), on protein structure by using molecular dynamics simulation. It is found that the coexistence of KI and urea does not affect their respective distribution in solution. The solvation of KI salt in urea solution makes the electrostatic interactions of urea more favorable, promoting the hydrogen bonding between urea (and water) to protein backbone. The interactions from K+ and hydrogen bonding from urea and water to protein backbone work as the driving force for protein denaturation. The collaborative behavior of urea and KI salt thus enhances the denaturing ability of urea and KI mixed solution.

  16. pH-sensitive polymer-assisted refolding of urea-denatured fibroblast growth factor

    Institute of Scientific and Technical Information of China (English)

    Zhi Feng Huang; Shan Shan Wang; Chun Yan Ni; Shu Lin Yang; Xiao Kun Li; Susanna S.J.Leong

    2009-01-01

    A pH-responsive polymer Eudragit S-100 has been found to assist in correct folding of FGF-2(fibroblast growth factor-2)denatured with 8 mol/L urea and 10 mmol/L dithiothreitol at pH 7.2.The refolding of FGF-2 was performed by directly diluting denatured FGF-2 into a refolding buffer containing Eudragit S-100.The ability of Eudragit S-100 to enhance protein refolding level was investigated using MTT method,fluorescence emission spectroscopy and reversc phase HPLC.On the other hand,the result shows the ability of Eudragit S-100 to enhance the refolding level of protein is due to the interaction between Eudragit S-100 and positively charged FGF-2.

  17. Theoretical aspects of pressure and solute denaturation of proteins: A Kirkwood-buff-theory approach

    Science.gov (United States)

    Ben-Naim, Arieh

    2012-12-01

    A new approach to the problem of pressure-denaturation (PD) and solute-denaturation (SD) of proteins is presented. The problem is formulated in terms of Le Chatelier principle, and a solution is sought in terms of the Kirkwood-Buff theory of solutions. It is found that both problems have one factor in common; the excluded volumes of the folded and the unfolded forms with respect to the solvent molecules. It is shown that solvent-induced effects operating on hydrophilic groups along the protein are probably the main reason for PD. On the other hand, the SD depends on the preferential solvation of the folded and the unfolded forms with respect to solvent and co-solvent molecules.

  18. ZnO nanoparticles assist the refolding of denatured green fluorescent protein.

    Science.gov (United States)

    Pandurangan, Muthuraman; Zamany, Ahmad Jawid; Kim, Doo Hwan

    2016-04-01

    Proteins are essential for cellular and biological processes. Proteins are synthesized and fold into the native structure to become active. The inability of a protein molecule to remain in its native conformation is called as protein misfolding, and this is due to several environmental factors. Protein misfolding and aggregation handle several human diseases. Protein misfolding is believed to be one of the causes of several disorders such as cancer, degenerative diseases, and metabolic pathologies. The zinc oxide (ZnO) nanoparticle was significantly promoted refolding of thermally denatured green fluorescent protein (GFP). In the present study, ZnO nanoparticles interaction with GFP was investigated by ultraviolet-visible spectrophotometer, fluorescence spectrophotometer, and dynamic light scattering. Results suggest that the ZnO nanoparticles significantly assist the refolding of denatured GFP. Copyright © 2015 John Wiley & Sons, Ltd.

  19. Teaching what one does not know: strangeness and denaturation in (autobiographical narrations

    Directory of Open Access Journals (Sweden)

    Jorge Luiz da Cunha

    2014-01-01

    Full Text Available The thematic focus in this text are the estrangement/denaturation processes in (autobiographical narrations. The aim of this study was to reflect on the possibility to promote estrangement/denatura - tion in (autobiographical writings made by teenagers in the space/ time of the classroom environment. The methodological proposal consisted on developing (autobiographical writings by students from sociology classes in High School. A total of 138 teenagers from a public school, attending the first school trimester in the year 2013, have participated in the study. The concepts of estrangement/de - naturation are located in the anthropology field and, the work with (autobiographical narrations is located in the socio-clinic perspec - tives and of biographization processes. The results indicate that (autobiographical narrations provide estrangements/denaturation and go towards teaching what one does not know. We can, then, conclude that this possibility, as an educational act, may generate knowledge suspension to self-inventiveness.

  20. Surface characterization of proteins using multi-fractal property of heat-denatured aggregates

    Science.gov (United States)

    Lahiri, Tapobrata; Mishra, Hrishikesh; Sarkar, Subrata; Misra, Krishna

    2008-01-01

    Multi-fractal property of heat-denatured protein aggregates (HDPA) is characteristic of its individual form. The visual similarity between digitally generated microscopic images of HDPA with that of surface-image of its individual X-ray structures in protein databank (PDB) displayed using Visual Molecular Dynamics (VMD) viewer is the basis of the study. We deigned experiments to view the fractal nature of proteins at different aggregate scales. Intensity based multi-fractal dimensions (ILMFD) extracted from various planes of digital microscopic images of protein aggregates were used to characterize HDPA into different classes. Moreover, the ILMFD parameters extracted from aggregates show similar classification pattern to digital images of protein surface displayed by VMD viewer using PDB entry. We discuss the use of irregular patterns of heat-denatured aggregate proteins to understand various surface properties in native proteins. PMID:18795110

  1. Acid Denaturation Inducing Self-Assembly of Curcumin-Loaded Hemoglobin Nanoparticles

    Directory of Open Access Journals (Sweden)

    Kaikai Wang

    2015-12-01

    Full Text Available Hemoglobin is a promising drug carrier but lacks extensive investigation. The chemical conjugation of hemoglobin and drugs is costly and complex, so we have developed curcumin-loaded hemoglobin nanoparticles (CCM-Hb-NPs via self-assembly for the first time. Using the acid-denaturing method, we avoid introducing denaturants and organic solvents. The nanoparticles are stable with uniform size. We have conducted a series of experiments to examine the interaction of hemoglobin and CCM, including hydrophobic characterization, SDS-PAGE. These experiments substantiate that this self-assembly process is mainly driven by hydrophobic forces. Our nanoparticles achieve much higher cell uptake efficiency and cytotoxicity than free CCM solution in vitro. The uptake inhibition experiments also demonstrate that our nanoparticles were incorporated via the classic clathrin-mediated endocytosis pathway. These results indicate that hemoglobin nanoparticles formed by self-assembly are a promising drug delivery system for cancer therapy.

  2. Comparison between conformational change and inactivation rates of aminoacylase during denaturation in urea solutions

    Institute of Scientific and Technical Information of China (English)

    王洪睿; 王希成; 张彤; 周海梦

    1995-01-01

    The kinetic method of the substrate reaction in the presence of mactivator previously described by Tsou has been applied to the determination of inactivation rates of aminoacylase during denaturation in urea solutions. The protective effect of substrate on the inactivation of aminoacylase by urea has been investigated. Simultaneously, the comparison between conformational change and inactivation rates of enzyme in the urea solutions of different concentrations has been studied. Results obtained show that the inactivation rate constants of the enzyme are larger than the rate constants of conformational changes. The present results show that the active site of metal enzyme-aminoacylase is also located in a limited and flexible region of the molecule that is more sensitive to denaturants than the enzyme as a whole.

  3. Conformational Selection and Induced Fit for RNA Polymerase and RNA/DNA Hybrid Backtracked Recognition

    Directory of Open Access Journals (Sweden)

    Haifeng eChen

    2015-11-01

    Full Text Available RNA polymerase catalyzes transcription with a high fidelity. If DNA/RNA mismatch or DNA damage occurs downstream, a backtracked RNA polymerase can proofread this situation. However, the backtracked mechanism is still poorly understood. Here we have performed multiple explicit-solvent molecular dynamics (MD simulations on bound and apo DNA/RNA hybrid to study backtracked recognition. MD simulations at room temperature suggest that specific electrostatic interactions play key roles in the backtracked recognition between the polymerase and DNA/RNA hybrid. Kinetics analysis at high temperature shows that bound and apo DNA/RNA hybrid unfold via a two-state process. Both kinetics and free energy landscape analyses indicate that bound DNA/RNA hybrid folds in the order of DNA/RNA contracting, the tertiary folding and polymerase binding. The predicted Φ-values suggest that C7, G9, dC12, dC15 and dT16 are key bases for the backtracked recognition of DNA/RNA hybrid. The average RMSD values between the bound structures and the corresponding apo ones and Kolmogorov-Smirnov (KS P test analyses indicate that the recognition between DNA/RNA hybrid and polymerase might follow an induced fit mechanism for DNA/RNA hybrid and conformation selection for polymerase. Furthermore, this method could be used to relative studies of specific recognition between nucleic acid and protein.

  4. Formation of Native and Non-native Interactions in Ensembles of Denatured ACBP Molecules from Paramagnetic Relaxation Enhancement Studies

    DEFF Research Database (Denmark)

    Kristjansdottir, S.; Lindorff-Larsen, Kresten; Fieber, W.;

    2005-01-01

    in the denatured states with those in the transition state for folding we also provided new insights into the mechanism of formation of the native state of this protein. Keywords: protein folding; denatured state; NMR; molecular dynamics; structural studies Abbreviations: ACBP, acyl coenzyme A binding protein; Gu...... of the residual structure in the denatured state of ACBP under these different conditions has enabled us to infer that regions in the N and C-terminal parts of the protein sequence have a high tendency to interact in the unfolded state under physiological conditions. By comparing the structural features...

  5. DNA polymerase beta can substitute for DNA polymerase I in the initiation of plasmid DNA replication.

    OpenAIRE

    1995-01-01

    We previously demonstrated that mammalian DNA polymerase beta can substitute for DNA polymerase I of Escherichia coli in DNA replication and in base excision repair. We have now obtained genetic evidence suggesting that DNA polymerase beta can substitute for E. coli DNA polymerase I in the initiation of replication of a plasmid containing a pMB1 origin of DNA replication. Specifically, we demonstrate that a plasmid with a pMB1 origin of replication can be maintained in an E. coli polA mutant ...

  6. Micro-CT Imaging of Denatured Chitin by Silver to Explore Honey Bee and Insect Pathologies

    Science.gov (United States)

    Butzloff, Peter R.

    2011-01-01

    Background Chitin and cuticle coatings are important to the environmental and immune defense of honey bees and insect pollinators. Pesticides or environmental effects may target the biochemistry of insect chitin and cuticle coating. Denaturing of chitin involves a combination of deacetylation, intercalation, oxidation, Schweiger-peeling, and the formation of amine hydrochloride salt. The term “denatured chitin” calls attention to structural and property changes to the internal membranes and external carapace of organisms so that some properties affecting biological activities are diminished. Methodology/Principal Findings A case study was performed on honey bees using silver staining and microscopic computer-tomographic x-ray radiography (micro-CT). Silver nitrate formed counter-ion complexes with labile ammonium cations and reacted with amine hydrochloride. Silver was concentrated in the peritrophic membrane, on the abdomen, in the glossa, at intersegmental joints (tarsi), at wing attachments, and in tracheal air sacs. Imaged mono-esters and fatty acids from cuticle coating on external surfaces were apparently reduced by an alcohol pretreatment. Conclusions/Significance The technique provides 3-dimensional and sectional images of individual honey bees consistent with the chemistries of silver reaction and complex formation with denatured chitin. Environmental exposures and influences such as gaseous nitric oxide intercalant, trace oxidants such as ozone gas, oligosachharide salt conversion, exposure to acid rain, and chemical or biochemical denaturing by pesticides may be studied using this technique. Peritrophic membranes, which protect against food abrasion, microorganisms, and permit efficient digestion, were imaged. Apparent surface damage to the corneal lenses of compound eyes by dilute acid exposure consistent with chitin amine hydrochloride formation was imaged. The technique can contribute to existing insect pathology research, and may provide an

  7. Thermal denaturation of beta-galactosidase and of two site-specific mutants.

    Science.gov (United States)

    Edwards, R A; Jacobson, A L; Huber, R E

    1990-12-11

    The thermal denaturation of wild-type beta-galactosidase and two beta-galactosidases with substitutions at the active site was studied by kinetics, differential scanning calorimetry, electrophoresis, molecular exclusion chromatography, and circular dichroism. From the results, a model is developed for thermal denaturation of beta-galactosidase which includes the reversible dissociation of ligands, reversible formation of an inactive tetramer, irreversible dissociation of the inactive tetramer to inactive monomers, and subsequent aggregation of inactive monomers to dimers and larger aggregates. Under some conditions, partial reversibility of the activity loss could be demonstrated, and several intermediates in the thermal denaturation process were trapped by quenching and observed by electrophoresis and molecular exclusion chromatography. The ligands Mg2+ and phenylethyl thio-beta-D-galactoside increase the stability of beta-galactosidase to heat denaturation by shifting the ligand binding equilibrium according to Le Chatelier's principle, thus decreasing the concentration of the ligand-free tetramer which can proceed to subsequent steps. Circular dichroism results indicated that beta-galactosidase is dominated by beta-sheet with lower amounts of alpha-helix. Large changes in secondary structure begin to occur only after activity has been lost. Single amino acid changes at the active site can have significant effects on thermal stability of beta-galactosidases. Some of the effects result from increased thermal stability of the ligand-free enzyme itself. Other effects result from changes in ligand binding, but the magnitude of the resulting changes in stability is not related to the strength of ligand binding in a simple fashion.

  8. Detection of Rifampin Resistance in Mycobacterium tuberculosis by Double Gradient-Denaturing Gradient Gel Electrophoresis

    Science.gov (United States)

    Scarpellini, Paolo; Braglia, Sergio; Carrera, Paola; Cedri, Maura; Cichero, Paola; Colombo, Alessia; Crucianelli, Rosella; Gori, Andrea; Ferrari, Maurizio; Lazzarin, Adriano

    1999-01-01

    We applied double gradient-denaturing gradient gel electrophoresis (DG-DGGE) for the rapid detection of rifampin (RMP) resistance from rpoB PCR products of Mycobacterium tuberculosis isolates and clinical samples. The results of this method were fully concordant with those of DNA sequencing and susceptibility testing analyses. DG-DGGE is a valid alternative to the other methods of detecting mutations for predicting RMP resistance. PMID:10508043

  9. A kinetic study of jack-bean urease denaturation by a new dithiocarbamate bismuth compound

    Science.gov (United States)

    Menezes, D. C.; Borges, E.; Torres, M. F.; Braga, J. P.

    2012-10-01

    A kinetic study concerning enzymatic inhibitory effect of a new bismuth dithiocarbamate complex on jack-bean urease is reported. A neural network approach is used to solve the ill-posed inverse problem arising from numerical treatment of the subject. A reaction mechanism for the urease denaturation process is proposed and the rate constants, relaxation time constants, equilibrium constants, activation Gibbs free energies for each reaction step and Gibbs free energies for the transition species are determined.

  10. Combining an Optical Resonance Biosensor with Enzyme Activity Kinetics to Understand Protein Adsorption and Denaturation

    OpenAIRE

    Wilson, Kerry A.; Finch, Craig A.; Anderson, Phillip; Vollmer, Frank; Hickman, James J.

    2014-01-01

    Understanding protein adsorption and resultant conformation changes on modified and unmodified silicon dioxide surfaces is a subject of keen interest in biosensors, microfluidic systems and for medical diagnostics. However, it has been proven difficult to investigate the kinetics of the adsorption process on these surfaces as well as understand the topic of the denaturation of proteins and its effect on enzyme activity. A highly sensitive optical whispering gallery mode (WGM) resonator was us...

  11. Multifocal peritoneal splenosis in Tc-99m-labeled heat-denatured red blood cell scintigraphy

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Min Ki; Hwang, Kyung Hoon; Choe, Won Sick [Gachon University Gil Medical Center, Incheon (Korea, Republic of)

    2006-06-15

    A 44-year-old man with a past medical history of splenectomy came to hospital because of epigastric pain abdominopelvic computed tomography(CT) showed a soft tissue mass and multifocal variable-sized nodules as well as finding suggestive of cholecystitis. Subsequently, he underwent Tc-99m-labeled heat- denatured red blood cell(RBC) scintigraphy to evaluate the mass and nodules. The scintigraphy confirmed multifocal peritoneal splenosis in the abdominopelvic cavity.

  12. Surface characterization of proteins using multi-fractal property of heat-denatured aggregates

    OpenAIRE

    Lahiri, Tapobrata; Mishra, Hrishikesh; Sarkar, Subrata; Misra, Krishna

    2008-01-01

    Multi-fractal property of heat-denatured protein aggregates (HDPA) is characteristic of its individual form. The visual similarity between digitally generated microscopic images of HDPA with that of surface-image of its individual X-ray structures in protein databank (PDB) displayed using Visual Molecular Dynamics (VMD) viewer is the basis of the study. We deigned experiments to view the fractal nature of proteins at different aggregate scales. Intensity based multi-fractal dimensions (ILMFD)...

  13. Micro-CT imaging of denatured chitin by silver to explore honey bee and insect pathologies.

    Directory of Open Access Journals (Sweden)

    Peter R Butzloff

    Full Text Available BACKGROUND: Chitin and cuticle coatings are important to the environmental and immune defense of honey bees and insect pollinators. Pesticides or environmental effects may target the biochemistry of insect chitin and cuticle coating. Denaturing of chitin involves a combination of deacetylation, intercalation, oxidation, Schweiger-peeling, and the formation of amine hydrochloride salt. The term "denatured chitin" calls attention to structural and property changes to the internal membranes and external carapace of organisms so that some properties affecting biological activities are diminished. METHODOLOGY/PRINCIPAL FINDINGS: A case study was performed on honey bees using silver staining and microscopic computer-tomographic x-ray radiography (micro-CT. Silver nitrate formed counter-ion complexes with labile ammonium cations and reacted with amine hydrochloride. Silver was concentrated in the peritrophic membrane, on the abdomen, in the glossa, at intersegmental joints (tarsi, at wing attachments, and in tracheal air sacs. Imaged mono-esters and fatty acids from cuticle coating on external surfaces were apparently reduced by an alcohol pretreatment. CONCLUSIONS/SIGNIFICANCE: The technique provides 3-dimensional and sectional images of individual honey bees consistent with the chemistries of silver reaction and complex formation with denatured chitin. Environmental exposures and influences such as gaseous nitric oxide intercalant, trace oxidants such as ozone gas, oligosachharide salt conversion, exposure to acid rain, and chemical or biochemical denaturing by pesticides may be studied using this technique. Peritrophic membranes, which protect against food abrasion, microorganisms, and permit efficient digestion, were imaged. Apparent surface damage to the corneal lenses of compound eyes by dilute acid exposure consistent with chitin amine hydrochloride formation was imaged. The technique can contribute to existing insect pathology research, and may

  14. Comparison of membrane electroporation and protein denature in response to pulsed electric field with different durations.

    Science.gov (United States)

    Huang, Feiran; Fang, Zhihui; Mast, Jason; Chen, Wei

    2013-05-01

    In this paper, we compared the minimum potential differences in the electroporation of membrane lipid bilayers and the denaturation of membrane proteins in response to an intensive pulsed electric field with various pulse durations. Single skeletal muscle fibers were exposed to a pulsed external electric field. The field-induced changes in the membrane integrity (leakage current) and the Na channel currents were monitored to identify the minimum electric field needed to damage the membrane lipid bilayer and the membrane proteins, respectively. We found that in response to a relatively long pulsed electric shock (longer than the membrane intrinsic time constant), a lower membrane potential was needed to electroporate the cell membrane than for denaturing the membrane proteins, while for a short pulse a higher membrane potential was needed. In other words, phospholipid bilayers are more sensitive to the electric field than the membrane proteins for a long pulsed shock, while for a short pulse the proteins become more vulnerable. We can predict that for a short or ultrashort pulsed electric shock, the minimum membrane potential required to start to denature the protein functions in the cell plasma membrane is lower than that which starts to reduce the membrane integrity.

  15. DENATURATION OF NATIVE AND DEGLYCOSYLATED α-GALACTOSIDASES FROM Penicillium canescens BY GUANIDINE HYDROCHLORIDE

    Directory of Open Access Journals (Sweden)

    Borzova N. V.

    2015-08-01

    Full Text Available The aim of this work was the study of native and galactosidases from Penicillium canescens under denaturing conditions caused by guanidine hydrochloride. Calculation of kinetics and constants of enzymes inactivation was carried out on using experimental kinetic curves of enzyme denaturation. We observed significant differences in the kinetics of inactivation of native and deglycosylated α-galactosidases from P. canescens caused by guanidine hydrochloride. Native enzyme was stable within the selected range of guanidine hydrochloride concentrations (from 0.1 to 3.0 M, retaining no less than 50% of the initial enzyme activity for 3 days. Deglycosylated enzyme preparations were less stable and they lost their activity within 5–30 minutes, when they were treated with guanidine hydrochloride in concentrations above 1 M. Dissociation rate constant of native and deglycosylated forms of the enzyme differed by 10 to 100 folds. It was shown that subunit interactions play a major role in the process of inactivation of the enzyme, and the carbohydrate component is essential for stabilizing of subunit bonds and maintaining conformational stability of the enzyme under denaturing conditions of chemical agents.

  16. Single domain antibodies are specially suited for quantitative determination of gliadins under denaturing conditions.

    Science.gov (United States)

    Doña, Vanina; Urrutia, Mariela; Bayardo, Mariela; Alzogaray, Vanina; Goldbaum, Fernando Alberto; Chirdo, Fernando G

    2010-01-27

    Food intended for celiac patients' consumption must be analyzed for the presence of toxic prolamins using high detectability tests. Though 60% ethanol is the most commonly used solvent for prolamins extraction, 2-mercaptoethanol (2-ME) and guanidinium chloride (GuHCl) can be added to increase protein recovery. However, ethanol and denaturing agents interfere with antigen recognition when conventional antibodies are used. In the present work, a new method for gliadins quantification is shown. The method is based on the selection of llama single domain antibody fragments able to operate under denaturing conditions. Six out of 28 VHH-phages obtained retained their binding capacity in 15% ethanol. Selected clones presented a long CDR3 region containing two additional cysteines that could be responsible for the higher stability. One of the clones (named VHH26) was fully operative in the presence of 15% ethanol, 0.5% 2-ME, and 0.5 M GuHCl. Capture ELISA using VHH26 was able to detect gliadins in samples shown as negatives by conventional ELISA. Therefore, this new strategy appears as an excellent platform for quantitative determination of proteins or any other immunogenic compound, in the presence of denaturing agents, when specific recognition units with high stability are required.

  17. Remarkable activation of enzymes in nonaqueous media by denaturing organic cosolvents

    Energy Technology Data Exchange (ETDEWEB)

    Almarsson, O.; Klibanov, A.M. [Massachusetts Inst. of Tech., Cambridge, MA (United States). Dept. of Chemistry

    1996-01-05

    The rates of transesterification reactions catalyzed by the protease subtilisin Carlsberg suspended in various anhydrous solvents at 30 C can be increased more than 100-fold by the addition of denaturing organic cosolvents (dimethyl sulfoxide or formamide); in water, the same cosolvents exert no enzyme activation. At 4 C, the activation effect on the lyophilized protease is even higher, reaching 1,000-fold. Marked enhancement of enzymatic activity in anhydrous solvents by formamide is also observed for two other enzymes, {alpha}-chymotrypsin and Rhizomucor miehei lipase, and is manifested in two transesterification reactions. In addition to lyophilized subtilisin, crosslinked crystals of subtilisin are also amenable to the dramatic activation by the denaturing cosolvents. In contrast, subtilisin solubilized in anhydrous media by covalent modification with poly(ethylene glycol) exhibits only modest activation. These observations are rationalized in terms of a mechanistic hypothesis based on an enhanced protein flexibility in anhydrous milieu brought about by the denaturing organic cosolvents. The latter exert their lubricating effect largely at the interfaces between enzyme molecules in a solid preparation, thus easing the flexibility constraints imposed by protein-protein contacts.

  18. Fourier transform infrared spectroscopy provides an evidence of papain denaturation and aggregation during cold storage.

    Science.gov (United States)

    Rašković, Brankica; Popović, Milica; Ostojić, Sanja; Anđelković, Boban; Tešević, Vele; Polović, Natalija

    2015-01-01

    Papain is a cysteine protease with wide substrate specificity and many applications. Despite its widespread applications, cold stability of papain has never been studied. Here, we used differential spectroscopy to monitor thermal denaturation process. Papain was the most stabile from 45 °C to 60 °C with ΔG°321 of 13.9±0.3 kJ/mol and Tm value of 84±1 °C. After cold storage, papain lost parts of its native secondary structures elements which gave an increase of 40% of intermolecular β-sheet content (band maximum detected at frequency of 1621 cm(-1) in Fourier transform infrared (FT-IR) spectrum) indicating the presence of secondary structures necessary for aggregation. The presence of protein aggregates after cold storage was also proven by analytical size exclusion chromatography. After six freeze-thaw cycles around 75% of starting enzyme activity of papain was lost due to cold denaturation and aggregation of unfolded protein. Autoproteolysis of papain did not cause significant loss of the protein activity. Upon the cold storage, papain underwent structural rearrangements and aggregation that correspond to other cold denatured proteins, rather than autoproteolysis which could have the commercial importance for the growing polypeptide based industry.

  19. Stabilization of Human Serum Albumin against Urea Denaturation by Diazepam and Ketoprofen.

    Science.gov (United States)

    Manoharan, Pralad; Wong, Yin H; Tayyab, Saad

    2015-01-01

    Stabilizing effect of diazepam and ketoprofen, Sudlow's site II markers on human serum albumin (HSA) against urea denaturation was studied using fluorescence spectroscopy. The two-step, three-state urea transition of HSA was transformed into a single-step, two-state transition with the abolishment of the intermediate state along with a shift of the transition curve towards higher urea concentrations in the presence of diazepam or ketoprofen. Interestingly, a greater shift in the transition curve of HSA was observed in the presence of ketoprofen compared to diazepam. A comparison of the intrinsic fluorescence and three-dimensional fluorescence spectra of HSA and partially-denatured HSAs, obtained in the absence and the presence of diazepam or ketoprofen suggested significant retention of native-like conformation in the partially-denatured states of HSA in the presence of Sudlow's site II markers. Taken together, all these results suggested stabilization of HSA in the presence of diazepam or ketoprofen, being greater in the presence of ketoprofen.

  20. Evaluation of gasoline-denatured ethanol as a carbon source for denitrification.

    Science.gov (United States)

    Kazasi, Anna; Boardman, Gregory D; Bott, Charles B

    2013-06-01

    In this study concerning denitrification, the performance of three carbon sources, methanol (MeOH), ethanol (EtOH) and gasoline-denatured ethanol (dEtOH), was compared and evaluated on the basis of treatment efficiency, inhibition potential and cost. The gasoline denaturant considered here contained mostly aliphatic compounds and little of the components that typically boost the octane rating, such as benzene, toluene, ethylbenzene and xylenes. Results were obtained using three lab-scale SBRs operated at SRT of 12.0 +/- 0.9 days. After biomass was acclimated, denitrification rates with dEtOH were similar to those of EtOH (201 +/- 50 and 197 +/- 28 NO3-N/g MLVSS x d, respectively), and higher than those of MeOH (165 +/- 49 mg NO3-N/g MLVSS x d). The denaturant did not affect biomass production, nitrification or denitrification. Effluent soluble COD concentrations were always less than the analytical detection limit. Although the cost of dEtOH ($2.00/kg nitrate removed) was somewhat higher than that of methanol ($1.63/kg nitrate removed), the use of dEtOH is very promising and utilities will have to decide if it is worth paying a little extra to take advantage of its benefits.

  1. AFM visualization at a single-molecule level of denaturated states of proteins on graphite.

    Science.gov (United States)

    Barinov, Nikolay A; Prokhorov, Valery V; Dubrovin, Evgeniy V; Klinov, Dmitry V

    2016-10-01

    Different graphitic materials are either already used or believed to be advantageous in biomedical and biotechnological applications, e.g., as biomaterials or substrates for sensors. Most of these applications or associated important issues, such as biocompatibility, address the problem of adsorption of protein molecules and, in particular the conformational state of the adsorbed protein molecule on graphite. High-resolution AFM demonstrates highly oriented pyrolytic graphite (HOPG) induced denaturation of four proteins of blood plasma, such as ferritin, fibrinogen, human serum albumin (HSA) and immunoglobulin G (IgG), at a single molecule level. Protein denaturation is accompanied by the decrease of the heights of protein globules and spreading of the denatured protein fraction on the surface. In contrast, the modification of HOPG with the amphiphilic oligoglycine-hydrocarbon derivative monolayer preserves the native-like conformation and provides even more mild conditions for the protein adsorption than typically used mica. Protein unfolding on HOPG may have universal character for "soft" globular proteins. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Polymerase-Endonuclease Amplification Reaction (PEAR) for Large-Scale Enzymatic Production of Antisense Oligonucleotides

    Science.gov (United States)

    Wang, Xiaolong; Gou, Deming; Xu, Shuang-yong

    2010-01-01

    Antisense oligonucleotides targeting microRNAs or their mRNA targets prove to be powerful tools for molecular biology research and may eventually emerge as new therapeutic agents. Synthetic oligonucleotides are often contaminated with highly homologous failure sequences. Synthesis of a certain oligonucleotide is difficult to scale up because it requires expensive equipment, hazardous chemicals and a tedious purification process. Here we report a novel thermocyclic reaction, polymerase-endonuclease amplification reaction (PEAR), for the amplification of oligonucleotides. A target oligonucleotide and a tandem repeated antisense probe are subjected to repeated cycles of denaturing, annealing, elongation and cleaving, in which thermostable DNA polymerase elongation and strand slipping generate duplex tandem repeats, and thermostable endonuclease (PspGI) cleavage releases monomeric duplex oligonucleotides. Each round of PEAR achieves over 100-fold amplification. The product can be used in one more round of PEAR directly, and the process can be further repeated. In addition to avoiding dangerous materials and improved product purity, this reaction is easy to scale up and amenable to full automation. PEAR has the potential to be a useful tool for large-scale production of antisense oligonucleotide drugs. PMID:20062528

  3. Polymerase-endonuclease amplification reaction (PEAR for large-scale enzymatic production of antisense oligonucleotides.

