WorldWideScience

Sample records for demand forecasting models

  1. Demand forecast model based on CRM

    Science.gov (United States)

    Cai, Yuancui; Chen, Lichao

    2006-11-01

    With interiorizing day by day management thought that regarding customer as the centre, forecasting customer demand becomes more and more important. In the demand forecast of customer relationship management, the traditional forecast methods have very great limitation because much uncertainty of the demand, these all require new modeling to meet the demands of development. In this paper, the notion is that forecasting the demand according to characteristics of the potential customer, then modeling by it. The model first depicts customer adopting uniform multiple indexes. Secondly, the model acquires characteristic customers on the basis of data warehouse and the technology of data mining. The last, there get the most similar characteristic customer by their comparing and forecast the demands of new customer by the most similar characteristic customer.

  2. Stochastic model of forecasting spare parts demand

    Directory of Open Access Journals (Sweden)

    Ivan S. Milojević

    2012-01-01

    hypothesis of the existence of phenomenon change trends, the next step in the methodology of forecasting is the determination of a specific growth curve that describes the regularity of the development in time. These curves of growth are obtained by the analytical representation (expression of dynamic lines. There are two basic stages in the process of expression and they are: - The choice of the type of curve the shape of which corresponds to the character of the dynamic order variation - the determination of the number of values (evaluation of the curve parameters. The most widespread method of forecasting is the trend extrapolation. The basis of the trend extrapolation is the continuing of past trends in the future. The simplicity of the trend extrapolation process, on the one hand, and the absence of other information on the other hand, are the main reasons why the trend extrapolation is used for forecasting. The trend extrapolation is founded on the following assumptions: - The phenomenon development can be presented as an evolutionary trajectory or trend, - General conditions that influenced the trend development in the past will not undergo substantial changes in the future. Spare parts demand forecasting is constantly being done in all warehouses, workshops, and at all levels. Without demand forecasting, neither planning nor decision making can be done. Demand forecasting is the input for determining the level of reserve, size of the order, ordering cycles, etc. The question that arises is the one of the reliability and accuracy of a forecast and its effects. Forecasting 'by feeling' is not to be dismissed if there is nothing better, but in this case, one must be prepared for forecasting failures that cause unnecessary accumulation of certain spare parts, and also a chronic shortage of other spare parts. All this significantly increases costs and does not provide a satisfactory supply of spare parts. The main problem of the application of this model is that each

  3. Modelling and forecasting Turkish residential electricity demand

    International Nuclear Information System (INIS)

    Dilaver, Zafer; Hunt, Lester C

    2011-01-01

    This research investigates the relationship between Turkish residential electricity consumption, household total final consumption expenditure and residential electricity prices by applying the structural time series model to annual data over the period from 1960 to 2008. Household total final consumption expenditure, real energy prices and an underlying energy demand trend are found to be important drivers of Turkish residential electricity demand with the estimated short run and the long run total final consumption expenditure elasticities being 0.38 and 1.57, respectively, and the estimated short run and long run price elasticities being -0.09 and -0.38, respectively. Moreover, the estimated underlying energy demand trend, (which, as far as is known, has not been investigated before for the Turkish residential sector) should be of some benefit to Turkish decision makers in terms of energy planning. It provides information about the impact of past policies, the influence of technical progress, the impacts of changes in consumer behaviour and the effects of changes in economic structure. Furthermore, based on the estimated equation, and different forecast assumptions, it is predicted that Turkish residential electricity demand will be somewhere between 48 and 80 TWh by 2020 compared to 40 TWh in 2008. - Research highlights: → Estimated short run and long run expenditure elasticities of 0.38 and 1.57, respectively. → Estimated short run and long run price elasticities of -0.09 and -0.38, respectively. → Estimated UEDT has increasing (i.e. energy using) and decreasing (i.e. energy saving) periods. → Predicted Turkish residential electricity demand between 48 and 80 TWh in 2020.

  4. Tourism Demand Modelling and Forecasting: A Review of Recent Research

    OpenAIRE

    Song, H; Li, G

    2008-01-01

    This paper reviews the published studies on tourism demand modelling and forecasting since 2000. One of the key findings of this review is that the methods used in analysing and forecasting the demand for tourism have been more diverse than those identified by other review articles. In addition to the most popular time-series and econometric models, a number of new techniques have emerged in the literature. However, as far as the forecasting accuracy is concerned, the study shows that there i...

  5. Modeling and forecasting natural gas demand in Bangladesh

    International Nuclear Information System (INIS)

    Wadud, Zia; Dey, Himadri S.; Kabir, Md. Ashfanoor; Khan, Shahidul I.

    2011-01-01

    Natural gas is the major indigenous source of energy in Bangladesh and accounts for almost one-half of all primary energy used in the country. Per capita and total energy use in Bangladesh is still very small, and it is important to understand how energy, and natural gas demand will evolve in the future. We develop a dynamic econometric model to understand the natural gas demand in Bangladesh, both in the national level, and also for a few sub-sectors. Our demand model shows large long run income elasticity - around 1.5 - for aggregate demand for natural gas. Forecasts into the future also show a larger demand in the future than predicted by various national and multilateral organizations. Even then, it is possible that our forecasts could still be at the lower end of the future energy demand. Price response was statistically not different from zero, indicating that prices are possibly too low and that there is a large suppressed demand for natural gas in the country. - Highlights: → Natural gas demand is modeled using dynamic econometric methods, first of its kind in Bangladesh. → Income elasticity for aggregate natural gas demand in Bangladesh is large-around 1.5. → Demand is price insensitive, indicating too low prices and/or presence of large suppressed demand. → Demand forecasts reveal large divergence from previous estimates, which is important for planning. → Attempts to model demand for end-use sectors were successful only for the industrial sector.

  6. Modeling and forecasting natural gas demand in Bangladesh

    Energy Technology Data Exchange (ETDEWEB)

    Wadud, Zia, E-mail: ziawadud@yahoo.com [Bangladesh University of Engineering and Technology (Bangladesh); Dey, Himadri S. [University of Notre Dame (United States); Kabir, Md. Ashfanoor; Khan, Shahidul I. [Bangladesh University of Engineering and Technology (Bangladesh)

    2011-11-15

    Natural gas is the major indigenous source of energy in Bangladesh and accounts for almost one-half of all primary energy used in the country. Per capita and total energy use in Bangladesh is still very small, and it is important to understand how energy, and natural gas demand will evolve in the future. We develop a dynamic econometric model to understand the natural gas demand in Bangladesh, both in the national level, and also for a few sub-sectors. Our demand model shows large long run income elasticity - around 1.5 - for aggregate demand for natural gas. Forecasts into the future also show a larger demand in the future than predicted by various national and multilateral organizations. Even then, it is possible that our forecasts could still be at the lower end of the future energy demand. Price response was statistically not different from zero, indicating that prices are possibly too low and that there is a large suppressed demand for natural gas in the country. - Highlights: > Natural gas demand is modeled using dynamic econometric methods, first of its kind in Bangladesh. > Income elasticity for aggregate natural gas demand in Bangladesh is large-around 1.5. > Demand is price insensitive, indicating too low prices and/or presence of large suppressed demand. > Demand forecasts reveal large divergence from previous estimates, which is important for planning. > Attempts to model demand for end-use sectors were successful only for the industrial sector.

  7. Stochastic model of forecasting spare parts demand

    OpenAIRE

    Ivan S. Milojević; Rade V. Guberinić

    2012-01-01

    If demand is known for the whole planning period (complete information), then this type of demand or a supply system is deterministic. In the simplest cases, the demand per time unit is constant. If demand levels change over time following a precisely determined and pre-known principle, this type of demand is also classified as deterministic. This quality of demand is very rare. In most cases demand is the product of a process, for example TMS maintenance, whose progression cannot be predicte...

  8. Inventory model using bayesian dynamic linear model for demand forecasting

    Directory of Open Access Journals (Sweden)

    Marisol Valencia-Cárdenas

    2014-12-01

    Full Text Available An important factor of manufacturing process is the inventory management of terminated product. Constantly, industry is looking for better alternatives to establish an adequate plan of production and stored quantities, with optimal cost, getting quantities in a time horizon, which permits to define resources and logistics with anticipation, needed to distribute products on time. Total absence of historical data, required by many statistical models to forecast, demands the search for other kind of accurate techniques. This work presents an alternative that not only permits to forecast, in an adjusted way, but also, to provide optimal quantities to produce and store with an optimal cost, using Bayesian statistics. The proposal is illustrated with real data. Palabras clave: estadística bayesiana, optimización, modelo de inventarios, modelo lineal dinámico bayesiano. Keywords: Bayesian statistics, opti

  9. Modeling and forecasting of electrical power demands for capacity planning

    International Nuclear Information System (INIS)

    Al-Shobaki, S.; Mohsen, M.

    2007-01-01

    Jordan imports oil from neighboring countries for use in power production. As such, the cost of electricity production is high compared to oil producing countries. It is anticipated that Jordan will face major challenges in trying to meet the growing energy and electricity demands while also developing the energy sector in a way that reduces any adverse impacts on the economy, the environment and social life. This paper described the development of forecasting models to predict future generation and sales loads of electrical power in Jordan. Two models that could be used for the prediction of electrical energy demand in Amman, Jordan were developed and validated. An analysis of the data was also presented. The first model was based on the levels of energy generated by the National Electric Power Company (NEPCO) and the other was based on the levels of energy sold by the company in the same area. The models were compared and the percent error was presented. Energy demand was also forecasted across the next 60 months for both models. Results were then compared with the output of the in-house forecast model used by NEPCO to predict the levels of generated energy needed across the 60 months time period. It was concluded that the NEPCO model predicted energy demand higher than the validated generated data model by an average of 5.25 per cent. 8 refs., 5 tabs., 15 figs

  10. Modeling and forecasting of electrical power demands for capacity planning

    Energy Technology Data Exchange (ETDEWEB)

    Al-Shobaki, S. [Hashemite Univ., Zarka (Jordan). Dept. of Industrial Engineering; Mohsen, M. [Hashemite Univ., Zarka (Jordan). Dept. of Mechanical Engineering

    2007-07-01

    Jordan imports oil from neighboring countries for use in power production. As such, the cost of electricity production is high compared to oil producing countries. It is anticipated that Jordan will face major challenges in trying to meet the growing energy and electricity demands while also developing the energy sector in a way that reduces any adverse impacts on the economy, the environment and social life. This paper described the development of forecasting models to predict future generation and sales loads of electrical power in Jordan. Two models that could be used for the prediction of electrical energy demand in Amman, Jordan were developed and validated. An analysis of the data was also presented. The first model was based on the levels of energy generated by the National Electric Power Company (NEPCO) and the other was based on the levels of energy sold by the company in the same area. The models were compared and the percent error was presented. Energy demand was also forecasted across the next 60 months for both models. Results were then compared with the output of the in-house forecast model used by NEPCO to predict the levels of generated energy needed across the 60 months time period. It was concluded that the NEPCO model predicted energy demand higher than the validated generated data model by an average of 5.25 per cent. 8 refs., 5 tabs., 15 figs.

  11. Electricity Demand Forecasting Using a Functional State Space Model

    OpenAIRE

    Nagbe , Komi; Cugliari , Jairo; Jacques , Julien

    2018-01-01

    In the last past years the liberalization of the electricity supply, the increase variability of electric appliances and their use, and the need to respond to the electricity demand in the real time had made electricity demand forecasting a challenge. To this challenge, many solutions are being proposed. The electricity demand involves many sources such as economic activities, household need and weather sources. All this sources make hard electricity demand forecasting. To forecast the electr...

  12. MODELLING CHALLENGES TO FORECAST URBAN GOODS DEMAND FOR RAIL

    Directory of Open Access Journals (Sweden)

    Antonio COMI

    2015-12-01

    Full Text Available This paper explores the new research challenges for forecasting urban goods demand by rail. In fact, the growing interest to find urban logistics solutions for improving city sustainability and liveability, mainly due to the reduction of urban road accessibility and environmental constraints, has pushed to explore solutions alternative to the road. Multimodal urban logistics, based on the use of railway, seem an interesting alternative solution, but it remained mainly at conceptual level. Few studies have explored the factors, that push actors to find competitive such a system with respect to the road, and modelling framework for forecasting the relative demand. Therefore, paper reviews the current literature, investigates the factors involved in choosing such a mode, and finally, recalls a recent modelling framework and hence proposes some advancements that allow to point out the rail transport alternative.

