WorldWideScience

Sample records for demineralized enamel laser

  1. In vitro study of the diode laser effect on artificial demineralized surface of human dental enamel

    International Nuclear Information System (INIS)

    Ebel, Patricia

    2003-01-01

    In scientific literature there are many reports about fusion and resolidification of dental enamel after laser irradiation and their capability to generate surfaces with increased resistance to demineralization compared to non-irradiated areas. The use of high power diode laser on demineralized surfaces of human dental enamel is presented as a good alternative in caries prevention. The purpose of this study is to investigate the morphological changes produced by the use of one high power diode laser on human dental enamel surface after demineralization treatment with lactic acid, under chosen parameters. Fifteen samples of human dental molars were used and divided in four groups: control - demineralization treatment with lactic acid and no irradiation, and demineralization treatment with lactic acid followed of irradiation with 212,20 mJ/cm 2 , 282,84 mJ/cm 2 and 325,38 mJ/cm 2 , respectively. The samples were irradiated with high power diode laser (808 nm) with a 300 μm diameter fiber optics. Black ink was used on enamel surface to enhance the superficial absorption. The samples were studied by optical microscopy and scanning electron microscopy. Modifications on the enamel surfaces were observed. Such modifications were characterized by melted and re-solidified region of the enamel. According with our results the best parameter was 2.0 W, presenting the most uniform surface. The use of high power diode laser as demonstrated in this study is able to promote melting and re-solidification on human dental enamel. (author)

  2. Microhardness of demineralized enamel following home bleaching and laser-assisted in office bleaching

    Science.gov (United States)

    Ghanbarzadeh, Majid; Akbari, Majid; Hamzei, Haniye

    2015-01-01

    Background There is little data regarding the effect of tooth whitening on microhardness of white spot lesions. This study was conducted to investigate the effect of home-bleaching and laser-assisted in-office bleaching on microhardness of demineralized enamel. Material and Methods Forty bovine incisors were selected and immersed in a demineralizing solution for 12 weeks to induce white spot lesions. Enamel blocks were prepared and randomly assigned to two groups of 20 each. The first group underwent home bleaching with 15% carbamide peroxide which was applied for 8 hours a day over a period of 15 days. In the second group, in-office bleaching was performed by 40% hydrogen peroxide and powered by irradiation from an 810 nm gallium-aluminum-arsenide (GaAlAs) diode laser (CW, 2W). This process was performed for 3 sessions every seven days, in 15 days. The specimens were stored in Fusayama Meyer artificial saliva during the experiment. Surface microhardness was assessed before and after the bleaching therapies in both groups. Results Microhardness decreased significantly following both home bleaching and laser-assisted in-office bleaching (pTooth whitening through home bleaching or laser-assisted in-office bleaching can result in a significant reduction in microhardness of white spot lesions. Therefore, it is suggested to take protective measures on bleached demineralized enamel. Key words:White spot lesion, bleaching, laser, microhardness, demineralized enamel, home bleaching, in-office bleaching. PMID:26330939

  3. Enamel resistance to demineralization following Er:YAG laser etching for bonding orthodontic brackets

    Science.gov (United States)

    Ahrari, Farzaneh; Poosti, Maryam; Motahari, Pourya

    2012-01-01

    Background: Several studies have shown that laser-etching of enamel for bonding orthodontic brackets could be an appropriate alternative for acid conditioning, since a potential advantage of laser could or might be caries prevention. This study compared enamel resistance to demineralization following etching with acid phosphoric or Er:YAG laser for bonding orthodontic brackets. Materials and Methods: Fifty sound human premolars were divided into two equal groups. In the first group, enamel was etched with 37% phosphoric acid for 15 seconds. In the second group, Er:YAG laser (wavelength, 2 940 nm; 300 mJ/pulse, 10 pulses per second, 10 seconds) was used for tooth conditioning. The teeth were subjected to 4-day PH-cycling process to induce caries-like lesions. The teeth were then sectioned and the surface area of the lesion was calculated in each microphotographs and expressed in pixel. The total surface of each specimen was 196 608 pixels. Results: Mean lesion areas were 7 171 and 7532 pixels for Laser-etched and Acid-etched groups, respectively. The two sample t-test showed that there was no significant difference in lesion area between the two groups (P = 0.914). Conclusion: Although Er:YAG laser seems promising for etching enamel before bonding orthodontic brackets, it does not reduce enamel demineralization when exposed to acid challenge. PMID:23162591

  4. Effect of Argon Laser on Enamel Demineralization around Orthodontic Brackets: An In Vitro Study

    Science.gov (United States)

    Miresmaeili, Amirfarhang; Etrati Khosroshahi, Mohammad; Motahary, Pouya; Rezaei-Soufi, Loghman; Mahjub, Hossein; Dadashi, Maryam; Farhadian, Nasrin

    2014-01-01

    Objective This study was designed to evaluate the effect of argon laser irradiation on development and progress of enamel demineralization around orthodontic brackets. Materials and Methods: Fifty caries-free, intact human premolars were randomly assigned to one of the following five equal groups: Groups 1 (control) and 2: The brackets were bonded using conventional halogen light for 40s and argon laser for 10s, respectively. Teeth in group 3 were lased with argon laser for 10s before bracket bonding with halogen light. Group 4 was the same as group 3 except that brackets were also bonded with argon laser. In group 5 samples were bonded conventionally, immersed in an artificial caries solution for two days and then irradiated for 10s with argon laser. All samples were subjected to demineralization by artificial caries solution for 10 days. After bracket removal, samples were buccolingually sectioned and evaluated by polarized light microscopy. Decalcified lesion depth in each section was measured by a trained examiner in a blind fashion. Data were analyzed in SPSS 14 using one-way ANOVA and Tukey’s HSD post hoc test. Results: The control group showed the greatest mean lesion depth while group 5 revealed the lowest. The laser-treated groups had significantly lower mean lesion depth compared with the control group (Pbracket bonding can increase caries resistance of intact and demineralized enamel. PMID:25584052

  5. Synergistic effect of fluoride and laser irradiation for the inhibition of the demineralization of dental enamel

    Science.gov (United States)

    Lee, Raymond; Chan, Kenneth H.; Jew, Jamison; Simon, Jacob C.; Fried, Daniel

    2017-02-01

    Both laser irradiation and fluoride treatment alone are known to provide increased resistance to acid dissolution. CO2 lasers tuned to a wavelength of 9.3 μm can be used to efficiently convert the carbonated hydroxyapatite of enamel to a much more acid resistant purer phase hydroxyapatite (HAP). Further studies have shown that fluoride application to HAP yields fluoroapatite (FAP) which is even more resistant against acid dissolution. Previous studies show that CO2 lasers and fluoride treatments interact synergistically to provide significantly higher protection than either method alone, but the mechanism of interaction has not been elucidated. We recently observed the formation of microcracks or a "crazed" zone in the irradiated region that is resistant to demineralization using high-resolution microscopy. The microcracks are formed due to the slight contraction of enamel due to transformation of carbonated hydroxyapatite to the more acid resistant pure phase hydroxyapatite (HAP) that has a smaller lattice. In this study, we test the hypothesis that these small cracks will provide greater adhesion for topical fluoride for greater protection against acid demineralization.

  6. Does ozone enhance the remineralizing potential of nanohydroxyapatite on artificially demineralized enamel? A laser induced fluorescence study

    Science.gov (United States)

    Srinivasan, Samuelraj; Prabhu, Vijendra; Chandra, Subhash; Koshy, Shalini; Acharya, Shashidhar; Mahato, Krishna K.

    2014-02-01

    The present era of minimal invasive dentistry emphasizes the early detection and remineralization of initial enamel caries. Ozone has been shown to reverse the initial demineralization before the integrity of the enamel surface is lost. Nano-hydroxyapatite is a proven remineralizing agent for early enamel caries. In the present study, the effect of ozone in enhancing the remineralizing potential of nano-hydroxyapatite on artificially demineralized enamel was investigated using laser induced fluorescence. Thirty five sound human premolars were collected from healthy subjects undergoing orthodontic treatment. Fluorescence was recorded by exciting the mesial surfaces using 325 nm He-Cd laser with 2 mW power. Tooth specimens were subjected to demineralization to create initial enamel caries. Following which the specimens were divided into three groups, i.e ozone (ozonated water for 2 min), without ozone and artificial saliva. Remineralization regimen was followed for 3 weeks. The fluorescence spectra of the specimens were recorded from all the three experimental groups at baseline, after demineralization and remineralization. The average spectrum for each experimental group was used for statistical analysis. Fluorescence intensities of Ozone treated specimens following remineralization were higher than that of artificial saliva, and this difference was found to be statistically significant (P<0.0001). In a nutshell, ozone enhanced the remineralizing potential of nanohydroxyapatite, and laser induced fluorescence was found to be effective in assessing the surface mineral changes in enamel. Ozone can be considered an effective agent in reversing the initial enamel caries there by preventing the tooth from entering into the repetitive restorative cycle.

  7. Effects of 960 nm diode laser irradiation on dental enamel in vitro: temperature and morphological analysis and evaluation of enamel demineralization

    International Nuclear Information System (INIS)

    Kato, Ilka Tiemy

    2004-01-01

    The aim of this study is to determine the effects of diode laser irradiation on enamel demineralization. To achieve this goal appropriate photon absorbing substances for the laser radiation, safe laser parameters and adequate temperature measuring apparatus had to be determined. Next, the effects of diode laser and acidulated phosphate fluoride on enamel demineralization by calcium content analysis were evaluated with inductively coupled plasma atomic emission spectrometry (ICP-AES). In the first part of the study, five dyes consisting of vegetable coal diluted in five different liquids were analyzed and vegetable coal diluted in physiological solution was chosen for use as absorber. Methodologies to measure pulp chamber temperature were evaluated and modeling clay was chosen as fixture for the enamel samples held at body temperature. In the second part of the study, different energy density parameters (1.8 J/cm 2 , 3.7 J/cm 2 , 5.6 J/cm 2 , 7.4 J/cm 2 and 9.3 J/cm 2 ) exposure times (10, 15, 20, 25 e 30 seconds) and time intervals between dye application and laser irradiation (5, 30, 60, 90 e 120 seconds) were evaluated with respect to temperature changes in the pulp chamber. The enamel morphology was analyzed by scanning electron microscopy. Acid resistance was measured using seventy five enamel specimens, divided in five groups (control, fluoride, laser, laser + fluoride and fluoride + laser). The amount of calcium lost during demineralization in lactic acid was measured by ICP-AES. The results obtained in this experiment permit the conclusion that diode laser irradiation did not increase acid resistance. When associated with fluoride, the acid resistance did not differ from the results obtained with fluoride alone. (author)

  8. Laser and caries diagnosis: the state of the art and evaluation in vitro of the differences of the fluorescence between sound, carious and demineralized enamel

    International Nuclear Information System (INIS)

    Mendonca, Maria Angelica Lopes Chaves

    2001-01-01

    The aim of this study was to evaluate the methods for establishing dental caries diagnosis that make use of Laser light as source of illumination, establishing the 'state of the art'. Experimental observation of the differences among fluorescence of sound, demineralized and carious enamel by visible luminescent spectroscopy was also done. Six human teeth, extracted for clinical reasons were studied, and the results showed that the spectrum of carious enamel is different from the sound and demineralized ones. The differences are more evident relative to sond enamel and carious enamel, the same occurring between demineralized and carious enamel. The review of the literature aimed to make comparative considerations between QLF, LF and DELF; their effectiveness relative to traditional methods such as visual, visual with probe, radiography. It was verified that DELF was more sensitive, but could not discriminate between different degrees of mineral loss. QLF, compared to DIAGNOdent has the same sensitivity, but it is better for scientific purposes. The experimental part of the present study used on argon ion Laser to illuminated the teeth and signs of emission of fluorescence were captured by a PMT and then analyzed by a computer system with EG and G software. The results showed that the spectrum of carious enamel is different from the sound and demineralized. The differences are more evident in relation to sound and carious enamel, the same occurs between demineralized and carious enamel. (author)

  9. The efficacy of laser-assisted in-office bleaching and home bleaching on sound and demineralized enamel

    Science.gov (United States)

    Akbari, Majid; Mohammadpour, Sakineh

    2015-01-01

    Aims: This study investigated the effectiveness of laser-assisted in-office bleaching and home-bleaching in sound and demineralized enamel. Materials and Methods: The sample consisted of 120 freshly-extracted bovine incisors. Half of the specimens were stored in a demineralizing solution to induce white spot lesions. Following exposure to a tea solution for 7.5 days, the specimens were randomly assigned to 4 groups of 30 according to the type of enamel and the bleaching procedure employed. Groups 1 and 2 consisted of demineralized teeth subjected to in-office bleaching and home bleaching, whereas in groups 3 and 4, sound teeth were subjected to in-office and home bleaching, respectively. A diode laser (810 nm, 2 W, continuous wave, four times for 15 seconds each) was employed for assisting the in-office process. The color of the specimens was measured before (T1) and after (T2) staining and during (T3) and after (T4) the bleaching procedures using a spectrophotometer. The color change (ΔE) between different treatments stages was compared among the groups. Results: There were significant differences in the color change between T2 and T3 (ΔE T2–T3) and T2 and T4 (ΔE T2–T4) stages among the study groups (pbleaching (group 1) as compared to the other groups (Pbleaching could provide faster and greater whitening effect than home bleaching on stained demineralized enamel, but both procedures produced comparable results on sound teeth. PMID:26877590

  10. Effect of CPP-ACP paste with and without CO2 laser irradiation on demineralized enamel microhardness and bracket shear bond strength

    Directory of Open Access Journals (Sweden)

    Nasrin Farhadian

    Full Text Available ABSTRACT Introduction: Many patients seeking orthodontic treatment already have incipient enamel lesions and should be placed under preventive treatments. The aim of this in vitro study was to evaluate the effect of CPP-ACP paste and CO2 laser irradiation on demineralized enamel microhardness and shear bond strength of orthodontic brackets. Methods: Eighty caries-free human premolars were subjected to a demineralization challenge using Streptococcus mutans. After demineralization, the samples were randomly divided into five equal experimental groups: Group 1 (control, the brackets were bonded without any surface treatment; Group 2, the enamel surfaces were treated with CPP-ACP paste for 4 minutes before bonding; Group 3, the teeth were irradiated with CO2 laser beams at a wavelength of 10.6 µm for 20 seconds. The samples in Groups 4 and 5 were treated with CO2 laser either before or through CPP-ACP application. SEM photomicrographs of a tooth from each group were taken to observe the enamel surface. The brackets were bonded to the buccal enamel using a conventional method. Shear bond strength of brackets and ARI scores were measured. Vickers microhardness was measured on the non-bonded enamel surface. Data were analyzed with ANOVA and Tukey test at the p< 0.05 level. Results: The mean shear bond strength and microhardness of the laser group were higher than those in the control group and this difference was statistically significant (p< 0.05. All groups showed a higher percentage of ARI score 4. Conclusion: CO2 laser at a wavelength of 10.6 µm significantly increased demineralized enamel microhardness and enhanced bonding to demineralized enamel.

  11. In vitro study of demineralization resistance and fluoride retention in dental enamel irradiated with Er,Cr: YSGG laser

    International Nuclear Information System (INIS)

    Ana, Patricia Aparecida da.

    2007-01-01

    This study aimed to establish irradiation conditions of Er,Cr:YSGG laser (λ of 2.79 μm) which could propitiate changes on human dental enamel and increase its resistance to demineralization, when associated or not with topical application of acidulated phosphate fluoride (APF). Fluences of 2,8 J/cm 2 , 5,6 J/cm 2 e 8,5 J/cm 2 were selected; they were associated or not with previous application of a photo absorber (coal paste) and then APF was applied or not after laser irradiation. In a first step, the morphological findings, the surface temperatures, and the pupal temperatures were evaluated during laser irradiation. After that, the treated samples were submitted to a a ten-day pH-cycling model. After producing the incipient white-spots lesions, the following aspects were evaluated: the mineral loss, the loosely bound fluoride and the firmly bound fluoride. All the demineralizing and remineralizing pH-cycling solutions were evaluated with respect to their calcium (Ca), inorganic phosphorous (Pi) and fluoride (F - ) concentrations. The data had their normality and homogeneity distribution statistically evaluated, and it was chosen an appropriated statistical test for each performed analysis according to the obtained results, considering 5% significant level. The fluences selected for this study created ablated surfaces; the fluences of 5.6 J/cm 2 and 8.5 J/cm 2 promoted increments in surface temperature above 110 deg C. The intrapupal temperature changes revealed that laser irradiation did not increase the pulpal temperatures above the critical threshold for induction of pulpitis. The coal paste did not promote any changes on surface morphology or in the intrapulpal temperature changes; however, this paste increased the surface temperatures during laser irradiation. Only laser irradiation at 8.5 J/cm 2 was able to decrease the mineral loss when compared to the no-treatment group; although the association of coal paste + laser at 2.8 J/cm 2 + APF application

  12. Effects of Different Combinations of Er:YAG Laser-Adhesives on Enamel Demineralization and Bracket Bond Strength.

    Science.gov (United States)

    Çokakoğlu, Serpil; Nalçacı, Ruhi; Üşümez, Serdar; Malkoç, Sıddık

    2016-04-01

    The purpose of this study was to investigate the demineralization around brackets and shear bond strength (SBS) of brackets bonded to Er:YAG laser-irradiated enamel at different power settings with various adhesive systems combinations. A total of 108 premolar teeth were used in this study. Teeth were assigned into three groups according to the etching procedure, then each group divided into three subgroups based on the application of different adhesive systems. There were a total of nine groups as follows. Group 1: Acid + Transbond XT Primer; group 2: Er:YAG (100 mJ, 10 Hz) etching + Transbond XT Primer; group 3: Er:YAG (200 mJ, 10 Hz) etching + Transbond XT Primer; group 4: Transbond Plus self-etching primer (SEP); group 5: Er:YAG (100 mJ, 10 Hz) etching + Transbond Plus SEP; group 6: Er:YAG (200 mJ, 10 Hz) etching + Transbond Plus SEP; group 7: Clearfil Protect Bond; group 8: Er:YAG (100 mJ, 10 Hz) etching + Clearfil Protect Bond; group 9: Er:YAG (200 mJ, 10 Hz) etching + Clearfil Protect Bond. Brackets were bonded with Transbond XT Adhesive Paste in all groups. Teeth to be evaluated for demineralization and SBS were exposed to pH and thermal cyclings, respectively. Then, demineralization samples were scanned with micro-CT to determine lesion depth values. For SBS test, a universal testing machine was used and adhesive remnant was index scored after debonding. Data were analyzed statistically. No significant differences were found among the lesion depth values of the various groups, except for G7 and G8, in which the lowest values were recorded. The lowest SBS values were in G7, whereas the highest were in G9. The differences between the other groups were not significant. Er:YAG laser did not have a positive effect on prevention of enamel demineralization. When two step self-etch adhesive is preferred for bonding brackets, laser etching at 1 W (100 mJ, 10 Hz) is suggested to improve SBS of brackets.

  13. CO2 laser irradiation enhances CaF2 formation and inhibits lesion progression on demineralized dental enamel-in vitro study.

    Science.gov (United States)

    Zancopé, Bruna R; Rodrigues, Lívia P; Parisotto, Thais M; Steiner-Oliveira, Carolina; Rodrigues, Lidiany K A; Nobre-dos-Santos, Marinês

    2016-04-01

    This study evaluated if Carbon dioxide (CO2) (λ 10.6 μm) laser irradiation combined with acidulated phosphate fluoride gel application (APF gel) enhances "CaF2" uptake by demineralized enamel specimens (DES) and inhibits enamel lesion progression. Thus, two studies were conducted and DES were subjected to APF gel combined or not with CO2 laser irradiation (11.3 or 20.0 J/cm(2), 0.4 or 0.7 W) performed before, during, or after APF gel application. In study 1, 165 DES were allocated to 11 groups. Fluoride as "CaF2 like material" formed on enamel was determined in 100 DES (n = 10/group), and the surface morphologies of 50 specimens were evaluated by scanning electron microscopy (SEM) before and after "CaF2" extraction. In study 2, 165 DES (11 groups, n = 15), subjected to the same treatments as in study 1, were further subjected to a pH-cycling model to simulate a high cariogenic challenge. The progression of demineralization in DES was evaluated by cross-sectional microhardness and polarized light microscopy analyses. Laser at 11.3 J/cm(2) applied during APF gel application increased "CaF2" uptake on enamel surface. Laser irradiation and APF gel alone arrested the lesion progression compared with the control (p enamel surface and a synergistic effect was found. However, regarding the inhibition of caries lesion progression, no synergistic effect could be demonstrated. In conclusion, the results have shown that irradiation with specific laser parameters significantly enhanced CaF2 uptake by demineralized enamel and inhibited lesion progression.

  14. In vitro study of the diode laser effect on artificial demineralized surface of human dental enamel; Estudo in vitro do efeito do laser diodo sobre a superficie de esmalte dental humano desmineralizado artificialmente

    Energy Technology Data Exchange (ETDEWEB)

    Ebel, Patricia

    2003-07-01

    In scientific literature there are many reports about fusion and resolidification of dental enamel after laser irradiation and their capability to generate surfaces with increased resistance to demineralization compared to non-irradiated areas. The use of high power diode laser on demineralized surfaces of human dental enamel is presented as a good alternative in caries prevention. The purpose of this study is to investigate the morphological changes produced by the use of one high power diode laser on human dental enamel surface after demineralization treatment with lactic acid, under chosen parameters. Fifteen samples of human dental molars were used and divided in four groups: control - demineralization treatment with lactic acid and no irradiation, and demineralization treatment with lactic acid followed of irradiation with 212,20 mJ/cm{sup 2}, 282,84 mJ/cm{sup 2} and 325,38 mJ/cm{sup 2}, respectively. The samples were irradiated with high power diode laser (808 nm) with a 300 {mu}m diameter fiber optics. Black ink was used on enamel surface to enhance the superficial absorption. The samples were studied by optical microscopy and scanning electron microscopy. Modifications on the enamel surfaces were observed. Such modifications were characterized by melted and re-solidified region of the enamel. According with our results the best parameter was 2.0 W, presenting the most uniform surface. The use of high power diode laser as demonstrated in this study is able to promote melting and re-solidification on human dental enamel. (author)

  15. Demineralization of Enamel in Primary Second Molars Related to Properties of the Enamel

    OpenAIRE

    Sabel, N.; Robertson, A.; Nietzsche, S.; Norén, J. G.

    2012-01-01

    Enamel structure is of importance in demineralization. Differences in porosity in enamel effect the rate of demineralization, seen between permanent and deciduous teeth. Individual differences have been shown in the mean mineral concentration values in enamel, the role of this in demineralization is not thoroughly investigated. The aim of this study was to study variations of depths of artificial lesions of demineralization and to analyze the depth in relation to variations in the chemical an...

  16. Demineralization of Enamel in Primary Second Molars Related to Properties of the Enamel

    Directory of Open Access Journals (Sweden)

    N. Sabel

    2012-01-01

    Full Text Available Enamel structure is of importance in demineralization. Differences in porosity in enamel effect the rate of demineralization, seen between permanent and deciduous teeth. Individual differences have been shown in the mean mineral concentration values in enamel, the role of this in demineralization is not thoroughly investigated. The aim of this study was to study variations of depths of artificial lesions of demineralization and to analyze the depth in relation to variations in the chemical and mineral composition of the enamel. A demineralized lesion was created in second primary molars from 18 individuals. Depths of lesions were then related to individual chemical content of the enamel. Enamel responded to demineralization with different lesion depths and this was correlated to the chemical composition. The carbon content in sound enamel was shown to be higher where lesions developed deeper. The lesion was deeper when the degree of porosity of the enamel was higher.

  17. Evaluation of crystalline changes and resistance to demineralization of the surface of human dental enamel treated with Er:YAG laser and fluoride using x-ray diffraction analysis and Vickers microhardness

    Science.gov (United States)

    Behroozibakhsh, Marjan; Shahabi, Sima; Ghavami-Lahiji, Mehrsima; Sadeghian, Safura; Sadat Faal Nazari, Neda

    2018-06-01

    This study aimed to investigate the changes in crystalline structure and resistance to demineralization of human dental surface enamel treated with erbium-doped yttrium aluminium garnet laser (Er:YAG) laser and fluoride. The enamel surfaces were divided into four groups according to the treatment process including, (L): irradiated with Er:YAG; (F): treated with acidulated phosphate fluoride gel (LF): Pre-irradiated surfaces with Er:YAG subjected to acidulated phosphate fluoride gel and (FL): laser irradiation was performed on the fluoridated enamel surface. Before and after the treatment procedure, the samples were evaluated using X-ray diffraction, scanning electron microscope (SEM) and the Vickers microhardness test. The surface microhardness values also were measured after a pH-cycling regime and acid challenge. The a-axis of all lased groups was contracted after treatment procedure. Measurement of the area under the peaks showed the highest crysallinity in the FL group. The hardness values of all laser treated samples significantly reduced after treatment procedure compared to the F group (p  ⩽  0.001). The morphological observations showed remarkable changes on the lased enamel surfaces including cracks, craters and exposed prisms. These findings suggest, irradiation of the Er:YAG laser accompanying with fluoride application can induce some beneficial crystalline changes regarding the acid-resistance properties of enamel, however, the craters and cracks produced by laser irradiation can promote enamel demineralization and consequently the positive effects of the Er:YAG laser will be eliminated.

  18. Laser and caries diagnosis: the state of the art and evaluation in vitro of the differences of the fluorescence between sound, carious and demineralized enamel; Laser e diagnostico de caries: estado da arte e avaliacao in vitro das diferencas de fluorescencia entre esmalte sadio, cariado e desmineralizado

    Energy Technology Data Exchange (ETDEWEB)

    Mendonca, Maria Angelica Lopes Chaves

    2001-07-01

    The aim of this study was to evaluate the methods for establishing dental caries diagnosis that make use of Laser light as source of illumination, establishing the 'state of the art'. Experimental observation of the differences among fluorescence of sound, demineralized and carious enamel by visible luminescent spectroscopy was also done. Six human teeth, extracted for clinical reasons were studied, and the results showed that the spectrum of carious enamel is different from the sound and demineralized ones. The differences are more evident relative to sond enamel and carious enamel, the same occurring between demineralized and carious enamel. The review of the literature aimed to make comparative considerations between QLF, LF and DELF; their effectiveness relative to traditional methods such as visual, visual with probe, radiography. It was verified that DELF was more sensitive, but could not discriminate between different degrees of mineral loss. QLF, compared to DIAGNOdent has the same sensitivity, but it is better for scientific purposes. The experimental part of the present study used on argon ion Laser to illuminated the teeth and signs of emission of fluorescence were captured by a PMT and then analyzed by a computer system with EG and G software. The results showed that the spectrum of carious enamel is different from the sound and demineralized. The differences are more evident in relation to sound and carious enamel, the same occurs between demineralized and carious enamel. (author)

  19. Laser and caries diagnosis: the state of the art and evaluation in vitro of the differences of the fluorescence between sound, carious and demineralized enamel; Laser e diagnostico de caries: estado da arte e avaliacao in vitro das diferencas de fluorescencia entre esmalte sadio, cariado e desmineralizado

    Energy Technology Data Exchange (ETDEWEB)

    Mendonca, Maria Angelica Lopes Chaves

    2001-07-01

    The aim of this study was to evaluate the methods for establishing dental caries diagnosis that make use of Laser light as source of illumination, establishing the 'state of the art'. Experimental observation of the differences among fluorescence of sound, demineralized and carious enamel by visible luminescent spectroscopy was also done. Six human teeth, extracted for clinical reasons were studied, and the results showed that the spectrum of carious enamel is different from the sound and demineralized ones. The differences are more evident relative to sond enamel and carious enamel, the same occurring between demineralized and carious enamel. The review of the literature aimed to make comparative considerations between QLF, LF and DELF; their effectiveness relative to traditional methods such as visual, visual with probe, radiography. It was verified that DELF was more sensitive, but could not discriminate between different degrees of mineral loss. QLF, compared to DIAGNOdent has the same sensitivity, but it is better for scientific purposes. The experimental part of the present study used on argon ion Laser to illuminated the teeth and signs of emission of fluorescence were captured by a PMT and then analyzed by a computer system with EG and G software. The results showed that the spectrum of carious enamel is different from the sound and demineralized. The differences are more evident in relation to sound and carious enamel, the same occurs between demineralized and carious enamel. (author)

  20. Effects of 960 nm diode laser irradiation on dental enamel in vitro: temperature and morphological analysis and evaluation of enamel demineralization; Estudo in vitro dos efeitos promovidos pelo laser de diodo em 960 nm no esmalte dental humano: analise de temperatura, analise morfologica e avaliacao da resistencia a desmineralizacao

    Energy Technology Data Exchange (ETDEWEB)

    Kato, Ilka Tiemy

    2004-07-01

    The aim of this study is to determine the effects of diode laser irradiation on enamel demineralization. To achieve this goal appropriate photon absorbing substances for the laser radiation, safe laser parameters and adequate temperature measuring apparatus had to be determined. Next, the effects of diode laser and acidulated phosphate fluoride on enamel demineralization by calcium content analysis were evaluated with inductively coupled plasma atomic emission spectrometry (ICP-AES). In the first part of the study, five dyes consisting of vegetable coal diluted in five different liquids were analyzed and vegetable coal diluted in physiological solution was chosen for use as absorber. Methodologies to measure pulp chamber temperature were evaluated and modeling clay was chosen as fixture for the enamel samples held at body temperature. In the second part of the study, different energy density parameters (1.8 J/cm{sup 2}, 3.7 J/cm{sup 2}, 5.6 J/cm{sup 2}, 7.4 J/cm{sup 2} and 9.3 J/cm{sup 2}) exposure times (10, 15, 20, 25 e 30 seconds) and time intervals between dye application and laser irradiation (5, 30, 60, 90 e 120 seconds) were evaluated with respect to temperature changes in the pulp chamber. The enamel morphology was analyzed by scanning electron microscopy. Acid resistance was measured using seventy five enamel specimens, divided in five groups (control, fluoride, laser, laser + fluoride and fluoride + laser). The amount of calcium lost during demineralization in lactic acid was measured by ICP-AES. The results obtained in this experiment permit the conclusion that diode laser irradiation did not increase acid resistance. When associated with fluoride, the acid resistance did not differ from the results obtained with fluoride alone. (author)

  1. Combining casein phosphopeptide-amorphous calcium phosphate with fluoride: synergistic remineralization potential of artificially demineralized enamel or not?

    Science.gov (United States)

    Elsayad, Iman; Sakr, Amal; Badr, Yahia

    2009-07-01

    Recaldent is a product of casein phosphopeptide-amorphous calcium phosphate (CPP-ACP). The remineralizing potential of CPP-ACP per se, or when combined with 0.22% Fl gel on artificially demineralized enamel using laser florescence, is investigated. Mesial surfaces of 15 sound human molars are tested using a He-Cd laser beam at 441.5 nm with 18-mW power as an excitation source on a suitable setup based on a Spex 750-M monochromator provided with a photomultiplier tube (PMT) for detection of collected autofluorescence from sound enamel. Mesial surfaces are subjected to demineralization for ten days. The spectra from demineralized enamel are measured. Teeth are divided into three groups according to the remineralizing regimen: group 1 Recaldent per se, group 2 Recaldent combined with fluoride gel and ACP, and group 3 artificial saliva as a positive control. After following these protocols for three weeks, the spectra from the remineralized enamel are measured. The spectra of enamel autofluorescence are recorded and normalized to peak intensity at about 540 nm to compare spectra from sound, demineralized, and remineralized enamel surfaces. A slight red shift occurred in spectra from demineralized enamel, while a blue shift may occur in remineralized enamel. Group 2 shows the highest remineralizing potential. Combining fluoride and ACP with CPP-ACP can give a synergistic effect on enamel remineralization.

  2. In vitro demineralization of tooth enamel subjected to two whitening regimens.

    Science.gov (United States)

    Ogura, Kayoko; Tanaka, Reina; Shibata, Yo; Miyazaki, Takashi; Hisamitsu, Hisashi

    2013-07-01

    The resistance of bleached enamel to demineralization has not been elucidated fully. In this study, the authors aimed to examine the level of in vitro demineralization of human tooth enamel after bleaching by using two common bleaching regimens: home bleaching (HB) and office bleaching (OB) with photoirradiation. The authors bleached teeth to equivalent levels by means of the two bleaching regimens. They used fluorescence spectroscopy to measure the reduction in enamel density and the release of calcium into solution after storing the treated teeth in a demineralizing solution for two weeks. They also visualized and quantified mineral distribution in demineralized bleached enamel over time by using a desktop microcomputed-tomographic analyzer. Enamel subjected to HB or to photoirradiation without bleaching showed increased demineralization. In contrast, enamel treated with OB was more resistant to demineralization. This resistance to demineralization in teeth treated with OB presumably is due to peroxide's permeating to deeper layers of enamel before being activated by photoirradiation, which enhances mineralization. The mineral distribution pattern of enamel after treatment plays a critical role in providing resistance to demineralization in whitened teeth. OB confers to enamel significant resistance to in vitro demineralization. Dentists should supervise the nightguard HB process.

  3. Biofilm extracellular polysaccharides degradation during starvation and enamel demineralization.

    Directory of Open Access Journals (Sweden)

    Bárbara Emanoele Costa Oliveira

    Full Text Available This study was conducted to evaluate if extracellular polysaccharides (EPS are used by Streptococcus mutans (Sm biofilm during night starvation, contributing to enamel demineralization increasing occurred during daily sugar exposure. Sm biofilms were formed during 5 days on bovine enamel slabs of known surface hardness (SH. The biofilms were exposed to sucrose 10% or glucose + fructose 10.5% (carbohydrates that differ on EPS formation, 8x/day but were maintained in starvation during the night. Biofilm samples were harvested during two moments, on the end of the 4th day and in the morning of the 5th day, conditions of sugar abundance and starvation, respectively. The slabs were also collected to evaluate the percentage of surface hardness loss (%SHL. The biofilms were analyzed for EPS soluble and insoluble and intracellular polysaccharides (IPS, viable bacteria (CFU, biofilm architecture and biomass. pH, calcium and acid concentration were determined in the culture medium. The data were analyzed by two-way ANOVA followed by Tukey's test or Student's t-test. The effect of the factor carbohydrate treatment for polysaccharide analysis was significant (p 0.05. Larger amounts of soluble and insoluble EPS and IPS were formed in the sucrose group when compared to glucose + fructose group (p < 0.05, but they were not metabolized during starvation time (S-EPS, p = 0.93; I-EPS, p = 0.11; and IPS = 0.96. Greater enamel %SHL was also found for the sucrose group (p < 0.05 but the demineralization did not increase during starvation (p = 0.09. In conclusion, the findings suggest that EPS metabolization by S. mutans during night starvation do not contribute to increase enamel demineralization occurred during the daily abundance of sugar.

  4. Efficacy of various topical agents to prevent enamel demineralization

    Directory of Open Access Journals (Sweden)

    Priska Lestari Hendrawan

    2011-09-01

    Full Text Available Background: Enamel demineralization is a common and undesirable side effect of fixed appliance orthodontic treatment. Many sudies showed that the prevalence varied between 2–96%. There are many ways to prevent demineralization and increased remineralization such as oral hygiene instruction and by topical application such as acidulated phosphate fluor (APF casein phospo peptide-amorphous calcium phosphate (CPP-ACP, casein phospo peptide-amorphous calcium phosphate plus (CPP-ACPF. Purpose: The purpose of this in-vitro study was to evaluate the efficacy of various topical agents to prevent enamel demineralization. Methods: Fourty extracted human premolars were allocated to 1 of 4 groups: 1.23% APF gel; 10% CPP-ACP paste; 10% CPP-ACPF paste; and untreated control. All samples were subjected to pH cycling treatment for 12 days through a daily procedure of demineralization solution with pH 4 for 6 hours and remineralization solution with pH 7 for 18 hours. Microhardness testing were done before and after pH cycling and the delta hardness values were determined. Results: APF, CPP-ACP and CPP-ACPF application significantly prevent lowering of enamel microhardness value compared with untreated control group. Kruskal-Wallis, ANOVA, Mann-Whitney U, Tukey and Bonferroni Post-Hoc multiple comparison test showed significant difference between mean delta microhardness value of CPP-ACPF and CPP-ACP group with APF group, but there is no significant difference between mean delta microhardness value of CPP-ACPF and CPP-ACP group. Conclusion: APF, CPP-ACP and CPP-ACPF prevent enamel demineralization. CPP-ACP and CPP-ACPF prevent demineralization more than APF.Latar belakang: Demineralisasi email merupakan efek samping negatif yang sering dijumpai pada perawatan ortodontik cekat. Beberapa penelitian menyatakan bahwa prevalensinya bervariasi 2–96 persen. Ada beberapa cara untuk mencegah demineralisasi dan meningkatkan remineralisasi, misalnya dengan instruksi

  5. Microstructural analysis of demineralized primary enamel after in vitro toothbrushing

    Directory of Open Access Journals (Sweden)

    Neves Aline de Almeida

    2002-01-01

    Full Text Available The aim of this study was to investigate, in vitro, the morphological characteristics of demineralized primary enamel subjected to brushing with a dentifrice with or without fluoride. In order to do so, 32 enamel blocks were divided in 4 different groups containing 8 blocks each. They were separately immersed in artificial saliva for 15 days. The experimental groups were: C - control; E - submitted to etching with 37% phosphoric acid gel (30 s; EB - submitted to etching and brushing 3 times a day with a non-fluoridated dentifrice; EBF = submitted to etching and brushing 3 times a day with a fluoridated dentifrice. The toothbrushing force was standardized at 0.2 kgf and 15 double strokes were performed on each block. After the experimental period, the samples were prepared and examined under SEM. The control group (C showed a smooth surface, presenting scratches caused by habitual toothbrushing. The etched samples (E exhibited different degrees of surface disintegration, but the pattern of acid etching was predominantly the type II dissolution. The brushed surfaces were smooth, with elevations which corresponded to the exposure of Tomes? process pits and depressions which corresponded to interrod enamel. Particles resembling calcium carbonate were found in the most protected parts of the grooves. No morphological differences were observed between brushing with fluoridated (EBF and non-fluoridated (EB dentifrice. The results suggest that the mechanical abrasion caused by brushing demineralized enamel with dentifrice smoothes the rough etched surface, and the presence of fluoride does not cause morphological modifications in this pattern.

  6. In vitro demineralization of enamel by orange juice, apple juice, Pepsi Cola and Diet Pepsi Cola.

    Science.gov (United States)

    Grobler, S R; Senekal, P J; Laubscher, J A

    1990-12-01

    Enamel demineralization was studied over periods related to normal use of an orange juice, an apple juice, Pepsi Cola and Diet Pepsi Cola. Rectangular blocks of intact human enamel (3 mm x 3 mm) were cut from teeth, coated with nail varnish except for the enamel surface and exposed to the drinks for 2, 4, 5, 6 or 40 minutes. The amount of calcium released from the enamel into solution was determined with the use of an atomic absorption spectrophotometer. The results showed the following degree of enamel demineralization: Pepsi Cola = orange juice greater than apple juice greater than Diet Pepsi Cola. The results suggest that diet colas are less demineralizing than other acid drinks, and complementary plaque studies indicate that they are also less cariogenic. The study emphasized the importance of acid-type, buffer capacity, pH and the presence of other components on the degree of enamel demineralization.

  7. [Differential diagnosis of dental enamel focal demineralization and fluorosis by means of spectrophotometry].

    Science.gov (United States)

    Makarova, N E; Vinnichenko, Yu A

    2018-01-01

    The article presents the results of spectrophotometric tooth enamel scanning for differential diagnosis of focal enamel demineralization and fluorosis. Research was conducted in vivo on teeth affected by these diseases. VITA EasyShade spectrophotometer measurements were made on the affected area and on the visually healthy part of enamel. The lightness appeared as the only one differential significant optical characteristics of tooth enamel. Lightness metrics were higher in the case of initial caries than on the healthy part of enamel when these metrics were lower in the case of fluorosis than on the healthy part of enamel.

  8. Near-surface structural examination of human tooth enamel subject to in vitro demineralization and remineralization

    Science.gov (United States)

    Gaines, Carmen Veronica

    The early stages of chemical tooth decay are governed by dynamic processes of demineralization and remineralization of dental enamel that initiates along the surface of the tooth. Conventional diagnostic techniques lack the spatial resolution required to analyze near-surface structural changes in enamel at the submicron level. In this study, slabs of highly-polished, decay-free human enamel were subjected to 0.12M EDTA and buffered lactic acid demineralizing agents and MI Paste(TM) and calcifying (0.1 ppm F) remineralizing treatments in vitro. Grazing incidence x-ray diffraction (GIXD), a technique typically used for thin film analysis, provided depth profiles of crystallinity changes in surface enamel with a resolution better than 100 nm. In conjunction with nanoindentation, a technique gaining acceptance as a means of examining the mechanical properties of sound enamel, these results were corroborated with well-established microscopy and Raman techniques to assess the nanohardness, morphologies and chemical nature of treated enamel. Interestingly, the average crystallite size of surface enamel along its c-axis dimension increased by nearly 40% after a 60 min EDTA treatment as detected by GIXD. This result was in direct contrast to the obvious surface degradation observed by microscopic and confocal Raman imaging. A decrease in nanohardness from 4.86 +/- 0.44 GPa to 0.28 +/- 0.10 GPa was observed. Collective results suggest that mineral dissolution characteristics evident on the micron scale may not be fully translated to the nanoscale in assessing the integrity of chemically-modified tooth enamel. While an intuitive decrease in enamel crystallinity was observed with buffered lactic acid-treated samples, demineralization was too slow to adequately quantify the enamel property changes seen. MI Paste(TM) treatment of EDTA-demineralized enamel showed preferential growth along the a-axis direction. Calcifying solution treatments of both demineralized sample types

  9. Prevention of enamel demineralization during orthodontic treatment: an in vitro comparative study.

    Science.gov (United States)

    Bichu, Yashodhan M; Kamat, Nandini; Chandra, Pavan Kumar; Kapoor, Aditi; Razmus, Thomas; Aravind, N K S

    2013-01-01

    Enamel demineralization is considered to be the most prevalent and significant iatrogenic effect associated with fixed orthodontic treatment and can seriously jeopardize both tooth longevity and dental esthetics. This in vitro study was undertaken to compare the effectiveness of four different commercially available surface treatment medicaments for the inhibition of enamel demineralization. Seventy-five intact maxillary premolars extracted from patients undergoing orthodontic treatment were divided into five equal groups and were subjected to one of the following protocols: no treatment (control group) or treatment with one of the following four medicaments: fluoride varnish (Fluor Protector [FP]), casein phosphopeptide-amorphous calcium phosphate (GC Tooth Mousse [TM]), calcium sodium phosphosilicate (SHY-NM), and casein phosphopeptide-amorphous calcium phosphate with fluoride (GC Tooth Mousse Plus [TMP]). All the teeth were subjected to ten Cate demineralization solution?for 96 hours and subsequently evaluated under polarized light microscopy to obtain the mean depths of enamel demineralization. One-way analysis of variance and Bonferroni comparison tests were used to obtain statistically significant differences between the five different groups at P < .05. All four surface treatment medicaments provided statistically significant reduction in the depths of enamel demineralization as compared with the control group. FP provided the greatest protection of enamel surface in terms of reduction of lesion depth, followed by TMP, SHY-NM, and TM. The use of these commercially available medicaments could prove to be beneficial for patients undergoing orthodontic treatment and who are at a risk for developing enamel decalcification.

  10. Effect of white tea and xylitol on structure and properties of demineralized enamel and jawbone

    Science.gov (United States)

    Auerkari, EI; Kiranahayu, R.; Emerita, D.; Sumariningsih, P.; Sarita, D.; Adiwirya, MS; Suhartono, AW

    2018-05-01

    White tea and xylitol have been suggested as potential agents to combat dental caries and osteoporosis through enhanced remineralization. This investigation aimed to determine the effects of exposure to white tea with and without xylitol on the structure, composition and hardness of demineralized human dental enamel. For control, samples of untreated and demineralized enamel and samples of untreated rat jawbone were subjected to similar measurements. For demineralization, the enamel samples were immersed for two days at 50°C in an acetate solution (pH 4.0). All samples were then soaked for two weeks at 37°C in a solution containing three different concentrations of white tea, xylitol or both, and an optional addition of the remineralization ingredients including Ca, P and F. For enamel samples without preceding demineralization and without added remineralization ingredients, the results showed highest mean hardness after immersion in a solution containing both white tea and xylitol, practically independently of their applied concentration level. However, for demineralized enamel samples with added remineralization ingredients, the resulting mean hardness was also dependent on concentration of white tea and xylitol. With sufficient concentration, hardness was again higher for combined white tea and xylitol than for either of these used alone.

  11. Changes in composition and enamel demineralization inhibition activities of gallic acid at different pH values

    NARCIS (Netherlands)

    Zhang, J.; Huang, X.; Huang, S.; Deng, M.; Xie, X.; Liu, M.; Liu, H.; Zhou, X.; Li, J.; ten Cate, J.M.

    2015-01-01

    Background. Gallic acid (GA) has been shown to inhibit demineralization and enhance remineralization of enamel; however, GA solution is highly acidic. This study was to investigate the stability of GA solutions at various pH and to examine the resultant effects on enamel demineralization. Methods.

  12. Re- and Demineralization Characteristics of Enamel Depending on Baseline Mineral Loss and Lesion Depth in situ.

    Science.gov (United States)

    Wierichs, Richard J; Lausch, Julian; Meyer-Lueckel, Hendrik; Esteves-Oliveira, Marcella

    2016-01-01

    The aim of this double-blinded, randomized, cross-over in situ study was to evaluate the re- and demineralization characteristics of sound enamel as well as lowly and highly demineralized caries-like enamel lesions after the application of different fluoride compounds. In each of three experimental legs of 4 weeks, 21 participants wore intraoral mandibular appliances containing 4 bovine enamel specimens (2 lowly and 2 highly demineralized). Each specimen included one sound enamel and either one lowly demineralized (7 days, pH 4.95) or one highly demineralized (21 days, pH 4.95) lesion, and was positioned 1 mm below the acrylic under a plastic mesh. The three randomly allocated treatments (application only) included the following dentifrices: (1) 1,100 ppm F as NaF, (2) 1,100 ppm F as SnF2 and (3) 0 ppm F (fluoride-free) as negative control. Differences in integrated mineral loss (x0394;x0394;Z) and lesion depth (x0394;LD) were calculated between values before and after the in situ period using transversal microradiography. Of the 21 participants, 6 did not complete the study and 2 were excluded due to protocol violation. Irrespectively of the treatment, higher baseline mineral loss and lesion depth led to a less pronounced change in mineral loss and lesion depth. Except for x0394;x0394;Z of the dentifrice with 0 ppm F, sound surfaces showed significantly higher x0394;x0394;Z and x0394;LD values compared with lowly and highly demineralized lesions (p test). Re- and demineralization characteristics of enamel depended directly on baseline mineral loss and lesion depth. Treatment groups should therefore be well balanced with respect to baseline mineral loss and lesion depth. © 2016 S. Karger AG, Basel.

  13. Argon laser induced changes to the carbonate content of enamel

    International Nuclear Information System (INIS)

    Ziglo, M.J.; Nelson, A.E.; Heo, G.; Major, P.W.

    2009-01-01

    Argon laser irradiation can be used to cure orthodontic brackets onto teeth in significantly less time than conventional curing lights. In addition, it has been shown that the argon laser seems to impart a demineralization resistance to the enamel. The purpose of this study was to use surface science techniques to ascertain if this demineralization resistance is possibly a result of a decrease in the carbonate content of enamel. Eleven mandibular third molars previously scheduled for extraction were collected and used in the present study. The teeth were sectioned in two and randomly assigned to either the argon laser (457-502 nm; 250 mW cm -2 ) or the control (no treatment) group. The sections assigned to the argon laser group were cured for 10 s and analyzed. To exaggerate any potential changes the experimental sections were then exposed to a further 110 s of argon laser irradiation. Surface analysis was performed using X-ray photoelectron spectroscopy (XPS) and time-of-flight secondary ion mass spectrometry (ToF-SIMS). The results showed no statistically significant change in the carbonate content of enamel after argon laser irradiation (p > 0.05). Thus, it is suggested that any demineralization resistance imparted to the enamel surface by argon laser irradiation is not due to alterations in carbonate content.

  14. Argon laser induced changes to the carbonate content of enamel

    Energy Technology Data Exchange (ETDEWEB)

    Ziglo, M.J. [Orthodontic Graduate Program, Faculty of Medicine and Dentistry, University of Alberta, Private Practice, Regina, Saskatchewan (Canada); Nelson, A.E., E-mail: aenelson@dow.com [Department of Chemical and Materials Engineering, Faculty of Engineering, University of Alberta (Canada); Heo, G.; Major, P.W. [Orthodontic Graduate Program, Faculty of Medicine and Dentistry, University of Alberta (Canada)

    2009-05-15

    Argon laser irradiation can be used to cure orthodontic brackets onto teeth in significantly less time than conventional curing lights. In addition, it has been shown that the argon laser seems to impart a demineralization resistance to the enamel. The purpose of this study was to use surface science techniques to ascertain if this demineralization resistance is possibly a result of a decrease in the carbonate content of enamel. Eleven mandibular third molars previously scheduled for extraction were collected and used in the present study. The teeth were sectioned in two and randomly assigned to either the argon laser (457-502 nm; 250 mW cm{sup -2}) or the control (no treatment) group. The sections assigned to the argon laser group were cured for 10 s and analyzed. To exaggerate any potential changes the experimental sections were then exposed to a further 110 s of argon laser irradiation. Surface analysis was performed using X-ray photoelectron spectroscopy (XPS) and time-of-flight secondary ion mass spectrometry (ToF-SIMS). The results showed no statistically significant change in the carbonate content of enamel after argon laser irradiation (p > 0.05). Thus, it is suggested that any demineralization resistance imparted to the enamel surface by argon laser irradiation is not due to alterations in carbonate content.

  15. Argon laser induced changes to the carbonate content of enamel

    Science.gov (United States)

    Ziglo, M. J.; Nelson, A. E.; Heo, G.; Major, P. W.

    2009-05-01

    Argon laser irradiation can be used to cure orthodontic brackets onto teeth in significantly less time than conventional curing lights. In addition, it has been shown that the argon laser seems to impart a demineralization resistance to the enamel. The purpose of this study was to use surface science techniques to ascertain if this demineralization resistance is possibly a result of a decrease in the carbonate content of enamel. Eleven mandibular third molars previously scheduled for extraction were collected and used in the present study. The teeth were sectioned in two and randomly assigned to either the argon laser (457-502 nm; 250 mW cm -2) or the control (no treatment) group. The sections assigned to the argon laser group were cured for 10 s and analyzed. To exaggerate any potential changes the experimental sections were then exposed to a further 110 s of argon laser irradiation. Surface analysis was performed using X-ray photoelectron spectroscopy (XPS) and time-of-flight secondary ion mass spectrometry (ToF-SIMS). The results showed no statistically significant change in the carbonate content of enamel after argon laser irradiation ( p > 0.05). Thus, it is suggested that any demineralization resistance imparted to the enamel surface by argon laser irradiation is not due to alterations in carbonate content.

  16. DEMINERALIZATION OF HUMAN DENTIN COMPARED WITH ENAMEL IN A PH-CYCLING APPARATUS WITH A CONSTANT COMPOSITION DURING DE-MINERALIZATION AND REMINERALIZATION PERIODS

    NARCIS (Netherlands)

    HERKSTROTER, FM; WITJES, M; ARENDS, J

    1991-01-01

    A comparison was made between the demineralization of enamel and dentine with and without abraded surfaces. This was done in a pH-cycling experiment for different demineralization/remineralization ratios - in the range from 1:1 to 1:4 - and for different fluoride additions (up to 2 ppm) in solution.

  17. In vitro study of demineralization resistance and fluoride retention in dental enamel irradiated with Er,Cr: YSGG laser; Estudo in vitro da resistencia a desmineralizacao e da retencao de fluor em esmalte dental irradiado com laser de Er, Cr: YSGG

    Energy Technology Data Exchange (ETDEWEB)

    Ana, Patricia Aparecida da. E-mail: patriciadaana@yahoo.com.br

    2007-07-01

    This study aimed to establish irradiation conditions of Er,Cr:YSGG laser ({lambda} of 2.79 {mu}m) which could propitiate changes on human dental enamel and increase its resistance to demineralization, when associated or not with topical application of acidulated phosphate fluoride (APF). Fluences of 2,8 J/cm{sup 2}, 5,6 J/cm{sup 2} e 8,5 J/cm{sup 2} were selected; they were associated or not with previous application of a photo absorber (coal paste) and then APF was applied or not after laser irradiation. In a first step, the morphological findings, the surface temperatures, and the pupal temperatures were evaluated during laser irradiation. After that, the treated samples were submitted to a a ten-day pH-cycling model. After producing the incipient white-spots lesions, the following aspects were evaluated: the mineral loss, the loosely bound fluoride and the firmly bound fluoride. All the demineralizing and remineralizing pH-cycling solutions were evaluated with respect to their calcium (Ca), inorganic phosphorous (Pi) and fluoride (F{sup -}) concentrations. The data had their normality and homogeneity distribution statistically evaluated, and it was chosen an appropriated statistical test for each performed analysis according to the obtained results, considering 5% significant level. The fluences selected for this study created ablated surfaces; the fluences of 5.6 J/cm{sup 2} and 8.5 J/cm{sup 2} promoted increments in surface temperature above 110 deg C. The intrapupal temperature changes revealed that laser irradiation did not increase the pulpal temperatures above the critical threshold for induction of pulpitis. The coal paste did not promote any changes on surface morphology or in the intrapulpal temperature changes; however, this paste increased the surface temperatures during laser irradiation. Only laser irradiation at 8.5 J/cm{sup 2} was able to decrease the mineral loss when compared to the no-treatment group; although the association of coal paste

  18. Influence of fluoride varnish on shear bond strength of a universal adhesive on intact and demineralized enamel.

    Science.gov (United States)

    Ortiz-Ruiz, Antonio José; Muñoz-Gómez, Iban Jesús; Pérez-Pardo, Ana; Germán-Cecilia, Concepción; Martínez-Beneyto, Yolanda; Vicente, Ascensión

    2018-04-27

    The aim was to evaluate the effect of fluoride varnish on the shear bond strength (SBS) on polished and non-polished intact and demineralized enamel. Bovine incisors (half demineralized) were used. Bifluorid 12™ was applied. Bonding was made with Futurabond ® M + and GrandioSO, 24 h and 7 days after varnishing. In some groups, varnish was removed by polishing before bonding. SBS was measured. Fracture type was determined by stereomicroscopy and scanning electron microscope (SEM) observations of the enamel surface were made. Between-group differences were determined by one-way ANOVA and the Tukey test. Associations between study factors and fracture modes were analysed using contingency tables and Pearson's chi-squared test. For intact enamel, SBS on varnished enamel at 24 h was significantly less than in the other groups. SBS recovered 7 days after varnishing. Varnish elimination after 24 h significantly increased the SBS. However, removal at 7 days did not modify SBS. SBS on demineralized enamel groups was significantly less than in intact enamel, except for demineralized enamel varnished and removed at 7 days. Demineralized enamel was associated with cohesive enamel fractures and intact enamel with cohesive fractures of the composite and adhesive fractures. SEM of varnish surfaces showed a homogenous layer scattered with amorphous precipitate. In conclusion, on intact enamel fluoride varnish had a negative effect on SBS at 24 h, which disappeared after 7 days. On demineralized enamel, varnish did not reduce SBS at either time. Polishing the varnished enamel surface showed a similar SBS to intact enamel after 7 days.

  19. Fluoride releasing and enamel demineralization around orthodontic brackets by fluoride-releasing composite containing nanoparticles.

    Science.gov (United States)

    Melo, Mary A S; Morais, Weslanny A; Passos, Vanara F; Lima, Juliana P M; Rodrigues, Lidiany K A

    2014-05-01

    Fluoride-containing materials have been suggested to control enamel demineralization around orthodontic brackets during the treatment with fixed appliances. The improvement of their properties has been made through innovations, such as the application of nanotechnology by incorporation of nanofillers. This in vitro study evaluated the capacity of fluoride releasing and enamel demineralization inhibition of fluoride-releasing nanofilled cement around orthodontic brackets using an artificial caries biofilm model. Forty bovine enamel discs were selected by evaluating surface microhardness and randomized into four groups (n = 10): non-fluoride-releasing microfilled composite, fluoride-releasing microfilled composite, resin-modified glass ionomer cement (RMGI), and fluoride-releasing nanofilled composite (FN). After brackets bonding in each disc, the specimens were subjected to a cariogenic challenge through a Streptococcus mutans biofilm model. After the experimental period, the biofilm formed around the brackets was collected for fluoride analysis and the mineral loss around the brackets was determined by integrated demineralization via cross-sectional microhardness measurement at 20 and 70 μm from the bracket margin. Additionally, samples of each group were subjected to energy-dispersive X-ray spectroscopy (EDX) analysis examined under a scanning electron microscopy (SEM). ANOVA followed by Tukey test were applied for fluoride concentration and mineral loss data, respectively. At both distances, only RMGI statistically differed from the other groups presenting the lowest demineralization, although there was a trend to a lower demineralization of enamel around brackets in FN group. Similar condition was found to fluoride concentration and EDX/SEM analysis. Under the cariogenic exposure condition of this study, the fluoride-releasing nanofilled material had similar performance to fluoride-releasing microfilled materials. The presence of nanofillers in the fluoride

  20. Acid demineralization susceptibility of dental enamel submitted to different bleaching techniques and fluoridation regimens.

    Science.gov (United States)

    Salomão, Dlf; Santos, Dm; Nogueira, Rd; Palma-Dibb, Rg; Geraldo-Martins, Vr

    2014-01-01

    The aim of the current study was to assess the acid demineralization susceptibility of bleached dental enamel submitted to different fluoride regimens. One hundred bovine enamel blocks (6×6×3 mm) were randomly divided into 10 groups (n=10). Groups 1 and 2 received no bleaching. Groups 3 to 6 were submitted to an at-home bleaching technique using 6% hydrogen peroxide (HP; G3 and G4) or 10% carbamide peroxide (CP; G5 and G6). Groups 7 to 10 were submitted to an in-office bleaching technique using 35% HP (G7 and G8) or 35% CP (G9 and G10). During bleaching, a daily fluoridation regimen of 0.05% sodium fluoride (NaF) solution was performed on groups 3, 5, 7, and 9, while weekly fluoridation with a 2% NaF gel was performed on groups 4, 6, 8, and 10. The samples in groups 2 to 10 were pH cycled for 14 consecutive days. The samples from all groups were then assessed by cross-sectional Knoop microhardness at different depths from the outer enamel surface. The average Knoop hardness numbers (KHNs) were compared using one-way analysis of variance and Tukey tests (α=0.05). The comparison between groups 1 and 2 showed that the demineralization method was effective. The comparison among groups 2 to 6 showed the same susceptibility to acid demineralization, regardless of the fluoridation method used. However, the samples from groups 8 and 10 showed more susceptibility to acid demineralization when compared with group 2 (penamel to acid demineralization. However, the use of 35% HP and 35% CP must be associated with a daily fluoridation regimen, otherwise the in-office bleaching makes the bleached enamel more susceptible to acid demineralization.

  1. Effect of fluoridated milk on enamel demineralization adjacent to fixed orthodontic appliances

    DEFF Research Database (Denmark)

    Sköld-Larsson, Kerstin; Sollenius, Ola; Karlsson, Lena

    2012-01-01

    Abstract Objective. To investigate the effect of daily intake of fluoridated milk on enamel demineralization adjacent to fixed orthodontic brackets assessed with quantitative light-induced fluorescence (QLF). Materials and methods. Sixty-four healthy adolescents (13-18 years) undergoing orthodontic...... amount of milk without fluoride. The intervention period was 12 weeks and the end-point was mineral gain or loss in enamel, assessed by QLF on two selected sites from each individual. The attrition rate was 12.5% and 112 sites were included in the final evaluation. Results. There was no statistically...

  2. Ph-activated nano-amorphous calcium phosphate-based cement to reduce dental enamel demineralization.

    Science.gov (United States)

    Melo, Mary A S; Weir, Michael D; Passos, Vanara F; Powers, Michael; Xu, Hockin H K

    2017-12-01

    Enamel demineralization is destructive, esthetically compromised, and costly complications for orthodontic patients. Nano-sized amorphous calcium phosphate (NACP) has been explored to address this challenge. The 20% NACP-loaded ortho-cement notably exhibited favorable behavior on reducing demineralization of enamel around brackets in a caries model designed to simulate the carious attack. The 20% NACP-loaded ortho-cement markedly promotes higher calcium and phosphate release at a low pH, and the mineral loss was almost two fold lower and carious lesion depth decreased the by 1/3. This novel approach is promising co-adjuvant route for prevention of dental caries dissemination in millions of patients under orthodontic treatment.

  3. Vibrational monitor of early demineralization in tooth enamel after in vitro exposure to phosphoridic liquid

    Science.gov (United States)

    Pezzotti, Giuseppe; Adachi, Tetsuya; Gasparutti, Isabella; Vincini, Giulio; Zhu, Wenliang; Boffelli, Marco; Rondinella, Alfredo; Marin, Elia; Ichioka, Hiroaki; Yamamoto, Toshiro; Marunaka, Yoshinori; Kanamura, Narisato

    2017-02-01

    The Raman spectroscopic method has been applied to quantitatively assess the in vitro degree of demineralization in healthy human teeth. Based on previous evaluations of Raman selection rules (empowered by an orientation distribution function (ODF) statistical algorithm) and on a newly proposed analysis of phonon density of states (PDOS) for selected vibrational modes of the hexagonal structure of hydroxyapatite, a molecular-scale evaluation of the demineralization process upon in vitro exposure to a highly acidic beverage (i.e., CocaCola™ Classic, pH = 2.5) could be obtained. The Raman method proved quite sensitive and spectroscopic features could be directly related to an increase in off-stoichiometry of the enamel surface structure since the very early stage of the demineralization process (i.e., when yet invisible to other conventional analytical techniques). The proposed Raman spectroscopic algorithm might possess some generality for caries risk assessment, allowing a prompt non-contact diagnostic practice in dentistry.

  4. [In vivo retention of KOH soluble and firmly bound fluoride in demineralized dental enamel].

    Science.gov (United States)

    Hellwig, E; Klimek, J; Albert, G

    1989-03-01

    Cylindrical enamel blocks with initial carious lesions were treated for one hour with Duraphat or Fluor-Protector. After removal of the fluoride varnishes the enamel blocks were kept in the mouths of 3 probands for 5 days. Plaque was allowed to accumulate on half of the enamel cylinders, while the other half was kept clean. Part of the enamel cylinders were retained as fluoridated controls. Compared with Duraphat the application of Fluor-Protector resulted in a significantly higher uptake of KOH soluble and firmly bound fluoride. During the 5 days of the experiment the amount of KOH soluble fluorides decreased in both groups. In the presence of plaque the fluoride loss was higher. The amount of firmly bound fluoride increased both in the plaque covered and in the clean enamel. The durable cariostatic effect of fluoridated varnishes seems to be due to the slow dissolution of Ca F2-like precipitates on the enamel surface and the concomitant fluoride uptake in the underlying demineralized enamel.

  5. EFFECT OF FREQUENT CONSUMPTION OF STARCHY FOOD ITEMS ON ENAMEL AND DENTIN DEMINERALIZATION AND ON PLAQUE PH IN-SITU

    NARCIS (Netherlands)

    LINGSTROM, P; BIRKHED, D; RUBEN, J; ARENDS, J

    The aim of this cross-over study was to determine the cariogenic potential of starchy food items as between-meal snacks. This was done by measuring demineralization of human enamel and dentin as well as the pH of dental plaque in situ. Eight volunteers with complete dentures carried two enamel and

  6. Selective Acid Etching Improves the Bond Strength of Universal Adhesive to Sound and Demineralized Enamel of Primary Teeth.

    Science.gov (United States)

    Antoniazzi, Bruna Feltrin; Nicoloso, Gabriel Ferreira; Lenzi, Tathiane Larissa; Soares, Fabio Zovico Maxnuck; Rocha, Rachel de Oliveira

    To evaluate the influence of enamel condition and etching strategy on bond strength of a universal adhesive in primary teeth. Thirty-six primary molars were randomly assigned to six groups (n = 6) according to the enamel condition (sound [S] and demineralized [DEM]/cariogenic challenge by pH cycling prior to restorative procedures) and adhesive system (Scotchbond Universal Adhesive [SBU]) used in either etch-and-rinse (ER) or selfetching (SE) mode, with Clearfil SE Bond as the self-etching control. The adhesives were applied to flat enamel surfaces and composite cylinders (0.72 mm2) were built up. After 24-h storage in water, specimens were subjected to the microshear test. Bond strength (MPa) data were analyzed using two-way ANOVA and Tukey's post-hoc tests (α = 0.05). Significant differences were found considering the factors adhesive system (p = 0.003) and enamel condition (p = 0.001). Demineralized enamel negatively affected the bond strength, with μSBS values approximately 50% lower than those obtained for sound enamel. SBU performed better in etch-and-rinse mode, and the bond strength found for SBU applied in self-etching mode was similar to that of CSE. Enamel etching with phosphoric acid improves the bond strength of a universal adhesive system to primary enamel. Demineralized primary enamel results in lower bond strength.

  7. The influence of topical application of grapeseed extract gel on enamel surface hardness after demineralization

    Science.gov (United States)

    Saragih, D. A.; Herda, E.; Triaminingsih, S.

    2017-08-01

    The aim of this study was to analyze the influence of topical application of 6.5% and 12.5% grapeseed extract gels for duration of application 16 and 32 minutes on the enamel surface hardness following tooth demineralization by an energy drink. The samples were 21 bovine teeth that underwent demineralization by immersion in the energy drink for 5 minutes in an incubator at 37°C. The demineralized specimens were randomly divided into a control group and 2 treatment groups. The control group was immersed in artificial saliva for 6 hours at 37°C, whereas the treatment groups were treated with topical 6.5% and 12.5% grapeseed extract gels for durations of 16 and 32 minutes and then immersed in artificial saliva for 6 hours at 37°C. The hardness was measured with a Knoop hardness tester. Statistical analysis by repeated ANOVA and one-way ANOVA revealed a significant increase in the enamel hardness value (p0.05).

  8. Combination effect of fluoride dentifrices and varnish on deciduous enamel demineralization

    Directory of Open Access Journals (Sweden)

    Alessandra Gatti

    2011-10-01

    Full Text Available The aim of this study was to evaluate the anticaries potential of 500 or 1100 ppm F dentifrices combined with fluoride varnish using a pH-cycling regimen. Seventy primary canines were covered with nail polish, leaving a 4×4 mm window on their buccal surface, and randomly assigned into 7 groups (n = 10: S: sound enamel not submitted to the pH-cycling regimen or treatment; N: negative control, submitted to the pH-cycling regimen without any treatment; D1 and D2: subjected to the pH-cycling regimen and treated twice daily with 1100 or 500 ppm F dentifrice, respectively; VF: fluoride varnish (subjected to F-varnish before and in the middle of the pH-cycling regimen; and VF+D1 and VF+D2. After 10 days, the teeth were sectioned, and enamel demineralization was assessed by cross-sectional hardness at different distances from the dental surface. Data were analyzed using a two-way ANOVA followed by Tukey's test. Dentifrice with 1100 ppm F and the combination of F-varnish with the dentifrices significantly reduced enamel demineralization compared with the negative control (p 0.05. The effect of combining F-varnish with the dentifrices was not greater than the effect of the dentifrices alone (p < 0.05. The data suggest that the combination of F-varnish with dentifrices containing 500 and 1100 ppm F is not more effective in reducing demineralization in primary teeth than the isolated effect of dentifrice containing 1100 ppm F.

  9. In-vitro study investigating influence of toothpaste containing green tea extract on the microhardness of demineralized human enamel

    Science.gov (United States)

    Febrian, K.; Triaminingsih, S.; Indrani, DJ

    2017-08-01

    The aim of this study was to analyze the influence of toothpaste containing green tea extract on the microhardness of demineralized enamel. Human tooth, which was demineralised in citric acid solution, had a toothpaste containing green tea extract of concentration of 5, 10 or 15% application. Microhardness measurement was carried out on each enamel surface of the teeth for initial, after the demineralization and after application of the tooth pastes. It showed that there was significant decrease between enamel microhardness of the teeth at the initial condition and after demineralization. After application of the toothpaste containing green tea extract of each concentration the microhardnss increased significantly. However, there the microhardness was insignificant between the applications of each green tea concentration.

  10. Novel Dental Cement to Combat Biofilms and Reduce Acids for Orthodontic Applications to Avoid Enamel Demineralization

    Directory of Open Access Journals (Sweden)

    Ning Zhang

    2016-05-01

    Full Text Available Orthodontic treatments often lead to biofilm buildup and white spot lesions due to enamel demineralization. The objectives of this study were to develop a novel bioactive orthodontic cement to prevent white spot lesions, and to determine the effects of cement compositions on biofilm growth and acid production. 2-methacryloyloxyethyl phosphorylcholine (MPC, nanoparticles of silver (NAg, and dimethylaminohexadecyl methacrylate (DMAHDM were incorporated into a resin-modified glass ionomer cement (RMGI. Enamel shear bond strength (SBS was determined. Protein adsorption was determined using a micro bicinchoninic acid method. A dental plaque microcosm biofilm model with human saliva as inoculum was used to investigate metabolic activity, colony-forming units (CFU and lactic acid production. Incorporating 3% of MPC, 1.5% of DMAHDM, and 0.1% of NAg into RMGI, and immersing in distilled water at 37 °C for 30 days, did not decrease the SBS, compared to control (p > 0.1. RMGI with 3% MPC + 1.5% DMAHDM + 0.1% NAg had protein amount that was 1/10 that of control. RMGI with triple agents (MPC + DMAHDM + NAg had much stronger antibacterial property than using a single agent or double agents (p < 0.05. Biofilm CFU on RMGI with triple agents was reduced by more than 3 orders of magnitude, compared to commercial control. Biofilm metabolic activity and acid production were also greatly reduced. In conclusion, adding MPC + DMAHDM + NAg in RMGI substantially inhibited biofilm viability and acid production, without compromising the orthodontic bracket bond strength to enamel. The novel bioactive cement is promising for orthodontic applications to hinder biofilms and plaque buildup and enamel demineralization.

  11. Effect of light-curable fluoride varnish on enamel demineralization adjacent to orthodontic brackets: an in-vivo study.

    Science.gov (United States)

    Mehta, Anurag; Paramshivam, Ganesh; Chugh, Vinay Kumar; Singh, Surjit; Halkai, Sudha; Kumar, Santosh

    2015-11-01

    The purpose of this in-vivo study was to evaluate the effect of a single application of Clinpro XT (3M ESPE, Pymble, New South Wales, Australia), a light-curable fluoride varnish, on enamel demineralization adjacent to orthodontic brackets. Thirty-eight patients (152 teeth) whose orthodontic treatment involved extraction of 4 first premolars were recruited. Two premolars each were assigned to the control group (no treatment) and the experimental group (received fluoride varnish application). The study was designed as a nonrandomized split-mouth study in which diagonally opposite quadrants received the same treatment. After the bonding procedures, a sectional T-loop was ligated into each bracket to serve as a site for plaque retention for enhanced demineralization. Clinpro XT was applied on the buccal surfaces adjacent to the brackets on all teeth in the experimental group only. Teeth in both groups were extracted after 15 days (n = 30), 30 days (n = 30), 45 days (n = 30), 90 days (n = 18), and 120 days (n = 18). Buccolingual sections were then evaluated under polarized light microscopy. After we excluded the dropouts, the mean depth of the demineralized enamel lesions was measured in final sample of 126 teeth. The Mann-Whitney test was used for comparison of the groups. In the control group, the depths of the demineralized enamel lesions increased from 30 to 120 days, whereas in the experimental group no sign of demineralization was noted throughout the observation period except for 3 teeth. Significant differences in the depths of demineralized lesions were found between the study groups. Clinpro XT light-curable fluoride varnish may be a reasonable alternative in the reduction of enamel demineralization around orthodontic brackets, especially in noncompliant and high-risk patients. Copyright © 2015 American Association of Orthodontists. Published by Elsevier Inc. All rights reserved.

  12. Effects of Treatment with Various Remineralizing Agents on the Microhardness of Demineralized Enamel Surface

    Directory of Open Access Journals (Sweden)

    Kiana Salehzadeh Esfahani

    2015-12-01

    Full Text Available Background and aims. Remineralization of incipient caries is one of the goals in dental health care. The present study aimed at comparing the effects of casein phosphopeptide-amorphous calcium phosphate complex (CPP-ACP, Remin Pro®, and 5% sodium fluoride varnish on remineralization of enamel lesions. Materials and methods. In this in vitro study, 60 enamel samples were randomly allocated to six groups of 10. After four days of immersion in demineralizing solution, microhardness of all samples was measured. Afterward, groups 1-3 under-went one-time treatment with fluoride varnish, CPP-ACP, and Remin Pro®, respectively. Microhardness of groups 4-6 was measured not only after one-month treatment with the above-mentioned materials (for eight hours a day, but also after re-exposing to the demineralizing solution. The results were analyzed by one-way analysis of variance (ANOVA, repeated measures ANOVA, and Fisher’s least significant difference (LSD test. Results. None of the regimens could increase microhardness in groups 1-3. However, one-month treatment regimens in groups 4-6 caused a significant increase in microhardness. The greatest microhardness was detected in the group treated with CPP-ACP (P = 0.001. In addition, although microhardness reduced following re-demineralization in all three groups, the mean reduction was minimum in the CPP-ACP-treated group (P < 0.001. Conclusion. While long-term repeated application of all compounds improved microhardness, the remineralization potential of CPP-ACP was significantly higher than that of Remin Pro® and sodium fluoride varnish.

  13. Enamel and dentine demineralization by a combination of starch and sucrose in a biofilm – caries model

    Directory of Open Access Journals (Sweden)

    Juliana Nunes BOTELHO

    2016-01-01

    Full Text Available Abstract Sucrose is the most cariogenic dietary carbohydrate and starch is considered non-cariogenic for enamel and moderately cariogenic for dentine. However, the cariogenicity of the combination of starch and sucrose remains unclear. The aim of this study was to evaluate the effect of this combination on Streptococcus mutans biofilm composition and enamel and dentine demineralization. Biofilms of S. mutans UA159 were grown on saliva-coated enamel and dentine slabs in culture medium containing 10% saliva. They were exposed (8 times/day to one of the following treatments: 0.9% NaCl (negative control, 1% starch, 10% sucrose, or 1% starch and 10% sucrose (starch + sucrose. To simulate the effect of human salivary amylase on the starch metabolization, the biofilms were pretreated with saliva before each treatment and saliva was also added to the culture medium. Acidogenicity of the biofilm was estimated by evaluating (2 times/day the culture medium pH. After 4 (dentine or 5 (enamel days of growth, biofilms (n = 9 were individually collected, and the biomass, viable microorganism count, and polysaccharide content were quantified. Dentine and enamel demineralization was assessed by determining the percentage of surface hardness loss. Biofilms exposed to starch + sucrose were more acidogenic and caused higher demineralization (p < 0.0001 on either enamel or dentine than those exposed to each carbohydrate alone. The findings suggest that starch increases the cariogenic potential of sucrose.

  14. Dynamic measurement of the optical properties of bovine enamel demineralization models using four-dimensional optical coherence tomography

    Science.gov (United States)

    Aden, Abdirahman; Anthony, Arthi; Brigi, Carel; Merchant, Muhammad Sabih; Siraj, Huda; Tomlins, Peter H.

