WorldWideScience

Sample records for demonstrated high sensitivity

  1. Demonstration of a high sensitivity GNSS software receiver for indoor positioning

    Science.gov (United States)

    Lin, Tao; Ma, Martin; Broumandan, Ali; Lachapelle, Gérard

    2013-03-01

    Advances in signal processing techniques contributed to the significant improvements of GNSS receiver performance in dense multipath environments and created the opportunities for a new category of high-sensitivity GNSS (HS-GNSS) receivers that can provide GNSS location services in indoor environments. The difficulties in improving the availability, reliability, and accuracy of these indoor capable GNSS receivers exceed those of the receivers designed for the most hostile urban canyon environments. The authors of this paper identified the vector tracking schemes, signal propagation statistics, and parallel processing techniques that are critical to a robust HS-GNSS receiver for indoor environments and successfully incorporated them into a fully functional high-sensitivity software receiver. A flexible vector-based receiver architecture is introduced to combine these key indoor signal processing technologies into GSNRx-hs™ - the high sensitivity software navigation receiver developed at the University of Calgary. The resulting receiver can perform multi-mode vector tracking in indoor environment at various levels of location and timing uncertainties. In addition to the obvious improvements in time-to-first-fix (TTFF) and signal sensitivity, the field test results in indoor environments surrounded by wood, glass, and concrete showed that the new techniques effectively improved the performance of indoor GNSS positioning. With fine GNSS timing, the proposed receiver can consistently deliver indoor navigation solution with the horizontal accuracy of 2-15 m depending on the satellite geometry and the indoor environments. If only the coarse GNSS timing is available, the horizontal accuracy of the indoor navigation solution from the proposed receiver is around 30 m depending on the coarse timing accuracy, the satellite geometry, and the indoor environments. From the preliminary field test results, it has been observed that the signal processing sensitivity is the

  2. Terrestrial bitumen analogue of orgueil organic material demonstrates high sensitivity to usual HF-HCl treatment

    Science.gov (United States)

    Korochantsev, A. V.; Nikolaeva, O. V.

    1993-01-01

    The relationship between the chemical composition and the interlayer spacing (d002) of organic materials (OM's) is known for various terrestrial OM's. We improved this general trend by correlation with corresponding trend of natural solid bitumens (asphaltite-kerite-anthraxolite) up to graphite. Using the improved trend we identified bitumen analogs of carbonaceous chondrite OM's residued after HF-HCl treatment. Our laboratory experiment revealed that these analogs and, hence, structure and chemical composition of carbonaceous chondrite OM's are very sensitive to the HF-HCl treatment. So, usual extraction of OM from carbonaceous chondrites may change significantly structural and chemical composition of extracted OM.

  3. Demonstration sensitivity analysis for RADTRAN III

    Energy Technology Data Exchange (ETDEWEB)

    Neuhauser, K S; Reardon, P C

    1986-10-01

    A demonstration sensitivity analysis was performed to: quantify the relative importance of 37 variables to the total incident free dose; assess the elasticity of seven dose subgroups to those same variables; develop density distributions for accident dose to combinations of accident data under wide-ranging variations; show the relationship between accident consequences and probabilities of occurrence; and develop limits for the variability of probability consequence curves.

  4. Strand Invasion Based Amplification (SIBA®: a novel isothermal DNA amplification technology demonstrating high specificity and sensitivity for a single molecule of target analyte.

    Directory of Open Access Journals (Sweden)

    Mark J Hoser

    Full Text Available Isothermal nucleic acid amplification technologies offer significant advantages over polymerase chain reaction (PCR in that they do not require thermal cycling or sophisticated laboratory equipment. However, non-target-dependent amplification has limited the sensitivity of isothermal technologies and complex probes are usually required to distinguish between non-specific and target-dependent amplification. Here, we report a novel isothermal nucleic acid amplification technology, Strand Invasion Based Amplification (SIBA. SIBA technology is resistant to non-specific amplification, is able to detect a single molecule of target analyte, and does not require target-specific probes. The technology relies on the recombinase-dependent insertion of an invasion oligonucleotide (IO into the double-stranded target nucleic acid. The duplex regions peripheral to the IO insertion site dissociate, thereby enabling target-specific primers to bind. A polymerase then extends the primers onto the target nucleic acid leading to exponential amplification of the target. The primers are not substrates for the recombinase and are, therefore unable to extend the target template in the absence of the IO. The inclusion of 2'-O-methyl RNA to the IO ensures that it is not extendible and that it does not take part in the extension of the target template. These characteristics ensure that the technology is resistant to non-specific amplification since primer dimers or mis-priming are unable to exponentially amplify. Consequently, SIBA is highly specific and able to distinguish closely-related species with single molecule sensitivity in the absence of complex probes or sophisticated laboratory equipment. Here, we describe this technology in detail and demonstrate its use for the detection of Salmonella.

  5. Experimental demonstration of a high-sensitivity humidity sensor based on an Agarose-coated transmission-type photonic crystal fiber interferometer.

    Science.gov (United States)

    Mathew, Jinesh; Semenova, Yuliya; Farrell, Gerald

    2013-06-01

    We present a detailed study of a high-sensitivity relative humidity (RH) sensor based on Agarose-coated transmission type photonic crystal fiber interferometer for what is the first time to our knowledge. The sensor shows a wavelength shift of approximately 56 nm for a humidity change of 58% RH. The repeatability of the coating layer formation and the evolution of the coating layers on passing the device though Agarose solution multiple times are studied in detail by observing the spectral shift resulting from the effect on the effective index of the cladding mode. Also, a detailed study is reported of the sensor performance in terms of its sensitivity, repeatability, and long-term stability. The sensor shows a linear response for an RH change in the range of 40%-80% RH with a humidity resolution of 0.017% RH and a higher humidity resolution of 0.007% RH in the range 80%-95% RH. The measurement accuracy of the sensor in the RH range 40%-80% is ±2% RH, and in the range 80%-95%, the accuracy is about ±1% RH. The response time of the sensor is 86 ms, when RH jumps from 50% to 90%. The temperature dependence of the sensor is found to be ~0.27 nm/°C, which is quite small compared to the RH sensitivity of the sensor.

  6. High-Sensitivity Spectrophotometry.

    Science.gov (United States)

    Harris, T. D.

    1982-01-01

    Selected high-sensitivity spectrophotometric methods are examined, and comparisons are made of their relative strengths and weaknesses and the circumstances for which each can best be applied. Methods include long path cells, noise reduction, laser intracavity absorption, thermocouple calorimetry, photoacoustic methods, and thermo-optical methods.…

  7. Highly Sensitive Optical Receivers

    CERN Document Server

    Schneider, Kerstin

    2006-01-01

    Highly Sensitive Optical Receivers primarily treats the circuit design of optical receivers with external photodiodes. Continuous-mode and burst-mode receivers are compared. The monograph first summarizes the basics of III/V photodetectors, transistor and noise models, bit-error rate, sensitivity and analog circuit design, thus enabling readers to understand the circuits described in the main part of the book. In order to cover the topic comprehensively, detailed descriptions of receivers for optical data communication in general and, in particular, optical burst-mode receivers in deep-sub-µm CMOS are presented. Numerous detailed and elaborate illustrations facilitate better understanding.

  8. Strand Invasion Based Amplification (SIBA®): A Novel Isothermal DNA Amplification Technology Demonstrating High Specificity and Sensitivity for a Single Molecule of Target Analyte

    OpenAIRE

    Mark J Hoser; Mansukoski, Hannu K.; Morrical, Scott W.; Kevin E. Eboigbodin

    2014-01-01

    Isothermal nucleic acid amplification technologies offer significant advantages over polymerase chain reaction (PCR) in that they do not require thermal cycling or sophisticated laboratory equipment. However, non-target-dependent amplification has limited the sensitivity of isothermal technologies and complex probes are usually required to distinguish between non-specific and target-dependent amplification. Here, we report a novel isothermal nucleic acid amplification technology, Strand Invas...

  9. Octyl gallate: An antioxidant demonstrating selective and sensitive fluorescent property.

    Science.gov (United States)

    Wang, Qing; Zhang, Yongkui; Li, Hui

    2017-03-15

    Octyl gallate (OG) is an internationally recognized antioxidant that demonstrates selective and sensitive fluorescent property. The fluorescence of OG can be selectively enhanced in the presence of human serum albumin (HSA) and bovine serum albumin (BSA). The specific structures of HSA and BSA provided the basic conditions for fluorescence enhancement. OG yielded approximately 49- and 11-fold increments in emission intensity in the presence of HSA and BSA at a molar ratio of 1:1, respectively. The lifetimes of HSA and BSA correspondingly decreased. A Förster resonance energy transfer phenomenon occurred during interaction between OG and HSA or BSA. Our in-depth investigation of OG-HSA interaction showed that formation of a stable complex was an important prerequisite to efficiently enhance the fluorescence of OG. The selective and sensitive fluorescent property of OG can possibly be used to determine OG concentration via the standard addition method, which must be performed under certain conditions.

  10. High voltage testing for the MAJORANA DEMONSTRATOR

    Energy Technology Data Exchange (ETDEWEB)

    Abgrall, N. [Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA (United States); Arnquist, I.J. [Pacific Northwest National Laboratory, Richland, WA (United States); Avignone, F.T. [Department of Physics and Astronomy, University of South Carolina, Columbia, SC (United States); Oak Ridge National Laboratory, Oak Ridge, TN (United States); Barabash, A.S. [National Research Center “Kurchatov Institute” Institute for Theoretical and Experimental Physics, Moscow (Russian Federation); Bertrand, F.E. [Oak Ridge National Laboratory, Oak Ridge, TN (United States); Bradley, A.W. [Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA (United States); Brudanin, V. [Joint Institute for Nuclear Research, Dubna (Russian Federation); Busch, M. [Department of Physics, Duke University, Durham, NC (United States); Triangle Universities Nuclear Laboratory, Durham, NC (United States); Buuck, M. [Center for Experimental Nuclear Physics and Astrophysics, and Department of Physics, University of Washington, Seattle, WA (United States); Byram, D. [Department of Physics, University of South Dakota, Vermillion, SD (United States); Caldwell, A.S. [South Dakota School of Mines and Technology, Rapid City, SD (United States); Chan, Y-D. [Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA (United States); Christofferson, C.D. [South Dakota School of Mines and Technology, Rapid City, SD (United States); Chu, P.-H. [Los Alamos National Laboratory, Los Alamos, NM (United States); Cuesta, C., E-mail: ccuesta@uw.edu [Center for Experimental Nuclear Physics and Astrophysics, and Department of Physics, University of Washington, Seattle, WA (United States); Detwiler, J.A.; Doe, P.J. [Center for Experimental Nuclear Physics and Astrophysics, and Department of Physics, University of Washington, Seattle, WA (United States); and others

    2016-07-01

    The MAJORANA Collaboration is constructing the MAJORANA DEMONSTRATOR, an ultra-low background, 44-kg modular high-purity Ge (HPGe) detector array to search for neutrinoless double-beta decay in {sup 76}Ge. The phenomenon of surface micro-discharge induced by high-voltage has been studied in the context of the MAJORANA DEMONSTRATOR. This effect can damage the front-end electronics or mimic detector signals. To ensure the correct performance, every high-voltage cable and feedthrough must be capable of supplying HPGe detector operating voltages as high as 5 kV without exhibiting discharge. R&D measurements were carried out to understand the testing system and determine the optimum design configuration of the high-voltage path, including different improvements of the cable layout and feedthrough flange model selection. Every cable and feedthrough to be used at the MAJORANA DEMONSTRATOR was characterized and the micro-discharge effects during the MAJORANA DEMONSTRATOR commissioning phase were studied. A stable configuration has been achieved, and the cables and connectors can supply HPGe detector operating voltages without exhibiting discharge.

  11. High voltage testing for the MAJORANA Demonstrator

    CERN Document Server

    Abgrall, N; Avignone, F T; Barabash, A S; Bertrand, F E; Bradley, A W; Brudanin, V; Busch, M; Buuck, M; Byram, D; Caldwell, A S; Chan, Y-D; Christofferson, C D; Chu, P -H; Cuesta, C; Detwiler, J A; Doe, P J; Dunagan, C; Efremenko, Yu; Ejiri, H; Elliott, S R; Fu, Z; Galindo-Uribarri, A; Giovanetti, G K; Goett, J; Green, M P; Gruszko, J; Guinn, I S; Guiseppe, V E; Henning, R; Hoppe, E W; Howard, S; Howe, M A; Jasinski, B R; Keeter, K J; Kidd, M F; Konovalov, S I; Kouzes, R T; LaFerriere, B D; Leon, J; Li, A; MacMullin, J; Martin, R D; Massarczyk, R; Meijer, S J; Mertens, S; Orrell, J L; O'Shaughnessy, C; Poon, A W P; Radford, D C; Rager, J; Rielage, K; Robertson, R G H; Romero-Romero, E; Shanks, B; Shirchenko, M; Snyder, N; Suriano, A M; Tedeschi, D; Thompson, A; Ton, K T; Trimble, J E; Varner, R L; Vasilyev, S; Vetter, K; Vorren, K; White, B R; Wilkerson, J F; Wiseman, C; Xu, W; Yakushev, E; Yu, C -H; Yumatov, V

    2016-01-01

    The MAJORANA Collaboration is constructing the MAJORANA Demonstrator, an ultra-low background, 44-kg modular high-purity Ge (HPGe) detector array to search for neutrinoless double-beta decay in Ge-76. The phenomenon of surface micro-discharge induced by high-voltage has been studied in the context of the MAJORANA Demonstrator. This eff?ect can damage the front-end electronics or mimic detector signals. To ensure the correct performance, every high-voltage cable and feedthrough must be capable of supplying HPGe detector operating voltages as high as 5 kV without exhibiting discharge. R&D measurements were carried out to understand the testing system and determine the optimum design configuration of the high-voltage path, including diff?erent improvements of the cable layout and feedthrough flange model selection. Every cable and feedthrough to be used at the MAJORANA Demonstrator was characterized and the micro-discharge eff?ects during the MAJORANA Demonstrator commissioning phase were studied. A stable c...

  12. High voltage testing for the MAJORANA DEMONSTRATOR

    Science.gov (United States)

    Abgrall, N.; Arnquist, I. J.; Avignone, F. T.; Barabash, A. S.; Bertrand, F. E.; Bradley, A. W.; Brudanin, V.; Busch, M.; Buuck, M.; Byram, D.; Caldwell, A. S.; Chan, Y.-D.; Christofferson, C. D.; Chu, P.-H.; Cuesta, C.; Detwiler, J. A.; Doe, P. J.; Dunagan, C.; Efremenko, Yu.; Ejiri, H.; Elliott, S. R.; Fu, Z.; Galindo-Uribarri, A.; Giovanetti, G. K.; Goett, J.; Green, M. P.; Gruszko, J.; Guinn, I. S.; Guiseppe, V. E.; Henning, R.; Hoppe, E. W.; Howard, S.; Howe, M. A.; Jasinski, B. R.; Keeter, K. J.; Kidd, M. F.; Konovalov, S. I.; Kouzes, R. T.; LaFerriere, B. D.; Leon, J.; Li, A.; MacMullin, J.; Martin, R. D.; Massarczyk, R.; Meijer, S. J.; Mertens, S.; Orrell, J. L.; O'Shaughnessy, C.; Poon, A. W. P.; Radford, D. C.; Rager, J.; Rielage, K.; Robertson, R. G. H.; Romero-Romero, E.; Shanks, B.; Shirchenko, M.; Snyder, N.; Suriano, A. M.; Tedeschi, D.; Thompson, A.; Ton, K. T.; Trimble, J. E.; Varner, R. L.; Vasilyev, S.; Vetter, K.; Vorren, K.; White, B. R.; Wilkerson, J. F.; Wiseman, C.; Xu, W.; Yakushev, E.; Yu, C.-H.; Yumatov, V.

    2016-07-01

    The MAJORANA Collaboration is constructing the MAJORANA DEMONSTRATOR, an ultra-low background, 44-kg modular high-purity Ge (HPGe) detector array to search for neutrinoless double-beta decay in 76Ge. The phenomenon of surface micro-discharge induced by high-voltage has been studied in the context of the MAJORANA DEMONSTRATOR. This effect can damage the front-end electronics or mimic detector signals. To ensure the correct performance, every high-voltage cable and feedthrough must be capable of supplying HPGe detector operating voltages as high as 5 kV without exhibiting discharge. R&D measurements were carried out to understand the testing system and determine the optimum design configuration of the high-voltage path, including different improvements of the cable layout and feedthrough flange model selection. Every cable and feedthrough to be used at the MAJORANA DEMONSTRATOR was characterized and the micro-discharge effects during the MAJORANA DEMONSTRATOR commissioning phase were studied. A stable configuration has been achieved, and the cables and connectors can supply HPGe detector operating voltages without exhibiting discharge.

  13. High voltage testing for the Majorana Demonstrator

    Energy Technology Data Exchange (ETDEWEB)

    Abgrall, N.; Arnquist, Isaac J.; Avignone, F. T.; Barabash, A.; Bertrand, F.; Bradley, A. W.; Brudanin, V.; Busch, Matthew; Buuck, M.; Byram, D.; Caldwell, A. S.; Chan, Yuen-Dat; Christofferson, C. D.; Chu, Pamela M.; Cuesta, C.; Detwiler, Jason A.; Doe, P. J.; Dunagan, C.; Efremenko, Yuri; Ejiri, H.; Elliott, S. R.; Fu, Z.; Galindo-Uribarri, A.; Giovanetti, G. K.; Goett, J.; Green, M. P.; Gruszko, J.; Guinn, I.; Guiseppe, V. E.; Henning, R.; Hoppe, Eric W.; Howard, S.; Howe, M. A.; Jasinski, B. R.; Keeter, K.; Kidd, M. F.; Konovalov, S.; Kouzes, Richard T.; Laferriere, Brian D.; Leon, Jonathan D.; Li, Alexander D.; MacMullin, J.; Martin, R. D.; Massarcyk, R.; Meijer, S. J.; Mertens, S.; Orrell, John L.; O' Shaughnessy, C.; Poon, Alan W.; Radford, D. C.; Rager, J.; Rielage, Keith; Robertson, R. G. H.; Romero Romo, M.; Shanks, B.; Shirchenko, M.; Snyder, N.; Suriano, Anne-Marie E.; Tedeschi, D.; Thompson, Andrew; Ton, K. T.; Trimble, J. E.; Varner, R. L.; Vasilyev, Sergey; Vetter, Kai; Vorren, Kris R.; White, Brandon R.; Wilkerson, J. F.; Wiseman, C.; Xu, W.; Yakushev, E.; Yu, Chang-Hong; Yumatov, V.

    2016-07-01

    The Majorana Collaboration is constructing theMajorana Demonstrator, an ultra-low background, 44-kg modular high-purity Ge (HPGe) detector array to search for neutrinoless double-beta decay in 76Ge. The phenomenon of surface micro-discharge induced by high-voltage has been studied in the context of theMajorana Demonstrator. This effect can damage the front-end electronics or mimic detector signals. To ensure the correct performance, every high-voltage cable and feedthrough must be capable of supplying HPGe detector operating voltages as high as 5 kV without exhibiting discharge. R&D measurements were carried out to understand the testing system and determine the optimum design configuration of the high-voltage path, including different improvements of the cable layout and feedthrough flange model selection. Every cable and feedthrough to be used at the Majorana Demonstrator was characterized and the micro-discharge effects during theMajorana Demonstrator commissioning phase were studied. A stable configuration has been achieved, and the cables and connectors can supply HPGe detector operating voltages without exhibiting discharge.

  14. High energy laser demonstrators for defense applications

    Science.gov (United States)

    Jung, M.; Riesbeck, Th.; Schmitz, J.; Baumgärtel, Th.; Ludewigt, K.; Graf, A.

    2017-01-01

    Rheinmetall Waffe Munition has worked since 30 years in the area of High Energy Laser (HEL) for defence applications, starting from pulsed CO2 to pulsed glass rods lasers. In the last decade Rheinmetall Waffe Munition changed to diode pumped solid state laser (DPSSL) technology and has successfully developed, realised and tested a variety of versatile HEL weapon demonstrators for air- and ground defence scenarios like countering rocket, artillery, mortar, missile (RAMM), unmanned aerial systems (UAS) and unexploded ordnances clearing. By employing beam superimposing technology and a modular laser weapon concept, the total optical power has been successively increased. Stationary weapon platforms, military vehicles and naval platforms have been equipped with high energy laser effectors. The contribution gives a summary of the most recent development stages of Rheinmetalls HEL weapon program. In addition to the stationary 30 kW laser weapon demonstrator, we present vehicle based HEL demonstrators: the 5 kW class Mobile HEL Effector Track V, the 20 kW class Mobile HEL Effector Wheel XX and the 50 kW class Mobile HEL Effector Container L and the latest 10 kW HEL effector integrated in the naval weapon platform MLG 27. We describe the capabilities of these demonstrators against different potential targets. Furthermore, we will show the capability of the 30 kW stationary Laser Weapon Demonstrator integrated into an existing ground based air defence system to defeat saturated attacks of RAMM and UAS targets.

  15. High-Sensitivity Magnetization Measurements

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The three most common instruments for high-sensitivity magnetization measurements (the vibrating-sample magnetometer, the alternating gradient magnetometer, and the SQUID magne tometer) are described and their limiting sensitivities are discussed. The advantages and disad vantages of each are described. Magnetometers using micro-machined force detectors are briefly mentioned.

  16. High dynamic GPS receiver validation demonstration

    Science.gov (United States)

    Hurd, W. J.; Statman, J. I.; Vilnrotter, V. A.

    1985-01-01

    The Validation Demonstration establishes that the high dynamic Global Positioning System (GPS) receiver concept developed at JPL meets the dynamic tracking requirements for range instrumentation of missiles and drones. It was demonstrated that the receiver can track the pseudorange and pseudorange rate of vehicles with acceleration in excess of 100 g and jerk in excess of 100 g/s, dynamics ten times more severe than specified for conventional High Dynamic GPS receivers. These results and analytic extensions to a complete system configuration establish that all range instrumentation requirements can be met. The receiver can be implemented in the 100 cu in volume required by all missiles and drones, and is ideally suited for transdigitizer or translator applications.

  17. Demonstration of Degenerate Vector Phase-Sensitive Amplification

    OpenAIRE

    Riesgo, A.L.; Karlsson, M.; Lundstrm, C.; Andrekson, P. A.

    2013-01-01

    The performance of a degenerate vector (dual cross-polarized pump) phase-sensitive amplifier (PSA) is characterized and compared to a degenerate scalar (dual co-polarized pump) PSA. In both schemes, we assess the gain as a function of the signal state of polarization, verifying its compliance with theory, and the phase transfer function. PSOPA

  18. High Throughput Bent-Pipe Processor Demonstrator

    Science.gov (United States)

    Tabacco, P.; Vernucci, A.; Russo, L.; Cangini, P.; Botticchio, T.; Angeletti, P.

    2008-08-01

    The work associated to this article is a study initiative sponsored by ESA/ESTEC that responds to the crucial need of developing new Satellite payload aimed at making rapid progresses in handling large amounts of data at a competitive price with respect to terrestrial one in the telecommunication field. Considering the quite limited band allowed to space communications at Ka band, reusing the same band in a large number of beams is mandatory: therefore beam-forming is the right technological answer. Technological progresses - mainly in the digital domain - also help greatly in increasing the satellite capacity. Next Satellite payload target are set in throughput range of 50Gbps. Despite the fact that the implementation of a wideband transparent processor for a high capacity communication payload is a very challenging task, Space Engineering team in the frame of this ESA study proposed an intermediate step of development for a scalable unit able to demonstrate both the capacity and flexibility objectives for different type of Wideband Beamforming antennas designs. To this aim the article describes the features of Wideband HW (analog and digital) platform purposely developed by Space Engineering in the frame of this ESA/ESTEC contract ("WDBFN" contract) with some preliminary system test results. The same platform and part of the associated SW will be used in the development and demonstration of the real payload digital front end Mux and Demux algorithms as well as the Beam Forming and on Board channel switching in frequency domain. At the time of this article writing, despite new FPGA and new ADC and DAC converters have become available as choices for wideband system implementation, the two HW platforms developed by Space Engineering, namely WDBFN ADC and DAC Boards, represent still the most performing units in terms of analog bandwidth, processing capability (in terms of FPGA module density), SERDES (SERiliazer DESerializers) external links density, integration form

  19. Aluminum nanocantilevers for high sensitivity mass sensors

    DEFF Research Database (Denmark)

    Davis, Zachary James; Boisen, Anja

    2005-01-01

    We have fabricated Al nanocantilevers using a simple, one mask contact UV lithography technique with lateral and vertical dimensions under 500 and 100 nm, respectively. These devices are demonstrated as highly sensitive mass sensors by measuring their dynamic properties. Furthermore, it is shown ...

  20. Demonstration of improved sensitivity of echo interferometers to gravitational acceleration

    CERN Document Server

    Mok, C; Carew, A; Berthiaume, R; Beattie, S; Kumarakrishnan, A

    2013-01-01

    We have developed two configurations of an echo interferometer that rely on standing wave excitation of a laser-cooled sample of rubidium atoms that measures acceleration. For a two-pulse configuration, the interferometer signal is modulated at the recoil frequency and exhibits a sinusoidal frequency chirp as a function of pulse spacing. For a three-pulse stimulated echo configuration, the signal is observed without recoil modulation and exhibits a modulation at a single frequency. The three-pulse configuration is less sensitive to effects of vibrations and magnetic field curvature leading to a longer experimental timescale. For both configurations of the atom interferometer (AI), we show that a measurement of acceleration with a statistical precision of 0.5% can be realized by analyzing the shape of the echo envelope that has a temporal duration of a few microseconds. Using the two-pulse AI, we obtain measurements of acceleration that are statistically precise to 6 parts per million (ppm) on a 25 ms timescal...

  1. Highly Conducting Graphite Epoxy Composite Demonstrated

    Science.gov (United States)

    Gaier, James R.

    1999-01-01

    Weight savings as high as 80 percent could be achieved if graphite polymer composites could replace aluminum in structures such as electromagnetic interference shielding covers and grounding planes. This could result in significant cost savings, especially for the mobile electronics found in spacecraft, aircraft, automobiles, and hand-held consumer electronics. However, such composites had not yet been fabricated with conductivity sufficient to enable these applications. To address this lack, a partnership of the NASA Lewis Research Center, Manchester College, and Applied Sciences, Inc., fabricated nonmetallic composites with unprecedented electrical conductivity. For these composites, heat-treated, vapor-grown graphite fibers were selected which have a resistivity of about 80 mW-cm, more than 20 times more conductive than typical carbon fibers. These fibers were then intercalated with iodine bromide (IBr). Intercalation is the insertion of guest atoms or molecules between the carbon planes of the graphite fibers. Since the carbon planes are not highly distorted in the process, intercalation has little effect on mechanical and thermal properties. Intercalation does, however, lower the carbon fiber resistivity to less than 10 mW-cm, which is comparable to that of metal fibers. Scaleup of the reaction was required since the initial intercalation experiments would be carried out on 20-mg quantities of fibers, and tens of grams of intercalated fibers would be needed to fabricate even small demonstration composites. The reaction was first optimized through a time and temperature study that yielded fibers with a resistivity of 8.7 2 mW-cm when exposed to IBr vapor at 114 C for 24 hours. Stability studies indicated that the intercalated fibers rapidly lost their conductivity when exposed to temperatures as low as 40 C in air. They were not, however, susceptible to degradation by water vapor in the manner of most graphite intercalation compounds. The 1000-fold scaleup

  2. High sensitivity RNA pseudoknot prediction

    OpenAIRE

    Huang, Xiaolu; Ali, Hesham

    2006-01-01

    Most ab initio pseudoknot predicting methods provide very few folding scenarios for a given RNA sequence and have low sensitivities. RNA researchers, in many cases, would rather sacrifice the specificity for a much higher sensitivity for pseudoknot detection. In this study, we introduce the Pseudoknot Local Motif Model and Dynamic Partner Sequence Stacking (PLMM_DPSS) algorithm which predicts all PLM model pseudoknots within an RNA sequence in a neighboring-region-interference-free fashion. T...

  3. High sensitivity RNA pseudoknot prediction.

    Science.gov (United States)

    Huang, Xiaolu; Ali, Hesham

    2007-01-01

    Most ab initio pseudoknot predicting methods provide very few folding scenarios for a given RNA sequence and have low sensitivities. RNA researchers, in many cases, would rather sacrifice the specificity for a much higher sensitivity for pseudoknot detection. In this study, we introduce the Pseudoknot Local Motif Model and Dynamic Partner Sequence Stacking (PLMM_DPSS) algorithm which predicts all PLM model pseudoknots within an RNA sequence in a neighboring-region-interference-free fashion. The PLM model is derived from the existing Pseudobase entries. The innovative DPSS approach calculates the optimally lowest stacking energy between two partner sequences. Combined with the Mfold, PLMM_DPSS can also be used in predicting complicated pseudoknots. The test results of PLMM_DPSS, PKNOTS, iterated loop matching, pknotsRG and HotKnots with Pseudobase sequences have shown that PLMM_DPSS is the most sensitive among the five methods. PLMM_DPSS also provides manageable pseudoknot folding scenarios for further structure determination.

  4. High sensitivity radon emanation measurements.

    Science.gov (United States)

    Zuzel, G; Simgen, H

    2009-05-01

    The presented radon detection technique employs miniaturized ultra-low background proportional counters. (222)Rn samples are purified, mixed with a counting gas and filled into a counter using a special glass vacuum line. The absolute sensitivity of the system is estimated to be 40 microBq (20 (222)Rn atoms). For emanation investigations two metal sealed stainless steel vessels and several glass vials are available. Taking into account their blank contributions, measurements at a minimum detectable activity of about 100 microBq can be performed.

  5. High-Temperature Gas Sensor Array (Electronic Nose) Demonstrated

    Science.gov (United States)

    Hunter, Gary W.

    2002-01-01

    The ability to measure emissions from aeronautic engines and in commercial applications such as automotive emission control and chemical process monitoring is a necessary first step if one is going to actively control those emissions. One single sensor will not give all the information necessary to determine the chemical composition of a high-temperature, harsh environment. Rather, an array of gas sensor arrays--in effect, a high-temperature electronic "nose"--is necessary to characterize the chemical constituents of a diverse, high-temperature environment, such as an emissions stream. The signals produced by this nose could be analyzed to determine the constituents of the emission stream. Although commercial electronic noses for near-room temperature applications exist, they often depend significantly on lower temperature materials or only one sensor type. A separate development effort necessary for a high-temperature electronic nose is being undertaken by the NASA Glenn Research Center, Case Western Reserve University, Ohio State University, and Makel Engineering, Inc. The sensors are specially designed for hightemperature environments. A first-generation high-temperature electronic nose has been demonstrated on a modified automotive engine. This nose sensor array was composed of sensors designed for hightemperature environments fabricated using microelectromechanical-systems- (MEMS-) based technology. The array included a tin-oxide-based sensor doped for nitrogen oxide (NOx) sensitivity, a SiC-based hydrocarbon (CxHy) sensor, and an oxygen sensor (O2). These sensors operate on different principles--resistor, diode, and electrochemical cell, respectively--and each sensor has very different responses to the individual gases in the environment. A picture showing the sensor head for the array is shown in the photograph on the left and the sensors installed in the engine are shown in the photograph on the right. Electronics are interfaced with the sensors for

  6. Cryogenic High-Sensitivity Magnetometer

    Science.gov (United States)

    Day, Peter; Chui, Talso; Goodstein, David

    2005-01-01

    A proposed magnetometer for use in a cryogenic environment would be sensitive enough to measure a magnetic-flux density as small as a picogauss (10(exp -16) Tesla). In contrast, a typical conventional flux-gate magnetometer cannot measure a magnetic-flux density smaller that about 1 microgauss (10(exp -10) Tesla). One version of this device, for operation near the low end of the cryogenic temperature range, would include a piece of a paramagnetic material on a platform, the temperature of which would be controlled with a periodic variation. The variation in temperature would be measured by use of a conventional germanium resistance thermometer. A superconducting coil would be wound around the paramagnetic material and coupled to a superconducting quantum interference device (SQUID) magnetometer.

  7. Nano-textured high sensitivity ion sensitive field effect transistors

    Energy Technology Data Exchange (ETDEWEB)

    Hajmirzaheydarali, M.; Sadeghipari, M.; Akbari, M.; Shahsafi, A.; Mohajerzadeh, S., E-mail: mohajer@ut.ac.ir [Thin Film and Nanoelectronics Lab, Nanoelectronics Center of Excellence, School of Electrical and Computer Engineering, University of Tehran, Tehran 143957131 (Iran, Islamic Republic of)

    2016-02-07

    Nano-textured gate engineered ion sensitive field effect transistors (ISFETs), suitable for high sensitivity pH sensors, have been realized. Utilizing a mask-less deep reactive ion etching results in ultra-fine poly-Si features on the gate of ISFET devices where spacing of the order of 10 nm and less is achieved. Incorporation of these nano-sized features on the gate is responsible for high sensitivities up to 400 mV/pH in contrast to conventional planar structures. The fabrication process for this transistor is inexpensive, and it is fully compatible with standard complementary metal oxide semiconductor fabrication procedure. A theoretical modeling has also been presented to predict the extension of the diffuse layer into the electrolyte solution for highly featured structures and to correlate this extension with the high sensitivity of the device. The observed ultra-fine features by means of scanning electron microscopy and transmission electron microscopy tools corroborate the theoretical prediction.

  8. Spanish-speaking patients' satisfaction with clinical pharmacists' communication skills and demonstration of cultural sensitivity.

    Science.gov (United States)

    Kim-Romo, Dawn N; Barner, Jamie C; Brown, Carolyn M; Rivera, José O; Garza, Aida A; Klein-Bradham, Kristina; Jokerst, Jason R; Janiga, Xan; Brown, Bob

    2014-01-01

    OBJECTIVE To assess Spanish-speaking patients' satisfaction with their clinical pharmacists' communication skills and demonstration of cultural sensitivity, while controlling for patients' sociodemographic, clinical, and communication factors, as well as pharmacist factors, and to identify clinical pharmacists' cultural factors that are important to Spanish-speaking patients. DESIGN Cross-sectional study. SETTING Central Texas during August 2011 to May 2012. PARTICIPANTS Spanish-speaking patients of federally qualified health centers (FQHCs). MAIN OUTCOME MEASURE(S) A Spanish-translated survey assessed Spanish-speaking patients' satisfaction with their clinical pharmacists' communication skills and demonstration of cultural sensitivity. RESULTS Spanish-speaking patients (N = 101) reported overall satisfaction with their clinical pharmacists' communication skills and cultural sensitivity. Patients also indicated that pharmacists' cultural rapport (e.g., ability to speak Spanish, respectfulness) was generally important to Spanish speakers. Multiple linear regression analyses showed that cultural rapport was significantly related to satisfaction with pharmacists' communication skills and demonstration of cultural sensitivity. CONCLUSION Overall, patients were satisfied with pharmacists' communication skills and cultural sensitivity. Patient satisfaction initiatives that include cultural rapport should be developed for pharmacists who provide care to Spanish-speaking patients with limited English proficiency.

  9. Highly Sensitive Electro-Optic Modulators

    Energy Technology Data Exchange (ETDEWEB)

    DeVore, Peter S [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-10-26

    There are very important diagnostic and communication applications that receive faint electrical signals to be transmitted over long distances for capture. Optical links reduce bandwidth and distance restrictions of metal transmission lines; however, such signals are only weakly imprinted onto the optical carrier, resulting in low fidelity transmission. Increasing signal fidelity often necessitates insertion of radio-frequency (RF) amplifiers before the electro-optic modulator, but (especially at high frequencies) RF amplification results in large irreversible distortions. We have investigated the feasibility of a Sensitive and Linear Modulation by Optical Nonlinearity (SALMON) modulator to supersede RF-amplified modulators. SALMON uses cross-phase modulation, a manifestation of the Kerr effect, to enhance the modulation depth of an RF-modulated optical wave. This ultrafast process has the potential to result in less irreversible distortions as compared to a RF-amplified modulator due to the broadband nature of the Kerr effect. Here, we prove that a SALMON modulator is a feasible alternative to an RFamplified modulator, by demonstrating a sensitivity enhancement factor greater than 20 and significantly reduced distortion.

  10. Optical Demonstration of THz, Dual-Polarization Sensitive Microwave Kinetic Inductance Detectors

    CERN Document Server

    Dober, B; Beall, J A; Becker, D; Che, G; Cho, H M; Devlin, M; Duff, S M; Galitzki, N; Gao, J; Groppi, C; Hilton, G C; Hubmayr, J; Irwin, K D; McKenney, C M; Li, D; Lourie, N; Mauskopf, P; Vissers, M R; Wang, Y

    2016-01-01

    The next generation BLAST experiment (BLAST-TNG) is a suborbital balloon payload that seeks to map polarized dust emission in the 250 $\\mu$m, 350 $\\mu$m and 500 $\\mu$m wavebands. The instrument utilizes a stepped half-wave plate to reduce systematics. The general requirement of the detectors is that they are photon-noise-limited and dual-polarization sensitive. To achieve this goal, we are developing three monolithic arrays of cryogenic sensors, one for each waveband. Each array is feedhorn-coupled and each spatial pixel consists of two orthogonally spaced polarization-sensitive microwave kinetic inductance detectors (MKIDs) fabricated from a Ti/TiN multilayer film. In previous work, we demonstrated photon-noise-limited sensitivity in 250 $\\mu$m waveband single polarization devices. In this work, we present the first results of dual-polarization sensitive MKIDs at 250 $\\mu$m.

  11. High sensitivity knitted fabric strain sensors

    Science.gov (United States)

    Xie, Juan; Long, Hairu; Miao, Menghe

    2016-10-01

    Wearable sensors are increasingly used in smart garments for detecting and transferring vital signals and body posture, movement and respiration. Existing fabric strain sensors made from metallized yarns have low sensitivity, poor comfort and low durability to washing. Here we report a knitted fabric strain sensor made from a cotton/stainless steel (SS) fibre blended yarn which shows much higher sensitivity than sensors knitted from metallized yarns. The fabric feels softer than pure cotton textiles owing to the ultrafine stainless steel fibres and does not lose its electrical property after washing. The reason for the high sensitivity of the cotton/SS knitted fabric sensor was explored by comparing its sensing mechanism with the knitted fabric sensor made from metallized yarns. The results show that the cotton/SS yarn-to-yarn contact resistance is highly sensitive to strain applied to hooked yarn loops.

  12. High Sensitivity deflection detection of nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Sanii, Babak; Ashby, Paul

    2009-10-28

    A critical limitation of nanoelectromechanical systems (NEMS) is the lack of a high-sensitivity position detection mechanism. We introduce a noninterferometric optical approach to determine the position of nanowires with a high sensitivity and bandwidth. Its physical origins and limitations are determined by Mie scattering analysis. This enables a dramatic miniaturization of detectable cantilevers, with attendant reductions to the fundamental minimum force noise in highly damping environments. We measure the force noise of an 81{+-}9??nm radius Ag{sub 2}Ga nanowire cantilever in water at 6{+-}3??fN/{radical}Hz.

  13. Scalable photonic crystal chips for high sensitivity protein detection.

    Science.gov (United States)

    Liang, Feng; Clarke, Nigel; Patel, Parth; Loncar, Marko; Quan, Qimin

    2013-12-30

    Scalable microfabrication technology has enabled semiconductor and microelectronics industries, among other fields. Meanwhile, rapid and sensitive bio-molecule detection is increasingly important for drug discovery and biomedical diagnostics. In this work, we designed and demonstrated that photonic crystal sensor chips have high sensitivity for protein detection and can be mass-produced with scalable deep-UV lithography. We demonstrated label-free detection of carcinoembryonic antigen from pg/mL to μg/mL, with high quality factor photonic crystal nanobeam cavities.

  14. High sensitivity optically pumped quantum magnetometer.

    Science.gov (United States)

    Tiporlini, Valentina; Alameh, Kamal

    2013-01-01

    Quantum magnetometers based on optical pumping can achieve sensitivity as high as what SQUID-based devices can attain. In this paper, we discuss the principle of operation and the optimal design of an optically pumped quantum magnetometer. The ultimate intrinsic sensitivity is calculated showing that optimal performance of the magnetometer is attained with an optical pump power of 20 μW and an operation temperature of 48°C. Results show that the ultimate intrinsic sensitivity of the quantum magnetometer that can be achieved is 327 fT/Hz(½) over a bandwidth of 26 Hz and that this sensitivity drops to 130 pT/Hz(½) in the presence of environmental noise. The quantum magnetometer is shown to be capable of detecting a sinusoidal magnetic field of amplitude as low as 15 pT oscillating at 25 Hz.

  15. Hardware demonstration of high-speed networks for satellite applications.

    Energy Technology Data Exchange (ETDEWEB)

    Donaldson, Jonathon W.; Lee, David S.

    2008-09-01

    This report documents the implementation results of a hardware demonstration utilizing the Serial RapidIO{trademark} and SpaceWire protocols that was funded by Sandia National Laboratories (SNL's) Laboratory Directed Research and Development (LDRD) office. This demonstration was one of the activities in the Modeling and Design of High-Speed Networks for Satellite Applications LDRD. This effort has demonstrated the transport of application layer packets across both RapidIO and SpaceWire networks to a common downlink destination using small topologies comprised of commercial-off-the-shelf and custom devices. The RapidFET and NEX-SRIO debug and verification tools were instrumental in the successful implementation of the RapidIO hardware demonstration. The SpaceWire hardware demonstration successfully demonstrated the transfer and routing of application data packets between multiple nodes and also was able reprogram remote nodes using configuration bitfiles transmitted over the network, a key feature proposed in node-based architectures (NBAs). Although a much larger network (at least 18 to 27 nodes) would be required to fully verify the design for use in a real-world application, this demonstration has shown that both RapidIO and SpaceWire are capable of routing application packets across a network to a common downlink node, illustrating their potential use in real-world NBAs.

  16. Experimental demonstration of vortex pancake in high temperature superconductor

    Institute of Scientific and Technical Information of China (English)

    WANG Wei-xian; ZHANG Yu-heng

    2006-01-01

    In order to demonstrate the existence of the vortex pancake in high temperature superconductor experimentally,a configuration in which the current and voltage electrodes lies separately on the top and bottom surface is used.The E-j relation obtained with this electrodes spatial configuration is different from the expected E-j behavior of the stiff vortex line model.Thus,the current results support the existence of the vortex pancake in high temperature superconductor.

  17. Demonstration of deterministic and high fidelity squeezing of quantum information

    DEFF Research Database (Denmark)

    Yoshikawa, J-I.; Hayashi, T-; Akiyama, T.

    2007-01-01

    By employing a recent proposal [R. Filip, P. Marek, and U.L. Andersen, Phys. Rev. A 71, 042308 (2005)] we experimentally demonstrate a universal, deterministic, and high-fidelity squeezing transformation of an optical field. It relies only on linear optics, homodyne detection, feedforward, and an...

  18. Nonclassical characteristic functions for highly sensitive measurements

    CERN Document Server

    Richter, T; Richter, Th.

    2007-01-01

    Characteristic functions are shown to be useful for highly sensitive measurements. Redistributions of motional Fock states of a trapped atom can be directly monitored via the most fragile nonclassical part of the characteristic function. The method can also be used for decoherence measurements in optical quantum-information systems.

  19. Aluminum nano-cantilevers for high sensitivity mass sensors

    DEFF Research Database (Denmark)

    Davis, Zachary James; Boisen, Anja

    2005-01-01

    We have fabricated Al nano-cantilevers using a very simple one mask contact UV lithography technique with lateral dimensions under 500 nm and vertical dimensions of approximately 100 nm. These devices are demonstrated as highly sensitive mass sensors by measuring their dynamic properties. Further...

  20. Design optimization of high pressure and high temperature piezoresistive pressure sensor for high sensitivity

    Science.gov (United States)

    Niu, Zhe; Zhao, Yulong; Tian, Bian

    2014-01-01

    This paper describes a design method for optimizing sensitivity of piezoresistive pressure sensor in high-pressure and high-temperature environment. In order to prove the method, a piezoresistive pressure sensor (HPTSS) is designed. With the purpose of increasing sensitivity and to improve the measurement range, the piezoresistive sensor adopts rectangular membrane and thick film structure. The configuration of piezoresistors is arranged according to the characteristic of the rectangular membrane. The structure and configuration of the sensor chip are analyzed theoretically and simulated by the finite element method. This design enables the sensor chip to operate in high pressure condition (such as 150 MPa) with a high sensitivity and accuracy. The silicon on insulator wafer is selected to guarantee the thermo stability of the sensor chip. In order to optimize the fabrication and improve the yield of production, an electric conduction step is devised. Series of experiments demonstrates a favorable linearity of 0.13% and a high accuracy of 0.48%. And the sensitivity of HTPSS is about six times as high as a conventional square-membrane sensor chip in the experiment. Compared with the square-membrane pressure sensor and current production, the strength of HPTTS lies in sensitivity and measurement. The performance of the HPTSS indicates that it could be an ideal candidate for high-pressure and high-temperature sensing in real application.

  1. Design optimization of high pressure and high temperature piezoresistive pressure sensor for high sensitivity.

    Science.gov (United States)

    Niu, Zhe; Zhao, Yulong; Tian, Bian

    2014-01-01

    This paper describes a design method for optimizing sensitivity of piezoresistive pressure sensor in high-pressure and high-temperature environment. In order to prove the method, a piezoresistive pressure sensor (HPTSS) is designed. With the purpose of increasing sensitivity and to improve the measurement range, the piezoresistive sensor adopts rectangular membrane and thick film structure. The configuration of piezoresistors is arranged according to the characteristic of the rectangular membrane. The structure and configuration of the sensor chip are analyzed theoretically and simulated by the finite element method. This design enables the sensor chip to operate in high pressure condition (such as 150 MPa) with a high sensitivity and accuracy. The silicon on insulator wafer is selected to guarantee the thermo stability of the sensor chip. In order to optimize the fabrication and improve the yield of production, an electric conduction step is devised. Series of experiments demonstrates a favorable linearity of 0.13% and a high accuracy of 0.48%. And the sensitivity of HTPSS is about six times as high as a conventional square-membrane sensor chip in the experiment. Compared with the square-membrane pressure sensor and current production, the strength of HPTTS lies in sensitivity and measurement. The performance of the HPTSS indicates that it could be an ideal candidate for high-pressure and high-temperature sensing in real application.

  2. Laser beaming demonstrations to high-orbit satellites

    Science.gov (United States)

    Lipinski, Ronald J.; Meister, Dorothy C.; Tucker, Steve D.; Fugate, Robert Q.; Leatherman, Phillip; Maes, Carl F.; Lange, W. Joseph; Cowan, William D.; Meulenberg, Andrew; Cleis, Richard A.; Spinhirne, James M.; Ruane, Raymond E.; Michie, Robert B.; Vonderhaar, Donald F.

    1994-05-01

    A team of Phillips Laboratory, COMSAT Laboratories, and Sandia National Laboratories plans to demonstrate state-of-the-art laser-beaming demonstrations to high-orbit satellites. The demonstrations will utilize the 1.5-m diameter telescope with adaptive optics at the AFPL Starfire Optical Range (SOR) and a ruby laser provided by the Air Force and Sandia (1 - 50 kW and 6 ms at 694.3 nm). The first targets will be corner-cube retro-reflectors left on the moon by the Apollo 11, 14, and 15 landings. We attempt to use adaptive optics for atmospheric compensation to demonstrate accurate and reliable beam projection with a series of shots over a span of time and shot angle. We utilize the return signal from the retro- reflectors to help determine the beam diameter on the moon and the variations in pointing accuracy caused by atmospheric tilt. This is especially challenging because the retro-reflectors need to be in the lunar shadow to allow detection over background light. If the results from this experiment are encouraging, we will at a later date direct the beam at a COMSAT satellite in geosynchronous orbit as it goes into the shadow of the earth. We utilize an onboard monitor to measure the current generated in the solar panels on the satellite while the beam is present. A threshold irradiance of about 4 W/m2 on orbit is needed for this demonstration.

  3. High blood pressure and visual sensitivity

    Science.gov (United States)

    Eisner, Alvin; Samples, John R.

    2003-09-01

    The study had two main purposes: (1) to determine whether the foveal visual sensitivities of people treated for high blood pressure (vascular hypertension) differ from the sensitivities of people who have not been diagnosed with high blood pressure and (2) to understand how visual adaptation is related to standard measures of systemic cardiovascular function. Two groups of middle-aged subjects-hypertensive and normotensive-were examined with a series of test/background stimulus combinations. All subjects met rigorous inclusion criteria for excellent ocular health. Although the visual sensitivities of the two subject groups overlapped extensively, the age-related rate of sensitivity loss was, for some measures, greater for the hypertensive subjects, possibly because of adaptation differences between the two groups. Overall, the degree of steady-state sensitivity loss resulting from an increase of background illuminance (for 580-nm backgrounds) was slightly less for the hypertensive subjects. Among normotensive subjects, the ability of a bright (3.8-log-td), long-wavelength (640-nm) adapting background to selectively suppress the flicker response of long-wavelength-sensitive (LWS) cones was related inversely to the ratio of mean arterial blood pressure to heart rate. The degree of selective suppression was also related to heart rate alone, and there was evidence that short-term changes of cardiovascular response were important. The results suggest that (1) vascular hypertension, or possibly its treatment, subtly affects visual function even in the absence of eye disease and (2) changes in blood flow affect retinal light-adaptation processes involved in the selective suppression of the flicker response from LWS cones caused by bright, long-wavelength backgrounds.

  4. Highly Energetic, Low Sensitivity Aromatic Peroxy Acids.

    Science.gov (United States)

    Gamage, Nipuni-Dhanesha H; Stiasny, Benedikt; Stierstorfer, Jörg; Martin, Philip D; Klapötke, Thomas M; Winter, Charles H

    2016-02-18

    The synthesis, structure, and energetic materials properties of a series of aromatic peroxy acid compounds are described. Benzene-1,3,5-tris(carboperoxoic) acid is a highly sensitive primary energetic material, with impact and friction sensitivities similar to those of triacetone triperoxide. By contrast, benzene-1,4-bis(carboperoxoic) acid, 4-nitrobenzoperoxoic acid, and 3,5-dinitrobenzoperoxoic acid are much less sensitive, with impact and friction sensitivities close to those of the secondary energetic material 2,4,6-trinitrotoluene. Additionally, the calculated detonation velocities of 3,5-dinitrobenzoperoxoic acid and 2,4,6-trinitrobenzoperoxoic acid exceed that of 2,4,6-trinitrotoluene. The solid-state structure of 3,5-dinitrobenzoperoxoic acid contains intermolecular O-H⋅⋅⋅O hydrogen bonds and numerous N⋅⋅⋅O, C⋅⋅⋅O, and O⋅⋅⋅O close contacts. These attractive lattice interactions may account for the less sensitive nature of 3,5-dinitrobenzoperoxoic acid.

  5. Refractive Secondary Solar Concentrator Demonstrated High-Temperature Operation

    Science.gov (United States)

    Wong, Wayne A.

    2002-01-01

    Space applications that utilize solar thermal energy--such as electric power conversion systems, thermal propulsion systems, and furnaces--require highly efficient solar concentration systems. The NASA Glenn Research Center is developing the refractive secondary concentrator, which uses refraction and total internal reflection to efficiently concentrate and direct solar energy. When used in combination with advanced lightweight primary concentrators, such as inflatable thin films, the refractive secondary concentrator enables very high system concentration ratios and very high temperatures. Last year, Glenn successfully demonstrated a secondary concentrator throughput efficiency of 87 percent, with a projected efficiency of 93 percent using an antireflective coating. Building on this achievement, Glenn recently successfully demonstrated high-temperature operation of the secondary concentrator when it was used to heat a rhenium receiver to 2330 F. The high-temperature demonstration of the concentrator was conducted in Glenn's 68-ft long Tank 6 thermal vacuum facility equipped with a solar simulator. The facility has a rigid panel primary concentrator that was used to concentrate the light from the solar simulator onto the refractive secondary concentrator. NASA Marshall Space Flight Center provided a rhenium cavity, part of a solar thermal propulsion engine, to serve as the high-temperature receiver. The prototype refractive secondary concentrator, measuring 3.5 in. in diameter and 11.2 in. long, is made of single-crystal sapphire. A water-cooled splash shield absorbs spillage light outside of the 3.5-in. concentrator aperture. Multilayer foil insulation composed of tungsten, molybdenum, and niobium is used to minimize heat loss from the hightemperature receiver. A liquid-cooled canister calorimeter is used to measure the heat loss through the multilayer foil insulation.

  6. Experimental Investigation on a Highly Sensitive Atomic Magnetometer

    Institute of Scientific and Technical Information of China (English)

    LI Shu-Guang; XU Yun-Fei; WANG Zhao-Ying; LIU Yun-Xian; LIN Qiang

    2009-01-01

    A highly sensitive all-optical atomic magnetometer based on the magnetooptical effect which uses the advanced technique of single laser beam detection is reported and demonstrated experimentally.A sensitivityof 0.5 pT/Hz1/2 is obtained by analyzing the magnetic noise spectrum,which exceeds that of most traditional magnetometers.This kind of atomic magnetometer is very compact,has a low power consumption,and has a high theoretical sensitivity limit,which make it suitable for many applications.

  7. Scoping and sensitivity analyses for the Demonstration Tokamak Hybrid Reactor (DTHR)

    Energy Technology Data Exchange (ETDEWEB)

    Sink, D.A.; Gibson, G.

    1979-03-01

    The results of an extensive set of parametric studies are presented which provide analytical data of the effects of various tokamak parameters on the performance and cost of the DTHR (Demonstration Tokamak Hybrid Reactor). The studies were centered on a point design which is described in detail. Variations in the device size, neutron wall loading, and plasma aspect ratio are presented, and the effects on direct hardware costs, fissile fuel production (breeding), fusion power production, electrical power consumption, and thermal power production are shown graphically. The studies considered both ignition and beam-driven operations of DTHR and yielded results based on two empirical scaling laws presently used in reactor studies. Sensitivity studies were also made for variations in the following key parameters: the plasma elongation, the minor radius, the TF coil peak field, the neutral beam injection power, and the Z/sub eff/ of the plasma.

  8. Highly sensitive catalytic spectrophotometric determination of ruthenium

    Science.gov (United States)

    Naik, Radhey M.; Srivastava, Abhishek; Prasad, Surendra

    2008-01-01

    A new and highly sensitive catalytic kinetic method (CKM) for the determination of ruthenium(III) has been established based on its catalytic effect on the oxidation of L-phenylalanine ( L-Pheala) by KMnO 4 in highly alkaline medium. The reaction has been followed spectrophotometrically by measuring the decrease in the absorbance at 526 nm. The proposed CKM is based on the fixed time procedure under optimum reaction conditions. It relies on the linear relationship where the change in the absorbance (Δ At) versus added Ru(III) amounts in the range of 0.101-2.526 ng ml -1 is plotted. Under the optimum conditions, the sensitivity of the proposed method, i.e. the limit of detection corresponding to 5 min is 0.08 ng ml -1, and decreases with increased time of analysis. The method is featured with good accuracy and reproducibility for ruthenium(III) determination. The ruthenium(III) has also been determined in presence of several interfering and non-interfering cations, anions and polyaminocarboxylates. No foreign ions interfered in the determination ruthenium(III) up to 20-fold higher concentration of foreign ions. In addition to standard solutions analysis, this method was successfully applied for the quantitative determination of ruthenium(III) in drinking water samples. The method is highly sensitive, selective and very stable. A review of recently published catalytic spectrophotometric methods for the determination of ruthenium(III) has also been presented for comparison.

  9. STARS A Two Stage High Gain Harmonic Generation FEL Demonstrator

    Energy Technology Data Exchange (ETDEWEB)

    M. Abo-Bakr; W. Anders; J. Bahrdt; P. Budz; K.B. Buerkmann-Gehrlein; O. Dressler; H.A. Duerr; V. Duerr; W. Eberhardt; S. Eisebitt; J. Feikes; R. Follath; A. Gaupp; R. Goergen; K. Goldammer; S.C. Hessler; K. Holldack; E. Jaeschke; Thorsten Kamps; S. Klauke; J. Knobloch; O. Kugeler; B.C. Kuske; P. Kuske; A. Meseck; R. Mitzner; R. Mueller; M. Neeb; A. Neumann; K. Ott; D. Pfluckhahn; T. Quast; M. Scheer; Th. Schroeter; M. Schuster; F. Senf; G. Wuestefeld; D. Kramer; Frank Marhauser

    2007-08-01

    BESSY is proposing a demonstration facility, called STARS, for a two-stage high-gain harmonic generation free electron laser (HGHG FEL). STARS is planned for lasing in the wavelength range 40 to 70 nm, requiring a beam energy of 325 MeV. The facility consists of a normal conducting gun, three superconducting TESLA-type acceleration modules modified for CW operation, a single stage bunch compressor and finally a two-stage HGHG cascaded FEL. This paper describes the faciliy layout and the rationale behind the operation parameters.

  10. Optical Verification Laboratory Demonstration System for High Security Identification Cards

    Science.gov (United States)

    Javidi, Bahram

    1997-01-01

    Document fraud including unauthorized duplication of identification cards and credit cards is a serious problem facing the government, banks, businesses, and consumers. In addition, counterfeit products such as computer chips, and compact discs, are arriving on our shores in great numbers. With the rapid advances in computers, CCD technology, image processing hardware and software, printers, scanners, and copiers, it is becoming increasingly easy to reproduce pictures, logos, symbols, paper currency, or patterns. These problems have stimulated an interest in research, development and publications in security technology. Some ID cards, credit cards and passports currently use holograms as a security measure to thwart copying. The holograms are inspected by the human eye. In theory, the hologram cannot be reproduced by an unauthorized person using commercially-available optical components; in practice, however, technology has advanced to the point where the holographic image can be acquired from a credit card-photographed or captured with by a CCD camera-and a new hologram synthesized using commercially-available optical components or hologram-producing equipment. Therefore, a pattern that can be read by a conventional light source and a CCD camera can be reproduced. An optical security and anti-copying device that provides significant security improvements over existing security technology was demonstrated. The system can be applied for security verification of credit cards, passports, and other IDs so that they cannot easily be reproduced. We have used a new scheme of complex phase/amplitude patterns that cannot be seen and cannot be copied by an intensity-sensitive detector such as a CCD camera. A random phase mask is bonded to a primary identification pattern which could also be phase encoded. The pattern could be a fingerprint, a picture of a face, or a signature. The proposed optical processing device is designed to identify both the random phase mask and the

  11. High Input Voltage, Silicon Carbide Power Processing Unit Performance Demonstration

    Science.gov (United States)

    Bozak, Karin E.; Pinero, Luis R.; Scheidegger, Robert J.; Aulisio, Michael V.; Gonzalez, Marcelo C.; Birchenough, Arthur G.

    2015-01-01

    A silicon carbide brassboard power processing unit has been developed by the NASA Glenn Research Center in Cleveland, Ohio. The power processing unit operates from two sources: a nominal 300 Volt high voltage input bus and a nominal 28 Volt low voltage input bus. The design of the power processing unit includes four low voltage, low power auxiliary supplies, and two parallel 7.5 kilowatt (kW) discharge power supplies that are capable of providing up to 15 kilowatts of total power at 300 to 500 Volts (V) to the thruster. Additionally, the unit contains a housekeeping supply, high voltage input filter, low voltage input filter, and master control board, such that the complete brassboard unit is capable of operating a 12.5 kilowatt Hall effect thruster. The performance of the unit was characterized under both ambient and thermal vacuum test conditions, and the results demonstrate exceptional performance with full power efficiencies exceeding 97%. The unit was also tested with a 12.5kW Hall effect thruster to verify compatibility and output filter specifications. With space-qualified silicon carbide or similar high voltage, high efficiency power devices, this would provide a design solution to address the need for high power electric propulsion systems.

  12. High-sensitive cardiac troponin T

    Institute of Scientific and Technical Information of China (English)

    Ru-Yi Xu; Xiao-Fa Zhu; Ye Yang; Ping Ye

    2013-01-01

    Cardiac troponin is the preferred biomarker for the diagnosis of acute myocardial infarction (AMI). The recent development of a high-sensitive cardiac troponin T (hs-cTnT) assay permits detection of very low levels of cTnT. Using the hs-cTnT assay improves the overall diagnostic accuracy in patients with suspected AMI, while a negative result also has a high negative predictive value. The gain in sensitivity may be particularly important in patients with a short duration from symptom onset to admission. Measurement of cardiac troponin T with the hs-cTnT assay may provide strong prognostic information in patients with acute coronary syndromes, stable coronary artery disease, heart failure and even in the general population; however, increased sensitivity comes at a cost of decreased specificity. Serial testing, as well as clinical context and co-existing diseases, are likely to become increasingly important for the interpretation of hs-cTnT assay results.

  13. High Sensitivity Polymer Optical Fiber-Bragg-Grating-Based Accelerometer

    DEFF Research Database (Denmark)

    Stefani, Alessio; Andresen, Søren; Yuan, Wu

    2012-01-01

    We report on the fabrication and characterization of the first accelerometer based on a polymer optical fiber Bragg grating (FBG) for operation at both 850 and 1550 nm. The devices have a flat frequency response over a 1-kHz bandwidth and a resonance frequency of about 3 kHz. The response is linear...... up to at least 15 g and sensitivities as high as 19 pm/g (shift in resonance wavelength per unit acceleration) have been demonstrated. Given that 15 g corresponds to a strain of less than 0.02% and that polymer fibers have an elastic limit of more than 1%, the polymer FBG accelerometer can measure...... very strong accelerations. We compare with corresponding silica FBG accelerometers and demonstrate that using polymer FBGs improves the sensitivity by more than a factor of four and increases the figure of merit, defined as the sensitivity times the resonance frequency squared....

  14. Highly Mass-Sensitive Thin Film Plate Acoustic Resonators (FPAR)

    Science.gov (United States)

    Arapan, Lilia; Alexieva, Gergana; Avramov, Ivan D.; Radeva, Ekaterina; Strashilov, Vesseline; Katardjiev, Ilia; Yantchev, Ventsislav

    2011-01-01

    The mass sensitivity of thin aluminum nitride (AlN) film S0 Lamb wave resonators is theoretically and experimentally studied. Theoretical predictions based on modal and finite elements method analysis are experimentally verified. Here, two-port 888 MHz synchronous FPARs are micromachined and subsequently coated with hexamethyl-disiloxane(HMDSO)-plasma-polymerized thin films of various thicknesses. Systematic data on frequency shift and insertion loss versus film thickness are presented. FPARs demonstrate high mass-loading sensitivity as well as good tolerance towards the HMDSO viscous losses. Initial measurements in gas phase environment are further presented. PMID:22163994

  15. Highly mass-sensitive thin film plate acoustic resonators (FPAR).

    Science.gov (United States)

    Arapan, Lilia; Alexieva, Gergana; Avramov, Ivan D; Radeva, Ekaterina; Strashilov, Vesseline; Katardjiev, Ilia; Yantchev, Ventsislav

    2011-01-01

    The mass sensitivity of thin aluminum nitride (AlN) film S0 Lamb wave resonators is theoretically and experimentally studied. Theoretical predictions based on modal and finite elements method analysis are experimentally verified. Here, two-port 888 MHz synchronous FPARs are micromachined and subsequently coated with hexamethyl-disiloxane(HMDSO)-plasma-polymerized thin films of various thicknesses. Systematic data on frequency shift and insertion loss versus film thickness are presented. FPARs demonstrate high mass-loading sensitivity as well as good tolerance towards the HMDSO viscous losses. Initial measurements in gas phase environment are further presented.

  16. Highly Mass-Sensitive Thin Film Plate Acoustic Resonators (FPAR

    Directory of Open Access Journals (Sweden)

    Ventsislav Yantchev

    2011-07-01

    Full Text Available The mass sensitivity of thin aluminum nitride (AlN film S0 Lamb wave resonators is theoretically and experimentally studied. Theoretical predictions based on modal and finite elements method analysis are experimentally verified. Here, two-port 888 MHz synchronous FPARs are micromachined and subsequently coated with hexamethyl-disiloxane(HMDSO-plasma-polymerized thin films of various thicknesses. Systematic data on frequency shift and insertion loss versus film thickness are presented. FPARs demonstrate high mass-loading sensitivity as well as good tolerance towards the HMDSO viscous losses. Initial measurements in gas phase environment are further presented.

  17. Low Temperature Combustion Demonstrator for High Efficiency Clean Combustion

    Energy Technology Data Exchange (ETDEWEB)

    Ojeda, William de

    2010-07-31

    The project which extended from November 2005 to May of 2010 demonstrated the application of Low Temperature Combustion (LTC) with engine out NOx levels of 0.2 g/bhp-hr throughout the program target load of 12.6bar BMEP. The project showed that the range of loads could be extended to 16.5bar BMEP, therefore matching the reference lug line of the base 2007 MY Navistar 6.4L V8 engine. Results showed that the application of LTC provided a dramatic improvement over engine out emissions when compared to the base engine. Furthermore LTC improved thermal efficiency by over 5% from the base production engine when using the steady state 13 mode composite test as a benchmark. The key enablers included improvements in the air, fuel injection, and cooling systems made in Phases I and II. The outcome was the product of a careful integration of each component under an intelligent control system. The engine hardware provided the conditions to support LTC and the controller provided the necessary robustness for a stable combustion. Phase III provided a detailed account on the injection strategy used to meet the high load requirements. During this phase, the control strategy was implemented in a production automotive grade ECU to perform cycle-by-cycle combustion feedback on each of the engine cylinders. The control interacted on a cycle base with the injection system and with the Turbo-EGR systems according to their respective time constants. The result was a unique system that could, first, help optimize the combustion system and maintain high efficiency, and secondly, extend the steady state results to the transient mode of operation. The engine was upgraded in Phase IV with a Variable Valve Actuation system and a hybrid EGR loop. The impact of the more versatile EGR loop did not provide significant advantages, however the application of VVA proved to be an enabler to further extend the operation of LTC and gain considerable benefits in fuel economy and soot reduction. Finally

  18. Photodetector having high speed and sensitivity

    Science.gov (United States)

    Morse, Jeffrey D.; Mariella, Jr., Raymond P.

    1991-01-01

    The present invention provides a photodetector having an advantageous combination of sensitivity and speed; it has a high sensitivity while retaining high speed. In a preferred embodiment, visible light is detected, but in some embodiments, x-rays can be detected, and in other embodiments infrared can be detected. The present invention comprises a photodetector having an active layer, and a recombination layer. The active layer has a surface exposed to light to be detected, and comprises a semiconductor, having a bandgap graded so that carriers formed due to interaction of the active layer with the incident radiation tend to be swept away from the exposed surface. The graded semiconductor material in the active layer preferably comprises Al.sub.1-x Ga.sub.x As. An additional sub-layer of graded In.sub.1-y Ga.sub.y As may be included between the Al.sub.1-x Ga.sub.x As layer and the recombination layer. The recombination layer comprises a semiconductor material having a short recombination time such as a defective GaAs layer grown in a low temperature process. The recombination layer is positioned adjacent to the active layer so that carriers from the active layer tend to be swept into the recombination layer. In an embodiment, the photodetector may comprise one or more additional layers stacked below the active and recombination layers. These additional layers may include another active layer and another recombination layer to absorb radiation not absorbed while passing through the first layers. A photodetector having a stacked configuration may have enhanced sensitivity and responsiveness at selected wavelengths such as infrared.

  19. High sensitivity troponin and valvular heart disease.

    Science.gov (United States)

    McCarthy, Cian P; Donnellan, Eoin; Phelan, Dermot; Griffin, Brian P; Sarano, Maurice Enriquez-; McEvoy, John W

    2017-01-16

    Blood-based biomarkers have been extensively studied in a range of cardiovascular diseases and have established utility in routine clinical care, most notably in the diagnosis of acute coronary syndrome (e.g., troponin) and the management of heart failure (e.g., brain-natriuretic peptide). The role of biomarkers is less well established in the management of valvular heart disease (VHD), in which the optimal timing of surgical intervention is often challenging. One promising biomarker that has been the subject of a number of recent VHD research studies is high sensitivity troponin (hs-cTn). Novel high-sensitivity assays can detect subclinical myocardial damage in asymptomatic individuals. Thus, hs-cTn may have utility in the assessment of asymptomatic patients with severe VHD who do not have a clear traditional indication for surgical intervention. In this state-of-the-art review, we examine the current evidence for hs-cTn as a potential biomarker in the most commonly encountered VHD conditions, aortic stenosis and mitral regurgitation. This review provides a synopsis of early evidence indicating that hs-cTn has promise as a biomarker in VHD. However, the impact of its measurement on clinical practice and VHD outcomes needs to be further assessed in prospective studies before routine clinical use becomes a reality.

  20. A basic Michelson laser interferometer for the undergraduate teaching laboratory demonstrating picometer sensitivity

    Science.gov (United States)

    Libbrecht, Kenneth G.; Black, Eric D.

    2015-05-01

    We describe a basic Michelson laser interferometer experiment for the undergraduate teaching laboratory that achieves picometer sensitivity in a hands-on, table-top instrument. In addition to providing an introduction to interferometer physics and optical hardware, the experiment also focuses on precision measurement techniques including servo control, signal modulation, phase-sensitive detection, and different types of signal averaging. Students examine these techniques in a series of steps that take them from micron-scale sensitivity using direct fringe counting to picometer sensitivity using a modulated signal and phase-sensitive signal averaging. After students assemble, align, and characterize the interferometer, they then use it to measure nanoscale motions of a simple harmonic oscillator system as a substantive example of how laser interferometry can be used as an effective tool in experimental science.

  1. Heterogeneous catalysis in highly sensitive microreactors

    DEFF Research Database (Denmark)

    Olsen, Jakob Lind

    This thesis present a highly sensitive silicon microreactor and examples of its use in studying catalysis. The experimental setup built for gas handling and temperature control for the microreactor is described. The implementation of LabVIEW interfacing for all the experimental parts makes...... automated experiments and data collection possible. An argon ush at the O-rings (used to interface the silicon microreactor with the gas system), which was developed, is presented. It enables experiments with temperatures up to 400., and up to 500. for short periods of time. The CO oxidation reaction...... of adsorbates readily converted to methanol as the source of the transient increase in methanol production, is eliminated. A study of mass selected ruthenium nanoparticles from a magnetron-sputter gas-aggregation source, deposited in microreactors, is presented. It is, shown that CO methanation can be measured...

  2. High-sensitivity fiber optic acoustic sensors

    Science.gov (United States)

    Lu, Ping; Liu, Deming; Liao, Hao

    2016-11-01

    Due to the overwhelming advantages compared with traditional electronicsensors, fiber-optic acoustic sensors have arisen enormous interest in multiple disciplines. In this paper we present the recent research achievements of our group on fiber-optic acoustic sensors. The main point of our research is high sensitivity interferometric acoustic sensors, including Michelson, Sagnac, and Fabry-Pérot interferometers. In addition, some advanced technologies have been proposed for acoustic or acoustic pressure sensing such as single-mode/multimode fiber coupler, dual FBGs and multi-longitudinal mode fiber laser based acoustic sensors. Moreover, our attention we have also been paid on signal demodulation schemes. The intensity-based quadrature point (Q-point) demodulation, two-wavelength quadrature demodulation and symmetric 3×3 coupler methodare discussed and compared in this paper.

  3. High sensitive radiation detector for radiology dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Valente, M.; Malano, F. [Instituto de Fisica Enrique Gaviola, Oficina 102 FaMAF - UNC, Av. Luis Medina Allende, Ciudad Universitaria, 5000 Cordoba (Argentina); Molina, W.; Vedelago, J., E-mail: valente@famac.unc.edu.ar [Laboratorio de Investigaciones e Instrumentacion en Fisica Aplicada a la Medicina e Imagenes por Rayos X, Laboratorio 448 FaMAF - UNC, Ciudad Universitaria, 5000 Cordoba (Argentina)

    2014-08-15

    Fricke solution has a wide range of applications as radiation detector and dosimetry. It is particularly appreciated in terms of relevant comparative advantages, like tissue equivalence when prepared in aqueous media like gel matrix, continuous mapping capability, dose rate recorded and incident direction independence as well as linear dose response. This work presents the development and characterization of a novel Fricke gel system, based on modified chemical compositions making possible its application in clinical radiology. Properties of standard Fricke gel dosimeter for high dose levels are used as starting point and suitable chemical modifications are introduced and carefully investigated in order to attain high resolution for low dose ranges, like those corresponding to radiology interventions. The developed Fricke gel radiation dosimeter system achieves the expected typical dose dependency, actually showing linear response in the dose range from 20 up to 4000 mGy. Systematic investigations including several chemical compositions are carried out in order to obtain a good enough dosimeter response for low dose levels. A suitable composition among those studied is selected as a good candidate for low dose level radiation dosimetry consisting on a modified Fricke solution fixed to a gel matrix containing benzoic acid along with sulfuric acid, ferrous sulfate, xylenol orange and ultra-pure reactive grade water. Dosimeter samples are prepared in standard vials for its in phantom irradiation and further characterization by spectrophotometry measuring visible light transmission and absorbance before and after irradiation. Samples are irradiated by typical kV X-ray tubes and calibrated Farmer type ionization chamber is used as reference to measure dose rates inside phantoms in at vials locations. Once sensitive material composition is already optimized, dose-response curves show significant improvement regarding overall sensitivity for low dose levels. According to

  4. High sensitivity field asymmetric ion mobility spectrometer

    Science.gov (United States)

    Chavarria, Mario A.; Matheoud, Alessandro V.; Marmillod, Philippe; Liu, Youjiang; Kong, Deyi; Brugger, Jürgen; Boero, Giovanni

    2017-03-01

    A high sensitivity field asymmetric ion mobility spectrometer (FAIMS) was designed, fabricated, and tested. The main components of the system are a 10.6 eV UV photoionization source, an ion filter driven by a high voltage/high frequency n-MOS inverter circuit, and a low noise ion detector. The ion filter electronics are capable to generate square waveforms with peak-to-peak voltages up to 1000 V at frequencies up to 1 MHz with adjustable duty cycles. The ion detector current amplifier has a gain up to 1012 V/A with an effective equivalent input noise level down to about 1 fA/Hz1/2 during operation with the ion filter at the maximum voltage and frequency. The FAIMS system was characterized by detecting different standard chemical compounds. Additionally, we investigated the use of a synchronous modulation/demodulation technique to improve the signal-to-noise ratio in FAIMS measurements. In particular, we implemented the modulation of the compensation voltage with the synchronous demodulation of the ion current. The analysis of the measurements at low concentration levels led to an extrapolated limit of detection for acetone of 10 ppt with an averaging time of 1 s.