    Directory of Open Access Journals (Sweden)

    Xiaolong Wang

    Full Text Available Antisense oligonucleotides targeting microRNAs or their mRNA targets prove to be powerful tools for molecular biology research and may eventually emerge as new therapeutic agents. Synthetic oligonucleotides are often contaminated with highly homologous failure sequences. Synthesis of a certain oligonucleotide is difficult to scale up because it requires expensive equipment, hazardous chemicals and a tedious purification process. Here we report a novel thermocyclic reaction, polymerase-endonuclease amplification reaction (PEAR, for the amplification of oligonucleotides. A target oligonucleotide and a tandem repeated antisense probe are subjected to repeated cycles of denaturing, annealing, elongation and cleaving, in which thermostable DNA polymerase elongation and strand slipping generate duplex tandem repeats, and thermostable endonuclease (PspGI cleavage releases monomeric duplex oligonucleotides. Each round of PEAR achieves over 100-fold amplification. The product can be used in one more round of PEAR directly, and the process can be further repeated. In addition to avoiding dangerous materials and improved product purity, this reaction is easy to scale up and amenable to full automation. PEAR has the potential to be a useful tool for large-scale production of antisense oligonucleotide drugs.

  4. Lyophilization-induced protein denaturation in phosphate buffer systems: monomeric and tetrameric beta-galactosidase.

    Science.gov (United States)

    Pikal-Cleland, K A; Carpenter, J F

    2001-09-01

    During freezing in phosphate buffers, selective precipitation of a less soluble buffer component and subsequent pH shifts may induce protein denaturation. Previous reports indicate significantly more inactivation and secondary structural perturbation of monomeric and tetrameric beta-galactosidase (beta-gal) during freeze-thawing in sodium phosphate (NaP) buffer as compared with potassium phosphate (KP) buffer. This observation was attributed to the significant pH shifts (from 7.0 to as low as 3.8) observed during freezing in the NaP buffer (1). In the current study, we investigated the impact of the additional stress of dehydration after freezing on the recovery of active protein on reconstitution and the retention of the native structure in the dried state. Freeze-drying monomeric and tetrameric beta-gal in either NaP or KP buffer resulted in significant secondary structural perturbations, which were greatest for the NaP samples. However, similar recoveries of active monomeric protein were observed after freeze-thawing and freeze-drying, indicating that most dehydration-induced unfolding was reversible on reconstitution of the freeze-dried protein. In contrast, the tetrameric protein was more susceptible to dehydration-induced denaturation as seen by the greater loss in activity after reconstitution of the freeze-dried samples relative to that measured after freeze-thawing. To ensure optimal protein stability during freeze-drying, the protein must be protected from both freezing and dehydration stresses. Although poly(ethylene glycol) and dextran are preferentially excluded solutes and should confer protection during freezing, they were unable to prevent lyophilization-induced denaturation. In addition, Tween did not foster maintenance of native protein during freeze-drying. However, sucrose, which hydrogen bonds to dried protein in the place of lost water, greatly reduced freezing- and drying-induced denaturation, as observed by the high retention of native

  5. Free RNA polymerase in Escherichia coli.

    Science.gov (United States)

    Patrick, Michael; Dennis, Patrick P; Ehrenberg, Mans; Bremer, Hans

    2015-12-01

    The frequencies of transcription initiation of regulated and constitutive genes depend on the concentration of free RNA polymerase holoenzyme [Rf] near their promoters. Although RNA polymerase is largely confined to the nucleoid, it is difficult to determine absolute concentrations of [Rf] at particular locations within the nucleoid structure. However, relative concentrations of free RNA polymerase at different growth rates, [Rf]rel, can be estimated from the activities of constitutive promoters. Previous studies indicated that the rrnB P2 promoter is constitutive and that [Rf]rel in the vicinity of rrnB P2 increases with increasing growth rate. Recently it has become possible to directly visualize Rf in growing Escherichia coli cells. Here we examine some of the important issues relating to gene expression based on these new observations. We conclude that: (i) At a growth rate of 2 doublings/h, there are about 1000 free and 2350 non-specifically DNA-bound RNA polymerase molecules per average cell (12 and 28%, respectively, of 8400 total) which are in rapid equilibrium. (ii) The reversibility of the non-specific binding generates more than 1000 free RNA polymerase molecules every second in the immediate vicinity of the DNA. Of these, most rebind non-specifically to the DNA within a few ms; the frequency of non-specific binding is at least two orders of magnitude greater than specific binding and transcript initiation. (iii) At a given amount of RNA polymerase per cell, [Rf] and the density of non-specifically DNA-bound RNA polymerase molecules along the DNA both vary reciprocally with the amount of DNA in the cell. (iv) At 2 doublings/h an E. coli cell contains, on the average, about 1 non-specifically bound RNA polymerase per 9 kbp of DNA and 1 free RNA polymerase per 20 kbp of DNA. However some DNA regions (i.e. near active rRNA operons) may have significantly higher than average [Rf].

  6. Antibodies with specificity for native and denatured forms of ovalbumin differ in reactivity between enzyme-linked immunosorbent assays

    DEFF Research Database (Denmark)

    Holm, B. E.; Bergmann, Ann Christina; Hansen, Paul Robert

    2015-01-01

    In this study, polyclonal and monoclonal antibodies to native and denatured chicken ovalbumin (OVA) were produced to compare their dependency on continuous and three-dimensional epitopes. These antibodies were characterized with respect to reactivity to native and denatured OVA by enzyme......-linked immunosorbent assay (ELISA) employing surface-bound OVA and streptavidin-capture ELISA to determine whether effects of different coating influence antibody specificity and with respect to epitope specificity by peptide ELISA, using overlapping peptides, covering the complete OVA sequence. Polyclonal antibodies...... to native OVA reacted strongly with native and denatured OVA in both assays, but did not react with the overlapping peptides. Polyclonal antibodies to denatured OVA reacted strongly with both OVA forms and with several of the overlapping peptides. Monoclonal antibodies to native OVA reacted preferentially...

  7. Monitoring the bacterial population dynamics in sourdough fermentation processes by using PCR-denaturing gradient gel electrophoresis.

    Science.gov (United States)

    Meroth, Christiane B; Walter, Jens; Hertel, Christian; Brandt, Markus J; Hammes, Walter P

    2003-01-01

    Four sourdoughs (A to D) were produced under practical conditions by using a starter mixture of three commercially available sourdough starters and a baker's yeast constitutively containing various species of lactic acid bacteria (LAB). The sourdoughs were continuously propagated until the composition of the LAB flora remained stable. Two LAB-specific PCR-denaturing gradient gel electrophoresis (DGGE) systems were established and used to monitor the development of the microflora. Depending on the prevailing ecological conditions in the different sourdough fermentations, only a few Lactobacillus species were found to be competitive and became dominant. In sourdough A (traditional process with rye flour), Lactobacillus sanfranciscensis and a new species, L. mindensis, were detected. In rye flour sourdoughs B and C, which differed in the process temperature, exclusively L. crispatus and L. pontis became the predominant species in sourdough B and L. crispatus, L. panis, and L. frumenti became the predominant species in sourdough C. On the other hand, in sourdough D (corresponding to sourdough C but produced with rye bran), L. johnsonii and L. reuteri were found. The results of PCR-DGGE were consistent with those obtained by culturing, except for sourdough B, in which L. fermentum was also detected. Isolates of the species L. sanfranciscensis and L. fermentum were shown by randomly amplified polymorphic DNA-PCR analysis to originate from the commercial starters and the baker's yeast, respectively.

  8. Cloning the Horse RNA Polymerase I Promoter and Its Application to Studying Influenza Virus Polymerase Activity.

    Science.gov (United States)

    Lu, Gang; He, Dong; Wang, Zengchao; Ou, Shudan; Yuan, Rong; Li, Shoujun

    2016-05-31

    An influenza virus polymerase reconstitution assay based on the human, dog, or chicken RNA polymerase I (PolI) promoter has been developed and widely used to study the polymerase activity of the influenza virus in corresponding cell types. Although it is an important member of the influenza virus family and has been known for sixty years, no studies have been performed to clone the horse PolI promoter or to study the polymerase activity of equine influenza virus (EIV) in horse cells. In our study, the horse RNA PolI promoter was cloned from fetal equine lung cells. Using the luciferase assay, it was found that a 500 bp horse RNA PolI promoter sequence was required for efficient transcription. Then, using the developed polymerase reconstitution assay based on the horse RNA PolI promoter, the polymerase activity of two EIV strains was compared, and equine myxovirus resistance A protein was identified as having the inhibiting EIV polymerase activity function in horse cells. Our study enriches our knowledge of the RNA PolI promoter of eukaryotic species and provides a useful tool for the study of influenza virus polymerase activity in horse cells.

  9. Analysis of the insulin receptor gene in noninsulin-dependent diabetes mellitus by denaturing gradient gel blots: A clinical research center study

    Energy Technology Data Exchange (ETDEWEB)

    Magre, J.; Goldfine, A.B.; Warram, J.H. [Harvard Medical School, Boston, MA (United States)] [and others

    1995-06-01

    We have used a new technique of denaturing gradient gel blotting to determine the prevalence of alterations in the intracellular domain of the insulin receptor in normal individuals and subjects with non-insulin-dependent diabetes mellitus (NIDDM). This method detects DNA sequence differences as restriction fragment melting polymorphisms (RFMP) and is sensitive to changes in sequence at both restriction sites and within the fragments themselves. Using restriction digests with AluI, HaeIII, HinfI, RsaI, Sau3A, and Sau96, 12 RFMPs were found to localize to the region of the {beta}-subunit of the insulin receptor gene. Using exon-specific probes, these RFMPs could be localized to specific regions surrounding individual exons, including exons, 14, 15, 16, 18, 20, and 22. In general, linkage disequilibrium between polymorphisms was inversely related to their distance in the gene structure, although there was a {open_quotes}hot spot{close_quotes} for recombination between exons 19 and 20. No difference in melting temperatures or allele frequency was observed between NIDDM patients and controls. These data indicate that the region of the insulin receptor gene coding for the intracellular portion of the {beta}-subunit is highly polymorphic and that polymorphisms surrounding specific exons can be identified by denaturing gradient gel blotting, but there is no evidence that variation at this locus contributes to NIDDM susceptibility in most individuals. 36 refs., 3 figs., 3 tabs.

  10. Identification of bacterial community composition in freshwater aquaculture system farming of Litopenaeus vannamei reveals distinct temperature-driven patterns.

    Science.gov (United States)

    Tang, Yuyi; Tao, Peiying; Tan, Jianguo; Mu, Haizhen; Peng, Li; Yang, Dandan; Tong, Shilu; Chen, Lanming

    2014-08-07

    Change in temperature is often a major environmental factor in triggering waterborne disease outbreaks. Previous research has revealed temporal and spatial patterns of bacterial population in several aquatic ecosystems. To date, very little information is available on aquaculture environment. Here, we assessed environmental temperature effects on bacterial community composition in freshwater aquaculture system farming of Litopenaeus vannamei (FASFL). Water samples were collected over a one-year period, and aquatic bacteria were characterized by polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) and 16S rDNA pyrosequencing. Resulting DGGE fingerprints revealed a specific and dynamic bacterial population structure with considerable variation over the seasonal change, suggesting that environmental temperature was a key driver of bacterial population in the FASFL. Pyrosequencing data further demonstrated substantial difference in bacterial community composition between the water at higher (WHT) and at lower (WLT) temperatures in the FASFL. Actinobacteria, Proteobacteria and Bacteroidetes were the highest abundant phyla in the FASFL, however, a large number of unclassified bacteria contributed the most to the observed variation in phylogenetic diversity. The WHT harbored remarkably higher diversity and richness in bacterial composition at genus and species levels when compared to the WLT. Some potential pathogenenic species were identified in both WHT and WLT, providing data in support of aquatic animal health management in the aquaculture industry.

  11. Identification of Bacterial Community Composition in Freshwater Aquaculture System Farming of Litopenaeus vannamei Reveals Distinct Temperature-Driven Patterns

    Directory of Open Access Journals (Sweden)

    Yuyi Tang

    2014-08-01

    Full Text Available Change in temperature is often a major environmental factor in triggering waterborne disease outbreaks. Previous research has revealed temporal and spatial patterns of bacterial population in several aquatic ecosystems. To date, very little information is available on aquaculture environment. Here, we assessed environmental temperature effects on bacterial community composition in freshwater aquaculture system farming of Litopenaeus vannamei (FASFL. Water samples were collected over a one-year period, and aquatic bacteria were characterized by polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE and 16S rDNA pyrosequencing. Resulting DGGE fingerprints revealed a specific and dynamic bacterial population structure with considerable variation over the seasonal change, suggesting that environmental temperature was a key driver of bacterial population in the FASFL. Pyrosequencing data further demonstrated substantial difference in bacterial community composition between the water at higher (WHT and at lower (WLT temperatures in the FASFL. Actinobacteria, Proteobacteria and Bacteroidetes were the highest abundant phyla in the FASFL, however, a large number of unclassified bacteria contributed the most to the observed variation in phylogenetic diversity. The WHT harbored remarkably higher diversity and richness in bacterial composition at genus and species levels when compared to the WLT. Some potential pathogenenic species were identified in both WHT and WLT, providing data in support of aquatic animal health management in the aquaculture industry.

  12. Imaging high-intensity focused ultrasound-induced tissue denaturation by multispectral photoacoustic method: an ex vivo study.

    Science.gov (United States)

    Sun, Yao; O'Neill, Brian

    2013-03-10

    We present an ex vivo study for the first time, to the best of our knowledge, in multispectral photoacoustic imaging (PAI) of tissue denaturation induced by high-intensity focused ultrasound (HIFU) in this paper. Tissue of bovine muscle was thermally treated in a heated water bath and by HIFU, and then was imaged using a multispectral photoacoustic approach. Light at multiple optical wavelengths between 700 and 900 nm was delivered to the treated bovine muscle tissue to excite the photoacoustic signal. Apparent tissue denaturation has been observed in multispectral photoacoustic images after being treated in a water bath and by HIFU. It is interesting that the denaturation is more striking at shorter optical wavelength photoacoustic images than at longer optical wavelength photoacoustic images. Multispectral photoacoustic images of the tissue denaturation were further analyzed and the photoacoustic spectrums of the denaturized tissue were calculated in this paper. This study suggests that a multispectral PAI approach might be a promising tool to evaluate tissue denaturation induced by HIFU treatment.

  13. Denatured-state energy landscapes of a protein structural database reveal the energetic determinants of a framework model for folding.

    Science.gov (United States)

    Wang, Suwei; Gu, Jenny; Larson, Scott A; Whitten, Steven T; Hilser, Vincent J

    2008-09-19

    Position-specific denatured-state thermodynamics were determined for a database of human proteins by use of an ensemble-based model of protein structure. The results of modeling denatured protein in this manner reveal important sequence-dependent thermodynamic properties in the denatured ensembles as well as fundamental differences between the denatured and native ensembles in overall thermodynamic character. The generality and robustness of these results were validated by performing fold-recognition experiments, whereby sequences were matched with their respective folds based on amino acid propensities for the different energetic environments in the protein, as determined through cluster analysis. Correlation analysis between structure and energetic information revealed that sequence segments destined for beta-sheet in the final native fold are energetically more predisposed to a broader repertoire of states than are sequence segments destined for alpha-helix. These results suggest that within the subensemble of mostly unstructured states, the energy landscapes are dominated by states in which parts of helices adopt structure, whereas structure formation for sequences destined for beta-strand is far less probable. These results support a framework model of folding, which suggests that, in general, the denatured state has evolutionarily evolved to avoid low-energy conformations in sequences that ultimately adopt beta-strand. Instead, the denatured state evolved so that sequence segments that ultimately adopt alpha-helix and coil will have a high intrinsic structure formation capability, thus serving as potential nucleation sites.

  14. Combination of multiplex PCR with denaturing high-performance liquid chromatography for rapid detection of Mycobacterium genus and simultaneous identification of the Mycobacterium tuberculosis complex.

    Science.gov (United States)

    Chen, Ru; Gao, Xiao-Bo; Liu, Zhi-Hui; Shen, Xiao-Bing; Guo, Ai-Zhen; Duan, Yan-Yu; Liu, Zhi-Ling; Wu, Xiao-Wei; Zhu, Dao-Zhong

    2013-09-01

    A new assay with the combination of multiplex polymerase chain reaction and denaturing high-performance liquid chromatography analysis was developed for simultaneous detection of Mycobacterium genus and identification of the Mycobacterium tuberculosis complex (MTC). Targeting at genus-specific 16S rRNA sequence of Mycobacterium and specific insertion elements IS6110 and IS1081 of MTC, the assay was validated with 84 strains covering 23 mycobacteria species and 30 strains of non-mycobacteria species. No cross reactivity was observed. Clinical application was carried out on 198 specimens (155 human sputum and 43 bovine tissue samples) and compared with culture. The multiplex assay detected all culture-positive (36 in number) and 35.2% (57/162) culture-negative specimens. The molecular assay was fast that could be completed within 1 h on purified DNA, with the limit of detection as 0.8-1.6 pg per reaction on DNA template. This work provided a useful laboratory tool for rapid identification of Mycobacterium and differentiation of MTC and nontuberculous mycobacteria.

  15. Diagnosis of cutaneous T-cell lymphoma detecting T-cell receptor gamma chain gene monoclonality by denaturing gradient gel electrophoresis.

    Science.gov (United States)

    Lapière, K; Dhaene, K; Matthieu, L; Hübner, R; Lambert, J; Van Marck, E

    1999-04-01

    Cutaneous T-cell lymphomas represent a group of malignant lymphoproliferative disorders characterised by the occurrence of a monoclonal population of T-lymphocytes. Diagnosis of early stages of this disease is a difficult challenge for both the dermatologist and the dermatopathologist. With the aid of the polymerase chain reaction it is possible to amplify specific regions of the T-cell receptor gamma gene. The amplification products can then be separated by denaturing gradient gel electrophoresis in order to detect a monoclonal population of T-lymphocytes in the infiltrate. We studied 4 patients with the clinicopathologic diagnosis of mycosis fungoides and 2 patients diagnosed as large plaque parapsoriasis. A monoclonal population was detected in 3 of the 4 mycosis fungoides cases and in 1 of the patients with large plaque parapsoriasis. This indicates that our analysis can help us establishing a diagnosis, and it can also help us to identify patients with a possible early stage of the disease, which clinically or histologically is not yet recognised as such.

  16. Preparation of Taq DNA Polymerase by Thermal Purification%Taq DNA聚合酶的热纯化制备

    Institute of Scientific and Technical Information of China (English)

    丁燕华; 刘树涛; 齐庆远

    2011-01-01

    [Objective]The paper was to improve the preparation efficacy of Taq DNA polymerase.[Method]Ni column was used to purify Taq DNA polymerase carrying with 6xHis tag, and recombined vector.Using the thermal-resistant characteristics of Taq DNA polymerase, the crude extract was treated at 75 ℃ for 1 h, and the activity of prepared enzyme solution was verified by PCR test.[Result]The recombinant pET-32A-Taq could highly express in BL21 (DE3) host bacteria and remove hybrid protein by thermal denaturation.The enzyme preparation with the activity further higher than purchased Taq DNA polymerase was obtained.[Conclusion]Taq DNA polymerase prepared by thermal purification method is simple with low cost, and can meet the needs of a large number of conventional PCR amplification.%[目的]提高Taq DNA聚合酶的制备效率.[方法]利用Ni柱亲和色谱纯化载有6xHis标记的Taq DNA聚合酶,并重组载体,利用Taq DNA聚合酶的耐热特性,对粗提液75℃处理1h,之后通过PCR试验验证制备酶液的活力.[结果]所获重组的pET-32A-Taq能够在BL21(DE3)宿主菌中高效表达并可通过热变性去除杂蛋白,获得了活力远高于购买的Taq DNA聚合酶的酶制剂.[结论]使用热纯化法制备的Taq DNA聚合酶工艺简单,成本较低,能满足常规大量PCR实验要求.

  17. Preparation of Taq DNA Polymerase by Thermal Purification%Taq DNA聚合酶的热纯化制备

    Institute of Scientific and Technical Information of China (English)

    丁燕华; 刘树涛; 齐庆远

    2011-01-01

    [ Objective ] The paper was to improve the preparation efficacy of Taq DNA polymerase. [ Method ] Ni column was used to purify Taq DNA polymerase carrying with 6xHis tag, and recombined vector. Using the thermal -resistant characteristics of TaqDNA polymerase, the crude extract was treated at 75 ℃ for 1 h, and the activity of prepared enzyme solution was verified by PCR test. [ Result] The recombinant pET-32A-Taq could highly express in BL21 (DE3) host bacteria and remove hybrid protein by thermal denaturation. The enzyme preparation with the activity further higher than purchased TaqDNA polymerase was obtained. [ Conclusion ] Taq DNA polymerase prepared by thermal purification method is simple with low cost, and can meet the needs of a large number of conventional PCR amplification.%[目的]提高Taq DNA聚合酶的制备效率.[方法]利用Ni柱亲和色谱纯化载有6xHis标记的Taq DNA聚合酶,并重组载体,利用Taq DNA聚合酶的耐热特性,对粗提液75℃处理1h,之后通过PCR试验验证制备酶液的活力.[结果]所获重组的pET-32A-Taq能够在BL21(DE3)宿主菌中高效表达并可通过热变性去除杂蛋白,获得了活力远高于购买的Taq DNA聚合酶的酶制剂.[结论]使用热纯化法制备的Taq DNA聚合酶工艺简单,成本较低,能满足常规大量PCR实验要求.

  18. Insertion of the T3 DNA polymerase thioredoxin binding domain enhances the processivity and fidelity of Taq DNA polymerase

    OpenAIRE

    2003-01-01

    Insertion of the T3 DNA polymerase thioredoxin binding domain (TBD) into the distantly related thermostable Taq DNA polymerase at an analogous position in the thumb domain, converts the Taq DNA polymerase from a low processive to a highly processive enzyme. Processivity is dependent on the presence of thioredoxin. The enhancement in processivity is 20–50-fold when compared with the wild-type Taq DNA polymerase or to the recombinant polymerase in the absence of thioredoxin. The recombinant Taq...

  19. Multiple unfolding intermediates of human placental alkaline phosphatase in equilibrium urea denaturation.

    Science.gov (United States)

    Hung, H C; Chang, G G

    2001-12-01

    Alkaline phosphatase is an enzyme with a typical alpha/beta hydrolase fold. The conformational stability of the human placental alkaline phosphatase was examined with the chemical denaturant urea. The red shifts of fluorescence spectra show a complex unfolding process involving multiple equilibrium intermediates indicating differential stability of the subdomains of the enzyme. None of these unfolding intermediates were observed in the presence of 83 mM NaCl, indicating the importance of ionic interactions in the stabilization of the unfolding intermediates. Guanidinium chloride, on the other hand, could stabilize one of the unfolding intermediates, which is not a salt effect. Some of the unfolding intermediates were also observed in circular dichroism spectroscopy, which clearly indicates steady loss of helical structure during unfolding, but very little change was observed for the beta strand content until the late stage of the unfolding process. The enzyme does not lose its phosphate-binding ability after substantial tertiary structure changes, suggesting that the substrate-binding region is more resistant to chemical denaturant than the other structural domains. Global analysis of the fluorescence spectral change demonstrated the following folding-unfolding process of the enzyme: N I(1) I(2) I(3) I(4) I(5) D. These discrete intermediates are stable at urea concentrations of 2.6, 4.1, 4.7, 5.5, 6.6, and 7.7 M, respectively. These intermediates are further characterized by acrylamide and/or potassium iodide quenching of the intrinsic fluorescence of the enzyme and by the hydrophobic probes, 1-anilinonaphthalene-8-sulfonic acid and 4,4'-dianilino-1,1'-binaphthyl-5,5'-disulfonic acid. The stepwise unfolding process was interpreted by the folding energy landscape in terms of the unique structure of the enzyme. The rigid central beta-strand domain is surrounded by the peripheral alpha-helical and coil structures, which are marginally stable toward a chemical

  20. Stabilizing effect of biochar on soil extracellular enzymes after a denaturing stress.

    Science.gov (United States)

    Elzobair, Khalid A; Stromberger, Mary E; Ippolito, James A

    2016-01-01

    Stabilizing extracellular enzymes may maintain enzymatic activity while protecting enzymes from proteolysis and denaturation. A study determined whether a fast pyrolysis hardwood biochar (CQuest™) would reduce evaporative losses, subsequently stabilizing soil extracellular enzymes and prohibiting potential enzymatic activity loss following a denaturing stress (microwaving). Soil was incubated in the presence of biochar (0%, 1%, 2%, 5%, or 10% by wt.) for 36 days and then exposed to microwave energies (0, 400, 800, 1600, or 3200 J g(-1) soil). Soil enzymes (β-glucosidase, β-d-cellobiosidase, N-acetyl-β-glucosaminidase, phosphatase, leucine aminopeptidase, β-xylosidase) were analyzed by fluorescence-based assays. Biochar amendment reduced leucine aminopeptidase and β-xylosidase potential activity after the incubation period and prior to stress exposure. The 10% biochar rate reduced soil water loss at the lowest stress level (400 J microwave energy g(-1) soil). Enzyme stabilization was demonstrated for β-xylosidase; intermediate biochar application rates prevented a complete loss of this enzyme's potential activity after soil was exposed to 400 (1% biochar treatment) or 1600 (5% biochar treatment) J microwave energy g(-1) soil. Remaining enzyme potential activities were not affected by biochar, and activities decreased with increasing stress levels. We concluded that biochar has the potential to reduce evaporative soil water losses and stabilize certain extracellular enzymes where activity is maintained after a denaturing stress; this effect was biochar rate and enzyme dependent. While biochar may reduce the potential activity of certain soil extracellular enzymes, this phenomenon was not universal as the majority of enzymes assayed in this study were unaffected by exposure to biochar.

  1. Detection of enzymes active on various beta-1,3-glucans after denaturing polyacrylamide gel electrophoresis.

    Science.gov (United States)

    Trudel, J; Grenier, J; Asselin, A

    1998-07-01

    Enzymes were assayed for glucanase activity after denaturing sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) in gels containing beta-1,3-glucans embedded as substrate. Lentinan, curdlan, paramylon, baker's yeast alkali-insoluble glucan, baker's yeast alkali-soluble glucan and carboxymethyl (CM)-pachyman were compared to oligomeric laminarin, which is the usual substrate for assaying beta-1,3-glucanase activities. Detecting enzyme activities by aniline blue fluorescent staining was also compared with the staining of released reducing sugars by 2,3,5-triphenyltetrazolium chloride (TTC). For the nonreduced proteins, the Driselase extract exhibited one major band at 32.5 kDa and one less intense band at 23 kDa for most substrates with the two detection procedures. No Lyticase enzyme was detected in either detection procedures for all tested substrates. For barley enzymes, no activity was revealed after aniline blue staining while one undescribed 19 kDa glucanase activity was best shown after TTC staining with curdlan, paramylon and CM-pachyman as substrates. In the case of reduced proteins, the Lyticase extract yielded three bands (33, 36 and 46 kDa) on several substrates with both detection procedures. This was the same for the barley leaf extract (32, 36 and 39 kDa). The Driselase extract showed one 42 kDa band. Many enzymes active on beta-1,3-glucans are thus best revealed when proteins are denatured and reduced and when protein renaturation after SDS-PAGE involves a pH 8.0 treatment and the inclusion of 1 mM cysteine in buffers. However, some enzymes are only detected when proteins are denatured without reduction. Finally, the use of various polymeric beta-1,3-glucan substrates different from oligomeric laminarin is necessary to detect new types of enzymes such as the 19 kDa barley glucanase.

  2. Bordetella pertussis diagnosed by polymerase chain reaction

    DEFF Research Database (Denmark)

    Birkebaek, N H; Heron, I; Skjødt, K

    1994-01-01

    The object of this work was to test the polymerase chain reaction (PCR) for demonstration of Bordetella pertussis (BP) in nasopharyngeal secretions. The method was applied to patients with recently diagnosed pertussis, as verified by BP culture. In order to test the sensitivity and specificity of...

  3. Polymerase Chain Reaction for Educational Settings.

    Science.gov (United States)

    Garrison, Stephen J.; dePamphillis, Claude

    1994-01-01

    Suggests the incorporation of the Polymerase Chain Reaction (PCR) technique into high school and college biology laboratories. Discusses the following sections: (1) current PCR applications; (2) PCR technique; (3) Manual and Machine PCR; (4) Manual PCR Preparations and Procedure; (5) Materials, Supplies, and Recipes; (6) Primer Selection; and (7)…

  4. RNA polymerase II collision interrupts convergent transcription

    DEFF Research Database (Denmark)

    Hobson, David J; Wei, Wu; Steinmetz, Lars M

    2012-01-01

    Antisense noncoding transcripts, genes-within-genes, and convergent gene pairs are prevalent among eukaryotes. The existence of such transcription units raises the question of what happens when RNA polymerase II (RNAPII) molecules collide head-to-head. Here we use a combination of biochemical...

  5. Evolution of DNA polymerases: an inactivated polymerase-exonuclease module in Pol epsilon and a chimeric origin of eukaryotic polymerases from two classes of archaeal ancestors.