    2017-07-01

    Dental enamel mineral loss is multifactorial and is consequently explored using a variety of in vitro models. Important factors include the presence of acidic pH and its specific ionic composition, which can both influence lesion characteristics. Optical coherence tomography (OCT) has been demonstrated as a promising tool for studying dental enamel demineralization. However, OCT-based characterization and comparison of demineralization model dynamics are challenging without a consistent experimental environment. Therefore, an automated four-dimensional OCT system was integrated with a multispecimen flow cell to measure and compare the optical properties of subsurface enamel demineralization in different models. This configuration was entirely automated, thus mitigating any need to disturb the specimens and ensuring spatial registration of OCT image volumes at multiple time points. Twelve bovine enamel disks were divided equally among three model groups. The model demineralization solutions were citric acid (pH 3.8), acetic acid (pH 4.0), and acetic acid with added calcium and phosphate (pH 4.4). Bovine specimens were exposed to the solution continuously for 48 h. Three-dimensional OCT data were obtained automatically from each specimen at a minimum of 1-h intervals from the same location within each specimen. Lesion dynamics were measured in terms of the depth below the surface to which the lesion extended and the attenuation coefficient. The net loss of surface enamel was also measured for comparison. Similarities between the dynamics of each model were observed, although there were also distinct characteristic differences. Notably, the attenuation coefficients showed a systematic offset and temporal shift with respect to the different models. Furthermore, the lesion depth curves displayed a discontinuous increase several hours after the initial acid challenge. This work demonstrated the capability of OCT to distinguish between different enamel demineralization

  15. Effect of Violet-Blue Light on Streptococcus mutans-Induced Enamel Demineralization

    Directory of Open Access Journals (Sweden)

    Grace Gomez Felix Gomez

    2018-03-01

    Full Text Available Background: This in vitro study determined the effectiveness of violet-blue light (405 nm on inhibiting Streptococcus mutans-induced enamel demineralization. Materials and Methods: S. mutans UA159 biofilm was grown on human enamel specimens for 13 h in 5% CO2 at 37 °C with/without 1% sucrose. Wet biofilm was treated twice daily with violet-blue light for five minutes over five days. A six-hour reincubation was included daily between treatments excluding the final day. Biofilms were harvested and colony forming units (CFU were quantitated. Lesion depth (L and mineral loss (∆Z were quantified using transverse microradiography (TMR. Quantitative light-induced fluorescence Biluminator (QLF-D was used to determine mean fluorescence loss. Data were analyzed using one-way analysis of variance (ANOVA to compare differences in means. Results: The results demonstrated a significant reduction in CFUs between treated and non-treated groups grown with/without 1% sucrose. ∆Z was significantly reduced for specimens exposed to biofilms grown without sucrose with violet-blue light. There was only a trend on reduction of ∆Z with sucrose and with L on both groups. There were no differences in fluorescence-derived parameters between the groups. Conclusions: Within the limitations of the study, the results indicate that violet-blue light can serve as an adjunct prophylactic treatment for reducing S. mutans biofilm formation and enamel mineral loss.

  16. Effect of dentifrice containing fluoride and/or baking soda on enamel demineralization/remineralization: an in situ study.

    Science.gov (United States)

    Cury, J A; Hashizume, L N; Del Bel Cury, A A; Tabchoury, C P

    2001-01-01

    The additive effect of baking soda on the anticariogenic effect of fluoride dentifrice is not well established. To evaluate it, a crossover in situ study was done in three phases of 28 days. Volunteers, using acrylic palatal appliances containing four human enamel blocks, two sound (to evaluate demineralization) and two with artificial caries lesions (to evaluate remineralization), took part in this study. During each phase, 10% sucrose solution was dripped (3 times a day) only onto the sound blocks. After 10 min, a slurry of placebo, fluoride (F) or fluoride and baking soda (F+NaHCO(3)) dentifrice was dripped onto all enamel blocks. The results showed a higher F concentration in dental plaque formed during treatment with F+NaHCO(3) than placebo (pbaking soda neither improves nor impairs the effect of F dentifrice on reduction of demineralization and enhancement of remineralization of enamel.

  17. Femtosecond laser ablation of enamel

    Science.gov (United States)

    Le, Quang-Tri; Bertrand, Caroline; Vilar, Rui

    2016-06-01

    The surface topographical, compositional, and structural modifications induced in human enamel by femtosecond laser ablation is studied. The laser treatments were performed using a Yb:KYW chirped-pulse-regenerative amplification laser system (560 fs and 1030 nm) and fluences up to 14 J/cm2. The ablation surfaces were studied by scanning electron microscopy, grazing incidence x-ray diffraction, and micro-Raman spectroscopy. Regardless of the fluence, the ablation surfaces were covered by a layer of resolidified material, indicating that ablation is accompanied by melting of hydroxyapatite. This layer presented pores and exploded gas bubbles, created by the release of gaseous decomposition products of hydroxyapatite (CO2 and H2O) within the liquid phase. In the specimen treated with 1-kHz repetition frequency and 14 J/cm2, thickness of the resolidified material is in the range of 300 to 900 nm. The micro-Raman analysis revealed that the resolidified material contains amorphous calcium phosphate, while grazing incidence x-ray diffraction analysis allowed detecting traces of a calcium phosphate other than hydroxyapatite, probably β-tricalcium phosphate Ca3), at the surface of this specimen. The present results show that the ablation of enamel involves melting of enamel's hydroxyapatite, but the thickness of the altered layer is very small and thermal damage of the remaining material is negligible.

  18. Oriented and Ordered Biomimetic Remineralization of the Surface of Demineralized Dental Enamel Using HAP@ACP Nanoparticles Guided by Glycine

    Science.gov (United States)

    Wang, Haorong; Xiao, Zuohui; Yang, Jie; Lu, Danyang; Kishen, Anil; Li, Yanqiu; Chen, Zhen; Que, Kehua; Zhang, Qian; Deng, Xuliang; Yang, Xiaoping; Cai, Qing; Chen, Ning; Cong, Changhong; Guan, Binbin; Li, Ting; Zhang, Xu

    2017-01-01

    Achieving oriented and ordered remineralization on the surface of demineralized dental enamel, thereby restoring the satisfactory mechanical properties approaching those of sound enamel, is still a challenge for dentists. To mimic the natural biomineralization approach for enamel remineralization, the biological process of enamel development proteins, such as amelogenin, was simulated in this study. In this work, carboxymethyl chitosan (CMC) conjugated with alendronate (ALN) was applied to stabilize amorphous calcium phosphate (ACP) to form CMC/ACP nanoparticles. Sodium hypochlorite (NaClO) functioned as the protease which decompose amelogenin in vivo to degrade the CMC-ALN matrix and generate HAP@ACP core-shell nanoparticles. Finally, when guided by 10 mM glycine (Gly), HAP@ACP nanoparticles can arrange orderly and subsequently transform from an amorphous phase to well-ordered rod-like apatite crystals to achieve oriented and ordered biomimetic remineralization on acid-etched enamel surfaces. This biomimetic remineralization process is achieved through the oriented attachment (OA) of nanoparticles based on non-classical crystallization theory. These results indicate that finding and developing analogues of natural proteins such as amelogenin involved in the biomineralization by natural macromolecular polymers and imitating the process of biomineralization would be an effective strategy for enamel remineralization. Furthermore, this method represents a promising method for the management of early caries in minimal invasive dentistry (MID).

  19. The effect of fractional CO2 laser irradiation on remineralization of enamel white spot lesions.

    Science.gov (United States)

    Poosti, Maryam; Ahrari, Farzaneh; Moosavi, Horieh; Najjaran, Hoda

    2014-07-01

    This study investigated the combined effect of fractional CO(2) laser irradiation and fluoride on treatment of enamel caries. Sixty intact premolars were randomly assigned into four groups and then stored in a demineralizing solution to induce white spot lesions. Tooth color was determined at baseline (T1) and after demineralization (T2). Afterwards, the teeth in group 1 remained untreated (control), while group 2 was exposed to an acidulated phosphate fluoride (APF) gel for 4 min. In groups 3 and 4, a fractional CO(2) laser was applied (10 mJ, 200 Hz, 10 s) either before (group 3) or through (group 4) the APF gel. The teeth were then immersed in artificial saliva for 90 days while subjected to daily fluoride mouthrinse and weekly brushing. Color examinations were repeated after topical fluoride application (T3) and 90 days later (T4). Finally, the teeth were sectioned, and microhardness was measured at the enamel surface and at 30 and 60 μ from the surface. In both lased groups, the color change between T1 and T4 stages (∆E(T1-T4)) was significantly lower than those of the other groups (p Laser irradiation followed by fluoride application (group 3) caused a significant increase in surface microhardness compared to APF alone and control groups (p laser before fluoride therapy is suggested for recovering the color and rehardening of demineralized enamel.

  20. Role of fluoridated carbamide peroxide whitening gel in the remineralization of demineralized enamel: An in vitro study.

    Science.gov (United States)

    Bollineni, Swetha; Janga, Ravi Kumar; Venugopal, L; Reddy, Indukuri Ravikishore; Babu, P Ravisekhar; Kumar, Sunil S

    2014-05-01

    The use of self-administered carbamide peroxide bleaching gels has become increasingly popular for whitening of discolored vital teeth. Studies have reported that its use may induce increased levels of sensitivity and surface roughness of the tooth due to demineralization. This study evaluates the effect of fluoride addition to the bleaching agent - its remineralizing capacity and alterations in the whitening properties. Twenty-four extracted lower third molar teeth, with the pretreatment shade determined, were taken up in the study. Each tooth was sectioned into four and labeled as groups A, B, C, and D. The tooth quadrants in group A-C were demineralized; groups A and B were treated with 10% carbamide peroxide gel (group-A without fluoride and group-B with 0.463% fluoride addition) (no further treatment was carried out for group c) group-D remained as the control. The post-treatment shade was determined. The tooth samples were sectioned (approximately 200 μm) for evaluation under a light microscope. The depth of demineralization was analyzed at five different equidistant points. Statistical analysis was carried out with t-tests, accepting ≤0.05 as significant. Addition of fluoride caused remineralization of demineralized enamel. The tooth whitening system showed that the remineralization properties did not affect the whitening properties.

  1. In vitro evaluation of demineralized freeze-dried bone allograft in combination with enamel matrix derivative.

    Science.gov (United States)

    Miron, Richard J; Bosshardt, Dieter D; Laugisch, Oliver; Dard, Michel; Gemperli, Anja C; Buser, Daniel; Gruber, Reinhard; Sculean, Anton

    2013-11-01

    Preclinical and clinical studies suggest that a combination of enamel matrix derivative (EMD) with demineralized freeze-dried bone allograft (DFDBA) may improve periodontal wound healing and regeneration. To date, no single study has characterized the effects of this combination on in vitro cell behavior. The aim of this study is to test the ability of EMD to adsorb to the surface of DFDBA particles and determine the effect of EMD coating on downstream cellular pathways such as adhesion, proliferation, and differentiation of primary human osteoblasts and periodontal ligament (PDL) cells. DFDBA particles were precoated with EMD or human blood and analyzed for protein adsorption patterns via scanning electron microscopy. Cell attachment and proliferation were quantified using a commercial assay. Cell differentiation was analyzed using real-time polymerase chain reaction for genes encoding Runx2, alkaline phosphatase, osteocalcin, and collagen 1α1, and mineralization was assessed using alizarinred staining. Analysis of cell attachment revealed no significant differences among control, blood-coated, and EMD-coated DFDBA particles. EMD significantly increased cell proliferation at 3 and 5 days after seeding for both osteoblasts and PDL cells compared to control and blood-coated samples. Moreover, there were significantly higher messenger ribonucleic acid levels of osteogenic differentiation markers, including collagen 1α1, alkaline phosphatase, and osteocalcin, in osteoblasts and PDL cells cultured on EMD-coated DFDBA particles at 3, 7, and 14 days. The results suggest that the addition of EMD to DFDBA particles may influence periodontal regeneration by stimulating PDL cell and osteoblast proliferation and differentiation.

  2. Real-time near-IR imaging of laser-ablation crater evolution in dental enamel

    Science.gov (United States)

    Darling, Cynthia L.; Fried, Daniel

    2007-02-01

    We have shown that the enamel of the tooth is almost completely transparent near 1310-nm in the near-infrared and that near-IR (NIR) imaging has considerable potential for the optical discrimination of sound and demineralized tissue and for observing defects in the interior of the tooth. Lasers are now routinely used for many applications in dentistry including the ablation of dental caries. The objective of this study was to test the hypothesis that real-time NIR imaging can be used to monitor laser-ablation under varying conditions to assess peripheral thermal and transient-stress induced damage and to measure the rate and efficiency of ablation. Moreover, NIR imaging may have considerable potential for monitoring the removal of demineralized areas of the tooth during cavity preparations. Sound human tooth sections of approximately 3-mm thickness were irradiated by a CO II laser under varying conditions with and without a water spray. The incision area in the interior of each sample was imaged using a tungsten-halogen lamp with band-pass filter centered at 131--nm combined with an InGaAs focal plane array with a NIR zoom microscope in transillumination. Due to the high transparency of enamel at 1310-nm, laser-incisions were clearly visible to the dentin-enamel junction and crack formation, dehydration and irreversible thermal changes were observed during ablation. This study showed that there is great potential for near-IR imaging to monitor laser-ablation events in real-time to: assess safe laser operating parameters by imaging thermal and stress-induced damage, elaborate the mechanisms involved in ablation such as dehydration, and monitor the removal of demineralized enamel.

  3. Enamel-Caries Prevention Using Two Applications of Fluoride-Laser Sequence.

    Science.gov (United States)

    Noureldin, Amal; Quintanilla, Ines; Kontogiorgos, Elias; Jones, Daniel

    2016-03-01

    Studies demonstrated a significant synergism between fluoride and laser in reduction of enamel solubility. However, minimal research has focused on testing the sequence of their application and no other research investigated the preventive effect of repeated applications of a combined treatment. This study investigated the effect of two applications of fluoride-laser sequence on the resistance of sound enamel to cariogenic challenge compared to one-time application. Sixty enamel slabs were cut from 10 human incisors, ground flat, polished and coated with nail varnish except a 2 x 2 mm window. Specimens were randomly assigned into five groups of 12 specimens; (CON-) negative-control received no treatment, (CON+) positive-control received pH challenge, (FV) treated with M fluoride varnish, (F-L1) one-application fluoride-varnish followed by CO2 laser-treatment (short-pulsed 10.6 µm, 2.4J/ cm2, 10HZ, 10sec), and (F-L2) two-applications of fluoride varnish-laser treatment. Specimens were left in distilled water for one day between applications. Except CON-, all groups were submitted to pH cycling for 9-days (8 demin/ remin + 1 day remineralisation bath) at 37°C. Enamel demineralization was quantitatively evaluated by measurement of Knoop surface-microhardness (SM H) (50-grams/10 seconds). Data were analyzed using one-way ANOVA (p ≤ 0.05) followed by Duncan's Multiple Range Test. Within the limitations of this study, it was found that one or two applications of fluoride-laser sequence significantly improved resistance of the sound enamel surface to acid attack compared to FV-treated group. Although the two applications of fluoride-laser sequence (F-L1 and F-L2) showed higher SMH values, significant resistance to demineralization was only obtained with repeated applications.

  4. Chemical composition of Galla chinensis extract and the effect of its main component(s) on the prevention of enamel demineralization in vitro

    NARCIS (Netherlands)

    Huang, X.L.; Liu, M.D.; Li, J.Y.; Zhou, X.D.; ten Cate, J.M.

    2012-01-01

    To determine the chemical composition of Galla chinensis extract (GCE) by several analysis techniques and to compare the efficacy of GCE and its main component(s) in inhibition of enamel demineralization, for the development of future anticaries agents, main organic composition of GCE was

  5. Effect of pretreatment with an Er:YAG laser and fluoride on the prevention of dental enamel erosion.

    Science.gov (United States)

    dos Reis Derceli, Juliana; Faraoni-Romano, Juliana Jendiroba; Azevedo, Danielle Torres; Wang, Linda; Bataglion, César; Palma-Dibb, Regina Guenka

    2015-02-01

    The aim of this study was to evaluate the effect of the Er:YAG laser and its association with fluoride (1.23% acidulate phosphate fluoride gel) on the prevention of enamel erosion. Sixty specimens were obtained from bovine enamel (4 × 4 mm), which were ground flat, polished, and randomly divided into five groups according to the preventive treatments: control-fluoride application; L--Er:YAG laser; L+F--laser + fluoride; F+L--fluoride + laser; L/F--laser/fluoride simultaneously. Half of the enamel surface was covered with nail varnish (control area), and the other half was pretreated with one of the preventive strategies to subsequently be submitted to erosive challenge. When the laser was applied, it was irradiated for 10 s with a focal length of 4 mm and 60 mJ/2 Hz. Fluoride gel was applied for 4 min. Each specimen was individually exposed to regular Coca-Cola® for 1 min, four times/day, for 5 days. Wear analysis was performed with a profilometer, and demineralization was assessed with an optical microscope. Data were analyzed using the Kruskal-Wallis test (wear)/Dunn test and ANOVA/Fisher's exact tests. The group L/F was similar to control group. The other groups showed higher wear, which did not present differences among them. In the demineralization assessment, the groups F+L and L/F showed lower demineralization in relation to the other groups. It can be concluded that none preventive method was able to inhibit dental wear. The treatments L/F and F+L showed lower enamel demineralization.

  6. The combined use of Er,Cr:YSGG laser and fluoride to prevent root dentin demineralization

    Directory of Open Access Journals (Sweden)

    Vinícius Rangel GERALDO-MARTINS

    2014-10-01

    Full Text Available The use of erbium lasers to prevent caries in enamel has shown positive results. However, it is not known if Er,Cr:YSGG laser can also be used to increase acid resistance of root dentine, which is another dental tissue susceptible to the action of cariogenic bacteria. Objective: To analyze the effects of the Er,Cr:YSGG laser (λ=2.78 μm, 20 Hz irradiation associated with 2% neutral sodium fluoride (NaF to prevent root dentin demineralization. Material and Methods: One hundred human root dentin samples were divided into 10 groups (G and treated as follows: G1: no treatment; G2: NaF; G3: laser (4.64 J/cm2 with water cooling (WC=5.4 mL/min; G4: laser (4.64 J/cm2 without WC; G5: laser (8.92 J/cm2 with WC; G6: laser (8.92 J/cm2 without WC; G7: laser (4.64 J/cm2 with WC and NaF; G8: laser (4.64 J/cm2 without WC and NaF; G9: laser (8.92 J/cm2 with WC and NaF; G10: laser (8.92 J/cm2 without WC and NaF. The NaF gel was applied alone or after 4 min of irradiation. After 14 days of acid challenge, the samples were sectioned and the Knoop microhardness (KHN test was done at different depths (30, 60, 90 and 120 μm from the outer dentin surface. Data were analyzed by one-way ANOVA and Fisher’s test (α=5%. Results: The results showed that G8 and G10 presented higher KHN than the G1 for the depths of 30 and 60 μm, indicating an increase of the acid resistance of the dentin in up to 35% (p<0.05. Conclusions: The use of Er,Cr:YSGG laser irradiation at 4.64 J/ cm2 and 8.92 J/cm2 without water cooling and associated with 2% NaF can increase the acid resistance of human root dentin.

  7. SEM Evaluation of Enamel Surface Changes and Enamel Microhardness around Orthodontic Brackets after Application of CO2 Laser, Er,Cr:YSGG Laser and Fluoride Varnish: An In vivo Study.

    Science.gov (United States)

    Kaur, Tarundeep; Tripathi, Tulika; Rai, Priyank; Kanase, Anup

    2017-09-01

    One of the most undesirable consequences of orthodontic treatment is occurrence of enamel demineralization around orthodontic brackets. Numerous in vitro studies have reported the prevention of enamel demineralization by surface treatment with lasers and fluoride varnish. To evaluate the changes on the enamel surface and microhardness around orthodontic brackets after surface treatment by CO 2 laser, Er, Cr:YSGG laser and fluoride varnish in vivo. A double blind interventional study was carried out on 100 premolars which were equally divided into five groups, out of which one was the control group (Group 0). The intervention groups (Group I to IV) comprised of patients requiring fixed orthodontic treatment with all 4 first premolars extraction. Brackets were bonded on all 80 premolars which were to be extracted. Enamel surface treatment of Groups I, II and III was done by CO 2 laser, Er, Cr:YSGG laser and 5% sodium fluoride varnish respectively and Group IV did not receive any surface treatment. A modified T-loop was ligated to the bracket and after two months, the premolars were extracted. Surface changes were evaluated by Scanning Electron Microscopic (SEM) and microhardness testing. Comparison of mean microhardness between all the groups was assessed using post-hoc test with Bonferroni correction. Group I showed a melted enamel appearance with fine cracks and fissures while Group II showed a glossy, homogenous enamel surface with well coalesced enamel rods. Group III showed slight areas of erosions and Group IV presented areas of stripped enamel. Significant difference was observed between the mean microhardness (VHN) of Group I, Group II, Group III, Group IV and Group 0 with p<0.001. A significant difference of p<0.001 was observed while comparing Group I vs II,III,IV,0 and Group II vs III,IV,0. However, difference while comparing Group III vs IV was p=0.005 and difference between the mean microhardness of Group 0 vs Group III was non significant. Surface

  8. Effects of honey, glucose, and fructose on the enamel demineralization depth

    Directory of Open Access Journals (Sweden)

    Fatemeh Ahmadi-Motamayel

    2013-06-01

    Conclusion: The results of this study demonstrated that honey had less caries activity than the other sugars. However, further evidence is required to detect the active components and mechanisms by which it reduces demineralization and to demonstrate whether this food has any clinical application for preventing and reducing dental caries.

  9. In vitro study of morphological and chemical modification threshold of bovine dental enamel irradiated by the holmium laser

    International Nuclear Information System (INIS)

    Eduardo, Patricia Lerro de Paula

    2001-01-01

    The aim of this study is to investigate the Ho:YLF laser effects on the dental enamel surface with regards to its morphology, thermal variations during its irradiation in the pulp chamber and its increased resistance to demineralization through quantitative analysis of calcium and phosphorous atoms reactive concentrations in samples. Twenty samples of bovine enamel were used and divided in four groups: control - acidulated phosphate fluoride (APF) application followed by demineralization treatment with lactic acid; irradiation with Ho:YLF laser (100 J/cm 2 ) followed by APF topic application and demineralization treatment with lactic acid; irradiation with Ho:YLF laser (350 J/cm 2 ) followed by APF topic application and demineralization treatment with lactic acid: and irradiation with Ho:YLF laser ( 450 J/cm 2 ) followed by APF topic application and demineralization treatment with lactic acid. Ali samples were quantified according to their calcium and phosphorous atoms relative concentrations before and after the treatments above. X-Ray fluorescence spectrochemical analysis and scanning electron microscopy were carried out. It was observed an increase on the calcium and phosphorous atoms concentration ratio and therefore the enamel demineralization reduction as a result of the lactic acid treatment in the samples irradiated with the holmium laser followed by the APF application. In order to evaluate the feasibility of this study for clinical purposes, morphological changes caused by the holmium laser irradiation were analyzed. Such modifications were characterized by melted and re-solidified regions of the enamel with consequent changes on its permeability and solubility. Temperature changes of ten human pre-molars teeth irradiated with 350 J/cm 2 and 450 J/cm 2 were also monitored in the pulp chamber in real time. Temperature increases over 4,20 C did not occur. The results obtained from this study along with the results from previous researches developed at

  10. Determination of demineralization depth in tooth enamel exposed to abusive use of whitening gel using micro-Energy Dispersive X ray Fluorescence

    Science.gov (United States)

    Pessanha, Sofia; Coutinho, Sara; Carvalho, Maria Luisa; Silveira, João Miguel; Mata, António

    2017-12-01

    In this work, we present a methodology for the determination of the depth of demineralization in dental enamel caused by extended use of an Over-The-Counter (OTC) whitening product. Teeth whitening is a very common practice in Dentistry, but concerns have been raised regarding the invasiveness of the treatment, especially regarding OTC products, that can be used without medical supervision and sometimes with concentrations of active agent that exceed the allowed regulations. In this work, we studied tooth enamel samples, treated with a whitening product during an extended period of time, both directly on the enamel surface and in the cross-section. Specimens were analyzed using microbeam X-Ray Fluorescence (micro-XRF) using polycapillary optics to obtain a spot down to 25 μm. Due to the relatively large spot size of our setup point analysis of the cross-sections would be inadequate. This way, line scans were performed instead, before and after whitening, and using appropriate data treatment the depth of demineralization was inferred. The used methodology indicated an average demineralization depth of 25 μm, the same order of magnitude as the aprismatic enamel layer.

  11. Effect of CO2 Laser and Fluoride Varnish Application on Microhardness of Enamel Surface Around Orthodontic Brackets.

    Science.gov (United States)

    Mahmoudzadeh, Majid; Rezaei-Soufi, Loghman; Farhadian, Nasrin; Jamalian, Seyed Farzad; Akbarzadeh, Mahdi; Momeni, Mohammadali; Basamtabar, Masome

    2018-01-01

    CO2 laser irradiation can reduce enamel demineralization around orthodontic brackets.

  12. Evaluation of enamel mineral loss around cavities prepared by the Er,Cr:YSGG laser and restored with different materials

    Science.gov (United States)

    Navarro, Ricardo Scarparo; Lago, Andréa. Dias Neves; Bonifácio, Clarissa Calil; Mendes, Fausto Medeiros; de Freitas, Patrícia Moreira; Baptista, Alessandra; Nunez, Silvia Cristina; Matos, Adriana Bona; Imparato, José Carlos P.

    2018-02-01

    The aim of this study was to evaluate the enamel demineralization around cavities prepared by Er,Cr:YSGG laser (2780 nm) and restored with different materials after an acid challenge. The human dental enamel samples were randomly divided in 12 groups (n=10): G1- high-speed drill (HD); G2- Er,Cr:YSGG laser L (3 W, 20 Hz, 53.05 J/cm2)(air 65% - water 55%); G3- L (4 W, 20 Hz, 70.74 J/cm2); G4- L (5 W, 20 Hz, 88.43 J/cm2). Each group was divided in subgroups: 1- glass ionomer cement (GIC), 2- resin modified GIC (RMGIC), 3- composite resin (C). Samples were submitted to an acid challenge (4.8 pH) for7 days. The calcium ion contend (ppm/mm2) from demineralizing solutions were analyzed by atomic emission spectrometry. ANOVA and LSD tests were performed (α=5%). The significant lower average values of calcium loss were observed on G2 + GIC, G2 + RMGIC, G1 + RMGIC (penamel demineralization. The findings of this in vitro study suggest that the Er,Cr:YSGG lased cavities restored with GIC or RMGIC or conventional drill cavities with RMGIC were effective on reducing the demineralization around restorations, showing an important potential in preventing secondary caries.

  13. FT-Raman spectroscopic analysis of Nd:YAG and Er,Cr:YSGG laser irradiated enamel for preventive purposes

    Science.gov (United States)

    Ana, P. A.; Kauffmann, C. M. F.; Bachmann, L.; Soares, L. E. S.; Martin, A. A.; Gomes, A. S. L.; Zezell, D. M.

    2014-03-01

    This study evaluated the effect of combining laser irradiation with fluoride on an enamel microstructure and demineralization by FT-Raman spectroscopy (FTRS). Eighty human enamel slabs were divided into eight groups: (G1) untreated; (G2) acidulated phosphate fluoride application (APF—1.23% F- for 4 min) (G3) Nd:YAG irradiation (84.9 J cm-2, 60 mJ/pulse) (G4) Nd:YAG + APF; (G5) APF + Nd:YAG; (G6) Er,Cr:YSGG irradiation (2.8 J cm-2, 12.5 mJ/pulse) (G7) Er,Cr:YSGG + APF; and (G8) APF + Er,Cr:YSGG. After treatment, the samples were submitted to a ten-day pH-cycling model. Chemical changes were determined on the slabs before and after treatment, and also after pH-cycling, by FTRS in the range 400-4000 cm-1. The inorganic bands at 440, 590, 870, 960, 1100 cm-1, and the organic bands at 1270, 1450, 1670, 2945 cm-1 were considered. Demineralization promoted reduction in organic contents; Nd:YAG laser irradiation promoted loss of carbonate and organic content, while Er,Cr:YSGG did not produce significant changes in the relative band intensities of organic and inorganic contents of the enamel. In lased samples, no effects caused by pH-cycling on enamel were observed. In conclusion, laser treatment and its association with fluoride can somehow interfere with the demineralization dynamics, reducing its effects over the enamel.

  14. FT-Raman spectroscopic analysis of Nd:YAG and Er,Cr:YSGG laser irradiated enamel for preventive purposes

    International Nuclear Information System (INIS)

    Ana, P A; Kauffmann, C M F; Gomes, A S L; Bachmann, L; Soares, L E S; Martin, A A; Zezell, D M

    2014-01-01

    This study evaluated the effect of combining laser irradiation with fluoride on an enamel microstructure and demineralization by FT-Raman spectroscopy (FTRS). Eighty human enamel slabs were divided into eight groups: (G1) untreated; (G2) acidulated phosphate fluoride application (APF—1.23% F − for 4 min); (G3) Nd:YAG irradiation (84.9 J cm −2 , 60 mJ/pulse); (G4) Nd:YAG + APF; (G5) APF + Nd:YAG; (G6) Er,Cr:YSGG irradiation (2.8 J cm −2 , 12.5 mJ/pulse); (G7) Er,Cr:YSGG + APF; and (G8) APF + Er,Cr:YSGG. After treatment, the samples were submitted to a ten-day pH-cycling model. Chemical changes were determined on the slabs before and after treatment, and also after pH-cycling, by FTRS in the range 400−4000 cm −1 . The inorganic bands at 440, 590, 870, 960, 1100 cm −1 , and the organic bands at 1270, 1450, 1670, 2945 cm −1 were considered. Demineralization promoted reduction in organic contents; Nd:YAG laser irradiation promoted loss of carbonate and organic content, while Er,Cr:YSGG did not produce significant changes in the relative band intensities of organic and inorganic contents of the enamel. In lased samples, no effects caused by pH-cycling on enamel were observed. In conclusion, laser treatment and its association with fluoride can somehow interfere with the demineralization dynamics, reducing its effects over the enamel. (paper)

  15. The effect of time in the exposure of theobromine gel to enamel and surface hardness after demineralization with 1% citric acid

    Science.gov (United States)

    Irawan, M. I. P.; Noerdin, A.; Eriwati, Y. K.

    2017-08-01

    Theobromine is one of the alkaloid compounds that can be found in cacao (Theobroma cacao). It is said that theobromine can prevent enamel demineralization. The aim of this research was to evaluate the effect of different exposure times to 200 mg/L theobromine gel on enamel microhardness after demineralization in 1% citric acid. Twenty-eight specimens of human premolar teeth were divided into four groups and were immersed in 1% citric acid (pH 4) for 2.5 minutes. Then 200 mg/L theobromine gel was exposed to the specimens for 16 minutes (n = 7), 48 minutes (n = 7), and 96 minutes (n = 7). Enamel microhardness (KHN) values were tested using the Knoop Microhardness Tester (Shimadzu, Japan) using a 50-gram load for 5 seconds. A statistical test was performed using the Friedman test, Wilcoxon test, Kruskal-Wallis test, and Mann-Whitney test. The results showed a significant decrease, of microhardness values after demineralization with 1% citric acid. There was also a significant increase in hardness (penamel microhardness.

  16. Near-UV laser treatment of extrinsic dental enamel stains.

    Science.gov (United States)

    Schoenly, J E; Seka, W; Featherstone, J D B; Rechmann, P

    2012-04-01

    The selective ablation of extrinsic dental enamel stains using a 400-nm laser is evaluated at several fluences for completely removing stains with minimal damage to the underlying enamel. A frequency-doubled Ti:sapphire laser (400-nm wavelength, 60-nanosecond pulse duration, 10-Hz repetition rate) was used to treat 10 extracted human teeth with extrinsic enamel staining. Each tooth was irradiated perpendicular to the surface in a back-and-forth motion over a 1-mm length using an ∼300-µm-diam 10th-order super-Gaussian beam with fluences ranging from 0.8 to 6.4 J/cm(2) . Laser triangulation determined stain depth and volume removed by measuring 3D surface images before and after irradiation. Scanning electron microscopy evaluated the surface roughness of enamel following stain removal. Fluorescence spectroscopy measured spectra of unbleached and photobleached stains in the spectral range of 600-800 nm. Extrinsic enamel stains are removed with laser fluences between 0.8 and 6.4 J/cm(2) . Stains removed on sound enamel leave behind a smooth enamel surface. Stain removal in areas with signs of earlier cariogenic acid attacks resulted in isolated and randomly located laser-induced, 50-µm-diam enamel pits. These pits contain 0.5-µm diam, smooth craters indicative of heat transfer from the stain to the enamel and subsequent melting and water droplet ejection. Ablation stalling of enamel stains is typically observed at low fluences (Laser ablation of extrinsic enamel stains at 400 nm is observed to be most efficient above 3 J/cm(2) with minimal damage to the underlying enamel. Unsound underlying enamel is also observed to be selectively removed after irradiation. Copyright © 2012 Wiley Periodicals, Inc.

  17. Inhibition of enamel demineralization and bond-strength properties of bioactive glass containing 4-META/MMA-TBB-based resin adhesive.

    Science.gov (United States)

    Kohda, Naohisa; Iijima, Masahiro; Kawaguchi, Kyotaro; Toshima, Hirokazu; Muguruma, Takeshi; Endo, Kazuhiko; Mizoguchi, Itaru

    2015-06-01

    We investigated the enamel demineralization-prevention ability and shear bond strength (SBS) properties of 4-methacryloxyethyl trimellitic anhydride/methyl methacrylate-tri-n-butyl borane (4-META/MMA-TBB)-based resin containing various amounts (0-50%) of bioactive glass (BG). Disk-shaped specimens were immersed in distilled water and ions released were analysed by inductively coupled plasma atomic-emission spectroscopy. Samples were also immersed in lactic acid solution (pH 4.6) to estimate acid-neutralizing ability. Brackets were bonded to human premolars with BG-containing resins and the bonded teeth were alternately immersed in demineralizing (pH 4.55) and remineralizing (pH 6.8) solutions for 14 d. The enamel hardness was determined by nanoindentation testing at twenty equidistant distances from the external surface. The SBS for each sample was examined. The amounts of ions released [calcium (Ca), sodium (Na), silicon (Si), and boron (B)] and the acid-neutralizing ability increased with increasing BG content. After alternating immersion, the specimens bonded with the BG-containing resin with high BG content were harder than those in the other groups in some locations 1-18.5 μm from the enamel surface. Bioactive glass-containing (10-40%) resin had bond strength equivalent to the control specimen. Thus, the SBS obtained for BG-containing resin (6.5-9.2 MPa) was clinically acceptable, suggesting that this material has the ability to prevent enamel demineralization. © 2015 Eur J Oral Sci.

  18. Etching of enamel for direct bonding with a thulium fiber laser

    Science.gov (United States)

    Kabaş Sarp, Ayşe S.; Gülsoy, Murat

    2011-03-01

    Background: Laser etching of enamel for direct bonding can decrease the risk of surface enamel loss and demineralization which are the adverse effects of acid etching technique. However, in excess of +5.5°C can cause irreversible pulpal responses. In this study, a 1940- nm Thulium Fiber Laser in CW mode was used for laser etching. Aim: Determination of the suitable Laser parameters of enamel surface etching for direct bonding of ceramic brackets and keeping that intrapulpal temperature changes below the threshold value. Material and Method: Polycrystalline ceramic orthodontic brackets were bonded on bovine teeth by using 2 different kinds of etching techniques: Acid and Laser Etching. In addition to these 3 etched groups, there was also a group which was bonded without etching. Brackets were debonded with a material testing machine. Breaking time and the load at the breaking point were measured. Intrapulpal temperature changes were recorded by a K-type Thermocouple. For all laser groups, intrapulpal temperature rise was below the threshold value of 5.5°C. Results and Conclusion: Acid-etched group ( 11.73 MPa) significantly required more debonding force than 3- second- irradiated ( 5.03 MPa) and non-etched groups ( 3.4 MPa) but the results of acid etched group and 4- second- irradiated group (7.5 MPa) showed no significant difference. Moreover, 4- second irradiated group was over the minimum acceptable value for clinical use. Also, 3- second lasing caused a significant reduction in time according to acid-etch group. As a result, 1940- nm laser irradiation is a promising method for laser etching.

  19. Femtosecond laser etching of dental enamel for bracket bonding.

    Science.gov (United States)

    Kabas, Ayse Sena; Ersoy, Tansu; Gülsoy, Murat; Akturk, Selcuk

    2013-09-01

    The aim is to investigate femtosecond laser ablation as an alternative method for enamel etching used before bonding orthodontic brackets. A focused laser beam is scanned over enamel within the area of bonding in a saw tooth pattern with a varying number of lines. After patterning, ceramic brackets are bonded and bonding quality of the proposed technique is measured by a universal testing machine. The results are compared to the conventional acid etching method. Results show that bonding strength is a function of laser average power and the density of the ablated lines. Intrapulpal temperature changes are also recorded and observed minimal effects are observed. Enamel surface of the samples is investigated microscopically and no signs of damage or cracking are observed. In conclusion, femtosecond laser exposure on enamel surface yields controllable patterns that provide efficient bonding strength with less removal of dental tissue than conventional acid-etching technique.

  20. Impact of combined CO2 laser irradiation and fluoride on enamel and dentin biofilm-induced mineral loss.

    Science.gov (United States)

    Esteves-Oliveira, Marcella; El-Sayed, Karim Fawzy; Dörfer, Christof; Schwendicke, Falk

    2017-05-01

    The caries-protective effects of CO 2 laser irradiation on dental enamel have been demonstrated using chemical demineralization models. We compared the effect of CO 2 laser irradiation, sodium fluoride, or both on biofilm-induced mineral loss (∆Z) and Streptococcus mutans adhesion to enamel and dentin in vitro. Ground, polished bovine enamel, and dentin samples were allocated to four groups (n = 12/group): no treatment (C); single 22,600-ppm fluoride (F) varnish (5 % NaF) application; single CO 2 laser treatment (L) with short pulses (5 μs/λ = 10.6 μm); and laser and subsequent fluoride treatment (LF). Samples were sterilized and submitted to an automated mono-species S. mutans biofilm model. Brain heart infusion plus 5 % sucrose medium was provided eight times daily, followed by rinses with artificial saliva. After 10 days, bacterial numbers in biofilms were enumerated as colony-forming units/ml (CFU/ml) (n = 7/group). ∆Z was assessed using transversal microradiography (n = 12/group). Univariate ANOVA with post hoc Tukey honestly-significant-difference test was used for statistical analysis. Bacterial numbers were significantly higher on dentin than enamel (p  0.05). In dentin, only LF (163/227) significantly reduced ∆Z (p fluoride application was required to protect dentin.

  1. An investigation using atomic force microscopy nanoindentation of dental enamel demineralization as a function of undissociated acid concentration and differential buffer capacity

    International Nuclear Information System (INIS)

    Barbour, Michele E; Shellis, R Peter

    2007-01-01

    Acidic drinks and foodstuffs can demineralize dental hard tissues, leading to a pathological condition known as dental erosion, which is of increasing clinical concern. The first step in enamel dissolution is a demineralization of the outer few micrometres of tissue, which results in a softening of the structure. The primary determinant of dissolution rate is pH, but the concentration of undissociated acid, which is related to buffer capacity, also appears to be important. In this study, atomic force microscopy nanoindentation was used to measure the first initial demineralization (softening) induced within 1 min by exposure to solutions with a range of undissociated acid concentration and natural pH of 3.3 or with an undissociated acid concentration of 10 mmol l -1 and pH adjusted to 3.3. The results indicate that differential buffering capacity is a better determinant of softening than undissociated acid concentration. Under the conditions of these experiments, a buffer capacity of >3 mmol l -1 pH -1 does not have any further effect on dissolution rate. These results imply that differential buffering capacity should be used for preference over undissociated acid concentration or titratable acidity, which are more commonly employed in the literature

  2. An investigation using atomic force microscopy nanoindentation of dental enamel demineralization as a function of undissociated acid concentration and differential buffer capacity

    Science.gov (United States)

    Barbour, Michele E.; Shellis, R. Peter

    2007-02-01

    Acidic drinks and foodstuffs can demineralize dental hard tissues, leading to a pathological condition known as dental erosion, which is of increasing clinical concern. The first step in enamel dissolution is a demineralization of the outer few micrometres of tissue, which results in a softening of the structure. The primary determinant of dissolution rate is pH, but the concentration of undissociated acid, which is related to buffer capacity, also appears to be important. In this study, atomic force microscopy nanoindentation was used to measure the first initial demineralization (softening) induced within 1 min by exposure to solutions with a range of undissociated acid concentration and natural pH of 3.3 or with an undissociated acid concentration of 10 mmol l-1 and pH adjusted to 3.3. The results indicate that differential buffering capacity is a better determinant of softening than undissociated acid concentration. Under the conditions of these experiments, a buffer capacity of >3 mmol l-1 pH-1 does not have any further effect on dissolution rate. These results imply that differential buffering capacity should be used for preference over undissociated acid concentration or titratable acidity, which are more commonly employed in the literature.

  3. Antibacterial activity against Streptococcus mutans and inhibition of bacterial induced enamel demineralization of propolis, miswak, and chitosan nanoparticles based dental varnishes.

    Science.gov (United States)

    Wassel, Mariem O; Khattab, Mona A

    2017-07-01

    Using natural products can be a cost-effective approach for caries prevention especially in low income countries where dental caries is highly prevalent and the resources are limited. Specially prepared dental varnishes containing propolis, miswak, and chitosan nanoparticles (CS-NPs) with or without sodium fluoride (NaF) were assessed for antibacterial effect against Streptococcus mutans ( S. mutans ) using disk diffusion test. In addition, the protective effect of a single pretreatment of primary teeth enamel specimens against in vitro bacterial induced enamel demineralization was assessed for 3 days. All natural products containing varnishes inhibited bacterial growth significantly better than 5% NaF varnish, with NaF loaded CS-NPs (CSF-NPs) showing the highest antibacterial effect, though it didn't significantly differ than those of other varnishes except miswak ethanolic extract (M) varnish. Greater inhibitory effect was noted with varnish containing freeze dried aqueous miswak extract compared to that containing ethanolic miswak extract, possibly due to concentration of antimicrobial substances by freeze drying. Adding natural products to NaF in a dental varnish showed an additive effect especially compared to fluoride containing varnish. 5% NaF varnish showed the best inhibition of demineralization effect. Fluoride containing miswak varnish (MF) and CSF-NPs varnish inhibited demineralization significantly better than all experimental varnishes, especially during the first 2 days, though CSF-NPs varnish had a low fluoride concentration, probably due to better availability of fluoride ions and the smaller size of nanoparticles. Incorporating natural products with fluoride into dental varnishes can be an effective approach for caries prevention, especially miswak and propolis when financial resources are limited.

  4. Er:YAG and CTH:YAG laser radiation: contact versus non-contact enamel ablation and sonic-activated bulk composite placement

    International Nuclear Information System (INIS)

    Buckova, M; Kasparova, M; Dostalova, T; Jelinkova, H; Sulc, J; Nemec, M; Fibrich, M; Bradna, P; Miyagi, M

    2013-01-01

    Laser radiation can be used for effective caries removal and cavity preparation without significant thermal effects, collateral damage of tooth structure, or patient discomfort. The aim of this study was to compare the quality of tissue after contact or non-contact Er:YAG and CTH:YAG laser radiation ablation. The second goal was to increase the sealing ability of hard dental tissues using sonic-activated bulk filling material with change in viscosity during processing. The artificial caries was prepared in intact teeth to simulate a demineralized surface and then the Er:YAG or CTH:YAG laser radiation was applied. The enamel artificial caries was gently removed by the laser radiation and sonic-activated composite fillings were inserted. A stereomicroscope and then a scanning electron microscope were used to evaluate the enamel surface. Er:YAG contact mode ablation in enamel was quick and precise; the cavity was smooth with a keyhole shaped prism and rod relief arrangement without a smear layer. The sonic-activated filling material was consistently regularly distributed; no cracks or microleakage in the enamel were observed. CTH:YAG irradiation was able to clean but not ablate the enamel surface; in contact and also in non-contact mode there was evidence of melting and fusing of the enamel. (paper)

  5. Er:YAG and CTH:YAG laser radiation: contact versus non-contact enamel ablation and sonic-activated bulk composite placement

    Science.gov (United States)

    Buckova, M.; Kasparova, M.; Dostalova, T.; Jelinkova, H.; Sulc, J.; Nemec, M.; Fibrich, M.; Bradna, P.; Miyagi, M.

    2013-05-01

    Laser radiation can be used for effective caries removal and cavity preparation without significant thermal effects, collateral damage of tooth structure, or patient discomfort. The aim of this study was to compare the quality of tissue after contact or non-contact Er:YAG and CTH:YAG laser radiation ablation. The second goal was to increase the sealing ability of hard dental tissues using sonic-activated bulk filling material with change in viscosity during processing. The artificial caries was prepared in intact teeth to simulate a demineralized surface and then the Er:YAG or CTH:YAG laser radiation was applied. The enamel artificial caries was gently removed by the laser radiation and sonic-activated composite fillings were inserted. A stereomicroscope and then a scanning electron microscope were used to evaluate the enamel surface. Er:YAG contact mode ablation in enamel was quick and precise; the cavity was smooth with a keyhole shaped prism and rod relief arrangement without a smear layer. The sonic-activated filling material was consistently regularly distributed; no cracks or microleakage in the enamel were observed. CTH:YAG irradiation was able to clean but not ablate the enamel surface; in contact and also in non-contact mode there was evidence of melting and fusing of the enamel.

  6. In vitro study of morphological and chemical modification threshold of bovine dental enamel irradiated by the holmium laser; Estudo in vitro das alteracoes morfologicas e quimicas do esmalte dental bovino irradiado pelo laser de holmio

    Energy Technology Data Exchange (ETDEWEB)

    Eduardo, Patricia Lerro de Paula

    2001-07-01

    The aim of this study is to investigate the Ho:YLF laser effects on the dental enamel surface with regards to its morphology, thermal variations during its irradiation in the pulp chamber and its increased resistance to demineralization through quantitative analysis of calcium and phosphorous atoms reactive concentrations in samples. Twenty samples of bovine enamel were used and divided in four groups: control - acidulated phosphate fluoride (APF) application followed by demineralization treatment with lactic acid; irradiation with Ho:YLF laser (100 J/cm{sup 2}) followed by APF topic application and demineralization treatment with lactic acid; irradiation with Ho:YLF laser (350 J/cm{sup 2}) followed by APF topic application and demineralization treatment with lactic acid: and irradiation with Ho:YLF laser ( 450 J/cm{sup 2}) followed by APF topic application and demineralization treatment with lactic acid. Ali samples were quantified according to their calcium and phosphorous atoms relative concentrations before and after the treatments above. X-Ray fluorescence spectrochemical analysis and scanning electron microscopy were carried out. It was observed an increase on the calcium and phosphorous atoms concentration ratio and therefore the enamel demineralization reduction as a result of the lactic acid treatment in the samples irradiated with the holmium laser followed by the APF application. In order to evaluate the feasibility of this study for clinical purposes, morphological changes caused by the holmium laser irradiation were analyzed. Such modifications were characterized by melted and re-solidified regions of the enamel with consequent changes on its permeability and solubility. Temperature changes of ten human pre-molars teeth irradiated with 350 J/cm{sup 2} and 450 J/cm{sup 2} were also monitored in the pulp chamber in real time. Temperature increases over 4,20 C did not occur. The results obtained from this study along with the results from previous

  7. Bond strengths of brackets bonded to enamel surfaces conditioned with femtosecond and Er:YAG laser systems.

    Science.gov (United States)

    Aglarci, Cahide; Demir, Necla; Aksakalli, Sertac; Dilber, Erhan; Sozer, Ozlem Akinci; Kilic, Hamdi Sukur

    2016-08-01

    The aim of this study was to compare femtosecond and Er:YAG laser systems with regard to enamel demineralization and bracket bond strength. Human-extracted premolars were randomized to three groups (n = 17) depending on the conditioning treatment used for the buccal surfaces: 37 % orthophosphoric acid, Er:YAG laser etching (MSP mode 120 mJ, 10 Hz, 1.2 W), and femtosecond laser etching (0.4 W, 800 nm, 90 fs/pulse, 1 kHz). Metal brackets were bonded with Transbond XT to the conditioned surfaces and light cured for 20 s. The samples were thermocycled (5000 cycles, 5-55 °C) and subjected to shear bond strength (SBS) testing using a universal testing machine. Failure types were analyzed under an optical stereomicroscope and SEM. The adhesive remnant index (ARI) was evaluated to assess residual adhesive on the enamel surface. The results revealed no significant differences in SBS between the Er:YAG laser (7.2 ± 3.3 MPa) and acid etching groups (7.3 ± 2.7 MPa; p enamel interface.

  8. HeNe-laser light scattering by human dental enamel

    NARCIS (Netherlands)

    Zijp, [No Value; tenBosch, JJ; Groenhuis, RAJ

    1995-01-01

    Knowledge of the optical properties of tooth enamel and an understanding of the origin of these properties are necessary for the development of new optical methods for caries diagnosis and the measurement of tooth color. We measured the scattering intensity functions for HeNe-laser light of 80- to

  9. In vitro study of hydroxy apatite and enamel powder fused in human enamel by Nd:YAG laser

    International Nuclear Information System (INIS)

    Ferrreira, Marcus Vinicius Lucas

    2000-01-01

    The aim of this study was to evaluate the effects of pulsed Nd:YAG (1064 nm) laser irradiation on hydroxyapatite and enamel powder fusion. This laser beam is not well absorbed by this two compounds for this reason they were mixed with vegetal coal to increase the absorption of the laser beam. Fifteen enamel flat surfaces and six occlusal enamel surfaces were prepared with three different substances: hydroxyapatite mixed with vegetal coal (3:1 in weigh); enamel powder mixed with vegetal coal (3:1 in weigh); vegetal coal. The occlusal surfaces were utilized to determine if the compounds could seal pits and fissures. Flat surfaces were utilized to determine fusion of hydroxyapatite and enamel powder. All samples were irradiated with Nd:YAG laser with the parameters: 80 mJ, 15 Hz, 1,2 W, 100 μs pulse-width, 131,1 J/cm 2 . Laser beam was delivered to the samples with a 300 μm diameter fiber optic. Morphology of the irradiated surfaces were examined by scanning electron microscopy (SEM). The compounds with hydroxyapatite and enamel powder were fused to enamel surfaces. Only partial pits and fissures sealing could be observed. (author)

  10. Influence of multi-wavelength laser irradiation of enamel and dentin surfaces at 0.355, 2.94, and 9.4 μm on surface morphology, permeability, and acid resistance.

    Science.gov (United States)

    Chang, Nai-Yuan N; Jew, Jamison M; Simon, Jacob C; Chen, Kenneth H; Lee, Robert C; Fried, William A; Cho, Jinny; Darling, Cynthia L; Fried, Daniel

    2017-12-01

    Ultraviolet (UV) and infrared (IR) lasers can be used to specifically target protein, water, and mineral, respectively, in dental hard tissues to produce varying changes in surface morphology, permeability, reflectivity, and acid resistance. The purpose of this study was to explore the influence of laser irradiation and topical fluoride application on the surface morphology, permeability, reflectivity, and acid resistance of enamel and dentin to shed light on the mechanism of interaction and develop more effective treatments. Twelve bovine enamel surfaces and twelve bovine dentin surfaces were irradiated with various combinations of lasers operating at 0.355 (Freq.-tripled Nd:YAG (UV) laser), 2.94 (Er:YAG laser), and 9.4 μm (CO 2 laser), and surfaces were exposed to an acidulated phosphate fluoride gel and an acid challenge. Changes in the surface morphology, acid resistance, and permeability were measured using digital microscopy, polarized light microscopy, near-IR reflectance, fluorescence, polarization sensitive-optical coherence tomography (PS-OCT), and surface dehydration rate measurements. Different laser treatments dramatically influenced the surface morphology and permeability of both enamel and dentin. CO 2 laser irradiation melted tooth surfaces. Er:YAG and UV lasers, while not melting tooth surfaces, showed markedly different surface roughness. Er:YAG irradiation led to significantly rougher enamel and dentin surfaces and led to higher permeability. There were significant differences in acid resistance among the various treatment groups. Surface dehydration measurements showed significant changes in permeability after laser treatments, application of fluoride and after exposure to demineralization. CO 2 laser irradiation was most effective in inhibiting demineralization on enamel while topical fluoride was most effective for dentin surfaces. Lasers Surg. Med. 49:913-927, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  11. Modelling of micromachining of human tooth enamel by erbium laser radiation

    Energy Technology Data Exchange (ETDEWEB)

    Belikov, A V; Skrypnik, A V; Shatilova, K V [St. Petersburg National Research University of Information Technologies, Mechanics and Optics, St. Petersburg (Russian Federation)

    2014-08-31

    We consider a 3D cellular model of human tooth enamel and a photomechanical cellular model of enamel ablation by erbium laser radiation, taking into account the structural peculiarities of enamel, energy distribution in the laser beam cross section and attenuation of laser energy in biological tissue. The surface area of the texture in enamel is calculated after its micromachining by erbium laser radiation. The influence of the surface area on the bond strength of enamel with dental filling materials is discussed. A good correlation between the computer simulation of the total work of adhesion and experimentally measured bond strength between the dental filling material and the tooth enamel after its micromachining by means of YAG : Er laser radiation is attained. (laser biophotonics)

  12. Modelling of micromachining of human tooth enamel by erbium laser radiation

    International Nuclear Information System (INIS)

    Belikov, A V; Skrypnik, A V; Shatilova, K V

    2014-01-01

    We consider a 3D cellular model of human tooth enamel and a photomechanical cellular model of enamel ablation by erbium laser radiation, taking into account the structural peculiarities of enamel, energy distribution in the laser beam cross section and attenuation of laser energy in biological tissue. The surface area of the texture in enamel is calculated after its micromachining by erbium laser radiation. The influence of the surface area on the bond strength of enamel with dental filling materials is discussed. A good correlation between the computer simulation of the total work of adhesion and experimentally measured bond strength between the dental filling material and the tooth enamel after its micromachining by means of YAG : Er laser radiation is attained. (laser biophotonics)

  13. Effect of Surface Treatment on Enamel Cracks After Orthodontic Bracket Debonding: Er,Cr:YSGG Laser-Etching Versus Acid-Etching

    Science.gov (United States)

    Ghaffari, Hassanali; Mirhashemi, Amirhossein; Baherimoghadam, Tahereh; Azmi, Amir

    2017-01-01

    Objectives: This study sought to compare enamel cracks after orthodontic bracket debonding in the surfaces prepared with erbium, chromium: yttrium-scandium-galliumgarnet (Er,Cr:YSGG) laser and the conventional acid-etching technique. Materials and Methods: This in-vitro experimental study was conducted on 60 sound human premolars extracted for orthodontic purposes. The teeth were randomly divided into two groups (n=30). The teeth in group A were etched with 37% phosphoric acid gel, while the teeth in group B were subjected to Er,Cr:YSGG laser irradiation (gold handpiece, MZ8 tip, 50Hz, 4.5W, 60μs, 80% water and 60% air). Orthodontic brackets were bonded to the enamel surfaces and were then debonded in both groups. The samples were inspected under a stereomicroscope at ×38 magnification to assess the number and length of enamel cracks before bonding and after debonding. Independent-samples t-test was used to compare the frequency of enamel cracks in the two groups. Levene’s test was applied to assess the equality of variances. Results: No significant difference was noted in the frequency or length of enamel cracks between the two groups after debonding (P>0.05). Conclusions: Despite the same results of the frequency and length of enamel cracks in the two groups and by considering the side effects of acid-etching (demineralization and formation of white spot lesions), Er,Cr:YSGG laser may be used as an alternative to acid-etching for enamel surface preparation prior to bracket bonding. PMID:29296111

  14. Influence of a pulsed CO2 laser operating at 9.4 μm on the surface morphology, reflectivity, and acid resistance of dental enamel below the threshold for melting

    Science.gov (United States)

    Kim, Jin Wan; Lee, Raymond; Chan, Kenneth H.; Jew, Jamison M.; Fried, Daniel

    2017-02-01

    Below the threshold for laser ablation, the mineral phase of enamel is converted into a purer phase hydroxyapatite with increased acid resistance. Studies suggest the possibility of achieving the conversion without visible surface alteration. In this study, changes in the surface morphology, reflectivity, and acid resistance were monitored with varying irradiation intensity. Bovine enamel specimens were irradiated using a CO2 laser operating at 9.4 μm with a Gaussian spatial beam profile-1.6 to 3.1 mm in diameter. After laser treatment, samples were subjected to demineralization to simulate the acidic intraoral conditions of dental decay. The resulting demineralization and erosion were assessed using polarization-sensitive optical coherence tomography, three-dimensional digital microscopy, and polarized light microscopy. Distinct changes in the surface morphology and the degree of inhibition were found within the laser-treated area in accordance with the laser intensity profile. Subtle visual changes were noted below the melting point for enamel that appear to correspond to thresholds for denaturation of the organic phase and thermal decomposition of the mineral phase. There was significant protection from laser irradiation in areas in which the reflectivity was not increased significantly, suggesting that aesthetically sensitive areas of the tooth can be treated for caries prevention.

  15. Sub-ablative Er,Cr:YSGG laser irradiation under all-ceramic restorations: effects on demineralization and shear bond strength.

    Science.gov (United States)

    Bağlar, Serdar

    2018-01-01

    This study evaluated the caries resistant effects of sub-ablative Er,Cr:YSGG laser irradiation alone and combined with fluoride in comparison with fluoride application alone on enamel prepared for veneer restorations. And also, evaluated these treatments' effects on the shear bond strength of all-ceramic veneer restorations. One hundred and thirty-five human maxillary central teeth were assigned to groups of 1a-control, 1b-laser treated, 1c-fluoride treated, 1d-laser + fluoride treated for shear bond testing and to groups of 2a-positive control(non-demineralised), 2b-laser treated, 2c-fluoride treated, 2d-laser + fluoride treated, 2e-negative control (demineralised) for microhardness testing (n = 15, N = 135). Demineralisation solutions of microhardness measurements were used for the ICP-OES elemental analysis. The parameters for laser irradiation were as follows: power output, 0.25 W; total energy density, 62.5 J/cm 2 and energy density per pulse, 4.48 J/cm 2 with an irradiation time of 20 s and with no water cooling. Five percent NaF varnish was used as fluoride preparate. ANOVA and Tukey HSD tests were performed (α = 5%). Surface treatments showed no significant effects on shear bond strength values (p = 0.579). However, significant differences were found in microhardness measurements and in elemental analysis of Ca and P amounts (p < 0.01). Surface-treated groups showed significantly high VNH values and significantly low ICP-OES values when compared with non-treated (-control) group while there were no significance among surface-treated groups regarding VHN and ICP-OES values. Sub-ablative Er,Cr:YSGG treatment alone or combined with fluoride is as an effective method as at least fluoride alone for preventing the prepared enamel to demineralization with no negative effect on shear bond strength.

  16. Acquired acid resistance of human enamel treated with laser (Er:YAG laser and Co 2 laser and acidulated phosphate fluoride treatment: An in vitro atomic emission spectrometry analysis

    Directory of Open Access Journals (Sweden)

    Anju Mathew

    2013-01-01

    Full Text Available Background: Dental caries is essentially a process of diffusion and dissolution. If the aspect of dissolution can be curtailed some degree of prevention can be achieved. Aims: The present study was carried out to evaluate and compare the effect of Er:YAG laser and Co 2 laser irradiation combined with acidulated phosphate fluoride treatment on in vitro acid resistance of human enamel. Design: An in vitro study was carried out on 30 human premolars to evaluate the enamel′s acid resistance using an atomic emission spectrometry analysis. Materials and Methods: A total of 60 enamel specimens were prepared from 30 human premolars and were randomly assigned to 6 groups: (1 Untreated (control; (2 1.23% acidulated phosphate fluoride (APF gel application alone for 4 min; (3 Er:YAG laser treatment alone; (4 Co 2 laser treatment alone; (5 Er:YAG laser + APF gel application; (6 Co 2 laser + APF gel application. The specimens were then individually immersed in 5 ml of acetate buffer solution (0.1 mol/L, pH 4.5 and incubated at 37°C for 24 h, and the acid resistance was evaluated by determining the calcium ion concentration using the atomic emission spectrometry. Statistical Analysis: An ANOVA model was constructed (P value of 0.05, followed by Tukey′s test for multiple pair wise comparisons of mean values. Results: Significant differences were found between the control group and the test groups ( P < 0.001. Conclusions: Combining acidulated phosphate fluoride with either Er:YAG or Co 2 laser had a synergistic effect in decreasing the enamel demineralization more than either fluoride treatment or laser treatment alone.

  17. Protective Effect of Adhesive Systems associated with Neodymium-doped Yttrium Aluminum Garnet Laser on Enamel Erosive/Abrasive Wear.

    Science.gov (United States)

    Crastechini, Erica; Borges, Alessandra B; Becker, Klaus; Attin, Thomas; Torres, Carlos Rg

    2017-10-01

    This study evaluated the efficacy of self-etching adhesive systems associated or not associated with the neodymium-doped yttrium aluminum garnet (Nd:YAG) laser on the protection against enamel erosive/abrasive wear. Bovine enamel specimens were demineralized with 0.3% citric acid (5 minutes). The samples were randomly assigned to eight groups (n = 20): SB - Single Bond Universal (3M/ESPE); SB+L - Single Bond Universal + laser (80 mJ/10 Hz); FB - Futurabond U (Voco); FB+L -Futurabond U + laser; GEN - G-aenial bond (GC); GEN+L -G-aenial bond + laser; L - laser irradiation; and C - no treatment. The laser was applied before light curing. The samples were subjected to erosive/abrasive challenges (0.3% citric acid - 2 minutes and tooth brushing four times daily for 5 days). Enamel surface loss was recovered profilometrically by comparison of baseline and final profiles. The adhesive layer thickness, retention percentage of the protective layer, and microhardness of cured adhesive were measured. Data were analyzed using one-way analysis of variance and Tukey's test (5%). There were significant differences for all parameters (p = 0.0001). Mean values ± SD and results of the Tukey's test were: Surface wear: GEN - 4.88 (±1.09)a, L - 5.04 ± 0.99)a, FB - 5.32 (±0.93)ab, GEN + L - 5.46 (±1.27)abc, SB + L - 5.78 (±1.12)abc, FB + L - 6.23 (±1.25)bc, SB - 6.35 (±1.11)c, and C - 6.46 (±0.61)c; layer thickness: GEN - 15.2 (±8.63)c, FB - 5.06 (±1.96)a, GEN + L - 13.96 (±7.07)bc, SB + L - 4.24 (±2.68)a, FB + L - 9.03 (±13.02)abc, and SB - 7.49 (±2.80)ab; retention: GEN - 68.89 (±20.62)c, FB - 54.53 (±24.80)abc, GEN + L - 59.90 (±19.79)abc, SB + L - 63.37 (±19.30)bc, FB + L - 42.23 (±17.68) a, and SB - 47.78 (±18.29)ab; microhardness: GEN - 9.27 (±1.75)c; FB - 6.99 (±0.89)b; GEN + L - 6.22 (±0.87)ab; SB + L - 15.48 (±2.51)d; FB + L - 10.67 (±1.58)c; SB - 5.00 (±1.60)a. The application of Futurabond U and G-aenial bond on enamel surface, as well as the Nd

  18. Potential of sub-ablative pulsed CO2 laser irradiation on inhibition of artificial caries-like lesion progress in bovine dental enamel

    International Nuclear Information System (INIS)

    Oliveira, Marcella Esteves

    2005-01-01

    The aim of this study was to investigate whether sub-ablative pulsed C0 2 laser (1 0,6 μm) irradiation is capable of reducing the susceptibility of the dental enamel to demineralization, and thus achieving a potential caries-protective effect. The crowns of 51 bovine front teeth, embedded in acrylic resin and polished until exposure of flat enamel surface, were used. The samples were cut in cubes of 10x10 mm, and totally coated with acid-resistant nail varnish, except for an enamel exposed window of 16 mm square. Three groups (n=17) were obtained: control group (CG) not irradiated; group laser A (LA) and group laser B (LB) where the samples were irradiated. The conditions were 60 mJ, 100 Hz, 0,3 J/cm 2 for LA and 135 mJ, 10 Hz, 0,7 J/cm 2 for LB. Two samples of each group were submitted to SEM analysis and fifteen to demineralization in 3 ml acetate buffer solution (0,1 mol/L) with pH 4,5 for 24h at 37 deg C, with regular agitation. After the specimens were removed from the solution, the calcium and phosphorous content were measured with an inductively coupled plasma optical emission spectrometer and 2 more samples of each were submitted to SEM analysis. The obtained Ca and P means in μg/ml and the calculated Ca/P molar ratio were: CG (367,88 ± 33,47; 168,91 ± 14,55; 1,70 ± 0,07) ; LA (372,70 ± 41,70; 161,46 ± 15,26; 1,79 ± 0,07) and LB (328,87 ± 24,91; 145,02 ± 11,04; 1,77 ± 0,05). The ANOVA statistical test revealed statistically significant difference for [Ca], [P] e Ca/P content between the groups (p 2 pulsed CO 2 laser irradiation of bovine enamel was capable of reducing the enamel acid solubility without causing damage to the surface and therefore is a potential method of caries prevention. (author)

  19. Effects of a pulsed Nd:YAG laser on enamel and dentin

    Science.gov (United States)

    Myers, Terry D.

    1990-06-01

    Enamel and dentin samples were exposed extraorally to a pulsed neodymium yttriuma1uminumgarnet (Nd:YAG) laser. The lased samples were observed using both scanning electron microscopy and histological techniques to determine the effects of the laser. The present study has provided the following points: (1) Properly treated, enamel can be 1aser etched to a depth comparable to that achieved with phosphoric acid etching; and (2) both carious and noncarious dentin can be vaporized by the Nd:YAG laser. No cracking or chipping of any enamel or dentin sample was observed histologically or under the SEM.

  20. Photomechanical model of tooth enamel ablation by Er-laser radiation

    Science.gov (United States)

    Belikov, A. V.; Shatilova, K. V.; Skrypnik, A. V.; Vostryakov, R. G.; Maykapar, N. O.

    2012-03-01

    The photomechanical model of ablation of human tooth enamel is described in this work. It takes into account the structural peculiarities of enamel: free water in the enamel pores or cracks. We consider the photomechanical destruction of the enamel rods of hydroxyapatite by the pressure of water contained in the enamel pores and heated by laser radiation. This model takes into account attenuation by the Lambert-Beer law when radiation passes through the tissue and the fact that the tissue removal occurs when a unit volume of water was heated to the critical temperature. Decreasing logarithmic dependence of the enamel removal efficiency on the energy density was obtained as a result of the calculations. The shape of this function follows the shape of the experimental curve.

  1. Decalcification prevention around orthodontic brackets bonded to bleached enamel using different topical agents.

    Science.gov (United States)

    Msallam, Ferial Ahmed; Grawish, Mohammed El-Awady; Hafez, Ahmad Mohammed; Abdelnaby, Yasser Lotfy

    2017-12-01

    The present study was conducted to evaluate the effect of different topical agents utilized for prevention of enamel decalcification around orthodontic brackets bonded to bleached and non-bleached enamel. Human maxillary premolars (n = 120) were divided into two equal groups. Teeth in group I were left without bleaching while those in group II were bleached with Vivastyle gel. Metal brackets were bonded to all the teeth using light-cured adhesive. Each group was divided into six equal subgroups (A, B, C, D, E, and F). In subgroup A, no material was applied (control). In subgroups B, C, D, E, and F, the following materials were applied respectively: Profluorid varnish, Enamel Pro Varnish, Ortho-Choice Ortho-Coat, GC Tooth Mousse, and GC MI Paste Plus. All teeth were cycled in a demineralization solution/artificial saliva for 15 days. Laser fluorescence was used to measure the level of enamel mineralization. The data were statistically analyzed. Regarding the non-bleaching subgroups, all studied material revealed significant demineralization reduction in comparison to the control subgroup (P  0.05). Ortho-Choice Ortho-Coat, and Profluorid and Enamel Pro varnishes could be utilized successfully to reduce enamel demineralization around brackets bonded to either bleached or non-bleached enamel. GC MI Paste Plus and GC Tooth Mousse were effective only in non-bleached enamel.

  2. A laser-abrasive method for the cutting of enamel and dentin.

    Science.gov (United States)

    Altshuler, G B; Belikov, A V; Sinelnik, Y A

    2001-01-01

    This paper introduced a new method for the removal of hard dental tissue based upon the use of particles accelerated by laser irradiation, which the authors have called the laser-abrasive method. The particles used were sapphire as powder or an aqueous suspension. The effect of the products of enamel ablation was also investigated. The particles were accelerated using submillisecond pulses of Er:YAG and Nd:YAG lasers. A strobing CCD camera was used to measure the speed of the ejected particles. The additional contribution of these particles to the efficiency of laser ablation of enamel and dentin was also investigated. The results showed that the enamel particles produced by the beam-tissue interaction were also accelerated by this process of ablation and were effective in the removal of enamel and dentin. The use of an aqueous suspension of sapphire particles increased the efficiency of enamel removal threefold when compared with the use of an Er:YAG laser with water spray. The laser-abrasive method allowed for the removal of enamel and dentin at speeds approaching those of the high-speed turbine. Copyright 2001 Wiley-Liss, Inc.

  3. Evaluation of the cavity margins after Er:YAG laser ablation of the enamel and dentin

    Science.gov (United States)

    Dostalova, Tatjana; Krejsa, Otakar; Jelinkova, Helena; Hamal, Karel

    1994-12-01

    This study investigates the checks of cavity margin after enamel and dentin ablation. The Er:YAG laser enamel and dentin ablation can be directly connected with the danger of cracks originating in the enamel near the cavity. This study evaluates the quality of the enamel edges after Er:YAG laser preparation. The enamel and dentin of buccal surfaces were ablated by the Er:YAG laser radiation. An Erbium:YAG laser system with the energy of 200 mJ was used to generate 200 microsecond(s) long pulses of mid-infrared 2.94 micrometers light in multimode configuration. The laser was operating in a free running mode, the repetition rate being 0.5 Hz with average laser power of 100 mW. Laser radiation was focused on the tooth tissue. Water cooling was used during the procedure in order to prevent tooth tissue destruction. The time of laser preparation was 5 minutes. A cavity of class V was prepared. The teeth were immersed into 0.5% basic fuchsin and then centrifuged at 6000 rev/min for 20 minutes. The microphotographs of the margins stained with 0.5% basic fuchsin were made and then the longitudinal section of the teeth were evaluated. The micrographs of the longitudinal section were checked and measured afterwards. The effect of the investigated laser irradiation on the origin of cracks was analyzed in the scanning electron microscope. Micrographs of each tooth before and after the laser ablation were compared. Micrographs of the intact teeth after extraction present the cracks of the enamel. They depend on the pressure exerted during extraction. The influence of the laser ablation proper is it bears no signs of new cracks. The conclusions of this study demonstrate the non-invasive nature of the Er:YAG laser ablation of the hard dental tissues.

  4. Near-IR imaging of thermal changes in enamel during laser ablation

    Science.gov (United States)

    Maung, Linn H.; Lee, Chulsung; Fried, Daniel

    2010-02-01

    The objective of this work was to observe the various thermal-induced optical changes that occur in the near-infrared (NIR) during drilling in dentin and enamel with the laser and the high-speed dental handpiece. Tooth sections of ~ 3 mm-thickness were prepared from extracted human incisors (N=60). Samples were ablated with a mechanically scanned CO2 laser operating at a wavelength of 9.3-μm, a 300-Hz laser pulse repetition rate, and a laser pulse duration of 10-20 μs. An InGaAs imaging camera was used to acquire real-time NIR images at 1300-nm of thermal and mechanical changes (cracks). Enamel was rapidly removed by the CO2 laser without peripheral thermal damage by mechanically scanning the laser beam while a water spray was used to cool the sample. Comparison of the peripheral thermal and mechanical changes produced while cutting with the laser and the high-speed hand-piece suggest that enamel and dentin can be removed at high speed by the CO2 laser without excessive peripheral thermal or mechanical damage. Only 2 of the 15 samples ablated with the laser showed the formation of small cracks while 9 out of 15 samples exhibited crack formation with the dental hand-piece. The first indication of thermal change is a decrease in transparency due to loss of the mobile water from pores in the enamel which increase lightscattering. To test the hypothesis that peripheral thermal changes were caused by loss of mobile water in the enamel, thermal changes were intentionally induced by heating the surface. The mean attenuation coefficient of enamel increased significantly from 2.12 +/- 0.82 to 5.08 +/- 0.98 with loss of mobile water due to heating.

  5. Laser investigation of the non-uniformity of fluorescent species in dental enamel

    Science.gov (United States)

    Tran, Stephanie U.; Ridge, Jeremy S.; Nelson, Leonard Y.; Seibel, Eric J.

    In the present study, artificial type I and type II erosions were created on dental specimen using acetic acid and EDTA respectively. Specimens were prepared by etching extracted teeth samples in acid to varying degrees, after which the absolute fluorescence intensity ratio of the etched enamel relative to sound enamel was recorded for each specimen using 405 and 532 nm laser excitation. Results showed differences in the fluorescence ratio of etched to sound enamel for type I and II erosions. These findings suggest a non-uniform distribution of fluorescent species in the interprismatic region as compared to the prismatic region.

  6. Effects of the bleaching procedures on enamel micro-hardness: Plasma Arc and diode laser comparison.

    Science.gov (United States)

    Nematianaraki, Saeid; Fekrazad, Reza; Naghibi, Nasim; Kalhori, Katayoun Am; Junior, Aldo Brugnera

    2015-10-02

    One of the major side effects of vital bleaching is the reduction of enamel micro-hardness. The purpose of this study was to evaluate the influence of two different bleaching systems, Plasma Arc and GaAlAs laser, on the enamel micro-hardness. 15 freshly extracted human third molars were sectioned to prepare 30 enamel blocks (5×5 mm). These samples were then randomly divided into 2 groups of 15 each (n=15): a plasma arc bleaching group (: 350-700 nm) + 35% Hydrogen Peroxide whitening gel and a laser bleaching group (GaAlAs laser, λ: 810 nm, P: 10 W, CW, Special Tip) + 35% Hydrogen Peroxide whitening gel. Samples were subjected to the Vickers micro-hardness test (VHN) at a load of 50 g for 15s before and after treatment. Data were statistically analyzed by a Mann-Whitney test (p≤0.05). In the GaAlAs laser group, the enamel micro-hardness was 618.2 before and was reduced to 544.6 after bleaching procedures. In the plasma arc group, the enamel micro-hardness was 644.8 before and 498.9 after bleaching. Although both techniques significantly reduced VHN, plasma arc bleaching resulted in a 22.62% reduction in VHN for enamel micro-hardness, whereas an 11.89% reduction in VHN was observed for laser bleaching; this difference is statistically significant (plaser than with the plasma arc. Therefore GaAlAs laser bleaching has fewer harmful effects than plasma arc in respect to enamel micro-hardness reduction.

  7. Effect of bracket bonding with Er: YAG laser on nanomechanical properties of enamel.

    Science.gov (United States)

    Alavi, Shiva; Birang, Reza; Hajizadeh, Fatemeh; Banimostafaee, Hamed

    2014-01-01

    The aim of this study was to compare the effects of conventional acid etching and laser etching on the nano-mechanical properties of the dental enamel using nano-indentation test. In this experimental in vitro study, buccal surfaces of 10 premolars were divided into three regions. One of the regions was etched with 37% phosphoric acid and another etched with Er:YAG laser, the third region was not etched. The brackets were bonded to both of etched regions. After thermocycling for 500 cycles, the brackets were removed and the teeth were decoronated from the bracket bonding area. Seven nano-indentations were applied at 1-31 μm depth from the enamel surface in each region. Mean values of the hardness and elastic modulus were analyzed with repeated measures analysis of variance and Tukey HSD tests, using the SPSS software (SPSS Inc., version16.0, Chicago, Il, USA). P < 0.05 was considered as significant. The hardness up to 21 μm in depth and elastic modulus up to 6 μm in depth from the enamel surface for laser-etched enamel had significantly higher values than control enamel and the hardness up to 11 μm in depth and elastic modulus up to 6 μm in depth for acid-etched enamel had significantly lower values than the control enamel. The mechanical properties of the enamel were decreased after bracket bonding with conventional acid etching and increased after bonding with Er:YAG laser.