  5. Demonstration of a Bit-Flip Correction for Enhanced Sensitivity Measurements

    CERN Document Server

    Cohen, L; Istrati, D; Retzker, A; Eisenberg, H S

    2016-01-01

    The sensitivity of classical and quantum sensing is impaired in a noisy environment. Thus, one of the main challenges facing sensing protocols is to reduce the noise while preserving the signal. State of the art quantum sensing protocols that rely on dynamical decoupling achieve this goal under the restriction of long noise correlation times. We implement a proof of principle experiment of a protocol to recover sensitivity by using an error correction for photonic systems that does not have this restriction. The protocol uses a protected entangled qubit to correct a bit-flip error. Our results show a recovery of about 87% of the sensitivity, independent of the noise rate.

  6. Demonstration of a quantum error correction for enhanced sensitivity of photonic measurements

    Science.gov (United States)

    Cohen, L.; Pilnyak, Y.; Istrati, D.; Retzker, A.; Eisenberg, H. S.

    2016-07-01

    The sensitivity of classical and quantum sensing is impaired in a noisy environment. Thus, one of the main challenges facing sensing protocols is to reduce the noise while preserving the signal. State-of-the-art quantum sensing protocols that rely on dynamical decoupling achieve this goal under the restriction of long noise correlation times. We implement a proof-of-principle experiment of a protocol to recover sensitivity by using an error correction for photonic systems that does not have this restriction. The protocol uses a protected entangled qubit to correct a single error. Our results show a recovery of about 87 % of the sensitivity, independent of the noise probability.

  7. Demonstration of Uncertainty Quantification and Sensitivity Analysis for PWR Fuel Performance with BISON

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Hongbin; Ladd, Jacob; Zhao, Haihua; Zou, Ling; Burns, Douglas

    2015-11-01

    BISON is an advanced fuels performance code being developed at Idaho National Laboratory and is the code of choice for fuels performance by the U.S. Department of Energy (DOE)’s Consortium for Advanced Simulation of Light Water Reactors (CASL) Program. An approach to uncertainty quantification and sensitivity analysis with BISON was developed and a new toolkit was created. A PWR fuel rod model was developed and simulated by BISON, and uncertainty quantification and sensitivity analysis were performed with eighteen uncertain input parameters. The maximum fuel temperature and gap conductance were selected as the figures of merit (FOM). Pearson, Spearman, and partial correlation coefficients were considered for all of the figures of merit in sensitivity analysis.

  8. High Sensitivity Indium Phosphide Based Avalanche Photodiode Focal Plane Arrays Project

    Data.gov (United States)

    National Aeronautics and Space Administration — nLight has demonstrated highly-uniform APD arrays based on the highly sensitive InGaAs/InP material system. These results provide great promise for achieving the...

  9. Highly sensitive direct conversion ultrasound interferometer

    Science.gov (United States)

    Svitelskiy, Oleksiy; Grossmann, John; Suslov, Alexey

    2015-03-01

    Being invented more than fifty years ago, the ultrasonic pulse-echo technique has proven itself as a valuable and indispensable non-destructive tool to explore elastic properties of materials in engineering and scientific tasks. We propose a new design for the instrument based on mass-produced integral microchips. In our design the radiofrequency echo-pulse signal is processed by AD8302 RF gain and phase detector (www.analog.com).Its phase output is linearly proportional to the phase difference between the exciting and response signals. The gain output is proportional to the log of the ratio of amplitudes of the received to the exciting signals. To exclude the non-linear fragments and to enable exploring large phase changes, we employ parallel connection of two detectors, fed by in-phase and quadrature signals respectively. The instrument allowed us exploring phase transitions with precision of ΔV / V ~10-7 (V is the ultrasound speed). The high sensitivity of the logarithmic amplifiers embedded into AD8302 requires good grounding and screening of the receiving circuitry.

  10. High Sensitivity, High Frequency and High Time Resolution Decimetric Spectroscope

    Science.gov (United States)

    Sawant, H. S.; Rosa, R. R.

    1990-11-01

    RESUMEN. Se ha desarrollado el primer espectroscopio decimetrico latino americano operando en una banda de 100 MHz con alta resoluci6n de fre- cuencia (100 KHz) y tiempo (10 ms), alrededor de cualquier centro de frecuencia en el intervalo de 2000-200 MHz. El prop6sito de esta nota es describir investigaciones solares y no solares que se planean, progra ma de investigaci6n y la situaci6n actual de desarrollo de este espectroscopio. ABSTRACT. First Latin American Decimetric Spectroscope operating over a band of 100 MHz with high resolution in frequency (100 KHz) and time (10 ms), around any center frequency in the range of 2000-200 MHz is being developed. The purpose of this note is to describe planned solar, and non-solar, research programmes and present status of development of this spectroscope. Keq wo : INSTRUMENTS - SPECTROSCOPY

  11. Democritos: preparing demonstrators for high power nuclear electric space propulsion

    OpenAIRE

    Masson, Frederic; Ruault, Jean-Marc; WORMS, Jean-Claude; Detsis, Emmanouil; Beaurain, André; Lassoudiere, Francois; Gaia, Enrico; Tosi, Maria -Christina; Jansen, Frank; Bauer, Waldemar; Semenkin, Alexander; Tinsley, Tim; Hodgson, Zara

    2015-01-01

    The Democritos project aims at preparing demonstrators for a megawatt class nuclearelectric space propulsion. It is funded by Horizon 2020, the R&T program of the European Community. It is a new European and Russian project, including as partners: Nuclear National Laboratory (U.K.), DLR (Germany), The Keldysh Research Center (Russia), Thales Alenia Space Italia (Italy), Snecma (France), ESF (France) and CNES (France). IEAV (Brazil) will join as an observer. Democritos is the follo...

  12. Highly sensitive detection of urinary cadmium to assess personal exposure

    Energy Technology Data Exchange (ETDEWEB)

    Argun, Avni A.; Banks, Ashley M.; Merlen, Gwendolynne; Tempelman, Linda A. [Giner, Inc., 89 Rumford Ave., Newton 02466, MA United States (United States); Becker, Michael F.; Schuelke, Thomas [Fraunhofer USA – CCL, 1449 Engineering Research Ct., East Lansing 48824, MI (United States); Dweik, Badawi M., E-mail: bdweik@ginerinc.com [Giner, Inc., 89 Rumford Ave., Newton 02466, MA United States (United States)

    2013-04-22

    Highlights: ► An electrochemical sensor capable of detecting cadmium at parts-per-billion levels in urine. ► A novel fabrication method for Boron-Doped Diamond (BDD) ultramicroelectrode (UME) arrays. ► Unique combination of BDD UME arrays and a differential pulse voltammetry algorithm. ► High sensitivity, high reproducibility, and very low noise levels. ► Opportunity for portable operation to assess on-site personal exposure. -- Abstract: A series of Boron-Doped Diamond (BDD) ultramicroelectrode arrays were fabricated and investigated for their performance as electrochemical sensors to detect trace level metals such as cadmium. The steady-state diffusion behavior of these sensors was validated using cyclic voltammetry followed by electrochemical detection of cadmium in water and in human urine to demonstrate high sensitivity (>200 μA ppb{sup −1} cm{sup −2}) and low background current (<4 nA). When an array of ultramicroelectrodes was positioned with optimal spacing, these BDD sensors showed a sigmoidal diffusion behavior. They also demonstrated high accuracy with linear dose dependence for quantification of cadmium in a certified reference river water sample from the U.S. National Institute of Standards and Technology (NIST) as well as in a human urine sample spiked with 0.25–1 ppb cadmium.

  13. Dynamic Simulation, Sensitivity and Uncertainty Analysis of a Demonstration Scale Lignocellulosic Enzymatic Hydrolysis Process

    DEFF Research Database (Denmark)

    Prunescu, Remus Mihail; Sin, Gürkan

    2014-01-01

    , accounting a large number of parameters. The sensitivity analysis of model predictions with respect to model parameters is quantified by the delta mean square measure. By ranking the delta mean square, a reduced subset of parameters is found helping to identify the bottleneck of the model. The uncertainty...... to be affected by non-zero mean noise because they are determined by a Near Infrared (NIR) instrument. LHS is performed on 2 parameters: the probability of the mean value and the probability of the standard deviation for each measurement. The Monte Carlo outputs are then analyzed by linear regression......This study presents the uncertainty and sensitivity analysis of a lignocellulosic enzymatic hydrolysis model considering both model and feed parameters as sources of uncertainty. The dynamic model is parametrized for accommodating various types of biomass, and different enzymatic complexes...

  14. LIQUIDARMOR CM Flashing and Sealant, High Impact Technology Demonstration

    Energy Technology Data Exchange (ETDEWEB)

    Hun, Diana E [ORNL; Bhandari, Mahabir S [ORNL

    2016-12-01

    Air leakage is responsible for about 1.1 quads of energy or 6% of the total energy used by commercial buildings in the US. Consequently, infiltration and exfiltration are among the largest envelope-related contributors to the heating, ventilation, and air conditioning loads in commercial buildings. New air sealing technologies have recently emerged that aim to improve the performance of air barrier systems by simplifying their installation procedure. LIQUIDARMORTM CM Flashing and Sealant is an example of these new advanced material technologies. This technology is a spray-applied sealant and liquid flashing and can span gaps that are up to ¼ in. wide without a supporting material. ORNL verified the performance of LIQUIDARMORTM CM with field tests and energy simulations from a building in which LIQUIDARMORTM CM was one of components of the air barrier system. The Homeland Security Training Center (HTC) at the College of DuPage in Glen Ellyn, IL, served as the demonstration site. Blower door test results show the average air leakage rate in the demonstration site to be 0.15 cfm/ft2 at 1.57 psf, or 63% lower than the 0.4 cfm at 1.57 psf specified in the 2015 International Energy Conservation Code (IECC). According to simulation results, HTC lowered its annual heating and cooling cost by about $3,000 or 9% compared to a similar building that lacked an air barrier system. This demonstration project serves as an example of the level of building envelope airtightness that can be achieved by using air barrier materials that are properly installed, and illustrates the energy and financial savings that such an airtight envelope could attain.

  15. High Gradient $Nb_3Sn$ Quadrupole Demonstrator MKQXF Engineering Design

    CERN Document Server

    Kokkinos, C; Karppinen, Mikko; CERN. Geneva. ATS Department

    2016-01-01

    A new mechanical design concept for the $Nb_3Sn$ quadrupoles has been developed with a goal of an accelerator quality magnet that can be industrially produced in large series. This concept can easily be extended to any length and applied on both 1-in-1 and 2-in-1 configurations. It is based on the pole-loading concept and collared coils using dipole-type collars. Detailed design optimisation of a demonstrator magnet based on present base-line HL-LHC IR quadrupole QXF coil geometry has been carried out including the end regions. This report describes the design concept and the fully parametric multi-physics finite element (FE) models that were used to determine the optimal assembly parameters including the effects of the manufacturing tolerances.

  16. Demonstration of a high repetition rate capillary discharge waveguide

    Energy Technology Data Exchange (ETDEWEB)

    Gonsalves, A. J., E-mail: ajgonsalves@lbl.gov; Pieronek, C.; Daniels, J.; Bulanov, S. S.; Waldron, W. L.; Mittelberger, D. E.; Leemans, W. P. [Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Liu, F.; Antipov, S.; Butler, J. E. [Euclid TechLabs, Gaithersburg, Maryland 20879 (United States); Bobrova, N. A.; Sasorov, P. V. [Keldysh Institute of Applied Mathematics, Moscow (Russian Federation)

    2016-01-21

    A hydrogen-filled capillary discharge waveguide operating at kHz repetition rates is presented for parameters relevant to laser plasma acceleration (LPA). The discharge current pulse was optimized for erosion mitigation with laser guiding experiments and MHD simulation. Heat flow simulations and measurements showed modest temperature rise at the capillary wall due to the average heat load at kHz repetition rates with water-cooled capillaries, which is promising for applications of LPAs such as high average power radiation sources.

  17. Demonstration of submersible high-throughput microfluidic immunosensors for underwater explosives detection.

    Science.gov (United States)

    Adams, André A; Charles, Paul T; Deschamps, Jeffrey R; Kusterbeck, Anne W

    2011-11-15

    Significant security threats posed by highly energetic nitroaromatic compounds in aquatic environments and the demilitarization and pending cleanup of areas previously used for munitions manufacture and storage represent a challenge for less expensive, faster, and more sensitive systems capable of analyzing groundwater and seawater samples for trace levels of explosive materials. Presented here is an inexpensive high throughput microfluidic immunosensor (HTMI) platform intended for the rapid, highly selective quantitation of nitroaromatic compounds in the field. Immunoaffinity and fluorescence detection schemes were implemented in tandem on a novel microfluidic device containing 39 parallel microchannels that were 500 μm tall, 250 μm wide, and 2.54 cm long with covalently tethered antibodies that was engineered for high-throughput high-volume sample processing. The devices were produced via a combination of high precision micromilling and hot embossing. Mass transfer limitations were found in conventional microsystems and were minimized due to higher surface area to volume ratios that exceeded those possessed by conventional microdevices and capillaries. Until now, these assays were limited to maximum total volume flow rates of ~1 mL/min due in part to kinetics and high head pressures of single microchannels. In the design demonstrated here, highly parallelized microchannels afforded up to a 100-fold increase in total volume flow rate while maintaining favorable kinetic constraints for efficient antigen-antibody interaction. The assay employed total volume throughput of up to 6 mL/min while yielding signal-to-noise ratios of >15 in all cases. In addition to samples being processed up to 60 times faster than in conventional displacement-based immunoassays, the current system was capable of quantitating 0.01 ng/mL TNT samples without implementing offline preconcentration, thereby, demonstrating the ability to improve sensitivity by as much as 2 orders of magnitude

  18. High-sensitivity high-throughput chip based biosensor array for multiplexed detection of heavy metals

    Science.gov (United States)

    Yan, Hai; Tang, Naimei; Jairo, Grace A.; Chakravarty, Swapnajit; Blake, Diane A.; Chen, Ray T.

    2016-03-01

    Heavy metal ions released into the environment from industrial processes lead to various health hazards. We propose an on-chip label-free detection approach that allows high-sensitivity and high-throughput detection of heavy metals. The sensing device consists of 2-dimensional photonic crystal microcavities that are combined by multimode interferometer to form a sensor array. We experimentally demonstrate the detection of cadmium-chelate conjugate with concentration as low as 5 parts-per-billion (ppb).

  19. [A simple highly sensitive recording microspectrophotometer].

    Science.gov (United States)

    Govardovskiĭ, V I; Zueva, L V

    1988-04-01

    A design of the recording microspectrophotometer is described. The instrument possesses an absolutely flat base line and quantum-noise limited detection threshold. Two principal elements of the design are the "jumping" stage, and the logarithmic amplifier with the phase-sensitive detector which converts the photomultiplier output into the optical density signal. The performance of the instrument is illustrated by the recordings of visual pigment spectra in single photoreceptors.

  20. Demonstration of polarization sensitivity of emulsion-based pair conversion telescope for cosmic gamma-ray polarimetry

    CERN Document Server

    Ozaki, Keita; Aoki, Shigeki; Kamada, Keiki; Kaneyama, Taichi; Nakagawa, Ryo; Rokujo, Hiroki

    2016-01-01

    Linear polarization of high-energy gamma-rays (10 MeV-100 GeV) can be detected by measuring the azimuthal angle of electron-positron pairs and observing the modulation of the azimuthal distribution. To demonstrate the gamma-ray polarization sensitivity of emulsion, we conducted a test using a polarized gamma-ray beam at SPring-8/LEPS. Emulsion tracks were reconstructed using scanning data, and gamma-ray events were selected automatically. Using an optical microscope, out of the 2381 gamma-ray conversions that were observed, 1372 remained after event selection, on the azimuthal angle distribution of which we measured the modulation. From the distribution of the azimuthal angles of the selected events, a modulation factor of 0.21 + 0.11 - 0.09 was measured, from which the detection of a non-zero modulation was established with a significance of 3.06 $\\sigma$. This attractive polarimeter will be applied to the GRAINE project, a balloon-borne experiment that observes cosmic gamma-rays with an emulsion-based pair ...

  1. Correcting systematic errors in high-sensitivity deuteron polarization measurements

    Energy Technology Data Exchange (ETDEWEB)

    Brantjes, N.P.M. [Kernfysisch Versneller Instituut, University of Groningen, NL-9747AA Groningen (Netherlands); Dzordzhadze, V. [Brookhaven National Laboratory, Upton, NY 11973 (United States); Gebel, R. [Institut fuer Kernphysik, Juelich Center for Hadron Physics, Forschungszentrum Juelich, D-52425 Juelich (Germany); Gonnella, F. [Physica Department of ' Tor Vergata' University, Rome (Italy); INFN-Sez. ' Roma tor Vergata,' Rome (Italy); Gray, F.E. [Regis University, Denver, CO 80221 (United States); Hoek, D.J. van der [Kernfysisch Versneller Instituut, University of Groningen, NL-9747AA Groningen (Netherlands); Imig, A. [Brookhaven National Laboratory, Upton, NY 11973 (United States); Kruithof, W.L. [Kernfysisch Versneller Instituut, University of Groningen, NL-9747AA Groningen (Netherlands); Lazarus, D.M. [Brookhaven National Laboratory, Upton, NY 11973 (United States); Lehrach, A.; Lorentz, B. [Institut fuer Kernphysik, Juelich Center for Hadron Physics, Forschungszentrum Juelich, D-52425 Juelich (Germany); Messi, R. [Physica Department of ' Tor Vergata' University, Rome (Italy); INFN-Sez. ' Roma tor Vergata,' Rome (Italy); Moricciani, D. [INFN-Sez. ' Roma tor Vergata,' Rome (Italy); Morse, W.M. [Brookhaven National Laboratory, Upton, NY 11973 (United States); Noid, G.A. [Indiana University Cyclotron Facility, Bloomington, IN 47408 (United States); and others

    2012-02-01

    This paper reports deuteron vector and tensor beam polarization measurements taken to investigate the systematic variations due to geometric beam misalignments and high data rates. The experiments used the In-Beam Polarimeter at the KVI-Groningen and the EDDA detector at the Cooler Synchrotron COSY at Juelich. By measuring with very high statistical precision, the contributions that are second-order in the systematic errors become apparent. By calibrating the sensitivity of the polarimeter to such errors, it becomes possible to obtain information from the raw count rate values on the size of the errors and to use this information to correct the polarization measurements. During the experiment, it was possible to demonstrate that corrections were satisfactory at the level of 10{sup -5} for deliberately large errors. This may facilitate the real time observation of vector polarization changes smaller than 10{sup -6} in a search for an electric dipole moment using a storage ring.

  2. High-sensitivity piezoelectric perovskites for magnetoelectric composites

    Science.gov (United States)

    Amorín, Harvey; Algueró, Miguel; Campo, Rubén Del; Vila, Eladio; Ramos, Pablo; Dollé, Mickael; Romaguera-Barcelay, Yonny; Cruz, Javier Pérez De La; Castro, Alicia

    2015-01-01

    A highly topical set of perovskite oxides are high-sensitivity piezoelectric ones, among which Pb(Zr,Ti)O3 at the morphotropic phase boundary (MPB) between ferroelectric rhombohedral and tetragonal polymorphic phases is reckoned a case study. Piezoelectric ceramics are used in a wide range of mature, electromechanical transduction technologies like piezoelectric sensors, actuators and ultrasound generation, to name only a few examples, and more recently for demonstrating novel applications like magnetoelectric composites. In this case, piezoelectric perovskites are combined with magnetostrictive materials to provide magnetoelectricity as a product property of the piezoelectricity and piezomagnetism of the component phases. Interfaces play a key issue, for they control the mechanical coupling between the piezoresponsive phases. We present here main results of our investigation on the suitability of the high sensitivity MPB piezoelectric perovskite BiScO3–PbTiO3 in combination with ferrimagnetic spinel oxides for magnetoelectric composites. Emphasis has been put on the processing at low temperature to control reactions and interdiffusion between the two oxides. The role of the grain size effects is extensively addressed. PMID:27877758

  3. A high sensitive fiber-optic strain sensor with tunable temperature sensitivity for temperature-compensation measurement

    Science.gov (United States)

    Hu, Jie; Huang, Hui; Bai, Min; Zhan, Tingting; Yang, Zhibo; Yu, Yan; Qu, Bo

    2017-02-01

    A high sensitive fiber-optic strain sensor, which consists of a cantilever, a tandem rod and a fiber collimator, was proposed. The tandem rod, which transfer the applied strain to the cantilever, was used for tuning the temperature sensitivity from ‑0.15 to 0.19 dB/°C via changing the length ratio of the rods. Moreover, due to the small beam divergence of the collimator, high strain sensitivity can be realized via incident-angle sensitive detection-mechanism. A strain detection-range of 1.1 × 103 με (with a sensing length of 21.5 mm), a detection limit of 5.7 × 10‑3 με, and a maximum operating frequency of 1.18 KHz were demonstrated. This sensor is promising for compensating the thermal-expansion of various target objects.

  4. High-Sensitivity Measurement of Density by Magnetic Levitation.

    Science.gov (United States)

    Nemiroski, Alex; Kumar, A A; Soh, Siowling; Harburg, Daniel V; Yu, Hai-Dong; Whitesides, George M

    2016-03-01

    This paper presents methods that use Magnetic Levitation (MagLev) to measure very small differences in density of solid diamagnetic objects suspended in a paramagnetic medium. Previous work in this field has shown that, while it is a convenient method, standard MagLev (i.e., where the direction of magnetization and gravitational force are parallel) cannot resolve differences in density mm) because (i) objects close in density prevent each other from reaching an equilibrium height due to hard contact and excluded volume, and (ii) using weaker magnets or reducing the magnetic susceptibility of the medium destabilizes the magnetic trap. The present work investigates the use of weak magnetic gradients parallel to the faces of the magnets as a means of increasing the sensitivity of MagLev without destabilization. Configuring the MagLev device in a rotated state (i.e., where the direction of magnetization and gravitational force are perpendicular) relative to the standard configuration enables simple measurements along the axes with the highest sensitivity to changes in density. Manipulating the distance of separation between the magnets or the lengths of the magnets (along the axis of measurement) enables the sensitivity to be tuned. These modifications enable an improvement in the resolution up to 100-fold over the standard configuration, and measurements with resolution down to 10(-6) g/cm(3). Three examples of characterizing the small differences in density among samples of materials having ostensibly indistinguishable densities-Nylon spheres, PMMA spheres, and drug spheres-demonstrate the applicability of rotated Maglev to measuring the density of small (0.1-1 mm) objects with high sensitivity. This capability will be useful in materials science, separations, and quality control of manufactured objects.

  5. High-Sensitivity GaN Microchemical Sensors

    Science.gov (United States)

    Son, Kyung-ah; Yang, Baohua; Liao, Anna; Moon, Jeongsun; Prokopuk, Nicholas

    2009-01-01

    Systematic studies have been performed on the sensitivity of GaN HEMT (high electron mobility transistor) sensors using various gate electrode designs and operational parameters. The results here show that a higher sensitivity can be achieved with a larger W/L ratio (W = gate width, L = gate length) at a given D (D = source-drain distance), and multi-finger gate electrodes offer a higher sensitivity than a one-finger gate electrode. In terms of operating conditions, sensor sensitivity is strongly dependent on transconductance of the sensor. The highest sensitivity can be achieved at the gate voltage where the slope of the transconductance curve is the largest. This work provides critical information about how the gate electrode of a GaN HEMT, which has been identified as the most sensitive among GaN microsensors, needs to be designed, and what operation parameters should be used for high sensitivity detection.

  6. Highly sensitive surface plasmon resonance chemical sensor based on Goos-Hanchen effects

    Science.gov (United States)

    Yin, Xiaobo; Hesselink, Lambertus

    2006-08-01

    The resonance enhanced Goos-Hanchen shifts at attenuated total internal reflection enables the possibility for highly sensitive surface plasmon resonance sensor. The observed giant displacements result from the singular phase retardation at the resonance where the phase is continuous but changes dramatically. The phenomenon is proposed for chemical sensing and the superior sensitivity is demonstrated.

  7. Accelerated Sensitivity Analysis in High-Dimensional Stochastic Reaction Networks.

    Science.gov (United States)

    Arampatzis, Georgios; Katsoulakis, Markos A; Pantazis, Yannis

    2015-01-01

    Existing sensitivity analysis approaches are not able to handle efficiently stochastic reaction networks with a large number of parameters and species, which are typical in the modeling and simulation of complex biochemical phenomena. In this paper, a two-step strategy for parametric sensitivity analysis for such systems is proposed, exploiting advantages and synergies between two recently proposed sensitivity analysis methodologies for stochastic dynamics. The first method performs sensitivity analysis of the stochastic dynamics by means of the Fisher Information Matrix on the underlying distribution of the trajectories; the second method is a reduced-variance, finite-difference, gradient-type sensitivity approach relying on stochastic coupling techniques for variance reduction. Here we demonstrate that these two methods can be combined and deployed together by means of a new sensitivity bound which incorporates the variance of the quantity of interest as well as the Fisher Information Matrix estimated from the first method. The first step of the proposed strategy labels sensitivities using the bound and screens out the insensitive parameters in a controlled manner. In the second step of the proposed strategy, a finite-difference method is applied only for the sensitivity estimation of the (potentially) sensitive parameters that have not been screened out in the first step. Results on an epidermal growth factor network with fifty parameters and on a protein homeostasis with eighty parameters demonstrate that the proposed strategy is able to quickly discover and discard the insensitive parameters and in the remaining potentially sensitive parameters it accurately estimates the sensitivities. The new sensitivity strategy can be several times faster than current state-of-the-art approaches that test all parameters, especially in "sloppy" systems. In particular, the computational acceleration is quantified by the ratio between the total number of parameters over the

  8. Highly sensitive detection of Staphylococcus aureus directly from patient blood.

    Directory of Open Access Journals (Sweden)

    Padmapriya P Banada

    Full Text Available BACKGROUND: Rapid detection of bloodstream infections (BSIs can be lifesaving. We investigated the sample processing and assay parameters necessary for highly-sensitive detection of bloodstream bacteria, using Staphylococcus aureus as a model pathogen and an automated fluidic sample processing-polymerase chain reaction (PCR platform as a model diagnostic system. METHODOLOGY/PRINCIPAL FINDINGS: We compared a short 128 bp amplicon hemi-nested PCR and a relatively shorter 79 bp amplicon nested PCR targeting the S. aureus nuc and sodA genes, respectively. The sodA nested assay showed an enhanced limit of detection (LOD of 5 genomic copies per reaction or 10 colony forming units (CFU per ml blood over 50 copies per reaction or 50 CFU/ml for the nuc assay. To establish optimal extraction protocols, we investigated the relative abundance of the bacteria in different components of the blood (white blood cells (WBCs, plasma or whole blood, using the above assays. The blood samples were obtained from the patients who were culture positive for S. aureus. Whole blood resulted in maximum PCR positives with sodA assay (90% positive as opposed to cell-associated bacteria (in WBCs (71% samples positive or free bacterial DNA in plasma (62.5% samples positive. Both the assays were further tested for direct detection of S. aureus in patient whole blood samples that were contemporaneous culture positive. S. aureus was detected in 40/45 of culture-positive patients (sensitivity 89%, 95% CI 0.75-0.96 and 0/59 negative controls with the sodA assay (specificity 100%, 95% CI 0.92-1. CONCLUSIONS: We have demonstrated a highly sensitive two-hour assay for detection of sepsis causing bacteria like S. aureus directly in 1 ml of whole blood, without the need for blood culture.

  9. Tunable diameter electrostatically formed nanowire for high sensitivity gas sensing

    Institute of Scientific and Technical Information of China (English)

    Alex Henning; Nandhini Swaminathan; Andrey Godkin; Gil Shalev; Iddo Amit; Yossi Rosenwaks

    2015-01-01

    We report on an electrostatically formed nanowire (EFN)-based sensor with tunable diameters in the range of 16 nm to 46 nm and demonstrate an EFN- based field-effect transistor as a highly sensitive and robust room temperature gas sensor. The device was carefully designed and fabricated using standard integrated processing to achieve the 16 nm EFN that can be used for sensing without any need for surface modification. The effective diameter for the EFN was determined using Kelvin probe force microscopy accompanied by three- dimensional electrostatic simulations. We show that the EFN transistor is capable of detecting 100 parts per million of ethanol gas with bare SiO2.

  10. Magnetic probe array with high sensitivity for fluctuating field.

    Science.gov (United States)

    Kanamaru, Yuki; Gota, Hiroshi; Fujimoto, Kayoko; Ikeyama, Taeko; Asai, Tomohiko; Takahashi, Tsutomu; Nogi, Yasuyuki

    2007-03-01

    A magnetic probe array is constructed to measure precisely the spatial structure of a small fluctuating field included in a strong confinement field that varies with time. To exclude the effect of the confinement field, the magnetic probes consisting of figure-eight-wound coils are prepared. The spatial structure of the fluctuating field is obtained from a Fourier analysis of the probe signal. It is found that the probe array is more sensitive to the fluctuating field with a high mode number than that with a low mode number. An experimental demonstration of the present method is attempted using a field-reversed configuration plasma, where the fluctuating field with 0.1% of the confinement field is successfully detected.

  11. High efficiency solid-state sensitized heterojunction photovoltaic device

    KAUST Repository

    Wang, Mingkui

    2010-06-01

    The high molar extinction coefficient heteroleptic ruthenium dye, NaRu(4,4′-bis(5-(hexylthio)thiophen-2-yl)-2,2′-bipyridine) (4-carboxylic acid-4′-carboxylate-2,2′-bipyridine) (NCS) 2, exhibits certified 5% electric power conversion efficiency at AM 1.5 solar irradiation (100 mW cm-2) in a solid-state dye-sensitized solar cell using 2,2′,7,7′-tetrakis-(N,N-di-pmethoxyphenylamine)-9, 9′-spirobifluorene (spiro-MeOTAD) as the organic hole-transporting material. This demonstration elucidates a class of photovoltaic devices with potential for low-cost power generation. © 2010 Elsevier Ltd. All rights reserved.

  12. Triggers for a high sensitivity charm experiment

    Energy Technology Data Exchange (ETDEWEB)

    Christian, D.C.

    1994-07-01

    Any future charm experiment clearly should implement an E{sub T} trigger and a {mu} trigger. In order to reach the 10{sup 8} reconstructed charm level for hadronic final states, a high quality vertex trigger will almost certainly also be necessary. The best hope for the development of an offline quality vertex trigger lies in further development of the ideas of data-driven processing pioneered by the Nevis/U. Mass. group.

  13. Using a single tablet daily to treat latent tuberculosis infection in Brazil: bioequivalence of two different isoniazid formulations (300 mg and 100 mg demonstrated by a sensitive and rapid high-performance liquid chromatography-tandem mass spectrometry method in a randomised, crossover study

    Directory of Open Access Journals (Sweden)

    André Daher

    2015-06-01

    Full Text Available The recommended treatment for latent tuberculosis (TB infection in adults is a daily dose of isoniazid (INH 300 mg for six months. In Brazil, INH was formulated as 100 mg tablets. The treatment duration and the high pill burden compromised patient adherence to the treatment. The Brazilian National Programme for Tuberculosis requested a new 300 mg INH formulation. The aim of our study was to compare the bioavailability of the new INH 300 mg formulation and three 100 mg tablets of the reference formulation. We conducted a randomised, single dose, open label, two-phase crossover bioequivalence study in 28 healthy human volunteers. The 90% confidence interval for the INH maximum concentration of drug observed in plasma and area under the plasma concentration vs. time curve from time zero to the last measurable concentration “time t” was 89.61-115.92 and 94.82-119.44, respectively. The main limitation of our study was that neither adherence nor the safety profile of multiple doses was evaluated. To determine the level of INH in human plasma, we developed and validated a sensitive, simple and rapid high-performance liquid chromatography-tandem mass spectrometry method. Our results showed that the new formulation was bioequivalent to the 100 mg reference product. This finding supports the use of a single 300 mg tablet daily strategy to treat latent TB. This new formulation may increase patients’ adherence to the treatment and quality of life.

  14. Scalloped electrodes for highly sensitive electrical measurements

    DEFF Research Database (Denmark)

    Vazquez Rodriguez, Patricia; Dimaki, Maria; Svendsen, Winnie Edith

    2011-01-01

    In this work we introduce a novel out-of-plane electrode with pronounced scalloped surface and high aspect ratio for electrical recordings of brain tissue in vitro, with the aim to reduce significantly the impedance of the measuring system. The profile and height of the structures is tailored...... by means of silicon fabrication techniques that sharpen them progressively and in a controlled manner. We will show that the use of the scalloped area achieves a great decrease in impedance, which is very significant for a reduction of noise in electrical measurements. The measured impedance reflects...

  15. High Sensitivity MEMS Strain Sensor: Design and Simulation

    Directory of Open Access Journals (Sweden)

    Edmond Lou

    2008-04-01

    Full Text Available In this article, we report on the new design of a miniaturized strain microsensor. The proposed sensor utilizes the piezoresistive properties of doped single crystal silicon. Employing the Micro Electro Mechanical Systems (MEMS technology, high sensor sensitivities and resolutions have been achieved. The current sensor design employs different levels of signal amplifications. These amplifications include geometric, material and electronic levels. The sensor and the electronic circuits can be integrated on a single chip, and packaged as a small functional unit. The sensor converts input strain to resistance change, which can be transformed to bridge imbalance voltage. An analog output that demonstrates high sensitivity (0.03mV/me, high absolute resolution (1μe and low power consumption (100μA with a maximum range of ±4000μe has been reported. These performance characteristics have been achieved with high signal stability over a wide temperature range (±50oC, which introduces the proposed MEMS strain sensor as a strong candidate for wireless strain sensing applications under harsh environmental conditions. Moreover, this sensor has been designed, verified and can be easily modified to measure other values such as force, torque…etc. In this work, the sensor design is achieved using Finite Element Method (FEM with the application of the piezoresistivity theory. This design process and the microfabrication process flow to prototype the design have been presented.

  16. Luminescent Lanthanide Reporters for High-Sensitivity Novel Bioassays.

    Energy Technology Data Exchange (ETDEWEB)

    Anstey, Mitchell R.; Fruetel, Julia A.; Foster, Michael E.; Hayden, Carl C.; Buckley, Heather L.; Arnold, John

    2013-09-01

    Biological imaging and assay technologies rely on fluorescent organic dyes as reporters for a number of interesting targets and processes. However, limitations of organic dyes such as small Stokes shifts, spectral overlap of emission signals with native biological fluorescence background, and photobleaching have all inhibited the development of highly sensitive assays. To overcome the limitations of organic dyes for bioassays, we propose to develop lanthanide-based luminescent dyes and demonstrate them for molecular reporting applications. This relatively new family of dyes was selected for their attractive spectral and chemical properties. Luminescence is imparted by the lanthanide atom and allows for relatively simple chemical structures that can be tailored to the application. The photophysical properties offer unique features such as narrow and non-overlapping emission bands, long luminescent lifetimes, and long wavelength emission, which enable significant sensitivity improvements over organic dyes through spectral and temporal gating of the luminescent signal.Growth in this field has been hindered due to the necessary advanced synthetic chemistry techniques and access to experts in biological assay development. Our strategy for the development of a new lanthanide-based fluorescent reporter system is based on chelation of the lanthanide metal center using absorbing chromophores. Our first strategy involves "Click" chemistry to develop 3-fold symmetric chelators and the other involves use of a new class of tetrapyrrole ligands called corroles. This two-pronged approach is geared towards the optimization of chromophores to enhance light output.

  17. Multipurpose High Sensitivity Radiation Detector: Terradex

    Energy Technology Data Exchange (ETDEWEB)

    Alpat, Behcet [Dipartimento di Fisica dell' Universita di Perugia and INFN Sezione di Perugia (Italy)]. E-mail: behcet.alpat@pg.infn.it; Aisa, Damiano [Dipartimento di Fisica dell' Universita di Perugia and INFN Sezione di Perugia (Italy); Bizzarri, Marco [Dipartimento di Fisica dell' Universita di Perugia and INFN Sezione di Perugia (Italy); Blasko, Sandor [Dipartimento di Fisica dell' Universita di Perugia and INFN Sezione di Perugia (Italy); Esposito, Gennaro [Dipartimento di Fisica dell' Universita di Perugia and INFN Sezione di Perugia (Italy); Farnesini, Lucio [Dipartimento di Fisica dell' Universita di Perugia and INFN Sezione di Perugia (Italy); Fiori, Emmanuel [Dipartimento di Fisica dell' Universita di Perugia and INFN Sezione di Perugia (Italy); Papi, Andrea [Dipartimento di Fisica dell' Universita di Perugia and INFN Sezione di Perugia (Italy); Postolache, Vasile [Dipartimento di Fisica dell' Universita di Perugia and INFN Sezione di Perugia (Italy); Renzi, Francesca [Dipartimento di Fisica dell' Universita di Perugia and INFN Sezione di Perugia (Italy); Ionica, Romeo [Politecnica University of Bucarest, Splaiul Indipendentei, Bucharest (Romania); Manolescu, Florentina [Space Science Institute of Bucharest, Maugurele, Bucharest (Romania); Ozkorucuklu, Suat [Suleyman Demirel Universitesi, Isparta (Turkey); Denizli, Haluk [Abant Izzet Baysal Universitesi, Bolu (Turkey); Tapan, Ilhan [Uludag Universitesi, Bursa (Turkey); Ercan Pilicer [Uludag Universitesi, Bursa (Turkey); Egidi, Felice [SITE Technology, Carsoli (Italy); Moretti, Cesare [SITE Technology, Carsoli(AQ) (Italy); Dicola, Luca [SITE Technology, Carsoli(AQ) (Italy)

    2007-05-11

    Terradex project aims to realise an accurate and programmable multiparametric tool which will measure relevant physical quantities such as observation time, energy and type of all decay products of three naturally occurring decay chains of uranium and thorium series present in nature as well as the decay products of man-made radioactivity. The measurements described in this work are based on the performance tests of the first version of an instrument that is designed to provide high counting accuracy, by introducing self-triggering, delayed time-coincidence technique, of products of a given decay chain. In order to qualify the technique and to calibrate the Terradex, a {sup 222}Rn source is used. The continuous and accurate monitoring of radon concentration in air is realised by observing the alpha and beta particles produced by the decay of {sup 222}Rn and its daughters and tag each of them with a precise occurrence time. The validity of delayed coincident technique by using the state of the art electronics with application of novel data sampling and analysis methods are discussed. The flexibility of sampling protocols and the advantages of online calibration capability to achieve the highest level of precision in natural and man-made radiation measurements are also described.

  18. Patients with chronic tension-type headache demonstrate increased mechano-sensitivity of the supra-orbital nerve.

    Science.gov (United States)

    Fernández-de-Las-Peñas, César; Coppieters, Michel W; Cuadrado, María Luz; Pareja, Juan A

    2008-04-01

    This study aimed to establish whether increased sensitivity to mechanical stimuli is present in neural tissues in chronic tension-type headache (CTTH). Muscle hyperalgesia is a common finding in CTTH. No previous studies have investigated the sensitivity of peripheral nerves in patients with CTTH. A blinded controlled study. Pressure pain thresholds (PPT) and pain intensity following palpation of the supra-orbital nerve (V1) were compared between 20 patients with CTTH and 20 healthy matched subjects. A pressure algometer and numerical pain rate scale were used to quantify PPT and pain to palpation. A headache diary was kept for 4 weeks to substantiate the diagnosis and record the pain history. The analysis of variance demonstrated significantly lower PPT for patients (0.86+/-0.13 kg/cm2) than controls (1.50+/-0.19 kg/cm2) (Por=0.72; P<.001). These findings reveal that mechanical hypersensitivity is not limited to muscles but also occurs in cranial nerves, and that the level of sensitization, either due to peripheral or central processes, is related to the severity of the primary headache.

  19. Photothermal Microscopy for High Sensitivity and High Resolution Absorption Contrast Imaging of Biological Tissues

    Directory of Open Access Journals (Sweden)

    Jun Miyazaki

    2017-04-01

    Full Text Available Photothermal microscopy is useful to visualize the distribution of non-fluorescence chromoproteins in biological specimens. Here, we developed a high sensitivity and high resolution photothermal microscopy with low-cost and compact laser diodes as light sources. A new detection scheme for improving signal to noise ratio more than 4-fold is presented. It is demonstrated that spatial resolution in photothermal microscopy is up to nearly twice as high as that in the conventional widefield microscopy. Furthermore, we demonstrated the ability for distinguishing or identifying biological molecules with simultaneous muti-wavelength imaging. Simultaneous photothermal and fluorescence imaging of mouse brain tissue was conducted to visualize both neurons expressing yellow fluorescent protein and endogenous non-fluorescent chromophores.

  20. Characterization of Three High Efficiency and Blue Sensitive Silicon Photomultipliers

    CERN Document Server

    Otte, Adam Nepomuk; Nguyen, Thanh; Purushotham, Dhruv

    2016-01-01

    We report about the optical and electrical characterization of three high efficiency and blue sensitive Silicon photomultipliers from FBK, Hamamatsu, and SensL. Key features of the tested devices when operated at 90% breakdown probability are peak photon detection efficiencies between 40% and 55%, temperature dependencies of gain and PDE that are less than 1%/$^{\\circ}$C, dark rates of $\\sim$50\\,kHz/mm$^{2}$ at room temperature, afterpulsing of about 2%, and direct optical crosstalk between 6% and 20%. The characteristics of all three devices impressively demonstrate how the Silicon-photomultiplier technology has improved over the past ten years. It is further demonstrated how the voltage and temperature characteristics of a number of quantities can be parameterized on the basis of physical models. The models provide a deeper understanding of the device characteristics over a wide bias and temperature range. They also serve as examples how producers could provide the characteristics of their SiPMs to users. A...

  1. Characterization of three high efficiency and blue sensitive silicon photomultipliers

    Science.gov (United States)

    Otte, Adam Nepomuk; Garcia, Distefano; Nguyen, Thanh; Purushotham, Dhruv

    2017-02-01

    We report about the optical and electrical characterization of three high efficiency and blue sensitive Silicon photomultipliers from FBK, Hamamatsu, and SensL. Key features of the tested devices when operated at 90% breakdown probability are peak photon detection efficiencies between 40% and 55%, temperature dependencies of gain and PDE that are less than 1%/°C, dark rates of ∼50 kHz/mm2 at room temperature, afterpulsing of about 2%, and direct optical crosstalk between 6% and 20%. The characteristics of all three devices impressively demonstrate how the Silicon-photomultiplier technology has improved over the past ten years. It is further demonstrated how the voltage and temperature characteristics of a number of quantities can be parameterized on the basis of physical models. The models provide a deeper understanding of the device characteristics over a wide bias and temperature range. They also serve as examples how producers could provide the characteristics of their SiPMs to users. A standardized parameterization of SiPMs would enable users to find the optimal SiPM for their application and the operating point of SiPMs without having to perform measurements thus significantly reducing design and development cycles.

  2. High-speed high-sensitivity infrared spectroscopy using mid-infrared swept lasers (Conference Presentation)

    Science.gov (United States)

    Childs, David T. D.; Groom, Kristian M.; Hogg, Richard A.; Revin, Dmitry G.; Cockburn, John W.; Rehman, Ihtesham U.; Matcher, Stephen J.

    2016-03-01

    Infrared spectroscopy is a highly attractive read-out technology for compositional analysis of biomedical specimens because of its unique combination of high molecular sensitivity without the need for exogenous labels. Traditional techniques such as FTIR and Raman have suffered from comparatively low speed and sensitivity however recent innovations are challenging this situation. Direct mid-IR spectroscopy is being speeded up by innovations such as MEMS-based FTIR instruments with very high mirror speeds and supercontinuum sources producing very high sample irradiation levels. Here we explore another possible method - external cavity quantum cascade lasers (EC-QCL's) with high cavity tuning speeds (mid-IR swept lasers). Swept lasers have been heavily developed in the near-infrared where they are used for non-destructive low-coherence imaging (OCT). We adapt these concepts in two ways. Firstly by combining mid-IR quantum cascade gain chips with external cavity designs adapted from OCT we achieve spectral acquisition rates approaching 1 kHz and demonstrate potential to reach 100 kHz. Secondly we show that mid-IR swept lasers share a fundamental sensitivity advantage with near-IR OCT swept lasers. This makes them potentially able to achieve the same spectral SNR as an FTIR instrument in a time x N shorter (N being the number of spectral points) under otherwise matched conditions. This effect is demonstrated using measurements of a PDMS sample. The combination of potentially very high spectral acquisition rates, fundamental SNR advantage and the use of low-cost detector systems could make mid-IR swept lasers a powerful technology for high-throughput biomedical spectroscopy.

  3. A highly sensitive colorimetric and ratiometric sensor for fluoride ion

    Institute of Scientific and Technical Information of China (English)

    Zhao Wu Xu; Jin Tang; He Tian

    2008-01-01

    A new benzoimidazole-naphthalimide derivative 4 was synthesized and its photophysical properties were studied.This compound showed highly selectively and sensitive colorimetric and ratiometric sensing ability for fluoride anion.

  4. High sensitivity moiré interferometry with compact achromatic interferometry

    Science.gov (United States)

    Czarnek, Robert

    Experimental observations and measurements are the sources of information essential for correct development of mathematical models of real structural materials. Moiré interferometry offers high sensitivity in full-field measurements of in-plane displacements on the surface of a specimen. Although it is a powerful method in experimental stress analysis, it has some shortcomings. One is that existing systems require highly coherent light. The only sufficient source of light for this application is a long cavity laser, which is relatively expensive and at best cumbersome. Another shortcoming is that measurements must be performed in a vibration-free environment, such as that found on a holographic table. These requirements limit the use of existing moiré interferometers to a holographic laboratory. In this paper a modified concept of compensation is presented, which permits the use of a chromatic source of light in a compact moiré system. The compensator provides order in the angles of incident light for each separate wavelength, so that the virtual reference grating created by each wavelength in a continuous spectrum is identical in frequency and spatial position. The result is a virtual reference grating that behaves exactly like that created in coherent light. With this development the use of a laser diode, which is a non-coherent light source of tiny dimensions, becomes practical. The special configuration of the optics that create the virtual grating allows its synchronization with the specimen grating and leads to an interferometer design that is relatively insensitive to the vibrations found in a mechanical testing laboratory. Sensitivity to relative motion is analyzed theoretically. This development provides the oppurtunity to apply moiré interferometry to solid mechanics problems that cannot be studied in an optics laboratory. Experimental verification of the optical concepts is provided. A compact moiré interferometer based on the presented idea was

  5. Effects of intrinsic magnetostriction on tube-topology magnetoelectric sensors with high magnetic field sensitivity

    Science.gov (United States)

    Gillette, Scott M.; Fitchorov, Trifon; Obi, Ogheneyunume; Jiang, Liping; Hao, Hongbo; Wu, Shuangxia; Chen, Yajie; Harris, Vincent G.

    2014-05-01

    Three quasi-one-dimensional magnetoelectric (ME) magnetic field sensors, each with a different magnetostrictive wire material, were investigated in terms of sensitivity and noise floor. Magnetostrictive Galfenol, iron-cobalt-vanadium, and iron-nickel wires were examined. Sensitivity profiles, hysteresis effects, and noise floor measurements for both optimally biased and zero-biased conditions are presented. The FeNi wire (FN) exhibits high sensitivity (5.36 mV/Oe) at bias fields below 22 Oe and an optimal bias of 10 Oe, whereas FeGa wire (FG) exhibits higher sensitivity (6.89 mW/Oe) at bias fields >22 Oe. The sensor of FeCoV wire (FC) presents relatively low sensitivity (2.12 mV/Oe), due to low magnetostrictive coefficient. Each ME tube-topology sensor demonstrates relatively high sensitivity at zero bias field, which results from a magnetic shape anisotropy and internal strain of the thin magnetostrictive wire.

  6. High-performance and high-sensitivity applications of graphene transistors with self-assembled monolayers.

    Science.gov (United States)

    Yeh, Chao-Hui; Kumar, Vinod; Moyano, David Ricardo; Wen, Shao-Hsuan; Parashar, Vyom; Hsiao, She-Hsin; Srivastava, Anchal; Saxena, Preeti S; Huang, Kun-Ping; Chang, Chien-Chung; Chiu, Po-Wen

    2016-03-15

    Charge impurities and polar molecules on the surface of dielectric substrates has long been a critical obstacle to using graphene for its niche applications that involve graphene's high mobility and high sensitivity nature. Self-assembled monolayers (SAMs) have been found to effectively reduce the impact of long-range scatterings induced by the external charges. Yet, demonstrations of scalable device applications using the SAMs technique remains missing due to the difficulties in the device fabrication arising from the strong surface tension of the modified dielectric environment. Here, we use patterned SAM arrays to build graphene electronic devices with transport channels confined on the modified areas. For high-mobility applications, both rigid and flexible radio-frequency graphene field-effect transistors (G-FETs) were demonstrated, with extrinsic cutoff frequency and maximum oscillation frequency enhanced by a factor of ~2 on SiO2/Si substrates. For high sensitivity applications, G-FETs were functionalized by monoclonal antibodies specific to cancer biomarker chondroitin sulfate proteoglycan 4, enabling its detection at a concentration of 0.01 fM, five orders of magnitude lower than that detectable by a conventional colorimetric assay. These devices can be very useful in the early diagnosis and monitoring of a malignant disease.

  7. Sensitivity to Nuclear Data and Neutron Source Type in Calculations of Transmutation Capabilities of the Energy Amplifier Demonstration Facility

    Energy Technology Data Exchange (ETDEWEB)

    Dahlfors, Marcus

    2003-05-01

    This text is a summary of two studies the author has performed within the field of 3-D Monte Carlo calculations of Accelerator Driven Systems (ADS) for transmutation of nuclear waste. The simulations were carried out with the state-of-the-art computer code package EA-MC, developed by C. Rubbia and his group at CERN. The concept studied is ANSALDOs 80 MWth Energy Amplifier Demonstration Facility based on classical MOX-fuel technology and on molten Lead-Bismuth Eutectic cooling. A review of neutron cross section sensitivity in numerical calculations of an ADS and a comparative assessment relevant to the transmutation efficiency of plutonium and minor actinides in fusion/fission hybrids and ADS are presented.

  8. Transplantation in highly HLA-sensitized patients: challenges and solutions

    Directory of Open Access Journals (Sweden)

    Kim IK

    2014-09-01

    Full Text Available Irene K Kim, Ashley Vo, Stanley C Jordan Transplant Immunotherapy Program, Comprehensive Transplant Center, Cedars-Sinai Medical Center, Los Angeles, CA, USA Abstract: Despite better understanding of the impact of development of the human leukocyte antigen (HLA antibody and numerous advancements in immunosuppressive therapy, the ability to successfully transplant highly sensitized patients remains a significant challenge. As the percentage of the waiting list becomes increasingly populated with highly sensitized patients, there is a growing demand for effective strategies to manage these patients. Over the past 20 years, desensitization therapies have been modified and developed, and are mainly utilized at transplant centers that have developed expertise. In addition, recognition that the highly sensitized patient population is disadvantaged on the transplant waiting list has led to recent changes in national kidney allocation policy. Furthermore, creative strategies, such as enrollment of sensitized patients into paired kidney exchange programs, have been developed to find compatible matches for these patients. The goal of this article is to address some of the specific challenges related to transplanting the highly sensitized patient at a high-volume transplant center with experience in desensitization and to review established and emerging solutions to help this patient population. Keywords: human leukocyte antigen, antibodies, desensitization, high-dose intravenous immunoglobulin, rituximab

  9. Mutagen sensitivity has high heritability: evidence from a twin study.

    Science.gov (United States)

    Wu, Xifeng; Spitz, Margaret R; Amos, Christopher I; Lin, Jie; Shao, Lina; Gu, Jian; de Andrade, Mariza; Benowitz, Neal L; Shields, Peter G; Swan, Gary E

    2006-06-15

    Despite numerous studies showing that mutagen sensitivity is a cancer predisposition factor, the heritability of mutagen sensitivity has not been clearly established. In this report, we used a classic twin study design to examine the role of genetic and environmental factors on the mutagen sensitivity phenotype. Mutagen sensitivity was measured in peripheral blood lymphocytes from 460 individuals [148 pairs of monozygotic (MZ) twins, 57 pairs of dizygotic (DZ) twins, and 50 siblings]. The intraclass correlation coefficients were all significantly higher in MZ twins than in dizygotes (DZ pairs and MZ-sibling pairs combined) for sensitivity to four different mutagen challenges. Applying biometric genetic modeling, we calculated a genetic heritability of 40.7%, 48.0%, 62.5%, and 58.8% for bleomycin, benzo[a]pyrene diol epoxide, gamma-radiation, and 4-nitroquinoline-1-oxide sensitivity, respectively. This study provides the strongest and most direct evidence that mutagen sensitivity is highly heritable, thereby validating the use of mutagen sensitivity as a cancer susceptibility factor.

  10. High sensitivity probe absorption technique for time-of-flight measurements on cold atoms

    Indian Academy of Sciences (India)

    A K Mohapatra; C S Unnikrishnan

    2006-06-01

    We report on a phase-sensitive probe absorption technique with high sensitivity, capable of detecting a few hundred ultra-cold atoms in flight in an observation time of a few milliseconds. The large signal-to-noise ratio achieved is sufficient for reliable measurements on low intensity beams of cold atoms. We demonstrate the high sensitivity and figure of merit of the simple method by measuring the time-of-flight of atoms moving upwards from a magneto-optical trap released in the gravitational field.

  11. Achieving sensitive, high-resolution laser spectroscopy at CRIS

    Energy Technology Data Exchange (ETDEWEB)

    Groote, R. P. de [Instituut voor Kern- en Stralingsfysica, KU Leuven (Belgium); Lynch, K. M., E-mail: kara.marie.lynch@cern.ch [EP Department, CERN, ISOLDE (Switzerland); Wilkins, S. G. [The University of Manchester, School of Physics and Astronomy (United Kingdom); Collaboration: the CRIS collaboration

    2017-11-15

    The Collinear Resonance Ionization Spectroscopy (CRIS) experiment, located at the ISOLDE facility, has recently performed high-resolution laser spectroscopy, with linewidths down to 20 MHz. In this article, we present the modifications to the beam line and the newly-installed laser systems that have made sensitive, high-resolution measurements possible. Highlights of recent experimental campaigns are presented.

  12. A highly sensitive optical detector for use in deep underwater.

    Science.gov (United States)

    Hanada, H.; Hayashino, T.; Ito, M.; Iwasaki, A.; Kawamorita, K.; Kawamoto, H.; Matsumoto, T.; Narita, S.; Takayama, T.; Tanaka, S.; Yamaguchi, A.; Aoki, T.; Mitsui, K.; Ohashi, Y.; Okada, A.; Fukawa, M.; Uehara, S.; Bolesta, J. W.; Gorham, P. W.; Kondo, S.; Learned, J. G.; Matsuno, S.; Mignard, M.; Mitiguy, R.; O'Connor, D. J.; Peterson, V. Z.; Roberts, A.; Rosen, M.; Stenger, V. J.; Takemori, D.; Wilkins, G.; Grieder, P. K. F.; Minkowski, P.; Kitamura, T.; Camerini, U.; Grogan, W.; Jaworski, M.; March, R.; Narita, T.; Nicklaus, D.

    1998-05-01

    The authors have developed an optical detector module for use in deep underwater experiments that will search for high-energy neutrinos from cosmic rays and astronomical sources. This module is sensitive to single photons, is operable under high pressure, functions automatically and is remotely controlled.

  13. Design of a High Sensitivity GNSS receiver for Lunar missions

    Science.gov (United States)

    Musumeci, Luciano; Dovis, Fabio; Silva, João S.; da Silva, Pedro F.; Lopes, Hugo D.

    2016-06-01

    This paper presents the design of a satellite navigation receiver architecture tailored for future Lunar exploration missions, demonstrating the feasibility of using Global Navigation Satellite Systems signals integrated with an orbital filter to achieve such a scope. It analyzes the performance of a navigation solution based on pseudorange and pseudorange rate measurements, generated through the processing of very weak signals of the Global Positioning System (GPS) L1/L5 and Galileo E1/E5 frequency bands. In critical scenarios (e.g. during manoeuvres) acceleration and attitude measurements from additional sensors complementing the GNSS measurements are integrated with the GNSS measurement to match the positioning requirement. A review of environment characteristics (dynamics, geometry and signal power) for the different phases of a reference Lunar mission is provided, focusing on the stringent requirements of the Descent, Approach and Hazard Detection and Avoidance phase. The design of High Sensitivity acquisition and tracking schemes is supported by an extensive simulation test campaign using a software receiver implementation and navigation results are validated by means of an end-to-end software simulator. Acquisition and tracking of GPS and Galileo signals of the L1/E1 and L5/E5a bands was successfully demonstrated for Carrier-to-Noise density ratios as low as 5-8 dB-Hz. The proposed navigation architecture provides acceptable performances during the considered critical phases, granting position and velocity errors below 61.4 m and 3.2 m/s, respectively, for the 99.7% of the mission time.

  14. Highly sensitive refractive index sensor based on two cascaded microfiber knots with Vernier effect

    Science.gov (United States)

    Xu, Zhilin; Sun, Qizhen; Jia, Weihua; Shum, Perry Ping; Liu, Deming

    2014-05-01

    A highly sensitive refractive index (RI) sensor based on two cascaded microfiber knots with vernier effect is proposed and demonstrated by theoretical arithmetic. Deriving from high proportional evanescent field of microfiber and sharp spectrum fringes induced by vernier effect, a slight change of ambient RI will cause large variation of effective RI and significant wavelength shift of resonant peaks, indicating high sensitivity and resolution of the proposed compound resonator. Numerical analysis demonstrates a high sensitivity of 10000nm/RIU and a resolution of 5.57×10-5 RIU at the ambient RI around 1.33 for the fiber diameter of 1μm and cavity radii of R1 = 500μm, R2 = 547.62μm

  15. Research of High Sensitivity Uncooled Infrared Detector Array

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Pingchuan [Huazhong University of Science and Technology, Wuhan 430074 (China); Zhang, Bo, E-mail: redmoon123456@126.com, E-mail: lhzyzb@126.com [Luohe Vocational Technology College, Luohe 462002 (China)

    2011-02-01

    The infrared thermal imaging technology has been widely used in military and civilian fields and the field of the infrared detection and infrared thermal imaging technology has been of concern for a long time. On infrared thermal imaging, its core components for the infrared focal plane arrays, how to develop a high sensitivity of the multi-focal plane infrared detector is a key issue. Although the Common focal plane array of quantum has high sensitivity, but it requires low temperature cooling work environment and led to complexity and high cost, difficult to compact. Conventional uncooled infrared focal plane array is contrast to the quantum focal plane arrays. Therefore, this article preceded by the uncooled infrared detector array to improve the wide temperature sensitivity in examining the feasibility PMN composite film, materials composition, structure design and preparation process technology.

  16. Hall Effect Thruster for High Power Solar Electric Propulsion Technology Demonstration Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Busek proposes to develop a flight version of a high power Hall Effect thruster. While numerous high power Hall Effect thrusters have been demonstrated in the...

  17. Cavity-enhanced room-temperature high sensitivity optical Faraday magnetometry

    Science.gov (United States)

    Sun, Hui; Lei, Yaohua; Fan, Shuangli; Zhang, Qiaolin; Guo, Hong

    2017-01-01

    We propose a cavity QED system with two-photon Doppler-free configuration for weak magnetic field detection with high sensitivity at room temperature based on cavity electromagnetically induced transparency. Owing to the destructive interference induced by the control and driving fields, two transparency channels are opened. The Faraday rotation within two transparency channels can be used to detect weak magnetic field with high sensitivity at room temperature. The sensitivity with single photon and multiphoton probe inputs is analyzed. With single photon measurement, our numerical calculations demonstrate that the sensitivity with 3.8nT/√{Hz} and 6.4nT/√{Hz} could be achieved. When we measure the magnetic field with multiphoton input, the sensitivity can be improved to 7.7fT/√{Hz} and 25.6fT/√{Hz} under the realistic experimental conditions.

  18. Highly sensitive optical sensor system for blood leakage detection

    Science.gov (United States)

    Ueda, Masahiro; Ishikawa, Kazuhiko; Jie, Chen; Sanae, Mizuno; Touma, Yasunori

    A highly sensitive method for the detection of blood leakage has been developed, and a practical sensor system for blood concentration measurement has been constructed. The present method is based on the attenuation of laser light by blood cells. The effects of the fluctuations of the incident laser light power are eliminated by normalizing the attenuated light intensity by the incident light intensity. A part of the incident laser light is reflected by a beam splitter mounted at the entrance of the test cell, of which the power is measured to provide base data for normalization. The optical path is extended to enhance sensitivity by using a pair of side mirrors. This multi-reflection method is very effective to increase sensitivity; the maximum sensitivity obtained for blood concentration is about 4 X 10 -6 by volume, which is significantly higher than that of the conventional sensors.

  19. High-sensitivity in situ QCLAS-based ammonia concentration sensor for high-temperature applications

    Science.gov (United States)

    Peng, W. Y.; Sur, R.; Strand, C. L.; Spearrin, R. M.; Jeffries, J. B.; Hanson, R. K.

    2016-07-01

    A novel quantum cascade laser (QCL) absorption sensor is presented for high-sensitivity in situ measurements of ammonia (hbox {NH}_3) in high-temperature environments, using scanned wavelength modulation spectroscopy (WMS) with first-harmonic-normalized second-harmonic detection (scanned WMS-2 f/1 f) to neutralize the effect of non-absorption losses in the harsh environment. The sensor utilized the sQ(9,9) transition of the fundamental symmetric stretch band of hbox {NH}_3 at 10.39 {\\upmu }hbox {m} and was sinusoidally modulated at 10 kHz and scanned across the peak of the absorption feature at 50 Hz, leading to a detection bandwidth of 100 Hz. A novel technique was used to select an optimal WMS modulation depth parameter that reduced the sensor's sensitivity to spectral interference from hbox {H}_2hbox {O} and hbox {CO}_2 without significantly sacrificing signal-to-noise ratio. The sensor performance was validated by measuring known concentrations of hbox {NH}_3 in a flowing gas cell. The sensor was then demonstrated in a laboratory-scale methane-air burner seeded with hbox {NH}_3, achieving a demonstrated detection limit of 2.8 ± 0.26 ppm hbox {NH}_3 by mole at a path length of 179 cm, equivalence ratio of 0.6, pressure of 1 atm, and temperatures of up to 600 K.

  20. High-sensitivity, high-speed continuous imaging system

    Science.gov (United States)

    Watson, Scott A; Bender, III, Howard A

    2014-11-18

    A continuous imaging system for recording low levels of light typically extending over small distances with high-frame rates and with a large number of frames is described. Photodiode pixels disposed in an array having a chosen geometry, each pixel having a dedicated amplifier, analog-to-digital convertor, and memory, provide parallel operation of the system. When combined with a plurality of scintillators responsive to a selected source of radiation, in a scintillator array, the light from each scintillator being directed to a single corresponding photodiode in close proximity or lens-coupled thereto, embodiments of the present imaging system may provide images of x-ray, gamma ray, proton, and neutron sources with high efficiency.

  1. High sensitivity and high selectivity terahertz biomedical imaging

    Institute of Scientific and Technical Information of China (English)

    Seongsin M. Kim; William Baughman; David S. Wilbert; Lee Butler; Michael Bolus; Soner Balci; Patrick Kung

    2011-01-01

    We demonstrate two distinct emerging terahertz (THz) biomedical imaging techniques. One is based on the use of a new single frequency THz quantum cascade laser and the other is based on broadband THz time domain spectrocopy. The first method is employed to derive a metastasis lung tissue imaging at 3.7 THz with clear contrast between cancerous and healthy areas. The second approach is used to study an osseous tissue under several imaging modalities and achieve full THz spectroscopic imaging based on the frequency domain or on a fixed THz propagation time-delay. Sufficient contrast is achieved which facilitated the identification of regions with different cellular types and density compositions.%Terahertz (THz) imaging is a non-destructive,nonionizing imaging technology with potential applications in medicine,dentistry,pharmaceuticals,and homeland security[1-5].In these applications,THz biomedical imaging has become a particularly important and active field of research because of the potential for safer early screening of a disease.This will benefit the medical community tremendously and create considerable sociological impact.

  2. Large pi-aromatic molecules as potential sensitizers for highly efficient dye-sensitized solar cells.

    Science.gov (United States)

    Imahori, Hiroshi; Umeyama, Tomokazu; Ito, Seigo

    2009-11-17

    Recently, dye-sensitized solar cells have attracted much attention relevant to global environmental issues. Thus far, ruthenium(II) bipyridyl complexes have proven to be the most efficient TiO(2) sensitizers in dye-sensitized solar cells. However, a gradual increment in the highest power conversion efficiency has been recognized in the past decade. More importantly, considering that ruthenium is a rare metal, novel dyes without metal or using inexpensive metal are desirable for highly efficient dye-sensitized solar cells. Large pi-aromatic molecules, such as porphyrins, phthalocyanines, and perylenes, are important classes of potential sensitizers for highly efficient dye-sensitized solar cells, owing to their photostability and high light-harvesting capabilities that can allow applications in thinner, low-cost dye-sensitized solar cells. Porphyrins possess an intense Soret band at 400 nm and moderate Q bands at 600 nm. Nevertheless, the poor light-harvesting properties relative to the ruthenium complexes have limited the cell performance of porphyrin-sensitized TiO(2) cells. Elongation of the pi conjugation and loss of symmetry in porphyrins cause broadening and a red shift of the absorption bands together with an increasing intensity of the Q bands relative to that of the Soret band. On the basis of the strategy, the cell performance of porphyrin-sensitized solar cells has been improved intensively by the enhanced light absorption. Actually, some push-pull-type porphyrins have disclosed a remarkably high power conversion efficiency (6-7%) that was close to that of the ruthenium complexes. Phthalocyanines exhibit strong absorption around 300 and 700 nm and redox features that are similar to porphyrins. Moreover, phthalocyanines are transparent over a large region of the visible spectrum, thereby enabling the possibility of using them as "photovoltaic windows". However, the cell performance was poor, owing to strong aggregation and lack of directionality in the

  3. Portable High Sensitivity and High Resolution Sensor to Determine Oxygen Purity Levels Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The objective of this Phase I STTR project is to develop a highly sensitive oxygen (O2) sensor, with high accuracy and precision, to determine purity levels of high...

  4. Fano resonance-based highly sensitive, compact temperature sensor on thin film lithium niobate.

    Science.gov (United States)

    Qiu, Wentao; Ndao, Abdoulaye; Vila, Venancio Calero; Salut, Roland; Courjal, Nadège; Baida, Fadi Issam; Bernal, Maria-Pilar

    2016-03-15

    In this Letter, we report a Fano resonance-based highly sensitive and compact temperature sensor fabricated on thin film lithium niobate (TFLN) Suzuki phase lattice (SPL) photonic crystal. The experimental sensitivity is estimated to be 0.77 nm/°C with a photonic crystal size of only 25  μm × 24  μm. This sensitivity is 38 times larger than the intrinsic one of lithium niobate which is 0.02 nm/°C. The demonstrated sharp and high extinction ratio characteristics of the Fano lineshape resonance could be an excellent candidate in developing a high sensitivity temperature sensor, electric field sensor, etc.

  5. Fully printed, highly sensitive multifunctional artificial electronic whisker arrays integrated with strain and temperature sensors.

    Science.gov (United States)

    Harada, Shingo; Honda, Wataru; Arie, Takayuki; Akita, Seiji; Takei, Kuniharu

    2014-04-22

    Mammalian-mimicking functional electrical devices have tremendous potential in robotics, wearable and health monitoring systems, and human interfaces. The keys to achieve these devices are (1) highly sensitive sensors, (2) economically fabricated macroscale devices on flexible substrates, and (3) multifunctions beyond mammalian functions. Although highly sensitive artificial electronic devices have been reported, none have been fabricated using cost-effective macroscale printing methods and demonstrate multifunctionalities of artificial electronics. Herein we report fully printed high-sensitivity multifunctional artificial electronic whiskers (e-whisker) integrated with strain and temperature sensors using printable nanocomposite inks. Importantly, changing the composition ratio tunes the sensitivity of strain. Additionally, the printed temperature sensor array can be incorporated with the strain sensor array beyond mammalian whisker functionalities. The sensitivity for the strain sensor is impressively high (∼59%/Pa), which is the best sensitivity reported to date (>7× improvement). As the proof-of-concept for a truly printable multifunctional artificial e-whisker array, two- and three-dimensional space and temperature distribution mapping are demonstrated. This fully printable flexible sensor array should be applicable to a wide range of low-cost macroscale electrical applications.

  6. Highly Sensitive AMS Measurement of 53Mn at CIAE

    Institute of Scientific and Technical Information of China (English)

    DONG; Ke-jun; HU; Hao; LIU; Guang-shan; HE; Ming; LI; Zhen-yu; DOU; Liang; XIE; Lin-bo; LIU; Jian-cheng; WANG; Xiang-gao; SHEN; Hong-tao; LIN; De-yu; ZHENG; Guo-wen; WANG; Xiao-bo; LI; Heng; LI; Chao-li; WU; Shao-yong; YOU; Qu-bo; JIN; Chun-sheng; CHEN; Zhi-gang; YUAN; Jian; JIANG; Shan

    2013-01-01

    Methods for highly sensitive AMS measurement of 53Mn were explored by extracting different Mn-containing molecular ions in ion source and using different chemical forms of sample materials.Preliminary results indicate that a method for AMS measurement of 53Mn has been established and a-155355

  7. Sensitivity Study of Strapdown Inertial Sensors in High Performance Applications

    Science.gov (United States)

    1980-12-01

    system error varied with a change in heading 7K. ( xii 1 SENSITIVITY STUDY OF STRAPDOWN INERTIAL SENSORS IN HIGH PERFORMANCE APPLICATIONS I. Introduction...given in Tabla 10. 23 State Meaning o Basic Altitude Damped INS x(1) Error in East Longitude 5.7735 x 1O Ŗ arc min x(2) Error in North Latitude

  8. [Burner head with high sensitivity in atomic absorption spectroscopy].

    Science.gov (United States)

    Feng, X; Yang, Y

    1998-12-01

    This paper presents a burner head with gas-sample separate entrance and double access, which is used for atomic absorption spectroscopy. According to comparison and detection, the device can improve sensitivity by a factor of 1 to 5. In the meantime it has properties of high stability and resistance to interference.

  9. Microelectromechanical Resonant Accelerometer Designed with a High Sensitivity

    Science.gov (United States)

    Zhang, Jing; Su, Yan; Shi, Qin; Qiu, An-Ping

    2015-01-01

    This paper describes the design and experimental evaluation of a silicon micro-machined resonant accelerometer (SMRA). This type of accelerometer works on the principle that a proof mass under acceleration applies force to two double-ended tuning fork (DETF) resonators, and the frequency output of two DETFs exhibits a differential shift. The dies of an SMRA are fabricated using silicon-on-insulator (SOI) processing and wafer-level vacuum packaging. This research aims to design a high-sensitivity SMRA because a high sensitivity allows for the acceleration signal to be easily demodulated by frequency counting techniques and decreases the noise level. This study applies the energy-consumed concept and the Nelder-Mead algorithm in the SMRA to address the design issues and further increase its sensitivity. Using this novel method, the sensitivity of the SMRA has been increased by 66.1%, which attributes to both the re-designed DETF and the reduced energy loss on the micro-lever. The results of both the closed-form and finite-element analyses are described and are in agreement with one another. A resonant frequency of approximately 22 kHz, a frequency sensitivity of over 250 Hz per g, a one-hour bias stability of 55 μg, a bias repeatability (1σ) of 48 μg and the bias-instability of 4.8 μg have been achieved. PMID:26633425

  10. Microelectromechanical Resonant Accelerometer Designed with a High Sensitivity

    Directory of Open Access Journals (Sweden)

    Jing Zhang

    2015-12-01

    Full Text Available This paper describes the design and experimental evaluation of a silicon micro-machined resonant accelerometer (SMRA. This type of accelerometer works on the principle that a proof mass under acceleration applies force to two double-ended tuning fork (DETF resonators, and the frequency output of two DETFs exhibits a differential shift. The dies of an SMRA are fabricated using silicon-on-insulator (SOI processing and wafer-level vacuum packaging. This research aims to design a high-sensitivity SMRA because a high sensitivity allows for the acceleration signal to be easily demodulated by frequency counting techniques and decreases the noise level. This study applies the energy-consumed concept and the Nelder-Mead algorithm in the SMRA to address the design issues and further increase its sensitivity. Using this novel method, the sensitivity of the SMRA has been increased by 66.1%, which attributes to both the re-designed DETF and the reduced energy loss on the micro-lever. The results of both the closed-form and finite-element analyses are described and are in agreement with one another. A resonant frequency of approximately 22 kHz, a frequency sensitivity of over 250 Hz per g, a one-hour bias stability of 55 μg, a bias repeatability (1σ of 48 μg and the bias-instability of 4.8 μg have been achieved.