    Science.gov (United States)

    Tahirov, Tahir H; Makarova, Kira S; Rogozin, Igor B; Pavlov, Youri I; Koonin, Eugene V

    2009-03-18

    Evolution of DNA polymerases, the key enzymes of DNA replication and repair, is central to any reconstruction of the history of cellular life. However, the details of the evolutionary relationships between DNA polymerases of archaea and eukaryotes remain unresolved. We performed a comparative analysis of archaeal, eukaryotic, and bacterial B-family DNA polymerases, which are the main replicative polymerases in archaea and eukaryotes, combined with an analysis of domain architectures. Surprisingly, we found that eukaryotic Polymerase epsilon consists of two tandem exonuclease-polymerase modules, the active N-terminal module and a C-terminal module in which both enzymatic domains are inactivated. The two modules are only distantly related to each other, an observation that suggests the possibility that Pol epsilon evolved as a result of insertion and subsequent inactivation of a distinct polymerase, possibly, of bacterial descent, upstream of the C-terminal Zn-fingers, rather than by tandem duplication. The presence of an inactivated exonuclease-polymerase module in Pol epsilon parallels a similar inactivation of both enzymatic domains in a distinct family of archaeal B-family polymerases. The results of phylogenetic analysis indicate that eukaryotic B-family polymerases, most likely, originate from two distantly related archaeal B-family polymerases, one form giving rise to Pol epsilon, and the other one to the common ancestor of Pol alpha, Pol delta, and Pol zeta. The C-terminal Zn-fingers that are present in all eukaryotic B-family polymerases, unexpectedly, are homologous to the Zn-finger of archaeal D-family DNA polymerases that are otherwise unrelated to the B family. The Zn-finger of Polepsilon shows a markedly greater similarity to the counterpart in archaeal PolD than the Zn-fingers of other eukaryotic B-family polymerases. Evolution of eukaryotic DNA polymerases seems to have involved previously unnoticed complex events. We hypothesize that the archaeal

  6. Screening for mutations in the uroporphyrinogen decarboxylase gene using denaturing gradient gel electrophoresis

    DEFF Research Database (Denmark)

    Christiansen, L; Ged, C; Hombrados, I

    1999-01-01

    The two porphyrias, familial porphyria cutanea tarda (fPCT) and hepatoerythropoietic porphyria (HEP), are associated with mutations in the gene encoding the enzyme uroporphyrinogen decarboxylase (UROD). Several mutations, most of which are private, have been identified in HEP and fPCT patients......, confirming the heterogeneity of the underlying genetic defects of these diseases. We have established a denaturing gradient gel electrophoresis (DGGE) assay for mutation detection in the UROD gene, enabling the simultaneous screening for known and unknown mutations. The established assay has proved able...

  7. Light and Heat Induced Denaturation of Photosystem Ⅱ Core Antenna Complex CP47

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    Light and heat induced denaturation of CP47, the core antenna complex of photosystem Ⅱ purified from spinach, were investigated using absorption and circular dichroism spectra.Light caused the destruction of chlorophyll a and excitonic interaction of chlorophyll a in CP47, while the protein secondary structure was not apparently changed.Heat induced the destruction of protein secondary structure and excitonic interaction of chlorophyll a, but the chlorophyll a molecule was not damaged.The results suggest that both the chlorophyll a molecular structure and the protein native conformation are necessary for excitonic interaction of chlorophyll a and the energy transfer function of the chlorophyll a binding protein.

  8. Optical Tweezers Analysis of Double-Stranded DNA Denaturation in the Presence of Urea

    Science.gov (United States)

    Zhu, Chunli; Li, Jing

    2016-09-01

    Urea is a kind of denaturant prone to form hydrogen bonds with the electronegative centers of the nitrogenous bases, threatening the stability of hydrogen bonds between DNA base pairs. In this paper, the stability and stiffness of DNA double helix influenced by urea are investigated at single-molecule level using optical tweezers. Experimental results show that DNA's double helix stability and stiffness both decrease with increasing urea concentration. In addition, the re-forming of ruptured hydrogen bonds between the base pairs is blocked by urea as the tension on DNA is released.

  9. Air leak seal for lung dissection plane with diode laser irradiation: monitoring heat-denature with auto-fluorescence

    Science.gov (United States)

    Gotoh, Maya; Arai, Tsunenori

    2008-02-01

    We studied the monitoring of heat-denature by autofluorescence spectrum from lung dissection plane during laser air leak sealing procedure. In order to seal the air leakage from lung in thoracotomy, we proposed novel laser sealing method with the combination of the diode laser (810nm wavelength) irradiation and indocyanine green staining (peak absorption wavelength: 805 nm). This sealing method is expected to preserve the postoperative ventilatory capacity and achieve minimally invasive surgery. We previously reported that this laser sealing only requires thin sealing margin (less than 300 μm in thickness) compared with that of the suturing or stapling. The most serious issue on the laser air leak sealing might be re-air-leakage due to rigid surface layer caused by excessive heat-denature, such as carbonization. We should achieve laser air leak sealing minimizing the degree of heat denature. Dissection planes of isolated porcine lung with /without the diode laser irradiation were prepared as samples. We measured the auto-fluorescence from these samples using a spectrometer. When the diode laser was irradiated with 400J/cm2, the surface of diode laser irradiated lung was fully carbonized. The ration of auto-fluorescence emission of 450nm / 500 nm, with 280 nm excitation wavelength was decreased less tha 50 % of initial value. That of 600 nm / 500 nm was increased over 700 % of initial value. The decreasing of the 450 nm auto-fluorescence intensity might be attributed to the heat-denaturing of the interstitial collagen in lung. However, increasing of the 600 nm didn't specify the origins, we suppose it might be originated from heat-denature substance, like carbonization. We could establish the useful monitoring for lung heat-denaturing with simple methodology. We think the auto-fluorescence measurement can be helpful not only for understanding the sealing mechanism, but also for controlling the degree of heat-denaturing during the procedure.

  10. Effect of changing temperature on anaerobic hydrogen production and microbial community composition in an open-mixed culture bioreactor

    Energy Technology Data Exchange (ETDEWEB)

    Karadag, Dogan; Puhakka, Jaakko A. [Department of Chemistry and Bioengineering, Tampere University of Technology, Tampere (Finland)

    2010-10-15

    The temperature effect (37-65 C) on H{sub 2} production from glucose in an open-mixed culture bioreactor using an enrichment culture from a hot spring was studied. The dynamics of microbial communities was investigated by polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE). At 45 and 60 C the H{sub 2} production was the highest i.e. 1.71 and 0.85 mol H{sub 2}/mol glucose, respectively. No H{sub 2} was produced at temperatures 50 and 55 C. At 37-45 C, H{sub 2} production was produced by butyrate type fermentation while fermentation mechanism changed to ethanol type at 60 C. Clostridium species were dominant at 37-45 C while at 50-55 C and 60 C the culture was dominated by Bacillus coagulans and Thermoanaerobacterium, respectively. In the presence of B. Coagulans the metabolism was directed to lactate production. The results show that the mixed culture had two optima for H{sub 2} production and that the microbial communities and metabolic patterns promptly changed according to changing temperatures. (author)

  11. Effect of sulfoxides on the thermal denaturation of hen lysozyme: A calorimetric and Raman study

    Science.gov (United States)

    Torreggiani, A.; Di Foggia, M.; Manco, I.; De Maio, A.; Markarian, S. A.; Bonora, S.

    2008-11-01

    A multidisciplinary study of the thermal denaturation of lysozyme in the presence of three sulfoxides with different length in hydrocarbon chain (DMSO, DESO, and DPSO) was carried out by means of DSC, Raman spectroscopy, and SDS-PAGE techniques. In particular, the Td and Δ H values obtained from the calorimetric measurements showed that lysozyme is partially unfolded by sulfoxides but most of the conformation holds native state. The sulfoxide denaturing ability increases in the order DPSO > DESO > DMSO. Moreover, only DMSO and DESO have a real effect in preventing the heat-induced inactivation of the protein and their maximum heat-protective ability is reached when the DMSO and DESO amount is ⩾25% w/w. The sulfoxide ability to act as effective protective agents against the heat-induced inactivation was confirmed by the protein analysis. The enzymatic activity, as well as the SDS-PAGE analysis, suggested that DESO, having a low hydrophobic character and a great ability to stabilise the three-dimensional water structure, is the most heat-protective sulfoxide. An accurate evaluation of the heat-induced conformational changes of the lysozyme structure before and after sulfoxide addition was obtained by the analysis of the Raman spectra. The addition of DMSO or DESO in low concentration resulted to sensitively decrease the heat-induced structural modifications of the protein.

  12. Two conformational states in D-shaped DNA: Effects of local denaturation

    Science.gov (United States)

    Lee, O.-Chul; Kim, Cheolhee; Kim, Jae-Yeol; Lee, Nam Ki; Sung, Wokyung

    2016-06-01

    The bending of double-stranded(ds) DNA on the nano-meter scale plays a key role in many cellular processes such as nucleosome packing, transcription-control, and viral-genome packing. In our recent study, a nanometer-sized dsDNA bent into a D shape was formed by hybridizing a circular single-stranded(ss) DNA and a complementary linear ssDNA. Our fluorescence resonance energy transfer (FRET) measurement of D-DNA revealed two types of conformational states: a less-bent state and a kinked state, which can transform into each other. To understand the origin of the two deformed states of D-DNA, here we study the presence of open base-pairs in the ds portion by using the breathing-DNA model to simulate the system. We provide strong evidence that the two states are due to the emergence of local denaturation, i.e., a bubble in the middle and two forks at ends of the dsDNA portion. We also study the system analytically and find that the free-energy landscape is bistable with two minima representative of the two states. The kink and fork sizes estimated by the analytical calculation are also in excellent agreement with the results of the simulation. Thus, this combined experimental-simulation-analytical study corroborates that highly bent D-DNA reduces bending stress via local denaturation.

  13. Culture-independent analysis of probiotic products by denaturing gradient gel electrophoresis.

    Science.gov (United States)

    Temmerman, R; Scheirlinck, I; Huys, G; Swings, J

    2003-01-01

    In order to obtain functional and safe probiotic products for human consumption, fast and reliable quality control of these products is crucial. Currently, analysis of most probiotics is still based on culture-dependent methods involving the use of specific isolation media and identification of a limited number of isolates, which makes this approach relatively insensitive, laborious, and time-consuming. In this study, a collection of 10 probiotic products, including four dairy products, one fruit drink, and five freeze-dried products, were subjected to microbial analysis by using a culture-independent approach, and the results were compared with the results of a conventional culture-dependent analysis. The culture-independent approach involved extraction of total bacterial DNA directly from the product, PCR amplification of the V3 region of the 16S ribosomal DNA, and separation of the amplicons on a denaturing gradient gel. Digital capturing and processing of denaturing gradient gel electrophoresis (DGGE) band patterns allowed direct identification of the amplicons at the species level. This whole culture-independent approach can be performed in less than 30 h. Compared with culture-dependent analysis, the DGGE approach was found to have a much higher sensitivity for detection of microbial strains in probiotic products in a fast, reliable, and reproducible manner. Unfortunately, as reported in previous studies in which the culture-dependent approach was used, a rather high percentage of probiotic products suffered from incorrect labeling and yielded low bacterial counts, which may decrease their probiotic potential.

  14. Urea-induced denaturation of apolipoprotein serum amyloid A reveals marginal stability of hexamer

    Science.gov (United States)

    Wang, Limin; Colón, Wilfredo

    2005-01-01

    Serum Amyloid A (SAA) is an acute phase reactant protein that is predominantly found bound to high-density lipoprotein in plasma. Upon inflammation, the plasma concentration of SAA can increase dramatically, occasionally leading to the development of amyloid A (AA) amyloidosis, which involves the deposition of SAA amyloid fibrils in major organs. We previously found that the murine isoform SAA2.2 exists in aqueous solution as a hexamer containing a central channel. Here we show using various biophysical and biochemical techniques that the SAA2.2 hexamer can be totally dissociated into monomer by ~2 M urea, with the concerted loss of its α-helical structure. However, limited trypsin proteolysis experiments in urea showed a conserved digestion profile, suggesting the preservation of major backbone topological features in the urea-denatured state of SAA2.2. The marginal stability of hexameric SAA2.2 and the presence of residual structure in the denatured monomeric protein suggest that both forms may interconvert in vivo to exert different functions to meet the various needs during normal physiological conditions and in response to inflammatory stimuli. PMID:15937280

  15. Urea denatured state ensembles contain extensive secondary structure that is increased in hydrophobic proteins

    Science.gov (United States)

    Nick Pace, C; Huyghues-Despointes, Beatrice M P; Fu, Hailong; Takano, Kazufumi; Scholtz, J Martin; Grimsley, Gerald R

    2010-01-01

    The goal of this article is to gain a better understanding of the denatured state ensemble (DSE) of proteins through an experimental and computational study of their denaturation by urea. Proteins unfold to different extents in urea and the most hydrophobic proteins have the most compact DSE and contain almost as much secondary structure as folded proteins. Proteins that unfold to the greatest extent near pH 7 still contain substantial amounts of secondary structure. At low pH, the DSE expands due to charge–charge interactions and when the net charge per residue is high, most of the secondary structure is disrupted. The proteins in the DSE appear to contain substantial amounts of polyproline II conformation at high urea concentrations. In all cases considered, including staph nuclease, the extent of unfolding by urea can be accounted for using the data and approach developed in the laboratory of Wayne Bolen (Auton et al., Proc Natl Acad Sci 2007; 104:15317–15323). PMID:20198681

  16. Approach to analysis of single nucleotide polymorphisms by automated constant denaturant capillary electrophoresis

    Energy Technology Data Exchange (ETDEWEB)

    Bjoerheim, Jens; Abrahamsen, Torveig Weum; Kristensen, Annette Torgunrud; Gaudernack, Gustav; Ekstroem, Per O

    2003-05-15

    Melting gel techniques have proven to be amenable and powerful tools in point mutation and single nucleotide polymorphism (SNP) analysis. With the introduction of commercially available capillary electrophoresis instruments, a partly automated platform for denaturant capillary electrophoresis with potential for routine screening of selected target sequences has been established. The aim of this article is to demonstrate the use of automated constant denaturant capillary electrophoresis (ACDCE) in single nucleotide polymorphism analysis of various target sequences. Optimal analysis conditions for different single nucleotide polymorphisms on ACDCE are evaluated with the Poland algorithm. Laboratory procedures include only PCR and electrophoresis. For direct genotyping of individual SNPs, the samples are analyzed with an internal standard and the alleles are identified by co-migration of sample and standard peaks. In conclusion, SNPs suitable for melting gel analysis based on theoretical thermodynamics were separated by ACDCE under appropriate conditions. With this instrumentation (ABI 310 Genetic Analyzer), 48 samples could be analyzed without any intervention. Several institutions have capillary instrumentation in-house, thus making this SNP analysis method accessible to large groups of researchers without any need for instrument modification.

  17. Effects of thermally induced denaturation on technological-functional properties of whey protein isolate-based films.

    Science.gov (United States)

    Schmid, M; Krimmel, B; Grupa, U; Noller, K

    2014-09-01

    This study examined how and to what extent the degree of denaturation affected the technological-functional properties of whey protein isolate (WPI)-based coatings. It was observed that denaturation affected the material properties of WPI-coated films significantly. Surface energy decreased by approximately 20% compared with native coatings. Because the surface energy of a coating should be lower than that of the substrate, this might result in enhanced wettability characteristics between WPI-based solution and substrate surface. Water vapor barrier properties increased by about 35% and oxygen barrier properties increased by approximately 33%. However, significant differences were mainly observed between coatings made of fully native WPI and ones with a degree of denaturation of 25%. Higher degrees of denaturation did not lead to further improvement of material properties. This observation offers cost-saving potential: a major share of denatured whey proteins may be replaced by fully native ones that are not exposed to energy-intensive heat treatment. Furthermore, native WPI solutions can be produced with higher dry matter content without gelatinizing. Hence, less moisture has to be removed through drying, resulting in reduced energy consumption.

  18. On the role of the Escherichia coli RNA polymerase sigma factor in T4 phage development.

    Science.gov (United States)

    Zograff, Y N

    1981-01-01

    The rpoD800 mutation causing the temperature sensitivity of Escherichia coli RNA polymerase sigma factor has been used to demonstrate that the bacterial sigma factor is necessary throughout T4 phage development. In T4-infected RpoD800 mutant cells RNA synthesis is equally depressed at restrictive temperature at early and late stages of infection. The results show the bacterial sigma factor to be necessary for the synthesis of all RNA types in infected cells.

  19. Structural biology of bacterial RNA polymerase.

    Science.gov (United States)

    Murakami, Katsuhiko S

    2015-05-11

    Since its discovery and characterization in the early 1960s (Hurwitz, J. The discovery of RNA polymerase. J. Biol. Chem. 2005, 280, 42477-42485), an enormous amount of biochemical, biophysical and genetic data has been collected on bacterial RNA polymerase (RNAP). In the late 1990s, structural information pertaining to bacterial RNAP has emerged that provided unprecedented insights into the function and mechanism of RNA transcription. In this review, I list all structures related to bacterial RNAP (as determined by X-ray crystallography and NMR methods available from the Protein Data Bank), describe their contributions to bacterial transcription research and discuss the role that small molecules play in inhibiting bacterial RNA transcription.

  20. Structural Biology of Bacterial RNA Polymerase

    Directory of Open Access Journals (Sweden)

    Katsuhiko S. Murakami

    2015-05-01

    Full Text Available Since its discovery and characterization in the early 1960s (Hurwitz, J. The discovery of RNA polymerase. J. Biol. Chem. 2005, 280, 42477–42485, an enormous amount of biochemical, biophysical and genetic data has been collected on bacterial RNA polymerase (RNAP. In the late 1990s, structural information pertaining to bacterial RNAP has emerged that provided unprecedented insights into the function and mechanism of RNA transcription. In this review, I list all structures related to bacterial RNAP (as determined by X-ray crystallography and NMR methods available from the Protein Data Bank, describe their contributions to bacterial transcription research and discuss the role that small molecules play in inhibiting bacterial RNA transcription.

  1. Replicative DNA polymerase mutations in cancer.

    Science.gov (United States)

    Heitzer, Ellen; Tomlinson, Ian

    2014-02-01

    Three DNA polymerases - Pol α, Pol δ and Pol ɛ - are essential for DNA replication. After initiation of DNA synthesis by Pol α, Pol δ or Pol ɛ take over on the lagging and leading strand respectively. Pol δ and Pol ɛ perform the bulk of replication with very high fidelity, which is ensured by Watson-Crick base pairing and 3'exonuclease (proofreading) activity. Yeast models have shown that mutations in the exonuclease domain of Pol δ and Pol ɛ homologues can cause a mutator phenotype. Recently, we identified germline exonuclease domain mutations (EDMs) in human POLD1 and POLE that predispose to 'polymerase proofreading associated polyposis' (PPAP), a disease characterised by multiple colorectal adenomas and carcinoma, with high penetrance and dominant inheritance. Moreover, somatic EDMs in POLE have also been found in sporadic colorectal and endometrial cancers. Tumors with EDMs are microsatellite stable and show an 'ultramutator' phenotype, with a dramatic increase in base substitutions.

  2. The polymerase chain reaction (PCR): general methods.

    Science.gov (United States)

    Waters, Daniel L E; Shapter, Frances M

    2014-01-01

    The polymerase chain reaction (PCR) converts very low quantities of DNA into very high quantities and is the foundation of many specialized techniques of molecular biology. PCR utilizes components of the cellular machinery of mitotic cell division in vitro which respond predictably to user inputs. This chapter introduces the principles of PCR and discusses practical considerations from target sequence definition through to optimization and application.

  3. Nucleolin Is Required for RNA Polymerase I Transcription In Vivo▿

    Science.gov (United States)

    Rickards, Brenden; Flint, S. J.; Cole, Michael D.; LeRoy, Gary

    2007-01-01

    Eukaryotic genomes are packaged with histones and accessory proteins in the form of chromatin. RNA polymerases and their accessory proteins are sufficient for transcription of naked DNA, but not of chromatin, templates in vitro. In this study, we purified and identified nucleolin as a protein that allows RNA polymerase II to transcribe nucleosomal templates in vitro. As immunofluorescence confirmed that nucleolin localizes primarily to nucleoli with RNA polymerase I, we demonstrated that nucleolin allows RNA polymerase I transcription of chromatin templates in vitro. The results of chromatin immunoprecipitation experiments established that nucleolin is associated with chromatin containing rRNA genes transcribed by RNA polymerase I but not with genes transcribed by RNA polymerase II or III. Knockdown of nucleolin by RNA interference resulted in specific inhibition of RNA polymerase I transcription. We therefore propose that an important function of nucleolin is to permit RNA polymerase I to transcribe nucleolar chromatin. PMID:17130237

  4. Identification and Population Dynamics of Yeasts in Sourdough Fermentation Processes by PCR-Denaturing Gradient Gel Electrophoresis

    Science.gov (United States)

    Meroth, Christiane B.; Hammes, Walter P.; Hertel, Christian

    2003-01-01

    Four sourdoughs (A to D) were produced under practical conditions, using a starter obtained from a mixture of three commercially available sourdough starters and baker's yeast. The doughs were continuously propagated until the composition of the microbiota remained stable. A fungi-specific PCR-denaturing gradient gel electrophoresis (DGGE) system was established to monitor the development of the yeast biota. The analysis of the starter mixture revealed the presence of Candida humilis, Debaryomyces hansenii, Saccharomyces cerevisiae, and Saccharomyces uvarum. In sourdough A (traditional process with rye flour), C. humilis dominated under the prevailing fermentation conditions. In rye flour sourdoughs B and C, fermented at 30 and 40°C, respectively, S. cerevisiae became predominant in sourdough B, whereas in sourdough C the yeast counts decreased within a few propagation steps below the detection limit. In sourdough D, which corresponded to sourdough C in temperature but was produced with rye bran, Candida krusei became dominant. Isolates identified as C. humilis and S. cerevisiae were shown by randomly amplified polymorphic DNA-PCR analysis to originate from the commercial starters and the baker's yeast, respectively. The yeast species isolated from the sourdoughs were also detected by PCR-DGGE. However, in the gel, additional bands were visible. Because sequencing of these PCR fragments from the gel failed, cloning experiments with 28S rRNA amplicons obtained from rye flour were performed, which revealed Cladosporium sp., Saccharomyces servazii, S. uvarum, an unculturable ascomycete, Dekkera bruxellensis, Epicoccum nigrum, and S. cerevisiae. The last four species were also detected in sourdoughs A, B, and C. PMID:14660398

  5. Biological function evaluation and effects of laser micro-pore burn-denatured acellular dermal matrix.

    Science.gov (United States)

    Zhang, Youlai; Zeng, Yuanlin; Xin, Guohua; Zou, Lijin; Ding, Yuewei; Duyin, Jiang

    2017-08-18

    In the field of burns repairs, many problems exist in the shortage of donor skin, the expense of allograft or xenograft skin, temporary substitution and unsatisfactory extremity function after wound healing. Previous studies showed that burn-denatured skin could return to normal dermis formation and function. This study investigates the application of laser micro-pore burn-denatured acellular dermis matrix (DADM) from an escharotomy in the repair of burn wounds and evaluates the biological properties and wound repair effects of DADM in implantation experiments in Kunming mice. Specific-pathogen-free (SPF) Kunming mice were used in this study. A deep II° burn wound was created on the dorsum of the mice by an electric heated water bath. The full-thickness wound tissue was harvested. The necrotic tissue and subcutaneous tissue were removed. The denatured dermis was preserved and treated with 0.25% trypsin, 0.5% Triton X-100. The DADM was drilled by laser micro-pore. The biological properties and grafting effects of laser micro-pore burn-DADM were evaluated by morphology, cytokine expression levels and subcutaneous implantation experiments in Kunming mice. We found statistical significance (Plaser micro-pore burn-DADM (experimental group) compared to the control group (no laser micro-pore burn-DADM). Cytokine expression level was different in the dermal matrixes harvested at various time points after burn (24h, 48h, 72h and infected wound group). Comparing the dermal matrix from 24h burn tissue to infected wound tissue, the expression level of IL-6, MMP-24, VE-cadherin and VEGF were decreased. We found no inflammatory cells infiltration in the dermal matrix were observed in both experimental and control groups (24h burn group), while the obviously vascular infiltration and fiber fusion were observed in the experimental group after subcutaneous implantation experiments. There was better bio-performance, low immunogenicity and better dermal incorporation after treated

  6. An In Vitro Model for Studying Neutrophil Activation During Cardiopulmonary Bypass by Using a Polymerase Chain Reaction Thermocycler

    NARCIS (Netherlands)

    Tang, Min; Zhao, Xiao-Gang; Gu, Y. John; Chen, Chang-Zhi

    2010-01-01

    The accurate temperature control of a polymerase chain reaction (PCR) thermocycler was exploited in developing an in vitro model to study neutrophil activation during cardiopulmonary bypass. Neutrophils from 12 volunteers underwent temperature changes in a PCR thermocycler (37 degrees C for 30 minut

  7. An In Vitro Model for Studying Neutrophil Activation During Cardiopulmonary Bypass by Using a Polymerase Chain Reaction Thermocycler

    NARCIS (Netherlands)

    Tang, Min; Zhao, Xiao-Gang; Gu, Y. John; Chen, Chang-Zhi

    The accurate temperature control of a polymerase chain reaction (PCR) thermocycler was exploited in developing an in vitro model to study neutrophil activation during cardiopulmonary bypass. Neutrophils from 12 volunteers underwent temperature changes in a PCR thermocycler (37 degrees C for 30

  8. Molecular architecture and function of adenovirus DNA polymerase

    NARCIS (Netherlands)

    Brenkman, A.B. (Arjan Bernard)

    2003-01-01

    Central to this thesis is the role of adenovirus DNA polymerase (Ad pol) in adenovirus DNA replication. Ad pol is a member of the family B DNA polymerases but belongs to a distinct subclass of polymerases that use a protein as primer. As Ad pol catalyses both the initiation and elongation phases and

  9. Effect of thermal denaturation on the properties of collagen sponges from fish%热变性对鱼胶原海绵材料性能的影响∗

    Institute of Scientific and Technical Information of China (English)

    江颖; 邓明霞; 汪海婴; 张含俊; 汪海波

    2015-01-01

    In this paper,native collagen (NC)was extracted from skin of grass carp,and it was proved typeⅠcollagen with intact triple helix structure via the DSC and circular dichroism and SDS-PAGE analysis.Low ther-mal denaturation (LD),high thermal denaturation (HD)and complete thermal denaturation(CD)collagen sam-ples were obtained by heat treatment of NC under different conditions,and the degrees of thermal denaturation of them were 16.9%,57.9 and 100% respectively,according to the changes of thermal denaturation enthalpy from DSC determination.On this basis,the research focused on the influences of heat treatment on the collagen structure and the corresponding properties of collagen sponges.The results show that the onset endothermic temperature (To )is the threshold temperature for the molecule structure and sponges properties stability. When subj ected to temperatures above this threshold temperature even in a short time,the triple helix structure of collagen would completely or partially unfold.At the same time,the ordering of material structure,mechani-cal properties and enzymatic sensitivities of collagen sponges reduced,the cell proliferation ability enhanced a-long with the rise of degrees of thermal denaturation of collagen.The findings demonstrate To is the crucial temperature and this temperature should not be exceeded during the production and utilization of native colla-gens.%以草鱼皮为原料提取天然胶原蛋白,经DSC、圆二色谱和 SDS-PAGE 分析证实为具有完整三螺旋分子结构的Ⅰ型胶原.在不同条件下对该胶原进行热处理后分别获得了低变性、高变性和完全变性的胶原样品,热变性焓测定结果表明热变性程度分别为16.9%,57.9%和100%.在此基础上,重点研究了热变性处理后胶原结构和胶原海绵材料性能的变化.结果表明,草鱼皮胶原变性的起始温度(To,33℃)是其分子结构和胶原海绵材料性能改变的阀值温度.高于该温度条件下

  10. Polymerase chain reaction of Au nanoparticle-bound primers

    Institute of Scientific and Technical Information of China (English)

    SHEN Hebai; HU Min; YANG Zhongnan; WANG Chen; ZHU Longzhang

    2005-01-01

    Polymerase chain reaction (PCR) is a useful technique for in vitro amplification of a DNA fragment. In this paper, a PCR procedure using Au nanoparticle (AuNP) -bound primers was systemically studied. The 5′-SH- (CH2)6-modified primers were covalently attached to the AuNP surface via Au-S bonds, and plasmid pBluescript SK was used as a template. The effects of the concentration of AuNP-bound primers, annealing temperature and PCR cycles were evaluated, respectively. The results indicate that PCR can proceed successfully under optimized condition, with either forward or reverse primers bound to the AuNP surface or with both the two primers bound to the AuNP surface. Development of PCR procedure based on AuNPs not only makes the isolation of PCR products very convenient, but also provides novel methods to prepare AuNP-bound ssDNA and nanostructured material.

  11. Detection of specific polymerase chain reaction product by utilizing the 5'----3' exonuclease activity of Thermus aquaticus DNA polymerase.

    OpenAIRE

    1991-01-01

    The 5'----3' exonuclease activity of the thermostable enzyme Thermus aquaticus DNA polymerase may be employed in a polymerase chain reaction product detection system to generate a specific detectable signal concomitantly with amplification. An oligonucleotide probe, nonextendable at the 3' end, labeled at the 5' end, and designed to hybridize within the target sequence, is introduced into the polymerase chain reaction assay. Annealing of probe to one of the polymerase chain reaction product s...

  12. Comparison of denaturation by guanidine hydrochloride of the wild type tryptophan synthase alpha-subunit of Escherichia coli and two mutant protein (Glu 49 replaced by Met or Gln).