  8. Effect of bracket bonding with Er: YAG laser on nanomechanical properties of enamel

    Directory of Open Access Journals (Sweden)

    Shiva Alavi

    2014-01-01

    Full Text Available Background: The aim of this study was to compare the effects of conventional acid etching and laser etching on the nano-mechanical properties of the dental enamel using nano-indentation test. Materials and Methods: In this experimental in vitro study, buccal surfaces of 10 premolars were divided into three regions. One of the regions was etched with 37% phosphoric acid and another etched with Er:YAG laser, the third region was not etched. The brackets were bonded to both of etched regions. After thermocycling for 500 cycles, the brackets were removed and the teeth were decoronated from the bracket bonding area. Seven nano-indentations were applied at 1-31 μm depth from the enamel surface in each region. Mean values of the hardness and elastic modulus were analyzed with repeated measures analysis of variance and Tukey HSD tests, using the SPSS software (SPSS Inc., version16.0, Chicago, Il, USA. P < 0.05 was considered as significant. Results: The hardness up to 21 μm in depth and elastic modulus up to 6 μm in depth from the enamel surface for laser-etched enamel had significantly higher values than control enamel and the hardness up to 11 μm in depth and elastic modulus up to 6 μm in depth for acid-etched enamel had significantly lower values than the control enamel. Conclusion: The mechanical properties of the enamel were decreased after bracket bonding with conventional acid etching and increased after bonding with Er:YAG laser.

  9. Application of quantitative light-induced fluorescence to determine the depth of demineralization of dental fluorosis in enamel microabrasion: a case report

    Directory of Open Access Journals (Sweden)

    Tae-Young Park

    2016-08-01

    Full Text Available Enamel microabrasion has become accepted as a conservative, nonrestorative method of removing intrinsic and superficial dysmineralization defects from dental fluorosis, restoring esthetics with minimal loss of enamel. However, it can be difficult to determine if restoration is necessary in dental fluorosis, because the lesion depth is often not easily recognized. This case report presents a method for analysis of enamel hypoplasia that uses quantitative light-induced fluorescence (QLF followed by a combination of enamel microabrasion with carbamide peroxide home bleaching. We describe the utility of QLF when selecting a conservative treatment plan and confirming treatment efficacy. In this case, the treatment plan was based on QLF analysis, and the selected combination treatment of microabrasion and bleaching had good results.

  10. Penetration pattern of rhodamine dyes into enamel and dentin: confocal laser microscopy observation.

    Science.gov (United States)

    Kwon, S R; Wertz, P W; Li, Y; Chan, D C N

    2012-02-01

    Enamel and dentin are susceptible to extrinsic and intrinsic stains. The purposes of this study were to determine the penetration pattern of Rhodamine B and dextran-conjugated Rhodamine B into the enamel and dentin as observed by confocal laser microscopy and to relate it to the penetration pattern of hydrogen peroxide commonly used as an active ingredient in tooth-whitening agents and high-molecular-weight staining molecules. Eighteen recently extracted human maxillary anterior teeth were used. Teeth were cleaned and painted with nail varnish except for the crown area above the cemento-enamel junction (CEJ). The painted teeth were then immersed in Rhodamine B and dextran-conjugated Rhodamine B (70 000 MW) for 4, 7, 10 and 15 days. Teeth were sliced to 3 mm thickness in transverse plane and mounted on a glass slide just prior to observation with confocal laser microscopy. Rhodamine B and dextran-conjugated Rhodamine B readily penetrated into the enamel and dentin when exposed for 4 and 7 days, respectively. Rhodamine B penetrated along the interprismatic spaces of the enamel into the dentin. The penetration was accentuated in sections with existing crack lines in the enamel. Rhodamine B was readily absorbed into the dentinal tubules at the dentino-enamel junction and continued to penetrate through the dentin via the dentinal tubules into the pre-dentin. Within the limitations of this study, it is concluded that Rhodamine B and dextran-conjugated Rhodamine B when applied to the external surface of the tooth readily penetrate into the enamel and dentin via the interprismatic spaces in the enamel and dentinal tubules in the dentin, suggesting that stain molecules and bleaching agents possibly exhibit similar penetration pathways. © 2011 The Authors. ICS © 2011 Society of Cosmetic Scientists and the Société Française de Cosmétologie.

  11. Assessment of enamel demineralization using conventional, digital, and digitized radiography Avaliação da desmineralização do esmalte por meio de radiografias convencional, digital e digitalizada

    Directory of Open Access Journals (Sweden)

    Rívea Inês Ferreira

    2006-04-01

    Full Text Available This experimental research aimed at evaluating the accuracy of enamel demineralization detection using conventional, digital, and digitized radiographs, as well as to compare radiographs and logarithmically contrast-enhanced subtraction images. Enamel subsurface demineralization was induced on one of the approximal surfaces of 49 sound third molars. Standardized radiographs of the teeth were taken prior to and after the demineralization phase with three digital systems - CygnusRay MPS®, DenOptix® and DIGORA® - and InSight® film. Three radiologists interpreted the pairs of conventional, digital, and digitized radiographs in two different occasions. Logarithmically contrast-enhanced subtraction images were examined by a fourth radiologist only once. Radiographic diagnosis was validated by cross-sectional microhardness profiling in the test areas of the approximal surfaces. Accuracy was estimated by Receiver Operating Characteristic (ROC analysis. Chi-square test, at a significance level of 5%, was used to compare the areas under the ROC curves (Az calculated for the different imaging modalities. Concerning the radiographs, the DenOptix® system (Az = 0.91 and conventional radiographs (Az = 0.90 presented the highest accuracy values compared with the other three radiographic modalities. However, logarithmically contrast-enhanced subtraction images (Az = 0.98 were significantly more accurate than conventional, digital, and digitized radiographs (p = 0.0000. It can be concluded that the DenOptix® system and conventional radiographs provide better performance for diagnosing enamel subsurface demineralization. Logarithmic subtraction significantly improves radiographic detection.O objetivo desta pesquisa experimental foi investigar a acurácia da detecção de desmineralizações em esmalte por meio de radiografias convencionais, digitais e digitalizadas, e compará-las às imagens por subtração logarítmica. Foram induzidas desmineraliza

  12. Influence of laser etching on enamel and dentin bond strength of Silorane System Adhesive.

    Science.gov (United States)

    Ustunkol, Ildem; Yazici, A Ruya; Gorucu, Jale; Dayangac, Berrin

    2015-02-01

    The aim of this in vitro study was to evaluate the shear bond strength (SBS) of Silorane System Adhesive to enamel and dentin surfaces that had been etched with different procedures. Ninety freshly extracted human third molars were used for the study. After the teeth were embedded with buccal surfaces facing up, they were randomly divided into two groups. In group I, specimens were polished with a 600-grit silicon carbide (SiC) paper to obtain flat exposed enamel. In group II, the overlying enamel layer was removed and exposed dentin surfaces were polished with a 600-grit SiC paper. Then, the teeth in each group were randomly divided into three subgroups according to etching procedures: etched with erbium, chromium:yttrium-scandium-gallium-garnet laser (a), etched with 35% phosphoric acid (b), and non-etched (c, control). Silorane System Adhesive was used to bond silorane restorative to both enamel and dentin. After 24-h storage in distilled water at room temperature, a SBS test was performed using a universal testing machine at a crosshead speed of 1 mm/min. The data were analyzed using two-way ANOVA and Bonferroni tests (p enamel and dentin (p > 0.05). The SBS of self-etch adhesive to dentin was not statistically different from enamel (p > 0.05). Phosphoric acid treatment seems the most promising surface treatment for increasing the enamel and dentin bond strength of Silorane System Adhesive.

  13. 'In vitro' assessment to instrumented indentation hardness tests in enamel of bovine teeth, before and after dental bleaching by laser

    International Nuclear Information System (INIS)

    Britto Junior, Francisco Meira

    2004-01-01

    The laser enamel bleaching is a common used procedure due to its satisfactory esthetic results. The possible changes on the dental structures caused by the bleaching technique are of great importance. The enamel superficial microhardness changes through instrumented indentation hardness on bovine teeth were analyzed in this present study. The samples were divided in two halves, one being the control and the other irradiated with a diode laser (808 nm) or with a Nd:YAG laser (1064 nm) to activate the Whiteness HP bleaching gel (hydrogen peroxide at 35%). It was possible to conclude that there was a statistical significant increase on the enamel superficial microhardness (Group I, sample 1 and Group II, sample 1) despite this increase did not seem to indicate a concern regarding the enamel surface resistance change. There was not a significant statistical change on the enamel microhardness on the other samples. The final conclusion is that there was no superficial enamel morphological change after these treatments. (author)

  14. Quantitative Light-induced Fluorescence-Digital as an oral hygiene evaluation tool to assess plaque accumulation and enamel demineralization in orthodontics.

    Science.gov (United States)

    Miller, Cara C; Burnside, Girvan; Higham, Susan M; Flannigan, Norah L

    2016-11-01

      To assess the use of Quantitative Light-induced Fluorescence-Digital as an oral hygiene evaluation tool during orthodontic treatment.   In this prospective, randomized clinical trial, 33 patients undergoing fixed orthodontic appliance treatment were randomly allocated to receive oral hygiene reinforcement at four consecutive appointments using either white light (WL) or Quantitative Light-induced Fluorescence-Digital (QLF) images, taken with a device, as visual aids. Oral hygiene was recorded assessing the QLF images for demineralization, by fluorescence loss (ΔF), and plaque coverage (ΔR30). A debriefing questionnaire ascertained patient perspectives.   There were no significant differences in demineralization (P  =  .56) or plaque accumulation (P  =  .82) between the WL and QLF groups from T0 to T4. There was no significant reduction in demineralization, ΔF, in the WL, or the QLF group from T0-T4 (P > .05); however, there was a significant reduction in ΔR30 plaque scores (P orthodontics. Oral hygiene reinforcement at consecutive appointments using WL or QLF images as visual aids is effective in reducing plaque coverage. In terms of clinical benefits, QLF and WL images are of similar effectiveness; however, patients preferred the QLF images.

  15. SEM analysis of enamel surface treated by Er:YAG laser: influence of irradiation distance.

    Science.gov (United States)

    Souza-Gabriel, A E; Chinelatti, M A; Borsatto, M C; Pécora, J D; Palma-Dibb, R G; Corona, S A M

    2008-07-01

    Depending on the distance of laser tip to dental surface a specific morphological pattern should be expected. However, there have been limited reports that correlate the Er:YAG irradiation distance with dental morphology. To assess the influence of Er:YAG laser irradiation distance on enamel morphology, by means of scanning electron microscopy (SEM). Sixty human third molars were employed to obtain discs (approximately =1 mm thick) that were randomly assigned to six groups (n=10). Five groups received Er:YAG laser irradiation (80 mJ/2 Hz) for 20 s, according to the irradiation distance: 11, 12, 14, 16, or 17 mm and the control group was treated with 37% phosphoric acid for 15 s. The laser-irradiated discs were bisected. One hemi-disc was separated for superficial analysis without subsequent acid etching, and the other one, received the phosphoric acid for 15 s. Samples were prepared for SEM. Laser irradiation at 11 and 12 mm provided an evident ablation of enamel, with evident fissures and some fused areas. At 14, 16 and 17 mm the superficial topography was flatter than in the other distances. The subsequent acid etching on the lased-surface partially removed the disorganized tissue. Er:YAG laser in defocused mode promoted slight morphological alterations and seems more suitable for enamel conditioning than focused irradiation. The application of phosphoric acid on lased-enamel surface, regardless of the irradiation distance, decreased the superficial irregularities.

  16. Morphological changes produced by acid dissolution in Er:YAG laser irradiated dental enamel.

    Science.gov (United States)

    Manuela Díaz-Monroy, Jennifer; Contreras-Bulnes, Rosalía; Fernando Olea-Mejía, Oscar; Emma Rodríguez-Vilchis, Laura; Sanchez-Flores, Ignacio

    2014-06-01

    Several scientific reports have shown the effects of Er:YAG laser irradiation on enamel morphology. However, there is lack of information regarding the morphological alterations produced by the acid attack on the irradiated surfaces. The aim of this study was to evaluate the morphological changes produced by acid dissolution in Er:YAG laser irradiated dental enamel. Forty-eight enamel samples were divided into four groups (n = 12). GI (control); Groups II, III, and IV were irradiated with Er:YAG at 100 mJ (12.7 J/cm(2) ), 200 mJ (25.5 J/cm(2) ), and 300 mJ (38.2 J/cm(2) ), respectively, at 10 Hz without water irrigation. Enamel morphology was evaluated before-irradiation, after-irradiation, and after-acid dissolution, by scanning electron microscopy (SEM). Sample coating was avoided and SEM analysis was performed in a low-vacuum mode. To facilitate the location of the assessment area, a reference point was marked. Morphological changes produced by acid dissolution of irradiated enamel were observed, specifically on laser-induced undesired effects. These morphological changes were from mild to severe, depending on the presence of after-irradiation undesired effects. © 2014 Wiley Periodicals, Inc.

  17. The Effects of Remineralization via Fluoride Versus Low-Level Laser IR810 and Fluoride Agents on the Mineralization and Microhardness of Bovine Dental Enamel

    Directory of Open Access Journals (Sweden)

    Edith Lara-Carrillo

    2018-01-01

    Full Text Available The objective of this study was to assess the mineralization and microhardness of bovine dental enamel surfaces treated with fluoride, tri-calcium phosphate, and infrared (IR 810 laser irradiation. The study used 210 bovine incisors, which were divided into six groups (n = 35 in each: Group A: Untreated (control, Group B: Fluoride (Durapath-Colgate, Group C: Fluoride+Tri-calcium phosphate (Clin-Pro White-3 M, Group D: Laser IR 810 (Quantum, Group E: Fluoride+laser, and Group F: Fluoride+tri-calcium phosphate+laser. Mineralization was measured via UV-Vis spectroscopy for phosphorus and via atomic absorption spectroscopy for calcium upon demineralization and remineralization with proven agents. Microhardness (SMH was measured after enamel remineralization. Mineral loss data showed differences between the groups before and after the mineralizing agents were placed (p < 0.05. Fluoride presented the highest remineralization tendency for both calcium and phosphate, with a Vickers microhardness of 329.8 HV0.1/11 (p < 0.05. It was observed that, if remineralization solution contained fewer minerals, the microhardness surface values were higher (r = −0.268 and −0.208; p < 0.05. This study shows that fluoride has a remineralizing effect compared with calcium triphosphate and laser IR810. This in vitro study imitated the application of different remineralizing agents and showed which one was the most efficient for treating non-cavitated injuries. This can prevent the progression of lesions in patients with white spot lesions.

  18. Cutting efficiency of a mid-infrared laser on human enamel.

    Science.gov (United States)

    Levy, G; Koubi, G F; Miserendino, L J

    1998-02-01

    In this study, the cutting ability of a newly developed dental laser was compared with a dental high-speed handpiece and rotary bur for removal of enamel. Measurements of the volume of tissue removed, energy emitted, and time of exposure were used to quantify the ablation rate (rate of tissue removal) for each test group and compared. Cutting efficiency (mm3/s) of the laser was calculated based on the mean volume of tissue removed per pulse (mm3/pulse) and unit energy expended (mm3/J) over the range of applied powers (2, 4, 6, and 8 W). The specimens were then examined by light microscopy and scanning electron micrographs for qualitative analysis of the amount of remaining debris and the presence of the smear layer on the prepared enamel surface. Calculations of the cutting efficiency of the laser over the range of powers tested revealed a linear relationship with the level of applied power. The maximum average rate of tissue removal by the laser was 0.256 mm3/s at 8 W, compared with 0.945 mm3/s by the dental handpiece. Light microscopy and scanning electron micrograph examinations revealed a reduction in the amount of remaining debris and smear layer in the laser-prepared enamel surfaces, compared with the conventional method. Based on the results of this study, the cutting efficiency of the high-speed handpiece and dental bur was 3.7 times greater than the laser over the range of powers tested, but the laser appeared to create a cleaner enamel surface with minimal thermal damage. Further modifications of the laser system are suggested for improvement of laser cutting efficiency.

  19. Inhibition of enamel demineralisation using "Nd-YAG and diode laser assisted fluoride therapy".

    Science.gov (United States)

    Chand, B R; Kulkarni, S; Mishra, P

    2016-02-01

    This in vitro study was to evaluate the irradiation efficacy of the Diode laser and the Nd-YAG laser either un-assisted or assisted by acidulated phosphate fluoride (APF) treatment on enamel's acid resistance. Seventy-two enamel samples, obtained from 12 extracted human molars, were randomly assigned to 6 groups as follows: (1) Control (C); (2) Exposed to APF gel (F); (3) Diode laser (DL); (4) Irradiated with Diode laser through APF gel (DL/F); (5) Nd-YAG laser (NL) and (6) Irradiated with Nd-YAG laser through APF gel (NL/F). The specimens were individually demineralised in an acidified hydroxyethylcellulose system, and the acid resistance was evaluated by determining the calcium ion dissolution using atomic absorption spectrometry. The average concentration of the calcium ion determined in groups 1 to 6 was 901, 757, 736, 592, 497 and 416 parts per million micrograms/gram, respectively. The results showed that demineralisation in the NL/F group was significantly less than the other groups and the control group was significantly greater than the other groups (P laser irradiation, used alone or in combination with APF, in decreasing the enamel demineralisation was greater than all the other groups.

  20. In vitro study of hydroxy apatite and enamel powder fused in human enamel by Nd:YAG laser; Estudo in vitro da fusao de hidroxiapatita e esmalte em superficies de esmalte humano pelo laser de Nd:YAg

    Energy Technology Data Exchange (ETDEWEB)

    Ferrreira, Marcus Vinicius Lucas

    2000-07-01

    The aim of this study was to evaluate the effects of pulsed Nd:YAG (1064 nm) laser irradiation on hydroxyapatite and enamel powder fusion. This laser beam is not well absorbed by this two compounds for this reason they were mixed with vegetal coal to increase the absorption of the laser beam. Fifteen enamel flat surfaces and six occlusal enamel surfaces were prepared with three different substances: hydroxyapatite mixed with vegetal coal (3:1 in weigh); enamel powder mixed with vegetal coal (3:1 in weigh); vegetal coal. The occlusal surfaces were utilized to determine if the compounds could seal pits and fissures. Flat surfaces were utilized to determine fusion of hydroxyapatite and enamel powder. All samples were irradiated with Nd:YAG laser with the parameters: 80 mJ, 15 Hz, 1,2 W, 100 {mu}s pulse-width, 131,1 J/cm{sup 2}. Laser beam was delivered to the samples with a 300 {mu}m diameter fiber optic. Morphology of the irradiated surfaces were examined by scanning electron microscopy (SEM). The compounds with hydroxyapatite and enamel powder were fused to enamel surfaces. Only partial pits and fissures sealing could be observed. (author)

  1. Real-time near IR (1310 nm) imaging of CO2 laser ablation of enamel.

    Science.gov (United States)

    Darling, Cynthia L; Fried, Daniel

    2008-02-18

    The high-transparency of dental enamel in the near-IR (NIR) can be exploited for real-time imaging of ablation crater formation during drilling with lasers. NIR images were acquired with an InGaAs focal plane array and a NIR zoom microscope during drilling incisions in human enamel samples with a lambda=9.3-microm CO(2) laser operating at repetition rates of 50-300-Hz with and without a water spray. Crack formation, dehydration and thermal changes were observed during ablation. These initial images demonstrate the potential of NIR imaging to monitor laser-ablation events in real-time to provide information about the mechanism of ablation and to evaluate the potential for peripheral thermal and mechanical damage.

  2. Laser etching of enamel for direct bonding - An in vitro study

    Directory of Open Access Journals (Sweden)

    Rajesh K Reddy

    2010-01-01

    Full Text Available The aim of the study was to determine the shear bond strength of mesh shaped stainless steel orthodontic brackets, bonded to acid etched enamel and laser etched enamel and to compare the shear bond strength following acid etching and laser etching. 50 non carious extracted premolar teeth divided in to 5 groups of 10 each were employed in the study. The buccal surfaces of group - I were subjected to conventional etching using 37% phosphoric acid for 30 seconds, while the other four groups were subjected to Nd:YAG laser etching at different power settings of 80mj, 100mj, 150mj and 200mj respectively for 15 seconds. Brackets were later bonded on to these teeth using Ultimate- light curing primer and adhesive. The shear bond strength of each sample was determined using a universal testing machine and the results were evaluated.

  3. Selective ablation of dental enamel and dentin using femtosecond laser pulses

    International Nuclear Information System (INIS)

    Lizarelli, R F Z; Costa, M M; Carvalho-Filho, E; Bagnato, V S; Nunes, F D

    2008-01-01

    The study of the interaction of intense laser light with matter, as well as transient response of atoms and molecules is very appropriated because of the laser energy concentration in a femtosecond optical pulses. The fundamental problem to be solved is to find tools and techniques which allow us to observe and manipulate on a femtosecond time scale the photonics events on and into the matter. Six third human extracted molars were exposed to a femtosecond Ti:Sapphire Q-switched and mode locked laser (Libra-S, Coherent, Palo Alto, CA, USA), emitting pulses with 70 fs width, radiation wavelength of 801 nm, at a constant pulse repetition rate of 1 KHz. The laser was operated at different power levels (70 to 400 mW) with constant exposition time of 10 seconds, at focused and defocused mode. Enamel and dentin surfaces were evaluated concerned ablation rate and morphological aspects under scanning electron microscopic. The results in this present experiment suggest that at the focused mode and under higher average power, enamel tissues present microcavities with higher depth and very precise edges, but, while dentin shows a larger melt-flushing, lower depth and melting and solidification aspect. In conclusion, it is possible to choose hard or soft ablation, under lower and higher average power, respectively, revealing different aspects of dental enamel and dentin, depending on the average power, fluence and distance from the focal point of the ultra-short pulse laser on the tooth surface

  4. Influence of storage solution on enamel demineralization submitted to pH cycling Influência da solução de armazenagem na desmineralização do esmalte submetido à ciclagem de pH

    Directory of Open Access Journals (Sweden)

    Juliana Silva Moura

    2004-09-01

    Full Text Available Extracted human teeth are frequently used for research or educational purposes. Therefore, it is necessary to store them in disinfectant solutions that do not alter dental structures. Thus, this study evaluated the influence of storage solution on enamel demineralization. For that purpose, sixty samples were divided into the following groups: enamel stored in formaldehyde (F1, stored in thymol (T1, stored in formaldehyde and submitted to pH cycling (F2, stored in thymol and submitted to pH cycling (T2. All samples were evaluated by cross-sectional microhardness analysis and had their percentage of mineral volume versus micrometer (integrated area determined. Differences between groups were found up to 30-µm depth from the enamel surface (p Dentes humanos extraídos são freqüentemente utilizados para propósitos educacionais ou de pesquisa. Desta forma, é necessário o armazenamento dos mesmos em soluções desinfetantes que não alterem a estrutura dental. Para tanto, sessenta espécimes foram divididos nos seguintes grupos: esmalte armazenado em formol (F1, armazenado em timol (T1, armazenado em formol e submetido à ciclagem de pH (F2 e armazenado em timol e submetido à ciclagem de pH (T2, sendo avaliados por meio de análise de microdureza longitudinal e tiveram a porcentagem de volume mineral pro micrômetro determinada. Diferenças entre os grupos foram encontradas até a profundidade de 30µm da superfície do esmalte (p<0,05, onde o grupo mais desmineralizado era T2. Foi concluído que a solução de armazenagem influenciou na reação do substrato dental a um desafio cariogênico, sugerindo que o formaldeído pode aumentar a resistência do esmalte à desmineralização promovida pelo modelo de ciclagem de pH, quando comparado à desmineralização ocorrida no esmalte armazenado em timol.

  5. A modified pH-cycling model to evaluate fluoride effect on enamel demineralization Modelo de ciclagens de pH para avaliar o efeito do fluoreto na desmineralização do esmalte

    Directory of Open Access Journals (Sweden)

    Rosane Maria Orth Argenta

    2003-09-01

    Full Text Available Since in vitro pH-cycling models are widely used to study dental caries, they should allow evaluations of fluoride effect on early stages of caries development. Therefore, acid etching on enamel surface must be avoided, enabling surface microhardness (SMH analysis. In the present study, the pH-cycling model originally described by Featherstone et al.9 (1986 was modified to preserve the enamel surface and to produce early carious lesions that could be evaluated using SMH and cross-sectional microhardness (CSMH measurements. In order to validate this modified model, a dose-response evaluation with fluoride was made. Human enamel blocks with known SMH were submitted to such regimen with the following treatments: distilled deionized water (DDW; control and solutions containing 70, 140 and 280 ppm F. Data from %SMH change and deltaZ (mineral loss showed a statistically significant negative correlation between F concentration in treatment solutions and mineral loss. In conclusion, the modified pH-cycling model allowed the evaluation of changes on the outermost enamel layer during caries development, and a dose-response effect of fluoride reducing enamel demineralization was observed.Considerando que os modelos de ciclagens de pH são amplamente usados para estudar a cárie dental, eles deveriam possibilitar a avaliação do efeito do fluoreto nos estágios iniciais do desenvolvimento da cárie. Desse modo, o ataque ácido erosivo na superfície do esmalte deve ser evitado, possibilitando a análise da microdureza de superfície (MDS. No presente estudo, o modelo de ciclagens de pH descrito por Featherstone et al.9 (1986 foi modificado para preservar a superfície do esmalte e para produzir lesões iniciais que pudessem ser avaliadas usando MDS e microdureza do esmalte seccionado longitudinalmente. Para validar esse modelo modificado, uma avaliação dose-resposta a fluoreto foi feita. Blocos de esmalte dental humano de MDS conhecida foram submetidos a

  6. Sub ablative Er: YAG laser irradiation on surface roughness of eroded dental enamel.

    Science.gov (United States)

    Curylofo-Zotti, Fabiana Almeida; Lepri, Taísa Penazzo; Colucci, Vivian; Turssi, Cecília Pedroso; Corona, Silmara Aparecida Milori

    2015-11-01

    This study evaluated the effects of Er:YAG laser irradiation applied at varying pulse repetition rate on the surface roughness of eroded enamel. Bovine enamel slabs (n = 10) were embedded in polyester resin, ground, and polished. To erosive challenges, specimens were immersed two times per day in 20mL of concentrated orange juice (pH = 3.84) under agitation, during a two-day period. Specimens were randomly assigned to irradiation with the Er:YAG laser (focused mode, pulse energy of 60 mJ and energy density of 3.79 J/cm(2) ) operating at 1, 2, 3, or 4 Hz. The control group was left nonirradiated. Surface roughness measurements were recorded post erosion-like formation and further erosive episodes by a profilometer and observed through atomic force microscopy (AFM). Analysis of variance revealed that the control group showed the lowest surface roughness, while laser-irradiated substrates did not differ from each other following post erosion-like lesion formation. According to analysis of covariance, at further erosive episodes, the control group demonstrated lower surface roughness (P > 0.05), than any of the irradiated groups (P enamel eroded. The AFM images showed that the specimens irradiated by the Er:YAG laser at 1 Hz presented a less rough surface than those irradiated at 2, 3, and 4 Hz. © 2015 Wiley Periodicals, Inc.

  7. Shear bond strength and SEM morphology evaluation of different dental adhesives to enamel prepared with ER:YAG laser.

    Science.gov (United States)

    Pires, Patrícia T; Ferreira, João C; Oliveira, Sofia A; Azevedo, Alvaro F; Dias, Walter R; Melo, Paulo R

    2013-01-01

    Early observations of enamel surfaces prepared by erbium lasers motivated clinicians to use laser as an alternative to chemical etching. Evaluate shear bond strength (SBS) values of different dental adhesives on Erbium:Yttrium Aluminum Garnet (Er:YAG) laser prepared enamel and to evaluate possible etching patterns correlations between dental adhesives and SBS values. One hundred bovine incisors were randomly assigned to SBS tests on enamel (n = 15) and to enamel morphology analysis (n = 5) after Er:YAG laser preparation as follows: Group I - 37% phosphoric acid (PA)+ ExciTE(®); Group II - ExciTE(®); Group III - AdheSE(®) self-etching; Group IV - FuturaBond(®) no-rinse. NR; Group V - Xeno(®) V. Teeth were treated with the adhesive systems and subjected to thermal cycling. SBS were performed in a universal testing machine at 5 mm/min. One-way ANOVA and post-hoc tests (P adhesive systems yielded significantly different SBSs. Acid etching significantly increased the adhesion in laser treated enamel. No differences in SBS values were obtained between AdheSE(®) and ExciTE(®) without condition with PA. FuturaBond(®) NR and Xeno(®) V showed similar SBS, which was lower in comparison to the others adhesives. No correlation between enamel surface morphology and SBS values was observed, except when PA was used.

  8. Potential of sub-ablative pulsed CO{sub 2} laser irradiation on inhibition of artificial caries-like lesion progress in bovine dental enamel; Potencial de inibicao da progressao da carie artificial por irradiacao sub-ablativa com laser de CO{sub 2} pulsado em esmalte dental bovino

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Marcella Esteves

    2005-07-01

    The aim of this study was to investigate whether sub-ablative pulsed C0{sub 2} laser (1 0,6 {mu}m) irradiation is capable of reducing the susceptibility of the dental enamel to demineralization, and thus achieving a potential caries-protective effect. The crowns of 51 bovine front teeth, embedded in acrylic resin and polished until exposure of flat enamel surface, were used. The samples were cut in cubes of 10x10 mm, and totally coated with acid-resistant nail varnish, except for an enamel exposed window of 16 mm square. Three groups (n=17) were obtained: control group (CG) not irradiated; group laser A (LA) and group laser B (LB) where the samples were irradiated. The conditions were 60 mJ, 100 Hz, 0,3 J/cm{sup 2} for LA and 135 mJ, 10 Hz, 0,7 J/cm{sup 2} for LB. Two samples of each group were submitted to SEM analysis and fifteen to demineralization in 3 ml acetate buffer solution (0,1 mol/L) with pH 4,5 for 24h at 37 deg C, with regular agitation. After the specimens were removed from the solution, the calcium and phosphorous content were measured with an inductively coupled plasma optical emission spectrometer and 2 more samples of each were submitted to SEM analysis. The obtained Ca and P means in {mu}g/ml and the calculated Ca/P molar ratio were: CG (367,88 {+-} 33,47; 168,91 {+-} 14,55; 1,70 {+-} 0,07) ; LA (372,70 {+-} 41,70; 161,46 {+-} 15,26; 1,79 {+-} 0,07) and LB (328,87 {+-} 24,91; 145,02 {+-} 11,04; 1,77 {+-} 0,05). The ANOVA statistical test revealed statistically significant difference for [Ca], [P] e Ca/P content between the groups (p<0,05). The Tukey test results showed that LB had significantly lower means of Ca and P content in demineralization solution than the other groups (p<0,01), and between LA and control there was not statistically significant difference. For the Ca/P molar ratio LA and LB means were significantly higher than the control (p<0,01) and there was not statistical difference between the two irradiated groups. SEM observations

  9. Microtensile bond strength of composite resin to human enamel prepared using erbium: Yttrium aluminum garnet laser.

    Science.gov (United States)

    Delfino, Carina Sinclér; Souza-Zaroni, Wanessa Christine; Corona, Silmara Aparecida Milori; Palma-Dibb, Regina Guenka

    2007-02-01

    The Erbium: Yttrium Aluminum Garnet (YAG) laser used for preparation of cavity can alter the substrate and it could influence the bond strength of enamel. The aim of this in vitro study was to evaluate the influence of Er:YAG laser's energy using microtensile bond test. Three groups were obtained (cavity preparation) and each group was divided into two subgroups (adhesive system). After that the adhesive protocol was performed, sections with a cross-sectional area of 0.8 mm2 (+/-0.2 mm2) were obtained. The specimens were mounted in a universal testing machine (0.5 mm/min). Statistical analysis showed a decrease in bond strength for lased groups (p adhesive system was used the laser 300 mJ subgroup showed higher bond strength compared to the laser 250 mJ (p adhesive procedures than conventional bur-cut cavities. Copyright 2006 Wiley Periodicals, Inc.

  10. Microsecond enamel ablation with 10.6μm CO2 laser radiation

    Science.gov (United States)

    Góra, W. S.; McDonald, A.; Hand, D. P.; Shephard, J. D.

    2016-02-01

    Lasers have been previously been used for dental applications, however there remain issues with thermally-induced cracking. In this paper we investigate the impact of pulse length on CO2 laser ablation of human dental enamel. Experiments were carried in vitro on molar teeth without any modification to the enamel surface, such as grinding or polishing. In addition to varying the pulse length, we also varied pulse energy and focal position, to determine the most efficient ablation of dental hard tissue and more importantly to minimize or eradicate cracking. The maximum temperature rise during the multi pulse ablation process was monitored using a set of thermocouples embedded into the pulpal chamber. The application of a laser device in dental surgery allows removal of tissue with higher precision, which results in minimal loss of healthy dental tissue. In this study we use an RF discharge excited CO2 laser operating at 10.6μm. The wavelength of 10.6 μm overlaps with a phosphate band (PO3-4) absorption in dental hard tissue hence the CO2 laser radiation has been selected as a potential source for modification of the tissue. This research describes an in-depth analysis of single pulse laser ablation. To determine the parameters that are best suited for the ablation of hard dental tissue without thermal cracking, a range of pulse lengths (10-200 μs), and fluences (0-100 J/cm2) are tested. In addition, different laser focusing approaches are investigated to select the most beneficial way of delivering laser radiation to the surface (divergent/convergent beam). To ensure that these processes do not increase the temperature above the critical threshold and cause the necrosis of the tissue a set of thermocouples was placed into the pulpal chambers. Intermittent laser radiation was investigated with and without application of a water spray to cool down the ablation site and the adjacent area. Results show that the temperature can be kept below the critical threshold

  11. Potential of CO2 lasers (10.6 µm associated with fluorides in inhibiting human enamel erosion

    Directory of Open Access Journals (Sweden)

    Thayanne Monteiro RAMOS-OLIVEIRA

    2014-01-01

    Full Text Available This in vitro study aimed to investigate the potential of CO2 lasers associated with different fluoride agents in inhibiting enamel erosion. Human enamel samples were randomly divided into 9 groups (n = 12: G1-eroded enamel; G2-APF gel; G3-AmF/NaF gel; G4-AmF/SnF2 solution; G5-CO2 laser (λ = 10.6 µm+APF gel; G6-CO2 laser+AmF/NaF gel; G7-CO2laser+AmF/SnF2solution; G8-CO2 laser; and G9-sound enamel. The CO2 laser parameters were: 0.45 J/cm2; 6 μs; and 128 Hz. After surface treatment, the samples (except from G9 were immersed in 1% citric acid (pH 4.0, 3 min. Surface microhardness was measured at baseline and after surface softening. The data were statistically analyzed by one-way ANOVA and Tukey’s tests (p < 0.05. G2 (407.6 ± 37.3 presented the highest mean SMH after softening, followed by G3 (407.5 ± 29.8 and G5 (399.7 ± 32.9. Within the fluoride-treated groups, G4 (309.0 ± 24.4 had a significantly lower mean SMH than G3 and G2, which were statistically similar to each other. AmF/NaF and APF application showed potential to protect and control erosion progression in dental enamel, and CO2 laser irradiation at 0.45J/cm2 did not influence its efficacy. CO2 laser irradiation alone under the same conditions could also significantly decrease enamel erosive mineral loss, although at lower levels.

  12. In Situ analysis of CO2 laser irradiation on controlling progression of erosive lesions on dental enamel.

    Science.gov (United States)

    Lepri, Taísa Penazzo; Scatolin, Renata Siqueira; Colucci, Vivian; De Alexandria, Adílis Kalina; Maia, Lucianne Cople; Turssi, Cecília Pedroso; Corona, Silmara Aparecida Milori

    2014-08-01

    The present study aimed to evaluate in situ the effect of CO2 laser irradiation to control the progression of enamel erosive lesions. Fifty-six slabs of bovine incisors enamel (5 × 3 × 2.5 mm(3) ) were divided in four distinct areas: (1) sound (reference area), (2) initial erosion, (3) treatment (irradiated or nonirradiated with CO2 laser), (4) final erosion (after in situ phase). The initial erosive challenge was performed with 1% citric acid (pH = 2.3), for 5 min, 2×/day, for 2 days. The slabs were divided in two groups according to surface treatment: irradiated with CO2 laser (λ = 10.6 µm; 0.5 W) and nonirradiate. After a 2-day lead-in period, 14 volunteers wore an intraoral palatal appliance containing two slabs (irradiated and nonirradiated), in two intraoral phases of 5 days each. Following a cross-over design during the first intraoral phase, half of the volunteers immersed the appliance in 100 mL of citric acid for 5 min, 3×/day, while other half of the volunteers used deionized water (control). The volunteers were crossed over in the second phase. Enamel wear was determined by an optical 3D profilometer. Three-way ANOVA for repeated measures revealed that there was no significant interaction between erosive challenge and CO2 laser irradiation (P = 0.419). Erosive challenge significantly increased enamel wear (P = 0.001), regardless whether or not CO2 laser irradiation was performed. There was no difference in enamel wear between specimens CO2 -laser irradiated and non-irradiated (P = 0.513). Under intraoral conditions, CO2 laser irradiation did not control the progression of erosive lesions in enamel caused by citric acid. © 2014 Wiley Periodicals, Inc.

  13. Influence of the incidence angle on the morphology of enamel and dentin under Er:YAG laser irradiation

    International Nuclear Information System (INIS)

    Junqueira Junior, Duilio Naves

    2002-01-01

    The purpose of this study is to make an in vitro evaluation, using scanning electron microscopy, of the influence of the laser beam irradiation angle on the enamel and dentin morphology. These tissues were both irradiated by Er:YAG Laser, with the same energy parameter. Twenty-four incisive bovine teeth were used, separated in eight groups, four of enamel, and four of dentin, with three specimens in each group. Each specimen was submitted to three laser applications, varying the incidence angle, between the laser and the tooth surface, at 90, 50 and 20 degrees. The applied frequency was 2 Hz, with 20 pulses in each application. The KaVo Key Laser 3 was employed, wavelength at 2940 nm, adjustable energy from 40 to 600 mJ and repetition rate from 1 to 25 Hz. The groups were distributed according to the energy parameter as follows - enamel: 250 mJ; 300 mJ; 350 mJ and 400 mJ; dentin: 200 mJ; 250 mJ; 300 mJ and 350 mJ. The results evidenced the Laser incidence angle importance; it is an essential parameter in the protocol of utilization and it should not be disregarded. The observations of this study allow to conclude that the Laser incidence angle has direct influence on the morphological aspect of the alterations produced in enamel and dentin. (author)

  14. Exogenous mineralization of hard tissues using photo-absorptive minerals and femto-second lasers; the case of dental enamel.

    Science.gov (United States)

    Anastasiou, A D; Strafford, S; Thomson, C L; Gardy, J; Edwards, T J; Malinowski, M; Hussain, S A; Metzger, N K; Hassanpour, A; Brown, C T A; Brown, A P; Duggal, M S; Jha, A

    2018-04-15

    A radical new methodology for the exogenous mineralization of hard tissues is demonstrated in the context of laser-biomaterials interaction. The proposed approach is based on the use of femtosecond pulsed lasers (fs) and Fe 3+ -doped calcium phosphate minerals (specifically in this work fluorapatite powder containing Fe 2 O 3 nanoparticles (NP)). A layer of the synthetic powder is applied to the surface of eroded bovine enamel and is irradiated with a fs laser (1040 nm wavelength, 1 GHz repetition rate, 150 fs pulse duration and 0.4 W average power). The Fe 2 O 3 NPs absorb the light and may act as thermal antennae, dissipating energy to the vicinal mineral phase. Such a photothermal process triggers the sintering and densification of the surrounding calcium phosphate crystals thereby forming a new, dense layer of typically ∼20 μm in thickness, which is bonded to the underlying surface of the natural enamel. The dispersed iron oxide NPs, ensure the localization of temperature excursion, minimizing collateral thermal damage to the surrounding natural tissue during laser irradiation. Simulated brushing trials (pH cycle and mechanical force) on the synthetic layer show that the sintered material is more acid resistant than the natural mineral of enamel. Furthermore, nano-indentation confirms that the hardness and Young's modulus of the new layers are significantly more closely matched to enamel than current restorative materials used in clinical dentistry. Although the results presented herein are exemplified in the context of bovine enamel restoration, the methodology may be more widely applicable to human enamel and other hard-tissue regenerative engineering. In this work we provide a new methodology for the mineralisation of dental hard tissues using femtosecond lasers and iron doped biomaterials. In particular, we demonstrate selective laser sintering of an iron doped fluorapatite on the surface of eroded enamel under low average power and mid

  15. Does ErbiumiYttrium-Aluminum-Garnet Laser to Enamel improve the Performance of Etch-and-rinse and Universal Adhesives?

    Science.gov (United States)

    De Jesus Tavarez, Rudys R; Rodrigues, Lorrany Lc; Diniz, Ana C; Lage, Lucas M; Torres, Carlos Rg; Bandeca, Matheus C; Firoozmand, Leily M

    2018-03-01

    This study aims to evaluate the effect of erbium: Yttrium-aluminum-garnet (Er:YAG) laser irradiation on the enamel microshear bond strength (μSBS), followed by the utilization of etch-and-rinse and universal adhesive systems. A total of 32 molars were sectioned in the mesiodistal direction producing 64 samples that were randomized into two groups (n = 32): single bond 2 (SB2) (etch-and-rinse system; 3M), SB universal (SBU) (universal etching system; The SB2 and SBU groups were then divided into two subgroups (n = 16): (i) enamel was irradiated with an Er:YAG laser (λ = 2.94 μm, 60 mJ, 10 Hz), and (ii) enamel served as a control. The samples were restored with TPH3 (Dentsply), stored in artificial saliva for 24 hours, and subjected to a micro-shear test. Kruskal-Wallis (p enamel interface. The previous irradiation of enamel with Er:YAG laser does not interfere with the performance of simplified two-step etch-and-rinse and universal adhesive systems. The increasing use of Er:YAG laser is important to evaluate the influence of this irradiation on the adhesion of restorative materials. Thus, to obtain the longevity of the restorative procedures, it is necessary to know the result of the association of the present adhesive systems to the irradiated substrate.

  16. Effect of Er,Cr:YSGG laser irradiation on bovine enamel surface during in-office tooth bleaching ex vivo.

    Science.gov (United States)

    Dionysopoulos, Dimitrios; Strakas, Dimitrios; Koliniotou-Koumpia, Eugenia; Koumpia, Effimia

    2017-07-01

    The aim of this in vitro study was to evaluate the effect of using Er,Cr:YSGG laser during in-office tooth bleaching on bovine enamel surface to evaluate the safety of this therapy on tooth tissues. Thirty-six enamel specimens were prepared from bovine incisors and divided into three groups: Group 1 specimens (control) received no bleaching treatment; Group 2 received a conventional in-office bleaching treatment (40 % H 2 O 2 ); Group 3 received laser-assisted bleaching procedure (40 % H 2 O 2 ) utilizing an Er,Cr:YSGG laser. The specimens were stored for 10 days after the bleaching treatment in artificial saliva. Vickers hardness was determined using a microhardness tester, and measurements for surface roughness were done using a VSI microscope. Three specimens for each experimental group were examined under SEM and mineral composition of the specimens was evaluated using EDS. Data were statistically analyzed using one-way ANOVA, Tukey's post hoc, Wilcoxon signed rank and Kruskal-Wallis tests (a = 0.05). The Vickers hardness of the enamel was reduced after in-office bleaching procedures (p  0.05), and no changes in mineral composition of the enamel were detected after in-office bleaching procedures (p > 0.05). The laser-assisted bleaching treatment with Er,Cr:YSGG laser did not influence the enamel surface compared to the conventional bleaching technique. The safety of the use of Er,Cr:YSGG laser during in-office tooth bleaching regarding the surface properties of the enamel was confirmed under in vitro conditions.

  17. Structure and composition of enamel and dentin after thermal treatment or infrared laser irradiation

    International Nuclear Information System (INIS)

    Bachmann, Luciano

    2004-01-01

    The main purpose of this work is to identify the crystallographic structure, optical properties, chemical composition and electron paramagnetic signals that laser irradiation or oven heating produces on the tissue. The thermal treatment was conducted in oven with temperature range below 1000 deg C and the laser irradiation with holmium (Ho:YLF - 2,065 μm) and erbium (Er:YAG - 2,94 μm) laser. The tissue characterization was carried out with X-ray diffraction, scanning electron microscopy, ultraviolet and visible transmission spectroscopy, light microscopy, infrared transmission/reflection spectroscopy and electron paramagnetic resonance. The holmium irradiated enamel (600-800 J/cm 2 ) shows the presence of tetracalcium phosphate that coexists with the natural phase (hydroxyapatite). The irradiated dentin shows only the sharper diffraction peaks of the natural phase. The narrows peaks, observed after irradiation, could be assigned to the dentin crystal growth and impurities elimination. Tissue discoloration is observed after thermal treatment with temperatures above 100 deg C. Heated enamel become white-opaque and the origin is assigned to the water elimination, which promotes higher light scattering by the prismatic structure. On the other hand, heated dentin, with similar temperatures becomes brown. The dentin browning changes with the temperature and shown two peaks, at 375 deg C and 700 deg C. The peak at 375 deg C is assigned to the collagen structure degradation and at 700 deg C to the cyanate formation. The dentin discoloration produced with temperatures below 200 deg C is reversible after the tissue hydration. Both enamel and dentin discoloration are also observed in erbium irradiated tissues. Thermal treatments, heating in oven or laser irradiation, change mainly the organic matrix composition and water present in the tissues. The inorganic matrix is more stable and its radicals are changed, with more predominance, only at temperatures higher than 500 deg

  18. Human dental enamel and dentin structural effects after Er:YAG laser irradiation.

    Science.gov (United States)

    Lima, Darlon Martíns; Tonetto, Mateus Rodrigues; de Mendonça, Adriano Augusto Melo; Elossais, André Afif; Saad, José Roberto Cury; de Andrade, Marcelo Ferrarezi; Pinto, Shelon Cristina Souza; Bandéca, Matheus Coelho

    2014-05-01

    Ideally projected to be applied on soft tissues, infrared lasers were improved by restorative dentistry to be used in hard dental tissues cavity preparations--namely enamel and dentin. This paper evidentiates the relevant aspects of infrared Erbium laser's action mechanism and its effects, and characterizes the different effects deriving from the laser's beams emission. The criteria for use and selection of optimal parameters for the correct application of laser systems and influence of supporting factors on the process, such as water amount and its presence in the ablation process, protection exerted by the plasma shielding and structural factors, which are indispensable in dental tissues cavity preparation related to restorative technique, are subordinated to optical modifications caused by the interaction of the energy dissipated by these laser light emission systems in the targeted tissue substrate. Differences in the action of infrared Erbium laser system in regard to the nature of the ablation process and variations on the morphological aspects observed in the superficial structure of the target tissue irradiated, may be correlated to the structural optical modifications of the substrate produced by an interaction of the energy propagated by laser systems.

  19. Spectrally enhanced image resolution of tooth enamel surfaces

    Science.gov (United States)

    Zhang, Liang; Nelson, Leonard Y.; Berg, Joel H.; Seibel, Eric J.

    2012-01-01

    Short-wavelength 405 nm laser illumination of surface dental enamel using an ultrathin scanning fiber endoscope (SFE) produced enhanced detail of dental topography. The surfaces of human extracted teeth and artificial erosions were imaged with 405 nm, 444 nm, 532 nm, or 635 nm illumination lasers. The obtained images were then processed offline to compensate for any differences in the illumination beam diameters between the different lasers. Scattering and absorption coefficients for a Monte Carlo model of light propagation in dental enamel for 405 nm were scaled from published data at 532 nm and 633 nm. The value of the scattering coefficient used in the model was scaled from the coefficients at 532 nm and 633 nm by the inverse third power of wavelength. Simulations showed that the penetration depth of short-wavelength illumination is localized close to the enamel surface, while long-wavelength illumination travels much further and is backscattered from greater depths. Therefore, images obtained using short wavelength laser are not contaminated by the superposition of light reflected from enamel tissue at greater depths. Hence, the SFE with short-wavelength illumination may make it possible to visualize surface manifestations of phenomena such as demineralization, thus better aiding the clinician in the detection of early caries.

  20. Bonding performance of universal adhesives to er,cr:YSGG laser-irradiated enamel.

    Science.gov (United States)

    Ayar, Muhammet Kerim; Erdemir, Fatih

    2017-04-01

    Universal adhesives have been recently introduced for use as self-etch or etch-and-rinse adhesives depending on the dental substrate and clinical condition. However, their bonding effectiveness to laser-irradiated enamel is still not well-known. Thus, the aim of this study was to compare the shear bond strength (SBS) of universal adhesives (Single Bond Universal; Nova Compo-B Plus) applied to Er,Cr:YSGG laser-irradiated enamel with SBS of the same adhesives applied in self-etch and acid-etching modes, respectively. Crown segments of sixty bovine incisors were embedded into standardized acrylic blocks. Flattened enamel surfaces were prepared. Specimens were divided into six groups according to universal adhesives and application modes randomly (n = 10), as follows: Single Bond Universal/acid-etching mode; Nova Compo-B Plus/acid-etching mode; Single Bond Universal/self-etching mode; Nova Compo-B Plus/self-etching mode; and Single Bond Universal/Er,Cr:YSGG Laser-etching mode; Nova Compo-B Plus/Er,Cr:YSGG Laser-etching mode. After surface treatments, universal adhesives were applied onto surfaces. SBS was determined after storage in water for 24 h using a universal testing machine with a crosshead speed of 0.5 mm min -1 . Failure modes were evaluated using a stereomicroscope. Data was analyzed using two-way of analyses of variances (ANOVA) (p = 0.05). Two-way ANOVA revealed that adhesive had no effect on SBS (p = 0.88), but application mode significantly influenced SBS (p = 0.00). Acid-etching significantly increased SBS, whereas there are no significant differences between self-etch mode and laser-etching for both adhesives. The bond strength of universal adhesives may depend on application mode. Acid etching may significantly increase bond strength, while laser etching may provide similar bond strength when compared to self-etch mode. © 2016 Wiley Periodicals, Inc.

  1. Nd:YAG Laser-aided ceramic brackets debonding: Effects on shear bond strength and enamel surface

    Science.gov (United States)

    Han, Xianglong; Liu, Xiaolin; Bai, Ding; Meng, Yao; Huang, Lan

    2008-11-01

    In order to evaluate the efficiency of Nd:YAG laser-aided ceramic brackets debonding technique, both ceramic brackets and metallic brackets were bonded with orthodontic adhesive to 30 freshly extracted premolars. The specimens were divided into three groups, 10 in each, according to the brackets employed and the debonding techniques used: (1) metallic brackets with shear debonding force, (2) ceramic brackets with shear debonding force, and (3) ceramic brackets with Nd:YAG laser irradiation. The result showed that laser irradiation could diminish shear bond strength (SBS) significantly and produce the most desired ARI scores. Moreover, scanning electron microscopy investigation displayed that laser-aided technique induced little enamel scratch or loss. It was concluded that Nd:YAG laser could facilitate the debonding of ceramic brackets and diminish the amount of remnant adhesive without damaging enamel structure.

  2. Nd:YAG Laser-aided ceramic brackets debonding: Effects on shear bond strength and enamel surface

    International Nuclear Information System (INIS)

    Han Xianglong; Liu Xiaolin; Bai Ding; Meng Yao; Huang Lan

    2008-01-01

    In order to evaluate the efficiency of Nd:YAG laser-aided ceramic brackets debonding technique, both ceramic brackets and metallic brackets were bonded with orthodontic adhesive to 30 freshly extracted premolars. The specimens were divided into three groups, 10 in each, according to the brackets employed and the debonding techniques used: (1) metallic brackets with shear debonding force, (2) ceramic brackets with shear debonding force, and (3) ceramic brackets with Nd:YAG laser irradiation. The result showed that laser irradiation could diminish shear bond strength (SBS) significantly and produce the most desired ARI scores. Moreover, scanning electron microscopy investigation displayed that laser-aided technique induced little enamel scratch or loss. It was concluded that Nd:YAG laser could facilitate the debonding of ceramic brackets and diminish the amount of remnant adhesive without damaging enamel structure

  3. Nd:YAG Laser-aided ceramic brackets debonding: Effects on shear bond strength and enamel surface

    Energy Technology Data Exchange (ETDEWEB)

    Han Xianglong [State Key Laboratory of Oral Diseases, Sichuan University, Chengdu 610041 (China); Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041 (China); Liu Xiaolin [Department of Orthodontics, Stomatology Hospital, Dalian University, Dalian 116021 (China); Bai Ding [State Key Laboratory of Oral Diseases, Sichuan University, Chengdu 610041 (China); Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041 (China)], E-mail: baiding88@hotmail.com; Meng Yao; Huang Lan [Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041 (China)

    2008-11-15

    In order to evaluate the efficiency of Nd:YAG laser-aided ceramic brackets debonding technique, both ceramic brackets and metallic brackets were bonded with orthodontic adhesive to 30 freshly extracted premolars. The specimens were divided into three groups, 10 in each, according to the brackets employed and the debonding techniques used: (1) metallic brackets with shear debonding force, (2) ceramic brackets with shear debonding force, and (3) ceramic brackets with Nd:YAG laser irradiation. The result showed that laser irradiation could diminish shear bond strength (SBS) significantly and produce the most desired ARI scores. Moreover, scanning electron microscopy investigation displayed that laser-aided technique induced little enamel scratch or loss. It was concluded that Nd:YAG laser could facilitate the debonding of ceramic brackets and diminish the amount of remnant adhesive without damaging enamel structure.

  4. Er,Cr:YSGG Laser Energy Delivery: Pulse and Power Effects on Enamel Surface and Erosive Resistance.

    Science.gov (United States)

    de Oliveira, Renan Mota; de Souza, Vinicius Matsuzaki; Esteves, Camila Machado; de Oliveira Lima-Arsati, Ynara Bosco; Cassoni, Alessandra; Rodrigues, José Augusto; Brugnera Junior, Aldo

    2017-11-01

    High power lasers have been suggested as a useful tool for dental caries and erosion prevention due to the increase of enamel acid resistance. to evaluate the effect of Er,Cr:YSGG (erbium,chromium:yttrium, scandium, gallium, garnet) laser irradiation pulse frequency and power on enamel surface and acid erosion resistance. By combining pulse frequency (5-75 Hz) and power settings (0.10-1.00 W), 20 irradiated groups and one nonirradiated control group were tested. A total of 63 bovine enamel blocks (n = 3/group) were prepared for surface hardness and roughness evaluation, performed in three phases: baseline, after irradiation, and after erosive challenge. Enamel blocks were irradiated with Er,Cr:YSGG laser with MZ8 tip (iPlus; Waterlase, Biolase, CA) for 30 sec according to experimental group and submitted. Erosive challenge consisted of four cycles alternating immersion in 0.01 M HCl (5 mL/mm 2 ; 2 min; at 37°C) and immersion in artificial saliva for 3 h. Analysis of variance (three-way ANOVA), Tukey's test, and Pearson correlation were performed for the statistical analysis (p hardness. After erosive challenge, 5 and 75 W groups showed increase in surface hardness; 0.25, 0.5, 0.75, and 1 W groups showed minor alterations in surface roughness. the irradiation of Er,Cr:YSGG laser with different parameters of power and pulse frequency settings may alter enamel surface and erosive resistance differently. Pulse frequency of 30 Hz and power of 0.50 W was considered the best parameter to prevent enamel acid erosion.

  5. Comparison of Enamel Morphologic Characteristics after Conditioning with Various Combinations of Acid Etchant and Er:YAG Laser in Bonding and Rebonding Procedures: A SEM Analysis

    Directory of Open Access Journals (Sweden)

    Mohammad Sadegh Ahmad Akhoundi

    2017-10-01

    Full Text Available Objectives: Many studies have evaluated re-etched enamel by using scanning electron microscopy (SEM; however, there is no evidence regarding the use of Erbium-doped yttrium aluminium garnet (Er:YAG laser at primary and secondary bonding instead of acid etching with regards to enamel surface changes. The purpose of the present study was to determine that whether or not the methods of primary and secondary enamel preparation affect enamel characteristics after rebonding, by using SEM analysis.Materials and Methods: Twelve freshly extracted premolars were divided into 4 groups. The samples in each group were conditioned by acid etchant or Er:YAG laser at primary conditioning, according to the instructions. Afterwards, they were bonded with orthodontic brackets. After debonding, the samples were prepared for second conditioning. Also, two samples were conditioned only once with acid etchant or laser, to compare enamel morphology changes with those after re-etching. Finally, buccal enamel surfaces were evaluated using SEM.Results: Enamel etching patterns were observed in the samples which had been acid-conditioned at first or at both conditionings. The samples irradiated by Er:YAG laser showed amorphous and irregular surfaces, with no signs of typical etching patterns. A large deep gap was seen in one of the samples irradiated with laser at primary and secondary conditionings, which might have penetrated the underling layers of enamel and dentin.Conclusions: Enamel surface preparation with Er:YAG laser produces irregular and indistinct morphologic changes, completely different from those produced after acid etching at both conditioning and reconditioning. Therefore, it is recommended to use this laser with caution to avoid permanent enamel damage.

  6. FT-Raman spectroscopic characterization of enamel surfaces irradiated with Nd:YAG and Er:YAG lasers

    Directory of Open Access Journals (Sweden)

    Sima Shahabi

    2016-12-01

    Full Text Available Background. Despite recent advances in dental caries prevention, caries is common and remains a serious health problem. Laser irradiation is one of the most common methods in preventive measures in recent years. Raman spectroscopy technique is utilized to study the microcrystalline structure of dental enamel. In this study, FT-Raman spectroscopy was used to evaluate chemical changes in enamel structure irradiated with Nd:YAG and Er:YAG lasers. Methods. We used 15 freshly-extracted, non-carious, human molars that were treated as follows: No treatment was carried out in group A (control group; Group B was irradiated with Er:YAG laser for 10 seconds under air and water spray; and Group C was irradiated with Nd:YAG laser for 10 seconds under air and water spray. After treatment, the samples were analyzed by FT-Raman spectroscopy. Results. The carbonate content evaluation with regard to the integrated area under the curve (1065/960 cm–1 exhibited a significant reduction in its ratio in groups B and C. The organic content (2935/960 cm-1 area exhibited a significant decrease after laser irradiation in group B and C. Conclusion. The results showed that the mineral and organic matrices of enamel structure were affected by laser irradiation; therefore, it might be a suitable method for caries prevention.

  7. Staining of dentin from amalgam corrosion is induced by demineralization

    NARCIS (Netherlands)

    Scholtanus, J.D.; van der Hoorn, W.; Özcan, M.; Huysmans, M.C.D.N.J.M.; Roeters, J.F.M.; Kleverlaan, C.J.; Feilzer, A.J.

    2013-01-01

    PURPOSE: To evaluate the effect of artificial demineralization upon color change of dentin in contact with dental amalgam. METHODS: Sound human molars (n = 34) were embedded in resin and coronal enamel was removed. Dentin was exposed to artificial caries gel (pH 5.5) at 37 degrees C for 12 weeks (n

  8. Staining of dentin from amalgam corrosion is induced by demineralization

    NARCIS (Netherlands)

    Scholtanus, Johannes D.; van der Hoorn, Wietske; Huysmans, Marie-Charlotte D. N. J. M.; Roeters, Joost F. M.; Kleverlaan, Cornelis J.; Feilzer, Albert J.; Ozcan, Mutlu

    Purpose: To evaluate the effect of artificial demineralization upon color change of dentin in contact with dental amalgam. Methods: Sound human molars (n= 34) were embedded in resin and coronal enamel was removed. Dentin was exposed to artificial caries gel (pH 5.5) at 37 degrees C for 12 weeks (n=

  9. Changes in surface morphology of enamel after Er:YAG laser irradiation

    Science.gov (United States)

    Rechmann, Peter; Goldin, Dan S.; Hennig, Thomas

    1998-04-01

    Aim of the study was to investigate the surface and subsurface structure of enamel after irradiation with an Er:YAG laser (wavelength 2.94 micrometer, pulse duration 250 - 500 microseconds, free running, beam profile close to tophead, focus diameter 600 micrometer, focus distance 13 mm, different power settings, air-water spray 2 ml/min; KAVO Key Laser 1242, Kavo Biberach, Germany). The surface of more than 40 freshly extracted wisdom teeth were irradiated using a standardized application protocol (pulse repetition rate 4 and 6 Hz, moving speed of the irradiation table 2 mm/sec and 3 mm/sec, respectively). On each surface between 3 and 5 tracks were irradiated at different laser energies (60 - 500 mJ/pulse) while each track was irradiated between one and ten times respectively. For the scanning electron microscope investigation teeth were dried in alcohol and sputtered with gold. For light microscopic examinations following laser impact, samples were fixed in formaldehyde, dried in alcohol and embedded in acrylic resin. Investigations revealed that at subsurface level cracks can not be observed even at application of highest energies. Borders of the irradiated tracks seem to be sharp while melted areas of different sizes are observed on the bottom of the tracks depending on applied energy. Small microcracks can be seen on the surface of these melted areas.

  10. Effects of the low-intensity red laser radiation on the fluoride uptake in enamel. A clinical trial

    International Nuclear Information System (INIS)

    Nakasone, Regina Keiko

    2004-01-01

    Fluoride has been the most important preventive method on development of the caries. This in vivo study evaluated the effects of low-intensity red laser radiation on the fluoride uptake in enamel. Ten healthy participants were recruited for this study. The two maxillary central incisors of each volunteer to be biopsied were used and divided into 4 groups: group G C (control, which was untreated; group G F (fluoride), which received topical acidulated phosphate fluoride (APF) 1,23% treatment for 4 minutes; group G LF (laser + fluoride), which was irradiated with a low-intensity diode laser (λ= 660 nm and dose= 6 J/cm 2 ) with APF application after irradiation and group G FL (fluoride + laser), which received APF before irradiation using the same parameters as G LF . The determination of fluoride was performed using a fluoride ion electrode after an acid-etch enamel biopsy. The results show a significant increase of the fluoride uptake in enamel for groups G F , G LF and G FL when compared to control group. Although a percentage increase of 57% was observed for G LF with respect to G F , there were no statistical differences among treated groups. These findings suggest that low-intensity laser radiation used before APF could be employed in the clinical practice to prevent dental caries. (author)

  11. Comparative study of the shear bond strength of composite resin bonded to enamel treated with acid etchant and erbium, chromium: Yttrium, scandium, gallium, garnet laser

    Directory of Open Access Journals (Sweden)

    Adel Sulaiman Alagl

    2016-01-01

    Full Text Available Aim: The purpose of this investigation is in vitro comparison of the shear bond strength (SBS of composite resin bonded to enamel pretreated with an acid etchant against enamel etched with erbium, chromium: yttrium, scandium, gallium, garnet (Er, Cr:YSGG laser. Materials and Methods: Sixty premolars were sectioned mesiodistally and these 120 specimens were separated into two groups of 60 each (Groups A and B. In Group A (buccal surfaces, enamel surface was etched using 37% phosphoric acid for 15 s. In Group B (lingual surfaces, enamel was laser-etched at 2W for 10 s by Er, Cr:YSGG laser operational at 2780 nm with pulse duration of 140 μs and a frequency of 20 Hz. After application of bonding agent on all test samples, a transparent plastic cylinder of 1.5 mm × 3 mm was loaded with composite and bonded by light curing for 20 s. All the samples were subjected to SBS analysis using Instron Universal testing machine. Failure modes were observed under light microscope and grouped as adhesive, cohesive, and mixed. Failure mode distributions were compared using the Chi-square test. Results: SBS values obtained for acid-etched enamel were in the range of 7.12–28.36 megapascals (MPa and for laser-etched enamel were in the range of 6.23–23.35 MPa. Mean SBS for acid-etched enamel was 15.77 ± 4.38 MPa, which was considerably greater (P < 0.01 than laser-etched enamel 11.24 ± 3.76 MPa. The Chi-square test revealed that the groups showed no statistically significant differences in bond failure modes. Conclusions: We concluded that the mean SBS of composite with acid etching is significantly higher as compared to Er, Cr: YSGG (operated at 2W for 10 s laser-etched enamel.

  12. Effect of 0.02% NaF solution on enamel demineralization and fluoride uptake by deciduous teeth in vitro Efeito da solução de NaF a 0,02% na desmineralização e incorporação de fluoreto pelo esmalte de dentes decíduos in vitro

    Directory of Open Access Journals (Sweden)

    Silvia José Chedid

    2004-03-01

    Full Text Available The application of 0.02% NaF solution on teeth with a cotton swab instead of brushing with fluoride dentifrice has been suggested for young children to reduce the risk of dental fluorosis, but its anticariogenic effect has not been evaluated. Thus, we studied the in vitro effect of 0.02% NaF solution on enamel demineralization and fluoride uptake in deciduous teeth; non-fluoride dentifrice and fluoride dentifrice (1,100 mg F/g were used, respectively, as negative and positive controls. The treatment with fluoride dentifrice was more effective in reducing enamel demineralization (p A aplicação da solução de NaF a 0,02%, no lugar de dentifrício fluoretado, tem sido sugerida para ser aplicada com cotonete nos dentes de bebês para reduzir o risco de fluorose dental. Como o efeito anticariogênico dessa recomendação não tem sido estudado, avaliou-se in vitro seu efeito na redução da desmineralização e incorporação de fluoreto no esmalte de dentes decíduos; dentifrício não fluoretado e fluoretado (1.100 mg F/g foram utilizados como controles negativo e positivo, respectivamente. O dentifrício fluoretado foi mais efetivo que a solução de NaF a 0,02% na redução de desmineralização e na incorporação de fluoreto no esmalte (p < 0,05. Os dados sugerem que uso alternativo de NaF a 0,02% ao invés de dentifrício fluoretado para reduzir o risco de fluorose dental deve ser reavaliado, especialmente se a cárie dental precisa ser controlada.

  13. In vivo PIXE-PIGE study of enhanced retention of fluorine in tooth enamel after laser irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Demortier, Guy [Department of Physics, University of Namur, 61, rue de Bruxelles, B5000 Namur (Belgium)], E-mail: guy.demortier@tvcablenet.be; Nammour, Samir [Faculty of Medicine, University of Liege, 8, rue Paul Spaak, B-1000 Bruxelles (Belgium)

    2008-05-15

    The presence of fluoride in tooth enamel reduces the solubility of hydroxylapatite by acid attack. Fluoride presence (even at low concentration) in the oral cavity is efficient against caries process. We propose a new approach of the explanation of the increase of fluoride retention in the tooth enamel when low power laser irradiation is applied after the treatment with fluoride gel (fluoridation). External beam PIGE measurements of fluorine on extracted teeth have been made in order to determine the best sequence of the operations. The laser irradiation after fluoride application is more efficient than the reverse procedure. This observation is in agreement with previous observations that the fluorine penetration in the enamel takes place first in the soft organic material present between the polycrystalline (prismatic) structure before being integrated in the crystalline composition of hydroxylapatite in order to produce fluoro-apatite. As those in vitro measurements do not reflect the whole process in the saliva, in vivo PIGE measurements have been also performed. We have demonstrated, by repeating the PIGE measurements (at least five times at various time intervals) that a significant increase of the fluoride retention took place even 18 months after the unique laser treatment. The complete experimental procedure is described: fluoride application, laser irradiation, PIGE measurements with 2.7 MeV protons (repeated measurements at the same place on the same tooth in order to follow the evolution) and safety tests before in vivo analyses.

  14. Shear bond strength and SEM morphology evaluation of different dental adhesives to enamel prepared with ER:YAG laser

    Directory of Open Access Journals (Sweden)

    Patrícia T Pires

    2013-01-01

    Full Text Available Context: Early observations of enamel surfaces prepared by erbium lasers motivated clinicians to use laser as an alternative to chemical etching. Aims: Evaluate shear bond strength (SBS values of different dental adhesives on Erbium:Yttrium Aluminum Garnet (Er:YAG laser prepared enamel and to evaluate possible etching patterns correlations between dental adhesives and SBS values. Subjects and Methods: One hundred bovine incisors were randomly assigned to SBS tests on enamel (n = 15 and to enamel morphology analysis ( n = 5 after Er:YAG laser preparation as follows: Group I - 37% phosphoric acid (PA+ ExciTE® ; Group II - ExciTE® ; Group III - AdheSE® self-etching; Group IV - FuturaBond® no-rinse. NR; Group V - Xeno® V. Teeth were treated with the adhesive systems and subjected to thermal cycling. SBS were performed in a universal testing machine at 5 mm/min. Statistical Analysis Used: One-way ANOVA and post-hoc tests (p < 0.05. For the morphology evaluation, specimens were immersed in Ethylenediamine tetraacetic acid (EDTA and the etching pattern analyzed under Scanning Electron Microscope (SEM. Results: Mean bond strengths were Group I - 47.17 ± 1.61 MPa (type I etching pattern; Group II - 32.56 ± 1.64 MPa, Group III - 29.10 ± 1.34 MPa, Group IV - 23.32 ± 1.53 MPa (type III etching pattern; Group V - 24.43 MPa ± 1.55 (type II etching pattern. Conclusions: Different adhesive systems yielded significantly different SBSs. Acid etching significantly increased the adhesion in laser treated enamel. No differences in SBS values were obtained between AdheSE® and ExciTE® without condition with PA. FuturaBond® NR and Xeno® V showed similar SBS, which was lower in comparison to the others adhesives. No correlation between enamel surface morphology and SBS values was observed, except when PA was used.

  15. Nanostructured synthetic hydroxyapatite and dental enamel heated and irradiated by ER,CR:YSGG: characterized by FTIR and XRD; Hidroxiapatita sintetica nanoestruturada e esmalte dental aquecidos e irradiados por laser de Er,Cr:YSGG: caracterizacao por FTIR e por DRX

    Energy Technology Data Exchange (ETDEWEB)

    Rabelo Neto, Jose da Silva

    2009-07-01

    The study evaluate the physical changes and/or chemical that occurs in synthetic hydroxyapatite (HAP) and in enamel under action of thermal heating in oven or laser irradiation of Er,Cr:YSGG that may cause changes in its structure to make them more resistant to demineralization aiming the formation of dental caries. The synthetic HAP was produced by reaction of solutions of Ca(NO{sub 3}) and (NH{sub 4}){sub 2}HPO{sub 4} with controlled temperature and pH. The enamel powder was collected from the bovine teeth. Samples of powder enamel and synthetic HAP were subjected to thermal heating in oven at temperatures of 200 deg C, 400 deg C, 600 deg C, 800 deg C and 1000 deg C. For the laser irradiation of materials, were made with 5,79 J/cm{sup 2} of irradiation, 7,65 J/cm{sup 2}, 10,55 J/cm{sup 2} and 13,84 J/cm{sup 2} for synthetic HAP and 7,53 J/cm{sup 2}, 10,95 J/cm{sup 2}, and 13,74 J/cm{sup 2} for the enamel. The samples were evaluated by X-ray diffraction (XRD) for analysis of crystallographic phases and analysis by the Rietveld method, to determine their respective proportions in the material, as well as results of changes of the lattice unit cell parameters (axis-a, axis-c and volume), crystallites sizes and the occupation rate of sites of Ca and P atoms. The samples were analyzed by Fourier transform infrared spectroscopy (FTIR), which should compositional changes due to treatment related to carbonate, phosphate, adsorbed water and hydroxyl radicals content. The infrared was used to measure the surface temperature generated by the laser beam in the solid samples of enamel. Besides the major hydroxyapatite crystallographic phases, there was formations of octa calcium phosphate (OCP) and phase {beta} of tricalcium phosphate ({beta}-TCP ) in enamel heated at 800 deg C. There was reduction of the axis-a, volume and size of crystallites to the temperatures between 400 degree C and 600 deg C and also on laser irradiated samples. Above the temperature of 600 degree C it

  16. The influence of the Nd:YAG laser bleaching on physical and mechanical properties of the dental enamel.

    Science.gov (United States)

    Marcondes, Maurem; Paranhos, Maria Paula Gandolfi; Spohr, Ana Maria; Mota, Eduardo Gonçalves; da Silva, Isaac Newton Lima; Souto, André Arigony; Burnett, Luiz Henrique

    2009-07-01

    The Nd:YAG laser can be used in Dentistry to remove soft tissue, disinfect canals in endodontic procedures and prevent caries. However, there is no protocol for Nd:YAG laser application in dental bleaching. The aims of this in vitro study were: (a) to observe the tooth shade alteration when hydrogen peroxide whitening procedures are associated with dyes with different wavelengths and irradiated with Nd:YAG laser or halogen light; (b) to measure the Vickers (VHN) enamel microhardness before and after the whitening procedure; (c) to evaluate the tensile bond strength of two types of adhesive systems applied on bleached enamel; (d) to observe the failure pattern after bond strength testing; (e) to evaluate the pulpal temperature during the bleaching procedures with halogen light or laser; (f) to measure the kinetic reaction of hydrogen peroxide. Extracted sound human molar crowns were sectioned in the mesiodistal direction to obtain 150 fragments that were divided into five groups for each adhesive system: WL (H(2)O(2) + thickener and Nd:YAG), WH (H(2)O(2) + thickener and halogen light), QL (H(2)O(2) + carbopol + Q-switch and Nd:YAG), QH (H(2)O(2) + carbopol + Q-switch and halogen light), and C (Control, without whitening agent). Shade assessment was made with a shade guide and the microhardness tests were performed before and after the bleaching procedures. Immediately afterwards, the groups were restored with the adhesive systems Adper Single Bond 2 or Solobond M plus composite resin, and the tensile bond strength test was performed. The temperature was measured by thermocouples placed on the enamel surface and intrapulpal chamber. The kinetics of hydrogen peroxide was observed by ultraviolet analysis. The shade changed seven levels for Nd:YAG laser groups and eight levels for halogen light. According to the student's t-test, there was no statistical difference between the VHN before and after the whitening protocols (p > 0.05). The tensile bond strength showed no

  17. Cell proliferation and apoptosis in the primary enamel knot measured by flow cytometry of laser microdissected samples

    Czech Academy of Sciences Publication Activity Database

    Matalová, Eva; Dubská, L.; Fleischmannová, Jana; Chlastáková, Ivana; Janečková, Eva; Tucker, A. S.

    2010-01-01

    Roč. 55, č. 8 (2010), s. 570-575 ISSN 0003-9969 R&D Projects: GA AV ČR KJB500450802; GA AV ČR IAA600450904; GA ČR GA203/08/1680 Institutional research plan: CEZ:AV0Z50450515 Keywords : Laser capture microdissection * Flow cytometry * Primary enamel knot Subject RIV: EA - Cell Biology Impact factor: 1.463, year: 2010

  18. Effects of different black mediators on the shear strength of orthodontic bracket to the enamel treated with Nd-Yag laser

    Science.gov (United States)

    Huang, Shun-Te; Lin, I.-Shueng; Tsai, Chi-Cheng

    1995-04-01

    The Nd:YAG laser has ablation, crack, and crater effects on the dental enamel through black mediators which are very similar to the acid etching effects of phosphoric acid. This study was designed for searching how the different black mediators influence the shear strengths of the brackets bound to the enamel surfaces which were treated with the Nd:YAG laser. 90 bovine enamels divided into 5 groups were painted with 5 kinds of black mediators including Chinese ink, oil ink, black ball pen, water ink and black transfer paper. The enamel surfaces painted with black mediators were then radiated by Nd:YAG laser (ADL; American Dental Laser 300dl, power: 20 pps, 87.5 mj). Orthodontic brackets were bonded to the radiated surfaces. Then the shear strengths of the brackets to the enamels were measured by Instron. The results showed that the Chinese ink group and oil ink group has the strongest shear strength, ball pen group and water ink group showed the second strength, and the transfer paper group has the lowest shear strength. In addition, scanning electronic microscope also was used to observe the topographic changes of the enamel surfaces induced by the laser ablation.