  11. High-Sensitivity X-ray Polarimetry with Amorphous Silicon Active-Matrix Pixel Proportional Counters

    Science.gov (United States)

    Black, J. K.; Deines-Jones, P.; Jahoda, K.; Ready, S. E.; Street, R. A.

    2003-01-01

    Photoelectric X-ray polarimeters based on pixel micropattern gas detectors (MPGDs) offer order-of-magnitude improvement in sensitivity over more traditional techniques based on X-ray scattering. This new technique places some of the most interesting astronomical observations within reach of even a small, dedicated mission. The most sensitive instrument would be a photoelectric polarimeter at the focus of 2 a very large mirror, such as the planned XEUS. Our efforts are focused on a smaller pathfinder mission, which would achieve its greatest sensitivity with large-area, low-background, collimated polarimeters. We have recently demonstrated a MPGD polarimeter using amorphous silicon thin-film transistor (TFT) readout suitable for the focal plane of an X-ray telescope. All the technologies used in the demonstration polarimeter are scalable to the areas required for a high-sensitivity collimated polarimeter. Leywords: X-ray polarimetry, particle tracking, proportional counter, GEM, pixel readout

  12. Highly sensitive detection using microring resonator and nanopores

    Science.gov (United States)

    Bougot-Robin, K.; Hoste, J. W.; Le Thomas, N.; Bienstman, P.; Edel, J. B.

    2016-04-01

    One of the most significant challenges facing physical and biological scientists is the accurate detection and identification of single molecules in free-solution environments. The ability to perform such sensitive and selective measurements opens new avenues for a large number of applications in biological, medical and chemical analysis, where small sample volumes and low analyte concentrations are the norm. Access to information at the single or few molecules scale is rendered possible by a fine combination of recent advances in technologies. We propose a novel detection method that combines highly sensitive label-free resonant sensing obtained with high-Q microcavities and position control in nanoscale pores (nanopores). In addition to be label-free and highly sensitive, our technique is immobilization free and does not rely on surface biochemistry to bind probes on a chip. This is a significant advantage, both in term of biology uncertainties and fewer biological preparation steps. Through combination of high-Q photonic structures with translocation through nanopore at the end of a pipette, or through a solid-state membrane, we believe significant advances can be achieved in the field of biosensing. Silicon microrings are highly advantageous in term of sensitivity, multiplexing, and microfabrication and are chosen for this study. In term of nanopores, we both consider nanopore at the end of a nanopipette, with the pore being approach from the pipette with nanoprecise mechanical control. Alternatively, solid state nanopores can be fabricated through a membrane, supporting the ring. Both configuration are discussed in this paper, in term of implementation and sensitivity.

  13. Design and Fabrication of High Sensitive Piezoresistive MEMS Accelerometer

    Directory of Open Access Journals (Sweden)

    JOSHI A.B

    2008-04-01

    Full Text Available This paper addresses the design and fabrication of high sensitive single axis piezoresistive micro-accelerometer for 50 g application. MEMS based accelerometer structure comprise of flexure fixed at one end and having attached proof mass at other end. This structure is designed and simulated using Coventorware. The simulation results show the sensitivity of 4mV/g. The structure is fabricated in N type silicon (100 substrate using Silicon bulk micromachining. This paper also discuses the use of PECVD Si3N4 layer as a masking material for silicon micromachining and process flow for accelerometer.

  14. Cardiac troponins and high-sensitivity cardiac troponin assays.

    Science.gov (United States)

    Conrad, Michael J; Jarolim, Petr

    2014-03-01

    Measurement of circulating cardiac troponins I and T has become integral to the diagnosis of myocardial infarction. This article discusses the structure and function of the troponin complex and the release of cardiac troponin molecules from the injured cardiomyocyte into the circulation. An overview of current cardiac troponin assays and their classification according to sensitivity is presented. The diagnostic criteria, role, and usefulness of cardiac troponin for myocardial infarction are discussed. In addition, several examples are given of the usefulness of high-sensitivity cardiac troponin assays for short-term and long-term prediction of adverse events.

  15. High Sensitivity Very Low Frequency Receiver for Earthquake Data Acquisition.

    Science.gov (United States)

    Munir, A.; Najmurrokhman, A.

    2017-03-01

    high sensitivity very low frequency (VLF) receiver is developed based on AD744 monolithic operational amplifier (Op-Amp) for earthquake data acquisition. In research related natural phenomena such as atmospheric noise, lightning and earthquake, a VLF receiver particularly with high sensitivity is utterly required due to the low power of VLF wave signals received by the antenna. The developed receiver is intended to have high sensitivity reception for the signals in frequency range of 10-30kHz allocated for earthquake observation. The VLF receiver which is portably designed is also equipped with an output port connectable to the soundcard of personal computer for further data acquisition. After obtaining the optimum design, the hardware realization is implemented on a printed circuit board (PCB) for experimental characterization. It shows that the sensitivity of realized VLF receiver is almost linear in the predefined frequency range for the input signals lower than -12dBm and to be quadratic for the higher level input signals.

  16. Are Inflationary Predictions Sensitive to Very High Energy Physics?

    CERN Document Server

    Burgess, C P; Lemieux, F; Holman, R

    2003-01-01

    It has been proposed that the successful inflationary description of density perturbations on cosmological scales is sensitive to the details of physics at extremely high (trans-Planckian) energies. We test this proposal by examining how inflationary predictions depend on higher-energy scales within a simple model where the higher-energy physics is well understood. We find the best of all possible worlds: inflationary predictions are robust against the vast majority of high-energy effects, but can be sensitive to some effects in certain circumstances, in a way which does not violate ordinary notions of decoupling. This implies both that the comparison of inflationary predictions with CMB data is meaningful, and that it is also worth searching for small deviations from the standard results in the hopes of learning about very high energies.

  17. Design of highly sensitive multichannel bimetallic photonic crystal fiber biosensor

    Science.gov (United States)

    Hameed, Mohamed Farhat O.; Alrayk, Yassmin K. A.; Shaalan, Abdelhamid A.; El Deeb, Walid S.; Obayya, Salah S. A.

    2016-10-01

    A design of a highly sensitive multichannel biosensor based on photonic crystal fiber is proposed and analyzed. The suggested design has a silver layer as a plasmonic material coated by a gold layer to protect silver oxidation. The reported sensor is based on detection using the quasi transverse electric (TE) and quasi transverse magnetic (TM) modes, which offers the possibility of multichannel/multianalyte sensing. The numerical results are obtained using a finite element method with perfect matched layer boundary conditions. The sensor geometrical parameters are optimized to achieve high sensitivity for the two polarized modes. High-refractive index sensitivity of about 4750 nm/RIU (refractive index unit) and 4300 nm/RIU with corresponding resolutions of 2.1×10-5 RIU, and 2.33×10-5 RIU can be obtained according to the quasi TM and quasi TE modes of the proposed sensor, respectively. Further, the reported design can be used as a self-calibration biosensor within an unknown analyte refractive index ranging from 1.33 to 1.35 with high linearity and high accuracy. Moreover, the suggested biosensor has advantages in terms of compactness and better integration of microfluidics setup, waveguide, and metallic layers into a single structure.

  18. Sensitivity of HAWC to high-mass dark matter annihilations

    Science.gov (United States)

    Abeysekara, A. U.; Alfaro, R.; Alvarez, C.; Álvarez, J. D.; Arceo, R.; Arteaga-Velázquez, J. C.; Ayala Solares, H. A.; Barber, A. S.; Baughman, B. M.; Bautista-Elivar, N.; Becerra Gonzalez, J.; Belmont, E.; BenZvi, S. Y.; Berley, D.; Bonilla Rosales, M.; Braun, J.; Caballero-Lopez, R. A.; Caballero-Mora, K. S.; Carramiñana, A.; Castillo, M.; Cotti, U.; Cotzomi, J.; de la Fuente, E.; De León, C.; DeYoung, T.; Diaz Hernandez, R.; Diaz-Cruz, L.; Díaz-Vélez, J. C.; Dingus, B. L.; DuVernois, M. A.; Ellsworth, R. W.; Fiorino, D. W.; Fraija, N.; Galindo, A.; Garfias, F.; González, M. M.; Goodman, J. A.; Grabski, V.; Gussert, M.; Hampel-Arias, Z.; Harding, J. P.; Hui, C. M.; Hüntemeyer, P.; Imran, A.; Iriarte, A.; Karn, P.; Kieda, D.; Kunde, G. J.; Lara, A.; Lauer, R. J.; Lee, W. H.; Lennarz, D.; León Vargas, H.; Linares, E. C.; Linnemann, J. T.; Longo, M.; Luna-Garcia, R.; Marinelli, A.; Martinez, H.; Martinez, O.; Martínez-Castro, J.; Matthews, J. A. J.; McEnery, J.; Mendoza Torres, E.; Miranda-Romagnoli, P.; Moreno, E.; Mostafá, M.; Nellen, L.; Newbold, M.; Noriega-Papaqui, R.; Oceguera-Becerra, T.; Patricelli, B.; Pelayo, R.; Pérez-Pérez, E. G.; Pretz, J.; Rivière, C.; Rosa-González, D.; Ryan, J.; Salazar, H.; Salesa, F.; Sanchez, F. E.; Sandoval, A.; Schneider, M.; Silich, S.; Sinnis, G.; Smith, A. J.; Sparks Woodle, K.; Springer, R. W.; Taboada, I.; Toale, P. A.; Tollefson, K.; Torres, I.; Ukwatta, T. N.; Villaseñor, L.; Weisgarber, T.; Westerhoff, S.; Wisher, I. G.; Wood, J.; Yodh, G. B.; Younk, P. W.; Zaborov, D.; Zepeda, A.; Zhou, H.; Abazajian, K. N.; Milagro Collaboration

    2014-12-01

    The High Altitude Water Cherenkov (HAWC) observatory is a wide field-of-view detector sensitive to gamma rays of 100 GeV to a few hundred TeV. Located in central Mexico at 19° North latitude and 4100 m above sea level, HAWC will observe gamma rays and cosmic rays with an array of water Cherenkov detectors. The full HAWC array is scheduled to be operational in Spring 2015. In this paper, we study the HAWC sensitivity to the gamma-ray signatures of high-mass (multi-TeV) dark matter annihilation. The HAWC observatory will be sensitive to diverse searches for dark matter annihilation, including annihilation from extended dark matter sources, the diffuse gamma-ray emission from dark matter annihilation, and gamma-ray emission from nonluminous dark matter subhalos. Here we consider the HAWC sensitivity to a subset of these sources, including dwarf galaxies, the M31 galaxy, the Virgo cluster, and the Galactic center. We simulate the HAWC response to gamma rays from these sources in several well-motivated dark matter annihilation channels. If no gamma-ray excess is observed, we show the limits HAWC can place on the dark matter cross section from these sources. In particular, in the case of dark matter annihilation into gauge bosons, HAWC will be able to detect a narrow range of dark matter masses to cross sections below thermal. HAWC should also be sensitive to nonthermal cross sections for masses up to nearly 1000 TeV. The constraints placed by HAWC on the dark matter cross section from known sources should be competitive with current limits in the mass range where HAWC has similar sensitivity. HAWC can additionally explore higher dark matter masses than are currently constrained.

  19. Highly sensitive glucose biosensor based on Au-Ni coaxial nanorod array having high aspect ratio.

    Science.gov (United States)

    Hsu, Che-Wei; Wang, Gou-Jen

    2014-06-15

    An effective glucose biosensor requires a sufficient amount of GOx immobilizing on the electrode surface. An electrode of a 3D nanorod array, having a larger surface-to-volume ratio than a 2D nanostructure, can accommodate more GOx molecules to immobilize onto the surface of the nanorods. In this study, a highly sensitive Au-Ni coaxial nanorod array electrode fabricated through the integration of nano electroforming and immersion gold (IG) method for glucose detection was developed. The average diameter of the as-synthesized Ni nanorods and that of the Au-Ni nanorods were estimated to be 150 and 250 nm, respectively; both had a height of 30 μm. The aspect ratio was 120. Compared to that of a flat Au electrode, the effective sensing area was enhanced by 79.8 folds. Actual glucose detections demonstrated that the proposed Au-Ni coaxial nanorod array electrode could operate in a linear range of 27.5 μM-27.5mM with a detection limit of 5.5μM and a very high sensitivity of 769.6 μA mM(-1)cm(-2). Good selectivity of the proposed sensing device was verified by sequential injections of uric acid (UA) and ascorbic acid (AA). Long-term stability was examined through successive detections over a period of 30 days.

  20. Highly sensitive ammonia sensor using reflection of light at a glass - photonic crystal interface

    CERN Document Server

    Kuchyanov, A S; Spisser, H; Plekhanov, A I

    2013-01-01

    We have discovered and studied the effect of the asymmetric deformation of a photonic crystal in the form of a change in the slope of the crystal planes as it is filled with a gaseous analyte. We have demonstrated that the use of a new effect leading to the displacement of the stop band against the unchanged spectrum of diffracted white light at the (glass-thin opal film) interface can be used as fast, compact, high sensitive and reproducible optical chemical sensor for ammonia. Low cost and simplicity of sensor fabrication, the response of which can be easily observed without resorting to spectral instruments are therefore likely to be attractive. The basis for high sensitivity (1 ppm), fast response (120 ms) is capillary vapor condensation. On the basis of this effect a cheap high-speed and highly sensitive gas sensors has been built.

  1. Real-Time, Single-Step Bioassay Using Nanoplasmonic Resonator With Ultra-High Sensitivity

    Science.gov (United States)

    Zhang, Xiang (Inventor); Ellman, Jonathan A. (Inventor); Chen, Fanqing Frank (Inventor); Su, Kai-Hang (Inventor); Wei, Qi-Huo (Inventor); Sun, Cheng (Inventor)

    2014-01-01

    A nanoplasmonic resonator (NPR) comprising a metallic nanodisk with alternating shielding layer(s), having a tagged biomolecule conjugated or tethered to the surface of the nanoplasmonic resonator for highly sensitive measurement of enzymatic activity. NPRs enhance Raman signals in a highly reproducible manner, enabling fast detection of protease and enzyme activity, such as Prostate Specific Antigen (paPSA), in real-time, at picomolar sensitivity levels. Experiments on extracellular fluid (ECF) from paPSA-positive cells demonstrate specific detection in a complex bio-fluid background in real-time single-step detection in very small sample volumes.

  2. Real-time, single-step bioassay using nanoplasmonic resonator with ultra-high sensitivity

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xiang; Ellman, Jonathan A; Chen, Fanqing Frank; Su, Kai-Hang; Wei, Qi-Huo; Sun, Cheng

    2014-04-01

    A nanoplasmonic resonator (NPR) comprising a metallic nanodisk with alternating shielding layer(s), having a tagged biomolecule conjugated or tethered to the surface of the nanoplasmonic resonator for highly sensitive measurement of enzymatic activity. NPRs enhance Raman signals in a highly reproducible manner, enabling fast detection of protease and enzyme activity, such as Prostate Specific Antigen (paPSA), in real-time, at picomolar sensitivity levels. Experiments on extracellular fluid (ECF) from paPSA-positive cells demonstrate specific detection in a complex bio-fluid background in real-time single-step detection in very small sample volumes.

  3. Development of High Sensitivity Nuclear Emulsion and Fine Grained Emulsion

    Energy Technology Data Exchange (ETDEWEB)

    Kawahara, H.; Asada, T. [Department of Physics, Nagoya University, Nagoya 464-8602 (Japan); Naka, T. [Institute of Advanced Research, Nagoya University (Japan); Naganawa, N.; Kuwabara, K.; Nakamura, M. [Department of Physics, Nagoya University, Nagoya 464-8602 (Japan)

    2014-08-15

    Nuclear emulsion is a particle detector having high spacial resolution and angular resolution. It became useful for large statistics experiment thanks to the development of automatic scanning system. In 2010, a facility for emulsion production was introduced and R and D of nuclear emulsion began at Nagoya university. In this paper, we present results of development of the high sensitivity emulsion and fine grained emulsion for dark matter search experiment. Improvement of sensitivity is achieved by raising density of silver halide crystals and doping well-adjusted amount of chemicals. Production of fine grained emulsion was difficult because of unexpected crystal condensation. By mixing polyvinyl alcohol (PVA) to gelatin as a binder, we succeeded in making a stable fine grained emulsion.

  4. Highly sensitive troponin T in patients with acute ischemic stroke

    DEFF Research Database (Denmark)

    Jensen, J K; Ueland, T; Aukrust, P;

    2012-01-01

    in decedents than in survivors. After adjustment for stroke severity, C-reactive protein, age, NT-proBNP and prior heart and/or renal failure, hsTnT levels were not a significant predictor of long-term all-cause or cardiovascular mortality. Conclusion: Elevated levels of hsTnT are frequently present......Background: Newly developed troponin assays have superior diagnostic and prognostic performance in acute coronary syndrome (ACS), when compared to conventional troponin assays; however, highly sensitive troponin has not been evaluated in patients with acute ischemic stroke. Methods: Highly...... sensitive troponin T (hsTnT) was measured daily during the first 4 days in 193 consecutive patients with acute ischemic stroke without overt ACS or atrial fibrillation. The patients were previously tested normal with a fourth-generation TnT assay. The patients were followed for 47 months, with all...

  5. Structural Glycomic Analyses at High Sensitivity: A Decade of Progress

    Science.gov (United States)

    Alley, William R.; Novotny, Milos V.

    2013-06-01

    The field of glycomics has recently advanced in response to the urgent need for structural characterization and quantification of complex carbohydrates in biologically and medically important applications. The recent success of analytical glycobiology at high sensitivity reflects numerous advances in biomolecular mass spectrometry and its instrumentation, capillary and microchip separation techniques, and microchemical manipulations of carbohydrate reactivity. The multimethodological approach appears to be necessary to gain an in-depth understanding of very complex glycomes in different biological systems.

  6. Highly Sensitive Flexible Magnetic Sensor Based on Anisotropic Magnetoresistance Effect.

    Science.gov (United States)

    Wang, Zhiguang; Wang, Xinjun; Li, Menghui; Gao, Yuan; Hu, Zhongqiang; Nan, Tianxiang; Liang, Xianfeng; Chen, Huaihao; Yang, Jia; Cash, Syd; Sun, Nian-Xiang

    2016-11-01

    A highly sensitive flexible magnetic sensor based on the anisotropic magnetoresistance effect is fabricated. A limit of detection of 150 nT is observed and excellent deformation stability is achieved after wrapping of the flexible sensor, with bending radii down to 5 mm. The flexible AMR sensor is used to read a magnetic pattern with a thickness of 10 μm that is formed by ferrite magnetic inks.

  7. Chemical-genetic inhibition of a sensitized mutant myosin Vb demonstrates a role in peripheral-pericentriolar membrane traffic

    OpenAIRE

    Provance, D. William; Gourley, Christopher R.; Silan, Colleen M.; Cameron, L. C.; Kevan M Shokat; Goldenring, James R.; Shah, Kavita; Gillespie, Peter G.; John A. Mercer

    2004-01-01

    Selective, in situ inhibition of individual unconventional myosins is a powerful approach to determine their specific physiological functions. Here, we report the engineering of a myosin Vb mutant that still hydrolyzes ATP, yet is selectively sensitized to an N6-substituted ADP analog that inhibits its activity, causing it to remain tightly bound to actin. Inhibition of the sensitized mutant causes inhibition of accumulation of transferrin in the cytoplasm and increases levels of plasma-membr...

  8. Recent trends in high spin sensitivity magnetic resonance

    Science.gov (United States)

    Blank, Aharon; Twig, Ygal; Ishay, Yakir

    2017-07-01

    new ideas, show how these limiting factors can be mitigated to significantly improve the sensitivity of induction detection. Finally, we outline some directions for the possible applications of high-sensitivity induction detection in the field of electron spin resonance.

  9. Pulsed Discharge Helium Ionization Detector for Highly Sensitive Aquametry.

    Science.gov (United States)

    Mowry, Curtis D; Pimentel, Adam S; Sparks, Elizabeth S; Moorman, Matthew W; Achyuthan, Komandoor E; Manginell, Ronald P

    2016-01-01

    Trace moisture quantitation is crucial in medical, civilian and military applications. Current aquametry technologies are limited by the sample volume, reactivity, or interferences, and/or instrument size, weight, power, cost, and complexity. We report for the first time on the use of a pulsed discharge helium ionization detector (PDHID-D2) (∼196 cm(3)) for the sensitive (limit of detection, 0.047 ng; 26 ppm), linear (r(2) >0.99), and rapid (volume of liquid or gas. The relative humidity sensitivity was 0.22% (61.4 ppmv) with a limit of detection of less than 1 ng moisture with gaseous samples. The sensitivity was 10 to 100 to fold superior to competing technologies without the disadvantages inherent to these technologies. The PDHID-D2, due to its small footprint and low power requirement, has good size, weight, and power-portability (SWAPP) factors. The relatively low cost (∼$5000) and commercial availability of the PDHID-D2 makes our technique applicable to highly sensitive aquametry.

  10. Demonstration of Caustic-Side Solvent Extraction with Savannah River Site High Level Waste

    Energy Technology Data Exchange (ETDEWEB)

    Walker, D.D.

    2001-08-27

    Researchers successfully demonstrated the chemistry and process equipment of the Caustic-Side Solvent Extraction (CSSX) flowsheet for the decontamination of high level waste using a 33-stage, 2-cm centrifugal contactor apparatus at the Savannah River Technology Center. This represents the first CSSX process demonstration using Savannah River Site (SRS) high level waste. Three tests lasting 6, 12, and 48 hours processed simulated average SRS waste, simulated Tank 37H/44F composite waste, and Tank 37H/44F high level waste, respectively.

  11. What leadership behaviors were demonstrated by the principal in a high poverty, high achieving elementary school?

    Directory of Open Access Journals (Sweden)

    E. Hayet J. Woods

    2016-12-01

    Full Text Available Examined through the lens of leadership, were the behaviors of a principal as perceived by stakeholders. The following themes emerged: (1 Educating the Whole Child, with the subthemes: (a providing basic needs; (b academic interventions based on achievement data; (c an emphasis on reading; (d extended academic time; and (e relationships; and (2 Synergy of Expectations, with the subthemes: (a consistent student expectations; (b increased staff accountability; and (c community involvement. The researchers found that the principal by demonstrating behaviors as a change agent, a creator of vision, and a provider of necessary support and strategies, rather than adopting numerous programs, the school personnel were able to increase and sustain academic achievement of the students of poverty as well as their peers. Implications for principal practices, along with leadership preparatory programs are significant.

  12. Development of a highly sensitive galvanic cell oxygen sensor.

    Science.gov (United States)

    Ogino, H; Asakura, K

    1995-02-01

    A highly sensitive galvanic cell oxygen sensor was successfully developed for determining parts per billion of oxygen in high purity gases such as nitrogen, argon, etc. The response of this improved sensor was proportional in the range of oxygen concentrations from 10.0 ppm to the detection limit. The response speed in this study was improved to within 90 sec for a 90% response. The detection limit was tentatively found to be less than 0.4 ppb corresponding to S N = 2 .

  13. DEMONSTRATION BULLETIN: HIGH VOLTAGE ELECTRON BEAM TECHNOLOGY - HIGH VOLTAGE ENVIRONMENTAL APPLICATIONS, INC.

    Science.gov (United States)

    The high energy electron beam irradiation technology is a low temperature method for destroying complex mixtures of hazardous organic chemicals in solutions containing solids. The system consists of a computer-automated, portable electron beam accelerator and a delivery system. T...

  14. Fabrication of a highly sensitive penicillin sensor based on charge transfer techniques.

    Science.gov (United States)

    Lee, Seung-Ro; Rahman, M M; Sawada, Kazuaki; Ishida, Makoto

    2009-03-15

    A highly sensitive penicillin biosensor based on a charge-transfer technique (CTTPS) has been fabricated and demonstrated in this paper. CTTPS comprised a charge accumulation technique for penicilloic acid and H(+) ions perception system. With the proposed CTTPS, it is possible to amplify the sensing signals without external amplifier by using the charge accumulation cycles. The fabricated CTTPS exhibits excellent performance for penicillin detection and exhibit a high-sensitivity (47.852 mV/mM), high signal-to-noise ratio (SNR), large span (1445 mV), wide linear range (0-25 mM), fast response time (penicillin sensor and exhibited almost eight times greater sensitivity as compared to ISFET (6.56 mV/mM). The sensor system is implemented for the measurement of the penicillin concentration in penicillin fermentation broth.

  15. Environment-sensitive quinolone demonstrating long-lived fluorescence and unusually slow excited-state intramolecular proton transfer kinetics

    Science.gov (United States)

    Zamotaiev, O. M.; Shvadchak, V.; Sych, T. P.; Melnychuk, N. A.; Yushchenko, D.; Mely, Y.; Pivovarenko, V. G.

    2016-09-01

    A new small fluorescent dye based on 3-hydroxybenzo[g]quinolone, a benzo-analogue of Pseudomonas quinolone signal species, has been synthesized. The dye demonstrates interesting optical properties, with absorption in the visible region, two band emission due to an excited-state intramolecular proton transfer (ESIPT) reaction and high fluorescence quantum yield in both protic and aprotic media. Time-resolved fluorescence spectroscopy shows that the ESIPT reaction time is unusually long (up to 8 ns), indicating that both forward and backward ESIPT reactions are very slow in comparison to other 3-hydroxyquinolones. In spite of these slow rate constants, the ESIPT reaction was found to show a reversible character as a result of the very long lifetimes of both N* and T* forms (up to 16 ns). The ESIPT reaction rate is mainly controlled by the hydrogen bond donor ability in protic solvents and the polarity in aprotic solvents. Using large unilamellar vesicles and giant unilamellar vesicles of different lipid compositions, the probe was shown to preferentially label liquid disordered phases.

  16. Performance of terahertz metamaterials as high-sensitivity sensor

    Science.gov (United States)

    He, Yanan; Zhang, Bo; Shen, Jingling

    2017-09-01

    A high-sensitivity sensor based on the resonant transmission characteristics of terahertz (THz) metamaterials was investigated, with the proposal and fabrication of rectangular bar arrays of THz metamaterials exhibiting a period of 180 μm on a 25 μm thick flexible polyimide. Varying the size of the metamaterial structure revealed that the length of the rectangular unit modulated the resonant frequency, which was verified by both experiment and simulation. The sensing characteristics upon varying the surrounding media in the sample were tested by simulation and experiment. Changing the surrounding medium from that of air to that of alcohol or oil produced resonant frequency redshifts of 80 GHz or 150 GHz, respectively, which indicates that the sensor possessed a high sensitivity of 667 GHz per unit of refractive index. Finally, the influence of the sample substrate thickness on the sensor sensitivity was investigated by simulation. It may be a reference for future sensor design.

  17. High-sensitivity strain visualization using electroluminescence technologies

    Science.gov (United States)

    Xu, Jian; Jo, Hongki

    2016-04-01

    Visualizing mechanical strain/stress changes is an emerging area in structural health monitoring. Several ways are available for strain change visualization through the color/brightness change of the materials subjected to the mechanical stresses, for example, using mechanoluminescence (ML) materials and mechanoresponsive polymers (MRP). However, these approaches were not effectively applicable for civil engineering system yet, due to insufficient sensitivity to low-level strain of typical civil structures and limitation in measuring both static and dynamic strain. In this study, design and validation for high-sensitivity strain visualization using electroluminescence technologies are presented. A high-sensitivity Wheatstone bridge, of which bridge balance is precisely controllable circuits, is used with a gain-adjustable amplifier. The monochrome electroluminescence (EL) technology is employed to convert both static and dynamic strain change into brightness/color change of the EL materials, through either brightness change mode (BCM) or color alternation mode (CAM). A prototype has been made and calibrated in lab, the linearity between strain and brightness change has been investigated.

  18. High-sensitive scanning laser magneto-optical imaging system.

    Science.gov (United States)

    Murakami, Hironaru; Tonouchi, Masayoshi

    2010-01-01

    A high-sensitive scanning laser magneto-optical (MO) imaging system has been developed. The system is mainly composed of a laser source, galvano meters, and a high-sensitive differential optical-detector. Preliminary evaluation of system performance by using a Faraday indicator with a Faraday rotation coefficient of 3.47 x 10(-5) rad/microm Oe shows a magnetic sensitivity of about 5 microT, without any need for accumulation or averaging processing. Using the developed MO system we have succeeded in the fast and quantitative imaging of a rotationally symmetric magnetic field distribution around an YBa(2)Cu(3)O(7-delta) (YBCO) strip line applied with dc-biased current, and also succeeded in the detection of quantized fine signals corresponding to magnetic flux quantum generation in a superconducting loop of an YBCO Josephson vortex flow transistor. Thus, the developed system enables us not only to do fast imaging and local signal detection but also to directly evaluate both the strength and direction of a magnetic signal.

  19. HIGHLY SENSITIVE CATALASE ELECTRODE BASED ON POLYPYRROLE FILMS WITH MICROCONTAINERS

    Institute of Scientific and Technical Information of China (English)

    Yu-ying Gao; Gao-quan Shi

    2006-01-01

    Highly sensitive catalase electrodes for sensing hydrogen peroxide have been fabricated based on polypyrrole films with microcontainers. The microcontainers have a cup-like morphology and are arranged in a density of 4000 units cm-2.Catalase was immobilized into the polypyrrole films with microcontainers (Ppy-mc), which were coated on a Pt substrate electrode. The catalase/Ppy-mc/Pt electrode showed linear response to hydrogen peroxide in the range of 0-18 mmol/L at a potential of -0.3 V (versus SCE). Its sensitivity was measured to be approximately 3.64 μA (mmol/L)-1 cm-2, which is about two times that of the electrode fabricated from a flat Ppy film (catalase/Ppy-flat/Pt electrode). The electrode is highly selective for hydrogen peroxide and its sensitivity is interfered by potential interferents such as ascorbic acid, urea and fructose. Furthermore, such catalase electrodes showed long-term storage stability of 15 days under dry conditions at 4℃.

  20. Development of highly sensitive monolithic interferometer for infrared planet search

    Directory of Open Access Journals (Sweden)

    Jiang P.

    2011-07-01

    Full Text Available We present the design, fabrication and testing of a highly sensitive monolithic interferometer for InfraRed Exoplanet Tracker (IR-ET. This interferometer is field-compensated, thermal-stable for working in the wavelength range between 0.8 and 1.35 μm. Two arms of the interferometer creates a fixed delay of 18.0 mm, which is optimized to have the best sensitivity for radial velocity measurements of slow-rotating M dwarfs for planet detection. IR-ET is aiming to reach 3–20 m/s Doppler precision for J<10 M dwarfs in less than 15 min exposures. We plan to conduct a planet survey around hundreds of nearby M dwarfs through collaborations with Astrophysical Research Consortium scientists in 2011–2014.

  1. Polymer-Particle Pressure-Sensitive Paint with High Photostability

    Directory of Open Access Journals (Sweden)

    Yu Matsuda

    2016-04-01

    Full Text Available We propose a novel fast-responding and paintable pressure-sensitive paint (PSP based on polymer particles, i.e. polymer-particle (pp-PSP. As a fast-responding PSP, polymer-ceramic (PC-PSP is widely studied. Since PC-PSP generally consists of titanium (IV oxide (TiO2 particles, a large reduction in the luminescent intensity will occur due to the photocatalytic action of TiO2. We propose the usage of polymer particles instead of TiO2 particles to prevent the reduction in the luminescent intensity. Here, we fabricate pp-PSP based on the polystyrene particle with a diameter of 1 μm, and investigate the pressure- and temperature-sensitives, the response time, and the photostability. The performances of pp-PSP are compared with those of PC-PSP, indicating the high photostability with the other characteristics comparable to PC-PSP.

  2. New application of superconductors: high sensitivity cryogenic light detectors

    CERN Document Server

    Cardani, L; Casali, N; Casellano, M G; Colantoni, I; Coppolecchia, A; Cosmelli, C; Cruciani, A; D'Addabbo, A; Di Domizio, S; Martinez, M; Tomei, C; Vignati, M

    2016-01-01

    In this paper we describe the current status of the CALDER project, which is developing ultra-sensitive light detectors based on superconductors for cryogenic applications. When we apply an AC current to a superconductor, the Cooper pairs oscillate and acquire kinetic inductance, that can be measured by inserting the superconductor in a LC circuit with high merit factor. Interactions in the superconductor can break the Cooper pairs, causing sizable variations in the kinetic inductance and, thus, in the response of the LC circuit. The continuous monitoring of the amplitude and frequency modulation allows to reconstruct the incident energy with excellent sensitivity. This concept is at the basis of Kinetic Inductance Detectors (KIDs), that are characterized by natural aptitude to multiplexed read-out (several sensors can be tuned to different resonant frequencies and coupled to the same line), resolution of few eV, stable behavior over a wide temperature range, and ease in fabrication. We present the results ob...

  3. Three-dimensional conformal graphene microstructure for flexible and highly sensitive electronic skin

    Science.gov (United States)

    Yang, Jun; Ran, Qincui; Wei, Dapeng; Sun, Tai; Yu, Leyong; Song, Xuefen; Pu, Lichun; Shi, Haofei; Du, Chunlei

    2017-03-01

    We demonstrate a highly stretchable electronic skin (E-skin) based on the facile combination of microstructured graphene nanowalls (GNWs) and a polydimethylsiloxane (PDMS) substrate. The microstructure of the GNWs was endowed by conformally growing them on the unpolished silicon wafer without the aid of nanofabrication technology. Then a stamping transfer method was used to replicate the micropattern of the unpolished silicon wafer. Due to the large contact interface between the 3D graphene network and the PDMS, this type of E-skin worked under a stretching ratio of nearly 100%, and showed excellent mechanical strength and high sensitivity, with a change in relative resistance of up to 6500% and a gauge factor of 65.9 at 99.64% strain. Furthermore, the E-skin exhibited an obvious highly sensitive response to joint movement, eye movement and sound vibration, demonstrating broad potential applications in healthcare, body monitoring and wearable devices.

  4. Chemical-genetic inhibition of a sensitized mutant myosin Vb demonstrates a role in peripheral-pericentriolar membrane traffic.

    Science.gov (United States)

    Provance, D William; Gourley, Christopher R; Silan, Colleen M; Cameron, L C; Shokat, Kevan M; Goldenring, James R; Shah, Kavita; Gillespie, Peter G; Mercer, John A

    2004-02-17

    Selective, in situ inhibition of individual unconventional myosins is a powerful approach to determine their specific physiological functions. Here, we report the engineering of a myosin Vb mutant that still hydrolyzes ATP, yet is selectively sensitized to an N(6)-substituted ADP analog that inhibits its activity, causing it to remain tightly bound to actin. Inhibition of the sensitized mutant causes inhibition of accumulation of transferrin in the cytoplasm and increases levels of plasma-membrane transferrin receptor, suggesting that myosin Vb functions in traffic between peripheral and pericentrosomal compartments.

  5. [Highly sensitive detection technology for biological toxins applying sugar epitopes].

    Science.gov (United States)

    Uzawa, Hirotaka

    2009-01-01

    The Shiga toxin is a highly poisonous protein produced by enterohemorrhagic Escherichia coli O157. This bacterial toxin causes the hemolytic uremic syndrome. Another plant toxin from castor beans, ricin, is also highly toxic. The toxin was used for assassination in London. Recently, there were several cases of postal matter containing ricin. Both toxins are categorized as biological warfare agents by the Centers of Disease Control and Prevention. Conventional detection methods based on the antigen-antibody reaction, PCR and other cell-free assays have been proposed. However, those approaches have drawbacks in terms of sensitivity, analytical time, or stability of the detection reagents. Therefore, development of a facile and sensitive detection method is essential. Here we describe new detection methods applying carbohydrate epitopes as the toxin ligands, which is based on the fact that the toxins bind cell-surface oligosaccharides. Namely, the Shiga toxin has an affinity for globobiosyl (Gb(2)) disaccharide, and ricin binds the beta-D-galactose residue. For Shiga toxin detection, surface plasmon resonance (SPR) was applied. A polyanionic Gb(2)-glycopolymer was designed for this purpose, and it was used for the assembly of Gb(2)-chips using alternating layer-by-layer technology. The method allowed us to detect the toxin at a low concentration of LD(50). A synthetic carbohydrate ligand for ricin was designed and immobilized on the chips. SPR analysis with the chips allows us to detect ricin in a highly sensitive and facile manner (10 pg/ml, 5 min). Our present approaches provide a highly effective way to counter bioterrorism.

  6. Spiral-path high-sensitivity silicon photonic wire molecular sensor with temperature-independent response.

    Science.gov (United States)

    Densmore, A; Xu, D-X; Janz, S; Waldron, P; Mischki, T; Lopinski, G; Delâge, A; Lapointe, J; Cheben, P; Lamontagne, B; Schmid, J H

    2008-03-15

    We demonstrate a new silicon photonic wire waveguide evanescent field (PWEF) sensor that exploits the strong evanescent field of the transverse magnetic mode of this high-index-contrast, submicrometer-dimension waveguide. High sensitivity is achieved by using a 2 mm long double-spiral waveguide structure that fits within a compact circular area of 150 microm diameter, facilitating compatibility with commercial spotting apparatus and the fabrication of densely spaced sensor arrays. By incorporating the PWEF sensor element into a balanced waveguide Mach-Zehnder interferometer circuit, a minimum detectable mass of approximately 10 fg of streptavidin protein is demonstrated with near temperature-independent response.

  7. Influence of Smoking on Ultra-High-Frequency Auditory Sensitivity.

    Science.gov (United States)

    Prabhu, Prashanth; Varma, Gowtham; Dutta, Kristi Kaveri; Kumar, Prajwal; Goyal, Swati

    2017-04-01

    In this study, an attempt was made to determine the effect of smoking on ultra-high-frequency auditory sensitivity. The study also attempted to determine the relationship between the nature of smoking and ultra-high-frequency otoacoustic emissions (OAEs) and thresholds. The study sample included 25 smokers and 25 non-smokers. A detailed history regarding their smoking habits was collected. High-frequency audiometric thresholds and amplitudes of high-frequency distortion-product OAEs were analyzed for both ears from all participants. The results showed that the ultra-high-frequency thresholds were elevated and that there was reduction in the amplitudes of ultra-high-frequency OAEs in smokers. There was an increased risk of auditory damage with chronic smoking. The study results highlight the application of ultra-high-frequency OAEs and ultra-high-frequency audiometry for the early detection of auditory impairment. However, similar studies should be conducted on a larger population for better generalization of the results.

  8. Ultrathin plasmonic nanogratings for rapid and highly-sensitive detection

    CERN Document Server

    Zeng, Beibei; Bartoli, Filbert J

    2014-01-01

    We developed a nanoplasmonic sensor platform employing the extraordinary optical properties of one-dimensional nanogratings patterned on 30nm-thick ultrathin Ag films. Excitation of Fano resonances in the ultrathin Ag nanogratings results in transmission spectra with high amplitude, large contrast, and narrow bandwidth, making them well-suited for rapid and highly-sensitive sensing applications. The ultrathin nanoplasmonic sensor chip was integrated with a polydimethylsiloxane (PDMS) microfluidic channel, and the measured refractive index resolution was found to be 1.46x10-6 refractive index units (RIU) with a high temporal resolution of 1 sec. This compares favorably with commercial prism-based surface plasmon resonance sensors, but is achieved using a more convenient collinear transmission geometry and a significantly smaller sensor footprint of 50x50um2. In addition, an order-of-magnitude improvement in the temporal and spatial resolutions was achieved relative to state-of-the-art nanoplasmonic sensors, fo...

  9. High-throughput, Highly Sensitive Analyses of Bacterial Morphogenesis Using Ultra Performance Liquid Chromatography.

    Science.gov (United States)

    Desmarais, Samantha M; Tropini, Carolina; Miguel, Amanda; Cava, Felipe; Monds, Russell D; de Pedro, Miguel A; Huang, Kerwyn Casey

    2015-12-25

    The bacterial cell wall is a network of glycan strands cross-linked by short peptides (peptidoglycan); it is responsible for the mechanical integrity of the cell and shape determination. Liquid chromatography can be used to measure the abundance of the muropeptide subunits composing the cell wall. Characteristics such as the degree of cross-linking and average glycan strand length are known to vary across species. However, a systematic comparison among strains of a given species has yet to be undertaken, making it difficult to assess the origins of variability in peptidoglycan composition. We present a protocol for muropeptide analysis using ultra performance liquid chromatography (UPLC) and demonstrate that UPLC achieves resolution comparable with that of HPLC while requiring orders of magnitude less injection volume and a fraction of the elution time. We also developed a software platform to automate the identification and quantification of chromatographic peaks, which we demonstrate has improved accuracy relative to other software. This combined experimental and computational methodology revealed that peptidoglycan composition was approximately maintained across strains from three Gram-negative species despite taxonomical and morphological differences. Peptidoglycan composition and density were maintained after we systematically altered cell size in Escherichia coli using the antibiotic A22, indicating that cell shape is largely decoupled from the biochemistry of peptidoglycan synthesis. High-throughput, sensitive UPLC combined with our automated software for chromatographic analysis will accelerate the discovery of peptidoglycan composition and the molecular mechanisms of cell wall structure determination.

  10. Potential programs for high sensitivity FIR spectroscopy with SPICA

    CERN Document Server

    Spinoglio, L; Saraceno, P; Spinoglio, Luigi; Giorgio, Anna Maria Di; Saraceno, Paolo

    2006-01-01

    We discuss the potential of high sensitivity mid-IR and far-IR spectroscopy to proof the physical properties of active nuclei and starburst regions of local and distant galaxies. For local galaxies, it will be possible to map the discs and ISM through the low ionization ionic lines and a variety of molecular tracers, such as OH, H2O and high-J CO. At increasing distance, most of the ionic nebular lines (typical of stars and AGNs) are shifted into the FIR, making possible to compare the observed spectra with those predicted by different evolutionary scenarios. At the very high redshift of 10-15, sensitive mid-to-far-IR spectrometers, such as those planned to be at the focal plane of the future SPICA mision, could be adequate to detect the H recombination lines excited in the HII regions around population III stars, if these stars happened to reside in large clusters of more than 10^5 members.

  11. A high sensitive fiber Bragg grating strain sensor with automatic temperature compensation

    Institute of Scientific and Technical Information of China (English)

    Kuo Li; Zhen'an Zhou

    2009-01-01

    A high sensitive fiber Bragg grating (FBG) strain sensor with automatic temperature compensation is demonstrated. FBG is axially linked with a stick and their free ends are fixed to the measured object. When the measured strain changes, the stick does not change in length, but the FBG does. When the temperature changes, the stick changes in length to pull the FBG to realize temperature compensation. In experiments, 1.45 times strain sensitivity of bare FBG with temperature compensation of less than 0.1 nm Bragg wavelength drift over 100℃ shift is achieved.

  12. High-Lift Propeller System Configuration Selection for NASA's SCEPTOR Distributed Electric Propulsion Flight Demonstrator

    Science.gov (United States)

    Patterson, Michael D.; Derlaga, Joseph M.; Borer, Nicholas K.

    2016-01-01

    Although the primary function of propellers is typically to produce thrust, aircraft equipped with distributed electric propulsion (DEP) may utilize propellers whose main purpose is to act as a form of high-lift device. These \\high-lift propellers" can be placed upstream of wing such that, when the higher-velocity ow in the propellers' slipstreams interacts with the wing, the lift is increased. This technique is a main design feature of a new NASA advanced design project called Scalable Convergent Electric Propulsion Technology Operations Research (SCEPTOR). The goal of the SCEPTOR project is design, build, and y a DEP aircraft to demonstrate that such an aircraft can be much more ecient than conventional designs. This paper provides details into the high-lift propeller system con guration selection for the SCEPTOR ight demonstrator. The methods used in the high-lift propeller system conceptual design and the tradeo s considered in selecting the number of propellers are discussed.

  13. High Excitation Transfer Efficiency from Energy Relay Dyes in Dye-Sensitized Solar Cells

    KAUST Repository

    Hardin, Brian E.

    2010-08-11

    The energy relay dye, 4-(Dicyanomethylene)-2-methyl-6-(4- dimethylaminostyryl)-4H-pyran (DCM), was used with a near-infrared sensitizing dye, TT1, to increase the overall power conversion efficiency of a dye-sensitized solar cell (DSC) from 3.5% to 4.5%. The unattached DCM dyes exhibit an average excitation transfer efficiency (EÌ?TE) of 96% inside TT1-covered, mesostructured TiO2 films. Further performance increases were limited by the solubility of DCM in an acetonitrile based electrolyte. This demonstration shows that energy relay dyes can be efficiently implemented in optimized dye-sensitized solar cells, but also highlights the need to design highly soluble energy relay dyes with high molar extinction coefficients. © 2010 American Chemical Society.

  14. Vascular compression in glossopharyngeal neuralgia: demonstration by high-resolution MRI at 3 tesla

    Energy Technology Data Exchange (ETDEWEB)

    Fischbach, F.; Ricke, J.; Bruhn, H. [Department of Radiology, Charite, Campus Virchow Klinikum, Humboldt-University, Augustenburger Platz 1, 13352, Berlin (Germany); Lehmann, T.N. [Department of Neurosurgery, Charite, Campus Virchow Klinikum, Humboldt-University, Augustenberger Platz 1, 13353, Berlin (Germany)

    2003-11-01

    We report a case of glossopharyngeal neuralgia with vascular compression. High-resolution MRI at 3 tesla demonstrated the posterior inferior cerebellar artery to be closely related to the rootlets of the left glossopharyngeal nerve in a patient who suffered attacks of burning sensation in the left side of the throat. The MRI findings were confirmed at curative surgery. (orig.)

  15. A Simple Demonstration of the High-Temperature Electrical Conductivity of Glass

    Science.gov (United States)

    Chiaverina, Chris

    2014-01-01

    We usually think of glass as a good electrical insulator; this, however, is not always the case. There are several ways to show that glass becomes conducting at high temperatures, but the following approach, devised by Brown University demonstration manager Gerald Zani, may be one of the simplest to perform.

  16. A Simple Demonstration of the High-Temperature Electrical Conductivity of Glass

    Science.gov (United States)

    Chiaverina, Chris

    2014-01-01

    We usually think of glass as a good electrical insulator; this, however, is not always the case. There are several ways to show that glass becomes conducting at high temperatures, but the following approach, devised by Brown University demonstration manager Gerald Zani, may be one of the simplest to perform.

  17. The AX-PET project Demonstration of a high resolution axial 3D PET

    CERN Document Server

    Bolle, E; Casella, C; Chesi, E; Clinthorne, N; Cochran, E; De Leo, R; Dissertori, G; Djambazov, G; Fanti, V; Honscheid, K; Huh, S; Johnson, I; Joram, C; Kagan, H; Lustermann, W; Meddi, F; Nappi, E; Nessi-Tedaldi, F; Oliver, J F; Pauss, P; Rafecas, M; Renker, D; Rudge, A; Schinzel, D; Schneider, T; Seguinot, J; Smith, S; Solevi, P; Stapnes, S; Weilhammer, P

    2010-01-01

    The AX-PET is a new geometrical concept for a high resolution 3D PET scanner, based on matrices of axially oriented LYSO crystals interleaved by stacks of WLS, both individually read out by G-APDs. A PET demonstrator, based on two detector modules used in coincidence, is currently under construction.

  18. High pressure-sensitive gene expression in Lactobacillus sanfranciscensis

    Directory of Open Access Journals (Sweden)

    R.F. Vogel

    2005-08-01

    Full Text Available Lactobacillus sanfranciscensis is a Gram-positive lactic acid bacterium used in food biotechnology. It is necessary to investigate many aspects of a model organism to elucidate mechanisms of stress response, to facilitate preparation, application and performance in food fermentation, to understand mechanisms of inactivation, and to identify novel tools for high pressure biotechnology. To investigate the mechanisms of the complex bacterial response to high pressure we have analyzed changes in the proteome and transcriptome by 2-D electrophoresis, and by microarrays and real time PCR, respectively. More than 16 proteins were found to be differentially expressed upon high pressure stress and were compared to those sensitive to other stresses. Except for one apparently high pressure-specific stress protein, no pressure-specific stress proteins were found, and the proteome response to pressure was found to differ from that induced by other stresses. Selected pressure-sensitive proteins were partially sequenced and their genes were identified by reverse genetics. In a transcriptome analysis of a redundancy cleared shot gun library, about 7% of the genes investigated were found to be affected. Most of them appeared to be up-regulated 2- to 4-fold and these results were confirmed by real time PCR. Gene induction was shown for some genes up-regulated at the proteome level (clpL/groEL/rbsK, while the response of others to high hydrostatic pressure at the transcriptome level seemed to differ from that observed at the proteome level. The up-regulation of selected genes supports the view that the cell tries to compensate for pressure-induced impairment of translation and membrane transport.

  19. Effects of intrinsic magnetostriction on tube-topology magnetoelectric sensors with high magnetic field sensitivity

    Energy Technology Data Exchange (ETDEWEB)

    Gillette, Scott M.; Fitchorov, Trifon; Obi, Ogheneyunume; Chen, Yajie, E-mail: y.chen@neu.edu; Harris, Vincent G. [Department of Electrical and Computer Engineering, Northeastern University, Boston, Massachusetts 02115 (United States); Jiang, Liping; Hao, Hongbo; Wu, Shuangxia [Baotou Research Institute of Rare Earths, Baotou, Inner Mongolia 014030 (China)

    2014-05-07

    Three quasi-one-dimensional magnetoelectric (ME) magnetic field sensors, each with a different magnetostrictive wire material, were investigated in terms of sensitivity and noise floor. Magnetostrictive Galfenol, iron-cobalt-vanadium, and iron-nickel wires were examined. Sensitivity profiles, hysteresis effects, and noise floor measurements for both optimally biased and zero-biased conditions are presented. The FeNi wire (FN) exhibits high sensitivity (5.36 mV/Oe) at bias fields below 22 Oe and an optimal bias of 10 Oe, whereas FeGa wire (FG) exhibits higher sensitivity (6.89 mW/Oe) at bias fields >22 Oe. The sensor of FeCoV wire (FC) presents relatively low sensitivity (2.12 mV/Oe), due to low magnetostrictive coefficient. Each ME tube-topology sensor demonstrates relatively high sensitivity at zero bias field, which results from a magnetic shape anisotropy and internal strain of the thin magnetostrictive wire.

  20. Silicon on-chip bandpass filters for the multiplexing of high sensitivity photonic crystal microcavity biosensors

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Hai, E-mail: hai.yan@utexas.edu; Zou, Yi; Yang, Chun-Ju [Department of Electrical and Computer Engineering, Microelectronics Research Center, The University of Texas at Austin, 10100 Burnet Rd., Austin, Texas 78758 (United States); Chakravarty, Swapnajit, E-mail: swapnajit.chakravarty@omegaoptics.com [Omega Optics, Inc., 8500 Shoal Creek Blvd., Austin, Texas 78757 (United States); Wang, Zheng [Department of Electrical and Computer Engineering, Microelectronics Research Center, The University of Texas at Austin, 10100 Burnet Rd., Austin, Texas 78758 (United States); Materials Science and Engineering Program, Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712 (United States); Tang, Naimei; Chen, Ray T., E-mail: raychen@uts.cc.utexas.edu [Department of Electrical and Computer Engineering, Microelectronics Research Center, The University of Texas at Austin, 10100 Burnet Rd., Austin, Texas 78758 (United States); Omega Optics, Inc., 8500 Shoal Creek Blvd., Austin, Texas 78757 (United States); Fan, Donglei [Materials Science and Engineering Program, Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712 (United States); Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78712 (United States)

    2015-03-23

    A method for the dense integration of high sensitivity photonic crystal (PC) waveguide based biosensors is proposed and experimentally demonstrated on a silicon platform. By connecting an additional PC waveguide filter to a PC microcavity sensor in series, a transmission passband is created, containing the resonances of the PC microcavity for sensing purpose. With proper engineering of the passband, multiple high sensitivity PC microcavity sensors can be integrated into microarrays and be interrogated simultaneously between a single input and a single output port. The concept was demonstrated with a 2-channel L55 PC biosensor array containing PC waveguide filters. The experiment showed that the sensors on both channels can be monitored simultaneously from a single output spectrum. Less than 3 dB extra loss for the additional PC waveguide filter is observed.

  1. Rituximab induction therapy in highly sensitized kidney transplant recipients

    Institute of Scientific and Technical Information of China (English)

    YIN Hang; WAN Hao; HU Xiao-peng; LI Xiao-bei; WANG Wei; LIU Hang; REN Liang; ZHANG Xiao-dong

    2011-01-01

    Background The number of highly sensitized patients is rising, and sensitization can lead to renal transplant failure.The present study aimed to investigate the safety and efficacy of renal transplantation following induction therapy with rituximab in highly sensitized kidney transplant recipients.Methods Seven highly sensitized kidney transplant recipients who underwent rituximab therapy from December 2008 to December 2009 were retrospectively analyzed. There were 3 men and 4 women, with a mean age of 38.5 years (range, 21-47 years). The duration of hemodialysis was 3-12 months, with a mean duration of 11 months. For 4 patients,this was the second transplant; the previous graft survival time was 2-11 years, with a mean survival time of 5.8 years. All the female recipients had history of multiple pregnancies, and all patients had previously received blood transfusions. All donors were men, with a mean age of 32.5 years (range, 25-37 years). In 2 of the 7 patients, both class I and class II of panel reactive antibody were high; the remaining 5 patients showed either high in class I or in class II of panel reactive antibody. The mean panel reactive antibody value was 31% for class I and 51% for class II respectively. The donors and the recipients had the same blood type, with low lymphocyte cytotoxicity ranging from 2% to 5%. The human leukocyte antigen (HLA) mismatch numbers were from 2 to 4. All patients received tacrolimus (0.1 mg·kg-1·d-1) and mycophenolate mofetil (750 mg twice per day) orally 3 days prior to surgery. All patients received a single dose of 600 mg rituximab (375 mg/m2) infusion on the day before surgery and polyclonal antibody (antithymocyte globulin) on the day of surgery.Postoperative creatinine, creatinine clearance rate, and occurrence of rejection by pathological biopsy confirmation were monitored.Results No patient had delayed graft function after surgery. Two patients had acute rejection, one on day 7 and the other on day 13 post

  2. Coumarin-bearing triarylamine sensitizers with high molar extinction coefficient for dye-sensitized solar cells

    Science.gov (United States)

    Zhong, Changjian; Gao, Jianrong; Cui, Yanhong; Li, Ting; Han, Liang

    2015-01-01

    Coumarin unit is introduced into triarylamine and three organic sensitizers are designed and synthesized with triarylamine bearing coumarin moiety as the electron donor, conjugated system containing thiophene unit as the π-bridge, and cyanoacetic acid moiety as the electron acceptor. The light-harvesting capabilities and photovoltaic performance of these dyes are investigated systematically with the comparison of different π-bridges. High molar extinction coefficients are observed in these triarylamine dyes and the photocurrent and photovoltage are increased with the introduction of another thiophene or benzene. Optimal photovoltaic performance (η = 6.24%, Voc = 690 mV, Jsc = 14.33 mA cm-2, and ff = 0.63) is observed in the DSSC based on dye with thiophene-phenyl unit as the π-conjugated bridge under 100 mW cm-2 simulated AM 1.5 G solar irradiation.

  3. Highly Sensitive Assay for Measurement of Arenavirus-cell Attachment.

    Science.gov (United States)

    Klaus, Joseph P; Botten, Jason

    2016-03-02

    Arenaviruses are a family of enveloped RNA viruses that cause severe human disease. The first step in the arenavirus life cycle is attachment of viral particles to host cells. While virus-cell attachment can be measured through the use of virions labeled with biotin, radioactive isotopes, or fluorescent dyes, these approaches typically require high multiplicities of infection (MOI) to enable detection of bound virus. We describe a quantitative (q)RT-PCR-based assay that measures Junin virus strain Candid 1 attachment via quantitation of virion-packaged viral genomic RNA. This assay has several advantages including its extreme sensitivity and ability to measure attachment over a large dynamic range of MOIs without the need to purify or label input virus. Importantly, this approach can be easily tailored for use with other viruses through the use of virus-specific qRT-PCR reagents. Further, this assay can be modified to permit measurement of particle endocytosis and genome uncoating. In conclusion, we describe a simple, yet robust assay for highly sensitive measurement of arenavirus-cell attachment.

  4. A highly sensitive method for quantification of iohexol

    DEFF Research Database (Denmark)

    Schulz, A.; Boeringer, F.; Swifka, J.

    2014-01-01

    lohexol (1-N,3-N-bis(2,3-dihydroxypropyl)-5-IN-(2,3-dihydroxypropyl) acetamide-2,4,6-triiodobenzene1,3-dicarboxamide) is used for accurate determination of the glomerular filtration rate (GFR) in chronic kidney disease (CKD) patients. However, high iohexol amounts might lead to adverse effects in...... in organisms. In order to minimize the iohexol dosage required for the GFR determination in humans, the development of a sensitive quantification method is essential. Therefore, the objective of our preclinical study was to establish and validate a simple and robust liquid...... with a cut-off of 3 kDa. The chromatographic separation was achieved on an analytical Zorbax SB C18 column. The detection and quantification were performed on a high capacity trap mass spectrometer using positive ion ESI in the multiple reaction monitoring (MRM) mode. Furthermore, using real-time polymerase...

  5. Sensitivity study of reliable, high-throughput resolution metricsfor photoresists

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Christopher N.; Naulleau, Patrick P.

    2007-07-30

    The resolution of chemically amplified resists is becoming an increasing concern, especially for lithography in the extreme ultraviolet (EUV) regime. Large-scale screening and performance-based down-selection is currently underway to identify resist platforms that can support shrinking feature sizes. Resist screening efforts, however, are hampered by the absence of reliable resolution metrics that can objectively quantify resist resolution in a high-throughput fashion. Here we examine two high-throughput metrics for resist resolution determination. After summarizing their details and justifying their utility, we characterize the sensitivity of both metrics to two of the main experimental uncertainties associated with lithographic exposure tools, namely: limited focus control and limited knowledge of optical aberrations. For an implementation at EUV wavelengths, we report aberration and focus limited error bars in extracted resolution of {approx} 1.25 nm RMS for both metrics making them attractive candidates for future screening and down-selection efforts.

  6. Prototyping of an HV-CMOS demonstrator for the High Luminosity-LHC upgrade

    Science.gov (United States)

    Vilella, E.; Benoit, M.; Casanova, R.; Casse, G.; Ferrere, D.; Iacobucci, G.; Peric, I.; Vossebeld, J.

    2016-01-01

    HV-CMOS sensors can offer important advantages in terms of material budget, granularity and cost for large area tracking systems in high energy physics experiments. This article presents the design and simulated results of an HV-CMOS pixel demonstrator for the High Luminosity-LHC. The pixel demonstrator has been designed in the 0.35 μm HV-CMOS process from ams AG and submitted for fabrication through an engineering run. To improve the response of the sensor, different wafers with moderate to high substrate resistivities are used to fabricate the design. The prototype consists of four large analog and standalone matrices with several pixel flavours, which are all compatible for readout with the FE-I4 ASIC. Details about the matrices and the pixel flavours are provided in this article.

  7. Demonstrating Reliable High Level Waste Slurry Sampling Techniques to Support Hanford Waste Processing

    Energy Technology Data Exchange (ETDEWEB)

    Kelly, Steven E.

    2013-11-11

    The Hanford Tank Operations Contractor (TOC) and the Hanford Waste Treatment and Immobilization Plant (WTP) contractor are both engaged in demonstrating mixing, sampling, and transfer system capability using simulated Hanford High-Level Waste (HL W) formulations. This work represents one of the remaining technical issues with the high-level waste treatment mission at Hanford. The TOC must demonstrate the ability to adequately mix and sample high-level waste feed to meet the WTP Waste Acceptance Criteria and Data Quality Objectives. The sampling method employed must support both TOC and WTP requirements. To facilitate information transfer between the two facilities the mixing and sampling demonstrations are led by the One System Integrated Project Team. The One System team, Waste Feed Delivery Mixing and Sampling Program, has developed a full scale sampling loop to demonstrate sampler capability. This paper discusses the full scale sampling loops ability to meet precision and accuracy requirements, including lessons learned during testing. Results of the testing showed that the Isolok(R) sampler chosen for implementation provides precise, repeatable results. The Isolok(R) sampler accuracy as tested did not meet test success criteria. Review of test data and the test platform following testing by a sampling expert identified several issues regarding the sampler used to provide reference material used to judge the Isolok's accuracy. Recommendations were made to obtain new data to evaluate the sampler's accuracy utilizing a reference sampler that follows good sampling protocol.

  8. Label-free and high-sensitive detection for genetic point mutation based on hyperspectral interferometry

    Science.gov (United States)

    Fu, Rongxin; Li, Qi; Zhang, Junqi; Wang, Ruliang; Lin, Xue; Xue, Ning; Su, Ya; Jiang, Kai; Huang, Guoliang

    2016-10-01

    Label free point mutation detection is particularly momentous in the area of biomedical research and clinical diagnosis since gene mutations naturally occur and bring about highly fatal diseases. In this paper, a label free and high sensitive approach is proposed for point mutation detection based on hyperspectral interferometry. A hybridization strategy is designed to discriminate a single-base substitution with sequence-specific DNA ligase. Double-strand structures will take place only if added oligonucleotides are perfectly paired to the probe sequence. The proposed approach takes full use of the inherent conformation of double-strand DNA molecules on the substrate and a spectrum analysis method is established to point out the sub-nanoscale thickness variation, which benefits to high sensitive mutation detection. The limit of detection reach 4pg/mm2 according to the experimental result. A lung cancer gene point mutation was demonstrated, proving the high selectivity and multiplex analysis capability of the proposed biosensor.

  9. Engineered nanoconstructs for the multiplexed and sensitive detection of high-risk pathogens

    Science.gov (United States)

    Seo, Youngmin; Kim, Ji-Eun; Jeong, Yoon; Lee, Kwan Hong; Hwang, Jangsun; Hong, Jongwook; Park, Hansoo; Choi, Jonghoon

    2016-01-01

    Many countries categorize the causative agents of severe infectious diseases as high-risk pathogens. Given their extreme infectivity and potential to be used as biological weapons, a rapid and sensitive method for detection of high-risk pathogens (e.g., Bacillus anthracis, Francisella tularensis, Yersinia pestis, and Vaccinia virus) is highly desirable. Here, we report the construction of a novel detection platform comprising two units: (1) magnetic beads separately conjugated with multiple capturing antibodies against four different high-risk pathogens for simple and rapid isolation, and (2) genetically engineered apoferritin nanoparticles conjugated with multiple quantum dots and detection antibodies against four different high-risk pathogens for signal amplification. For each high-risk pathogen, we demonstrated at least 10-fold increase in sensitivity compared to traditional lateral flow devices that utilize enzyme-based detection methods. Multiplexed detection of high-risk pathogens in a sample was also successful by using the nanoconstructs harboring the dye molecules with fluorescence at different wavelengths. We ultimately envision the use of this novel nanoprobe detection platform in future applications that require highly sensitive on-site detection of high-risk pathogens.

  10. Psychophysical demonstration of bidirectional pain modulation (sensitization and desensitization) by ascending or descending progressions of thermal stimulus intensity.

    Science.gov (United States)

    Vierck, Charles J; Riley, Joseph L; Wong, Fong; King, Christopher D; Mauderli, Andre P

    2010-08-01

    A psychophysical method of response-dependent stimulation presented ascending and descending series of thermal stimulus intensities that maintained an average rating (setpoint) of mild pain (20 on a scale of 0-100) or moderate pain (35). Subjects were presented with alternating series of thermal stimuli that increased until ratings reached or exceeded the setpoint, then decreased until ratings equaled or were less than the setpoint, then increased, etc. Plots of pain intensity ratings differed substantially for series of ascending and descending stimulus intensities. After an ascending series, pain ratings during a descending series were higher than predicted, and after a descending series, pain ratings during an ascending series were lower than predicted. Thus, the nervous system detects and discriminates between ascending and descending trends in stimulus intensity and alters the magnitude of pain sensations in the direction of the trend of increasing or decreasing stimulus intensity. Ascending (sensitizing) trend effects may increase the magnitude of pathological pain in the absence of treatment, and descending (desensitizing) trend effects likely would enhance the efficacy of procedures that reduce pain sensitivity.

  11. Obese and lean Zucker rats demonstrate differential sensitivity to rates of food reinforcement in a choice procedure.

    Science.gov (United States)

    Buckley, Jessica L; Rasmussen, Erin B

    2012-12-25

    The obese Zucker rat carries two recessive fa alleles that result in the expression of an obese phenotype. Obese Zuckers have higher food intake than lean controls in free-feed studies in which rats have ready access to a large amount of one type of food. The present study examined differences in obese and lean Zucker rats using concurrent schedules of reinforcement, which more ecologically models food selection using two food choices that have limited, but generally predictable availability. Lever-pressing of ten lean (Fa/Fa or Fa/fa) and ten obese (fa/fa) Zucker rats was placed under three concurrent variable interval variable interval (conc VI VI) schedules of sucrose and carrot reinforcement, in which the programmed reinforcer ratios for 45-mg food pellets were 5:1, 1:1, and 1:5. Allocation of responses to the two food alternatives was characterized using the generalized matching equation, which allows sensitivity to reinforcer rates (a) and bias toward one alternative (log k) to be quantified. All rats showed a bias toward sucrose, though there were no differences between lean and obese Zucker rats. In addition, obese Zucker rats exhibited higher sensitivity to reinforcement rates than lean rats. This efficient pattern of responding was related to overall higher deliveries of food pellets. Effective matching for food, then, may be another behavioral pattern that contributes to an obese phenotype.

  12. High-Efficiency Dye-Sensitized Solar Cell with Three-Dimensional Photoanode

    KAUST Repository

    Tétreault, Nicolas

    2011-11-09

    Herein, we present a straightforward bottom-up synthesis of a high electron mobility and highly light scattering macroporous photoanode for dye-sensitized solar cells. The dense three-dimensional Al/ZnO, SnO2, or TiO 2 host integrates a conformal passivation thin film to reduce recombination and a large surface-area mesoporous anatase guest for high dye loading. This novel photoanode is designed to improve the charge extraction resulting in higher fill factor and photovoltage for DSCs. An increase in photovoltage of up to 110 mV over state-of-the-art DSC is demonstrated. © 2011 American Chemical Society.

  13. Sensitivities of crop models to extreme weather conditions during flowering period demonstrated for maize and winter wheat in Austria

    DEFF Research Database (Denmark)

    Eitzinger, J; Thaler, S; Schmid, E;

    2013-01-01

    The objective of the present study was to compare the performance of seven different, widely applied crop models in predicting heat and drought stress effects. The study was part of a recent suite of model inter-comparisons initiated at European level and constitutes a component that has been...... lacking in the analysis of sources of uncertainties in crop models used to study the impacts of climate change. There was a specific focus on the sensitivity of models for winter wheat and maize to extreme weather conditions (heat and drought) during the short but critical period of 2 weeks after...... or minimum tillage. Since no comprehensive field experimental data sets were available, a relative comparison of simulated grain yields and soil moisture contents under defined weather scenarios with modified temperatures and precipitation was performed for a 2-week period after flowering. The results may...

  14. Validation of a highly integrated SiPM readout system with a TOF-PET demonstrator

    Science.gov (United States)

    Niknejad, T.; Setayeshi, S.; Tavernier, S.; Bugalho, R.; Ferramacho, L.; Di Francesco, A.; Leong, C.; Rolo, M. D.; Shamshirsaz, M.; Silva, J. C.; Silva, R.; Silveira, M.; Zorraquino, C.; Varela, J.

    2016-12-01

    We have developed a highly integrated, fast and compact readout electronics for Silicon Photomultiplier (SiPM) based Time of Flight Positron Emission Tomography (TOF-PET) scanners. The readout is based on the use of TOP-PET Application Specific Integrated Circuit (PETsys TOFPET1 ASIC) with 64 channels, each with its amplifier, discriminator, Time to Digital Converter (TDC) and amplitude determination using Time Over Threshold (TOT). The ASIC has 25 ps r.m.s. intrinsic time resolution and fully digital output. The system is optimised for high rates, good timing, low power consumption and low cost. For validating the readout electronics, we have built a technical PET scanner, hereafter called ``demonstrator'', with 2'048 SiPM channels. The PET demonstrator has 16 compact Detector Modules (DM). Each DM has two ASICs reading 128 SiPM pixels in one-to-one coupling to 128 Lutetium Yttrium Orthosilicate (LYSO) crystals measuring 3.1 × 3.1 × 15 mm3 each. The data acquisition system for the demonstrator has two Front End Boards type D (FEB/D), each collecting the data of 1'024 channels (8 DMs), and transmitting assembled data frames through a serial link (4.8 Gbps), to a single Data Acquisition (DAQ) board plugged into the Peripheral Component Interconnect Express (PCIe) bus of the data acquisition PC. Results obtained with this PET demonstrator are presented.

  15. Highly sensitive flow-injection chemiluminescence determination of pyrogallol compounds

    Science.gov (United States)

    Kanwal, Shamsa; Fu, Xiaohong; Su, Xingguang

    2009-12-01

    A highly sensitive flow-injection chemiluminescent method for the direct determination of pyrogallol compounds has been developed. Proposed method is based on the enhanced effect of pyrogallol compounds on the chemiluminescence signals of KMnO 4-H 2O 2 system in slightly alkaline medium. Three important pyrogallol compounds, pyrogallic acid, gallic acid and tannic acid, have been detected by this method, and the possible mechanism of the CL reaction is also discussed. The proposed method is simple, convenient, rapid (60 samples h -1), and sensitive, has a linear range of 8 × 10 -10 mol L -1 to 1 × 10 -5 mol L -1, for pyrogallic acid, with a detection limit of 6 × 10 -11 mol L -1, 4 × 10 -8 mol L -1 to 5 × 10 -3 mol L -1 for gallic acid with a detection limit of 9 × 10 -10 mol L -1, and 8 × 10 -8 mol L -1 to 5 × 10 -2 mol L -1 for tannic acid, with a detection limit of 2 × 10 -9 mol L -1, respectively. The relative standard deviation (RSD, n = 15) was 0.8, 1.1 and 1.3% for 5 × 10 -6 mol L -1 pyrogallic acid, gallic acid and tannic acid, respectively. The proposed method was successfully applied to the determination of pyrogallol compounds in tea and coffee samples.

  16. PlanetPol: A Very High Sensitivity Polarimeter

    Science.gov (United States)

    Hough, J. H.; Lucas, P. W.; Bailey, J. A.; Tamura, M.; Hirst, E.; Harrison, D.; Bartholomew-Biggs, M.

    2006-09-01

    We have built and used on several occasions an optical broadband stellar polarimeter, PlanetPol, which employs photoelastic modulators and avalanche photodiodes and achieves a photon-noise-limited sensitivity of at least 1 in 106 in fractional polarization. Observations of a number of polarized standards taken from the literature show that the accuracy of polarization measurements is ~1%. We have developed a method for accurately measuring the polarization of altitude-azimuth mounted telescopes by observing bright nearby stars at different parallactic angles, and we find that the on-axis polarization of the William Herschel Telescope is typically ~15 × 10-6, measured with an accuracy of a few parts in 107. The nearby stars (distance less than 32 pc) are found to have very low polarizations, typically a few ×10-6, indicating that very little interstellar polarization is produced close to the Sun and that their intrinsic polarization is also low. Although the polarimeter can be used for a wide range of astronomy, the very high sensitivity was set by the goal of detecting the polarization signature of unresolved extrasolar planets.

  17. Kinetics of Highly Sensitive Troponin T after Cardiac Surgery

    Directory of Open Access Journals (Sweden)

    Amr S. Omar

    2015-01-01

    Full Text Available Perioperative myocardial infarction (PMI confers a considerable risk in cardiac surgery settings; finding the ideal biomarker seems to be an ideal goal. Our aim was to assess the diagnostic accuracy of highly sensitive troponin T (hsTnT in cardiac surgery settings and to define a diagnostic level for PMI diagnosis. This was a single-center prospective observational study analyzing data from all patients who underwent cardiac surgeries. The primary outcome was the diagnosis of PMI through a specific level. The secondary outcome measures were the lengths of mechanical ventilation (LOV, stay in the intensive care unit (LOSICU, and hospitalization. Based on the third universal definition of PMI, patients were divided into two groups: no PMI (Group I and PMI (Group II. Data from 413 patients were analyzed. Nine patients fulfilled the diagnostic criteria of PMI, while 41 patients were identified with a 5-fold increase in their CK-MB (≥120 U/L. Using ROC analysis, a hsTnT level of 3,466 ng/L or above showed 90% sensitivity and 90% specificity for the diagnosis of PMI. Secondary outcome measures in patients with PMI were significantly prolonged. In conclusion, the hsTnT levels detected here paralleled those of CK-MB and a cut-off level of 3466 ng/L could be diagnostic of PMI.

  18. Development of a New, High Sensitivity 2000 kg Mechanical Balance.

    Science.gov (United States)

    Wang, Jian

    2017-04-13

    Mass measurement of more than 500 kg on an electronic mass comparator has no better repeatability and linearity of measurement for meeting the calibration requirement of over class F1 weights from pharmacy and power generation plants. For this purpose, a new 2000 kg mechanical balance was developed by the National Institute of Metrology (NIM). The advantages of measurement of more than 500 kg on a new 2000 kg mechanical balance are introduced in the paper. In order to obtain high measurement uncertainty, four vertical forces of two sides of beam are measured and used as reference for adjustment of the beam position. Laser displacement sensors in the indication system are more effective for decreasing reading errors caused by human vision. To improve the repeatability and sensitivity of the equipment, a synchronous lifting control is designed for synchronously lifting the beam ends along the vertical direction. A counterweight selection system is developed to get any combination of weights in a limited space. The sensitivity of the new mechanical balance for 2000 kg is more than 1.7 parts in 10(-4) rad/g. The extended uncertainties for the mechanical balance of 500 kg, 1000 kg and 2000 kg are 0.47 g, 1.8 g and 3.5 g respectively.