  13. Deterministic and heuristic models of forecasting spare parts demand

    Directory of Open Access Journals (Sweden)

    Ivan S. Milojević

    2012-04-01

    Full Text Available Knowing the demand of spare parts is the basis for successful spare parts inventory management. Inventory management has two aspects. The first one is operational management: acting according to certain models and making decisions in specific situations which could not have been foreseen or have not been encompassed by models. The second aspect is optimization of the model parameters by means of inventory management. Supply items demand (asset demand is the expression of customers' needs in units in the desired time and it is one of the most important parameters in the inventory management. The basic task of the supply system is demand fulfillment. In practice, demand is expressed through requisition or request. Given the conditions in which inventory management is considered, demand can be: - deterministic or stochastic, - stationary or nonstationary, - continuous or discrete, - satisfied or unsatisfied. The application of the maintenance concept is determined by the technological level of development of the assets being maintained. For example, it is hard to imagine that the concept of self-maintenance can be applied to assets developed and put into use 50 or 60 years ago. Even less complex concepts cannot be applied to those vehicles that only have indicators of engine temperature - those that react only when the engine is overheated. This means that the maintenance concepts that can be applied are the traditional preventive maintenance and the corrective maintenance. In order to be applied in a real system, modeling and simulation methods require a completely regulated system and that is not the case with this spare parts supply system. Therefore, this method, which also enables the model development, cannot be applied. Deterministic models of forecasting are almost exclusively related to the concept of preventive maintenance. Maintenance procedures are planned in advance, in accordance with exploitation and time resources. Since the timing

  14. State-level electricity demand forecasting model. [For 1980, 1985, 1990

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, H. D.

    1978-01-01

    This note briefly describes the Oak Ridge National Laboratory (ORNL) state-level electricity demand (SLED) forecasting model developed for the Nuclear Regulatory Commission. Specifically, the note presents (1) the special features of the model, (2) the methodology used to forecast electricity demand, and (3) forecasts of electricity demand and average price by sector for 15 states for 1980, 1985, 1990.

  15. Modeling and forecasting of electrical power demands for capacity planning

    International Nuclear Information System (INIS)

    Al-Shobaki, Salman; Mohsen, Mousa

    2008-01-01

    This paper describes the development of forecasting models to predict future generation and electrical power consumption in Jordan. This is critical to production cost since power is generated by burning expensive imported oil. Currently, the National Electric Power Company (NEPCO) is using regression models that only accounts for trend dynamics in their planning of loads and demand levels. The models are simplistic and are based on generated energy historical levels. They produce results on yearly bases and do not account for monthly variability in demand levels. The paper presents two models, one based on the generated energy data and the other is based on the consumed energy data. The models account for trend, monthly seasonality, and cycle dynamics. Both models are compared to NEPCO's model and indicate that NEPCO is producing energy at levels higher than needed (5.25%) thus increasing the loss in generated energy. The developed models also show a 13% difference between the generated energy and the consumed energy that is lost due to transmission line and in-house consumption

  16. Modeling and forecasting of electrical power demands for capacity planning

    Energy Technology Data Exchange (ETDEWEB)

    Al-Shobaki, Salman [Department of Industrial Engineering, Hashemite University, Zarka 13115 (Jordan); Mohsen, Mousa [Department of Mechanical Engineering, Hashemite University, Zarka 13115 (Jordan)

    2008-11-15

    This paper describes the development of forecasting models to predict future generation and electrical power consumption in Jordan. This is critical to production cost since power is generated by burning expensive imported oil. Currently, the National Electric Power Company (NEPCO) is using regression models that only accounts for trend dynamics in their planning of loads and demand levels. The models are simplistic and are based on generated energy historical levels. They produce results on yearly bases and do not account for monthly variability in demand levels. The paper presents two models, one based on the generated energy data and the other is based on the consumed energy data. The models account for trend, monthly seasonality, and cycle dynamics. Both models are compared to NEPCO's model and indicate that NEPCO is producing energy at levels higher than needed (5.25%) thus increasing the loss in generated energy. The developed models also show a 13% difference between the generated energy and the consumed energy that is lost due to transmission line and in-house consumption. (author)

  17. Electricity demand forecasting techniques

    International Nuclear Information System (INIS)

    Gnanalingam, K.

    1994-01-01

    Electricity demand forecasting plays an important role in power generation. The two areas of data that have to be forecasted in a power system are peak demand which determines the capacity (MW) of the plant required and annual energy demand (GWH). Methods used in electricity demand forecasting include time trend analysis and econometric methods. In forecasting, identification of manpower demand, identification of key planning factors, decision on planning horizon, differentiation between prediction and projection (i.e. development of different scenarios) and choosing from different forecasting techniques are important

  18. DeMand: A tool for evaluating and comparing device-level demand and supply forecast models

    DEFF Research Database (Denmark)

    Neupane, Bijay; Siksnys, Laurynas; Pedersen, Torben Bach

    2016-01-01

    Fine-grained device-level predictions of both shiftable and non-shiftable energy demand and supply is vital in order to take advantage of Demand Response (DR) for efficient utilization of Renewable Energy Sources. The selection of an effective device-level load forecast model is a challenging task......, mainly due to the diversity of the models and the lack of proper tools and datasets that can be used to validate them. In this paper, we introduce the DeMand system for fine-tuning, analyzing, and validating the device-level forecast models. The system offers several built-in device-level measurement...... datasets, forecast models, features, and errors measures, thus semi-automating most of the steps of the forecast model selection and validation process. This paper presents the architecture and data model of the DeMand system; and provides a use-case example on how one particular forecast model...

  19. A multivariate time series approach to modeling and forecasting demand in the emergency department.

    Science.gov (United States)

    Jones, Spencer S; Evans, R Scott; Allen, Todd L; Thomas, Alun; Haug, Peter J; Welch, Shari J; Snow, Gregory L

    2009-02-01

    The goals of this investigation were to study the temporal relationships between the demands for key resources in the emergency department (ED) and the inpatient hospital, and to develop multivariate forecasting models. Hourly data were collected from three diverse hospitals for the year 2006. Descriptive analysis and model fitting were carried out using graphical and multivariate time series methods. Multivariate models were compared to a univariate benchmark model in terms of their ability to provide out-of-sample forecasts of ED census and the demands for diagnostic resources. Descriptive analyses revealed little temporal interaction between the demand for inpatient resources and the demand for ED resources at the facilities considered. Multivariate models provided more accurate forecasts of ED census and of the demands for diagnostic resources. Our results suggest that multivariate time series models can be used to reliably forecast ED patient census; however, forecasts of the demands for diagnostic resources were not sufficiently reliable to be useful in the clinical setting.

  20. Overview, comparative assessment and recommendations of forecasting models for short-term water demand prediction

    CSIR Research Space (South Africa)

    Anele, AO

    2017-11-01

    Full Text Available -term water demand (STWD) forecasts. In view of this, an overview of forecasting methods for STWD prediction is presented. Based on that, a comparative assessment of the performance of alternative forecasting models from the different methods is studied. Times...

  1. Forecasting Hourly Water Demands With Seasonal Autoregressive Models for Real-Time Application

    Science.gov (United States)

    Chen, Jinduan; Boccelli, Dominic L.

    2018-02-01

    Consumer water demands are not typically measured at temporal or spatial scales adequate to support real-time decision making, and recent approaches for estimating unobserved demands using observed hydraulic measurements are generally not capable of forecasting demands and uncertainty information. While time series modeling has shown promise for representing total system demands, these models have generally not been evaluated at spatial scales appropriate for representative real-time modeling. This study investigates the use of a double-seasonal time series model to capture daily and weekly autocorrelations to both total system demands and regional aggregated demands at a scale that would capture demand variability across a distribution system. Emphasis was placed on the ability to forecast demands and quantify uncertainties with results compared to traditional time series pattern-based demand models as well as nonseasonal and single-seasonal time series models. Additional research included the implementation of an adaptive-parameter estimation scheme to update the time series model when unobserved changes occurred in the system. For two case studies, results showed that (1) for the smaller-scale aggregated water demands, the log-transformed time series model resulted in improved forecasts, (2) the double-seasonal model outperformed other models in terms of forecasting errors, and (3) the adaptive adjustment of parameters during forecasting improved the accuracy of the generated prediction intervals. These results illustrate the capabilities of time series modeling to forecast both water demands and uncertainty estimates at spatial scales commensurate for real-time modeling applications and provide a foundation for developing a real-time integrated demand-hydraulic model.

  2. Development of S-ARIMA Model for Forecasting Demand in a Beverage Supply Chain

    Science.gov (United States)

    Mircetic, Dejan; Nikolicic, Svetlana; Maslaric, Marinko; Ralevic, Nebojsa; Debelic, Borna

    2016-11-01

    Demand forecasting is one of the key activities in planning the freight flows in supply chains, and accordingly it is essential for planning and scheduling of logistic activities within observed supply chain. Accurate demand forecasting models directly influence the decrease of logistics costs, since they provide an assessment of customer demand. Customer demand is a key component for planning all logistic processes in supply chain, and therefore determining levels of customer demand is of great interest for supply chain managers. In this paper we deal with exactly this kind of problem, and we develop the seasonal Autoregressive IntegratedMoving Average (SARIMA) model for forecasting demand patterns of a major product of an observed beverage company. The model is easy to understand, flexible to use and appropriate for assisting the expert in decision making process about consumer demand in particular periods.

  3. An Integrated Modeling Approach for Forecasting Long-Term Energy Demand in Pakistan

    Directory of Open Access Journals (Sweden)

    Syed Aziz Ur Rehman

    2017-11-01

    Full Text Available Energy planning and policy development require an in-depth assessment of energy resources and long-term demand forecast estimates. Pakistan, unfortunately, lacks reliable data on its energy resources as well do not have dependable long-term energy demand forecasts. As a result, the policy makers could not come up with an effective energy policy in the history of the country. Energy demand forecast has attained greatest ever attention in the perspective of growing population and diminishing fossil fuel resources. In this study, Pakistan’s energy demand forecast for electricity, natural gas, oil, coal and LPG across all the sectors of the economy have been undertaken. Three different energy demand forecasting methodologies, i.e., Autoregressive Integrated Moving Average (ARIMA, Holt-Winter and Long-range Energy Alternate Planning (LEAP model were used. The demand forecast estimates of each of these methods were compared using annual energy demand data. The results of this study suggest that ARIMA is more appropriate for energy demand forecasting for Pakistan compared to Holt-Winter model and LEAP model. It is estimated that industrial sector’s demand shall be highest in the year 2035 followed by transport and domestic sectors. The results further suggest that energy fuel mix will change considerably, such that oil will be the most highly consumed energy form (38.16% followed by natural gas (36.57%, electricity (16.22%, coal (7.52% and LPG (1.52% in 2035. In view of higher demand forecast of fossil fuels consumption, this study recommends that government should take the initiative for harnessing renewable energy resources for meeting future energy demand to not only avert huge import bill but also achieving energy security and sustainability in the long run.

  4. A train dispatching model based on fuzzy passenger demand forecasting during holidays

    Directory of Open Access Journals (Sweden)

    Fei Dou Dou

    2013-03-01

    Full Text Available Abstract: Purpose: The train dispatching is a crucial issue in the train operation adjustment when passenger flow outbursts. During holidays, the train dispatching is to meet passenger demand to the greatest extent, and ensure safety, speediness and punctuality of the train operation. In this paper, a fuzzy passenger demand forecasting model is put up, then a train dispatching optimization model is established based on passenger demand so as to evacuate stranded passengers effectively during holidays. Design/methodology/approach: First, the complex features and regularity of passenger flow during holidays are analyzed, and then a fuzzy passenger demand forecasting model is put forward based on the fuzzy set theory and time series theory. Next, the bi-objective of the train dispatching optimization model is to minimize the total operation cost of the train dispatching and unserved passenger volume during holidays. Finally, the validity of this model is illustrated with a case concerned with the Beijing-Shanghai high-speed railway in China. Findings: The case study shows that the fuzzy passenger demand forecasting model can predict outcomes more precisely than ARIMA model. Thus train dispatching optimization plan proves that a small number of trains are able to serve unserved passengers reasonably and effectively. Originality/value: On the basis of the passenger demand predictive values, the train dispatching optimization model is established, which enables train dispatching to meet passenger demand in condition that passenger flow outbursts, so as to maximize passenger demand by offering the optimal operation plan.