  19. Shear bond strength of composite bonded with three adhesives to Er,Cr:YSGG laser-prepared enamel.

    Science.gov (United States)

    Türkmen, Cafer; Sazak-Oveçoğlu, Hesna; Günday, Mahir; Güngör, Gülşad; Durkan, Meral; Oksüz, Mustafa

    2010-06-01

    To assess in vitro the shear bond strength of a nanohybrid composite resin bonded with three adhesive systems to enamel surfaces prepared with acid and Er,Cr:YSGG laser etching. Sixty extracted caries- and restoration-free human maxillary central incisors were used. The teeth were sectioned 2 mm below the cementoenamel junction. The crowns were embedded in autopolymerizing acrylic resin with the labial surfaces facing up. The labial surfaces were prepared with 0.5-mm reduction to receive composite veneers. Thirty specimens were etched with Er,Cr:YSGG laser. This group was also divided into three subgroups, and the following three bonding systems were then applied on the laser groups and the other three unlased groups: (1) 37% phosphoric acid etch + Bond 1 primer/adhesive (Pentron); (2) Nano-bond self-etch primer (Pentron) + Nano-bond adhesive (Pentron); and (3) all-in-one adhesive-single dose (Futurabond NR, Voco). All of the groups were restored with a nanohybrid composite resin (Smile, Pentron). Shear bond strength was measured with a Zwick universal test device with a knife-edge loading head. The data were analyzed with two-factor ANOVA. There were no significant differences in shear bond strength between self-etch primer + adhesive and all-in-one adhesive systems for nonetched and laser-etched enamel groups (P > .05). However, bond strength values for the laser-etched + Bond 1 primer/adhesive group (48.00 +/- 13.86 MPa) were significantly higher than the 37% phosphoric acid + Bond 1 primer/adhesive group (38.95 +/- 20.07 MPa) (P enamel surface more effectively than 37% phosphoric acid for subsequent attachment of composite material.

  20. Influence of the incidence angle on the morphology of enamel and dentin under Er:YAG laser irradiation; Estudo da influencia da angulacao do feixe laser na morfologia de esmalte e dentina irradiados com laser de Er:YAG

    Energy Technology Data Exchange (ETDEWEB)

    Junqueira Junior, Duilio Naves

    2002-07-01

    The purpose of this study is to make an in vitro evaluation, using scanning electron microscopy, of the influence of the laser beam irradiation angle on the enamel and dentin morphology. These tissues were both irradiated by Er:YAG Laser, with the same energy parameter. Twenty-four incisive bovine teeth were used, separated in eight groups, four of enamel, and four of dentin, with three specimens in each group. Each specimen was submitted to three laser applications, varying the incidence angle, between the laser and the tooth surface, at 90, 50 and 20 degrees. The applied frequency was 2 Hz, with 20 pulses in each application. The KaVo Key Laser 3 was employed, wavelength at 2940 nm, adjustable energy from 40 to 600 mJ and repetition rate from 1 to 25 Hz. The groups were distributed according to the energy parameter as follows - enamel: 250 mJ; 300 mJ; 350 mJ and 400 mJ; dentin: 200 mJ; 250 mJ; 300 mJ and 350 mJ. The results evidenced the Laser incidence angle importance; it is an essential parameter in the protocol of utilization and it should not be disregarded. The observations of this study allow to conclude that the Laser incidence angle has direct influence on the morphological aspect of the alterations produced in enamel and dentin. (author)

  1. Microstructure and mechanical changes induced by Q-Switched pulse laser on human enamel with aim of caries prevention

    Science.gov (United States)

    Apsari, R.; Pratomo, D. A.; Hikmawati, D.; Bidin, N.

    2016-03-01

    This study was conducted to determine the effect of Q-Switched Nd: YAG laser energy dose to human enamel caries. The specifications of Q-Switched Nd: YAG laser as followed: wavelength of 1064 nm and 6 ns pulse width. Caries enamel samples taken from human teeth molars of 17-35 ages and the type of media caries. Energy doses used in this study were 723.65 mJ/cm2, 767.72 mJ/cm2, and 1065.515 mJ/cm2; 5 Hz repetition rate, and 20 second exposure time. Samples characterized the surface morphology and the percentage of constituent elements, especially calcium/phosphorus (Ca/P) with FESEM-EDAX. The fraction volume and crystallinity percentage of hydroxyapatite (HA) with XRD and hardness value using Vickers Microhardness Test. The results indicated that exposure of Q-Switched Nd:YAG laser on enamel caries resulting cracks, holes, and melt due to plasma production effects in the surface. Plasma production effect also resulted in micro properties such as percentage of Ca/P was close to normal, the fraction volume and crystallinity percentage of HA went up but did not change the crystal structure (in terms of the lattice structure). The hardness value also rose as linear as exposure energy dose caused by phototermal effect. Based on the results, Q-Switched Nd:YAG laser can be used as contactless drill dental caries replacement candidate with the additional therapy effect such as localized caries in order to avoid the spread, the ratio of Ca/P approaching healthy teeth, the fraction volume and crystallinity percentage of HA rose and established stronger teeth with peak energy dose 1065.515 mJ/cm2.

  2. Study in vitro of dental enamel irradiated with a high power diode laser operating at 960 nm: morphological analysis of post-irradiation dental surface and thermal effect analysis in pulp chamber due to laser application

    International Nuclear Information System (INIS)

    Quinto Junior, Jose

    2001-01-01

    Objectives: This study examines the structural and thermal modifications induced in dental enamel under dye assisted diode laser irradiation. The aim of this study is to verify if this laser-assisted treatment is capable to modify the enamel surface by causing fusion of the enamel surface layer. At the same time, the pulpal temperature rise must be kept low enough in order not to cause pulpar necrosis. To achieve this target, it is necessary to determine suitable laser parameters. As is known, fusion of the enamel surface followed by re-solidification produce a more acid resistant layer. This surface treatment is being researched as a new method for caries prevention. Method and Materials: A series of fourteen identically prepared enamel samples of human teeth were irradiated with a high power diode laser operating at 960 nm and using fiber delivery. Prior to irradiation, a fine layer of cromophorous ink was applied to the enamel surface. In the first part of the experiment the best parameter for pulse duration was determined. In the second part of the experimental phase the same energy density was used but with different repetition rates. During irradiation we monitored the temperature rise in the pulpal cavity. The morphology of the treated samples was analysed under SEM. Results: The morphology of the treated samples showed a homogeneously re-solidified enamel layer. The results of the temperature analysis showed a decrease of the pulpal temperature rise with decreasing repetition rate. Conclusion: With the diode laser it is possible to cause morphological alterations of the enamel surface, which is known to increase the enamel resistance against acid attack, and still maintain the temperature rise in the pulpar chamber below damage threshold. (author)

  3. Caries like lesion initiation in sound enamel following CW CO2 laser irradiation: an in vitro study

    International Nuclear Information System (INIS)

    Nafie, A.; Issam, A.; Ali, M. S. R.

    2005-01-01

    This Study aimed to asses the caries - preventive potential of various CW CO 2 laser parameters, and to explore the effect of the laser power density, and the exposure time on the varies inhibition activity. Materials and Methods: Extracted human premolar teeth were irradiated with three different power densities (7.95, 15.9 and 31.8) W/Cm 2 for three different exposure times (0.2, 0.4 and 0.8) sec of 10.6 μm CW CO 2 laser. All teeth were subjected to caries like lesion formation by 3.5 pH lactic acid for 21 days. The teeth after that were sectioned into ground cross section and the lesion depths were measured using a graticule polarizing microscope. CW CO 2 laser preventive treatments inhibit caries like lesion progression up to 44%. This effect was improved with: (1) Increased power density for each of the three exposure times. (2) Decreased exposure time for each of the three power densities within the limits of the previously listed laser parameters. Conclusion: (1) short exposure time of CW CO 2 laser results in a significant inhibition of the enamel caries like lesion formation. (2) The inhibitory effect depends upon the power density and the exposure time of the laser beam. (3) The optimal CW CO 2 laser parameters used for caries inhibition purpose is achieved with approximately 30 W/Cm 2 power density and 0.2 sec exposure time. (author)

  4. Microshear Bond Strength of OptiBond All-in-One Self-adhesive Agent to Er:YAG Laser Treated Enamel After Thermocycling and Water Storage.

    Science.gov (United States)

    Kasraei, Shahin; Yarmohammadi, Ebrahim; Ghazizadeh, Mohammad Vahid

    2016-01-01

    Introduction: This study aimed to compare the microshear bond strength of composite to enamel treated with Erbium-Doped Yttrium Aluminum Garnet (Er:YAG) laser using a self-etch one step bonding agent. Methods: Seventy-six enamel surfaces were prepared from 38 sound human third molar teeth. Specimens were randomly divided into four groups of 18. The enamel surface in half the specimens was irradiated with Er:YAG laser. One extra specimen from each group was evaluated under a scanning electron microscope (SEM). Composite micro-cylinders were bonded to the specimen surfaces using OptiBond All-In-One (OB) adhesive agent and stored in distilled water for 24 hours. Half the specimens were thermocycled (2000 cycles) and stored in distilled water at 37°C for three months (TW). The microshear bond strength of composite to enamel was measured using a universal testing machine at a crosshead speed of 1 mm/min. The fractured surfaces were evaluated under a stereomicroscope at ×40 magnification to determine the mode of failure. Data were analyzed using repeated measures analysis of variance (ANOVA) and t test. Results: The mean values (±standard deviation) were 17.96 ± 2.92 MPa in OB group, 22.29 ± 4.25 MPa in laser + OB group, 18.11 ± 3.52 MPa in laser + OB + TW group and 9.42 ± 2.47 MPa in OB + TW group. Repeated measures ANOVA showed that laser irradiation increased the microshear bond strength ( P Enamel surface preparation with Er:YAG laser is recommended to enhance the durability of the bond of self-etch bonding systems to enamel.

  5. Elemental content of enamel and dentin after bleaching of teeth (a comparative study between laser-induced breakdown spectroscopy and x-ray photoelectron spectroscopy)

    International Nuclear Information System (INIS)

    Imam, H.; Ahmed, Doaa; Eldakrouri, Ashraf

    2013-01-01

    The elemental content of the superficial and inner enamel as well as that of dentin was analyzed using laser-induced breakdown spectroscopy (LIBS) and x-ray photoelectron spectroscopy (XPS) of bleached and unbleached tooth specimens. It is thus clear from the spectral analysis using both the LIBS and XPS technique that elemental changes (though insignificant within the scopes of this study) of variable intensities do occur on the surface of the enamel and extend deeper to reach dentin. The results of the LIBS revealed a slight reduction in the calcium levels in the bleached compared to the control specimens in all the different bleaching groups and in both enamel and dentin. The good correlation found between the LIBS and XPS results demonstrates the possibility of LIBS technique for detection of minor loss in calcium and phosphorus in enamel and dentin.

  6. Elemental content of enamel and dentin after bleaching of teeth (a comparative study between laser-induced breakdown spectroscopy and x-ray photoelectron spectroscopy)

    Energy Technology Data Exchange (ETDEWEB)

    Imam, H. [National Institute of Laser Enhanced Sciences, NILES, Cairo University, Giza (Egypt); Ahmed, Doaa [Department of Restorative Sciences, Faculty of Dentistry, Alexandria University, Alexandria (Egypt); Eldakrouri, Ashraf [National Institute of Laser Enhanced Sciences, NILES, Cairo University, Giza (Egypt); Department of Optometry and Vision Science, College of Applied Medical Science, King Saud University, Riyadh (Saudi Arabia)

    2013-06-21

    The elemental content of the superficial and inner enamel as well as that of dentin was analyzed using laser-induced breakdown spectroscopy (LIBS) and x-ray photoelectron spectroscopy (XPS) of bleached and unbleached tooth specimens. It is thus clear from the spectral analysis using both the LIBS and XPS technique that elemental changes (though insignificant within the scopes of this study) of variable intensities do occur on the surface of the enamel and extend deeper to reach dentin. The results of the LIBS revealed a slight reduction in the calcium levels in the bleached compared to the control specimens in all the different bleaching groups and in both enamel and dentin. The good correlation found between the LIBS and XPS results demonstrates the possibility of LIBS technique for detection of minor loss in calcium and phosphorus in enamel and dentin.

  7. Morphological Alterations of the Surfaces of Enamel and Dentin of Deciduous Teeth Irradiated with Nd:YAG, C0(2)and Diode Lasers

    OpenAIRE

    Souza, Mónica Rodrigues de; Watanabe, Ii-Sei; Azevedo, Luciane H; Tanji, Edgar Y

    2009-01-01

    In this work, we studied the effects of C0(2), Nd:YAG and diode lasers on the enamel and dentin of deciduous human teeth. After the irradiations, the samples were duly prepared and set up on metallic bases, covered with gold and examined in the scanning electron microscope. The results showed that the irradiation with the C0(2) mode locked laser with 1.0 W power caused melting and irregularities with small cavities on the surface of the enamel. The irradiated area on the dentin surface appear...

  8. A study in vitro on radiation effects by Er:YAG laser combined with the fluorine therapy in the acid resistance of the dental enamel submitted to orthodontical brackets

    International Nuclear Information System (INIS)

    Yoshiyasu, Roseli Y.A.

    2001-01-01

    Several researches have been demonstrating an increase in the resistance acid of the enamel surface when irradiated by some lasers types as Nd:YAG, C0 2 , Er:YAG, and others, mainly when combined with the fluoride therapy after the irradiation of the laser. This study in vitro used the laser of Er:YAG which density of energy of 8.1 J/cm 2 on the enamel about of orthodontical brackets of teeth extracted pre-molars. These teeth were then submitted to a rich way in S. mutans for twenty one days. The cases were analyzed: (1) enamel surface without any treatment, (2) enamel surface without any irradiation laser, but with therapy with acidulated phosphate fluoride, (3) enamel surface irradiated with laser of Er:YAG and (4) enamel surface irradiated by laser of Er:YAG and with application of acidulated phosphate fluoride. The results were analyzed through optical microscopy and scanning electron microscopy. The morphologic changes observed to the scanning electron microscopy suggest increase in the acid resistance of the enamel surface. However, to the optical microscopy, it was still possible to visualize undesirable white stains in the surface of the enamel. (author)

  9. Evaluation of primary tooth enamel surface morphology and microhardness after Nd:YAG laser irradiation and APF gel treatment--an in vitro study.

    Science.gov (United States)

    Banda, Naveen Reddy; Vanaja Reddy, G; Shashikiran, N D

    2011-01-01

    Laser irradiation and fluoride has been used as a preventive tool to combat dental caries in permanent teeth, but little has been done for primary teeth which are more prone to caries. The purpose of this study was to evaluate microhardness alterations in the primary tooth enamel after Nd-YAG laser irradiation alone and combined with topical fluoride treatment either before or after Nd-YAG laser irradiation. Ten primary molars were sectioned and assigned randomly to: control group, Nd-YAG laser irradiation, Nd-YAG lasing before APF and APF followed by Nd-YAG lasing. The groups were evaluated for microhardness. Surface morphological changes were observed using SEM. Statistical comparisons were performed. The control group's SEM showed a relatively smooth enamel surface and lasing group had fine cracks and porosities. In the lasing + fluoride group a homogenous confluent surface was seen. In the fluoride + lasing group an irregular contour with marked crack propagation was noted. There was a significant increase in the microhardness of the treatment groups. Nd-YAG laser irradiation and combined APF treatment of the primary tooth enamel gave morphologically hardened enamel surface which can be a protective barrier against a cariogenic attack.

  10. Research on optical properties of dental enamel for early caries diagnostics using a He-Ne laser

    Science.gov (United States)

    Tang, Jing; Liu, Li; Li, Song-zhan

    2008-12-01

    A new and non-invasive method adapted for optical diagnosis of early caries is proposed by researching on the interaction mechanism of laser with dental tissue and relations of remitted light with optical properties of the tissue. This method is based on simultaneous analyses of the following parameters: probing radiation, backscattering and auto-fluorescence. Investigation was performed on 104 dental samples in vitro by using He-Ne laser (λ=632.8nm, 2.0+/-0.1mW) as the probing. Spectrums of all samples were obtained. Characteristic spectrums of dental caries in various stages (intact, initial, moderate and deep) were given. Using the back-reflected light to normalize the intensity of back-scattering and fluorescence, a quantitative diagnosis standard for different stages of caries is proposed. In order to verify the test, comparison research was conducted among artificial caries, morphological damaged enamel, dental calculus and intact tooth. Results show that variations in backscattering characteristic changes in bio-tissue morphological and the quantity of auto-fluorescence is correlated with concentration of anaerobic microflora in hearth of caries lesion. This method poses a high potential of diagnosing various stages of dental caries, and is more reliability to detect early caries, surface damage of health enamel and dental calculus.

  11. Controlling dental enamel-cavity ablation depth with optimized stepping parameters along the focal plane normal using a three axis, numerically controlled picosecond laser.

    Science.gov (United States)

    Yuan, Fusong; Lv, Peijun; Wang, Dangxiao; Wang, Lei; Sun, Yuchun; Wang, Yong

    2015-02-01

    The purpose of this study was to establish a depth-control method in enamel-cavity ablation by optimizing the timing of the focal-plane-normal stepping and the single-step size of a three axis, numerically controlled picosecond laser. Although it has been proposed that picosecond lasers may be used to ablate dental hard tissue, the viability of such a depth-control method in enamel-cavity ablation remains uncertain. Forty-two enamel slices with approximately level surfaces were prepared and subjected to two-dimensional ablation by a picosecond laser. The additive-pulse layer, n, was set to 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70. A three-dimensional microscope was then used to measure the ablation depth, d, to obtain a quantitative function relating n and d. Six enamel slices were then subjected to three dimensional ablation to produce 10 cavities, respectively, with additive-pulse layer and single-step size set to corresponding values. The difference between the theoretical and measured values was calculated for both the cavity depth and the ablation depth of a single step. These were used to determine minimum-difference values for both the additive-pulse layer (n) and single-step size (d). When the additive-pulse layer and the single-step size were set 5 and 45, respectively, the depth error had a minimum of 2.25 μm, and 450 μm deep enamel cavities were produced. When performing three-dimensional ablating of enamel with a picosecond laser, adjusting the timing of the focal-plane-normal stepping and the single-step size allows for the control of ablation-depth error to the order of micrometers.

  12. Hyperspectral laser-induced autofluorescence imaging of dental caries

    Science.gov (United States)

    Bürmen, Miran; Fidler, Aleš; Pernuš, Franjo; Likar, Boštjan

    2012-01-01

    Dental caries is a disease characterized by demineralization of enamel crystals leading to the penetration of bacteria into the dentine and pulp. Early detection of enamel demineralization resulting in increased enamel porosity, commonly known as white spots, is a difficult diagnostic task. Laser induced autofluorescence was shown to be a useful method for early detection of demineralization. The existing studies involved either a single point spectroscopic measurements or imaging at a single spectral band. In the case of spectroscopic measurements, very little or no spatial information is acquired and the measured autofluorescence signal strongly depends on the position and orientation of the probe. On the other hand, single-band spectral imaging can be substantially affected by local spectral artefacts. Such effects can significantly interfere with automated methods for detection of early caries lesions. In contrast, hyperspectral imaging effectively combines the spatial information of imaging methods with the spectral information of spectroscopic methods providing excellent basis for development of robust and reliable algorithms for automated classification and analysis of hard dental tissues. In this paper, we employ 405 nm laser excitation of natural caries lesions. The fluorescence signal is acquired by a state-of-the-art hyperspectral imaging system consisting of a high-resolution acousto-optic tunable filter (AOTF) and a highly sensitive Scientific CMOS camera in the spectral range from 550 nm to 800 nm. The results are compared to the contrast obtained by near-infrared hyperspectral imaging technique employed in the existing studies on early detection of dental caries.

  13. Low-threshold ablation of enamel and dentin using Nd:YAG laser assisted with chromophore with different pulse shapes

    Science.gov (United States)

    Bonora, Stefano; Benazzato, Paolo; Stefani, Alessandro; Villoresi, Paolo

    2004-05-01

    Neodimium laser treatment has several drawbacks when used in the hard tissue cutting, because of the low absorption of the dental tissues at its wavelength. This investigation proved that the Nd:YAG radiation is a powerful ablation tool if it is used with the dye assisted method. Several in vitro tests on enamel and dentin were accomplished changing some laser parameters to have different pulse shapes and durations from 125μs up to 1.4ms. The importance of short time high power peaks, typical of crystal lasers, in the ablation process was investigated. The pulse shapes were analyzed by their intensity in space and time profiles. A first set of results found the optimum dye concentration be used in all the following tests. Furthermore the ablation threshold for this technique was found for each different pulse shapes and durations. A low energy ablation method was found to avoid temperature increase and surface cracks formation. In vitro temperature analysis was reported comparing the differences between no dye application laser treatment and with a dye spray applied. A strong reduction of the temperature increase was found in the dye assisted method. A discussion on the general findings and their possible clinical applications is presented.

  14. Evaluation of microshear bond strength of resin composites to enamel of dental adhesive systems associated with Er,Cr:YSGG laser

    Science.gov (United States)

    Cassimiro-Silva, Patricia F.; Zezell, Denise M.; Monteiro, Gabriela Q. d. M.; Benetti, Carolina; de Paula Eduardo, Carlos; Gomes, Anderson S. L.

    2016-02-01

    The aim of this in vitro study was to evaluate the microshear bond strength (μSBS) of resin composite to enamel etching by Er,Cr:YSGG laser with the use of two differents adhesives systems. Fifty freshly extracted human molars halves were embedded in acrylic resin before preparation for the study, making a total of up to 100 available samples. The specimens were randomly assigned into six groups (η=10) according to substrate pre-treatment and adhesive system on the enamel. A two-step self-etching primer system (Clearfil SE Bond) and a universal adhesive used as an etch-andrinse adhesive (Adper Single Bond Universal) were applied to the nonirradiated enamel surface according to manufacturer's instructions, as control groups (Control CF and Control SB, respectively). For the other groups, enamel surfaces were previously irradiated with the Er,Cr:YSGG laser with 0.5 W, 75 mJ and 66 J/cm2 (CF 5 Hz and SB 5 Hz) and 1.25 W, 50 mJ and 44 J/cm2 (CF 15 Hz and SB 15 Hz). Irradiation was performed under air (50%) and water (50%) cooling. An independent t-test was performed to compare the adhesive systems. Mean μSBS ± sd (MPa) for each group was 16.857 +/- 2.61, 17.87 +/- 5.83, 12.23 +/- 2.02, 9.88 +/- 2.26, 15.94 +/- 1.98, 17.62 +/- 2.10, respectively. The control groups and the 50 mJ laser groups showed no statistically significant differences, regardless of the adhesive system used. The results obtained lead us to affirm that the bonding interaction of adhesives to enamel depends not only on the morphological aspects of the dental surface, but also on the characteristics of the adhesive employed and the parameters of the laser.

  15. COMPARATIVE STUDY OF THE SHEAR BOND STRENGTH OF COMPOSITE RESIN TO DENTAL ENAMEL CONDITIONED WITH PHOSPHORIC ACID OR Nd: YAG LASER

    Directory of Open Access Journals (Sweden)

    EDUARDO Carlos de Paula

    1997-01-01

    Full Text Available This study has been focused on a comparison between the shear bond strength of a composite resin attached to dental enamel surface, after a 35% phosphoric acid etching and after a Nd:YAG laser irradiation with 165.8 J/cm2 of energy density per pulse. After etching and attaching resin to these surfaces, the specimens were thermocycled and then underwent the shearing bond strength tests at a speed of 5 mm/min. The results achieved, after statistical analysis with Student's t-test, showed that the adhesion was significantly greater in the 35% phosphoric acid treated group than in the group treated with the Nd:YAG laser, thus demonstrating the need for developing new studies to reach the ideal parameters for an effective enamel surface conditioning as well as specific adhesives and composite resins when Nd:YAG laser is used

  16. Residual heat deposition in dental enamel during IR laser ablation at 2.79, 2.94, 9.6, and 10.6 microm.

    Science.gov (United States)

    Fried, D; Ragadio, J; Champion, A

    2001-01-01

    The principal factor limiting the rate of laser ablation of dental hard tissue is the risk of excessive heat accumulation in the tooth. Excessive heat deposition or accumulation may result in unacceptable damage to the pulp. The objective of this study was to measure the residual heat deposition during the laser ablation of dental enamel at those IR laser wavelengths well suited for the removal of dental caries. Optimal laser ablation systems minimize the residual heat deposition in the tooth by efficiently transferring the deposited laser energy to kinetic and internal energy of ejected tissue components. The residual heat deposition in dental enamel was measured at laser wavelengths of 2.79, 2.94, 9.6, and 10.6 microm and pulse widths of 150 nsec -150 microsec using bovine block "calorimeters." Water droplets were applied to the surface before ablation with 150 microsec Er:YAG laser pulses to determine the influence of an optically thick water layer on reducing heat deposition. The residual heat was at a minimum for fluences well above the ablation threshold where measured values ranged from 25-70% depending on pulse duration and wavelength for the systems investigated. The lowest values of the residual heat were measured for short (heat deposition during ablation with 150 microsec Er:YAG laser pulses. Residual heat deposition can be markedly reduced by using CO(2) laser pulses of less than 20 microsec duration and shorter Q-switched Er:YAG and Er:YSGG laser pulses for enamel ablation. Copyright 2001 Wiley-Liss, Inc.

  17. Demineralization-remineralization dynamics in teeth and bone.

    Science.gov (United States)

    Abou Neel, Ensanya Ali; Aljabo, Anas; Strange, Adam; Ibrahim, Salwa; Coathup, Melanie; Young, Anne M; Bozec, Laurent; Mudera, Vivek

    Biomineralization is a dynamic, complex, lifelong process by which living organisms control precipitations of inorganic nanocrystals within organic matrices to form unique hybrid biological tissues, for example, enamel, dentin, cementum, and bone. Understanding the process of mineral deposition is important for the development of treatments for mineralization-related diseases and also for the innovation and development of scaffolds. This review provides a thorough overview of the up-to-date information on the theories describing the possible mechanisms and the factors implicated as agonists and antagonists of mineralization. Then, the role of calcium and phosphate ions in the maintenance of teeth and bone health is described. Throughout the life, teeth and bone are at risk of demineralization, with particular emphasis on teeth, due to their anatomical arrangement and location. Teeth are exposed to food, drink, and the microbiota of the mouth; therefore, they have developed a high resistance to localized demineralization that is unmatched by bone. The mechanisms by which demineralization-remineralization process occurs in both teeth and bone and the new therapies/technologies that reverse demineralization or boost remineralization are also scrupulously discussed. Technologies discussed include composites with nano- and micron-sized inorganic minerals that can mimic mechanical properties of the tooth and bone in addition to promoting more natural repair of surrounding tissues. Turning these new technologies to products and practices would improve health care worldwide.

  18. 'In vitro' assessment to instrumented indentation hardness tests in enamel of bovine teeth, before and after dental bleaching by laser; Avaliacao in vitro' de ensaios instrumentados de dureza em esmalte de dente bovino, antes e apos clareamento dental a laser

    Energy Technology Data Exchange (ETDEWEB)

    Britto Junior, Francisco Meira

    2004-07-01

    The laser enamel bleaching is a common used procedure due to its satisfactory esthetic results. The possible changes on the dental structures caused by the bleaching technique are of great importance. The enamel superficial microhardness changes through instrumented indentation hardness on bovine teeth were analyzed in this present study. The samples were divided in two halves, one being the control and the other irradiated with a diode laser (808 nm) or with a Nd:YAG laser (1064 nm) to activate the Whiteness HP bleaching gel (hydrogen peroxide at 35%). It was possible to conclude that there was a statistical significant increase on the enamel superficial microhardness (Group I, sample 1 and Group II, sample 1) despite this increase did not seem to indicate a concern regarding the enamel surface resistance change. There was not a significant statistical change on the enamel microhardness on the other samples. The final conclusion is that there was no superficial enamel morphological change after these treatments. (author)

  19. The influence of a novel in-office tooth whitening procedure using an Er,Cr:YSGG laser on enamel surface morphology.

    Science.gov (United States)

    Dionysopoulos, Dimitrios; Strakas, Dimitrios; Koliniotou-Koumpia, Eugenia

    2015-08-01

    The purpose of this in vitro study was to evaluate the influence of a novel in-office tooth whitening procedure using Er,Cr:YSGG laser radiation on bovine enamel. Forty-eight enamel specimens were prepared from bovine canines and divided into four groups: Group 1 specimens (control) received no whitening treatment; Group 2 received whitening treatment with an at-home whitening agent (22% carbamide peroxide) for 7 days; Group 3 received whitening treatment with a novel in-office whitening agent (35% H(2)O(2)); Group 4 received the same in-office whitening therapy with Group 3 using Er,Cr:YSGG laser in order to accelerate the whitening procedure. The specimens were stored for 10 days after the whitening treatment in artificial saliva. Vickers hardness was determined using a microhardness tester and surface roughness was evaluated using a VSI microscope. Three specimens of each experimental group were examined under SEM and the mineral composition of the specimens was evaluated using EDS. Data were statistically analyzed using one-way ANOVA, Tukey's post-hoc test, Wilcoxon signed rank and Kruskal-Wallis tests (a = 0.05). The surface microhardness of the enamel was reduced after the in-office whitening treatments (Pwhitening treatment (P> 0.05). Moreover, the surface roughness was not significantly changed after tooth whitening. EDS analysis did not show alterations in the enamel mineral composition, while SEM observations indicated changes in the surface morphology, especially after in-office tooth whitening (Pwhitening treatment with Er,Cr:YSGG laser did not affect the alterations in enamel surface compared with the conventional in-office whitening technique. © 2015 Wiley Periodicals, Inc.

  20. Evaluation of temperature variation in pulp chamber after high power diode laser irradiation (λ=830 nm) on dental enamel: 'in vitro' study

    International Nuclear Information System (INIS)

    Macri, Rodrigo Teixeira

    2001-01-01

    The aim of this study was to observe the variation of temperature in the pulp chamber caused by irradiation of a commercial diode laser operating in continuous wave with wavelength 830 nm over the dental enamel. In the first part of this study, two types of tooth models were tested: 3,5 mm slice and whole tooth. In the second part, we irradiated the buccal si de of the enamel in 2 primary lower incisors from cattle with Opus 10 diode laser for 10 s with power levels of 1 W and 2 W, always using an absorber. Two thermocouples were used. The first one was inserted in the dentin wall closest to the irradiation site, while the second was inserted in the middle of the pulp chamber. It was observed that the thermocouples registered different temperatures. Always, the dentin thermocouple registered higher temperatures. Considering the dentin records, the irradiation of 1 W for 10 s can be safe for the pulp. Further studies must be developed related to the correct positioning of the thermocouples inside the pulp chamber. This was a first step of using diode laser in enamel, and in this study, we concluded that the Opus 10 diode laser shown to be safe for this use, with 1 W power for 10 S. (author)

  1. In vitro studies of morphological changes in enamel surface after Er:YAG and Nd:YAG laser irradiation, by SEM

    International Nuclear Information System (INIS)

    Verlangieri, Eleonora Jaeger

    2001-01-01

    The caries prevention by using laser irradiation has been investigated by many authors using various lasers with different irradiations conditions. The purpose of this study was to investigated the morphological changes in enamel surface after Er:YAG and Nd:YAG laser irradiation, in vitro, by SEM. Fifteen freshly extracted, intact, caries-free, human third molars, were used in this study. The coronary portions were sectioned, from buccal to lingual direction, in two half-parts. Each one was irradiated by a different laser. The first one was irradiated with water-air spray, by a Nd:YAG laser, at 1.084 nm wave length, at 10 W, 10 Hz, 100 mJ for 60 sec., with an optical fiber in contact mode (0,32 mm of diameter); and the other half, with water-air spray by an Er:YAG laser at 2,94 micrometers wave length at the parameters of 4 Hz, 80 mJ, 24.95 J/cm 2 for 60 sec. The results of this study suggested that both lasers promoted morphological changes in the enamel surface enhancing resistance and can be an alternative clinical method for caries preventions. (author)

  2. In vitro study of 960 nm high power diode laser applications in dental enamel, aided by the presence of a photoinitiator dye: scanning electron microscopy analysis

    International Nuclear Information System (INIS)

    Oliveira, Marcelo Vinicius de

    2002-06-01

    The objective of this study is to verify if a high power diode laser can effectively modify the morphology of an enamel surface, and if this can be done in a controlled fashion by changing the lasers parameters. Previous studies using SEM demonstrated that through irradiation with Nd:YAG laser (1064 nm) it is possible to modify the morphology of the dental surface in such way as to increase its resistance against caries decays. The desired procedures that should achieve a decrease of the index of caries decays and of its sequels are on a primary level, which means that action is necessary before the disease installs itself. In this study it was used for the first time a prototype of a high power diode laser operating at 960 nm, produced by the Laboratory of Development of Lasers of the Center for Lasers and Applications of the IPEN. This equipment can present several advantages as reliability, reduced size and low cost. The aim was establish parameters of laser irradiation that produce the desired effects wanted in the enamel and protocols that guarantee its safety during application in dental hard tissues, protecting it of heating effects such as fissures and carbonization. (author)

  3. A study in vitro on radiation effects by Er:YAG laser combined with the fluorine therapy in the acid resistance of the dental enamel submitted to orthodontical brackets; Um estudo in vitro sobre os efeitos da irradiacao pelo laser de Er:YAG combinado com a terapia com fluor na resistencia acida do esmalte de dentes submetidos a aparelho ortodontico fixo

    Energy Technology Data Exchange (ETDEWEB)

    Yoshiyasu, Roseli Y A

    2001-07-01

    Several researches have been demonstrating an increase in the resistance acid of the enamel surface when irradiated by some lasers types as Nd:YAG, C0{sub 2}, Er:YAG, and others, mainly when combined with the fluoride therapy after the irradiation of the laser. This study in vitro used the laser of Er:YAG which density of energy of 8.1 J/cm{sup 2} on the enamel about of orthodontical brackets of teeth extracted pre-molars. These teeth were then submitted to a rich way in S. mutans for twenty one days. The cases were analyzed: (1) enamel surface without any treatment, (2) enamel surface without any irradiation laser, but with therapy with acidulated phosphate fluoride, (3) enamel surface irradiated with laser of Er:YAG and (4) enamel surface irradiated by laser of Er:YAG and with application of acidulated phosphate fluoride. The results were analyzed through optical microscopy and scanning electron microscopy. The morphologic changes observed to the scanning electron microscopy suggest increase in the acid resistance of the enamel surface. However, to the optical microscopy, it was still possible to visualize undesirable white stains in the surface of the enamel. (author)

  4. EFFECT OF FLUORIDE MOUTHRINSING ON CARIES LESION DEVELOPMENT IN SHARK ENAMEL - AN INSITU CARIES MODEL STUDY

    NARCIS (Netherlands)

    OGAARD, B; ROLLA, G; DIJKMAN, T; RUBEN, J; ARENDS, J

    1991-01-01

    Shark enamel consists of nearly pure fluorapatite and has been shown to demineralize in an in situ caries model. The present study was conducted to investigate whether additional fluoride supplementation in the form of mouthrinsing would inhibit lesion development in shark enamel. The study slabs of

  5. Comparison of Shear Bond Strength of Orthodontic Brackets Bonded to Enamel Prepared By Er:YAG Laser and Conventional Acid-Etching

    Science.gov (United States)

    Hosseini, M.H.; Namvar, F.; Chalipa, J.; Saber, K.; Chiniforush, N.; Sarmadi, S.; Mirhashemi, A.H.

    2012-01-01

    Introduction: The purpose of this study was to compare shear bond strength (SBS) of orthodontic brackets bonded to enamel prepared by Er:YAG laser with two different powers and conventional acid-etching. Materials and Methods: Forty-five human premolars extracted for orthodontic purposes were randomly assigned to three groups based on conditioning method: Group 1- conventional etching with 37% phosphoric acid; Group 2- irradiation with Er:YAG laser at 1 W; and Group 3- irradiation with Er:YAG laser at 1.5 W. Metal brackets were bonded on prepared enamel using a light-cured composite. All groups were subjected to thermocycling process. Then, the specimens mounted in auto-cure acryle and shear bond strength were measured using a universal testing machine with a crosshead speed of 0.5 mm per second. After debonding, the amount of resin remaining on the teeth was determined using the adhesive remnant index (ARI) scored 1 to 5. One-way analysis of variance was used to compare shear bond strengths and the Kruskal-Wallis test was performed to evaluate differences in the ARI for different etching types. Results: The mean and standard deviation of conventional acid-etch group, 1W laser group and 1.5W laser group was 3.82 ± 1.16, 6.97 ± 3.64 and 6.93 ± 4.87, respectively. Conclusion: The mean SBS obtained with an Er:YAG laser operated at 1W or 1.5W is approximately similar to that of conventional etching. However, the high variability of values in bond strength of irradiated enamel should be considered to find the appropriate parameters for applying Er:YAG laser as a favorable alternative for surface conditioning. PMID:22924098

  6. Comparison of Shear Bond Strength of Orthodontic Brackets Bonded to Enamel Prepared By Er:YAG Laser and Conven-tional Acid-Etching

    Directory of Open Access Journals (Sweden)

    M.H. Hosseini

    2012-01-01

    Full Text Available Introduction: The purpose of this study was to compare shear bond strength (SBS of orthodontic brackets bonded to enamel prepared by Er:YAG laser with two different powers and conventional acid-etching.Materials and Methods: Forty-five human premolars extracted for orthodontic purposes were randomly assigned to three groups based on conditioning method: Group 1- conventional etching with 37% phosphoric acid; Group 2- irradiation with Er:YAG laser at 1 W; and Group 3- irradiation with Er:YAG laser at 1.5 W. Metal brackets were bonded on prepared enamel using a light-cured composite. All groups were subjected to thermocycling process. Then, the specimens mounted in auto-cure acryle and shear bond strength were measured using a universal testing machine with a crosshead speed of 0.5 mm per second. After debonding, the amount of resin remaining on the teeth was determined using the adhesive remnant index (ARI scored 1 to 5. One-way analysis of variance was used to compare shear bond strengths and the Kruskal-Wallis test was performed to evaluate differences in the ARI for different etching types.Results: The mean and standard deviation of conventional acid-etch group, 1W laser group and 1.5W laser group was 3.82 ± 1.16, 6.97 ± 3.64 and 6.93 ± 4.87, respectively.Conclusion: The mean SBS obtained with an Er:YAG laser operated at 1W or 1.5W is approximately similar to that of conventional etching. However, the high variability of values in bond strength of irradiated enamel should be considered to find the appropriate parameters for applying Er:YAG laser as a favorable alternative for surface conditioning.

  7. Enamel Regeneration - Current Progress and Challenges

    Science.gov (United States)

    Baswaraj; H.K, Navin; K.B, Prasanna

    2014-01-01

    Dental Enamel is the outermost covering of teeth. It is hardest mineralized tissue present in the human body. Enamel faces the challenge of maintaining its integrity in a constant demineralization and remineralization within the oral environment and it is vulnerable to wear, damage, and decay. It cannot regenerate itself, because it is formed by a layer of cells that are lost after the tooth eruption. Conventional treatment relies on synthetic materials to restore lost enamel that cannot mimic natural enamel. With advances in material science and understanding of basic principles of organic matrix mediated mineralization paves a way for formation of synthetic enamel. The knowledge of enamel formation and understanding of protein interactions and their gene products function along with the isolation of postnatal stem cells from various sources in the oral cavity, and the development of smart materials for cell and growth factor delivery, makes possibility for biological based enamel regeneration. This article will review the recent endeavor on biomimetic synthesis and cell based strategies for enamel regeneration. PMID:25386548

  8. Penetration of varnishes into demineralized root dentine in vitro

    NARCIS (Netherlands)

    Arends, J; Duschner, H; Ruben, JL

    1997-01-01

    In this paper the penetration of three different varnishes employed in caries prevention (Duraphat(R), Fluor Protector(R) and Cervitec(R)) into demineralized dentine is quantified using confocal laser scanning microscopy. The results show that the varnish penetration into lesions about 85 mu m in

  9. Investigating Micro-Tensile Bond Strength of Silorane Based Composite in Enamel Surfaces Prepared by Er:YAG Laser vs. Bur-Cut

    Directory of Open Access Journals (Sweden)

    AR Daneshkazemi

    2014-10-01

    Full Text Available Introduction: Recently, Er:YAG laser has been used for tooth preparations and silorane-based composites have been introduced to dentistry, though investigating this type of composites has received scant attention. Therefore, the aim of this study was to compare microtensile bond strength (MTBS of silorane- based composite (Filtek P90 3M/USA to enamel sufaces, prepared by Er:YAG laser irradiation versus bur cut. Methods:Same sized cavities were prepared by ER:YAG laser and bur on the enamel of 20 extracted teeth which were randomly divided into 4 groups:E1 laser + acid etching, E2: laser, E3: bur + acid etching, E4: bur. Then primer, adhesive and P60 resin composite were utilized according to the manufacturer instructions. After thermocycling, 20 samples were created in the form of an hour glass model with 1 mm2 slices in each group, and were tested by SD Mechatronic MTD 500 (Germany machine with cross head speed of 1mm/min to create the fracture. The failure mode was assessed under stereomicroscope (ZTX-3E, Zhejiang/China, and the study data were analysed by ANOVA test. Results: The study results revealed that highest and lowest microtensile bond strength belonged to E3 and E2 group respectively. No significant differences were observed between the tested groups(p= 0.213. Highest and lowest modes of failure were adhesive and cohesive respectively. ANOVA results did not demonstrate any significant differences between groups(p=0.845. Conclusion: Laser-prepared or bur-prepared cavities with or without etching and silorane based composite could not significantly affect MTBS in order to enamel.

  10. Human enamel structure studied by high resolution electron microscopy

    International Nuclear Information System (INIS)

    Wen, S.L.

    1989-01-01

    Human enamel structural features are characterized by high resolution electron microscopy. The human enamel consists of polycrystals with a structure similar to Ca10(PO4)6(OH)2. This article describes the structural features of human enamel crystal at atomic and nanometer level. Besides the structural description, a great number of high resolution images are included. Research into the carious process in human enamel is very important for human beings. This article firstly describes the initiation of caries in enamel crystal at atomic and unit-cell level and secondly describes the further steps of caries with structural and chemical demineralization. The demineralization in fact, is the origin of caries in human enamel. The remineralization of carious areas in human enamel has drawn more and more attention as its potential application is realized. This process has been revealed by high resolution electron microscopy in detail in this article. On the other hand, the radiation effects on the structure of human enamel are also characterized by high resolution electron microscopy. In order to reveal this phenomenon clearly, a great number of electron micrographs have been shown, and a physical mechanism is proposed. 26 references

  11. Effects of the low-intensity red laser radiation on the fluoride uptake in enamel. A clinical trial; Avaliacao dos efeitos da radiacao laser de emissao vermelha em baixa intensidade na incorporacao de fluor no esmalte. Estudo clinico

    Energy Technology Data Exchange (ETDEWEB)

    Nakasone, Regina Keiko

    2004-07-01

    Fluoride has been the most important preventive method on development of the caries. This in vivo study evaluated the effects of low-intensity red laser radiation on the fluoride uptake in enamel. Ten healthy participants were recruited for this study. The two maxillary central incisors of each volunteer to be biopsied were used and divided into 4 groups: group G{sub C} (control, which was untreated; group G{sub F} (fluoride), which received topical acidulated phosphate fluoride (APF) 1,23% treatment for 4 minutes; group G{sub LF} (laser + fluoride), which was irradiated with a low-intensity diode laser ({lambda}= 660 nm and dose= 6 J/cm{sup 2}) with APF application after irradiation and group G{sub FL} (fluoride + laser), which received APF before irradiation using the same parameters as G{sub LF}. The determination of fluoride was performed using a fluoride ion electrode after an acid-etch enamel biopsy. The results show a significant increase of the fluoride uptake in enamel for groups G{sub F}, G{sub LF} and G{sub FL} when compared to control group. Although a percentage increase of 57% was observed for G{sub LF} with respect to G{sub F}, there were no statistical differences among treated groups. These findings suggest that low-intensity laser radiation used before APF could be employed in the clinical practice to prevent dental caries. (author)

  12. Tensile bond strength and SEM analysis of enamel etched with Er:YAG laser and phosphoric acid: a comparative study in vitro

    International Nuclear Information System (INIS)

    Sasaki, Luis H.; Tanaka, Celso Shin-Ite; Lobo, Paulo D.C.; Villaverde, Antonio B.; Moriyama, Eduardo H.; Brugnera Junior, Aldo; Moriyama, Yumi; Watanabe, Ii-Sei

    2008-01-01

    Er:YAG laser has been studied as a potential tool for restorative dentistry due to its ability to selectively remove oral hard tissue with minimal or no thermal damage to the surrounding tissues. The purpose of this study was to evaluate in vitro the tensile bond strength (TBS) of an adhesive/composite resin system to human enamel surfaces treated with 37% phosphoric acid, Er:YAG laser (λ=2.94 μm) with a total energy of 16 J (80 mJ/pulse, 2Hz, 200 pulses, 250 ms pulse width), and Er:YAG laser followed by phosphoric acid etching. Analysis of the treated surfaces was performed by scanning electron microscopy (SEM) to assess morphological differences among the groups. TBS means (in MPa) were as follows: Er:YAG laser + acid (11.7 MPa) > acid (8.2 MPa) > Er:YAG laser (6.1 MPa), with the group treated with laser+acid being significantly from the other groups (p=0.0006 and p= 0.00019, respectively). The groups treated with acid alone and laser alone were significantly different from each other (p=0.0003). The SEM analysis revealed morphological changes that corroborate the TBS results, suggesting that the differences in TBS means among the groups are related to the different etching patterns produced by each type of surface treatment. The findings of this study indicate that the association between Er:YAG laser and phosphoric acid can be used as a valuable resource to increase bond strength to laser-prepared enamel. (author)

  13. Thermal stress in dentin and enamel under CO2 laser irradiation

    Science.gov (United States)

    Meyer, Dirk H.; Foth, Hans-Jochen

    1996-01-01

    Ablation of dentin and tartar was studied under carbon dioxide-laser irradiation in cw and pulse mode with pulse length down to 150 microseconds. The specimens had been cut by a diamant blade to slices of thicknesses between 0.8 and 2.8 mm. The laser induced temperature rise was measured by an infrared camera monitoring the backside of the samples. The specimens shape and structure at the laser spot was analyzed by electron microscopy. Of special interest was the testing of the SwiftLaseTM to reducing the heat. The experimental results show the necessity of a water cooling in all application modes. The origin of the cracks which had been observed in many of the samples, is currently under investigation.

  14. Effective of diode laser on teeth enamel in the teeth whitening treatment

    Science.gov (United States)

    Klunboot, U.; Arayathanitkul, K.; Chitaree, R.; Emarat, N.

    2011-12-01

    This research purpose is to investigate the changing of teeth color and to study the surface of teeth after treatment by laser diode at different power densities for tooth whitening treatment. In the experiment, human-extracted teeth samples were divided into 7 groups of 6 teeth each. After that laser diode was irradiated to teeth, which were coated by 38% concentration of hydrogen peroxide, during for 20, 30 and 60 seconds at power densities of 10.9 and 52.1 W/cm2. The results of teeth color change were described by the CIEL*a*b* systems and the damage of teeth surface were investigated by scanning electron microscopy (SEM). The results showed that the power density of the laser diode could affect the whiteness of teeth. The high power density caused more luminous teeth than the low power density did, but on the other hand the high power density also caused damage to the teeth surface. Therefore, the laser diode at the low power densities has high efficiency for tooth whitening treatment and it has a potential for other clinical applications.

  15. Treatment of tooth fracture by medium-energy CO2 laser and DP-bioactive glass paste: the interaction of enamel and DP-bioactive glass paste during irradiation by CO2 laser.

    Science.gov (United States)

    Lin, C P; Tseng, Y C; Lin, F H; Liao, J D; Lan, W H

    2001-03-01

    Acute trauma or trauma associated with occlusal disturbance can produce tooth crack or fracture. Although several methods are proposed to treat the defect, however, the prognosis is generally poor. If the fusion of a tooth fracture by laser is possible, it will offer an alternative to extraction or at least serve as an adjunctive treatment in the reconstruction. We have tried to use a continuous-wave CO2 laser and a newly developed DP-bioactive glass paste (DPGP) to fuse or bridge tooth crack or fracture lines. Both the DP-bioactive glass paste and tooth enamel have strong absorption bands at the wavelength of 10.6 microm. Therefore, under CO2 laser, DPGP and enamel should have an effective absorption and melt together. The interface between DPGP and enamel could be regarded as a mixture of DPGP and enamel (DPG-E). The study focused on the phase transformation, microstructure, functional group and thermal behavior of DPG-E with or without CO2 laser irradiation, by the analytical techniques of XRD, FTIR, DTA/TGA, and SEM. The results of XRD showed that the main crystal phase in the DPG-E was dicalcium phosphate dihydrate (CaHPO4.2H2O). It changed into CaHPO4, gamma-Ca2P2O7, beta-Ca2P2O7 and finally alpha-Ca2P2O7 with increasing temperature. In the FTIR analysis, the 720 cm(-1) absorption band ascribed to the P-O-P linkage in pyrophosphate rose up and the intensities of the OH- bands reduced after laser irradiation. In regard to the results of DTA/TGA after irradiation, the weight loss decreased due to the removal of part of absorption water and crystallization water by the CO2 laser. SEM micrographs revealed that the melted masses and the plate-like crystals formed a tight chemical bond between the enamel and DPGP. We expect that DPGP with the help of CO2 laser can be an alternative to the treatment of tooth crack or fracture.

  16. Bleaching and enamel surface interactions resulting from the use of highly-concentrated bleaching gels.

    Science.gov (United States)

    Grazioli, Guillermo; Valente, Lisia Lorea; Isolan, Cristina Pereira; Pinheiro, Helena Alves; Duarte, Camila Gonçalves; Münchow, Eliseu Aldrighi

    2018-03-01

    Tooth bleaching is considered a non-invasive treatment, although the use of highly-concentrated products may provoke increased surface roughness and enamel demineralization, as well as postoperative sensitivity. Thus, the aim of this study was to investigate whether hydrogen peroxide (H 2 O 2 ) concentration would affect tooth bleaching effectiveness and the enamel surface properties. Enamel/dentin bovine specimens (6 × 4 mm) were immersed in coffee solution for 7 days and evaluated with a spectrophotometer (Easyshade; baseline), using the CIEL * a * b * color parameters. Hardness was measured using a hardness tester. The specimens were randomly assigned into four groups: one negative control, in which the specimens were not bleached, but they were irradiated with a laser-light source (Whitening Lase II, DMC Equipments); and three groups using distinct H 2 O 2 concentration, namely LP15% (15% Lase Peroxide Lite), LP25% (25% Lase Peroxide Sensy), and LP35% (35% Lase Peroxide Sensy), all products from DMC. The bleached specimens were also irradiated with the laser-light source. After bleaching, all specimens were evaluated using scanning electron microscopy (SEM). pH kinetics and rate was monitored during bleaching. The data were analyzed using ANOVA and Tukey's test (p bleaching gels produced similar color change (p > 0.05). Concerning hardness, only the LP25% and LP35% significantly reduced hardness after bleaching; also, there was a progressive tendency for a greater percentage reduction in hardness with increased H 2 O 2 concentration of the gel (R 2  = 0.9973, p bleaching effectiveness, and may increase the possibility for alteration of enamel hardness, surface morphology, and acidity of the medium. When using H 2 O 2 -based bleaching agents, dental practitioners should choose for less concentrated gels, e.g., around the 15% level. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Surface morphological changes on the human dental enamel and cement after the Er:YAG laser irradiation at different incidence angles

    International Nuclear Information System (INIS)

    Tannous, Jose Trancoso

    2001-01-01

    This is a morphological analysis study through SEM of the differences of the laser tissue interaction as a function of the laser beam irradiation angle, under different parameters of energy. Fourteen freshly extracted molars stored in a 0,9% sodium chloride solution were divided in seven pairs and were irradiated with 100, 200, 300, 400, 500, 600 and 700 mJ per pulse, respectively. Each sample received three enamel irradiations and three cement irradiations, either in the punctual or in the contact mode, one near to the other, with respectively 30, 45 and 90 inclinations degrees of dental surface-laser-beam incidence. Four Er:YAG pulses (2,94 μm, 7-20 Hz, 0,1-1 J energy/pulse - Opus 20 - Opus Dent) with water cooling system (0,4 ml/s) were applied. After the laser irradiation the specimens were analysed through scanning electron microscope (SEM). The results were analysed by SEM micrographs showing a great difference on the laser tissue interaction characteristics as a function of the irradiation angle of the laser beam. All the observations led to conclude that, considering the laser parameters used, the incidence angle variation is a very important parameter regarding the desired morphological effects. This represents an extremely relevant detail on the technical description of the Er:YAG laser irradiation protocols on dental tissues. (author)

  18. Study in vitro of dental enamel irradiated with a high power diode laser operating at 960 nm: morphological analysis of post-irradiation dental surface and thermal effect analysis in pulp chamber due to laser application; Estudo in vitro do esmalte dental irradiado com laser de diodo de alta potencia em 960 nm: analise morfologica da superficie dental pos-irradiada e analise do comportamento termico na camara pulpar devido a aplicacao laser

    Energy Technology Data Exchange (ETDEWEB)

    Quinto Junior, Jose

    2001-07-01

    Objectives: This study examines the structural and thermal modifications induced in dental enamel under dye assisted diode laser irradiation. The aim of this study is to verify if this laser-assisted treatment is capable to modify the enamel surface by causing fusion of the enamel surface layer. At the same time, the pulpal temperature rise must be kept low enough in order not to cause pulpar necrosis. To achieve this target, it is necessary to determine suitable laser parameters. As is known, fusion of the enamel surface followed by re-solidification produce a more acid resistant layer. This surface treatment is being researched as a new method for caries prevention. Method and Materials: A series of fourteen identically prepared enamel samples of human teeth were irradiated with a high power diode laser operating at 960 nm and using fiber delivery. Prior to irradiation, a fine layer of cromophorous ink was applied to the enamel surface. In the first part of the experiment the best parameter for pulse duration was determined. In the second part of the experimental phase the same energy density was used but with different repetition rates. During irradiation we monitored the temperature rise in the pulpal cavity. The morphology of the treated samples was analysed under SEM. Results: The morphology of the treated samples showed a homogeneously re-solidified enamel layer. The results of the temperature analysis showed a decrease of the pulpal temperature rise with decreasing repetition rate. Conclusion: With the diode laser it is possible to cause morphological alterations of the enamel surface, which is known to increase the enamel resistance against acid attack, and still maintain the temperature rise in the pulpar chamber below damage threshold. (author)

  19. Does the hybrid light source (LED/laser) influence temperature variation on the enamel surface during 35% hydrogen peroxide bleaching? A randomized clinical trial.

    Science.gov (United States)

    de Freitas, Patricia Moreira; Menezes, Andressa Nery; da Mota, Ana Carolina Costa; Simões, Alyne; Mendes, Fausto Medeiros; Lago, Andrea Dias Neves; Ferreira, Leila Soares; Ramos-Oliveira, Thayanne Monteiro

    2016-01-01

    The present study investigated how a hybrid light source (LED/laser) influences temperature variation on the enamel surfaces during 35% hydrogen peroxide (HP) bleaching. Effects on the whitening effectiveness and tooth sensitivity were analyzed. Twenty-two volunteers were randomly assigned to two different treatments in a split-mouth experimental model: group 1 (control), 35% HP; group 2 (experimental), 35% HP + LED/laser. Color evaluation was performed before treatment, and 7 and 14 days after completion of bleaching, using a color shade scale. Tooth sensitivity was assessed using a visual analog scale (VAS; before, immediately, and 24 hours after bleaching). During the bleaching treatment, thermocouple channels positioned on the tooth surfaces recorded the temperature. Data on color and temperature changes were subjected to statistical analysis (α = 5%). Tooth sensitivity data were evaluated descriptively. Groups 1 and 2 showed mean temperatures (± standard deviation) of 30.7 ± 1.2 °C and 34.1 ± 1.3 °C, respectively. It was found that there were statistically significant differences between the groups, with group 2 showing higher mean variation (P enamel surface. The color change results showed no differences in bleaching between the two treatment groups (P = .177). The variation of the average temperature during the treatments was not statistically associated with color variation (P = .079). Immediately after bleaching, it was found that 36.4% of the subjects in group 2 had mild to moderate sensitivity. In group 1, 45.5% showed moderate sensitivity. In both groups, the sensitivity ceased within 24 hours. Hybrid light source (LED/ laser) influences temperature variation on the enamel surface during 35% HP bleaching and is not related to greater tooth sensitivity.

  20. Effect of titanium dioxide nanoparticle addition into orthodontic adhesive resin on enamel microhardness

    Science.gov (United States)

    Andriani, A.; Krisnawati; Purwanegara, M. K.

    2017-08-01

    White spots are an early sign of enamel demineralization, which may lead to development of dental caries. Enamel demineralization can be determined by examining the microhardness number of the enamel. Addition of antibacterial agents such as TiO2 nanoparticles into the orthodontic adhesive (TiO2 nanocomposite) is expected to prevent enamel demineralization. The objective of this study is to evaluate the effect of TiO2 nanocomposites in maintaining enamel microhardness around orthodontic brackets. The bracket was bonded to the premolar using Transbond XT (group 1), 1% TiO2 nanocomposites (group 2), and 2% TiO2 nanocomposites (group 3). Group 4 was the control group, and it was not given any treatment prior to the microhardness test. The samples of groups 1, 2, and 3 were soaked in BHI solution containing Streptococcus mutans, and then stored in an incubator at 37°C for 30 days. Demineralizations were determined on cross-sectioned tooth 100μm and 200μm cervical to the bracket by the Vickers microhardness test. The microhardness values were significantly different between every group, with the highest value obtained for control group, followed by the 2% TiO2 nanocomposite group, 1% TiO2 nanocomposite group, and then the Transbond XT group. The results of this study reveal that 2% TiO2 nanocomposites have the ability to maintain enamel microhardness around the orthodontic bracket.

  1. Nanostructured synthetic hydroxyapatite and dental enamel heated and irradiated by ER,CR:YSGG: characterized by FTIR and XRD

    International Nuclear Information System (INIS)

    Rabelo Neto, Jose da Silva

    2009-01-01

    The study evaluate the physical changes and/or chemical that occurs in synthetic hydroxyapatite (HAP) and in enamel under action of thermal heating in oven or laser irradiation of Er,Cr:YSGG that may cause changes in its structure to make them more resistant to demineralization aiming the formation of dental caries. The synthetic HAP was produced by reaction of solutions of Ca(NO 3 ) and (NH 4 ) 2 HPO 4 with controlled temperature and pH. The enamel powder was collected from the bovine teeth. Samples of powder enamel and synthetic HAP were subjected to thermal heating in oven at temperatures of 200 deg C, 400 deg C, 600 deg C, 800 deg C and 1000 deg C. For the laser irradiation of materials, were made with 5,79 J/cm 2 of irradiation, 7,65 J/cm 2 , 10,55 J/cm 2 and 13,84 J/cm 2 for synthetic HAP and 7,53 J/cm 2 , 10,95 J/cm 2 , and 13,74 J/cm 2 for the enamel. The samples were evaluated by X-ray diffraction (XRD) for analysis of crystallographic phases and analysis by the Rietveld method, to determine their respective proportions in the material, as well as results of changes of the lattice unit cell parameters (axis-a, axis-c and volume), crystallites sizes and the occupation rate of sites of Ca and P atoms. The samples were analyzed by Fourier transform infrared spectroscopy (FTIR), which should compositional changes due to treatment related to carbonate, phosphate, adsorbed water and hydroxyl radicals content. The infrared was used to measure the surface temperature generated by the laser beam in the solid samples of enamel. Besides the major hydroxyapatite crystallographic phases, there was formations of octa calcium phosphate (OCP) and phase β of tricalcium phosphate (β-TCP ) in enamel heated at 800 deg C. There was reduction of the axis-a, volume and size of crystallites to the temperatures between 400 degree C and 600 deg C and also on laser irradiated samples. Above the temperature of 600 degree C it is observed the effect in the lattice parameters. The Ca

  2. Comparison of Knoop and Vickers surface microhardness and transverse microradiography for the study of early caries lesion formation in human and bovine enamel.

    Science.gov (United States)

    Lippert, F; Lynch, R J M

    2014-07-01

    The aims of the present laboratory study were twofold: a) to investigate the suitability of Knoop and Vickers surface microhardness (SMH) in comparison to transverse microradiography (TMR) to investigate early enamel caries lesion formation; b) to compare the kinetics of caries lesion initiation and progression between human and bovine enamel. Specimens (90×bovine and 90×human enamel) were divided into six groups (demineralization times of 8/16/24/32/40/48h) of 15 per enamel type and demineralized using a partially saturated lactic acid solution. SMH was measured before and after demineralization and changes in indentation length (ΔIL) calculated. Lesions were characterized using TMR. Data were analyzed (two-way ANOVA) and Pearson correlation coefficients calculated. ΔIL increased with increasing demineralization times but plateaued after 40h, whereas lesion depth (L) and integrated mineral loss (ΔZ) increased almost linearly throughout. No differences between Knoop and Vickers SMH in their ability to measure enamel demineralization were observed as both correlated strongly. Overall, ΔIL correlated strongly with ΔZ and L but only moderately with the degree of surface zone mineralization, whereas ΔZ and L correlated strongly. Bovine demineralized faster than human enamel (all techniques). Lesions in bovine formed faster than in human enamel, although the resulting lesions were almost indistinguishable in their mineral distribution characteristics. Early caries lesion demineralization can be sufficiently studied by SMH, but its limitations on the assessment of the mineral status of more demineralized lesions must be considered. Ideally, complementary techniques to assess changes in both physical and chemical lesion characteristics would be employed. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. The CuHBr laser in hard dental tissues

    International Nuclear Information System (INIS)

    Miyakawa, Walter

    2004-01-01

    occurs. A preliminary essay of dental enamel resistance to demineralization was performed using the green line of the Cu-HyBrID laser and, although some samples showed to be less susceptible to demineralization, conclusive results will be available only after carrying out more investigations.(author)

  4. Analysis of enamel microbiopsies in shed primary teeth by Scanning Electron Microscopy (SEM) and Polarizing Microscopy (PM)

    International Nuclear Information System (INIS)

    Costa de Almeida, Glauce Regina; Molina, Gabriela Ferian; Meschiari, Cesar Arruda; Barbosa de Sousa, Frederico; Gerlach, Raquel Fernanda

    2009-01-01

    The aims of this study were 1) to verify how close to the theoretically presumed areas are the areas of enamel microbiopsies carried out in vivo or in exfoliated teeth; 2) to test whether the etching solution penetrates beyond the tape borders; 3) to test whether the etching solution demineralizes the enamel in depth. 24 shed upper primary central incisors were randomly divided into two groups: the Rehydrated Teeth Group and the Dry Teeth Group. An enamel microbiopsy was performed, and the enamel microbiopsies were then analyzed by Scanning Electron Microscopy (SEM) and Polarizing Microscopy (PM). Quantitative birefringence measurements were performed. The 'true' etched area was determined by measuring the etched enamel using the NIH Image analysis program. Enamel birefringence was compared using the paired t test. There was a statistically significant difference when the etched areas in the Rehydrated teeth were compared with those of the Dry teeth (p = 0.04). The etched areas varied from - 11.6% to 73.5% of the presumed area in the Rehydrated teeth, and from 6.6% to 61.3% in the Dry teeth. The mean percentage of variation in each group could be used as a correction factor for the etched area. Analysis of PM pictures shows no evidence of in-depth enamel demineralization by the etching solution. No statistically significant differences in enamel birefringence were observed between values underneath and outside the microbiopsy area in the same tooth, showing that no mineral loss occurred below the enamel superficial layer. Our data showed no evidence of in-depth enamel demineralization by the etching solution used in the enamel microbiopsy proposed for primary enamel. This study also showed a variation in the measured diameter of the enamel microbiopsy in nineteen teeth out of twenty four, indicating that in most cases the etching solution penetrated beyond the tape borders.

  5. Effect of cow and soy milk on enamel hardness of immersed teeth

    Science.gov (United States)

    Widanti, H. A.; Herda, E.; Damiyanti, M.

    2017-08-01

    Cow milk and soy milk have different mineral contents and this can affect the tooth remineralization process. The aim of this study was to determine the effect of cow and soy milk on immersed teeth after demineralization. Twenty-one specimens, of human maxillary premolars, were measured for enamel hardness before immersion and demineralization in orange juice. The teeth were divided into three groups (n = 7) with each group immersed in either distilled water, cow milk, or soy milk. There was a significant increase in enamel hardness in all groups (p Cow milk provided the highest increase in enamel hardness, of all the three groups, but was not able to restore the initial enamel hardness.

  6. Early diagnosis of incipient caries based on non-invasive lasers

    Science.gov (United States)

    Velescu, A.; Todea, C.; Vitez, B.

    2016-03-01

    AIM: The aim of this study is to detect incipient caries and enamel demineralization using laser fluorescence.This serves only as an auxilary aid to identify and to monitor the development of these lesions. MATERIALS AND METHODS: 6 patients were involved in this study, three females and three male. Each patient underwent a professional cleaning, visual examination of the oral cavity, and then direct inspection using DiagnoCam and DIAGNOdent. After data recording each patient was submitted to retro-alveolar X-ray on teeth that were detected with enamel lesions. All data was collected and analyzed statistically. RESULTS: Of 36 areas considered in clinically healthy, 24 carious surfaces were found using laser fluorescence, a totally non-invasive method for detecting incipient carious lesions compared with the radiographic examination. CONCLUSIONS: This method has good applicability for patients because it improves treatment plan by early detection of caries and involves less fear for anxious patients and children.

  7. Quantitative study of fluoride transport during subsurface dissolution of dental enamel

    International Nuclear Information System (INIS)

    Chu, J.S.; Fox, J.L.; Higuchi, W.I.

    1989-01-01

    Previous studies using bovine dental enamel as a model have shown that surface and subsurface dissolution of enamel may be governed by micro-environmental solution conditions. We have now investigated the demineralization phenomenon more rigorously with the primary objective of developing a method for deducing solution species concentration profiles as a function of time from appropriate experimental data. More specifically, in this report, a model-independent method is described for determination of the pore solution fluoride gradients in bovine enamel during subsurface demineralization. Microradiography was used to determine the mineral density profiles, and an electron microprobe technique to determine total fluoride (F) profiles associated with the enamel. In each case, matched sections of bovine enamel were exposed to partially saturated acetate buffers at pH = 4.5 containing 0.5 ppm F for various periods of time (from six to 24 hours). The treated enamel was found to have an intact surface layer and subsurface demineralization. The extent of the demineralization and the depths of the lesions increased with time in all cases. The data were first used to calculate (a) the total F gradients in the enamel at various times, and (b) the local uptake rate of F as a function of time and position. Then, by manipulation of the equations describing the uptake and transport of F, we calculated the pore diffusion rate of F and the micro-environmental solution F concentration in the aqueous pores as a function of time and of distance from the enamel surface. It was also possible to calculate an intrinsic F diffusion coefficient in the pores, which was about 1.0 X 10(-5) cm2/sec, in good agreement with reported values

  8. Recovery of crystallographic texture in remineralized dental enamel.

    Science.gov (United States)

    Siddiqui, Samera; Anderson, Paul; Al-Jawad, Maisoon

    2014-01-01

    Dental caries is the most prevalent disease encountered by people of all ages around the world. Chemical changes occurring in the oral environment during the caries process alter the crystallography and microstructure of dental enamel resulting in loss of mechanical function. Little is known about the crystallographic effects of demineralization and remineralization. The motivation for this study was to develop understanding of the caries process at the crystallographic level in order to contribute towards a long term solution. In this study synchrotron X-ray diffraction combined with scanning electron microscopy and scanning microradiography have been used to correlate enamel crystallography, microstructure and mineral concentration respectively in enamel affected by natural caries and following artificial demineralization and remineralization regimes. In particular, the extent of destruction and re-formation of this complex structure has been measured. 2D diffraction patterns collected at the European Synchrotron Radiation Facility were used to quantify changes in the preferred orientation (crystallographic texture) and position of the (002) Bragg reflection within selected regions of interest in each tooth slice, and then correlated with the microstructure and local mineral mass. The results revealed that caries and artificial demineralization cause a large reduction in crystallographic texture which is coupled with the loss of mineral mass. Remineralization restores the texture to the original level seen in healthy enamel and restores mineral density. The results also showed that remineralization promotes ordered formation of new crystallites and growth of pre-existing crystallites which match the preferred orientation of healthy enamel. Combining microstructural and crystallographic characterization aids the understanding of caries and erosion processes and assists in the progress towards developing therapeutic treatments to allow affected enamel to regain

  9. Recovery of crystallographic texture in remineralized dental enamel.

    Directory of Open Access Journals (Sweden)

    Samera Siddiqui

    Full Text Available Dental caries is the most prevalent disease encountered by people of all ages around the world. Chemical changes occurring in the oral environment during the caries process alter the crystallography and microstructure of dental enamel resulting in loss of mechanical function. Little is known about the crystallographic effects of demineralization and remineralization. The motivation for this study was to develop understanding of the caries process at the crystallographic level in order to contribute towards a long term solution. In this study synchrotron X-ray diffraction combined with scanning electron microscopy and scanning microradiography have been used to correlate enamel crystallography, microstructure and mineral concentration respectively in enamel affected by natural caries and following artificial demineralization and remineralization regimes. In particular, the extent of destruction and re-formation of this complex structure has been measured. 2D diffraction patterns collected at the European Synchrotron Radiation Facility were used to quantify changes in the preferred orientation (crystallographic texture and position of the (002 Bragg reflection within selected regions of interest in each tooth slice, and then correlated with the microstructure and local mineral mass. The results revealed that caries and artificial demineralization cause a large reduction in crystallographic texture which is coupled with the loss of mineral mass. Remineralization restores the texture to the original level seen in healthy enamel and restores mineral density. The results also showed that remineralization promotes ordered formation of new crystallites and growth of pre-existing crystallites which match the preferred orientation of healthy enamel. Combining microstructural and crystallographic characterization aids the understanding of caries and erosion processes and assists in the progress towards developing therapeutic treatments to allow affected

  10. Novel hydroxyapatite nanorods improve anti-caries efficacy of enamel infiltrants.

    Science.gov (United States)

    Andrade Neto, D M; Carvalho, E V; Rodrigues, E A; Feitosa, V P; Sauro, S; Mele, G; Carbone, L; Mazzetto, S E; Rodrigues, L K; Fechine, P B A

    2016-06-01

    Enamel resin infiltrants are biomaterials able to treat enamel caries at early stages. Nevertheless, they cannot prevent further demineralization of mineral-depleted enamel. Therefore, the aim of this work was to synthesize and incorporate specific hydroxyapatite nanoparticles (HAps) into the resin infiltrant to overcome this issue. HAps were prepared using a hydrothermal method (0h, 2h and 5h). The crystallinity, crystallite size and morphology of the nanoparticles were characterized through XRD, FT-IR and TEM. HAps were then incorporated (10wt%) into a light-curing co-monomer resin blend (control) to create different resin-based enamel infiltrants (HAp-0h, HAp-2h and HAp-5h), whose degree of conversion (DC) was assessed by FT-IR. Enamel caries lesions were first artificially created in extracted human molars and infiltrated using the tested resin infiltrants. Specimens were submitted to pH-cycling to simulate recurrent caries. Knoop microhardness of resin-infiltrated underlying and surrounding enamel was analyzed before and after pH challenge. Whilst HAp-0h resulted amorphous, HAp-2h and HAp-5h presented nanorod morphology and higher crystallinity. Resin infiltration doped with HAp-2h and HAp-5h caused higher enamel resistance against demineralization compared to control HAp-free and HAp-0h infiltration. The inclusion of more crystalline HAp nanorods (HAp-2h and HAp-5h) increased significantly (p<0.05) the DC. Incorporation of more crystalline HAp nanorods into enamel resin infiltrants may be a feasible method to improve the overall performance in the prevention of recurrent demineralization (e.g. caries lesion) in resin-infiltrated enamel. Copyright © 2016 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  11. The effect of acidulated phosphate fluoride application on dental enamel surfaces hardness

    Directory of Open Access Journals (Sweden)

    Edhie Arief P

    2007-09-01

    Full Text Available Enamel demineralization by acid is the first step of caries process. It has recently been shown that acidulated phosphate fluoride (APF can maintain the hardness of enamel surface. The aim of this study was examine the effect of APF application in the hardest of enamel surface. Fifty extracted teeth were cut at their crown, 40 teeth were taken randomly then divided into 4 groups, group 1 as the control, group 2 was treated with APF for 1 minute, group 3 for 4 minutes and group 4 for 7 minutes, then all the samples were washed with demineralized water. To see the effect of APF, all of the samples were soaked in lactic acid demineralization solution with pH 4,5 for 72 hours., the hardness of the surfaces of those samples before and after the treatment was measured by Micro Vickers Hardness Tester. The data were analyzed using One-Way ANOVA and LSD tests. In conclusion, 1.23% APF gel can reduce higher enamel demineralization.

  12. Enamel surface remineralization: Using synthetic nanohydroxyapatite

    Directory of Open Access Journals (Sweden)

    J Shanti Swarup

    2012-01-01

    Full Text Available Objective: The purpose of this study was to evaluate the effects of synthetically processed hydroxyapatite particles in remineralization of the early enamel lesions in comparison with 2% sodium fluoride. Materials and Methods: Thirty sound human premolars were divided into nanohydroxyapatite group (n0 = 15 and the sodium fluoride group (n = 15. The specimens were subjected to demineralization before being coated with 10% aqueous slurry of 20 nm nanohydroxyapatite or 2% sodium fluoride. The remineralizing efficacy of the materials was evaluated using surface microhardness (SMH measurements, scanning microscopic analysis and analysis of the Ca/P ratio of the surface enamel. Data analysis was carried out using paired t-test and independent t-test. Results: The results showed that the nanohydroxyapatite group produced a surface morphology close to the biologic enamel, the increase in mineral content (Ca/P ratio was more significant in the nanohydroxyapatite group ( P 0.05. Conclusion: The use of biomimetic nanohydroxyapatite as a remineralizing agent holds promise as a new synthetic enamel biocompatible material to repair early carious lesions.

  13. Electrophoretic demonstration of glycoproteins, lipoproteins, and phosphoproteins in human and bovine enamel

    DEFF Research Database (Denmark)

    Kirkeby, S; Moe, D; Bøg-Hansen, T C

    1990-01-01

    Enamel proteins from fully mineralized human molars and from bovine tooth germs were separated by electrophoresis. The gels were stained for detection of glycoproteins, lipoproteins, and phosphoproteins. Glycoproteins were shown by periodic acid-Schiff staining and lectin blotting. In mature human...... enamel a number of high molecular weight proteins could be demonstrated after ethylenediaminetetra-acetic acid demineralization and subsequent Triton X-100 extraction. These proteins are suggested to be lipoproteins. Phosphoproteins could only be visualized in enamel matrix from the tooth germs....