  19. New application of superconductors: High sensitivity cryogenic light detectors

    Science.gov (United States)

    Cardani, L.; Bellini, F.; Casali, N.; Castellano, M. G.; Colantoni, I.; Coppolecchia, A.; Cosmelli, C.; Cruciani, A.; D'Addabbo, A.; Di Domizio, S.; Martinez, M.; Tomei, C.; Vignati, M.

    2017-02-01

    In this paper we describe the current status of the CALDER project, which is developing ultra-sensitive light detectors based on superconductors for cryogenic applications. When we apply an AC current to a superconductor, the Cooper pairs oscillate and acquire kinetic inductance, that can be measured by inserting the superconductor in a LC circuit with high merit factor. Interactions in the superconductor can break the Cooper pairs, causing sizable variations in the kinetic inductance and, thus, in the response of the LC circuit. The continuous monitoring of the amplitude and frequency modulation allows to reconstruct the incident energy with excellent sensitivity. This concept is at the basis of Kinetic Inductance Detectors (KIDs) that are characterized by natural aptitude to multiplexed read-out (several sensors can be tuned to different resonant frequencies and coupled to the same line), resolution of few eV, stable behavior over a wide temperature range, and ease in fabrication. We present the results obtained by the CALDER collaboration with 2×2 cm2 substrates sampled by 1 or 4 Aluminum KIDs. We show that the performances of the first prototypes are already competitive with those of other commonly used light detectors, and we discuss the strategies for a further improvement.

  20. A highly sensitive fiber Bragg grating diaphragm pressure transducer

    Science.gov (United States)

    Allwood, Gary; Wild, Graham; Lubansky, Alex; Hinckley, Steven

    2015-10-01

    In this work, a novel diaphragm based pressure transducer with high sensitivity is described, including the physical design structure, in-depth analysis of optical response to changes in pressure, and a discussion of practical implementation and limitations. A flat circular rubber membrane bonded to a cylinder forms the body of the transducer. A fiber Bragg grating bonded to the center of the diaphragm structure enables the fractional change in pressure to be determined by analyzing the change in Bragg wavelength of the reflected spectra. Extensive evaluation of the physical properties and optical characteristics of the transducer has been performed through experimentation, and modeling using small deformation theory. The results show the transducer has a sensitivity of 0.116 nm/kPa, across a range of 15 kPa. Ultra-low cost interrogation of the optical signal was achieved through the use of an optically mismatched Bragg grating acting as an edge filter to convert the spectral change into an intensity change. A numerical model of the intensity based interrogation was implemented in order to validate the experimental results. Utilizing this interrogation technique and housing both the sensing and reference Bragg gratings within the main body of the transducer means it is effectively temperature insensitive and easily connected to electronic systems.

  1. Sensitivity of once-shocked, weathered high explosives

    Energy Technology Data Exchange (ETDEWEB)

    Williams, K.L.; Harris, B.W.

    1998-07-01

    Effects caused by stimulating once-shocked, weathered high explosives (OSW-HE) are investigated. The sensitivity of OSW-HE to mechanical stimuli was determined using standard industry tests. Some initial results are given. Pieces of OSW-HE were collected from active and inactive firing sites and from an area surrounding a drop tower at Los Alamos where skid and spigot tests were done. Samples evaluated were cast explosives or plastic bonded explosive (PBX) formulations containing cyclotrimethylenetrinitramine (RDX), cyclotetramethylene tetranitramine (HMX), 2,4,6-trinitrotoluene (TNT), mock or inert HE [tris(beta-chloroethyl)phosphate (CEF)], barium nitrate, cyanuric acid, talc, and Kel-F. Once-shocked, weathered LX-10 Livermore explosive [HMX/Viton A, (95/5 wt %)], PBX 9011 [HMX/Estane, (90/10 wt %)], PBX 9404 [HMX/nitrocellulose, tris(beta-chloroethyl) phosphate, (94/3/3 wt %)], Composition B or cyclotol (TNT/RDX explosives), and PBX 9007 (90% RDX, 9.1% styrene, 0.5% dioctyl phthalate, and 0.45 resin) were subjected to the hammer test, the drop-weight impact sensitivity test, differential thermal analysis (DTA), the spark test, the Henkin`s critical temperature test, and the flame test. Samples were subjected to remote, wet cutting and drilling; remote, liquid-nitrogen-cooled grinding and crushing; and scanning electron microscope (SEM) surface analyses for morphological changes.

  2. Demonstration of a stable high ionic conductivity solid oxide electrolyte. Final report, November 1993-January 1995

    Energy Technology Data Exchange (ETDEWEB)

    Wachsman, E.D.; Pound, B.G.; Jayaweera, P.; Jiang, N.; Lowe, D.

    1996-01-01

    The overall objective of this project is to develop a novel, low-cost, intermediate temperature, solid oxide fuel cell (SOFC) using currently available highly conducting CeO2 electrolytes. The specific technical objective is to demonstrate that a ceria electrolyte can be modified to obtain stability against reduction by H2 at the anode, as evident by a stable open circuit potential that is higher than could be obtained with an unmodifed ceria electrolyte.

  3. Demonstration of high-Q mid-infrared chalcogenide glass-on-silicon resonators.

    Science.gov (United States)

    Lin, Hongtao; Li, Lan; Zou, Yi; Danto, Sylvain; Musgraves, J David; Richardson, Kathleen; Kozacik, Stephen; Murakowski, Maciej; Prather, Dennis; Lin, Pao T; Singh, Vivek; Agarwal, Anu; Kimerling, Lionel C; Hu, Juejun

    2013-05-01

    We demonstrated high-index-contrast, waveguide-coupled As2Se3 chalcogenide glass resonators monolithically integrated on silicon fabricated using optical lithography and a lift-off process. The resonators exhibited a high intrinsic quality factor of 2×10(5) at 5.2 μm wavelength, which is among the highest values reported in on-chip mid-infrared (mid-IR) photonic devices. The resonator can serve as a key building block for mid-IR planar photonic circuits.

  4. Post Irradiation Examination Plan for High-Burnup Demonstration Project Sister Rods

    Energy Technology Data Exchange (ETDEWEB)

    Scaglione, John M [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Montgomery, Rose [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Bevard, Bruce Balkcom [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-04-01

    This test plan describes the experimental work to be implemented by the U.S. Department of Energy (DOE) Office of Nuclear Energy (NE) to characterize high burnup (HBU) spent nuclear fuel (SNF) in conjunction with the High Burnup Dry Storage Cask Research and Development Project and serves to coordinate and integrate the multi-year experimental program to collect and develop data regarding the continued storage and eventual transport of HBU (i.e., >45 GWd/MTU) SNF. The work scope involves the development, performance, technical integration, and oversight of measurements and collection of relevant data, guided by analyses and demonstration of need.

  5. Demonstration of resonant backward Raman amplification in high-density gas-jet plasma

    Science.gov (United States)

    Wu, Z. H.; Zhou, K. N.; Zheng, X. M.; Wei, X. F.; Zhu, Q. H.; Su, J. Q.; Xie, N.; Jiao, Z. H.; Peng, H.; Wang, X. D.; Sun, L.; Li, Q.; Huang, Z.; Zuo, Y. L.

    2016-10-01

    Backward Raman amplification was observed in a 0.7 mm-long high-density gas jet plasma. The 800 nm 30 fs seed pulse was amplified by a factor  ∼28, with an output energy of 2.8 mJ. The output spectra showed that the waveband around 800 nm was significantly amplified. The experimental result demonstrated that the resonant Raman amplification can be realized in high-density plasma against strong plasma instability.

  6. Real time demonstration of high bitrate quantum random number generation with coherent laser light

    CERN Document Server

    Symul, T; Lam, P K; 10.1063/1.3597793

    2011-01-01

    We present a random number generation scheme that uses broadband measurements of the vacuum field contained in the radio-frequency sidebands of a single-mode laser. Even though the measurements may contain technical noise, we show that suitable algorithms can transform the digitized photocurrents into a string of random numbers that can be made arbitrarily correlated with a subset of the quantum fluctuations (high quantum correlation regime) or arbitrarily immune to environmental fluctuations (high environmental immunity). We demonstrate up to 2 Gbps of real time random number generation that were verified using standard randomness tests.

  7. Highly-sensitive magnetic field sensor based on fiber ring laser.

    Science.gov (United States)

    Deng, Ming; Liu, Danhui; Huang, Wei; Zhu, Tao

    2016-01-11

    A highly sensitive magnetic field sensor based on a fiber ring laser has been proposed and experimentally demonstrated. The magnetic field sensor was fabricated by introducing a rotary apparatus modulated by an external magnetic field into the fiber cavity to twist one section of the fiber. Due to the remarkable birefringence change induced into the laser cavity, the beat frequency generated between two polarizations of the laser is sensitive to the variation of applied magnetic field intensity. Experimental results show that the polarization mode beat frequency linearly shifts with the increment of the magnetic field intensity and the sensitivity reaches up to 7.09 KHz/Oe in the range of 0 - 437 Oe. Therefore, it will be a promising candidate for the weak magnetic field applications including military, hazard forecast and biomedical fields.

  8. Sensitivity analysis of distributed parameter elements In high-speed circuit networks

    Institute of Scientific and Technical Information of China (English)

    Lei DOU; Zhiquan WANG

    2007-01-01

    This paper presents an analysis method,based on MacCormack's technique,for the evaluation of the time domain sensitivity of distributed parameter elements in high-speed circuit networks.Sensitivities can be calculated from electrical and physical parameters of the distributed parameter elements.The proposed method is a direct numerical method of time-space discretization and does not require complicated mathematical deductive process.Therefore,it is very convenient to program this method.It can be applied to sensitivity analysis of general transmission lines in linear or nonlinear circuit networks.The proposed method is second-order-accurate.Numerical experiment is presented to demonstrate its accuracy and efficiency.

  9. High Efficiency of Dye-Sensitized Solar Cells

    Institute of Scientific and Technical Information of China (English)

    Liyuan Han

    2005-01-01

    @@ 1Introduction Much attention has been paid to the development of dye-sensitized solar cells (DSCs) during the past decade. In general, a DSC comprises a nanocrystalline titanium dioxide (TiO2) electrode modified with a dye fabricated on a transparent conducting oxide (TCO), a platinum (Pt) counter electrode, and an electrolyte solution with a dissolved iodide ion/tri-iodide ion redox couple between the electrodes. Although a DSC using black dye with high efficiency of 10.4%, which was measured by NREL(U. S. A. ), was reported by Graetzel et al. [1], the efficiency of DSCs should be further improved for practical use in comparison with silicon solar cells.

  10. A nanofiber based artificial electronic skin with high pressure sensitivity and 3D conformability.

    Science.gov (United States)

    Zhong, Weibin; Liu, Qiongzhen; Wu, Yongzhi; Wang, Yuedan; Qing, Xing; Li, Mufang; Liu, Ke; Wang, Wenwen; Wang, Dong

    2016-06-16

    Pressure sensors with 3D conformability are highly desirable components for artificial electronic skin or e-textiles that can mimic natural skin, especially for application in real-time monitoring of human physiological signals. Here, a nanofiber based electronic skin with ultra-high pressure sensitivity and 3D conformability is designed and built by interlocking two elastic patterned nanofibrous membranes. The patterned membrane is facilely prepared by casting conductive nanofiber ink into a silicon mould to form an array of semi-spheroid-like protuberances. The protuberances composed of intertwined elastic POE nanofibers and PPy@PVA-co-PE nanofibers afford a tunable effective elastic modulus that is capable of capturing varied strains and stresses, thereby contributing to a high sensitivity for pressure sensing. This electronic skin-like sensor demonstrates an ultra-high sensitivity (1.24 kPa(-1)) below 150 Pa with a detection limit as low as about 1.3 Pa. The pixelated sensor array and a RGB-LED light are then assembled into a circuit and show a feasibility for visual detection of spatial pressure. Furthermore, a nanofiber based proof-of-concept wireless pressure sensor with a bluetooth module as a signal transmitter is proposed and has demonstrated great promise for wireless monitoring of human physiological signals, indicating a potential for large scale wearable electronic devices or e-skin.

  11. Flexible, highly sensitive pressure sensor with a wide range based on graphene-silk network structure

    Science.gov (United States)

    Liu, Ying; Tao, Lu-Qi; Wang, Dan-Yang; Zhang, Tian-Yu; Yang, Yi; Ren, Tian-Ling

    2017-03-01

    In this paper, a flexible, simple-preparation, and low-cost graphene-silk pressure sensor based on soft silk substrate through thermal reduction was demonstrated. Taking silk as the support body, the device had formed a three-dimensional structure with ordered multi-layer structure. Through a simple and low-cost process technology, graphene-silk pressure sensor can achieve the sensitivity value of 0.4 kPa - 1 , and the measurement range can be as high as 140 kPa. Besides, pressure sensor can have a good combination with knitted clothing and textile product. The signal had good reproducibility in response to different pressures. Furthermore, graphene-silk pressure sensor can not only detect pressure higher than 100 kPa, but also can measure weak body signals. The characteristics of high-sensitivity, good repeatability, flexibility, and comfort for skin provide the high possibility to fit on various wearable electronics.

  12. Incorporation of beams into bossed diaphragm for a high sensitivity and overload micro pressure sensor

    Science.gov (United States)

    Yu, Zhongliang; Zhao, Yulong; Sun, Lu; Tian, Bian; Jiang, Zhuangde

    2013-01-01

    The paper presents a piezoresistive absolute micro pressure sensor, which is of great benefits for altitude location. In this investigation, the design, fabrication, and test of the sensor are involved. By analyzing the stress distribution of sensitive elements using finite element method, a novel structure through the introduction of sensitive beams into traditional bossed diaphragm is built up. The proposed configuration presents its advantages in terms of high sensitivity and high overload resistance compared with the conventional bossed diaphragm and flat diaphragm structures. Curve fittings of surface stress and deflection based on ANSYS simulation results are performed to establish the equations about the sensor. Nonlinear optimization by MATLAB is carried out to determine the structure dimensions. The output signals in both static and dynamic environments are evaluated. Silicon bulk micromachining technology is utilized to fabricate the sensor prototype, and the fabrication process is discussed. Experimental results demonstrate the sensor features a high sensitivity of 11.098 μV/V/Pa in the operating range of 500 Pa at room temperature, and a high overload resistance of 200 times overpressure to promise its survival under atmosphere. Due to the excellent performance above, the sensor can be applied in measuring the absolute micro pressure lower than 500 Pa.

  13. Root cause analysis of limitations of virtual crossmatch for kidney allocation to highly-sensitized patients.

    Science.gov (United States)

    Jani, Vivek; Ingulli, Elizabeth; Mekeel, Kristen; Morris, Gerald P

    2017-02-01

    Efficient allocation of deceased donor organs depends upon effective prediction of immunologic compatibility based on donor HLA genotype and recipient alloantibody profile, referred to as virtual crossmatching (VCXM). VCXM has demonstrated utility in predicting compatibility, though there is reduced efficacy for patients highly sensitized against allogeneic HLA antigens. The recently revised deceased donor kidney allocation system (KAS) has increased transplantation for this group, but with an increased burden for histocompatibility testing and organ sharing. Given the limitations of VCXM, we hypothesized that increased organ offers for highly-sensitized patients could result in a concomitant increase in offers rejected due to unexpectedly positive crossmatch. Review of 645 crossmatches performed for deceased donor kidney transplantation at our center did not reveal a significant increase in positive crossmatches following KAS implementation. Positive crossmatches not predicted by VCXM were concentrated among highly-sensitized patients. Root cause analysis of VCXM failures identified technical limitations of anti-HLA antibody testing as the most significant contributor to VCXM error. Contributions of technical limitations including additive/synergistic antibody effects, prozone phenomenon, and antigens not represented in standard testing panels, were evaluated by retrospective testing. These data provide insight into the limitations of VCXM, particularly those affecting allocation of kidneys to highly-sensitized patients.

  14. High-sensitivity cooled coil system for nuclear magnetic resonance in kHz range.

    Science.gov (United States)

    Lin, Tingting; Zhang, Yi; Lee, Yong-Ho; Krause, Hans-Joachim; Lin, Jun; Zhao, Jing

    2014-11-01

    In several low-field Nuclear Magnetic Resonance (LF-NMR) and surface nuclear magnetic resonance applications, i.e., in the frequency range of kHz, high sensitivity magnetic field detectors are needed. Usually, low-Tc superconducting quantum interference devices (SQUIDs) with a high field sensitivity of about 1 fT/Hz(1/2) are employed as detectors. Considering the flux trapping and operational difficulties associated with low-Tc SQUIDs, we designed and fabricated liquid-nitrogen-cooled Cu coils for NMR detection in the kHz range. A cooled coil system consisting of a 9-cm diameter Cu coil and a low noise preamplifier was systematically investigated and reached a sensitivity of 2 fT/Hz(1/2) at 77 K, which is 3 times better compared to the sensitivity at 300 K. A Q-switch circuit as an essential element for damping the ringing effects of the pickup coil was developed to acquire free induction decay signals of a water sample with minimum loss of signal. Our studies demonstrate that cooled Cu coils, if designed properly, can provide a comparable sensitivity to low-Tc SQUIDs.

  15. Scanning Auger microscopy for high lateral and depth elemental sensitivity

    Energy Technology Data Exchange (ETDEWEB)

    Martinez, E., E-mail: eugenie.martinez@cea.fr [CEA, LETI, MINATEC Campus, 17 rue des Martyrs, 38054 Grenoble Cedex 9 (France); Yadav, P. [CEA, LETI, MINATEC Campus, 17 rue des Martyrs, 38054 Grenoble Cedex 9 (France); Bouttemy, M. [Institut Lavoisier de Versailles, 45 av. des Etats-Unis, 78035 Versailles Cedex (France); Renault, O.; Borowik, Ł.; Bertin, F. [CEA, LETI, MINATEC Campus, 17 rue des Martyrs, 38054 Grenoble Cedex 9 (France); Etcheberry, A. [Institut Lavoisier de Versailles, 45 av. des Etats-Unis, 78035 Versailles Cedex (France); Chabli, A. [CEA, LETI, MINATEC Campus, 17 rue des Martyrs, 38054 Grenoble Cedex 9 (France)

    2013-12-15

    Highlights: •SAM performances and limitations are illustrated on real practical cases such as the analysis of nanowires and nanodots. •High spatial elemental resolution is shown with the analysis of reference semiconducting Al{sub 0.7}Ga{sub 0.3}As/GaAs multilayers. •High in-depth elemental resolution is also illustrated. Auger depth profiling with low energy ion beams allows revealing ultra-thin layers (∼1 nm). •Analysis of cross-sectional samples is another effective approach to obtain in-depth elemental information. -- Abstract: Scanning Auger microscopy is currently gaining interest for investigating nanostructures or thin multilayers stacks developed for nanotechnologies. New generation Auger nanoprobes combine high lateral (∼10 nm), energy (0.1%) and depth (∼2 nm) resolutions thus offering the possibility to analyze the elemental composition as well as the chemical state, at the nanometre scale. We report here on the performances and limitations on practical examples from nanotechnology research. The spatial elemental sensitivity is illustrated with the analysis of Al{sub 0.7}Ga{sub 0.3}As/GaAs heterostructures, Si nanowires and SiC nanodots. Regarding the elemental in-depth composition, two effective approaches are presented: low energy depth profiling to reveal ultra-thin layers (∼1 nm) and analysis of cross-sectional samples.

  16. A frequency and sensitivity tunable microresonator array for high-speed quantum processor readout

    CERN Document Server

    Whittaker, J D; Volkmann, M H; Spear, P; Altomare, F; Berkley, A J; Bumble, B; Bunyk, P; Day, P K; Eom, B H; Harris, R; Hilton, J P; Hoskinson, E; Johnson, M W; Kleinsasser, A; Ladizinsky, E; Lanting, T; Oh, T; Perminov, I; Tolkacheva, E; Yao, J

    2015-01-01

    Superconducting microresonators have been successfully utilized as detection elements for a wide variety of applications. With multiplexing factors exceeding 1,000 detectors per transmission line, they are the most scalable low-temperature detector technology demonstrated to date. For high-throughput applications, fewer detectors can be coupled to a single wire but utilize a larger per-detector bandwidth. For all existing designs, fluctuations in fabrication tolerances result in a non-uniform shift in resonance frequency and sensitivity, which ultimately limits the efficiency of band-width utilization. Here we present the design, implementation, and initial characterization of a superconducting microresonator readout integrating two tunable inductances per detector. We demonstrate that these tuning elements provide independent control of both the detector frequency and sensitivity, allowing us to maximize the transmission line bandwidth utilization. Finally we discuss the integration of these detectors in a m...

  17. Salt sensitivity of the morphometry of Artemia franciscana during development: a demonstration of 3D critical windows.

    Science.gov (United States)

    Mueller, Casey A; Willis, Eric; Burggren, Warren W

    2016-02-01

    A 3D conceptual framework of 'critical windows' was used to examine whether the morphometry of Artemia franciscana is altered by salinity exposure during certain key periods of development. Artemia franciscana were hatched at 20 ppt (designated control salinity) and were then exposed to 10, 30, 40 or 50 ppt either chronically (days 1-15) or only on days 1-6, 7-9, 10-12 or 13-15. On day 15, maturity was assessed and morphometric characteristics, including mass, total body length, tail length and width, length of the third swimming appendage and eye diameter, were measured. Maturation and morphometry on day 15 were influenced by the exposure window and salinity dose. Artemia franciscana were generally larger following exposure to 10 and 40 ppt during days 1-6 and 7-9 when compared with days 10-12 and 13-15, in part due to a higher percentage of mature individuals. Exposure to different salinities on days 1-6 produced the greatest differences in morphometry, and thus this appears to be a period in development when A. franciscana is particularly sensitive to salinity. Viewing the developmental window as three-dimensional allowed more effective visualization of the complex interactions between exposure window, stressor dose and the magnitude of morphometric changes in A. franciscana.

  18. Laser-engraved carbon nanotube paper for instilling high sensitivity, high stretchability, and high linearity in strain sensors

    KAUST Repository

    Xin, Yangyang

    2017-06-29

    There is an increasing demand for strain sensors with high sensitivity and high stretchability for new applications such as robotics or wearable electronics. However, for the available technologies, the sensitivity of the sensors varies widely. These sensors are also highly nonlinear, making reliable measurement challenging. Here we introduce a new family of sensors composed of a laser-engraved carbon nanotube paper embedded in an elastomer. A roll-to-roll pressing of these sensors activates a pre-defined fragmentation process, which results in a well-controlled, fragmented microstructure. Such sensors are reproducible and durable and can attain ultrahigh sensitivity and high stretchability (with a gauge factor of over 4.2 × 10(4) at 150% strain). Moreover, they can attain high linearity from 0% to 15% and from 22% to 150% strain. They are good candidates for stretchable electronic applications that require high sensitivity and linearity at large strains.

  19. Sensitivity of Satellite-Based Skin Temperature to Different Surface Emissivity and NWP Reanalysis Sources Demonstrated Using a Single-Channel, Viewing-Angle-Corrected Retrieval Algorithm

    Science.gov (United States)

    Scarino, B. R.; Minnis, P.; Yost, C. R.; Chee, T.; Palikonda, R.

    2015-12-01

    Single-channel algorithms for satellite thermal-infrared- (TIR-) derived land and sea surface skin temperature (LST and SST) are advantageous in that they can be easily applied to a variety of satellite sensors. They can also accommodate decade-spanning instrument series, particularly for periods when split-window capabilities are not available. However, the benefit of one unified retrieval methodology for all sensors comes at the cost of critical sensitivity to surface emissivity (ɛs) and atmospheric transmittance estimation. It has been demonstrated that as little as 0.01 variance in ɛs can amount to more than a 0.5-K adjustment in retrieved LST values. Atmospheric transmittance requires calculations that employ vertical profiles of temperature and humidity from numerical weather prediction (NWP) models. Selection of a given NWP model can significantly affect LST and SST agreement relative to their respective validation sources. Thus, it is necessary to understand the accuracies of the retrievals for various NWP models to ensure the best LST/SST retrievals. The sensitivities of the single-channel retrievals to surface emittance and NWP profiles are investigated using NASA Langley historic land and ocean clear-sky skin temperature (Ts) values derived from high-resolution 11-μm TIR brightness temperature measured from geostationary satellites (GEOSat) and Advanced Very High Resolution Radiometers (AVHRR). It is shown that mean GEOSat-derived, anisotropy-corrected LST can vary by up to ±0.8 K depending on whether CERES or MODIS ɛs sources are used. Furthermore, the use of either NOAA Global Forecast System (GFS) or NASA Goddard Modern-Era Retrospective Analysis for Research and Applications (MERRA) for the radiative transfer model initial atmospheric state can account for more than 0.5-K variation in mean Ts. The results are compared to measurements from the Surface Radiation Budget Network (SURFRAD), an Atmospheric Radiation Measurement (ARM) Program ground

  20. Alemtuzumab induction therapy in highly sensitized kidney transplant recipients

    Institute of Scientific and Technical Information of China (English)

    L(U) Tie-ming; YANG Shun-liang; WU Wei-zhen; TAN Jian-ming

    2011-01-01

    Background Immunosuppression for immunologically high-risk kidney transplant patients usually involves antithymocyte globulin induction with triple drug maintenance therapy. Alemtuzumab, a humanized anti-CD52 antibody,was expected to be a promising induction therapy agent for kidney transplantation. However, currently no consensus is available about its efficacy and safety. This study aimed to evaluate the efficacy and safety of alemtuzumab as immune induction therapy in highly sensitized kidney transplant recipients.Methods In this prospective, open-label, randomized, controlled trial, we enrolled 23 highly immunological risk patients (panel reactive antibody >20%). They were divided into two groups: alemtuzumab group (trial group) and anti-thymocyte globulin (ATG) group (control group). Patients in the alemtuzumab group received intravenous alemtuzumab (15 mg) as a single dose before reperfusion. At the 24th hour post-operation, another dosage of alemtuzumab (15 mg) was given.The control group received a bolus of rabbit ATG (9 mg/kg), which was given 2 hours before kidney transplantation and lasted until the removal of vascular clamps when the anastomoses were completed. Maintenance immunosuppression in both groups comprised standard triple therapy consisting of tacrolimus, prednisone, and mycophenolate mofetil (MMF).Acute rejection (AR) and infection episodes were recorded, and kidney function was monitored during a 2-year follow-up.χ2 test, t test and Kaplan-Meier analysis were performed with SPSS17.0 software.Results Median follow-up was 338 days. In both the alemtuzumab group and ATG group, creatinine and blood urea nitrogen values in surviving recipients were similar (P >0.05). White blood cell counts were significantly reduced in the alemtuzumab group for the most time points up to 6 months (P <0.05). One patient receiving alemtuzumab died for acute myocardial infarction at the 65th day post-operation. Two ATG patients died for severe pulmonary

  1. Purification of ethanol for highly sensitive self-assembly experiments

    Directory of Open Access Journals (Sweden)

    Kathrin Barbe

    2014-08-01

    Full Text Available Ethanol is the preferred solvent for the formation of self-assembled monolayers (SAMs of thiolates on gold. By applying a thin film sensor system, we could demonstrate that even the best commercial qualities of ethanol contain surface-active contaminants, which can compete with the desired thiolates for surface sites. Here we present that gold nanoparticles deposited onto zeolite X can be used to remove these contaminants by chemisorption. This nanoparticle-impregnated zeolite does not only show high capacities for surface-active contaminants, such as thiols, but can be fully regenerated via a simple pyrolysis protocol.

  2. Demonstration of a rapidly-swept external cavity quantum cascade laser for rapid and sensitive quantification of chemical mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Brumfield, Brian E.; Taubman, Matthew S.; Phillips, Mark C.

    2016-02-13

    A rapidly-swept external cavity quantum cascade laser (ECQCL) system for fast open-path quantification of multiple chemicals and mixtures is presented. The ECQCL system is swept over its entire tuning range (>100 cm-1) at frequencies up to 200 Hz. At 200 Hz the wavelength tuning rate and spectral resolution are 2x104 cm-1/sec and < 0.2 cm-1, respectively. The capability of the current system to quantify changes in chemical concentrations on millesecond timescales is demonstrated at atmospheric pressure using an open-path multi-pass cell. The detection limits for chemicals ranged from ppb to ppm levels depending on the absorption cross-section.

  3. Experimental Demonstration of a Highly Efficient Fan-out Polarization Grating.

    Science.gov (United States)

    Wan, Chenhao; Chen, Jian; Tang, Xiahui; Zhan, Qiwen

    2016-12-23

    Highly efficient fan-out elements are crucial in coherent beam combining architectures especially in coupled laser resonators where the beam passes through the fan-out element twice per round trip. Although the theoretical efficiency is usually less than 86%, the Dammann gratings are ubiquitously utilized in a variety of types of coherent beam combining systems due to the facile design and fabrication. In the current paper, we experimentally demonstrate a highly efficient fan-out polarization grating. It is the first time to our knowledge that all the three space-variant parameters of a polarization grating are simultaneously optimized to achieve the function of multi-beam splitting. Besides the high fan-out efficiency, the ability to control the polarization states of individual split beams is another advantage of this polarization grating. The novel polarization grating is promising to find applications in laser beam combining systems.

  4. Demonstration of a High Open-Circuit Voltage GaN Betavoltaic Microbattery

    Institute of Scientific and Technical Information of China (English)

    CHENG Zai-Jun; SAN Hai-Sheng; CHEN Xu-Yuan; LIU Bo; FENG Zhi-Hong

    2011-01-01

    A high open-circuit voltage betavoltaic microbattery based on a GaN p-i-n diode is demonstrated.Under the irradiation of a 4× 4mm2 planar solid 63Ni source with an activity of 2mCi,the open-circuit voltage Voc of the fabricated single 2x2mm2 cell reaches as high as 1.62 V,the short-circuit current density Jsc is measured to be 16nA/cm2.The microbattery has a fill factor of 55%,and the energy conversion effciency of beta radiation into electricity reaches to 1.13%.The results suggest that GaN is a highly promising potential candidate for long-life betavoltaic microbatteries used as power supplies for microelectromechanical system devices.

  5. Demonstration of Cathode Emittance Dominated High Bunch Charge Beams in a DC gun-based Photoinjector

    CERN Document Server

    Gulliford, Colwyn; Bazarov, Ivan; Dunham, Bruce; Cultrera, Luca

    2015-01-01

    We present the results of transverse emittance and longitudinal current profile measurements of high bunch charge (greater than or equal to 100 pC) beams produced in the DC gun-based Cornell Energy Recovery Linac Photoinjector. In particular, we show that the cathode thermal and core beam emittances dominate the final 95% and core emittance measured at 9-9.5 MeV. Additionally, we demonstrate excellent agreement between optimized 3D space charge simulations and measurement, and show that the quality of the transverse laser distribution limits the optimal simulated and measured emittances. These results, previously thought achievable only with RF guns, demonstrate that DC gun based photoinjectors are capable of delivering beams with sufficient single bunch charge and beam quality suitable for many current and next generation accelerator projects such as Energy Recovery Linacs (ERLs) and Free Electron Lasers (FELs).

  6. Demonstration of ultra-high-Q small mode volume toroid microcavities on a chip

    CERN Document Server

    Kippenberg, T J; Vahala, K J

    2004-01-01

    Optical microcavities confine light spatially and temporally and find application in a wide range of fundamental and applied studies. In many areas, the microcavity figure of merit is not only determined by photon lifetime (or the equivalent quality-factor, Q), but also by simultaneous achievement of small mode volume V . Here we demonstrate ultra-high Q-factor small mode volume toroid microcavities on-a-chip, which exhibit a Q/V factor of more than $10^{6}(\\lambda/n)^{-3}$. These values are the highest reported to date for any chip-based microcavity. A corresponding Purcell factor in excess of 200 000 and a cavity finesse of $2.8\\times10^{6}$ is achieved, demonstrating that toroid microcavities are promising candidates for studies of the Purcell effect, cavity QED or biochemical sensing

  7. Demonstration of ultra-high-Q small mode volume toroid microcavities on a chip

    Science.gov (United States)

    Kippenberg, T. J.; Spillane, S. M.; Vahala, K. J.

    2004-12-01

    Optical microcavities confine light spatially and temporally and find application in a wide range of fundamental and applied studies. In many areas, the microcavity figure of merit is not only determined by photon lifetime (or the equivalent quality-factor, Q), but also by simultaneous achievement of small mode volume (V). Here we demonstrate ultra-high Q-factor small mode volume toroid microcavities on-a-chip, which exhibit a Q/V factor of more than 106(λ/n)-3. These values are the highest reported to date for any chip-based microcavity. A corresponding Purcell factor in excess of 200 000 and a cavity finesse of >2.8×106 is achieved, demonstrating that toroid microcavities are promising candidates for studies of the Purcell effect, cavity QED or biochemical sensing.

  8. Innovative nanostructures for highly sensitive vibrational biosensing (Conference Presentation)

    Science.gov (United States)

    Popp, Juergen; Mayerhöfer, Thomas; Cialla-May, Dana; Weber, Karina; Huebner, Uwe

    2016-03-01

    Employing vibrational spectroscopy (IR-absorption and Raman spectroscopy) allows for the labelfree detection of molecular specific fingerprints of inorganic, organic and biological substances. The sensitivity of vibrational spectroscopy can be improved by several orders of magnitude via the application of plasmonic active surfaces. Within this contribution we will discuss two such approaches, namely surface enhanced Raman spectroscopy (SERS) as well as surface enhanced IR absorption (SEIRA). It will be shown that SERS using metal colloids as SERS active substrate in combination with a microfluidic lab-on-a-chip (LOC) device enables high throughput and reproducible measurements with highest sensitivity and specificity. The application of such a LOC-SERS approach for therapeutic drug monitoring (e.g. quantitative detection of antibiotics in a urine matrix) will be presented. Furthermore, we will introduce innovative bottom-up strategies to prepare SERS-active nanostructures coated with a lipophilic sensor layer as one-time use SERS substrates for specific food analysis (e.g. quantitative detection of toxic food colorants). The second part of this contribution presents a slit array metamaterial perfect absorber for IR sensing applications consisting of a dielectric layer sandwiched between two metallic layers of which the upper layer is perforated with a periodic array of slits. Light-matter interaction is greatly amplified in the slits, where also the analyte is concentrated, as the surface of the substrate is covered by a thin silica layer. Thus, already small concentrations of analytes down to a monolayer can be detected by refractive index sensing and identified by their spectral fingerprints with a standard mid-infrared lab spectrometer.

  9. Flexible visible-infrared metamaterials and their applications in highly sensitive chemical and biological sensing.

    Science.gov (United States)

    Xu, Xinlong; Peng, Bo; Li, Dehui; Zhang, Jun; Wong, Lai Mun; Zhang, Qing; Wang, Shijie; Xiong, Qihua

    2011-08-10

    Flexible electronic and photonic devices have been demonstrated in the past decade, with significant promise in low-cost, light-weighted, transparent, biocompatible, and portable devices for a wide range of applications. Herein, we demonstrate a flexible metamaterial (Metaflex)-based photonic device operating in the visible-IR regime, which shows potential applications in high sensitivity strain, biological and chemical sensing. The metamaterial structure, consisting of split ring resonators (SRRs) of 30 nm thick Au or Ag, has been fabricated on poly(ethylene naphthalate) substrates with the least line width of ∼30 nm by electron beam lithography. The absorption resonances can be tuned from middle IR to visible range. The Ag U-shaped SRRs metamaterials exhibit an electric resonance of ∼542 nm and a magnetic resonance of ∼756 nm. Both the electric and magnetic resonance modes show highly sensitive responses to out-of-plane bending strain, surrounding dielectric media, and surface chemical environment. Due to the electric and magnetic field coupling, the magnetic response gives a sensitivity as high as 436 nm/RIU. Our Metaflex devices show superior responses with a shift of magnetic resonance of 4.5 nm/nM for nonspecific bovine serum albumin protein binding and 65 nm for a self-assembled monolayer of 2-naphthalenethiol, respectively, suggesting considerable promise in flexible and transparent photonic devices for chemical and biological sensing.

  10. Conducting polymer nanofibers for high sensitivity detection of chemical analytes.

    Science.gov (United States)

    Kumar, Abhishek; Leshchiner, Ignaty; Nagarajan, Subhalakshmi; Nagarajan, Ramaswamy; Kumar, Jayant

    2008-03-01

    Possessing large surface area materials is vital for high sensitivity detection of analyte. We report a novel, inexpensive and simple technique to make high surface area sensing interfaces using electrospinning. Conducting polymers (CP) nanotubes were made by electrospinning a solution of a catalyst (ferric tosylate) along with poly (lactic acid), which is an environment friendly biodegradable polymer. Further vapor deposition polymerization of the monomer ethylenedioxy thiophene (EDOT) on the nanofiber surface yielded poly (EDOT) covered fibers. X-ray photo electron spectroscopy (XPS) study reveals the presence of PEDOT predominantly on the surface of nanofibers. Conducting nanotubes had been received by dissolving the polymer in the fiber core. By a similar technique we had covalently incorporated fluorescent dyes on the nanofiber surface. The materials obtained show promise as efficient sensing elements. UV-Vis characterization confirms the formation of PEDOT nanotubes and incorporation of chromophores on the fiber surface. The morphological characterization was carried out using scanning electron microscopy (SEM) and transmission electron microscopy (TEM).

  11. Tolosa-Hunt syndrome. A CT demonstration of a high-density lesion

    Energy Technology Data Exchange (ETDEWEB)

    Hirata, Kazuhiro; Muramoto, Masato; Chiba, Yasuhiro; Yagishita, Saburo

    1987-08-01

    CT scan studies of the Tolosa-Hunt syndrome have seldom been reported; positive abnormal findings are especially rare. A 36-year-old man suffered from steady, boring pain behind the left eye for one year. On admission he complained of diplopia on the right lateral gaze and hypesthesea of the first and second divisions of the left trigeminal nerve. A CT scan demonstrated a slightly high-density lesion, which was homogeneously enhanced, in the left cavernous portion and the superior orbital fissure. Carotid angiograms demonstrated no abnormal finding, and the cavernous sinus venography revealed no filling of the left cavernous sinus. A left front-temporal craniotomy was performed for the purpose of biopsy. A histological examination revealed non-specific focal granulomatous pachymeningitis. He responded dramatically to systemic steroid therapy, and he became pain-free by the fourth post-operative day. This diagnosis of the Tolosa-Hunt syndrome was confirmed both clinically and etiologically; however, the CT scan after the treatment demonstrated no definitive change in the lesion. The CT scan is useful for the diagnosis of this syndrome. Considering the stage of the illness, it is possible that the high-resolution CT scan can demonstrate this lesion with an advanced technique. The clinical diagnosis is almost easy, and surgical exploration is not always necessary if there is a prompt remission upon systemic steroid therapy. However, this syndrome should be differentiated from the other causes by appropriate examinations. Some cases similar to ours, especially suspected tumors, need surgical exploration because these angiographic findings are not specific.

  12. High sensitivity contrast enhanced optical coherence tomography for functional in vivo imaging

    Science.gov (United States)

    Liba, Orly; SoRelle, Elliott D.; Sen, Debasish; de la Zerda, Adam

    2017-02-01

    In this study, we developed and applied highly-scattering large gold nanorods (LGNRs) and custom spectral detection algorithms for high sensitivity contrast-enhanced optical coherence tomography (OCT). We were able to detect LGNRs at a concentration as low as 50 pM in blood. We used this approach for noninvasive 3D imaging of blood vessels deep in solid tumors in living mice. Additionally, we demonstrated multiplexed imaging of spectrally-distinct LGNRs that enabled observations of functional drainage in lymphatic networks. This method, which we call MOZART, provides a platform for molecular imaging and characterization of tissue noninvasively at cellular resolution.

  13. A High-Sensitivity Tunable Two-Beam Fiber-Coupled High-Density Magnetometer with Laser Heating.

    Science.gov (United States)

    Savukov, Igor; Boshier, Malcolm G

    2016-10-13

    Atomic magnetometers (AM) are finding many applications in biomagnetism, national security, industry, and science. Fiber-coupled (FC) designs promise to make them compact and flexible for operation. Most FC designs are based on a single-beam configuration or electrical heating. Here, we demonstrate a two-beam FC AM with laser heating that has 5 fT/Hz(1/2) sensitivity at low frequency (50 Hz), which is higher than that of other fiber-coupled magnetometers and can be improved to the sub-femtotesla level. This magnetometer is widely tunable from DC to very high frequencies (as high as 100 MHz; the only issue might be the application of a suitable uniform and stable bias field) with a sensitivity under 10 fT/Hz(1/2) and can be used for magneto-encephalography (MEG), magneto-cardiography (MCG), underground communication, ultra-low MRI/NMR, NQR detection, and other applications.

  14. A High-Sensitivity Tunable Two-Beam Fiber-Coupled High-Density Magnetometer with Laser Heating

    Directory of Open Access Journals (Sweden)

    Igor Savukov

    2016-10-01

    Full Text Available Atomic magnetometers (AM are finding many applications in biomagnetism, national security, industry, and science. Fiber-coupled (FC designs promise to make them compact and flexible for operation. Most FC designs are based on a single-beam configuration or electrical heating. Here, we demonstrate a two-beam FC AM with laser heating that has 5 fT/Hz1/2 sensitivity at low frequency (50 Hz, which is higher than that of other fiber-coupled magnetometers and can be improved to the sub-femtotesla level. This magnetometer is widely tunable from DC to very high frequencies (as high as 100 MHz; the only issue might be the application of a suitable uniform and stable bias field with a sensitivity under 10 fT/Hz1/2 and can be used for magneto-encephalography (MEG, magneto-cardiography (MCG, underground communication, ultra-low MRI/NMR, NQR detection, and other applications.

  15. Demonstration of high-speed multi-user multi-carrier CDMA visible light communication

    Science.gov (United States)

    Yang, Chao; Wang, Yuanquan; Wang, Yiguang; Huang, Xingxing; Chi, Nan

    2015-02-01

    We experimentally demonstrated a high-speed multi-user multi-carrier code-division multiple access (MC-CDMA) visible light communication (VLC) system. By employing a commercially available red light emitting diode (LED) and an avalanche photo diode (APD), we achieved a 16-user VLC system enabled by MC-CDMA, pre- and post-equalization, with an overall bit rate of 750 Mb/s over 1.5 m free-space transmission. The measured bit error ratio (BER) of each user is below the 7% pre-forward-error-correction (pre-FEC) threshold of 3.8×10-3.

  16. High sensitivity resonance frequency measurements of individualmicro-cantilevers using fiber optical interferometry

    Energy Technology Data Exchange (ETDEWEB)

    Duden, Thomas; Radmilovic, Velimir

    2009-03-04

    We describe a setup for the resonance frequency measurement of individual microcantilevers. The setup displays both high spatial selectivity and sensitivity to specimen vibrations by utilizing a tapered uncoated fiber tip. The high sensitivity to specimen vibrations is achieved by the combination of optical Fabry-Perot interferometry and narrow band RF detection. Wave fronts reflected on the specimen and on the fiber tip end face interfere, thus no reference plane on the specimen is needed, as demonstrated with the example of freestanding silicon nitride micro-cantilevers. The resulting system is integrated in a DB-235 dual beam FIB system, thereby allowing the measurement of micro-cantilever responses during observation in SEM mode. The FIB was used to modify the optical fiber tip. At this point of our RF system development, the microcantilevers used to characterize the detector were not modified in situ.

  17. High-refractive-index transparent coatings enhance the optical fiber cladding modes refractometric sensitivity.

    Science.gov (United States)

    Renoirt, Jean-Michel; Zhang, Chao; Debliquy, Marc; Olivier, Marie-Georges; Mégret, Patrice; Caucheteur, Christophe

    2013-11-18

    The high order cladding modes of standard single mode optical fiber appear in quasi-degenerate pairs corresponding to mostly radially or mostly azimuthally polarized light. In this work, we demonstrate that, in the presence of a high-refractive-index coating surrounding the fiber outer surface, the wavelength spacing between the orthogonally polarized cladding modes families can be drastically enhanced. This behavior can be advantageously exploited for refractometric sensing purposes. For this, we make use of tilted fiber Bragg gratings (TFBGs) as spectral combs to excite the orthogonally polarized cladding modes families separately. TFBGs were coated with a nanometer-scale transparent thin film characterized by a refractive index value close to 1.9, well higher than the one of pure silica. This coating brings two important assets: an ~8-fold increase in refractometric sensitivity is obtained in comparison to bare TFBGs while the sensitivity is extended to surrounding refractive index (SRI) values above 1.45.

  18. Highly sensitive and multiplexed platforms for allergy diagnostics

    Science.gov (United States)

    Monroe, Margo R.

    Allergy is a disorder of the immune system caused by an immune response to otherwise harmless environmental allergens. Currently 20% of the US population is allergic and 90% of pediatric patients and 60% of adult patients with asthma have allergies. These percentages have increased by 18.5% in the past decade, with predicted similar trends for the future. Here we design sensitive, multiplexed platforms to detect allergen-specific IgE using the Interferometric Reflectance Imaging Sensor (IRIS) for various clinical settings. A microarray platform for allergy diagnosis allows for testing of specific IgE sensitivity to a multitude of allergens, while requiring only small volumes of patient blood sample. However, conventional fluorescent microarray technology is limited by i) the variation of probe immobilization, which hinders the ability to make quantitative, assertive, and statistically relevant conclusions necessary in immunodiagnostics and ii) the use of fluorophore labels, which is not suitable for some clinical applications due to the tendency of fluorophores to stick to blood particulates and require daily calibration methods. This calibrated fluorescence enhancement (CaFE) method integrates the low magnification modality of IRIS with enhanced fluorescence sensing in order to directly correlate immobilized probe (major allergens) density to allergen-specific IgE in patient serum. However, this platform only operates in processed serum samples, which is not ideal for point of care testing. Thus, a high magnification modality of IRIS was adapted as an alternative allergy diagnostic platform to automatically discriminate and size single nanoparticles bound to specific IgE in unprocessed, characterized human blood and serum samples. These features make IRIS an ideal candidate for clinical and diagnostic applications, such a POC testing. The high magnification (nanoparticle counting) modality in conjunction with low magnification of IRIS in a combined instrument

  19. An innovative demonstration of high power density in a compact MDH (magnetohydrodynamic) generator

    Science.gov (United States)

    Schmidt, H. J.; Lineberry, J. T.; Chapman, J. N.

    1990-06-01

    The present program was conducted by the University of Tennessee Space Institute (UTSI). It was by its nature a high risk experimental program to demonstrate the feasibility of high power density operation in a laboratory scale combustion driven MHD generator. Maximization of specific energy was not a consideration for the present program, but the results have implications in this regard by virtue of high energy fuel used. The power density is the ratio of the electrical energy output to the internal volume of the generator channel. The MHD process is a volumetric process and the power density is therefore a direct measure of the compactness of the system. Specific energy, is the ratio of the electrical energy output to consumable energy used for its production. The two parameters are conceptually interrelated. To achieve high power density and implied commensurate low system volume and weight, it was necessary to use an energetic fuel. The high energy fuel of choice was a mixture of powdered aluminum and carbon seeded with potassium carbonate and burned with gaseous oxygen. The solid fuel was burned in a hybrid combustion scheme wherein the fuel was cast within a cylindrical combustor in analogy with a solid propellant rocket motor. Experimental data is limited to gross channel output current and voltage, magnetic field strength, fuel and oxidizer flow rates, flow train external temperatures and combustor pressure. Similarly, while instantaneous oxidizer flow rates were measured, only average fuel consumption based on pre and post test component weights and dimensions was possible.

  20. High sensitivity of Giardia duodenalis to tetrahydrolipstatin (orlistat in vitro.

    Directory of Open Access Journals (Sweden)

    Juliane Hahn

    Full Text Available Giardiasis, a gastrointestinal disease caused by Giardia duodenalis, is currently treated mainly with nitroimidazoles, primarily metronidazole (MTZ. Treatment failure rates of up to 20 percent reflect the compelling need for alternative treatment options. Here, we investigated whether orlistat, a drug approved to treat obesity, represents a potential therapeutic agent against giardiasis. We compared the growth inhibitory effects of orlistat and MTZ on a long-term in vitro culture adapted G. duodenalis strain, WB-C6, and on a new isolate, 14-03/F7, from a patient refractory to MTZ treatment using a resazurin assay. The giardiacidal concentration of the drugs and their combined in vitro efficacy was determined by median-effect analysis. Morphological changes after treatment were analysed by light and electron microscopy. Orlistat inhibited the in vitro growth of G. duodenalis at low micromolar concentrations, with isolate 14-03/F7 (IC50(24h = 2.8 µM being more sensitive than WB-C6 (IC50(24h = 6.2 µM. The effect was significantly more potent compared to MTZ (IC50(24h = 4.3 µM and 11.0 µM, respectively and led to specific undulated morphological alterations on the parasite surface. The giardiacidal concentration of orlistat was >14 µM for 14-03/F7 and >43 µM for WB-C6, respectively. Importantly, the combination of both drugs revealed no interaction on their inhibitory effects. We demonstrate that orlistat is a potent inhibitor of G. duodenalis growth in vitro and kills parasites at concentrations achievable in the gut by approved treatment regimens for obesity. We therefore propose to investigate orlistat in controlled clinical studies as a new drug in giardiasis.

  1. High sensitivity of Giardia duodenalis to tetrahydrolipstatin (orlistat) in vitro.

    Science.gov (United States)

    Hahn, Juliane; Seeber, Frank; Kolodziej, Herbert; Ignatius, Ralf; Laue, Michael; Aebischer, Toni; Klotz, Christian

    2013-01-01

    Giardiasis, a gastrointestinal disease caused by Giardia duodenalis, is currently treated mainly with nitroimidazoles, primarily metronidazole (MTZ). Treatment failure rates of up to 20 percent reflect the compelling need for alternative treatment options. Here, we investigated whether orlistat, a drug approved to treat obesity, represents a potential therapeutic agent against giardiasis. We compared the growth inhibitory effects of orlistat and MTZ on a long-term in vitro culture adapted G. duodenalis strain, WB-C6, and on a new isolate, 14-03/F7, from a patient refractory to MTZ treatment using a resazurin assay. The giardiacidal concentration of the drugs and their combined in vitro efficacy was determined by median-effect analysis. Morphological changes after treatment were analysed by light and electron microscopy. Orlistat inhibited the in vitro growth of G. duodenalis at low micromolar concentrations, with isolate 14-03/F7 (IC50(24h) = 2.8 µM) being more sensitive than WB-C6 (IC50(24h) = 6.2 µM). The effect was significantly more potent compared to MTZ (IC50(24h) = 4.3 µM and 11.0 µM, respectively) and led to specific undulated morphological alterations on the parasite surface. The giardiacidal concentration of orlistat was >14 µM for 14-03/F7 and >43 µM for WB-C6, respectively. Importantly, the combination of both drugs revealed no interaction on their inhibitory effects. We demonstrate that orlistat is a potent inhibitor of G. duodenalis growth in vitro and kills parasites at concentrations achievable in the gut by approved treatment regimens for obesity. We therefore propose to investigate orlistat in controlled clinical studies as a new drug in giardiasis.

  2. Demonstration of a Low-Lift Heat Pump for High-Power Spacecraft Thermal Control

    Science.gov (United States)

    Grzyll, Lawrence R.

    2006-01-01

    This paper describes the development and demonstration of a prototype low-lift heat pump for high-power spacecraft thermal control The low-lift heat pump was designed to provide 25 kW of cooling at 303 K and transport this waste heat to a radiator for heat rejection. To accomplish this, a demonstration heat pump with an evaporation temperature of 298 K and a condensing temperature of 301 K was designed and built. HFC-227ea was the working fluid. This effort resulted in optimization of the centrifugal compressor impeller, diffuser, and shroud designs through extensive experimental testing. The detailed design of a magnetic bearing centrifugal compressor was completed. A prototype heat pump thermal control system was designed and fabricated which contained prototypical cold plate and condenser designs. This prototype system was extensively tested and demonstrated to measure performance parameters such as power consumption, cooling capacity, system size and mass, and other key parameters. Finally, the experimental performance was input into the theoretical trade study allowing for a comparison of the actual performance of the low-lift heat pump to a single-phase pumped loop. Inputting the experimental low-lift heat pump performance into the trade study showed that the low-lift heat pump still has lower system mass than the single-phase pumped loop for all space temperatures considered. The experimental results very closely match the theoretical results used in the trade study.

  3. Application of a sensitivity analysis technique to high-order digital flight control systems

    Science.gov (United States)

    Paduano, James D.; Downing, David R.

    1987-01-01

    A sensitivity analysis technique for multiloop flight control systems is studied. This technique uses the scaled singular values of the return difference matrix as a measure of the relative stability of a control system. It then uses the gradients of these singular values with respect to system and controller parameters to judge sensitivity. The sensitivity analysis technique is first reviewed; then it is extended to include digital systems, through the derivation of singular-value gradient equations. Gradients with respect to parameters which do not appear explicitly as control-system matrix elements are also derived, so that high-order systems can be studied. A complete review of the integrated technique is given by way of a simple example: the inverted pendulum problem. The technique is then demonstrated on the X-29 control laws. Results show linear models of real systems can be analyzed by this sensitivity technique, if it is applied with care. A computer program called SVA was written to accomplish the singular-value sensitivity analysis techniques. Thus computational methods and considerations form an integral part of many of the discussions. A user's guide to the program is included. The SVA is a fully public domain program, running on the NASA/Dryden Elxsi computer.

  4. West Valley demonstration project: alternative processes for solidifying the high-level wastes

    Energy Technology Data Exchange (ETDEWEB)

    Holton, L.K.; Larson, D.E.; Partain, W.L.; Treat, R.L.

    1981-10-01

    In 1980, the US Department of Energy (DOE) established the West Valley Solidification Project as the result of legislation passed by the US Congress. The purpose of this project was to carry out a high level nuclear waste management demonstration project at the Western New York Nuclear Service Center in West Valley, New York. The DOE authorized the Pacific Northwest Laboratory (PNL), which is operated by Battelle Memorial Institute, to assess alternative processes for treatment and solidification of the WNYNSC high-level wastes. The Process Alternatives Study is the suject of this report. Two pretreatment approaches and several waste form processes were selected for evaluation in this study. The two waste treatment approaches were the salt/sludge separation process and the combined waste process. Both terminal and interim waste form processes were studied.

  5. Starlight Demonstration of the Dragonfly Instrument: an Integrated Photonic Pupil Remapping Interferometer for High Contrast Imaging

    CERN Document Server

    Jovanovic, N; Norris, B; Gross, S; Stewart, P; Charles, N; Lacour, S; Ams, M; Lawrence, J S; Lehmann, A; Niel, C; Robertson, J G; Marshall, G D; Ireland, M; Fuerbach, A; Withford, M J

    2012-01-01

    In the two decades since the first extra-solar planet was discovered, the detection and characterization of extra-solar planets has become one of the key endeavors in all of modern science. Recently direct detection techniques such as interferometry or coronography have received growing attention because they reveal the population of exoplanets inaccessible to Doppler or transit techniques, and moreover they allow the faint signal from the planet itself to be investigated. Next-generation stellar interferometers are increasingly incorporating photonic technologies due to the increase in fidelity of the data generated. Here, we report the design, construction and commissioning of a new high contrast imager; the integrated pupil-remapping interferometer; an instrument we expect will find application in the detection of young faint companions in the nearest star-forming regions. The laboratory characterisation of the instrument demonstrated high visibility fringes on all interferometer baselines in addition to s...

  6. High-sensitivity molecular sensing using hollow-core photonic crystal fiber and surface-enhanced Raman scattering.

    Science.gov (United States)

    Yang, Xuan; Shi, Chao; Wheeler, Damon; Newhouse, Rebecca; Chen, Bin; Zhang, Jin Z; Gu, Claire

    2010-05-01

    A high-sensitivity molecular sensor using a hollow-core photonic crystal fiber (HCPCF) based on surface-enhanced Raman scattering (SERS) has been experimentally demonstrated and theoretically analyzed. A factor of 100 in sensitivity enhancement is shown in comparison to direct sampling under the same conditions. With a silver nanoparticle colloid as the SERS substrate and Rhodamine 6G as a test molecule, the lowest detectable concentration is 10(-10) M with a liquid-core photonic crystal fiber (LCPCF) probe, and 10(-8) M for direct sampling. The high sensitivity provided by the LCPCF SERS probe is promising for molecular detection in various sensing applications.

  7. Demonstration of large field effect in topological insulator films via a high-κ back gate

    Science.gov (United States)

    Wang, C. Y.; Lin, H. Y.; Yang, S. R.; Chen, K. H. M.; Lin, Y. H.; Chen, K. H.; Young, L. B.; Cheng, C. K.; Fanchiang, Y. T.; Tseng, S. C.; Hong, M.; Kwo, J.

    2016-05-01

    The spintronics applications long anticipated for topological insulators (TIs) has been hampered due to the presence of high density intrinsic defects in the bulk states. In this work we demonstrate the back-gating effect on TIs by integrating Bi2Se3 films 6-10 quintuple layer (QL) thick with amorphous high-κ oxides of Al2O3 and Y2O3. Large gating effect of tuning the Fermi level EF to very close to the band gap was observed, with an applied bias of an order of magnitude smaller than those of the SiO2 back gate, and the modulation of film resistance can reach as high as 1200%. The dependence of the gating effect on the TI film thickness was investigated, and ΔN2D/ΔVg varies with TI film thickness as ˜t-0.75. To enhance the gating effect, a Y2O3 layer thickness 4 nm was inserted into Al2O3 gate stack to increase the total κ value to 13.2. A 1.4 times stronger gating effect is observed, and the increment of induced carrier numbers is in good agreement with additional charges accumulated in the higher κ oxides. Moreover, we have reduced the intrinsic carrier concentration in the TI film by doping Te to Bi2Se3 to form Bi2TexSe1-x. The observation of a mixed state of ambipolar field that both electrons and holes are present indicates that we have tuned the EF very close to the Dirac Point. These results have demonstrated that our capability of gating TIs with high-κ back gate to pave the way to spin devices of tunable EF for dissipationless spintronics based on well-established semiconductor technology.

  8. Demonstration of nanoimprinted hyperlens array for high-throughput sub-diffraction imaging

    Science.gov (United States)

    Byun, Minsueop; Lee, Dasol; Kim, Minkyung; Kim, Yangdoo; Kim, Kwan; Ok, Jong G.; Rho, Junsuk; Lee, Heon

    2017-04-01

    Overcoming the resolution limit of conventional optics is regarded as the most important issue in optical imaging science and technology. Although hyperlenses, super-resolution imaging devices based on highly anisotropic dispersion relations that allow the access of high-wavevector components, have recently achieved far-field sub-diffraction imaging in real-time, the previously demonstrated devices have suffered from the extreme difficulties of both the fabrication process and the non-artificial objects placement. This results in restrictions on the practical applications of the hyperlens devices. While implementing large-scale hyperlens arrays in conventional microscopy is desirable to solve such issues, it has not been feasible to fabricate such large-scale hyperlens array with the previously used nanofabrication methods. Here, we suggest a scalable and reliable fabrication process of a large-scale hyperlens device based on direct pattern transfer techniques. We fabricate a 5 cm × 5 cm size hyperlenses array and experimentally demonstrate that it can resolve sub-diffraction features down to 160 nm under 410 nm wavelength visible light. The array-based hyperlens device will provide a simple solution for much more practical far-field and real-time super-resolution imaging which can be widely used in optics, biology, medical science, nanotechnology and other closely related interdisciplinary fields.

  9. High Speed Pressure Sensitive Paint for Dynamic Testing

    Science.gov (United States)

    Pena, Carolina; Chism, Kyle; Hubner, Paul

    2016-11-01

    Pressure sensitive paint (PSP) allows engineers to obtain accurate, high-spatial-resolution measurements of pressure fields over a structure. The pressure is directly related to the luminescence emitted by the paint due to oxygen quenching. Fast PSP has a higher surface area due to its porosity compared to conventional PSP, which enables faster diffusion and measurements to be acquired three orders of magnitude faster than with conventional PSP. A fast time response is needed when testing vibrating structures due to fluid-structure interaction. The goal of this summer project was to set-up, test and analyze the pressure field of an impinging air jet on a vibrating cantilever beam using Fast PSP. Software routines were developed for the processing of the emission images, videos of a static beam coated with Fast PSP were acquired with the air jet on and off, and the intensities of these two cases were ratioed and calibrated to pressure. Going forward, unsteady pressures on a vibrating beam will be measured and presented. Eventually, the long-term goal is to integrate luminescent pressure and strain measurement techniques, simultaneously using Fast PSP and a luminescent photoelastic coating on vibrating structures. Funding from NSF REU site Grant EEC 1358991 is greatly appreciated.

  10. Ultra-high sensitivity imaging of cancer using SERRS nanoparticles

    Science.gov (United States)

    Kircher, Moritz F.

    2016-05-01

    "Surface-enhanced Raman spectroscopy" (SERS) nanoparticles have gained much attention in recent years for in silico, in vitro and in vivo sensing applications. Our group has developed novel generations of biocompatible "surfaceenhanced resonance Raman spectroscopy" (SERRS) nanoparticles as novel molecular imaging agents. Via rigorous optimization of the different variables contributing to the Raman enhancement, we were able to design SERRS nanoparticles with so far unprecedented sensitivity of detection under in vivo imaging conditions (femto-attomolar range). This has resulted in our ability to visualize, with a single nanoparticle, many different cancer types (after intravenous injection) in mouse models. The cancer types we have tested so far include brain, breast, esophagus, stomach, pancreas, colon, sarcoma, and prostate cancer. All mouse models used are state-of-the-art and closely mimic the tumor biology in their human counterparts. In these animals, we were able to visualize not only the bulk tumors, but importantly also microscopic extensions and locoregional satellite metastases, thus delineating for the first time the true extent of tumor spread. Moreover, the particles enable the detection of premalignant lesions. Given their inert composition they are expected to have a high chance for clinical translation, where we envision them to have an impact in various scenarios ranging from early detection, image-guidance in open or minimally invasive surgical procedures, to noninvasive imaging in conjunction with spatially offset (SESORS) Raman detection devices.

  11. Fabrication of highly efficient flexible dye-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Chang, H., E-mail: f10381@ntut.edu.t [Department of Mechanical Engineering, National Taipei University of Technology, No.1 Sec.3, Chung Hsiao E. Rd., Taipei 10608, Taiwan (China); Chen, T.L. [Department of Industrial Design, National Taipei University of Technology, No.1 Sec.3, Chung Hsiao E. Rd., Taipei 10608, Taiwan (China); Huang, K.D. [Department of Vehicle Engineering, National Taipei University of Technology, No.1 Sec.3, Chung Hsiao E. Rd., Taipei 10608, Taiwan (China); Chien, S.H. [Institute of Chemistry, Academia Sinica, No. 128 Sec.2, Academia Rd., Nankang, Taipei 11529, Taiwan (China); Hung, K.C. [Department of Mechanical Engineering, National Taipei University of Technology, No.1 Sec.3, Chung Hsiao E. Rd., Taipei 10608, Taiwan (China)

    2010-08-15

    The paper studies the fabrication of a flexible dye-sensitized solar cell (DSSC). The photoelectrode substrates are flexible stainless steel sheet with thickness 0.07 mm and titanium (Ti) sheet with thickness 0.25 mm. For the photoelectrode fabrication process, eletrophoresis deposition (EPD) was employed for its merits of low-cost and fast fabrication. With an electric field of 40 V/cm, after undergoing EPD process twice, the TiO{sub 2} nanofilm thickness could be controlled to around 13 {mu}m thick. In addition, to achieve counter electrode, sputtering method was applied to deposit Pt on ITO-PET, resulting in thin films with four different thicknesses of 5, 8, 11 and 14 nm. The experimental results showed that the best colloid solution used in EPD process was a mixture of 100 ml isopropyl alcohol (IPA) and 0.4 g commercial TiO{sub 2} nanoparticles, Degussa P25. The best flatness for a 13 {mu}m thick film could be acquired under an electric field of 40 V/cm. Comparing the photoelectric conversion efficiency values of DSSC assembled by counter electrodes with different Pt thicknesses, the experimental results showed that the best Pt thickness was 11 nm, and the conversion efficiency could reach as high as 2.91%.

  12. ASIC for High Rate 3D Position Sensitive Detectors

    Energy Technology Data Exchange (ETDEWEB)

    Vernon, E.; De Geronimo, G.; Ackley, K.; Fried, J.; He, Z.; Herman, C.; Zhang, F.

    2010-06-16

    We report on the development of an application specific integrated circuit (ASIC) for 3D position sensitive detectors (3D PSD). The ASIC is designed to operate with pixelated wide bandgap sensors like Cadmium-Zinc-Telluride (CZT), Mercuric Iodide (Hgl2) and Thallium Bromide (TIBr). It measures the amplitudes and timings associated with an ionizing event on 128 anodes, the anode grid, and the cathode. Each channel provides low-noise charge amplification, high-order shaping with peaking time adjustable from 250 ns to 12 {micro}s, gain adjustable to 20 mV/fC or 120 mV/fC (for a dynamic range of 3.2 MeV and 530 keV in CZT), amplitude discrimination with 5-bit trimming, and positive and negative peak and timing detections. The readout can be full or sparse, based on a flag and single- or multi-cycle token passing. All channels, triggered channels only, or triggered with neighbors can be read out thus increasing the rate capability of the system to more than 10 kcps. The ASIC dissipates 330 mW which corresponds to about 2.5 mW per channel.

  13. Adjoint sensitivity analysis of high frequency structures with Matlab

    CERN Document Server

    Bakr, Mohamed; Demir, Veysel

    2017-01-01

    This book covers the theory of adjoint sensitivity analysis and uses the popular FDTD (finite-difference time-domain) method to show how wideband sensitivities can be efficiently estimated for different types of materials and structures. It includes a variety of MATLAB® examples to help readers absorb the content more easily.

  14. Highly sensitive NIR PtSi/Si-nanostructure detectors

    Science.gov (United States)

    Li, Hua-gao; Guo, Pei; Yuan, An-bo; Long, Fei; Li, Rui-zhi; Li, Ping; Li, Yi

    2016-10-01

    We report a high external quantum efficiency (EQE) photodiode detector with PtSi/Si-nanostructures. Black silicon nanostructures were fabricated by metal-assist chemical etching (MCE), a 2 nm Pt layer was subsequently deposited on black silicon surface by DC magnetron sputtering system, and PtSi/Si-nanostructures were formed in vacuum annealing at 450 oC for 5 min. As the PtSi/Si-nanostructures presented a spiky shape, the absorption of incident light was remarkably enhanced for the repeat reflection and absorption. The breakdown voltage, dark current, threshold voltage and responsivity of the device were investigated to evaluate the performance of the PtSi/Si-nanostructures detector. The threshold voltage and dark currents of the PtSi/Si-nanostructure photodiode tends to be slightly higher than those of the standard diodes. The breakdown voltage remarkably was reduced because of existing avalanche breakdown in PtSi/Si-nanostructures. However, the photodiodes had high response at room temperature in near infrared region. At -5 V reverse bias voltage, the responsivity was 0.72 A/W in 1064 nm wavelength, and the EQE was 83.9%. By increasing the reverse bias voltage, the responsivity increased. At -60 V reverse bias voltage, the responsivity was 3.5 A/W, and the EQE was 407.5%, which means the quantum efficiency of PtSi/Si-nanostructure photodiodes was about 10 times higher than that of a standard diode. Future research includes how to apply this technology to enhance the NIR sensitivity of image sensors, such as Charge Coupled Devices (CCD).

  15. Nonlinear Label-Free Biosensing With High Sensitivity Using As2S3 Chalcogenide Tapered Fiber

    DEFF Research Database (Denmark)

    Markos, Christos; Bang, Ole

    2015-01-01

    We demonstrate an experimentally feasible fiber design, which can act as a highly sensitive, label-free, and selective biosensor using the inherent high nonlinearity of an As2S3 chalcogenide tapered fiber. The surface immobilization of the fiber with an antigen layer can provide the possibility t......, this high sensitivity can be obtained using a low-power 1064-nm microchip laser....

  16. Novel Solid-State Solar Cell Based on Hole-Conducting MOF-Sensitizer Demonstrating Power Conversion Efficiency of 2.1.

    Science.gov (United States)

    Ahn, Do Young; Lee, Deok Yeon; Shin, Chan Yong; Bui, Hoa Thi; Shrestha, Nabeen K; Giebeler, Lars; Noh, Yong-Young; Han, Sung-Hwan

    2017-04-05

    This work reports on designing of first successful MOF-sensitizer based solid-state photovoltaic device, perticularly with a meaningful output power conversion efficiency. In this study, an intrinsically conductive cobalt-based MOFs (Co-DAPV) formed by the coordination between Co (II) ions and a redox active di(3-diaminopropyl)-viologen (i.e., DAPV) ligand is investigated as sensitizer. Hall-effect measurement shows p-type conductivity of the Co-DAPV film with hole mobility of 0.017 cm(2) V(-1) s(-1), suggesting its potential application as hole transporting sensitizer. Further, the energy levels of the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) of Co-DAPV are well-matched to be suitably employed for sensitizing TiO2. Thus, by layer-by-layer deposition of hole conducting MOF-sensitizer onto mesoporous TiO2 film, a power conversion efficiency of as high as 2.1% is achieved, which exceeds the highest efficiency values of MOF-sensitized liquid-junction solar cells reported so far.

  17. High throughput modular chambers for rapid evaluation of anesthetic sensitivity

    Directory of Open Access Journals (Sweden)

    Eckmann David M

    2006-11-01

    Full Text Available Abstract Background Anesthetic sensitivity is determined by the interaction of multiple genes. Hence, a dissection of genetic contributors would be aided by precise and high throughput behavioral screens. Traditionally, anesthetic phenotyping has addressed only induction of anesthesia, evaluated with dose-response curves, while ignoring potentially important data on emergence from anesthesia. Methods We designed and built a controlled environment apparatus to permit rapid phenotyping of twenty-four mice simultaneously. We used the loss of righting reflex to indicate anesthetic-induced unconsciousness. After fitting the data to a sigmoidal dose-response curve with variable slope, we calculated the MACLORR (EC50, the Hill coefficient, and the 95% confidence intervals bracketing these values. Upon termination of the anesthetic, Emergence timeRR was determined and expressed as the mean ± standard error for each inhaled anesthetic. Results In agreement with several previously published reports we find that the MACLORR of halothane, isoflurane, and sevoflurane in 8–12 week old C57BL/6J mice is 0.79% (95% confidence interval = 0.78 – 0.79%, 0.91% (95% confidence interval = 0.90 – 0.93%, and 1.96% (95% confidence interval = 1.94 – 1.97%, respectively. Hill coefficients for halothane, isoflurane, and sevoflurane are 24.7 (95% confidence interval = 19.8 – 29.7%, 19.2 (95% confidence interval = 14.0 – 24.3%, and 33.1 (95% confidence interval = 27.3 – 38.8%, respectively. After roughly 2.5 MACLORR • hr exposures, mice take 16.00 ± 1.07, 6.19 ± 0.32, and 2.15 ± 0.12 minutes to emerge from halothane, isoflurane, and sevoflurane, respectively. Conclusion This system enabled assessment of inhaled anesthetic responsiveness with a higher precision than that previously reported. It is broadly adaptable for delivering an inhaled therapeutic (or toxin to a population while monitoring its vital signs, motor reflexes, and providing precise control

  18. Expanded Hematopoietic Progenitor Cells Reselected for High Aldehyde Dehydrogenase Activity Demonstrate Islet Regenerative Functions.

    Science.gov (United States)

    Seneviratne, Ayesh K; Bell, Gillian I; Sherman, Stephen E; Cooper, Tyler T; Putman, David M; Hess, David A

    2016-04-01

    Human umbilical cord blood (UCB) hematopoietic progenitor cells (HPC) purified for high aldehyde dehydrogenase activity (ALDH(hi) ) stimulate islet regeneration after transplantation into mice with streptozotocin-induced β cell deletion. However, ALDH(hi) cells represent a rare progenitor subset and widespread use of UCB ALDH(hi) cells to stimulate islet regeneration will require progenitor cell expansion without loss of islet regenerative functions. Here we demonstrate that prospectively purified UCB ALDH(hi) cells expand efficiently under serum-free, xeno-free conditions with minimal growth factor supplementation. Consistent with the concept that ALDH-activity is decreased as progenitor cells differentiate, kinetic analyses over 9 days revealed the frequency of ALDH(hi) cells diminished as culture time progressed such that total ALDH(hi) cell number was maximal (increased 3-fold) at day 6. Subsequently, day 6 expanded cells (bulk cells) were sorted after culture to reselect differentiated progeny with low ALDH-activity (ALDH(lo) subset) from less differentiated progeny with high ALDH-activity (ALDH(hi) subset). The ALDH(hi) subset retained primitive cell surface marker coexpression (32.0% ± 7.0% CD34(+) /CD38(-) cells, 37.0% ± 6.9% CD34(+) /CD133(+) cells), and demonstrated increased hematopoietic colony forming cell function compared with the ALDH(lo) subset. Notably, bulk cells or ALDH(lo) cells did not possess the functional capacity to lower hyperglycemia after transplantation into streptozotocin-treated NOD/SCID mice. However, transplantation of the repurified ALDH(hi) subset significantly reduced hyperglycemia, improved glucose tolerance, and increased islet-associated cell proliferation and capillary formation. Thus, expansion and delivery of reselected UCB cells that retain high ALDH-activity after short-term culture represents an improved strategy for the development of cellular therapies to enhance islet regeneration in situ.