  5. Forecasting the natural gas demand in China using a self-adapting intelligent grey model

    International Nuclear Information System (INIS)

    Zeng, Bo; Li, Chuan

    2016-01-01

    Reasonably forecasting demands of natural gas in China is of significance as it could aid Chinese government in formulating energy policies and adjusting industrial structures. To this end, a self-adapting intelligent grey prediction model is proposed in this paper. Compared with conventional grey models which have the inherent drawbacks of fixed structure and poor adaptability, the proposed new model can automatically optimize model parameters according to the real data characteristics of modeling sequence. In this study, the proposed new model, discrete grey model, even difference grey model and classical grey model were employed, respectively, to simulate China's natural gas demands during 2002–2010 and forecast demands during 2011–2014. The results show the new model has the best simulative and predictive precision. Finally, the new model is used to forecast China's natural gas demand during 2015–2020. The forecast shows the demand will grow rapidly over the next six years. Therefore, in order to maintain the balance between the supplies and the demands for the natural gas in the future, Chinese government needs to take some measures, such as importing huge amounts of natural gas from abroad, increasing the domestic yield, using more alternative energy, and reducing the industrial reliance on natural gas. - Highlights: • A self-adapting intelligent grey prediction model (SIGM) is proposed in this paper. • The SIGM has the advantage of working with exponential functions and linear functions. • The SIGM solves the drawbacks of fixed structure and poor adaptability of grey models. • The demand of natural gas in China is successfully forecasted using the SIGM model. • The study findings can help Chinese government reasonably formulate energy policies.

  6. Automation of energy demand forecasting

    Science.gov (United States)

    Siddique, Sanzad

    Automation of energy demand forecasting saves time and effort by searching automatically for an appropriate model in a candidate model space without manual intervention. This thesis introduces a search-based approach that improves the performance of the model searching process for econometrics models. Further improvements in the accuracy of the energy demand forecasting are achieved by integrating nonlinear transformations within the models. This thesis introduces machine learning techniques that are capable of modeling such nonlinearity. Algorithms for learning domain knowledge from time series data using the machine learning methods are also presented. The novel search based approach and the machine learning models are tested with synthetic data as well as with natural gas and electricity demand signals. Experimental results show that the model searching technique is capable of finding an appropriate forecasting model. Further experimental results demonstrate an improved forecasting accuracy achieved by using the novel machine learning techniques introduced in this thesis. This thesis presents an analysis of how the machine learning techniques learn domain knowledge. The learned domain knowledge is used to improve the forecast accuracy.

  7. Forecasting Croatian inbound tourism demand

    OpenAIRE

    Tica, Josip; Kožić, Ivan

    2015-01-01

    The aim of this paper is to present a forecasting model for the overnight stays of foreign tourists in Croatia. Tourism is one of the most important parts of the Croatian economy. It is particularly important in the context of the services sector. Regular and significant surpluses and the consumption of foreign guests are an important element of budget revenues, especially VAT. The ability to forecast the development of inbound tourism demand in a timely manner is crucial for both business...

  8. Modelling and Forecasting Cruise Tourism Demand to İzmir by Different Artificial Neural Network Architectures

    Directory of Open Access Journals (Sweden)

    Murat Cuhadar

    2014-03-01

    Full Text Available Abstract Cruise ports emerged as an important sector for the economy of Turkey bordered on three sides by water. Forecasting cruise tourism demand ensures better planning, efficient preparation at the destination and it is the basis for elaboration of future plans. In the recent years, new techniques such as; artificial neural networks were employed for developing of the predictive models to estimate tourism demand. In this study, it is aimed to determine the forecasting method that provides the best performance when compared the forecast accuracy of Multi-layer Perceptron (MLP, Radial Basis Function (RBF and Generalized Regression neural network (GRNN to estimate the monthly inbound cruise tourism demand to İzmir via the method giving best results. We used the total number of foreign cruise tourist arrivals as a measure of inbound cruise tourism demand and monthly cruise tourist arrivals to İzmir Cruise Port in the period of January 2005 ‐December 2013 were utilized to appropriate model. Experimental results showed that radial basis function (RBF neural network outperforms multi-layer perceptron (MLP and the generalised regression neural networks (GRNN in terms of forecasting accuracy. By the means of the obtained RBF neural network model, it has been forecasted the monthly inbound cruise tourism demand to İzmir for the year 2014.

  9. A Probabilistic Short-Term Water Demand Forecasting Model Based on the Markov Chain

    Directory of Open Access Journals (Sweden)

    Francesca Gagliardi

    2017-07-01

    Full Text Available This paper proposes a short-term water demand forecasting method based on the use of the Markov chain. This method provides estimates of future demands by calculating probabilities that the future demand value will fall within pre-assigned intervals covering the expected total variability. More specifically, two models based on homogeneous and non-homogeneous Markov chains were developed and presented. These models, together with two benchmark models (based on artificial neural network and naïve methods, were applied to three real-life case studies for the purpose of forecasting the respective water demands from 1 to 24 h ahead. The results obtained show that the model based on a homogeneous Markov chain provides more accurate short-term forecasts than the one based on a non-homogeneous Markov chain, which is in line with the artificial neural network model. Both Markov chain models enable probabilistic information regarding the stochastic demand forecast to be easily obtained.

  10. Short-term electricity demand and gas price forecasts using wavelet transforms and adaptive models

    International Nuclear Information System (INIS)

    Nguyen, Hang T.; Nabney, Ian T.

    2010-01-01

    This paper presents some forecasting techniques for energy demand and price prediction, one day ahead. These techniques combine wavelet transform (WT) with fixed and adaptive machine learning/time series models (multi-layer perceptron (MLP), radial basis functions, linear regression, or GARCH). To create an adaptive model, we use an extended Kalman filter or particle filter to update the parameters continuously on the test set. The adaptive GARCH model is a new contribution, broadening the applicability of GARCH methods. We empirically compared two approaches of combining the WT with prediction models: multicomponent forecasts and direct forecasts. These techniques are applied to large sets of real data (both stationary and non-stationary) from the UK energy markets, so as to provide comparative results that are statistically stronger than those previously reported. The results showed that the forecasting accuracy is significantly improved by using the WT and adaptive models. The best models on the electricity demand/gas price forecast are the adaptive MLP/GARCH with the multicomponent forecast; their NMSEs are 0.02314 and 0.15384 respectively. (author)

  11. Predictive Uncertainty Estimation in Water Demand Forecasting Using the Model Conditional Processor

    Directory of Open Access Journals (Sweden)

    Amos O. Anele

    2018-04-01

    Full Text Available In a previous paper, a number of potential models for short-term water demand (STWD prediction have been analysed to find the ones with the best fit. The results obtained in Anele et al. (2017 showed that hybrid models may be considered as the accurate and appropriate forecasting models for STWD prediction. However, such best single valued forecast does not guarantee reliable and robust decisions, which can be properly obtained via model uncertainty processors (MUPs. MUPs provide an estimate of the full predictive densities and not only the single valued expected prediction. Amongst other MUPs, the purpose of this paper is to use the multi-variate version of the model conditional processor (MCP, proposed by Todini (2008, to demonstrate how the estimation of the predictive probability conditional to a number of relatively good predictive models may improve our knowledge, thus reducing the predictive uncertainty (PU when forecasting into the unknown future. Through the MCP approach, the probability distribution of the future water demand can be assessed depending on the forecast provided by one or more deterministic forecasting models. Based on an average weekly data of 168 h, the probability density of the future demand is built conditional on three models’ predictions, namely the autoregressive-moving average (ARMA, feed-forward back propagation neural network (FFBP-NN and hybrid model (i.e., combined forecast from ARMA and FFBP-NN. The results obtained show that MCP may be effectively used for real-time STWD prediction since it brings out the PU connected to its forecast, and such information could help water utilities estimate the risk connected to a decision.

  12. Are demand forecasting techniques applicable to libraries?

    OpenAIRE

    Sridhar, M. S.

    1984-01-01

    Examines the nature and limitations of demand forecasting, discuses plausible methods of forecasting demand for information, suggests some useful hints for demand forecasting and concludes by emphasizing unified approach to demand forecasting.

  13. Least square regression based integrated multi-parameteric demand modeling for short term load forecasting

    International Nuclear Information System (INIS)

    Halepoto, I.A.; Uqaili, M.A.

    2014-01-01

    Nowadays, due to power crisis, electricity demand forecasting is deemed an important area for socioeconomic development and proper anticipation of the load forecasting is considered essential step towards efficient power system operation, scheduling and planning. In this paper, we present STLF (Short Term Load Forecasting) using multiple regression techniques (i.e. linear, multiple linear, quadratic and exponential) by considering hour by hour load model based on specific targeted day approach with temperature variant parameter. The proposed work forecasts the future load demand correlation with linear and non-linear parameters (i.e. considering temperature in our case) through different regression approaches. The overall load forecasting error is 2.98% which is very much acceptable. From proposed regression techniques, Quadratic Regression technique performs better compared to than other techniques because it can optimally fit broad range of functions and data sets. The work proposed in this paper, will pave a path to effectively forecast the specific day load with multiple variance factors in a way that optimal accuracy can be maintained. (author)

  14. Multi-Model Prediction for Demand Forecast in Water Distribution Networks

    Directory of Open Access Journals (Sweden)

    Rodrigo Lopez Farias

    2018-03-01

    Full Text Available This paper presents a multi-model predictor called Qualitative Multi-Model Predictor Plus (QMMP+ for demand forecast in water distribution networks. QMMP+ is based on the decomposition of the quantitative and qualitative information of the time-series. The quantitative component (i.e., the daily consumption prediction is forecasted and the pattern mode estimated using a Nearest Neighbor (NN classifier and a Calendar. The patterns are updated via a simple Moving Average scheme. The NN classifier and the Calendar are executed simultaneously every period and the most suited model for prediction is selected using a probabilistic approach. The proposed solution for water demand forecast is compared against Radial Basis Function Artificial Neural Networks (RBF-ANN, the statistical Autoregressive Integrated Moving Average (ARIMA, and Double Seasonal Holt-Winters (DSHW approaches, providing the best results when applied to real demand of the Barcelona Water Distribution Network. QMMP+ has demonstrated that the special modelling treatment of water consumption patterns improves the forecasting accuracy.

  15. Short-term electric power demand forecasting based on economic-electricity transmission model

    Science.gov (United States)

    Li, Wenfeng; Bai, Hongkun; Liu, Wei; Liu, Yongmin; Wang, Yubin Mao; Wang, Jiangbo; He, Dandan

    2018-04-01

    Short-term electricity demand forecasting is the basic work to ensure safe operation of the power system. In this paper, a practical economic electricity transmission model (EETM) is built. With the intelligent adaptive modeling capabilities of Prognoz Platform 7.2, the econometric model consists of three industrial added value and income levels is firstly built, the electricity demand transmission model is also built. By multiple regression, moving averages and seasonal decomposition, the problem of multiple correlations between variables is effectively overcome in EETM. The validity of EETM is proved by comparison with the actual value of Henan Province. Finally, EETM model is used to forecast the electricity consumption of the 1-4 quarter of 2018.

  16. Electricity demand load forecasting of the Hellenic power system using an ARMA model

    Energy Technology Data Exchange (ETDEWEB)

    Pappas, S.Sp. [ASPETE - School of Pedagogical and Technological Education Department of Electrical Engineering Educators N. Heraklion, 141 21 Athens (Greece); Ekonomou, L.; Chatzarakis, G.E.; Skafidas, P.D. [ASPETE-School of Pedagogical and Technological Education, Department of Electrical Engineering Educators, N. Heraklion, 141 21 Athens (Greece); Karampelas, P. [Hellenic American University, IT Department, 12 Kaplanon Str., 106 80 Athens (Greece); Karamousantas, D.C. [Technological Educational Institute of Kalamata, Antikalamos, 24 100 Kalamata (Greece); Katsikas, S.K. [University of Piraeus, Department of Technology Education and Digital Systems, 150 Androutsou St., 18 532 Piraeus (Greece)

    2010-03-15

    Effective modeling and forecasting requires the efficient use of the information contained in the available data so that essential data properties can be extracted and projected into the future. As far as electricity demand load forecasting is concerned time series analysis has the advantage of being statistically adaptive to data characteristics compared to econometric methods which quite often are subject to errors and uncertainties in model specification and knowledge of causal variables. This paper presents a new method for electricity demand load forecasting using the multi-model partitioning theory and compares its performance with three other well established time series analysis techniques namely Corrected Akaike Information Criterion (AICC), Akaike's Information Criterion (AIC) and Schwarz's Bayesian Information Criterion (BIC). The suitability of the proposed method is illustrated through an application to actual electricity demand load of the Hellenic power system, proving the reliability and the effectiveness of the method and making clear its usefulness in the studies that concern electricity consumption and electricity prices forecasts. (author)

  17. An Integrated Modeling Approach for Forecasting Long-Term Energy Demand in Pakistan

    OpenAIRE

    Syed Aziz Ur Rehman; Yanpeng Cai; Rizwan Fazal; Gordhan Das Walasai; Nayyar Hussain Mirjat

    2017-01-01

    Energy planning and policy development require an in-depth assessment of energy resources and long-term demand forecast estimates. Pakistan, unfortunately, lacks reliable data on its energy resources as well do not have dependable long-term energy demand forecasts. As a result, the policy makers could not come up with an effective energy policy in the history of the country. Energy demand forecast has attained greatest ever attention in the perspective of growing population and diminishing fo...