  14. Susceptibility of Enamel Treated with Bleaching Agents to Mineral Loss after Cariogenic Challenge

    Directory of Open Access Journals (Sweden)

    Hüseyin Tezel

    2011-01-01

    Full Text Available Objectives. Controversial reports exist whether bleaching agents cause a susceptibility to demineralization. The aim of this study was to compare the calcium loss of enamel treated with different bleaching agents and activation methods. Method and Materials. The specimens obtained from human premolars were treated in accordance with manufacturer protocols; 10% carbamide peroxide, 38% hydrogen peroxide light-activated, 38% hydrogen peroxide laser-activated, and no treatment (control. After cariogenic challenge calcium concentrations were determined by Inductively Coupled Plasma Mass Spectrometry. Results. No differences were found between the calcium loss of the laser-activated group and 10% carbamide peroxide group (>0.05. However, the differences between laser-activated and control groups were statistically significant (0.05. On the other hand, the light-activated group showed a significantly higher calcium loss compared with the other groups (<0.05. Conclusions. The results show that bleaching agents may cause calcium loss but it seems to be a negligible quantity for clinical aspects.

  15. Effect of ozone to remineralize initial enamel caries: in situ study.

    Science.gov (United States)

    Samuel, S R; Dorai, S; Khatri, S G; Patil, S T

    2016-06-01

    Effect of ozonated water in remineralizing artificially created initial enamel caries was investigated using laser fluorescence and polarized light microscopy in an in situ study. Teeth specimens (buccal sections) were immersed in 5-ml solution of 2 mM CaCl2, 2 mM NaH2P04, and 50 mM CH3COOH at pH of 4.55 for 5 h in an incubator at 37° to create subsurface demineralization. After which, they were randomly allocated into one of the following remineralization regimens: ozone (ozonated water 0.1 mg/l and 10 % nano-hydroxyapatite paste, Aclaim(TM)), without ozone (only 10 % nano-hydroxyapatite paste, Aclaim(TM)), and control (subjects' saliva alone). Specimens were embedded in acrylic retainers worn by orthodontic patients throughout the 21-day study duration and constantly exposed to their saliva. Laser fluorescence was recorded for all the specimens at baseline, after demineralization, and remineralization using DIAGNOdent, and the results were validated using polarized microscopic examination. The results were analyzed using repeated measures, one-way ANOVA with post hoc multiple comparisons. Reduced DIAGNOdent scores and greater depth of remineralization following application of ozonated water and nano-hydroxyapatite were found compared to those of the without ozone and control groups (P nano-hydroxyapatite compared to nano-hydroxyapatite alone and saliva. Ozone water can be used to remineralize incipient carious lesions, and it enhances the remineralizing potential of nano-hydroxyapatite thereby preventing the tooth from entering into the repetitive restorative cycle.

  16. Comparative study of etched enamel and dentin for the adhesion of composite resins with the Er:YAG 2,94 μm laser and CO2 9,6 μm laser: morphological (SEM) and tensile bond strength analysis

    International Nuclear Information System (INIS)

    Marraccini, Tarso Mugnai

    2002-01-01

    The aim of this study was to evaluate and compare the tensile bond strength of a composite resin adhered to the enamel and dentin which have received superficial irradiation with an Er:YAG laser (2.94 μm) or with CO 2 laser ( 9.6 μm) and later on etched with the phosphoric acid at 35%. After the use of the adhesive system, resin cones were made on the etched surfaces by both lasers and tensile bond strength tests were performed. All samples were observed at the SEM - there was an increase of the degree of fusion and resolidification in the irradiated enamel and dentin samples with the CO 2 laser (9.6 μm), creating a vitrified layer with tiny craters. With the Er:YAG laser (2.94 μm) there were typical morphological explosive microablation with the exposition of the tubules in the dentin.The surface acquired by the association of the CO 2 laser ( 9.6 μm) plus acid etching no longer presented the aspect of fusion being this layer completely removed. There were statistical significant differences among ali three methods of etching in the treatment of the enamel and dentin surface. The tensile bond strength test showed that etching of these enamel and dentin surfaces with acid exclusively (control group) presented great values, surpassing the values of the etching acquired with the Er:YAG laser (2.94 μ) plus acid or the CO 2 laser (9.6 μm) plus acid. With the parameters used in this experiment the Er:YAG laser (2.94 μm) showed to be more effective than the CO 2 laser (9.6 μm) for the hard dental surfaces etching procedure. (author)

  17. Cleanup of TMI-2 demineralizer resins

    International Nuclear Information System (INIS)

    Bond, W.D.; King, L.J.; Knauer, J.B.; Hofstetter, K.J.; Thompson, J.D.

    1985-01-01

    Radiocesium is being removed from Demineralizers A and B (DA and DB by a process that was developed from laboratory tests on small samples of resin from the demineralizers. The process was designed to elute the radiocesium from the demineralizer resins and then to resorb it onto the zeolite ion exchangers contained in the Submerged Demineralizer System (SDS). The process was also required to limit the maximum cesium activities in the resin eluates (SDS feeds) so that the radiation field surrounding the pipelines would not be excessive. The process consists of 17 stages of batch elution. In the initial stage, the resin is contacted with 0.18 M boric acid. Subsequent stages subject the resin to increasing concentrations of sodium in NaH 2 BO 3 -H 3 BO 3 solution (total B = 0.35 M) and then 1 M sodium hydroxide in the final stages. Results on the performance of the process in the cleanup of the demineralizers at TMI-2 are compared to those obtained from laboratory tests with small samples of the DA and DB resins. To date, 15 stages of batch elution have been completed on the demineralizers at TMI-2 which resulted in the removal of about 750 Ci of radiocesium from DA and about 3300 Ci from DB

  18. Type VII collagen is enriched in the enamel organic matrix associated with the dentin-enamel junction of mature human teeth.

    Science.gov (United States)

    McGuire, Jacob D; Walker, Mary P; Mousa, Ahmad; Wang, Yong; Gorski, Jeff P

    2014-06-01

    The inner enamel region of erupted teeth is known to exhibit higher fracture toughness and crack growth resistance than bulk phase enamel. However, an explanation for this behavior has been hampered by the lack of compositional information for the residual enamel organic matrix. Since enamel-forming ameloblasts are known to express type VII collagen and type VII collagen null mice display abnormal amelogenesis, the aim of this study was to determine whether type VII collagen is a component of the enamel organic matrix at the dentin-enamel junction (DEJ) of mature human teeth. Immunofluorescent confocal microscopy of demineralized tooth sections localized type VII collagen to the organic matrix surrounding individual enamel rods near the DEJ. Morphologically, immunoreactive type VII collagen helical-bundles resembled the gnarled-pattern of enamel rods detected by Coomassie Blue staining. Western blotting of whole crown or enamel matrix extracts also identified characteristic Mr=280 and 230 kDa type VII dimeric forms, which resolved into 75 and 25 kDa bands upon reduction. As expected, the collagenous domain of type VII collagen was resistant to pepsin digestion, but was susceptible to purified bacterial collagenase. These results demonstrate the inner enamel organic matrix in mature teeth contains macromolecular type VII collagen. Based on its physical association with the DEJ and its well-appreciated capacity to complex with other collagens, we hypothesize that enamel embedded type VII collagen fibrils may contribute not only to the structural resilience of enamel, but may also play a role in bonding enamel to dentin. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. Influence of de/remineralization of enamel on the tensile bond strength of etch-and-rinse and self-etching adhesives.

    Science.gov (United States)

    Farias de Lacerda, Ana Julia; Ferreira Zanatta, Rayssa; Crispim, Bruna; Borges, Alessandra Bühler; Gomes Torres, Carlos Rocha; Tay, Franklin R; Pucci, Cesar Rogério

    2016-10-01

    To evaluate the bonding behavior of resin composite and different adhesives applied to demineralized or remineralized enamel. Bovine tooth crowns were polished to prepare a 5 mm2 enamel bonding area, and divided into five groups (n= 48) according to the surface treatment: CONT (sound enamel control), DEM (demineralized with acid to create white spot lesions), REMS (DEM remineralized with artificial saliva), REMF (DEM remineralized with sodium fluoride) and INF (DEM infiltrated with Icon resin infiltrant). The surface-treated teeth were divided into two subgroups (n= 24) according to adhesive type: ER (etch-and-rinse; Single Bond Universal) and SE (self-etching; Clearfill S3 Bond), and further subdivided into two categories (n= 12) according to aging process: Thermo (thermocycling) and NA (no aging). Composite blocks were made over bonded enamel and sectioned for microtensile bond strength (MTBS) testing. Data were analyzed with three-way ANOVA and post-hoc Tukey's test (α= 0.05). Significant differences were observed for enamel surface treatment (Padhesive type (PUniversal had higher MTBS than Clearfil S3 Bond; thermo-aging resulted in lower MTBS irrespective of adhesive type and surface treatment condition. The predominant failure mode was mixed for all groups. Enamel surface infiltrated with Icon does not interfere with adhesive resin bonding procedures. Treatment of enamel surface containing white spot lesions or cavities with cavosurface margins in partially-demineralized enamel can benefit from infiltration with a low viscosity resin infiltrant prior to adhesive bonding of resin composites.

  20. Tooth enamel surface micro-hardness with dual species Streptococcus biofilm after exposure to Java turmeric (Curcuma xanthorrhiza Roxb.) extract

    Science.gov (United States)

    Isjwara, F. R. G.; Hasanah, S. N.; Utami, Sri; Suniarti, D. F.

    2017-08-01

    Streptococcus biofilm on tooth surfaces can decrease mouth environment pH, thus causing enamel demineralization that can lead to dental caries. Java Turmeric extract has excellent antibacterial effects and can maintain S. mutans biofilm pH at neutral levels for 4 hours. To analyze the effect of Java Turmeric extract on tooth enamel micro-hardness, the Java Turmeric extract was added on enamel tooth samples with Streptococcus dual species biofilm (S. sanguinis and S. mutans). The micro-hardness of enamel was measured by Knoop Hardness Tester. Results showed that Curcuma xanthorrhiza Roxb. could not maintain tooth enamel surface micro-hardness. It is concluded that Java Turmeric extract ethanol could not inhibit the hardness of enamel with Streptococcus dual species biofilm.

  1. Thermophotonic lock-in imaging of early demineralized and carious lesions in human teeth

    Science.gov (United States)

    Tabatabaei, Nima; Mandelis, Andreas; Amaechi, Bennett Tochukwu

    2011-07-01

    As an extension of frequency-domain photothermal radiometry, a novel dental-imaging modality, thermophotonic lock-in imaging (TPLI), is introduced. This methodology uses photothermal wave principles and is capable of detecting early carious lesions and cracks on occlusal and approximal surfaces as well as early caries induced by artificial demineralizing solutions. The increased light scattering and absorption within early carious lesions increases the thermal-wave amplitude and shifts the thermal-wave centroid, producing contrast between the carious lesion and the intact enamel in both amplitude and phase images. Samples with artificial and natural occlusal and approximal caries were examined in this study. Thermophotonic effective detection depth is controlled by the modulation frequency according to the well-known concept of thermal diffusion length. TPLI phase images are emissivity normalized and therefore insensitive to the presence of stains. Amplitude images, on the other hand, provide integrated information from deeper enamel regions. It is concluded that the results of our noninvasive, noncontacting imaging methodology exhibit higher sensitivity to very early demineralization than dental radiographs and are in agreement with the destructive transverse microradiography mineral density profiles.

  2. The effect of theobromine 200 mg/l topical gel exposure duration against surface enamel hardness resistance from 1% citric acid

    Science.gov (United States)

    Herisa, H. M.; Noerdin, A.; Eriwati, Y. K.

    2017-08-01

    Theobromine can be used to prevent the demineralization of enamel and can stimulate the growth of new enamels. This study analyzes the effect of theobromine’s gel duration exposure on enamel hardness resistance from 1% citric acid. Twenty-eight specimens were divided into three experimental groups; were exposed to theobromine gel 200 mg/l for 16, 48, and 96 minutes; and were then immersed in 1% citric acid. The control group was only immersed in 1% citric acid. Results: A Wilcoxon test showed a significant increase and decrease in enamel microhardness after exposure to theobromine gel and citric acid (p enamel microhardness between different durations of exposure to theobromine gel and immersion in citric acid (p enamel microhardness but did not contribute to the enamel’s hardness resistance after immersion in 1% citric acid. The duration of theobromine gel application affected enamel microhardness and acid resistance.

  3. Effect of nano-hydroxyapatite concentration on remineralization of initial enamel lesion in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Huang, S B; Gao, S S; Yu, H Y, E-mail: yhyang6812@scu.edu.c [State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041 (China)

    2009-06-15

    The purpose of the research was to determine the effect of nano-hydroxyapatite concentrations on initial enamel lesions under dynamic pH-cycling conditions. Initial enamel lesions were prepared in bovine enamel with an acidic buffer. NaF (positive control), deionized water (negative control) and four different concentrations of nano-hydroxyapatite (1%, 5%, 10% and 15% wt%) were selected as the treatment agents. Surface microhardness (SMH) measurements were performed before/after demineralization and after 3, 6, 9 and 12 days of application, and the percentage surface microhardness recovery (%SMHR) was calculated. The specimens were then examined by a scanning electron microscope. The %SMHR in nano-hydroxyapatite groups was significantly greater than that of negative control. When the concentration of nano-HA was under 10%, SMH and %SMHR increased with increasing nano-hydroxyapatite concentrations. There were no significant differences between the 10% and 15% groups at different time periods in the pH-cycling. The SEM analysis showed that nano-hydroxyapatite particles were regularly deposited on the cellular structure of the demineralized enamel surface, which appeared to form new surface layers. It was concluded that nano-hydroxyapatite had the potential to remineralize initial enamel lesions. A concentration of 10% nano-hydroxyapatite may be optimal for remineralization of early enamel caries.

  4. Effect of nano-hydroxyapatite concentration on remineralization of initial enamel lesion in vitro

    International Nuclear Information System (INIS)

    Huang, S B; Gao, S S; Yu, H Y

    2009-01-01

    The purpose of the research was to determine the effect of nano-hydroxyapatite concentrations on initial enamel lesions under dynamic pH-cycling conditions. Initial enamel lesions were prepared in bovine enamel with an acidic buffer. NaF (positive control), deionized water (negative control) and four different concentrations of nano-hydroxyapatite (1%, 5%, 10% and 15% wt%) were selected as the treatment agents. Surface microhardness (SMH) measurements were performed before/after demineralization and after 3, 6, 9 and 12 days of application, and the percentage surface microhardness recovery (%SMHR) was calculated. The specimens were then examined by a scanning electron microscope. The %SMHR in nano-hydroxyapatite groups was significantly greater than that of negative control. When the concentration of nano-HA was under 10%, SMH and %SMHR increased with increasing nano-hydroxyapatite concentrations. There were no significant differences between the 10% and 15% groups at different time periods in the pH-cycling. The SEM analysis showed that nano-hydroxyapatite particles were regularly deposited on the cellular structure of the demineralized enamel surface, which appeared to form new surface layers. It was concluded that nano-hydroxyapatite had the potential to remineralize initial enamel lesions. A concentration of 10% nano-hydroxyapatite may be optimal for remineralization of early enamel caries.

  5. [Effects of tooth whitening agents and acidic drinks on the surface properties of dental enamel].

    Science.gov (United States)

    Chen, Xiaoling; Chen, Zhiqun; Lin, Yao; Shao, Jinquan; Yin, Lu

    2013-10-01

    Using tooth whitening agents (bleaching clip) in vitro and acidic drinks, we conducted a comparative study of the changes in enamel surface morphology, Ca/P content, and hardness. Tooth whitening glue pieces, cola, and orange juice were used to soak teeth in artificial saliva in vitro. Physiological saline was used as a control treatment. The morphology of the four groups was observed under a scanning electron microscope (SEM) immediately after the teeth were soaked for 7 and 14 d. The changes in Ca/P content and microhardness were analyzed. The enamel surfaces of the teeth in the three test groups were demineralized. The Ca/P ratio and the average microhardness were significantly lower than those of the control group immediately after the teeth were soaked (P 0.05). Bleaching agents caused transient demineralization of human enamel, but these agents could induce re-mineralization and repair of enamel over time. Demineralization caused by bleaching covered a relatively normal range compared with acidic drinks and daily drinking.

  6. Bond strength of etch-and-rinse and self-etch adhesive systems to enamel and dentin irradiated with a novel CO2 9.3 μm short-pulsed laser for dental restorative procedures.

    Science.gov (United States)

    Rechmann, Peter; Bartolome, N; Kinsel, R; Vaderhobli, R; Rechmann, B M T

    2017-12-01

    The objective of this study was to evaluate the influence of CO 2 9.3 μm short-pulsed laser irradiation on the shear bond strength of composite resin to enamel and dentin. Two hundred enamel and 210 dentin samples were irradiated with a 9.3 µm carbon dioxide laser (Solea, Convergent Dental, Inc., Natick, MA) with energies which either enhanced caries resistance or were effective for ablation. OptiBond Solo Plus [OptiBondTE] (Kerr Corporation, Orange, CA) and Peak Universal Bond light-cured adhesive [PeakTE] (Ultradent Products, South Jordan, UT) were used. In addition, Scotchbond Universal [ScotchbondSE] (3M ESPE, St. Paul, MN) and Peak SE self-etching primer with Peak Universal Bond light-cured adhesive [PeakSE] (Ultradent Products) were tested. Clearfil APX (Kuraray, New York, NY) was bonded to the samples. After 24 h, a single plane shear bond test was performed. Using the caries preventive setting on enamel resulted in increased shear bond strength for all bonding agents except for self-etch PeakSE. The highest overall bond strength was seen with PeakTE (41.29 ± 6.04 MPa). Etch-and-rinse systems achieved higher bond strength values to ablated enamel than the self-etch systems did. PeakTE showed the highest shear bond strength with 35.22 ± 4.40 MPa. OptiBondTE reached 93.8% of its control value. The self-etch system PeakSE presented significantly lower bond strength. The shear bond strength to dentin ranged between 19.15 ± 3.49 MPa for OptiBondTE and 43.94 ± 6.47 MPa for PeakSE. Etch-and-rinse systems had consistently higher bond strength to CO 2 9.3 µm laser-ablated enamel. Using the maximum recommended energy for dentin ablation, the self-etch system PeakSE reached the highest bond strength (43.9 ± 6.5 MPa).

  7. Enamel alteration following tooth bleaching and remineralization.

    Science.gov (United States)

    Coceska, Emilija; Gjorgievska, Elizabeta; Coleman, Nichola J; Gabric, Dragana; Slipper, Ian J; Stevanovic, Marija; Nicholson, John W

    2016-06-01

    The purpose of this study was to compare the effects of professional tooth whitening agents containing highly concentrated hydrogen peroxide (with and without laser activation), on the enamel surface; and the potential of four different toothpastes to remineralize any alterations. The study was performed on 50 human molars, divided in two groups: treated with Opalescence(®) Boost and Mirawhite(®) Laser Bleaching. Furthermore, each group was divided into five subgroups, a control one and 4 subgroups remineralized with: Mirasensitive(®) hap+, Mirawhite(®) Gelleѐ, GC Tooth Mousse™ and Mirafluor(®) C. The samples were analysed by SEM/3D-SEM-micrographs, SEM/EDX-qualitative analysis and SEM/EDX-semiquantitative analysis. The microphotographs show that both types of bleaching cause alterations: emphasized perikymata, erosions, loss of interprizmatic substance; the laser treatment is more aggressive and loss of integrity of the enamel is determined by shearing off the enamel rods. In all samples undergoing remineralization deposits were observed, those of toothpastes based on calcium phosphate technologies seem to merge with each other and cover almost the entire surface of the enamel. Loss of integrity and minerals were detected only in the line-scans of the sample remineralized with GC Tooth Mousse™. The semiquantitative EDX analysis of individual elements in the surface layer of the enamel indicates that during tooth-bleaching with HP statistically significant loss of Na and Mg occurs, whereas the bleaching in combination with a laser leads to statistically significant loss of Ca and P. The results undoubtedly confirm that teeth whitening procedures lead to enamel alterations. In this context, it must be noted that laser bleaching is more aggressive for dental substances. However, these changes are reversible and can be repaired by application of remineralization toothpastes. © 2015 The Authors Journal of Microscopy © 2015 Royal Microscopical Society.

  8. Enamel pretreatment with Er:YAG laser: effects on the microleakage of fissure sealant in fluorosed teeth

    Directory of Open Access Journals (Sweden)

    Mahtab Memarpour,

    2014-08-01

    Full Text Available Objectives The purpose of this in vitro study was to evaluate the microleakage and penetration of fissure sealant in permanent molar teeth with fluorosis after pretreatment of the occlusal surface. Materials and Methods A total of 120 third molars with mild dental fluorosis were randomly divided into 6 groups (n = 20. The tooth surfaces were sealed with an unfilled resin fissure sealant (FS material. The experimental groups included: 1 phosphoric acid etching (AE + FS (control; 2 AE + One-Step Plus (OS, Bisco + FS; 3 bur + AE + FS; 4 bur + AE + OS + FS; 5 Er:YAG laser + AE + FS; and 6 Er:YAG laser + AE + OS + FS. After thermocycling, the teeth were immersed in 0.5% fuchsin and sectioned. Proportions of mircoleakage (PM and unfilled area (PUA were measured by digital microscope. Results Overall, there were significant differences among all groups in the PM (p = 0.00. Group 3 showed the greatest PM, and was significantly different from groups 2 to 6 (p < 0.05. Group 6 showed the lowest PM. Pretreatment with Er:YAG with or without adhesive led to less PM than bur pretreatment. There were no significant differences among groups in PUA. Conclusions Conventional acid etching provided a similar degree of occlusal seal in teeth with fluorosis compared to those pretreated with a bur or Er:YAG laser. Pretreatment of pits and fissures with Er:YAG in teeth with fluorosis may be an alternative method before fissure sealant application.

  9. Amelogenin and Enamel Biomimetics

    Science.gov (United States)

    Ruan, Qichao; Moradian-Oldak, Janet

    2015-01-01

    Mature tooth enamel is acellular and does not regenerate itself. Developing technologies that rebuild tooth enamel and preserve tooth structure is therefore of great interest. Considering the importance of amelogenin protein in dental enamel formation, its ability to control apatite mineralization in vitro, and its potential to be applied in fabrication of future bio-inspired dental material this review focuses on two major subjects: amelogenin and enamel biomimetics. We review the most recent findings on amelogenin secondary and tertiary structural properties with a focus on its interactions with different targets including other enamel proteins, apatite mineral, and phospholipids. Following a brief overview of enamel hierarchical structure and its mechanical properties we will present the state-of-the-art strategies in the biomimetic reconstruction of human enamel. PMID:26251723

  10. Effect of different concentrations of fluoride varnish on enamel surface microhardness: An in vitro randomized controlled study

    Directory of Open Access Journals (Sweden)

    Priya Subramaniam

    2016-01-01

    Full Text Available Introduction: Dental caries occurs as a result of demineralization-remineralization phases occurring alternately at the tooth surface. Fluoride varnishes have a caries-inhibiting effect on teeth through remineralization. The resulting enamel is resistant to acid dissolution. Aim: The aim of this study is to assess enamel surface microhardness (SMH following varnish application with different fluoride concentrations. Materials and Methods: Ninety freshly extracted, caries-free premolar teeth were used. Teeth were sectioned to obtain enamel blocks from the buccal surface of crown. The blocks were serially polished and flattened, embedded in acrylic blocks and smoothened to achieve a flat surface. The samples were divided into three groups, namely, A, B, and C consisting of 30 enamel blocks each. In Group A, Fluor Protector® varnish and in Group B, Bi-Fluorid 10® varnish was applied. Group C served as controls. All samples were subjected to a demineralization-remineralization cycle for 7 days. The SMH of enamel was measured. Data obtained was subjected to statistical analysis using the Student's t-test and one-way ANOVA. Results: The mean values of enamel SMH of Groups A and B were 496.99 ± 4.81 and 449.47 ± 7.37 Vickers Hardness Number, respectively. Conclusion: Fluor Protector varnish showed significantly higher enamel SMH than that of the other two groups (P < 0.05.

  11. Evaluation of temperature variation in pulp chamber after high power diode laser irradiation ({lambda}=830 nm) on dental enamel: 'in vitro' study; Avaliacao da variacao da temperatura na camara pulpar apos a irradiacao de diodo laser de alta potencia de 830 nanometros em esmalte dental: estudo 'in vitro'

    Energy Technology Data Exchange (ETDEWEB)

    Macri, Rodrigo Teixeira

    2001-07-01

    The aim of this study was to observe the variation of temperature in the pulp chamber caused by irradiation of a commercial diode laser operating in continuous wave with wavelength 830 nm over the dental enamel. In the first part of this study, two types of tooth models were tested: 3,5 mm slice and whole tooth. In the second part, we irradiated the buccal si de of the enamel in 2 primary lower incisors from cattle with Opus 10 diode laser for 10 s with power levels of 1 W and 2 W, always using an absorber. Two thermocouples were used. The first one was inserted in the dentin wall closest to the irradiation site, while the second was inserted in the middle of the pulp chamber. It was observed that the thermocouples registered different temperatures. Always, the dentin thermocouple registered higher temperatures. Considering the dentin records, the irradiation of 1 W for 10 s can be safe for the pulp. Further studies must be developed related to the correct positioning of the thermocouples inside the pulp chamber. This was a first step of using diode laser in enamel, and in this study, we concluded that the Opus 10 diode laser shown to be safe for this use, with 1 W power for 10 S. (author)

  12. Effect of fluoridated varnish and silver diamine fluoride solution on enamel demineralization: pH-cycling study Efeito do verniz fluoretado e da solução de diamino fluoreto de prata na desmineralização do esmalte: estudo utilizando modelo de ciclagem de pH

    Directory of Open Access Journals (Sweden)

    Alberto Carlos Botazzo Delbem

    2006-04-01

    Full Text Available OBJECTIVE: In the present investigation, the anticariogenic effect of fluoride released by two products commonly applied in infants was evaluated. METHODS: Bovine sound enamel blocks were randomly allocated to each one of the treatment groups: control (C, varnish (V and diamine silver fluoride solution (D. The blocks were submitted to pH cycles in an oven at 37ºC. Next, surface and cross-sectional microhardness were assessed to calculate the percentage loss of surface microhardness (%SML and the mineral loss (deltaZ. The fluoride present in enamel was also determined. RESULTS: F/Px10-3 (ANOVA, pOBJETIVOS: Este trabalho avaliou o efeito anticariogênico do flúor liberado por dois produtos comumente aplicados em crianças. MÉTODOS: Para isto, utilizaram-se blocos de esmalte de dentes bovinos distribuídos aleatoriamente em três grupos de tratamento: controle (C, verniz fluoretado (V e solução de diamino fluoreto de prata (D. Os blocos foram submetidos à ciclagem de pH a 37ºC. Após, realizou-se o teste de microdureza de superfície (para o cálculo da % da perda de microdureza de superfície - %SML e em secção longitudinal do esmalte (% de alteração da área mineral - %deltaZ e a determinação do flúor presente no esmalte (F/P x 10-3. RESULTADOS: As concentrações de flúor (ANOVA, p<0,05 na 1ª camada do esmalte, antes da ciclagem de pH, foram (C, V e D: 1,6ª; 21,6b e 4,0c. Os resultados de %SML (Kruskal-Wallis, p<0.05 foram: -64,0ª, -45,2b e -53,1c. Os valores de %deltaZ (ANOVA, p<0.05 foram: -18,7ª, -7,7b e -17,3ª. CONCLUSÃO: Os dados sugerem que o flúor liberado pelo verniz apresentou maior interação com o esmalte promovendo menor perda mineral quando comparado à solução de diamino de prata.

  13. Measurement of Ca, Zn and Sr in enamel of human teeth by XRF

    Energy Technology Data Exchange (ETDEWEB)

    Wielopolski, L.; Featherstone, J.D.B.; Cohn, S.H.

    1984-01-01

    Energy dispersive x-ray fluorescence (EDXRF) has been employed to measure Ca, Zn, and Sr in enamel of human teeth. The calibration of the EDXRF system was performed by comparing Sr/Ca ratios with values obtained by atomic absorption analysis of acid etched biopsies of the enamel surface. Two calibration lines were obtained, one line for untreated teeth and the second line for teeth immersed (treated) in solutions containing Sr. A simple analytical model demonstrated that the two calibration lines were the result of the difference in the depth of the enamel sampled by EDXRF and by the acid-etched biopsy. The multi-elemental, non-destructive and quantitative aspects of EDXRF permit the sequential monitoring of the effects of Sr and Zn ions on the mineralization and demineralization processes in human enamel. The portability of the system and adaptability to non-invasive measurements makes it suitable for field studies. 26 references, 4 figures.

  14. Measurement of Ca, Zn and Sr in enamel of human teeth by XRF

    International Nuclear Information System (INIS)

    Wielopolski, L.; Featherstone, J.D.B.; Cohn, S.H.

    1984-01-01

    Energy dispersive x-ray fluorescence (EDXRF) has been employed to measure Ca, Zn, and Sr in enamel of human teeth. The calibration of the EDXRF system was performed by comparing Sr/Ca ratios with values obtained by atomic absorption analysis of acid etched biopsies of the enamel surface. Two calibration lines were obtained, one line for untreated teeth and the second line for teeth immersed (treated) in solutions containing Sr. A simple analytical model demonstrated that the two calibration lines were the result of the difference in the depth of the enamel sampled by EDXRF and by the acid-etched biopsy. The multi-elemental, non-destructive and quantitative aspects of EDXRF permit the sequential monitoring of the effects of Sr and Zn ions on the mineralization and demineralization processes in human enamel. The portability of the system and adaptability to non-invasive measurements makes it suitable for field studies. 26 references, 4 figures

  15. Measurement of Ca, Zn, and Sr in enamel of human teeth by XRF

    International Nuclear Information System (INIS)

    Wielopolski, L.; Featherstone, J.D.b.; Cohn, S.H.

    1984-01-01

    Energy dispersive x-ray fluorescence (EDXRF) has been employed to measure Ca, Zn, and Sr in enamel of human teeth. The calibration of the EDXRF system was performed by comparing Sr/Ca ratios with values obtained by atomic absorption analysis of acid etched biopsies of the enamel surface. Two calibration lines were obtained, one line for untreated teeth and the second line for teeth immersed (treated) in solutions containing Sr. A simple analytical model demonstrated that the two calibration lines were the result of the difference in the depth of the enamel sampled by EDXRF and by the acid-etched biopsy. The multi-elemental, non-destructive and quantitative aspects of EDXRF permit the sequential monitoring of the effects of Sr and Zn ions on the mineralization and demineralization processes in human enamel. The portability of the system and adaptability to non-invasive measurements makes it suitable for field studies. 26 references, 4 figures

  16. In vitro studies of morphological changes in enamel surface after Er:YAG and Nd:YAG laser irradiation, by SEM; Estudo in vitro do efeito do laser Nd:YAG e Er:YAG sobre o esmalte dental humano atraves de microscopia eletronica de varredura

    Energy Technology Data Exchange (ETDEWEB)

    Verlangieri, Eleonora Jaeger

    2001-07-01

    The caries prevention by using laser irradiation has been investigated by many authors using various lasers with different irradiations conditions. The purpose of this study was to investigated the morphological changes in enamel surface after Er:YAG and Nd:YAG laser irradiation, in vitro, by SEM. Fifteen freshly extracted, intact, caries-free, human third molars, were used in this study. The coronary portions were sectioned, from buccal to lingual direction, in two half-parts. Each one was irradiated by a different laser. The first one was irradiated with water-air spray, by a Nd:YAG laser, at 1.084 nm wave length, at 10 W, 10 Hz, 100 mJ for 60 sec., with an optical fiber in contact mode (0,32 mm of diameter); and the other half, with water-air spray by an Er:YAG laser at 2,94 micrometers wave length at the parameters of 4 Hz, 80 mJ, 24.95 J/cm{sup 2} for 60 sec. The results of this study suggested that both lasers promoted morphological changes in the enamel surface enhancing resistance and can be an alternative clinical method for caries preventions. (author)

  17. In vitro study of 960 nm high power diode laser applications in dental enamel, aided by the presence of a photoinitiator dye: scanning electron microscopy analysis; Estudo in vitro das aplicacoes do laser de diodo de alta potencia 960 nm em esmalte dentario, assistido por um fotoiniciador: analise de microscopia eletronica de varredura

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Marcelo Vinicius de

    2002-06-15

    The objective of this study is to verify if a high power diode laser can effectively modify the morphology of an enamel surface, and if this can be done in a controlled fashion by changing the lasers parameters. Previous studies using SEM demonstrated that through irradiation with Nd:YAG laser (1064 nm) it is possible to modify the morphology of the dental surface in such way as to increase its resistance against caries decays. The desired procedures that should achieve a decrease of the index of caries decays and of its sequels are on a primary level, which means that action is necessary before the disease installs itself. In this study it was used for the first time a prototype of a high power diode laser operating at 960 nm, produced by the Laboratory of Development of Lasers of the Center for Lasers and Applications of the IPEN. This equipment can present several advantages as reliability, reduced size and low cost. The aim was establish parameters of laser irradiation that produce the desired effects wanted in the enamel and protocols that guarantee its safety during application in dental hard tissues, protecting it of heating effects such as fissures and carbonization. (author)

  18. Effects of near infrared laser radiation associated with photoabsorbing cream in preventing white spot lesions around orthodontic brackets: an in vitro study.

    Science.gov (United States)

    Lacerda, Ângela Sueli Soares Braga; Hanashiro, Fernando Seishim; de Sant'Anna, Giselle Rodrigues; Steagall Júnior, Washington; Barbosa, Patrícia Silva; de Souza-Zaroni, Wanessa Christine

    2014-12-01

    The present study aims to investigate the effect of a low-power infrared laser on the inhibition of bovine enamel demineralization around orthodontic brackets. Near infrared lasers have been suggested as alternative approaches because they may produce an increase in resistance to dental caries. Forty-eight blocks of enamel obtained from bovine incisor teeth were divided into six groups: Group 1 (control), without treatment; Group 2 (C), photoabsorbing cream; Group 3 (CF), photoabsorbing cream with fluoride; Group 4 (L), irradiation with low-level infrared laser (λ=830 nm) at an energy density of 4.47 J/cm2; Group 5 (L+C), photoabsorbing cream followed by low-level infrared laser irradiation; and Group 6 (L+CF), photoabsorbing cream with fluoride followed by low-level infrared laser irradiation. After these procedures, the enamel blocks received an assortment of orthodontic brackets and were then submitted to pH cycling to simulate a highly cariogenic challenge. The enamel surface demineralization around the orthodontic brackets, according to the different treatments, was quantified by fluorescence loss analysis by quantitative light-induced fluorescence (QLF). The fluorescence loss, expressed as ΔF (percentage of loss fluorescence), was statistically examined by analysis of variance and the Tukey test. The control group (-10.48±2.85) was statistically similar to Group C (-14.52±7.80), which presented the lowest values of ΔF when compared with Groups FC (-3.67±3.21), L (-2.79±1.68), CL (-1.05±0:50), and CFL (-0.60±0:43). However, Groups FC, L, CL, and CFL showed no statistically significant differences among them. It can be concluded that both the low-level infrared laser and photoabsorbing cream with fluoride were effective in inhibiting the development of caries in enamel around orthodontic brackets, even in situations of high cariogenic challenge.

  19. Enamel alteration following tooth bleaching and remineralization

    OpenAIRE

    Coceska, Emilija; Gjorgievska, Elizabeta; Coleman, Nichola; Gabric, Dragana; Slipper, Ian J.; Stevanovic, Marija; Nicholson, John

    2015-01-01

    The purpose of this study was to compare the effects of professional tooth whitening agents containing highly concentrated hydrogen peroxide (with and without laser activation), on the enamel surface; and the potential of four different toothpastes to remineralize any alterations.\\ud \\ud The study was performed on 50 human molars, divided in two groups: treated with Opalescence® Boost and Mirawhite® Laser Bleaching. Furthermore, each group was divided into five subgroups, a control one and 4 ...

  20. Endocytosis and Enamel Formation

    Directory of Open Access Journals (Sweden)

    Cong-Dat Pham

    2017-07-01

    Full Text Available Enamel formation requires consecutive stages of development to achieve its characteristic extreme mineral hardness. Mineralization depends on the initial presence then removal of degraded enamel proteins from the matrix via endocytosis. The ameloblast membrane resides at the interface between matrix and cell. Enamel formation is controlled by ameloblasts that produce enamel in stages to build the enamel layer (secretory stage and to reach final mineralization (maturation stage. Each stage has specific functional requirements for the ameloblasts. Ameloblasts adopt different cell morphologies during each stage. Protein trafficking including the secretion and endocytosis of enamel proteins is a fundamental task in ameloblasts. The sites of internalization of enamel proteins on the ameloblast membrane are specific for every stage. In this review, an overview of endocytosis and trafficking of vesicles in ameloblasts is presented. The pathways for internalization and routing of vesicles are described. Endocytosis is proposed as a mechanism to remove debris of degraded enamel protein and to obtain feedback from the matrix on the status of the maturing enamel.

  1. Photoacoustic imaging of teeth for dentine imaging and enamel characterization

    Science.gov (United States)

    Periyasamy, Vijitha; Rangaraj, Mani; Pramanik, Manojit

    2018-02-01

    Early detection of dental caries, cracks and lesions is needed to prevent complicated root canal treatment and tooth extraction procedures. Resolution of clinically used x-ray imaging is low, hence optical imaging techniques such as optical coherence tomography, fluorescence imaging, and Raman imaging are widely experimented for imaging dental structures. Photoacoustic effect is used in photon induced photoacoustic streaming technique to debride the root canal. In this study, the extracted teeth were imaged using photoacoustic tomography system at 1064 nm. The degradation of enamel and dentine is an indicator of onset of dental caries. Photoacoustic microscopy (PAM) was used to study the tooth enamel. Images were acquired using acoustic resolution PAM system. This was done to identify microscopic cracks and dental lesion at different anatomical sites (crown and cementum). The PAM tooth profile is an indicator of calcium distribution which is essential for demineralization studies.

  2. Ultrastructure of the surface of dental enamel with molar incisor hypomineralization (MIH) with and without acid etching.

    Science.gov (United States)

    Bozal, Carola B; Kaplan, Andrea; Ortolani, Andrea; Cortese, Silvina G; Biondi, Ana M

    2015-01-01

    The aim of the present work was to analyze the ultrastructure and mineral composition of the surface of the enamel on a molar with MIH, with and without acid etching. A permanent tooth without clinical MIH lesions (control) and a tooth with clinical diagnosis of mild and moderate MIH, with indication for extraction, were processed with and without acid etching (H3PO4 37%, 20") for observation with scanning electron microscope (SEM) ZEISS (Supra 40) and mineral composition analysis with an EDS detector (Oxford Instruments). The control enamel showed normal prismatic surface and etching pattern. The clinically healthy enamel on the tooth with MIH revealed partial loss of prismatic pattern. The mild lesion was porous with occasional cracks. The moderate lesion was more porous, with larger cracks and many scales. The mineral composition of the affected surfaces had lower Ca and P content and higher O and C. On the tooth with MIH, even on normal looking enamel, the demineralization does not correspond to an etching pattern, and exhibits exposure of crystals with rods with rounded ends and less demineralization in the inter-prismatic spaces. Acid etching increased the presence of cracks and deep pores in the adamantine structure of the enamel with lesion. In moderate lesions, the mineral composition had higher content of Ca, P and Cl. Enamel with MIH, even on clinically intact adamantine surfaces, shows severe alterations in the ultrastructure and changes in ionic composition, which affect the acid etching pattern and may interfere with adhesion.

  3. AmF/NaF/SnCl2 solution reduces in situ enamel erosion – profilometry and cross-sectional nanoindentation analysis

    Directory of Open Access Journals (Sweden)

    Thayanne Monteiro RAMOS-OLIVEIRA

    2017-03-01

    Full Text Available Abstract This in situ study aimed to investigate the effect of a tin-containing fluoride solution in preventing enamel erosion. Also, its effects on the partly demineralized zone were assessed for the first time. Thirteen volunteers participated in this 2-phase study, wearing removable intra-oral appliances containing four sterilized bovine enamel slabs, for 8 days, where 2 treatment protocols were tested using samples in replicas (n = 13: CO - no treatment (negative control and FL - AmF/NaF/SnCl2 solution (500 ppm F-, 800 ppm Sn2+, pH = 4.5. Samples were daily exposed to an erosive challenge (0.65% citric acid, pH 3.6, 4 min, 2x/day. In the 2nd phase, volunteers switched to the other treatment protocol. Samples were evaluated for surface loss using a profilometer (n = 13 and a cross-sectional nanohardness (CSNH test (n = 13 was carried out in order to determine how deep the partly demineralized zone reaches below the erosive lesion. The data were statistically analyzed by two-way ANOVA. Erosive challenges lead to smaller enamel surface loss (p < 0.001 in the FL group when compared to group CO. Data from CSNH showed that there was no significant difference in demineralized enamel zone underneath erosion lesions between the groups. An amorphous layer could be observed on the surface of enamel treated with tin-containing solution alone. Under the experimental conditions of this in situ study, it can be concluded that AmF/NaF/SnCl2 solution prevents enamel surface loss but does not change the hardness of the partly demineralized zone near-surface enamel.

  4. Early diagnosis of teeth erosion using polarized laser speckle imaging

    Science.gov (United States)

    Nader, Christelle Abou; Pellen, Fabrice; Loutfi, Hadi; Mansour, Rassoul; Jeune, Bernard Le; Brun, Guy Le; Abboud, Marie

    2016-07-01

    Dental erosion starts with a chemical attack on dental tissue causing tooth demineralization, altering the tooth structure and making it more sensitive to mechanical erosion. Medical diagnosis of dental erosion is commonly achieved through a visual inspection by the dentist during dental checkups and is therefore highly dependent on the operator's experience. The detection of this disease at preliminary stages is important since, once the damage is done, cares become more complicated. We investigate the difference in light-scattering properties between healthy and eroded teeth. A change in light-scattering properties is observed and a transition from volume to surface backscattering is detected by means of polarized laser speckle imaging as teeth undergo acid etching, suggesting an increase in enamel surface roughness.

  5. Comparative study of etched enamel and dentin for the adhesion of composite resins with the Er:YAG 2,94 {mu}m laser and CO{sub 2} 9,6 {mu}m laser: morphological (SEM) and tensile bond strength analysis; Estudo comparativo do condicionamento do esmalte e dentina para a adesao de resinas compostas com os lasers Er:YAG 2,94 {mu}m e com o laser CO{sub 2} de 9,6 {mu}m: analise morfologica e de resistencia a tracao

    Energy Technology Data Exchange (ETDEWEB)

    Marraccini, Tarso Mugnai

    2002-07-01

    The aim of this study was to evaluate and compare the tensile bond strength of a composite resin adhered to the enamel and dentin which have received superficial irradiation with an Er:YAG laser (2.94 {mu}m) or with CO{sub 2} laser ( 9.6 {mu}m) and later on etched with the phosphoric acid at 35%. After the use of the adhesive system, resin cones were made on the etched surfaces by both lasers and tensile bond strength tests were performed. All samples were observed at the SEM - there was an increase of the degree of fusion and resolidification in the irradiated enamel and dentin samples with the CO{sub 2} laser (9.6 {mu}m), creating a vitrified layer with tiny craters. With the Er:YAG laser (2.94 {mu}m) there were typical morphological explosive microablation with the exposition of the tubules in the dentin.The surface acquired by the association of the CO{sub 2} laser ( 9.6 {mu}m) plus acid etching no longer presented the aspect of fusion being this layer completely removed. There were statistical significant differences among ali three methods of etching in the treatment of the enamel and dentin surface. The tensile bond strength test showed that etching of these enamel and dentin surfaces with acid exclusively (control group) presented great values, surpassing the values of the etching acquired with the Er:YAG laser (2.94 {mu}) plus acid or the CO{sub 2} laser (9.6 {mu}m) plus acid. With the parameters used in this experiment the Er:YAG laser (2.94 {mu}m) showed to be more effective than the CO{sub 2} laser (9.6 {mu}m) for the hard dental surfaces etching procedure. (author)

  6. Remineralization potential of nano-hydroxyapatite on enamel and cementum surrounding margin of computer-aided design and computer-aided manufacturing ceramic restoration

    Science.gov (United States)

    Juntavee, Niwut; Juntavee, Apa; Plongniras, Preeyarat

    2018-01-01

    Objective This study investigates the effects of nano-hydroxyapatite (NHA) gel and Clinpro (CP) on remineralization potential of enamel and cementum at the cavosurface area of computer-aided design and computer-aided manufacturing ceramic restoration. Materials and methods Thirty extracted human mandibular third molars were sectioned at 1 mm above and below the cemento–enamel junction to remove the cemento–enamel junction portions and replaced them with zirconia ceramic disks by bonding them to the crown and root portions with resin cement. The enamel and cementum with an area of 4×4 mm2 surrounding the ceramic disk was demineralized with carbopol. The demineralized surfaces were treated with either NHA or CP, while 1 group was left with no treatment. Vickers microhardness of enamel and cementum were determined before demineralization, after demineralization, and after remineralization. Analysis of variance and Tukey multiple comparisons were used to determine statistically significant differences at 95% level of confidence. Scanning electron microscopy and X-ray diffraction were used to evaluate for surface alterations. Results The mean ± SD of Vickers microhardness for before demineralization, after demineralization, and after remineralization for enamel and cementum were 377.37±22.99, 161.95±10.54, 161.70±5.92 and 60.37±3.81, 17.65±0.91, 17.04±1.00 for the no treatment group; 378.20±18.76, 160.72±8.38, 200.08±8.29 and 62.58±3.37, 18.38±1.33, 27.99±2.68 for the NHA groups; and 380.53±25.14, 161.94±5.66, 193.16±7.54 and 62.78±4.75, 19.07±1.30, 24.46±2.02 for the CP groups. Analysis of variance indicated significant increase in microhardness of demineralized enamel and cementum upon the application of either NHA or CP (pmanufacturing ceramic. PMID:29780246

  7. Microstructure and nanomechanical properties of enamel remineralized with asparagine-serine-serine peptide

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Hsiu-Ying, E-mail: hychung@mail.fcu.edu.tw; Li, Cheng Che

    2013-03-01

    A highly biocompatible peptide, triplet repeats of asparagine-serine-serine (3NSS) was designed to regulate mineral deposition from aqueous ions in saliva for the reconstruction of enamel lesions. Healthy human enamel was sectioned and acid demineralized to create lesions, then exposed to the 3NSS peptide solution, and finally immersed in artificial saliva for 24 h. The surface morphology and roughness were examined using scanning electron microscopy (SEM) and atomic force microscopy (AFM), respectively. X-ray diffraction (XRD) was used to identify the phases and crystallinity of the deposited minerals observed on the enamel surface. Attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR) was used to quantitatively analyze the mineral variation by calculating the relative integrated-area of characteristic bands. Nanohardness and elastic modulus measured by nanoindentation at various treatment stages were utilized to evaluate the degree of recovery. Biomimetic effects were accessed according to the degree of nanohardness recovery and the amount of hydroxyapatite deposition. The charged segments in the 3NSS peptide greatly attracted aqueous ions from artificial saliva to form hydroxyapatite crystals to fill enamel caries, in particular the interrod areas, resulting in a slight reduction in overall surface roughness. Additionally, the deposited hydroxyapatites were of a small crystalline size in the presence of the 3NSS peptide, which effectively restrained the plastic deformations and thus resulted in greater improvements in nanohardness and elastic modulus. The degree of nanohardness recovery was 5 times greater for remineralized enamel samples treated with the 3NSS peptide compared to samples without peptide treatment. - Highlights: Black-Right-Pointing-Pointer The degree of nanohardness recovery of enamel was 4 times greater with the aid of 3NSS peptide. Black-Right-Pointing-Pointer 3NSS peptide promoted the formation of hydroxyapatites with

  8. Microstructure and nanomechanical properties of enamel remineralized with asparagine–serine–serine peptide

    International Nuclear Information System (INIS)

    Chung, Hsiu-Ying; Li, Cheng Che

    2013-01-01

    A highly biocompatible peptide, triplet repeats of asparagine–serine–serine (3NSS) was designed to regulate mineral deposition from aqueous ions in saliva for the reconstruction of enamel lesions. Healthy human enamel was sectioned and acid demineralized to create lesions, then exposed to the 3NSS peptide solution, and finally immersed in artificial saliva for 24 h. The surface morphology and roughness were examined using scanning electron microscopy (SEM) and atomic force microscopy (AFM), respectively. X-ray diffraction (XRD) was used to identify the phases and crystallinity of the deposited minerals observed on the enamel surface. Attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR) was used to quantitatively analyze the mineral variation by calculating the relative integrated-area of characteristic bands. Nanohardness and elastic modulus measured by nanoindentation at various treatment stages were utilized to evaluate the degree of recovery. Biomimetic effects were accessed according to the degree of nanohardness recovery and the amount of hydroxyapatite deposition. The charged segments in the 3NSS peptide greatly attracted aqueous ions from artificial saliva to form hydroxyapatite crystals to fill enamel caries, in particular the interrod areas, resulting in a slight reduction in overall surface roughness. Additionally, the deposited hydroxyapatites were of a small crystalline size in the presence of the 3NSS peptide, which effectively restrained the plastic deformations and thus resulted in greater improvements in nanohardness and elastic modulus. The degree of nanohardness recovery was 5 times greater for remineralized enamel samples treated with the 3NSS peptide compared to samples without peptide treatment. - Highlights: ► The degree of nanohardness recovery of enamel was 4 times greater with the aid of 3NSS peptide. ► 3NSS peptide promoted the formation of hydroxyapatites with a smaller crystalline size (14 nm). ► 3NSS

  9. Effect of enamel organic matrix on the potential of Galla chinensis to promote the remineralization of initial enamel carious lesions in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Linglin; Zou Ling; Li Jiyao; Hao Yuqing; Xiao Liying; Zhou Xuedong; Li Wei, E-mail: leewei2000@sina.co, E-mail: zhll_sc@yahoo.c [State Key Laboratory of Oral Diseases, West China College of Stomatology, West China Hospital of Stomatology, Sichuan University, Chengdu (China)

    2009-06-15

    Galla chinensis, a natural traditional Chinese medicine with main composition of tannic acid and gallic acid, is formed when the Chinese sumac aphid Baker (Melaphis chinensis bell) parasitizes the levels of Rhus chinensis Mill. Galla chinensis has shown the potential to enhance the remineralization of initial enamel carious lesion, but the mechanism is still unknown. This study was to investigate whether the enamel organic matrix plays a significant role in the potential of Galla chinensis to promote the remineralization of initial enamel caries. Bovine sound enamel blocks and non-organic enamel blocks were demineralized and exposed to a 12 day pH cycling. During the pH cycling, 30 specimens with the enamel organic matrix were randomly divided into three groups, and treated with 1 g L{sup -1} NaF (group A), 4 g L{sup -1} Galla chinensis extract (group B1) or double deionized water (group C1). Twenty specimens without the enamel organic matrix were randomly divided into two groups, and treated with 4 g L{sup -1} Galla chinensis extract (group B2) or double deionized water (group C2). The integrated mineral loss and lesion depth of all the specimens were analysed by transverse microradiography. The integrated mineral loss and lesion depth of group B1 were less than those of groups B2, C1 and C2, and there were no statistical differences among groups B2, C1 and C2. In conclusion, Galla chinensis can enhance the remineralization of initial enamel carious lesion, and the enamel organic matrix plays a significant role in this potential of Galla chinensis.

  10. Steering the osteoclast through the demineralization-collagenolysis balance

    DEFF Research Database (Denmark)

    Søe, Kent; Merrild, Ditte Marie Horslev; Delaissé, Jean-Marie

    2013-01-01

    are generated when collagen degradation is slower than demineralization, and trenches when collagen degradation is as fast as demineralization. Next we treated the osteoclasts with a low dose of a carbonic anhydrase inhibitor to slightly decrease the rate of demineralization, thereby allowing collagen......, forming a pit, and continues parallel to the bone surface, forming a trench. Importantly, we show that the progress of the osteoclast along this route depends on the balance between the rate of collagenolysis and demineralization. We propose that the osteocytes and bone lining cells surrounding...... the osteoclast may act on this balance to steer the osteoclast resorptive activity in order to give the excavations a specific shape....

  11. Raman spectroscopy analysis of dental enamel treated with whitening product - Influence of saliva in the remineralization

    Science.gov (United States)

    Silveira, J.; Coutinho, S.; Marques, D.; Castro, J.; Mata, A.; Carvalho, M. L.; Pessanha, S.

    2018-06-01

    In this work we present the analysis of dental enamel treated with an over-the-counter whitening product, bought in e-commerce at a very low cost, used without medical supervision in an abusive manner, in order to evaluate its demineralization action. Moreover, we studied the influence of renewal or non-renewal of saliva solution in which the specimens were stored throughout the study. The Degree of Demineralization was determined through the evaluation of the PO43- symmetric stretching band ( 959 cm-1) in Raman spectra of the specimens in different days during the course of the study. Results showed that a maximum of demineralization occurred between days 27 and 34 of application. Titration of the whitening product revealed a content of hydrogen peroxide 170-fold higher than what is allowed in Europe, according with legislation. Despite this extreme concentration of hydrogen peroxide, the demineralization was not as great as could be expected suggesting an important role of the pH of the solution in this demineralization mechanism.

  12. Effects of different amine fluoride concentrations on enamel remineralization.

    Science.gov (United States)

    Naumova, E A; Niemann, N; Aretz, L; Arnold, W H

    2012-09-01

    The aim of this study was to investigate the effects of decreasing fluoride concentrations on repeated demineralizing challenges on human enamel. In 24 teeth, 3mm×3mm windows were prepared on the buccal and lingual sides and treated in a cycling demineralization-remineralization model. Remineralization was achieved with 100, 10 and 0.1 ppm fluoride from anime fluoride. Coronal sections were cut through the artificial lesions, and three sections per tooth were investigated using polarized light microscopy and scanning electron microscopy with quantitative element analysis. The morphology of the lesions was studied, and the extensions of the superficial layer and the body of the lesion were measured. Using element analysis, the Ca, P and F content were determined. The body of the lesion appeared remineralized after application of 100 ppm fluoride, while remineralization of the lesion was less successful after application of 10 and 0.1 ppm fluoride. The thickness of the superficial layer increased with decreasing fluoride concentrations, and also the extension of the body of the lesion increased. Ca and P content increased with increasing fluoride concentrations. The effectiveness of fluoride in enamel remineralization increased with increasing fluoride concentration. A consistently higher level of fluoride in saliva should be a goal in caries prevention. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. Análise química e morfológica do esmalte dentário humano tratado com laser argônio durante a colagem ortodôntica Chemical and morphological analysis of the human dental enamel treated with argon laser during orthodontic bonding

    Directory of Open Access Journals (Sweden)

    Glaucio Serra Guimarães

    2011-04-01

    Full Text Available INTRODUÇÃO: as principais utilizações do laser argônio na Ortodontia são a redução do tempo de polimerização durante a colagem ortodôntica e o aumento da resistência à cárie do esmalte dentário. OBJETIVO: o objetivo deste trabalho foi avaliar as alterações químicas e morfológicas do esmalte dentário humano tratado com laser argônio nos parâmetros da colagem ortodôntica. MÉTODOS: quinze primeiros pré-molares hígidos, extraídos por indicação ortodôntica, foram selecionados e seccionados no sentido do longo eixo em dois segmentos iguais. Uma metade de cada elemento dentário foi tratada e a outra permaneceu sem tratamento. Um total de 30 amostras foi analisado, criando o grupo laser (n = 15 e o grupo controle (n = 15. O tratamento foi feito com laser argônio com 250mW de potência por 5 segundos, com densidade de energia de 8J/cm². RESULTADOS: a análise de difração de raios X demonstrou duas fases em ambos os grupos, as fases apatita e monetita. A redução da fase monetita foi significativa após o tratamento com laser, sugerindo maior cristalinidade. A análise de Espectroscopia de Energia Dispersiva (EDS indicou aumento na razão cálcio-fósforo no grupo laser, compatível com a diminuição da fase monetita. A morfologia superficial do esmalte dentário apresentou-se mais lisa após o tratamento com laser argônio. CONCLUSÕES: o aumento de cristalinidade e a lisura superficial do esmalte no grupo laser são fatores sugestivos de aumento de resistência à cárie no esmalte dentário.INTRODUCTION: The main utilities of the argon laser in orthodontics are the high speed curing process in orthodontic bonding and the caries resistance promotion of the tooth enamel. OBJECTIVE: The objective of this study was to evaluate the chemical and morphological changes in the tooth enamel treated with the argon laser in the orthodontic bonding parameters. METHODS: Fifteen sound human first premolars, removed for orthodontic

  14. The in vitro effect of fluoridated milk in a bacterial biofilm--enamel model.

    Science.gov (United States)

    Arnold, Wolfgang H; Forer, Stefan; Heesen, Joerg; Yudovich, Keren; Steinberg, Doron; Gaengler, Peter

    2006-07-01

    The purpose of this study was to investigate the effect of milk and fluoridated milk on bacterially induced caries-like lesions. Extracted impacted human molars were cut in half and covered with a varnish leaving a 4*4 mm window. The samples were coated with biofilm of S. sobrinus and were further divided into three experimental groups of S. sobrinus, S. sobrinus and milk and S. sobrinus and fluoridated milk. As negative controls served teeth incubated in saline. Of twenty tooth halves serial ground sections were cut through the lesions and investigated with polarization light microscopy (PLM) and scanning electron microscopy (SEM) and EDX element analysis. The PLM photographs were used for 3D reconstruction, volumetric assessment and determination of the extension of the lesion zones. Of eight tooth halves the biofilm on the enamel surface was studied with SEM and EDX element analysis. Volumetric assessment showed a statistically significant difference in the volume of the body of the lesion and the translucent zone between the milk group and fluoridated milk group. Quantitative element analysis demonstrated significant differences between sound enamel and the superficial layer in the fluoridated milk group. The biofilm on the enamel surface showed an increased Ca content in the milk group and fluoridated milk group. Milk as a common nutrient seems to play a complex role in in-vitro biofilm--enamel interactions stimulating bacterial demineralization on one hand, and, as effective fluoride carrier, inhibits caries-like demineralization.

  15. Ultrastructural and immunocytochemical characterization of ameloblast-enamel adhesion at maturation stage in amelogenesis in Macaca fuscata tooth germ.

    Science.gov (United States)

    Sawada, Takashi

    2015-12-01

    Maturation-stage ameloblasts are firmly bound to the tooth enamel by a basal lamina-like structure. The mechanism underlying this adhesion, however, remains to be fully clarified. The goal of this study was to investigate the mechanism underlying adhesion between the basal lamina-like structure and the enamel in monkey tooth germ. High-resolution immunogold labeling was performed to localize amelotin and laminin 332 at the interface between ameloblasts and tooth enamel. Minute, electron-dense strands were observed on the enamel side of the lamina densa, extending into the degrading enamel matrix to produce a well-developed fibrous layer (lamina fibroreticularis). In un-demineralized tissue sections, mineral crystals smaller than those in the bulk of the enamel were observed adhering to these strands where they protruded into the surface enamel. Immunogold particles reactive for amelotin were preferentially localized on these strands in the fibrous layer. On the other hand, those for laminin 332 were localized solely in the lamina densa; none were observed in the fibrous layer. These results suggest that the fibrous layer of the basal lamina-like structure is partly composed of amelotin molecules, and that these molecules facilitate ameloblast-enamel adhesion by promoting mineralization of the fibrous layer during the maturation stage of amelogenesis.

  16. A comparative analysis of bleached and sound enamel structure through scanning electron microscopy and atomic force microscopy

    International Nuclear Information System (INIS)

    Saleem, A.; Kaleem, M.; Anwar, R.

    2015-01-01

    To analyze the effects of bleaching agent on enamel structure and to characterize the morphological and chemical changes in enamel due to bleaching. Study Design: Experimental study. Place and Duration of Study: School of Chemical and Material Engineering (SCME), NUST Islamabad from Feb to May 2013. Materials and Methods: Ten recently extracted pre molars between the 12-22 years age group were randomly assigned into two groups. Group one was a non-bleached control group with sound enamel. Group two was bleached with Everbrite In office tooth whitening system after specimen preparation, surface morphology was observed under SEM (scanned electron microscope) and AFM (Atomic force microscope). Results: The detrimental effects of hydrogen per-oxide on enamel were evident in bleached specimens under SEM, and AFM analysis. Conclusion: There were significant surface alterations found in the bleached specimens as compared to control group. However salivary buffering potentials could overcome the demineralizing effect of bleaching gel. (author)

  17. Protein- mediated enamel mineralization

    Science.gov (United States)

    Moradian-Oldak, Janet

    2012-01-01

    Enamel is a hard nanocomposite bioceramic with significant resilience that protects the mammalian tooth from external physical and chemical damages. The remarkable mechanical properties of enamel are associated with its hierarchical structural organization and its thorough connection with underlying dentin. This dynamic mineralizing system offers scientists a wealth of information that allows the study of basic principals of organic matrix-mediated biomineralization and can potentially be utilized in the fields of material science and engineering for development and design of biomimetic materials. This chapter will provide a brief overview of enamel hierarchical structure and properties as well as the process and stages of amelogenesis. Particular emphasis is given to current knowledge of extracellular matrix protein and proteinases, and the structural chemistry of the matrix components and their putative functions. The chapter will conclude by discussing the potential of enamel for regrowth. PMID:22652761

  18. Effects of enamel abrasion, salivary pellicle, and measurement angle on the optical assessment of dental erosion

    Science.gov (United States)

    Lussi, Adrian; Bossen, Anke; Höschele, Christoph; Beyeler, Barbara; Megert, Brigitte; Meier, Christoph; Rakhmatullina, Ekaterina

    2012-09-01

    The present study assessed the effects of abrasion, salivary proteins, and measurement angle on the quantification of early dental erosion by the analysis of reflection intensities from enamel. Enamel from 184 caries-free human molars was used for in vitro erosion in citric acid (pH 3.6). Abrasion of the eroded enamel resulted in a 6% to 14% increase in the specular reflection intensity compared to only eroded enamel, and the reflection increase depended on the erosion degree. Nevertheless, monitoring of early erosion by reflection analysis was possible even in the abraded eroded teeth. The presence of the salivary pellicle induced up to 22% higher reflection intensities due to the smoothing of the eroded enamel by the adhered proteins. However, this measurement artifact could be significantly minimized (pmeasurement angles from 45 to 60 deg did not improve the sensitivity of the analysis at late erosion stages. The applicability of the method for monitoring the remineralization of eroded enamel remained unclear in a demineralization/remineralization cycling model of early dental erosion in vitro.

  19. Remineralization of enamel subsurface lesions by chewing gum with added calcium.

    Science.gov (United States)

    Cai, Fan; Shen, Peiyan; Walker, Glenn D; Reynolds, Coralie; Yuan, Yi; Reynolds, Eric C

    2009-10-01

    Chewing sugar-free gum has been shown to promote enamel remineralization. Manufacturers are now adding calcium to the gum in an approach to further promote enamel remineralization. The aim of this study was to compare the remineralization efficacy of four sugar-free chewing gums, two containing added calcium, utilizing a double-blind, randomized, crossover in situ model. The sugar-free gums were: Trident Xtra Care, Orbit Professional, Orbit and Extra. Ten subjects wore removable palatal appliances with four human-enamel half-slab insets containing subsurface demineralized lesions. For four times a day for 14 consecutive days subjects chewed one of the chewing gums for 20min. After each treatment the enamel slabs were removed, paired with their respective demineralized control slabs, embedded, sectioned and mineral level determined by microradiography. After 1-week rest the subjects chewed another of the four gums and this was repeated until each subject had used the four gum products. Chewing with Trident Xtra Care resulted in significantly higher remineralization (20.67+/-1.05%) than chewing with Orbit Professional (12.43+/-0.64%), Orbit (9.27+/-0.59%) or Extra (9.32+/-0.35%). The form of added calcium in Trident Xtra Care was CPP-ACP and that in Orbit Professional calcium carbonate with added citric acid/citrate for increased calcium solubility. Although saliva analysis confirmed release of the citrate and calcium from the Orbit Professional gum the released calcium did not result in increased enamel remineralization over the normal sugar-free gums. These results highlight the importance of calcium ion bioavailability in the remineralization of enamel subsurface lesions in situ.

  20. Surface morphological changes on the human dental enamel and cement after the Er:YAG laser irradiation at different incidence angles; Avaliacao morfologica das superficies do esmalte e do cimento dental apos a irradiacao do laser de Er:YAG em diferentes angulacoes

    Energy Technology Data Exchange (ETDEWEB)

    Tannous, Jose Trancoso

    2001-07-01

    This is a morphological analysis study through SEM of the differences of the laser tissue interaction as a function of the laser beam irradiation angle, under different parameters of energy. Fourteen freshly extracted molars stored in a 0,9% sodium chloride solution were divided in seven pairs and were irradiated with 100, 200, 300, 400, 500, 600 and 700 mJ per pulse, respectively. Each sample received three enamel irradiations and three cement irradiations, either in the punctual or in the contact mode, one near to the other, with respectively 30, 45 and 90 inclinations degrees of dental surface-laser-beam incidence. Four Er:YAG pulses (2,94 {mu}m, 7-20 Hz, 0,1-1 J energy/pulse - Opus 20 - Opus Dent) with water cooling system (0,4 ml/s) were applied. After the laser irradiation the specimens were analysed through scanning electron microscope (SEM). The results were analysed by SEM micrographs showing a great difference on the laser tissue interaction characteristics as a function of the irradiation angle of the laser beam. All the observations led to conclude that, considering the laser parameters used, the incidence angle variation is a very important parameter regarding the desired morphological effects. This represents an extremely relevant detail on the technical description of the Er:YAG laser irradiation protocols on dental tissues. (author)

  1. The remineralization potential of cocoa (Theobroma cacao bean extract to increase the enamel micro hardness

    Directory of Open Access Journals (Sweden)

    Sulistianingsih Sulistianingsih

    2017-08-01

    Full Text Available Introduction: Remineralization is the process of returning mineral ions into a hydroxyapatite structure characterized by mineral deposition on the enamel surface. The presence of mineral deposition would affect the micro hardness of tooth enamel. The use of fluorine as remineralization agent with side effects such as fluorosis. Cocoa bean extract contains theobromin that can be used as an alternative remineralization ingredients. The objectives was to determine micro hardness email after remineralization using cocoa bean extract as natural material and to compare with fluorine use as synthetic material. Methods: Thirty-six maxillary first premolar tooth crown was cut and planted in the epoxy resin. Teeth were then immersed in demineralization solution at pH 4 for 6 hours. The sample were divided into 2 groups, 18 for the fluorine group and the remaining group of cocoa extract. Vickers microhardness test was used before treatment, after demineralized and after remineralization. Results: Enamel microhardness value before treatment in the fluorine group average value was 376.17 VHN and the cocoa extract group was 357.33 VHN. After demineralization in fluorine group was 268,13 VHN and cocoa extract group was 235,93 VHN. After remineralization in fluorine group was 321,08 VHN and cocoa extract group was 293,86 VHN. The results of the analysis showed that the level of micro hardness email after remineralization was not significantly different in two groups (p > 0.05. Conclusions: Cocoa extract is able to increase the microhardness of enamel so it can act as a substitution for fluorine remineralization.

  2. Attempt to assess the infiltration of enamel made with experimental preparation using a scanning electron microscope.

    Science.gov (United States)

    Skucha-Nowak, Małgorzata

    2015-01-01

    The resin infiltration technique, a minimally invasive method, involves the saturation, strengthening, and stabilization of demineralized enamel by a mixture of polymer resins without the need to use rotary tools or the risk of losing healthy tooth structures. To design and synthesize an experimental infiltrant with potential bacteriostatic properties.To compare the depth of infiltration of the designed experimental preparation with the infiltrant available in the market using a scanning electron microscope. Composition of the experimental infiltrant was established after analysis of 1H NMR spectra of the commercially available compounds that can penetrate pores of demineralized enamel. As the infiltrant should have bacteriostatic features by definition, an addition of 1% of monomer containing metronidazole was made. Thirty extracted human teeth were soaked in an acidic solution, which was to provide appropriate conditions for demineralization of enamel. Afterward, each tooth was divided along the coronal-root axis into two zones. One zone had experimental preparation applied to it (the test group), while the other had commercially available Icon (the control group). The teeth were dissected along the long axis and described above underwent initial observation with use of a Hitachi S-4200 scanning electron microscope. It was found that all samples contained only oxygen and carbon, regardless of the concentration of additions introduced into them. The occurrence of carbon is partially because it is a component of the preparation in question and partially because of sputtering of the sample with it. Hydrogen is also a component of the preparation, as a result of its phase composition; however, it cannot be detected by the EDS method. SEM, in combination with X-ray microanalysis, does not allow one to explicitly assess the depth of penetration of infiltration preparations into enamel.In order to assess the depth of penetration of infiltration preparations with use of

  3. Demineralization of drinking water: Is it prudent?

    Science.gov (United States)

    Verma, K C; Kushwaha, A S

    2014-10-01

    Water is the elixir of life. The requirement of water for very existence of life and preservation of health has driven man to devise methods for maintaining its purity and wholesomeness. The water can get contaminated, polluted and become a potential hazard to human health. Water in its purest form devoid of natural minerals can also be the other end of spectrum where health could be adversely affected. Limited availability of fresh water and increased requirements has led to an increased usage of personal, domestic and commercial methods of purification of water. Desalination of saline water where fresh water is in limited supply has led to development of the latest technology of reverse osmosis but is it going to be safe to use such demineralized water over a long duration needs to be debated and discussed.

  4. Optimal reduction of humus in demineralization

    International Nuclear Information System (INIS)

    Persson, F.

    1989-04-01

    To have an optimal reduction of organic substance and colloids in a demineralization plant the following ought to be observed. * At least two anion exchangers should be in series. The firs one being either a weak macroporous polystyrene anion exchanger or a weak polyacrylic anion exchanger. A third anion exchanger in series improves the reduction only marginally. * The leakage of organic substance and colloids increases rapidly at the same time or before the leakage of anions. The anion exchangers in a plant should therefore have a higher capacity than the cation exchangers. If the anion exchangers do not have a higher capacity than the cation exchangers only 90-95 % of the capacity shall be used. * The filtration rates have normally no influence of the reduction organic of substance. Sometime a low filtration rate gives a better reduction of colloids. * The content of organic substance in the water to the plants has a great effect on the capacity for ions. At high content of organic substance (20 mg KMnO 4 ) the capacity for ions can be reduced with 30-40 %. * Different technics for regenerations does not seem to have any influence on the reduction of organic substances and colloids. Neither age of the anion exchangers nor washing with solutions of sodium chloride seems to have any influence on the reduction. Age and organic contamination have mainly an influence on the capacity per regeneration. At all demineralization plants some organic substances and colloids leak through the plant, the quantities depending on the colloids. To remove this organic substances and colloids the ion exchangers must be completed with for instance flocculation or reverse osmosis. (L.E.)

  5. Clinical evaluation of remineralization potential of casein phosphopeptide amorphous calcium phosphate nanocomplexes for enamel decalcification in orthodontics.

    Science.gov (United States)

    Wang, Jun-xiang; Yan, Yan; Wang, Xiu-jing

    2012-11-01

    Enamel decalcification in orthodontics is a concern for dentists and methods to remineralize these lesions are the focus of intense research. The aim of this study was to evaluate the remineralizing effect of casein phosphopeptide amorphous calcium phosphate (CPP-ACP) nanocomplexes on enamel decalcification in orthodontics. Twenty orthodontic patients with decalcified enamel lesions during fixed orthodontic therapy were recruited to this study as test group and twenty orthodontic patients with the similar condition as control group. GC Tooth Mousse, the main component of which is CPP-ACP, was used by each patient of test group every night after tooth-brushing for six months. For control group, each patient was asked to brush teeth with toothpaste containing 1100 parts per million (ppm) of fluoride twice a day. Standardized intraoral images were taken for all patients and the extent of enamel decalcification was evaluated before and after treatment over this study period. Measurements were statistically compared by t test. After using CPP-ACP for six months, the enamel decalcification index (EDI) of all patients had decreased; the mean EDI before using CPP-ACP was 0.191 ± 0.025 and that after using CPP-ACP was 0.183 ± 0.023, the difference was significant (t = 5.169, P 0.05). CPP-ACP can effectively improve the demineralized enamel lesions during orthodontic treatment, so it has some remineralization potential for enamel decalcification in orthodontics.

  6. Kekerasan mikro enamel gigi permanen muda setelah aplikasi bahan pemutih gigi dan pasta remineralisasi (Enamel micro hardness of young permanent tooth after bleaching and remineralization paste application

    Directory of Open Access Journals (Sweden)

    Budianto Liwang

    2014-12-01

    Full Text Available Background: Studies showed that bleaching agent had demineralization effect to enamel, and encourage use of remineralization paste after bleaching treatment especially in young permanent tooth which in post-eruptive enamel maturation. Purpose: The study ere aimed to determine the bleaching agent effect on enamel surface micro hardness, and to determine the effect of remineralization paste application on enamel surface micro hardness of young permanent tooth after bleaching treatment. Methods: Fourteen young permanent teeth were placed in a block of resin with a window on the buccal surface enamel. The initial enamel surface hardness was measured using Microvickers Hardness Tester. Then the application of hydrogen peroxide bleaching materials 30% was done three times for 15 minutes and followed by surface hardness of enamel measurement. Samples were divided into 2 groups; the first group was applied paste of Hydroxy apatite + NaF 1450ppm , and the second group was applied paste of CPP–ACP + NaF 900ppm. Each paste was applied for 30 minutes for 7 days, then the enamel surface hardness of samples were measured. Results: The enamel surface micro hardness decreased after bleaching from 333.09 ± 10.49 VHN to 299.15±5.70 VHN. Micro hardness after application of Hidroxy apatite + NaF 1450ppm was 316.61±5.87 VHN and after application of CPP-ACP + NaF 900ppm was 319.94±3.25 VHN, however the micro hardness still lower than initial micro hardness. Conclusion: Tooth bleaching agent caused a decrease of enamel surface micro hardness in young permanent tooth. The use of remineralization paste enabled to increase the enamel surface micro hardness young permanent tooth.Latar belakang: Penelitian-penelitian sebelumnya menunjukkan bahwa produk pemutih gigi memiliki efek demineralisasi enamel gigi, dan mendorong penggunaan pasta remineralisasi setelah pemutihan gigi terutama di gigi muda permanen yang enamelnya masih dalam proses maturasi pasca-erupsi. Tujuan

  7. Hardness of enamel exposed to Coca-Cola and artificial saliva.

    Science.gov (United States)

    Devlin, H; Bassiouny, M A; Boston, D

    2006-01-01

    The purpose of this study was to determine the rate of change in indentation hardness of enamel in permanent teeth exposed to Coca-Cola. In a further experiment, the ability of a commercially available artificial saliva to remineralize enamel treated with Coca-Cola was tested. Ten enamel specimens were randomly chosen to be treated with Coca-Cola (experimental groups) and seven with water (control group). The fluids were applied for 1, 2, 3 h and overnight (15 h), washed off with a few drops of water and the moist enamel indentation hardness tested after each interval. With Coca-Cola treatment, the mean enamel hardness was 92.6% (s.d. = 7.9) of the original baseline hardness after 1 h, 93.25% (s.d. = 10.15) after 2 h, 85.7% (s.d. = 12.03) after 3 h and 80.3% after 15 h. The mean indentation hardness of control specimens treated with water was 108.7% (s.d. = 16.09) of the original hardness after 1 h, 99.09% (s.d. = 18.98) after 2 h, 98.97% (s.d. =11.24) after 3 h and 98.42% (s.d. = 22.78) after 15 h. In a separate experiment, the hardness of 9 enamel specimens was tested, as previously described, before and after treatment with Coca-Cola overnight and again after application of artificial saliva for 3 min. Coca-Cola reduced the mean indentation hardness of enamel in the teeth, but the hardness was partially restored with artificial saliva (Salivart) and increased by 18% from the demineralized enamel hardness.