  19. A Flexible and Highly Sensitive Pressure Sensor Based on a PDMS Foam Coated with Graphene Nanoplatelets

    Directory of Open Access Journals (Sweden)

    Andrea Rinaldi

    2016-12-01

    Full Text Available The demand for high performance multifunctional wearable devices is more and more pushing towards the development of novel low-cost, soft and flexible sensors with high sensitivity. In the present work, we describe the fabrication process and the properties of new polydimethylsiloxane (PDMS foams loaded with multilayer graphene nanoplatelets (MLGs for application as high sensitive piezoresistive pressure sensors. The effective DC conductivity of the produced foams is measured as a function of MLG loading. The piezoresistive response of the MLG-PDMS foam-based sensor at different strain rates is assessed through quasi-static pressure tests. The results of the experimental investigations demonstrated that sensor loaded with 0.96 wt.% of MLGs is characterized by a highly repeatable pressure-dependent conductance after a few stabilization cycles and it is suitable for detecting compressive stresses as low as 10 kPa, with a sensitivity of 0.23 kPa−1, corresponding to an applied pressure of 70 kPa. Moreover, it is estimated that the sensor is able to detect pressure variations of ~1 Pa. Therefore, the new graphene-PDMS composite foam is a lightweight cost-effective material, suitable for sensing applications in the subtle or low and medium pressure ranges.

  20. Initial demonstration of the NRC`s capability to conduct a performance assessment for a High-Level Waste Repository

    Energy Technology Data Exchange (ETDEWEB)

    Codell, R.; Eisenberg, N.; Fehringer, D.; Ford, W.; Margulies, T.; McCartin, T.; Park, J.; Randall, J.

    1992-05-01

    In order to better review licensing submittals for a High-Level Waste Repository, the US Nuclear Regulatory Commission staff has expanded and improved its capability to conduct performance assessments. This report documents an initial demonstration of this capability. The demonstration made use of the limited data from Yucca Mountain, Nevada to investigate a small set of scenario classes. Models of release and transport of radionuclides from a repository via the groundwater and direct release pathways provided preliminary estimates of releases to the accessible environment for a 10,000 year simulation time. Latin hypercube sampling of input parameters was used to express results as distributions and to investigate model sensitivities. This methodology demonstration should not be interpreted as an estimate of performance of the proposed repository at Yucca Mountain, Nevada. By expanding and developing the NRC staff capability to conduct such analyses, NRC would be better able to conduct an independent technical review of the US Department of Energy (DOE) licensing submittals for a high-level waste (HLW) repository. These activities were divided initially into Phase 1 and Phase 2 activities. Additional phases may follow as part of a program of iterative performance assessment at the NRC. The NRC staff conducted Phase 1 activities primarily in CY 1989 with minimal participation from NRC contractors. The Phase 2 activities were to involve NRC contractors actively and to provide for the transfer of technology. The Phase 2 activities are scheduled to start in CY 1990, to allow Sandia National Laboratories to complete development and transfer of computer codes and the Center for Nuclear Waste Regulatory Analyses (CNWRA) to be in a position to assist in the acquisition of the codes.

  1. An innovative demonstration of high power density in a compact MHD (magnetohydrodynamic) generator

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, H.J.; Lineberry, J.T.; Chapman, J.N.

    1990-06-01

    The present program was conducted by the University of Tennessee Space Institute (UTSI). It was by its nature a high risk experimental program to demonstrate the feasibility of high power density operation in a laboratory scale combustion driven MHD generator. Maximization of specific energy was not a consideration for the present program, but the results have implications in this regard by virtue of high energy fuel used. The power density is the ratio of the electrical energy output to the internal volume of the generator channel. The MHD process is a volumetric process and the power density is therefore a direct measure of the compactness of the system. Specific energy, is the ratio of the electrical energy output to consumable energy used for its production. The two parameters are conceptually interrelated. To achieve high power density and implied commensurate low system volume and weight, it was necessary to use an energetic fuel. The high energy fuel of choice was a mixture of powdered aluminum and carbon seeded with potassium carbonate and burned with gaseous oxygen. The solid fuel was burned in a hybrid combustion scheme wherein the fuel was cast within a cylindrical combustor in analogy with a solid propellant rocket motor. Experimental data is limited to gross channel output current and voltage, magnetic field strength, fuel and oxidizer flow rates, flow train external temperatures and combustor pressure. Similarly, while instantaneous oxidizer flow rates were measured, only average fuel consumption based on pre and post test component weights and dimensions was possible. 4 refs., 60 figs., 9 tabs.

  2. Investigation and Demonstration of High Speed Full-Optical Hybrid FSO/Fiber Communication System under Light Sand Storm Condition

    KAUST Repository

    Esmail, Maged Abdullah

    2016-12-19

    In contrast to traditional free space optical (FSO) systems, the new generation is aimed to be transparent to optical fiber where protocols, high signal bandwidths, and high data rates over fiber are all maintained. In this paper, we experimentally demonstrate a high speed outdoor full-optical FSO communication system over 100 m link. We first describe the design of our transmitter, which consists of a comb generator and a flexible multiformat transmitter. Our measurements are performed in arid desert area under a light dust storm. In this environment, we use a 12 subcarrier comb generator, each of which is modulated by a quadrature-amplitude modulation (QAM) signal. We achieved a 1.08 Tbps error free data rate with 3.6 b/s/Hz spectral efficiency. We place long optical fiber rolls in the transmitter side and the receiver side to mimic real FSO deployments. Furthermore, we investigated the effect of receiver misalignment in outdoor conditions and the effect of background noise. We find that full-optical FSO system is sensitive to the misalignment effect. However, the background noise has negligible effect. Finally, we find that solar heating of the transceiver causes collimator deviation, which requires using a cooling unit or auto tracking system.

  3. Delusions of expertise: the high standard of proof needed to demonstrate skills at horserace handicapping.

    Science.gov (United States)

    Browne, Matthew; Rockloff, Matthew J; Blaszcynski, Alex; Allcock, Clive; Windross, Allen

    2015-03-01

    Gamblers who participate in skill-oriented games (such as poker and sports-betting) are motivated to win over the long-term, and some monitor their betting outcomes to evaluate their performance and proficiency. In this study of Australian off-track horserace betting, we investigated which levels of sustained returns would be required to establish evidence of skill/expertise. We modelled a random strategy to simulate 'naïve' play, in which equal bets were placed on randomly selected horses using a representative sample of 211 weekend races. Results from a Monte Carlo simulation yielded a distribution of return-on-investments for varying number of bets (N), showing surprising volatility, even after a large number of repeated bets. After adjusting for the house advantage, a gambler would have to place over 10,000 bets in individual races with net returns exceeding 9 % to be reasonably considered an expert punter (α = .05). Moreover, a record of fewer bets would require even greater returns for demonstrating expertise. As such, validated expertise is likely to be rare among race bettors. We argue that the counter-intuitively high threshold for demonstrating expertise by tracking historical performance is likely to exacerbate known cognitive biases in self-evaluation of expertise.

  4. Preliminary Demonstration Reactor Point Design for the Fluoride Salt-Cooled High-Temperature Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Qualls, A. L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Betzler, Benjamin R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Brown, Nicholas R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Carbajo, Juan [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Greenwood, Michael Scott [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Hale, Richard Edward [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Harrison, Thomas J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Powers, Jeffrey J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Robb, Kevin R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Terrell, Jerry W. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-12-01

    Development of the Fluoride Salt-Cooled High-Temperature Reactor (FHR) Demonstration Reactor (DR) is a necessary intermediate step to enable commercial FHR deployment through disruptive and rapid technology development and demonstration. The FHR DR will utilize known, mature technology to close remaining gaps to commercial viability. Lower risk technologies are included in the initial FHR DR design to ensure that the reactor can be built, licensed, and operated within an acceptable budget and schedule. These technologies include tristructural-isotropic (TRISO) particle fuel, replaceable core structural material, the use of that same material for the primary and intermediate loops, and tube-and-shell heat exchangers. This report provides an update on the development of the FHR DR. At this writing, the core neutronics and thermal hydraulics have been developed and analyzed. The mechanical design details are still under development and are described to their current level of fidelity. It is anticipated that the FHR DR can be operational within 10 years because of the use of low-risk, near-term technology options.

  5. High sensitivity fiber Bragg grating pressure difference sensor

    Institute of Scientific and Technical Information of China (English)

    Haiwei Fu(傅海威); Junmei Fu(傅君眉); Xueguang Qiao(乔学光)

    2004-01-01

    Based on the effect of fiber Bragg grating (FBG) pressure difference sensitivity enhancement by encapsulating the FBG with uniform strength beam and metal bellows, a FBG pressure difference sensor is proposed, and its mechanism is also discussed. The relationship between Bragg wavelength and the pressure difference is derived, and the expression of the pressure difference sensitivity coefficient is also given. It is indicated that there is good linear relation between the Bragg wavelength shift and the pressure difference of the sensor. The theoretical and experimental pressure difference sensitivity coefficients are 38.67 and 37.6 nm/MPa, which are 12890 and 12533 times of that of the bare FBG, respectively. The pressure difference sensitivity and dynamic range can be easily changed by changing the size, Young's modulus, and Poisson's ratio of the beam and the bellows.

  6. Demonstrating a directional detector based on neon for characterizing high energy neutrons

    CERN Document Server

    Hexley, A; Spitz, J; Conrad, J M

    2015-01-01

    MITPC is a gas-based time projection chamber used for detecting fast, MeV-scale neutrons. The standard version of the detector relies on a mixture of 600~torr gas composed of 87.5% $^4$He and 12.5% CF$_4$ for precisely measuring the energy and direction of neutron-induced nuclear recoils. We describe studies performed with a prototype detector investigating the use of Ne, as a replacement for $^4$He, in the gas mixture. Our discussion focuses on the advantages of Ne as the fast neutron target for high energy neutron events ($\\lesssim$100 MeV) and a demonstration that the mixture will be effective for this event class. We find that the achievable gain and transverse diffusion of drifting electrons in the Ne mixture are acceptable and that the detector uptime lost due to voltage breakdowns in the amplification plane is negligible, compared to $\\sim$ 20% with the $^4$He mixture.

  7. High Density Hydrogen Storage System Demonstration Using NaAlH4 Based Complex Compound Hydrides

    Energy Technology Data Exchange (ETDEWEB)

    Daniel A. Mosher; Xia Tang; Ronald J. Brown; Sarah Arsenault; Salvatore Saitta; Bruce L. Laube; Robert H. Dold; Donald L. Anton

    2007-07-27

    This final report describes the motivations, activities and results of the hydrogen storage independent project "High Density Hydrogen Storage System Demonstration Using NaAlH4 Based Complex Compound Hydrides" performed by the United Technologies Research Center under the Department of Energy Hydrogen Program, contract # DE-FC36-02AL67610. The objectives of the project were to identify and address the key systems technologies associated with applying complex hydride materials, particularly ones which differ from those for conventional metal hydride based storage. This involved the design, fabrication and testing of two prototype systems based on the hydrogen storage material NaAlH4. Safety testing, catalysis studies, heat exchanger optimization, reaction kinetics modeling, thermochemical finite element analysis, powder densification development and material neutralization were elements included in the effort.

  8. Operating experience during high-level waste vitrification at the West Valley Demonstration Project

    Energy Technology Data Exchange (ETDEWEB)

    Valenti, P.J.; Elliott, D.I.

    1999-01-01

    This report provides a summary of operational experiences, component and system performance, and lessons learned associated with the operation of the Vitrification Facility (VF) at the West Valley Demonstration Project (WVDP). The VF was designed to convert stored high-level radioactive waste (HLW) into a stable waste form (borosilicate glass) suitable for disposal in a federal repository. Following successful completion on nonradioactive test, HLW processing began in July 1995. Completion of Phase 1 of HLW processing was reached on 10 June 1998 and represented the processing of 9.32 million curies of cesium-137 (Cs-137) and strontium-90 (Sr-90) to fill 211 canisters with over 436,000 kilograms of glass. With approximately 85% of the total estimated curie content removed from underground waste storage tanks during Phase 1, subsequent operations will focus on removal of tank heel wastes.

  9. Demonstrating a directional detector based on neon for characterizing high energy neutrons

    Science.gov (United States)

    Hexley, Allie

    2016-03-01

    MITPC is a gas-based time projection chamber used for detecting fast, MeV-scale neutrons. The standard version of the detector relies on a mixture of 600 torr gas composed of 87.5% helium-4 and 12.5% tetrafluoromethane for precisely measuring the energy and direction of neutron-induced nuclear recoils. I describe studies performed with a prototype detector investigating the use of neon, as a replacement for helium-4, in the gas mixture. My discussion focuses on the advantages of neon as the fast neutron target for high energy neutron events (100 MeV) and a demonstration that the mixture will be effective for this event class. I show that the achievable gain and transverse diffusion of drifting electrons in the neon mixture are acceptable and that the detector uptime lost due to voltage breakdowns in the amplification plane is negligible, compared to 20% with the helium-4 mixture.

  10. High-Sensitivity Phased Arrays for Radio Astronomy and Satellite Communications

    Science.gov (United States)

    Diao, Junming

    Radio astronomy is used to study stars, galaxies, black holes and gas clouds radiation at radio frequencies. Detecting extremely weak signals from deep space radio sources requires high sensitive feed system associated with large dish antennas. The key figure of merit is survey speed, or the time required to map a region of the sky to a given source flux density. Survey speed is proportional to the frequency bandwidth, the field of view or observable region of the sky, and the squared sensitivity, where sensitivity is related to reflector aperture efficiency and system noise temperature. Compared to the traditional single feed, phased array feeds with significantly expanded field of view are considered as the next generation feed for radio telescope. This dissertation outlines the design, analysis and measurement of high sensitivity L-band and mm-wave phased array feeds for the 100-meter Green Bank Telescope. Theoretical works for radio astronomy includes design guideline for high sensitivity phased array feed, fundamental frequency bandwidth limit, array antenna loss influenced by mutual coupling and beamformer coefficients and possibility of superdirectivity for radio telescopes and other antennas. These study are helpful to understand and guide the design of a phased array feed system. In the absence of dish antennas, sparse phased arrays with aperiodic structure have been developed for satellite communications. A compromise between the peak side lobe level, array element density, directivity and design complexity is studied. We have found that the array peak side lobe level can be reduced by enhancing the array element direction at the main lobe direction, increasing the array element density and enlarging the array size. A Poynting streamline approach develops to understand the properties of a receiving antenna and the mutual coupling effects between array elements. This method has been successfully used to generate effective area shape for many types of

  11. Using satellites to investigate the sensitivity of longwave downward radiation to water vapor at high elevations

    Science.gov (United States)

    Naud, Catherine M.; Miller, James R.; Landry, Chris

    2012-03-01

    Many studies suggest that high-elevation regions may be among the most sensitive to future climate change. However, in situ observations in these often remote locations are too sparse to determine the feedbacks responsible for enhanced warming rates. One of these feedbacks is associated with the sensitivity of longwave downward radiation (LDR) to changes in water vapor, with the sensitivity being particularly large in many high-elevation regions where the average water vapor is often low. We show that satellite retrievals from the Moderate Resolution Imaging Spectroradiometer (MODIS) and Clouds and the Earth's Radiant Energy System (CERES) can be used to expand the current ground-based observational database and that the monthly averaged clear-sky satellite estimates of humidity and LDR are in good agreement with the well-instrumented Center for Snow and Avalanche Studies ground-based site in the southwestern Colorado Rocky Mountains. The relationship between MODIS-retrieved precipitable water vapor and surface specific humidity across the contiguous United States was found to be similar to that previously found for the Alps. More important, we show that satellites capture the nonlinear relationship between LDR and water vapor and confirm that LDR is especially sensitive to changes in water vapor at high elevations in several midlatitude mountain ranges. Because the global population depends on adequate fresh water, much of which has its source in high mountains, it is critically important to understand how climate will change there. We demonstrate that satellites can be used to investigate these feedbacks in high-elevation regions where the coverage of surface-based observations is insufficient to do so.

  12. Waveguide Power Combiner Demonstration for Multiple High Power Millimeter Wave TWTAs

    Science.gov (United States)

    Wintucky, Edwin G.; Simons, Rainee N.; Lesny, Gary G.; Glass, Jeffrey L.

    2004-01-01

    NASA is presently developing nuclear reactor technologies, under Project Prometheus, which will provide spacecraft with greatly increased levels of sustained onboard power and thereby dramatically enhance the capability for future deep space exploration. The first mission planned for use of this high power technology is the Jupiter Icy Moons Orbiter (JIMO). In addition to electric propulsion and science, there will also be unprecedented onboard power available for deep space communications. A 32 GHz transmitter with 1 kW of RF output power is being considered to enable the required very high data transmission rates. One approach to achieving the 1 kW RF power, now being investigated at NASA GRC, is the possible power combining of a number of 100-1 50 W TWTs now under development. The work presented here is the results of a proof-of-concept demonstration of the power combining Ka-band waveguide circuit design and test procedure using two Ka- band TWTAs (Varian model VZA6902V3 and Logimetrics model A440/KA-1066), both of which were previously employed in data uplink evaluation terminals at 29.36 GHz for the NASA Advanced Communications Technology Satellite (ACTS) program. The characterization of the individual TWTAs and power combining demonstration were done over a 500 MHz bandwidth from 29.1 to 29.6 GHz to simulate the Deep Space Network (DSN) bandwidth of 3 1.8 to 32.3 GHz. Figures 1-3 show some of the power transfer and gain measurements of the TWTAs using a swept signal generator (Agilent 83640b) for the RF input. The input and output powers were corrected for circuit insertion losses due to the waveguide components. The RF saturated powers of both ACTS TWTAs were on the order of 120 W, which is comparable to the expected output powers of the 32 GHz TWTs. Additional results for the individual TWTAs will be presented (AM/AM, AM/PM conversion and gain compression), some of which were obtained from swept frequency and power measurements using a vector network

  13. λ/26 silver nanodots fabricated by direct laser writing through highly sensitive two-photon photoreduction

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Yaoyu; Gu, Min, E-mail: mgu@swin.edu.au [Centre for Micro-Photonics and CUDOS, Faculty of Engineering and Industrial Sciences, Swinburne University of Technology, P.O. Box 218, Hawthorn, Victoria 3122 (Australia)

    2013-11-18

    We demonstrated an approach to break the diffraction limit and realise deep-subwavelength two-photon direct laser writing by employing a highly sensitive photoreduction process. The photoreduction photosensitivity increased by at least 4 times while the wavelength of the fabrication laser beam was tuned from 800 nm to 580 nm. The increase of the photosensitivity resulted in improved resolution for the silver dot fabrication. By developing the photoreduction material with adding electron donors, the photosensitivity further increased and enabled the realisation of a single silver dot at 22 nm which is λ/26 for the wavelength of the fabrication laser beam.

  14. Human MCG measurements with a high-sensitivity potassium atomic magnetometer.

    Science.gov (United States)

    Kamada, K; Ito, Y; Kobayashi, T

    2012-06-01

    Measuring biomagnetic fields, such as magnetocardiograms (MCGs), is important for investigating biological functions. To address to this need, we developed an optically pumped atomic magnetometer. In this study, human MCGs were acquired using a potassium atomic magnetometer without any modulating systems. The sensitivity of the magnetometer is comparable to that of high-T(c) superconducting quantum interference devices (SQUIDs) and is sufficient for acquiring human MCGs. The activity of a human heart estimated from the MCG maps agrees well with that measured with SQUID magnetometers. Thus, our magnetometer produces reliable results, which demonstrate the potential of our atomic magnetometer for biomagnetic measurements.

  15. High sensitivity, low-systematics atom interferometers using Bragg diffraction and Bloch oscillations

    CERN Document Server

    Estey, Brian; Müller, Holger; Kuan, Pei-Chen; Lan, Shau-Yu

    2014-01-01

    We describe a new scheme for atom interferometry based on both large-momentum transfer Bragg beam splitters and Bloch oscillations. Combining the advantages of previous approaches to recoil-sensitive interferometers, we increase the signal and suppress a systematic phase shift caused by Bragg diffraction at least 60-fold, matching experiment to theory; the systematic shift can be eliminated from Mach-Zehnder interferometers. We demonstrate high contrast, interference with up to 4.4 million radians of phase difference between freely evolving matter waves, and a resolution of $\\delta \\alpha/\\alpha=0.33\\,$ppb$\\sqrt{\\rm 6h}$ available to measurements of the fine structure constant.

  16. High sensitivity piezomagnetic force microscopy for quantitative probing of magnetic materials at the nanoscale.

    Science.gov (United States)

    Chen, Qian Nataly; Ma, Feiyue; Xie, Shuhong; Liu, Yuanming; Proksch, Roger; Li, Jiangyu

    2013-07-01

    Accurate scanning probing of magnetic materials at the nanoscale is essential for developing and characterizing magnetic nanostructures, yet quantitative analysis is difficult using the state of the art magnetic force microscopy, and has limited spatial resolution and sensitivity. In this communication, we develop a novel piezomagnetic force microscopy (PmFM) technique, with the imaging principle based on the detection of magnetostrictive response excited by an external magnetic field. In combination with the dual AC resonance tracking (DART) technique, the contact stiffness and energy dissipation of the samples can be simultaneously mapped along with the PmFM phase and amplitude, enabling quantitative probing of magnetic materials and structures at the nanoscale with high sensitivity and spatial resolution. PmFM has been applied to probe magnetic soft discs and cobalt ferrite thin films, demonstrating it as a powerful tool for a wide range of magnetic materials.

  17. High-sensitivity phase-contrast tomography of rat brain in phosphate buffered saline

    Energy Technology Data Exchange (ETDEWEB)

    Pfeiffer, Franz [Department of Physics, Technical University Munich, 85748 Garching (Germany); David, Christian; Bunk, Oliver [Paul Scherrer Institut, 5232 Villigen PSI (Switzerland); Poitry-Yamate, Carole; Gruetter, Rolf [Ecole Polytechnique Federale de Lausanne, 1015 Lausanne (Switzerland); Mueller, Bert [Biomaterials Science Center, University of Basel, 4031 Basel (Switzerland); Weitkamp, Timm, E-mail: franz.pfeiffer@ph.tum.d [European Synchrotron Radiation Facility, B.P. 220, 38043 Grenoble Cedex (France)

    2009-09-01

    We report advances and complementary results concerning a recently developed method for high-sensitivity grating-based x-ray phase-contrast tomography. In particular we demonstrate how the soft tissue sensitivity of the technique can be used to obtain in-vitro tomographic images of rat brain specimens. Contrary to our previous experiments with fixated specimen (chemically modified or formalin fixed), the present results on the rat's brain are closer to the in-vivo situation. The findings are particularly important from a clinical point of view, since a similar approach using three gratings can be implemented with more readily available x-ray sources, such as standard x-ray tubes.

  18. Fabrication of graphene coated carbon fiber microelectrode for highly sensitive detection application.

    Science.gov (United States)

    Bai, Jie; Wang, Xiaojuan; Meng, Yuning; Zhang, Hui-Min; Qu, Liangti

    2014-01-01

    Graphene, as a novel carbon nanomaterial, exhibits superior performance in electrochemical sensors. Here, graphene was applied to the microelectrode system by a simple method. A novel graphene coating carbon fiber microelectrode (G-CFM) was fabricated by electrodepositing graphene on the surface of carbon fiber. The fabrication method is fast and simple. Scanning electron microscopy and Raman spectroscopy demonstrated that carbon fiber was successfully modified by graphene. The electrochemical behavior of G-CFM was characterized by potassium ferricyanide and dopamine (DA). The electrode exhibited much larger current response and less overpotential response, compared to CFM. The microsensor for DA showed good sensitivity and selectivity, and the electrode had good stability. It is believable that the unique characteristic of graphene holds promise for the advanced microelectrode system for highly sensitive detection of various targets.

  19. A high-sensitivity terahertz spectroscopy technology for tetracycline hydrochloride detection using metamaterials.

    Science.gov (United States)

    Qin, Jianyuan; Xie, Lijuan; Ying, Yibin

    2016-11-15

    Antibiotic residues in animal-derived food due to their overuse in veterinary medicine will have potential adverse effects on human health. The rapid and accurate detection of these drugs is essential for ensuring human food safety. In particular, the current detection methods are usually limited by the low sensitivity or the tedious pre-treatment. Here we demonstrate that metamaterials operating at terahertz frequencies, acting as highly sensitive sensors, show promising potential for the detection of tetracycline hydrochloride (TCH). We were able to detect a trace amount of TCH, as small as 0.1mg/L, which was about 10(5) times enhancement compared to the measurement of TCH on a silicon substance. Our study is likely to constitute an important step toward the detection of antibiotic residues in a food matrix. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Highly Sensitive and Selective Sensor Chips with Graphene-Oxide Linking Layer.

    Science.gov (United States)

    Stebunov, Yury V; Aftenieva, Olga A; Arsenin, Aleksey V; Volkov, Valentyn S

    2015-10-07

    The development of sensing interfaces can significantly improve the performance of biological sensors. Graphene oxide provides a remarkable immobilization platform for surface plasmon resonance (SPR) biosensors due to its excellent optical and biochemical properties. Here, we describe a novel sensor chip for SPR biosensors based on graphene-oxide linking layers. The biosensing assay model was based on a graphene oxide film containing streptavidin. The proposed sensor chip has three times higher sensitivity than the carboxymethylated dextran surface of a commercial sensor chip. Moreover, the demonstrated sensor chips are bioselective with more than 25 times reduced binding for nonspecific interaction and can be used multiple times. We consider the results presented here of importance for any future applications of highly sensitive SPR biosensing.

  1. Highly sensitive optical biosensor based on silicon-microring-resonator-loaded Mach–Zehnder interferometer

    Science.gov (United States)

    Yoshida, Soichiro; Ishihara, Shintaro; Arakawa, Taro; Kokubun, Yasuo

    2017-04-01

    We propose and demonstrate a novel biosensor based on a silicon-single-microring-resonator-loaded Mach–Zehnder interferometer (MRR-MZI), and discuss the design of the sensor theoretically. Owing to the combination of an MZI and the enhanced phase change in a microring resonator (MRR), high sensitivity is expected to be realized. The designed MRR-MZI sensor is fabricated using a CMOS-compatible process, and its sensing characteristics are measured using ethanol solutions with a concentration of less than 3 wt % and avidin solutions. The sensitivity of the MRR-MZI to changes in the environmental refractive index is increased by approximately 50 times compared with that of a simple MRR. In addition, avidin solution with a concentration as low as 20 pM was successfully detected.

  2. High Sensitivity Carbon Nanotubes Flow-Rate Sensors and Their Performance Improvement by Coating

    Directory of Open Access Journals (Sweden)

    Xing Yang

    2010-05-01

    Full Text Available A new type of hot-wire flow-rate sensor (HWFS with a sensing element made of a macro-sized carbon nanotube (CNT strand is presented in this study. An effective way to improve repeatability of the CNT flow-rate sensor by coating a layer of Al2O3 on the CNT surface is proposed. Experimental results show that due to the large surface-to-volume ratio and thin coated Al2O3 layer, the CNT flow-rate sensor has higher sensitivity and faster response than a conventional platinum (Pt HWFS. It is also demonstrated that the covered CNT flow-rate sensor has better repeatability than its bare counterpart due to insulation from the surrounding environment. The proposed CNT flow-rate sensor shows application potential for high-sensitivity measurement of flow rate.

  3. Demonstration of high current carbon nanotube enabled vertical organic field effect transistors at industrially relevant voltages

    Science.gov (United States)

    McCarthy, Mitchell

    lifetime and the potential for an all transparent display. And because carbon nanotubes (CNTs) and organics are used, CN-VFET and CN-VOLET devices are compatible with flexible displays. This dissertation describes the first ever demonstration of CN-VFETs and CN-VOLETs and relates their performance to the specific properties of the CNTs and the new device architecture. In the work that followed, the CN-VFET was systematically optimized overcoming the problems revealed in the demonstration devices. The large undesired hysteresis was decreased by 96%, the on/off ratio was improved three orders of magnitude and the operating voltages were reduced to state of the art values. Additionally, the current output per device area of the CN-VFET was demonstrated to be greater than any other low resolution patterned organic transistor by a factor of 3.9. Moreover, it was demonstrated that the CNTs induce a reorientation of the high mobility plane in small molecule organics like pentacene to coincide with the vertical direction, giving additional explanation for the large currents observed in the CN-VFET. The ability to drive high currents and potentially inexpensive fabrication may provide the solution for the AMOLED backplane problem.

  4. Hybridization chain reaction amplification for highly sensitive fluorescence detection of DNA with dextran coated microarrays.

    Science.gov (United States)

    Chao, Jie; Li, Zhenhua; Li, Jing; Peng, Hongzhen; Su, Shao; Li, Qian; Zhu, Changfeng; Zuo, Xiaolei; Song, Shiping; Wang, Lianhui; Wang, Lihua

    2016-07-15

    Microarrays of biomolecules hold great promise in the fields of genomics, proteomics, and clinical assays on account of their remarkably parallel and high-throughput assay capability. However, the fluorescence detection used in most conventional DNA microarrays is still limited by sensitivity. In this study, we have demonstrated a novel universal and highly sensitive platform for fluorescent detection of sequence specific DNA at the femtomolar level by combining dextran-coated microarrays with hybridization chain reaction (HCR) signal amplification. Three-dimensional dextran matrix was covalently coated on glass surface as the scaffold to immobilize DNA recognition probes to increase the surface binding capacity and accessibility. DNA nanowire tentacles were formed on the matrix surface for efficient signal amplification by capturing multiple fluorescent molecules in a highly ordered way. By quantifying microscopic fluorescent signals, the synergetic effects of dextran and HCR greatly improved sensitivity of DNA microarrays, with a detection limit of 10fM (1×10(5) molecules). This detection assay could recognize one-base mismatch with fluorescence signals dropped down to ~20%. This cost-effective microarray platform also worked well with samples in serum and thus shows great potential for clinical diagnosis.

  5. CMOS Amperometric ADC With High Sensitivity, Dynamic Range and Power Efficiency for Air Quality Monitoring.

    Science.gov (United States)

    Li, Haitao; Boling, C Sam; Mason, Andrew J

    2016-08-01

    Airborne pollutants are a leading cause of illness and mortality globally. Electrochemical gas sensors show great promise for personal air quality monitoring to address this worldwide health crisis. However, implementing miniaturized arrays of such sensors demands high performance instrumentation circuits that simultaneously meet challenging power, area, sensitivity, noise and dynamic range goals. This paper presents a new multi-channel CMOS amperometric ADC featuring pixel-level architecture for gas sensor arrays. The circuit combines digital modulation of input currents and an incremental Σ∆ ADC to achieve wide dynamic range and high sensitivity with very high power efficiency and compact size. Fabricated in 0.5 [Formula: see text] CMOS, the circuit was measured to have 164 dB cross-scale dynamic range, 100 fA sensitivity while consuming only 241 [Formula: see text] and 0.157 [Formula: see text] active area per channel. Electrochemical experiments with liquid and gas targets demonstrate the circuit's real-time response to a wide range of analyte concentrations.

  6. A nanofiber based artificial electronic skin with high pressure sensitivity and 3D conformability

    Science.gov (United States)

    Zhong, Weibin; Liu, Qiongzhen; Wu, Yongzhi; Wang, Yuedan; Qing, Xing; Li, Mufang; Liu, Ke; Wang, Wenwen; Wang, Dong

    2016-06-01

    Pressure sensors with 3D conformability are highly desirable components for artificial electronic skin or e-textiles that can mimic natural skin, especially for application in real-time monitoring of human physiological signals. Here, a nanofiber based electronic skin with ultra-high pressure sensitivity and 3D conformability is designed and built by interlocking two elastic patterned nanofibrous membranes. The patterned membrane is facilely prepared by casting conductive nanofiber ink into a silicon mould to form an array of semi-spheroid-like protuberances. The protuberances composed of intertwined elastic POE nanofibers and PPy@PVA-co-PE nanofibers afford a tunable effective elastic modulus that is capable of capturing varied strains and stresses, thereby contributing to a high sensitivity for pressure sensing. This electronic skin-like sensor demonstrates an ultra-high sensitivity (1.24 kPa-1) below 150 Pa with a detection limit as low as about 1.3 Pa. The pixelated sensor array and a RGB-LED light are then assembled into a circuit and show a feasibility for visual detection of spatial pressure. Furthermore, a nanofiber based proof-of-concept wireless pressure sensor with a bluetooth module as a signal transmitter is proposed and has demonstrated great promise for wireless monitoring of human physiological signals, indicating a potential for large scale wearable electronic devices or e-skin.Pressure sensors with 3D conformability are highly desirable components for artificial electronic skin or e-textiles that can mimic natural skin, especially for application in real-time monitoring of human physiological signals. Here, a nanofiber based electronic skin with ultra-high pressure sensitivity and 3D conformability is designed and built by interlocking two elastic patterned nanofibrous membranes. The patterned membrane is facilely prepared by casting conductive nanofiber ink into a silicon mould to form an array of semi-spheroid-like protuberances. The

  7. High-Lift Propeller Noise Prediction for a Distributed Electric Propulsion Flight Demonstrator

    Science.gov (United States)

    Nark, Douglas M.; Buning, Pieter G.; Jones, William T.; Derlaga, Joseph M.

    2017-01-01

    Over the past several years, the use of electric propulsion technologies within aircraft design has received increased attention. The characteristics of electric propulsion systems open up new areas of the aircraft design space, such as the use of distributed electric propulsion (DEP). In this approach, electric motors are placed in many different locations to achieve increased efficiency through integration of the propulsion system with the airframe. Under a project called Scalable Convergent Electric Propulsion Technology Operations Research (SCEPTOR), NASA is designing a flight demonstrator aircraft that employs many "high-lift propellers" distributed upstream of the wing leading edge and two cruise propellers (one at each wingtip). As the high-lift propellers are operational at low flight speeds (take-off/approach flight conditions), the impact of the DEP configuration on the aircraft noise signature is also an important design consideration. This paper describes efforts toward the development of a mulit-fidelity aerodynamic and acoustic methodology for DEP high-lift propeller aeroacoustic modeling. Specifically, the PAS, OVERFLOW 2, and FUN3D codes are used to predict the aerodynamic performance of a baseline high-lift propeller blade set. Blade surface pressure results from the aerodynamic predictions are then used with PSU-WOPWOP and the F1A module of the NASA second generation Aircraft NOise Prediction Program to predict the isolated high-lift propeller noise source. Comparisons of predictions indicate that general trends related to angle of attack effects at the blade passage frequency are captured well with the various codes. Results for higher harmonics of the blade passage frequency appear consistent for the CFD based methods. Conversely, evidence of the need for a study of the effects of increased azimuthal grid resolution on the PAS based results is indicated and will be pursued in future work. Overall, the results indicate that the computational

  8. A Highly Sensitive Gold-Coated Photonic Crystal Fiber Biosensor Based on Surface Plasmon Resonance

    Directory of Open Access Journals (Sweden)

    Md. Rabiul Hasan

    2017-03-01

    Full Text Available In this paper, we numerically demonstrate a two-layer circular lattice photonic crystal fiber (PCF biosensor based on the principle of surface plasmon resonance (SPR. The finite element method (FEM with circular perfectly matched layer (PML boundary condition is applied to evaluate the performance of the proposed sensor. A thin gold layer is deposited outside the PCF structure, which acts as the plasmonic material for this design. The sensing layer (analyte is implemented in the outermost layer, which permits easy and more practical fabrication process compared to analyte is put inside the air holes. It is demonstrated that, at gold layer thickness of 40 nm, the proposed sensor shows maximum sensitivity of 2200 nm/RIU using the wavelength interrogation method in the sensing range between 1.33–1.36. Besides, using an amplitude interrogation method, a maximum sensitivity of 266 RIU−1 and a maximum sensor resolution of 3.75 × 10−5 RIU are obtained. We also discuss how phase matching points are varied with different fiber parameters. Owing to high sensitivity and simple design, the proposed sensor may find important applications in biochemical and biological analyte detection.

  9. Highly sensitive displacement measurement based on spectral interferometry and Vernier effect

    Science.gov (United States)

    Militky, J.; Kadulova, M.; Hlubina, P.

    2016-05-01

    A highly sensitive measurement of the displacement of an interferometer mirror based on spectral interferometry and Vernier effect is proposed and demonstrated. The displacement measurement employs two interferometers in tandem, an interferometer represented by a combination of a polarizer, a birefrigent quartz crystal and an analyzer, and a Michelson interferometer. In the setup the Vernier effect is generated and the resultant channeled spectrum is with the envelope which shifts with the displacement of the interferometer mirror. We analyze the new measurement method theoretically and show that the sensitivity of the displacement measurement based on the wavelength interrogation is substantially increased in comparison to a standard method with a Michelson interferometer. We also demonstrate the realization of the measurement setup in which the position of the interferometer mirror is controlled via a closed-loop piezo positioning system. Experimental results show that the displacement measurement can reach a sensitivity of 264 nm/μm, which is substantially increased in comparison to -34 nm/μm reached for a standard measurement.

  10. Demonstration of sulfur solubility determinations in high waste loading, low-activity waste glasses

    Energy Technology Data Exchange (ETDEWEB)

    Fox, K. M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-04-25

    A method recommended by Pacific Northwest National Laboratory (PNNL) for sulfate solubility determinations in simulated low-activity waste glasses was demonstrated using three compositions from a recent Hanford high waste loading glass study. Sodium and sulfate concentrations in the glasses increased after each re-melting step. Visual observations of the glasses during the re-melting process reflected the changes in composition. The measured compositions showed that the glasses met the targeted values. The amount of SO3 retained in the glasses after washing was relatively high, ranging from 1.6 to 2.6 weight percent (wt %). Measured SnO2 concentrations were notably low in all of the study glasses. The composition of the wash solutions should be measured in future work to determine whether SnO2 is present with the excess sulfate washed from the glass. Increases in batch size and the amount of sodium sulfate added did not have a measureable impact on the amount of sulfate retained in the glass, although this was tested for only a single glass composition. A batch size of 250 g and a sodium sulfate addition targeting 7 wt %, as recommended by PNNL, will be used in future experiments.

  11. Demonstration of real-time pattern correction for high-throughput maskless lithography

    Science.gov (United States)

    Hakkennes, E. A.; Wiersma, A. D.; Hoving, M.; Venema, N.; Woutersen, S.; van de Peut, T.; Sanderse, M.; Wieland, M. J.

    2011-04-01

    MAPPER Lithography is developing a maskless lithography technology based on massively-parallel electron-beam writing with high speed optical data transport for switching the electron beams. In this way electron optical columns can be made with a throughput of 10 wafers per hour. The amount of data for each 26mm x 33mm field is 8 Tbyte. The data rate is approximately 3 Tbyte per second. In order to realize overlay the patterns for different fields on the wafer need to be slightly adjusted. Additionally it is beneficial for the electron optics design to be able to correct a number of tool parameters on the data. For this it is desirable to be able to correct the pattern data in real time. By implementing the correction algorithms on an FPGA test board it has been demonstrated that it is possible to perform the corrections on the exposed data real time. By using a pixel size of 3.5nm, a CDu and overlay contribution of smaller than 1nm 3s is obtained. A datapath for 10wph based on an FPGA implementation that stores the switching data uncompressed in DRAM fits in 4 racks of 2 meters high, with a footprint of 600mm x 700mm each. By replacing the FPGA by an ASIC implementation, and by using real time decompression, the footprint can be reduced in a later stage.

  12. Surprise responses in the human brain demonstrate statistical learning under high concurrent cognitive demand

    Science.gov (United States)

    Garrido, Marta Isabel; Teng, Chee Leong James; Taylor, Jeremy Alexander; Rowe, Elise Genevieve; Mattingley, Jason Brett

    2016-06-01

    The ability to learn about regularities in the environment and to make predictions about future events is fundamental for adaptive behaviour. We have previously shown that people can implicitly encode statistical regularities and detect violations therein, as reflected in neuronal responses to unpredictable events that carry a unique prediction error signature. In the real world, however, learning about regularities will often occur in the context of competing cognitive demands. Here we asked whether learning of statistical regularities is modulated by concurrent cognitive load. We compared electroencephalographic metrics associated with responses to pure-tone sounds with frequencies sampled from narrow or wide Gaussian distributions. We showed that outliers evoked a larger response than those in the centre of the stimulus distribution (i.e., an effect of surprise) and that this difference was greater for physically identical outliers in the narrow than in the broad distribution. These results demonstrate an early neurophysiological marker of the brain's ability to implicitly encode complex statistical structure in the environment. Moreover, we manipulated concurrent cognitive load by having participants perform a visual working memory task while listening to these streams of sounds. We again observed greater prediction error responses in the narrower distribution under both low and high cognitive load. Furthermore, there was no reliable reduction in prediction error magnitude under high-relative to low-cognitive load. Our findings suggest that statistical learning is not a capacity limited process, and that it proceeds automatically even when cognitive resources are taxed by concurrent demands.

  13. Demonstration of novel high-power acoustic through-the-wall sensor

    CERN Document Server

    Felber, Franklin

    2015-01-01

    A high-power acoustic sensor, capable of detecting and tracking persons through steel walls of cargo containers, trailer truck bodies, and train cars, has been developed and demonstrated. The sensor is based on a new concept for narrowband mechanical-impact acoustic transmitters and matched resonant receivers. The lightweight, compact, and low-cost transmitters produce high-power acoustic pulses at one or more discrete frequencies with little input power. The energy for each pulse is accumulated over long times at low powers, like a mousetrap, and therefore can be operated with ordinary batteries and no power conditioning. A breadboard impact-transmitter and matched-receiver system that detected human motion through thick walls with only rudimentary signal processing is described, and results are presented. A conceptual design is presented of an acoustic through-the-wall sensor, costing about $10,000 per unit and capable of remotely and non-intrusively scanning steel cargo containers for stowaways at a rate o...

  14. A highly sensitive and specific system for large-scale gene expression profiling

    Directory of Open Access Journals (Sweden)

    Wang Hui-Yun

    2008-01-01

    Full Text Available Abstract Background Rapid progress in the field of gene expression-based molecular network integration has generated strong demand on enhancing the sensitivity and data accuracy of experimental systems. To meet the need, a high-throughput gene profiling system of high specificity and sensitivity has been developed. Results By using specially designed primers, the new system amplifies sequences in neighboring exons separated by big introns so that mRNA sequences may be effectively discriminated from other highly related sequences including their genes, unprocessed transcripts, pseudogenes and pseudogene transcripts. Probes used for microarray detection consist of sequences in the two neighboring exons amplified by the primers. In conjunction with a newly developed high-throughput multiplex amplification system and highly simplified experimental procedures, the system can be used to analyze >1,000 mRNA species in a single assay. It may also be used for gene expression profiling of very few (n = 100 or single cells. Highly reproducible results were obtained from duplicate samples with the same number of cells, and from those with a small number (100 and a large number (10,000 of cells. The specificity of the system was demonstrated by comparing results from a breast cancer cell line, MCF-7, and an ovarian cancer cell line, NCI/ADR-RES, and by using genomic DNA as starting material. Conclusion Our approach may greatly facilitate the analysis of combinatorial expression of known genes in many important applications, especially when the amount of RNA is limited.

  15. Highly Sensitive Liquid Core Temperature Sensor Based on Multimode Interference Effects

    Directory of Open Access Journals (Sweden)

    Miguel A. Fuentes-Fuentes

    2015-10-01

    Full Text Available A novel fiber optic temperature sensor based on a liquid-core multimode interference device is demonstrated. The advantage of such structure is that the thermo-optic coefficient (TOC of the liquid is at least one order of magnitude larger than that of silica and this, combined with the fact that the TOC of silica and the liquid have opposite signs, provides a liquid-core multimode fiber (MMF highly sensitive to temperature. Since the refractive index of the liquid can be easily modified, this allows us to control the modal properties of the liquid-core MMF at will and the sensor sensitivity can be easily tuned by selecting the refractive index of the liquid in the core of the device. The maximum sensitivity measured in our experiments is 20 nm/°C in the low-temperature regime up to 60 °C. To the best of our knowledge, to date, this is the largest sensitivity reported for fiber-based MMI temperature sensors.

  16. A high-sensitivity 135 GHz millimeter-wave imager by compact split-ring-resonator in 65-nm CMOS

    Science.gov (United States)

    Li, Nan; Yu, Hao; Yang, Chang; Shang, Yang; Li, Xiuping; Liu, Xiong

    2015-11-01

    A high-sensitivity 135 GHz millimeter-wave imager is demonstrated in 65 nm CMOS by on-chip metamaterial resonator: a differential transmission-line (T-line) loaded with split-ring-resonator (DTL-SRR). Due to sharp stop-band introduced by the metamaterial load, high-Q oscillatory amplification can be achieved with high sensitivity when utilizing DTL-SRR as quench-controlled oscillator to provide regenerative detection. The developed 135 GHz mm-wave imager pixel has a compact core chip area of 0.0085 mm2 with measured power consumption of 6.2 mW, sensitivity of -76.8 dBm, noise figure of 9.7 dB, and noise equivalent power of 0.9 fW/√{HZ } Hz. Millimeter-wave images has been demonstrated with millimeter-wave imager integrated with antenna array.

  17. High spectral response heteroleptic ruthenium (II) complexes as sensitizers for dye sensitized solar cells

    Indian Academy of Sciences (India)

    M Chandrasekharam; Ch Srinivasarao; T Suresh; M Anil Reddy; M Raghavender; G Rajkumar; M Srinivasu; P Yella Reddy

    2011-01-01

    Heteroleptic ruthenium(II) bipyridyl complex, cis-Ru(II)(4,4'-bis(4-tert-butylstyryl)-2,2'-bipyridyl) (4,4'-dicarboxy-2,2'-bipyridyl) (NCS2) (H112) was synthesized and characterized by 1H-NMR, MASS, Spectrofluorometer and UV-Vis spectroscopes. The photo-voltaic performance of the sensitizer was evaluated in Dye Sensitized Solar Cell (DSSC) under irradiation of AM 1.5 G solar light and the photovoltaic characteristics were compared with those of reference cells of HRS1 and N719 fabricated under comparable conditions. Compared to N719, H112 sensitizer showed enhanced molar extinction coefficient and relatively better monochromatic incident photon-to-current conversion efficiency (IPCE) across the spectral range of 400 to 800 nm with solar energy-to-electrical conversion efficiency () of 2.43% [open circuit photovoltage (VOC) = 0.631V, short-circuit photocurrent density (JSC) = 8.96 mA/cm2, fill factor (ff) = 0.430], while values of 2.51% (VOC = 0.651V, JSC = 9.41 mA/cm2, ff = 0.410) and 2.74% (VOC = 0.705 V, JSC = 8.62 mA/cm2, ff = 0.455) were obtained for HRS1 and N719 sensitized solar cells respectively. The introduction of 4,4'-bis(4-tert-butylstyryl) moieties on one of the bipyridine moieties of N719 complex shows higher light absorption abilities, IPCE and JSC.

  18. Modeling Weather in the Ionosphere using the Navy's Highly Integrated Thermosphere and Ionosphere Demonstration System (HITIDES)

    Science.gov (United States)

    McDonald, S. E.; Sassi, F.; Zawdie, K.; McCormack, J. P.; Coker, C.; Huba, J.; Krall, J.

    2016-12-01

    The Naval Research Laboratory (NRL) has recently developed a ground-to-space atmosphere-ionosphere prediction capability, the Highly Integrated Thermosphere and Ionosphere Demonstration System (HITIDES). HITIDES is the U.S. Navy's first coupled, physics-based, atmosphere-ionosphere model, one in which the atmosphere extends from the ground to the exobase ( 500 km altitude) and the ionosphere reaches several 10,000 km in altitude. HITIDES has been developed by coupling the extended version of the Whole Atmosphere Community Climate Model (WACCM-X) with NRL's ionospheric model, Sami3 is Another Model of the Ionosphere (SAMI3). Integrated into this model are the effects of drivers from atmospheric weather (day-to-day meteorology), the Sun, and the changing high altitude composition. To simulate specific events, HITIDES can be constrained by data analysis products or observations. We have performed simulations of the ionosphere during January-February 2010 in which lower atmospheric weather patterns have been introduced using the Navy Operational Global Atmospheric Prediction System-Advanced Level Physics High Altitude (NOGAPS-ALPHA) data assimilation products. The same time period has also been simulated using the new atmospheric forecast model, the NAVy Global Environmental Model (NAVGEM), which has replaced NOGAPS-ALPHA. The two simulations are compared with each other and with observations of the low latitude ionosphere. We will discuss the importance of including lower atmospheric meteorology in ionospheric simulations to capture day-to-day variability as well as large-scale longitudinal structure in the low-latitude ionosphere. In addition, we examine the effect of the variability on HF radio wave propagation by comparing simulated ionograms calculated from the HITIDES ionospheric specifications to ionosonde measurements.

  19. Fluoride Salt-Cooled High-Temperature Demonstration Reactor Point Design

    Energy Technology Data Exchange (ETDEWEB)

    Qualls, A. L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Brown, Nicholas R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Betzler, Benjamin R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Carbajo, Juan [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Hale, Richard Edward [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Harrison, Thomas J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Powers, Jeffrey J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Robb, Kevin R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Terrell, Jerry W. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Wysocki, Aaron J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-02-01

    The fluoride salt-cooled high-temperature reactor (FHR) demonstration reactor (DR) is a concept for a salt-cooled reactor with 100 megawatts of thermal output (MWt). It would use tristructural-isotropic (TRISO) particle fuel within prismatic graphite blocks. FLiBe (2 LiF-BeF2) is the reference primary coolant. The FHR DR is designed to be small, simple, and affordable. Development of the FHR DR is a necessary intermediate step to enable near-term commercial FHRs. Lower risk technologies are purposely included in the initial FHR DR design to ensure that the reactor can be built, licensed, and operated within an acceptable budget and schedule. These technologies include TRISO particle fuel, replaceable core structural material, the use of that same material for the primary and intermediate loops, and tube-and-shell primary-to-intermediate heat exchangers. Several preconceptual and conceptual design efforts that have been conducted on FHR concepts bear a significant influence on the FHR DR design. Specific designs include the Oak Ridge National Laboratory (ORNL) advanced high-temperature reactor (AHTR) with 3400/1500 MWt/megawatts of electric output (MWe), as well as a 125 MWt small modular AHTR (SmAHTR) from ORNL. Other important examples are the Mk1 pebble bed FHR (PB-FHR) concept from the University of California, Berkeley (UCB), and an FHR test reactor design developed at the Massachusetts Institute of Technology (MIT). The MIT FHR test reactor is based on a prismatic fuel platform and is directly relevant to the present FHR DR design effort. These FHR concepts are based on reasonable assumptions for credible commercial prototypes. The FHR DR concept also directly benefits from the operating experience of the Molten Salt Reactor Experiment (MSRE), as well as the detailed design efforts for a large molten salt reactor concept and its breeder variant, the Molten Salt Breeder Reactor. The FHR DR technology is most representative of the 3400 MWt AHTR

  20. Standoff photoacoustic detections with high-sensitivity microphones and acoustic arrays

    Science.gov (United States)

    Choa, Fow-Sen; Wang, Chen-Chia; Khurgin, Jacob; Samuels, Alan; Trivedi, Sudhir; Gupta, Deepa

    2016-05-01

    Standoff detection of dangerous chemicals like explosives, nerve gases, and harmful aerosols has continuously been an important subject due to the serious concern about terrorist threats to both overseas and homeland lives and facility. Compared with other currently available standoff optical detection techniques, like Raman, photo-thermal, laser induced breakdown spectroscopy,...etc., photoacoustic (PA) sensing has the advantages of background free and very high detection sensitivity, no need of back reflection surfaces, and 1/R instead of 1/R2 signal decay distance dependence. Furthermore, there is still a great room for PA sensitivity improvement by using different PA techniques, including lockin amplifier, employing new microphones, and microphone array techniques. Recently, we have demonstrated standoff PA detection of isopropanol vapor, solid phase TNT and RDX at a standoff distance. To further calibrate the detection sensitivity, we use nerve gas simulants that were generated and calibrated by a commercial vapor generator. For field operations, array of microphones and microphone-reflector pairs can be utilized to achieve noise rejection and signal enhancement. We have experimentally demonstrated signal enhancement and noise reduction using an array of 4 microphone/4 reflector system as well as an array of 16-microphone/1 reflector. In this work we will review and compare different standoff techniques and discuss the advantages of using different photoacoustic techniques. We will also discuss new advancement of using new types of microphone and the performance comparison of using different structure of microphone arrays and combining lock-in amplifier with acoustic arrays. Demonstration of out-door real-time operations with high power mid-IR laser and microphone array will be presented.

  1. A new spinner magnetometer using high sensitivity magneto-impedance sensor

    Science.gov (United States)

    Kodama, Kazuto

    2016-04-01

    A sensitive spinner magnetometer was developed using a pair of high-resolution Magneto-Impedance sensors. The MI sensor generally utilizes the MI effect of amorphous wire whose impedance changes by the application of a small magnetic field. Various kinds of MI sensors are currently used in many electric devices, for example, a magnetic compass chip built-in smart phones and car navigations. The MI sensor employed in this study is a pico-Tesla MI sensor, an especially sensitive MI sensor originally manufactured for industrial use to detect contamination of small magnetic particles in industrial materials such as fabrics. To detect weak magnetic signals from natural samples and avoid DC drift, a gradiometer system was employed that consists of a pair of the MI sensors and the electronics with analog filter and pre-amplification circuit. This MI gradiometer system was equipped to a commercial spinner magnetometer (SMD-88, Natsuhara Giken, Osaka) with the spinning rate of 5 Hz. It is demonstrated that this new spinner magnetometer is capable of measuring weak magnetic samples of 10-6 mAm2, with the highest resolution being 10-8 mAm2, approximately two orders of magnitude better than the previous one using a ring-core flux-gate sensor. One of the advantages of the MI spinner magnetometer is that it can be easily modified to accommodate samples of any shape and size. Moreover the slow-rotating speed (5 Hz) allows to measure samples for archeomagnetic studies that are usually irregular and fragile. Because the irregularity of shape increases errors in measuring the dipole component of the total magnetization, it is necessary to increase the distance between the sample and sensor, resulting in poorer sensitivity. The high-sensitivity MI sensor enables to measure the NRM of such irregular-shaped samples from an appropriate distance to the sample, with no significant loss of sensitivity.

  2. Development of High Temperature/High Sensitivity Novel Chemical Resistive Sensor

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Chonglin; Nash, Patrick; Ma, Chunrui; Enriquez, Erik; Wang, Haibing; Xu, Xing; Bao, Shangyong; Collins, Gregory

    2013-08-13

    The research has been focused to design, fabricate, and develop high temperature/high sensitivity novel multifunctional chemical sensors for the selective detection of fossil energy gases used in power and fuel systems. By systematically studying the physical properties of the LnBaCo{sub 2}O{sub 5+d} (LBCO) [Ln=Pr or La] thin-films, a new concept chemical sensor based high temperature chemical resistant change has been developed for the application for the next generation highly efficient and near zero emission power generation technologies. We also discovered that the superfast chemical dynamic behavior and an ultrafast surface exchange kinetics in the highly epitaxial LBCO thin films. Furthermore, our research indicates that hydrogen can superfast diffuse in the ordered oxygen vacancy structures in the highly epitaxial LBCO thin films, which suggest that the LBCO thin film not only can be an excellent candidate for the fabrication of high temperature ultra sensitive chemical sensors and control systems for power and fuel monitoring systems, but also can be an excellent candidate for the low temperature solid oxide fuel cell anode and cathode materials.

  3. A high-sensitivity push-pull magnetometer

    Science.gov (United States)

    Breschi, E.; Grujić, Z. D.; Knowles, P.; Weis, A.

    2014-01-01

    We describe our approach to atomic magnetometry based on the push-pull optical pumping technique. Cesium vapor is pumped and probed by a resonant laser beam whose circular polarization is modulated synchronously with the spin evolution dynamics induced by a static magnetic field. The magnetometer is operated in a phase-locked loop, and it has an intrinsic sensitivity below 20fT/√Hz , using a room temperature paraffin-coated cell. We use the magnetometer to monitor magnetic field fluctuations with a sensitivity of 300fT/√Hz .

  4. A high-sensitivity push-pull magnetometer

    CERN Document Server

    Breschi, E; Knowles, P; Weis, A

    2013-01-01

    We describe our approach to atomic magnetometry based on the push-pull optical pumping technique. Cesium vapor is pumped and probed by a resonant laser beam whose circular polarization is modulated synchronously with the spin evolution dynamics induced by a static magnetic field. The magnetometer is operated in a phase-locked loop, and it has an intrinsic sensitivity below 20fT/\\sqrt(Hz) using a room temperature paraffin-coated cell. We use the magnetometer to monitor magnetic field fluctuations with a sensitivity of 300fT/\\sqrt(Hz).

  5. High Sensitivity SPECT for Small Animals and Plants

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, Gregory S. [UC Davis

    2015-02-28

    Imaging systems using single gamma-ray emitting radioisotopes typically implement collimators in order to form the images. However, a tradeoff in sensitivity is inherent in the use of collimators, and modern preclinical single-photon emission computed tomography (SPECT) systems detect a very small fraction of emitted gamma-rays (<0.3%). We have built a collimator-less system, which can reach sensitivity of 40% for 99mTc imaging, while still producing images of sufficient spatial resolution for certain applications in thin objects such as mice, small plants, and well plates used for in vitro experiments.

  6. Cavity Enhanced Optical Vernier Spectroscopy, Broad Band, High Resolution, High Sensitivity

    CERN Document Server

    Gohle, Christoph; Schliesser, Albert; Udem, Thomas; Hänsch, Theodor W

    2007-01-01

    A femtosecond frequency comb provides a vast number of equidistantly spaced narrow band laser modes that can be simultaneously tuned and frequency calibrated with 15 digits accuracy. Our Vernier spectrometer utilizes all of theses modes in a massively parallel manner to rapidly record both absorption and dispersion spectra with a sensitivity that is provided by a high finesse broad band optical resonator and a resolution that is only limited by the frequency comb line width while keeping the required setup simple.

  7. Pajarito Monitor: a high-sensitivity monitoring system for highly enriched uranium

    Energy Technology Data Exchange (ETDEWEB)

    Fehlau, P.E.; Coop, K.; Garcia, C. Jr.; Martinez, J.

    1984-01-01

    The Pajarito Monitor for Special Nuclear Material is a high-sensitivity gamma-ray monitoring system for detecting small quantities of highly enriched uranium transported by pedestrians or motor vehicles. The monitor consists of two components: a walk-through personnel monitor and a vehicle monitor. The personnel monitor has a plastic-scintillator detector portal, a microwave occupancy monitor, and a microprocessor control unit that measures the radiation intensity during background and monitoring periods to detect transient diversion signals. The vehicle monitor examines stationary motor vehicles while the vehicle's occupants pass through the personnel portal to exchange their badges. The vehicle monitor has four groups of large plastic scintillators that scan the vehicle from above and below. Its microprocessor control unit measures separate radiation intensities in each detector group. Vehicle occupancy is sensed by a highway traffic detection system. Each monitor's controller is responsible for detecting diversion as well as serving as a calibration and trouble-shooting aid. Diversion signals are detected by a sequential probability ratio hypothesis test that minimizes the monitoring time in the vehicle monitor and adapts itself well to variations in individual passage speed in the personnel monitor. Designed to be highly sensitive to diverted enriched uranium, the monitoring system also exhibits exceptional sensitivity for plutonium. 6 references, 9 figures, 2 tables.

  8. The Complementary Role of High Sensitivity C-Reactive Protein in the Diagnosis and Severity Assessment of Autism

    Science.gov (United States)

    Khakzad, Mohammad Reza; Javanbakht, Maryam; Shayegan, Mohammad Reza; Kianoush, Sina; Omid, Fatemeh; Hojati, Maryam; Meshkat, Mojtaba

    2012-01-01

    C-reactive protein (CRP) is a beneficial diagnostic test for the evaluation of inflammatory response. Extremely low levels of CRP can be detected using high-sensitivity CRP (hs-CRP) test. A considerable body of evidence has demonstrated that inflammatory response has an important role in the pathophysiology of autism. In this study, we evaluated…

  9. Demonstration of a Fiber Optic Regression Probe in a High-Temperature Flow

    Science.gov (United States)

    Korman, Valentin; Polzin, Kurt

    2011-01-01

    empirically anchoring any analysis geared towards lifetime qualification. Erosion rate data over an operating envelope could also be useful in the modeling detailed physical processes. The sensor has been embedded in many regressing media to demonstrate the capabilities in a number of regressing environments. In the present work, sensors were installed in the eroding/regressing throat region of a converging-diverging flow, with the working gas heated to high temperatures by means of a high-pressure arc discharge at steady-state discharge power levels up to 500 kW. The amount of regression observed in each material sample was quantified using a later profilometer, which was compared to the in-situ erosion measurements to demonstrate the efficacy of the measurement technique in very harsh, high-temperature environments.

  10. Demonstrating the capability of the high-performance plasmonic gallium-graphene couple.

    Science.gov (United States)

    Losurdo, Maria; Yi, Congwen; Suvorova, Alexandra; Rubanov, Sergey; Kim, Tong-Ho; Giangregorio, Maria M; Jiao, Wenyuan; Bergmair, Iris; Bruno, Giovanni; Brown, April S

    2014-03-25

    Metal nanoparticle (NP)-graphene multifunctional platforms are of great interest for exploring strong light-graphene interactions enhanced by plasmons and for improving performance of numerous applications, such as sensing and catalysis. These platforms can also be used to carry out fundamental studies on charge transfer, and the findings can lead to new strategies for doping graphene. There have been a large number of studies on noble metal Au-graphene and Ag-graphene platforms that have shown their potential for a number of applications. These studies have also highlighted some drawbacks that must be overcome to realize high performance. Here we demonstrate the promise of plasmonic gallium (Ga) nanoparticle (NP)-graphene hybrids as a means of modulating the graphene Fermi level, creating tunable localized surface plasmon resonances and, consequently, creating high-performance surface-enhanced Raman scattering (SERS) platforms. Four prominent peculiarities of Ga, differentiating it from the commonly used noble (gold and silver) metals are (1) the ability to create tunable (from the UV to the visible) plasmonic platforms, (2) its chemical stability leading to long-lifetime plasmonic platforms, (3) its ability to n-type dope graphene, and (4) its weak chemical interaction with graphene, which preserves the integrity of the graphene lattice. As a result of these factors, a Ga NP-enhanced graphene Raman intensity effect has been observed. To further elucidate the roles of the electromagnetic enhancement (or plasmonic) mechanism in relation to electron transfer, we compare graphene-on-Ga NP and Ga NP-on-graphene SERS platforms using the cationic dye rhodamine B, a drug model biomolecule, as the analyte.

  11. High speed and high precision pyramid wavefront sensor: In labs validation and preparation to on sky demonstration

    Science.gov (United States)

    El Hadi, K.; Fusco, T.; Sauvage, J.-F.; Neichel, B.

    2014-07-01

    Since the introduction of the pyramid wavefront sensor [P-WFS] concept (Ragazzoni), numerous investigations have clearly shown its ability to achieve better performance (sensitivity, dynamic range) than the standard Shack-Hartman [SH-WFS]. It has recently been successfully implemented on LBT and has already been provided very interesting results (Esposito et al). Then, most of the future adaptive optics [AO] systems, mainly for ELT instrumentation, will probably integrate one or several pyramidal sensors. However, the pyramid behavior still needs to be extensively studied in order to ensure its optimization in real conditions of operation. So, the coupling in an AO loop and the control of this type of sensor is fundamental for an efficient implementation in the future AO systems. At LAM, we recently carried out in labs demonstration of an extremely performant pyramid sensor (up to 60x60), using particularly an OCAM2 detector (1.5 kHz, RON close to zero). Both modulated and fixed configurations are investigated and compared with numerical models. The P-WFS is being coupled with a dedicated RTC and a 12×12 DM to achieve a first AO closed loop operation. For modulation, a fine control is needed: a specific electronic module, interfaced with the RTC, is being developed to drive the TT mirror (OCAM2 triggering). Then, various TT mirrors are under test to determine a suitable one. After tests of the pyramid specificities (optimiziation, calibration and operation procedures), the P-WFS will be tested on-sky and compared with an already existing SH-WFS (using the same OCAM²) on the ONERA bench.

  12. Piezoelectric Sensor to Measure Soft and Hard Stiffness with High Sensitivity for Ultrasonic Transducers.

    Science.gov (United States)

    Li, Yan-Rui; Su, Chih-Chung; Lin, Wen-Jin; Chang, Shuo-Hung

    2015-06-11

    During dental sinus lift surgery, it is important to monitor the thickness of the remaining maxilla to avoid perforating the sinus membrane. Therefore, a sensor should be integrated into ultrasonic dental tools to prevent undesirable damage. This paper presents a piezoelectric (PZT) sensor installed in an ultrasonic transducer to measure the stiffness of high and low materials. Four design types using three PZT ring materials and a split PZT for actuator and sensor ring materials were studied. Three sensor locations were also examined. The voltage signals of the sensor and the displacement of the actuator were analyzed to distinguish the low and high stiffness. Using sensor type T1 made of the PZT-1 material and the front location A1 provided a high sensitivity of 2.47 Vm/kN. The experimental results demonstrated that our design can measure soft and hard stiffness.

  13. Piezoelectric Sensor to Measure Soft and Hard Stiffness with High Sensitivity for Ultrasonic Transducers

    Directory of Open Access Journals (Sweden)

    Yan-Rui Li

    2015-06-01

    Full Text Available During dental sinus lift surgery, it is important to monitor the thickness of the remaining maxilla to avoid perforating the sinus membrane. Therefore, a sensor should be integrated into ultrasonic dental tools to prevent undesirable damage. This paper presents a piezoelectric (PZT sensor installed in an ultrasonic transducer to measure the stiffness of high and low materials. Four design types using three PZT ring materials and a split PZT for actuator and sensor ring materials were studied. Three sensor locations were also examined. The voltage signals of the sensor and the displacement of the actuator were analyzed to distinguish the low and high stiffness. Using sensor type T1 made of the PZT-1 material and the front location A1 provided a high sensitivity of 2.47 Vm/kN. The experimental results demonstrated that our design can measure soft and hard stiffness.

  14. A high sensitivity field effect transistor biosensor for methylene blue detection utilize graphene oxide nanoribbon.

    Science.gov (United States)

    Lin, Ting-Chun; Li, Yan-Sheng; Chiang, Wei-Hung; Pei, Zingway

    2017-03-15

    In this work, we developed a field effect transistor (FET) biosensor utilizing solution-processed graphene oxide nanoribbon (GONR) for methylene blue (MB) sensing. MB is a unique material; one of its crucial applications is as a marker in the detection of biomaterials. Therefore, a highly sensitive biosensor with a low detection limit that can be fabricated simply in a noncomplex detection scheme is desirable. GONR is made by unzipping multiwall carbon nanotubes, which can be mass-produced at low temperature. The GONR-FET biosensor demonstrated a sensitivity of 12.5μA/mM (determined according to the drain current difference caused by the MB concentration change). The Raman spectra indicate that the materials quality of the GONR and the domain size for the C=C sp(2) bonding were both improved after MB detection. X-ray photoelectron spectroscopy revealed that the hydroxyl groups on the GONR were removed by the reductive MB. According to XPS and Raman, the positive charge is proposed to transfer from MB to GONR during sensing. This transfer causes charge in-neutrality in the GONR which is compensated by releasing •OH functional groups. With high sensitivity, a low detection limit, and a simple device structure, the GONR-FET sensor is suitable for sensing biomaterials.

  15. ARC: A compact, high-field, disassemblable fusion nuclear science facility and demonstration power plant

    Science.gov (United States)

    Sorbom, Brandon; Ball, Justin; Palmer, Timothy; Mangiarotti, Franco; Sierchio, Jennifer; Bonoli, Paul; Kasten, Cale; Sutherland, Derek; Barnard, Harold; Haakonsen, Christian; Goh, Jon; Sung, Choongki; Whyte, Dennis

    2014-10-01

    The Affordable, Robust, Compact (ARC) reactor conceptual design aims to reduce the size, cost, and complexity of a combined Fusion Nuclear Science Facility (FNSF) and demonstration fusion pilot power plant. ARC is a 270 MWe tokamak reactor with a major radius of 3.3 m, a minor radius of 1.1 m, and an on-axis magnetic field of 9.2 T. ARC has Rare Earth Barium Copper Oxide (REBCO) superconducting toroidal field coils with joints to allow disassembly, allowing for removal and replacement of the vacuum vessel as a single component. Inboard-launched current drive of 25 MW LHRF power and 13.6 MW ICRF power is used to provide a robust, steady state core plasma far from disruptive limits. ARC uses an all-liquid blanket, consisting of low pressure, slowly flowing Fluorine Lithium Beryllium (FLiBe) molten salt. The liquid blanket acts as a working fluid, coolant, and tritium breeder, and minimizes the solid material that can become activated. The large temperature range over which FLiBe is liquid permits blanket operation at 800-900 K with single phase fluid cooling and allows use of a high-efficiency Brayton cycle for electricity production in the secondary coolant loop.

  16. Desensitization protocol in highly HLA-sensitized and ABO-incompatible high titer kidney transplantation.

    Science.gov (United States)

    Uchida, J; Machida, Y; Iwai, T; Naganuma, T; Kitamoto, K; Iguchi, T; Maeda, S; Kamada, Y; Kuwabara, N; Kim, T; Nakatani, T

    2010-12-01

    A positive crossmatch indicates the presence of donor-specific alloantibodies and is associated with a graft loss rate of >80%; anti-ABO blood group antibodies develop in response to exposure to foreign blood groups, resulting in immediate graft loss. However, a desensitization protocol for highly HLA-sensitized and ABO-incompatible high-titer kidney transplantation has not yet been established. We treated 6 patients with high (≥1:512) anti-A/B antibody titers and 2 highly HLA-sensitized patients. Our immunosuppression protocol was initiated 1 month before surgery and included mycophenolate mofetil (1 g/d) and/or low-dose steroid (methylprednisolone 8 mg/d). Two doses of the anti-CD20 antibody rituximab (150 mg/m(2)) were administered 2 weeks before and on the day of transplantation. We performed antibody removal with 6-12 sessions of plasmapheresis (plasma exchange or double-filtration plasmapheresis) before transplantation. Splenectomy was also performed on the day of transplantation. Postoperative immunosuppression followed the same regimen as ABO-compatible cases, in which calcineurin inhibitors were initiated 3 days before transplantation, combined with 2 doses of basiliximab. Of the 8 patients, 7 subsequently underwent successful living-donor kidney transplantation. Follow-up of our recipients showed that the patient and graft survival rates were 100%. Acute cellular rejection and antibody-mediated rejection episodes occurred in 1 of the 7 recipients. These findings suggest that our immunosuppression regimen consisting of rituximab infusions, splenectomy, plasmapheresis, and pharmacologic immunosuppression may prove to be effective as a desensitization protocol for highly HLA-sensitized and ABO-incompatible high-titer kidney transplantation. Copyright © 2010 Elsevier Inc. All rights reserved.

  17. Temperature insensitive hysteresis free highly sensitive polymer optical fiber Bragg grating humidity sensor

    DEFF Research Database (Denmark)

    Woyessa, Getinet; Nielsen, Kristian; Stefani, Alessio

    2016-01-01

    sensitivity and a high hysteresis in the humidity response, in particular when operated at high temperature. PMMA mPOFBGs annealed at high humidity show higher and more linear humidity sensitivity with negligible hysteresis. We also report how annealing at high humidity can blue-shift the FBG wavelength more...

  18. Case studies of high-sensitivity monitoring of natural and engineered slopes

    Directory of Open Access Journals (Sweden)

    Werner Lienhart

    2015-08-01

    Full Text Available High-sensitivity monitoring solutions are crucial for early warning systems of earth structures. In this paper, we discuss the design and implementation of such systems for natural and engineered slopes using two case studies. At the Gradenbach Observatory, one key element of the monitoring system is a large fiber optic strain rosette embedded in the slope. We demonstrate that the strain rosette can depict landslide deformations much earlier than geodetic sensors like GPS or total stations and is therefore well suitable for an early warning system. In a second application we report the construction of a reinforced earth structure using geogrids. A distributed fiber optic measurement system was installed to measure the current operating grade of the geogrids within the earth structure. About 2 km of Brillouin sensing cables were installed in the project area. It is demonstrated that the developed monitoring system is well suited for assessing the current state of health of reinforced earth structures.

  19. High Sensitivity Terahertz Detection through Large-Area Plasmonic Nano-Antenna Arrays

    Science.gov (United States)

    Yardimci, Nezih Tolga; Jarrahi, Mona

    2017-01-01

    Plasmonic photoconductive antennas have great promise for increasing responsivity and detection sensitivity of conventional photoconductive detectors in time-domain terahertz imaging and spectroscopy systems. However, operation bandwidth of previously demonstrated plasmonic photoconductive antennas has been limited by bandwidth constraints of their antennas and photoconductor parasitics. Here, we present a powerful technique for realizing broadband terahertz detectors through large-area plasmonic photoconductive nano-antenna arrays. A key novelty that makes the presented terahertz detector superior to the state-of-the art is a specific large-area device geometry that offers a strong interaction between the incident terahertz beam and optical pump at the nanoscale, while maintaining a broad operation bandwidth. The large device active area allows robust operation against optical and terahertz beam misalignments. We demonstrate broadband terahertz detection with signal-to-noise ratio levels as high as 107 dB. PMID:28205615

  20. Case studies of high-sensitivity monitoring of natural and engineered slopes

    Institute of Scientific and Technical Information of China (English)

    Werner Lienhart

    2015-01-01

    High-sensitivity monitoring solutions are crucial for early warning systems of earth structures. In this paper, we discuss the design and implementation of such systems for natural and engineered slopes using two case studies. At the Gradenbach Observatory, one key element of the monitoring system is a large fiber optic strain rosette embedded in the slope. We demonstrate that the strain rosette can depict landslide deformations much earlier than geodetic sensors like GPS or total stations and is therefore well suitable for an early warning system. In a second application we report the construction of a reinforced earth structure using geogrids. A distributed fiber optic measurement system was installed to measure the current operating grade of the geogrids within the earth structure. About 2 km of Brillouin sensing cables were installed in the project area. It is demonstrated that the developed monitoring system is well suited for assessing the current state of health of reinforced earth structures.