  18. Electricity demand and spot price forecasting using evolutionary computation combined with chaotic nonlinear dynamic model

    International Nuclear Information System (INIS)

    Unsihuay-Vila, C.; Zambroni de Souza, A.C.; Marangon-Lima, J.W.; Balestrassi, P.P.

    2010-01-01

    This paper proposes a new hybrid approach based on nonlinear chaotic dynamics and evolutionary strategy to forecast electricity loads and prices. The main idea is to develop a new training or identification stage in a nonlinear chaotic dynamic based predictor. In the training stage five optimal parameters for a chaotic based predictor are searched through an optimization model based on evolutionary strategy. The objective function of the optimization model is the mismatch minimization between the multi-step-ahead forecasting of predictor and observed data such as it is done in identification problems. The first contribution of this paper is that the proposed approach is capable of capturing the complex dynamic of demand and price time series considered resulting in a more accuracy forecasting. The second contribution is that the proposed approach run on-line manner, i.e. the optimal set of parameters and prediction is executed automatically which can be used to prediction in real-time, it is an advantage in comparison with other models, where the choice of their input parameters are carried out off-line, following qualitative/experience-based recipes. A case study of load and price forecasting is presented using data from New England, Alberta, and Spain. A comparison with other methods such as autoregressive integrated moving average (ARIMA) and artificial neural network (ANN) is shown. The results show that the proposed approach provides a more accurate and effective forecasting than ARIMA and ANN methods. (author)

  19. Guidelines for forecasting energy demand

    International Nuclear Information System (INIS)

    Sonino, T.

    1976-11-01

    Four methodologies for forecasting energy demand are reviewed here after considering the role of energy in the economy and the analysis of energy use in different economic sectors. The special case of Israel is considered throughout, and some forecasts for energy demands in the year 2000 are presented. An energy supply mix that may be considered feasible is proposed. (author)

  20. Correlation Analysis of Water Demand and Predictive Variables for Short-Term Forecasting Models

    Directory of Open Access Journals (Sweden)

    B. M. Brentan

    2017-01-01

    Full Text Available Operational and economic aspects of water distribution make water demand forecasting paramount for water distribution systems (WDSs management. However, water demand introduces high levels of uncertainty in WDS hydraulic models. As a result, there is growing interest in developing accurate methodologies for water demand forecasting. Several mathematical models can serve this purpose. One crucial aspect is the use of suitable predictive variables. The most used predictive variables involve weather and social aspects. To improve the interrelation knowledge between water demand and various predictive variables, this study applies three algorithms, namely, classical Principal Component Analysis (PCA and machine learning powerful algorithms such as Self-Organizing Maps (SOMs and Random Forest (RF. We show that these last algorithms help corroborate the results found by PCA, while they are able to unveil hidden features for PCA, due to their ability to cope with nonlinearities. This paper presents a correlation study of three district metered areas (DMAs from Franca, a Brazilian city, exploring weather and social variables to improve the knowledge of residential demand for water. For the three DMAs, temperature, relative humidity, and hour of the day appear to be the most important predictive variables to build an accurate regression model.

  1. Forecasting the demand for health tourism in Asian countries using a GM(1,1)-Alpha model

    OpenAIRE

    Ya-Ling Huang

    2012-01-01

    The purpose – Accurately forecasting the demand for international health tourism is important to newly-emerging markets in the world. The aim of this study was presents a more suitable and accurate model for forecasting the demand for health tourism that should be more theoretically useful. Design – Applying GM(1,1) with adaptive levels of α (hereafter GM(1,1)-α model) to provide a concise prediction model that will improve the ability to forecast the demand for health tourism in Asian cou...

  2. Energy Systems Scenario Modelling and Long Term Forecasting of Hourly Electricity Demand

    DEFF Research Database (Denmark)

    Alberg Østergaard, Poul; Møller Andersen, Frits; Kwon, Pil Seok

    2015-01-01

    . The results show that even with a limited short term electric car fleet, these will have a significant effect on the energy system; the energy system’s ability to integrate wind power and the demand for condensing power generation capacity in the system. Charging patterns and flexibility have significant...... or inflexible electric vehicles and individual heat pumps, and in the long term it is investigated what the effects of changes in the load profiles due to changing weights of demand sectors are. The analyses are based on energy systems simulations using EnergyPLAN and demand forecasting using the Helena model...... effects on this. Likewise, individual heat pumps may affect the system operation if they are equipped with heat storages. The analyses also show that the long term changes in electricity demand curve profiles have little impact on the energy system performance. The flexibility given by heat pumps...

  3. Medium-term electric power demand forecasting based on economic-electricity transmission model

    Science.gov (United States)

    Li, Wenfeng; Bao, Fangmin; Bai, Hongkun; Liu, Wei; Liu, Yongmin; Mao, Yubin; Wang, Jiangbo; Liu, Junhui

    2018-06-01

    Electric demand forecasting is a basic work to ensure the safe operation of power system. Based on the theories of experimental economics and econometrics, this paper introduces Prognoz Platform 7.2 intelligent adaptive modeling platform, and constructs the economic electricity transmission model that considers the economic development scenarios and the dynamic adjustment of industrial structure to predict the region's annual electricity demand, and the accurate prediction of the whole society's electricity consumption is realized. Firstly, based on the theories of experimental economics and econometrics, this dissertation attempts to find the economic indicator variables that drive the most economical growth of electricity consumption and availability, and build an annual regional macroeconomic forecast model that takes into account the dynamic adjustment of industrial structure. Secondly, it innovatively put forward the economic electricity directed conduction theory and constructed the economic power transfer function to realize the group forecast of the primary industry + rural residents living electricity consumption, urban residents living electricity, the second industry electricity consumption, the tertiary industry electricity consumption; By comparing with the actual value of economy and electricity in Henan province in 2016, the validity of EETM model is proved, and the electricity consumption of the whole province from 2017 to 2018 is predicted finally.

  4. Evaluation of a multiple linear regression model and SARIMA model in forecasting heat demand for district heating system

    International Nuclear Information System (INIS)

    Fang, Tingting; Lahdelma, Risto

    2016-01-01

    Highlights: • Social factor is considered for the linear regression models besides weather file. • Simultaneously optimize all the coefficients for linear regression models. • SARIMA combined with linear regression is used to forecast the heat demand. • The accuracy for both linear regression and time series models are evaluated. - Abstract: Forecasting heat demand is necessary for production and operation planning of district heating (DH) systems. In this study we first propose a simple regression model where the hourly outdoor temperature and wind speed forecast the heat demand. Weekly rhythm of heat consumption as a social component is added to the model to significantly improve the accuracy. The other type of model is the seasonal autoregressive integrated moving average (SARIMA) model with exogenous variables as a combination to take weather factors, and the historical heat consumption data as depending variables. One outstanding advantage of the model is that it peruses the high accuracy for both long-term and short-term forecast by considering both exogenous factors and time series. The forecasting performance of both linear regression models and time series model are evaluated based on real-life heat demand data for the city of Espoo in Finland by out-of-sample tests for the last 20 full weeks of the year. The results indicate that the proposed linear regression model (T168h) using 168-h demand pattern with midweek holidays classified as Saturdays or Sundays gives the highest accuracy and strong robustness among all the tested models based on the tested forecasting horizon and corresponding data. Considering the parsimony of the input, the ease of use and the high accuracy, the proposed T168h model is the best in practice. The heat demand forecasting model can also be developed for individual buildings if automated meter reading customer measurements are available. This would allow forecasting the heat demand based on more accurate heat consumption

  5. Time series modelling to forecast prehospital EMS demand for diabetic emergencies.

    Science.gov (United States)

    Villani, Melanie; Earnest, Arul; Nanayakkara, Natalie; Smith, Karen; de Courten, Barbora; Zoungas, Sophia

    2017-05-05

    Acute diabetic emergencies are often managed by prehospital Emergency Medical Services (EMS). The projected growth in prevalence of diabetes is likely to result in rising demand for prehospital EMS that are already under pressure. The aims of this study were to model the temporal trends and provide forecasts of prehospital attendances for diabetic emergencies. A time series analysis on monthly cases of hypoglycemia and hyperglycemia was conducted using data from the Ambulance Victoria (AV) electronic database between 2009 and 2015. Using the seasonal autoregressive integrated moving average (SARIMA) modelling process, different models were evaluated. The most parsimonious model with the highest accuracy was selected. Forty-one thousand four hundred fifty-four prehospital diabetic emergencies were attended over a seven-year period with an increase in the annual median monthly caseload between 2009 (484.5) and 2015 (549.5). Hypoglycemia (70%) and people with type 1 diabetes (48%) accounted for most attendances. The SARIMA (0,1,0,12) model provided the best fit, with a MAPE of 4.2% and predicts a monthly caseload of approximately 740 by the end of 2017. Prehospital EMS demand for diabetic emergencies is increasing. SARIMA time series models are a valuable tool to allow forecasting of future caseload with high accuracy and predict increasing cases of prehospital diabetic emergencies into the future. The model generated by this study may be used by service providers to allow appropriate planning and resource allocation of EMS for diabetic emergencies.

  6. The long-term forecast of Taiwan's energy supply and demand: LEAP model application

    International Nuclear Information System (INIS)

    Huang, Yophy; Bor, Yunchang Jeffrey; Peng, Chieh-Yu

    2011-01-01

    The long-term forecasting of energy supply and demand is an extremely important topic of fundamental research in Taiwan due to Taiwan's lack of natural resources, dependence on energy imports, and the nation's pursuit of sustainable development. In this article, we provide an overview of energy supply and demand in Taiwan, and a summary of the historical evolution and current status of its energy policies, as background to a description of the preparation and application of a Long-range Energy Alternatives Planning System (LEAP) model of Taiwan's energy sector. The Taiwan LEAP model is used to compare future energy demand and supply patterns, as well as greenhouse gas emissions, for several alternative scenarios of energy policy and energy sector evolution. Results of scenarios featuring 'business-as-usual' policies, aggressive energy-efficiency improvement policies, and on-schedule retirement of Taiwan's three existing nuclear plants are provided and compared, along with sensitivity cases exploring the impacts of lower economic growth assumptions. A concluding section provides an interpretation of the implications of model results for future energy and climate policies in Taiwan. - Research highlights: → The LEAP model is useful for international energy policy comparison. → Nuclear power plants have significant, positive impacts on CO 2 emission. → The most effective energy policy is to adopt demand-side management. → Reasonable energy pricing provides incentives for energy efficiency and conservation. → Financial crisis has less impact on energy demand than aggressive energy policy.

  7. Modeling and Forecasting of Water Demand in Isfahan Using Underlying Trend Concept and Time Series

    Directory of Open Access Journals (Sweden)

    H. Sadeghi

    2016-02-01

    Full Text Available Introduction: Accurate water demand modeling for the city is very important for forecasting and policies adoption related to water resources management. Thus, for future requirements of water estimation, forecasting and modeling, it is important to utilize models with little errors. Water has a special place among the basic human needs, because it not hampers human life. The importance of the issue of water management in the extraction and consumption, it is necessary as a basic need. Municipal water applications is include a variety of water demand for domestic, public, industrial and commercial. Predicting the impact of urban water demand in better planning of water resources in arid and semiarid regions are faced with water restrictions. Materials and Methods: One of the most important factors affecting the changing technological advances in production and demand functions, we must pay special attention to the layout pattern. Technology development is concerned not only technically, but also other aspects such as personal, non-economic factors (population, geographical and social factors can be analyzed. Model examined in this study, a regression model is composed of a series of structural components over time allows changed invisible accidentally. Explanatory variables technology (both crystalline and amorphous in a model according to which the material is said to be better, but because of the lack of measured variables over time can not be entered in the template. Model examined in this study, a regression model is composed of a series of structural component invisible accidentally changed over time allows. In this study, structural time series (STSM and ARMA time series models have been used to model and estimate the water demand in Isfahan. Moreover, in order to find the efficient procedure, both models have been compared to each other. The desired data in this research include water consumption in Isfahan, water price and the monthly pay

  8. THE ACCURACY OF DEMAND FORECAST MODELS AS A CRITICAL FACTOR IN THE FINANCIAL PERFORMANCE OF THE FOOD INDUSTRY

    Directory of Open Access Journals (Sweden)

    Cássia Rita Pereira Da Veiga

    2010-11-01

    Full Text Available Every organization needs to balance their production capacities with demand. The role of demand forecasting is to assist in the organization's strategic planning; this process allows administrators to anticipate the future and plot an appropriate course of action. On its own, however, a system of demand forecasting is not enough. It is the quality of information obtained by this system which enables the organization to achieve better operational planning. In this context, this paper presents case study research to: (a define the quantitative model to forecast demand with greater accuracy; and (b to verify the influence of accuracy in demand forecasting on financial performance. This is an ex-post facto descriptive inquiry with a time series in which we made use of historical data from five groups of products over the period 2004–2008. The results suggest that if a company employs the ARIMA model for groups A, B, and E; the Holt model for group D; and the Winter model for group C, revenues will increase by approximately $1,600,000 annually. Key-words: Accuracy. Demand forecasting. Financial performance. 