    Science.gov (United States)

    Yutani, K; Ogasahara, K; Suzuki, M; Sugino, Y

    1979-04-01

    In order to elucidate the roles of individual amino acid residues in the conformational stability of proteins, the denaturation by guanidine hydrochloride of the wild-type trytophan synthase alpha-subunit of Escherichia coli and two mutant proteins, trpA33 (Glu 49 leads to Met) and trpA11 (Glu 49 leads to Gln), has been compared by means of CD measurements at pH 7.0 and various temperatures. CD spectra of the two mutant proteins were similar to that of the wild-type protein. The trpA33 and the trpA11 proteins were more and less resistant, respectively, to guanidine hydrochloride than the wild-type protein at 9.7 to 49.6 degrees C. The free energy change of unfolding in water delta delta Gnd H2O, was evaluated assuming a three state denaturation, since the denaturation curves of three proteins suggested the presence of one stable intermediate. The values of delta Gnd H2O for the trpA33, the wild-type, and the trpA11 proteins at 25.8 degrees C and pH 7.0 were 13.4,8.8, and 6.3 kcal/mol, respectively. The delta Gnd H2O of the trpA11 protein was almost independent of temperature, though that of the trpA33 protein was remarkably dependent on temperature. The conformation stabilities of the three proteins were correlated with the hydrophobicities of the substituted amino acid residues.

  13. Light flux density threshold at which protein denaturation is induced by synchrotron radiation circular dichroism beamlines.

    Science.gov (United States)

    Miles, A J; Janes, Robert W; Brown, A; Clarke, D T; Sutherland, J C; Tao, Y; Wallace, B A; Hoffmann, S V

    2008-07-01

    New high-flux synchrotron radiation circular dichroism (SRCD) beamlines are providing important information for structural biology, but can potentially cause denaturation of the protein samples under investigation. This effect has been studied at the new CD1 dedicated SRCD beamline at ISA in Denmark, where radiation-induced thermal damage effects were observed, depending not only on the radiation flux but also on the focal spot size of the light. Comparisons with similar studies at other SRCD facilities worldwide has lead to the estimation of a flux density threshold under which SRCD beamlines should be operated when samples are to be exposed to low-wavelength vacuum ultraviolet radiation for extended periods of time.

  14. Third-strand in situ hybridization (TISH) to non-denatured metaphase spreads and interphase nuclei.

    Science.gov (United States)

    Johnson, M D; Fresco, J R

    1999-07-01

    A methodology has been developed for binding oligodeoxyribonucleotide 'third strands' to duplex DNA targets in fixed but not additionally denatured metaphase spreads and interphase nuclei under conditions found to be optimal in solution. Third-strand in situ hybridization (TISH) at pH 6.0 of a psoralen- and biotin-modified 16-nucleotide homopyrimidine third strand to a unique multicopy target sequence in human chromosome 17 alpha-satellite (D17Z1 locus) is described. UVA-photofixed third strands, rendered fluorescent by fluorescein isothiocyanate-labeled avidin, are reproducibly centromere-specific for chromosome 17, and visible without amplification of the signal in lymphocyte and somatic cell hybrid spreads and interphase nuclei. Two third-strand-specific D17Z1 haplotypes were identified. TISH has potential diagnostic, biochemical, and flow cytometric applicability to native metaphase and interphase chromatin.

  15. Fuel utilization improvement in PWRs using the denatured /sup 233/U-Th cycle

    Energy Technology Data Exchange (ETDEWEB)

    Jones, H.M.; Schwenk, G.A.; Toops, E.C.; Yotinen, V.O.

    1980-06-01

    A number of changes in PWR core design and/or operating strategy were evaluated to assess the fuel utilization improvement achievable by their implementation in a PWR using thorium-based fuel and operating in a recycle mode. The reference PWR for this study was identical to the B and W Standard Plant except that the fuel pellets were of denatured (/sup 233/U//sup 238/U-Th)O/sub 2/. An initial scoping study identified the three most promising improvement concepts as (1) a very tight lattice, (2) thorium blankets, and (3) ThO/sub 2/ rods placed in available guide tubes. A conceptual core design incorporating these changes was then developed, and the fuel utilization of this modified design was compared with that of the reference case.

  16. Denatured G-protein coupled receptors as immunogens to generate highly specific antibodies.

    Science.gov (United States)

    Talmont, Franck; Moulédous, Lionel; Boué, Jérôme; Mollereau, Catherine; Dietrich, Gilles

    2012-01-01

    G-protein coupled receptors (GPCRs) play a major role in a number of physiological and pathological processes. Thus, GPCRs have become the most frequent targets for development of new therapeutic drugs. In this context, the availability of highly specific antibodies may be decisive to obtain reliable findings on localization, function and medical relevance of GPCRs. However, the rapid and easy generation of highly selective anti-GPCR antibodies is still a challenge. Herein, we report that highly specific antibodies suitable for detection of GPCRs in native and unfolded forms can be elicited by immunizing animals against purified full length denatured recombinant GPCRs. Contrasting with the currently admitted postulate, our study shows that an active and well-folded GPCR is not required for the production of specific anti-GPCR antibodies. This new immunizing strategy validated with three different human GPCR (μ-opioid, κ-opioid, neuropeptide FF2 receptors) might be generalized to other members of the GPCR family.

  17. Effect of freezing and thawing rates on denaturation of proteins in aqueous solutions.

    Science.gov (United States)

    Cao, Enhong; Chen, Yahuei; Cui, Zhanfeng; Foster, Peter R

    2003-06-20

    The freeze denaturation of model proteins, LDH, ADH, and catalase, was investigated in absence of cryoprotectants using a microcryostage under well-controlled freezing and thawing rates. Most of the experimental data were obtained from a study using a dilute solution with an enzyme concentration of 0.025 g/l. The dependence of activity recovery of proteins on the freezing and thawing rates showed a reciprocal and independent effect, that is, slow freezing (at a freezing rate about 1 degrees C/min) and fast thawing (at a thawing rate >10 degrees C/min) produced higher activity recovery, whereas fast freezing with slow thawing resulted in more severe damage to proteins. With minimizing the freezing concentration and pH change of buffer solution by using a potassium phosphate buffer, this phenomenon could be ascribed to surface-induced denaturation during freezing and thawing process. Upon the fast freezing (e.g., when the freezing rate >20 degrees C/min), small ice crystals and a relatively large surface area of ice-liquid interface are formed, which increases the exposure of protein molecules to the ice-liquid interface and hence increases the damage to the proteins. During thawing, additional damage to proteins is caused by recrystallization process. Recrystallization exerts additional interfacial tension or shear on the entrapped proteins and hence causes additional damage to the latter. When buffer solutes participated during freezing, the activity recovery of proteins after freezing and thawing decreased due to the change of buffer solution pH during freezing. However, the patterns of the dependence on freezing and thawing rates of activity recovery did not change except for that at extreme low freezing rates (solutions could be reduced by changing the buffer type and composition and by optimizing the freezing-thawing protocol.

  18. Size is a major determinant of dissociation and denaturation behaviour of reconstituted high-density lipoproteins.

    Science.gov (United States)

    Gianazza, Elisabetta; Eberini, Ivano; Sirtori, Cesare R; Franceschini, Guido; Calabresi, Laura

    2002-08-15

    Lipid-free apolipoprotein A-I (apoA-I) and A-I(Milano) (A-I(M)) were compared for their denaturation behaviour by running across transverse gradients of a chaotrope, urea, and of a ionic detergent, SDS. For both apo A-I and monomeric apoA-I(M) in the presence of increasing concentrations of urea the transition from high to low mobility had a sigmoidal course, whereas for dimeric A-I(M)/A-I(M) a non-sigmoidal shape was observed. The co-operativity of the unfolding process was lower for dimeric A-I(M)/A-I(M) than for apoA-I or for monomeric apoA-I(M). A slightly higher susceptibility to denaturation was observed for dimeric A-I(M)/A-I(M) than for monomeric apoA-I(M). A similar behaviour of A-I(M)/A-IM versus apoA-I(M) was observed in CD experiments. Large- (12.7/12.5 nm) and small- (7.8 nm) sized reconstituted high-density lipoproteins (rHDL) containing either apoA-I or A-I(M)/A-I(M) were compared with respect to their protein-lipid dissociation behaviour by subjecting them to electrophoresis in the presence of urea, of SDS and of a non-ionic detergent, Nonidet P40. A higher susceptibility to dissociation of small-sized versus large-sized rHDL, regardless of the apolipoprotein component, was observed in all three instances. Our data demonstrate that the differential plasticity of the various classes of rHDL is a function of their size; the higher stability of 12.5/12.7 nm rHDL is likely connected to the higher number of protein-lipid and lipid-lipid interactions in larger as compared with smaller rHDL.

  19. Aqueous Solutions of the Ionic Liquid 1-butyl-3-methylimidazolium Chloride Denature Proteins

    Energy Technology Data Exchange (ETDEWEB)

    Baker, Gary A [ORNL; Heller, William T [ORNL

    2009-01-01

    As we advance our understanding, ionic liquids (ILs) are finding ever broader scope within the chemical sciences including, most recently, pharmaceutical, enzymatic, and bioanalytical applications. With examples of enzymatic activity reported in both neat ILs and in IL/water mixtures, enzymes are frequently assumed to adopt a quasi-native conformation, even if little work has been carried out to date toward characterizing the conformation, dynamics, active-site perturbation, cooperativity of unfolding transitions, free energy of stabilization, or aggregation/oligomerization state of enzymes in the presence of an IL solvent component. In this study, human serum albumin and equine heart cytochrome c were characterized in aqueous solutions of the fully water-miscible IL 1-butyl-3-methylimidazolium chloride, [bmim]Cl, by small-angle neutron and X-ray scattering. At [bmim]Cl concentrations up to 25 vol.%, these two proteins were found to largely retain their higher-order structures whereas both proteins become highly denatured at the highest IL concentration studied here (i.e., 50 vol.% [bmim]Cl). The response of these proteins to [bmim]Cl is analogous to their behavior in the widely studied denaturants guanidine hydrochloride and urea which similarly lead to random coil conformations at excessive molar concentrations. Interestingly, human serum albumin dimerizes in response to [bmim]Cl, whereas cytochrome c remains predominantly in monomeric form. These results have important implications for enzymatic studies in aqueous IL media, as they suggest a facile pathway through which biocatalytic activity can be altered in these nascent and potentially green electrolyte systems.

  20. Application of PCR-denaturing-gradient gel electrophoresis (DGGE) method to examine microbial community structure in asparagus fields with growth inhibition due to continuous cropping.

    Science.gov (United States)

    Urashima, Yasufumi; Sonoda, Takahiro; Fujita, Yuko; Uragami, Atsuko

    2012-01-01

    Growth inhibition due to continuous cropping of asparagus is a major problem; the yield of asparagus in replanted fields is low compared to that in new fields, and missing plants occur among young seedlings. Although soil-borne disease and allelochemicals are considered to be involved in this effect, this is still controversial. We aimed to develop a technique for the biological field diagnosis of growth inhibition due to continuous cropping. Therefore, in this study, fungal community structure and Fusarium community structure in continuously cropped fields of asparagus were analyzed by polymerase chain reaction/denaturing-gradient gel electrophoresis (PCR-DGGE). Soil samples were collected from the Aizu region of Fukushima Prefecture, Japan. Soil samples were taken from both continuously cropped fields of asparagus with growth inhibition and healthy neighboring fields of asparagus. The soil samples were collected from the fields of 5 sets in 2008 and 4 sets in 2009. We were able to distinguish between pathogenic and non-pathogenic Fusarium by using Alfie1 and Alfie2GC as the second PCR primers and PCR-DGGE. Fungal community structure was not greatly involved in the growth inhibition of asparagus due to continuous cropping. By contrast, the band ratios of Fusarium oxysporum f. sp. asparagi in growth-inhibited fields were higher than those in neighboring healthy fields. In addition, there was a positive correlation between the band ratios of Fusarium oxysporum f. sp. asparagi and the ratios of missing asparagus plants. We showed the potential of biological field diagnosis of growth inhibition due to continuous cropping of asparagus using PCR-DGGE.

  1. Detection of Epidermal Growth Factor Receptor Mutations in Non-small Cell Lung Cancer Tumor Specimens from Various Ways by Denaturing High-performance Liquid Chromatography

    Directory of Open Access Journals (Sweden)

    Siyuan CHEN

    2010-09-01

    Full Text Available Background and objective Epidermal growth factor receptor (EGFR is the most important therapeutic target in non-small cell lung cancer (NSCLC. EGFR mutations may predict responsiveness to tyrosine kinase inhibitors (TKIs. These mutations are commonly identified using direct sequencing, which is considered the gold standard. But direct sequencing is time-consuming and hyposensitive. In addition, this method requires a lot of tumor specimens. Denaturing highperformance liquid chromatography (DHPLC is a rapid automated sensitive and specific method in mutant gene detection. The aim of this study is to evaluate DHPLC as a rapid detection method for EGFR mutations in NSCLC tumor specimens. Methods DHPLC was used to evaluate the accuracy and sensitivity of detection the serial dilutions of mutant and wild type EGFR plasma DNA. Frozen tumor specimens of 83 NSCLC patients from various ways had been included, after DNA extraction and polymerase chain reaction (PCR on EGFR exon 19 and 21, the results from the direct sequencing and DHPLC were compared. Results Mutant plasma DNA can be detected in the serial dilution of 1:100 by DHPLC and 1:10 by direct sequencing respectively. The results from DHPLC showed 22 EGFR mutations were detected in 83 NSCLC patients, and only 19 mutation samples had been conformed by direct sequencing. Moreover, the other 61 samples were deemed as wild type by DHPLC and direct sequencing. The sensitivity and specificity of DHPLC was 100% and 95.13% respectively. The detection of the tumor specimens from CT-guided transthoracic needle lung biopsy, lymph node biopsy and surgical resection all showed high sensitivity and specificity. EGFR mutation has strong correlation with gender and pathologic type, but irrelevant to age and smoking status. Conclusion DHPLC was a precise rapid preliminary screening method for detection of NSCLC EGFR genotype.

  2. A comprehensive collection of experimentally validated primers for Polymerase Chain Reaction quantitation of murine transcript abundance

    Directory of Open Access Journals (Sweden)

    Wang Xiaowei

    2008-12-01

    Full Text Available Abstract Background Quantitative polymerase chain reaction (QPCR is a widely applied analytical method for the accurate determination of transcript abundance. Primers for QPCR have been designed on a genomic scale but non-specific amplification of non-target genes has frequently been a problem. Although several online databases have been created for the storage and retrieval of experimentally validated primers, only a few thousand primer pairs are currently present in existing databases and the primers are not designed for use under a common PCR thermal profile. Results We previously reported the implementation of an algorithm to predict PCR primers for most known human and mouse genes. We now report the use of that resource to identify 17483 pairs of primers that have been experimentally verified to amplify unique sequences corresponding to distinct murine transcripts. The primer pairs have been validated by gel electrophoresis, DNA sequence analysis and thermal denaturation profile. In addition to the validation studies, we have determined the uniformity of amplification using the primers and the technical reproducibility of the QPCR reaction using the popular and inexpensive SYBR Green I detection method. Conclusion We have identified an experimentally validated collection of murine primer pairs for PCR and QPCR which can be used under a common PCR thermal profile, allowing the evaluation of transcript abundance of a large number of genes in parallel. This feature is increasingly attractive for confirming and/or making more precise data trends observed from experiments performed with DNA microarrays.

  3. Partial strands synthesizing leads to inevitable aborting and complicated products in consecutive polymerase chain reactions (PCRs)

    Institute of Scientific and Technical Information of China (English)

    LUO Rui; ZHANG DaMing

    2007-01-01

    Various abnormal phenomena have been observed during PCR so far. The present study performed a series of consecutive PCRs (including many rounds of re-amplification continuously) and found that the abortion of re-amplification was inevitable as long as a variety of complicated product appeared.The aborting stages varied, according to the lengths of targets. Longer targets reached the abortion earlier than the shorter ones, marked by appearance of the complex that was immobile in electrophoresis. Denatured gel-electrophoresis revealed that the complex was mainly made up of shorter or partially synthesized strands, together with small amounts of full-length ones. Able to be digested by S1 nuclease but unable by restriction endonucleases (REs), the complex was proved to consist of both single regions and double-helix regions that kept the complex stable thermodynamically. Simulations gave evidence that partial strands, even at lower concentration, could disturb re-amplification effectively and lead to the abortion of re-amplifications finally. It was pointed out that the partial strands formed chiefly via polymerase's infidelity, and hence the solution to lighten the abnormality was also proposed.

  4. Proteinase-Polymerase Precursor as the Active Form of Feline Calicivirus RNA-Dependent RNA Polymerase

    OpenAIRE

    Wei, Lai; Huhn, Jason S.; Mory, Aaron; Pathak, Harsh B.; Sosnovtsev, Stanislav V.; Green, Kim Y.; Cameron, Craig E.

    2001-01-01

    The objective of this study was to identify the active form of the feline calicivirus (FCV) RNA-dependent RNA polymerase (RdRP). Multiple active forms of the FCV RdRP were identified. The most active enzyme was the full-length proteinase-polymerase (Pro-Pol) precursor protein, corresponding to amino acids 1072 to 1763 of the FCV polyprotein encoded by open reading frame 1 of the genome. Deletion of 163 amino acids from the amino terminus of Pro-Pol (the Val-1235 amino terminus) caused a three...

  5. Interplay between polymerase II- and polymerase III-assisted expression of overlapping genes.

    Science.gov (United States)

    Lukoszek, Radoslaw; Mueller-Roeber, Bernd; Ignatova, Zoya

    2013-11-15

    Up to 15% of the genes in different genomes overlap. This architecture, although beneficial for the genome size, represents an obstacle for simultaneous transcription of both genes. Here we analyze the interference between RNA-polymerase II (Pol II) and RNA-polymerase III (Pol III) when transcribing their target genes encoded on opposing strands within the same DNA fragment in Arabidopsis thaliana. The expression of a Pol II-dependent protein-coding gene negatively correlated with the transcription of a Pol III-dependent, tRNA-coding gene set. We suggest that the architecture of the overlapping genes introduces an additional layer of control of gene expression.

  6. Polymerase chain reaction assay for avian polyomavirus.

    OpenAIRE

    Phalen, D.N.; Wilson, V G; Graham, D L

    1991-01-01

    A polymerase chain reaction assay was developed for detection of budgerigar fledgling disease virus (BFDV). The assay used a single set of primers complementary to sequences located in the putative coding region for the BFDV VP1 gene. The observed amplification product had the expected size of 550 bp and was confirmed to derive from BFDV DNA by its restriction digestion pattern. This assay was specific for BFDV and highly sensitive, being able to detect as few as 20 copies of the virus. By us...

  7. RNA polymerase: the vehicle of transcription.

    Science.gov (United States)

    Borukhov, Sergei; Nudler, Evgeny

    2008-03-01

    RNA polymerase (RNAP) is the principal enzyme of gene expression and regulation for all three divisions of life: Eukaryota, Archaea and Bacteria. Recent progress in the structural and biochemical characterization of RNAP illuminates this enzyme as a flexible, multifunctional molecular machine. During each step of the transcription cycle, RNAP undergoes elaborate conformational changes. As many fundamental and previously mysterious aspects of how RNAP works begin to be understood, this enzyme reveals intriguing similarities to man-made engineered devices. These resemblances can be found in the mechanics of RNAP-DNA complex formation, in RNA chain initiation and in the elongation processes. Here we highlight recent advances in understanding RNAP function and regulation.

  8. The RNA polymerase I transcription machinery

    OpenAIRE

    Russell, Jackie; Zomerdijk, Joost C. B. M.

    2006-01-01

    The rRNAs constitute the catalytic and structural components of the ribosome, the protein synthesis machinery of cells. The level of rRNA synthesis, mediated by Pol I (RNA polymerase I), therefore has a major impact on the life and destiny of a cell. In order to elucidate how cells achieve the stringent control of Pol I transcription, matching the supply of rRNA to demand under different cellular growth conditions, it is essential to understand the components and mechanics of the Pol I transc...

  9. Baculovirus RNA Polymerase: Activities, Composition, and Evolution

    Institute of Scientific and Technical Information of China (English)

    A.Lorena Passarelli

    2007-01-01

    Baculoviruses are the only nuclear replicating DNA-containing viruses that encode their own DNA-directed RNA polymerase (RNAP). The baculovirus RNAP is specific for the transcription of genes expressed after virus DNA replication. It is composed of four subunits, making it the simplest multisubunit RNAP known. Two subunits contain motifs found at the catalytic center of other RNAPs and a third has capping enzyme functions. The function of the fourth subunit is not known. Structural studies on this unique RNAP will provide new insights into the functions of this enzyme and the regulation of viral genes and may be instrumental to optimize the baculovirus gene expression system.

  10. Chemical fidelity of an RNA polymerase ribozyme

    DEFF Research Database (Denmark)

    Attwater, J.; Tagami, S.; Kimoto, M.

    2013-01-01

    The emergence of catalytically active RNA enzymes (ribozymes) is widely believed to have been an important transition in the origin of life. In the context of a likely heterogeneous chemical environment, substrate specificity and selectivity of these primordial enzymes would have been critical...... for function. Here we have explored the chemical fidelity, i.e. substrate selectivity and specificity for both single and multiple catalytic steps of the Z RNA polymerase ribozyme-a modern day analogue of the primordial RNA replicase. Using a wide range of nucleotide analogues and ionic conditions, we observe...

  11. ppGpp: magic beyond RNA polymerase.

    Science.gov (United States)

    Dalebroux, Zachary D; Swanson, Michele S

    2012-02-16

    During stress, bacteria undergo extensive physiological transformations, many of which are coordinated by ppGpp. Although ppGpp is best known for enhancing cellular resilience by redirecting the RNA polymerase (RNAP) to certain genes, it also acts as a signal in many other cellular processes in bacteria. After a brief overview of ppGpp biosynthesis and its impact on promoter selection by RNAP, we discuss how bacteria exploit ppGpp to modulate the synthesis, stability or activity of proteins or regulatory RNAs that are crucial in challenging environments, using mechanisms beyond the direct regulation of RNAP activity.

  12. Biochemical characterization of enzyme fidelity of influenza A virus RNA polymerase complex.

    Directory of Open Access Journals (Sweden)

    Shilpa Aggarwal

    Full Text Available BACKGROUND: It is widely accepted that the highly error prone replication process of influenza A virus (IAV, together with viral genome assortment, facilitates the efficient evolutionary capacity of IAV. Therefore, it has been logically assumed that the enzyme responsible for viral RNA replication process, influenza virus type A RNA polymerase (IAV Pol, is a highly error-prone polymerase which provides the genomic mutations necessary for viral evolution and host adaptation. Importantly, however, the actual enzyme fidelity of IAV RNA polymerase has never been characterized. PRINCIPAL FINDINGS: Here we established new biochemical assay conditions that enabled us to assess both polymerase activity with physiological NTP pools and enzyme fidelity of IAV Pol. We report that IAV Pol displays highly active RNA-dependent RNA polymerase activity at unbiased physiological NTP substrate concentrations. With this robust enzyme activity, for the first time, we were able to compare the enzyme fidelity of IAV Pol complex with that of bacterial phage T7 RNA polymerase and the reverse transcriptases (RT of human immunodeficiency virus (HIV-1 and murine leukemia virus (MuLV, which are known to be low and high fidelity enzymes, respectively. We observed that IAV Pol displayed significantly higher fidelity than HIV-1 RT and T7 RNA polymerase and equivalent or higher fidelity than MuLV RT. In addition, the IAV Pol complex showed increased fidelity at lower temperatures. Moreover, upon replacement of Mg(++ with Mn(++, IAV Pol displayed increased polymerase activity, but with significantly reduced processivity, and misincorporation was slightly elevated in the presence of Mn(++. Finally, when the IAV nucleoprotein (NP was included in the reactions, the IAV Pol complex exhibited enhanced polymerase activity with increased fidelity. SIGNIFICANCE: Our study indicates that IAV Pol is a high fidelity enzyme. We envision that the high fidelity nature of IAV Pol may be

  13. Fluidized-bed denitrification for mine waters. Part I: low pH and temperature operation.

    Science.gov (United States)

    Papirio, S; Ylinen, A; Zou, G; Peltola, M; Esposito, G; Puhakka, J A

    2014-06-01

    Mining often leads to nitrate and metal contamination of groundwater and water bodies. Denitrification of acidic water was investigated in two up-flow fluidized-bed reactors (FBR) and using batch assays. Bacterial communities were enriched on ethanol plus nitrate in the FBRs. Initially, the effects of temperature, low-pH and ethanol/nitrate on denitrification were revealed. Batch assays showed that pH 4.8 was inhibitory to denitrification, whereas FBR characteristics permitted denitrification even at feed pH of 2.5 and at 7-8 °C. Nitrate and ethanol were removed and the feed pH was neutralized, provided that ethanol was supplied in excess to nitrate. Subsequently, Fe(II) and Cu impact on denitrification was investigated within batch tests at pH 7. Iron supplementation up to 100 mg/L resulted in iron oxidation and soluble concentrations ranging from 0.4 to 1.6 mg/L that stimulated denitrification. On the contrary, 0.7 mg/L of soluble Cu significantly slowed denitrification down resulting in about 45 % of inhibition in the first 8 h. Polymerase chain reaction-denaturant gradient gel electrophoresis demonstrated the co-existence of different denitrifying microbial consortia in FBRs. Dechloromonas denitrificans and Hydrogenophaga caeni were present in both FBRs and mainly responsible for nitrate reduction.

  14. Denaturation and in Vitro Gastric Digestion of Heat-Treated Quinoa Protein Isolates Obtained at Various Extraction pH

    NARCIS (Netherlands)

    Ruiz, Geraldine Avila; Opazo-Navarrete, Mauricio; Meurs, Marlon; Minor, Marcel; Sala, Guido; Boekel, van Martinus; Stieger, Markus; Janssen, Anja E.M.

    2016-01-01

    The aim of this study was to determine the influence of heat processing on denaturation and digestibility properties of protein isolates obtained from sweet quinoa (Chenopodium quinoa Willd) at various extraction pH values (8, 9, 10 and 11). Pretreatment of suspensions of protein isolates at 60,

  15. Easily denaturing nucleic acids derived from intercalating nucleic acids: thermal stability studies, dual duplex invasion and inhibition of transcription start

    DEFF Research Database (Denmark)

    Filichev, Vyacheslav V; Vester, Birte; Hansen, Lykke Haastrup;

    2005-01-01

    The bulged insertions of (R)-1-O-(pyren-1-ylmethyl)glycerol (monomer P) in two complementary 8mer DNA strands (intercalating nucleic acids) opposite to each other resulted in the formation of an easily denaturing duplex, which had lower thermal stability (21.0 degrees C) than the wild-type double...

  16. Denaturation and in Vitro Gastric Digestion of Heat-Treated Quinoa Protein Isolates Obtained at Various Extraction pH

    NARCIS (Netherlands)

    Ruiz, Geraldine Avila; Opazo-Navarrete, Mauricio; Meurs, Marlon; Minor, Marcel; Sala, Guido; Boekel, van Tiny; Stieger, Markus; Janssen, Anja E.M.

    2016-01-01

    The aim of this study was to determine the influence of heat processing on denaturation and digestibility properties of protein isolates obtained from sweet quinoa (Chenopodium quinoa Willd) at various extraction pH values (8, 9, 10 and 11). Pretreatment of suspensions of protein isolates at 60,

  17. Reaction of Native and Denatured Brucella abortus (S19 Proteins with Antibody Using Affinity Chromatography and Immunoblotting

    Directory of Open Access Journals (Sweden)

    R. Karimi

    2005-01-01

    Full Text Available Western blotting or immunoblotting commonly use for study of reaction between antigens and antibodies. Denaturation of many proteins in immunoblotting can affect greatly the reactivity of antibodies and outcome of the procedure.In this study proteins of Brucella abortus (S19 was extracted by a mild method and reaction of the extracted proteins with serum of infected human and goat and immunized rabbit compared by affinity chromatography and immunoblotting. Gamma globulin (mostly IgG fraction of the sera was precipitated by half saturation of ammonium sulfate and linked to activated sepharose 4B. The extracted proteins were loaded on the affinity column. Attached proteins was eluted by low pH and analyzed by SDS-PAGE. Reaction of the total extract and eluted fractions with IgG fraction of sera was evaluated by Western blotting.Upon the results of affinity chromatography and immunoblotting, Brucella proteins can be classified in four groups: 1- The proteins that adsorbed to the affinity column and react with IgG in westernblotting. 2- Proteins that react with IgG in native state but no in denatured state. 3- Proteins that do not react with IgG in native state but react in denatured state. 4- Proteins that do not react with IgG in native and denatured state.

  18. Evaluation of several techniques to modify denatured muscle tissue to obtain a scaffold for peripheral nerve regeneration

    NARCIS (Netherlands)

    Meek, MF; den Dunnen, WFA; Schakenraad, JM; Robinson, PH

    The aim of this study was to (1) evaluate the effect of several preparation techniques of denatured muscle tissue to obtain an open three-dimensional structure, and (2) test if this scaffold is suitable for peripheral nerve regeneration. Four samples (A-D) of muscle tissue specimens were evaluated

  19. The unfolding/denaturation of immunogammaglobulin of isotype 2b and its F-ab and F-c fragments

    NARCIS (Netherlands)

    Vermeer, AWP; Norde, W; van Amerongen, A

    2000-01-01

    The unfolding and further denaturation of IgG and its F-ab and F-c fragments were studied both on a macroscopic and molecular level, using differential scanning calorimetry and circular dichroism spectroscopy, respectively. It was shown that the structural integrity of the F-ab and F-c units was ret

  20. Sequential Events in the Irreversible Thermal Denaturation of Human Brain-Type Creatine Kinase by Spectroscopic Methods

    Directory of Open Access Journals (Sweden)

    Yan-Song Gao

    2010-06-01

    Full Text Available The non-cooperative or sequential events which occur during protein thermal denaturation are closely correlated with protein folding, stability, and physiological functions. In this research, the sequential events of human brain-type creatine kinase (hBBCK thermal denaturation were studied by differential scanning calorimetry (DSC, CD, and intrinsic fluorescence spectroscopy. DSC experiments revealed that the thermal denaturation of hBBCK was calorimetrically irreversible. The existence of several endothermic peaks suggested that the denaturation involved stepwise conformational changes, which were further verified by the discrepancy in the transition curves obtained from various spectroscopic probes. During heating, the disruption of the active site structure occurred prior to the secondary and tertiary structural changes. The thermal unfolding and aggregation of hBBCK was found to occur through sequential events. This is quite different from that of muscle-type CK (MMCK. The results herein suggest that BBCK and MMCK undergo quite dissimilar thermal unfolding pathways, although they are highly conserved in the primary and tertiary structures. A minor difference in structure might endow the isoenzymes dissimilar local stabilities in structure, which further contribute to isoenzyme-specific thermal stabilities.