  1. High Sensitivity Terahertz Detection through Large-Area Plasmonic Nano-Antenna Arrays

    Science.gov (United States)

    Yardimci, Nezih Tolga; Jarrahi, Mona

    2017-02-01

    Plasmonic photoconductive antennas have great promise for increasing responsivity and detection sensitivity of conventional photoconductive detectors in time-domain terahertz imaging and spectroscopy systems. However, operation bandwidth of previously demonstrated plasmonic photoconductive antennas has been limited by bandwidth constraints of their antennas and photoconductor parasitics. Here, we present a powerful technique for realizing broadband terahertz detectors through large-area plasmonic photoconductive nano-antenna arrays. A key novelty that makes the presented terahertz detector superior to the state-of-the art is a specific large-area device geometry that offers a strong interaction between the incident terahertz beam and optical pump at the nanoscale, while maintaining a broad operation bandwidth. The large device active area allows robust operation against optical and terahertz beam misalignments. We demonstrate broadband terahertz detection with signal-to-noise ratio levels as high as 107 dB.

  2. High sensitivity InAs photodiodes for mid-infrared detection

    Science.gov (United States)

    Ng, Jo Shien; Zhou, Xinxin; Auckloo, Akeel; White, Benjamin; Zhang, Shiyong; Krysa, Andrey; David, John P. R.; Tan, Chee Hing

    2016-10-01

    Sensitive detection of mid-infrared light (2 to 5 μm wavelengths) is crucial to a wide range of applications. Many of the applications require high-sensitivity photodiodes, or even avalanche photodiodes (APDs), with the latter generally accepted as more desirable to provide higher sensitivity when the optical signal is very weak. Using the semiconductor InAs, whose bandgap is 0.35 eV at room temperature (corresponding to a cut-off wavelength of 3.5 μm), Sheffield has developed high-sensitivity APDs for mid-infrared detection for one such application, satellite-based greenhouse gases monitoring at 2.0 μm wavelength. With responsivity of 1.36 A/W at unity gain at 2.0 μm wavelength (84 % quantum efficiency), increasing to 13.6 A/W (avalanche gain of 10) at -10V, our InAs APDs meet most of the key requirements from the greenhouse gas monitoring application, when cooled to 180 K. In the past few years, efforts were also made to develop planar InAs APDs, which are expected to offer greater robustness and manufacturability than mesa APDs previously employed. Planar InAs photodiodes are reported with reasonable responsivity (0.45 A/W for 1550 nm wavelength) and planar InAs APDs exhibited avalanche gain as high as 330 at 200 K. These developments indicate that InAs photodiodes and APDs are maturing, gradually realising their potential indicated by early demonstrations which were first reported nearly a decade ago.

  3. A Cytoplasmic Form of Gaussia luciferase Provides a Highly Sensitive Test for Cytotoxicity

    Science.gov (United States)

    Tsuji, Saori; Ohbayashi, Tetsuya; Yamakage, Kohji; Oshimura, Mitsuo; Tada, Masako

    2016-01-01

    The elimination of unfavorable chemicals from our environment and commercial products requires a sensitive and high-throughput in vitro assay system for drug-induced hepatotoxicity. Some previous methods for evaluating hepatotoxicity measure the amounts of cytoplasmic enzymes secreted from damaged cells into the peripheral blood or culture medium. However, most of these enzymes are proteolytically digested in the extracellular milieu, dramatically reducing the sensitivity and reliability of such assays. Other methods measure the decrease in cell viability following exposure to a compound, but such endpoint assays are often confounded by proliferation of surviving cells that replace dead or damaged cells. In this study, with the goal of preventing false-negative diagnoses, we developed a sensitive luminometric cytotoxicity test using a stable form of luciferase. Specifically, we converted Gaussia luciferase (G-Luc) from an actively secreted form to a cytoplasmic form by adding an ER-retention signal composed of the four amino acids KDEL. The bioluminescent signal was >30-fold higher in transgenic HepG2 human hepatoblastoma cells expressing G-Luc+KDEL than in cells expressing wild-type G-Luc. Moreover, G-Luc+KDEL secreted from damaged cells was stable in culture medium after 24 hr at 37°C. We evaluated the accuracy of our cytotoxicity test by subjecting identical samples obtained from chemically treated transgenic HepG2 cells to the G-Luc+KDEL assay and luminometric analyses based on secretion of endogenous adenylate kinase or cellular ATP level. Time-dependent accumulation of G-Luc+KDEL in the medium increased the sensitivity of our assay above those of existing tests. Our findings demonstrate that strong and stable luminescence of G-Luc+KDEL in human hepatocyte-like cells, which have high levels of metabolic activity, make it suitable for use in a high-throughput screening system for monitoring time-dependent cytotoxicity in a limited number of cells. PMID

  4. Highly Sensitive Flexible Pressure Sensor Based on Silver Nanowires-Embedded Polydimethylsiloxane Electrode with Microarray Structure.

    Science.gov (United States)

    Shuai, Xingtian; Zhu, Pengli; Zeng, Wenjin; Hu, Yougen; Liang, Xianwen; Zhang, Yu; Sun, Rong; Wong, Ching-Ping

    2017-08-09

    Flexible pressure sensors have attracted increasing research interest because of their potential applications for wearable sensing devices. Herein, a highly sensitive flexible pressure sensor is exhibited based on the elastomeric electrodes and a microarray architecture. Polydimethylsiloxane (PDMS) substrate, coated with silver nanowires (AgNWs), is used as the top electrode, while polyvinylidene fluoride (PVDF) as the dielectric layer. Several transfer processes are applied on seeking facile strategy for the preparation of the bottom electrode via embedding AgNWs into the PDMS film of microarray structure. The flexible pressure sensor integrates the top electrode, dielectric layer, and microarray electrode in a sandwich structure. It is demonstrated that such sensors possess the superiorities of high sensitivity (2.94 kPa(-1)), low detection limit (flexible pressure sensor exhibits good performance even in a noncontact way, such as detecting voice vibrations and air flow. Due to its superior performance, this designed flexible pressure sensor demonstrates promising potential in the application of electronic skins, as well as wearable healthcare monitors.

  5. A frequency and sensitivity tunable microresonator array for high-speed quantum processor readout

    Energy Technology Data Exchange (ETDEWEB)

    Whittaker, J. D., E-mail: jwhittaker@dwavesys.com; Swenson, L. J.; Volkmann, M. H.; Spear, P.; Altomare, F.; Berkley, A. J.; Bunyk, P.; Harris, R.; Hilton, J. P.; Hoskinson, E.; Johnson, M. W.; Ladizinsky, E.; Lanting, T.; Oh, T.; Perminov, I.; Tolkacheva, E.; Yao, J. [D-Wave Systems, Inc., Burnaby, British Columbia V5G 4M9 (Canada); Bumble, B.; Day, P. K.; Eom, B. H. [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California 91109 (United States); and others

    2016-01-07

    Superconducting microresonators have been successfully utilized as detection elements for a wide variety of applications. With multiplexing factors exceeding 1000 detectors per transmission line, they are the most scalable low-temperature detector technology demonstrated to date. For high-throughput applications, fewer detectors can be coupled to a single wire but utilize a larger per-detector bandwidth. For all existing designs, fluctuations in fabrication tolerances result in a non-uniform shift in resonance frequency and sensitivity, which ultimately limits the efficiency of bandwidth utilization. Here, we present the design, implementation, and initial characterization of a superconducting microresonator readout integrating two tunable inductances per detector. We demonstrate that these tuning elements provide independent control of both the detector frequency and sensitivity, allowing us to maximize the transmission line bandwidth utilization. Finally, we discuss the integration of these detectors in a multilayer fabrication stack for high-speed readout of the D-Wave quantum processor, highlighting the use of control and routing circuitry composed of single-flux-quantum loops to minimize the number of control wires at the lowest temperature stage.

  6. DEMONSTRATION AND EVALUATION OF POTENTIAL HIGH LEVEL WASTE MELTER DECONTAMINATION TECHNOLOGIES FOR SAVANNAH RIVER SITE

    Energy Technology Data Exchange (ETDEWEB)

    Weger, Hans, Ph.D.; Kodanda, Raja Tilek Meruva; Mazumdar, Anindra; Srivastava, Rajiv Ph.D.; Ebadian, M.A. Ph.D.

    2003-02-27

    Four hand-held tools were tested for failed high-level waste melter decontamination and decommissioning (D&D). The forces felt by the tools during operation were measured using a tri-axial accelerometer since they will be operated by a remote manipulator. The efficiency of the tools was also recorded. Melter D&D consists of three parts: (1) glass fracturing: removing from the furnace the melted glass that can not be poured out through normal means, (2) glass cleaning: removing the thin layer of glass that has formed over the surface of the refractory material, and (3) K-3 refractory breakup: removing the K-3 refractory material. Surrogate glass, from a formula provided by the Savannah River Site, was melted in a furnace and poured into steel containers. K-3 refractory material, the same material used in the Defense Waste Processing Facility, was utilized for the demonstrations. Four K-3 blocks were heated at 1150 C for two weeks with a glass layer on top to simulate the hardened glass layer on the refractory surface in the melter. Tools chosen for the demonstrations were commonly used D&D tools, which have not been tested specifically for the different aspects of melter D&D. A jackhammer and a needle gun were tested for glass fracturing; a needle gun and a rotary grinder with a diamond face wheel (diamond grinder) were tested for glass cleaning; and a jackhammer, diamond grinder, and a circular saw with a diamond blade were tested for refractory breakup. The needle gun was not capable of removing or fracturing the surrogate glass. The diamond grinder only had a removal rate of 3.0 x 10-4 kg/s for K-3 refractory breakup and needed to be held firmly against the material. However, the diamond grinder was effective for glass cleaning, with a removal rate of 3.9 cm2/s. The jackhammer was successful in fracturing glass and breaking up the K-3 refractory block. The jackhammer had a glass-fracturing rate of 0.40 kg/s. The jackhammer split the K-3 refractory block into two

  7. Highly sensitive BTX detection using surface functionalized QCM sensor

    Energy Technology Data Exchange (ETDEWEB)

    Bozkurt, Asuman Aşıkoğlu; Özdemir, Okan; Altındal, Ahmet, E-mail: altindal@yildiz.edu.tr [Department of Physics, Yildiz Technical University, Davutpasa, 34210 Istanbul (Turkey)

    2016-03-25

    A novel organic compound was designed and successfully synthesized for the fabrication of QCM based sensors to detect the low concentrations of BTX gases in indoor air. The effect of the long-range electron orbital delocalization on the BTX vapour sensing properties of azo-bridged Pcs based chemiresistor-type sensors have also been investigated in this work. The sensing behaviour of the film for the online detection of volatile organic solvent vapors was investigated by utilizing an AT-cut quartz crystal resonator. It was observed that the adsorption of the target molecules on the coating surface cause a reversible negative frequency shift of the resonator. Thus, a variety of solvent vapors can be detected by using the phthalocyanine film as sensitive coating, with sensitivity in the ppm range and response times in the order of several seconds depending on the molecular structure of the organic solvent.

  8. Highly Sensitive Cadmium Concentration Sensor Using Long Period Grating

    Directory of Open Access Journals (Sweden)

    A. S. Lalasangi

    2011-08-01

    Full Text Available In this paper we have proposed a simple and effective Long Period Grating chemical sensor for detecting the traces of Cadmium (Cd++ in drinking water at ppm level. Long Period gratings (LPG were fabricated by point-by-point technique with CO2 laser. We have characterized the LPG concentration sensor sensitivity for different solutions of Cd concentrations varying from 0.01 ppm to 0.04 ppm by injecting white Light source and observed transmitted spectra using Optical Spectrum Analyzer (OSA. Proper reagents have been used in the solutions for detection of the Cd species. The overall shift in wavelength is 10 nm when surrounding medium gradually changed from water to 0.04 ppm of cadmium concentrations. A comparative study has been done using sophisticated spectroscopic atomic absorption spectrometer (AAS and Inductively Coupled Plasma (ICP instruments. The spectral sensitivity enhancement was done by modifying grating surface with gold nanoparticles.

  9. Highly sensitive detection using Herriott cell for laser absorption spectroscopy

    Science.gov (United States)

    Zhao, Chongyi; Song, Guangming; Du, Yang; Zhao, Xiaojun; Wang, Wenju; Zhong, Liujun; Hu, Mai

    2016-11-01

    The tunable diode laser absorption spectroscopy combined with the long absorption path technique is a significant method to detect harmful gas. The long optical path could come true by Herriott cell reducing the size of the spectrometers. A 15 cm long Herriott cell with 28.8 m optical absorption path after 96 times reflection was designed that enhanced detection sensitivity of absorption spectroscopy. According to the theory data of calculation, Herriott cell is analyzed and simulated by softwares Matlab and Lighttools.

  10. HIGH SENSITIVE C-REACTIVE PROTEIN IN CEREBROVASCULAR ISCHEMIA

    OpenAIRE

    Padmalatha; Neeraja

    2016-01-01

    BACKGROUND Cerebrovascular ischemia is recognized as a major health problem, which causes significant morbidity and mortality. The main pathophysiology of ischemic stroke is atherosclerosis of cerebral vessels. Hs-CRP is a sensitive marker of inflammation tissue injury in the arterial wall, which contributes to atherosclerosis. In this study, we aim to investigate the association of hs-CRP in patients with ischemic stroke and to correlate hs-CRP levels with possible risk facto...

  11. The strain-rate sensitivity of high-strength high-toughness steels.

    Energy Technology Data Exchange (ETDEWEB)

    Dilmore, M.F. (AFRL/MNMW, Eglin AFB, FL); Crenshaw, Thomas B.; Boyce, Brad Lee

    2006-01-01

    The present study examines the strain-rate sensitivity of four high strength, high-toughness alloys at strain rates ranging from 0.0002 s-1 to 200 s-1: Aermet 100, a modified 4340, modified HP9-4-20, and a recently developed Eglin AFB steel alloy, ES-1c. A refined dynamic servohydraulic method was used to perform tensile tests over this entire range. Each of these alloys exhibit only modest strain-rate sensitivity. Specifically, the strain-rate sensitivity exponent m, is found to be in the range of 0.004-0.007 depending on the alloy. This corresponds to a {approx}10% increase in the yield strength over the 7-orders of magnitude change in strain-rate. Interestingly, while three of the alloys showed a concominant {approx}3-10% drop in their ductility with increasing strain-rate, the ES1-c alloy actually exhibited a 25% increase in ductility with increasing strain-rate. Fractography suggests the possibility that at higher strain-rates ES-1c evolves towards a more ductile dimple fracture mode associated with microvoid coalescence.

  12. Antibody desensitization therapy in highly sensitized lung transplant candidates.

    Science.gov (United States)

    Snyder, L D; Gray, A L; Reynolds, J M; Arepally, G M; Bedoya, A; Hartwig, M G; Davis, R D; Lopes, K E; Wegner, W E; Chen, D F; Palmer, S M

    2014-04-01

    As HLAs antibody detection technology has evolved, there is now detailed HLA antibody information available on prospective transplant recipients. Determining single antigen antibody specificity allows for a calculated panel reactive antibodies (cPRA) value, providing an estimate of the effective donor pool. For broadly sensitized lung transplant candidates (cPRA ≥ 80%), our center adopted a pretransplant multi-modal desensitization protocol in an effort to decrease the cPRA and expand the donor pool. This desensitization protocol included plasmapheresis, solumedrol, bortezomib and rituximab given in combination over 19 days followed by intravenous immunoglobulin. Eight of 18 candidates completed therapy with the primary reasons for early discontinuation being transplant (by avoiding unacceptable antigens) or thrombocytopenia. In a mixed-model analysis, there were no significant changes in PRA or cPRA changes over time with the protocol. A sub-analysis of the median fluorescence intensity (MFI) change indicated a small decline that was significant in antibodies with MFI 5000-10,000. Nine of 18 candidates subsequently had a transplant. Posttransplant survival in these nine recipients was comparable to other pretransplant-sensitized recipients who did not receive therapy. In summary, an aggressive multi-modal desensitization protocol does not significantly reduce pretransplant HLA antibodies in a broadly sensitized lung transplant candidate cohort. © Copyright 2014 The American Society of Transplantation and the American Society of Transplant Surgeons.

  13. Molecular cloning, expression and immunological characterisation of Lol p 5C, a novel allergen isoform of rye grass pollen demonstrating high IgE reactivity.

    Science.gov (United States)

    Suphioglu, C; Mawdsley, D; Schäppi, G; Gruehn, S; de Leon, M; Rolland, J M; O'Hehir, R E

    1999-12-03

    A novel isoform of a major rye grass pollen allergen Lol p 5 was isolated from a cDNA expression library. The new isoform, Lol p 5C, shares 95% amino acid sequence identity with Lol p 5A. Both isoforms demonstrated shared antigenic activity but different allergenic activities. Recombinant Lol p 5C demonstrated 100% IgE reactivity in 22 rye grass pollen sensitive patients. In comparison, recombinant Lol p 5A showed IgE reactivity in less than 64% of the patients. Therefore, Lol p 5C represents a novel and highly IgE-reactive isoform allergen of rye grass pollen.

  14. Experimental Demonstration of Advanced Palladium Membrane Separators for Central High Purity Hydrogen Production

    Energy Technology Data Exchange (ETDEWEB)

    Sean Emerson; Neal Magdefrau; Susanne Opalka; Ying She; Catherine Thibaud-Erkey; Thoman Vanderspurt; Rhonda Willigan

    2010-06-30

    The overall objectives for this project were to: (1) confirm the high stability and resistance of a PdCu trimetallic alloy to carbon and carbide formation and, in addition, resistance to sulfur, halides, and ammonia; (2) develop a sulfur, halide, and ammonia resistant alloy membrane with a projected hydrogen permeance of 25 m{sup 3}m{sup -2}atm{sup -0.5}h{sup -1} at 400 C and capable of operating at pressures of 12.1 MPa ({approx}120 atm, 1750 psia); and (3) construct and experimentally validate the performance of 0.1 kg/day H{sup 2} PdCu trimetallic alloy membrane separators at feed pressures of 2 MPa (290 psia) in the presence of H{sub 2}S, NH{sub 3}, and HCl. This project successfully increased the technology readiness level of palladium-based metallic membranes for hydrogen separation from coal-biomass gasifier exhaust or similar hydrogen-containing gas streams. The reversible tolerance of palladium-copper (PdCu) alloys was demonstrated for H{sub 2}S concentrations varying from 20 ppmv up to 487 ppmv and NH{sub 3} concentrations up to 9 ppmv. In addition, atomistic modeling validated the resistance of PdCu alloys to carbon formation, irreversible sulfur corrosion, and chlorine attack. The experimental program highlighted two key issues which must be addressed as part of future experimental programs: (1) tube defects and (2) non-membrane materials of construction. Four out of five FCC PdCu separators developed leaks during the course of the experimental program because {approx}10% of the alloy tubes contained a single defect that resulted in a thin, weak point in the tube walls. These defects limited operation of the existing tubes to less than 220 psig. For commercial applications of a PdCu alloy hydrogen separator under high sulfur concentrations, it was determined that stainless steel 316 is not suitable for housing or supporting the device. Testing with sulfur concentrations of 487 {+-} 4 ppmv resulted in severe corrosion of the stainless steel components of

  15. Lung parenchyma changes in ankylosing spondylitis: demonstration with high resolution CT and correlation with disease duration

    Energy Technology Data Exchange (ETDEWEB)

    Senocak, Oezlem E-mail: emine.senocak@deu.edu.tr; Manisali, Metin; Oezaksoy, Dinc; Sevinc, Can; Akalin, Elif

    2003-02-01

    Objective: To analyze the spectrum of the lung parenchyma changes in ankylosing spondylitis (AS) with high resolution computed tomography (HRCT) and correlate the findings with disease duration. Material and methods: Twenty patients (18 male, 2 female) with the diagnosis of AS according to New York criteria were included in the study. None of the patients had history of tuberculosis, prolonged inorganic dust exposure and hospitalization for pneumonia. Seven of the patients were smokers, three patients were ex-smokers, and 10 patients were nonsmokers. The patients were assigned to three groups depending on disease duration. Group 1: patients with disease duration {<=}5 years (n: four patients), group 2: patients with disease duration {>=}6 years but {<=}10 years (n: four patients), group 3: patients with disease duration {>=}11 years (n: 12 patients). HRCT and pulmonary function tests (PFT) were performed in all patients. Results: HRCT demonstrated pathology in 17 patients (85%). Two patients in group 1, 4 patients in group 2 and 11 patients in group 3 had pulmonary parenchyma changes. Emphysema (9/20), septal thickening (9/20) and pleural thickening (9/20) were the most common changes followed by nodule (8/20) and subpleural band formation (7/20). Three patients had apical fibrosis (AF). Septal and pleural thickening (both 4/10) were the most common changes when only nonsmokers were considered. Among nine patients with emphysema three were nonsmokers. Conclusion: There is a wide spectrum in pulmonary parenchyma changes in AS. These changes begin in early stages of the disease and increase with disease duration. Although smoking complicates the spectrum of changes in pulmonary parenchyma, they are predominately in the form of interstitial inflammation.

  16. Bronchial reactivity in hyperresponsive patients and healthy individuals: demonstration with high resolution computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Schueller, G. E-mail: gerd.schueller@univie.ac.at; Neumann, K.; Helbich, T.; Riemer, H.; Backfrieder, W.; Sertl, K.; Herold, C.J

    2004-11-01

    Objective: High resolution computed tomography (HRCT) was used to assess the extent of bronchial reactivity after inhalative bronchoprovocation and dilation in hyperresponsive patients and healthy subjects. Patients and methods: Patients with mild intermittent asthma, 15 with a >20% decrease in FEV{sub 1} and a >10 mmHg (PC{sub 20}+) in PaO{sub 2}, 12 with a <20% decrease in FEV{sub 1} and a >10 mmHg (PC{sub 20}-) in PaO{sub 2} after provocation, and eight healthy humans were included in the study. Changes in cross-sectional area in a total of 1256 bronchi and in bronchial wall area (792 bronchi) were evaluated after histamine-triggered bronchoprovocation and salbutamol-induced bronchodilation at high lung volumes (FVC 80%). Data were compared with the results of pulmonary function tests (FEV{sub 1}, PaO{sub 2}, PaCO{sub 2}). Results: In all groups, a significant decrease in bronchial cross-sectional area (P<0.001) and a significant increase in bronchial wall area (P<0.001) were observed subsequent to bronchoprovocation. After bronchodilation, the increase in cross-sectional area (P<0.001) and the further increase in airway wall area (P<0.01) were significant in all groups. In PC{sub 20}+ and PC{sub 20}- asthmatics, significant differences (P<0.05) in PaO{sub 2}, >10 mmHg between baseline and provocation were observed. In healthy persons, the PaO{sub 2} decrease was <10 mmHg (P>0.05). After histamine provocation, the decrease in FEV{sub 1} was measured in the PC{sub 20}+ group, whereas a <20% FEV{sub 1} decrease was found in the PC{sub 20}- and the control groups, respectively. No significant correlations were observed between radiological data and the results of pulmonary function tests. Conclusions: HRCT demonstrated bronchial reactivity in hyperresponsive patients and, unexpectedly, in healthy subjects. The applied pulmonary function tests failed to characterize bronchial reactions in the healthy subjects. Based on these results, HRCT is a useful tool by which

  17. Highly sensitive method for diagnosis of subclinical B. ovis infection.

    Science.gov (United States)

    Horta, Sara; Barreto, Maria C; Pepe, Ana; Campos, Joana; Oliva, Abel

    2014-10-01

    Babesia ovis is a tick-transmitted protozoa parasite that infects small ruminants causing fever, anaemia, hemoglobinuria, anorexia and, in acute cases, death. Common in tropical and sub-tropical areas, the presence of this parasite in sheep herds has an economic impact on industry and therefore sensitive methods for the diagnosis and disease eradication are required. To achieve this goal, a semi-nested PCR for B. ovis specific identification was developed and consequent reaction conditions and enzymes were optimized and tested with field samples. 300 blood samples from small ruminants and 39 ticks from Rhipicephalus genus were collected from different regions of Portugal. Afterwards, DNA extraction was performed and conventional and semi-nested PCR were accomplished for all samples. The results obtained from both methodologies were compared and the sensitivity was evaluated. Employing the semi-nested PCR it was possible to identify a higher number of positive cases among the evaluated samples than using the conventional PCR, namely 38/300 blood samples and 7/39 ticks. However, fragment amplification was only observed in 5 out of 300 blood samples and in none of the 39 ticks when a conventional PCR was employed. The validation of the results was achieved by sequencing the DNA fragments corresponding to the hypervariable v4 region of the 18S ribosomal RNA gene and performing an alignment with sequences already published on GenBank(®). The ticks collected in this study belong to the Rhipicephalus genus, although other species could be involved as a vector in the Babesia spread. The diagnostic assay here described is presently the most effective and sensitive method for detection of B. ovis in field blood samples and ticks, enabling the detection up to 1 parasite into 10(9) erythrocytes. Copyright © 2014 Elsevier GmbH. All rights reserved.

  18. HIGHLY SENSITIVE TIMER-BASED RESISTANCE DEVIATION TO TIME CONVERTER

    Directory of Open Access Journals (Sweden)

    Sheroz Khan

    2012-02-01

    Full Text Available Based on an inexpensive popular precision timing chip 555 timer, a resistance to time converter is proposed in this paper which is indeed capable of converting resistive and capacitive changes into pulse widths of proportional durations. This converter exhibits a compatibility of wider conversion range with a reasonable level of sensitivity required for industrial applications. The circuit is expected to have utility in oil and water supply schemes. Simulated results are shown to be compared with mathematical derivations, both reporting a good level of resemblance and similarities.

  19. High order sensitivity analysis of complex, coupled systems

    Science.gov (United States)

    Sobieszczanski-Sobieski, Jaroslaw

    1990-01-01

    The Sobieszczanski-Sobieski (1988) algorithm is extended to include second- and higher-order derivatives while retaining the obviation of finite-differencing of the system analysis. This is accomplished by means of a recursive application of the same implicit function theorem as in the original algorithm. In optimization, the computational cost of the higher-order derivatives is relative to the aggregate cost of analysis together with a repetition of the first-order sensitivity analysis as often as is required to produce the equivalent information by successive linearizations within move limits.

  20. Analysis of Cyberbullying Sensitivity Levels of High School Students and Their Perceived Social Support Levels

    Science.gov (United States)

    Akturk, Ahmet Oguz

    2015-01-01

    Purpose: The purpose of this paper is to determine the cyberbullying sensitivity levels of high school students and their perceived social supports levels, and analyze the variables that predict cyberbullying sensitivity. In addition, whether cyberbullying sensitivity levels and social support levels differed according to gender was also…

  1. Analysis of Cyberbullying Sensitivity Levels of High School Students and Their Perceived Social Support Levels

    Science.gov (United States)

    Akturk, Ahmet Oguz

    2015-01-01

    Purpose: The purpose of this paper is to determine the cyberbullying sensitivity levels of high school students and their perceived social supports levels, and analyze the variables that predict cyberbullying sensitivity. In addition, whether cyberbullying sensitivity levels and social support levels differed according to gender was also…

  2. High Temperature Syngas Cleanup Technology Scale-up and Demonstration Project

    Energy Technology Data Exchange (ETDEWEB)

    Gardner, Ben [Research Triangle Inst. (RTI), Research Triangle Park, NC (United States); Turk, Brian [Research Triangle Inst. (RTI), Research Triangle Park, NC (United States); Denton, David [Research Triangle Inst. (RTI), Research Triangle Park, NC (United States); Gupta, Raghubir [Research Triangle Inst. (RTI), Research Triangle Park, NC (United States)

    2015-09-30

    Gasification is a technology for clean energy conversion of diverse feedstocks into a wide variety of useful products such as chemicals, fertilizers, fuels, electric power, and hydrogen. Existing technologies can be employed to clean the syngas from gasification processes to meet the demands of such applications, but they are expensive to build and operate and consume a significant fraction of overall parasitic energy requirements, thus lowering overall process efficiency. RTI International has developed a warm syngas desulfurization process (WDP) utilizing a transport-bed reactor design and a proprietary attrition-resistant, high-capacity solid sorbent with excellent performance replicated at lab, bench, and pilot scales. Results indicated that WDP technology can improve both efficiency and cost of gasification plants. The WDP technology achieved ~99.9% removal of total sulfur (as either H2S or COS) from coal-derived syngas at temperatures as high as 600°C and over a wide range of pressures (20-80 bar, pressure independent performance) and sulfur concentrations. Based on the success of these tests, RTI negotiated a cooperative agreement with the U.S. Department of Energy for precommercial testing of this technology at Tampa Electric Company’s Polk Power Station IGCC facility in Tampa, Florida. The project scope also included a sweet water-gas-shift process for hydrogen enrichment and an activated amine process for 90+% total carbon capture. Because the activated amine process provides some additional non-selective sulfur removal, the integration of these processes was expected to reduce overall sulfur in the syngas to sub-ppmv concentrations, suitable for most syngas applications. The overall objective of this project was to mitigate the technical risks associated with the scale up and integration of the WDP and carbon dioxide capture technologies, enabling subsequent commercial-scale demonstration. The warm syngas cleanup pre-commercial test unit

  3. Dichromatic color vision at high light levels: red/green discrimination using the blue-sensitive mechanism.

    Science.gov (United States)

    McMahon, M J; MacLeod, D I

    1998-04-01

    Three red/green blind observers (dichromats) performed a wavelength discrimination task over a wide range of intensity levels. As expected, discrimination failed in the entire red/green spectral range at the low intensities typically used in wavelength discrimination experiments, but at very high intensities (at or above 10,000 td) discrimination was well maintained into the red/green range. The following experiments demonstrate that dichromats are able to utilize signals from the blue-sensitive cones (S-cones) to mediate color discrimination throughout the spectrum at high intensities, and they provide an estimate of S-cone sensitivity throughout the visible spectrum.

  4. Field Demonstration of a Centrifugal Ultra High Pressure (UHP) P-19

    Science.gov (United States)

    2010-03-01

    refractometer to measure concentration is the additive used to give the refractive index. The brix measurement is sensitive to the amount of refractive... brix readings were shown by AFRL to vary between the models, therefore calibration curves not only had to be established for each brand of AFFF but...resolution of ±0.1 brix , which translates to ±0.4% foam concentration. For example, a brix reading of 0.9 could actually range anywhere from 0.85

  5. Implication of potassium trimolybdate nanowires as highly sensitive and selective ammonia sensor at room temperature

    Science.gov (United States)

    Joshi, Aditee C.; Gangal, S. A.

    2016-09-01

    Potassium trimolybdate nanowires are demonstrated as unique and highly selective NH3 sensing materials at room temperature. The nanowires were synthesized by using chemical route under normal ambient conditions and subsequently characterized by scanning electron microscopy (SEM) and x-ray diffraction (XRD). Gas sensors based on nanowires were fabricated by isolating and aligning nanowires between microspaced electrodes using dielectrophoresis. Room temperature gas sensing studies for different vapors indicated excellent selectivity for NH3 and capability to detect NH3 at concentrations down to ppb level. The sensors exhibited higher sensitivity for concentration range much below toxic limit of NH3 from 500 ppb up to 25 ppm. Since nanowires are isolated and aligned, the gas sensing reaction is rapid, and the availability of abundant oxide and hydroxyl surface groups on nanowires surface makes the reaction significantly prominent and selective with highly reducing nature of NH3.

  6. Highly specific and sensitive electrochemical genotyping via gap ligation reaction and surface hybridization detection.

    Science.gov (United States)

    Huang, Yong; Zhang, Yan-Li; Xu, Xiangmin; Jiang, Jian-Hui; Shen, Guo-Li; Yu, Ru-Qin

    2009-02-25

    This paper developed a novel electrochemical genotyping strategy based on gap ligation reaction with surface hybridization detection. This strategy utilized homogeneous enzymatic reactions to generate molecular beacon-structured allele-specific products that could be cooperatively annealed to capture probes stably immobilized on the surface via disulfide anchors, thus allowing ultrasensitive surface hybridization detection of the allele-specific products through redox tags in close proximity to the electrode. Such a unique biphasic architecture provided a universal methodology for incorporating enzymatic discrimination reactions in electrochemical genotyping with desirable reproducibility, high efficiency and no interferences from interficial steric hindrance. The developed technique was demonstrated to show intrinsic high sensitivity for direct genomic analysis, and excellent specificity with discriminativity of single nucleotide variations.

  7. Magnetoresistive polyaniline-silicon carbide metacomposites: plasma frequency determination and high magnetic field sensitivity.

    Science.gov (United States)

    Gu, Hongbo; Guo, Jiang; Khan, Mojammel Alam; Young, David P; Shen, T D; Wei, Suying; Guo, Zhanhu

    2016-07-20

    The Drude model modified by Debye relaxation time was introduced to determine the plasma frequency (ωp) in the surface initiated polymerization (SIP) synthesized β-silicon carbide (β-SiC)/polyaniline (PANI) metacomposites. The calculated plasma frequency for these metacomposites with different loadings of β-SiC nanoparticles was ranging from 6.11 × 10(4) to 1.53 × 10(5) rad s(-1). The relationship between the negative permittivity and plasma frequency indicates the existence of switching frequency, at which the permittivity was changed from negative to positive. More interestingly, the synthesized non-magnetic metacomposites, observed to follow the 3-dimensional (3-D) Mott variable range hopping (VRH) electrical conduction mechanism, demonstrated high positive magnetoresistance (MR) values of up to 57.48% and high MR sensitivity at low magnetic field regimes.

  8. A High Sensitivity Three-Dimensional-Shape Sensing Patch Prepared by Lithography and Inkjet Printing

    Directory of Open Access Journals (Sweden)

    Cheng-Yao Lo

    2012-03-01

    Full Text Available A process combining conventional photolithography and a novel inkjet printing method for the manufacture of high sensitivity three-dimensional-shape (3DS sensing patches was proposed and demonstrated. The supporting curvature ranges from 1.41 to 6.24 ´ 10−2 mm−1 and the sensing patch has a thickness of less than 130 μm and 20 ´ 20 mm2 dimensions. A complete finite element method (FEM model with simulation results was calculated and performed based on the buckling of columns and the deflection equation. The results show high compatibility of the drop-on-demand (DOD inkjet printing with photolithography and the interferometer design also supports bi-directional detection of deformation. The 3DS sensing patch can be operated remotely without any power consumption. It provides a novel and alternative option compared with other optical curvature sensors.

  9. The diagnostic utility of High-Sensitivity Cardiac Troponin T in acute coronary syndrome

    Directory of Open Access Journals (Sweden)

    Manal Mohsen

    2016-03-01

    Conclusion: Our study demonstrated highly significant absolute and relative kinetic changes in hs-TnT levels in patients with AMI. The hs-TnT can be used for early rule in patients with MI as it could detect 97% of cases with MI whose Troponin I was negative and could detect 100% of cases of MI after 6–8 h compared to Troponin I which could detect only 21.2% of cases. This can be of great importance in the future introduction and use of the new high sensitive assay as a non-invasive reliable diagnostic tool to replace the currently used invasive diagnostic techniques for patients with ACS.

  10. In-line microfluidic integration of photonic crystal fibres as a highly sensitive refractometer.

    Science.gov (United States)

    Wu, Chuang; Tse, Ming-Leung Vincent; Liu, Zhengyong; Guan, Bai-Ou; Zhang, A Ping; Lu, Chao; Tam, Hwa-Yaw

    2014-11-07

    Photonic crystal fibres appear to be an ideal platform for the realisation of novel optofluidic devices and sensors due to their waveguide nature and microstructured architecture. In this paper, we present the fabrication and characterisation of an in-line photonic crystal fibre microfluidic refractometer enabled by a C-shaped fibre. The C-shaped fibre spliced in-between the photonic crystal fibre and the single-mode fibre allows simultaneous in-line optical signal delivery and analyte fluid feeding. Through an arc discharge pre-treatment technique, we successfully achieve selective exploitation of only the central two channels of the photonic crystal fibre for microfluidic sensing. After constructing a Sagnac interferometer, a highly sensitive refractometer with a sensitivity of 8699 nm per RIU was achieved experimentally; this agrees very well with the theoretical value of 8675 nm per RIU. As a demonstration for label-free optical sensing application, the refractometer was used to measure the concentration of NaCl solution with a sensitivity of 15.08 nm/(1 wt%) and a detection limit of 2.3 × 10(-3) wt% (23 ppm).

  11. A highly sensitive, low-cost, wearable pressure sensor based on conductive hydrogel spheres

    KAUST Repository

    Tai, Yanlong

    2015-01-01

    Wearable pressure sensing solutions have promising future for practical applications in health monitoring and human/machine interfaces. Here, a highly sensitive, low-cost, wearable pressure sensor based on conductive single-walled carbon nanotube (SWCNT)/alginate hydrogel spheres is reported. Conductive and piezoresistive spheres are embedded between conductive electrodes (indium tin oxide-coated polyethylene terephthalate films) and subjected to environmental pressure. The detection mechanism is based on the piezoresistivity of the SWCNT/alginate conductive spheres and on the sphere-electrode contact. Step-by-step, we optimized the design parameters to maximize the sensitivity of the sensor. The optimized hydrogel sensor exhibited a satisfactory sensitivity (0.176 ΔR/R0/kPa-1) and a low detectable limit (10 Pa). Moreover, a brief response time (a few milliseconds) and successful repeatability were also demonstrated. Finally, the efficiency of this strategy was verified through a series of practical tests such as monitoring human wrist pulse, detecting throat muscle motion or identifying the location and the distribution of an external pressure using an array sensor (4 × 4). © 2015 The Royal Society of Chemistry.

  12. A highly sensitive, low-cost, wearable pressure sensor based on conductive hydrogel spheres.

    Science.gov (United States)

    Tai, Yanlong; Mulle, Matthieu; Aguilar Ventura, Isaac; Lubineau, Gilles

    2015-09-21

    Wearable pressure sensing solutions have promising future for practical applications in health monitoring and human/machine interfaces. Here, a highly sensitive, low-cost, wearable pressure sensor based on conductive single-walled carbon nanotube (SWCNT)/alginate hydrogel spheres is reported. Conductive and piezoresistive spheres are embedded between conductive electrodes (indium tin oxide-coated polyethylene terephthalate films) and subjected to environmental pressure. The detection mechanism is based on the piezoresistivity of the SWCNT/alginate conductive spheres and on the sphere-electrode contact. Step-by-step, we optimized the design parameters to maximize the sensitivity of the sensor. The optimized hydrogel sensor exhibited a satisfactory sensitivity (0.176 ΔR/R0/kPa(-1)) and a low detectable limit (10 Pa). Moreover, a brief response time (a few milliseconds) and successful repeatability were also demonstrated. Finally, the efficiency of this strategy was verified through a series of practical tests such as monitoring human wrist pulse, detecting throat muscle motion or identifying the location and the distribution of an external pressure using an array sensor (4 × 4).

  13. Alcohol Recognition by Flexible, Transparent and Highly Sensitive Graphene-Based Thin-Film Sensors

    KAUST Repository

    Xu, Xuezhu

    2017-06-22

    Chemical sensors detect a variety of chemicals across numerous fields, such as automobile, aerospace, safety, indoor air quality, environmental control, food, industrial production and medicine. We successfully assemble an alcohol-sensing device comprising a thin-film sensor made of graphene nanosheets (GNs) and bacterial cellulose nanofibers (BCNs). We show that the GN/BCN sensor has a high selectivity to ethanol by distinguishing liquid-phase or vapor-phase ethanol (C2H6O) from water (H2O) intelligently with accurate transformation into electrical signals in devices. The BCN component of the film amplifies the ethanol sensitivity of the film, whereby the GN/BCN sensor has 12400% sensitivity for vapor-phase ethanol compared to the pure GN sensor, which has only 21% sensitivity. Finally, GN/BCN sensors demonstrate fast response/recovery times and a wide range of alcohol detection (10-100%). The superior sensing ability of GN/BCN compared to GNs alone is due to the improved wettability of BCNs and the ionization of liquids. We prove a facile, green, low-cost route for the assembly of ethanol-sensing devices with potential for vast application.

  14. Sensitivity analysis for high accuracy proximity effect correction

    Science.gov (United States)

    Thrun, Xaver; Browning, Clyde; Choi, Kang-Hoon; Figueiro, Thiago; Hohle, Christoph; Saib, Mohamed; Schiavone, Patrick; Bartha, Johann W.

    2015-10-01

    A sensitivity analysis (SA) algorithm was developed and tested to comprehend the influences of different test pattern sets on the calibration of a point spread function (PSF) model with complementary approaches. Variance-based SA is the method of choice. It allows attributing the variance of the output of a model to the sum of variance of each input of the model and their correlated factors.1 The objective of this development is increasing the accuracy of the resolved PSF model in the complementary technique through the optimization of test pattern sets. Inscale® from Aselta Nanographics is used to prepare the various pattern sets and to check the consequences of development. Fraunhofer IPMS-CNT exposed the prepared data and observed those to visualize the link of sensitivities between the PSF parameters and the test pattern. First, the SA can assess the influence of test pattern sets for the determination of PSF parameters, such as which PSF parameter is affected on the employments of certain pattern. Secondly, throughout the evaluation, the SA enhances the precision of PSF through the optimization of test patterns. Finally, the developed algorithm is able to appraise what ranges of proximity effect correction is crucial on which portion of a real application pattern in the electron beam exposure.

  15. Development of a high sensitive MEMS hydrophone using PVDF

    Science.gov (United States)

    Varadan, Vijay K.; Zhu, Bei; K. A, Jose

    2002-05-01

    The design and experimental evaluation of a PVDF-based MEMS hydrophone is presented in this paper. The basic structure of the hydrophone was fabricated on a silicon wafer using standard NMOS process technology. A MOSFET with extended gate electrode was designed as the interface circuit to the sensing material, which is a piezoelectric polymer, polyvinylidene difluoride (PVDF). Acoustic impedance possessed by this piezoelectric material provides a reasonable match to water, which makes it very attractive for underwater applications. The electrical signal generated by the PVDF film was directly coupled to the gate of the MOSFET. To minimize the parasitic capacitance underneath the PVDF film and hence improve the device sensitivity, a thick photoresist was first employed as the dielectric layer under the extended gate electrode. For underwater operation, a waterproof Rho-C rubber encapsulated the hydrophone. A silicon nitride layer passivated the active device, which is a good barrier material to most mobile ions and solvents. The device after passivation also shows a lower noise level. The theoretical model developed to predict the sensitivity of the hydrophone shows a reasonable agreement between the theory and the experiment.

  16. A facile and high sensitive micro fluorimeter based on light emitting diode and photodiode.

    Science.gov (United States)

    Geng, Xuhui; Gao, Yan; Feng, Chunbo; Guan, Yafeng

    2017-12-01

    A facile and high sensitive micro fluorimeter was developed and evaluated. It employed light emitting diode (LED) as light source, cuvette as detection cell, and photodiode (PD) as optoelectronic detector. Optical and electronic parameters were optimized and demonstrated. A high power LED was chosen, which could irradiate the inner area of the cuvette completely at the same time with divergence angle as small as possible. The optimum LED brought 2.5 times signal-to-noise ratio (SNR) enhancement. Using reflector at the opposite direction of excitation light path doubled SNR. The amplifier circuit of PD was deeply investigated to achieve high sensitivity, low noise, and good stability. The limit of detection (LOD) of fluorescein isothiocyanate (FITC) and chlorophyll at SNR = 3 were 10pM ~ 0.004 ppb and 0.05 ppb, respectively. Basing on the principle structure, a portable fluorimeter for fungimycin detection was developed using a low power UV LED as light source. The LOD for aflatoxin B1 was 0.1 ppb. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. High resolution numerical modeling of mesoscale island wakes and sensitivity to static topographic relief data

    Directory of Open Access Journals (Sweden)

    C. G. Nunalee

    2015-03-01

    Full Text Available Recent decades have witnessed a drastic increase in the fidelity of numerical weather prediction (NWP modeling. Currently, both research-grade and operational NWP models regularly perform simulations with horizontal grid spacings as fine as 1 km. This migration towards higher resolution potentially improves NWP model solutions by increasing the resolvability of mesoscale processes and reducing dependency on empirical physics parameterizations. However, at the same time, the accuracy of high-resolution simulations, particularly in the atmospheric boundary layer (ABL, are also sensitive to orographic forcing which can have significant variability on the same spatial scale as, or smaller than, NWP model grids. Despite this sensitivity, many high resolution atmospheric simulations do not consider uncertainty with respect to selection of static terrain height dataset. In this paper, we use the Weather Research and Forecasting (WRF model to simulate realistic cases of lower tropospheric flow over and downstream of mountainous islands using both the default global 30 s United States Geographic Survey terrain height dataset (GTOPO30 and the 3 s Shuttle Radar Topography Mission (SRTM terrain height dataset. Our results demonstrate cases where the differences between GTOPO30-based and SRTM-based model terrain height are significant enough to produce entirely different orographic wake mechanics, such as vortex shedding vs. no vortex shedding. These results are also compared to MODIS visible satellite imagery and highlight the importance of considering uncertain static boundary conditions when running high-resolution mesoscale models.

  18. The High Altitude Balloon Experiment demonstration of acquisition, tracking, and pointing technologies (HABE-ATP)

    Science.gov (United States)

    Dimiduk, D.; Caylor, M.; Williamson, D.; Larson, L.

    1995-01-01

    The High Altitude Balloon Experiment demonstration of Acquisition, Tracking, and Pointing (HABE-ATP) is a system built around balloon-borne payload which is carried to a nominal 26-km altitude. The goal is laser tracking thrusting theater and strategic missiles, and then pointing a surrogate laser weapon beam, with performance levels end a timeline traceable to operational laser weapon system requirements. This goal leads to an experiment system design which combines hardware from many technology areas: an optical telescope and IR sensors; an advanced angular inertial reference; a flexible multi-level of actuation digital control system; digital tracking processors which incorporate real-time image analysis and a pulsed, diode-pumped solid state tracking laser. The system components have been selected to meet the overall experiment goals of tracking unmodified boosters at 50- 200 km range. The ATP system on HABE must stabilize and control a relative line of sight between the platform and the unmodified target booster to a 1 microrad accuracy. The angular pointing reference system supports both open loop and closed loop track modes; GPS provides absolute position reference. The control system which positions the line of sight for the ATP system must sequence through accepting a state vector handoff, closed-loop passive IR acquisition, passive IR intermediate fine track, active fine track, and then finally aimpoint determination and maintenance modes. Line of sight stabilization to fine accuracy levels is accomplished by actuating wide bandwidth fast steering mirrors (FSM's). These control loops off-load large-amplitude errors to the outer gimbal in order to remain within the limited angular throw of the FSM's. The SWIR acquisition and MWIR intermediate fine track sensors (both PtSi focal planes) image the signature of the rocket plume. After Hard Body Handover (HBHO), active fine tracking is conducted with a visible focal plane viewing the laser-illuminated target

  19. High temperature probe sensor with high sensitivity based on Michelson interferometer

    Science.gov (United States)

    Zhao, Na; Fu, Haiwei; Shao, Min; Yan, Xu; Li, Huidong; Liu, Qinpeng; Gao, Hong; Liu, Yinggang; Qiao, Xueguang

    2015-05-01

    A novel Michelson interferometer based on a bi-taper is achieved. Such a device is fabricated by splicing a section of thin core fiber (TCF) at one end of single-mode fiber (SMF). Due to the fiber bi-taper at the splicing point of SMF and TCF, the light is coupled into the fiber core and cladding from lead in fiber core. The light will be reflected at the end of the fiber and then will be recoupled back into the lead out fiber core by the fiber bi-taper. While the light returns back to the lead out fiber, the intermodal interference will occur for the optical path difference between core mode and cladding mode. A high temperature sensitivity of 0.140 nm/°C is achieved from 30 to 800 °C, and the linearity is 99.9%. The configuration features the advantages of easy fabrication, a compact size, high sensitivity, wide sensing range and high mechanical strength, making it a good candidate for distant temperature sensing and oil prospecting.

  20. Graphene field-effect transistors with tunable sensitivity for high performance Hg (II) sensing

    Science.gov (United States)

    Li, Peng; Liu, Baijun; Zhang, Dongzhi; Sun, Yan'e.; Liu, Jingjing

    2016-10-01

    Graphene field-effect transistors (FETs) capped with ionophore were fabricated to demonstrate the highly sensitive and selective detection of Hg (II) ions in solution. We systematically investigated the ion detection performances and sensing mechanism of this 2D material. Due to its ambipolar nature, graphene can work as either an n-type or a p-type sensor when a gate voltage is applied to switch its carrier characteristic, resulting in completely different sensing performances. The strong dependence of sensitivity on gate voltage was also investigated. Graphene FETs in optimal regimes were able to detect Hg2+ down to 0.1 ppb, one-fold lower than the World Health Organization tolerance level. Hg2+ ions can be effectively detected over a wide range of concentration (from 0.1 ppb to 1000 ppb) with graphene conductance change following the Langmuir isotherm for molecules adsorption on surface, and the time constant for ion adsorption extracted was only 3.5 s, approximately. The transfer characteristics of graphene FETs capped with mercury ionophore did not show obvious change by the existence of arsenite ions, demonstrating good selectivity. Our results illustrate the potential utility of ionophore integrated graphene FETs for monitoring heavy metal ions in solution.

  1. An integrated approach to realizing high-performance liquid-junction quantum dot sensitized solar cells

    Science.gov (United States)

    McDaniel, Hunter; Fuke, Nobuhiro; Makarov, Nikolay S.; Pietryga, Jeffrey M.; Klimov, Victor I.

    2013-01-01

    Solution-processed semiconductor quantum dot solar cells offer a path towards both reduced fabrication cost and higher efficiency enabled by novel processes such as hot-electron extraction and carrier multiplication. Here we use a new class of low-cost, low-toxicity CuInSexS2−x quantum dots to demonstrate sensitized solar cells with certified efficiencies exceeding 5%. Among other material and device design improvements studied, use of a methanol-based polysulfide electrolyte results in a particularly dramatic enhancement in photocurrent and reduced series resistance. Despite the high vapour pressure of methanol, the solar cells are stable for months under ambient conditions, which is much longer than any previously reported quantum dot sensitized solar cell. This study demonstrates the large potential of CuInSexS2−x quantum dots as active materials for the realization of low-cost, robust and efficient photovoltaics as well as a platform for investigating various advanced concepts derived from the unique physics of the nanoscale size regime. PMID:24322379

  2. Protocol: a highly sensitive RT-PCR method for detection and quantification of microRNAs

    Directory of Open Access Journals (Sweden)

    Walton Eric F

    2007-10-01

    Full Text Available Abstract MicroRNAs (miRNAs are a class of small non-coding RNAs with a critical role in development and environmental responses. Efficient and reliable detection of miRNAs is an essential step towards understanding their roles in specific cells and tissues. However, gel-based assays currently used to detect miRNAs are very limited in terms of throughput, sensitivity and specificity. Here we provide protocols for detection and quantification of miRNAs by RT-PCR. We describe an end-point and real-time looped RT-PCR procedure and demonstrate detection of miRNAs from as little as 20 pg of plant tissue total RNA and from total RNA isolated from as little as 0.1 μl of phloem sap. In addition, we have developed an alternative real-time PCR assay that can further improve specificity when detecting low abundant miRNAs. Using this assay, we have demonstrated that miRNAs are differentially expressed in the phloem sap and the surrounding vascular tissue. This method enables fast, sensitive and specific miRNA expression profiling and is suitable for facilitation of high-throughput detection and quantification of miRNA expression.

  3. Design, Test and Demonstration of Saturable Reactor High-Temperature Superconductor Fault Current Limiters

    Energy Technology Data Exchange (ETDEWEB)

    Darmann, Frank [Zenergy Power, Inc., Burlingame, CA (United States); Lombaerde, Robert [Zenergy Power, Inc., Burlingame, CA (United States); Moriconi, Franco [Zenergy Power, Inc., Burlingame, CA (United States); Nelson, Albert [Zenergy Power, Inc., Burlingame, CA (United States)

    2012-03-01

    Zenergy Power has successfully designed, built, tested, and installed in the US electrical grid a saturable reactor Fault Current Limiter. Beginning in 2007, first as SC Power Systems and from 2008 as Zenergy Power, Inc., ZP used DOE matching grant and ARRA funds to help refine the design of the saturated reactor fault current limiter. ZP ultimately perfected the design of the saturated reactor FCL to the point that ZP could reliably design a suitable FCL for most utility applications. Beginning with a very basic FCL design using 1G HTS for a coil housed in a LN2 cryostat for the DC bias magnet, the technology progressed to a commercial system that was offered for sale internationally. Substantial progress was made in two areas. First, the cryogenics cooling system progressed from a sub-cooled liquid nitrogen container housing the HTS coils to cryostats utilizing dry conduction cooling and reaching temperatures down to less than 20 degrees K. Large, round cryostats with warm bore diameters of 1.7 meters enabled the design of large tanks to hold the AC components. Second, the design of the AC part of the FCL was refined from a six legged spider design to a more compact and lighter design with better fault current limiting capability. Further refinement of the flux path and core shape led to an efficient saturated reactor design requiring less Ampere-turns to saturate the core. In conclusion, the development of the saturable reactor FCL led to a more efficient design not requiring HTS magnets and their associated peripheral equipment, which yielded a more economical product in line with the electric utility industry expectations. The original goal for the DOE funding of the ZP project Design, Test and Demonstration of Saturable Reactor High-Temperature Superconductor Fault Current Limiters was to stimulate the HTS wire industry with, first 1G, then 2G, HTS wire applications. Over the approximately 5 years of ZP's product development program, the amount of HTS

  4. Highly sensitive methods for electroanalytical chemistry based on nanotubule membranes.

    Science.gov (United States)

    Kobayashi, Y; Martin, C R

    1999-09-01

    Two new methods of electroanalysis are described. These methods are based on membranes containing monodisperse Au nanotubules with inside diameters approaching molecular dimensions. In one method, the analyte species is detected by measuring the change in trans-membrane current when the analyte is added to the nanotubule-based cell. The second method entails the use of a concentration cell based on the nanotubule membrane. In this case, the change in membrane potential is used to detect the analyte. Detection limits as low as 10(-11) M have been achieved. Hence, these methods compete with even the most sensitive of modern analytical methodologies. In addition, excellent molecular-sized-based selectivity is observed.

  5. A new compact, high sensitivity neutron imaging system

    Energy Technology Data Exchange (ETDEWEB)

    Caillaud, T.; Landoas, O.; Briat, M.; Rosse, B.; Thfoin, I.; Philippe, F.; Casner, A.; Bourgade, J. L.; Disdier, L. [CEA, DAM, DIF,F-91297 Arpajon (France); Glebov, V. Yu.; Marshall, F. J.; Sangster, T. C. [Laboratory for Laser Energetics, University of Rochester, 250 East River Road, Rochester, New York 14623-1299 (United States); Park, H. S.; Robey, H. F.; Amendt, P. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States)

    2012-10-15

    We have developed a new small neutron imaging system (SNIS) diagnostic for the OMEGA laser facility. The SNIS uses a penumbral coded aperture and has been designed to record images from low yield (10{sup 9}-10{sup 10} neutrons) implosions such as those using deuterium as the fuel. This camera was tested at OMEGA in 2009 on a rugby hohlraum energetics experiment where it recorded an image at a yield of 1.4 Multiplication-Sign 10{sup 10}. The resolution of this image was 54 {mu}m and the camera was located only 4 meters from target chamber centre. We recently improved the instrument by adding a cooled CCD camera. The sensitivity of the new camera has been fully characterized using a linear accelerator and a {sup 60}Co {gamma}-ray source. The calibration showed that the signal-to-noise ratio could be improved by using raw binning detection.

  6. Carbon nanotube quantum dots as highly sensitive THz spectrometers

    Science.gov (United States)

    Rinzan, Mohamed; Jenkins, Greg; Drew, Dennis; Shafranjuk, Serhii; Barbara, Paola

    2012-02-01

    We show that carbon nanotube quantum dots (CNT-Dots) coupled to antennas are extremely sensitive, broad-band, terahertz quantum detectors. Their response is due to photon-assisted single-electron tunneling (PASET)[1], but cannot be fully understood with orthodox PASET models[2]. We consider intra-dot excitations and non-equilibrium cooling to explain the anomalous response. REFERENCES: [1] Y. Kawano, S. Toyokawa, T. Uchida and K. Ishibashi, THz photon assisted tunneling in carbon-nanotube quantum dots, Journal of Applied Physics 103, 034307 (2008). [2] P. K. Tien and J. P. Gordon, Multiphoton Process Observed in the Interaction of Microwave Fields with the Tunneling between Superconductor Films, Phys. Rev. 129, 647 (1963).

  7. High-sensitivity observations of solar flare decimeter radiation

    CERN Document Server

    Benz, Arnold O; Monstein, C; Benz, Arnold O.; Messmer, Peter; Monstein, Christian

    2000-01-01

    A new acousto-optic radio spectrometer has observed the 1 - 2 GHz radio emission of solar flares with unprecedented sensitivity. The number of detected decimeter type III bursts is greatly enhanced compared to observations by conventional spectrometers observing only one frequency at the time. The observations indicate a large number of electron beams propagating in dense plasmas. For the first time, we report weak, reversed drifting type III bursts at frequencies above simultaneous narrowband decimeter spikes. The type III bursts are reliable signatures of electron beams propagating downward in the corona, apparently away from the source of the spikes. The observations contradict the most popular spike model that places the spike sources at the footpoints of loops. Conspicuous also was an apparent bidirectional type U burst forming a fish-like pattern. It occurs simultaneously with an intense U-burst at 600-370 MHz observed in Tremsdorf. We suggest that it intermodulated with strong terrestrial interference ...

  8. Highly sensitive biosensors based on water-soluble conjugated polymers

    Institute of Scientific and Technical Information of China (English)

    XU Hui; WU Haiping; FAN Chunhai; LI Wenxin; ZHANG Zhizhou; HE Lin

    2004-01-01

    Conjugated, conductive polymers are a kind of important organic macromolecules, which has found applications in a variety of areas. The application of conjugated polymers in developing fluorescent biosensors represents the merge of polymer sciences and biological sciences. Conjugated polymers are very good light harvesters as well as fluorescent polymers, and they are also "molecular wires". Through elaborate designs, these important features, i.e. efficient light harvesting and electron/energy transfer, can be used as signal amplification in fluorescent biosensors. This might significantly improve the sensitivity of conjugated polymer-based biosensors. In this article, we reviewed the application of conjugated polymers, via either electron transfer or energy transfer, to detections of gene targets, antibodies or enzymes. We also reviewed recent efforts in conjugated polymer-based solid-state sensor designs as well as chip-based multiple target detection. Possible directions in this conjugated polymer-based biosensor area are also discussed.

  9. Highly sensitive urea sensing with ion-irradiated polymer foils

    Energy Technology Data Exchange (ETDEWEB)

    Fink, Dietmar, E-mail: fink@daad-alumni.de [Departamento de Fisica, Universidad Autonoma Metropolitana-Iztapalapa, P.O. Box 55-534, 09340 Mexico, D.F. (Mexico); Nuclear Physics Institute, Academy of Sciences of the Czech Republic, 250 68 Rez (Czech Republic); Munoz Hernandez, Gerardo [Departamento de Fisica, Universidad Autonoma Metropolitana-Iztapalapa, P.O. Box 55-534, 09340 Mexico, D.F. (Mexico); Division de Ciencias Naturales e Ingenieria, Universidad Autonoma Metropolitana-Cuajimalpa, Pedro Antonio de los Santos 84, Col. Sn. Miguel Chapultepec, C.P. 11850, Mexico, D.F. (Mexico); Alfonta, Lital, E-mail: alfontal@bgu.ac.il [Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 84105 (Israel)

    2012-02-15

    Recently we prepared urea-sensors by attaching urease to the inner walls of etched ion tracks within thin polymer foil. Here, alternative track-based sensor configurations are examined where the enzyme remained in solution. The conductivities of systems consisting of two parallel irradiated polymer foils and confining different urea/urease mixtures in between were examined. The correlations between conductivity and urea concentration differed strongly for foils with unetched and etched tracks, which points at different sensing mechanisms - tentatively attributed to the adsorption of enzymatic reaction products on the latent track entrances and to the enhanced conductivity of reaction product-filled etched tracks, respectively. All examined systems enable in principle, urea sensing. They point at the possibility of sensor cascade construction for more sensitive or selective sensor systems.

  10. Chick RGS2L demonstrates concentration-dependent selectivity for pertussis toxin-sensitive and -insensitive pathways that inhibit L-type Ca2+ channels.

    Science.gov (United States)

    Tosetti, Patrizia; Parente, Valeria; Taglietti, Vanni; Dunlap, Kathleen; Toselli, Mauro

    2003-05-15

    In neuronal cells, the influx of Ca2+ ions through voltage-dependent L-type calcium (L) channels couples excitation to multiple cellular functions. In addition to voltage, several neurotransmitters, hormones and cytokines regulate L channel gating via binding to G-protein-coupled receptors. Intracellular molecules that modify G-protein activity - such as regulator of G-protein-signalling (RGS) proteins - are therefore potential candidates for regulating Ca2+ influx through L channels. Here we show that a novel RGS2 splice variant from chick dorsal root ganglion (DRG) neurons, RGS2L, reduces bradykinin (BK)-mediated inhibition of neuronal L channels and accelerates recovery from inhibition. Chick RGS2 reduces the inhibition mediated by both the pertussis toxin (PTX)-sensitive (Gi/o-coupled) and the PTX-insensitive (presumably Gq/11-coupled) pathways. However, we demonstrate for the first time in a living cell that the extent of coupling to each pathway varies with RGS2L concentration. A low concentration of recombinant chick RGS2L (10 nM) preferentially reduces the inhibition mediated by the PTX-insensitive pathway, whereas a 100-fold higher concentration attenuates both PTX-sensitive- and PTX-insensitive-mediated components equally. Our data suggest that factors promoting RGS2L gene induction may regulate Ca2+ influx through L channels by recruiting low-affinity interactions with Gi/o that are absent at basal RGS2L levels.

  11. Silver nanowire-embedded PDMS with a multiscale structure for a highly sensitive and robust flexible pressure sensor.

    Science.gov (United States)

    Joo, Yunsik; Byun, Junghwan; Seong, Narkhyeon; Ha, Jewook; Kim, Hyunjong; Kim, Sangwoo; Kim, Taehoon; Im, Hwarim; Kim, Donghyun; Hong, Yongtaek

    2015-04-14

    The development of highly sensitive pressure sensors with a low-cost and facile fabrication technique is desirable for electronic skins and wearable sensing devices. Here a low-cost and facile fabrication strategy to obtain multiscale-structured elastomeric electrodes and a highly sensitive and robust flexible pressure sensor is presented. The principles of spontaneous buckle formation of the PDMS surface and the embedding of silver nanowires are used to fabricate the multiscale-structured elastomeric electrode. By laminating the multiscale-structured elastomeric electrode onto the dielectric layer/bottom electrode template, the pressure sensor can be obtained. The pressure sensor is based on the capacitive sensing mechanism and shows high sensitivity (>3.8 kPa(-1)), fast response and relaxation time (pressure sensor arrays and they can detect the spatial distribution of the applied pressure. It is also demonstrated that the fingertip pressure sensing device can sense the pressure distribution of each finger, when grabbing an object.

  12. NREL/SCE High-Penetration PV Integration Project: Report on Field Demonstration of Advanced Inverter Functionality in Fontana, CA

    Energy Technology Data Exchange (ETDEWEB)

    Mather, B.

    2014-08-01

    The National Renewable Energy Laboratory/Southern California Edison High-Penetration PV Integration Project is (1) researching the distribution system level impacts of high-penetration photovoltaic (PV) integration, (2) determining mitigation methods to reduce or eliminate those impacts, and (3) seeking to demonstrate these mitigation methods on actual high-penetration PV distribution circuits. This report describes a field demonstration completed during the fall of 2013 on the Fontana, California, study circuit, which includes a total of 4.5 MW of interconnected utility-scale rooftop PV systems. The demonstration included operating a 2-MW PV system at an off-unity power factor that had been determined during previously completed distribution system modeling and PV impact assessment analyses. Data on the distribution circuit and PV system operations were collected during the 2-week demonstration period. This demonstration reinforces the findings of previous laboratory testing that showed that utility-scale PV inverters are capable of operating at off-unity power factor to mitigate PV impacts; however, because of difficulties setting and retaining PV inverter power factor set points during the field demonstration, it was not possible to demonstrate the effectiveness of off-unity power factor operation to mitigate the voltage impacts of high-penetration PV integration. Lessons learned from this field demonstration are presented to inform future field demonstration efforts.

  13. Nitrogen detected TROSY at high field yields high resolution and sensitivity for protein NMR

    Energy Technology Data Exchange (ETDEWEB)

    Takeuchi, Koh [National Institute for Advanced Industrial Science and Technology, Molecular Profiling Research Center for Drug Discovery (Japan); Arthanari, Haribabu [Harvard Medical School, Department of Biochemistry and Molecular Pharmacology (United States); Shimada, Ichio, E-mail: shimada@iw-nmr.f.u-tokyo.ac.jp [National Institute for Advanced Industrial Science and Technology, Molecular Profiling Research Center for Drug Discovery (Japan); Wagner, Gerhard, E-mail: gerhard-wagner@hms.harvard.edu [Harvard Medical School, Department of Biochemistry and Molecular Pharmacology (United States)

    2015-12-15

    Detection of {sup 15}N in multidimensional NMR experiments of proteins has sparsely been utilized because of the low gyromagnetic ratio (γ) of nitrogen and the presumed low sensitivity of such experiments. Here we show that selecting the TROSY components of proton-attached {sup 15}N nuclei (TROSY {sup 15}N{sub H}) yields high quality spectra in high field magnets (>600 MHz) by taking advantage of the slow {sup 15}N transverse relaxation and compensating for the inherently low {sup 15}N sensitivity. The {sup 15}N TROSY transverse relaxation rates increase modestly with molecular weight but the TROSY gain in peak heights depends strongly on the magnetic field strength. Theoretical simulations predict that the narrowest line width for the TROSY {sup 15}N{sub H} component can be obtained at 900 MHz, but sensitivity reaches its maximum around 1.2 GHz. Based on these considerations, a {sup 15}N-detected 2D {sup 1}H–{sup 15}N TROSY-HSQC ({sup 15}N-detected TROSY-HSQC) experiment was developed and high-quality 2D spectra were recorded at 800 MHz in 2 h for 1 mM maltose-binding protein at 278 K (τ{sub c} ∼ 40 ns). Unlike for {sup 1}H detected TROSY, deuteration is not mandatory to benefit {sup 15}N detected TROSY due to reduced dipolar broadening, which facilitates studies of proteins that cannot be deuterated, especially in cases where production requires eukaryotic expression systems. The option of recording {sup 15}N TROSY of proteins expressed in H{sub 2}O media also alleviates the problem of incomplete amide proton back exchange, which often hampers the detection of amide groups in the core of large molecular weight proteins that are expressed in D{sub 2}O culture media and cannot be refolded for amide back exchange. These results illustrate the potential of {sup 15}N{sub H}-detected TROSY experiments as a means to exploit the high resolution offered by high field magnets near and above 1 GHz.

  14. High sensitivity and high Q-factor nanoslotted parallel quadrabeam photonic crystal cavity for real-time and label-free sensing

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Daquan [Rowland Institute at Harvard University, Cambridge, Massachusetts 02142 (United States); State Key Laboratory of Information Photonics and Optical Communications, School of Information and Communication Engineering, Beijing University of Posts and Telecommunications, Beijing 100876 (China); School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138 (United States); Kita, Shota; Wang, Cheng; Lončar, Marko [School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138 (United States); Liang, Feng; Quan, Qimin [Rowland Institute at Harvard University, Cambridge, Massachusetts 02142 (United States); Tian, Huiping; Ji, Yuefeng [State Key Laboratory of Information Photonics and Optical Communications, School of Information and Communication Engineering, Beijing University of Posts and Telecommunications, Beijing 100876 (China)

    2014-08-11

    We experimentally demonstrate a label-free sensor based on nanoslotted parallel quadrabeam photonic crystal cavity (NPQC). The NPQC possesses both high sensitivity and high Q-factor. We achieved sensitivity (S) of 451 nm/refractive index unit and Q-factor >7000 in water at telecom wavelength range, featuring a sensor figure of merit >2000, an order of magnitude improvement over the previous photonic crystal sensors. In addition, we measured the streptavidin-biotin binding affinity and detected 10 ag/mL concentrated streptavidin in the phosphate buffered saline solution.

  15. High Sensitivity Optomechanical Reference Accelerometer over 10 kHz

    Science.gov (United States)

    2014-06-05

    characterizing fast mechanical dynamics and piezo -electric devices, but typically not both. Yet extremely high resolution maintained over large...applying a ringdown technique in vacuum. To this end, we used a piezo -shaker to excite the oscillator at its resonance frequency and measured the...exponential decay response. The resonance peak was determined by spectral analysis and then honed in by a high resolution function generator driving the piezo

  16. Achieving tunable sensitivity in composite high-energy density materials

    Science.gov (United States)

    Kuklja, Maija M.; Tsyshevsky, Roman V.; Rashkeev, Sergey

    2017-01-01

    Laser irradiation provides a unique opportunity for selective, predictive, and controlled initiation of energetic materials. We propose a consistent micro-scale mechanism of photoexcitation at the interface, formed by a molecular energetic material and a metal oxide. A specific PETN-MgO model composite is used to illustrate and explain seemingly puzzling experiments on selective laser initiation of energetic materials, which reported that the presence of metal oxide additives triggered the photoinitiation by an unusually low energy. We suggest that PETN photodecomposition is catalyzed by oxygen vacancies (F0 centers) at the MgO surface. The proposed model suggests ways to tune sensitivity of energetic molecular materials to photoinitiation. Our quantum-chemical calculations suggest that the structural point defects (e.g., oxygen vacancies) strongly interact with the molecular material (e.g., adsorbed energetic molecules) by inducing a charge transfer at the interface and hence play an imperative role in governing both energy absorption and energy release in the system. Our approach and conclusions provide a solid basis for novel design of energetic interfaces with desired properties and offers a new perspective in the field of explosive materials and devices.

  17. High-sensitivity observations of solar flare decimeter radiation

    Science.gov (United States)

    Benz, A. O.; Messmer, P.; Monstein, C.

    2001-01-01

    A new acousto-optic radio spectrometer has observed the 1-2 GHz radio emission of solar flares with unprecedented sensitivity. The number of detected decimeter type III bursts is greatly enhanced compared to observations by conventional spectrometers observing only one frequency at the time. The observations indicate a large number of electron beams propagating in dense plasmas. For the first time, we report weak, reversed drifting type III bursts at frequencies above simultaneous narrowband decimeter spikes. The type III bursts are reliable signatures of electron beams propagating downward in the corona, apparently away from the source of the spikes. The observations contradict the most popular spike model that places the spike sources at the footpoints of loops. Conspicuous also was an apparent bidirectional type U burst forming a fish-like pattern. It occurs simultaneously with an intense U-burst at 600-370 MHz observed in Tremsdorf. We suggest that it intermodulated with strong terrestrial interference(cellular phones) causing a spurious symmetric pattern in the spectrogram at 1.4 GHz. Symmetric features in the 1-2 GHz range, some already reported in the literature, therefore must be considered with utmost caution.

  18. Real-time broadband terahertz spectroscopic imaging by using a high-sensitivity terahertz camera

    Science.gov (United States)

    Kanda, Natsuki; Konishi, Kuniaki; Nemoto, Natsuki; Midorikawa, Katsumi; Kuwata-Gonokami, Makoto

    2017-01-01

    Terahertz (THz) imaging has a strong potential for applications because many molecules have fingerprint spectra in this frequency region. Spectroscopic imaging in the THz region is a promising technique to fully exploit this characteristic. However, the performance of conventional techniques is restricted by the requirement of multidimensional scanning, which implies an image data acquisition time of several minutes. In this study, we propose and demonstrate a novel broadband THz spectroscopic imaging method that enables real-time image acquisition using a high-sensitivity THz camera. By exploiting the two-dimensionality of the detector, a broadband multi-channel spectrometer near 1 THz was constructed with a reflection type diffraction grating and a high-power THz source. To demonstrate the advantages of the developed technique, we performed molecule-specific imaging and high-speed acquisition of two-dimensional (2D) images. Two different sugar molecules (lactose and D-fructose) were identified with fingerprint spectra, and their distributions in one-dimensional space were obtained at a fast video rate (15 frames per second). Combined with the one-dimensional (1D) mechanical scanning of the sample, two-dimensional molecule-specific images can be obtained only in a few seconds. Our method can be applied in various important fields such as security and biomedicine. PMID:28198395

  19. Real-time broadband terahertz spectroscopic imaging by using a high-sensitivity terahertz camera

    Science.gov (United States)

    Kanda, Natsuki; Konishi, Kuniaki; Nemoto, Natsuki; Midorikawa, Katsumi; Kuwata-Gonokami, Makoto

    2017-02-01

    Terahertz (THz) imaging has a strong potential for applications because many molecules have fingerprint spectra in this frequency region. Spectroscopic imaging in the THz region is a promising technique to fully exploit this characteristic. However, the performance of conventional techniques is restricted by the requirement of multidimensional scanning, which implies an image data acquisition time of several minutes. In this study, we propose and demonstrate a novel broadband THz spectroscopic imaging method that enables real-time image acquisition using a high-sensitivity THz camera. By exploiting the two-dimensionality of the detector, a broadband multi-channel spectrometer near 1 THz was constructed with a reflection type diffraction grating and a high-power THz source. To demonstrate the advantages of the developed technique, we performed molecule-specific imaging and high-speed acquisition of two-dimensional (2D) images. Two different sugar molecules (lactose and D-fructose) were identified with fingerprint spectra, and their distributions in one-dimensional space were obtained at a fast video rate (15 frames per second). Combined with the one-dimensional (1D) mechanical scanning of the sample, two-dimensional molecule-specific images can be obtained only in a few seconds. Our method can be applied in various important fields such as security and biomedicine.