  8. Influence of Pre-etching Times on Fatigue Strength of Self-etch Adhesives to Enamel.

    Science.gov (United States)

    Takamizawa, Toshiki; Barkmeier, Wayne W; Tsujimoto, Akimasa; Endo, Hajime; Tsuchiya, Kenji; Erickson, Robert L; Latta, Mark A; Miyazaki, Masashi

    To use shear bond strength (SBS) and shear fatigue strength (SFS) testing to determine the influence of phosphoric acid pre-etching times prior to application of self-etch adhesives on enamel bonding. Two single-step self-etch universal adhesives (Prime&Bond Elect and Scotchbond Universal), a conventional single-step self-etch adhesive (G-ӕnial Bond), and a conventional two-step self-etch adhesive (OptiBond XTR) were used. The SBS and SFS were obtained with phosphoric acid pre-etching for 3, 10, or 15 s prior to application of the adhesives, and without pre-etching (0 s) as a control. A staircase method was used to determine the SFS with 10 Hz frequency for 50,000 cycles or until failure occurred. The mean demineralization depth for each treated enamel surface was also measured using a profilometer. For all the adhesives, the groups with pre-etching showed significantly higher SBS and SFS than groups without pre-etching. However, there was no significant difference in SBS and SFS among groups with > 3 s of preetching. In addition, although the groups with pre-etching showed significantly deeper demineralization depths than groups without pre-etching, there was no significant difference in depth among groups with > 3 s of pre-etching. Three seconds of phosphoric acid pre-etching prior to application of self-etch adhesive can enhance enamel bonding effectiveness.

  9. Residual energy deposition in dental enamel during IR laser ablation at 2.79, 2.94, 9.6, and 10.6 μm

    Science.gov (United States)

    Ragadio, Jerome N.; Lee, Christian K.; Fried, Daniel

    2000-03-01

    The objective of this study was to measure the residual heat deposition during laser ablation at those IR laser wavelengths best suited for the removal of dental caries. The principal factor limiting the rate of laser ablation of dental hard tissue is the risk of excessive heat accumulation in the tooth, which has the potential for causing damage to the pulp. Optimal laser ablation systems minimize the residual energy deposition in the tooth by transferring deposited laser energy to kinetic and internal energy of ejected tissue components. The residual heat deposition in the tooth was measured at laser wavelengths of 2.79, 2.94, 9.6 and 10.6 micrometer and pulse widths of 150 ns - 150 microsecond(s) . The residual energy was at a minimum for fluences well above the ablation threshold where it saturates at values from 25 - 70% depending on pulse duration and wavelength for the systems investigated. The lowest values of the residual energy were measured for short (less than 20 microseconds) CO2 laser pulses at 9.6 micrometer and for Q-switched erbium laser pulses. This work was supported by NIH/NIDCR R29DE12091 and the Center for Laser Applications in Medicine, DOE DEFG0398ER62576.

  10. Correlation between enamel morphological and dental pulp physiological outcomes as a function of lasing parameters

    Science.gov (United States)

    Arcoria, Charles J.; Wagner, Martin J.; Vitasek, Bunny A.

    1992-06-01

    Previous oral medicine research has insufficiently quantified and correlated laser effects on calcified/soft-tissue combinations. The purpose of this study was to explain lasing effects on outcome variables (pulp response and enamel condition). Vital animal molars were irradiated using several mediums, with predetermined energy densities serving as independent variables. Predetermined safe-tissue thresholds, including pulp/enamel conditions, can be demonstrated to display linear relationships using several laser systems.

  11. The influence of different factors on in vitro enamel erosion.

    Science.gov (United States)

    Lussi, A; Jäggi, T; Schärer, S

    1993-01-01

    The aim of this study was to use two demineralization test methods to analyze the erosive potential of beverages and foodstuffs. In addition, the surface microhardness test and the iodide permeability test were compared. Surface microhardness and iodide permeability were measured before and after exposure. To characterize the beverages and foodstuffs the content of phosphate, calcium and fluoride, pH, the titrable amount of base to pH 5.5 and 7.0 as well as the buffer capacity at pH 5.5 were determined. Sprite light showed the highest significant decrease in surface microhardness (p acidity, pH values, phosphate and fluoride contents as well as the baseline surface microhardness or iodide permeability values of the exposed enamel.

  12. Enamel formation and amelogenesis imperfecta.

    Science.gov (United States)

    Hu, Jan C-C; Chun, Yong-Hee P; Al Hazzazzi, Turki; Simmer, James P

    2007-01-01

    Dental enamel is the epithelial-derived hard tissue covering the crowns of teeth. It is the most highly mineralized and hardest tissue in the body. Dental enamel is acellular and has no physiological means of repair outside of the protective and remineralization potential provided by saliva. Enamel is comprised of highly organized hydroxyapatite crystals that form in a defined extracellular space, the contents of which are supplied and regulated by ameloblasts. The entire process is under genetic instruction. The genetic control of amelogenesis is poorly understood, but requires the activities of multiple components that are uniquely important for dental enamel formation. Amelogenesis imperfecta (AI) is a collective designation for the variety of inherited conditions displaying isolated enamel malformations, but the designation is also used to indicate the presence of an enamel phenotype in syndromes. Recently, genetic studies have demonstrated the importance of genes encoding enamel matrix proteins in the etiology of isolated AI. Here we review the essential elements of dental enamel formation and the results of genetic analyses that have identified disease-causing mutations in genes encoding enamel matrix proteins. In addition, we provide a fresh perspective on the roles matrix proteins play in catalyzing the biomineralization of dental enamel. Copyright 2007 S. Karger AG, Basel.

  13. Effects of blue light irradiation on dental enamel remineralization in vitro

    International Nuclear Information System (INIS)

    Kato, Ilka Tiemy

    2009-01-01

    This study aimed to investigate the effects of blue radiation on dental enamel remineralization. In addition, a methodology of analysis was developed to evaluate alterations of enamel mineral content by optical coherence tomography. Artificial lesions were formed in bovine dental enamel slabs by immersing the samples in under saturated acetate buffer (2 mL/mm 2 e 6.25 mL/mm 2 ). The lesions were irradiated with blue LED (l=455±20nm), with radiant power of 110 mW, irradiance of 1.4 W/cm 2 , radiant exposure of 13.8 J/ c m2 and exposure time of 10 s. Remineralization was induced by pH-cycling model during 8 days. Cross-sectional hardness and optical coherence tomography (OCT) were used to assess mineral changes after remineralization. Hardness data showed that non-irradiated enamel lesions presented higher mineral content than irradiated ones and this difference was more evident in lesions formed in higher solution volume. The analysis of OCT signal also demonstrated that the mineral content of non-irradiated group was higher than in irradiated one; however, no significant difference was observed. Furthermore, significant differences in OCT sign were detected between sound and demineralized enamel. Based on the results obtained in the present study it can be concluded that blue radiation caused an inhibition of enamel remineralization. The methodology adopted for OCT analysis allowed the quantification of enamel mineral loss; however, the remineralization process could not be evaluated by this technique. (author)

  14. Acids with an equivalent taste lead to different erosion of human dental enamel.

    Science.gov (United States)

    Beyer, Markus; Reichert, Jörg; Bossert, Jörg; Sigusch, Bernd W; Watts, David C; Jandt, Klaus D

    2011-10-01

    The consumption of acidic soft drinks may lead to demineralization and softening of human dental enamel, known as dental erosion. The aims of this in vitro study were to determine: (i) if different acids with a similar sensorial acidic taste lead to different hardness loss of enamel and (ii) if the fruit acids tartaric, malic, lactic or ascorbic acid lead to less hardness loss of enamel than citric or phosphoric acid when their concentration in solution is based on an equivalent sensorial acidic taste. Enamel samples of non-erupted human third molars were treated with acidic solutions of tartaric (TA), malic (MA), lactic (LA), ascorbic (AA), phosphoric (PA) and citric (CA) acids with a concentration that gave an equivalent sensorial acidic taste. The acidic solutions were characterized by pH value and titratable acidity. Atomic force microscopy (AFM) based nanoindentation was used to study the nano mechanical properties and scanning electron microscopy (SEM) was used to study the morphology of the treated enamel samples and the untreated control areas, respectively. The investigated acids fell into two groups. The nano hardnesses of MA, TA and CA treated enamel samples (group I) were statistically significantly greater (penamel samples (group II). Within each group the nano hardness was not statistically significantly different (p>0.05). The SEM micrographs showed different etch prism morphologies depending on the acid used. In vitro, the acids investigated led to different erosion effects on human dental enamel, despite their equivalent sensorial acidic taste. This has not been reported previously. Copyright © 2011 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  15. 激光在口腔正畸临床应用中的进展%Development of laser applications in orthodontics

    Institute of Scientific and Technical Information of China (English)

    陈静; 黄晓峰

    2017-01-01

    In recent years,lasers which are applied in dental clinics have attracted certain concern among orthodontists.Great progress has been recorded in the laser applications in orthodontics,such as the prevention of enamel demineralization,soft tissue treatment,pain relief,enamel etching,removal of bracket binder,and promoting tooth movement.This review presents an overview of the laser applications at home and abroad.%近年来,激光逐渐被正畸医生和学者们关注,并应用于正畸领域中.在预防釉质脱矿、软组织处理、缓解疼痛、釉质蚀刻、去除托槽粘接剂、促进牙齿移动等方面,激光的正畸应用已经有了巨大的进步.本文就近年来国内外关于激光的应用作一综述.

  16. ROC analysis of acid demineralized artificial caries

    International Nuclear Information System (INIS)

    Kang, Byung Cheol

    1997-01-01

    This study is designed to determine the artificial incipient proximal caries lesion detectability by dentists on Ektaspeed Plus film using ROC analysis. Sixteen premolars and 30 molars, which have 52 proximal caries-like demineralized lesions using acid-gel technique were added to 20 sound premolars and 30 sound molars to make 24 plaster blocks. Each block with 4 teeth and 6 contacting proximal surfaces was placed in an optical bench to take 12 bitewing radiographs with Ektaspeed Plus film. Thirty-six dentists acted as observers to evaluated the proximal lesions using five rating scales for ROC analysis. They were also asked to determine the presence or absence of the proximal caries. The true status of the proximal caries was established by the consensus of three oral and maxillofacila radiologists. For evaluation of intra-observer agreement, 9 dentist reread the radiographs at an interval of 1 month. The Pearson correlation coefficient for the intra-observer agreement was 0.746 (good agreement). Ten observer's data set were degenerated. The mean area under ROC curve from 26 observers was 0.806 and standard deviation was 0.061. The sensitivity and the specificity of the binary response were 0.17 (SD=0.11) and 0.78 (SD=0.17) respectively. The binary response only reveal a single values of sensitivity and the specificity. The ROC analysis to assess the diagnostic accuracy in caries detection, which producing estimates of sensitivities for all specifities, yield more comprehensive measures of diagnostic performance than single values for sensitivity and specificity.

  17. Biofilm three-dimensional architecture influences in situ pH distribution pattern on the human enamel surface.

    Science.gov (United States)

    Xiao, Jin; Hara, Anderson T; Kim, Dongyeop; Zero, Domenick T; Koo, Hyun; Hwang, Geelsu

    2017-06-01

    To investigate how the biofilm three-dimensional (3D) architecture influences in situ pH distribution patterns on the enamel surface. Biofilms were formed on human tooth enamel in the presence of 1% sucrose or 0.5% glucose plus 0.5% fructose. At specific time points, biofilms were exposed to a neutral pH buffer to mimic the buffering of saliva and subsequently pulsed with 1% glucose to induce re-acidification. Simultaneous 3D pH mapping and architecture of intact biofilms was performed using two-photon confocal microscopy. The enamel surface and mineral content characteristics were examined successively via optical profilometry and microradiography analyses. Sucrose-mediated biofilm formation created spatial heterogeneities manifested by complex networks of bacterial clusters (microcolonies). Acidic regions (pHinterior of microcolonies, which impedes rapid neutralization (taking more than 120 min for neutralization). Glucose exposure rapidly re-created the acidic niches, indicating formation of diffusion barriers associated with microcolonies structure. Enamel demineralization (white spots), rougher surface, deeper lesion and more mineral loss appeared to be associated with the localization of these bacterial clusters at the biofilm-enamel interface. Similar 3D architecture was observed in plaque-biofilms formed in vivo in the presence of sucrose. The formation of complex 3D architectures creates spatially heterogeneous acidic microenvironments in close proximity of enamel surface, which might correlate with the localized pattern of the onset of carious lesions (white spot like) on teeth.

  18. TiF4 varnish protects the retention of brackets to enamel after in vitro mild erosive challenge.

    Science.gov (United States)

    Medeiros, Maria Isabel Dantas de; Carlo, Hugo Lemes; Santos, Rogério Lacerda Dos; Sousa, Frederico Barbosa; Castro, Ricardo Dias de; França, Renata Cristina Sobreira; Carvalho, Fabíola Galbiatti de

    2018-05-14

    The effect of fluoride agents on the retention of orthodontic brackets to enamel under erosive challenge is little investigated. The aim of this study was to evaluate the effect of titanium tetrafluoride (TiF4) and sodium fluoride (NaF) agents on the shear bond strength of brackets to enamel and on the enamel microhardness around brackets under erosive challenge. Brackets were bonded to bovine incisors. Five groups were formed according to fluoride application (n=10): TiF4 varnish, TiF4 solution, NaF varnish, NaF solution and control (without application). The specimens were submitted to erosive challenge (90 s cola drink/2h artificial saliva, 4x per day for 7 days). Solutions were applied before each erosive cycle and varnishes were applied once. Vickers Microhardness (VHN) was obtained before and after all cycles of erosion and the percentage of microhardness loss was calculated. Shear bond strength, adhesive remnant index and polarized light microscopy were conducted after erosion. The data were analyzed by ANOVA, Tukey, Kruskal-Wallis and Mann-Whitney U tests (α=0.05). The %VHN had no statistically significant differences among the experimental groups. However, considering the comparisons of all groups with the control group, TiF4 varnish showed the highest protection from enamel demineralization (effect size of 2.94, while the effect size for the other groups was >2.4). The TiF4 varnish group had significantly higher shear bond strength compared to other groups. There was no difference among groups for adhesive remnant index. Polarized light microscopy showed higher demineralization depth for the control group. Application of NaF and TiF4 agents during mild erosive challenge minimized the enamel mineral loss around brackets, however only the experimental TiF4 varnish was able to prevent the reduction of shear bond strength of brackets to enamel.

  19. Laser Teeth Bleaching: Evaluation of Eventual Side Effects on Enamel and the Pulp and the Efficiency In Vitro and In Vivo

    Science.gov (United States)

    De Moor, Roeland Jozef Gentil; Meire, Maarten August; De Coster, Peter Jozef

    2015-01-01

    Light and heat increase the reactivity of hydrogen peroxide. There is no evidence that light activation (power bleaching with high-intensity light) results in a more effective bleaching with a longer lasting effect with high concentrated hydrogen peroxide bleaching gels. Laser light differs from conventional light as it requires a laser-target interaction. The interaction takes place in the first instance in the bleaching gel. The second interaction has to be induced in the tooth, more specifically in the dentine. There is evidence that interaction exists with the bleaching gel: photothermal, photocatalytical, and photochemical interactions are described. The reactivity of the gel is increased by adding photocatalyst of photosensitizers. Direct and effective photobleaching, that is, a direct interaction with the colour molecules in the dentine, however, is only possible with the argon (488 and 415 nm) and KTP laser (532 nm). A number of risks have been described such as heat generation. Nd:YAG and especially high power diode lasers present a risk with intrapulpal temperature elevation up to 22°C. Hypersensitivity is regularly encountered, being it of temporary occurrence except for a number of diode wavelengths and the Nd:YAG. The tooth surface remains intact after laser bleaching. At present, KTP laser is the most efficient dental bleaching wavelength. PMID:25874258

  20. Bone protein extraction without demineralization using principles from hydroxyapatite chromatography.

    Science.gov (United States)

    Cleland, Timothy P; Vashishth, Deepak

    2015-03-01

    Historically, extraction of bone proteins has relied on the use of demineralization to better retrieve proteins from the extracellular matrix; however, demineralization can be a slow process that restricts subsequent analysis of the samples. Here, we developed a novel protein extraction method that does not use demineralization but instead uses a methodology from hydroxyapatite chromatography where high concentrations of ammonium phosphate and ammonium bicarbonate are used to extract bone proteins. We report that this method has a higher yield than those with previously published small-scale extant bone extractions, with and without demineralization. Furthermore, after digestion with trypsin and subsequent high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) analysis, we were able to detect several extracellular matrix and vascular proteins in addition to collagen I and osteocalcin. Our new method has the potential to isolate proteins within a short period (4h) and provide information about bone proteins that may be lost during demineralization or with the use of denaturing agents. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. Cost and radiation exposure optimization of demineralizer operation

    International Nuclear Information System (INIS)

    Bernal, F.E.; Burn, R.R.; Cook, G.M.; Simonetti, L.; Simpson, P.A.

    1985-01-01

    A pool water demineralizer is utilized at a research reactor to minimize impurities that become radioactive; to minimize impurities that react chemically with reactor components; to maintain optical clarity of the pool water; and to minimize aluminum fuel cladding corrosion by maintaining a slightly acidic pH. Balanced against these advantages are the dollar costs of equipment, resins, recharging chemicals, and maintenance; the man-rem costs of radiation exposure during maintenance, demineralizer recharges, and resin replacement; and hazardous chemical exposure. At the Ford Nuclear Reactor (FNR), maintenance of the demineralizer system is the second largest source of radiation exposure to operators. Theoretical and practical aspects of demineralizer operation are discussed. The most obvious way to reduce radiation exposure due to demineralizer system operation is to perform recharges after the reactor has been shut down for the maximum possible time. Setting a higher depletion limit and operating with the optimum system lineup reduce the frequency between recharges, saving both exposure and cost. Recharge frequency and resin lifetime seem to be relatively independent of the quality of the chemicals used and the personnel performing recharges, provided consistent procedures are followed

  2. Hipoplasia Enamel Pada Penderita Penyakit Eksantema

    OpenAIRE

    Dewi saputri

    2008-01-01

    Hipoplasia enamel merupakan gangguan pada masa pemhentukan matriks organik yang menyebabkan gangguan struktur pada enamel sehingga secara klinis terlihat pada suatu bagian dari gigi tidak terbentuk enamel dan kadang-kadang sama sekali tidak terbentuk enamel, serta diikuti dengan perubahan warna pada gigi. Dikenal berbagai faktor penyebab hipoplasia enamel, salah satunya adalah penyakit eksantema yaitu menyebabkan infeksi pada bayi dan anak-anak. Gambaran histopatologis hipoplasia enamel adala...

  3. Fluorine uptake into the human enamel surface from fluoride-containing sealing materials during cariogenic pH cycling

    Science.gov (United States)

    Yasuhiro, Matsuda; Katsushi, Okuyama; Hiroko, Yamamoto; Hisanori, Komatsu; Masashi, Koka; Takahiro, Sato; Naoki, Hashimoto; Saiko, Oki; Chiharu, Kawamoto; Hidehiko, Sano

    2015-04-01

    To prevent the formation of caries and reduce dentin hypersensitivity, sealing materials, either with or without fluoride, are generally applied on the tooth in clinical practice. Application of fluoride-free sealing materials results in the formation of an acid-resistant layer on the tooth surface. On the other hand, fluoride-containing sealing materials might not only form an acid-resistant layer but could possibly further provide fluoride to enhance remineralization and reduce demineralization. In this study, the demineralization prevention ability and fluorine uptake rate in human enamel of fluoride-containing sealing materials ["MS coats F" (MSF)] and fluoride-free sealing materials ("hybrid coats 2" [HI]) were evaluated using an automatic pH cycling system. Each material was applied to the original tooth surface, the cut surfaces were covered with sticky wax, and the automatic pH-cycling system simulated daily acid changes (pH 6.8-4.5) occurring in the oral cavity for 4 weeks. Caries progression was analyzed using transverse microradiography (TMR) taken pre and post the 4 weeks of pH cycling. The fluorine and calcium distributions in the carious lesion in each specimen were evaluated using the proton-induced gamma emission (PIGE) and proton-induced X-ray (PIXE) techniques, respectively. TMR analysis showed that both MSF and HI had a caries-preventing effect after 4 weeks of pH cycling. PIGE/PIXE analysis demonstrated that only MSF resulted in fluoride uptake in the enamel surface. Therefore, MSF can help to form an acid-resistant layer and provide fluoride to the enamel surface. The presence of fluoride on the enamel surface suggested that MSF could prevent demineralization, even if the acid-resistant layer was removed, in clinical settings. The data obtained using the PIGE and PIXE techniques are useful for understanding the benefits of the use of a fluoride-containing sealing material for preventing caries.

  4. Zymography of Hybrid Layers Created Using Extrafibrillar Demineralization.

    Science.gov (United States)

    Gu, L; Mazzoni, A; Gou, Y; Pucci, C; Breschi, L; Pashley, D H; Niu, L; Tay, F R

    2018-04-01

    A chelate-and-rinse extrafibrillar calcium chelation dentin bonding concept has recently been developed and investigated for its effectiveness in improving resin-dentin bonding by bridging the gap between wet and dry dentin bonding. The objective of the present study was to evaluate the gelatinolytic activity of hybrid layers (HLs) created using the chelate-and-rinse bonding technique. Gelatinolytic activity within the HL was examined using in situ zymography and confocal laser-scanning microscopy after 24-h storage or after thermomechanical cycling. Dentin specimens were bonded with Prime&Bond NT (Dentsply Sirona) after conditioning with 15 wt% phosphoric acid for 15 s (control) or 15 wt% polymeric chelators (sodium salt of polyacrylic acid; PAAN) of 2 different molecular weights for 60 s. For each reagent, bonding was performed using dry-bonding and wet-bonding techniques ( n = 10). Slices containing the adhesive-dentin interface were covered with fluorescein-conjugated gelatin and examined with a confocal laser-scanning microscope. Fluorescence intensity emitted by the hydrolyzed fluorescein-conjugated gelatin was quantified. Gelatinolytic activity was expressed as the percentage of green fluorescence emitted within the HL. After storage for 24 h, enzymatic activity was only detected within the completely demineralized phosphoric acid-etched dentin, with values derived from dry bonding higher than those from wet bonding ( P < 0.05). Almost no fluorescence signals were detected within the HL when dentin was conditioned with PAANs compared with the controls ( P < 0.05). After thermomechanical cycling, enzymatic activities significantly increased for the phosphoric acid-conditioned, drying-bonding group compared with 24-h storage ( P < 0.05). The present study showed that the use of the chelate-and-rinse bonding concept for both dry-bonding and wet-bonding approaches results in the near absence of matrix-bound collagenolytic activities in the HL even after aging

  5. Microstructure of enamel.

    Science.gov (United States)

    Boyde, A

    1997-01-01

    Enamel is a composite material consisting of mineral and organic phases. The properties of the mineral phase are modulated dramatically by its division into microscopic crystals, cemented together by the organic matrix protein polymer. A good concept of the 3D orientations of the crystals derives from visualizing their growth perpendicular to the surface in which they develop, which is pitted by the secretory poles of the ameloblasts. The arrangement of the crystals is the cause of the discontinuities, known as the prism boundaries or junctions, in the otherwise continuous structure. These locations acquire a more concentrated organic matrix during maturation, and they are both crack stoppers and crack propagation tracks in the adult tissue. Any tendency of prisms to cleave may be reduced by their varicosities, which reflect daily variations in the rate of production; their cross-sectional shape; the non-parallelism of adjacent groups, which develops through translocation of groups of cells across the surface during development; and the support of any one microscopic tissue element by other tissue, including dentine, placed to resist an applied load. Incremental growth lines are preferential cleavage planes within the enamel. Failure patterns of enamel in normal and abnormal use can be explained by these parameters, with additional consideration of functional variation and fatigue.

  6. Clinical assessment of demineralization and remineralization surrounding orthodontic brackets with FluoreCam

    Directory of Open Access Journals (Sweden)

    Bora Korkut

    2017-04-01

    Conclusions: This study demonstrated that demineralization is measurable around orthodontic brackets and the demineralization can be completely inhibited and/or reversed by the use of commercially available remineralization products.

  7. Dental Enamel Development: Proteinases and Their Enamel Matrix Substrates

    Science.gov (United States)

    Bartlett, John D.

    2013-01-01

    This review focuses on recent discoveries and delves in detail about what is known about each of the proteins (amelogenin, ameloblastin, and enamelin) and proteinases (matrix metalloproteinase-20 and kallikrein-related peptidase-4) that are secreted into the enamel matrix. After an overview of enamel development, this review focuses on these enamel proteins by describing their nomenclature, tissue expression, functions, proteinase activation, and proteinase substrate specificity. These proteins and their respective null mice and human mutations are also evaluated to shed light on the mechanisms that cause nonsyndromic enamel malformations termed amelogenesis imperfecta. Pertinent controversies are addressed. For example, do any of these proteins have a critical function in addition to their role in enamel development? Does amelogenin initiate crystallite growth, does it inhibit crystallite growth in width and thickness, or does it do neither? Detailed examination of the null mouse literature provides unmistakable clues and/or answers to these questions, and this data is thoroughly analyzed. Striking conclusions from this analysis reveal that widely held paradigms of enamel formation are inadequate. The final section of this review weaves the recent data into a plausible new mechanism by which these enamel matrix proteins support and promote enamel development. PMID:24159389

  8. 'Adult T-cell leukemia/lymphoma' with bone demineralization

    International Nuclear Information System (INIS)

    Ohuchida, Toshiyuki; Nishitani, Hiromu; Matsuura, Keiichi

    1985-01-01

    Two patients with T-cell malignancy having radiographic manifestations of generalized and localized bone demineralization are reported. One, a 53-year-old-man, had marked osteoporosis and severe hypercalcemia, but no clinical evidence of leukemia throughout his illness. At autopsy there was no definite evidence of bone involvement. Histologic proof was obtained from abdominal skin which revealed ''adult T-cell leukemia/lymphoma (ATLL).'' The second case, a 33-year-old man, complained of arthralgia in his hands and feet; radiographs showed severe localized demineralization and pathologic fractures. Specimens of his peripheral blood, cervical lymph nodes, and bone marrow revealed ATLL cells. (orig.)

  9. Determination of bone demineralization in cats after experimental thyrotoxicosis

    Directory of Open Access Journals (Sweden)

    Fabiano Séllos Costa

    2006-10-01

    Full Text Available Hyperthyroidism can result in serious effects on the bone metabolism in humans as well as animals. For a better characterization of thyrotoxicosis effects, 16 cats were induced into thyrotoxicosis by intaking a dose of 150 µg/kg of sodium L-thyroxine every 24 hours during 42 days. The hormonal levels were evaluated by radioimmunoassay technique and the bone mineral density of the right distal radius extremity was measured through the radiographic optical densitometry. Was verified significant bone demineralization seven days of hormonal intake as weel as radius demineralization.

  10. Bicarbonate Transport During Enamel Maturation.

    Science.gov (United States)

    Yin, Kaifeng; Paine, Michael L

    2017-11-01

    Amelogenesis (tooth enamel formation) is a biomineralization process consisting primarily of two stages (secretory stage and maturation stage) with unique features. During the secretory stage, the inner epithelium of the enamel organ (i.e., the ameloblast cells) synthesizes and secretes enamel matrix proteins (EMPs) into the enamel space. The protein-rich enamel matrix forms a highly organized architecture in a pH-neutral microenvironment. As amelogenesis transitions to maturation stage, EMPs are degraded and internalized by ameloblasts through endosomal-lysosomal pathways. Enamel crystallite formation is initiated early in the secretory stage, however, during maturation stage the more rapid deposition of calcium and phosphate into the enamel space results in a rapid expansion of crystallite length and mineral volume. During maturation-stage amelogenesis, the pH value of enamel varies considerably from slightly above neutral to acidic. Extracellular acid-base balance during enamel maturation is tightly controlled by ameloblast-mediated regulatory networks, which include significant synthesis and movement of bicarbonate ions from both the enamel papillary layer cells and ameloblasts. In this review we summarize the carbonic anhydrases and the carbonate transporters/exchangers involved in pH regulation in maturation-stage amelogenesis. Proteins that have been shown to be instrumental in this process include CA2, CA6, CFTR, AE2, NBCe1, SLC26A1/SAT1, SLC26A3/DRA, SLC26A4/PDS, SLC26A6/PAT1, and SLC26A7/SUT2. In addition, we discuss the association of miRNA regulation with bicarbonate transport in tooth enamel formation.

  11. Effect of functional monomers in all-in-one adhesive systems on formation of enamel/dentin acid-base resistant zone.

    Science.gov (United States)

    Nikaido, Toru; Ichikawa, Chiaki; Li, Na; Takagaki, Tomohiro; Sadr, Alireza; Yoshida, Yasuhiro; Suzuki, Kazuomi; Tagami, Junji

    2011-01-01

    This study aimed at evaluating the effect of functional monomers in all-in-one adhesive systems on formation of acid-base resistant zone (ABRZ) in enamel and dentin. Experimental adhesive systems containing one of three functional monomers; MDP, 3D-SR and 4-META were applied to enamel or dentin surface and light-cured. A universal resin composite was then placed. The specimens were subjected to a demineralizing solution (pH 4.5) and 5% NaClO for acid-base challenge and then observed by SEM. The ABRZ was clearly observed in both enamel and dentin interfaces. However, enamel ABRZ was thinner than dentin ABRZ in all adhesives. Morphology of the ABRZ was different between enamel and dentin, and also among the adhesives. Funnel-shaped erosion was observed only in the enamel specimen with the 4-META adhesive. The formation of enamel/dentin ABRZ was confirmed in all adhesives, but the morphology was influenced by the functional monomers.

  12. Fluoride varnishes and enamel caries

    NARCIS (Netherlands)

    Bruyn, Hugo de

    1987-01-01

    Topical fluoride applications have the aim of increasing the fluoride uptake in enamel and consequently reducing caries. In the early ‘60s fluoride varnishes were introduced because they had a long contact period with the enamel which resulted in a higher fluoride uptake than from other topical

  13. Silicate enamel for alloyed steel

    International Nuclear Information System (INIS)

    Ket'ko, K.K.

    1976-01-01

    The use of silicate enamels in the metallurgical industry is discussed. Presented are the composition and the physico-chemical properties of the silicate enamel developed at the factory 'Krasnyj Oktyabr'. This enamel can be used in the working conditions both in the liquid and the solid state. In so doing the enamel is melted at 1250 to 1300 deg C, granulated and then reduced to a fraction of 0.3 to 0.5 mm. The greatest homogeneity is afforded by a granulated enamel. The trials have shown that the conversion of the test ingots melted under a layer of enamel leads to the smaller number of the ingots rejected for surface defect reasons and the lower metal consumption for slab cleaning. The cost of the silicate enamel is somewhat higher than that of synthetic slags but its application to the melting of stainless steels is still economically beneficial and technologically reasonable. Preliminary calculations only for steel EhI4IEh have revealed that the use of this enamel saves annually over 360000 roubles [ru

  14. Characterization of enamel caries lesions in rat molars using synchrotron X-ray microtomography

    Energy Technology Data Exchange (ETDEWEB)

    Free, R.D.; DeRocher, K.; Stock, S.R.; Keane, D.; Scott-Anne, K.; Bowen, W.H.; Joester, D. (Rochester); (NWU)

    2017-08-18

    Dental caries is a ubiquitous infectious disease with a nearly 100% lifetime prevalence. Rodent caries models are widely used to investigate the etiology, progression and potential prevention or treatment of the disease. To explore the suitability of these models for deeper investigations of intact surface zones during enamel caries, the structures of early-stage carious lesions in rats were characterized and compared with previous reports on white spot enamel lesions in humans. Synchrotron X-ray microcomputed tomography non-destructively mapped demineralization in carious rat molar specimens across a range of caries severity, identifying 52 lesions across the 30 teeth imaged. Of these lesions, 13 were shown to have intact surface zones. Depth profiles of fractional mineral density were qualitatively similar to lesions in human teeth. However, the thickness of the surface zone in the rat model ranges from 10 to 58 µm, and is therefore significantly thinner than in human enamel. These results indicate that a fraction of lesions in rat caries possess an intact surface zone and are qualitatively similar to human lesions at the micrometer scale. This suggests that rat caries models may be a suitable analog through which to investigate the structure of surface zone enamel and its role during dental caries.

  15. Morphology and fracture of enamel.

    Science.gov (United States)

    Myoung, Sangwon; Lee, James; Constantino, Paul; Lucas, Peter; Chai, Herzl; Lawn, Brian

    2009-08-25

    This study examines the inter-relation between enamel morphology and crack resistance by sectioning extracted human molars after loading to fracture. Cracks appear to initiate from tufts, hypocalcified defects at the enamel-dentin junction, and grow longitudinally around the enamel coat to produce failure. Microindentation corner cracks placed next to the tufts in the sections deflect along the tuft interfaces and occasionally penetrate into the adjacent enamel. Although they constitute weak interfaces, the tufts are nevertheless filled with organic matter, and appear to be stabilized against easy extension by self-healing, as well as by mutual stress-shielding and decussation, accounting at least in part for the capacity of tooth enamel to survive high functional forces.

  16. Effect of xylitol varnishes on remineralization of artificial enamel caries lesions in vitro.

    Science.gov (United States)

    Cardoso, C A B; de Castilho, A R F; Salomão, P M A; Costa, E N; Magalhães, A C; Buzalaf, M A R

    2014-11-01

    Analyse the effect of varnishes containing xylitol alone or combined with fluoride on the remineralization of artificial enamel caries lesions in vitro. Bovine enamel specimens were randomly allocated to 7 groups (n=15/group). Artificial caries lesions were produced by immersion in 30 mL of lactic acid buffer containing 3mM CaCl2·2H2O, 3mM KH2PO4, 6 μM tetraetil metil diphosphanate (pH 5.0) for 6 days. The enamel blocks were treated with the following varnishes: 10% xylitol; 20% xylitol; 10% xylitol plus F (5% NaF); 20% xylitol plus F (5% NaF); Duofluorid™ (6% NaF, 2.71% F+6% CaF2), Duraphat™ (5% NaF, positive control) and placebo (no-F/xylitol, negative control). The varnishes were applied in a thin layer and removed after 6h. The blocks were subjected to pH-cycles (demineralization-2h/remineralization-22 h during 8 days) and enamel alterations were quantified by surface hardness and transversal microradiography. The percentage of surface hardness recovery (%SHR), the integrated mineral loss and lesion depth were statistically analysed by ANOVA/Tukey's test or Kruskal-Wallis/Dunn's test (pxylitol plus F and 20% xylitol plus F formulations, while significant subsurface mineral remineralization could be seen only for enamel treated with Duraphat™, Duofluorid™ and 20% xylitol formulations. 20% xylitol varnishes seem to be promising alternatives to increase remineralization of artificial caries lesions. effective vehicles are desirable for caries control. Xylitol varnishes seem to be promising alternatives to increase enamel remineralization in vitro, which should be confirmed by in situ and clinical studies. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Mechanical characterization of enamel coated steel bars.

    Science.gov (United States)

    2012-12-01

    In this study, the corrosion process of enamel-coated deformed rebar completely immersed in 3.5 wt.% NaCl solution was evaluated : over a period of 84 days by EIS testing. Three types of enamel coating were investigated: pure enamel, 50/50 enamel coa...

  18. Comparison Of Bond Strength Of Orthodontic Molar Tubes Using Different Enamel Etching Techniques And Their Effect On Enamel

    International Nuclear Information System (INIS)

    Abd el Rahman, H.Y.

    2013-01-01

    In fixed orthodontic treatment, brackets and tubes are used for transferring orthodontic forces to the teeth. Those attachments were welded to cemented bands. Fifty years ago, direct bonding of brackets and other attachments has become a common technique in fixed orthodontic treatment. Orthodontists used to band teeth, especially molars and second premolars, to avoid the need for re bonding accessories in these regions of heavy masticatory forces. However, it is a known fact that direct bonding saves chair time as it does not require prior band selection and fitting, has the ability to maintain good oral hygiene, improve esthetics and make easier attachment to crowded and partially erupted teeth. Moreover, when the banding procedure is not performed with utmost care it can damage periodontal and/or dental tissues. Molar tubes bonding decreases the chance of decalcification caused by leakage beneath the bands. Since molar teeth are subjected to higher masticatory impact, especially lower molars, it would be convenient to devise methods capable of increasing the efficiency of their traditional bonding. These methods may include variation in bond able molar tube material, design, bonding materials and etching techniques. For achieving successful bonding, the bonding agent must penetrate the enamel surface; have easy clinical use, dimensional stability and enough bond strength. Different etching techniques were introduced in literature to increase the bond strength which includes: conventional acid etching, sandblasting and laser etching techniques. The process of conventional acid etching technique was invented In (1955) as the surface of enamel has great potential for bonding by micromechanical retention, to form ‘the mechanical lock‘. The primary effect of enamel etching is to increase the surface area. However, this roughens the enamel microscopically and results in a greater surface area on which to bond. By dissolving minerals in enamel, etchants remove the

  19. Topographic assessment of human enamel surface treated with different topical sodium fluoride agents: Scanning electron microscope consideration

    Directory of Open Access Journals (Sweden)

    Gurlal Singh Brar

    2017-01-01

    Full Text Available Introduction: Continuous balanced demineralization and remineralization are natural dynamic processes in enamel. If the balance is interrupted and demineralization process dominates, it may eventually lead to the development of carious lesions in enamel and dentine. Fluoride helps control decay by enhancing remineralization and altering the structure of the tooth, making the surface less soluble. Methodology: One hundred and twenty sound human permanent incisors randomly and equally distributed into six groups as follows: Group I - Control, II - Sodium fluoride solution, III - Sodium fluoride gel, IV - Sodium fluoride varnish, V - Clinpro Tooth Crème (3M ESPE, and VI-GC Tooth Mousse Plus or MI Paste Plus. The samples were kept in artificial saliva for 12 months, and the topical fluoride agents were applied to the respective sample groups as per the manufacturer instructions. Scanning electron microscope (SEM evaluation of all the samples after 6 and 12 months was made. Results: Morphological changes on the enamel surface after application of fluoride in SEM revealed the presence of globular precipitate in all treated samples. Amorphous, globular, and crystalline structures were seen on the enamel surface of the treated samples. Clear differences were observed between the treated and untreated samples. Conclusion: Globular structures consisting of amorphous CaF2precipitates, which acted as a fluoride reservoir, were observed on the enamel surface after action of different sodium fluoride agents. CPP-ACPF (Tooth Mousse and Tricalcium phosphate with fluoride (Clinpro tooth crème are excellent delivery vehicles available in a slow release amorphous form to localize fluoride at the tooth surface.

  20. Stable isotope time-series in mammalian teeth: In situ δ18O from the innermost enamel layer

    Science.gov (United States)

    Blumenthal, Scott A.; Cerling, Thure E.; Chritz, Kendra L.; Bromage, Timothy G.; Kozdon, Reinhard; Valley, John W.

    2014-01-01

    Stable carbon and oxygen isotope ratios in mammalian tooth enamel are commonly used to understand the diets and environments of modern and fossil animals. Isotope variation during the period of enamel formation can be recovered by intra-tooth microsampling along the direction of growth. However, conventional sampling of the enamel surface provides highly time-averaged records in part due to amelogenesis. We use backscattered electron imaging in the scanning electron microscope (BSE-SEM) to evaluate enamel mineralization in developing teeth from one rodent and two ungulates. Gray levels from BSE-SEM images suggest that the innermost enamel layer, <20 μm from the enamel-dentine junction, is highly mineralized early in enamel maturation and therefore may record a less attenuated isotopic signal than other layers. We sampled the right maxillary incisor from a woodrat subjected to an experimentally induced water-switch during the period of tooth development, and demonstrate that secondary ion mass spectrometry (SIMS) can be used to obtain δ18O values with 4-5-μm spots from mammalian tooth enamel. We also demonstrate that SIMS can be used to discretely sample the innermost enamel layer, which is too narrow for conventional microdrilling or laser ablation. An abrupt δ18O switch of 16.0‰ was captured in breath CO2, a proxy for body water, while a laser ablation enamel surface intra-tooth profile of the left incisor captured a δ18O range of 12.1‰. The innermost enamel profile captured a δ18O range of 15.7‰, which approaches the full magnitude of δ18O variation in the input signal. This approach will likely be most beneficial in taxa such as large mammalian herbivores, whose teeth are characterized by less rapid mineralization and therefore greater attenuation of the enamel isotope signal.

  1. Three-dimensional primate molar enamel thickness.

    Science.gov (United States)

    Olejniczak, Anthony J; Tafforeau, Paul; Feeney, Robin N M; Martin, Lawrence B

    2008-02-01

    Molar enamel thickness has played an important role in the taxonomic, phylogenetic, and dietary assessments of fossil primate teeth for nearly 90 years. Despite the frequency with which enamel thickness is discussed in paleoanthropological discourse, methods used to attain information about enamel thickness are destructive and record information from only a single plane of section. Such semidestructive planar methods limit sample sizes and ignore dimensional data that may be culled from the entire length of a tooth. In light of recently developed techniques to investigate enamel thickness in 3D and the frequent use of enamel thickness in dietary and phylogenetic interpretations of living and fossil primates, the study presented here aims to produce and make available to other researchers a database of 3D enamel thickness measurements of primate molars (n=182 molars). The 3D enamel thickness measurements reported here generally agree with 2D studies. Hominoids show a broad range of relative enamel thicknesses, and cercopithecoids have relatively thicker enamel than ceboids, which in turn have relatively thicker enamel than strepsirrhine primates, on average. Past studies performed using 2D sections appear to have accurately diagnosed the 3D relative enamel thickness condition in great apes and humans: Gorilla has the relatively thinnest enamel, Pan has relatively thinner enamel than Pongo, and Homo has the relatively thickest enamel. Although the data set presented here has some taxonomic gaps, it may serve as a useful reference for researchers investigating enamel thickness in fossil taxa and studies of primate gnathic biology.

  2. Effect of Enamel Caries Lesion Baseline Severity on Fluoride Dose-Response

    Directory of Open Access Journals (Sweden)

    Frank Lippert

    2017-01-01

    Full Text Available This study aimed to investigate the effect of enamel caries lesion baseline severity on fluoride dose-response under pH cycling conditions. Early caries lesions were created in human enamel specimens at four different severities (8, 16, 24, and 36 h. Lesions were allocated to treatment groups (0, 83, and 367 ppm fluoride as sodium fluoride based on Vickers surface microhardness (VHN and pH cycled for 5 d. The cycling model comprised 3 × 1 min fluoride treatments sandwiched between 2 × 60 min demineralization challenges with specimens stored in artificial saliva in between. VHN was measured again and changes versus lesion baseline were calculated (ΔVHN. Data were analyzed using two-way ANOVA (p<0.05. Increased demineralization times led to increased surface softening. The lesion severity×fluoride concentration interaction was significant (p<0.001. Fluoride dose-response was observed in all groups. Lesions initially demineralized for 16 and 8 h showed similar overall rehardening (ΔVHN and more than 24 and 36 h lesions, which were similar. The 8 h lesions showed the greatest fluoride response differential (367 versus 0 ppm F which diminished with increasing lesion baseline severity. The extent of rehardening as a result of the 0 ppm F treatment increased with increasing lesion baseline severity, whereas it decreased for the fluoride treatments. In conclusion, lesion baseline severity impacts the extent of the fluoride dose-response.

  3. Studies of direct electroinsulating enamels

    International Nuclear Information System (INIS)

    Siwulski, S.; Gruszka, B.; Nocun, M.

    1998-01-01

    The results of studies on the influence of chemical composition of direct electroinsulating enamel on its properties were presented. The influence of alkaline Li 2 O, Na 2 O, K 2 O and adhesion promoting oxides CoO, NiO, CuO, MoO 3 on the frits properties were estimated. The characteristic temperature T g and T m as well as flowability were measured. The dielectric properties of frits and prepared enamels were also measured. Enamel substrates were prepared and tested for application in thick hybrid circuit technology. (author)

  4. Mathematical model governing laser-produced dental cavity

    Science.gov (United States)

    Yilbas, Bekir S.; Karatoy, M.; Yilbas, Z.; Karakas, Eyup S.; Bilge, A.; Ustunbas, Hasan B.; Ceyhan, O.

    1990-06-01

    Formation of dental cavity may be improved by using a laser beam. This provides nonmechanical contact, precise location of cavity, rapid processing and increased hygienity. Further examination of interaction mechanism is needed to improve the application of lasers in density. Present study examines the tenperature rise and thermal stress development in the enamel during Nd YAG laser irradiation. It is found that the stresses developed in the enamel is not sufficiently high enough to cause crack developed in the enamel.

  5. Relationship between refractive index and mineral content of enamel and dentin using SS-OCT and TMR

    Science.gov (United States)

    Hariri, Ilnaz; Sadr, Alireza; Shimada, Yasushi; Nakashima, Syozi; Sumi, Yasunori; Tagami, Junji

    2012-01-01

    The aim of this work was to investigate relationship between refractive index (n) and mineral content (MC) (vol %) of enamel and dentin using swept-source optical coherence tomography (SS-OCT) and transverse microradiography (TMR). Enamel and dentin blocks were partitioned into three regions. The middle partition of each sample was covered with a nail polish to protect the sound area during exposure to the treatment solutions. Samples were demineralized in a demineralizing solution, which was refreshed once a week, for 2 months. One window was covered with acid-resistant varnish, leaving the other window exposed; the samples were placed in a solution for remineralization. Samples then were sliced into disks with thickness of 300 μm to 400 μm and placed on metal plate in order to capture cross-sectional images of sound, demineralized and remineralized regions by OCT at 1319 nm center wavelength. The n then was calculated via formula using image analysis software. Following n measurement, these specimens were further polished for the TMR analysis. Correlation between OCT n and TMR MC was examined. A significant and highly positive correlation was found between the measured n and the actual MC at the corresponding locations (Pearson correlation coefficients (r) were 0.94 and 0.97 in enamel and 0.95 and 0.91 in dentin after de-/remineralization process, respectively p < 0.05). OCT showed a potential for quantitative analysis of the mineral loss or gain by measuring of the n in vitro. Supported by the grant from the Japanese Ministry of Education, Global Center of Excellence (GCOE) Program, "International Research Center for Molecular Science in Tooth and Bone Diseases."

  6. Solubility effects in waste-glass/demineralized-water systems

    International Nuclear Information System (INIS)

    Fullam, H.T.

    1981-06-01

    Aqueous systems involving demineralized water and four glass compositions (including standins for actinides and fission products) at temperatures of up to 150 0 C were studied. Two methods were used to measure the solubility of glass components in demineralized water. One method involved approaching equilibrium from subsaturation, while the second method involved approaching equilibrium from supersaturation. The aqueous solutions were analyzed by induction-coupled plasma spectrometry (ICP). Uranium was determined using a Scintrex U-A3 uranium analyzer and zinc and cesium were determined by atomic absorption. The system that results when a waste glass is contacted with demineralized water is a complex one. The two methods used to determine the solubility limits gave very different results, with the supersaturation method yielding much higher solution concentrations than the subsaturation method for most of the elements present in the waste glasses. The results show that it is impossible to assign solubility limits to the various glass components without thoroughly describing the glass-water systems. This includes not only defining the glass type and solution temperature, but also the glass surface area-to-water volume ratio (S/V) of the system and the complete thermal history of the system. 21 figures, 22 tables

  7. Ultrasonically-induced electrical potentials in demineralized bovine cortical bone

    Science.gov (United States)

    Mori, Shunki; Makino, Taiki; Koyama, Daisuke; Takayanagi, Shinji; Yanagitani, Takahiko; Matsukawa, Mami

    2018-04-01

    While the low-intensity pulsed ultrasound technique has proved useful for healing of bone fractures, the ultrasound healing mechanism is not yet understood. To understand the initial physical effects of the ultrasound irradiation process on bone, we have studied the anisotropic piezoelectric properties of bone in the MHz range. Bone is known to be composed of collagen and hydroxyapatite (HAp) and shows strong elastic anisotropy. In this study, the effects of HAp on the piezoelectricity were investigated experimentally. To remove the HAp crystallites from the bovine cortical bone, demineralization was performed using ethylene diamine tetra-acetic acid (EDTA) solutions. To investigate the piezoelectricity, we have fabricated ultrasound transducers using the cortical bone or demineralized cortical bone. The induced electrical potentials due to the piezoelectricity were observed as the output of these transducers under pulsed ultrasound irradiation in the MHz range. The cortical bone transducer (before mineralization) showed anisotropic piezoelectric behavior. When the ultrasound irradiation was applied normal to the transducer surface, the observed induced electrical potentials had minimum values. The potential increased under off-axis ultrasound irradiation with changes in polarization. In the demineralized bone transducer case, however, the anisotropic behavior was not observed in the induced electrical potentials. These results therefore indicate that the HAp crystallites affect the piezoelectric characteristics of bone.

  8. Forensic DNA typing from teeth using demineralized root tips.

    Science.gov (United States)

    Corrêa, Heitor Simões Dutra; Pedro, Fabio Luis Miranda; Volpato, Luiz Evaristo Ricci; Pereira, Thiago Machado; Siebert Filho, Gilberto; Borges, Álvaro Henrique

    2017-11-01

    Teeth are widely used samples in forensic human genetic identification due to their persistence and practical sampling and processing. Their processing, however, has changed very little in the last 20 years, usually including powdering or pulverization of the tooth. The objective of this study was to present demineralized root tips as DNA sources while, at the same time, not involving powdering the samples or expensive equipment for teeth processing. One to five teeth from each of 20 unidentified human bodies recovered from midwest Brazil were analyzed. Whole teeth were demineralized in EDTA solution with daily solution change. After a maximum of approximately seven days, the final millimeters of the root tip was excised. This portion of the sample was used for DNA extraction through a conventional organic protocol. DNA quantification and STR amplification were performed using commercial kits followed by capillary electrophoresis on 3130 or 3500 genetic analyzers. For 60% of the unidentified bodies (12 of 20), a full genetic profile was obtained from the extraction of the first root tip. By the end of the analyses, full genetic profiles were obtained for 85% of the individuals studied, of which 80% were positively identified. This alternative low-tech approach for postmortem teeth processing is capable of extracting DNA in sufficient quantity and quality for forensic casework, showing that root tips are viable nuclear DNA sources even after demineralization. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Morphological and mineral analysis of dental enamel after erosive challenge in gastric juice and orange juice.

    Science.gov (United States)

    Braga, Sheila Regina Maia; De Faria, Dalva Lúcia Araújo; De Oliveira, Elisabeth; Sobral, Maria Angela Pita

    2011-12-01

    This study evaluated and compared in vitro the morphology and mineral composition of dental enamel after erosive challenge in gastric juice and orange juice. Human enamel specimens were submitted to erosive challenge using gastric juice (from endoscopy exam) (n = 10), and orange juice (commercially-available) (n = 10), as follows: 5 min in 3 mL of demineralization solution, rinse with distilled water, and store in artificial saliva for 3 h. This cycle was repeated four times a day for 14 days. Calcium (Ca) loss after acid exposure was determined by atomic emission spectroscopy. The presence of carbonate (CO) and phosphate (PO) in the specimens was evaluated before and after the erosive challenge by FT-Raman spectroscopy. Data were tested using t-tests (P enamel was observed in scanning electron microscopy (SEM). The mean loss of Ca was: 12.74 ± 3.33 mg/L Ca (gastric juice) and 7.07 ± 1.44 mg/L Ca (orange juice). The analysis by atomic emission spectroscopy showed statistically significant difference between erosive potential of juices (P = 0.0003). FT-Raman spectroscopy found no statistically significant difference in the ratio CO/PO after the erosive challenge. The CO/PO ratios values before and after the challenge were: 0.16/0.17 (gastric juice) (P = 0.37) and 0.18/0.14 (orange juice) (P = 0.16). Qualitative analysis by SEM showed intense alterations of enamel surface. The gastric juice caused more changes in morphology and mineral composition of dental enamel than orange juice. The atomic emission spectroscopy showed to be more suitable to analyze small mineral loss after erosive challenge than FT-Raman. Copyright © 2011 Wiley Periodicals, Inc.

  10. Assessment of enamel-dentin caries lesions detection using bitewing PSP digital images

    Directory of Open Access Journals (Sweden)

    Marianna Guanaes Gomes Torres

    2011-10-01

    Full Text Available OBJECTIVES: The aim of this study was to evaluate the detection of enamel-dentin occlusal caries using photostimulable phosphor plates. MATERIAL AND METHODS: The ability to detect enamel-dentin occlusal caries in 607 premolars and molars from 47 patients between 10 and 18 years old, referred to the School of Dentistry of the Federal University of Bahia, Brazil, was evaluated based on clinical and radiographic examinations, using the criteria proposed in a previous study. A total of 156 bitewing digital images were obtained using Digora® (Soredex Medical Systems, Helsinki, Finland phosphor plates. The plates were scanned and the images were captured and displayed on a computer screen. Image evaluation was done using Digora® for Windows 2.1 software, Soredex®. The radiologists were allowed to use enhancement tools to obtain better visibility during scoring of the teeth based on the radiographic criteria proposed in a previous study. Descriptive analysis and chi-squared proportion tests were done at 5% significance level. RESULTS: The results of clinical examination showed a higher prevalence of teeth with a straight dark line or demineralization of the occlusal fissure (score 1 and a lower prevalence of sealed teeth (score 5. In the bitewing digital images, 47 teeth presented visible radiolucency, circumscribed, in dentin under occlusal enamel (enamel-dentin caries lesions. CONCLUSIONS: Correlating the clinical and radiographic findings, it was found that in the majority of teeth diagnosed by radiographic images as having enamel-dentin caries, no caries could be detected by clinical examination.

  11. An association of external and internal enamel pearls.

    OpenAIRE

    Mahajan S; Charan C

    2005-01-01

    We report a rare case of an association of external enamel pearl with internal enamel pearl on the root of a molar. To the best of our knowledge, association of external and internal enamel pearls has not been previously reported. We discussed the histogenesis of enamel pearls and proposed that internal enamel pearl formation may be a continuation of formation of external enamel pearl.

  12. In situ synthesis carbonated hydroxyapatite layers on enamel slices with acidic amino acids by a novel two-step method

    International Nuclear Information System (INIS)

    Wu, Xiaoguang; Zhao, Xu; Li, Yi; Yang, Tao; Yan, Xiujuan; Wang, Ke

    2015-01-01

    In situ fabrication of carbonated hydroxyapatite (CHA) remineralization layer on an enamel slice was completed in a novel, biomimetic two-step method. First, a CaCO 3 layer was synthesized on the surface of demineralized enamel using an acidic amino acid (aspartic acid or glutamate acid) as a soft template. Second, at the same concentration of the acidic amino acid, rod-like carbonated hydroxyapatite was produced with the CaCO 3 layer as a sacrificial template and a reactant. The morphology, crystallinity and other physicochemical properties of the crystals were characterized using field emission scanning electron microscopy (FESEM), Fourier transform infrared spectrometry (FTIR), X-ray diffraction (XRD) and energy-dispersive X-ray analysis (EDAX), respectively. Acidic amino acid could promote the uniform deposition of hydroxyapatite with rod-like crystals via absorption of phosphate and carbonate ions from the reaction solution. Moreover, compared with hydroxyapatite crystals coated on the enamel when synthesized by a one-step method, the CaCO 3 coating that was synthesized in the first step acted as an active bridge layer and sacrificial template. It played a vital role in orienting the artificial coating layer through the template effect. The results show that the rod-like carbonated hydroxyapatite crystals grow into bundles, which are similar in size and appearance to prisms in human enamel, when using the two-step method with either aspartic acid or acidic glutamate (20.00 mmol/L). - Graphical abstract: FESEM images of enamel slices etched for 60 s and repaired by the two-step method with Glu concentration of 20.00 mmol/L. (A) The boundary (dotted line) of the repaired areas (b) and unrepaired areas (a). (Some selected areas of etched enamel slices were coated with a nail polish before the reaction, which was removed by acetone after the reaction); (B) high magnification image of Ga, (C) high magnification image of Gb. In situ fabrication of carbonated

  13. In situ synthesis carbonated hydroxyapatite layers on enamel slices with acidic amino acids by a novel two-step method

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Xiaoguang [Department of Pediatric Dentistry, The Hospital of Stomatology, Jilin University, Changchun 130021 (China); Zhao, Xu [College of Chemistry, Jilin University, Changchun 130021 (China); Li, Yi, E-mail: lyi99@jlu.edu.cn [Department of Pediatric Dentistry, The Hospital of Stomatology, Jilin University, Changchun 130021 (China); Yang, Tao [Department of Stomatology, Children' s Hospital of Changchun, 130051 (China); Yan, Xiujuan; Wang, Ke [Department of Pediatric Dentistry, The Hospital of Stomatology, Jilin University, Changchun 130021 (China)

    2015-09-01

    In situ fabrication of carbonated hydroxyapatite (CHA) remineralization layer on an enamel slice was completed in a novel, biomimetic two-step method. First, a CaCO{sub 3} layer was synthesized on the surface of demineralized enamel using an acidic amino acid (aspartic acid or glutamate acid) as a soft template. Second, at the same concentration of the acidic amino acid, rod-like carbonated hydroxyapatite was produced with the CaCO{sub 3} layer as a sacrificial template and a reactant. The morphology, crystallinity and other physicochemical properties of the crystals were characterized using field emission scanning electron microscopy (FESEM), Fourier transform infrared spectrometry (FTIR), X-ray diffraction (XRD) and energy-dispersive X-ray analysis (EDAX), respectively. Acidic amino acid could promote the uniform deposition of hydroxyapatite with rod-like crystals via absorption of phosphate and carbonate ions from the reaction solution. Moreover, compared with hydroxyapatite crystals coated on the enamel when synthesized by a one-step method, the CaCO{sub 3} coating that was synthesized in the first step acted as an active bridge layer and sacrificial template. It played a vital role in orienting the artificial coating layer through the template effect. The results show that the rod-like carbonated hydroxyapatite crystals grow into bundles, which are similar in size and appearance to prisms in human enamel, when using the two-step method with either aspartic acid or acidic glutamate (20.00 mmol/L). - Graphical abstract: FESEM images of enamel slices etched for 60 s and repaired by the two-step method with Glu concentration of 20.00 mmol/L. (A) The boundary (dotted line) of the repaired areas (b) and unrepaired areas (a). (Some selected areas of etched enamel slices were coated with a nail polish before the reaction, which was removed by acetone after the reaction); (B) high magnification image of Ga, (C) high magnification image of Gb. In situ fabrication of

  14. Spectrally enhanced imaging of occlusal surfaces and artificial shallow enamel erosions with a scanning fiber endoscope

    Science.gov (United States)

    Zhang, Liang; Nelson, Leonard Y.; Seibel, Eric J.

    2012-07-01

    An ultrathin scanning fiber endoscope, originally developed for cancer diagnosis, was used to image dental occlusal surfaces as well as shallow artificially induced enamel erosions from human extracted teeth (n=40). Enhanced image resolution of occlusal surfaces was obtained using a short-wavelength 405-nm illumination laser. In addition, artificial erosions of varying depths were also imaged with 405-, 404-, 532-, and 635-nm illumination lasers. Laser-induced autofluorescence images of the teeth using 405-nm illumination were also obtained. Contrast between sound and eroded enamel was quantitatively computed for each imaging modality. For shallow erosions, the image contrast with respect to sound enamel was greatest for the 405-nm reflected image. It was also determined that the increased contrast was in large part due to volume scattering with a smaller component from surface scattering. Furthermore, images obtained with a shallow penetration depth illumination laser (405 nm) provided the greatest detail of surface enamel topography since the reflected light does not contain contributions from light reflected from greater depths within the enamel tissue. Multilayered Monte Carlo simulations were also performed to confirm the experimental results.

  15. Removal of different fractions of NOM foulants during demineralized water backwashing

    KAUST Repository

    Li, Sheng

    2012-09-01

    The effectiveness of demineralized water backwashing on fouling by different fractions of NOM was investigated in this study. Two types of natural surface water (Schie canal and Biesbosch reservoir) were tested to confirm the improvement of demineralized water backwashing on fouling control, and LC-OCD analysis was conducted on Schie canal water to find out which fraction of NOM was removed with those backwashes. Results derived from natural waters showed that demineralized water backwashing substantially improved UF fouling control. LC-OCD analyses showed both UF permeate and demineralized water backwashes were effective on removing part of biopolymers, but demineralized water is also effective for humic substances and a limited amount of low molecular weight substances. However, based on the LC-OCD results, even demineralized water backwashing is not effective to remove all humic substances and biopolymers rejected on the UF membranes. © 2012 Elsevier B.V. All rights reserved.

  16. Dental Enamel Defects and Celiac Disease

    Science.gov (United States)

    ... Digestive System & How it Works Zollinger-Ellison Syndrome Dental Enamel Defects and Celiac Disease Celiac disease manifestations ... affecting any organ or body system. One manifestation—dental enamel defects—can help dentists and other health ...

  17. Properties of hot rolled steels for enamelling

    International Nuclear Information System (INIS)

    Gavrilovski, Dragica; Gavrilovski, Milorad

    2003-01-01

    The results of an investigation of the structure and properties of experimental produced hot rolled steels suitable for enamelling are presented in the paper. Hot rolled steels for enamelling represent a special group of the steels for conventional enamelling. Their quality has to be adapted to the method and conditions of enamelling. Therefore, these steels should meet some specific requirements. In addition to usual investigation of the chemical composition and mechanical properties, microstructure and quality of the steel surface also were investigated. The basic aim was to examine steels capability for enamelling, i. e. steels resistance to the fish scales phenomena, by trial enamelling, as well as quality of the steel - enamel contact surface, to evaluate the binding. Also, the changes of the mechanical properties, especially the yield point, during thermal treatment, as a very specific requirement, were investigated, by simplified method. Good results were obtained confirming the steels capability for enamelling. (Original)

  18. Analysis of the Early Stages and Evolution of Dental Enamel Erosion.

    Science.gov (United States)

    Derceli, Juliana Dos Reis; Faraoni, Juliana Jendiroba; Pereira-da-Silva, Marcelo Assumpção; Palma-Dibb, Regina Guenka

    2016-01-01

    The aim of this study was to evaluate by atomic force microscopy (AFM) the early phases and evolution of dental enamel erosion caused by hydrochloric acid exposure, simulating gastroesophageal reflux episodes. Polished bovine enamel slabs (4x4x2 mm) were selected and exposed to 0.1 mL of 0.01 M hydrochloric acid (pH=2) at 37 ?#61472;?#61616;C using five different exposure intervals (n=1): no acid exposure (control), 10 s, 20 s, 30 s and 40 s. The exposed area was analyzed by AFM in 3 regions to measure the roughness, surface area and morphological surface. The data were analyzed qualitatively. Roughness started as low as that of the control sample, Rrms=3.5 nm, and gradually increased at a rate of 0.3 nm/s, until reaching Rrms=12.5 nm at 30 s. After 40 s, the roughness presented increment of 0.40 nm only. Surface area (SA) increased until 20 s, and for longer exposures, the surface area was constant (at 30 s, SA=4.40 μm2 and at 40 s, SA=4.43 μm2). As regards surface morphology, the control sample presented smaller hydroxyapatite crystals (22 nm) and after 40 s the crystal size was approximately 60 nm. Short periods of exposure were sufficient to produce enamel demineralization in different patterns and the morphological structure was less affected by exposure to hydrochloric acid over 30 s.

  19. The fracture behaviour of dental enamel

    OpenAIRE

    Bechtle, Sabine; Habelitz, Stefan; Klocke, Arndt; Fett, Theo; Schneider, Gerold A.

    2009-01-01

    Abstract Enamel is the hardest tissue in the human body covering the crowns of teeth. Whereas the underlying dental material dentin is very well characterised in terms of mechanical and fracture properties, available data for enamel are quite limited and are apart from the most recent investigation mainly based on indentation studies. Within the current study, stable crack-growth experiments in bovine enamel have been performed, to measure fracture resistance curves for enamel. Single edge...

  20. The development of enamel tubules during the formation of enamel in the marsupial Monodelphis domestica.

    OpenAIRE

    Sasagawa, I; Ferguson, M W

    1991-01-01

    In Monodelphis domestica, although both processes from odontoblasts and projections from ameloblasts were found in developing enamel, the majority of the contents of enamel tubules were probably processes that originated from odontoblasts. Processes from odontoblasts penetrating into enamel touched part of the ameloblasts in the stage of enamel formation. No specialised cell junctions were seen at the adherence between the two. There were no enamel tubules in the aprismatic and pseudoprismati...

  1. Enamel renal syndrome: A rare case report

    Directory of Open Access Journals (Sweden)

    S V Kala Vani

    2012-01-01

    Full Text Available Enamel renal syndrome is a very rare disorder associating amelogenesis imperfecta with nephrocalcinosis. It is known by various synonyms such as amelogenesis imperfecta nephrocalcinosis syndrome, MacGibbon syndrome, Lubinsky syndrome, and Lubinsky-MacGibbon syndrome. It is characterized by enamel agenesis and medullary nephrocalcinosis. This paper describes enamel renal syndrome in a female patient born in a consanguineous family.

  2. Sphingoid bases inhibit acid-induced demineralization of hydroxyapatite

    NARCIS (Netherlands)

    Valentijn-Benz, M.; van 't Hof, W.; Bikker, F.J.; Nazmi, K.; Brand, H.S.; Sotres, J.; Lindh, L.; Arnebrant, T.; Veerman, E.C.I.

    2015-01-01

    Calcium hydroxyapatite (HAp), the main constituent of dental enamel, is inherently susceptible to the etching and dissolving action of acids, resulting in tooth decay such as dental caries and dental erosion. Since the prevalence of erosive wear is gradually increasing, there is urgent need for

  3. Evaluation of enamel by scanning electron microscopy green LED associated to hydrogen peroxide 35% for dental bleaching

    Science.gov (United States)

    Monteiro, Juliana S. C.; de Oliveira, Susana C. P. S.; Zanin, Fátima A. A.; Santos, Gustavo M. P.; Sampaio, Fernando J. P.; Gomes Júnior, Rafael Araújo; Gesteira, Maria F. M.; Vannier-Santos, Marcos A.; Pinheiro, Antônio Luiz B.

    2014-02-01

    Dental bleaching is a frequently requested procedure in clinical dental practice. The literature is contradictory regarding the effects of bleaching agents on both morphology and demineralization of enamel after bleaching. The aim of this study was to analyze by SEM the effect of 35% neutral hydrogen peroxide cured by green LED. Buccal surfaces of 15 pre-molars were sectioned and marked with a central groove to allow experimental and control groups on the same specimen. For SEM, 75 electron micrographs were evaluated by tree observers at 43X, 220X and 1000X. Quantitative analysis for the determination of the surface elemental composition of the samples through X-ray microanalysis by SEM was also performed. The protocol tested neither showed significant changes in mineral composition of the samples nor to dental enamel structure when compared to controls. SEM analysis allowed inferring that there were marked morphological differences between the enamel samples highlighting the need for the use of the same tooth in comparative morphological studies. The tested protocol did not cause morphological damage the enamel surface when compared to their respective controls.

  4. Effect of Bioactive Glass air Abrasion on Shear Bond Strength of Two Adhesive Resins to Decalcified Enamel

    Science.gov (United States)

    Eshghi, Alireza; Khoroushi, Maryam; Rezvani, Alireza

    2014-01-01

    Objective: Bioactive glass air abrasion is a conservative technique to remove initial decalcified tissue and caries. This study examined the shear bond strength of composite resin to sound and decalcified enamel air-abraded by bioactive glass (BAG) or alumina using etch-and-rinse and self-etch adhesives. Materials and Methods: Forty-eight permanent molars were root-amputated and sectioned mesiodistally. The obtained 96 specimens were mounted in acrylic resin; the buccal and lingual surfaces remained exposed. A demineralizing solution was used to decalcify half the specimens. Both sound and decalcified specimens were divided into two groups of alumina and bioactive glass air abrasion. In each group, the specimens were subdivided into two subgroups of Clearfil SE Bond or OptiBond FL adhesives (n=12). Composite resin cylinders were bonded on enamel surfaces cured and underwent thermocycling. The specimens were tested for shear bond strength. Data were analyzed using SPSS 16.0 and three-way ANOVA (α=0.05). Similar to the experimental groups, the enamel surface of one specimen underwent SEM evaluation. Results: No significant differences were observed in composite resin bond strength subsequent to alumina or bioactive glass air abrasion preparation techniques (P=0.987). There were no statistically significant differences between the bond strength of etch-and-rinse and self-etch adhesive groups (P=1). Also, decalcified or intact enamel groups had no significant difference (P=0.918). However, SEM analysis showed much less enamel irregularities with BAG air abrasion compared to alumina air abrasion. Conclusion: Under the limitations of this study, preparation of both intact and decalcified enamel surfaces with bioactive glass air abrasion results in similar bond strength of composite resin in comparison with alumina air abrasion using etch-&-rinse or self-etch adhesives. PMID:25628694

  5. Effect of Bioactive Glass air Abrasion on Shear Bond Strength of Two Adhesive Resins to Decalcified Enamel.

    Directory of Open Access Journals (Sweden)

    Alireza Eshghi

    2014-12-01

    Full Text Available Bioactive glass air abrasion is a conservative technique to remove initial decalcified tissue and caries. This study examined the shear bond strength of composite resin to sound and decalcified enamel air-abraded by bioactive glass (BAG or alumina using etch-and-rinse and self-etch adhesives.Forty-eight permanent molars were root-amputated and sectioned mesiodistally. The obtained 96 specimens were mounted in acrylic resin; the buccal and lingual surfaces remained exposed. A demineralizing solution was used to decalcify half the specimens. Both sound and decalcified specimens were divided into two groups of alumina and bioactive glass air abrasion. In each group, the specimens were subdivided into two subgroups of Clearfil SE Bond or OptiBond FL adhesives (n=12. Composite resin cylinders were bonded on enamel surfaces cured and underwent thermocycling. The specimens were tested for shear bond strength. Data were analyzed using SPSS 16.0 and three-way ANOVA (α=0.05. Similar to the experimental groups, the enamel surface of one specimen underwent SEM evaluation.No significant differences were observed in composite resin bond strength subsequent to alumina or bioactive glass air abrasion preparation techniques (P=0.987. There were no statistically significant differences between the bond strength of etch-and-rinse and self-etch adhesive groups (P=1. Also, decalcified or intact enamel groups had no significant difference (P=0.918. However, SEM analysis showed much less enamel irregularities with BAG air abrasion compared to alumina air abrasion.Under the limitations of this study, preparation of both intact and decalcified enamel surfaces with bioactive glass air abrasion results in similar bond strength of composite resin in comparison with alumina air abrasion using etch-&-rinse or self-etch adhesives.

  6. Release of organics from BWR condensate demineralizer resins

    International Nuclear Information System (INIS)

    Ohira, Taku; Furukawa, Makoto; Sekiguchi, Masahiko; Takiguchi, Hideki; Deguchi, Tatsuya; Ino, Takao; Izumi, Takeshi; Hagiwara, Masahiro

    1998-01-01

    In BWRs, one of major factors to affect water chemistry in reactor is the organics leaching from condensate demineralizer. Especially, the organics from cation ion exchange resin (described CER hereafter) is intaken to reactor and changes to the sulfuric acid due to thermal decomposition and radiolysis, because CER contains sulfuric groups. In this paper, the influence of environmental parameters and structure of ion exchange resin (described IER hereafter) on the organics leaching are clarified by using 'the new method' developed for accurate measurement organics leaching from IER. Based on these results, the mechanism of the organics leaching from IER is discussed. (author)

  7. The role of mesoscopic modelling in understanding the response of dental enamel to mid-infrared radiation

    Energy Technology Data Exchange (ETDEWEB)

    Verde, A Vila [Department of Chemical Engineering, Fenske Laboratory, Pennsylvania State University, University Park, PA 16802 (United States); Ramos, M M D [Department of Physics, University of Minho, 4710-057 Braga (Portugal); Stoneham, A M [London Centre for Nanotechnology and Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT (United Kingdom)

    2007-05-21

    Human dental enamel has a porous mesostructure at the nanometre to micrometre scales that affects its thermal and mechanical properties relevant to laser treatment. We exploit finite-element models to investigate the response of this mesostructured enamel to mid-infrared lasers (CO{sub 2} at 10.6 {mu}m and Er:YAG at 2.94 {mu}m). Our models might easily be adapted to investigate ablation of other brittle composite materials. The studies clarify the role of pore water in ablation, and lead to an understanding of the different responses of enamel to CO{sub 2} and Er:YAG lasers, even though enamel has very similar average properties at the two wavelengths. We are able to suggest effective operating parameters for dental laser ablation, which should aid the introduction of minimally-invasive laser dentistry. In particular, our results indicate that, if pulses of {approx}10 {mu}s are used, the CO{sub 2} laser can ablate dental enamel without melting, and with minimal damage to the pulp of the tooth. Our results also suggest that pulses with 0.1-1 {mu}s duration can induce high stress transients which may cause unwanted cracking.

  8. The role of mesoscopic modelling in understanding the response of dental enamel to mid-infrared radiation

    Science.gov (United States)

    Vila Verde, A.; Ramos, M. M. D.; Stoneham, A. M.

    2007-05-01

    Human dental enamel has a porous mesostructure at the nanometre to micrometre scales that affects its thermal and mechanical properties relevant to laser treatment. We exploit finite-element models to investigate the response of this mesostructured enamel to mid-infrared lasers (CO2 at 10.6 µm and Er:YAG at 2.94 µm). Our models might easily be adapted to investigate ablation of other brittle composite materials. The studies clarify the role of pore water in ablation, and lead to an understanding of the different responses of enamel to CO2 and Er:YAG lasers, even though enamel has very similar average properties at the two wavelengths. We are able to suggest effective operating parameters for dental laser ablation, which should aid the introduction of minimally-invasive laser dentistry. In particular, our results indicate that, if pulses of ap10 µs are used, the CO2 laser can ablate dental enamel without melting, and with minimal damage to the pulp of the tooth. Our results also suggest that pulses with 0.1-1 µs duration can induce high stress transients which may cause unwanted cracking.

  9. The role of mesoscopic modelling in understanding the response of dental enamel to mid-infrared radiation

    International Nuclear Information System (INIS)

    Verde, A Vila; Ramos, M M D; Stoneham, A M

    2007-01-01

    Human dental enamel has a porous mesostructure at the nanometre to micrometre scales that affects its thermal and mechanical properties relevant to laser treatment. We exploit finite-element models to investigate the response of this mesostructured enamel to mid-infrared lasers (CO 2 at 10.6 μm and Er:YAG at 2.94 μm). Our models might easily be adapted to investigate ablation of other brittle composite materials. The studies clarify the role of pore water in ablation, and lead to an understanding of the different responses of enamel to CO 2 and Er:YAG lasers, even though enamel has very similar average properties at the two wavelengths. We are able to suggest effective operating parameters for dental laser ablation, which should aid the introduction of minimally-invasive laser dentistry. In particular, our results indicate that, if pulses of ∼10 μs are used, the CO 2 laser can ablate dental enamel without melting, and with minimal damage to the pulp of the tooth. Our results also suggest that pulses with 0.1-1 μs duration can induce high stress transients which may cause unwanted cracking

  10. The increasing of enamel calcium level after casein phosphopeptideamorphous calcium phosphate covering

    Directory of Open Access Journals (Sweden)

    Widyasri Prananingrum

    2012-06-01

    Full Text Available Background: Caries process is characterized by the presence of demineralization. Demineralization is caused by organic acids as a result of carbohydrate substrate fermentation. Remineralization is a natural repair process for non-cavitated lesions. Remineralization occurs if there are Ca2+ and PO43- ions in sufficient quantities. Casein-amorphous calcium phosphate phosphopeptide (CPP-ACP is a paste material containing milk protein (casein, that actually contains minerals, such as calcium and phosphate. The casein ability to stabilize calcium phosphate and enhance mineral solubility and bioavailability confers upon CPP potential to be biological delivery vehicles for calcium and phosphate. Purpose: The aim of this study was to determine the calcium levels in tooth enamel after being covered with CPP-ACP 2 times a day for 3, 14 and 28 days. Methods: Sample were bovine incisors of 3 year old cows divided into 4 groups, namely group I as control group, group II, III and IV as treatment groups covered with CPP-ACP 2 times a day. All of those teeth were then immersed in artificial saliva. Group II was immersed for 3 days, while group III was immersed for 14 days, and group IV was immersed for 28 days. One drop of CPP-ACP was used to cover the entire labial surface of teeth. The measurement of the calcium levels was then conducted by using titration method. All data were analyzed by One- Way ANOVA test with 5% degree of confidence. Results: The results showed significant difference of the calcium levels in tooth enamel of those groups after covered with CPP-ACP 2 times a day for 3, 14 and 28 days (p = 0.001. There is also significant difference of the calcium levels in tooth enamel of those treatment groups and the control group (p = 0.001. Conclusion: The calcium levels of tooth enamel are increased after covered with CPP-ACP 2 times a day for 3, 14 and 28 days.Latar belakang: Proses terjadinya karies gigi ditandai oleh adanya demineralisasi

  11. Laser in operative dentistry

    OpenAIRE

    E. Yasini; Gh. Rahbari; A. Matorian

    1994-01-01

    Today laser has a lot of usage in medicine and dentistry. In the field of dentistry, laser is used in soft tissue surgery, sterilization of canals (in root canal therapy) and in restorative dentistry laser is used for cavity preparation, caries removal, sealing the grooves (in preventive dentistry), etching enamel and dentin, composite polymerization and removal of tooth sensitivity. The use of Co2 lasers and Nd: YAG for cavity preparation, due to creating high heat causes darkness and cracks...