  1. Evaluation of several techniques to modify denatured muscle tissue to obtain a scaffold for peripheral nerve regeneration

    NARCIS (Netherlands)

    Meek, MF; den Dunnen, WFA; Schakenraad, JM; Robinson, PH

    1999-01-01

    The aim of this study was to (1) evaluate the effect of several preparation techniques of denatured muscle tissue to obtain an open three-dimensional structure, and (2) test if this scaffold is suitable for peripheral nerve regeneration. Four samples (A-D) of muscle tissue specimens were evaluated u

  2. Influence of pH and Ionic Strength on Heat-Induced Formation and Rheological Properties of Soy Protein Gels in Relation to Denaturation and Their Protein Compositions

    NARCIS (Netherlands)

    Renkema, J.M.S.; Gruppen, H.; Vliet, van T.

    2002-01-01

    The influence of pH and ionic strength on gel formation and gel properties of soy protein isolate (SPI) in relation to denaturation and protein aggregation/precipitation was studied. Denaturation proved to be a prerequisite for gel formation under all conditions of pH and ionic strength studied.

  3. Evolution of DNA polymerases: an inactivated polymerase-exonuclease module in Pol ε and a chimeric origin of eukaryotic polymerases from two classes of archaeal ancestors

    Directory of Open Access Journals (Sweden)

    Pavlov Youri I

    2009-03-01

    Full Text Available Abstract Background Evolution of DNA polymerases, the key enzymes of DNA replication and repair, is central to any reconstruction of the history of cellular life. However, the details of the evolutionary relationships between DNA polymerases of archaea and eukaryotes remain unresolved. Results We performed a comparative analysis of archaeal, eukaryotic, and bacterial B-family DNA polymerases, which are the main replicative polymerases in archaea and eukaryotes, combined with an analysis of domain architectures. Surprisingly, we found that eukaryotic Polymerase ε consists of two tandem exonuclease-polymerase modules, the active N-terminal module and a C-terminal module in which both enzymatic domains are inactivated. The two modules are only distantly related to each other, an observation that suggests the possibility that Pol ε evolved as a result of insertion and subsequent inactivation of a distinct polymerase, possibly, of bacterial descent, upstream of the C-terminal Zn-fingers, rather than by tandem duplication. The presence of an inactivated exonuclease-polymerase module in Pol ε parallels a similar inactivation of both enzymatic domains in a distinct family of archaeal B-family polymerases. The results of phylogenetic analysis indicate that eukaryotic B-family polymerases, most likely, originate from two distantly related archaeal B-family polymerases, one form giving rise to Pol ε, and the other one to the common ancestor of Pol α, Pol δ, and Pol ζ. The C-terminal Zn-fingers that are present in all eukaryotic B-family polymerases, unexpectedly, are homologous to the Zn-finger of archaeal D-family DNA polymerases that are otherwise unrelated to the B family. The Zn-finger of Polε shows a markedly greater similarity to the counterpart in archaeal PolD than the Zn-fingers of other eukaryotic B-family polymerases. Conclusion Evolution of eukaryotic DNA polymerases seems to have involved previously unnoticed complex events. We

  4. Evolution of DNA polymerases: an inactivated polymerase-exonuclease module in Pol ε and a chimeric origin of eukaryotic polymerases from two classes of archaeal ancestors

    Science.gov (United States)

    Tahirov, Tahir H; Makarova, Kira S; Rogozin, Igor B; Pavlov, Youri I; Koonin, Eugene V

    2009-01-01

    Background Evolution of DNA polymerases, the key enzymes of DNA replication and repair, is central to any reconstruction of the history of cellular life. However, the details of the evolutionary relationships between DNA polymerases of archaea and eukaryotes remain unresolved. Results We performed a comparative analysis of archaeal, eukaryotic, and bacterial B-family DNA polymerases, which are the main replicative polymerases in archaea and eukaryotes, combined with an analysis of domain architectures. Surprisingly, we found that eukaryotic Polymerase ε consists of two tandem exonuclease-polymerase modules, the active N-terminal module and a C-terminal module in which both enzymatic domains are inactivated. The two modules are only distantly related to each other, an observation that suggests the possibility that Pol ε evolved as a result of insertion and subsequent inactivation of a distinct polymerase, possibly, of bacterial descent, upstream of the C-terminal Zn-fingers, rather than by tandem duplication. The presence of an inactivated exonuclease-polymerase module in Pol ε parallels a similar inactivation of both enzymatic domains in a distinct family of archaeal B-family polymerases. The results of phylogenetic analysis indicate that eukaryotic B-family polymerases, most likely, originate from two distantly related archaeal B-family polymerases, one form giving rise to Pol ε, and the other one to the common ancestor of Pol α, Pol δ, and Pol ζ. The C-terminal Zn-fingers that are present in all eukaryotic B-family polymerases, unexpectedly, are homologous to the Zn-finger of archaeal D-family DNA polymerases that are otherwise unrelated to the B family. The Zn-finger of Polε shows a markedly greater similarity to the counterpart in archaeal PolD than the Zn-fingers of other eukaryotic B-family polymerases. Conclusion Evolution of eukaryotic DNA polymerases seems to have involved previously unnoticed complex events. We hypothesize that the archaeal

  5. Solving the RNA polymerase I structural puzzle

    Energy Technology Data Exchange (ETDEWEB)

    Moreno-Morcillo, María [European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg (Germany); Taylor, Nicholas M. I. [Consejo Superior de Investigaciones Científicas, Ramiro de Maeztu 9, 28040 Madrid (Spain); Gruene, Tim [Georg-August-University, Tammannstrasse 4, 37077 Göttingen (Germany); Legrand, Pierre [SOLEIL Synchrotron, L’Orme de Merisiers, Saint Aubin, Gif-sur-Yvette (France); Rashid, Umar J. [European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg (Germany); Ruiz, Federico M. [Consejo Superior de Investigaciones Científicas, Ramiro de Maeztu 9, 28040 Madrid (Spain); Steuerwald, Ulrich; Müller, Christoph W. [European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg (Germany); Fernández-Tornero, Carlos, E-mail: cftornero@cib.csic.es [Consejo Superior de Investigaciones Científicas, Ramiro de Maeztu 9, 28040 Madrid (Spain); European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg (Germany)

    2014-10-01

    Details of the RNA polymerase I crystal structure determination provide a framework for solution of the structures of other multi-subunit complexes. Simple crystallographic experiments are described to extract relevant biological information such as the location of the enzyme active site. Knowing the structure of multi-subunit complexes is critical to understand basic cellular functions. However, when crystals of these complexes can be obtained they rarely diffract beyond 3 Å resolution, which complicates X-ray structure determination and refinement. The crystal structure of RNA polymerase I, an essential cellular machine that synthesizes the precursor of ribosomal RNA in the nucleolus of eukaryotic cells, has recently been solved. Here, the crucial steps that were undertaken to build the atomic model of this multi-subunit enzyme are reported, emphasizing how simple crystallographic experiments can be used to extract relevant biological information. In particular, this report discusses the combination of poor molecular replacement and experimental phases, the application of multi-crystal averaging and the use of anomalous scatterers as sequence markers to guide tracing and to locate the active site. The methods outlined here will likely serve as a reference for future structural determination of large complexes at low resolution.

  6. Polymerase chain reaction assay for avian polyomavirus.

    Science.gov (United States)

    Phalen, D N; Wilson, V G; Graham, D L

    1991-05-01

    A polymerase chain reaction assay was developed for detection of budgerigar fledgling disease virus (BFDV). The assay used a single set of primers complementary to sequences located in the putative coding region for the BFDV VP1 gene. The observed amplification product had the expected size of 550 bp and was confirmed to derive from BFDV DNA by its restriction digestion pattern. This assay was specific for BFDV and highly sensitive, being able to detect as few as 20 copies of the virus. By using the polymerase chain reaction, BFDV was detected in adult, nestling, and embryo budgerigar (Melopsitticus undulatus) tissue DNAs and in sera from adult and nestling budgerigars. These results suggest the possibility of persistent infections in adult birds and lend further support to previously described evidence of possible in ovo transmission. BFDV was also detected in chicken embryo fibroblast cell cultures and chicken eggs inoculated with the virus. A 550-bp product with identical restriction enzyme sites was amplified from a suspected polyomavirus isolated from a peach-faced lovebird (Agapornis pesonata) and from tissue DNA from a Hahn's macaw (Ara nobilis) and a sun conure (Aratinga solstitialis) with histological lesions suggestive of polyomavirus infection. These fragments also hybridized with a BFDV-derived probe, proving that they were derived from a polyomavirus very similar, if not identical, to BFDV.

  7. RNA polymerase activity of Ustilago maydis virus

    Energy Technology Data Exchange (ETDEWEB)

    Yie, S.W.

    1986-01-01

    Ustilago maydis virus has an RNA polymerase enzyme which is associated with virion capsids. In the presence of Mg/sup 2 +/ ion and ribonucleotide triphosphate, the enzyme catalyzes the in vitro synthesis of mRNA by using dsRNA as a template. The products of the UmV RNA polymerase were both ssRNA and dsRNA. The dsRNA was determined by characteristic mobilities in gel electrophoresis, lack of sensitivity to RNase, and specific hybridization tests. The ssRNAs were identified by elution from a CF-11 column and by their RNase sensitivity. On the basis of the size of ssRNAs, it was concluded that partial transcripts were produced from H dsRNA segments, and full length transcripts were produced from M and L dsRNA segments. The following observations indicates that transcription occurs by strand displacement; (1) Only the positive strand of M2 dsRNA was labeled by the in vitro reaction. (2) The M2 dsRNA which had been labeled with /sup 32/''P-UTP in vitro could be chased from dsRNA with unlabeled UTP. The transcription products of three UmV strains were compared, and the overall pattern of transcription was very similar among them.

  8. Replicative DNA polymerase mutations in cancer☆

    Science.gov (United States)

    Heitzer, Ellen; Tomlinson, Ian

    2014-01-01

    Three DNA polymerases — Pol α, Pol δ and Pol ɛ — are essential for DNA replication. After initiation of DNA synthesis by Pol α, Pol δ or Pol ɛ take over on the lagging and leading strand respectively. Pol δ and Pol ɛ perform the bulk of replication with very high fidelity, which is ensured by Watson–Crick base pairing and 3′exonuclease (proofreading) activity. Yeast models have shown that mutations in the exonuclease domain of Pol δ and Pol ɛ homologues can cause a mutator phenotype. Recently, we identified germline exonuclease domain mutations (EDMs) in human POLD1 and POLE that predispose to ‘polymerase proofreading associated polyposis’ (PPAP), a disease characterised by multiple colorectal adenomas and carcinoma, with high penetrance and dominant inheritance. Moreover, somatic EDMs in POLE have also been found in sporadic colorectal and endometrial cancers. Tumors with EDMs are microsatellite stable and show an ‘ultramutator’ phenotype, with a dramatic increase in base substitutions. PMID:24583393

  9. Rapid screening mitochondrial DNA mutation by using denaturing high-performance liquid chromatography

    Institute of Scientific and Technical Information of China (English)

    Man-Ran Liu; Kai-Feng Pan; Zhen-Fu Li; Yi Wang; Da-Jun Deng; Lian Zhang; You-Yong Lu

    2002-01-01

    AIM: To optimize conditions of DHPLC and analyze theeffectiveness of various DNA polymerases on DHPLCresolution, and evaluate the sensitivity of DHPLC in themutation screening of mitochondrial DNA (mtDNA).METHODS: Two fragments of 16s gene of mitochondrial DNA(one of them F2 is a mutant fragment) and an A3243Gmutated fragment were used to analyze the UV detectionlimit and determine the minimum percentage of mutant PCRproducts for DHPLC and evaluate effects of DNApolymerases on resolution of DHPLC. Under the optimalconditions, we analyzed the mtDNA mutations from muscletissues of mitochondrial encephalomyopathy with lacticacidosis and stroke-like episodes (NELAS) and screenedblindly for variances in D-loop region of mtDNA from humangastric tumor specimen.RESULTS: Ten A3243G variants were detected in 12 cases ofMELAS, no alterations were detected in controls and theseresults were consistent with the results obtained by analysisof RFLP with Apel. We also identified 26 D-loop variances in46 cases of human gastric cancer tissues and 38 alterationsin 13 gastric cancer cell lines. The mutation of mtDNA at 80 ngPCFI products containing a minimum of 5 % mutant sequencescould be detected by using DHPLC with UV detector.Moreover, Ampli-Taq Gold polymerase was equally as good asthe proofreading DNA polymerase (e. g., Pfu) in eliminatingthe false positive produced by Taq DNA polymerases.CONCLUSION: DHPLC is a powerful, rapid and sensitivemutation screening method for mtDNA. Proofreading DNApolymerase is more suitable for DHPLC analysis than Taqpolymerase.

  10. Effects of upconversion nanoparticles on polymerase chain reaction.

    Directory of Open Access Journals (Sweden)

    Sang-Hyun Hwang

    Full Text Available Nanoparticles (NPs are attractive materials owing to their physical and electrochemical properties, which make them extremely useful in diagnostic applications. Photon upconversion is the phenomenon where high-energy photons are emitted upon excitation of low-energy photons. Nucleic acids detection based on upconversion nanoparticles (UCNPs, which display a high signal-to-noise ratio and no photobleaching, has been widely applied. We evaluated whether UCNPs can improve polymerase chain reaction (PCR specificity and affect PCR amplification. The effects of UCNPs with a diameter size of 40, 70, and 250 nm were evaluated using 3 PCR kits (AccuPower PCR PreMix, AmpliTaq Gold 360 Master Mix, and HotStarTaq Plus Master Mix and 3 real-time PCR kits (AccuPower GreenStar qPCR PreMix, SYBR Green PCR Master Mix, and QuantiTect SYBR Green PCR Kit. Quantum dots were used for comparison with the UCNPs. In the presence of an appropriate concentration of UCNPs, PCR specificity was optimized. UCNPs of 40-nm size improved PCR specificity more effectively than did UCNPs sized 70 or 250 nm. As the size and concentrations of the UCNPs were increased, PCR amplification was more severely inhibited. At lower annealing temperatures (25°C-45°C, addition of the 40 nm UCNP (1 µg/µL to the PCR reagent produced specific PCR products without nonspecific sequence amplification. Therefore, UCNPs of different sizes, with different DNA polymerases used in the commercial kits, showed different inhibitory effects on PCR amplification. These results demonstrate that optimization of UCNPs, added to reaction mixtures at appropriate concentrations, can improve PCR specificity. However, the mechanism underlining UCNPs effect on PCR remains unclear and will require further investigation.

  11. Recombinase Polymerase Amplification Assay for Rapid Diagnostics of Dengue Infection.

    Directory of Open Access Journals (Sweden)

    Ahmed Abd El Wahed

    Full Text Available Over 2.5 billion people are exposed to the risk of contracting dengue fever (DF. Early diagnosis of DF helps to diminish its burden on public health. Real-time reverse transcription polymerase amplification assays (RT-PCR are the standard method for molecular detection of the dengue virus (DENV. Real-time RT-PCR analysis is not suitable for on-site screening since mobile devices are large, expensive, and complex. In this study, two RT-recombinase polymerase amplification (RT-RPA assays were developed to detect DENV1-4.Using two quantitative RNA molecular standards, the analytical sensitivity of a RT-RPA targeting the 3´non-translated region of DENV1-4 was found to range from 14 (DENV4 to 241 (DENV1-3 RNA molecules detected. The assay was specific and did not cross detect other Flaviviruses. The RT-RPA assay was tested in a mobile laboratory combining magnetic-bead based total nucleic acid extraction and a portable detection device in Kedougou (Senegal and in Bangkok (Thailand. In Kedougou, the RT-RPA was operated at an ambient temperature of 38 °C with auxiliary electricity tapped from a motor vehicle and yielded a clinical sensitivity and specificity of 98% (n=31 and 100% (n=23, respectively. While in the field trial in Bangkok, the clinical sensitivity and specificity were 72% (n=90 and 100%(n=41, respectively.During the first 5 days of infection, the developed DENV1-4 RT-RPA assays constitute a suitable accurate and rapid assay for DENV diagnosis. Moreover, the use of a portable fluorescence-reading device broadens its application potential to the point-of-care for outbreak investigations.

  12. Integrated polymerase chain reaction chips utilizing digital microfluidics.

    Science.gov (United States)

    Chang, Yi-Hsien; Lee, Gwo-Bin; Huang, Fu-Chun; Chen, Yi-Yu; Lin, Jr-Lung

    2006-09-01

    This study reports an integrated microfluidic chip for polymerase chain reaction (PCR) applications utilizing digital microfluidic chip (DMC) technology. Several crucial procedures including sample transportation, mixing, and DNA amplification were performed on the integrated chip using electro-wetting-on-dielectric (EWOD) effect. An innovative concept of hydrophobic/hydrophilic structure has been successfully demonstrated to integrate the DMC chip with the on-chip PCR device. Sample droplets were generated, transported and mixed by the EWOD-actuation. Then the mixture droplets were transported to a PCR chamber by utilizing the hydrophilic/hydrophobic interface to generate required surface tension gradient. A micro temperature sensor and two micro heaters inside the PCR chamber along with a controller were used to form a micro temperature control module, which could perform precise PCR thermal cycling for DNA amplification. In order to demonstrate the performance of the integrated DMC/PCR chips, a detection gene for Dengue II virus was successfully amplified and detected. The new integrated DMC/PCR chips only required an operation voltage of 12V(RMS) at a frequency of 3 KHz for digital microfluidic actuation and 9V(DC) for thermal cycling. When compared to its large-scale counterparts for DNA amplification, the developed system consumed less sample and reagent and could reduce the detection time. The developed chips successfully demonstrated the feasibility of Lab-On-a-Chip (LOC) by utilizing EWOD-based digital microfluidics.

  13. Denaturing high-performance liquid chromatography to diagnose cerebral autosomal dominant arteriopathy in Chinese patients with subcortical infarcts and leukoencephalopathy

    Institute of Scientific and Technical Information of China (English)

    Xiaomei Tang; Biao Chen

    2008-01-01

    BACKGROUND: Notch3 mutations are the molecular genetic foundation for cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL). Of all currently available detection methods, direct sequencing or restriction enzymes are frequently used, but the cost is relatively high, because the Notch3 gene is composed of many exons and mutational sites are widely distributed. Denaturing high-performance liquid chromatography (DHPLC) exhibits high efficiency and specificity and has been applied to gene detection. To date, there has no report regarding DHPLC in gene detection of large-scale CADASIL families in China. OBJECTIVE: To explore the application and value of DHPLC in the diagnosis of CADASIL by a mutation screening for Notch3 gene in CADASIL probands and their family members. DESIGN, TIME AND SETTING: A comparative observation was performed at the Genetic Diagnosis Laboratory of Institute of Geriatrics, Xuanwu Hospital of Capital Medical University and the Key Laboratory for Neurodegenerative Disease of the Ministry of Education between August 2003 and May 2004. PARTICIPANTS: Fourteen CADASIL patients and their family members, comprising eight males and six females, aged 38-62 years, were included. Their key features included recurrent sub-cortical ischemic events and vascular dementia. In addition, 100 healthy physical examinees were selected as controls, including 52 males and 48 females, aged 56-72 years, who had no neurodegenerative disease or psychosis, and no history or high risk for cerebrovascular disease. METHODS: DNA was extracted from white blood cells. Ten hotspots of the Notch3 gene for sequence variation were first amplified by PCR, and the products were detected using DHPLC. Exons exhibiting a variant in the DHPLC profile underwent another PCR amplification, followed by DNA sequencing to identify the mutation type. In addition, patients with normal DHPLC peak profiles underwent PCR amplification for the remaining

  14. The RNA polymerase I transcription machinery.

    Science.gov (United States)

    Russell, Jackie; Zomerdijk, Joost C B M

    2006-01-01

    The rRNAs constitute the catalytic and structural components of the ribosome, the protein synthesis machinery of cells. The level of rRNA synthesis, mediated by Pol I (RNA polymerase I), therefore has a major impact on the life and destiny of a cell. In order to elucidate how cells achieve the stringent control of Pol I transcription, matching the supply of rRNA to demand under different cellular growth conditions, it is essential to understand the components and mechanics of the Pol I transcription machinery. In this review, we discuss: (i) the molecular composition and functions of the Pol I enzyme complex and the two main Pol I transcription factors, SL1 (selectivity factor 1) and UBF (upstream binding factor); (ii) the interplay between these factors during pre-initiation complex formation at the rDNA promoter in mammalian cells; and (iii) the cellular control of the Pol I transcription machinery.

  15. Polymerase Chain Reaction on a Viral Nanoparticle.

    Science.gov (United States)

    Carr-Smith, James; Pacheco-Gómez, Raúl; Little, Haydn A; Hicks, Matthew R; Sandhu, Sandeep; Steinke, Nadja; Smith, David J; Rodger, Alison; Goodchild, Sarah A; Lukaszewski, Roman A; Tucker, James H R; Dafforn, Timothy R

    2015-12-18

    The field of synthetic biology includes studies that aim to develop new materials and devices from biomolecules. In recent years, much work has been carried out using a range of biomolecular chassis including α-helical coiled coils, β-sheet amyloids and even viral particles. In this work, we show how hybrid bionanoparticles can be produced from a viral M13 bacteriophage scaffold through conjugation with DNA primers that can template a polymerase chain reaction (PCR). This unprecedented example of a PCR on a virus particle has been studied by flow aligned linear dichroism spectroscopy, which gives information on the structure of the product as well as a new protototype methodology for DNA detection. We propose that this demonstration of PCR on the surface of a bionanoparticle is a useful addition to ways in which hybrid assemblies may be constructed using synthetic biology.

  16. Molecular Mechanisms of DNA Polymerase Clamp Loaders

    Science.gov (United States)

    Kelch, Brian; Makino, Debora; Simonetta, Kyle; O'Donnell, Mike; Kuriyan, John

    Clamp loaders are ATP-driven multiprotein machines that couple ATP hydrolysis to the opening and closing of a circular protein ring around DNA. This ring-shaped clamp slides along DNA, and interacts with numerous proteins involved in DNA replication, DNA repair and cell cycle control. Recently determined structures of clamp loader complexes from prokaryotic and eukaryotic DNA polymerases have revealed exciting new details of how these complex AAA+ machines perform this essential clamp loading function. This review serves as background to John Kuriyan's lecture at the 2010 Erice School, and is not meant as a comprehensive review of the contributions of the many scientists who have advanced this field. These lecture notes are derived from recent reviews and research papers from our groups.

  17. Polymerase chain reaction with nearby primers.

    Science.gov (United States)

    Garafutdinov, Ravil R; Galimova, Aizilya A; Sakhabutdinova, Assol R

    2017-02-01

    DNA analysis of biological specimens containing degraded nucleic acids such as mortal remains, archaeological artefacts, forensic samples etc. has gained more attention in recent years. DNA extracted from these samples is often inapplicable for conventional polymerase chain reaction (PCR), so for its amplification the nearby primers are commonly used. Here we report the data that clarify the features of PCR with nearby and abutting primers. We have shown that the proximity of primers leads to significant reduction of the reaction time and ensures the successful performance of DNA amplification even in the presence of PCR inhibitors. The PCR with abutting primers is usually characterized by the absence of nonspecific amplification products that causes extreme sensitivity with limit of detection on single copy level. The feasibility of PCR with abutting primers was demonstrated on species identification of 100 years old rotten wood. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Bordetella pertussis diagnosed by polymerase chain reaction

    DEFF Research Database (Denmark)

    Birkebaek, N H; Heron, I; Skjødt, K

    1994-01-01

    The object of this work was to test the polymerase chain reaction (PCR) for demonstration of Bordetella pertussis (BP) in nasopharyngeal secretions. The method was applied to patients with recently diagnosed pertussis, as verified by BP culture. In order to test the sensitivity and specificity...... in 25 patients in whose nasopharyngeal secretions BP had been demonstrated after 4-7 days of culture. The detection limit of PCR in aqueous solution was 1-2 BP bacteria per reaction tube. PCR was 100% specific for BP, showing no response with other Bordetella species or other bacteria known to colonize...... of PCR for the diagnosis of BP, we used known concentrations of BP, Bordetella parapertussis and Bordetella bronchiseptica in aqueous solutions. PCR was furthermore carried out on species of bacteria that might be isolated from the nasopharynx. The applicability of PCR to patient specimens was tested...

  19. [Polymerase chain reaction and its application].

    Science.gov (United States)

    Sárosi, I; Gerald, E; Girish, V N

    1992-07-01

    The polymerase chain reaction (PCR) is one of the most important new methods in molecular biology. It is widely used in genetic and anthropologic basic research, in oncology and virology, in all those fields, where molecular biologic methods can give answers to the questions raised. The procedure enables one to multiply with extreme precision targeted pieces of amounts as little as one target molecule of DNA or RNA by five to six logs, making them easy to be handled and examined by routine molecular biological methods. The method is presented through one possible application field, that is of great importance in the study of hepatocarcinogenesis. Sensitivity of PCR in detection of hepatitis B virus DNA is greater by four logs than animal inoculation, the last most sensitive method known.

  20. The punctilious RNA polymerase II core promoter.

    Science.gov (United States)

    Vo Ngoc, Long; Wang, Yuan-Liang; Kassavetis, George A; Kadonaga, James T

    2017-07-01

    The signals that direct the initiation of transcription ultimately converge at the core promoter, which is the gateway to transcription. Here we provide an overview of the RNA polymerase II core promoter in bilateria (bilaterally symmetric animals). The core promoter is diverse in terms of its composition and function yet is also punctilious, as it acts with strict rules and precision. We additionally describe an expanded view of the core promoter that comprises the classical DNA sequence motifs, sequence-specific DNA-binding transcription factors, chromatin signals, and DNA structure. This model may eventually lead to a more unified conceptual understanding of the core promoter. © 2017 Vo ngoc et al.; Published by Cold Spring Harbor Laboratory Press.

  1. Cloning and sequence analysis of novel DNA polymerases from thermophilic Geobacillus species isolated from hot springs in Turkey: characterization of a DNA polymerase I from Geobacillus kaue strain NB.

    Science.gov (United States)

    Çağlayan, Melike; Bilgin, Neş'e

    2011-11-01

    The complete coding sequences of the polA genes from seven thermophilic Geobacillus species, isolated from hot springs of Gönen and Hisaralan in Turkey, were cloned and sequenced. The polA genes of these Geobacillus species contain a long open reading frame of 2,637 bp encoding DNA polymerase I with a calculated molecular mass of 99 kDa. Amino acid sequences of these Geobacillus DNA polymerases are closely related. The multiple sequence alignments show all include the conserved amino acids in the polymerase and 5'-3' exonuclease domains, but the catalytic residues varied in 3'-5' exonuclease domain of these Geobacillus DNA polymerases. One of them, DNA polymerase I from Geobacillus kaue strain NB (Gkaue polI) is purified to homogeneity and biochemically characterized in vitro. The optimum temperature for enzymatic activity of Gkaue polI is 70 °C at pH 7.5-8.5 in the presence of 8 mM Mg(2+) and 80-100 mM of monovalent ions. The addition of polyamines stimulates the polymerization activity of the enzyme. Three-dimensional structure of Gkaue polI predicted using homology modeling confirmed the conservation of all the functionally important regions in the polymerase active site.

  2. The quaternary structure of the recombinant bovine odorant-binding protein is modulated by chemical denaturants.

    Directory of Open Access Journals (Sweden)

    Olga V Stepanenko

    Full Text Available A large group of odorant-binding proteins (OBPs has attracted great scientific interest as promising building blocks in constructing optical biosensors for dangerous substances, such as toxic and explosive molecules. Native tissue-extracted bovine OBP (bOBP has a unique dimer folding pattern that involves crossing the α-helical domain in each monomer over the other monomer's β-barrel. In contrast, recombinant bOBP maintaining the high level of stability inherent to native tissue bOBP is produced in a stable native-like state with a decreased tendency for dimerization and is a mixture of monomers and dimers in a buffered solution. This work is focused on the study of the quaternary structure and the folding-unfolding processes of the recombinant bOBP in the absence and in the presence of guanidine hydrochloride (GdnHCl. Our results show that the recombinant bOBP native dimer is only formed at elevated GdnHCl concentrations (1.5 M. This process requires re-organizing the protein structure by progressing through the formation of an intermediate state. The bOBP dimerization process appears to be irreversible and it occurs before the protein unfolds. Though the observed structural changes for recombinant bOBP at pre-denaturing GdnHCl concentrations show a local character and the overall protein structure is maintained, such changes should be considered where the protein is used as a sensitive element in a biosensor system.