  20. Integrating printed microfluidics with silicon photomultipliers for miniaturised and highly sensitive ATP bioluminescence detection.

    Science.gov (United States)

    Santangelo, M F; Libertino, S; Turner, A P F; Filippini, D; Mak, W C

    2018-01-15

    Bioluminescence has been widely used for important biosensing applications such as the measurement of adenosine triphosphate (ATP), the energy unit in biological systems and an indicator of vital processes. The current technology for detection is mainly based on large equipment such as readers and imaging systems, which require intensive and time-consuming procedures. A miniaturised bioluminescence sensing system, which would allow sensitive and continuous monitoring of ATP, with an integrated and low-cost disposable microfluidic chamber for handling of biological samples, is highly desirable. Here, we report the design, fabrication and testing of 3D printed microfluidics chips coupled with silicon photomultipliers (SiPMs) for high sensitive real-time ATP detection. The 3D microfluidic chip reduces reactant consumption and facilitates solution delivery close to the SiPM to increase the detection efficiency. Our system detects ATP with a limit of detection (LoD) of 8nM and an analytical dynamic range between 15nM and 1µM, showing a stability error of 3%, and a reproducibility error below of 20%. We demonstrate the dynamic monitoring of ATP in a continuous-flow system exhibiting a fast response time, ~4s, and a full recovery to the baseline level within 17s. Moreover, the SiPM-based bioluminescence sensing system shows a similar analytical dynamic range for ATP detection to that of a full-size PerkinElmer laboratory luminescence reader. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Efficient streptavidin-functionalized nitrogen-doped graphene for the development of highly sensitive electrochemical immunosensor.

    Science.gov (United States)

    Yang, Zhanjun; Lan, Qingchun; Li, Juan; Wu, Jiajia; Tang, Yan; Hu, Xiaoya

    2017-03-15

    In this work, an efficient and universal streptavidin-functionalized nitrogen-doped graphene (NG) was for the first time proposed and used to develop a highly sensitive electrochemical immunosensor for the detection of tumor markers. Transmission electron microscopy, electrochemical impedance spectrum, static water contact measurement, and cyclic voltammetry were used to characterize the streptavidin-functionalized NG platform and immunosensor. The biofunctionalized NG showed excellent hydrophilicity, larger specific surface area, and high electrochemical activity. These properties of the platform enhanced the loading capacity of proteins, and retained the bioactivity of the immobilized proteins, and thus remarkably improved the sensitivity of the immunosensor. Using carcinoembryonic antigen (CEA) as model analyte, the proposed immunosensor demonstrated a wide linear range of 0.02-12ngmL(-1) with a low detection limit of 0.01ngmL(-1). The CEA immunosensor could be applied to detect human serum samples with satisfactory results. The streptavidin-functionalized NG material provided an universal and promising platform for the electrochemical immunosensing applications. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Highly Sensitive and Patchable Pressure Sensors Mimicking Ion-Channel-Engaged Sensory Organs.

    Science.gov (United States)

    Chun, Kyoung-Yong; Son, Young Jun; Han, Chang-Soo

    2016-04-26

    Biological ion channels have led to much inspiration because of their unique and exquisite operational functions in living cells. Specifically, their extreme and dynamic sensing abilities can be realized by the combination of receptors and nanopores coupled together to construct an ion channel system. In the current study, we demonstrated that artificial ion channel pressure sensors inspired by nature for detecting pressure are highly sensitive and patchable. Our ion channel pressure sensors basically consisted of receptors and nanopore membranes, enabling dynamic current responses to external forces for multiple applications. The ion channel pressure sensors had a sensitivity of ∼5.6 kPa(-1) and a response time of ∼12 ms at a frequency of 1 Hz. The power consumption was recorded as less than a few μW. Moreover, a reliability test showed stability over 10 000 loading-unloading cycles. Additionally, linear regression was performed in terms of temperature, which showed no significant variations, and there were no significant current variations with humidity. The patchable ion channel pressure sensors were then used to detect blood pressure/pulse in humans, and different signals were clearly observed for each person. Additionally, modified ion channel pressure sensors detected complex motions including pressing and folding in a high-pressure range (10-20 kPa).

  3. A high sensitivity wear debris sensor using ferrite cores for online oil condition monitoring

    Science.gov (United States)

    Zhu, Xiaoliang; Zhong, Chong; Zhe, Jiang

    2017-07-01

    Detecting wear debris and measuring the increasing number of wear debris in lubrication oil can indicate abnormal machine wear well ahead of machine failure, and thus are indispensable for online machine health monitoring. A portable wear debris sensor with ferrite cores for online monitoring is presented. The sensor detects wear debris by measuring the inductance change of two planar coils wound around a pair of ferrite cores that make the magnetic flux denser and more uniform in the sensing channel, thereby improving the sensitivity of the sensor. Static testing results showed this wear debris sensor is capable of detecting 11 µm and 50 µm ferrous debris in 1 mm and 7 mm diameter fluidic pipes, respectively; such a high sensitivity has not been achieved before. Furthermore, a synchronized sampling method was also applied to reduce the data size and realize real-time data processing. Dynamic testing results demonstrated that the sensor is capable of detecting wear debris in real time with a high throughput of 750 ml min-1 the measured debris concentration is in good agreement with the actual concentration.

  4. High sensitivity detection of bacteria by surface plasmon resonance enhanced common path interferometry

    Science.gov (United States)

    Greef, Charles; Petropavlovskikh, Viatcheslav; Nilsen, Oyvind; Hacioglu, Bilge; Khattatov, Boris; Hall, John

    2007-04-01

    Real time monitoring of biowarfare agents (BWA) for military and civilian protection remains a high priority for homeland security and battlefield readiness. Available devices have adequate sensitivity, but the detection modules have limited periods of deployment, require frequent maintenance, employ single-use disposable components, and have limited multiplexing capability. Surface Plasmon Resonance enhanced Common Path Interferometry (SPR-CPI) is a label-free, high sensitivity biomolecular interaction measurement technology that allows multiplexed real-time measurement of biowarfare agents, including small molecules, proteins, and microbes. The technology permits continuous operation in a field-deployable detection module of an integrated BWA monitoring system. SPR-CPI measures difference in phase shift of polarized light reflected from the transducer interface caused by changes in refractive index induced by biomolecular interactions. The measurement is performed on a discrete 2-dimensional area functionalized with biomolecule capture reagents in a microarray format, allowing simultaneous measurement of up to 100 separate analytes. Output consists of simultaneous voltage measurements proportional to the phase differences resulting from the refractive index changes and is automatically processed and displayed graphically or delivered to a decision making algorithm. This enables a fully automatic field-deployable detection system capable of integration into existing modular BWA detection systems. Proof-of-concept experiments on surrogate models of anticipated BWA threats have demonstrated utility. Efforts are in progress for full development and deployment of the device.

  5. High-sensitivity 3 to 5 micron PPLN LADAR wavelength converter system

    Science.gov (United States)

    Kingsley, S. A.; Sriram, S.; Powers, P. E.

    2005-05-01

    Remote sensing systems, such as LIDAR, have benefited greatly from nonlinear sources capable of generating tunable mid-infrared wavelengths (3-5 microns). Much work has focused on improving the energy output of these sources so as to improve the system's range. We present a different approach to improving the range by focusing on improving the receiver of a LADAR system employing nonlinear optical techniques. In this paper, we will present results of a receiver system based on frequency converting mid-infrared wavelengths to the 1.5 μm region using Periodically-Poled Lithium Niobate (PPLN). By doing so, optical amplifiers and avalanche photodetectors (APDs) developed for the fiber optics communications industry can be used, thus providing very high detection sensitivity and high speed without the need for cryogenically cooled optical detectors. We will present results of laboratory experiments with 3 μm, 2.5 ns FWHM LADAR pulses that have been converted to 1.5 μm. Detection sensitivities as low as 1.5 x 10^-13 Joules have been demonstrated. The performance of the Peltier-cooled 1.5 μm InGaAs APD quasi photon-counting receiver will be described.

  6. Highly sensitive fiber-optic accelerometer by grating inscription in specific core dip fiber.

    Science.gov (United States)

    Rong, Qiangzhou; Guo, Tuan; Bao, Weijia; Shao, Zhihua; Peng, Gang-Ding; Qiao, Xueguang

    2017-09-19

    A highly sensitive fiber-optic accelerometer based on detecting the power output of resonances from the core dip is demonstrated. The sensing probe comprises a compact structure, hereby a short section of specific core (with a significant core dip) fiber stub containing a straight fiber Bragg grating is spliced to another single-mode fiber via a core self-alignment process. The femtosecond laser side-illumination technique was utilized to ensure that the grating inscription region is precisely positioned and compact in size. Two well-defined core resonances were achieved in reflection: one originates from the core dip and the other originates from fiber core. The key point is that only one of these two reflective resonances exhibits a high sensitivity to fiber bend (and vibration), whereas the other is immune to it. For low frequency (core mode reflection. Moreover, the sensor simultaneously provides an inherent power reference to eliminate unwanted power fluctuations from the light source and transmission lines, thus providing a means of evaluating weak seismic wave at low frequency.

  7. Highly sensitive chemiluminescence technology for protein detection using aptamer-based rolling circle amplification platform

    Institute of Scientific and Technical Information of China (English)

    Zhi-Juan Cao; Qian-Wen Peng; Xue Qiu; Cai-Yun Liu; Jian-Zhong Lu

    2011-01-01

    A robust, selective and highly sensitive chemiluminescent (CL) platform for protein assay was presented in this paper. This novel CL approach utilized rolling circle amplification (RCA) as a signal enhancement technique and the 96-well plate as the immobilization and separation carrier. Typically, the antibody immobilized on the surface of 96-well plate was sandwiched with the protein target and the aptamer-primer sequence. This aptamer-primer sequence was then employed as the primer of RCA. Based on this design, a number of the biotinylated probes and streptavidin-horseradish peroxidase (SA-HRP) were captured on the plate, and the CL signal was amplified. In summary, our results demonstrated a robust biosensor with a detection limit of 10 fM that is easy to be established and utilized, and devoid of light source. Therefore, this new technique .will broaden the perspective for future development of DNA-based biosensors for the detection of other protein biomarkers related to clinical diseases, by taking advantages of high sensitivity and selectivity.

  8. High-sensitivity optical Faraday magnetometry with intracavity electromagnetically induced transparency

    Science.gov (United States)

    Zhang, Qiaolin; Sun, Hui; Fan, Shuangli; Guo, Hong

    2016-12-01

    We suggest a multiatom cavity quantum electrodynamics system for the detection of a weak magnetic field, based on Faraday rotation with intracavity electromagnetically induced transparency. Our study demonstrates that the collective coupling between the cavity modes and the atomic ensemble can be used to improve the sensitivity. With single-probe photon input, the sensitivity is inversely proportional to the number of atoms, and a sensitivity of 2.45 nT Hz-1/2 could be attained. With multiphoton measurement, our numerical calculations show that the magnetic field sensitivity can be improved to 105.6 aT Hz-1/2 with realistic experimental conditions.

  9. Highly stable chemisorption of dyes with pyridyl anchors over TiO2: application in dye-sensitized photoelectrochemical water reduction in aqueous media.

    Science.gov (United States)

    Takijiri, Kohei; Morita, Kohei; Nakazono, Takashi; Sakai, Ken; Ozawa, Hironobu

    2017-03-09

    A polypyridyl ruthenium sensitizer possessing pyridyl anchors (Ru-py) forms much stronger chemical linkages to TiO2 surfaces compared to the conventional carboxylate and phosphonate ones. A highly stable dye-sensitized photoelectrochemical cell for water reduction is successfully demonstrated using this technique.

  10. Demonstrated high performance of gas-filled rugby-shaped hohlraums on Omega

    Science.gov (United States)

    Philippe, F.; Tassin, V.; Depierreux, S.; Gauthier, P.; Masson-Laborde, P. E.; Monteil, M. C.; Seytor, P.; Villette, B.; Lasinski, B.; Park, H. S.; Ross, J. S.; Amendt, P.; Döppner, T.; Hinkel, D. E.; Wallace, R.; Williams, E.; Michel, P.; Frenje, J.; Gatu-Johnson, M.; Li, C. K.; Petrasso, R.; Glebov, V.; Sorce, C.; Stoeckl, C.; Nikroo, A.; Giraldez, E.

    2014-07-01

    A direct experimental comparison of rugby-shaped and cylindrical shaped gas-filled hohlraums on the Omega laser facility demonstrates that higher coupling and minimal backscatter can be achieved in the rugby geometry, leading to significantly enhanced implosion performance. A nearly 50% increase of x-ray drive is associated with earlier bangtime and increase of neutron production. The observed drive enhancement from rugby geometry in this study is almost twice stronger than in previously published results.

  11. Demonstrated high performance of gas-filled rugby-shaped hohlraums on Omega

    Energy Technology Data Exchange (ETDEWEB)

    Philippe, F.; Villette, B. [CEA, DAM, DIF, F-91297 Arpajon (France); Michel, P. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Petrasso, R. [Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Stoeckl, C. [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623 (United States); Giraldez, E. [General Atomics, P.O. Box 85608, San Diego, California 92186-5608 (United States); Tassin, V.; Depierreux, S.; Gauthier, P.; Masson-Laborde, P. E.; Monteil, M. C.; Seytor, P.; Lasinski, B.; Park, H. S.; Ross, J. S.; Amendt, P.; Döppner, T.; Hinkel, D. E.; Wallace, R.; Williams, E.; and others

    2014-07-15

    A direct experimental comparison of rugby-shaped and cylindrical shaped gas-filled hohlraums on the Omega laser facility demonstrates that higher coupling and minimal backscatter can be achieved in the rugby geometry, leading to significantly enhanced implosion performance. A nearly 50% increase of x-ray drive is associated with earlier bangtime and increase of neutron production. The observed drive enhancement from rugby geometry in this study is almost twice stronger than in previously published results.

  12. Demonstrated high performance of gas-filled rugby-shaped hohlraums on Omega

    Energy Technology Data Exchange (ETDEWEB)

    Philippe, F. [Commissariat a l' Energie Atomique et aux Energies Alternatives (CEA), Arpajon (France); Tassin, V. [Commissariat a l' Energie Atomique et aux Energies Alternatives (CEA), Arpajon (France); Depierreux, S. [Commissariat a l' Energie Atomique et aux Energies Alternatives (CEA), Arpajon (France); Gauthier, P. [Commissariat a l' Energie Atomique et aux Energies Alternatives (CEA), Arpajon (France); Masson-Laborde, P. E. [Commissariat a l' Energie Atomique et aux Energies Alternatives (CEA), Arpajon (France); Monteil, M. C. [Commissariat a l' Energie Atomique et aux Energies Alternatives (CEA), Arpajon (France); Seytor, P. [Commissariat a l' Energie Atomique et aux Energies Alternatives (CEA), Arpajon (France); Villette, B. [Commissariat a l' Energie Atomique et aux Energies Alternatives (CEA), Arpajon (France); Lasinski, B. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Park, H. S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Ross, J. S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Amendt, P. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Doeppner, T. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Hinkel, D. E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Wallace, R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Williams, E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Michel, P. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Frenje, J. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States). Plasma Science and Fusion Center; Gatu-Johnson, M. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States). Plasma Science and Fusion Center; Li, C. K. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States). Plasma Science and Fusion Center; Petrasso, R. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States). Plasma Science and Fusion Center; Glebov, V. [Univ. of Rochester, NY (United States). Lab. for Laser Energetics; Sorce, C. [Univ. of Rochester, NY (United States). Lab. for Laser Energetics; Stoeckl, C. [Univ. of Rochester, NY (United States). Lab. for Laser Energetics; Nikroo, A. [General Atomics, San Diego, CA (United States); Giraldez, E. [General Atomics, San Diego, CA (United States)

    2014-07-25

    A direct experimental comparison of rugby-shaped and cylindrical shaped gas-filled hohlraums on the Omega laser facility demonstrates that higher coupling and minimal backscatter can be achieved in the rugby geometry, leading to significantly enhanced implosion performance. A nearly 50% increase of x-ray drive is associated with earlier bangtime and increase of neutron production. The observed drive enhancement from rugby geometry in this study is almost twice stronger than in previously published results.

  13. Demonstration Program for Low-Cost, High-Energy-Saving Dynamic Windows

    Science.gov (United States)

    2014-09-01

    Design The scope of this project was to demonstrate the impact of dynamic windows via energy savings and HVAC peak-load reduction; to validate the...dominated by the internal thermal loads of office equipment (example AC 7) so the HVAC energy savings are lower in those zones. Figure 8. Plot...of daily HVAC energy consumption in four representative zones, before and after dynamic windows retrofit. Overall, energy savings in all eastern

  14. Experimental Realisation of High-sensitivity Laboratory X-ray Grating-based Phase-contrast Computed Tomography.

    Science.gov (United States)

    Birnbacher, Lorenz; Willner, Marian; Velroyen, Astrid; Marschner, Mathias; Hipp, Alexander; Meiser, Jan; Koch, Frieder; Schröter, Tobias; Kunka, Danays; Mohr, Jürgen; Pfeiffer, Franz; Herzen, Julia

    2016-04-04

    The possibility to perform high-sensitivity X-ray phase-contrast imaging with laboratory grating-based phase-contrast computed tomography (gbPC-CT) setups is of great interest for a broad range of high-resolution biomedical applications. However, achieving high sensitivity with laboratory gbPC-CT setups still poses a challenge because several factors such as the reduced flux, the polychromaticity of the spectrum, and the limited coherence of the X-ray source reduce the performance of laboratory gbPC-CT in comparison to gbPC-CT at synchrotron facilities. In this work, we present our laboratory X-ray Talbot-Lau interferometry setup operating at 40 kVp and describe how we achieve the high sensitivity yet unrivalled by any other laboratory X-ray phase-contrast technique. We provide the angular sensitivity expressed via the minimum resolvable refraction angle both in theory and experiment, and compare our data with other differential phase-contrast setups. Furthermore, we show that the good stability of our high-sensitivity setup allows for tomographic scans, by which even the electron density can be retrieved quantitatively as has been demonstrated in several preclinical studies.

  15. HIGH SENSITIVE C-REACTIVE PROTEIN IN CEREBROVASCULAR ISCHEMIA

    Directory of Open Access Journals (Sweden)

    Padmalatha

    2016-02-01

    Full Text Available BACKGROUND Cerebrovascular ischemia is recognized as a major health problem, which causes significant morbidity and mortality. The main pathophysiology of ischemic stroke is atherosclerosis of cerebral vessels. Hs-CRP is a sensitive marker of inflammation tissue injury in the arterial wall, which contributes to atherosclerosis. In this study, we aim to investigate the association of hs-CRP in patients with ischemic stroke and to correlate hs-CRP levels with possible risk factors of ischemic stroke and to assess the prognostic value of hs-CRP in ischemic stroke. METHODS In the present case control study after meeting inclusion and exclusion criteria, 50 patients with acute ischemic stroke admitted in the medical ward, King George Hospital, during the period between April 2014 and October 2014 and 40 asymptomatic age and sex matched control subjects were included. RESULTS The mean hs-CRP value in cases is 3.78+5.28mg/dl and in controls is 0.425+0.305mg/dl. Mean hs-CRP value is higher (3.78mg/dl in cases when compared to controls (0.425mg/dl, which is statistically significant. P admitted with severe degree of weakness (0-1/5 power with mean hs-CRP value of 4.28+4.07 without significant improvement in the power at the time of discharge; 8(16%> with mean hs-CRP value of 10.43+7.74 were expired. CONCLUSION Acute ischemic patients had higher mean hs-CRP values when compared to healthy asymptomatic control subjects P0.05. Higher mean hs-CRP values were associated with poor outcome after acute ischemic stroke. P<0.001.

  16. Activation of Renal (Pro)Renin Receptor Contributes to High Fructose-Induced Salt Sensitivity.

    Science.gov (United States)

    Xu, Chuanming; Lu, Aihua; Lu, Xiaohan; Zhang, Linlin; Fang, Hui; Zhou, Li; Yang, Tianxin

    2017-02-01

    A high-fructose diet is shown to induce salt-sensitive hypertension, but the underlying mechanism largely remains unknown. The major goal of the present study was to test the role of renal (pro)renin receptor (PRR) in this model. In Sprague-Dawley rats, high-fructose intake increased renal expression of full-length PRR, which were attenuated by allopurinol. High-fructose intake also upregulated renal mRNA and protein expression of sodium/hydrogen exchanger 3 and Na/K/2Cl cotransporter, as well as in vivo Na/K/2Cl cotransporter activity, all of which were nearly completely blocked by a PRR decoy inhibitor PRO20 or allopurinol treatment. Parallel changes were observed for indices of intrarenal renin-angiotensin-system including renal and urinary renin and angiotensin II levels. Radiotelemetry demonstrated that high-fructose or a high-salt diet alone did not affect mean arterial pressure, but the combination of the 2 maneuvers induced a ≈10-mm Hg increase of mean arterial pressure, which was blunted by PRO20 or allopurinol treatment. In cultured human kidney 2 cells, both fructose and uric acid increased protein expression of soluble PRR in a time- and dose-dependent manner; fructose-induced PRR upregulation was inhibited by allopurinol. Taken together, our data suggest that fructose via uric acid stimulates renal expression of PRR/soluble PRR that stimulate sodium/hydrogen exchanger 3 and Na/K/2Cl cotransporter expression and intrarenal renin-angiotensin system to induce salt-sensitive hypertension.

  17. CMOS capacitive biosensors for highly sensitive biosensing applications.

    Science.gov (United States)

    Chang, An-Yu; Lu, Michael S-C

    2013-01-01

    Magnetic microbeads are widely used in biotechnology and biomedical research for manipulation and detection of cells and biomolecules. Most lab-on-chip systems capable of performing manipulation and detection require external instruments to perform one of the functions, leading to increased size and cost. This work aims at developing an integrated platform to perform these two functions by implementing electromagnetic microcoils and capacitive biosensors on a CMOS (complementary metal oxide semiconductor) chip. Compared to most magnetic-type sensors, our detection method requires no externally applied magnetic fields and the associated fabrication is less complicated. In our experiment, microbeads coated with streptavidin were driven to the sensors located in the center of microcoils with functionalized anti-streptavidin antibody. Detection of a single microbead was successfully demonstrated using a capacitance-to-frequency readout. The average capacitance changes for the experimental and control groups were -5.3 fF and -0.2 fF, respectively.

  18. Detection and Attribution of Simulated Climatic Extreme Events and Impacts: High Sensitivity to Bias Correction

    Science.gov (United States)

    Sippel, S.; Otto, F. E. L.; Forkel, M.; Allen, M. R.; Guillod, B. P.; Heimann, M.; Reichstein, M.; Seneviratne, S. I.; Kirsten, T.; Mahecha, M. D.

    2015-12-01

    Understanding, quantifying and attributing the impacts of climatic extreme events and variability is crucial for societal adaptation in a changing climate. However, climate model simulations generated for this purpose typically exhibit pronounced biases in their output that hinders any straightforward assessment of impacts. To overcome this issue, various bias correction strategies are routinely used to alleviate climate model deficiencies most of which have been criticized for physical inconsistency and the non-preservation of the multivariate correlation structure. We assess how biases and their correction affect the quantification and attribution of simulated extremes and variability in i) climatological variables and ii) impacts on ecosystem functioning as simulated by a terrestrial biosphere model. Our study demonstrates that assessments of simulated climatic extreme events and impacts in the terrestrial biosphere are highly sensitive to bias correction schemes with major implications for the detection and attribution of these events. We introduce a novel ensemble-based resampling scheme based on a large regional climate model ensemble generated by the distributed weather@home setup[1], which fully preserves the physical consistency and multivariate correlation structure of the model output. We use extreme value statistics to show that this procedure considerably improves the representation of climatic extremes and variability. Subsequently, biosphere-atmosphere carbon fluxes are simulated using a terrestrial ecosystem model (LPJ-GSI) to further demonstrate the sensitivity of ecosystem impacts to the methodology of bias correcting climate model output. We find that uncertainties arising from bias correction schemes are comparable in magnitude to model structural and parameter uncertainties. The present study consists of a first attempt to alleviate climate model biases in a physically consistent way and demonstrates that this yields improved simulations of

  19. Polycarbonates: a long-term highly sensitive radon monitor

    CERN Document Server

    Pressyanov, D; Poffijn, A; Meesen, G; Deynse, A V

    2000-01-01

    An approach for long-term (either retrospective or prospective) sup 2 sup 2 sup 2 Rn measurements is proposed that is based on the combination of the high radon absorption ability of some polycarbonates with their alpha track-etch properties. The detection limit is projected to be <10 Bq m sup - sup 3 for an exposure time of 20 yr.

  20. Highly selective, sensitive and fast-responsive fluorescent sensor for Hg2 +

    Science.gov (United States)

    Niu, Qingfen; Wu, Xingxing; Li, Tianduo; Cui, Yuezhi; Zhang, Shanshan; Li, Xiaoyan

    2016-06-01

    A phenylamine-oligothiophene-based fluorescent sensor 2TBEA was reported. This sensor exhibited highly selective, sensitive and rapid detection of Hg2 + ion in THF/H2O (7/3, v/v) solution through fluorescence quenching. The detection was unaffected by the coexistence of other competitive metal cations including Na+, K+, Ag+, Ca2 +, Fe3 +, Al3 +, Co2 +, Cu2 +, Ni2 +, Zn2 +, Pb2 +, Cd2 +, Fe2 + and Cr3 +. A1:1 binding ratio for 2TBEA - Hg2 + was demonstrated by Job's plot and mole-ratio curves. The coordination process was chemically reversible with EDTA. The detection limit was evaluated to be as low as 6.164 × 10- 8 M.

  1. Resolving molecular vibronic structure using high-sensitivity two-dimensional electronic spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Bizimana, Laurie A.; Brazard, Johanna; Carbery, William P.; Gellen, Tobias; Turner, Daniel B., E-mail: dturner@nyu.edu [Department of Chemistry, New York University, 100 Washington Square East, New York, New York 10003 (United States)

    2015-10-28

    Coherent multidimensional optical spectroscopy is an emerging technique for resolving structure and ultrafast dynamics of molecules, proteins, semiconductors, and other materials. A current challenge is the quality of kinetics that are examined as a function of waiting time. Inspired by noise-suppression methods of transient absorption, here we incorporate shot-by-shot acquisitions and balanced detection into coherent multidimensional optical spectroscopy. We demonstrate that implementing noise-suppression methods in two-dimensional electronic spectroscopy not only improves the quality of features in individual spectra but also increases the sensitivity to ultrafast time-dependent changes in the spectral features. Measurements on cresyl violet perchlorate are consistent with the vibronic pattern predicted by theoretical models of a highly displaced harmonic oscillator. The noise-suppression methods should benefit research into coherent electronic dynamics, and they can be adapted to multidimensional spectroscopies across the infrared and ultraviolet frequency ranges.

  2. Tropolone as a High-Performance Robust Anchoring Group for Dye-Sensitized Solar Cells.

    Science.gov (United States)

    Higashino, Tomohiro; Fujimori, Yamato; Sugiura, Kenichi; Tsuji, Yukihiro; Ito, Seigo; Imahori, Hiroshi

    2015-07-27

    A tropolone group has been employed for the first time as an anchoring group for dye-sensitized solar cells (DSSCs). The DSSC based on a porphyrin, YD2-o-C8T, with a tropolone moiety exhibited a power-conversion efficiency of 7.7 %, which is only slightly lower than that observed for a reference porphyrin, YD2-o-C8, with a conventional carboxylic group. More importantly, YD2-o-C8T was found to be superior to YD2-o-C8 with respect to DSSC durability and binding ability to TiO2 . These results unambiguously demonstrate that tropolone is a highly promising dye-anchoring group for DSSCs in terms of device durability as well as photovoltaic performance.

  3. Iridium Oxide Nanotube Electrodes for Highly Sensitive and Prolonged Intracellular Measurement of Action Potentials

    Science.gov (United States)

    Lin, Ziliang Carter; Xie, Chong; Osakada, Yasuko; Cui, Yi; Cui, Bianxiao

    2014-01-01

    Intracellular recording of action potentials is important to understand electrically-excitable cells. Recently, vertical nanoelectrodes have been developed to achieve highly sensitive, minimally invasive, and large scale intracellular recording. It has been demonstrated that the vertical geometry is crucial for the enhanced signal detection. Here we develop nanoelectrodes made up of nanotubes of iridium oxide. When cardiomyocytes are cultured upon those nanotubes, the cell membrane not only wraps around the vertical tubes but also protrudes deep into the hollow center. We show that this geometry enhances cell-electrode coupling and results in measuring much larger intracellular action potentials. The nanotube electrodes afford much longer intracellular access and are minimally invasive, making it possible to achieve stable recording up to an hour in a single session and more than 8 days of consecutive daily recording. This study suggests that the electrode performance can be significantly improved by optimizing the electrode geometry. PMID:24487777

  4. Operational demonstration of a field of high performance flat plate collectors with isothermal heat transport

    Science.gov (United States)

    Merges, V.; Klippel, E.

    1983-12-01

    A solar plant with 21 sq m of highly efficient flat plate collectors and which requires no electricity is described. Heat transport is provided by saturated steam that condenses in a four cubic meter storage tank. The operation temperature is set by the buffer gas pressure between 100 and 140 C, and an absorption chiller is simulated as a heat consumer. The solar collectors were observed to exhibit high performance. Heat transport and temperature control offered high reliability and the thermal stratification in the tank was satisfactory. The positive result permits the design and construction of larger solar plants following the same technical principles.

  5. Mass Spectrometry-based Assay for High Throughput and High Sensitivity Biomarker Verification

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Xuejiang; Tang, Keqi

    2017-06-14

    Searching for disease specific biomarkers has become a major undertaking in the biomedical research field as the effective diagnosis, prognosis and treatment of many complex human diseases are largely determined by the availability and the quality of the biomarkers. A successful biomarker as an indicator to a specific biological or pathological process is usually selected from a large group of candidates by a strict verification and validation process. To be clinically useful, the validated biomarkers must be detectable and quantifiable by the selected testing techniques in their related tissues or body fluids. Due to its easy accessibility, protein biomarkers would ideally be identified in blood plasma or serum. However, most disease related protein biomarkers in blood exist at very low concentrations (<1ng/mL) and are “masked” by many none significant species at orders of magnitude higher concentrations. The extreme requirements of measurement sensitivity, dynamic range and specificity make the method development extremely challenging. The current clinical protein biomarker measurement primarily relies on antibody based immunoassays, such as ELISA. Although the technique is sensitive and highly specific, the development of high quality protein antibody is both expensive and time consuming. The limited capability of assay multiplexing also makes the measurement an extremely low throughput one rendering it impractical when hundreds to thousands potential biomarkers need to be quantitatively measured across multiple samples. Mass spectrometry (MS)-based assays have recently shown to be a viable alternative for high throughput and quantitative candidate protein biomarker verification. Among them, the triple quadrupole MS based assay is the most promising one. When it is coupled with liquid chromatography (LC) separation and electrospray ionization (ESI) source, a triple quadrupole mass spectrometer operating in a special selected reaction monitoring (SRM) mode

  6. Demonstrating the potential of yttrium-doped barium zirconate electrolyte for high-performance fuel cells

    Science.gov (United States)

    Bae, Kiho; Jang, Dong Young; Choi, Hyung Jong; Kim, Donghwan; Hong, Jongsup; Kim, Byung-Kook; Lee, Jong-Ho; Son, Ji-Won; Shim, Joon Hyung

    2017-02-01

    In reducing the high operating temperatures (>=800 °C) of solid-oxide fuel cells, use of protonic ceramics as an alternative electrolyte material is attractive due to their high conductivity and low activation energy in a low-temperature regime (fuel cells. However, poor sinterability of yttrium-doped barium zirconate discourages its fabrication as a thin-film electrolyte and integration on porous anode supports, both of which are essential to achieve high performance. Here we fabricate a protonic-ceramic fuel cell using a thin-film-deposited yttrium-doped barium zirconate electrolyte with no impeding grain boundaries owing to the columnar structure tightly integrated with nanogranular cathode and nanoporous anode supports, which to the best of our knowledge exhibits a record high-power output of up to an order of magnitude higher than those of other reported barium zirconate-based fuel cells.

  7. Mining 81 Duesseldorf: An international high-rank demonstration of profiency

    Energy Technology Data Exchange (ETDEWEB)

    1981-07-01

    The topical shortage of raw materials and the renaissance of coal have contributed even more to the attractivity of the Bergbau 81 Internationale Fachmesse and Bergbau-Kongress (11th-17th June) held by the Duesseldorfer Messegesellschaft NOWEA. 653 exhibitors from 27 countries - among them for the first time - South America (Peru and Brazil), the USSR, Czechoslovakia, Romania from the Comecon sector, and Ireland - had presented their products. The German mining unions and the institutions related to them had concentrated their big special meetings - usually in different places during certain periods on the 'Bergbau 81' and given a demonstration of their present state of technology.

  8. Demonstration of coherent emission from high-$\\beta$ photonic crystal nanolasers at room temperature

    CERN Document Server

    Hostein, Richard; Gratiet, Luc Le; Talneau, Anne; Beaudoin, Gregoire; Robert-Philip, Isabelle; Sagnes, Isabelle; Beveratos, Alexios

    2010-01-01

    We report on lasing at room temperature and at telecommunications wavelength from photonic crystal nanocavities based on InAsP/InP quantum dots. Such laser cavities with a small modal volume and high quality factor display a high spontaneous emission coupling factor beta. Lasing is confirmed by measuring the second order autocorrelation function. A smooth transition from chaotic to coherent emission is observed, and coherent emission is obtained at 8 times the threshold power.

  9. Demonstration of coherent emission from high-beta photonic crystal nanolasers at room temperature.

    Science.gov (United States)

    Hostein, R; Braive, R; Le Gratiet, L; Talneau, A; Beaudoin, G; Robert-Philip, I; Sagnes, I; Beveratos, A

    2010-04-15

    We report on lasing at room temperature and at telecommunications wavelength from photonic crystal nanocavities based on InAsP/InP quantum dots. Such laser cavities with a small modal volume and high quality factor display a high spontaneous emission coupling factor (beta). Lasing is confirmed by measuring the second-order autocorrelation function. A smooth transition from chaotic to coherent emission is observed, and coherent emission is obtained at eight times the threshold power.

  10. Demonstration of short-range wind lidar in a high-performance wind tunnel

    DEFF Research Database (Denmark)

    Pedersen, Anders Tegtmeier; Montes, Belen Fernández; Pedersen, Jens Engholm;

    A short-range continuous-wave coherent laser radar (lidar) has been tested in a high-performance wind tunnel for possible use as a standard component in wind tunnels. The lidar was tested in a low as well as a high speed regime ranging from 5-35 m/s and 40-75 m/s, respectively. In both low and hi...... future for short range lidars as a complement to LDA and other standard equipment in wind tunnels....

  11. Demonstration of short-range wind lidar in a high-performance wind tunnel

    DEFF Research Database (Denmark)

    Pedersen, Anders Tegtmeier; Montes, Belen Fernández; Pedersen, Jens Engholm;

    2012-01-01

    A short-range continuous-wave coherent laser radar (lidar) has been tested in a high-performance wind tunnel for possible use as a standard component in wind tunnels. The lidar was tested in a low as well as a high speed regime ranging from 5-35 m/s and 40-75 m/s, respectively. In both low and hi...... future for short range lidars as a complement to LDA and other standard equipment in wind tunnels....

  12. Preliminary Observations on Sensitivity and Specificity of Magnetization Transfer Asymmetry for Imaging Myelin of Rat Brain at High Field.

    Science.gov (United States)

    Kim, Jae-Woong; Choi, Jiye; Cho, Janggeun; Lee, Chulhyun; Jeon, Daejong; Park, Sung-Hong

    2015-01-01

    Magnetization transfer ratio (MTR) has been often used for imaging myelination. Despite its high sensitivity, the specificity of MTR to myelination is not high because tissues with no myelin such as muscle can also show high MTR. In this study, we propose a new magnetization transfer (MT) indicator, MT asymmetry (MTA), as a new method of myelin imaging. The experiments were performed on rat brain at 9.4 T. MTA revealed high signals in white matter and significantly low signals in gray matter and muscle, indicating that MTA has higher specificity than MTR. Demyelination and remyelination studies demonstrated that the sensitivity of MTA to myelination was as high as that of MTR. These experimental results indicate that MTA can be a good biomarker for imaging myelination. In addition, MTA images can be efficiently acquired with an interslice MTA method, which may accelerate clinical application of myelin imaging.

  13. Chemical Analysis of Pottery Demonstrates Prehistoric Origin for High-Altitude Alpine Dairying.

    Science.gov (United States)

    Carrer, Francesco; Colonese, André Carlo; Lucquin, Alexandre; Petersen Guedes, Eduardo; Thompson, Anu; Walsh, Kevin; Reitmaier, Thomas; Craig, Oliver E

    2016-01-01

    The European high Alps are internationally renowned for their dairy produce, which are of huge cultural and economic significance to the region. Although the recent history of alpine dairying has been well studied, virtually nothing is known regarding the origins of this practice. This is due to poor preservation of high altitude archaeological sites and the ephemeral nature of transhumance economic practices. Archaeologists have suggested that stone structures that appear around 3,000 years ago are associated with more intense seasonal occupation of the high Alps and perhaps the establishment of new economic strategies. Here, we report on organic residue analysis of small fragments of pottery sherds that are occasionally preserved both at these sites and earlier prehistoric rock-shelters. Based mainly on isotopic criteria, dairy lipids could only be identified on ceramics from the stone structures, which date to the Iron Age (ca. 3,000-2,500 BP), providing the earliest evidence of this practice in the high Alps. Dairy production in such a marginal environment implies a high degree of risk even by today's standards. We postulate that this practice was driven by population increase and climate deterioration that put pressure on lowland agropastoral systems and the establishment of more extensive trade networks, leading to greater demand for highly nutritious and transportable dairy products.

  14. System integration and demonstration of adhesive bonded high temperature aluminum alloys for aerospace structure, phase 2

    Science.gov (United States)

    Falcone, Anthony; Laakso, John H.

    1993-01-01

    Adhesive bonding materials and processes were evaluated for assembly of future high-temperature aluminum alloy structural components such as may be used in high-speed civil transport aircraft and space launch vehicles. A number of candidate high-temperature adhesives were selected and screening tests were conducted using single lap shear specimens. The selected adhesives were then used to bond sandwich (titanium core) test specimens, adhesive toughness test specimens, and isothermally aged lap shear specimens. Moderate-to-high lap shear strengths were obtained from bonded high-temperature aluminum and silicon carbide particulate-reinforced (SiC(sub p)) aluminum specimens. Shear strengths typically exceeded 3500 to 4000 lb/in(sup 2) and flatwise tensile strengths exceeded 750 lb/in(sup 2) even at elevated temperatures (300 F) using a bismaleimide adhesive. All faceskin-to-core bonds displayed excellent tear strength. The existing production phosphoric acid anodize surface preparation process developed at Boeing was used, and gave good performance with all of the aluminum and silicon carbide particulate-reinforced aluminum alloys investigated. The results of this program support using bonded assemblies of high-temperature aluminum components in applications where bonding is often used (e.g., secondary structures and tear stoppers).

  15. Microstructure-Sensitive Modeling of High Cycle Fatigue (Preprint)

    Science.gov (United States)

    2009-03-01

    history ( carburization and shot peening) and resulting residual stresses are considered in the case of subsurface crack formation at primary inclusions...experimental responses for known microstructures. Effects of process history ( carburization and shot peening) and resulting residual stresses are considered...nonmetallic inclusions. 3. HCF Crack Formation in Carburized and Shot Peened Martensitic Gear Steel High strength low carbon martensitic gear steel is a

  16. A highly selective and sensitive fluorescent chemosensor for Zn2+

    Institute of Scientific and Technical Information of China (English)

    Xiu Ying Zhang; Zuo Hui Wang; Lin Yang

    2008-01-01

    A new selective Zn2+ fluorescent chemosensor,o-vanillin-4-ethoxybenzoylhydrazone(1),was designed and prepared.Free 1 mainly displayed very weak fluorescence at 480 nm upone xcitation at 403 nln.It displayed high selectivity for Zn2+ and had a 518-fold fluorescent enhancement upon binding of Zn2+.while the other cation ions had only little influence on the fluorescence of 1.Mechanism of enhancement of 1's fluorescence by Zn2+ was briefly discussed.

  17. Highly sensitive bolometers for rare alpha decay studies

    Directory of Open Access Journals (Sweden)

    Gironi L.

    2014-03-01

    Full Text Available High resolution detectors able to identify background events are very appealing in the study of rare nuclear processes. Scintillating bolometers featuring simultaneous read-out of heat and scintillation signals, can effectively address this problem thanks to the possibility to discriminate different ionizing particles and achieve background free experiments. With this technique it has already been possible to measure rare alpha decays never observed before or improve by orders of magnitude the existing limits.

  18. Aptamer-Functionalized Fluorescent Silica Nanoparticles for Highly Sensitive Detection of Leukemia Cells

    Science.gov (United States)

    Tan, Juntao; Yang, Nuo; Hu, Zixi; Su, Jing; Zhong, Jianhong; Yang, Yang; Yu, Yating; Zhu, Jianmeng; Xue, Dabin; Huang, Yingying; Lai, Zongqiang; Huang, Yong; Lu, Xiaoling; Zhao, Yongxiang

    2016-06-01

    A simple, highly sensitive method to detect leukemia cells has been developed based on aptamer-modified fluorescent silica nanoparticles (FSNPs). In this strategy, the amine-labeled Sgc8 aptamer was conjugated to carboxyl-modified FSNPs via amide coupling between amino and carboxyl groups. Sensitivity and specificity of Sgc8-FSNPs were assessed using flow cytometry and fluorescence microscopy. These results showed that Sgc8-FSNPs detected leukemia cells with high sensitivity and specificity. Aptamer-modified FSNPs hold promise for sensitive and specific detection of leukemia cells. Changing the aptamer may allow the FSNPs to detect other types of cancer cells.

  19. Highly sensitive strain sensor based on helical structure combined with Mach-Zehnder interferometer in multicore fiber.

    Science.gov (United States)

    Zhang, Hailiang; Wu, Zhifang; Shum, Perry Ping; Dinh, Xuan Quyen; Low, Chun Wah; Xu, Zhilin; Wang, Ruoxu; Shao, Xuguang; Fu, Songnian; Tong, Weijun; Tang, Ming

    2017-04-18

    Optical fiber sensors for strain measurement have been playing important roles in structural health monitoring for buildings, tunnels, pipelines, aircrafts, and so on. A highly sensitive strain sensor based on helical structures (HSs) assisted Mach-Zehnder interference in an all-solid heterogeneous multicore fiber (MCF) is proposed and experimentally demonstrated. Due to the HSs, a maximum strain sensitivity as high as -61.8 pm/με was experimentally achieved. This is the highest sensitivity among interferometer-based strain sensors reported so far, to the best of our knowledge. Moreover, the proposed sensor has the ability to discriminate axial strain and temperature, and offers several advantages such as repeatability of fabrication, robust structure and compact size, which further benefits its practical sensing applications.

  20. Fabrication and characterization of gold nanocrown arrays on a gold film for a high-sensitivity surface plasmon resonance biosensor

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Munsik; Kim, Nak-hyeon; Eom, Seyoung [Department of Biomedical Engineering, Kyung Hee University, Yongin 446-701 (Korea, Republic of); Kim, Tae Woo [School of East–West Medical Science, Kyung Hee University, Yongin 446-701 (Korea, Republic of); Byun, Kyung Min, E-mail: kmbyun@khu.ac.kr [Department of Biomedical Engineering, Kyung Hee University, Yongin 446-701 (Korea, Republic of); Park, Hyeong-Ho, E-mail: hyeongho.park@kanc.re.kr [Nano Process Division, Korea Advanced Nano Fab Center, Suwon 443-270 (Korea, Republic of)

    2015-07-31

    We report on a versatile method to fabricate gold nanocrown arrays on a thin gold film based on ultraviolet nanoimprint lithography and tilted evaporation technique. We realize highly ordered 2-dimensional nanocrown arrays and characterize their sizes and morphologies using scanning electron microscopy. To demonstrate an enhanced surface plasmon resonance (SPR) detection by the fabricated gold nanocrown samples, biosensing experiments are performed by measuring SPR angle shift for biotin–streptavidin interaction and bulk refractive index change of dielectric medium. We hope that the suggested plasmonic platform with a high sensitivity could be extended to a variety of biomolecular binding reactions. - Highlights: • Gold nanocrown arrays are produced by nanoimprint lithography and tilted evaporation. • Use of gold nanocrown arrays can improve the sensor sensitivity significantly. • Improved sensitivity is due to enhanced field–matter interaction at gold nanocrowns.

  1. Highly sensitive passive radio frequency identification based sensor systems.

    Science.gov (United States)

    Wissenwasser, J; Vellekoop, M; Heer, R

    2010-02-01

    A novel platform for sensor applications based on radio frequency (rf) identification technology, where passive tags are powered by the rf-field of a reader, is presented. The sophisticated energy harvesting system of the tag enables a blanking of the rf-field for a defined period, while supplying the tag electronics with a highly stable voltage and a power of 25 mW for 100 ms. During this time, span measurements can be performed without interferences of the rf-field. The presented tags work without batteries and are designed for impedance measurements on microbiological cell cultures under physiological relevant conditions as well as in harsh environments.

  2. Highly sensitive passive radio frequency identification based sensor systems

    Science.gov (United States)

    Wissenwasser, J.; Vellekoop, M.; Heer, R.

    2010-02-01

    A novel platform for sensor applications based on radio frequency (rf) identification technology, where passive tags are powered by the rf-field of a reader, is presented. The sophisticated energy harvesting system of the tag enables a blanking of the rf-field for a defined period, while supplying the tag electronics with a highly stable voltage and a power of 25 mW for 100 ms. During this time, span measurements can be performed without interferences of the rf-field. The presented tags work without batteries and are designed for impedance measurements on microbiological cell cultures under physiological relevant conditions as well as in harsh environments.

  3. Dynamics and sensitivity analysis of high-frequency conduction block

    Science.gov (United States)

    Ackermann, D. Michael; Bhadra, Niloy; Gerges, Meana; Thomas, Peter J.

    2011-10-01

    The local delivery of extracellular high-frequency stimulation (HFS) has been shown to be a fast acting and quickly reversible method of blocking neural conduction and is currently being pursued for several clinical indications. However, the mechanism for this type of nerve block remains unclear. In this study, we investigate two hypotheses: (1) depolarizing currents promote conduction block via inactivation of sodium channels and (2) the gating dynamics of the fast sodium channel are the primary determinate of minimal blocking frequency. Hypothesis 1 was investigated using a combined modeling and experimental study to investigate the effect of depolarizing and hyperpolarizing currents on high-frequency block. The results of the modeling study show that both depolarizing and hyperpolarizing currents play an important role in conduction block and that the conductance to each of three ionic currents increases relative to resting values during HFS. However, depolarizing currents were found to promote the blocking effect, and hyperpolarizing currents were found to diminish the blocking effect. Inward sodium currents were larger than the sum of the outward currents, resulting in a net depolarization of the nodal membrane. Our experimental results support these findings and closely match results from the equivalent modeling scenario: intra-peritoneal administration of the persistent sodium channel blocker ranolazine resulted in an increase in the amplitude of HFS required to produce conduction block in rats, confirming that depolarizing currents promote the conduction block phenomenon. Hypothesis 2 was investigated using a spectral analysis of the channel gating variables in a single-fiber axon model. The results of this study suggested a relationship between the dynamical properties of specific ion channel gating elements and the contributions of corresponding conductances to block onset. Specifically, we show that the dynamics of the fast sodium inactivation gate are

  4. Demonstration and Validation of a High-Performance Floor-Sealant System to Reduce Concrete Degradation

    Science.gov (United States)

    2015-05-01

    System to Reduce Concrete Degradation Final Report on Project F10-AR02 Co ns tr uc tio n En gi ne er in g R es ea rc h La bo ra to ry Clint...of a High-Performance Floor-Sealant System to Reduce Concrete Degradation Final Report on Project F10-AR02 Clint A. Wilson and Susan A. Drozdz...Under Project F10-AR02, “Application of an Innovative, High Performance Concrete Floor Sealant at Hunter Army Airfield, Georgia” ERDC/CERL TR-15-9 ii

  5. High sensitivity, quantitative measurements of polyphosphate using a new DAPI-based approach.

    Science.gov (United States)

    Aschar-Sobbi, Roozbeh; Abramov, Andrey Y; Diao, Catherine; Kargacin, Margaret E; Kargacin, Gary J; French, Robert J; Pavlov, Evgeny

    2008-09-01

    Polyphosphate (poly-P) is an important metabolite and signaling molecule in prokaryotes and eukaryotes. DAPI (4',6-diamidino-2-phenylindole), a widely used fluorescent label for DNA, also interacts with polyphosphate. Binding of poly-P to DAPI, shifts its peak emission wavelength from 475 to 525 nm (excitation at 360 nm), allowing use of DAPI for detection of poly-P in vitro, and in live poly-P accumulating organisms. This approach, which relies on detection of a shift in fluorescence emission, allows use of DAPI only for qualitative detection of relatively high concentrations of poly-P, in the microg/ml range. Here, we report that long-wavelength excitation (> or = 400 nm) of the DAPI-poly-P complex provides a dramatic increase in the sensitivity of poly-P detection. Using excitation at 415 nm, fluorescence of the DAPI-poly-P complex can be detected at a higher wavelength (550 nm) for as little as 25 ng/ml of poly-P. Fluorescence emission from free DAPI and DAPI-DNA are minimal at this wavelength, making the DAPI-poly-P signal highly specific and essentially independent of the presence of DNA. In addition, we demonstrate the use of this protocol to measure the activity of poly-P hydrolyzing enzyme, polyphosphatase and demonstrate a similar signal from the mitochondrial region of cultured neurons.

  6. High sensitivity automated multiplexed immunoassays using photonic crystal enhanced fluorescence microfluidic system.

    Science.gov (United States)

    Tan, Yafang; Tang, Tiantian; Xu, Haisheng; Zhu, Chenqi; Cunningham, Brian T

    2015-11-15

    We demonstrate a platform that integrates photonic crystal enhanced fluorescence (PCEF) detection of a surface-based microspot fluorescent assay with a microfluidic cartridge to achieve simultaneous goals of high analytic sensitivity (single digit pg/mL), high selectivity, low sample volume, and assay automation. The PC surface, designed to provide optical resonances for the excitation wavelength and emission wavelength of Cyanines 5 (Cy5), was used to amplify the fluorescence signal intensity measured from a multiplexed biomarker microarray. The assay system is comprised of a plastic microfluidic cartridge for holding the PC and an assay automation system that provides a leak-free fluid interface during introduction of a sequence of fluids under computer control. Through the use of the assay automation system and the PC embedded within the microfluidic cartridge, we demonstrate pg/mL-level limits of detection by performing representative biomarker assays for interleukin 3 (IL3) and Tumor Necrosis Factor (TNF-α). The results are consistent with limits of detection achieved without the use of the microfluidic device with the exception that coefficients of variability from spot-to-spot are substantially lower than those obtained by performing assays with manual manipulation of assay liquids. The system's capabilities are compatible with the goal of diagnostic instruments for point-of-care settings.

  7. A compact high-sensitivity heterodyne interferometer for industrial metrology

    Science.gov (United States)

    Schuldt, Thilo; Gohlke, Martin; Weise, Dennis; Peters, Achim; Johann, Ulrich; Braxmaier, Claus

    2008-04-01

    For translation and tilt metrology, we developed a compact fiber-coupled polarizing heterodyne interferometer which is based on a highly symmetric design where both, measurement and reference beam have similar optical pathlengths and the same frequency and polarization. The method of differential wavefront sensing is implemented for tilt measurement. With this setup we reached noise levels below 5 pm/square root of Hz; Hz in translation and below 10 nrad/square root of Hz; in tilt measurement, both for frequencies above 10-2 Hz. While this setup is developed with respect to the requirements of the LISA (Laser Interferometer Space Antenna) space mission, we here present the current status of its adoption to industrial applications. We currently design a very compact and quasi-monolithic setup of the interferometer sensor head based on ultra-low expansion glass material. The resulting compact and robust sensor head can be used for nano-positioning control. We also plan to implement a scan of the measurement beam over the surface under investigation enabling high resolution 3D profilometry and surface property measurements (i. e. roughness, evenness and roundness). The dedicated low-noise (piezo-electric actuator in the measurement beam of the interferometer will be realized using integrated micro-system technology and can either be implemented in one or two dimensions.

  8. Highly sensitive thermoluminescent carbon doped nanoporous aluminium oxide detectors.

    Science.gov (United States)

    de Azevedo, W M; de Oliveira, G B; da Silva, E F; Khoury, H J; Oliveira de Jesus, E F

    2006-01-01

    In this work we present the synthesis, characterisation and the thermoluminescence (TL) response of nanoporous carbon doped aluminium oxide Al2O3:C produced by anodic oxidation of aluminium in organic and inorganic solvents. The X-ray and scanning electron microscopy (SEM) measurements reveal that the synthesised samples are amorphous and present highly ordered structures with uniform pore distribution with diameter of the order 50 nm. The photoluminescence and spectroscopic analysis in the visible and infrared regions show that the luminescence properties presented by the samples prepared in organic acid are due to carboxylate species, incorporated in anodic alumina films during the synthesis process. After an annealing treatment, part of the incorporated species decomposes and is incorporated into the structure of the aluminium oxide yielding a highly thermoluminescent detector (TL) . The results for X-ray irradiation in the range from 21 to 80 keV indicate a linear TL response with the dose in the range from 5 mGy to 1 Gy, suggesting that nanoporous aluminium oxide produced in the present route of synthesis is a suitable detector for radiation measurements.

  9. Porous tungsten oxide nanoflakes for highly alcohol sensitive performance.

    Science.gov (United States)

    Xiao, J; Liu, P; Liang, Y; Li, H B; Yang, G W

    2012-11-21

    Porous tungsten oxide (WO(3)) nanoflakes have been synthesized by a simple and green approach in an ambient environment. As a precursor solution a polycrystalline hydrated tungstite (H(2)WO(4)·H(2)O) nanoparticles colloid was first prepared by pulsed-laser ablation of a tungsten target in water. The H(2)WO(4)·H(2)O nanoflakes were produced by 72 h aging treatment at room temperature. Finally, porous WO(3) nanoflakes were synthesized by annealing at 800 °C for 4 h. Considering the large surface-to-volume ratio of porous nanoflakes, a porous WO(3) nanoflake gas sensor was fabricated, which exhibits an excellent sensor response performance to alcohol concentrations in the range of 20 to 600 ppm under low working temperature. This high response was attributed to the highly crystalline and porous flake-like morphology, which leads to effective adsorption and desorption, and provides more active sites for the gas molecules' reaction. These findings showed that the porous tungsten oxide nanoflake has great potential in gas-sensing performance.

  10. Experimental demonstration of a compact epithermal neutron source based on a high power laser

    Science.gov (United States)

    Mirfayzi, S. R.; Alejo, A.; Ahmed, H.; Raspino, D.; Ansell, S.; Wilson, L. A.; Armstrong, C.; Butler, N. M. H.; Clarke, R. J.; Higginson, A.; Kelleher, J.; Murphy, C. D.; Notley, M.; Rusby, D. R.; Schooneveld, E.; Borghesi, M.; McKenna, P.; Rhodes, N. J.; Neely, D.; Brenner, C. M.; Kar, S.

    2017-07-01

    Epithermal neutrons from pulsed-spallation sources have revolutionised neutron science allowing scientists to acquire new insight into the structure and properties of matter. Here, we demonstrate that laser driven fast (˜MeV) neutrons can be efficiently moderated to epithermal energies with intrinsically short burst durations. In a proof-of-principle experiment using a 100 TW laser, a significant epithermal neutron flux of the order of 105 n/sr/pulse in the energy range of 0.5-300 eV was measured, produced by a compact moderator deployed downstream of the laser-driven fast neutron source. The moderator used in the campaign was specifically designed, by the help of MCNPX simulations, for an efficient and directional moderation of the fast neutron spectrum produced by a laser driven source.

  11. An investigation of the influence of reconceptualization of demonstrative experimental activities of optics in high school

    Directory of Open Access Journals (Sweden)

    Jair Lúcio Prados Ribeiro

    2013-08-01

    Full Text Available In this work, we analyze the influence that the use of demonstrative experiments can bring to the learning of optics. It is assumed that the development of experimental activities, when reconceptualized according to Hodson proposal, tends to contribute to the generation of cognitive conflicts when compared to traditional didactic experience. Justifications are given for an analysis of changes under a Piagetian bias, reconciled with Hodson proposal. The methodology used to structure the topics presentations was quasi-experimental, contrasting an experimental group with a control group. The measuring of the effectiveness of the suggested working method was made from a quantitative analysis, which identified some of the topics discussed had better results in learning, being more tied to the experiments carried out.

  12. NASA Environmentally Responsible Aviation's Highly-Loaded Front Block Compressor Demonstration

    Science.gov (United States)

    Celestina, Mark

    2017-01-01

    The ERA project was created in 2009 as part of NASAs Aeronautics Research Mission Directorates (ARMD) Integrated Systems Aviation Program (IASP). The purpose of the ERA project was to explore and document the feasibility, benefit, and technical risk of vehicles concepts and enabling technologies to reduce aviations impact on the environment. The metrics for this technology is given in Figure 1 with the N+2 metrics highlighted in green. It is anticipated that the United States air transportation system will continue to expand significantly over the next few decades thus adversely impacting the environment unless new technology is incorporated to simultaneously reduce nitrous oxides (NOx), noise and fuel consumption. In order to achieve the overall goals and meet the technology insertion challenges, these goals were divided into technical challenges that were to be achieved during the execution of the ERA project. Technical challenges were accomplished through test campaigns conducted by Integrated Technology Demonstration (ITDs). ERAs technical performance period ended in 2015.

  13. High Degree of Plasmodium vivax Diversity in the Peruvian Amazon Demonstrated by Tandem Repeat Polymorphism Analysis

    Science.gov (United States)

    Kosek, Margaret; Yori, Pablo P.; Gilman, Robert H.; Calderon, Maritza; Zimic, Mirko; Chuquiyauri, Raul; Jeri, Cesar; Pinedo-Cancino, Viviana; Matthias, Michael A.; Llanos-Cuentas, Alejandro; Vinetz, Joseph M.

    2012-01-01

    Molecular tools to distinguish strains of Plasmodium vivax are important for studying the epidemiology of malaria transmission. Two sets of markers—tandem repeat (TR) polymorphisms and MSP3α—were used to study Plasmodium vivax in patients in the Peruvian Amazon region of Iquitos. Of 110 patients, 90 distinct haplotypes were distinguished using 9 TR markers. An MSP3α polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) using HhaI and AluI revealed 8 and 9 profiles, respectively, and 36 profiles when analyzed in combination. Combining TR and PCR-RFLP markers, 101 distinct molecular profiles were distinguished among these 110 patients. Nine TR markers arrayed along a 100 kB stretch of a P. vivax chromosome containing the gene for circumsporozoite protein showed non-linear linkage disequilibrium (ISA = 0.03, P = 0.001). These findings demonstrate the potential use of TR markers for molecular epidemiology studies. PMID:22492139

  14. Thermal Properties of Simulated and High-Level Waste Solutions Used for the Solvent Extraction Demonstration

    Energy Technology Data Exchange (ETDEWEB)

    Fondeur, F.F.

    2001-06-27

    Researchers measured the heat capacity and thermal conductivity of supernate from a blend of Tank 37H and 44F, of a simulant of this blend, and of a simulant specifically designed for solvent extraction experiments. The measured heat capacity of the blend from the Tanks 37H and 44F equaled 0.871 cal/(g degrees C). The simulant of this blend produced an identical result. The heat capacity of the simulant designed for solvent extraction testing equaled 0.859 cal/(g degrees C). All three solutions have thermal conductivities in the range of 0.54 to 0.6 Watts/(m degrees C). The slight variation in the thermophysical properties of these solutions successfully explains the different flowmeter readings observed during the real waste demonstration of the solvent extraction technology.

  15. Demonstration of highly efficient forward stimulated Brillouin scattering in partly suspended silicon nanowire racetrack resonators

    Science.gov (United States)

    Zhang, Ruiwen; Sun, Junqiang; Chen, Guodong; Cheng, Ming; Jiang, Jialin

    2017-07-01

    We demonstrate the forward stimulated Brillouin scattering (FSBS) in a partly suspended silicon nanowire racetrack resonator. To realize the tight confinement of the transverse acoustic modes in the nanoscale silicon core, the racetrack resonator is supported by the tiny pillar. The Brillouin amplification of 2.25 dB is achieved with the resonator radius of 100 μm under a low-power pump laser of 8 mW. The influences of the waveguide width and the top width of the tiny pillar on the Brillouin frequency shift and Brillouin gain are presented and analyzed. The Brillouin frequency shift is conveniently manipulated by the changes in waveguide widths. Our proposed approach furnishes an alternative towards harnessing FSBS in integrated photonic circuits.

  16. NEMA NU-4 performance evaluation of PETbox4, a high sensitivity dedicated PET preclinical tomograph

    Science.gov (United States)

    Gu, Z.; Taschereau, R.; Vu, N. T.; Wang, H.; Prout, D. L.; Silverman, R. W.; Bai, B.; Stout, D. B.; Phelps, M. E.; Chatziioannou, A. F.

    2013-06-01

    PETbox4 is a new, fully tomographic bench top PET scanner dedicated to high sensitivity and high resolution imaging of mice. This manuscript characterizes the performance of the prototype system using the National Electrical Manufacturers Association NU 4-2008 standards, including studies of sensitivity, spatial resolution, energy resolution, scatter fraction, count-rate performance and image quality. The PETbox4 performance is also compared with the performance of PETbox, a previous generation limited angle tomography system. PETbox4 consists of four opposing flat-panel type detectors arranged in a box-like geometry. Each panel is made by a 24 × 50 pixelated array of 1.82 × 1.82 × 7 mm bismuth germanate scintillation crystals with a crystal pitch of 1.90 mm. Each of these scintillation arrays is coupled to two Hamamatsu H8500 photomultiplier tubes via a glass light guide. Volumetric images for a 45 × 45 × 95 mm field of view (FOV) are reconstructed with a maximum likelihood expectation maximization algorithm incorporating a system model based on a parameterized detector response. With an energy window of 150-650 keV, the peak absolute sensitivity is approximately 18% at the center of FOV. The measured crystal energy resolution ranges from 13.5% to 48.3% full width at half maximum (FWHM), with a mean of 18.0%. The intrinsic detector spatial resolution is 1.5 mm FWHM in both transverse and axial directions. The reconstructed image spatial resolution for different locations in the FOV ranges from 1.32 to 1.93 mm, with an average of 1.46 mm. The peak noise equivalent count rate for the mouse-sized phantom is 35 kcps for a total activity of 1.5 MBq (40 µCi) and the scatter fraction is 28%. The standard deviation in the uniform region of the image quality phantom is 5.7%. The recovery coefficients range from 0.10 to 0.93. In comparison to the first generation two panel PETbox system, PETbox4 achieves substantial improvements on sensitivity and spatial resolution

  17. Highly sensitive temperature sensor based on an isopropanol-filled photonic crystal fiber long period grating

    Science.gov (United States)

    Du, Chao; Wang, Qi; Zhao, Yong; Li, Jin

    2017-03-01

    A high sensitivity measurement method for temperature has been proposed and investigated based on an isopropanol-filled photonic crystal fiber long period grating (PCF-LPG). Due to the high thermo-optic coefficient (TOC) of isopropanol, the sensitivity of the proposed temperature sensor could be effectively improved by filling isopropanol in the air waveguides of PCF. It can be found that the resonant dip will be split in two dips after filling isopropanol and the two dips have different sensitivities to surrounding temperature. Because of PCF-LPG is sensitive to the refractive index (RI) of internal filled liquid, the isopropanol-filled PCF-LPG temperature sensor has a high sensitivities of 1.356 nm/°C in the range of 20-50 °C. The simplicity and the excellent performance of our proposed device make it potential for the applications of high-precision temperature measurement is required.

  18. Demonstrating the potential of yttrium-doped barium zirconate electrolyte for high-performance fuel cells.

    Science.gov (United States)

    Bae, Kiho; Jang, Dong Young; Choi, Hyung Jong; Kim, Donghwan; Hong, Jongsup; Kim, Byung-Kook; Lee, Jong-Ho; Son, Ji-Won; Shim, Joon Hyung

    2017-02-23

    In reducing the high operating temperatures (≥800 °C) of solid-oxide fuel cells, use of protonic ceramics as an alternative electrolyte material is attractive due to their high conductivity and low activation energy in a low-temperature regime (≤600 °C). Among many protonic ceramics, yttrium-doped barium zirconate has attracted attention due to its excellent chemical stability, which is the main issue in protonic-ceramic fuel cells. However, poor sinterability of yttrium-doped barium zirconate discourages its fabrication as a thin-film electrolyte and integration on porous anode supports, both of which are essential to achieve high performance. Here we fabricate a protonic-ceramic fuel cell using a thin-film-deposited yttrium-doped barium zirconate electrolyte with no impeding grain boundaries owing to the columnar structure tightly integrated with nanogranular cathode and nanoporous anode supports, which to the best of our knowledge exhibits a record high-power output of up to an order of magnitude higher than those of other reported barium zirconate-based fuel cells.

  19. A Model Vocational High Technology in Health Care Demonstration Project. Final Performance Report.

    Science.gov (United States)

    Valencia Community Coll., Orlando, FL.

    A unique training program in high tech obstetrical, neonatal, and pediatric nursing care areas was designed to be offered on site at Orlando (Florida) Regional Medical/Arnold Palmer Hospital for Children and Women. The training program offered 16 different courses to 355 employees over the 18-month period of the project. A needs assessment was…

  20. High-Efficiency Solar Thermal Vacuum Demonstration Completed for Refractive Secondary Concentrator

    Science.gov (United States)

    Wong, Wayne A.

    2001-01-01

    Common to many of the space applications that utilize solar thermal energy--such as electric power conversion, thermal propulsion, and furnaces--is a need for highly efficient, solar concentration systems. An effort is underway at the NASA Glenn Research Center to develop the refractive secondary concentrator, which uses refraction and total internal reflection to efficiently concentrate and direct solar energy. When used in combination with advanced lightweight primary concentrators, the refractive secondary concentrator enables very high system concentration ratios (10,000 to 1) and very high temperatures (>2000 K). The innovative refractive secondary concentrator offers significant advantages over all other types of secondary concentrators. The refractive secondary offers the highest throughput efficiency, provides for flux tailoring, requires no active cooling, relaxes the pointing and tracking requirements of the primary concentrator, and enables very high system concentration ratios. This technology has broad applicability to any system that requires the conversion of solar energy to heat. Glenn initiated the development of the refractive secondary concentrator in support of Shooting Star, a solar thermal propulsion flight experiment, and continued the development in support of Space Solar Power.

  1. Catbirds are the New Chickens: High Sensitivity to a Dioxin-like Compound in a Wildlife Species.

    Science.gov (United States)

    Eng, Margaret L; Bishop, Christine A; Crump, Doug; Jones, Stephanie P; Williams, Tony D; Drouillard, Kenneth G; Elliott, John E

    2017-05-02

    Dioxins and dioxin-like compounds (DLCs) are highly toxic and persistent global pollutants with extremely large differences in sensitivity across taxonomic groups. The chicken has long been considered uniquely sensitive to DLCs among avian species; but DLC toxicity in nondomesticated birds is largely untested, and the relevance of the chicken as an ecological model is uncertain. New approaches that use genotyping of the AHR1 ligand binding domain to screen for DLC sensitivity among avian species predicted that the gray catbird, a relevant wildlife species, is also highly sensitive. We tested this prediction using egg injections of a dioxin-like PCB (PCB-126) and found that the catbird is at least as sensitive as the chicken to DLCs, based on both embryotoxicity and mRNA induction of phase I metabolizing enzymes (CYP1A4/5). This study is the first to confirm that there are wildlife species as sensitive as the chicken and demonstrates how using predictive genotyping methods and targeted bioassays can focus toxicity assessments on ecologically relevant species.

  2. A novel high resolution, high sensitivity SPECT detector for molecular imaging of cardiovascular diseases

    Science.gov (United States)

    Cusanno, F.; Argentieri, A.; Baiocchi, M.; Colilli, S.; Cisbani, E.; De Vincentis, G.; Fratoni, R.; Garibaldi, F.; Giuliani, F.; Gricia, M.; Lucentini, M.; Magliozzi, M. L.; Majewski, S.; Marano, G.; Musico, P.; Musumeci, M.; Santavenere, F.; Torrioli, S.; Tsui, B. M. W.; Vitelli, L.; Wang, Y.

    2010-05-01

    Cardiovascular diseases are the most common cause of death in western countries. Understanding the rupture of vulnerable atherosclerotic plaques and monitoring the effect of innovative therapies of heart failure is of fundamental importance. A flexible, high resolution, high sensitivity detector system for molecular imaging with radionuclides on small animal models has been designed for this aim. A prototype has been built using tungsten pinhole and LaBr3(Ce) scintillator coupled to Hamamatsu Flat Panel PMTs. Compact individual-channel readout has been designed, built and tested. Measurements with phantoms as well as pilot studies on mice have been performed, the results show that the myocardial perfusion in mice can be determined with sufficient precision. The detector will be improved replacing the Hamamatsu Flat Panel with Silicon Photomultipliers (SiPMs) to allow integration of the system with MRI scanners. Application of LaBr3(Ce) scintillator coupled to photosensor with high photon detection efficiency and excellent energy resolution will allow dual-label imaging to monitor simultaneously the cardiac perfusion and the molecular targets under investigation during the heart therapy.

  3. Color Sensitivity Multiple Exposure Fusion using High Dynamic Range Image

    Directory of Open Access Journals (Sweden)

    Varsha Borole

    2014-02-01

    Full Text Available In this paper, we present a high dynamic range imaging (HDRI method using a capturing camera image using normally exposure, over exposure and under exposure. We make three different images from a multiple input image using local histogram stretching. Because the proposed method generated three histogram-stretched images from a multiple input image, ghost artifacts that are the result of the relative motion between the camera and objects during exposure time, are inherently removed. Therefore, the proposed method can be applied to a consumer compact camera to provide the ghost artifacts free HDRI. Experiments with several sets of test images with different exposures show that the proposed method gives a better performance than existing methods in terms of visual results and computation time.