  12. Morphological Evaluation of the Adhesive/Enamel interfaces of Two-step Self-etching Adhesives and Multimode One-bottle Self-etching Adhesives.

    Science.gov (United States)

    Sato, Takaaki; Takagaki, Tomohiro; Matsui, Naoko; Hamba, Hidenori; Sadr, Alireza; Nikaido, Toru; Tagami, Junji

    To evaluate the acid-base resistant zone (ABRZ) at the adhesive/enamel interface of self-etching adhesives with or without prior phosphoric acid etching. Four adhesives were used in 8 groups: Clearfil SE Bond (SEB), Optibond XTR (XTR), Scotchbond Universal Adhesive (SBU), and Clearfil BOND SE ONE (ONE) without prior phosphoric-acid etching, and each adhesive with phosphoric acid etching for 10 s (P-SEB, P-XTR, P-SBU and P-ONE, respectively). After application of self-etching adhesives on ground enamel surfaces of human teeth, a flowable composite was placed. For observation of the acid-base resistant zone (ABRZ), the bonded interface was exposed to demineralizing solution (pH 4.5) for 4.5 h, followed by 5% NaOCl with ultrasonication for 20 min. After the acid-base challenge, morphological attributes of the interface were observed using SEM. ABRZ formation was confirmed in all groups. The funnel-shaped erosion beneath the interface was present in SBU and ONE, where nearly 10 to 15 μm of enamel was dissolved. With phosphoric acid etching, the ABRZs were obviously thicker compared with no phosphoric acid etching. Enamel beneath the bonding interface was more susceptible to acid dissolution in SBU and ONE. In the case of the one-bottle self-etching adhesives and universal adhesives that intrinsically have higher pH values, enamel etching should be recommended to improve the interfacial quality.

  13. A fiber-optic setup for quantification of root surface demineralization

    NARCIS (Netherlands)

    vanderVeen, MH; tenBosch, JJ

    A fiber-optic fluorescence observation (FOFO) technique has been developed for the quantification of demineralized root dentin, The method was tested on 40 specimens of in vitro demineralized parts of human root dentin, Fluorescein sodium salt was used as a penetrating dye, The fluorescein sodium

  14. Reverse osmosis using for water demineralization for supplying the NPP and TPP steam generators

    International Nuclear Information System (INIS)

    Mamet, A.P.; Sitnyakovskij, Yu.A.

    2000-01-01

    Paper analyzes the conditions affecting the efficiency of water reverse-osmosis demineralization for NPP and TPP steam generators and presents an example of efficient application of a membrane reverse-osmosis facility serving as the first stage of water demineralization at the Mosehnergo Joint-Stock Company heating and power plant no. 23 to feed boilers [ru

  15. Lactic acid demineralization of shrimp shell and chitosan synthesis

    Directory of Open Access Journals (Sweden)

    Alewo Opuada AMEH

    2015-05-01

    Full Text Available The use of lactic acid was compared to hydrochloric acid for shrimp shell demineralization in chitosan synthesis. Five different acid concentrations were considered for the study: 1.5M, 3.0M, 4.5M, 6.0M and 7.5M. After demineralization, the shrimp shell were deproteinized and subsequently deacetylated to produce chitosan using sodium hydroxide solution. The synthesized chitosan samples were characterized using solubility, FTIR, SEM, XRD and viscosity. The SEM, FTIR and XRD analysis indicated that chitosan was synthesized with a high degree of deacetylation (83.18±2.11 when lactic acid was used and 84.2±5.00 when HCl was used. The degree of deacetylation and the molecular weight of the chitosan samples were also estimated. ANOVA analysis (at 95% confidence interval indicated that acid type and concentration did not significantly affect the solubility, degree of deacetylation, viscosity and molecular weight of the chitosan within the range considered.

  16. Extraskeletal and intraskeletal new bone formation induced by demineralized bone matrix combined with bone marrow cells

    International Nuclear Information System (INIS)

    Lindholm, T.S.; Nilsson, O.S.; Lindholm, T.C.

    1982-01-01

    Dilutions of fresh autogenous bone marrow cells in combination with allogeneic demineralized cortical bone matrix were tested extraskeletally in rats using roentgenographic, histologic, and 45 Ca techniques. Suspensions of bone marrow cells (especially diluted 1:2 with culture media) combined with demineralized cortical bone seemed to induce significantly more new bone than did demineralized bone, bone marrow, or composite grafts with whole bone marrow, respectively. In a short-term spinal fusion experiment, demineralized cortical bone combined with fresh bone marrow produced new bone and bridged the interspace between the spinous processes faster than other transplantation procedures. The induction of undifferentiated host cells by demineralized bone matrix is further complemented by addition of autogenous, especially slightly diluted, bone marrow cells

  17. Ethylene oxide gas sterilization does not reduce the osteoinductive potential of demineralized bone in rats

    DEFF Research Database (Denmark)

    Solheim, E; Pinholt, E M; Bang, G

    1995-01-01

    It has been shown that different sterilization procedures of demineralized bone may influence its osteoinductive properties. The aim of this study was to evaluate the effect of ethylene oxide sterilization for 1, 3, and 6 hours on the osteoinductive potential of allogeneic demineralized bone...... implanted heterotopically in rats. Sixty male Wistar rats were randomly assigned to one of four groups, A through D, and four demineralized bone chips (2.8 mg) were implanted in a pouch created between the right oblique abdominal muscles in each animal. In Group A, the demineralized bone was implanted...... without prior sterilization of the material, whereas the demineralized bone implanted in Groups B, C, and D had been sterilized in ethylene oxide gas for 1, 3, or 6 hours, respectively, and aerated for 48 hours. At 4 weeks postoperatively, bone formation was evaluated quantitatively by strontium 85 uptake...

  18. Regeneration of calvarial defects by a composite of bioerodible polyorthoester and demineralized bone in rats

    DEFF Research Database (Denmark)

    Solheim, E; Pinholt, E M; Bang, G

    1992-01-01

    A study was performed to evaluate regeneration of defects in rat calvaria either unfilled or filled with a bioerodible polyorthoester only, demineralized bone only, or a composite of both. At 4 weeks, histological and radiographic studies showed that defects filled with a composite of bioerodible...... polyorthoester and demineralized bone or demineralized bone alone were bridged by bone. Unfilled defects or defects filled with polyorthoester only did not heal. The polyorthoester caused slight inflammation that subsided by 3 weeks, and only traces of the filler could be detected at 4 weeks. The polyorthoester...... provided local hemostasis when used either alone or in composites with demineralized bone. The composite implant was moldable, easily contoured, and technically easier to use than demineralized bone alone....

  19. Fluorine uptake into the human enamel surface from fluoride-containing sealing materials during cariogenic pH cycling

    Energy Technology Data Exchange (ETDEWEB)

    Yasuhiro, Matsuda, E-mail: matsuda@den.hokudai.ac.jp [Department of Restorative Dentistry, Graduate School of Dental Medicine Hokkaido University (Japan); Katsushi, Okuyama [Department of Restorative Dentistry, Graduate School of Dental Medicine Hokkaido University (Japan); Hiroko, Yamamoto [Graduate School of Dentistry, Osaka University (Japan); Hisanori, Komatsu [Department of Restorative Dentistry, Graduate School of Dental Medicine Hokkaido University (Japan); Masashi, Koka; Takahiro, Sato [Takasaki Advanced Radiation Research Institute, JAEA (Japan); Naoki, Hashimoto; Saiko, Oki; Chiharu, Kawamoto; Hidehiko, Sano [Department of Restorative Dentistry, Graduate School of Dental Medicine Hokkaido University (Japan)

    2015-04-01

    To prevent the formation of caries and reduce dentin hypersensitivity, sealing materials, either with or without fluoride, are generally applied on the tooth in clinical practice. Application of fluoride-free sealing materials results in the formation of an acid-resistant layer on the tooth surface. On the other hand, fluoride-containing sealing materials might not only form an acid-resistant layer but could possibly further provide fluoride to enhance remineralization and reduce demineralization. In this study, the demineralization prevention ability and fluorine uptake rate in human enamel of fluoride-containing sealing materials [“MS coats F” (MSF)] and fluoride-free sealing materials (“hybrid coats 2” [HI]) were evaluated using an automatic pH cycling system. Each material was applied to the original tooth surface, the cut surfaces were covered with sticky wax, and the automatic pH-cycling system simulated daily acid changes (pH 6.8–4.5) occurring in the oral cavity for 4 weeks. Caries progression was analyzed using transverse microradiography (TMR) taken pre and post the 4 weeks of pH cycling. The fluorine and calcium distributions in the carious lesion in each specimen were evaluated using the proton-induced gamma emission (PIGE) and proton-induced X-ray (PIXE) techniques, respectively. TMR analysis showed that both MSF and HI had a caries-preventing effect after 4 weeks of pH cycling. PIGE/PIXE analysis demonstrated that only MSF resulted in fluoride uptake in the enamel surface. Therefore, MSF can help to form an acid-resistant layer and provide fluoride to the enamel surface. The presence of fluoride on the enamel surface suggested that MSF could prevent demineralization, even if the acid-resistant layer was removed, in clinical settings. The data obtained using the PIGE and PIXE techniques are useful for understanding the benefits of the use of a fluoride-containing sealing material for preventing caries.

  20. Fluorine uptake into the human enamel surface from fluoride-containing sealing materials during cariogenic pH cycling

    International Nuclear Information System (INIS)

    Yasuhiro, Matsuda; Katsushi, Okuyama; Hiroko, Yamamoto; Hisanori, Komatsu; Masashi, Koka; Takahiro, Sato; Naoki, Hashimoto; Saiko, Oki; Chiharu, Kawamoto; Hidehiko, Sano

    2015-01-01

    To prevent the formation of caries and reduce dentin hypersensitivity, sealing materials, either with or without fluoride, are generally applied on the tooth in clinical practice. Application of fluoride-free sealing materials results in the formation of an acid-resistant layer on the tooth surface. On the other hand, fluoride-containing sealing materials might not only form an acid-resistant layer but could possibly further provide fluoride to enhance remineralization and reduce demineralization. In this study, the demineralization prevention ability and fluorine uptake rate in human enamel of fluoride-containing sealing materials [“MS coats F” (MSF)] and fluoride-free sealing materials (“hybrid coats 2” [HI]) were evaluated using an automatic pH cycling system. Each material was applied to the original tooth surface, the cut surfaces were covered with sticky wax, and the automatic pH-cycling system simulated daily acid changes (pH 6.8–4.5) occurring in the oral cavity for 4 weeks. Caries progression was analyzed using transverse microradiography (TMR) taken pre and post the 4 weeks of pH cycling. The fluorine and calcium distributions in the carious lesion in each specimen were evaluated using the proton-induced gamma emission (PIGE) and proton-induced X-ray (PIXE) techniques, respectively. TMR analysis showed that both MSF and HI had a caries-preventing effect after 4 weeks of pH cycling. PIGE/PIXE analysis demonstrated that only MSF resulted in fluoride uptake in the enamel surface. Therefore, MSF can help to form an acid-resistant layer and provide fluoride to the enamel surface. The presence of fluoride on the enamel surface suggested that MSF could prevent demineralization, even if the acid-resistant layer was removed, in clinical settings. The data obtained using the PIGE and PIXE techniques are useful for understanding the benefits of the use of a fluoride-containing sealing material for preventing caries

  1. Study of the hydrogen peroxide bleaching agent effects on bovine enamel using X-ray fluorescence

    International Nuclear Information System (INIS)

    Moreira, Ruda F.; Calazans, Fernanda S.; Miranda, Mauro S.; Santos, Ramon S.; Anjos, Marcelino J.; Assis, Joaquim T.

    2013-01-01

    Hydrogen Peroxide's a bleaching agent capable of oxidizing a wide range of colored organic, causing discoloration and hence bleaching of the substrate, but some authors related the occurrence of side effects related to bleaching of the tooth structure, such as changes in morphology superficial. It was used 6 bovine incisors, each tooth was initially evaluated six times in different areas to obtain the count of elements phosphorus and calcium using X-Ray Fluorescence. The teeth were randomly divided in two groups: both groups were submitted to bleaching in office with hydrogen peroxide 38%, once a week during three weeks. Group 1 was stored in distilled water and group 2 in artificial saliva, between the sessions. The measurements were repeated every seven days before the bleaching treatment. Besides that, changes in mineral levels were always assessed in the same area and using the same procedure. It was observed that the bleaching was not able to demineralize the tooth enamel studied. (author)

  2. Effects of magnesium and fluoride on ion exchange and acid resistance of enamel

    Energy Technology Data Exchange (ETDEWEB)

    Feagin, F; Thiradilok, S [Alabama Univ., Birmingham (USA)

    1979-01-01

    Labial surfaces of bovine incisor enamel, after weak acid demineralization, were exposed for 24 h in solutions that contained trace levels of calcium as /sup 45/Ca, 0.4 mM NaF, and 1.0 mM MgCl/sub 2/ at pH 7.0. The solutions approached saturation with apatites in the absence of NaF, and saturation with fluorapatites in the presence of NaF. NaF greatly increased the exchange of /sup 45/Ca. MgCl/sub 2/ decreased /sup 45/Ca exchange, but had no effect on F/sup -/ exchange in the surface minerals. MgCl/sub 2/ decreased, while NaF increased the acid resistance of the exchanged surface on later exposure to 10 mM acetic acid at pH 4.5. These results indicated that magnesium in oral fluids and tooth minerals may promote caries.

  3. Remineralization of human enamel in vivo.

    NARCIS (Netherlands)

    Gelhard, Thaddeus Bernardus Franciscus Maria

    1982-01-01

    In the last decade some investigators showed that demineralization could be reversed (remineralization). Recent studies demonstrated conclusively that dental caries is actually a situation of unbalance between de- and remineralization. Aim of the investigation was firstly to study remineralization

  4. VIDRIADO CON LÁSER DE Nd: YAG SOBRE AZULEJOS RECUBIERTOS DE BARNICES DE COBALTO CON FRITA BORÁCICA Y SIN FRITA VIDRADO COM Laser De Nd: YAG SOBRE AZULEJOS RECOBERTOS DE VERNIZES DE COBALTO COM FRITA BORÁCICA E SEM FRITA Nd: YAG LASER ENAMELING ON GLAZED TILES COATED WITH COBALT VARNISHES WITH AND WITHOUT BORAX FRIT

    Directory of Open Access Journals (Sweden)

    Maryory Astrid Gómez

    2010-07-01

    ças durante o processo sem requerer longas paradas, e a geração de resíduos é mínima ou quase nula. Neste estudo se apresentam os resultados obtidos no vidrado com laser Nd:YAG (l=1064 nm, sobre as superfícies esmaltadas de azulejos, as quais foram previamente recobertas com pigmento preto de cobalto e um verniz constituído com este mesmo pigmento e frita borácica. Com o laser operando em modo contínuo (CW, marcaram-se uma série de linhas, cujo largo e profundidade evidenciaram uma dependência direta com a variação da potência e velocidade de deslocamento do feixe laser sobre a superfície do azulejo. Finalmente, estas linhas vidradas foram analisadas por microscopia óptica, espectroscopia de dispersão de energia (EDS e difração de raios X.Ceramic and architectonic materials industries employ different marking techniques with two classical applications, identification and decoration of manufactured objects. Laser techniques using for these proposes are been implemented in growing way, due to theirs advantages with regard to the conventional baking such as: heat is concentrated only on the radiated zone which involves a smaller energy consumption without affecting significantly the rest of the piece; graphic patterns with of highly spatial resolution are obtained; it permits to introduce changes during the process no requiring long stops and low or almost none generation of residues. In this study the results obtained from Nd:YAG (l=1064 nm laser glazing on the enameled surfaces of glazed tiles, which were previously covered with cobalt black pigment and an enamel constituted with this same pigment and borax frit, are presented. With the laser operating in continuous wave (CW, a series of lines were marked, whose width and depth showed a direct dependence with the variation in the power and scan speed of the laser beam on the glazed tile surface. Finally, these glazed lines were characterized by optical microscopy, energy dispersion spectroscopy (EDS, and X

  5. Noninvasive cross-sectional visualization of enamel cracks by optical coherence tomography in vitro.

    Science.gov (United States)

    Imai, Kanako; Shimada, Yasushi; Sadr, Alireza; Sumi, Yasunori; Tagami, Junji

    2012-09-01

    Current methods for the detection of enamel cracks are not very sensitive. Optical coherence tomography (OCT) is a promising diagnostic method for creating cross-sectional imaging of internal biological structures by measuring echoes of backscattered light. In this study, swept-source OCT (SS-OCT), a variant of OCT that sweeps the near-infrared wavelength at a rate of 30 kHz over a span of 110 nm centered at 1,330 nm, was examined as a diagnostic tool for enamel cracks. Twenty extracted human teeth were visually evaluated without magnification. SS-OCT was conducted on locations in which the presence of an enamel crack was suspected under visual inspection using a photocuring unit as transillumination. The teeth were then sectioned with a diamond saw and directly viewed under a confocal laser scanning microscope (CLSM). Using SS-OCT, the presence and extent of enamel cracks were clearly visualized on images based on backscattering signals. The extension of enamel cracks beyond the dentinoenamel junction could also be confirmed. The diagnostic accuracy of SS-OCT was shown to be superior to that of conventional visual inspection--the area under the receiver operating characteristic curve--for the detection of enamel crack and whole-thickness enamel crack; visual inspection: 0.69 and 0.56, SS-OCT: 0.85 and 0.77, respectively). Enamel cracks can be clearly detected because of increased backscattering of light matching the location of the crack, and the results correlated well with those from the CLSM. Copyright © 2012 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  6. Effects of blue light irradiation on dental enamel remineralization in vitro; Avaliacao dos efeitos promovidos pela radiacao azul na remineralizacao do esmalte dentario in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Kato, Ilka Tiemy

    2009-07-01

    This study aimed to investigate the effects of blue radiation on dental enamel remineralization. In addition, a methodology of analysis was developed to evaluate alterations of enamel mineral content by optical coherence tomography. Artificial lesions were formed in bovine dental enamel slabs by immersing the samples in under saturated acetate buffer (2 mL/mm{sup 2} e 6.25 mL/mm{sup 2}). The lesions were irradiated with blue LED (l=455{+-}20nm), with radiant power of 110 mW, irradiance of 1.4 W/cm{sup 2}, radiant exposure of 13.8 J/{sup c}m2 and exposure time of 10 s. Remineralization was induced by pH-cycling model during 8 days. Cross-sectional hardness and optical coherence tomography (OCT) were used to assess mineral changes after remineralization. Hardness data showed that non-irradiated enamel lesions presented higher mineral content than irradiated ones and this difference was more evident in lesions formed in higher solution volume. The analysis of OCT signal also demonstrated that the mineral content of non-irradiated group was higher than in irradiated one; however, no significant difference was observed. Furthermore, significant differences in OCT sign were detected between sound and demineralized enamel. Based on the results obtained in the present study it can be concluded that blue radiation caused an inhibition of enamel remineralization. The methodology adopted for OCT analysis allowed the quantification of enamel mineral loss; however, the remineralization process could not be evaluated by this technique. (author)

  7. Use of the submerged demineralizer system at Three Mile Island

    International Nuclear Information System (INIS)

    Hofstetter, K.J.; Hitz, C.G.

    1983-01-01

    The Submerged Demineralizer System (SDS) has been used at Three Mile Island-Unit 2 (TMI-2) to process more than 1.5 million gallons of water contaminated as a result of the March, 1979 accident. The SDS has processed approximately 315,000 gallons of water accumulated in tanks in the Auxiliary Building, approximately 650,000 gallons of water that existed in the Reactor Containment Building basement, approximately 90,000 gallons of primary reactor coolant (processed in a bleed and feed mode) and approximately 169,000 gallons of water used in the large scale decontamination of the Reactor Building. During its operation, the SDS has immobilized approximately 340,000 curies of the principal fission products 137 Cs, 134 Cs and 90 Sr on inorganic media (zeolite). Processing summaries and performance evaluations are presented. 12 references, 1 figure, 6 tables

  8. Demineralized dentin matrix composite collagen material for bone tissue regeneration.

    Science.gov (United States)

    Li, Jianan; Yang, Juan; Zhong, Xiaozhong; He, Fengrong; Wu, Xiongwen; Shen, Guanxin

    2013-01-01

    Demineralized dentin matrix (DDM) had been successfully used in clinics as bone repair biomaterial for many years. However, particle morphology of DDM limited it further applications. In this study, DDM and collagen were prepared to DDM composite collagen material. The surface morphology of the material was studied by scanning electron microscope (SEM). MC3T3-E1 cells responses in vitro and tissue responses in vivo by implantation of DDM composite collagen material in bone defect of rabbits were also investigated. SEM analysis showed that DDM composite collagen material evenly distributed and formed a porous scaffold. Cell culture and animal models results indicated that DDM composite collagen material was biocompatible and could support cell proliferation and differentiation. Histological evaluation showed that DDM composite collagen material exhibited good biocompatibility, biodegradability and osteoconductivity with host bone in vivo. The results suggested that DDM composite collagen material might have a significant clinical advantage and potential to be applied in bone and orthopedic surgery.

  9. Effect of ethylene oxide sterilization on the osteoinductivity of demineralized allograft bone powder

    International Nuclear Information System (INIS)

    Hamid Reza Aghayan; Babak Arjmand; Mehdi Golestani; Farokh Tirgari

    2008-01-01

    Full text: Ethylene oxide has been widely used for secondary sterilization of bone allograft to reduce the risk of infection and associated complications. In this study we investigate the effects of ethylene oxide gas sterilization on the osteoinductivity of demineralized bone Powder. Eighteen rats received two separate implants consisting of 30 mg aseptically prepared and 30 mg ethylene oxide-sterilized demineralized bone powder. The demineralized bone powder from each group was placed into two separate muscle pouch created in the paravertebral muscles of each rat. After 4 weeks each implantation site was removed with 0.5 cm normal tissue around the implant. Histological examination was done to determine the presence or absence of osteoinduction. All except one of eighteen aseptically prepared demineralized bone powder sites histologically contained new bone elements (94.4%) and fourteen (77.7%) of ethylene oxide sterilized demineralized bone powder sites showed evidence of new bone elements (p>0.05). There is no significant difference in osteoblast formation in two groups. We concluded that ethylene oxide sterilization in 42 degree C did not significantly reduce the osteoinductivity of demineralized bone powder. So ethylene oxide can be considered as a suitable but not perfect method for secondary sterilization of demineralized bone powder. (Author)

  10. Enamel proteins mitigate mechanical and structural degradations in mature human enamel during acid attack

    Science.gov (United States)

    Lubarsky, Gennady V.; Lemoine, Patrick; Meenan, Brian J.; Deb, Sanjukta; Mutreja, Isha; Carolan, Patrick; Petkov, Nikolay

    2014-04-01

    A hydrazine deproteination process was used to investigate the role of enamel proteins in the acid erosion of mature human dental enamel. Bright field high resolution transmission electron micrographs and x-ray diffraction analysis show no crystallographic changes after the hydrazine treatment with similar nanoscale hydroxyapatite crystallite size and orientation for sound and de-proteinated enamel. However, the presence of enamel proteins reduces the erosion depth, the loss of hardness and the loss of structural order in enamel, following exposure to citric acid. Nanoindentation creep is larger for sound enamel than for deproteinated enamel but it reduces in sound enamel after acid attack. These novel results are consistent with calcium ion-mediated visco-elasticty in enamel matrix proteins as described previously for nacre, bone and dental proteins. They are also in good agreement with a previous double layer force spectroscopy study by the authors which found that the proteins electrochemically buffer enamel against acid attack. Finally, this suggests that acid attack, and more specifically dental erosion, is influenced by ionic permeation through the enamel layer and that it is mitigated by the enamel protein matrix.

  11. Enamel proteins mitigate mechanical and structural degradations in mature human enamel during acid attack

    International Nuclear Information System (INIS)

    Lubarsky, Gennady V; Lemoine, Patrick; Meenan, Brian J; Deb, Sanjukta; Mutreja, Isha; Carolan, Patrick; Petkov, Nikolay

    2014-01-01

    A hydrazine deproteination process was used to investigate the role of enamel proteins in the acid erosion of mature human dental enamel. Bright field high resolution transmission electron micrographs and x-ray diffraction analysis show no crystallographic changes after the hydrazine treatment with similar nanoscale hydroxyapatite crystallite size and orientation for sound and de-proteinated enamel. However, the presence of enamel proteins reduces the erosion depth, the loss of hardness and the loss of structural order in enamel, following exposure to citric acid. Nanoindentation creep is larger for sound enamel than for deproteinated enamel but it reduces in sound enamel after acid attack. These novel results are consistent with calcium ion-mediated visco-elasticty in enamel matrix proteins as described previously for nacre, bone and dental proteins. They are also in good agreement with a previous double layer force spectroscopy study by the authors which found that the proteins electrochemically buffer enamel against acid attack. Finally, this suggests that acid attack, and more specifically dental erosion, is influenced by ionic permeation through the enamel layer and that it is mitigated by the enamel protein matrix. (papers)

  12. Comparison of effects of diode laser and CO2 laser on human teeth and their usefulness in topical fluoridation.

    Science.gov (United States)

    González-Rodríguez, Alberto; de Dios López-González, Juan; del Castillo, Juan de Dios Luna; Villalba-Moreno, Juan

    2011-05-01

    Various authors have reported more effective fluoridation from the use of lasers combined with topical fluoride than from conventional topical fluoridation. Besides the beneficial effect of lasers in reducing the acid solubility of an enamel surface, they can also increase the uptake of fluoride. The study objectives were to compare the action of CO(2) and GaAlAs diode lasers on dental enamel and their effects on pulp temperature and enamel fluoride uptake. Different groups of selected enamel surfaces were treated with amine fluoride and irradiated with CO(2) laser at an energy power of 1 or 2 W or with diode laser at 5 or 7 W for 15 s each and compared to enamel surfaces without treatment or topical fluoridated. Samples were examined by means of environmental scanning electron microscopy (ESEM). Surfaces of all enamel samples were then acid-etched, measuring the amount of fluoride deposited on the enamel by using a selective ion electrode. Other enamel surfaces selected under the same conditions were irradiated as described above, measuring the increase in pulp temperature with a thermocouple wire. Fluorination with CO(2) laser at 1 W and diode laser at 7 W produced a significantly greater fluoride uptake on enamel (89 ± 18 mg/l) and (77 ± 17 mg/l) versus topical fluoridation alone (58 ± 7 mg/l) and no treatment (20 ± 1 mg/l). Diode laser at 5 W produced a lesser alteration of the enamel surface compared to CO(2) laser at 1 W, but greater pulp safety was provided by CO(2) laser (ΔT° 1.60° ± 0.5) than by diode laser (ΔT° 3.16° ± 0.6). Diode laser at 7 W and CO(2) laser at 2 W both caused alterations on enamel surfaces, but great pulp safety was again obtained with CO(2) (ΔT° 4.44° ± 0.60) than with diode (ΔT° 5.25° ± 0.55). Our study demonstrates that CO(2) and diode laser irradiation of the enamel surface can both increase fluoride uptake; however, laser energy parameters must be carefully

  13. Computational modeling of ultra-short-pulse ablation of enamel

    Energy Technology Data Exchange (ETDEWEB)

    London, R.A.; Bailey, D.S.; Young, D.A. [and others

    1996-02-29

    A computational model for the ablation of tooth enamel by ultra-short laser pulses is presented. The role of simulations using this model in designing and understanding laser drilling systems is discussed. Pulses of duration 300 sec and intensity greater than 10{sup 12} W/cm{sup 2} are considered. Laser absorption proceeds via multi-photon initiated plasma mechanism. The hydrodynamic response is calculated with a finite difference method, using an equation of state constructed from thermodynamic functions including electronic, ion motion, and chemical binding terms. Results for the ablation efficiency are presented. An analytic model describing the ablation threshold and ablation depth is presented. Thermal coupling to the remaining tissue and long-time thermal conduction are calculated. Simulation results are compared to experimental measurements of the ablation efficiency. Desired improvements in the model are presented.

  14. Dental enamel cells express functional SOCE channels.

    Science.gov (United States)

    Nurbaeva, Meerim K; Eckstein, Miriam; Concepcion, Axel R; Smith, Charles E; Srikanth, Sonal; Paine, Michael L; Gwack, Yousang; Hubbard, Michael J; Feske, Stefan; Lacruz, Rodrigo S

    2015-10-30

    Dental enamel formation requires large quantities of Ca(2+) yet the mechanisms mediating Ca(2+) dynamics in enamel cells are unclear. Store-operated Ca(2+) entry (SOCE) channels are important Ca(2+) influx mechanisms in many cells. SOCE involves release of Ca(2+) from intracellular pools followed by Ca(2+) entry. The best-characterized SOCE channels are the Ca(2+) release-activated Ca(2+) (CRAC) channels. As patients with mutations in the CRAC channel genes STIM1 and ORAI1 show abnormal enamel mineralization, we hypothesized that CRAC channels might be an important Ca(2+) uptake mechanism in enamel cells. Investigating primary murine enamel cells, we found that key components of CRAC channels (ORAI1, ORAI2, ORAI3, STIM1, STIM2) were expressed and most abundant during the maturation stage of enamel development. Furthermore, inositol 1,4,5-trisphosphate receptor (IP3R) but not ryanodine receptor (RyR) expression was high in enamel cells suggesting that IP3Rs are the main ER Ca(2+) release mechanism. Passive depletion of ER Ca(2+) stores with thapsigargin resulted in a significant raise in [Ca(2+)]i consistent with SOCE. In cells pre-treated with the CRAC channel blocker Synta-66 Ca(2+) entry was significantly inhibited. These data demonstrate that enamel cells have SOCE mediated by CRAC channels and implicate them as a mechanism for Ca(2+) uptake in enamel formation.

  15. Comparative evaluation of two different remineralizing agents on the microhardness of bleached enamel surface: Results of an in vitro study.

    Science.gov (United States)

    Kaur, Gunpriya; Sanap, Anita U; Aggarwal, Shalini D; Kumar, Tanaya

    2015-01-01

    Various agents are studied for their remineralization potential. To evaluate the effect of GC Tooth Mousse and Toothmin Tooth Cream on microhardness of bleached enamel. In vitro- study. Twenty freshly extracted anterior teeth were cut sagittally and impregnated in cold cure acrylic resin. Specimens were kept in artificial saliva to prevent from dehydration. After measuring baseline hardness, teeth were randomly divided into two groups. Everbrite In - Office Tooth whitening kit (Dentamerica) was used to demineralize the teeth following which hardness was measured again. Teeth in group one (n=10) and group two (n=10) were treated with GC tooth mousse (Recaldent) and Toothmin tooth cream (Abbott Healthcare Pvt.Ltd) daily for seven days and microhardness of enamel surface was measured. Mean, SD, and percentage change in the microhardness were calculated. Student's paired t-test was used to evaluate the signifi cance of change from initial, after bleaching for 5 min and after 1-week remineralization Unpaired't' test was used to compare difference between groups. Microhardness significantly decreased in both groups after bleaching (% change group one: 3.24% group two: 3.26% in group; P0.05). Both GC Tooth Mousse (Recaldent) and Toothmin Tooth cream (Abbott Healthcare Pvt.Ltd) increase the microhardness of bleached enamel. Toothmin tooth cream is a better agent for increasing microhardness, although difference is not significant.

  16. A Microbeam Small-Angle X-ray Scattering Study on Enamel Crystallites in Subsurface Lesion

    Energy Technology Data Exchange (ETDEWEB)

    Yagi, N; Ohta, N; Matsuo, T [Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo, Hyogo 679-5198 (Japan); Tanaka, T; Terada, Y; Kamasaka, H; Kometani, T, E-mail: yagi@spring8.or.j [Ezaki Glico Co. Ltd., 4-6-5 Utajima, Nishiyodogawa-ku, Osaka 555-8502 (Japan)

    2010-10-01

    The early caries lesion in bovine tooth enamel was studied by two different X-ray diffraction systems at the SPring-8 third generation synchrotron radiation facility. Both allowed us simultaneous measurement of the small and large angle regions. The beam size was 6{mu}m at BL40XU and 50{mu}m at BL45XU. The small-angle scattering from voids in the hydroxyapatite crystallites and the wide-angle diffraction from the hydroxyapatite crystals were observed simultaneously. At BL40XU an X-ray image intensifier was used for the small-angle and a CMOS flatpanel detector for the large-angle region. At BL45XU, a large-area CCD detector was used to cover both regions. A linear microbeam scan at BL40XU showed a detailed distribution of voids and crystals and made it possible to examine the structural details in the lesion. The two-dimensional scan at BL45XU showed distribution of voids and crystals in a wider region in the enamel. The simultaneous small- and wide-angle measurement with a microbeam is a powerful tool to elucidate the mechanisms of demineralization and remineralization in the early caries lesion.

  17. A Microbeam Small-Angle X-ray Scattering Study on Enamel Crystallites in Subsurface Lesion

    International Nuclear Information System (INIS)

    Yagi, N; Ohta, N; Matsuo, T; Tanaka, T; Terada, Y; Kamasaka, H; Kometani, T

    2010-01-01

    The early caries lesion in bovine tooth enamel was studied by two different X-ray diffraction systems at the SPring-8 third generation synchrotron radiation facility. Both allowed us simultaneous measurement of the small and large angle regions. The beam size was 6μm at BL40XU and 50μm at BL45XU. The small-angle scattering from voids in the hydroxyapatite crystallites and the wide-angle diffraction from the hydroxyapatite crystals were observed simultaneously. At BL40XU an X-ray image intensifier was used for the small-angle and a CMOS flatpanel detector for the large-angle region. At BL45XU, a large-area CCD detector was used to cover both regions. A linear microbeam scan at BL40XU showed a detailed distribution of voids and crystals and made it possible to examine the structural details in the lesion. The two-dimensional scan at BL45XU showed distribution of voids and crystals in a wider region in the enamel. The simultaneous small- and wide-angle measurement with a microbeam is a powerful tool to elucidate the mechanisms of demineralization and remineralization in the early caries lesion.

  18. Fluoride concentration in urine after silver diamine fluoride application on tooth enamel

    Science.gov (United States)

    Sari, D. L.; Bahar, A.; Gunawan, H. A.; Adiatman, M.; Rahardjo, A.; Maharani, D. A.; Toptanci, I. R.; Yavuz, I.

    2017-08-01

    Silver Diammine Fluoride (SDF), which contains fluoride, is known to inhibit tooth enamel demineralization and increase fluoride concentrations in saliva and urine. The aim of this study is to analyze the fluoride concentration in urine after application of SDF on tooth enamel. Urine from four subjects was collected prior to, 30 minutes after, and two and three hours after the application of SDF, and an ion-selective electrode was used to measure the fluoride concentrations. There was no significant difference between time 1 and time 2, time 1 and time 3, time 1 and time 4, time 2 and 3 (p > 0.05), and there was a significant difference between time 2 and time 4 as well as time 3 and time 4 (p < 0.05). There was a decrease in the concentration of fluoride ions in urine from the baseline to 30 minutes after application, and an increase from baseline to two and three hours after the application of SDF.

  19. Effect of demineralization on the physiochemical structure and thermal degradation of acid treated indigenous rice husk

    Directory of Open Access Journals (Sweden)

    Aslam Umair

    2016-09-01

    Full Text Available Energy generation from biomass presents some serious problems like slagging, fouling and corrosion of boilers. To address these problems, demineralization of biomass is performed using different leaching agents. This study is focused on determining the influence of leaching agents and leaching time on the physiochemical structure of rice husk during demineralization. Dilute (5% wt solutions of HCl and H2SO4 were used for the demineralization of rice husk separately with leaching time of 15, 60 and 120 minutes. It is shown that H2SO4 exhibited higher removal of alkali and alkaline earth metals (AAEM comparatively as depicted by the 34.2% decrease in ash content along with an increase of 7.10% in the heating value. The acid has been seen to induce more notable changes in physiochemical structure as depicted by the FTIR spectra and SEM micrographs. The thermal degradation behavior of the demineralized rice husk has also been reported.

  20. Comparison of ossification of demineralized bone, hydroxyapatite, Gelfoam, and bone wax in cranial defect repair.

    Science.gov (United States)

    Papay, F A; Morales, L; Ahmed, O F; Neth, D; Reger, S; Zins, J

    1996-09-01

    Demineralized bone allografts in the repair of calvarial defects are compared with other common bone fillers. This study uses a video-digitizing radiographic analysis of calvarial defect ossification to determine calcification of bone defects and its relation to postoperative clinical examination and regional controls. The postoperative clinical results at 3 months demonstrated that bony healing was greatest in bur holes filled with demineralized bone and hydroxyapatite. Radiographic analysis demonstrated calcification of demineralized bone-filled defects compared to bone wax- and Gelfoam-filled regions. Hydroxyapatite granules are radiographically dense, thus not allowing accurate measurement of true bone healing. The results suggest that demineralized bone and hydroxyapatite provide better structural support via bone healing to defined calvarial defects than do Gelfoam and bone wax.

  1. Osteoinductive potential of demineralized rat bone increases with increasing donor age from birth to adulthood

    DEFF Research Database (Denmark)

    Pinholt, E M; Solheim, E

    1998-01-01

    Demineralized allogenic bone implanted in the subcutis or muscle of rodents causes formation of heterotopic bone by osteoinduction. The osteoinductive response may be weaker in primates than in rodents. It was suggested that the osteoinductive response of demineralized bone for clinical use could...... be enhanced by using young donors, because studies have indicated that the osteoinductive response is reduced in demineralized bone of old versus young donors. However, these findings may not represent a gradual decline in the osteoinductive property of bone matrix throughout the life span. We evaluated...... quantitatively, by uptake of strontium 85, the osteoinductive effect of demineralized bone matrix from newborn, 8-week-old (adolescent), and 8-month-old (adult) male Wistar rats implanted in the abdominal muscles of 8-week-old male Wistar rats. The osteoinductive response increased significantly with increasing...

  2. Removal of different fractions of NOM foulants during demineralized water backwashing

    KAUST Repository

    Li, Sheng; Heijman, Sebastiaan G J; Verberk, J. Q J C; Verliefde, Arne R. D.; Amy, Gary L.; Van Dijk, Johannis C.

    2012-01-01

    The effectiveness of demineralized water backwashing on fouling by different fractions of NOM was investigated in this study. Two types of natural surface water (Schie canal and Biesbosch reservoir) were tested to confirm the improvement

  3. Three-Dimensional Analysis of Enamel Crack Behavior Using Optical Coherence Tomography.

    Science.gov (United States)

    Segarra, M S; Shimada, Y; Sadr, A; Sumi, Y; Tagami, J

    2017-03-01

    The aim of this study was to nondestructively analyze enamel crack behavior on different areas of teeth using 3D swept source-optical coherence tomography (SS-OCT). Ten freshly extracted human teeth of each type on each arch ( n = 80 teeth) were inspected for enamel crack patterns on functional, contact and nonfunctional, or noncontact areas using 3D SS-OCT. The predominant crack pattern for each location on each specimen was noted and analyzed. The OCT observations were validated by direct observations of sectioned specimens under confocal laser scanning microscopy (CLSM). Cracks appeared as bright lines with SS-OCT, with 3 crack patterns identified: Type I - superficial horizontal cracks; Type II - vertically (occluso-gingival) oriented cracks; and Type III - hybrid or complicated cracks, a combination of a Type I and Type III cracks, which may or may not be confluent with each other. Type II cracks were predominant on noncontacting surfaces of incisors and canines and nonfunctional cusps of posterior teeth. Type I and III cracks were predominant on the contacting surfaces of incisors, cusps of canines, and functional cusps of posterior teeth. Cracks originating from the dental-enamel junction and enamel tufts, crack deflections, and the initiation of new cracks within the enamel (internal cracks) were observed as bright areas. CLSM observations corroborated the SS-OCT findings. We found that crack pattern, tooth type, and the location of the crack on the tooth exhibited a strong correlation. We show that the use of 3D SS-OCT permits for the nondestructive 3D imaging and analysis of enamel crack behavior in whole human teeth in vitro. 3D SS-OCT possesses potential for use in clinical studies for the analysis of enamel crack behavior.

  4. The efficiency of child formula dentifrices containing different calcium and phosphate compounds on artificial enamel caries.

    Science.gov (United States)

    Rirattanapong, Praphasri; Vongsavan, Kadkao; Saengsirinavin, Chavengkiat; Khumsub, Ploychompoo

    2016-01-01

    Fluoride toothpaste has been extensively used to prevent dental caries. However, the risk of fluorosis is concerning, especially in young children. Calcium phosphate has been an effective remineralizing agent and is present in commercial dental products, with no risk of fluorosis to users. This in vitro study aimed to compare the effects of different calcium phosphate compounds and fluoride-containing dentifrices on artificial caries in primary teeth. Fifty sound primary incisors were coated with nail varnish, leaving two 1 mm 2 windows on the labial surface before immersion in demineralizing solution for 96 hours to produce artificial enamel lesions. Subsequently, one window from each tooth was coated with nail varnish, and all 50 teeth were divided into five groups ( n = 10); group A - deionized water; group B - casein phosphopeptide-amorphous calcium phosphate (CPP-ACP) paste (Tooth Mousse); group C - 500 ppm F (Colgate Spiderman ® ); group D - nonfluoridated toothpaste with triple calcium phosphate (Pureen ® ); and group E - tricalcium phosphate (TCP). Polarized light microscopy and Image-Pro ® Plus software were used to evaluate lesions. After a 7-day pH-cycle, mean lesion depths in groups A, B, C, D, and E had increased by 57.52 ± 10.66%, 33.28 ± 10.16%, 17.04 ± 4.76%, 32.51 ± 8.99%, and 21.76 ± 8.15%, respectively. All data were processed by the Statistical Package for the Social Sciences (version 16.0) software package. Comparison of percentage changes using one-way analysis of variance and Fisher's least squares difference tests at a 95% level of confidence demonstrated that group A was significantly different from the other groups ( P < 0.001). Lesions in groups B and D had a significant lesion progression when compared with groups C and E. All toothpastes in this study had the potential to delay the demineralization progression of artificial enamel caries in primary teeth. The fluoride 500 ppm and TCP toothpastes were equal in the deceleration of

  5. To Analyse the Erosive Potential of Commercially Available Drinks on Dental Enamel and Various Tooth Coloured Restorative Materials - An In-vitro Study.

    Science.gov (United States)

    Karda, Babita; Jindal, Ritu; Mahajan, Sandeep; Sandhu, Sanam; Sharma, Sunila; Kaur, Rajwinder

    2016-05-01

    With the enormous change in life style pattern of a common man through the past few decades, there has been proportional variation in the amount and frequency of consumption of drinks. An increased consumption of these drinks will concurrently increase enamel surface roughness by demineralization, resulting in hypersensitivity and elevated caries risk. The present study was designed to evaluate the erosive potential of commercially available drinks on tooth enamel and various tooth coloured restorative materials. Extracted human teeth were taken and divided into four groups i.e. tooth enamel, glass ionomer cement, composite and compomer. Four commercially available drinks were chosen these were Coca -Cola, Nimbooz, Frooti and Yakult. The pH of each drink was measured. Each group was immersed in various experimental drinks for a period of 14 days. The erosive potential of each drink was measured by calculating the change in average surface roughness of these groups after the immersion protocol in various drinks. The data analysis was done by One Way Anova, Post-Hoc Bonferroni, and paired t -test. Group II-GIC showed highest values for mean of change in average surface roughness and the values were statistically significant (pCoca-cola showed the highest erosive potential and Yakult showed the lowest, there was no statistical significant difference between the results shown by Yakult and Frooti. Characteristics which may promote erosion of enamel and tooth coloured restorative materials were surface texture of the material and pH of the drinks.

  6. Mesoscopic modeling of the response of human dental enamel to mid-infrared radiation

    Science.gov (United States)

    Vila Verde, Ana; Ramos, Marta; Stoneham, A. M.

    2006-03-01

    Ablation of human dental enamel, a composite biomaterial with water pores, is of significant importance in minimally invasive laser dentistry but progress in the area is hampered by the lack of optimal laser parameters. We use mesoscopic finite element models of this material to study its response to mid-infrared radiation. Our results indicate that the cost-effective, off-the-shelf CO2 laser at λ = 10.6 μm may in fact ablate enamel precisely, reproducibly and with limited unwanted side effects such as cracking or heating, provided that a pulse duration of 10 μs is used. Furthermore, our results also indicate that the Er:YAG laser (λ = 2.94 μm), currently popular for laser dentistry, may in fact cause unwanted deep cracking in the enamel when regions with unusually high water content are irradiated, and also provide an explanation for the large range of ablation threshold values observed for this material. The model may be easily adapted to study the response of any composite material to infrared radiation and thus may be useful for the scientific community.

  7. Effects of in-office bleaching on human enamel and dentin. Morphological and mineral changes.

    Science.gov (United States)

    Llena, Carmen; Esteve, Irene; Forner, Leopoldo

    2018-05-01

    The effects of HP-based products upon dental enamel and dentin are inconclusive. To evaluate changes in micromorphology and composition of calcium (Ca) and phosphate (P) in enamel and dentin after the application of 37.5% hydrogen peroxide (HP) and 35% carbamide peroxide (CP) METHODS: Crowns of 20 human teeth were divided in two halves. One half was used as control specimen and the other as experimental specimen. The control specimens were kept in artificial saliva, and the experimental specimens were divided into four groups (n=5 each): group 1 (enamel HP for 45min); group 2 (dentin HP for 45min); group 3 (enamel CP for 90min); and group 4 (dentin CP for 90min). The morphological changes were evaluated using confocal laser scanning microscopy (CLSM), while the changes in the composition of Ca and P were assessed using environmental scanning electron microscopy combined with a microanalysis system (ESEM+EDX). The results within each group and between groups were compared using the Wilcoxon test and Mann-Whitney U-test, respectively (p0.05). When bleaching products with a neutral pH are used in clinical practice, both, the concentration and the application time should be taken into account in order to avoid possible structural and mineral changes in enamel and dentin. Copyright © 2018 Elsevier GmbH. All rights reserved.

  8. In vitro study on tooth enamel lesions related to whitening dentifrice.

    Science.gov (United States)

    de Araújo, Danilo Barral; Silva, Luciana Rodrigues; Campos, Elisângela de Jesus; Correia de Araújo, Roberto Paulo

    2011-01-01

    The tooth whitening substances for extrinsic use that are available in Brazil contain hydrogen peroxide or carbamide peroxide. Several studies have attributed the appearance of lesions in the enamel morphology, including hypersensitivity, to these substances. Such lesions justify fluoride therapy and application of infrared lasers, among other procedures. However, there is no consensus among researchers regarding the relevance of the severity of lesions detected on the tooth surface. The present study was carried out with an aim of evaluating in vitro the effects of the hydrogen peroxide, carbamide peroxide and sodium bicarbonate contained in dentifrice formulations, on human tooth enamel. After darkening process in laboratory, human premolars were brushed using dentifrice containing the two whitening substances (Rembrandt - carbamide peroxide and Mentadent - hydrogen peroxide) and the abrasive product (Colgate - sodium bicarbonate). The degree of specimen staining before and after this procedure was determined using spectrophotometry. Scanning electron microscopy (SEM) was used to obtain images, which were analyzed to show the nature of the lesions that appeared on the enamel surface. The effectiveness of the whitening caused by hydrogen peroxide and carbamide peroxide and the abrasion caused by bicarbonate were confirmed, given that the treated test pieces returned to their original coloration. Based on SEM, evaluation of the enamel surfaces subjected to the test products showed that different types of morphologic lesions of varying severity appeared. Whitening dentifrice containing hydrogen peroxide and carbamide peroxide produced lesions on the enamel surface such that the greatest sequelae were associated with exposure to hydrogen peroxide.

  9. Measuring color change of tooth enamel by in vitro remineralization of white spot lesion.

    Directory of Open Access Journals (Sweden)

    Betina Tolcachir

    2015-12-01

    Full Text Available Objective colour determination is based on calculating the colorimetric distance (ΔE within a colour space. So far, the most used colour space in dentistry is CIE L*a*b (Comission Internationale de l´Éclairage. CIE L*C*h* has been recently developed, showing a better correlation with the perception of the human eye. Objective: To determine the ability of an in vitro remineralisation substance to blend the colour of white spot lesions (WSL with sound enamel, determining ΔE by using the CIE L*C*h* colour space. Methods: In vitro WSL was generated by immersing 10 samples obtained from human third molars in a demineralization solution for 72h. Amorphous calcium phosphate stabilized by casein phosphopeptide (CPP-ACP was then applied for 60 days while maintaining the samples in artificial saliva at 37ºC. To evaluate the colour of enamel, images were taken from the samples placed in specifically designed silicone moulds after generating the WSL (pre-stage and after remineralisation by scanning, applying the colorimetric distance equation (ΔE*CMC according to the Colour Measurement Committee. Results: Treatment with CPP-ACP caused a significant ΔE decrease with respect to the pre-stage (p<0.001, while the analysis of parameters that make up the colour showed a reduction in the difference of hue (∆H (p<0.001 and brightness (∆L (p<0.01 after applying CPP-ACP. Discussion: CPP-ACP penetrated to the depth of the white spot lesion, making its appearance similar to that of the sound enamel, probably because of the formation of different mineral phases than that of the original structure, although pores were not completely filled.

  10. Protective effect of fluoride varnish and fluoride gel on enamel erosion: roughness, SEM-EDS, and µ-EDXRF studies.

    Science.gov (United States)

    Soares, Luís Eduardo Silva; De Carvalho Filho, Antonio Carlos Belfort

    2015-03-01

    The effects of fluoride treatment on bovine enamel subjected to acid erosion were studied by roughness (Ra) measurements, scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), and microenergy-dispersive X-ray fluorescence spectrometry (μ-EDXRF). Enamel samples (63) were divided into nine groups (n = 7): artificial saliva (AS), Pepsi Twist(®) (PT), orange juice (OJ), Duraphat(®)  + Pepsi Twist(®) (DPH/PT), Duraphat(®)  + orange juice (DPH/OJ), Duofluorid(®)  + Pepsi Twist(®) (DUO/PT), Duofluorid(®)  + orange juice (DUO/OJ), fluoride gel + Pepsi Twist(®) (FG/PT), and fluoride gel + orange juice (FG/OJ). Fluoride was applied and the samples were submitted to six cycles (demineralization: Pepsi Twist(®) or orange juice, 10 min; remineralization: saliva, 1 h). The enamel surface in depth was exposed and 63 line-scan maps were performed. The elemental analysis by EDS revealed that only fluoride treated groups had any detectable fluorine after erosion cycles (DPH/PT: 3.50 wt%; DPH/OJ: 3.37 wt%; DUO/PT: 2.69 wt%; DUO/OJ: 3.54 wt%; FG/PT: 2.17 wt%; FG/OJ: 2.77 wt%). PT treatment resulted in significantly higher Ra values than the artificial saliva (P < 0.001). Scanning electron microscopy (SEM) analysis of fluoride protected enamel showed areas with some globular structures or a residual layer of varnish. The enamel thickness was significantly lower in PT (0.63 ± 0.087 mm) than in DPH/PT (0.87 ± 0.16 mm) and DUO/PT (0.92 ± 0.14 mm) groups (P < 0.01). Fluoride treatments protected enamel without Ra increase and loss of enamel tissue. © 2015 Wiley Periodicals, Inc.

  11. Accelerated enamel mineralization in Dspp mutant mice

    Science.gov (United States)

    Verdelis, Kostas; Szabo-Rogers, Heather L.; Xu, Yang; Chong, Rong; Kang, Ryan; Cusack, Brian J.; Jani, Priyam; Boskey, Adele L.; Qin, Chunlin; Beniash, Elia

    2016-01-01

    Dentin sialophosphoprotein (DSPP) is one of the major non-collagenous proteins present in dentin, cementum and alveolar bone; it is also transiently expressed by ameloblasts. In humans many mutations have been found in DSPP and are associated with two autosomal-dominant genetic diseases — dentinogenesis imperfecta II (DGI-II) and dentin dysplasia (DD). Both disorders result in the development of hypomineralized and mechanically compromised teeth. The erupted mature molars of Dspp–/– mice have a severe hypomineralized dentin phenotype. Since dentin and enamel formations are interdependent, we decided to investigate the process of enamel onset mineralization in young Dspp–/– animals. We focused our analysis on the constantly erupting mouse incisor, to capture all of the stages of odontogenesis in one tooth, and the unerupted first molars. Using high-resolution microCT, we revealed that the onset of enamel matrix deposition occurs closer to the cervical loop and both secretion and maturation of enamel are accelerated in Dspp–/– incisors compared to the Dspp+/– control. Importantly, these differences did not translate into major phenotypic differences in mature enamel in terms of the structural organization, mineral density or hardness. The only observable difference was the reduction in thickness of the outer enamel layer, while the total enamel thickness remained unchanged. We also observed a compromised dentin-enamel junction, leading to delamination between the dentin and enamel layers. The odontoblast processes were widened and lacked branching near the DEJ. Finally, for the first time we demonstrate expression of Dspp mRNA in secretory ameloblasts. In summary, our data show that DSPP is important for normal mineralization of both dentin and enamel. PMID:26780724

  12. In vitro wear of four ceramic materials and human enamel on enamel antagonist.

    Science.gov (United States)

    Nakashima, Jun; Taira, Yohsuke; Sawase, Takashi

    2016-06-01

    The purpose of the present study was to evaluate the wear of four different ceramics and human enamel. The ceramics used were lithium disilicate glass (e.max Press), leucite-reinforced glass (GN-Ceram), yttria-stabilized zirconia (Aadva Zr), and feldspathic porcelain (Porcelain AAA). Hemispherical styli were fabricated with these ceramics and with tooth enamel. Flattened enamel was used for antagonistic specimens. After 100,000 wear cycles of a two-body wear test, the height and volume losses of the styli and enamel antagonists were determined. The mean and standard deviation for eight specimens were calculated and statistically analyzed using a non-parametric (Steel-Dwass) test (α = 0.05). GN-Ceram exhibited greater stylus height and volume losses than did Porcelain AAA. E.max Press, Porcelain AAA, and enamel styli showed no significant differences, and Aadva Zr exhibited the smallest stylus height and volume losses. The wear of the enamel antagonist was not significantly different among GN-Ceram, e.max Press, Porcelain AAA, and enamel styli. Aadva Zr resulted in significantly lower wear values of the enamel antagonist than did GN-Ceram, Porcelain AAA, and enamel styli. In conclusion, leucite-reinforced glass, lithium disilicate glass, and feldspathic porcelain showed wear values closer to those for human enamel than did yttria-stabilized zirconia. © 2016 Eur J Oral Sci.

  13. Design of a randomized controlled double-blind crossover clinical trial to assess the effects of saliva substitutes on bovine enamel and dentin in situ

    Directory of Open Access Journals (Sweden)

    Kielbassa Andrej M

    2011-04-01

    Full Text Available Abstract Background Hyposalivation is caused by various syndromes, diabetes, drugs, inflammation, infection, or radiotherapy of the salivary glands. Patients with hyposalivation often show an increased caries incidence. Moreover, hyposalivation is frequently accompanied by oral discomfort and impaired oral functions, and saliva substitutes are widely used to alleviate oral symptoms. However, preference of saliva substitutes due to taste, handling, and relief of oral symptoms has been discussed controversially. Some of the marketed products have shown demineralizing effects on dental hard tissues in vitro. This demineralizing potential is attributed to the undersaturation with respect to calcium phosphates. Therefore, it is important to modify the mineralizing potential of saliva substitutes to prevent carious lesions. Thus, the aim of the present study was to evaluate the effects of a possible remineralizing saliva substitute (SN; modified Saliva natura compared to a demineralizing one (G; Glandosane on mineral parameters of sound bovine dentin and enamel as well as on artificially demineralized enamel specimens in situ. Moreover, oral well-being after use of each saliva substitute was recorded. Methods/Design Using a randomized, double-blind, crossover, phase II/III in situ trial, volunteers with hyposalivation utilize removable dentures containing bovine specimens during the experimental period. The volunteers are divided into two groups, and are required to apply both saliva substitutes for seven weeks each. After both test periods, differences in mineral loss and lesion depth between values before and after exposure are evaluated based on microradiographs. The oral well-being of the volunteers before and after therapy is determined using questionnaires. With respect to the microradiographic analysis, equal mineral losses and lesion depths of enamel and dentin specimens during treatment with SN and G, and no differences in patients

  14. ON THE R-CURVE BEHAVIOR OF HUMAN TOOTH ENAMEL

    OpenAIRE

    Bajaj, Devendra; Arola, Dwayne

    2009-01-01

    In this study the crack growth resistance behavior and fracture toughness of human tooth enamel were quantified using incremental crack growth measures and conventional fracture mechanics. Results showed that enamel undergoes an increase in crack growth resistance (i.e. rising R-curve) with crack extension from the outer to the inner enamel, and that the rise in toughness is function of distance from the Dentin Enamel Junction (DEJ). The outer enamel exhibited the lowest apparent toughness (0...

  15. Regulation of Dental Enamel Shape and Hardness

    Science.gov (United States)

    Simmer, J.P.; Papagerakis, P.; Smith, C.E.; Fisher, D.C.; Rountrey, A.N.; Zheng, L.; Hu, J.C.-C.

    2010-01-01

    Epithelial-mesenchymal interactions guide tooth development through its early stages and establish the morphology of the dentin surface upon which enamel will be deposited. Starting with the onset of amelogenesis beneath the future cusp tips, the shape of the enamel layer covering the crown is determined by five growth parameters: the (1) appositional growth rate, (2) duration of appositional growth (at the cusp tip), (3) ameloblast extension rate, (4) duration of ameloblast extension, and (5) spreading rate of appositional termination. Appositional growth occurs at a mineralization front along the ameloblast distal membrane in which amorphous calcium phosphate (ACP) ribbons form and lengthen. The ACP ribbons convert into hydroxyapatite crystallites as the ribbons elongate. Appositional growth involves a secretory cycle that is reflected in a series of incremental lines. A potentially important function of enamel proteins is to ensure alignment of successive mineral increments on the tips of enamel ribbons deposited in the previous cycle, causing the crystallites to lengthen with each cycle. Enamel hardens in a maturation process that involves mineral deposition onto the sides of existing crystallites until they interlock with adjacent crystallites. Neutralization of acidity generated by hydroxyapatite formation is a key part of the mechanism. Here we review the growth parameters that determine the shape of the enamel crown as well as the mechanisms of enamel appositional growth and maturation. PMID:20675598

  16. Impact of pH and application time of meta-phosphoric acid on resin-enamel and resin-dentin bonding.

    Science.gov (United States)

    Cardenas, A F M; Siqueira, F S F; Bandeca, M C; Costa, S O; Lemos, M V S; Feitora, V P; Reis, A; Loguercio, A D; Gomes, J C

    2018-02-01

    To evaluate the immediate microshear resin-enamel bond strength (μSBS) and the immediate and 6-month microtensile bond strength (μTBS) and nanoleakage (NL) of the adhesive interface performed by different pHs of 40% meta-phosphoric acid (MPA) were compared with conventional 37% ortho-phosphoric acid (OPA) under different application times. Additionally, the enamel etching patterns were evaluated and the chemical/morphological changes induced by these differents groups were evaluated. One hundred and ninety-eight extracted human molars were randomly assigned into experimental groups according to the combination of independent variables: Acid [37% ortho-phosphoric acid (OPA), 40% meta-phosphoric acid (MPA) at pHs of: 0.5, 1 and 2] and Application Time [7, 15 and 30s]. Enamel-bond specimens were prepared and tested under μSBS. Resin-dentin beams were tested under μTBS tested immediately or after 6-months of water storage. Nanoleakage was evaluated using bonded-beams of each tooth/time-period. Enamel etching pattern and chemical and ultra-morphology analyses were also performed. The μSBS (MPa) data were subjected to a two-way repeated measures ANOVA (Acid vs. Application time). For μTBS, Acid vs application time vs storage time data were subjected to three-way ANOVA and Tukey's test (α = 0.05). MPA pH 0.5 showed μTBS similar to OPA, independently of the application time on enamel (p>0.05) or dentin (p>0.05). OPA provided higher nanoleakage values than MPA (p = 0.003). Significant decreases in TBS and increases in NL were only observed for OPA after 6 months (p = 0.001). An increase in the application time resulted in a more pronounced etching pattern for MPA. Chemical analysis showed that dentin demineralized by MPA depicted peaks of brushite and octacalcium phosphate. MPA exposed less collagen than OPA. However, optimal results for MPA were dependent on pH/application time. The use of 40% meta-phosphoric acid with a pH of 0.5 is an alternative acid

  17. The effect of CPP-ACP containing fluoride on Streptococcus mutans adhesion and enamel roughness

    Directory of Open Access Journals (Sweden)

    Yulita Kristanti

    2013-12-01

    Full Text Available Background: Direct contact between the bleaching agent and the enamel surface results in demineralization, alteration in surface roughness and bacterial adhesion. Many studies try to minimize this side effect through different way. Purpose: The aim of this study was to determined the effect of Calcium Phospho Peptide-Amorphous Calcium Phosphate (CPP-ACP containing fluoride application before and after bleaching procedure on the adhesion of S. Mutans and enamel roughness. Methods: The samples were 6 teeth which were divided into 4 groups, and each tooth was cut into four pieces. Group A and C were treated with CPP-ACP after bleaching, while group B and D were treated with CPP-ACP before and after bleaching. CPP-ACP used in group C and D was the one that contain fluoride. After treatment, all samples were sterilized, immersed in steril human saliva for one hour, then immersed into S. mutans suspension of 108 CFU. Samples were incubated overnight. On the next day the samples were put into steril BHI and vortexed for one minute to detach the bacteria. Fifteen ml BHI containing bacteria was poured into TYS agar then incubated 37°Cfor 48 hours. Bacterial colony was counted with colony counter. The SEM examination was done on all samples. Results: Application of desensitizing agent reduced the S.mutans adhesion significantly among groups (p<0.05 except between group A and C. SEM evaluation revealed significant differences among groups. Conclusion: The application of CPP-ACP containing fluoride before and after bleaching was effective to reduce the accumulation of S.mutans colony and enamel roughness.Latar belakang: Kontak langsung antara bahan bleaching dan permukaan enamel menyebabkan demineralisasi, perubahan kekasaran permukaan dan berpengaruh terhadap banyaknya bakteri Streptococcus mutans (S. mutans yang melekat. Banyak peneliti mencoba meminimalkan efek samping ini dengan cara yang beragam. Tujuan: Penelitian ini bertujuan untuk meneliti efek

  18. Seawater ultrafiltration fouling control: Backwashing with demineralized water/SWRO permeate

    KAUST Repository

    Li, Sheng; Heijman, Sebastiaan G J; Verberk, J. Q J C; Amy, Gary L.; Van Dijk, Johannis C.

    2012-01-01

    In this study, the effect of demineralized water backwashing on fouling control of seawater ultrafiltration was investigated. Seawater from Scheveningen beach in The Hague and a desalination plant of Evides Company at Zeeland in the Netherlands was used as feed water, while demineralized water and UF permeate were used as backwash water for a fouling control efficiency comparison under different fluxes and backwash durations. Furthermore, demineralized waters with 5 or 50 mmol/l NaCl were applied for backwashing as well, to check the influence of monovalent cations on UF fouling control. Additionally, SWRO permeate was used for backwashes in long-term experiments to check the possibility of it replacing demineralized water. Results show that seawater UF fouling control is substantially improved by demineralized water backwashing. However, due to the high salinity of seawater, more water was required to dilute the cation concentration and limit the dispersion effect near the membrane surface than was needed for surface water. A 2-min demineralized water backwash showed better fouling control efficiency than a 1-min backwash. Furthermore, the presence of monovalent cations in the backwash water deteriorated the fouling control efficiency of the backwash, indicating the existence of a charge screening effect. The demineralized water with 5 and 50 mmol/l NaCl both showed a similar fouling control efficiency which is better than the UF permeate backwash. The calcium ions in UF permeate probably deteriorates the fouling control efficiency by maintaining a Ca-bridging effect between the membranes and NOM. SWRO permeate backwashing successfully controls membrane fouling as well. © 2012 Elsevier B.V. All rights reserved.

  19. New ways of combating demineralization: link between classic and allopathic medicine

    Science.gov (United States)

    Idoraşi, Laura; Secoşan, Sandra Andreea; Ogodescu, Alexandru; Sinescu, Cosmin; Zaharia, Cristian; Stan, Adrian Tudor; Podoleanu, Adrian G.; Negruťiu, Meda-Lavinia

    2018-03-01

    Prevention and allopathic medicine gained attention, since it is possible for dentists to prevent demineralization, using plants and natural substances with well-known efficacy. The purpose of this study was to present new methods for teeth remineralization. It was made a selection of 10 extracted teeth, maintained in physiological serum, with no color fading, decay or demineralization. It was induced demineralization, with ortho-phosphoric acid (concentration 45 %), for one minute. The probes were visually and with optical coherence tomography (OCT) inspected. The natural product and the bonding with additional nanoparticles of argent were created and applied on the demineralization zone of the both groups of teeth. Each tooth in the first group had one plain surface demineralized. The second group of teeth had a cavity prepared on one of each tooth's side. The pastes were applied on the demineralized surfaces and in the demineralized cavities for two minutes. After time expired, the pasta applied on the first group of teeth was washed away; the bonding above the second group of teeth was light cured. The probes were again visually and with OCT inspected. It was observed an improvement in remineralizing the white marks on plain surfaces and in the created cavities, the OCT being able to detect different levels of remineralization. The efficacy of natural pasta depends on the time it is applied and the concentration of the different main substances. Also, the type of surface, plain or occlusal facets, may influence the substances' penetration ability. The non-invasive specific feature of these products, low costs and safety are strong positive aspects of this method of remineralization. However, the natural process of remineralization is a long-lasting one; perfecting the main substances in order to accelerate the process, in addition to several in vivo studies would be necessary to be fulfilled.

  20. Seawater ultrafiltration fouling control: Backwashing with demineralized water/SWRO permeate

    KAUST Repository

    Li, Sheng

    2012-09-01

    In this study, the effect of demineralized water backwashing on fouling control of seawater ultrafiltration was investigated. Seawater from Scheveningen beach in The Hague and a desalination plant of Evides Company at Zeeland in the Netherlands was used as feed water, while demineralized water and UF permeate were used as backwash water for a fouling control efficiency comparison under different fluxes and backwash durations. Furthermore, demineralized waters with 5 or 50 mmol/l NaCl were applied for backwashing as well, to check the influence of monovalent cations on UF fouling control. Additionally, SWRO permeate was used for backwashes in long-term experiments to check the possibility of it replacing demineralized water. Results show that seawater UF fouling control is substantially improved by demineralized water backwashing. However, due to the high salinity of seawater, more water was required to dilute the cation concentration and limit the dispersion effect near the membrane surface than was needed for surface water. A 2-min demineralized water backwash showed better fouling control efficiency than a 1-min backwash. Furthermore, the presence of monovalent cations in the backwash water deteriorated the fouling control efficiency of the backwash, indicating the existence of a charge screening effect. The demineralized water with 5 and 50 mmol/l NaCl both showed a similar fouling control efficiency which is better than the UF permeate backwash. The calcium ions in UF permeate probably deteriorates the fouling control efficiency by maintaining a Ca-bridging effect between the membranes and NOM. SWRO permeate backwashing successfully controls membrane fouling as well. © 2012 Elsevier B.V. All rights reserved.

  1. In situ synthesis carbonated hydroxyapatite layers on enamel slices with acidic amino acids by a novel two-step method.

    Science.gov (United States)

    Wu, Xiaoguang; Zhao, Xu; Li, Yi; Yang, Tao; Yan, Xiujuan; Wang, Ke

    2015-09-01

    In situ fabrication of carbonated hydroxyapatite (CHA) remineralization layer on an enamel slice was completed in a novel, biomimetic two-step method. First, a CaCO3 layer was synthesized on the surface of demineralized enamel using an acidic amino acid (aspartic acid or glutamate acid) as a soft template. Second, at the same concentration of the acidic amino acid, rod-like carbonated hydroxyapatite was produced with the CaCO3 layer as a sacrificial template and a reactant. The morphology, crystallinity and other physicochemical properties of the crystals were characterized using field emission scanning electron microscopy (FESEM), Fourier transform infrared spectrometry (FTIR), X-ray diffraction (XRD) and energy-dispersive X-ray analysis (EDAX), respectively. Acidic amino acid could promote the uniform deposition of hydroxyapatite with rod-like crystals via absorption of phosphate and carbonate ions from the reaction solution. Moreover, compared with hydroxyapatite crystals coated on the enamel when synthesized by a one-step method, the CaCO3 coating that was synthesized in the first step acted as an active bridge layer and sacrificial template. It played a vital role in orienting the artificial coating layer through the template effect. The results show that the rod-like carbonated hydroxyapatite crystals grow into bundles, which are similar in size and appearance to prisms in human enamel, when using the two-step method with either aspartic acid or acidic glutamate (20.00 mmol/L). Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Energy dispersive X-ray spectrometry study of the protective effects of fluoride varnish and gel on enamel erosion.

    Science.gov (United States)

    De Carvalho Filho, Antonio Carlos Belfort; Sanches, Roberto Pizarro; Martin, Airton Abrahão; Do Espírito Santo, Ana Maria; Soares, Luís Eduardo Silva

    2011-09-01

    Dental erosion is a risk factor for dental health, introduced by today's lifestyle. Topical fluoride applications in the form of varnishes and gel may lead to deposition of fluoride on enamel. This in vitro study aimed to evaluate the effect of two fluoride varnishes and one fluoride gel on the dissolution of bovine enamel by acids. Enamel samples (72) were divided (n = 8): artificial saliva (control-G1), Pepsi Twist® (G2), orange juice (G3), Duraphat® + Pepsi Twist® (G4), Duraphat® + orange juice (G5), Duofluorid® + Pepsi Twist® (G6), Duofluorid® + orange juice (G7), fluoride gel + Pepsi Twist® (G8), and fluoride gel + orange juice (G9). Fluoride gel was applied for 4 min and the varnishes were applied and removed after 6 h. The samples were submitted to six cycles (demineralization: Pepsi Twist® or orange juice, 10 min; remineralization: saliva, 1 h). Samples were analyzed by energy-dispersive X-ray fluorescence (144 line-scanning). The amount of Ca and P decreased significantly in the samples of G2 and G3, and the Ca/P ratio decreased in G3. Mineral gain (Ca) was greater in G9 samples than in G4 > G3 > G5 > G1, and (P) greater in G7 samples than in G9 > G4-6 > G2-3. The protective effect of Duofluorid® was significantly lower than fluoride gel against orange juice. The fluoride varnishes can interfere positively with the dissolution of dental enamel in the presence of acidic beverages. Fluoride gel showed the best protection level to extrinsic erosion with low costs. Copyright © 2010 Wiley-Liss, Inc.

  3. Enamel Surface Roughness after Debonding of Orthodontic Brackets and Various Clean-Up Techniques

    Directory of Open Access Journals (Sweden)

    Farzaneh Ahrari

    2013-01-01

    Full Text Available Objective: This study aimed to evaluate enamel roughness after adhesive removal using different burs and an Er:YAG laser.Materials and Methods: The buccal surfaces of forty human premolars were sealed by two layers of nail varnish, except for a circular area of 3 mm in diameter on the middle third. The enamel surfaces were initially subjected to profilometry analysis and four parameters of surface irregularity (Ra, Rq, Rt and Rz were recorded. Following bracket bonding and debonding, adhesive remnants were removed by tungsten carbide burs in low- or high- speed handpieces (group 1 and 2, respectively, an ultrafine diamond bur (group 3 or an Er:YAG laser (250 mJ, long pulse, 4 Hz (group 4, and surface roughness parameters were measured again. Then, the buccal surfaces were polished and the third profilometry measurements were performed.Results: The specimens that were cleaned with a low speed tungsten carbide bur showed no significant difference in surface irregularity between the different treatment stages (p>0.05. Surface roughness increased significantly after clean-up with the diamond bur and the Er:YAG laser (p<0.01. In comparison between groups, adhesive removal with tungsten carbide burs at slow- or high-speed handpieces produced the lowest, while enamel clean-up with the Er:YAG laser caused the highest values of roughness measurements (P<0.05.Conclusion: Under the study conditions, application of the ultrafine diamond bur or the Er:YAG laser caused irreversible enamel damage on tooth surface, and thus these methods could not be recommended for removing adhesive remnants after debonding of orthodontic brackets.

  4. Weaker dental enamel explains dental decay.

    Science.gov (United States)

    Vieira, Alexandre R; Gibson, Carolyn W; Deeley, Kathleen; Xue, Hui; Li, Yong

    2015-01-01

    Dental caries continues to be the most prevalent bacteria-mediated non-contagious disease of humankind. Dental professionals assert the disease can be explained by poor oral hygiene and a diet rich in sugars but this does not account for caries free individuals exposed to the same risk factors. In order to test the hypothesis that amount of amelogenin during enamel development can influence caries susceptibility, we generated multiple strains of mice with varying levels of available amelogenin during dental development. Mechanical tests showed that dental enamel developed with less amelogenin is "weaker" while the dental enamel of animals over-expressing amelogenin appears to be more resistant to acid dissolution.

  5. Lasers

    CERN Document Server

    Milonni, Peter W

    1988-01-01

    A comprehensive introduction to the operating principles and applications of lasers. Explains basic principles, including the necessary elements of classical and quantum physics. Provides concise discussions of various laser types including gas, solid state, semiconductor, and free electron lasers, as well as of laser resonators, diffraction, optical coherence, and many applications including holography, phase conjugation, wave mixing, and nonlinear optics. Incorporates many intuitive explanations and practical examples. Discussions are self-contained in a consistent notation and in a style that should appeal to physicists, chemists, optical scientists and engineers.

  6. MMP20 Promotes a Smooth Enamel Surface, a Strong DEJ, and a Decussating Enamel Rod Pattern

    Science.gov (United States)

    Bartlett, John D.; Skobe, Ziedonis; Nanci, Antonio; Smith, Charles E.