  3. Screening for TP53 mutations in osteosarcomas using constant denaturant gel electrophoresis (CDGE).

    Science.gov (United States)

    Smith-Sørensen, B; Gebhardt, M C; Kloen, P; McIntyre, J; Aguilar, F; Cerutti, P; Børresen, A L

    1993-01-01

    We have previously developed conditions to screen for TP53 point mutations inside the conserved domains II-V of the gene by using constant denaturant gel electrophoresis (CDGE). The present study reports conditions for screening more of the codons in the frequently mutated region exon 5-8 and for detecting mutations in sequences encoding functional domains in the N- and C-terminal part of the protein. The ability of the CDGE technique to detect mutations was studied using controls with known sequence deviations. The resolution power of the technique to separate different types of mutations was tested by using seven different single base pair mutants all residing in a stretch of four base pairs. All mutants were separated from the wild type. The established CDGE screening strategy was then used to look for mutations in DNA from 28 osteosarcomas. Six (21.5%) of the samples were shown to have a TP53 mutation, and the exact characterization was performed by direct sequencing. All of these were within the frequently reported mutated region exon 5-8.

  4. Amaltheys: A fluorescence-based analyzer to assess cheese milk denatured whey proteins.

    Science.gov (United States)

    Lacotte, Pierre; Gomez, Franck; Bardeau, Floriane; Muller, Sabine; Acharid, Abdelhaq; Quervel, Xavier; Trossat, Philippe; Birlouez-Aragon, Inès

    2015-10-01

    The cheese industry faces many challenges to optimize cheese yield and quality. A very precise standardization of the cheese milk is needed, which is achieved by a fine control of the process and milk composition. Thorough analysis of protein composition is important to determine the amount of protein that will be retained in the curd or lost in the whey. The fluorescence-based Amaltheys analyzer (Spectralys Innovation, Romainville, France) was developed to assess pH 4.6-soluble heat-sensitive whey proteins (sWP*) in 5 min. These proteins are those that can be denatured upon heat-treatment and further retained in the curd after coagulation. Monitoring of sWP* in milk and subsequent adaptation of the process is a reliable solution to achieve stable cheese yield and quality. Performance of the method was evaluated by an accredited laboratory on a 0 to 7 g/L range. Accuracy compared with the reference Kjeldahl method is also provided with a standard error of 0.25 g/L. Finally, a 4-mo industrial trial in a cheese plant is described, where Amaltheys was used as a process analytical technology to monitor sWP* content in ingredients and final cheese milk. Calibration models over quality parameters of final cheese were also built from near-infrared and fluorescence spectroscopic data. The Amaltheys analyzer was found to be a rapid, compact, and accurate device to help implementation of standardization procedures in the dairy industry.

  5. Protein denaturation of whey protein isolates (WPIs) induced by high intensity ultrasound during heat gelation.

    Science.gov (United States)

    Frydenberg, Rikke P; Hammershøj, Marianne; Andersen, Ulf; Greve, Marie T; Wiking, Lars

    2016-02-01

    In this study, the impact of high intensity ultrasound (HIU) on proteins in whey protein isolates was examined. Effects on thermal behavior, secondary structure and nature of intra- and intermolecular bonds during heat-induced gelling were investigated. Ultrasonication (24 kHz, 300 W/cm(2), 2078 J/mL) significantly reduced denaturation enthalpies, whereas no change in secondary structure was detected by circular dichroism. The thiol-blocking agent N-ethylmaleimide was applied in order to inhibit formation of disulfide bonds during gel formation. Results showed that increased contents of α-lactalbumin (α-La) were associated with increased sensitivity to ultrasonication. The α-La:β-lactoglobulin (β-Lg) ratio greatly affected the nature of the interactions formed during gelation, where higher amounts of α-La lead to a gel more dependent on disulfide bonds. These results contribute to clarifying the mechanisms mediating the effects of HIU on whey proteins on the molecular level, thus moving further toward implementing HIU in the processing chain in the food industry. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Preliminary studies on the renaturation of denatured catfish (Clarias gariepinus) glutathione transferase.

    Science.gov (United States)

    Ojopagogo, Yetunde Adedolapo; Adewale, Isaac Olusanjo; Afolayan, Adeyinka

    2013-12-01

    Purified juvenile catfish (Clarias gariepinus) glutathione transferase (cgGST) was denatured in vitro and renatured in the absence and presence of different concentrations of endogenous or xenobiotic model substrates. Protein transitions during unfolding and refolding were monitored by activity measurement as well as changes in protein conformation using UV difference spectra at 230 nm. Gdn-HCl at 0.22 M caused 50 % inactivation of the enzyme and at 1.1 M, the enzyme was completely unfolded. Refolding of cgGST main isozyme was not completely reversible at higher concentrations of Gdn-HCl and is dependent on protein concentration. An enzyme concentration of 30 μg/ml yielded 40 % percentage residual activity in the presence of glutathione (GSH), regardless of the concentration that was present as opposed to 30 % obtained in its absence. The xenobiotic model substrate, lindane, appears to have no effect on the refolding of the enzyme. In summary, our results show that GSH assists in the refolding of cgGST in a concentration-independent manner and may be involved in the same function in vivo whereas the xenobiotic model substrate does not.

  7. Monitoring the lactic acid bacterial diversity during shochu fermentation by PCR-denaturing gradient gel electrophoresis.

    Science.gov (United States)

    Endo, Akihito; Okada, Sanae

    2005-03-01

    The presence of lactic acid bacteria (LAB) during shochu fermentation was monitored by PCR-denaturing gradient gel electrophoresis (DGGE) and by bacteriological culturing. No LAB were detected from fermented mashes by PCR-DGGE using a universal bacterial PCR primer set. However, PCR-DGGE using a new primer specific for the 16S rDNA of Lactococcus, Streptococcus, Tetragenococcus, Enterococcus, and Vagococcus and two primers specific for the 16S rDNA of Lactobacillus, Pediococcus, Leuconostoc, and Weissella revealed that Enterococcus faecium, Lactobacillus casei, Lactobacillus fermentum, Lactobacillus nagelii, Lactobacillus plantarum, Lactococcus lactis, Leuconostoc citreum, Leuconostoc mesenteroides, and Weissella cibaria inhabited in shochu mashes. It was also found that the LAB community composition during shochu fermentation changed after the main ingredient and water were added during the fermentation process. Therefore, we confirmed that PCR-DGGE using all three primers specific for groups of LAB together was well suited to the study of the LAB diversity in shochu mashes. The results of DGGE profiles were similar to the results of bacteriological culturing. In conclusion, LAB are present during shochu fermentation but not dominant.

  8. Salt-specific stability and denaturation of a short salt-bridge forming alpha-helix

    CERN Document Server

    Dzubiella, Joachim

    2008-01-01

    The structure of a single alanine-based Ace-AEAAAKEAAAKA-Nme peptide in explicit aqueous electrolyte solutions (NaCl, KCl, NaI, and KF) at large salt concentrations (3-4 M) is investigated using 1 microsecond molecular dynamics (MD) computer simulations. The peptide displays 71 alpha-helical structure without salt and destabilizes with the addition of NaCl in agreement with experiments of a somewhat longer version. It is mainly stabilized by direct and indirect (i+4)EK salt bridges between the Lys and Glu side chains and a concomitant backbone shielding mechanism. NaI is found to be a stronger denaturant than NaCl, while the potassium salts hardly show influence. Investigation of the molecular structures reveals that consistent with recent experiments Na+ has a much stronger affinity to side chain carboxylates and backbone carbonyls than K+, thereby weakening salt bridges and secondary structure hydrogen bonds. At the same time the large I- has a considerable affinity to the nonpolar alanine in line with rece...

  9. Cold denaturation induces inversion of dipole and spin transfer in chiral peptide monolayers

    Science.gov (United States)

    Eckshtain-Levi, Meital; Capua, Eyal; Refaely-Abramson, Sivan; Sarkar, Soumyajit; Gavrilov, Yulian; Mathew, Shinto P.; Paltiel, Yossi; Levy, Yaakov; Kronik, Leeor; Naaman, Ron

    2016-02-01

    Chirality-induced spin selectivity is a recently-discovered effect, which results in spin selectivity for electrons transmitted through chiral peptide monolayers. Here, we use this spin selectivity to probe the organization of self-assembled α-helix peptide monolayers and examine the relation between structural and spin transfer phenomena. We show that the α-helix structure of oligopeptides based on alanine and aminoisobutyric acid is transformed to a more linear one upon cooling. This process is similar to the known cold denaturation in peptides, but here the self-assembled monolayer plays the role of the solvent. The structural change results in a flip in the direction of the electrical dipole moment of the adsorbed molecules. The dipole flip is accompanied by a concomitant change in the spin that is preferred in electron transfer through the molecules, observed via a new solid-state hybrid organic-inorganic device that is based on the Hall effect, but operates with no external magnetic field or magnetic material.

  10. Urea denaturation of barnase: pH dependence and characterization of the unfolded state.

    Science.gov (United States)

    Pace, C N; Laurents, D V; Erickson, R E

    1992-03-17

    To investigate the pH dependence of the conformational stability of barnase, urea denaturation curves were determined over the pH range 2-10. The maximum conformational stability of barnase is 9 kcal mol-1 and occurs between pH 5 and 6. The dependence of delta G on urea concentration increases from 1850 cal mol-1 M-1 at high pH to about 3000 cal mol-1 M-1 near pH 3. This suggests that the unfolded conformations of barnase become more accessible to urea as the net charge on the molecule increases. Previous studies suggested that in 8 M urea barnase unfolds more completely than ribonuclease T1, even with the disulfide bonds broken [Pace, C.N., Laurents, D. V., & Thomson, J.A. (1990) Biochemistry 29, 2564-2572]. In support of this, solvent perturbation difference spectroscopy showed that in 8 M urea the Trp and Tyr residues in barnase are more accessible to perturbation by dimethyl sulfoxide than in ribonuclease T1 with the disulfide bonds broken.

  11. Environmental-induced acquisition of nuptial plumage expression: a role of denaturation of feather carotenoproteins?

    Science.gov (United States)

    Blanco, Guillermo; Frías, Oscar; Garrido-Fernández, Juan; Hornero-Méndez, Dámaso

    2005-01-01

    Several avian species show a bright carotenoid-based coloration during spring and following a period of duller coloration during the previous winter, despite carotenoids presumably being fully deposited in feathers during the autumn moult. Carotenoid-based breast feathers of male linnets (Carduelis cannabina) increased in hue (redness), saturation and brightness after exposing them to outdoor conditions from winter to spring. This represents the first experimental evidence showing that carotenoid-based plumage coloration may increase towards a colourful expression due to biotic or abiotic environmental factors acting directly on full-grown feathers when carotenoids may be fully functional. Sunlight ultraviolet (UV) irradiation was hypothesized to denature keratin and other proteins that might protect pigments from degradation by this and other environmental factors, suggesting that sunlight UV irradiation is a major factor in the colour increase from winter to spring. Feather proteins and other binding molecules, if existing in the follicles, may be linked to carotenoids since their deposition into feathers to protect colourful features of associated carotenoids during the non-breeding season when its main signalling function may be relaxed. Progress towards uncovering the significance of concealment and subsequent display of colour expression should consider the potential binding and protecting nature of feather proteins associated with carotenoids. PMID:16191594

  12. Oligolysine-based coating protects DNA nanostructures from low-salt denaturation and nuclease degradation

    Science.gov (United States)

    Ponnuswamy, Nandhini; Bastings, Maartje M. C.; Nathwani, Bhavik; Ryu, Ju Hee; Chou, Leo Y. T.; Vinther, Mathias; Li, Weiwei Aileen; Anastassacos, Frances M.; Mooney, David J.; Shih, William M.

    2017-05-01

    DNA nanostructures have evoked great interest as potential therapeutics and diagnostics due to ease and robustness of programming their shapes, site-specific functionalizations and responsive behaviours. However, their utility in biological fluids can be compromised through denaturation induced by physiological salt concentrations and degradation mediated by nucleases. Here we demonstrate that DNA nanostructures coated by oligolysines to 0.5:1 N:P (ratio of nitrogen in lysine to phosphorus in DNA), are stable in low salt and up to tenfold more resistant to DNase I digestion than when uncoated. Higher N:P ratios can lead to aggregation, but this can be circumvented by coating instead with an oligolysine-PEG copolymer, enabling up to a 1,000-fold protection against digestion by serum nucleases. Oligolysine-PEG-stabilized DNA nanostructures survive uptake into endosomal compartments and, in a mouse model, exhibit a modest increase in pharmacokinetic bioavailability. Thus, oligolysine-PEG is a one-step, structure-independent approach that provides low-cost and effective protection of DNA nanostructures for in vivo applications.

  13. Binding of DNA by a dinitro-diester calix[4]arene: denaturation and condensation of DNA.

    Science.gov (United States)

    Ostos, F J; Lebron, J A; Moyá, M L; Deasy, M; López-Cornejo, P

    2015-03-01

    A study of a dinitro-diester calix[4]arene (5,17-(3-nitrobenzylideneamino)-11,23-di-tert-butyl-25,27-diethoxycarbonyl methyleneoxy-26,28-dihydroxycalix[4]arene) interaction with calf-thymus DNA was carried out using several techniques. The measurements were done at various molar ratios X=[calixarene]/[DNA]. Results show diverse changes in the DNA conformation depending on the X value. Thus, at low macrocycle concentrations, the calixarene binds to the polynucleotide. This interaction, mainly in groove mode, weakens the hydrogen bonds between base pairs of the helix inducing denaturation of the double strands, as well as condensation of the macromolecule, from an extended coil state to a globular state. An opposite effect is observed at X molar ratios higher than 0.07. The de-condensation of DNA happens, that is, the transition from a compact state to a more extended conformation, probably due to the stacking of calixarene molecules in the solution. Results also show the importance of making a proper choice of the system under consideration.

  14. Basic mechanism of transcription by RNA polymerase II

    Science.gov (United States)

    Svetlov, Vladimir; Nudler, Evgeny

    2012-01-01

    RNA polymerase II-like enzymes carry out transcription of genomes in Eukaryota, Archaea, and some viruses. They also exhibit fundamental similarity to RNA polymerases from bacteria, chloroplasts, and mitochondria. In this review we take an inventory of recent studiesilluminating different steps of basic transcription mechanism, likely common for most multi-subunit RNA polymerases. Through the amalgamation of structural and computational chemistry data we attempt to highlight the most feasible reaction pathway for the two-metal nucleotidyl transfer mechanism, and to evaluate the way catalysis can be linked to translocation in the mechano-chemical cycle catalyzed by RNA polymerase II. PMID:22982365

  15. Nanoscale superstructures assembled by polymerase chain reaction (PCR): programmable construction, structural diversity, and emerging applications.

    Science.gov (United States)

    Kuang, Hua; Ma, Wei; Xu, Liguang; Wang, Libing; Xu, Chuanlai

    2013-11-19

    Polymerase chain reaction (PCR) is an essential tool in biotechnology laboratories and is becoming increasingly important in other areas of research. Extensive data obtained over the last 12 years has shown that the combination of PCR with nanoscale dispersions can resolve issues in the preparation DNA-based materials that include both inorganic and organic nanoscale components. Unlike conventional DNA hybridization and antibody-antigen complexes, PCR provides a new, effective assembly platform that both increases the yield of DNA-based nanomaterials and allows researchers to program and control assembly with predesigned parameters including those assisted and automated by computers. As a result, this method allows researchers to optimize to the combinatorial selection of the DNA strands for their nanoparticle conjugates. We have developed a PCR approach for producing various nanoscale assemblies including organic motifs such as small molecules, macromolecules, and inorganic building blocks, such as nanorods (NRs), metal, semiconductor, and magnetic nanoparticles (NPs). We start with a nanoscale primer and then modify that building block using the automated steps of PCR-based assembly including initialization, denaturation, annealing, extension, final elongation, and final hold. The intermediate steps of denaturation, annealing, and extension are cyclic, and we use computer control so that the assembled superstructures reach their predetermined complexity. The structures assembled using a small number of PCR cycles show a lower polydispersity than similar discrete structures obtained by direct hybridization between the nanoscale building blocks. Using different building blocks, we assembled the following structural motifs by PCR: (1) discrete nanostructures (NP dimers, NP multimers including trimers, pyramids, tetramers or hexamers, etc.), (2) branched NP superstructures and heterochains, (3) NP satellite-like superstructures, (4) Y-shaped nanostructures and DNA

  16. Structural and dynamical study about denatured states of yeast phosphoglycerate kinase by neutrons scattering and X-rays; Etude structurale et dynamique des etats denatures de la phosphoglycerate kinase de levure par diffusion des neutrons et des rayons X

    Energy Technology Data Exchange (ETDEWEB)

    Receveur, V

    1997-04-28

    During a long time, the neutron scattering and X-rays techniques have not been used for the studies bearing on the folding of proteins. The compactness and the globularness of a protein are two structural characteristics describing the denatured states and the intermediate states of folding, and the neutrons and x-rays scattering are probably the two techniques the most appropriate to give this kind of information; they are sensible to the spatial extent and to the molecules compactness, and to their general shape. For these three or four last years, the works using these techniques are increasing, giving precious knowledge on the different steps of folding and on the interactions stabilizing the denatured or intermediate states. This thesis falls into this category. (N.C.).

  17. A Comparison Between Denaturing Gradient Gel Electrophoresis and Denaturing High Performance Liquid Chromatography in Detecting Mutations in Genes Associated with Hereditary Non-Polyposis Colorectal Cancer (HNPCC and the Identification of 9 New Mutations Previously Unidentified by DGGE

    Directory of Open Access Journals (Sweden)

    Meldrum Cliff J

    2003-12-01

    Full Text Available Abstract Denaturing high performance liquid chromatography is a relatively new method by which heteroduplex structures formed during the PCR amplification of heterozygote samples can be rapidly identified. The use of this technology for mutation detection in hereditary non-polyposis colorectal cancer (HNPCC has the potential to appreciably shorten the time it takes to analyze genes associated with this disorder. Prior to acceptance of this method for screening genes associated with HNPCC, assessment of the reliability of this method should be performed. In this report we have compared mutation and polymorphism detection by denaturing gradient gel electrophoresis (DGGE with denaturing high performance liquid chromatography (DHPLC in a set of 130 families. All mutations/polymorphisms representing base substitutions, deletions, insertions and a 23 base pair inversion were detected by DHPLC whereas DGGE failed to identify four single base substitutions and a single base pair deletion. In addition, we show that DHPLC has been used for the identification of 5 different mutations in exon 7 of hMSH2 that could not be detected by DGGE. From this study we conclude that DHPLC is a more effective and rapid alternative to the detection of mutations in hMSH2 and hMLH1 with the same or better accuracy than DGGE. Furthermore, this technique offers opportunities for automation, which have not been realised for the majority of other methods of gene analysis.

  18. (1)H, (13)C, and (15)N backbone resonance assignments of the full-length 40 kDa S. acidocaldarius Y-family DNA polymerase, dinB homolog.

    Science.gov (United States)

    Moro, Sean L; Cocco, Melanie J

    2015-10-01

    The dinB homolog (Dbh) is a member of the Y-family of translesion DNA polymerases, which are specialized to accurately replicate DNA across from a wide variety of lesions in living cells. Lesioned bases block the progression of high-fidelity polymerases and cause detrimental replication fork stalling; Y-family polymerases can bypass these lesions. The active site of the translesion synthesis polymerase is more open than that of a replicative polymerase; consequently Dbh polymerizes with low fidelity. Bypass polymerases also have low processivity. Short extension past the lesion allows the high-fidelity polymerase to switch back onto the site of replication. Dbh and the other Y-family polymerases have been used as structural models to investigate the mechanisms of DNA polymerization and lesion bypass. Many high-resolution crystal structures of Y-family polymerases have been reported. NMR dynamics studies can complement these structures by providing a measure of protein motions. Here we report the (15)N, (1)H, and (13)C backbone resonance assignments at two temperatures (35 and 50 °C) for Sulfolobus acidocaldarius Dbh polymerase. Backbone resonance assignments have been obtained for 86 % of the residues. The polymerase active site is assigned as well as the majority of residues in each of the four domains.

  19. The guanidine hydrochloride-induced denaturation of CP43 and CP47 studied by terahertz time-domain spectroscopy

    Institute of Scientific and Technical Information of China (English)

    QU YuanGang; CHEN Hua; QIN XiaoChun; WANG Li; LI LiangBi; KUANG TingYun

    2007-01-01

    Terahertz time-domain spectroscopy (THz-TDS) is a new technique in studying the conformational state of a molecule in recent years. In this work, we reported the first use of THz-TDS to examine the denaturation of two photosynthesis membrane proteins: CP43 and CP47. THz-TDS was proven to be useful in discriminating the different conformational states of given proteins with similar structure and in monitoring the denaturation process of proteins. Upon treatment with guanidine hydrochloride (GuHCI),a 1.8 THz peak appeared for CP47 and free chlorophyll a (Chi a). This peak was deemed to originate from the interaction between Chli a and GuHCI molecules. The Chl a molecules in CP47 interacted with GuHCI more easily than those in CP43.

  20. Simultaneous immobilization of dehydrogenases on polyvinylidene difluoride resin after separation by non-denaturing two-dimensional electrophoresis

    Energy Technology Data Exchange (ETDEWEB)

    Shimazaki, Youji [Graduate School of Science and Engineering (Science Section) and Venture Business Laboratory, Ehime University, Bunkyo-cho 2-5, Matsuyama City 790-8577 (Japan)], E-mail: yoji@dpc.ehime-u.ac.jp; Kadota, Mariko [Faculty of Science, Ehime University, Matsuyama (Japan)

    2008-06-16

    We detected mouse liver malate, sorbitol and aldehyde dehydrogenases by negative staining, analysis of malate and sorbitol dehydrogenase activities using each substrate, and electron transfers including nicotinamide adenine dinucleotide (NAD) and nitroblue tetrazolium in non-denaturing two-dimensional electrophoresis (2-DE) gel. Dehydrogenases were also identified by electrospray ionization tandem mass spectrometry (ESI-MS/MS) after 2-DE separation and protein detection by negative staining. Spots of dehydrogenases separated by 2-DE were excised, and simultaneously transferred and immobilized on polyvinylidene difuoride (PVDF) resin by electrophoresis. The dehydrogenase activities remained intact after immobilization. In conclusion, resin-immobilized dehydrogenases can be simultaneously obtained after separation by non-denaturing 2-DE, detection by negative staining and transferring to resins.

  1. Electrochemically-driven large amplitude pH cycling for acid-base driven DNA denaturation and renaturation.

    Science.gov (United States)

    Wang, Yong-Chun; Lin, Cong-Bin; Su, Jian-Jia; Ru, Ying-Ming; Wu, Qiao; Chen, Zhao-Bin; Mao, Bing-Wei; Tian, Zhao-Wu

    2011-06-15

    In this paper, we present an electrochemically driven large amplitude pH alteration method based on a serial electrolytic cell involving a hydrogen permeable bifacial working electrode such as Pd thin foil. The method allows solution pH to be changed periodically up to ±4~5 units without additional alteration of concentration and/or composition of the system. Application to the acid-base driven cyclic denaturation and renaturation of 290 bp DNA fragments is successfully demonstrated with in situ real-time UV spectroscopic characterization. Electrophoretic analysis confirms that the denaturation and renaturation processes are reversible without degradation of the DNA. The serial electrolytic cell based electrochemical pH alteration method presented in this work would promote investigations of a wide variety of potential-dependent processes and techniques.

  2. pH-responsive polymer-assisted refolding of urea- and organic solvent-denatured alpha-chymotrypsin.

    Science.gov (United States)

    Roy, I; Gupta, M N

    2003-12-01

    A pH-responsive polymer Eudragit S-100 has been found to assist in correct folding of alpha-chymotrypsin denatured with 8 M urea and 100 mM dithiothreitol at pH 8.2. The complete activity could be regained within 10 min during refolding. Both native and refolded enzymes showed emission of intrinsic fluorescence with lambda(max) of 342 nm. Gel electrophoresis showed that the presence of Eudragit S-100 led to dissociation of multimers followed by the appearance of a band at the monomer position. The unfolding (by 8 M urea) and folding (assisted by the polymer) also led to complete renaturation of alpha-chymotrypsin initially denatured by 90% dioxane. The implications of the data in recovery of enzyme activity from inclusion bodies and the interesting possibility in the in vivo context of reversing protein aggregation in amyloid-based diseases have been discussed.

  3. Mercury(II) binds to both of chymotrypsin's histidines, causing inhibition followed by irreversible denaturation/aggregation.

    Science.gov (United States)

    Stratton, Amanda; Ericksen, Matthew; Harris, Travis V; Symmonds, Nick; Silverstein, Todd P

    2017-02-01

    The toxicity of mercury is often attributed to its tight binding to cysteine thiolate anions in vital enzymes. To test our hypothesis that Hg(II) binding to histidine could be a significant factor in mercury's toxic effects, we studied the enzyme chymotrypsin, which lacks free cysteine thiols; we found that chymotrypsin is not only inhibited, but also denatured by Hg(II). We followed the aggregation of denatured enzyme by the increase in visible absorbance due to light scattering. Hg(II)-induced chymotrypsin precipitation increased dramatically above pH 6.5, and free imidazole inhibited this precipitation, implicating histidine-Hg(II) binding in the process of chymotrypsin denaturation/aggregation. Diethylpyrocarbonate (DEPC) blocked chymotrypsin's two histidines (his40 and his57 ) quickly and completely, with an IC50 of 35 ± 6 µM. DEPC at 350 µM reduced the hydrolytic activity of chymotrypsin by 90%, suggesting that low concentrations of DEPC react with his57 at the active site catalytic triad; furthermore, DEPC below 400 µM enhanced the Hg(II)-induced precipitation of chymotrypsin. We conclude that his57 reacts readily with DEPC, causing enzyme inhibition and enhancement of Hg(II)-induced aggregation. Above 500 µM, DEPC inhibited Hg(II)-induced precipitation, and [DEPC] >2.5 mM completely protected chymotrypsin against precipitation. This suggests that his40 reacts less readily with DEPC, and that chymotrypsin denaturation is caused by Hg(II) binding specifically to the his40 residue. Finally, we show that Hg(II)-histidine binding may trigger hemoglobin aggregation as well. Because of results with these two enzymes, we suggest that metal-histidine binding may be key to understanding all heavy metal-induced protein aggregation.

  4. Protein denaturation with guanidine hydrochloride or urea provides a different estimate of stability depending on the contributions of electrostatic interactions.

    Science.gov (United States)

    Monera, O. D.; Kay, C. M.; Hodges, R. S.

    1994-01-01

    The objective of this study was to address the question of whether or not urea and guanidine hydrochloride (GdnHCl) give the same estimates of the stability of a particular protein. We previously suspected that the estimates of protein stability from GdnHCl and urea denaturation data might differ depending on the electrostatic interactions stabilizing the proteins. Therefore, 4 coiled-coil analogs were designed, where the number of intrachain and interchain electrostatic attractions (A) were systematically changed to repulsions (R): 20A, 15A5R, 10A10R, and 20R. The GdnHCl denaturation data showed that the 4 coiled-coil analogs, which had electrostatic interactions ranging from 20 attractions to 20 repulsions, had very similar [GdnHCl]1/2 values (average of congruent to 3.5 M) and, as well, their delta delta Gu values were very close to 0 (0.2 kcal/mol). In contrast, urea denaturation showed that the [urea]1/2 values proportionately decreased with the stepwise change from 20 electrostatic attractions to 20 repulsions (20A, 7.4 M; 15A5R, 5.4 M; 10A10R, 3.2 M; and 20R, 1.4 M), and the delta delta Gu values correspondingly increased with the increasing differences in electrostatic interactions (20A-15A5R, 1.5 kcal/mol; 20A-10A10R, 3.7 kcal/mol; and 20A-20R, 5.8 kcal/mol). These results indicate that the ionic nature of GdnHCl masks electrostatic interactions in these model proteins, a phenomenon that was absent when the unchanged urea was used. Thus, GdnHCl and urea denaturations may give vastly different estimates of protein stability, depending on how important electrostatic interactions are to the protein. PMID:7703845

  5. Association of Streptomyces community composition determined by PCR-denaturing gradient gel electrophoresis with indoor mold status

    OpenAIRE

    Johansson, Elisabet; Reponen, Tiina; Meller, Jarek; Vesper, Stephen; Yadav, Jagjit

    2014-01-01

    Both Streptomyces species and mold species have previously been isolated from moisture-damaged building materials; however, an association between these two groups of microorganisms in indoor environments is not clear. In this study we used a culture-independent method, PCR denaturing gradient gel electrophoresis (PCR-DGGE) to investigate the composition of the Streptomyces community in house dust. Twenty-three dust samples each from two sets of homes categorized as high-mold and low-mold bas...

  6. The Denitrification Characteristics and Microbial Community in the Cathode of an MFC with Aerobic Denitrification at High Temperatures.

    Science.gov (United States)

    Zhao, Jianqiang; Wu, Jinna; Li, Xiaoling; Wang, Sha; Hu, Bo; Ding, Xiaoqian

    2017-01-01

    Microbial fuel cells (MFCs) have attracted much attention due to their ability to generate electricity while treating wastewater. The performance of a double-chamber MFC with simultaneous nitrification and denitrification (SND) in the cathode for treating synthetic high concentration ammonia wastewater was investigated at different dissolved oxygen (DO) concentrations and high temperatures. The results showed that electrode denitrification and traditional heterotrophic denitrification co-existed in the cathode chamber. Electrode denitrification by aerobic denitrification bacterium (ADB) is beneficial for achieving a higher voltage of the MFC at high DO concentrations (3.0-4.2 mg/L), while traditional heterotrophic denitrification is conducive to higher total nitrogen (TN) removal at low DO (0.5-1.0 mg/L) concentrations. Under high DO conditions, the nitrous oxide production and TN removal efficiency were higher with a 50 Ω external resistance than with a 100 Ω resistance, which demonstrated that electrode denitrification by ADB occurred in the cathode of the MFC. Sufficient electrons were inferred to be provided by the electrode to allow ADB survival at low carbon:nitrogen ratios (≤0.3). Polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) results showed that increasing the DO resulted in a change of the predominant species from thermophilic autotrophic nitrifiers and facultative heterotrophic denitrifiers at low DO concentrations to thermophilic ADB at high DO concentrations. The predominant phylum changed from Firmicutes to Proteobacteria, and the predominant class changed from Bacilli to Alpha, Beta, and Gamma Proteobacteria.