  9. Comprehensive Forecast of Urban Water-Energy Demand Based on a Neural Network Model

    Directory of Open Access Journals (Sweden)

    Ziyi Yin

    2018-03-01

    Full Text Available Water-energy nexus has been a popular topic of rese arch in recent years. The relationships between the demand for water resources and energy are intense and closely connected in urban areas. The primary, secondary, and tertiary industry gross domestic product (GDP, the total population, the urban population, annual precipitation, agricultural and industrial water consumption, tap water supply, the total discharge of industrial wastewater, the daily sewage treatment capacity, total and domestic electricity consumption, and the consumption of coal in industrial enterprises above the designed size were chosen as input indicators. A feedforward artificial neural network model (ANN based on a back-propagation algorithm with two hidden layers was constructed to combine urban water resources with energy demand. This model used historical data from 1991 to 2016 from Wuxi City, eastern China. Furthermore, a multiple linear regression model (MLR was introduced for comparison with the ANN. The results show the following: (a The mean relative error values of the forecast and historical urban water-energy demands are 1.58 % and 2.71%, respectively; (b The predicted water-energy demand value for 2020 is 4.843 billion cubic meters and 47.561 million tons of standard coal equivalent; (c The predicted water-energy demand value in the year 2030 is 5.887 billion cubic meters and 60.355 million tons of standard coal equivalent; (d Compared with the MLR, the ANN performed better in fitting training data, which achieved a more satisfactory accuracy and may provide a reference for urban water-energy supply planning decisions.

  10. Regional demand forecasting and simulation model: user's manual. Task 4, final report

    Energy Technology Data Exchange (ETDEWEB)

    Parhizgari, A M

    1978-09-25

    The Department of Energy's Regional Demand Forecasting Model (RDFOR) is an econometric and simulation system designed to estimate annual fuel-sector-region specific consumption of energy for the US. Its purposes are to (1) provide the demand side of the Project Independence Evaluation System (PIES), (2) enhance our empirical insights into the structure of US energy demand, and (3) assist policymakers in their decisions on and formulations of various energy policies and/or scenarios. This report provides a self-contained user's manual for interpreting, utilizing, and implementing RDFOR simulation software packages. Chapters I and II present the theoretical structure and the simulation of RDFOR, respectively. Chapter III describes several potential scenarios which are (or have been) utilized in the RDFOR simulations. Chapter IV presents an overview of the complete software package utilized in simulation. Chapter V provides the detailed explanation and documentation of this package. The last chapter describes step-by-step implementation of the simulation package using the two scenarios detailed in Chapter III. The RDFOR model contains 14 fuels: gasoline, electricity, natural gas, distillate and residual fuels, liquid gases, jet fuel, coal, oil, petroleum products, asphalt, petroleum coke, metallurgical coal, and total fuels, spread over residential, commercial, industrial, and transportation sectors.

  11. Energy systems scenario modelling and long term forecasting of hourly electricity demand

    Directory of Open Access Journals (Sweden)

    Poul Alberg Østergaard

    2015-06-01

    Full Text Available The Danish energy system is undergoing a transition from a system based on storable fossil fuels to a system based on fluctuating renewable energy sources. At the same time, more of and more of the energy system is becoming electrified; transportation, heating and fuel usage in industry and elsewhere. This article investigates the development of the Danish energy system in a medium year 2030 situation as well as in a long-term year 2050 situation. The analyses are based on scenario development by the Danish Climate Commission. In the short term, it is investigated what the effects will be of having flexible or inflexible electric vehicles and individual heat pumps, and in the long term it is investigated what the effects of changes in the load profiles due to changing weights of demand sectors are. The analyses are based on energy systems simulations using EnergyPLAN and demand forecasting using the Helena model. The results show that even with a limited short-term electric car fleet, these will have a significant effect on the energy system; the energy system’s ability to integrated wind power and the demand for condensing power generation capacity in the system. Charging patterns and flexibility have significant effects on this. Likewise, individual heat pumps may affect the system operation if they are equipped with heat storages. The analyses also show that the long-term changes in electricity demand curve profiles have little impact on the energy system performance. The flexibility given by heat pumps and electric vehicles in the long-term future overshadows any effects of changes in hourly demand curve profiles.

  12. Forecasting residential electricity demand in provincial China.

    Science.gov (United States)

    Liao, Hua; Liu, Yanan; Gao, Yixuan; Hao, Yu; Ma, Xiao-Wei; Wang, Kan

    2017-03-01

    In China, more than 80% electricity comes from coal which dominates the CO2 emissions. Residential electricity demand forecasting plays a significant role in electricity infrastructure planning and energy policy designing, but it is challenging to make an accurate forecast for developing countries. This paper forecasts the provincial residential electricity consumption of China in the 13th Five-Year-Plan (2016-2020) period using panel data. To overcome the limitations of widely used predication models with unreliably prior knowledge on function forms, a robust piecewise linear model in reduced form is utilized to capture the non-deterministic relationship between income and residential electricity consumption. The forecast results suggest that the growth rates of developed provinces will slow down, while the less developed will be still in fast growing. The national residential electricity demand will increase at 6.6% annually during 2016-2020, and populous provinces such as Guangdong will be the main contributors to the increments.

  13. A comparison of multivariate and univariate time series approaches to modelling and forecasting emergency department demand in Western Australia.

    Science.gov (United States)

    Aboagye-Sarfo, Patrick; Mai, Qun; Sanfilippo, Frank M; Preen, David B; Stewart, Louise M; Fatovich, Daniel M

    2015-10-01

    To develop multivariate vector-ARMA (VARMA) forecast models for predicting emergency department (ED) demand in Western Australia (WA) and compare them to the benchmark univariate autoregressive moving average (ARMA) and Winters' models. Seven-year monthly WA state-wide public hospital ED presentation data from 2006/07 to 2012/13 were modelled. Graphical and VARMA modelling methods were used for descriptive analysis and model fitting. The VARMA models were compared to the benchmark univariate ARMA and Winters' models to determine their accuracy to predict ED demand. The best models were evaluated by using error correction methods for accuracy. Descriptive analysis of all the dependent variables showed an increasing pattern of ED use with seasonal trends over time. The VARMA models provided a more precise and accurate forecast with smaller confidence intervals and better measures of accuracy in predicting ED demand in WA than the ARMA and Winters' method. VARMA models are a reliable forecasting method to predict ED demand for strategic planning and resource allocation. While the ARMA models are a closely competing alternative, they under-estimated future ED demand. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. A Hybrid Approach on Tourism Demand Forecasting

    Science.gov (United States)

    Nor, M. E.; Nurul, A. I. M.; Rusiman, M. S.

    2018-04-01

    Tourism has become one of the important industries that contributes to the country’s economy. Tourism demand forecasting gives valuable information to policy makers, decision makers and organizations related to tourism industry in order to make crucial decision and planning. However, it is challenging to produce an accurate forecast since economic data such as the tourism data is affected by social, economic and environmental factors. In this study, an equally-weighted hybrid method, which is a combination of Box-Jenkins and Artificial Neural Networks, was applied to forecast Malaysia’s tourism demand. The forecasting performance was assessed by taking the each individual method as a benchmark. The results showed that this hybrid approach outperformed the other two models

  15. Commercial demand for energy: a disaggregated approach. [Model validation for 1970-1975; forecasting to 2000

    Energy Technology Data Exchange (ETDEWEB)

    Jackson, J.R.; Cohn, S.; Cope, J.; Johnson, W.S.

    1978-04-01

    This report describes the structure and forecasting accuracy of a disaggregated model of commercial energy use recently developed at Oak Ridge National Laboratory. The model forecasts annual commercial energy use by ten building types, five end uses, and four fuel types. Both economic (utilization rate, fuel choice, capital-energy substitution) and technological factors (equipment efficiency, thermal characteristics of buildings) are explicitly represented in the model. Model parameters are derived from engineering and econometric analysis. The model is then validated by simulating commercial energy use over the 1970--1975 time period. The model performs well both with respect to size of forecast error and ability to predict turning points. The model is then used to evaluate the energy-use implications of national commercial buildings standards based on the ASHRAE 90-75 recommendations. 10 figs., 12 tables, 14 refs.

  16. Worldwide satellite market demand forecast

    Science.gov (United States)

    Bowyer, J. M.; Frankfort, M.; Steinnagel, K. M.

    1981-01-01

    The forecast is for the years 1981 - 2000 with benchmark years at 1985, 1990 and 2000. Two typs of markets are considered for this study: Hardware (worldwide total) - satellites, earth stations and control facilities (includes replacements and spares); and non-hardware (addressable by U.S. industry) - planning, launch, turnkey systems and operations. These markets were examined for the INTELSAT System (international systems and domestic and regional systems using leased transponders) and domestic and regional systems. Forecasts were determined for six worldwide regions encompassing 185 countries using actual costs for existing equipment and engineering estimates of costs for advanced systems. Most likely (conservative growth rate estimates) and optimistic (mid range growth rate estimates) scenarios were employed for arriving at the forecasts which are presented in constant 1980 U.S. dollars. The worldwide satellite market demand forecast predicts that the market between 181 and 2000 will range from $35 to $50 billion. Approximately one-half of the world market, $16 to $20 billion, will be generated in the United States.

  17. Energy demand forecasting in Iranian metal industry using linear and nonlinear models based on evolutionary algorithms

    International Nuclear Information System (INIS)

    Piltan, Mehdi; Shiri, Hiva; Ghaderi, S.F.

    2012-01-01

    Highlights: ► Investigating different fitness functions for evolutionary algorithms in energy forecasting. ► Energy forecasting of Iranian metal industry by value added, energy prices, investment and employees. ► Using real-coded instead of binary-coded genetic algorithm decreases energy forecasting error. - Abstract: Developing energy-forecasting models is known as one of the most important steps in long-term planning. In order to achieve sustainable energy supply toward economic development and social welfare, it is required to apply precise forecasting model. Applying artificial intelligent models for estimation complex economic and social functions is growing up considerably in many researches recently. In this paper, energy consumption in industrial sector as one of the critical sectors in the consumption of energy has been investigated. Two linear and three nonlinear functions have been used in order to forecast and analyze energy in the Iranian metal industry, Particle Swarm Optimization (PSO) and Genetic Algorithms (GAs) are applied to attain parameters of the models. The Real-Coded Genetic Algorithm (RCGA) has been developed based on real numbers, which is introduced as a new approach in the field of energy forecasting. In the proposed model, electricity consumption has been considered as a function of different variables such as electricity tariff, manufacturing value added, prevailing fuel prices, the number of employees, the investment in equipment and consumption in the previous years. Mean Square Error (MSE), Root Mean Square Error (RMSE), Mean Absolute Deviation (MAD) and Mean Absolute Percent Error (MAPE) are the four functions which have been used as the fitness function in the evolutionary algorithms. The results show that the logarithmic nonlinear model using PSO algorithm with 1.91 error percentage has the best answer. Furthermore, the prediction of electricity consumption in industrial sector of Turkey and also Turkish industrial sector

  18. Demand forecasting and information platform in tourism

    Directory of Open Access Journals (Sweden)

    Li Yue

    2017-05-01

    Full Text Available Information asymmetry and the bullwhip effect have been serious problems in the tourism supply chain. Based on platform theory, this paper established a mathematical model to explore the inner mechanism of a platform’s influence on stakeholders’ ability to forecast demand in tourism. Results showed that the variance of stakeholders’ demand predictions with a platform was smaller than the variance without a platform, which meant that a platform would improve predictions of demand for stakeholders. The higher information-processing ability of the platform also had other effects on demand forecasting. Research on the inner logic of the platform’s influence on stakeholders has important theoretical and realistic value. This area is worthy of further study.