    2012-01-01

    Mutations of the Matrix metalloproteinase-20 (MMP20, enamelysin) gene cause autosomal recessive amelogenesis imperfecta and Mmp20 ablated mice also have malformed dental enamel. Here we show that Mmp20 null mouse secretory stage ameloblasts maintained a columnar shape and were present as a single layer of cells. However, the null maturation stage ameloblasts covered extraneous nodules of ectopic calcified material formed at the enamel surface. Remarkably, nodule formation occurs in null mouse enamel when MMP20 is normally no longer expressed. The malformed enamel in Mmp20 null teeth was loosely attached to the dentin and the entire enamel layer tended to separate from the dentin indicative of a faulty DEJ. The enamel rod pattern was also altered in Mmp20 null mice. Each enamel rod is formed by a single ameloblast and is a mineralized record of the migration path of the ameloblast that formed it. The Mmp20 null mouse enamel rods were grossly malformed or were absent indicating that the ameloblasts do not migrate properly when backing away from the DEJ. Thus, MMP20 is required for ameloblast cell movement necessary to form the decussating enamel rod patterns, for the prevention of ectopic mineral formation, and to maintain a functional DEJ. PMID:22243247

  7. Effect of gamma irradiation sterilization on the osteoinductive capacity of demineralized bone powder

    International Nuclear Information System (INIS)

    Babak Arjmand; Hamid Reza Aghayan; Mehdi Golestani; Farid Azmoudeh Ardalan

    2008-01-01

    Full text: Gamma irradiation is a well known method for secondary sterilization of bone allograft before clinical use to reduce the risk of infections and complications. The current study evaluated the effect of gamma irradiation on the osteoinductive capability of human demineralized bone powder using a rat model. Twenty rats received two separate implants consisting of 30 mg aseptically-harvested and 30 mg gamma irradiated demineralized bone powder. The implants from each group were placed into two separate muscle pouch in the paravertebral muscles of each rat. All 20 rats were euthanized after 4 weeks and each implantation site was removed with 0.5 cm normal tissue around the implant. Histological examination was done to determine the presence or absence of new bone, cartilage and bone marrow element. All except one of 20 aseptically-harvested demineralized bone powder sites histologically contained new bone elements (95%) and six (30%) of 20 gamma irradiated demineralized bone powder sites showed evidence of new bone elements. There was significant difference between two groups (p<0.05). The results of this study indicate that gamma irradiation reduces osteoinductive properties of demineralized bone powder. But because of its availability and low cost it is widely used for secondary sterilization of bone allografts. (Author)

  8. Formic acid demineralization does not affect the morphometry of cervical zygapophyseal joint meniscoids.

    Science.gov (United States)

    Farrell, Scott F; Osmotherly, Peter G; Rivett, Darren A; Cornwall, Jon

    2015-01-01

    Demineralization can facilitate the dissection of soft tissue structures in inaccessible locations by softening surrounding bone so that it can be easily removed without risking damage to the structure of interest. However, it is unclear whether demineralization alters the morphometry of soft tissues if used for this purpose. We have therefore examined the effect of extended-immersion formic acid demineralization on the size and shape of cervical zygapophyseal joint meniscoids to evaluate its usefulness as a means of facilitating dissection and examination of soft tissue structures from bony regions. Four cadaveric cervical spines were dissected, and three randomly selected zygapophyseal joints from each spine (12 in total) were removed, disarticulated and immersed in 5% formic acid for 32 days. Each joint was examined using a surgical microscope and photographed, and meniscoid length and surface area measured at days 0, 4, 18, and 32. Measurements were made on magnified digital photographs, and each measurement was repeated three times to determine intra-rater reliability. Data were analyzed using repeated-measures analysis of variance. Significance was set at p reliability was high (intra-class correlation > 0.9). These results support the use of formic acid demineralization to facilitate the study of cervical spine meniscoids by dissection, as even after a period of extended immersion in the solution, the morphometry of the structures was not significantly altered. Findings may have implications for dissection studies of other meniscoid-like soft tissue structures that use formic acid demineralization.

  9. Erosive effect of energy drinks alone and mixed with alcohol on human enamel surface.An in vitro study.

    Directory of Open Access Journals (Sweden)

    Katherine Beltrán

    2017-01-01

    Full Text Available Objective: To assess the erosive effect of energy drinks (ED alone and mixed with alcohol on the human enamel surface in vitro. Methods: Twenty non-erupted human third molars were vertically sectioned in half. Specimens were exposed to 5mL of ED plus 5mL of artificial saliva or 5mL of ED plus 5mL of artificial saliva plus 5mL of alcohol (Pisco. Exposure times were set at 30min and 60min. Erosive assessments were made using scanning electron microscopy (SEM and energy-dispersive x-ray spectroscopy (EDS. The ED analyzed were Mr. Big, Kem Extreme, Red Bull, and Monster Energy. ED pH measurements were performed at 25°C and titration was done with NaOH 0.1mol/L. Results: The pH ranges were: ED alone 2.55 to 3.46, ED mixed with artificial saliva 2.60 to 3.55, ED mixed with Pisco 2.82 to 3.70, and ED mixed with both 2.92 to 3.86. The pH of Pisco was 6.13, and Pisco mixed with artificial saliva had a pH of 6.23. Titration showed a pH range from 3.5 to 5.7. SEM-EDS analysis showed that Mr. Big and Monster led to clear demineralization at 30 min and remineralization at 60m in. Pisco slightly decreased the erosive effect of these ED. Kem Xtreme and Red Bull led to no demineralization in the first hour. Conclusion: According to the pH, acidity and EDS analysis, the ED of the present study likely caused enamel erosion in human teeth surface dependent on exposure time.

  10. Effect of CPP-ACP on the remineralization of acid-eroded human tooth enamel: nanomechanical properties and microtribological behaviour study

    International Nuclear Information System (INIS)

    Zheng, L; Zheng, J; Zhang, Y F; Qian, L M; Zhou, Z R

    2013-01-01

    Casein phosphopeptide-stabilized amorphous calcium phosphate (CPP-ACP) has been used to enhance tooth remineralization in the dental clinic. But the contribution of CPP-ACP to the remineralization of acid-eroded human tooth enamel is of widespread controversy. To confirm the application potential of CPP-ACP in the remineralization repair of tooth erosion caused by acid-attack, the effect of remineralization in vitro in 2% w/v CPP-ACP solution on the acid-eroded human tooth enamel was investigated in this study. The repair of surface morphology and the improvement of nanomechanical and microtribological properties were characterized with laser confocal scanning microscope, scanning electron microscope, nanoindentation tester and nanoscratch tester. Results showed that a layer of uneven mineral deposits, which were mainly amorphous calcium phosphate (ACP) in all probability, was observed on the acid-eroded enamel surface after remineralization. Compared with the acid-eroded enamel surface, the nanoindentation hardness and Young's modulus of the remineralized enamel surface obviously increased. Both the friction coefficient and wear volume of the acid-eroded enamel surface decreased after remineralization. However, both the nanomechanical and the anti-wear properties of the remineralized enamel surface were still inferior to those of original enamel surface. In summary, tooth damage caused by acid erosion could be repaired by remineralization in CPP-ACP solution, but the repair effect, especially on the nanomechanical and anti-wear properties of the acid-eroded enamel, was limited. These results would contribute to a further exploration of the remineralization potential of CPP-ACP and a better understanding of the remineralization repair mechanism for acid-eroded human tooth enamel. (paper)

  11. Effect of CPP-ACP on the remineralization of acid-eroded human tooth enamel: nanomechanical properties and microtribological behaviour study

    Science.gov (United States)

    Zheng, L.; Zheng, J.; Zhang, Y. F.; Qian, L. M.; Zhou, Z. R.

    2013-10-01

    Casein phosphopeptide-stabilized amorphous calcium phosphate (CPP-ACP) has been used to enhance tooth remineralization in the dental clinic. But the contribution of CPP-ACP to the remineralization of acid-eroded human tooth enamel is of widespread controversy. To confirm the application potential of CPP-ACP in the remineralization repair of tooth erosion caused by acid-attack, the effect of remineralization in vitro in 2% w/v CPP-ACP solution on the acid-eroded human tooth enamel was investigated in this study. The repair of surface morphology and the improvement of nanomechanical and microtribological properties were characterized with laser confocal scanning microscope, scanning electron microscope, nanoindentation tester and nanoscratch tester. Results showed that a layer of uneven mineral deposits, which were mainly amorphous calcium phosphate (ACP) in all probability, was observed on the acid-eroded enamel surface after remineralization. Compared with the acid-eroded enamel surface, the nanoindentation hardness and Young's modulus of the remineralized enamel surface obviously increased. Both the friction coefficient and wear volume of the acid-eroded enamel surface decreased after remineralization. However, both the nanomechanical and the anti-wear properties of the remineralized enamel surface were still inferior to those of original enamel surface. In summary, tooth damage caused by acid erosion could be repaired by remineralization in CPP-ACP solution, but the repair effect, especially on the nanomechanical and anti-wear properties of the acid-eroded enamel, was limited. These results would contribute to a further exploration of the remineralization potential of CPP-ACP and a better understanding of the remineralization repair mechanism for acid-eroded human tooth enamel.

  12. Dental enamel, fluorosis and amoxicillin

    Directory of Open Access Journals (Sweden)

    I. Ciarrocchi

    2012-06-01

    Full Text Available Introduction: Amoxicillin is one of the most used antibiotics among pediatric patients for the treatment of upper respiratory tract infections and specially for acute otitis media (AOM, a common diseases of infants and childhood. It has been speculated that the use of amoxicillin during early childhood could be associated with dental enamel fluorosis, also described in literature with the term Molar Incisor Hypomineralization (MIH, because they are generally situated in one or more 1st permanent molars and less frequently in the incisors. The effect of Amoxicillin seems to be independent of other risk factors such as fluoride intake, prematurity, hypoxia, hypocalcaemia, exposure to dioxins, chikenpox, otitis media, high fever and could have a significant impact on oral health for the wide use of this drug in that period of life. Objective: The aim of this work was to review the current literature about the association between amoxicillin and fluorosis. Methods and Results: A literature survey was done by applying the Medline database (Entrez PubMed; the Cochrane Library database of the Cochrane Collaboration (CENTRAL. The databases were searched using the following strategy and keywords: amoxicillin* AND (dental fluorosis* OR dental enamel* AND MIH*. After selecting the studies, only three relevant articles published between 1966 and 2011 were included in the review. Conclusion: The presence of several methodological issues does not allow to draw any evidence-based conclusions. No evidence of association was detected, therefore, there is a need of further well-designed studies to assess the scientific evidence of the relationship between amoxicillin and fluorosis and to restrict the prescription of this drug for recurrent upper respiratory tract infections especially acute otitis media (AOM during the first two years of life. When it is possible can be opportune to use an alternative antibiotic treatment.

  13. Esthetic management of a patient with severely fluorosed enamel and pigmented gingiva: A conservative approach

    Directory of Open Access Journals (Sweden)

    Sana Ali

    2018-01-01

    Full Text Available Isolated brown or white defects of less than few tenths of millimeter depth can be successfully treated with microabrasion. However, for deeper enamel defects, a combination of various techniques such as microabrasion/macroabrasion along with bleaching or full or partial veneering are available. Template-assisted direct veneering technique helps for better separation and contouring of individual tooth through which composite resin can be applied directly to tooth structure and artistically sculpted. Frequently, the gingival hyperpigmentation is caused by excessive melanin deposits mainly located in the basal and suprabasal cell layers of the epithelium. Recently, laser ablation has been recognized as one of the most effective, pleasant, and reliable techniques. This article describes a conservative approach for a complete smile makeover of a patient with severe fluorosis and pigmented gingiva with the help of enamel microabrasion and template-assisted direct composite veneering followed by laser depigmentation of gingiva.

  14. Enamel micromorphology of the tribosphenic molar

    OpenAIRE

    Hanousková, Pavla

    2014-01-01

    The tribosphenic molar is an ancestral type of mammalian teeth and a phy- lotypic stage of the mammalian dental evolution. Yet, in contrast to derived teeth types, its enamel microarchitecture attracted only little attention and the information on that subject is often restricted to statements suggesting a simple homogenous arrangement of a primitive radial prismatic enamel. The present paper tests this prediction with aid of comparative study of eight model species representing the orders Ch...

  15. EPR dosimetry with tooth enamel: A review

    International Nuclear Information System (INIS)

    Fattibene, Paola; Callens, Freddy

    2010-01-01

    When tooth enamel is exposed to ionizing radiation, radicals are formed, which can be detected using electron paramagnetic resonance (EPR) techniques. EPR dosimetry using tooth enamel is based on the (presumed) correlation between the intensity or amplitude of some of the radiation-induced signals with the dose absorbed in the enamel. In the present paper a critical review is given of this widely applied dosimetric method. The first part of the paper is fairly fundamental and deals with the main properties of tooth enamel and some of its model systems (e.g., synthetic apatites). Considerable attention is also paid to the numerous radiation-induced and native EPR signals and the radicals responsible for them. The relevant methods for EPR detection, identification and spectrum analyzing are reviewed from a general point of view. Finally, the needs for solid-state modelling and studies of the linearity of the dose response are investigated. The second part is devoted to the practical implementation of EPR dosimetry using enamel. It concerns specific problems of preparation of samples, their irradiation and spectrum acquisition. It also describes how the dosimetric signal intensity and dose can be retrieved from the EPR spectra. Special attention is paid to the energy dependence of the EPR response and to sources of uncertainties. Results of and problems encountered in international intercomparisons and epidemiological studies are also dealt with. In the final section the future of EPR dosimetry with tooth enamel is analyzed.

  16. Measurement of opalescence of tooth enamel.

    Science.gov (United States)

    Lee, Yong-Keun; Yu, Bin

    2007-08-01

    Opalescent dental esthetic restoratives look natural and esthetic in any light, react to light in the same manner as the natural tooth and show improved masking effect. The objective of this study was to determine the opalescence of tooth enamel with reflection spectrophotometers. Color of intact bovine and human enamel was measured in the reflectance and transmittance modes. Two kinds of spectrophotometers were used for bovine and one kind was used for human enamel. The opalescence parameter (OP) was calculated as the difference in yellow-blue color coordinate (CIE Deltab(*)) and red-green color coordinate (CIE Deltaa(*)) between the reflected and transmitted colors. Mean OP value of bovine enamel was 10.6 (+/-1.4) to 19.0 (+/-2.1), and varied by the configuration of spectrophotometers. Mean OP value of human enamel was 22.9 (+/-1.9). Opalescence varied by the configuration of measuring spectrophotometer and the species of enamel. These values could be used in the development of esthetic restorative materials.

  17. Kinetic modelling of the demineralization of shrimp exoskeleton using citric acid

    Directory of Open Access Journals (Sweden)

    Alewo Opuada AMEH

    2014-11-01

    Full Text Available Citric acid was used in the demineralization of shrimp exoskeleton and the kinetics of the demineralization process was studied. Kinetic data was obtained by demineralisation using five acid concentrations (0.1, 0.2, 0.3, 0.4 and 0.5M. The obtained kinetic data were fitted to the shrinking core model for fluid particle reactions. The concentration of calcium was found to decrease with time. For all acid concentrations considered, the best predictive mechanism for the demineralization process was determined to be Ash Layer Diffusion Control Mechanism. This was indicated by the high R2 values obtained (0.965 with 150% excess of citric acid.

  18. Performance of a new one-step multi-mode adhesive on etched vs non-etched enamel on bond strength and interfacial morphology.

    Science.gov (United States)

    de Goes, Mario Fernando; Shinohara, Mirela Sanae; Freitas, Marcela Santiago

    2014-06-01

    To compare microtensile bond strength (μTBS) and interfacial morphology of a new one-step multimode adhesive with a two-step self-etching adhesive and two etch-and-rinse adhesives systems on enamel. Thirty human third molars were sectioned to obtain two enamel fragments. For μTBS, 48 enamel surfaces were ground using 600-grit SiC paper and randomly assigned into 6 groups (n = 8): nonetched Scotchbond Universal [SBU]; etched SBU [SBU-et]; non-etched Clearfil SE Bond [CSE]; etched CSE [CSE-et]; Scotchbond Multi-PURPOSE [SBMP]; Excite [EX]. The etched specimens were conditioned with 37% phosphoric acid for 30 s, each adhesive system was applied according to manufacturers' instructions, and composite resin blocks (Filtek Supreme Plus, 3M ESPE) were incrementally built up. Specimens were sectioned into beams with a cross-sectional area of 0.8-mm2 and tested under tension (1 mm/min). The data were analyzed with oneway ANOVA and Fisher's PLSD (α = 0.05). For interface analysis, two samples from each group were embedded in epoxy resin, polished, and then observed using scanning electron microscopy (SEM). The μTBS values (in MPa) and the standard deviations were: SBU = 27.4 (8.5); SBU-et = 33.6 (9.3); CSE = 28.5 (8.3); CSE-et = 34.2 (9.0); SBMP = 30.4 (11.0); EX = 23.3 (8.2). CSE-et and SBU-et presented the highest bond strength values, followed by SBMP, CSE, and SBU which did not differ significantly from each other. EX showed the statistically significantly lowest bond strength values. SEM images of interfaces from etched samples showed long adhesive-resin tags penetrating into demineralized enamel. Preliminary etching of enamel significantly increased bond strength for the new one-step multimode adhesive SBU and two-step self-etching adhesive CSE.

  19. Crystallization and demineralization phenomena in washed-rind cheese.

    Science.gov (United States)

    Tansman, Gil F; Kindstedt, Paul S; Hughes, John M

    2017-11-01

    This report documents an observational study of a high-moisture washed-rind cheese. Three batches of cheese were sampled on a weekly basis for 6 wk and again at wk 10. Center, under-rind, rind, and smear samples were tested for pH, moisture, and selected mineral elements. Powder x-ray diffractometry and petrographic microscopy were applied to identify and image the crystal phases. The pH of the rind increased by over 2 pH units by wk 10. The pH of the under-rind increased but remained below the rind pH, whereas the center pH decreased for most of aging and only began to rise after wk 5. Diffractograms of smear material revealed the presence of 4 crystal phases: brushite, calcite, ikaite, and struvite. The phases nucleated in succession over the course of aging, with calcite and ikaite appearing around the same time. A very small amount of brushite appeared sporadically in center and under-rind samples, but otherwise no other crystallization was observed beneath the rind. Micrographs revealed that crystals in the smear grew to over 250 μm in length by wk 10, and at least 2 different crystal phases, probably ikaite and struvite, could be differentiated by their different optical properties. The surface crystallization was accompanied by a mineral diffusion phenomenon that resulted, on average, in a 217, 95.7, and 149% increase in calcium, phosphorus, and magnesium, respectively, in the rind by wk 10. The diffusion phenomenon caused calcium, phosphorus, and magnesium to decrease, on average, by 55.0, 21.5, and 36.3%, respectively, in the center by wk 10. The present study represents the first observation of crystallization and demineralization phenomena in washed-rind cheese. The Authors. Published by the Federation of Animal Science Societies and Elsevier Inc. on behalf of the American Dairy Science Association®. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).

  20. Demineralization of Sargassum spp. Macroalgae Biomass: Selective Hydrothermal Liquefaction Process for Bio-Oil Production

    Energy Technology Data Exchange (ETDEWEB)

    Díaz-Vázquez, Liz M., E-mail: limdiaz@uprrp.edu; Rojas-Pérez, Arnulfo; Fuentes-Caraballo, Mariela; Robles, Isis V. [Department of Chemistry, University of Puerto Rico Río Piedras Campus, San Juan, PR (United States); Jena, Umakanta [Bioenergy Laboratory, Desert Research Institute, Reno, NV (United States); Das, K. C. [College of Engineering, University of Georgia, Athens, GA (United States)

    2015-02-11

    Algae biomasses are considered a viable option for the production of biofuel because of their high yields of oil produced per dry weight. Brown macroalgae Sargassum spp. are one of the most abundant species of algae in the shores of Puerto Rico. Its availability in large quantity presents a great opportunity for use as a source of renewable energy. However, high ash content of macroalgae affects the conversion processes and the quality of resulting fuel products. This research studied the effect of different demineralization treatments of Sargassum spp. biomass, subsequent hydrothermal liquefaction (HTL), and bio-oil characterization. Demineralization constituted five different treatments: nanopure water, nitric acid, citric acid, sulfuric acid, and acetic acid. Performance of demineralization was evaluated by analyzing both demineralized biomass and HTL products by the following analyses: total carbohydrates, proteins, lipids, ash content, caloric content, metals analysis, Fourier transform infrared-attenuated total reflectance spectroscopy, energy dispersive spectroscopy, scanning electron microscopy, and GCMS analysis. HTL of Sargassum spp. before and after citric acid treatment was performed in a 1.8 L batch reactor system at 350°C with a holding time of 60 min and high pressures (5–21 MPa). Demineralization treatment with nitric acid was found the most effective in reducing the ash content of the macroalgae biomass from 27.46 to 0.99% followed by citric acid treatment that could reduce the ash content to 7%. Citric acid did not show significant leaching of organic components such as carbohydrates and proteins, and represented a less toxic and hazardous option for demineralization. HTL of untreated and citric acid treated Sargassum spp. resulted in bio-oil yields of 18.4 ± 0.1 and 22.2 ± 0.1% (ash-free dry basis), respectively.

  1. Demineralization of Sargassum spp. Macroalgae Biomass: Selective Hydrothermal Liquefaction Process for Bio-Oil Production

    International Nuclear Information System (INIS)

    Díaz-Vázquez, Liz M.; Rojas-Pérez, Arnulfo; Fuentes-Caraballo, Mariela; Robles, Isis V.; Jena, Umakanta; Das, K. C.

    2015-01-01

    Algae biomasses are considered a viable option for the production of biofuel because of their high yields of oil produced per dry weight. Brown macroalgae Sargassum spp. are one of the most abundant species of algae in the shores of Puerto Rico. Its availability in large quantity presents a great opportunity for use as a source of renewable energy. However, high ash content of macroalgae affects the conversion processes and the quality of resulting fuel products. This research studied the effect of different demineralization treatments of Sargassum spp. biomass, subsequent hydrothermal liquefaction (HTL), and bio-oil characterization. Demineralization constituted five different treatments: nanopure water, nitric acid, citric acid, sulfuric acid, and acetic acid. Performance of demineralization was evaluated by analyzing both demineralized biomass and HTL products by the following analyses: total carbohydrates, proteins, lipids, ash content, caloric content, metals analysis, Fourier transform infrared-attenuated total reflectance spectroscopy, energy dispersive spectroscopy, scanning electron microscopy, and GCMS analysis. HTL of Sargassum spp. before and after citric acid treatment was performed in a 1.8 L batch reactor system at 350°C with a holding time of 60 min and high pressures (5–21 MPa). Demineralization treatment with nitric acid was found the most effective in reducing the ash content of the macroalgae biomass from 27.46 to 0.99% followed by citric acid treatment that could reduce the ash content to 7%. Citric acid did not show significant leaching of organic components such as carbohydrates and proteins, and represented a less toxic and hazardous option for demineralization. HTL of untreated and citric acid treated Sargassum spp. resulted in bio-oil yields of 18.4 ± 0.1 and 22.2 ± 0.1% (ash-free dry basis), respectively.

  2. Demineralization of Sargassum spp. macroalgae biomass: selective hydrothermal liquefaction process for bio-oil production

    Directory of Open Access Journals (Sweden)

    Liz M Díaz-Vázquez

    2015-02-01

    Full Text Available Algae biomasses are considered a viable option for the production of biofuel because of their high yields of oil produced per dry weight. Brown macroalgae Sargassum spp. are one of the most abundant species of algae in the shores of Puerto Rico. Its availability in large quantity presents a great opportunity for use as a source of renewable energy. However, high ash content of macroalgae affects the conversion processes and the quality of resulting fuel products. This research studied the effect of different demineralization treatments of Sargassum spp. biomass, subsequent hydrothermal liquefaction (HTL and bio-oil characterization. Demineralization constituted five different treatments: nanopure water, nitric acid, citric acid, sulfuric acid, and acetic acid. Performance of demineralization was evaluated by analyzing both demineralized biomass and HTL products by the following analyses: total carbohydrates, proteins, lipids, ash content, caloric content, metals analysis, Fourier Transform Infrared - Attenuated Total Reflectance (FTIR-ATR Spectroscopy, Energy Dispersive Spectroscopy (EDS, Scanning Electron Microscopy (SEM, and GCMS analysis. HTL of Sargassum spp. before and after citric acid treatment, was performed in a 1.8 L batch reactor system at 350°C with a holding time of 60 min and high pressures (5-21 MPa. Demineralization treatment with nitric acid was found the most effective in reducing the ash content of the macroalgae biomass from 27.46% to 0.99% followed by citric acid treatment that could reduce the ash content to 7%. Citric acid did not show significant leaching of organic components such as carbohydrates and proteins, and represented a less toxic and hazardous option for demineralization. HTL of untreated and citric acid treated Sargassum spp. resulted in bio-oil yields of 18.4±0.1 % and 22.2±0.1 % (ash free dry basis, respectively.

  3. Effect of storage on osteoinductive properties of demineralized bone in rats

    DEFF Research Database (Denmark)

    Pinholt, E M; Solheim, E

    1994-01-01

    A requirement for the clinical use of demineralized bone is the possibility of storing the material without loss of its osteoinductive properties. Seventy-five 8-week-old male Wistar rats were randomly assigned to one of five groups of 15 rats each. Lyophilized demineralized allogeneic bone...... was prepared and implanted in the abdominal muscle either without prior storage (control group) or after storage for 9 or 14 months at -70 degrees C or 4 degrees C (four experimental groups). Bone formation in the implants was evaluated quantitatively 4 weeks postoperatively by measuring the strontium 85...

  4. Laser in operative dentistry

    Directory of Open Access Journals (Sweden)

    E. Yasini

    1994-06-01

    Full Text Available Today laser has a lot of usage in medicine and dentistry. In the field of dentistry, laser is used in soft tissue surgery, sterilization of canals (in root canal therapy and in restorative dentistry laser is used for cavity preparation, caries removal, sealing the grooves (in preventive dentistry, etching enamel and dentin, composite polymerization and removal of tooth sensitivity. The use of Co2 lasers and Nd: YAG for cavity preparation, due to creating high heat causes darkness and cracks around the region of laser radiation. Also due to high temperature of these lasers, pulp damage is inevitable. So today, by using the Excimer laser especially the argon floride type with a wavelength of 193 nm, the problem of heat stress have been solved, but the use of lasers in dentistry, especially for cavity preparation needs more researches and evaluations.

  5. Effect of type of cavity preparation (bur,Er:YAG laser and restorative materials on prevention of caries lesion

    Directory of Open Access Journals (Sweden)

    Masumeh Hasani Tabatabaei

    2017-03-01

    Full Text Available Background and Aims: Despite the reduction of incidence of dental caries in recent years, this disease is common and many efforts were conducted to decrease the prevalence of dental caries. On the other hand secondary caries lesions are the main reason for replacement of direct restorations. Therefore, the aim of the current study was to evaluate suitable methods of preparation and restorative materials to reduce caries recurrence. Materials and Methods: In this experimental study, eighty human teeth were collected and stored in normal saline. The teeth were soft-tissue debrided and cleaned with water/pumice slurry and rubber cups in a low-speed handpiece. Speciments were randomly divided in two main groups. Cavities were prepared with diamond burs or Er:YAG laser (10 Hz, 300 mJ, 3W. Each group was divided into 4 sub-groups, and restored with a glass-ionomer cement (Fuji IX, resin modified glass-ionomer (Fuji II LC, total etch bonding + composite resin or self-etch bonding + composite resin. The specimens were submitted to pH cycling. Speciments were then sectioned, polished and Vickers microhardness measurements were performed on each specimen. Differences among the medians were analyzed using two way ANOVA test at a 95% confidence level and Tukey test. Results: Statistical analysis showed significant difference in the type of substrate (enamel, dentin in both main groups (P<0.0001 but no differences in the caries lesion development between the cavities restored with the same material and prepared with diamond burs or Er:YAG laser. Conclusion: The Er:YAG laser used for cavity preparation and different types of restorative materials used did not show the ability to guarantee significantly more acid-resistance tooth structure against demineralization.

  6. An in vitro investigation of human enamel wear by restorative dental materials

    International Nuclear Information System (INIS)

    Adachi, L.K.; Saiki, M.; De Campos, T.N.

    2001-01-01

    A radiometric method was applied to asses enamel wear by another enamel and by restorative materials. The radioactive enamel was submitted to wear in a machine which allows sliding motion of an antagonistic surface in contact with the radioactive enamel. The enamel wear was evaluated by measuring the beta-activity of 32 P transferred to water from this irradiated tooth. Results obtained indicated that dental porcelains cause pronounced enamel wear when compared with that provoked by another natural enamel or by resin materials. Resin materials caused less enamel wear than another natural enamel. Vickers microhardness data obtained for antagonistic materials showed a correlation with the wear caused to the enamel. (author)

  7. Diffusion of fluoride in bovine enamel

    International Nuclear Information System (INIS)

    Flim, G.J.; Arends, J.; Kolar, Z.

    1976-01-01

    The uptake of 18 F and the penetration of both F and 18 F in bovine enamel was investigated. Sodium fluoride solutions buffered at pH 7 were employed. The uptake of 18 F was measured by a method described by R. Duckworth and M. Braden, Archs. Oral. Biol., 12(1967), pp. 217-230. The penetration concentration profiles of fluoride (F, 18 F) in the enamel were measured by a sectioning technique. The 18 F uptake in enamel was proportional to approximately tsup(3/4); t being the uptake time. The 18 F concentration as a function of the position in the enamel can be described by: c*(x,t) = c 0 *(t)exp[-α*(t)x]. After correction for the initial fluoride concentration in enamel, for unlabelled fluoride the same dependency is obtained. A model based on simultaneous diffusion and chemical reaction in the pores and diffusion into the hydroxyapatite crystallites will be presented. The results show that diffusion coefficients of the pores are approximately equal to 10 -10 cm 2 s -1 and in the apatite crystallites approximately equal to 10 -17 cm 2 s -1 . The limitations and the approximations of the model are discussed

  8. The fracture behaviour of dental enamel.

    Science.gov (United States)

    Bechtle, Sabine; Habelitz, Stefan; Klocke, Arndt; Fett, Theo; Schneider, Gerold A

    2010-01-01

    Enamel is the hardest tissue in the human body covering the crowns of teeth. Whereas the underlying dental material dentin is very well characterized in terms of mechanical and fracture properties, available data for enamel are quite limited and are apart from the most recent investigation mainly based on indentation studies. Within the current study, stable crack-growth experiments in bovine enamel have been performed, to measure fracture resistance curves for enamel. Single edge notched bending specimens (SENB) prepared out of bovine incisors were tested in 3-point bending and subsequently analysed using optical and environmental scanning electron microscopy. Cracks propagated primarily within the protein-rich rod sheaths and crack propagation occurred under an inclined angle to initial notch direction not only due to enamel rod and hydroxyapatite crystallite orientation but potentially also due to protein shearing. Determined mode I fracture resistance curves ranged from 0.8-1.5 MPa*m(1/2) at the beginning of crack propagation up to 4.4 MPa*m(1/2) at 500 microm crack extension; corresponding mode II values ranged from 0.3 to 1.5 MPa*m(1/2).

  9. Trace Elements in Human Tooth Enamel

    Energy Technology Data Exchange (ETDEWEB)

    Nixon, G. S. [Turner Dental School, University Of Manchester, Manchester (United Kingdom); Smith, H.; Livingston, H. D. [Department of Forensic Medicine, University Of Glasgow, Glasgow (United Kingdom)

    1967-10-15

    The trace elements are considered to play a role in the resistance of teeth to dental caries. The exact mechanism by which they act has not yet been fully established. Estimations of trace elements have been undertaken in sound human teeth. By means of activation analysis it has been possible to determine trace element concentrations in different layers of enamel in the same tooth. The concentrations of the following elements have been determined: arsenic, antimony, copper, zinc, manganese, mercury, molybdenum and vanadium. The distribution of trace elements in enamel varies from those with a narrow range, such as manganese, to those with a broad range, such as antimony. The elements present in the broad range are considered to be non-essential and their presence is thought to result from a chance incorporation into the enamel. Those in the narrow range appear to be essential trace elements and are present in amounts which do not vary unduly from other body tissues. Only manganese and zinc were found in higher concentrations in the surface layer of enamel compared with the inner layers. The importance of the concentration of trace elements on this surface layer of enamel is emphasized as this layer is the site of the first attack by the carious process. (author)

  10. Bone induction by composite of bioerodible polyorthoester and demineralized bone matrix in rats

    DEFF Research Database (Denmark)

    Pinholt, E M; Solheim, E; Bang, G

    1991-01-01

    A composite of a local, sustained, drug-release system, Alzamer bioerodible polyorthoester, and demineralized bone-matrix (DBM) particles implanted in the abdominal muscle of 89 Wistar rats induced cartilage and bone formation at the same rate as DBM when evaluated histologically and by 85Sr uptake....... The composite implant was technically easier to use than DBM alone....

  11. Fouling control mechanisms of demineralized water backwash: Reduction of charge screening and calcium bridging effects

    KAUST Repository

    Li, Sheng

    2011-12-01

    This paper investigates the impact of the ionic environment on the charge of colloidal natural organic matter (NOM) and ultrafiltration (UF) membranes (charge screening effect) and the calcium adsorption/bridging on new and fouled membranes (calcium bridging effect) by measuring the zeta potentials of membranes and colloidal NOM. Fouling experiments were conducted with natural water to determine whether the reduction of the charge screening effect and/or calcium bridging effect by backwashing with demineralized water can explain the observed reduction in fouling. Results show that the charge of both membranes and NOM, as measured by the zeta potential, became more negative at a lower pH and a lower concentration of electrolytes, in particular, divalent electrolytes. In addition, calcium also adsorbed onto the membranes, and consequently bridged colloidal NOM and membranes via binding with functional groups. The charge screening effect could be eliminated by flushing NOM and membranes with demineralized water, since a cation-free environment was established. However, only a limited amount of the calcium bridging connection was removed with demineralized water backwashes, so the calcium bridging effect mostly could not be eliminated. As demineralized water backwash was found to be effective in fouling control, it can be concluded that the reduction of the charge screening is the dominant mechanism for this. © 2011 Elsevier Ltd.

  12. Fouling control mechanisms of demineralized water backwash: Reduction of charge screening and calcium bridging effects

    KAUST Repository

    Li, Sheng; Heijman, Bas G J; Verberk, J. Q J C; Le-Clech, Pierre; Lu, Jie; Kemperman, Antoine J B; Amy, Gary L.; Van Dijk, Johannis C.

    2011-01-01

    with demineralized water can explain the observed reduction in fouling. Results show that the charge of both membranes and NOM, as measured by the zeta potential, became more negative at a lower pH and a lower concentration of electrolytes, in particular, divalent

  13. Comparison Study of Water Demineralization System for the OPR 1000 and AP 1000 Nuclear Power Plant

    International Nuclear Information System (INIS)

    Dedy Priambodo; Siti Alimah; Erlan Dewita

    2009-01-01

    OPR 1000 adopts demineralization method based on ion exchanger resin and AP 1000 adopt the method that based on Reverse Osmosis (RO)-Electrodeionization (EDI). The Ion exchange process is a reversible chemical reaction of a solution and an insoluble solid. Ion exchanger use resin as polluter ions capture and will be regenerated after its saturated. RO is method using pressure to force a solution through a membrane, retaining the solute on one side and allowing the pure solvent to pass to the other side. Whereas, EDI is a combination of ion exchange and electrodialysis. The ions is taken by ion exchange resin, and then it is discharged utilizing electric potential difference. Due to water splitting phenomena in EDI, make resin will never be saturated, so the RO-EDI process is water demineralization system that use little chemical, more simple installation, capable to maintain demineralization water product quality and environmental friendly. Thereby, The RO-EDI water demineralization system is more advance then ion exchange technology. (author)

  14. Enamel tissue engineering using subcultured enamel organ epithelial cells in combination with dental pulp cells.

    Science.gov (United States)

    Honda, Masaki J; Shinmura, Yuka; Shinohara, Yoshinori

    2009-01-01

    We describe a strategy for the in vitro engineering of enamel tissue using a novel technique for culturing enamel organ epithelial (EOE) cells isolated from the enamel organ using 3T3-J2 cells as a feeder layer. These subcultured EOE cells retain the capacity to produce enamel structures over a period of extended culture. In brief, enamel organs from 6-month-old porcine third molars were dissociated into single cells and subcultured on 3T3-J2 feeder cell layers. These subcultured EOE cells were then seeded onto a collagen sponge in combination with primary dental pulp cells isolated at an early stage of crown formation, and these constructs were transplanted into athymic rats. After 4 weeks, complex enamel-dentin structures were detected in the implants. These results show that our culture technique maintained ameloblast lineage cells that were able to produce enamel in vivo. This novel subculture technique provides an important tool for tooth tissue engineering. Copyright 2008 S. Karger AG, Basel.

  15. Morphology of the cemento-enamel junction in premolar teeth.

    Science.gov (United States)

    Arambawatta, Kapila; Peiris, Roshan; Nanayakkara, Deepthi

    2009-12-01

    The present study attempted to describe the distribution of the mineralized tissues that compose the cemento-enamel junction, with respect to both the different types of permanent premolars of males and females and the various surfaces of individual teeth. The cervical region of ground sections of 67 premolars that had been extracted for orthodontic reasons were analyzed using transmitted light microscopy to identify which of the following tissue interrelationships was present at the cemento-enamel junction: cementum overlapping enamel; enamel overlapping cementum; edge-to-edge relationship between cementum and enamel; or the presence of gaps between the enamel and cementum with exposed dentin. An edge-to-edge interrelation between root cementum and enamel was predominant (55.1%). In approximately one-third of the sample, gaps between cementum and enamel with exposed dentin were observed. Cementum overlapping enamel was less prevalent than previously reported, and enamel overlapping cementum was seen in a very small proportion of the sample. In any one tooth, the distribution of mineralized tissues at the cemento-enamel junction was irregular and unpredictable. The frequency of gaps between enamel and cementum with exposure of dentin was higher than previously reported, which suggests that this region is fragile and strongly predisposed to pathological changes. Hence, this region should be protected and carefully managed during routine clinical procedures such as dental bleaching, orthodontic treatment, and placement of restorative materials.

  16. Finite element analysis of the cyclic indentation of bilayer enamel

    International Nuclear Information System (INIS)

    Jia, Yunfei; Xuan, Fu-zhen; Chen, Xiaoping; Yang, Fuqian

    2014-01-01

    Tooth enamel is often subjected to repeated contact and often experiences contact deformation in daily life. The mechanical strength of the enamel determines the biofunctionality of the tooth. Considering the variation of the rod arrangement in outer and inner enamel, we approximate enamel as a bilayer structure and perform finite element analysis of the cyclic indentation of the bilayer structure, to mimic the repeated contact of enamel during mastication. The dynamic deformation behaviour of both the inner enamel and the bilayer enamel is examined. The material parameters of the inner and outer enamel used in the analysis are obtained by fitting the finite element results with the experimental nanoindentation results. The penetration depth per cycle at the quasi-steady state is used to describe the depth propagation speed, which exhibits a two-stage power-law dependence on the maximum indentation load and the amplitude of the cyclic load, respectively. The continuous penetration of the indenter reflects the propagation of the plastic zone during cyclic indentation, which is related to the energy dissipation. The outer enamel serves as a protective layer due to its great resistance to contact deformation in comparison to the inner enamel. The larger equivalent plastic strain and lower stresses in the inner enamel during cyclic indentation, as calculated from the finite element analysis, indicate better crack/fracture resistance of the inner enamel. (paper)

  17. Finite element analysis of the cyclic indentation of bilayer enamel

    Science.gov (United States)

    Jia, Yunfei; Xuan, Fu-zhen; Chen, Xiaoping; Yang, Fuqian

    2014-04-01

    Tooth enamel is often subjected to repeated contact and often experiences contact deformation in daily life. The mechanical strength of the enamel determines the biofunctionality of the tooth. Considering the variation of the rod arrangement in outer and inner enamel, we approximate enamel as a bilayer structure and perform finite element analysis of the cyclic indentation of the bilayer structure, to mimic the repeated contact of enamel during mastication. The dynamic deformation behaviour of both the inner enamel and the bilayer enamel is examined. The material parameters of the inner and outer enamel used in the analysis are obtained by fitting the finite element results with the experimental nanoindentation results. The penetration depth per cycle at the quasi-steady state is used to describe the depth propagation speed, which exhibits a two-stage power-law dependence on the maximum indentation load and the amplitude of the cyclic load, respectively. The continuous penetration of the indenter reflects the propagation of the plastic zone during cyclic indentation, which is related to the energy dissipation. The outer enamel serves as a protective layer due to its great resistance to contact deformation in comparison to the inner enamel. The larger equivalent plastic strain and lower stresses in the inner enamel during cyclic indentation, as calculated from the finite element analysis, indicate better crack/fracture resistance of the inner enamel.

  18. The effect of additional enamel etching and a flowable composite to the interfacial integrity of Class II adhesive composite restorations.

    Science.gov (United States)

    Belli, S; Inokoshi, S; Ozer, F; Pereira, P N; Ogata, M; Tagami, J

    2001-01-01

    This in vitro study evaluated the interfacial integrity of Class II resin composite restorations. The influence of a flowable composite and additional enamel etching was also evaluated. Deep, saucer-shaped Class II cavities were prepared in the mesial and distal proximal surfaces of 25 extracted human molars and assigned to five treatment groups. The gingival margins were extended to approximately 1 mm above the CEJ in 40 cavities and below the CEJ in 10 cavities. The prepared cavities were then restored with a self-etching primer system (Clearfil Liner Bond II) and a hybrid resin composite (Clearfil AP-X), with and without a flowable composite (Protect Liner F) and additional enamel etching with 37% phosphoric acid gel (K-etchant). After finishing, polishing and thermocycling (4 and 60 degrees C, x300), the samples were longitudinally sectioned through the restorations and resin-tooth interfaces were observed directly under a laser scanning microscope. Statistical analysis indicated that the use of a flowable composite produced significantly more (p = 0.04) gap-free resin-dentin interfaces than teeth restored without the flowable composite. However, both flowable composite and enamel etching could not prevent gap formation at enamel-resin interfaces and crack formation on enamel walls.

  19. The hardness and chemical changes in demineralized primary dentin treated by fluoride and glass ionomer cement

    Directory of Open Access Journals (Sweden)

    Gisele Fernandes DIAS

    Full Text Available Abstract Background Fluoride plays an important role in the control of dental caries. Aim To evaluate the chemical exchange between restoration of glass ionomer cement of high viscosity (GIC and primary dentin with application of sodium fluoride (NaF 2% through changes in hardness from uptake of calcium, phosphate and fluoride. Material and method Class I cavities were prepared in 40 sound primary molars, and the sample was divided into two groups (n=20 according to dentin condition: sound (1 and demineralized (2. Sub-groups (n=10 were formed to investigate the isolated action of the GIC or the association with NaF (F. This in vitro study examined the chemical exchange under two conditions, sound and demineralized dentin (pH cycling, to simulate the occurrence of mineral loss for the caries lesion. G1 and G2 received GIC restoration only; groups G1F and G2F received NaF before GIC restoration. The specimens were prepared for Knoop hardness test and micro-Raman spectroscopy. A two-way ANOVA test (α = 0.05 was used for statistical analysis. Micro-Raman data were qualitatively described. Result Increased hardness was observed in all the sites of direct contact with GIC in sound and demineralized dentin for all groups (p0.05. In the evaluation of micro-Raman, direct contact between GIC and dentin for sound and demineralized dentin resulted in increased peaks of phosphate. Conclusion The exchange between GIC and demineralized dentin may induce changes of mechanical properties of the substrate, and uptake of mineral ions (phosphate occurs without the influence of NaF.

  20. In vitro study on tooth enamel lesions related to whitening dentifrice

    Directory of Open Access Journals (Sweden)

    Danilo Barral de Araújo

    2011-01-01

    Full Text Available Background: The tooth whitening substances for extrinsic use that are available in Brazil contain hydrogen peroxide or carbamide peroxide. Several studies have attributed the appearance of lesions in the enamel morphology, including hypersensitivity, to these substances. Such lesions justify fluoride therapy and application of infrared lasers, among other procedures. However, there is no consensus among researchers regarding the relevance of the severity of lesions detected on the tooth surface. Objectives: The present study was carried out with an aim of evaluating in vitro the effects of the hydrogen peroxide, carbamide peroxide and sodium bicarbonate contained in dentifrice formulations, on human tooth enamel. Materials and Methods: After darkening process in laboratory, human premolars were brushed using dentifrice containing the two whitening substances (Rembrandt - carbamide peroxide and Mentadent - hydrogen peroxide and the abrasive product (Colgate - sodium bicarbonate. The degree of specimen staining before and after this procedure was determined using spectrophotometry. Scanning electron microscopy (SEM was used to obtain images, which were analyzed to show the nature of the lesions that appeared on the enamel surface. Results: The effectiveness of the whitening caused by hydrogen peroxide and carbamide peroxide and the abrasion caused by bicarbonate were confirmed, given that the treated test pieces returned to their original coloration. Based on SEM, evaluation of the enamel surfaces subjected to the test products showed that different types of morphologic lesions of varying severity appeared. Conclusions: Whitening dentifrice containing hydrogen peroxide and carbamide peroxide produced lesions on the enamel surface such that the greatest sequelae were associated with exposure to hydrogen peroxide.

  1. Thermal induced EPR signals in tooth enamel

    International Nuclear Information System (INIS)

    Fattibene, P.; Aragno, D.; Onori, S.; Pressello, M.C.

    2000-01-01

    Electron paramagnetic resonance (EPR) spectroscopy was used to detect the effects of temperature on powdered human tooth enamel, not irradiated in the laboratory. Samples were heated at temperature between 350 and 450, at 600 and at 1000 deg. C, for different heating times, between 6 min and 39 h. Changes in the EPR spectra were detected, with the formation of new signals. Possible correlation between the changes in EPR spectra and modifications in the enamel and in the mineral phase of bone detected with other techniques is discussed. The implications for dosimetric applications of signals induced by overheating due to mechanical friction during sample preparation are underlined

  2. Quantitative comparison of 3 enamel-stripping devices in vitro: how precisely can we strip teeth?

    Science.gov (United States)

    Johner, Alexander Marc; Pandis, Nikolaos; Dudic, Alexander; Kiliaridis, Stavros

    2013-04-01

    In this in-vitro study, we aimed to investigate the predictability of the expected amount of stripping using 3 common stripping devices on premolars. One hundred eighty extracted premolars were mounted and aligned in silicone. Tooth mobility was tested with Periotest (Medizintechnik Gulden, Modautal, Germany) (8.3 ± 2.8 units). The selected methods for interproximal enamel reduction were hand-pulled strips (Horico, Hapf Ringleb & Company, Berlin, Germany), oscillating segmental disks (O-drive-OD 30; KaVo Dental, Biberach, Germany), and motor-driven abrasive strips (Orthofile; SDC Switzerland, Lugano-Grancia, Switzerland). With each device, the operator intended to strip 0.1, 0.2, 0.3, or 0.4 mm on the mesial side of 15 teeth. The teeth were scanned before and after stripping with a 3-dimensional laser scanner. Superposition and measurement of stripped enamel on the most mesial point of the tooth were conducted with Viewbox software (dHal Software, Kifissia, Greece). The Wilcoxon signed rank test and the Kruskal-Wallis test were applied; statistical significance was set at alpha ≤ 0.05. Large variations between the intended and the actual amounts of stripped enamel, and between stripping procedures, were observed. Significant differences were found at 0.1 mm of intended stripping (P ≤ 0.05) for the hand-pulled method and at 0.4 mm of intended stripping (P ≤ 0.001 to P = 0.05) for all methods. For all scenarios of enamel reduction, the actual amount of stripping was less than the predetermined and expected amount of stripping. The Kruskal-Wallis analysis showed no significant differences between the 3 methods. There were variations in the stripped amounts of enamel, and the stripping technique did not appear to be a significant predictor of the actual amount of enamel reduction. In most cases, actual stripping was less than the intended amount of enamel reduction. Copyright © 2013 American Association of Orthodontists. Published by Mosby, Inc. All rights

  3. Modification of Hydroxyapatite Crystal Using IR Laser

    CERN Document Server

    Satoh, Saburoh; Goto, M; Guan, W; Hayashi, N; Ihara, S; Yamabe, C; Yamaguchi, Y

    2004-01-01

    The first application of laser technology to dentistry was for the removal of caries. However, reports of laser application on improvement of dental surface were emerged, much attention has been focused on the laser’s potential to enhance enamel’s hardness and resistance to acid. Most of the previous reports concentrated on the photo issue interaction. Few research has pursued the photochemical phenomenon occurred during laser irradiation on biological tissues. In order to find a creative method to remineralize the dissociating enamel and exposed coronal of dentine, the authors developed a novel procedure during laser irradiation. Slice of sound molar and artificial HAp pellet were irradiated separately, with CO2 laser under different laser parameters. Tow series of samples covered with saturation calcium ion solution were irradiated separately. To investigate the crystal morphology, XRD pattern were surveyed. The comparison of each cases show that the chemical coating affected the ablation process evidentl...

  4. Nuclear microanalysis of tooth enamel from a community in the Western Cape, South Africa

    Energy Technology Data Exchange (ETDEWEB)

    Pineda-Vargas, C.A. [MRG Group, iThemba LABS, P.O. Box 722, Somerset West 7129 (South Africa) and Groote Schuur Hospital, Private Bag, Observatory 7935 (South Africa)]. E-mail: pineda@tlabs.ac.za; Naidoo, S. [Faculty of Dentistry, P/Bag X1, Tygerberg 7505 (South Africa); Eisa, M.E.M. [Sudan University of Science and Technology, Department of Physics, P.O. Box 407, Khartoum (Sudan)

    2007-07-15

    Extracted teeth collected from a Black African community living in the Gugulethu suburb of Cape Town, South Africa were studied by nuclear microscopy. Analysis by PIXE (with 3.0 MeV protons) of permanent extracted incisor and molar teeth from males and females of different ages showed a homogeneous elemental profile distribution for iron, zinc and strontium, irrespective of gender and/or age. Fluorine content as determined simultaneously from the 110 keV gamma-ray yield from proton bombardment had a similar mean value (females: 1.8% by mass and males: 1.6% by mass) for both genders. However, the mean content of strontium for females (97 {mu}g g{sup -1}) was about 40% lower than that for males (69 {mu}g g{sup -1}). In addition, a sub-group of children showed a smaller standard deviation on the distribution of zinc and fluorine. Previous results on the trace elemental concentration of the enamel of molar teeth, showed a depletion of up to 50% by mass for strontium after 20 h of exposure in acidic solution. Although the strontium level for the African female group fits this profile it is not certain what the demineralization observed was due too.

  5. Effect of bioglass on artificially induced enamel lesion around orthodontic brackets: OCT study

    Science.gov (United States)

    Bakhsh, Turki; Al-batati, Mohammed; Mukhtar, Mona; Al-Najjar, Mohammed; Bakhsh, Saud; Bakhsh, Abdulsalam; Bakry, Ahmad; Mandurah, Mona; Abbassy, Mona

    2018-02-01

    Background and Objective: White spot lesions (WSLs) are commonly seen after completing orthodontic treatment. Different approaches have been suggested to avoid such a complication. Recently, 45S5 bioglass (BG) was introduced as remineralizing agent. Therefore, the objective of this in-vitro study was to assess the effect of BG in remineralizing WSLs using Optical coherence tomography (OCT). Methods: Fifteen human premolar teeth were sectioned and bonded to orthodontic brackets with Transbond XT primer followed by Transbond PLUS color change adhesive (3M Unitek, USA) on their smooth surfaces according to the manufacturer's instructions. Then, all specimens were varnished excluding the area of interest (AOI) around the bonded restoration, immersed in demineralizing solution and imaged by cross-polarization OCT (CONT group), and the maximum pixel value (MPV) of the AOI were calculated. Then, they were subjected to remineralizing solutions and BG application followed by OCT imaging (REM group). Results: Mann-Whitney test showed the MPV of the AOI in REM was greatly increased and was significantly different from CONT (penamel by MPV technique. The BG has a great potential to remineralize enamel defects, however further investigation is required.

  6. Study of the hydrogen peroxide bleaching agent effects on bovine enamel using X-ray fluorescence

    Energy Technology Data Exchange (ETDEWEB)

    Moreira, Ruda F.; Calazans, Fernanda S.; Miranda, Mauro S.; Santos, Ramon S.; Anjos, Marcelino J.; Assis, Joaquim T. [Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro, RJ (Brazil)

    2013-07-01

    Hydrogen Peroxide's a bleaching agent capable of oxidizing a wide range of colored organic, causing discoloration and hence bleaching of the substrate, but some authors related the occurrence of side effects related to bleaching of the tooth structure, such as changes in morphology superficial. It was used 6 bovine incisors, each tooth was initially evaluated six times in different areas to obtain the count of elements phosphorus and calcium using X-Ray Fluorescence. The teeth were randomly divided in two groups: both groups were submitted to bleaching in office with hydrogen peroxide 38%, once a week during three weeks. Group 1 was stored in distilled water and group 2 in artificial saliva, between the sessions. The measurements were repeated every seven days before the bleaching treatment. Besides that, changes in mineral levels were always assessed in the same area and using the same procedure. It was observed that the bleaching was not able to demineralize the tooth enamel studied. (author)

  7. Retrospective individual dosimetry using EPR of tooth enamel

    International Nuclear Information System (INIS)

    Skvortzo, V.; Ivannikov, A.; Stepanenko, V.; Wieser, A.; Bougai, A.; Brick, A.; Chumak, V.; Radchuk, V.; Repin, V.; Kirilov, V.

    1996-01-01

    The results of joint investigations (in the framework of ECP-10 program) aimed on the improvement of the sensitivity and accuracy of the procedure of dose measurement using tooth enamel EPR spectroscopy are presented. It is shown, what the sensitivity of method may be increased using special physical-chemical procedure of the enamel samples treatment, which leads to the reducing of EPR signal of organic components in enamel. Tooth diseases may have an effect on radiation sensitivity of enamel. On the basis of statistical analysis of the results of more then 2000 tooth enamel samples measurements it was shown, what tooth enamel EPR spectroscopy gives opportunity to register contribution into total dose, which is caused by natural environmental radiation and by radioactive contamination. EPR response of enamel to ultraviolet exposure is investigated and possible influences to EPR dosimetry is discussed. The correction factors for EPR dosimetry in real radiation fields are estimated

  8. Size dependent elastic modulus and mechanical resilience of dental enamel.

    Science.gov (United States)

    O'Brien, Simona; Shaw, Jeremy; Zhao, Xiaoli; Abbott, Paul V; Munroe, Paul; Xu, Jiang; Habibi, Daryoush; Xie, Zonghan

    2014-03-21

    Human tooth enamel exhibits a unique microstructure able to sustain repeated mechanical loading during dental function. Although notable advances have been made towards understanding the mechanical characteristics of enamel, challenges remain in the testing and interpretation of its mechanical properties. For example, enamel was often tested under dry conditions, significantly different from its native environment. In addition, constant load, rather than indentation depth, has been used when mapping the mechanical properties of enamel. In this work, tooth specimens are prepared under hydrated conditions and their stiffnesses are measured by depth control across the thickness of enamel. Crystal arrangement is postulated, among other factors, to be responsible for the size dependent indentation modulus of enamel. Supported by a simple structure model, effective crystal orientation angle is calculated and found to facilitate shear sliding in enamel under mechanical contact. In doing so, the stress build-up is eased and structural integrity is maintained. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Targeted p120-catenin ablation disrupts dental enamel development

    DEFF Research Database (Denmark)

    Bartlett, John D; Dobeck, Justine M; Tye, Coralee E

    2010-01-01

    Dental enamel development occurs in stages. The ameloblast cell layer is adjacent to, and is responsible for, enamel formation. When rodent pre-ameloblasts become tall columnar secretory-stage ameloblasts, they secrete enamel matrix proteins, and the ameloblasts start moving in rows that slide...... by one another. This movement is necessary to form the characteristic decussating enamel prism pattern. Thus, a dynamic system of intercellular interactions is required for proper enamel development. Cadherins are components of the adherens junction (AJ), and they span the cell membrane to mediate...... attachment to adjacent cells. p120 stabilizes cadherins by preventing their internalization and degradation. So, we asked if p120-mediated cadherin stability is important for dental enamel formation. Targeted p120 ablation in the mouse enamel organ had a striking effect. Secretory stage ameloblasts detached...

  10. Ceramic-like wear behaviour of human dental enamel.

    Science.gov (United States)

    Arsecularatne, J A; Hoffman, M

    2012-04-01

    This paper reports a transmission electron microscopy (TEM) analysis of subsurfaces of enamel specimens following in vitro reciprocating wear tests with an enamel cusp sliding on a flat enamel specimen under hydrated conditions. The obtained results show that crack formation occurred in the wear scar subsurface. The path followed by these cracks seems to be dictated either by the histological structure of enamel or by the contact stress field. Moreover, the analysis of a set of enamel wear results obtained from the literature and application of fracture-based models, originally developed for ceramics, correlate well, confirming the similar wear processes taking place in these materials. This analysis also reveals a marked influence of coefficient of friction on the enamel wear rate: for a higher coefficient of friction value, enamel wear can be severe even under forces generated during normal operation of teeth. Copyright © 2011 Elsevier Ltd. All rights reserved.

  11. Regulated fracture in tooth enamel: a nanotechnological strategy from nature.

    Science.gov (United States)

    Ghadimi, Elnaz; Eimar, Hazem; Song, Jun; Marelli, Benedetto; Ciobanu, Ovidiu; Abdallah, Mohamed-Nur; Stähli, Christoph; Nazhat, Showan N; Vali, Hojatollah; Tamimi, Faleh

    2014-07-18

    Tooth enamel is a very brittle material; however it has the ability to sustain cracks without suffering catastrophic failure throughout the lifetime of mechanical function. We propose that the nanostructure of enamel can play a significant role in defining its unique mechanical properties. Accordingly we analyzed the nanostructure and chemical composition of a group of teeth, and correlated it with the crack resistance of the same teeth. Here we show how the dimensions of apatite nanocrystals in enamel can affect its resistance to crack propagation. We conclude that the aspect ratio of apatite nanocrystals in enamel determines its resistance to crack propagation. According to this finding, we proposed a new model based on the Hall-Petch theory that accurately predicts crack propagation in enamel. Our new biomechanical model of enamel is the first model that can successfully explain the observed variations in the behavior of crack propagation of tooth enamel among different humans. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Towards enamel biomimetics: Structure, mechanical properties and biomineralization of dental enamel

    Science.gov (United States)

    Fong, Hanson Kwok

    Dental enamel is the most mineralized tissue in the human body. This bioceramic, composed largely of hydroxyapatite (HAp), is also one of the most durable tissues despite a lifetime of masticatory loading and bacterial attack. The biosynthesis of enamel, which occurs in physiological conditions is a complex orchestration of protein assembly and mineral formation. The resulting product is the hardest tissue in the vertebrate body with the longest and most organized arrangement of hydroxyapatite crystals known to biomineralizing systems. Detail understanding of the structure of enamel in relationship to its mechanical function and the biomineralization process will provide a framework for enamel regeneration as well as potential lessons in the design of engineering materials. The objective of this study, therefore, is twofold: (1) establish the structure-function relationship of enamel as well as the dentine-enamel junction (DEJ) and (2) determine the effect of proteins on the enamel biomineralization process. A hierarchy in the enamel structure was established by means of various microscopy techniques (e.g. SEM, TEM, AFM). Mechanical properties (hardness and elastic modulus) associated with the microstructural features were also determined by nanoindentation. Furthermore, the DEJ was found to have a width in the range of micrometers to 10s of micrometers with continuous change in structure and mechanical properties. Indentation tests and contact fatigue tests using a spherical indenter have revealed that the structural features in the enamel and the DEJ played important roles in containing crack propagation emanating from the enamel tissue. To further understand the effect of this protein on the biominerailzation process, we have studied genetically engineered animals that express altered amelogenin which lack the known self-assembly properties. This in vivo study has revealed that, without the proper self-assembly of the amelogenin protein as demonstrated by the

  13. Helium ion microscopy of enamel crystallites and extracellular tooth enamel matrix.

    Science.gov (United States)

    Bidlack, Felicitas B; Huynh, Chuong; Marshman, Jeffrey; Goetze, Bernhard

    2014-01-01

    An unresolved problem in tooth enamel studies has been to analyze simultaneously and with sufficient spatial resolution both mineral and organic phases in their three dimensional (3D) organization in a given specimen. This study aims to address this need using high-resolution imaging to analyze the 3D structural organization of the enamel matrix, especially amelogenin, in relation to forming enamel crystals. Chemically fixed hemi-mandibles from wild type mice were embedded in LR White acrylic resin, polished and briefly etched to expose the organic matrix in developing tooth enamel. Full-length amelogenin was labeled with specific antibodies and 10 nm immuno-gold. This allowed us to use and compare two different high-resolution imaging techniques for the analysis of uncoated samples. Helium ion microscopy (HIM) was applied to study the spatial organization of organic and mineral structures, while field emission scanning electron microscopy (FE-SEM) in various modes, including backscattered electron detection, allowed us to discern the gold-labeled proteins. Wild type enamel in late secretory to early maturation stage reveals adjacent to ameloblasts a lengthwise parallel alignment of the enamel matrix proteins, including full-length amelogenin proteins, which then transitions into a more heterogeneous appearance with increasing distance from the mineralization front. The matrix adjacent to crystal bundles forms a smooth and lacey sheath, whereas between enamel prisms it is organized into spherical components that are interspersed with rod-shaped protein. These findings highlight first, that the heterogeneous organization of the enamel matrix can be visualized in mineralized en bloc samples. Second, our results illustrate that the combination of these techniques is a powerful approach to elucidate the 3D structural organization of organic matrix molecules in mineralizing tissue in nanometer resolution.

  14. Helium ion microscopy of enamel crystallites and extracellular tooth enamel matrix

    Directory of Open Access Journals (Sweden)

    Felicitas B Bidlack

    2014-10-01

    Full Text Available An unresolved problem in tooth enamel studies has been to analyze simultaneously and with sufficient spatial resolution both mineral and organic phases in their three dimensional (3D organization in a given specimen. This study aims to address this need using high-resolution imaging to analyze the 3D structural organization of the enamel matrix, especially amelogenin, in relation to forming enamel crystals. Chemically fixed hemi-mandibles from wild type mice were embedded in LR White acrylic resin, polished and briefly etched to expose the organic matrix in developing tooth enamel. Full-length amelogenin was labeled with specific antibodies and 10 nm immuno-gold. This allowed us to use and compare two different high-resolution imaging techniques for the analysis of uncoated samples. Helium ion microscopy (HIM was applied to study the spatial organization of organic and mineral structures, while field emission scanning electron microscopy (FE-SEM in various modes, including backscattered electron detection, allowed us to discern the gold-labeled proteins. Wild type enamel in late secretory to early maturation stage reveals adjacent to ameloblasts a lengthwise parallel alignment of the enamel matrix proteins, including full-length amelogenin proteins, which then transitions into a more heterogeneous appearance with increasing distance from the mineralization front. The matrix adjacent to crystal bundles forms a smooth and lacey sheath, whereas between enamel prisms it is organized into spherical components that are interspersed with rod-shaped protein. These findings highlight first, that the heterogeneous organization of the enamel matrix can be visualized in mineralized en bloc samples. Second, our results illustrate that the combination of these techniques is a powerful approach to elucidate the 3D structural organization of organic matrix molecules in mineralizing tissue in nanometer resolution.

  15. Enamel subsurface damage due to tooth preparation with diamonds.

    Science.gov (United States)

    Xu, H H; Kelly, J R; Jahanmir, S; Thompson, V P; Rekow, E D

    1997-10-01

    In clinical tooth preparation with diamond burs, sharp diamond particles indent and scratch the enamel, causing material removal. Such operations may produce subsurface damage in enamel. However, little information is available on the mechanisms and the extent of subsurface damage in enamel produced during clinical tooth preparation. The aim of this study, therefore, was to investigate the mechanisms of subsurface damage produced in enamel during tooth preparation by means of diamond burs, and to examine the dependence of such damage on enamel rod orientation, diamond particle size, and removal rate. Subsurface damage was evaluated by a bonded-interface technique. Tooth preparation was carried out on two enamel rod orientations, with four clinical diamond burs (coarse, medium, fine, and superfine) used in a dental handpiece. The results of this study showed that subsurface damage in enamel took the form of median-type cracks and distributed microcracks, extending preferentially along the boundaries between the enamel rods. Microcracks within individual enamel rods were also observed. The median-type cracks were significantly longer in the direction parallel to the enamel rods than perpendicular to the rods. Preparation with the coarse diamond bur produced cracks as deep as 84 +/- 30 microns in enamel. Finishing with fine diamond burs was effective in crack removal. The crack lengths in enamel were not significantly different when the removal rate was varied. Based on these results, it is concluded that subsurface damage in enamel induced by tooth preparation takes the form of median-type cracks as well as inter- and intra-rod microcracks, and that the lengths of these cracks are sensitive to diamond particle size and enamel rod orientation, but insensitive to removal rate.

  16. Deformation behavior of human enamel and dentin-enamel junction under compression.

    Science.gov (United States)

    Zaytsev, Dmitry; Panfilov, Peter

    2014-01-01

    Deformation behavior under uniaxial compression of human enamel and dentin-enamel junction (DEJ) is considered in comparison with human dentin. This deformation scheme allows estimating the total response from all levels of the hierarchical composite material in contrast with the indentation, which are limited by the mesoscopic and microscopic scales. It was shown for the first time that dental enamel is the strength (up to 1850MPa) hard tissue, which is able to consider some elastic (up to 8%) and plastic (up to 5%) deformation under compression. In so doing, it is almost undeformable substance under the creep condition. Mechanical properties of human enamel depend on the geometry of sample. Human dentin exhibits the similar deformation behavior under compression, but the values of its elasticity (up to 40%) and plasticity (up to 18%) are much more, while its strength (up to 800MPa) is less in two times. Despite the difference in mechanical properties, human enamel is able to suppress the cracking alike dentin. Deformation behavior under the compression of the samples contained DEJ as the same to dentin. This feature allows a tooth to be elastic-plastic (as dentin) and wear resistible (as enamel), simultaneously. © 2013 Elsevier B.V. All rights reserved.

  17. Nanoindentation creep behavior of human enamel.

    Science.gov (United States)

    He, Li-Hong; Swain, Michael V

    2009-11-01

    In this study, the indentation creep behavior of human enamel was investigated with a nanoindentation system and a Berkovich indenter at a force of 250 mN with one-step loading and unloading method. A constant hold period of 900 s was incorporated into each test at the maximum load as well at 5 mN minimum load during unloading. The indentation creep at the maximum load and creep recovery at the minimum load was described with a double exponential function and compared with other classic viscoelastic models (Debye/Maxwell and Kohlrausch-Williams-Watts). Indentation creep rate sensitivity, m, of human enamel was measured for the first time with a value of approximately 0.012. Enamel displayed both viscoelastic and viscoplastic behavior similar to that of bone. These results indicate that, associated with entrapment of particulates between teeth under functional loading and sliding wear conditions, the enamel may inelastically deform but recover upon its release. This behavior may be important in explaining the excellent wear resistance, antifatigue, and crack resistant abilities of natural tooth structure. (c) 2008 Wiley Periodicals, Inc.

  18. Tooth enamel hypoplasia in PHACE syndrome.

    Science.gov (United States)

    Chiu, Yvonne E; Siegel, Dawn H; Drolet, Beth A; Hodgson, Brian D

    2014-01-01

    Individuals with PHACE syndrome (posterior fossa malformations, hemangiomas, arterial anomalies, cardiac defects, eye abnormalities, sternal cleft, and supraumbilical raphe syndrome) have reported dental abnormalities to their healthcare providers and in online forums, but dental involvement has not been comprehensively studied. A study was conducted at the third PHACE Family Conference, held in Milwaukee, Wisconsin, in July 2012. A pediatric dentist examined subjects at enrollment. Eighteen subjects were enrolled. The median age was 4.2 years (range 9 mos-9 yrs; 14 girls, 4 boys). Eleven of 18 patients had intraoral hemangiomas and five of these (50%) had hypomature enamel hypoplasia. None of the seven patients without intraoral hemangiomas had enamel hypoplasia. No other dental abnormalities were seen. Enamel hypoplasia may be a feature of PHACE syndrome when an intraoral hemangioma is present. Enamel hypoplasia increases the risk of caries, and clinicians should refer children with PHACE syndrome to a pediatric dentist by 1 year of age. © 2014 Wiley Periodicals, Inc.

  19. Microtensile bond strength of enamel after bleaching.

    Science.gov (United States)

    Lago, Andrea Dias Neves; Garone-Netto, Narciso

    2013-01-01

    To evaluate the bond strength of a composite resin to the bovine enamel bleached with 35% hydrogen peroxide. It was used an etching-and-rinse adhesive system employed immediately, 7 and 14 days after the bleaching. Twenty bovine teeth were randomly distributed into 4 groups (n = 5), 3 experimental and 1 control. G1: Unbleached + restoration 14 days after storage in artificial saliva (control); G2: Bleached + restoration immediately after bleaching; G3: Bleached + restoration 7 days after bleaching; G4: Bleached + restoration 14 days after bleaching. Their buccal enamel surfaces were flattened, and a 25 mm² (5 × 5 mm) area from each one of these regions was outlined so as to standardize the experimental region. Universal hybrid composite resin Filtek™Z350 was inserted into four layers of 1 mm each and photo-activated. The bond strength was quantitatively evaluated by a microtensile test (1.0 mm/min) 24 h after the restorative procedures. The failure mode was assessed through scanning electron microscopy (SEM). There was a significant reduction in the bond strength of the restored teeth immediately after the bleaching (G2). There were no significant differences in enamel bond strength between groups G1, G3, and G4. There was a predominance of adhesive and mixed (cohesive + adhesive) failure in all groups. The 7-day-period after the end of the bleaching with 35% hydrogen peroxide was enough to achieve the appropriate values of bond strength to the enamel.

  20. Photothermal radiometry and modulated luminescence examination of demineralized and remineralized dental lesions

    International Nuclear Information System (INIS)

    Hellen, A; Mandelis, A; Finer, Y

    2010-01-01

    Dental caries involves continuous challenges of acid-induced mineral loss and a counteracting process of mineral recovery. As an emerging non-destructive methodology, photothermal radiometry and modulated luminescence (PTR-LUM) has shown promise in measuring changes in tooth mineral content. Human molars (n=37) were subjected to demineralization in acid gel (pH 4.5, 10 days), followed by incubation in remineralisation solutions (pH 6.7, 4 weeks) without or with fluoride (1 or 1000 ppm). PTR-LUM frequency scans (1 Hz - 1 kHz) were performed prior to and during demineralization and remineralization treatments. Transverse Micro-Radiography (TMR) analysis followed at treatment conclusion. The non-fluoridated group exhibited opposite amplitude and phase trends to those of the highly fluoridated group: smaller phase lag and larger amplitude. These results point to a complex interplay between surface and subsurface processes during remineralization, confining the thermal-wave centroid toward the dominating layer.

  1. Assessing the environmental impacts of using demineralized coal for electricity generation

    DEFF Research Database (Denmark)

    Ryberg, Morten; Owsianiak, Mikolaj; Laurent, Alexis

    2014-01-01

    because of the large energy use forrunning the demineralization process. Local and regional environmental impacts were shown to improve from demineralization for low ranking coals or lignite where the ash content is above ≈25 % and the carboncontent is less than ≈50 %. Overall, it can be concluded...... in alkaline and acidic solution to dissolve and remove the ash. This process is well-studied on lab scale but has only to a small extent been tried on a full scale. This assessment is conducted as an aid for further developing thetechnology, allowing for early identification of environmental impacts...... cycle perspective, to assessthe environmental impacts from removing ash in coal, and assess how this affects the combustion in terms of higher thermal efficiency. We assess 260 different data points applying alkali-acid leaching or acidleaching and assess how the treatment and subsequent energy...

  2. Detection for demineralization of dental hard tissues using index-sequenced radiographs

    International Nuclear Information System (INIS)

    Park, Dong Hyun; Park, Young Ho; Kim, Kyung Sook; Park, Jeong Hoon; Lee, Gi Ja; Choi, Sam Jin; Park, Hun Kuk; Choi, Yong Suk; Hwang, Eui Hwan

    2009-01-01

    The purpose of this study was to develop the radiographic technique for detecting the demineralization which is known as indication of dental caries. This technique was based on the comparing of multiple radiographs which was irradiated by multiple X-ray spectra. For the meaningful comparing, the multiple radiographs were reconstructed to the dosimetrically consistent images using a standard material. The difference of resulting images of same target with multiple spectra represents the difference of response of material as regards the spectra. We have found about 10% of demineralization of dental hard tissues particularly in the proximal region through the analyzing of differences. Most intriguing thing in this investigation was that the method to analyze difference shows us to an anatomic structure of dental hard tissues even if absolute values of optical density were excluded during the procedures.

  3. Photothermal radiometry and modulated luminescence examination of demineralized and remineralized dental lesions

    Energy Technology Data Exchange (ETDEWEB)

    Hellen, A; Mandelis, A [Center for Advanced Diffusion-Wave Technologies, University of Toronto, 5 King' s College Road, Toronto, Ontario, M5S 3G8 (Canada); Finer, Y, E-mail: mandelis@mie.utoronto.c [Faculty of Dentistry, University of Toronto, 124 Edward Street, Toronto, Ontario, M5G 1G6 (Canada)

    2010-03-01

    Dental caries involves continuous challenges of acid-induced mineral loss and a counteracting process of mineral recovery. As an emerging non-destructive methodology, photothermal radiometry and modulated luminescence (PTR-LUM) has shown promise in measuring changes in tooth mineral content. Human molars (n=37) were subjected to demineralization in acid gel (pH 4.5, 10 days), followed by incubation in remineralisation solutions (pH 6.7, 4 weeks) without or with fluoride (1 or 1000 ppm). PTR-LUM frequency scans (1 Hz - 1 kHz) were performed prior to and during demineralization and remineralization treatments. Transverse Micro-Radiography (TMR) analysis followed at treatment conclusion. The non-fluoridated group exhibited opposite amplitude and phase trends to those of the highly fluoridated group: smaller phase lag and larger amplitude. These results point to a complex interplay between surface and subsurface processes during remineralization, confining the thermal-wave centroid toward the dominating layer.

  4. Detection for demineralization of dental hard tissues using index-sequenced radiographs

    Energy Technology Data Exchange (ETDEWEB)

    Park, Dong Hyun; Park, Young Ho; Kim, Kyung Sook; Park, Jeong Hoon; Lee, Gi Ja; Choi, Sam Jin; Park, Hun Kuk [Department of Biomedical Engineering, School of Medicine, KyungHee University, Seoul (Korea, Republic of); Choi, Yong Suk; Hwang, Eui Hwan [Department of Oral and Maxillofacial Radiology, Institute of Oral Biology, School of Dentistry, KyungHee University, Seoul (Korea, Republic of)

    2009-06-15

    The purpose of this study was to develop the radiographic technique for detecting the demineralization which is known as indication of dental caries. This technique was based on the comparing of multiple radiographs which was irradiated by multiple X-ray spectra. For the meaningful comparing, the multiple radiographs were reconstructed to the dosimetrically consistent images using a standard material. The difference of resulting images of same target with multiple spectra represents the difference of response of material as regards the spectra. We have found about 10% of demineralization of dental hard tissues particularly in the proximal region through the analyzing of differences. Most intriguing thing in this investigation was that the method to analyze difference shows us to an anatomic structure of dental hard tissues even if absolute values of optical density were excluded during the procedures.

  5. Effect of ultrasonic, sonic and rotating-oscillating powered toothbrushing systems on surface roughness and wear of white spot lesions and sound enamel: An in vitro study.

    Science.gov (United States)

    Hernandé-Gatón, Patrícia; Palma-Dibb, Regina Guenka; Silva, Léa Assed Bezerra da; Faraoni, Juliana Jendiroba; de Queiroz, Alexandra Mussolino; Lucisano, Marília Pacífico; Silva, Raquel Assed Bezerra da; Nelson Filho, Paulo

    2018-04-01

    To evaluate the effect of ultrasonic, sonic and rotating-oscillating powered toothbrushing systems on surface roughness and wear of white spot lesions and sound enamel. 40 tooth segments obtained from third molar crowns had t