  7. The N-terminal domain of a TonB-dependent transporter undergoes a reversible stepwise denaturation.

    Science.gov (United States)

    Flores Jiménez, Ricardo H; Cafiso, David S

    2012-05-01

    Gram-negative bacteria contain a family of outer membrane transport proteins that function in the uptake of rare nutrients, such as iron and vitamin B(12). These proteins are termed TonB-dependent because transport requires an interaction with the inner-membrane protein TonB. Using a combination of site-directed spin labeling and chemical denaturation, we examined the site-specific unfolding of regions of the Escherichia coli vitamin B(12) transporter, BtuB. The data indicate that a portion of the N-terminal region of the protein, which occupies the lumen of the BtuB barrel, denatures prior to the unfolding of the barrel and that the free energy of folding for the N-terminus is smaller than that typically seen for globular proteins. Moreover, the data indicate that the N-terminal domain does not unfold in a single event but unfolds in a series of independent steps. The unfolding of the N-terminus is reversible, and removal of denaturant restores the native fold of the protein. These data are consistent with proposed transport mechanisms that involve a transient rearrangement or unfolding of the N-terminus of the protein, and they provide evidence of a specific protein conformation that might be an intermediate accessed during transport.

  8. Heat-denatured lysozyme aggregation and gelation as revealed by combined dielectric relaxation spectroscopy and light scattering measurements.

    Science.gov (United States)

    Giugliarelli, A; Sassi, P; Paolantoni, M; Onori, G; Cametti, C

    2012-09-06

    The dielectric behavior of native and heat-denatured lysozyme in ethanol-water solutions was examined in the frequency range from 1 MHz to 2 GHz, using frequency-domain dielectric relaxation spectroscopy. Because of the conformational changes on unfolding, dielectric methods provide information on the denaturation process of the protein and, at protein concentration high enough, on the subsequent aggregation and gelation. Moreover, the time evolution of the protein aggregation and gelation was monitored measuring, by means of dynamic light scattering methods, the diffusion coefficient of micro-sized polystyrene particles, deliberately added to the protein solution, which act as a probe of the viscosity of the microenvironment close to the particle surface. All together, our measurements indicate that heat-induced denaturation favors, at high concentrations, a protein aggregation process which evolves up to the full gelation of the system. These findings have a direct support from IR measurements of the absorbance of the amide I band that, because of the unfolding, indicate that proteins entangle each other, producing a network structure which evolves, in long time limit, in the gel.

  9. Preparation of denatured protein bone sterilized with gamma radiation; Preparacion de hueso desproteinizado esterilizado con radiacion gamma

    Energy Technology Data Exchange (ETDEWEB)

    Luna Z, D. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico)]. e-mail: dlz@nuclear.inin.mx

    2005-07-01

    The bone is one of the tissues more transplanted in the entire world by that the bone necessity for transplant every day becomes bigger. In the Bank of tissues Radio sterilized of the ININ the amnion and the pig skin are routinely processed. The tissue with which will be continued is with bone. Due to that in our country it doesn't have enough bone of human origin for the necessities required in the bone transplant, an option is the bone of bovine. Of this bone one can obtain denatured protein bone, with the same characteristics of the denatured protein human bone, the one which has been proven that it has good acceptance and incorporation in the human body when is transplanted. The method for the obtaining of the denatured protein bone of bovine, with the confirmation of the final product by means of X-ray diffraction is described. The radiosterilization of this bone with gamma rays and the determination of the lead content. (Author)

  10. The polymerase chain reaction: current and future clinical applications.

    OpenAIRE

    Lynch, J R; Brown, J. M.

    1990-01-01

    The polymerase chain reaction has undergone rapid improvement since its initial development, such that the technique currently permits rapid, accurate, predictive tests to be made in the field of prenatal diagnosis and has greatly aided forensic medicine. It is anticipated that the polymerase chain reaction will also facilitate advances in other fields, in particular preimplantation diagnosis, virology, bacteriology, and cancer therapy.

  11. Role for DNA polymerase beta in response to ionizing radiation.

    NARCIS (Netherlands)

    Vermeulen, C.; Verwijs-Janssen, M.; Cramers, P.; Begg, A.C.; Vens, C.

    2007-01-01

    Evidence for a role of DNA polymerase beta in determining radiosensitivity is conflicting. In vitro assays show an involvement of DNA polymerase beta in single strand break repair and base excision repair of oxidative damages, both products of ionizing radiation. Nevertheless the lack of DNA polymer

  12. Purine inhibitors of protein kinases, G proteins and polymerases

    Energy Technology Data Exchange (ETDEWEB)

    Gray, Nathanael S. (Berkeley, CA); Schultz, Peter (Oakland, CA); Kim, Sung-Hou (Moraga, CA); Meijer, Laurent (Roscoff, FR)

    2001-07-03

    The present invention relates to purine analogs that inhibit, inter alia, protein kinases, G-proteins and polymerases. In addition, the present invention relates to methods of using such purine analogs to inhibit protein kinases, G-proteins, polymerases and other cellular processes and to treat cellular proliferative diseases.

  13. Problem-Solving Test: Real-Time Polymerase Chain Reaction

    Science.gov (United States)

    Szeberenyi, Jozsef

    2009-01-01

    Terms to be familiar with before you start to solve the test: polymerase chain reaction, DNA amplification, electrophoresis, breast cancer, "HER2" gene, genomic DNA, "in vitro" DNA synthesis, template, primer, Taq polymerase, 5[prime][right arrow]3[prime] elongation activity, 5[prime][right arrow]3[prime] exonuclease activity, deoxyribonucleoside…

  14. A Practical Polymerase Chain Reaction Laboratory for Introductory Biology Classes.

    Science.gov (United States)

    Bowlus, R. David; Grether, Susan C.

    1996-01-01

    Presents a polymerase chain reaction (PCR) laboratory exercise that can be performed by introductory biology students in 1 45- to 55-minute class period. Includes a general description of the polymerase chain reaction, materials needed, procedure, and details of interest to teachers. (JRH)

  15. Genotypic frequency of calpastatin gene in lori sheep by polymerase ...

    African Journals Online (AJOL)

    ... consequently the balance of calpain-calpastatin activity in muscles is believed to dictate the rate of tenderization in post-mortem meat. ... Polymerase chain reaction was performed to amplify a 622 bp fragment of this gene. Restriction reaction of polymerase chain reaction (PCR) products was done using MspI enzyme.

  16. [Effect of Escherichia coli mutation affecting the RNA polymerase sigma factor on phage T4 development].

    Science.gov (United States)

    Zograf, Iu N

    1982-01-01

    The bacterial RNA polymerase sigma factor is necessary throughout T4 development. T4 can develop in the E. coli RpoD800 mutant cells only at permissive temperature. RNA synthesis in T4-infected mutant cells remains temperature-sensitive throughout infection as in uninfected mutant bacteria. This shows that bacterial sigma factor is necessary for all types of RNA synthesis in infected E. coli. The data obtained suggest also that active sigma factor is necessary for early, but not for late T4 DNA replication.

  17. Denaturing gradient gel electrophoresis of neonatal intestinal microbiota in relation to the development of asthma

    Directory of Open Access Journals (Sweden)

    Desager Kristine N

    2011-04-01

    Full Text Available Abstract Background The extended 'hygiene hypothesis' suggests that the initial composition of the infant gut microbiota is a key determinant in the development of atopic disease. Several studies have demonstrated that the microbiota of allergic and non-allergic infants are different even before the development of symptoms, with a critical time window during the first 6 months of life. The aim of the study was to investigate the association between early intestinal colonisation and the development of asthma in the first 3 years of life using DGGE (denaturing gradient gel electrophoresis. Methods In a prospective birth cohort, 110 children were classified according to the API (Asthma Predictive Index. A positive index included wheezing during the first three years of life combined with eczema in the child in the first years of life or with a parental history of asthma. A fecal sample was taken at the age of 3 weeks and analysed with DGGE using universal and genus specific primers. Results The Asthma Predictive Index was positive in 24/110 (22% of the children. Using universal V3 primers a band corresponding to a Clostridum coccoides XIVa species was significantly associated with a positive API. A Bacteroides fragilis subgroup band was also significantly associated with a positive API. A final DGGE model, including both bands, allowed correct classification of 73% (80/110 of the cases. Conclusion Fecal colonisation at age 3 weeks with either a Bacteroides fragilis subgroup or a Clostridium coccoides subcluster XIVa species is an early indicator of possible asthma later in life. These findings need to be confirmed in a new longitudinal follow-up study.

  18. DNA-based diagnosis of isolated sulfite oxidase deficiency by denaturing high-performance liquid chromatography.

    Science.gov (United States)

    Lam, Ching-Wan; Li, Chi-Keung; Lai, Chi-Kong; Tong, Sui-Fan; Chan, Kwok-Yin; Ng, Grace Sui-Fun; Yuen, Yuet-Ping; Cheng, Anna Wai-Fun; Chan, Yan-Wo

    2002-01-01

    Isolated sulfite oxidase deficiency is a rare autosomal recessive disease, characterized by severe neurological abnormalities, seizures, mental retardation, and dislocation of the ocular lenses, that often leads to death in infancy. There is a special demand for prenatal diagnosis, since no effective treatment is available for isolated sulfite oxidase deficiency. Until now, the cDNA sequence of the sulfite oxidase (SUOX) gene has been available, but the genomic sequence of the SUOX gene has not been published. In this study, we have performed a DNA-based diagnosis of isolated sulfite oxidase deficiency in a Chinese patient. To do so, we designed oligonucleotide primers for amplification of the predicted exons and intron-exon boundaries of the SUOX gene obtained from the completed draft version of the human genome. Using overlapping PCR products, we confirmed the flanking intronic sequences of the coding exons and that the entire 466-residue mature peptide is encoded by the last exon of the gene. We then performed mutation detection using denaturing high-performance liquid chromatography (DHPLC). The DHPLC chromatogram of exon 2b showed the presence of heteroduplex peaks only after mixing of the mutant DNA with the wild-type DNA, indicating the presence of a homozygous mutation. Direct DNA sequencing showed a homozygous base substitution at codon 160, changing the codon from CGG to CAG, which changes the amino acid from arginine to glutamine, i.e., R160Q. The DNA-based diagnosis of isolated sulfite oxidase deficiency will enable us to make an accurate determination of carrier status and to perform prenatal diagnosis of this disease. The availability of the genomic sequences of human genes from the completed draft human genome sequence will simplify the development of molecular genetic diagnoses of human diseases from peripheral blood DNA.

  19. Analysis of variations in band positions for normalization in across-gel denaturing gradient gel electrophoresis.

    Science.gov (United States)

    Matsushita, Yuko; Yamamura, Kohji; Morimoto, Sho; Bao, Zhihua; Kurose, Daisuke; Sato, Ikuo; Yoshida, Shigenobu; Tsushima, Seiya

    2015-05-01

    Variation in band position between gels is a well-known problem in denaturing gradient gel electrophoresis (DGGE). However, few reports have evaluated the degree of variation in detail. In this study, we investigated the variation in band positions of DNA samples extracted from soil, normalized using reference positions within marker lanes for DGGE in three organismal (bacterial, fungal, and nematode) conditions. For sample lanes, marker DNA (as a control) and sample DNA were used. The test for normality of distribution showed that the position data of a large percentage of bands were normally distributed but not for certain bands. For the normally-distributed data, their variations [standard deviation of marker bands (SDM) and standard deviation of sample bands (SDS), respectively] were assessed. For all organismal conditions, the degree of within-gel variation were similar between SDMs and SDSs, while between-gel variations in SDSs were larger than those in SDMs. Due to the large effect of between-gel variations, the total variations in SDSs were more varied between sample bands, and the mean variations of all sample bands were higher than those in the markers. We found that the total variation in the fungal and nematode SDSs decreased when the intervals between marker bands were narrowed, suggesting that band interval is important for reducing total variation in normalized band positions. For the non-normally distributed data, the distribution was examined in detail. This study provided detailed information on the variation of band positions, which could help to optimize markers for reducing band position variation, and could aid in the accurate identification of bands in across-gel DGGE analyses. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Influence of denatured and intermediate states of folding on protein aggregation.

    Science.gov (United States)

    Fawzi, Nicolas L; Chubukov, Victor; Clark, Louis A; Brown, Scott; Head-Gordon, Teresa

    2005-04-01

    We simulate the aggregation thermodynamics and kinetics of proteins L and G, each of which self-assembles to the same alpha/beta [corrected] topology through distinct folding mechanisms. We find that the aggregation kinetics of both proteins at an experimentally relevant concentration exhibit both fast and slow aggregation pathways, although a greater proportion of protein G aggregation events are slow relative to those of found for protein L. These kinetic differences are correlated with the amount and distribution of intrachain contacts formed in the denatured state ensemble (DSE), or an intermediate state ensemble (ISE) if it exists, as well as the folding timescales of the two proteins. Protein G aggregates more slowly than protein L due to its rapidly formed folding intermediate, which exhibits native intrachain contacts spread across the protein, suggesting that certain early folding intermediates may be selected for by evolution due to their protective role against unwanted aggregation. Protein L shows only localized native structure in the DSE with timescales of folding that are commensurate with the aggregation timescale, leaving it vulnerable to domain swapping or nonnative interactions with other chains that increase the aggregation rate. Folding experiments that characterize the structural signatures of the DSE, ISE, or the transition state ensemble (TSE) under nonaggregating conditions should be able to predict regions where interchain contacts will be made in the aggregate, and to predict slower aggregation rates for proteins with contacts that are dispersed across the fold. Since proteins L and G can both form amyloid fibrils, this work also provides mechanistic and structural insight into the formation of prefibrillar species.

  1. Denatured ethanol release into gasoline residuals, Part 2: Fate and transport

    Science.gov (United States)

    Freitas, Juliana G.; Barker, James F.

    2013-05-01

    When denatured ethanol (E95) is spilled in a site with previous gasoline contamination, it modifies the source distribution (Part 1). But it can also impact the transport and fate of hydrocarbons in the groundwater. Ethanol could cause an increase in dissolved concentrations and more persistent plumes due to cosolvency and decreased hydrocarbon biodegradation rates. To investigate these possibilities, two controlled releases were performed: first of E10 (gasoline with 10% ethanol) and one year later of E95 on top of the gasoline. Groundwater concentrations were monitored above and below the water table in multilevel wells. Soil cores and vapor samples were also collected over a period of approximately 400 days. Surprisingly, ethanol transport was very limited; at wells located 2.3 m downgradient from the mid-point of the release trench, the maximum concentration measured was around 2400 mg/L. After 392 days, only 3% of the ethanol released migrated past 2.3 m, and no ethanol remained in the source. The processes that caused ethanol loss were likely volatilization, aerobic biodegradation in the unsaturated zone, and anaerobic biodegradation. Evidence that biodegradation was significant in the source zone includes increased CO2 concentrations in the vapor and the presence of biodegradation products (acetate concentrations up to 2300 mg/L). The position of the dissolved hydrocarbon plumes was slightly shifted, but the concentrations and mass flux remained within the same range as before the spill, indicating that cosolvency was not significant. Hydrocarbons in the groundwater were significantly biodegraded, with more than 63% of the mass being removed in 7.5 m, even when ethanol was present in the groundwater. The impacts of ethanol on the hydrocarbon transport and fate were minimal, largely due to the separation of ethanol and hydrocarbons in the source (Part 1).

  2. A PCR-denaturing gradient gel electrophoresis approach to assess Fusarium diversity in asparagus.

    Science.gov (United States)

    Yergeau, E; Filion, M; Vujanovic, V; St-Arnaud, M

    2005-02-01

    In North America, asparagus (Asparagus officinalis) production suffers from a crown and root rot disease mainly caused by Fusarium oxysporum f. sp. asparagi and F. proliferatum. Many other Fusarium species are also found in asparagus fields, whereas accurate detection and identification of these organisms, especially when processing numerous samples, is usually difficult and time consuming. In this study, a PCR-denaturing gradient gel electrophoresis (DGGE) method was developed to assess Fusarium species diversity in asparagus plant samples. Fusarium-specific PCR primers targeting a partial region of the translation elongation factor-1 alpha (EF-1 alpha) gene were designed, and their specificity was tested against genomic DNA extracted from a large collection of closely and distantly related organisms isolated from multiple environments. Amplicons of 450 bp were obtained from all Fusarium isolates, while no PCR product was obtained from non-Fusarium organisms. The ability of DGGE to discriminate between Fusarium taxa was tested over 19 different Fusarium species represented by 39 isolates, including most species previously reported from asparagus fields worldwide. The technique was effective to visually discriminate between the majority of Fusarium species and/or isolates tested in pure culture, while a further sequencing step permitted to distinguish between the few species showing similar migration patterns. Total genomic DNA was extracted from field-grown asparagus plants naturally infested with different Fusarium species, submitted to PCR amplification, DGGE analysis and sequencing. The two to four bands observed for each plant sample were all affiliated with F. oxysporum, F. proliferatum or F. solani, clearly supporting the reliability, sensitivity and specificity of this approach for the study of Fusarium diversity from asparagus plants samples.

  3. Persistent nuclear actin filaments inhibit transcription by RNA polymerase II.

    Science.gov (United States)

    Serebryannyy, Leonid A; Parilla, Megan; Annibale, Paolo; Cruz, Christina M; Laster, Kyle; Gratton, Enrico; Kudryashov, Dmitri; Kosak, Steven T; Gottardi, Cara J; de Lanerolle, Primal

    2016-09-15

    Actin is abundant in the nucleus and it is clear that nuclear actin has important functions. However, mystery surrounds the absence of classical actin filaments in the nucleus. To address this question, we investigated how polymerizing nuclear actin into persistent nuclear actin filaments affected transcription by RNA polymerase II. Nuclear filaments impaired nuclear actin dynamics by polymerizing and sequestering nuclear actin. Polymerizing actin into stable nuclear filaments disrupted the interaction of actin with RNA polymerase II and correlated with impaired RNA polymerase II localization, dynamics, gene recruitment, and reduced global transcription and cell proliferation. Polymerizing and crosslinking nuclear actin in vitro similarly disrupted the actin-RNA-polymerase-II interaction and inhibited transcription. These data rationalize the general absence of stable actin filaments in mammalian somatic nuclei. They also suggest a dynamic pool of nuclear actin is required for the proper localization and activity of RNA polymerase II.

  4. Role of polymerase η in mitochondrial mutagenesis of Saccharomyces cerevisiae

    Energy Technology Data Exchange (ETDEWEB)

    Chatterjee, Nimrat; Pabla, Ritu [Dept. of Cell Biology and Anatomy, University of North Texas Health Science Center, 3500 Camp Bowie Blvd., Fort Worth, TX 76107 (United States); Siede, Wolfram, E-mail: wolfram.siede@unthsc.edu [Dept. of Cell Biology and Anatomy, University of North Texas Health Science Center, 3500 Camp Bowie Blvd., Fort Worth, TX 76107 (United States)

    2013-02-08

    Highlights: ► DNA polymerase η is detectable in mitochondria of budding yeast. ► Pol η reduces UV-induced mitochondrial base pair substitutions and frameshifts. ► For UV-induced base pair substitutions, Pol η and Pol ζ interact epistatically. -- Abstract: DNA polymerase η mostly catalyzes an error-free bypass of the most frequent UV lesions, pyrimidine dimers of the cyclobutane-type. In addition to its nuclear localization, we show here for the first time its mitochondrial localization in budding yeast. In mitochondria, this polymerase improves bypass replication fidelity opposite UV damage as shown in base pair substitution and frameshift assays. For base pair substitutions, polymerase η appears to be related in function and epistatic to DNA polymerase ζ which, however, plays the opposite role in the nucleus.

  5. Role of DNA Polymerases in Repeat-Mediated Genome Instability

    Directory of Open Access Journals (Sweden)

    Kartik A. Shah

    2012-11-01

    Full Text Available Expansions of simple DNA repeats cause numerous hereditary diseases in humans. We analyzed the role of DNA polymerases in the instability of Friedreich’s ataxia (GAAn repeats in a yeast experimental system. The elementary step of expansion corresponded to ∼160 bp in the wild-type strain, matching the size of Okazaki fragments in yeast. This step increased when DNA polymerase α was mutated, suggesting a link between the scale of expansions and Okazaki fragment size. Expandable repeats strongly elevated the rate of mutations at substantial distances around them, a phenomenon we call repeat-induced mutagenesis (RIM. Notably, defects in the replicative DNA polymerases δ and ∊ strongly increased rates for both repeat expansions and RIM. The increases in repeat-mediated instability observed in DNA polymerase δ mutants depended on translesion DNA polymerases. We conclude that repeat expansions and RIM are two sides of the same replicative mechanism.

  6. Actinobaculum suis Detection Using Polymerase Chain Reaction

    Directory of Open Access Journals (Sweden)

    Cristina Román Amigo

    2012-01-01

    Full Text Available Actinobaculum suis is an important agent related to urinary infection in swine females. Due to its fastidious growth characteristics, the isolation of this anaerobic bacterium is difficult, thus impairing the estimation of its prevalence. The purpose of this study was to develop and test a polymerase chain reaction (PCR for the detection and identification of A. suis and then compare these results with traditional isolation methods. Bacterial isolation and PCR were performed on one hundred and ninety-two urine samples from sows and forty-five preputial swabs from boars. The results indicate that this PCR was specific for A. suis, presenting a detection limit between 1.0×101 CFU/mL and 1.0×102 CFU/mL. A. suis frequencies, as measured by PCR, were 8.9% (17/192 in sow urine samples and 82.2% (37/45 in preputial swabs. Assessed using conventional culturing techniques, none of the urine samples were positive for A. suis; however, A. suis was detected in 31.1% (14/45 of the swabs. This PCR technique was shown to be an efficient method for the detection of A. suis in urine and preputial swabs.

  7. Conserved Endonuclease Function of Hantavirus L Polymerase

    Directory of Open Access Journals (Sweden)

    Sylvia Rothenberger

    2016-05-01

    Full Text Available Hantaviruses are important emerging pathogens belonging to the Bunyaviridae family. Like other segmented negative strand RNA viruses, the RNA-dependent RNA polymerase (RdRp also known as L protein of hantaviruses lacks an intrinsic “capping activity”. Hantaviruses therefore employ a “cap snatching” strategy acquiring short 5′ RNA sequences bearing 5′cap structures by endonucleolytic cleavage from host cell transcripts. The viral endonuclease activity implicated in cap snatching of hantaviruses has been mapped to the N-terminal domain of the L protein. Using a combination of molecular modeling and structure–function analysis we confirm and extend these findings providing evidence for high conservation of the L endonuclease between Old and New World hantaviruses. Recombinant hantavirus L endonuclease showed catalytic activity and a defined cation preference shared by other viral endonucleases. Based on the previously reported remarkably high activity of hantavirus L endonuclease, we established a cell-based assay for the hantavirus endonuclase function. The robustness of the assay and its high-throughput compatible format makes it suitable for small molecule drug screens to identify novel inhibitors of hantavirus endonuclease. Based on the high degree of similarity to RdRp endonucleases, some candidate inhibitors may be broadly active against hantaviruses and other emerging human pathogenic Bunyaviruses.

  8. Trapping Poly(ADP-Ribose) Polymerase.

    Science.gov (United States)

    Shen, Yuqiao; Aoyagi-Scharber, Mika; Wang, Bing

    2015-06-01

    Recent findings indicate that a major mechanism by which poly(ADP-ribose) polymerase (PARP) inhibitors kill cancer cells is by trapping PARP1 and PARP2 to the sites of DNA damage. The PARP enzyme-inhibitor complex "locks" onto damaged DNA and prevents DNA repair, replication, and transcription, leading to cell death. Several clinical-stage PARP inhibitors, including veliparib, rucaparib, olaparib, niraparib, and talazoparib, have been evaluated for their PARP-trapping activity. Although they display similar capacity to inhibit PARP catalytic activity, their relative abilities to trap PARP differ by several orders of magnitude, with the ability to trap PARP closely correlating with each drug's ability to kill cancer cells. In this article, we review the available data on molecular interactions between these clinical-stage PARP inhibitors and PARP proteins, and discuss how their biologic differences might be explained by the trapping mechanism. We also discuss how to use the PARP-trapping mechanism to guide the development of PARP inhibitors as a new class of cancer therapy, both for single-agent and combination treatments. Copyright © 2015 by The American Society for Pharmacology and Experimental Therapeutics.

  9. The Pseudorabies Virus DNA Polymerase Accessory Subunit UL42 Directs Nuclear Transport of the Holoenzyme.

    Science.gov (United States)

    Wang, Yi-Ping; Du, Wen-Juan; Huang, Li-Ping; Wei, Yan-Wu; Wu, Hong-Li; Feng, Li; Liu, Chang-Ming

    2016-01-01

    Pseudorabies virus (PRV) DNA replication occurs in the nuclei of infected cells and requires the viral DNA polymerase. The PRV DNA polymerase comprises a catalytic subunit, UL30, and an accessory subunit, UL42, that confers processivity to the enzyme. Its nuclear localization is a prerequisite for its enzymatic function in the initiation of viral DNA replication. However, the mechanisms by which the PRV DNA polymerase holoenzyme enters the nucleus have not been determined. In this study, we characterized the nuclear import pathways of the PRV DNA polymerase catalytic and accessory subunits. Immunofluorescence analysis showed that UL42 localizes independently in the nucleus, whereas UL30 alone predominantly localizes in the cytoplasm. Intriguingly, the localization of UL30 was completely shifted to the nucleus when it was coexpressed with UL42, demonstrating that nuclear transport of UL30 occurs in an UL42-dependent manner. Deletion analysis and site-directed mutagenesis of the two proteins showed that UL42 contains a functional and transferable bipartite nuclear localization signal (NLS) at amino acids 354-370 and that K(354), R(355), and K(367) are important for the NLS function, whereas UL30 has no NLS. Coimmunoprecipitation assays verified that UL42 interacts with importins α3 and α4 through its NLS. In vitro nuclear import assays demonstrated that nuclear accumulation of UL42 is a temperature- and energy-dependent process and requires both importins α and β, confirming that UL42 utilizes the importin α/β-mediated pathway for nuclear entry. In an UL42 NLS-null mutant, the UL42/UL30 heterodimer was completely confined to the cytoplasm when UL42 was coexpressed with UL30, indicating that UL30 utilizes the NLS function of UL42 for its translocation into the nucleus. Collectively, these findings suggest that UL42 contains an importin α/β-mediated bipartite NLS that transports the viral DNA polymerase holoenzyme into the nucleus in an in vitro expression

  10. Taylor dispersion in polymerase chain reaction in a microchannel

    Science.gov (United States)

    Lee, Jinkee; Kulla, Elejdis; Chauhan, Anuj; Tripathi, Anubhav

    2008-09-01

    Polymerase chain reaction (PCR) is commonly used for a wide range of DNA applications such as disease detection, genetic fingerprinting, and paternity testing. The importance of PCR has led to an increased interest in performing PCR in a microfluidic platform with a high throughput while using very small DNA quantities. In this paper we solve convection-diffusion equations for the DNA and deoxynucleoside triphosphate (dNTP) under conditions suitable for PCR operation in a microchip. These include pressure driven flow accompanied by temporal temperature changes that lead to an amplification reaction, which is modeled as a first order reaction. The convection-diffusion-reaction equations are solved by using the method of multiple time scales to yield average equations that can be solved to obtain the long time evolution of the concentration profiles. The results obtained by solving the averaged equations agree well with full numerical solutions. The averaged equations are also solved to simulate the PCR to illustrate some interesting aspects of this operation in a microfluidic device. It is shown that insufficient nucleotide concentrations can lead to complete depletion of NTP at certain axial locations, which leads to termination of DNA amplification at these locations, resulting in formation of a plateau in DNA concentration.

  11. Processing of DNA lesions by archaeal DNA polymerases from Sulfolobus solfataricus

    Science.gov (United States)

    Grúz, Petr; Shimizu, Masatomi; Pisani, Francesca M.; Felice, Mariarita De; Kanke, Yusuke; Nohmi, Takehiko

    2003-01-01

    Spontaneous damage to DNA as a result of deamination, oxidation and depurination is greatly accelerated at high temperatures. Hyperthermophilic microorganisms constantly exposed to temperatures exceeding 80°C are endowed with powerful DNA repair mechanisms to maintain genome stability. Of particular interest is the processing of DNA lesions during replication, which can result in fixed mutations. The hyperthermophilic crenarchaeon Sulfolobus solfataricus has two functional DNA polymerases, PolB1 and PolY1. We have found that the replicative DNA polymerase PolB1 specifically recognizes the presence of the deaminated bases hypoxanthine and uracil in the template by stalling DNA polymerization 3–4 bases upstream of these lesions and strongly associates with oligonucleotides containing them. PolB1 also stops at 8-oxoguanine and is unable to bypass an abasic site in the template. PolY1 belongs to the family of lesion bypass DNA polymerases and readily bypasses hypoxanthine, uracil and 8-oxoguanine, but not an abasic site, in the template. The specific recognition of deaminated bases by PolB1 may represent an initial step in their repair while PolY1 may be involved in damage tolerance at the replication fork. Additionally, we reveal that the deaminated bases can be introduced into DNA enzymatically, since both PolB1 and PolY1 are able to incorporate the aberrant DNA precursors dUTP and dITP. PMID:12853619

  12. Enhanced Specificity of Multiplex Polymerase Chain Reaction via CdTe Quantum Dots

    Science.gov (United States)

    Liang, Gaofeng; Ma, Chao; Zhu, Yanliang; Li, Shuchun; Shao, Youhua; Wang, Yong; Xiao, Zhongdang

    2011-12-01

    Nanoparticles were recently reported to be able to improve both efficiency and specificity in polymerase chain reaction (PCR). Here, CdTe QDs were introduced into multi-PCR systems. It was found that an appropriate concentration of CdTe QDs could enhance the performance of multi-PCR by reducing the formation of nonspecific products in the complex system, but an excessive amount of CdTe QDs could suppress the PCR. The effects of QDs on PCR can be reversed by increasing the polymerase concentration or by adding bovine serum albumin (BSA). The mechanisms underlying these effects were also discussed. The results indicated that CdTe QDs could be used to optimize the amplification products of the PCR, especially in the multi-PCR system with different primers annealing temperatures, which is of great significance for molecular diagnosis.