  19. Intermittent demand : Linking forecasting to inventory obsolescence

    NARCIS (Netherlands)

    Teunter, Ruud H.; Syntetos, Aris A.; Babai, M. Zied

    2011-01-01

    The standard method to forecast intermittent demand is that by Croston. This method is available in ERP-type solutions such as SAP and specialised forecasting software packages (e.g. Forecast Pro), and often applied in practice. It uses exponential smoothing to separately update the estimated demand

  20. Gas demand forecasting by a new artificial intelligent algorithm

    Science.gov (United States)

    Khatibi. B, Vahid; Khatibi, Elham

    2012-01-01

    Energy demand forecasting is a key issue for consumers and generators in all energy markets in the world. This paper presents a new forecasting algorithm for daily gas demand prediction. This algorithm combines a wavelet transform and forecasting models such as multi-layer perceptron (MLP), linear regression or GARCH. The proposed method is applied to real data from the UK gas markets to evaluate their performance. The results show that the forecasting accuracy is improved significantly by using the proposed method.

  1. Novel effects of demand side management data on accuracy of electrical energy consumption modeling and long-term forecasting

    International Nuclear Information System (INIS)

    Ardakani, F.J.; Ardehali, M.M.

    2014-01-01

    Highlights: • Novel effects of DSM data on electricity consumption forecasting is examined. • Optimal ANN models based on IPSO and SFL algorithms are developed. • Addition of DSM data to socio-economic indicators data reduces MAPE by 36%. - Abstract: Worldwide implementation of demand side management (DSM) programs has had positive impacts on electrical energy consumption (EEC) and the examination of their effects on long-term forecasting is warranted. The objective of this study is to investigate the effects of historical DSM data on accuracy of EEC modeling and long-term forecasting. To achieve the objective, optimal artificial neural network (ANN) models based on improved particle swarm optimization (IPSO) and shuffled frog-leaping (SFL) algorithms are developed for EEC forecasting. For long-term EEC modeling and forecasting for the U.S. for 2010–2030, two historical data types used in conjunction with developed models include (i) EEC and (ii) socio-economic indicators, namely, gross domestic product, energy imports, energy exports, and population for 1967–2009 period. Simulation results from IPSO-ANN and SFL-ANN models show that using socio-economic indicators as input data achieves lower mean absolute percentage error (MAPE) for long-term EEC forecasting, as compared with EEC data. Based on IPSO-ANN, it is found that, for the U.S. EEC long-term forecasting, the addition of DSM data to socio-economic indicators data reduces MAPE by 36% and results in the estimated difference of 3592.8 MBOE (5849.9 TW h) in EEC for 2010–2030

  2. Tourism demand in the Algarve region: Evolution and forecast using SVARMA models

    Science.gov (United States)

    Lopes, Isabel Cristina; Soares, Filomena; Silva, Eliana Costa e.

    2017-06-01

    Tourism is one of the Portuguese economy's key sectors, and its relative weight has grown over recent years. The Algarve region is particularly focused on attracting foreign tourists and has built over the years a large offer of diversified hotel units. In this paper we present multivariate time series approach to forecast the number of overnight stays in hotel units (hotels, guesthouses or hostels, and tourist apartments) in Algarve. We adjust a seasonal vector autoregressive and moving averages model (SVARMA) to monthly data between 2006 and 2016. The forecast values were compared with the actual values of the overnight stays in Algarve in 2016 and led to a MAPE of 15.1% and RMSE= 53847.28. The MAPE for the Hotel series was merely 4.56%. These forecast values can be used by a hotel manager to predict their occupancy and to determine the best pricing policy.

  3. Development of the Manpower Demand Forecast Model of Nuclear Industry Using the System Dynamics Method - Operation Sector

    International Nuclear Information System (INIS)

    Lee, Yong Suk; Ahn, Nam Sung

    2010-01-01

    Recently, the resource management of nuclear engineering manpower has become an important issue in Korean nuclear industry. The government's plan for increasing the number of domestic nuclear power plants and the recent success of nuclear power plant export to UAE (United Arab Emirates) will increase demand for nuclear engineers in Korea. Accordingly, the Korean government decided to supplement 2,246 engineers in the public sector of nuclear industry in the year 2010 to resolve the manpower shortage problem in the short term. However, the experienced engineers which are essentially important in the nuclear industry cannot be supplied in the short term. Therefore, development of the long term manpower demand forecast model of nuclear industry is needed. The system dynamics (SD) is useful method for forecasting nuclear manpower demand. It is because the time-delays which is important in constructing plants and in recruiting and training of engineers, and the feedback effect including the qualitative factor can be effectively considered in the SD method. Especially, the qualitative factor like 'Productivity' is very important concept in Human Resource Management (HRM) but it cannot be easily considered in the other methods. In this paper, the concepts of the nuclear manpower demand forecast model using the SD method are presented and the some simulation results are being discussed especially for the 'Operation Sector'

  4. Development of the Manpower Demand Forecast Model of Nuclear Industry Using the System Dynamics Method - Operation Sector

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Yong Suk [Future and Challenges Inc., Seoul (Korea, Republic of); Ahn, Nam Sung [SolBridge International School of Business, Daejeon (Korea, Republic of)

    2010-10-15

    Recently, the resource management of nuclear engineering manpower has become an important issue in Korean nuclear industry. The government's plan for increasing the number of domestic nuclear power plants and the recent success of nuclear power plant export to UAE (United Arab Emirates) will increase demand for nuclear engineers in Korea. Accordingly, the Korean government decided to supplement 2,246 engineers in the public sector of nuclear industry in the year 2010 to resolve the manpower shortage problem in the short term. However, the experienced engineers which are essentially important in the nuclear industry cannot be supplied in the short term. Therefore, development of the long term manpower demand forecast model of nuclear industry is needed. The system dynamics (SD) is useful method for forecasting nuclear manpower demand. It is because the time-delays which is important in constructing plants and in recruiting and training of engineers, and the feedback effect including the qualitative factor can be effectively considered in the SD method. Especially, the qualitative factor like 'Productivity' is very important concept in Human Resource Management (HRM) but it cannot be easily considered in the other methods. In this paper, the concepts of the nuclear manpower demand forecast model using the SD method are presented and the some simulation results are being discussed especially for the 'Operation Sector'

  5. Forecasting inter-urban transport demand for a logistics company: A combined grey–periodic extension model with remnant correction

    Directory of Open Access Journals (Sweden)

    Donghui Wang

    2015-12-01

    Full Text Available Accurately predicting short-term transport demand for an individual logistics company involved in a competitive market is critical to make short-term operation decisions. This article proposes a combined grey–periodic extension model with remnant correction to forecast the short-term inter-urban transport demand of a logistics company involved in a nationwide competitive market, showing changes in trend and seasonal fluctuations with irregular periods different to the macroeconomic cycle. A basic grey–periodic extension model of an additive pattern, namely, the main combination model, is first constructed to fit the changing trends and the featured seasonal fluctuation periods. In order to improve prediction accuracy and model adaptability, the grey model is repeatedly modelled to fit the remnant tail time series of the main combination model until prediction accuracy is satisfied. The modelling approach is applied to a logistics company engaged in a nationwide less-than-truckload road transportation business in China. The results demonstrate that the proposed modelling approach produces good forecasting results and goodness of fit, also showing good model adaptability to the analysed object in a changing macro environment. This fact makes this modelling approach an option to analyse the short-term transportation demand of an individual logistics company.

  6. Strategic planning for minimizing CO2 emissions using LP model based on forecasted energy demand by PSO Algorithm and ANN

    Energy Technology Data Exchange (ETDEWEB)

    Yousefi, M.; Omid, M.; Rafiee, Sh. [Department of Agricultural Machinery Engineering, University of Tehran, Karaj (Iran, Islamic Republic of); Ghaderi, S. F. [Department of Industrial Engineering, University of Tehran, Tehran (Iran, Islamic Republic of)

    2013-07-01

    Iran's primary energy consumption (PEC) was modeled as a linear function of five socioeconomic and meteorological explanatory variables using particle swarm optimization (PSO) and artificial neural networks (ANNs) techniques. Results revealed that ANN outperforms PSO model to predict test data. However, PSO technique is simple and provided us with a closed form expression to forecast PEC. Energy demand was forecasted by PSO and ANN using represented scenario. Finally, adapting about 10% renewable energy revealed that based on the developed linear programming (LP) model under minimum CO2 emissions, Iran will emit about 2520 million metric tons CO2 in 2025. The LP model indicated that maximum possible development of hydropower, geothermal and wind energy resources will satisfy the aim of minimization of CO2 emissions. Therefore, the main strategic policy in order to reduce CO2 emissions would be exploitation of these resources.

  7. Strategic planning for minimizing CO2 emissions using LP model based on forecasted energy demand by PSO Algorithm and ANN

    Energy Technology Data Exchange (ETDEWEB)

    Yousefi, M.; Omid, M.; Rafiee, Sh. [Department of Agricultural Machinery Engineering, University of Tehran, Karaj (Iran, Islamic Republic of); Ghaderi, S.F. [Department of Industrial Engineering, University of Tehran, Tehran (Iran, Islamic Republic of)

    2013-07-01

    Iran's primary energy consumption (PEC) was modeled as a linear function of five socioeconomic and meteorological explanatory variables using particle swarm optimization (PSO) and artificial neural networks (ANNs) techniques. Results revealed that ANN outperforms PSO model to predict test data. However, PSO technique is simple and provided us with a closed form expression to forecast PEC. Energy demand was forecasted by PSO and ANN using represented scenario. Finally, adapting about 10% renewable energy revealed that based on the developed linear programming (LP) model under minimum CO2 emissions, Iran will emit about 2520 million metric tons CO2 in 2025. The LP model indicated that maximum possible development of hydropower, geothermal and wind energy resources will satisfy the aim of minimization of CO2 emissions. Therefore, the main strategic policy in order to reduce CO2 emissions would be exploitation of these resources.

  8. Development of demand functions and their inclusion in linear programming forecasting models

    International Nuclear Information System (INIS)

    Chamberlin, J.H.

    1976-05-01

    The purpose of the paper is to present a method for including demand directly within a linear programming model, and to use this method to analyze the effect of the Liquid Metal Fast Breeder Reactor upon the nuclear energy system

  9. Analysis and Modeling for China’s Electricity Demand Forecasting Using a Hybrid Method Based on Multiple Regression and Extreme Learning Machine: A View from Carbon Emission

    Directory of Open Access Journals (Sweden)

    Yi Liang

    2016-11-01

    Full Text Available The power industry is the main battlefield of CO2 emission reduction, which plays an important role in the implementation and development of the low carbon economy. The forecasting of electricity demand can provide a scientific basis for the country to formulate a power industry development strategy and further promote the sustained, healthy and rapid development of the national economy. Under the goal of low-carbon economy, medium and long term electricity demand forecasting will have very important practical significance. In this paper, a new hybrid electricity demand model framework is characterized as follows: firstly, integration of grey relation degree (GRD with induced ordered weighted harmonic averaging operator (IOWHA to propose a new weight determination method of hybrid forecasting model on basis of forecasting accuracy as induced variables is presented; secondly, utilization of the proposed weight determination method to construct the optimal hybrid forecasting model based on extreme learning machine (ELM forecasting model and multiple regression (MR model; thirdly, three scenarios in line with the level of realization of various carbon emission targets and dynamic simulation of effect of low-carbon economy on future electricity demand are discussed. The resulting findings show that, the proposed model outperformed and concentrated some monomial forecasting models, especially in boosting the overall instability dramatically. In addition, the development of a low-carbon economy will increase the demand for electricity, and have an impact on the adjustment of the electricity demand structure.

  10. DESIGNING A SUPPLY CHAIN MODEL WITH CONSIDERATION DEMAND FORECASTING AND INFORMATION SHARING

    OpenAIRE

    S.M.T. Fatemi Ghomi; N. Azad

    2012-01-01

    ENGLISH ABSTRACT: In traditional supply chain inventory management, orders are the only information firms exchange, but information technology now allows firms to share demand and inventory data quickly and inexpensively. To have an integrated plan, a manufacturer not only needs to know demand information from its customers but also supply information from its suppliers. In this paper, information flow is incorporated in a three-echelon supply chain model. Also to decrease the risk o...

  11. Four methodologies to improve healthcare demand forecasting.

    Science.gov (United States)

    Côté, M J; Tucker, S L

    2001-05-01

    Forecasting demand for health services is an important step in managerial decision making for all healthcare organizations. This task, which often is assumed by financial managers, first requires the compilation and examination of historical information. Although many quantitative forecasting methods exist, four common methods of forecasting are percent adjustment, 12-month moving average, trendline, and seasonalized forecast. These four methods are all based upon the organization's recent historical demand. Healthcare financial managers who want to project demand for healthcare services in their facility should understand the advantages and disadvantages of each method and then select the method that will best meet the organization's needs.