  4. High sensitivity, wide coverage, and high-resolution NIR non-cryogenic spectrograph, WINERED

    Science.gov (United States)

    Ikeda, Yuji; Kobayashi, Naoto; Kondo, Sohei; Otsubo, Shogo; Hamano, Satoshi; Sameshima, Hiroaki; Yoshikawa, Tomoshiro; Fukue, Kei; Nakanishi, Kenshi; Kawanishi, Takafumi; Nakaoka, Tetsuya; Kinoshita, Masaomi; Kitano, Ayaka; Asano, Akira; Takenaka, Keiichi; Watase, Ayaka; Mito, Hiroyuki; Yasui, Chikako; Minami, Atsushi; Izumu, Natsuko; Yamamoto, Ryo; Mizumoto, Misaki; Arasaki, Takayuki; Arai, Akira; Matsunaga, Noriyuki; Kawakita, Hideyo

    2016-08-01

    Near-infrared (NIR) high-resolution spectroscopy is a fundamental observational method in astronomy. It provides significant information on the kinematics, the magnetic fields, and the chemical abundances, of astronomical objects embedded in or behind the highly extinctive clouds or at the cosmological distances. Scientific requirements have accelerated the development of the technology required for NIR high resolution spectrographs using 10 m telescopes. WINERED is a near-infrared (NIR) high-resolution spectrograph that is currently mounted on the 1.3 m Araki telescope of the Koyama Astronomical Observatory in Kyoto-Sangyo University, Japan, and has been successfully operated for three years. It covers a wide wavelength range from 0.90 to 1.35 μm (the z-, Y-, and J-bands) with a spectral resolution of R = 28,000 (Wide-mode) and R = 80,000 (Hires-Y and Hires-J modes). WINERED has three distinctive features: (i) optics with no cold stop, (ii) wide spectral coverage, and (iii) high sensitivity. The first feature, originating from the Joyce proposal, was first achieved by WINERED, with a short cutoff infrared array, cold baffles, and custom-made thermal blocking filters, and resulted in reducing the time for development, alignment, and maintenance, as well as the total cost. The second feature is realized with the spectral coverage of Δλ/λ 1/6 in a single exposure. This wide coverage is realized by a combination of a decent optical design with a cross-dispersed echelle and a large format array (2k x 2k HAWAII- 2RG). The Third feature, high sensitivity, is achieved via the high-throughput optics (>60 %) and the very low noise of the system. The major factors affecting the high throughput are the echelle grating and the VPH cross-disperser with high diffraction efficiencies of 83 % and 86 %, respectively, and the high QE of HAWAII-2RG (83 % at 1.23 μm). The readout noise of the electronics and the ambient thermal background radiation at longer wavelengths could be

  5. Gamma glutamyltransferase levels and its association with high sensitive C-reactive protein in patients with acute coronary syndromes

    Science.gov (United States)

    Emiroglu, Mehmet Yunus; Esen, Özlem Batukan; Bulut, Mustafa; Karapinar, Hekim; Kaya, Zekeriya; Akcakoyun, Mustafa; Kargin, Ramazan; Aung, Soe Moe; Alızade, Elnur; Pala, Selcuk; Esen, Ali Metin

    2010-01-01

    Background: Elevated Gamma-glutamyltransferase (GGT) level is independently correlated with conditions associatedwith increased atherosclerosis, such as obesity, elevated serum cholesterol, high blood pressure and myocardial infarction. It is also demonstrated that serum gamma-glutamyltransferase activity is an independent risk factor for myocardial infarction and cardiac death in patients with coronary artery disease. Although the relationship between gamma-glutamyltransferase and coronary artery disease has been reported, not many studies have shown the relationship between changes ofgamma-glutamyltransferase in acute coronary syndromes and a well established coronary risk factor high sensitive C-reactive protein. (hs-CRP). Aims: In this study, how gamma-glutamyltransferase levels changed in acute coronary syndromes and its relationship with high sensitive C-reactive protein if any were studied. Patients & Methods: This trial was carried out at Kosuyolu Cardiovascular Training and Research Hospital and Van Yuksek Ihtisas Hospital, Turkey. 219 patients (177 males and 42 females) presenting with acute coronary syndrome, and 51 control subjects between September 2007 and September 2008 were included in the study. Serum gamma-glutamyltransferase, high sensitive C-reactive protein, serum lipoprotein levels and troponin I were determined. Results: Serum gamma-glutamyltransferase and high sensitive C-reactive protein levels were higher in acute coronary syndrome patients compared to control. There was also correlation between gamma-glutamyltransferase and high sensitive C-reactive protein levels. Conclusion: Serum gamma-glutamyltransferase and high sensitive C-reactive protein levels were higher in acute coronary syndrome patients. In subgroup analyses, the higher difference with Non-ST elevation myocardial infarction and ST elevation myocardial infarction groups than unstable angina oectoris group proposes a relationship between gamma-glutamyltransferase and severity

  6. Gamma glutamyltransferase levels and its association with high sensitive C-reactive protein in patients with acute coronary syndromes

    Directory of Open Access Journals (Sweden)

    Mehmet Yunus Emiroglu

    2010-07-01

    Full Text Available Background: Elevated Gamma-glutamyltransferase (GGT level is independently correlated with conditions associatedwith increased atherosclerosis, such as obesity, elevated serum cholesterol, high blood pressure and myocardial infarction. It is also demonstrated that serum gamma-glutamyltransferase activity is an independent risk factor for myocardial infarction and cardiac death in patients with coronary artery disease. Although the relationship between gamma-glutamyltransferase and coronary artery disease has been reported, not many studies have shown the relationship between changes ofgamma-glutamyltransferase in acute coronary syndromes and a well established coronary risk factor high sensitive C-reactive protein. (hs-CRP. Aims: In this study, how gamma-glutamyltransferase levels changed in acute coronary syndromes and its relationship with high sensitive C-reactive protein if any were studied. Patients & Methods:This trial was carried out at Kosuyolu Cardiovascular Training and Research Hospital and Van Yuksek Ihtisas Hospital, Turkey. 219 patients (177 males and 42 females presenting with acute coronary syndrome, and 51 control subjects between September 2007 and September 2008 were included in the study. Serum gamma-glutamyltransferase, high sensitive C-reactive protein, serum lipoprotein levels and troponin I were determined. Results: Serum gamma-glutamyltransferase and high sensitive C-reactive protein levels were higher in acute coronary syndrome patients compared to control. There was also correlation between gamma-glutamyltransferase and high sensitive C-reactive protein levels. Conclusion: Serum gamma-glutamyltransferase and high sensitive C-reactive protein levels were higher in acute coronary syndrome patients. In subgroup analyses, the higher difference with Non-ST elevation myocardial infarction and ST elevation myocardial infarction groups than unstable angina oectoris group proposes a relationship between gamma

  7. Gamma glutamyltransferase levels and its association with high sensitive C-reactive protein in patients with acute coronary syndromes

    Directory of Open Access Journals (Sweden)

    Mehmet Yunus Emiroglu

    2010-01-01

    Full Text Available Background: Elevated Gamma-glutamyltransferase (GGT level is independently correlated with conditions associatedwith increased atherosclerosis, such as obesity, elevated serum cholesterol, high blood pressure and myocardial infarction. It is also demonstrated that serum gamma-glutamyltransferase activity is an independent risk factor for myocardial infarction and cardiac death in patients with coronary artery disease. Although the relationship between gamma-glutamyltransferase and coronary artery disease has been reported, not many studies have shown the relationship between changes ofgamma-glutamyltransferase in acute coronary syndromes and a well established coronary risk factor high sensitive C-reactive protein. (hs-CRP. Aims: In this study, how gamma-glutamyltransferase levels changed in acute coronary syndromes and its relationship with high sensitive C-reactive protein if any were studied. Patients & Methods: This trial was carried out at Kosuyolu Cardiovascular Training and Research Hospital and Van Yuksek Ihtisas Hospital, Turkey. 219 patients (177 males and 42 females presenting with acute coronary syndrome, and 51 control subjects between September 2007 and September 2008 were included in the study. Serum gamma-glutamyltransferase, high sensitive C-reactive protein, serum lipoprotein levels and troponin I were determined. Results: Serum gamma-glutamyltransferase and high sensitive C-reactive protein levels were higher in acute coronary syndrome patients compared to control. There was also correlation between gamma-glutamyltransferase and high sensitive C-reactive protein levels. Conclusion: Serum gamma-glutamyltransferase and high sensitive C-reactive protein levels were higher in acute coronary syndrome patients. In subgroup analyses, the higher difference with Non-ST elevation myocardial infarction and ST elevation myocardial infarction groups than unstable angina oectoris group proposes a relationship between gamma

  8. Single n+-i-n+ InP nanowires for highly sensitive terahertz detection

    Science.gov (United States)

    Peng, Kun; Parkinson, Patrick; Gao, Qian; Boland, Jessica L.; Li, Ziyuan; Wang, Fan; Mokkapati, Sudha; Fu, Lan; Johnston, Michael B.; Tan, Hark Hoe; Jagadish, Chennupati

    2017-03-01

    Developing single-nanowire terahertz (THz) electronics and employing them as sub-wavelength components for highly-integrated THz time-domain spectroscopy (THz-TDS) applications is a promising approach to achieve future low-cost, highly integrable and high-resolution THz tools, which are desirable in many areas spanning from security, industry, environmental monitoring and medical diagnostics to fundamental science. In this work, we present the design and growth of n+-i-n+ InP nanowires. The axial doping profile of the n+-i-n+ InP nanowires has been calibrated and characterized using combined optical and electrical approaches to achieve nanowire devices with low contact resistances, on which the highly-sensitive InP single-nanowire photoconductive THz detectors have been demonstrated. While the n+-i-n+ InP nanowire detector has a only pA-level response current, it has a 2.5 times improved signal-to-noise ratio compared with the undoped InP nanowire detector and is comparable to traditional bulk THz detectors. This performance indicates a promising path to nanowire-based THz electronics for future commercial applications.

  9. UV-Ozone Interfacial Modification in Organic Transistors for High-Sensitivity NO2 Detection.

    Science.gov (United States)

    Huang, Wei; Zhuang, Xinming; Melkonyan, Ferdinand S; Wang, Binghao; Zeng, Li; Wang, Gang; Han, Shijiao; Bedzyk, Michael J; Yu, Junsheng; Marks, Tobin J; Facchetti, Antonio

    2017-08-01

    A new type of nitrogen dioxide (NO2 ) gas sensor based on copper phthalocyanine (CuPc) thin film transistors (TFTs) with a simple, low-cost UV-ozone (UVO)-treated polymeric gate dielectric is reported here. The NO2 sensitivity of these TFTs with the dielectric surface UVO treatment is ≈400× greater for [NO2 ] = 30 ppm than for those without UVO treatment. Importantly, the sensitivity is ≈50× greater for [NO2 ] = 1 ppm with the UVO-treated TFTs, and a limit of detection of ≈400 ppb is achieved with this sensing platform. The morphology, microstructure, and chemical composition of the gate dielectric and CuPc films are analyzed by atomic force microscopy, grazing incident X-ray diffraction, X-ray photoelectron spectroscopy, and Fourier transform infrared spectroscopy, revealing that the enhanced sensing performance originates from UVO-derived hydroxylated species on the dielectric surface and not from chemical reactions between NO2 and the dielectric/semiconductor components. This work demonstrates that dielectric/semiconductor interface engineering is essential for readily manufacturable high-performance TFT-based gas sensors. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Infiltrated photonic crystal cavity as a highly sensitive platform for glucose concentration detection

    Science.gov (United States)

    Arafa, Safia; Bouchemat, Mohamed; Bouchemat, Touraya; Benmerkhi, Ahlem; Hocini, Abdesselam

    2017-02-01

    A Bio-sensing platform based on an infiltrated photonic crystal ring shaped holes cavity-coupled waveguide system is proposed for glucose concentration detection. Considering silicon-on-insulator (SOI) technology, it has been demonstrated that the ring shaped holes configuration provides an excellent optical confinement within the cavity region, which further enhances the light-matter interactions at the precise location of the analyte medium. Thus, the sensitivity and the quality factor (Q) can be significantly improved. The transmission characteristics of light in the biosensor under different refractive indices that correspond to the change in the analyte glucose concentration are analyzed by performing finite-difference time-domain (FDTD) simulations. Accordingly, an improved sensitivity of 462 nm/RIU and a Q factor as high as 1.11х105 have been achieved, resulting in a detection limit of 3.03х10-6 RIU. Such combination of attributes makes the designed structure a promising element for performing label-free biosensing in medical diagnosis and environmental monitoring.

  11. A high throughput and sensitive method correlates neuronal disorder genotypes to Drosophila larvae crawling phenotypes.

    Science.gov (United States)

    Jakubowski, Brandon R; Longoria, Rafael A; Shubeita, George T

    2012-01-01

    Drosophila melanogaster is widely used as a model system for development and disease. Due to the homology between Drosophila and human genes, as well as the tractable genetics of the fly, its use as a model for neurologic disorders, in particular, has been rising. Locomotive impairment is a commonly used diagnostic for screening and characterization of these models, yet a fast, sensitive and model-free method to compare behavior is lacking. Here, we present a high throughput method to quantify the crawling behavior of larvae. We use the mean squared displacement as well as the direction autocorrelation of the crawling larvae as descriptors of their motion. By tracking larvae from wild-type strains and models of the Fragile X mental retardation as well as Alzheimer disease, we show these mutants exhibit impaired crawling. We further show that the magnitude of impairment correlates with the severity of the mutation, demonstrating the sensitivity and the dynamic range of the method. Finally, we study larvae with altered expression of the shaggy gene, a homolog of Glycogen Synthase Kinase-3 (GSK-3), which has been implicated in Alzheimer disease. Surprisingly, we find that both increased and decreased expression of dGSK-3 lead to similar larval crawling impairment. These findings have implications for the use of GSK-3 inhibitors recently proposed for Alzheimer treatment.

  12. Highly sensitive label-free dual sensor array for rapid detection of wound bacteria.

    Science.gov (United States)

    Sheybani, Roya; Shukla, Anita

    2017-06-15

    Wound infections are a critical healthcare concern worldwide. Rapid and effective antibiotic treatments that can mitigate infection severity and prevent the spread of antibiotic resistance are contingent upon timely infection detection. In this work, dual electrochemical pH and cell-attachment sensor arrays were developed for the real-time spatial and temporal monitoring of potential wound infections. Biocompatible polymeric device coatings were integrated to stabilize the sensors and promote bacteria attachment while preventing non-specific cell and protein fouling. High sensitivity (bacteria concentration of 10(2) colony forming units (CFU)/mL and -88.1±6.3mV/pH over a pH range of 1-13) and stability over 14 days were achieved without the addition of biological recognition elements. The dual sensor array was demonstrated to successfully monitor the growth of both gram-positive (Staphylococcus aureus and Streptococcus pyogenes) and gram-negative bacteria (Pseudomonas aeruginosa and Escherichia coli) over time through lag and log growth phases and following antibiotic administration and in simulated shallow wounds conditions. The versatile fabrication methods utilized in sensor development, superior sensitivity, prolonged stability, and lack of non-specific sensor fouling may enable long-term in situ sensor array operation in low resource settings. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Maltodextrin-based imaging probes detect bacteria in vivo with high sensitivity and specificity

    Science.gov (United States)

    Ning, Xinghai; Lee, Seungjun; Wang, Zhirui; Kim, Dongin; Stubblefield, Bryan; Gilbert, Eric; Murthy, Niren

    2011-08-01

    The diagnosis of bacterial infections remains a major challenge in medicine. Although numerous contrast agents have been developed to image bacteria, their clinical impact has been minimal because they are unable to detect small numbers of bacteria in vivo, and cannot distinguish infections from other pathologies such as cancer and inflammation. Here, we present a family of contrast agents, termed maltodextrin-based imaging probes (MDPs), which can detect bacteria in vivo with a sensitivity two orders of magnitude higher than previously reported, and can detect bacteria using a bacteria-specific mechanism that is independent of host response and secondary pathologies. MDPs are composed of a fluorescent dye conjugated to maltohexaose, and are rapidly internalized through the bacteria-specific maltodextrin transport pathway, endowing the MDPs with a unique combination of high sensitivity and specificity for bacteria. Here, we show that MDPs selectively accumulate within bacteria at millimolar concentrations, and are a thousand-fold more specific for bacteria than mammalian cells. Furthermore, we demonstrate that MDPs can image as few as 105 colony-forming units in vivo and can discriminate between active bacteria and inflammation induced by either lipopolysaccharides or metabolically inactive bacteria.

  14. Two-dimensional layered MoS₂ biosensors enable highly sensitive detection of biomolecules.

    Science.gov (United States)

    Lee, Joonhyung; Dak, Piyush; Lee, Yeonsung; Park, Heekyeong; Choi, Woong; Alam, Muhammad A; Kim, Sunkook

    2014-01-01

    We present a MoS2 biosensor to electrically detect prostate specific antigen (PSA) in a highly sensitive and label-free manner. Unlike previous MoS2-FET-based biosensors, the device configuration of our biosensors does not require a dielectric layer such as HfO2 due to the hydrophobicity of MoS2. Such an oxide-free operation improves sensitivity and simplifies sensor design. For a quantitative and selective detection of PSA antigen, anti-PSA antibody was immobilized on the sensor surface. Then, introduction of PSA antigen, into the anti-PSA immobilized sensor surface resulted in a lable-free immunoassary format. Measured off-state current of the device showed a significant decrease as the applied PSA concentration was increased. The minimum detectable concentration of PSA is 1 pg/mL, which is several orders of magnitude below the clinical cut-off level of ~4 ng/mL. In addition, we also provide a systematic theoretical analysis of the sensor platform - including the charge state of protein at the specific pH level, and self-consistent channel transport. Taken together, the experimental demonstration and the theoretical framework provide a comprehensive description of the performance potential of dielectric-free MoS2-based biosensor technology.

  15. Two-dimensional Layered MoS2 Biosensors Enable Highly Sensitive Detection of Biomolecules

    Science.gov (United States)

    Lee, Joonhyung; Dak, Piyush; Lee, Yeonsung; Park, Heekyeong; Choi, Woong; Alam, Muhammad A.; Kim, Sunkook

    2014-12-01

    We present a MoS2 biosensor to electrically detect prostate specific antigen (PSA) in a highly sensitive and label-free manner. Unlike previous MoS2-FET-based biosensors, the device configuration of our biosensors does not require a dielectric layer such as HfO2 due to the hydrophobicity of MoS2. Such an oxide-free operation improves sensitivity and simplifies sensor design. For a quantitative and selective detection of PSA antigen, anti-PSA antibody was immobilized on the sensor surface. Then, introduction of PSA antigen, into the anti-PSA immobilized sensor surface resulted in a lable-free immunoassary format. Measured off-state current of the device showed a significant decrease as the applied PSA concentration was increased. The minimum detectable concentration of PSA is 1 pg/mL, which is several orders of magnitude below the clinical cut-off level of ~4 ng/mL. In addition, we also provide a systematic theoretical analysis of the sensor platform - including the charge state of protein at the specific pH level, and self-consistent channel transport. Taken together, the experimental demonstration and the theoretical framework provide a comprehensive description of the performance potential of dielectric-free MoS2-based biosensor technology.

  16. Electronic characterization of lithographically patterned microcoils for high sensitivity NMR detection.

    Science.gov (United States)

    Demas, Vasiliki; Bernhardt, Anthony; Malba, Vince; Adams, Kristl L; Evans, Lee; Harvey, Christopher; Maxwell, Robert S; Herberg, Julie L

    2009-09-01

    Nuclear magnetic resonance (NMR) offers a non-destructive, powerful, structure-specific analytical method for the identification of chemical and biological systems. The use of radio frequency (RF) microcoils has been shown to increase the sensitivity in mass-limited samples. Recent advances in micro-receiver technology have further demonstrated a substantial increase in mass sensitivity [D.L. Olson, T.L. Peck, A.G. Webb, R.L. Magin, J.V. Sweedler, High-resolution microcoil H-1-NMR for mass-limited, nanoliter-volume samples, Science 270 (5244) (1995) 1967-1970]. Lithographic methods for producing solenoid microcoils possess a level of flexibility and reproducibility that exceeds previous production methods, such as hand winding microcoils. This paper presents electrical characterizations of RF microcoils produced by a unique laser lithography system that can pattern three dimensional surfaces and compares calculated and experimental results to those for wire wound RF microcoils. We show that existing optimization conditions for RF coil design still hold true for RF microcoils produced by lithography. Current lithographic microcoils show somewhat inferior performance to wire wound RF microcoils due to limitations in the existing electroplating technique. In principle, however, when the pitch of the RF microcoil is less than 100mum lithographic coils should show comparable performance to wire wound coils. In the cases of larger pitch, wire cross sections can be significantly larger and resistances lower than microfabricated conductors.

  17. High-sensitivity open-loop electronics for gravimetric acoustic-wave-based sensors.

    Science.gov (United States)

    Rabus, David; Friedt, Jean-Michel; Ballandras, Sylvain; Martin, Gilles; Carry, Emile; Blondeau-Patissier, Virginie

    2013-06-01

    Detecting chemical species in gas phase has recently received an increasing interest mainly for security control, trying to implement new systems allowing for extended dynamics and reactivity. In this work, an open-loop interrogation strategy is proposed to use radio-frequency acoustic transducers as micro-balances for that purpose. The resulting system is dedicated to the monitoring of chemical compounds in gaseous or liquid-phase state. A 16 Hz standard deviation is demonstrated at 125 MHz, with a working frequency band in the 60 to 133 MHz range, answering the requirements for using Rayleigh- and Love-wave-based delay lines operating with 40-μm acoustic wavelength transducers. Moreover, this electronic setup was used to interrogate a high-overtone bulk acoustic wave resonator (HBAR) microbalance, a new sensor class allowing for multi-mode interrogation for gravimetric measurement improvement. The noise source still limiting the system performance is due to the analog-to-digital converter of the microcontroller, thus leaving open degrees-of-freedom for improving the obtained results by optimizing the voltage reference and board layout. The operation of the system is illustrated using a calibrated galvanic deposition at the surface of Love-wave delay lines to assess theoretical predictions of their gravimetric sensitivity and to compare them with HBAR-based sensor sensitivity.

  18. Highly sensitive detection of molecular interactions with plasmonic optical fiber grating sensors.

    Science.gov (United States)

    Voisin, Valérie; Pilate, Julie; Damman, Pascal; Mégret, Patrice; Caucheteur, Christophe

    2014-01-15

    Surface Plasmon resonance (SPR) optical fiber biosensors constitute a miniaturized counterpart to the bulky prism configuration and offer remote operation in very small volumes of analyte. They are a cost-effective and relatively straightforward technique to yield in situ (or even possibly in vivo) molecular detection. The biosensor configuration reported in this work uses nanometric-scale gold-coated tilted fiber Bragg gratings (TFBGs) interrogated by light polarized radially to the optical fiber outer surface, so as to maximize the optical coupling with the SPR. These gratings were recently associated to aptamers to assess their label-free biorecognition capability in buffer and serum solutions. In this work, using the well-acknowledged biotin-streptavidin pair as a benchmark, we go forward in the demonstration of their unique sensitivity. In addition to the monitoring of the self-assembled monolayer (SAM) in real time, we report an unprecedented limit of detection (LOD) as low as 2 pM. Finally, an immunosensing experiment is realized with human transferrin (dissociation constant Kd~10(-8) M(-1)). It allows to assess both the reversibility and the robustness of the SPR-TFBG biosensors and to confirm their high sensitivity.

  19. DEMONSTRATION OF 3D EFFECTS WITH HIGH GAIN AND EFFICIENCY IN A UV FEL OSCILLATOR

    Energy Technology Data Exchange (ETDEWEB)

    Stephen Benson; George Biallas; Keith Blackburn; James Boyce; Donald Bullard; James Coleman; Cody Dickover; David Douglas; Forrest Ellingsworth; Pavel Evtushenko; Carlos Hernandez-Garcia; Christopher Gould; Joseph Gubeli; David Hardy; Kevin Jordan; John Klopf; James Kortze; Robert Legg; Matthew Marchlik; Steven Moore; George Neil; Thomas Powers; Daniel Sexton; Michelle D. Shinn; Christopher Tennant; Richard Walker; Anne Watson; Gwyn Williams; Frederick Wilson; Shukui Zhang

    2011-03-01

    We report on the performance of a high gain UV FEL oscillator operating on an energy recovery linac at Jefferson Lab. The high brightness of the electron beam leads to both gain and efficiency that cannot be reconciled with a one-dimensional model. Three-dimensional simulations do predict the performance with reasonable precision. Gain in excess of 100% per pass and an efficiency close to 1/2NW, where NW is the number of wiggler periods, is seen. The laser mirror tuning curves currently permit operation in the wavelength range of 438 to 362 nm. Another mirror set allows operation at longer wavelengths in the red with even higher gain and efficiency.

  20. Demonstration and Validation of Stainless Steel Materials for Critical Above Grade Piping in Highly Corrosive Locations

    Science.gov (United States)

    2017-05-01

    Prepared for Office of the Secretary of Defense (OUSD(AT&L)) Washington, DC 20301-3090 Under Project F07-AR15, “ Advanced Corrosion-Resistant Steel for...world for steel infrastruc- ture . Highly corroded carbon steel pipes at the site were replaced with two grades of stainless steel, and minor corrosion...mitigation modifications were made to pipe supports. After the rehabilitated system was commis- sioned, the pipes were inspected and tested according

  1. Manufacturing Systems Demonstration: Bimetallic Friction STIR Joining of AA6061 and High Hardness Steel

    Science.gov (United States)

    2013-05-31

    tool’s first use. In all tools made of alloy having hafnium carbide, we’ve commonly seen small voids (0.0-1.0 mm dia.) on the surface of machined...distribution unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT Focus: HOPE (FH) has developed the process parameters to successfully join AA6061 aluminum alloy ...to successfully join AA6061 aluminum alloy and High Hardness Armor (HHA) steel using the friction stir process (FSP). Metallographic analysis

  2. Demonstrating Nonhexavelent Chrome Steel Conversion Coatings on Stryker High Hard Armor Steel Hatches

    Science.gov (United States)

    2014-01-01

    embrittlement are as follows: 1. Any ferrous -based alloy exhibiting hardness greater than Rc35 (e.g., high-strength steel) requires testing and heat...section is based on the findings from WP-1521. Most of the conversion coating work thus far has focused on the use of TCP on aluminum alloys . In...recent years, TCP has enjoyed good success on aluminum. However, for steel alloys and phosphated surfaces, further development is needed. One of the

  3. Nanowire-templated microelectrodes for high-sensitivity pH detection

    DEFF Research Database (Denmark)

    Antohe, V.A.; Radu, Adrian; Mátéfi-Tempfli, Mária

    2009-01-01

    A highly sensitive pH capacitive sensor has been designed by confined growth of vertically aligned nanowire arrays on interdigited microelectrodes. The active surface of the device has been functionalized with an electrochemical pH transducer (polyaniline). We easily tune the device features...... by combining lithographic techniques with electrochemical synthesis. The reported electrical LC resonance measurements show considerable sensitivity enhancement compared to conventional capacitive pH sensors realized with microfabricated interdigited electrodes. The sensitivity can be easily improved...

  4. Demonstration of Space Optical Transmitter Development for Multiple High Frequency Bands

    Science.gov (United States)

    Nguyen, Hung; Simons, Rainee; Wintucky, Edwin; Freeman, Jon

    2013-01-01

    As the demand for multiple radio frequency carrier bands continues to grow in space communication systems, the design of a cost-effective compact optical transmitter that is capable of transmitting selective multiple RF bands is of great interest, particularly for NASA Space Communications Network Programs. This paper presents experimental results that demonstrate the feasibility of a concept based on an optical wavelength division multiplexing (WDM) technique that enables multiple microwave bands with different modulation formats and bandwidths to be combined and transmitted all in one unit, resulting in many benefits to space communication systems including reduced size, weight and complexity with corresponding savings in cost. Experimental results will be presented including the individual received RF signal power spectra for the L, C, X, Ku, Ka, and Q frequency bands, and measurements of the phase noise associated with each RF frequency. Also to be presented is a swept RF frequency power spectrum showing simultaneous multiple RF frequency bands transmission. The RF frequency bands in this experiment are among those most commonly used in NASA space environment communications.

  5. Demonstration of space optical transmitter development for multiple high-frequency bands

    Science.gov (United States)

    Nguyen, Hung; Simons, Rainee; Wintucky, Edwin; Freeman, Jon

    2013-05-01

    As the demand for multiple radio frequency carrier bands continues to grow in space communication systems, the design of a cost-effective compact optical transmitter that is capable of transmitting selective multiple RF bands is of great interest, particularly for NASA Space Communications Network Programs. This paper presents experimental results that demonstrate the feasibility of a concept based on an optical wavelength division multiplexing (WDM) technique that enables multiple microwave bands with different modulation formats and bandwidths to be combined and transmitted all in one unit, resulting in many benefits to space communication systems including reduced size, weight and complexity with corresponding savings in cost. Experimental results will be presented including the individual received RF signal power spectra for the L, C, X, Ku, Ka, and Q frequency bands, and measurements of the phase noise associated with each RF frequency. Also to be presented is a swept RF frequency power spectrum showing simultaneous multiple RF frequency bands transmission. The RF frequency bands in this experiment are among those most commonly used in NASA space environment communications.

  6. Hypoxia-sensitive reporter system for high-throughput screening.

    Science.gov (United States)

    Tsujita, Tadayuki; Kawaguchi, Shin-ichi; Dan, Takashi; Baird, Liam; Miyata, Toshio; Yamamoto, Masayuki

    2015-01-01

    The induction of anti-hypoxic stress enzymes and proteins has the potential to be a potent therapeutic strategy to prevent the progression of ischemic heart, kidney or brain diseases. To realize this idea, small chemical compounds, which mimic hypoxic conditions by activating the PHD-HIF-α system, have been developed. However, to date, none of these compounds were identified by monitoring the transcriptional activation of hypoxia-inducible factors (HIFs). Thus, to facilitate the discovery of potent inducers of HIF-α, we have developed an effective high-throughput screening (HTS) system to directly monitor the output of HIF-α transcription. We generated a HIF-α-dependent reporter system that responds to hypoxic stimuli in a concentration- and time-dependent manner. This system was developed through multiple optimization steps, resulting in the generation of a construct that consists of the secretion-type luciferase gene (Metridia luciferase, MLuc) under the transcriptional regulation of an enhancer containing 7 copies of 40-bp hypoxia responsive element (HRE) upstream of a mini-TATA promoter. This construct was stably integrated into the human neuroblastoma cell line, SK-N-BE(2)c, to generate a reporter system, named SKN:HRE-MLuc. To improve this system and to increase its suitability for the HTS platform, we incorporated the next generation luciferase, Nano luciferase (NLuc), whose longer half-life provides us with flexibility for the use of this reporter. We thus generated a stably transformed clone with NLuc, named SKN:HRE-NLuc, and found that it showed significantly improved reporter activity compared to SKN:HRE-MLuc. In this study, we have successfully developed the SKN:HRE-NLuc screening system as an efficient platform for future HTS.

  7. A highly sensitive and stable glucose biosensor using thymine-based polycations into laponite hydrogel films.

    Science.gov (United States)

    Paz Zanini, Veronica I; Gavilán, Maximiliano; López de Mishima, Beatriz A; Martino, Débora M; Borsarelli, Claudio D

    2016-04-01

    A series of glucose bioelectrodes were prepared by glucose oxidase (GOx) immobilization into laponite hydrogel films containing DNA bioinspired polycations made of vinylbenzyl thymine (VBT) and vinylbenzyl triethylammonium chloride (VBA) with general formulae (VBT)m(VBA)n](n+)≈25 with m=0, 1 and n=2, 4, 8, deposited onto glassy carbon electrode. The bioelectrodes were characterized by chronoamperometry, cyclic voltammetry and electrochemical impedance spectroscopy. Results indicated that the electrochemical properties of the laponite hydrogel films were largely improved by the incorporation of thymine-based polycations, being proportional to the positive charge density of the polycation molecule. After incorporation of glucose oxidase, the sensitivity of the bioelectrode to glucose increased with the positive charge density of the polycation. Additionally, the presence of the vinylbenzyl thymine moiety played a role in the long-term stability and reproducibility of the bioelectrode signal. As a consequence, the [(VBT)(VBA)8](8+)≈25 was the most appropriate polycation for bioelectrode preparation and glucose sensing, with a specific sensitivity of se=176 mA mmol(-1)Lcm(-2)U(-1), almost two-order of magnitude larger than other laponite immobilized GOx bioelectrodes reported elsewhere. These features were confirmed by testing the bioelectrode for a selective determination of glucose in powder milk and blood serum samples without interference of either ascorbic or uric acids under the experimental conditions. The present study demonstrates the suitability of DNA bioinspired water-soluble polycations [(VBT)m(VBA)n](n+)≈25 for enzyme immobilization like GOx into laponite hydrogels, and the preparation of highly sensitive and stable bioelectrodes on glassy carbon surface.

  8. Design and Demonstration of RSFQ Processor Datapath for High Performance Computing

    Science.gov (United States)

    2014-09-30

    ot·P n n t t·Pc::h·; f’tPrl ;n v,;o lnP <:n t hPv "’"’" h P tnnvPrl t n "’" " nl !’lf’P n n "’ Lb--~ Jb--~ DFFC microphotograph Fig. 2.1. 3...including digital-RF receivers, instrumentation , high performance computing, network switches, sensor systems, etc. [1]-[5]. There were multiple

  9. Inter-island optical link demonstration using high-data-rate pulse-position modulation

    Science.gov (United States)

    Bacher, Michael; Arnold, Felix; Thieme, Björn

    2014-03-01

    The growing data-rate demand on satellite communication systems has led to the increased interest in optical space communication solutions for uplinks and downlinks between satellites and ground stations. As one example for applications that benefit from higher data-rates offered by optical links, RUAG Space studied an uplink scenario from an Unmanned Aerial Vehicle (UAV) to a Geostationary Orbit (GEO), under the European Space Agency project formally known as "Optical Communications Transceiver for Atmospheric Links" (OCTAL). Particularly suitable for optical links through turbulent atmospheres are robust Pulse Position Modulation (PPM) schemes. Communication electronics using a Multi-Pulse PPM (MPPM) scheme have been developed, increasing the data-rate compared to traditional PPM at a constant peak-to-average ratio while allowing a widely configurable data-rate range. The communication system was tested together with a newly developed receiver and transmitter at a wavelength of 1055nm in a field test campaign on the Canary Islands, where the transmitter telescope was located on La Palma while the receiver was installed within the ESA Optical Ground Station on Tenerife. The nearly horizontal link between the two islands with a link distance of 142km allowed validation of relevant system performances under stringent atmospheric conditions. A data-rate of more than 360Mbps could be demonstrated using MPPM, while nearly 220Mbps could be achieved with traditional PPM, well exceeding the targeted data-rate of the studied UAV-to-GEO scenario. Following an introduction on the applied MPPM schemes, the architecture of the test setup is described, different modulation schemes are compared and the test results of this Inter-Island Test Campaign performed in October 2012 are presented.

  10. Laboratory Demonstration of High Contrast Imaging in Multi-Star Systems

    Science.gov (United States)

    Belikov, Ruslan; Bendek, Eduardo; Pluzhnik, Eugene; Sirbu, Dan; Thomas, Sandrine

    2017-01-01

    We show laboratory results advancing the technology readiness of a method to directly image planets and disks in multi-star systems such as Alpha Centauri. This method works with almost any coronagraph (or external occulter with a DM) and requires little or no change to existing and mature hardware. Because of the ubiquity of multistar systems, this method potentially multiplies the science yield of many missions and concepts such as WFIRST, Exo-C/S, HabEx, LUVOIR, and potentially enables the detection of Earth-like planets (if they exist) around our nearest neighbor star, Alpha Centauri, with a small and low-cost space telescope such as ACESat.We identified two main challenges associated with double-star (or multi-star) systems and methods to solve them. “Multi-Star Wavefront Control” (MSWC) enables the independent suppression of starlight from more than one star, and Super-Nyquist Wavefront Control (SNWC) enables extending MSWC to the case where star separation is beyond the Nyquist limit of the deformable mirror (DM).Our lab demonstrations were conducted at the Ames Coronagraph Experiment (ACE) laboratory and proved the basic principles of both MSWC and SNWC. They involved a 32x32 deformable mirror but no coronagraph for simplicity. We used MSWC to suppress starlight independently from two stars by at least an order of magnitude, in monochromatic as well as broadband light as broad as 50%. We also used SNWC to suppress starlight at separations as far as 100 λ/D from the star, surpassing the Nyquist limit of the DM.

  11. Sensitive and high-fidelity electrochemical immunoassay using carbon nanotubes coated with enzymes and magnetic nanoparticles.

    Science.gov (United States)

    Piao, Yunxian; Jin, Zongwen; Lee, Dohoon; Lee, Hye-Jin; Na, Hyon-Bin; Hyeon, Taeghwan; Oh, Min-Kyu; Kim, Jungbae; Kim, Hak-Sung

    2011-03-15

    We demonstrate a highly sensitive electrochemical immunosensor based on the combined use of substrate recycling and carbon nanotubes (CNTs) coated with tyrosinase (TYR) and magnetic nanoparticles (MNP). Both TYR and MNP were immobilized on the surface of CNTs by covalent attachment, followed by additional cross-linking via glutaraldehyde treatment to construct multi-layered cross-linked TYR-MNP aggregates (M-EC-CNT). Magnetically capturable, highly active and stable M-EC-CNT were further conjugated with primary antibody against a target analyte of hIgG, and used for a sandwich-type immunoassay with a secondary antibody conjugated with alkaline phosphatase (ALP). In the presence of a target analyte, a sensing assembly of M-EC-CNT and ALP-conjugated antibody was attracted onto a gold electrode using a magnet. On an electrode, ALP-catalyzed hydrolysis of phenyl phosphate generated phenol, and successive TYR-catalyzed oxidation of phenol produced electrochemically measurable o-quinone that was converted to catechol in a scheme of substrate recycling. Combination of highly active M-EC-CNT and substrate recycling for the detection of hIgG resulted in a sensitivity of 27.6 nA ng(-1) mL(-1) and a detection limit of 0.19 ng mL(-1) (1.2 pM), respectively, representing better performance than any other electrochemical immunosensors relying on the substrate recycling with the TYR-ALP combination. The present immunosensing system also displayed a long-term stability by showing a negligible loss of electrochemical detection signal even after reagents were stored in an aqueous buffer at 4°C for more than 6 months.

  12. High-resolution numerical modeling of mesoscale island wakes and sensitivity to static topographic relief data

    Directory of Open Access Journals (Sweden)

    C. G. Nunalee

    2015-08-01

    Full Text Available Recent decades have witnessed a drastic increase in the fidelity of numerical weather prediction (NWP modeling. Currently, both research-grade and operational NWP models regularly perform simulations with horizontal grid spacings as fine as 1 km. This migration towards higher resolution potentially improves NWP model solutions by increasing the resolvability of mesoscale processes and reducing dependency on empirical physics parameterizations. However, at the same time, the accuracy of high-resolution simulations, particularly in the atmospheric boundary layer (ABL, is also sensitive to orographic forcing which can have significant variability on the same spatial scale as, or smaller than, NWP model grids. Despite this sensitivity, many high-resolution atmospheric simulations do not consider uncertainty with respect to selection of static terrain height data set. In this paper, we use the Weather Research and Forecasting (WRF model to simulate realistic cases of lower tropospheric flow over and downstream of mountainous islands using the default global 30 s United States Geographic Survey terrain height data set (GTOPO30, the Shuttle Radar Topography Mission (SRTM, and the Global Multi-resolution Terrain Elevation Data set (GMTED2010 terrain height data sets. While the differences between the SRTM-based and GMTED2010-based simulations are extremely small, the GTOPO30-based simulations differ significantly. Our results demonstrate cases where the differences between the source terrain data sets are significant enough to produce entirely different orographic wake mechanics, such as vortex shedding vs. no vortex shedding. These results are also compared to MODIS visible satellite imagery and ASCAT near-surface wind retrievals. Collectively, these results highlight the importance of utilizing accurate static orographic boundary conditions when running high-resolution mesoscale models.

  13. Low-field MRI can be more sensitive than high-field MRI

    Science.gov (United States)

    Coffey, Aaron M.; Truong, Milton L.; Chekmenev, Eduard Y.

    2013-12-01

    MRI signal-to-noise ratio (SNR) is the key factor for image quality. Conventionally, SNR is proportional to nuclear spin polarization, which scales linearly with magnetic field strength. Yet ever-stronger magnets present numerous technical and financial limitations. Low-field MRI can mitigate these constraints with equivalent SNR from non-equilibrium ‘hyperpolarization' schemes, which increase polarization by orders of magnitude independently of the magnetic field. Here, theory and experimental validation demonstrate that combination of field independent polarization (e.g. hyperpolarization) with frequency optimized MRI detection coils (i.e. multi-turn coils using the maximum allowed conductor length) results in low-field MRI sensitivity approaching and even rivaling that of high-field MRI. Four read-out frequencies were tested using samples with identical numbers of 1H and 13C spins. Experimental SNRs at 0.0475 T were ∼40% of those obtained at 4.7 T. Conservatively, theoretical SNRs at 0.0475 T 1.13-fold higher than those at 4.7 T were possible despite an ∼100-fold lower detection frequency, indicating feasibility of high-sensitivity MRI without technically challenging, expensive high-field magnets. The data at 4.7 T and 0.0475 T was obtained from different spectrometers with different RF probes. The SNR comparison between the two field strengths accounted for many differences in parameters such as system noise figures and variations in the probe detection coils including Q factors and coil diameters.

  14. Optimization and field demonstration of hybrid hydrogen generator/high efficiency furnace system

    Energy Technology Data Exchange (ETDEWEB)

    Entchev, E.; Coyle, I.; Szadkowski, F. [CANMET Energy Technology Centre, 1 Haanel Dr., Ottawa, Ontario K1A-1M1 (Canada); Manning, M.; Swinton, M. [National Research Council Ottawa, Ontario (Canada); Graydon, J.; Kirk, D. [University of Toronto, Toronto, Ontario (Canada)

    2009-05-15

    Hydrogen is seen as an energy carrier of the future and significant research on hydrogen generation, storage and utilization is accomplished around the world. However, an appropriate intermediate step before wide hydrogen introduction will be blending conventional fuels such as natural gas, oil or diesel with hydrogen and follow up combustion through conventional means. Due to changes in the combustion and flame characteristics of the system additional research is needed to access the limits and the impact of the fuel mix on the combustion systems performance. The hybrid system consists of a 5 kW{sub el} electrolyzer and a residential 15 kW{sub th} high efficiency gas fired furnace. The electrolyzer was integrated with the furnace gas supply and setup to replace 5-25% of the furnace natural gas flow with hydrogen. A mean for proper mixing of hydrogen with natural gas was provided and a control system for safe system operation was developed. Prior to the start of the field trial the hybrid system was investigated in laboratory environment. It was subjected to a variety of steady state and cycling conditions and a detailed performance and optimization analysis was performed with a range of hydrogen/natural gas mixtures. The optimized system was then installed at the Canadian Centre for Housing Technologies (CCHT) Experimental research house. The energy performance of the hybrid system was compared to the energy performance of an identical high efficiency furnace in the Control research house next door. (author)

  15. Demonstrating high reliability on accountability measures at the Johns Hopkins Hospital.

    Science.gov (United States)

    Pronovost, Peter J; Demski, Renee; Callender, Tiffany; Winner, Laura; Miller, Marlene R; Austin, J Matthew; Berenholtz, Sean M

    2013-12-01

    Patients continue to suffer preventable harm from the omission of evidence-based therapies. To remedy this, The Joint Commission developed core measures for therapies with strong evidence and, through the Top Performer on Key Quality Measures program, recognize hospitals that deliver those therapies to 95% of patients. The Johns Hopkins Medicine board of trustees committed to high reliability and to providing > or = 96% of patients with the recommended therapies. The Armstrong Institute for Patient Safety and Quality coordinated the core measures initiative, which targeted nine process measures for the 96% performance goal: eight Joint Commission accountability measures and one Delmarva Foundation core measure. A conceptual model for this initiative included communicating goals, building capacity with Lean Sigma methods, transparently reporting performance and establishing an accountability plan, and developing a sustainability plan. Clinicians and quality improvement staff formed one team for each targeted process measure, and Armstrong Institute staff supported the teams work. The primary performance measure was the percentage of patients who received the recommended process of care, as defined by the specifications for each of The Joint Commission's accountability measures. The > or = 96% performance goal was achieved for 82% of the measures in 2011 and 95% of the measures in 2012. With support from leadership and a conceptual model to communicate goals, use robust improvement methods, and ensure accountability, The Johns Hopkins Hospital achieved high reliability for The Joint Commission accountability measures.

  16. Development and demonstration of a high-altitude atmospheric backscatter Lidar system

    Science.gov (United States)

    Dolash, Thomas M.; Garvey, John; Leonelli, Joseph; Bradford, Mark; Rose, Lynn

    1994-06-01

    Battelle has designed and fabricated an upward-looking atmospheric backscatter lidar for high-altitude airborne applications. The compact, rugged system was assembled and integrated into a cupola on top of a Lear 36 aircraft to provide particle backscatter data and aerosol profile distributions of cirrus clouds occurring between 50,000 and 100,000 ft ASL. The high altitude airborne lidar system consists of a laser transmitter operating at 532 and 1064 nm simultaneously with output energy of 75 mJ at both wavelengths and a collecting telescope aperture of 10 inches in diameter. Laser backscatter energy is collected and directed via a dichroic beamsplitter to two avalanche photodetectors (APD) through narrow bandpass optical filters at 532 and 1064 nm. The outputs of the APDs are digitized by a 10-bit, 100-MHz transient digitizer before being recorded to a 1.2-Gbyte hard disk with IRIG timing for data analysis. This paper describes the lidar system design, predicted performance, and some of the operational challenges.

  17. A graphene-based resistive pressure sensor with record-high sensitivity in a wide pressure range.

    Science.gov (United States)

    Tian, He; Shu, Yi; Wang, Xue-Feng; Mohammad, Mohammad Ali; Bie, Zhi; Xie, Qian-Yi; Li, Cheng; Mi, Wen-Tian; Yang, Yi; Ren, Tian-Ling

    2015-02-27

    Pressure sensors are a key component in electronic skin (e-skin) sensing systems. Most reported resistive pressure sensors have a high sensitivity at low pressures (pressures (>5 kPa), which is inadequate for practical applications. For example, actions like a gentle touch and object manipulation have pressures below 10 kPa, and 10-100 kPa, respectively. Maintaining a high sensitivity in a wide pressure range is in great demand. Here, a flexible, wide range and ultra-sensitive resistive pressure sensor with a foam-like structure based on laser-scribed graphene (LSG) is demonstrated. Benefitting from the large spacing between graphene layers and the unique v-shaped microstructure of the LSG, the sensitivity of the pressure sensor is as high as 0.96 kPa(-1) in a wide pressure range (0 ~ 50 kPa). Considering both sensitivity and pressure sensing range, the pressure sensor developed in this work is the best among all reported pressure sensors to date. A model of the LSG pressure sensor is also established, which agrees well with the experimental results. This work indicates that laser scribed flexible graphene pressure sensors could be widely used for artificial e-skin, medical-sensing, bio-sensing and many other areas.

  18. Sensory Processing Sensitivity: Factors of the Highly Sensitive Person Scale and Their relationships to Personality and Subjective Health Complaints.

    Science.gov (United States)

    Listou Grimen, Hanne; Diseth, Åge

    2016-12-01

    The aim of the present study was to examine the factor structure of a Norwegian version of the Highly Sensitive Person Scale (HSPS) and to investigate how sensory processing sensitivity (SPS) is related to personality traits of neuroticism, extraversion, and openness and to subjective health complaints (SHC) in a sample of 167 undergraduate psychology students. The results showed that the variance in a shortened version of the HSPS was best described by three separate factors: ease of excitation (EOE), aesthetic sensitivity (AES), and low sensory threshold (LST). Furthermore, the result showed than an overall SPS factor (EOE, LST, and AES combined) was predicted positively by neuroticism and openness and negatively by extraversion. With respect to SHC, the results showed that EOE and LST were positively associated with psychological health complaints. However, the personality trait of neuroticism contributed more than the SPS factors as predictor of SHC. In conclusion, the present study supported a shortened version of the HSPS and its relation to personality factors and SHC.

  19. Enhanced laboratory sensitivity to variation of the fine-structure constant using highly charged ions.

    Science.gov (United States)

    Berengut, J C; Dzuba, V A; Flambaum, V V

    2010-09-17

    We study atomic systems that are in the frequency range of optical atomic clocks and have enhanced sensitivity to potential time variation of the fine-structure constant α. The high sensitivity is due to coherent contributions from three factors: high nuclear charge Z, high ionization degree, and significant differences in the configuration composition of the states involved. Configuration crossing keeps the frequencies in the optical range despite the large ionization energies. We discuss a few promising examples that have the largest α sensitivities seen in atomic systems.

  20. High Sensitivity 1-D and 2-D Microwave Spectroscopy via Cryogenic Buffer Gas Cooling

    Science.gov (United States)

    Patterson, David; Eibenberger, Sandra

    2017-06-01

    All rotationally resolved spectroscopic methods rely on sources of cold molecules. For the last three decades, the workhorse technique for producing highly supersaturated samples of cold molecules has been the pulsed supersonic jet. We present here progress on our alternative method, cryogenic buffer gas cooling. Our high density, continuous source, and low noise temperature allow us to record microwave spectra at unprecedented sensitivity, with a dynamic range in excess of 10^6 achievable in a few minutes of integration time. This high sensitivity enables new protocols in both 1-D and 2-D microwave spectroscopy, including sensitive chiral analysis via nonlinear three wave mixing and applications as an analytical chemistry tool

  1. Demonstration of high contrast with an obscured aperture with the WFIRST-AFTA shaped pupil coronagraph

    CERN Document Server

    Cady, Eric; An, Xin; Balasubramanian, Kunjithapatham; Diaz, Rosemary; Kasdin, N Jeremy; Kern, Brian; Kuhnert, Andreas; Nemati, Bijan; Poberezhskiy, Ilya; Riggs, A J Eldorado; Zimmer, Robert; Zimmerman, Neil

    2015-01-01

    The coronagraph instrument on the WFIRST-AFTA mission study has two coronagraphic architectures, shaped pupil and hybrid Lyot, which may be interchanged for use in different observing scenarios. Each architecture relies on newly-developed mask components to function in the presence of the AFTA aperture, and so both must be matured to a high technology readiness level (TRL) in advance of the mission. A series of milestones were set to track the development of the technologies required for the instrument; in this paper, we report on completion of WFIRST-AFTA Coronagraph Milestone 2---a narrowband $10^{-8}$ contrast test with static aberrations for the shaped pupil---and the plans for the upcoming broadband Coronagraph Milestone 5.

  2. Fluoride Salt-Cooled High-Temperature Reactor Technology Development and Demonstration Roadmap

    Energy Technology Data Exchange (ETDEWEB)

    Holcomb, David Eugene [ORNL; Flanagan, George F [ORNL; Mays, Gary T [ORNL; Pointer, William David [ORNL; Robb, Kevin R [ORNL; Yoder Jr, Graydon L [ORNL

    2013-11-01

    Fluoride salt-cooled High-temperature Reactors (FHRs) are an emerging reactor class with potentially advantageous performance characteristics, and fully passive safety. This roadmap describes the principal remaining FHR technology challenges and the development path needed to address the challenges. This roadmap also provides an integrated overview of the current status of the broad set of technologies necessary to design, evaluate, license, construct, operate, and maintain FHRs. First-generation FHRs will not require any technology breakthroughs, but do require significant concept development, system integration, and technology maturation. FHRs are currently entering early phase engineering development. As such, this roadmap is not as technically detailed or specific as would be the case for a more mature reactor class. The higher cost of fuel and coolant, the lack of an approved licensing framework, the lack of qualified, salt-compatible structural materials, and the potential for tritium release into the environment are the most obvious issues that remain to be resolved.

  3. Pea-derived vaccines demonstrate high immunogenicity and protection in rabbits against rabbit haemorrhagic disease virus.

    Science.gov (United States)

    Mikschofsky, Heike; Schirrmeier, Horst; Keil, Günther M; Lange, Bodo; Polowick, Patricia L; Keller, Wilf; Broer, Inge

    2009-08-01

    Vaccines against rabbit haemorrhagic disease virus (RHDV) are commercially produced in experimentally infected rabbits. A genetically engineered and manufactured version of the major structural protein of RHDV (VP60) is considered to be an alternative approach for vaccine production. Plants have the potential to become an excellent recombinant production system, but the low expression level and insufficient immunogenic potency of plant-derived VP60 still hamper its practical use. In this study, we analysed the expression of a novel multimeric VP60-based antigen in four different plant species, including Nicotiana tabacum L., Solanum tuberosum L., Brassica napus L. and Pisum sativum L. Significant differences were detected in the expression patterns of the novel fusion antigen cholera toxin B subunit (CTB)::VP60 (ctbvp60(SEKDEL)) at the mRNA and protein levels. Pentameric CTB::VP60 molecules were only detected in N. tabacum and P. sativum, and displayed equal levels of CTB, at approximately 0.01% of total soluble protein (TSP), and traces of detectable VP60. However, strong enhancement of the CTB protein content via self-fertilization was only observed in P. sativum, where it reached up to 0.7% of TSP. In rabbits, a strong decrease in the protective vaccine dose required from 48-400 microg potato-derived VP60 [Castanon, S., Marin, M.S., Martin-Alonso, J.M., Boga, J.A., Casais, R., Humara, J.M., Ordas, R.J. and Parra, F. (1999) Immunization with potato plants expressing VP60 protein protects against rabbit hemorrhagic disease virus. J. Virol. 73, 4452-4455; Castanon, S., Martin-Alonso, J.M., Marin, M.S., Boga, J.A., Alonso, P., Parra, F. and Ordas, R.J. (2002) The effect of the promoter on expression of VP60 gene from rabbit hemorrhagic disease virus in potato plants. Plant Sci. 162, 87-95] to 0.56-0.28 microg antigenic VP60 (measured with VP60 enzyme-linked immunosorbent assay) of crude CTB::VP60 pea extracts was demonstrated. Rabbits immunized with pea-derived CTB

  4. High temperature range recuperator. Phase II. Prototype demonstration and material and analytical studies. Final report

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-04-01

    A summary of the work performed to fully evaluate the commercial potential of a unique ceramic recuperator for use in recovering waste heat from high temperature furnace exhaust gases is presented. The recuperator concept being developed consists of a vertical cylindrical heat exchange column formed from modular sections. Within the column, the gasketed modules form two helical flow passages - one for high temperature exhaust gases and one for pre-heating combustion air. The column is operated in a counterflow mode, with the exhaust gas entering at the bottom and the combustion air entering at the top of the column. Activities included design and procurement of prototype recuperator modules, construction and testing of two prototype recuperator assemblies, exposure and mechanical properties testing of candidate materials, structural analysis of the modules, and assessment of the economic viability of the concept. The results of the project indicated that the proposed recuperator concept was feasible from a technical standpoint. Economic analysis based upon recuperator performance characteristics and module manufacturing costs defined during the program indicated that 3 to 10 years (depending upon pre-heat temperature) would be required to recover the capital cost of the system in combustion air preheat applications. At this stage in the development of the recuperator, many factors in the analysis had to be assumed. Significant changes in some of the assumptions could dramatically affect the economics. For example, utilizing $2.85 per mcf for the natural gas price (as opposed to $2.00 per mcf) could reduce the payback period by more than half in certain cases. In addition, future commercial application will depend upon ceramic component manufacturing technique advances and cost reduction.

  5. High temperature range recuperator. Phase II. Prototype demonstration and material and analytical studies. Final report

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-04-01

    A summary of the work performed to fully evaluate the commercial potential of a unique ceramic recuperator for use in recovering waste heat from high temperature furnace exhaust gases is presented. The recuperator concept being developed consists of a vertical cylindrical heat exchange column formed from modular sections. Within the column, the gasketed modules form two helical flow passages - one for high temperature exhaust gases and one for pre-heating combustion air. The column is operated in a counterflow mode, with the exhaust gas entering at the bottom and the combustion air entering at the top of the column. Activities included design and procurement of prototype recuperator modules, construction and testing of two prototype recuperator assemblies, exposure and mechanical properties testing of candidate materials, structural analysis of the modules, and assessment of the economic viability of the concept. The results of the project indicated that the proposed recuperator concept was feasible from a technical standpoint. Economic analysis based upon recuperator performance characteristics and module manufacturing costs defined during the program indicated that 3 to 10 years (depending upon pre-heat temperature) would be required to recover the capital cost of the system in combustion air preheat applications. At this stage in the development of the recuperator, many factors in the analysis had to be assumed. Significant changes in some of the assumptions could dramatically affect the economics. For example, utilizing $2.85 per mcf for the natural gas price (as opposed to $2.00 per mcf) could reduce the payback period by more than half in certain cases. In addition, future commercial application will depend upon ceramic component manufacturing technique advances and cost reduction.

  6. NY-ESO-1 cancer testis antigen demonstrates high immunogenicity in triple negative breast cancer.

    Science.gov (United States)

    Ademuyiwa, Foluso O; Bshara, Wiam; Attwood, Kristopher; Morrison, Carl; Edge, Stephen B; Karpf, Adam R; James, Smith A; Ambrosone, Christine B; O'Connor, Tracey L; Levine, Ellis G; Miliotto, Anthony; Ritter, Erika; Ritter, Gerd; Gnjatic, Sacha; Odunsi, Kunle

    2012-01-01

    NY-ESO-1 cancer testis (CT) antigen is an attractive candidate for immunotherapy as a result of its high immunogenicity. The aim of this study was to explore the potential for NY-ESO-1 antigen directed immunotherapy in triple negative breast cancer (TNBC) by determining the frequency of expression by immunohistochemistry (IHC) and the degree of inherent immunogenicity to NY-ESO-1. 168 TNBC and 47 ER+/HER2- primary breast cancer specimens were used to determine NY-ESO-1 frequency by IHC. As previous studies have shown that patients with a robust innate humoral immune response to CT antigens are more likely to develop CD8 T-cell responses to NY-ESO-1 peptides, we evaluated the degree to which patients with NY-ESO-1 expression had inherent immunogenicity by measuring antibodies. The relationship between NY-ESO-1 expression and CD8+ T lymphocytes was also examined. The frequency of NY-ESO-1 expression in the TNBC cohort was 16% versus 2% in ER+/HER2- patients. A higher NY-ESO-1 score was associated with a younger age at diagnosis in the TNBC patients with NY-ESO-1 expression (p = 0.026). No differences in OS (p = 0.278) or PFS (p = 0.238) by NY-ESO-1 expression status were detected. Antibody responses to NY-ESO-1 were found in 73% of TNBC patients whose tumors were NY-ESO-1 positive. NY-ESO-1 positive patients had higher CD8 counts than negative patients (p = 0.018). NY-ESO-1 is expressed in a substantial subset of TNBC patients and leads to a high humoral immune response in a large proportion of these individuals. Given these observations, patients with TNBC may benefit from targeted therapies directed against NY-ESO-1.

  7. Combined Heat and Power Systems Technology Development and Demonstration 370 kW High Efficiency Microturbine

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2015-10-14

    The C370 Program was awarded in October 2010 with the ambitious goal of designing and testing the most electrically efficient recuperated microturbine engine at a rated power of less than 500 kW. The aggressive targets for electrical efficiency, emission regulatory compliance, and the estimated price point make the system state-of-the-art for microturbine engine systems. These goals will be met by designing a two stage microturbine engine identified as the low pressure spool and high pressure spool that are based on derivative hardware of Capstone’s current commercially available engines. The development and testing of the engine occurred in two phases. Phase I focused on developing a higher power and more efficient engine, that would become the low pressure spool which is based on Capstone’s C200 (200kW) engine architecture. Phase II integrated the low pressure spool created in Phase I with the high pressure spool, which is based on Capstone’s C65 (65 kW) commercially available engine. Integration of the engines, based on preliminary research, would allow the dual spool engine to provide electrical power in excess of 370 kW, with electrical efficiency approaching 42%. If both of these targets were met coupled with the overall CHP target of 85% total combined heating and electrical efficiency California Air Resources Board (CARB) level emissions, and a price target of $600 per kW, the system would represent a step change in the currently available commercial generation technology. Phase I of the C370 program required the development of the C370 low pressure spool. The goal was to increase the C200 engine power by a minimum of 25% — 250 kW — and efficiency from 32% to 37%. These increases in the C200 engine output were imperative to meet the power requirements of the engine when both spools were integrated. An additional benefit of designing and testing the C370 low pressure spool was the possibility of developing a stand-alone product for possible

  8. Design of Highly Sensitive Surface Plasmon Resonance Sensors Using Planar Metallic Films Closely Coupled to Nanogratings

    Institute of Scientific and Technical Information of China (English)

    YANG Xiao-Yan; XIE Wen-Chong; LIU De-Ming

    2008-01-01

    We investigate the sensitivity enhancement of surface plasmon resonance(SPR)sensors using planar metallic films closely coupled to nanogratings.The strong coupling between localized surface plasmon resonances(LSPRs)presenting in metallic nanostructures and surface plasmon polaritons(SPPs)propagating at the metallic film surface leads to changes of resonance reflection properties,resulting in enhanced sensitivity of SPR sensors.The effects of thickness of the metallic films,grating period and metal materials on the refractive index sensitivity of the device are investigated.The refractive index sensitivity of nanograting-based SPR sensors is predicted to be about 543 nm/RIU(refractive index unit)using optimized structure parameters.Our study on SPR sensors using planar metallic films closely coupled to nanogratings demonstrates the potential for significant improvement in refractive index sensitivity.

  9. High-Sensitivity Measurement of 3He-4He Isotopic Ratios for Ultracold Neutron Experiments

    CERN Document Server

    Mumm, H P; Bauder, W; Abrams, N; Deibel, C M; Huffer, C R; Huffman, P R; Schelhammer, K W; Swank, C M; Janssens, R; Jiang, C L; Scott, R H; Pardo, R C; Rehm, K E; Vondrasek, R; O'Shaughnessy, C M; Paul, M; Yang, L

    2016-01-01

    Research efforts ranging from studies of solid helium to searches for a neutron electric dipole moment require isotopically purified helium with a ratio of 3He to 4He at levels below that which can be measured using traditional mass spectroscopy techniques. We demonstrate an approach to such a measurement using accelerator mass spectroscopy, reaching the 10e-14 level of sensitivity, several orders of magnitude more sensitive than other techniques. Measurements of 3He/4He in samples relevant to the measurement of the neutron lifetime indicate the need for substantial corrections. We also argue that there is a clear path forward to sensitivity increases of at least another order of magnitude.

  10. Engineered diamond nanopillars as mobile probes for high sensitivity metrology in fluid

    Science.gov (United States)

    Andrich, P.; de Las Casas, C. F.; Heremans, F. J.; Awschalom, D. D.; Aleman, B. J.; Ohno, K.; Lee, J. C.; Hu, E. L.

    2015-03-01

    The nitrogen-vacancy (NV) center`s optical addressability and exceptional spin coherence properties at room temperature, along with diamond`s biocompatibility, has put this defect at the frontier of metrology applications in biological environments. To push the spatial resolution to the nanoscale, extensive research efforts focus on using NV centers embedded in nanodiamonds (NDs). However, this approach has been hindered by degraded spin coherence properties in NDs and the lack of a platform for spatial control of the nanoparticles in fluid. In this work, we combine the use of high quality diamond membranes with a top-down patterning technique to fabricate diamond nanoparticles with engineered and highly reproducible shape, size, and NV center density. We obtain NDs, easily releasable from the substrate into a water suspension, which contain single NV centers exhibiting consistently long spin coherence times (up to 700 μs). Additionally, we demonstrate highly stable, three-dimensional optical trapping of the nanoparticles within a microfluidic circuit. This level of control enables a bulk-like DC magnetic sensitivity and gives access to dynamical decoupling techniques on contactless, miniaturized diamond probes. This work was supported by DARPA, AFOSR, and the DIAMANT program.

  11. The gastric/pancreatic amylase ratio predicts postoperative pancreatic fistula with high sensitivity and specificity.

    Science.gov (United States)

    Jin, Shuo; Shi, Xiao-Ju; Sun, Xiao-Dong; Zhang, Ping; Lv, Guo-Yue; Du, Xiao-Hong; Wang, Si-Yuan; Wang, Guang-Yi

    2015-01-01

    This article aims to identify risk factors for postoperative pancreatic fistula (POPF) and evaluate the gastric/pancreatic amylase ratio (GPAR) on postoperative day (POD) 3 as a POPF predictor in patients who undergo pancreaticoduodenectomy (PD).POPF significantly contributes to mortality and morbidity in patients who undergo PD. Previously identified predictors for POPF often have low predictive accuracy. Therefore, accurate POPF predictors are needed.In this prospective cohort study, we measured the clinical and biochemical factors of 61 patients who underwent PD and diagnosed POPF according to the definition of the International Study Group of Pancreatic Fistula. We analyzed the association between POPF and various factors, identified POPF risk factors, and evaluated the predictive power of the GPAR on POD3 and the levels of serum and ascites amylase.Of the 61 patients, 21 developed POPF. The color of the pancreatic drain fluid, POD1 serum, POD1 median output of pancreatic drain fluid volume, and GPAR were significantly associated with POPF. The color of the pancreatic drain fluid and high GPAR were independent risk factors. Although serum and ascites amylase did not predict POPF accurately, the cutoff value was 1.24, and GPAR predicted POPF with high sensitivity and specificity.This is the first report demonstrating that high GPAR on POD3 is a risk factor for POPF and showing that GPAR is a more accurate predictor of POPF than the previously reported amylase markers.

  12. Combined Heat and Power Systems Technology Development and Demonstration 370 kW High Efficiency Microturbine

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2015-10-14

    The C370 Program was awarded in October 2010 with the ambitious goal of designing and testing the most electrically efficient recuperated microturbine engine at a rated power of less than 500 kW. The aggressive targets for electrical efficiency, emission regulatory compliance, and the estimated price point make the system state-of-the-art for microturbine engine systems. These goals will be met by designing a two stage microturbine engine identified as the low pressure spool and high pressure spool that are based on derivative hardware of Capstone’s current commercially available engines. The development and testing of the engine occurred in two phases. Phase I focused on developing a higher power and more efficient engine, that would become the low pressure spool which is based on Capstone’s C200 (200kW) engine architecture. Phase II integrated the low pressure spool created in Phase I with the high pressure spool, which is based on Capstone’s C65 (65 kW) commercially available engine. Integration of the engines, based on preliminary research, would allow the dual spool engine to provide electrical power in excess of 370 kW, with electrical efficiency approaching 42%. If both of these targets were met coupled with the overall CHP target of 85% total combined heating and electrical efficiency California Air Resources Board (CARB) level emissions, and a price target of $600 per kW, the system would represent a step change in the currently available commercial generation technology. Phase I of the C370 program required the development of the C370 low pressure spool. The goal was to increase the C200 engine power by a minimum of 25% — 250 kW — and efficiency from 32% to 37%. These increases in the C200 engine output were imperative to meet the power requirements of the engine when both spools were integrated. An additional benefit of designing and testing the C370 low pressure spool was the possibility of developing a stand-alone product for possible

  13. High sensitivity flexible Lamb-wave humidity sensors with a graphene oxide sensing layer.

    Science.gov (United States)

    Xuan, Weipeng; He, Xingli; Chen, Jinkai; Wang, Wenbo; Wang, Xiaozhi; Xu, Yang; Xu, Zhen; Fu, Y Q; Luo, J K

    2015-04-28

    This paper reports high performance flexible Lamb wave humidity sensors with a graphene oxide sensing layer. The devices were fabricated on piezoelectric ZnO thin films deposited on flexible polyimide substrates. Two resonant peaks, namely the zero order antisymmetric (A0) and symmetric (S0) mode Lamb waves, were observed and fitted well with the theoretical analysis and modelling. With graphene oxide microflakes as the sensing layer, the sensing performance of both wave modes was investigated. The humidity sensitivity of the A0 mode is 145.83 ppm per %RH (at humidity 85%RH), higher than that of S0 mode of 89.35 ppm per %RH. For the first time, we have demonstrated that the flexible humidity sensors work as usual without noticeable deterioration in performance even under severe bending conditions up to 1500 με. Also the sensors showed an excellent stability upon repeated bending for thousand times. All the results demonstrated that the Lamb wave flexible humidity sensors have a great potential for application in flexible electronics.

  14. High Sensitivity Crosslink Detection Coupled With Integrative Structure Modeling in the Mass Spec Studio.

    Science.gov (United States)

    Sarpe, Vladimir; Rafiei, Atefeh; Hepburn, Morgan; Ostan, Nicholas; Schryvers, Anthony B; Schriemer, David C

    2016-09-01

    The Mass Spec Studio package was designed to support the extraction of hydrogen-deuterium exchange and covalent labeling data for a range of mass spectrometry (MS)-based workflows, to integrate with restraint-driven protein modeling activities. In this report, we present an extension of the underlying Studio framework and provide a plug-in for crosslink (XL) detection. To accommodate flexibility in XL methods and applications, while maintaining efficient data processing, the plug-in employs a peptide library reduction strategy via a presearch of the tandem-MS data. We demonstrate that prescoring linear unmodified peptide tags using a probabilistic approach substantially reduces search space by requiring both crosslinked peptides to generate sparse data attributable to their linear forms. The method demonstrates highly sensitive crosslink peptide identification with a low false positive rate. Integration with a Haddock plug-in provides a resource that can combine multiple sources of data for protein modeling activities. We generated a structural model of porcine transferrin bound to TbpB, a membrane-bound receptor essential for iron acquisition in Actinobacillus pleuropneumoniae Using mutational data and crosslinking restraints, we confirm the mechanism by which TbpB recognizes the iron-loaded form of transferrin, and note the requirement for disparate sources of restraint data for accurate model construction. The software plugin is freely available at www.msstudio.ca.

  15. Peptide reactivity assay using spectrophotometric method for high-throughput screening of skin sensitization potential of chemical haptens.

    Science.gov (United States)

    Jeong, Yun Hyeok; An, Susun; Shin, Kyeho; Lee, Tae Ryong

    2013-02-01

    Haptens must react with cellular proteins to be recognized by antigen presenting cells. Therefore, monitoring reactivity of chemicals with peptide/protein has been considered an in vitro skin sensitization testing method. The reactivity of peptides with chemicals (peptide reactivity) has usually been monitored by chromatographic methods like HPLC or LC/MS, which are robust tools for monitoring common chemical reactions but are rather expensive and time consuming. Here, we examined the possibility of using spectrophotometric methods to monitor peptide reactivity. Two synthetic peptides, Ac-RWAACAA and Ac-RWAAKAA, were reacted with 48 chemicals (34 sensitizers and 14 non-sensitizers). Peptide reactivity was measured by monitoring unreacted peptides with UV-Vis spectrophotometer using 5,5'-dithiobis-2-nitrobenzoic acid as a detection reagent for the free thiol group of cysteine-containing peptide or fluorometer using fluorescamine™ as a detection reagent for the free amine group of lysine-containing peptide. Chemicals were categorized as sensitizers when they induced more than 10% depletion of cysteine-containing peptide or 20% depletion of lysine-containing peptide. The sensitivity, specificity, and accuracy of this method were 82.4%, 85.7%, and 83.3%, respectively. These results demonstrate that spectrophotometric methods can be easy, fast, and high-throughput screening tools for the prediction of the skin sensitization potential of chemical haptens. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. Experimental Demonstration of Optical Switching of Tbit/s Data Packets for High Capacity Short-Range Networks

    DEFF Research Database (Denmark)

    Medhin, Ashenafi Kiros; Kamchevska, Valerija; Hu, Hao;

    2015-01-01

    Record-high 1.28-Tbit/s optical data packets are experimentally switched in the optical domain using a LiNbO3 switch. An in-band notch-filter labeling scheme scalable to 65,536 labels is employed and a 3-km transmission distance is demonstrated.......Record-high 1.28-Tbit/s optical data packets are experimentally switched in the optical domain using a LiNbO3 switch. An in-band notch-filter labeling scheme scalable to 65,536 labels is employed and a 3-km transmission distance is demonstrated....

  17. Progressive FastICA Peel-Off and Convolution Kernel Compensation Demonstrate High Agreement for High Density Surface EMG Decomposition

    Science.gov (United States)

    Chen, Maoqi

    2016-01-01

    Decomposition of electromyograms (EMG) is a key approach to investigating motor unit plasticity. Various signal processing techniques have been developed for high density surface EMG decomposition, among which the convolution kernel compensation (CKC) has achieved high decomposition yield with extensive validation. Very recently, a progressive FastICA peel-off (PFP) framework has also been developed for high density surface EMG decomposition. In this study, the CKC and PFP methods were independently applied to decompose the same sets of high density surface EMG signals. Across 91 trials of 64-channel surface EMG signals recorded from the first dorsal interosseous (FDI) muscle of 9 neurologically intact subjects, there were a total of 1477 motor units identified from the two methods, including 969 common motor units. On average, 10.6 ± 4.3 common motor units were identified from each trial, which showed a very high matching rate of 97.85 ± 1.85% in their discharge instants. The high degree of agreement of common motor units from the CKC and the PFP processing provides supportive evidence of the decomposition accuracy for both methods. The different motor units obtained from each method also suggest that combination of the two methods may have the potential to further increase the decomposition yield. PMID:27642525

  18. Progressive FastICA Peel-Off and Convolution Kernel Compensation Demonstrate High Agreement for High Density Surface EMG Decomposition.

    Science.gov (United States)

    Chen, Maoqi; Holobar, Ales; Zhang, Xu; Zhou, Ping

    2016-01-01

    Decomposition of electromyograms (EMG) is a key approach to investigating motor unit plasticity. Various signal processing techniques have been developed for high density surface EMG decomposition, among which the convolution kernel compensation (CKC) has achieved high decomposition yield with extensive validation. Very recently, a progressive FastICA peel-off (PFP) framework has also been developed for high density surface EMG decomposition. In this study, the CKC and PFP methods were independently applied to decompose the same sets of high density surface EMG signals. Across 91 trials of 64-channel surface EMG signals recorded from the first dorsal interosseous (FDI) muscle of 9 neurologically intact subjects, there were a total of 1477 motor units identified from the two methods, including 969 common motor units. On average, 10.6 ± 4.3 common motor units were identified from each trial, which showed a very high matching rate of 97.85 ± 1.85% in their discharge instants. The high degree of agreement of common motor units from the CKC and the PFP processing provides supportive evidence of the decomposition accuracy for both methods. The different motor units obtained from each method also suggest that combination of the two methods may have the potential to further increase the decomposition yield.

  19. Progressive FastICA Peel-Off and Convolution Kernel Compensation Demonstrate High Agreement for High Density Surface EMG Decomposition

    Directory of Open Access Journals (Sweden)

    Maoqi Chen

    2016-01-01

    Full Text Available Decomposition of electromyograms (EMG is a key approach to investigating motor unit plasticity. Various signal processing techniques have been developed for high density surface EMG decomposition, among which the convolution kernel compensation (CKC has achieved high decomposition yield with extensive validation. Very recently, a progressive FastICA peel-off (PFP framework has also been developed for high density surface EMG decomposition. In this study, the CKC and PFP methods were independently applied to decompose the same sets of high density surface EMG signals. Across 91 trials of 64-channel surface EMG signals recorded from the first dorsal interosseous (FDI muscle of 9 neurologically intact subjects, there were a total of 1477 motor units identified from the two methods, including 969 common motor units. On average, 10.6±4.3 common motor units were identified from each trial, which showed a very high matching rate of 97.85±1.85% in their discharge instants. The high degree of agreement of common motor units from the CKC and the PFP processing provides supportive evidence of the decomposition accuracy for both methods. The different motor units obtained from each method also suggest that combination of the two methods may have the potential to further increase the decomposition yield.

  20. Benzotriazole-bridged sensitizers containing a furan moiety for dye-sensitized solar cells with high open-circuit voltage performance.

    Science.gov (United States)

    Mao, Jiangyi; Guo, Fuling; Ying, Weijiang; Wu, Wenjun; Li, Jing; Hua, Jianli

    2012-05-01

    Two new benzotriazole-bridged sensitizers are designed and synthesized (BTA-I and BTA-II) containing a furan moiety for dye-sensitized solar cells (DSSCs). Two corresponding dyes (BTA-III and BTA-IV) with a thiophene spacer were also synthesized for comparison. All of these dyes performed as sensitizers for DSSCs, and the photovoltaic performance data of these benzotriazole-bridged dyes showed a high open-circuit voltage (V(oc): 804-834 mV). Among the four dyes, DSSCs based on BTA-II, with a furan moiety and branched alkyl chain, showed the highest V(oc) (834 mV), a photocurrent density (J(sc)) of 12.64 mA cm(-2), and a fill factor (FF) of 0.64, corresponding to an overall conversion efficiency (η) of 6.72%. Most importantly, long-term stability of the BTA-I-IV-based DSSCs with ionic-liquid electrolytes under 1000 h light-soaking was demonstrated, and BTA-II exhibited better photovoltaic performance of up to 5.06% power conversion efficiency.