  13. Experimental and Modeling Study of the Flammability of Fuel Tank Headspace Vapors from Ethanol/Gasoline Fuels; Phase 3: Effects of Winter Gasoline Volatility and Ethanol Content on Blend Flammability; Flammability Limits of Denatured Ethanol

    Energy Technology Data Exchange (ETDEWEB)

    Gardiner, D. P.; Bardon, M. F.; Clark, W.

    2011-07-01

    This study assessed differences in headspace flammability for summertime gasolines and new high-ethanol content fuel blends. The results apply to vehicle fuel tanks and underground storage tanks. Ambient temperature and fuel formulation effects on headspace vapor flammability of ethanol/gasoline blends were evaluated. Depending on the degree of tank filling, fuel type, and ambient temperature, fuel vapors in a tank can be flammable or non-flammable. Pure gasoline vapors in tanks generally are too rich to be flammable unless ambient temperatures are extremely low. High percentages of ethanol blended with gasoline can be less volatile than pure gasoline and can produce flammable headspace vapors at common ambient temperatures. The study supports refinements of fuel ethanol volatility specifications and shows potential consequences of using noncompliant fuels. E85 is flammable at low temperatures; denatured ethanol is flammable at warmer temperatures. If both are stored at the same location, one or both of the tanks' headspace vapors will be flammable over a wide range of ambient temperatures. This is relevant to allowing consumers to splash -blend ethanol and gasoline at fueling stations. Fuels compliant with ASTM volatility specifications are relatively safe, but the E85 samples tested indicate that some ethanol fuels may produce flammable vapors.

  14. Discovery of cyanophage genomes which contain mitochondrial DNA polymerase.

    Science.gov (United States)

    Chan, Yi-Wah; Mohr, Remus; Millard, Andrew D; Holmes, Antony B; Larkum, Anthony W; Whitworth, Anna L; Mann, Nicholas H; Scanlan, David J; Hess, Wolfgang R; Clokie, Martha R J

    2011-08-01

    DNA polymerase γ is a family A DNA polymerase responsible for the replication of mitochondrial DNA in eukaryotes. The origins of DNA polymerase γ have remained elusive because it is not present in any known bacterium, though it has been hypothesized that mitochondria may have inherited the enzyme by phage-mediated nonorthologous displacement. Here, we present an analysis of two full-length homologues of this gene, which were found in the genomes of two bacteriophages, which infect the chlorophyll-d containing cyanobacterium Acaryochloris marina. Phylogenetic analyses of these phage DNA polymerase γ proteins show that they branch deeply within the DNA polymerase γ clade and therefore share a common origin with their eukaryotic homologues. We also found homologues of these phage polymerases in the environmental Community Cyberinfrastructure for Advanced Microbial Ecology Research and Analysis (CAMERA) database, which fell in the same clade. An analysis of the CAMERA assemblies containing the environmental homologues together with the filter fraction metadata indicated some of these assemblies may be of bacterial origin. We also show that the phage-encoded DNA polymerase γ is highly transcribed as the phage genomes are replicated. These findings provide data that may assist in reconstructing the evolution of mitochondria.

  15. Relationship between meat toughness and properties of connective tissue from cows and young bulls heat treated at low temperatures for prolonged times

    DEFF Research Database (Denmark)

    Christensen, Line; Ertbjerg, Per; Løje, Hanne

    2013-01-01

    of beef was investigated and the relationship to properties of connective tissue was examined. Measurements of toughness, collagen solubility, cathepsin activity and protein denaturation of beef semitendinosus heated at temperatures between 53. °C and 63. °C for up to 19 1/2. h were conducted. The results...... of the connective tissue, caused partly by denaturation or conformational changes of the proteins and/or by solubilization of collagen. © 2012 Elsevier Ltd....

  16. Detection of ligation products of DNA linkers with 5'-OH ends by denaturing PAGE silver stain.

    Directory of Open Access Journals (Sweden)

    Feng Gao

    Full Text Available To explore if DNA linkers with 5'-hydroxyl (OH ends could be joined by commercial T4 and E. coli DNA ligase, these linkers were synthesized by using the solid-phase phosphoramidite method and joined by using commercial T4 and E. coli DNA ligases. The ligation products were detected by using denaturing PAGE silver stain and PCR method. About 0.5-1% of linkers A-B and E-F, and 0.13-0.5% of linkers C-D could be joined by T4 DNA ligases. About 0.25-0.77% of linkers A-B and E-F, and 0.06-0.39% of linkers C-D could be joined by E. coli DNA ligases. A 1-base deletion (-G and a 5-base deletion (-GGAGC could be found at the ligation junctions of the linkers. But about 80% of the ligation products purified with a PCR product purification kit did not contain these base deletions, meaning that some linkers had been correctly joined by T4 and E. coli DNA ligases. In addition, about 0.025-0.1% of oligo 11 could be phosphorylated by commercial T4 DNA ligase. The phosphorylation products could be increased when the phosphorylation reaction was extended from 1 hr to 2 hrs. We speculated that perhaps the linkers with 5'-OH ends could be joined by T4 or E. coli DNA ligase in 2 different manners: (i about 0.025-0.1% of linkers could be phosphorylated by commercial T4 DNA ligase, and then these phosphorylated linkers could be joined to the 3'-OH ends of other linkers; and (ii the linkers could delete one or more nucleotide(s at their 5'-ends and thereby generated some 5'-phosphate ends, and then these 5'-phosphate ends could be joined to the 3'-OH ends of other linkers at a low efficiency. Our findings may probably indicate that some DNA nicks with 5'-OH ends can be joined by commercial T4 or E. coli DNA ligase even in the absence of PNK.

  17. Optical tweezers studies of transcription by eukaryotic RNA polymerases.

    Science.gov (United States)

    Lisica, Ana; Grill, Stephan W

    2017-03-01

    Transcription is the first step in the expression of genetic information and it is carried out by large macromolecular enzymes called RNA polymerases. Transcription has been studied for many years and with a myriad of experimental techniques, ranging from bulk studies to high-resolution transcript sequencing. In this review, we emphasise the advantages of using single-molecule techniques, particularly optical tweezers, to study transcription dynamics. We give an overview of the latest results in the single-molecule transcription field, focusing on transcription by eukaryotic RNA polymerases. Finally, we evaluate recent quantitative models that describe the biophysics of RNA polymerase translocation and backtracking dynamics.

  18. Conformational diversity of acid-denatured cytochrome c studied by a matrix analysis of far-UV CD spectra.

    Science.gov (United States)

    Konno, T

    1998-04-01

    The singular value decomposition (SVD) analysis was applied to a large set of far-ultraviolet circular dichroism (far-UV CD) spectra (100-400 spectra) of horse heart cytochrome c (cyt c). The spectra were collected at pH 1.7-5.0 in (NH4)2SO4, sorbitol and 2,2,2-trifluoroethanol (TFE) solutions. The present purpose is to develop a rigorous matrix method applied to far-UV CD spectra to resolve in details conformational properties of proteins in the non-native (or denatured) regions. The analysis established that three basis spectral components are contained in a data set of difference spectra (referred to the spectrum of the native state) used here. By a further matrix transformation, any observed spectrum could be decomposed into fractions of the native (N), the molten-globule (MG), the highly denatured (D), and the alcohol-induced helical (H) spectral forms. This method could determine fractional transition curves of each conformer as a function of solution conditions, which gave the results consistent with denaturation curves of cyt c monitored by other spectroscopic methods. The results in sorbitol solutions, for example, suggested that the preferential hydration effect of the co-solvent stabilizes the MG conformer of cyt c. This report has found that the systematic SVD analysis of the far-UV CD spectra is a powerful tool for the conformational analysis of the non-native species of a protein when it is suitably supplemented with other experimental methods.

  19. Theoretical analysis of transcription process with polymerase stalling

    CERN Document Server

    Li, Jingwei

    2015-01-01

    Experimental evidences show that in gene transcription, RNA polymerase has the possibility to be stalled at certain position of the transcription template. This may be due to the template damage, or protein barriers. Once stalled, polymerase may backtrack along the template to the previous nucleotide to wait for the repair of the damaged site, or simply bypass the barrier or damaged site and consequently synthesize an incorrect messenger RNA, or degrade and detach from the template. Thus, the {\\it effective} transcription rate (the rate to synthesize correct product mRNA) and the transcription {\\it effectiveness} (the ratio of the {\\it effective} transcription rate to the {\\it effective} transcription initiation rate) are both influenced by polymerase stalling events. This study shows that, Without backtracking, detachment of stalled polymerase can also help to increase the {\\it effective} transcription rate and transcription {\\it effectiveness}. Generally, the increase of bypass rate of the stalled polymeras...

  20. Tetrahydrobenzothiophene inhibitors of hepatitis C virus NS5B polymerase.

    Science.gov (United States)

    Laporte, M G; Lessen, T A; Leister, L; Cebzanov, D; Amparo, E; Faust, C; Ortlip, D; Bailey, T R; Nitz, T J; Chunduru, S K; Young, D C; Burns, C J

    2006-01-01

    A novel series of selective HCV NS5B RNA dependent RNA polymerase inhibitors has been disclosed. These compounds contain an appropriately substituted tetrahydrobenzothiophene scaffold. This communication will detail the SAR and activities of this series.

  1. Sexing bovine pre-implantation embryos using the polymerase ...

    African Journals Online (AJOL)

    Yomi

    2012-03-06

    Mar 6, 2012 ... polymerase chain reaction: A model for human embryo ... Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine ... obtain and there is no ethical issue related to their use for research.

  2. Hepatitis B virus DNA polymerase gene polymorphism based ...

    African Journals Online (AJOL)

    2017-09-03

    Sep 3, 2017 ... HBV is distributed into various genotypes based on nucleic acid sequence variation. ... compared to genotype B and higher incidence of HCC in genotype D ... DNA sequencing technology to sequence HBV DNA polymerase ...

  3. Norovirus Polymerase Fidelity Contributes to Viral Transmission In Vivo

    DEFF Research Database (Denmark)

    Arias Esteban, Armando; Thorne, Lucy; Ghurburrun, Elsa

    2016-01-01

    Intrahost genetic diversity and replication error rates are intricately linked to RNA virus pathogenesis, with alterations in viral polymerase fidelity typically leading to attenuation during infections in vivo. We have previously shown that norovirus intrahost genetic diversity also influences...... viral pathogenesis using the murine norovirus model, as increasing viral mutation frequency using a mutagenic nucleoside resulted in clearance of a persistent infection in mice. Given the role of replication fidelity and genetic diversity in pathogenesis, we have now investigated whether polymerase...... fidelity can also impact virus transmission between susceptible hosts. We have identified a high-fidelity norovirus RNA-dependent RNA polymerase mutant (I391L) which displays delayed replication kinetics in vivo but not in cell culture. The I391L polymerase mutant also exhibited lower transmission rates...

  4. Proofreading genotyping assays mediated by high fidelity exo+ DNA polymerases.

    Science.gov (United States)

    Zhang, Jia; Li, Kai; Pardinas, Jose R; Sommer, Steve S; Yao, Kai-Tai

    2005-02-01

    DNA polymerases with 3'-5' proofreading function mediate high fidelity DNA replication but their application for mutation detection was almost completely neglected before 1998. The obstacle facing the use of exo(+) polymerases for mutation detection could be overcome by primer-3'-termini modification, which has been tested using allele-specific primers with 3' labeling, 3' exonuclease-resistance and 3' dehydroxylation modifications. Accordingly, three new types of single nucleotide polymorphism (SNP) assays have been developed to carry out genome-wide genotyping making use of the fidelity advantage of exo(+) polymerases. Such SNP assays might also provide a novel approach for re-sequencing and de novo sequencing. These new mutation detection assays are widely adaptable to a variety of platforms, including real-time PCR, multi-well plate and microarray technologies. Application of exo(+) polymerases to genetic analysis could accelerate the pace of personalized medicine.

  5. Translesion Synthesis Polymerases in the Prevention and Promotion of Carcinogenesis

    Directory of Open Access Journals (Sweden)

    L. Jay Stallons

    2010-01-01

    Full Text Available A critical step in the transformation of cells to the malignant state of cancer is the induction of mutations in the DNA of cells damaged by genotoxic agents. Translesion DNA synthesis (TLS is the process by which cells copy DNA containing unrepaired damage that blocks progression of the replication fork. The DNA polymerases that catalyze TLS in mammals have been the topic of intense investigation over the last decade. DNA polymerase η (Pol η is best understood and is active in error-free bypass of UV-induced DNA damage. The other TLS polymerases (Pol ι, Pol κ, REV1, and Pol ζ have been studied extensively in vitro, but their in vivo role is only now being investigated using knockout mouse models of carcinogenesis. This paper will focus on the studies of mice and humans with altered expression of TLS polymerases and the effects on cancer induced by environmental agents.

  6. an overview on the application of polymerase chain reaction (pcr)

    African Journals Online (AJOL)

    DR. AMINU

    Bayero Journal of Pure and Applied Sciences, 2(1): 109 - 114 ... Keywords: Polymerase chain reaction, Diagnosis, Bacteria, Infections .... A brain abscess is a localized pyogenic bacterial ... as encephalitis and skin rash. ... Streptococcus.

  7. Genotypic frequency of calpastatin gene in lori sheep by polymerase ...

    African Journals Online (AJOL)

    SAM

    2014-05-07

    May 7, 2014 ... meat. Genomic DNA was extracted from 100 sheep blood sample. Polymerase chain ... The effect of calpains gene polymorphism on ... dation and meat tenderness after slaughter. Increased ... to -20°C freezer. Genomic DNA ...

  8. Engineered DNA Polymerase Improves PCR Results for Plastid DNA

    Directory of Open Access Journals (Sweden)

    Melanie Schori

    2013-02-01

    Full Text Available Premise of the study: Secondary metabolites often inhibit PCR and sequencing reactions in extractions from plant material, especially from silica-dried and herbarium material. A DNA polymerase that is tolerant to inhibitors improves PCR results. Methods and Results: A novel DNA amplification system, including a DNA polymerase engineered via directed evolution for improved tolerance to common plant-derived PCR inhibitors, was evaluated and PCR parameters optimized for three species. An additional 31 species were then tested with the engineered enzyme and optimized protocol, as well as with regular Taq polymerase. Conclusions: PCR products and high-quality sequence data were obtained for 96% of samples for rbcL and 79% for matK, compared to 29% and 21% with regular Taq polymerase.

  9. Decrimping: The first stage of collagen thermal denaturation unraveled by in situ second-harmonic-generation imaging

    Science.gov (United States)

    Liao, Chien-Sheng; Zhuo, Zong-Yan; Yu, Jiun-Yann; Tzeng, Yu-Yi; Chu, Shi-Wei; Yu, Shih-Fan; Chao, Pen-Hsiu Grace

    2011-04-01

    With polarized and time-lapsed second-harmonic-generation (SHG) imaging, three distinct thermodynamic stages are revealed during heating of collagenous tissue. In the first "decrimping" stage, SHG intensity remains unchanged while the characteristic crimp pattern of collagen fiber disappears. The intactness of underlying fibrils is confirmed by unaffected second-order susceptibility, suggesting decrimping is related to the breakage of cross-linking between collagen fibrils. In the latter stages, significant SHG decrease is observed, providing quantification to collagen thermal denaturation. This study manifests the benefits of adopting SHG for understanding the thermal response of collagen, and will be useful toward better thermal therapy design.

  10. Determination of the folding of proteins as a function of denaturants, osmolytes or ligands using circular dichroism

    Science.gov (United States)

    Greenfield, Norma J.

    2009-01-01

    Circular dichroism (CD) is an excellent tool for examining the interactions and stability of proteins. This protocol covers methods to obtain and analyze circular dichroism spectra to measure changes in the folding of proteins as a function of denaturants, osmolytes or ligands. Applications include determination of the free energy of folding of a protein, the effects of mutations on protein stability and the estimation of binding constants for the interactions of proteins with other proteins, DNA or ligands, such as substrates or inhibitors. The experiments take 2-5 h. PMID:17406529

  11. The Role of Polymerase Gamma Mutations in Breast Tumorigenesis

    Science.gov (United States)

    2011-01-01

    Saada A, Shaag A, Mandel A, Nevo Y, Eriksson S, Elpeleg O. Mutant mitochondrial thymidine kinase in mitochondrial DNA depletion myopathy . Nat. Genet...Functional defects due to spacer-region mutations of human mitochondrial DNA polymerase in a family with an ataxia- myopathy syndrome. Hum. Mol. Genet...polymerase gamma (POLG) have led to depletion of mitochondrial DNA (mtDNA) and mutations in mtDNA. This proposal seeks to determine the effect of POLG

  12. Purine inhibitors of protein kinases, G proteins and polymerases

    Energy Technology Data Exchange (ETDEWEB)

    Gray, Nathanael S.; Schultz, Peter; Kim, Sung-Hou; Meijer, Laurent

    2004-10-12

    The present invention relates to 2-N-substituted 6-(4-methoxybenzylamino)-9-isopropylpurines that inhibit, inter alia, protein kinases, G-proteins and polymerases. In addition, the present invention relates to methods of using such 2-N-substituted 6-(4-methoxybenzylamino)-9-isopropylpurines to inhibit protein kinases, G-proteins, polymerases and other cellular processes and to treat cellular proliferative diseases.

  13. Favipiravir (T-705), a novel viral RNA polymerase inhibitor

    OpenAIRE

    Furuta, Yousuke; Gowen, Brian B.; Takahashi, Kazumi; Shiraki, Kimiyasu; Smee, Donald F.; Barnard, Dale L.

    2013-01-01

    Favipiravir (T-705; 6-fluoro-3-hydroxy-2-pyrazinecarboxamide) is an antiviral drug that selectively inhibits the RNA-dependent RNA polymerase of influenza virus. It is phosphoribosylated by cellular enzymes to its active form, favipiravir-ribofuranosyl-5′-triphosphate (RTP). Its antiviral effect is attenuated by the addition of purine nucleic acids, indicating the viral RNA polymerase mistakenly recognizes favipiravir-RTP as a purine nucleotide. Favipiravir is active against a broad range of ...

  14. Kinetics and thermodynamics of DNA polymerases with exonuclease proofreading

    Science.gov (United States)

    Gaspard, Pierre

    2016-04-01

    Kinetic theory and thermodynamics are applied to DNA polymerases with exonuclease activity, taking into account the dependence of the rates on the previously incorporated nucleotide. The replication fidelity is shown to increase significantly thanks to this dependence at the basis of the mechanism of exonuclease proofreading. In particular, this dependence can provide up to a 100-fold lowering of the error probability under physiological conditions. Theory is compared with numerical simulations for the DNA polymerases of T7 viruses and human mitochondria.

  15. Redistributive properties of the vesicular stomatitis virus polymerase

    Energy Technology Data Exchange (ETDEWEB)

    Helfman, W.B.; Perrault, J. (San Diego State Univ., CA (USA))

    1989-08-01

    The template for transcription of the vesicular stomatitis virus (VSV) genome consists of a negative-strand RNA (approximately 11 kb) tightly associated with approximately 1250 copies of the nucleocapsid or N protein (N-RNA template). The interaction between the virion-associated polymerase and this template was probed with a novel assay using purified N-RNA complexes added to detergent-disrupted uv-irradiated standard virions or unirradiated defective interfering (DI) particles. In contrast to the well-known stability of assembled cellular transcription complexes, the VSV polymerase copied exogenously added templates efficiently and yielded products indistinguishable from control virus transcription. Addition of uv-irradiated N-RNA templates to unirradiated virus effectively competed for transcription of endogenous template indicating that most or all of the polymerase can freely redistribute. Furthermore preincubation of virus and added templates at high ionic strength to solubilize L and NS polymerase proteins did not release additional active enzyme for redistribution. Pretranscription of virus also had little or no effect on redistributed activity indicating that polymerase complexes are capable of multiple rounds of synthesis beginning at the 3' end promoter. Unexpectedly, titration with saturating amounts of added N-RNA showed that active polymerase complexes are only in slight excess relative to template in standard or DI particles despite the large surplus of packaged L and NS polypeptides. Moreover, added standard virus templates competed equally well for the redistributing polymerase from DI particles or standard virus indicating no significant polymerase-binding preference for interfering templates. These findings bear important implications regarding mechanisms of VSV transcription and replication.

  16. Investigation of Influenza Virus Polymerase Activity in Pig Cells

    Science.gov (United States)

    Moncorgé, Olivier; Long, Jason S.; Cauldwell, Anna V.; Zhou, Hongbo; Lycett, Samantha J.

    2013-01-01

    Reassortant influenza viruses with combinations of avian, human, and/or swine genomic segments have been detected frequently in pigs. As a consequence, pigs have been accused of being a “mixing vessel” for influenza viruses. This implies that pig cells support transcription and replication of avian influenza viruses, in contrast to human cells, in which most avian influenza virus polymerases display limited activity. Although influenza virus polymerase activity has been studied in human and avian cells for many years by use of a minigenome assay, similar investigations in pig cells have not been reported. We developed the first minigenome assay for pig cells and compared the activities of polymerases of avian or human influenza virus origin in pig, human, and avian cells. We also investigated in pig cells the consequences of some known mammalian host range determinants that enhance influenza virus polymerase activity in human cells, such as PB2 mutations E627K, D701N, G590S/Q591R, and T271A. The two typical avian influenza virus polymerases used in this study were poorly active in pig cells, similar to what is seen in human cells, and mutations that adapt the avian influenza virus polymerase for human cells also increased activity in pig cells. In contrast, a different pattern was observed in avian cells. Finally, highly pathogenic avian influenza virus H5N1 polymerase activity was tested because this subtype has been reported to replicate only poorly in pigs. H5N1 polymerase was active in swine cells, suggesting that other barriers restrict these viruses from becoming endemic in pigs. PMID:23077313

  17. 马氏珠母贝肌肉提取蛋白热变性动力学%Kinetics of heat denaturation of proteins extracted from Pinctada martensii meat

    Institute of Scientific and Technical Information of China (English)

    郑惠娜; 章超桦; 秦小明; 吉宏武; 黄锦华

    2013-01-01

    proteins continued to accelerate in the range of heating temperatures and the salt-soluble protein fraction was more heat-resistant than the water-soluble protein fraction. Protein denaturing reaction is very complicated, and many reactions occur as the temperature changes. The different heat treatment conditions have different effects on the expansion of the peptide chain and protein aggregation in the process of protein denaturation. Similarly, Z values, the degrees necessary to reduce the D value in one logarithmic cycle, were estimated to be 24.1℃ for water-soluble protein fraction and 25.0℃ for the salt-soluble protein fraction. The denature reactions’activation energy of the water-soluble protein fraction and salt-soluble protein fraction were 101.83 and 112.78 kJ/mol respectively. The entropy value of protein thermal denaturation is a smaller process, and our results are consistent with it. The entropy change of the system is negative. Therefore, these results will provide the theoretical basis for the data for Pinctada martensii meat protein high value utilization. In addition, it is of great practical significance for further development of new high-quality food use of their functional properties.%  为进一步了解水产蛋白的受热影响规律,更好利用它们的机能特性,该文研究热处理过程中马氏珠母贝肌肉提取蛋白(水溶性蛋白和盐溶性蛋白)的变性动力学,水溶性蛋白和盐溶性蛋白可分别用反应级数为1.1和1.3的方程较好地描述.研究结果表明,在60、70、80、90和100℃条件下水溶性蛋白变性的D值(90%蛋白变性所需时间)分别为33333、12500、3333、1667和769 s,而盐溶性蛋白热变性D值为50000、12500、5000、2000和1250 s;水溶性蛋白和盐溶性蛋白的Z值(D值降低90%的温度变化)分别为24.1和25.0℃,变性活化能分别为101.83和112.78 kJ/mol,盐溶性蛋白比水溶性蛋白更为耐热.研究结果为进一步开发利用马氏珠母贝肌肉蛋白提供参考.

  18. Deteksi Kandungan Daging Babi pada Bakso yang Dijajakan di Pusat Kota Salatiga Menggunakan Teknik Polymerase Chain Reaction

    Directory of Open Access Journals (Sweden)

    Fidia Fibriana

    2011-03-01

    Full Text Available The purpose of this research is to determine whether the meatball products that sold atSalatiga are contain pork. Stratifi ed random sampling technique used to take samplesof meatballs which sold by 13 meatball stalls from 25 meatball stalls scattered in thecentral city of Salatiga. Isolation and purifi cation of DNA from meatballs, beef, andpork samples use Sambrook et al. modifi ed by Sulandari and Zein method. The yield ofDNA followed by PCR process using P14 primers that representing the PRE-1 loci in thepig genome. DNA amplifi cation used protocol initial denaturation at temperature of 93°C for 2 minutes, followed by 45 cycles of denaturation 93 °C for 1 minute, annealing62 °C for 30 seconds, extension 72 °C for 1 minute, and ending extension 72 °C for 2minutes. Appearance of 481 base-pair PCR product was expected. Result from 1,2%agarose gel electrophoresis of PCR products showed 481 base-pair, a specifi c DNAband size in pork meat and meatball samples number thirteen. It can be concluded thatmeatball product from meatball stall number thirteen was contain pork.Keywords: detection of pork, meatball products, PCR technique

  19. Buoyancy-Driven Polymerase Chain Reaction (PCR) Devices

    Energy Technology Data Exchange (ETDEWEB)

    Ness, K D; Wheeler, E K; Benett, W; Stratton, P; Christian, A; Chen, A; Ortega, J; Weisgraber, T H; Goodson, K E

    2004-09-28

    Polymerase chain reaction (PCR) facilitates DNA detection by significantly increasing the concentration of specific DNA segments. A new class of PCR instruments uses a buoyancy-driven re-circulating flow to thermally cycle the DNA sample and benefits from reduced cycle times, low sample volumes, a miniaturized format, and low power consumption. This paper analyzes a specific buoyancy PCR device in a micro-channel ''race-track'' geometry to determine key parameters about PCR cycle times and other figures of merit as functions of device dimensions. The 1-D model balances the buoyancy driving force with frictional losses. A hydrostatic pressure imbalance concept is used between the left and right sides of the fluid loop to calculate the buoyancy driving force. Velocity and temperature distributions within the channels are determined from two-dimensional analysis of the channel section, with developing region effects included empirically through scaled values of the local Nusselt number. Good agreement between four independent verification steps validate the 1-D simulation approach: (1) analytical expressions for the thermal entrance length are compared against, (2) comparison with a full 3-D finite element simulation, (3) comparison with an experimental flow field characterization, and (4) calculation of the minimum PCR runtime required to get a positive PCR signal from the buoyancy-driven PCR device. The 1-D approach closely models an actual buoyancy-driven PCR device and can further be used as a rapid design tool to simulate buoyancy PCR flows and perform detailed design optimizations studies.

  20. 光谱法表征蛋白酶K的热变性过程%Characterization of Thermal Denaturation Process of Proteinase K by Spectrometry

    Institute of Scientific and Technical Information of China (English)

    张奇兵; 那馨竹; 尹宗宁

    2013-01-01

    用不同温度处理蛋白酶K,以变性酪蛋白底物法测定酶活力,稳态/瞬态荧光光谱法和圆二色谱法测定空间构象和二级结构,研究温度对蛋白酶K酶活力和构象的影响.温度由25℃升高至65℃过程中,蛋白酶K的酶活力逐渐降低,半衰期缩短;发射光谱荧光强度降低,峰位由335 nm红移至354 nm;色氨酸残基同步荧光强度降低,酪氨酸残基同步荧光强度增大;色氨酸残基荧光寿命由4.4271 ns降低至4.0324ns;α-螺旋百分含量降低.结果表明:采用稳态/瞬态荧光光谱法和圆二色谱法能较简便、准确的描述蛋白酶K的热稳定性变化;蛋白酶K的热变性过程符合三态模型,存在一个中间态;蛋白酶K分子内部存在酪氨酸残基对色氨酸残基的共振能量转移作用;α-螺旋是维系蛋白酶K活性中心构象稳定性的主要结构.%The effect of different temperatures on the activity and conformational changes of proteinase K was studied.Methods Proteinase K was treated with different temperatures,then denatured natural substrate casein was used to assay enzyme activity,steady-state and time-resolved fluorescence spectroscopy was used to study tertiary structure,and circular dichroism was used to study secondary structure.Results show with the temperature rising from 25 to 65 ℃,the enzyme activity and half-life of proteinase K dropped,maximum emission wavelength red shifted from 335 to 354 nm with fluorescence intensity decreasing.Synchronous fluorescence intensity of tryptophan residues decreased and that of tyrosine residues increased.Fluorescence lifetime of tryptophan residues reduced from 4.427 1 to 4.032 4 ns and the fraction of α-helix dropped.It was concluded that it is simple and accurate to use steady-state/time-resolved fluorescence spectroscopy and circular dichroism to investigate thermal stability of proteinase K.Thermal denaturation of proteinase K followed a three-state process.Fluorescence intensity