  12. Modeling and forecasting energy consumption in China: Implications for Chinese energy demand and imports in 2020

    International Nuclear Information System (INIS)

    Adams, F. Gerard; Shachmurove, Yochanan

    2008-01-01

    The Chinese economy is in a stage of energy transition: from low efficiency solid fuels to oil, gas, and electric power, from agriculture to urbanization and industrialization, from heavy industry to lighter and high tech industry, from low motorization to rapid growth of the motor vehicle population. Experts fear that continued rapid economic growth in China will translate into a massive need to expand imports of oil, coal, and gas. We build an econometric model of the Chinese energy economy based on the energy balance. We use that model to forecast Chinese energy consumption and imports to 2020. The study suggests that China will, indeed, require rapidly growing imports of oil, coal, and gas. This growth is not so sensitive to the rate of economic growth as to increases in motorization. It can be offset, but probably only in small part, by increasing domestic energy production or by improvements in the efficiency of use, particularly in the production of electric power. (author)

  13. Study on Triopoly Dynamic Game Model Based on Different Demand Forecast Methods in the Market

    Directory of Open Access Journals (Sweden)

    Junhai Ma

    2017-01-01

    Full Text Available The impact of inaccurate demand beliefs on dynamics of a Triopoly game is studied. We suppose that all the players make their own estimations on possible demand with errors. A dynamic Triopoly game with such demand belief is set up. Based on this model, existence and local stable region of the equilibriums are investigated by 3D stable regions of Nash equilibrium point. The complex dynamics, such as bifurcation scenarios and route to chaos, are displayed in 2D bifurcation diagrams, in which e1 and α are negatively related to each other. Basins of attraction are investigated and we found that the attraction domain becomes smaller with the increase in price modification speed, which indicates that all the players’ output must be kept within a certain range so as to keep the system stable. Feedback control method is used to keep the system at an equilibrium state.

  14. DESIGNING A SUPPLY CHAIN MODEL WITH CONSIDERATION DEMAND FORECASTING AND INFORMATION SHARING

    Directory of Open Access Journals (Sweden)

    S.M.T. Fatemi Ghomi

    2012-01-01

    Full Text Available

    ENGLISH ABSTRACT: In traditional supply chain inventory management, orders are the only information firms exchange, but information technology now allows firms to share demand and inventory data quickly and inexpensively. To have an integrated plan, a manufacturer not only needs to know demand information from its customers but also supply information from its suppliers. In this paper, information flow is incorporated in a three-echelon supply chain model. Also to decrease the risk of the supply chain system, the customers’ demands are predicted first and this prediction is then used as an input to the supply chain model. In this paper a proposed evolving fuzzy predictor model will be used to predict the customers’ demands. For solving the supply chain model, a hybrid heuristic combining tabu search with simulated annealing sharing the same tabu list is developed.

    AFRIKAANSE OPSOMMING: In tradisionele voorsieningskettingvoorraadbestuur verteenwoordig bestellings die enigste vorm van van inligting wat deur ondernemings uitgeruil word. Inligtingstegnologie laat ondernemings egter deesdae toe om vraag- en voorraadata vinnig en goedkoop uit te ruil. Om 'n geïntegreerde plan te hê, het 'n vervaardiger nie alleen aanvraaginligting nodig van sy klante nie, maar ook aanbodinligting van sy leweransiers. In hierdie artikel word inligtingvloei geinkorporeer in 'n drie-vlakvoorsieningskettingmodel. Voorts, om die risiko in die voorsieningskettingmodel te verminder, word die klante se aanvraag eers vooruitgeskat en die vooruitskatting word dan gebruik as 'n inset tot die model. Hierdie artikel gebruik 'n groeiende wasige vooruitskattingsmodel om die klantebehoeftes voor uit te skat. Om die model op te los, word 'n hibriede heuristiese metode gekombineer met 'n "tabu"-soektog gebruik.

  15. An Optimization of Inventory Demand Forecasting in University Healthcare Centre

    Science.gov (United States)

    Bon, A. T.; Ng, T. K.

    2017-01-01

    Healthcare industry becomes an important field for human beings nowadays as it concerns about one’s health. With that, forecasting demand for health services is an important step in managerial decision making for all healthcare organizations. Hence, a case study was conducted in University Health Centre to collect historical demand data of Panadol 650mg for 68 months from January 2009 until August 2014. The aim of the research is to optimize the overall inventory demand through forecasting techniques. Quantitative forecasting or time series forecasting model was used in the case study to forecast future data as a function of past data. Furthermore, the data pattern needs to be identified first before applying the forecasting techniques. Trend is the data pattern and then ten forecasting techniques are applied using Risk Simulator Software. Lastly, the best forecasting techniques will be find out with the least forecasting error. Among the ten forecasting techniques include single moving average, single exponential smoothing, double moving average, double exponential smoothing, regression, Holt-Winter’s additive, Seasonal additive, Holt-Winter’s multiplicative, seasonal multiplicative and Autoregressive Integrated Moving Average (ARIMA). According to the forecasting accuracy measurement, the best forecasting technique is regression analysis.

  16. Workforce Projections 2010-2020: Annual Supply and Demand Forecasting Models for Physical Therapists Across the United States.

    Science.gov (United States)

    Landry, Michel D; Hack, Laurita M; Coulson, Elizabeth; Freburger, Janet; Johnson, Michael P; Katz, Richard; Kerwin, Joanne; Smith, Megan H; Wessman, Henry C Bud; Venskus, Diana G; Sinnott, Patricia L; Goldstein, Marc

    2016-01-01

    Health human resources continue to emerge as a critical health policy issue across the United States. The purpose of this study was to develop a strategy for modeling future workforce projections to serve as a basis for analyzing annual supply of and demand for physical therapists across the United States into 2020. A traditional stock-and-flow methodology or model was developed and populated with publicly available data to produce estimates of supply and demand for physical therapists by 2020. Supply was determined by adding the estimated number of physical therapists and the approximation of new graduates to the number of physical therapists who immigrated, minus US graduates who never passed the licensure examination, and an estimated attrition rate in any given year. Demand was determined by using projected US population with health care insurance multiplied by a demand ratio in any given year. The difference between projected supply and demand represented a shortage or surplus of physical therapists. Three separate projection models were developed based on best available data in the years 2011, 2012, and 2013, respectively. Based on these projections, demand for physical therapists in the United States outstrips supply under most assumptions. Workforce projection methodology research is based on assumptions using imperfect data; therefore, the results must be interpreted in terms of overall trends rather than as precise actuarial data-generated absolute numbers from specified forecasting. Outcomes of this projection study provide a foundation for discussion and debate regarding the most effective and efficient ways to influence supply-side variables so as to position physical therapists to meet current and future population demand. Attrition rates or permanent exits out of the profession can have important supply-side effects and appear to have an effect on predicting future shortage or surplus of physical therapists. © 2016 American Physical Therapy

  17. Water demand forecasting: review of soft computing methods.

    Science.gov (United States)

    Ghalehkhondabi, Iman; Ardjmand, Ehsan; Young, William A; Weckman, Gary R

    2017-07-01

    Demand forecasting plays a vital role in resource management for governments and private companies. Considering the scarcity of water and its inherent constraints, demand management and forecasting in this domain are critically important. Several soft computing techniques have been developed over the last few decades for water demand forecasting. This study focuses on soft computing methods of water consumption forecasting published between 2005 and 2015. These methods include artificial neural networks (ANNs), fuzzy and neuro-fuzzy models, support vector machines, metaheuristics, and system dynamics. Furthermore, it was discussed that while in short-term forecasting, ANNs have been superior in many cases, but it is still very difficult to pick a single method as the overall best. According to the literature, various methods and their hybrids are applied to water demand forecasting. However, it seems soft computing has a lot more to contribute to water demand forecasting. These contribution areas include, but are not limited, to various ANN architectures, unsupervised methods, deep learning, various metaheuristics, and ensemble methods. Moreover, it is found that soft computing methods are mainly used for short-term demand forecasting.

  18. The long-term forecast of Taiwan's energy supply and demand: LEAP model application

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Yophy, E-mail: yohuanghaka@gmail.com [Deptartment of Public Finance and Tax Administration, National Taipei College of Business, Taipei Taiwan, 10051 (China); Bor, Yunchang Jeffrey [Deptartment of Economics, Chinese Culture University, Yang-Ming-Shan, Taipei, 11114, Taiwan (China); Peng, Chieh-Yu [Statistics Department, Taoyuan District Court, No. 1 Fazhi Road, Taoyuan City 33053, Taiwan (China)

    2011-11-15

    The long-term forecasting of energy supply and demand is an extremely important topic of fundamental research in Taiwan due to Taiwan's lack of natural resources, dependence on energy imports, and the nation's pursuit of sustainable development. In this article, we provide an overview of energy supply and demand in Taiwan, and a summary of the historical evolution and current status of its energy policies, as background to a description of the preparation and application of a Long-range Energy Alternatives Planning System (LEAP) model of Taiwan's energy sector. The Taiwan LEAP model is used to compare future energy demand and supply patterns, as well as greenhouse gas emissions, for several alternative scenarios of energy policy and energy sector evolution. Results of scenarios featuring 'business-as-usual' policies, aggressive energy-efficiency improvement policies, and on-schedule retirement of Taiwan's three existing nuclear plants are provided and compared, along with sensitivity cases exploring the impacts of lower economic growth assumptions. A concluding section provides an interpretation of the implications of model results for future energy and climate policies in Taiwan. - Research Highlights: > The LEAP model is useful for international energy policy comparison. > Nuclear power plants have significant, positive impacts on CO{sub 2} emission. > The most effective energy policy is to adopt demand-side management. > Reasonable energy pricing provides incentives for energy efficiency and conservation. > Financial crisis has less impact on energy demand than aggressive energy policy.

  19. Modelling and short-term forecasting of daily peak power demand in Victoria using two-dimensional wavelet based SDP models

    International Nuclear Information System (INIS)

    Truong, Nguyen-Vu; Wang, Liuping; Wong, Peter K.C.

    2008-01-01

    Power demand forecasting is of vital importance to the management and planning of power system operations which include generation, transmission, distribution, as well as system's security analysis and economic pricing processes. This paper concerns the modeling and short-term forecast of daily peak power demand in the state of Victoria, Australia. In this study, a two-dimensional wavelet based state dependent parameter (SDP) modelling approach is used to produce a compact mathematical model for this complex nonlinear dynamic system. In this approach, a nonlinear system is expressed by a set of linear regressive input and output terms (state variables) multiplied by the respective state dependent parameters that carry the nonlinearities in the form of 2-D wavelet series expansions. This model is identified based on historical data, descriptively representing the relationship and interaction between various components which affect the peak power demand of a certain day. The identified model has been used to forecast daily peak power demand in the state of Victoria, Australia in the time period from the 9th of August 2007 to the 24th of August 2007. With a MAPE (mean absolute prediction error) of 1.9%, it has clearly implied the effectiveness of the identified model. (author)

  20. Using imperfect advance demand information in forecasting

    NARCIS (Netherlands)

    Tan, T.

    2008-01-01

    In this paper, we consider the demand-forecasting problem of a make-to-stock system operating in a business-to-business environment where some customers provide information on their future orders, which are subject to changes in time, hence constituting imperfect advance demand information (ADI).

  1. Forecasting urban water demand: A meta-regression analysis.

    Science.gov (United States)

    Sebri, Maamar

    2016-12-01

    Water managers and planners require accurate water demand forecasts over the short-, medium- and long-term for many purposes. These range from assessing water supply needs over spatial and temporal patterns to optimizing future investments and planning future allocations across competing sectors. This study surveys the empirical literature on the urban water demand forecasting using the meta-analytical approach. Specifically, using more than 600 estimates, a meta-regression analysis is conducted to identify explanations of cross-studies variation in accuracy of urban water demand forecasting. Our study finds that accuracy depends significantly on study characteristics, including demand periodicity, modeling method, forecasting horizon, model specification and sample size. The meta-regression results remain robust to different estimators employed as well as to a series of sensitivity checks performed. The importance of these findings lies in the conclusions and implications drawn out for regulators and policymakers and for academics alike. Copyright © 2016. Published by Elsevier Ltd.

  2. A trend fixed on firstly and seasonal adjustment model combined with the ε-SVR for short-term forecasting of electricity demand

    International Nuclear Information System (INIS)

    Wang Jianzhou; Zhu Wenjin; Zhang Wenyu; Sun Donghuai

    2009-01-01

    Short-term electricity demand forecasting has always been an essential instrument in power system planning and operation by which an electric utility plans and dispatches loading so as to meet system demand. The accuracy of the dispatching system, derived from the accuracy of demand forecasting and the forecasting algorithm used, will determines the economic of the power system operation as well as the stability of the whole society. This paper presents a combined ε-SVR model considering seasonal proportions based on development tendencies from history data. We use one-order moving averages to produce a comparatively smooth data series, taking the averaging period as the interval that can effectively eliminate the seasonal variation. We used the smoothed data series as the training set input for the ε-SVR model and obtained the corresponding forecasting value. Afterward, we accounted for the previously removed seasonal variation. As a case, we forecast northeast electricity demand of China using the new method. We demonstrated that this simple procedure has very satisfactory overall performance by an analysis of variance with relative verification and validation. Significant reductions in forecast errors were achieved.

  3. A trend fixed on firstly and seasonal adjustment model combined with the epsilon-SVR for short-term forecasting of electricity demand

    Energy Technology Data Exchange (ETDEWEB)

    Wang Jianzhou [School of Mathematics and Statistics, Lanzhou University, Lanzhou 730000 (China); Zhu Wenjin, E-mail: crying.1@hotmail.co [School of Mathematics and Statistics, Lanzhou University, Lanzhou 730000 (China); Zhang Wenyu [College of Atmospheric Sciences, Lanzhou University, Lanzhou 730000 (China); Sun Donghuai [Key Laboratory of Western Chinas Environmental Systems (Ministry of Education) College of Earth and Environment Sciences, Lanzhou University, Lanzhou 730000 (China)

    2009-11-15

    Short-term electricity demand forecasting has always been an essential instrument in power system planning and operation by which an electric utility plans and dispatches loading so as to meet system demand. The accuracy of the dispatching system, derived from the accuracy of demand forecasting and the forecasting algorithm used, will determines the economic of the power system operation as well as the stability of the whole society. This paper presents a combined epsilon-SVR model considering seasonal proportions based on development tendencies from history data. We use one-order moving averages to produce a comparatively smooth data series, taking the averaging period as the interval that can effectively eliminate the seasonal variation. We used the smoothed data series as the training set input for the epsilon-SVR model and obtained the corresponding forecasting value. Afterward, we accounted for the previously removed seasonal variation. As a case, we forecast northeast electricity demand of China using the new method. We demonstrated that this simple procedure has very satisfactory overall performance by an analysis of variance with relative verification and validation. Significant reductions in forecast errors were achieved.

  4. A trend fixed on firstly and seasonal adjustment model combined with the {epsilon}-SVR for short-term forecasting of electricity demand

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jianzhou; Zhu, Wenjin [School of Mathematics and Statistics, Lanzhou University, Lanzhou 730000 (China); Zhang, Wenyu [College of Atmospheric Sciences, Lanzhou University, Lanzhou 730000 (China); Sun, Donghuai [Key Laboratory of Western Chinas Environmental Systems (Ministry of Education) College of Earth and Environment Sciences, Lanzhou University, Lanzhou 730000 (China)

    2009-11-15

    Short-term electricity demand forecasting has always been an essential instrument in power system planning and operation by which an electric utility plans and dispatches loading so as to meet system demand. The accuracy of the dispatching system, derived from the accuracy of demand forecasting and the forecasting algorithm used, will determines the economic of the power system operation as well as the stability of the whole society. This paper presents a combined {epsilon}-SVR model considering seasonal proportions based on development tendencies from history data. We use one-order moving averages to produce a comparatively smooth data series, taking the averaging period as the interval that can effectively eliminate the seasonal variation. We used the smoothed data series as the training set input for the {epsilon}-SVR model and obtained the corresponding forecasting value. Afterward, we accounted for the previously removed seasonal variation. As a case, we forecast northeast electricity demand of China using the new method. We demonstrated that this simple procedure has very satisfactory overall performance by an analysis of variance with relative verification and validation. Significant reductions in forecast errors were achieved. (author)

  5. A broad model for demand forecasting of gasoline and fuel alcohol; Um modelo abrangente para a projecao das demandas de gasolina e alcool carburante

    Energy Technology Data Exchange (ETDEWEB)

    Buonfiglio, Antonio [PETROBRAS, Paulinia, SP (Brazil). Dept. Industrial; Bajay, Sergio Valdir [Universidade Estadual de Campinas, SP (Brazil). Faculdade de Engenharia Mecanica

    1992-12-31

    Formulating a broad, mixed: econometric/end-use, demand forecasting model for gasoline and fuel alcohol is the main objective of this work. In the model, the gasoline and hydrated alcohol demands are calculated as the corresponding products if their fleet by the average car mileage, divided by the average specific mileage. Several simulations with the proposed forecasting model are carried out, within the context of alternative scenarios for the development of these competing fuels in the Brazilian market. (author) 4 refs., 1 fig., 3 tabs.

  6. Effective Heuristics for Capacitated Production Planning with Multiperiod Production and Demand with Forecast Band Refinement

    OpenAIRE

    Philip Kaminsky; Jayashankar M. Swaminathan

    2004-01-01

    In this paper we extend forecast band evolution and capacitated production modelling to the multiperiod demand case. In this model, forecasts of discrete demand for any period are modelled as bands and defined by lower and upper bounds on demand, such that future forecasts lie within the current band. We develop heuristics that utilize knowledge of demand forecast evolution to make production decisions in capacitated production planning environments. In our computational study we explore the ...

  7. Measuring inaccuracy in travel demand forecasting

    DEFF Research Database (Denmark)

    Flyvbjerg, Bent

    2005-01-01

    as the basis for measurement. This paper presents the case against both objections. First, if one is interested in learning whether decisions about building transport infrastructure are based on reliable information, then it is exactly the traffic forecasted at the time of making the decision to build......Project promoters, forecasters, and managers sometimes object to two things in measuring inaccuracy in travel demand forecasting: (1)using the forecast made at the time of making the decision to build as the basis for measuring inaccuracy and (2)using traffic during the first year of operations...... that is of interest. Second, although ideally studies should take into account so-called demand ??ramp up?? over a period of years, the empirical evidence and practical considerations do not support this ideal requirement, at least not for large- N studies. Finally, the paper argues that large samples of inaccuracy...

  8. Estimating Household Travel Energy Consumption in Conjunction with a Travel Demand Forecasting Model

    Energy Technology Data Exchange (ETDEWEB)

    Garikapati, Venu M. [Systems Analysis and Integration Section, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, CO 80401; You, Daehyun [Maricopa Association of Governments, 302 North First Avenue, Suite 300, Phoenix, AZ 85003; Zhang, Wenwen [School of City and Regional Planning, Center for Geographic Information Systems, Georgia Institute of Technology, 760 Spring Street, Suite 230, Atlanta, GA 30308; Pendyala, Ram M. [School of Sustainable Engineering and the Built Environment, Arizona State University, 660 South College Avenue, Tempe, AZ 85281; Guhathakurta, Subhrajit [School of City and Regional Planning, Center for Geographic Information Systems, Georgia Institute of Technology, 760 Spring Street, Suite 230, Atlanta, GA 30308; Brown, Marilyn A. [School of Public Policy, 685 Cherry Street, Georgia Institute of Technology, Atlanta, GA 30332; Dilkina, Bistra [School of Computational Science and Engineering, 266 Ferst Drive, Georgia Institute of Technology, Atlanta, GA 30332

    2017-01-01

    This paper presents a methodology for the calculation of the consumption of household travel energy at the level of the traffic analysis zone (TAZ) in conjunction with information that is readily available from a standard four-step travel demand model system. This methodology embeds two algorithms. The first provides a means of allocating non-home-based trips to residential zones that are the source of such trips, whereas the second provides a mechanism for incorporating the effects of household vehicle fleet composition on fuel consumption. The methodology is applied to the greater Atlanta, Georgia, metropolitan region in the United States and is found to offer a robust mechanism for calculating the footprint of household travel energy at the level of the individual TAZ; this mechanism makes possible the study of variations in the energy footprint across space. The travel energy footprint is strongly correlated with the density of the built environment, although socioeconomic differences across TAZs also likely contribute to differences in travel energy footprints. The TAZ-level calculator of the footprint of household travel energy can be used to analyze alternative futures and relate differences in the energy footprint to differences in a number of contributing factors and thus enables the design of urban form, formulation of policy interventions, and implementation of awareness campaigns that may produce more-sustainable patterns of energy consumption.

  9. Modeling and Forecast Biological Oxygen Demand (BOD using Combination Support Vector Machine with Wavelet Transform

    Directory of Open Access Journals (Sweden)

    Abazar Solgi

    2017-06-01

    Full Text Available Introduction: Chemical pollution of surface water is one of the serious issues that threaten the quality of water. This would be more important when the surface waters used for human drinking supply. One of the key parameters used to measure water pollution is BOD. Because many variables affect the water quality parameters and a complex nonlinear relationship between them is established conventional methods can not solve the problem of quality management of water resources. For years, the Artificial Intelligence methods were used for prediction of nonlinear time series and a good performance of them has been reported. Recently, the wavelet transform that is a signal processing method, has shown good performance in hydrological modeling and is widely used. Extensive research has been globally provided in use of Artificial Neural Network and Adaptive Neural Fuzzy Inference System models to forecast the BOD. But support vector machine has not yet been extensively studied. For this purpose, in this study the ability of support vector machine to predict the monthly BOD parameter based on the available data, temperature, river flow, DO and BOD was evaluated. Materials and Methods: SVM was introduced in 1992 by Vapnik that was a Russian mathematician. This method has been built based on the statistical learning theory. In recent years the use of SVM, is highly taken into consideration. SVM was used in applications such as handwriting recognition, face recognition and has good results. Linear SVM is simplest type of SVM, consists of a hyperplane that dataset of positive and negative is separated with maximum distance. The suitable separator has maximum distance from every one of two dataset. So about this machine that its output groups label (here -1 to +1, the aim is to obtain the maximum distance between categories. This is interpreted to have a maximum margin. Wavelet transform is one of methods in the mathematical science that its main idea was

  10. Impact of onsite solar generation on system load demand forecast

    International Nuclear Information System (INIS)

    Kaur, Amanpreet; Pedro, Hugo T.C.; Coimbra, Carlos F.M.

    2013-01-01

    Highlights: • We showed the impact onsite solar generation on system demand load forecast. • Forecast performance degrades by 9% and 3% for 1 h and 15 min forecast horizons. • Error distribution for onsite case is best characterized as t-distribution. • Relation between error, solar penetration and solar variability is characterized. - Abstract: Net energy metering tariffs have encouraged the growth of solar PV in the distribution grid. The additional variability associated with weather-dependent renewable energy creates new challenges for power system operators that must maintain and operate ancillary services to balance the grid. To deal with these issues power operators mostly rely on demand load forecasts. Electric load forecast has been used in power industry for a long time and there are several well established load forecasting models. But the performance of these models for future scenario of high renewable energy penetration is unclear. In this work, the impact of onsite solar power generation on the demand load forecast is analyzed for a community that meets between 10% and 15% of its annual power demand and 3–54% of its daily power demand from a solar power plant. Short-Term Load Forecasts (STLF) using persistence, machine learning and regression-based forecasting models are presented for two cases: (1) high solar penetration and (2) no penetration. Results show that for 1-h and 15-min forecasts the accuracy of the models drops by 9% and 3% with high solar penetration. Statistical analysis of the forecast errors demonstrate that the error distribution is best characterized as a t-distribution for the high penetration scenario. Analysis of the error distribution as a function of daily solar penetration for different levels of variability revealed that the solar power variability drives the forecast error magnitude whereas increasing penetration level has a much smaller contribution. This work concludes that the demand forecast error distribution

  11. Modeling and Forecasting the Impact of Major Technological and Infrastructural Changes on Travel Demand

    OpenAIRE

    El Zarwi, Feras

    2017-01-01

    The transportation system is undergoing major technological and infrastructural changes, such as the introduction of autonomous vehicles, high speed rail, carsharing, ridesharing, flying cars, drones, and other app-driven on-demand services. While the changes are imminent, the impact on travel behavior is uncertain, as is the role of policy in shaping the future. Literature shows that even under the most optimistic scenarios, society’s environmental goals cannot be met by technology, operatio...

  12. Demand forecasting of electricity in Indonesia with limited historical data

    Science.gov (United States)

    Dwi Kartikasari, Mujiati; Rohmad Prayogi, Arif

    2018-03-01

    Demand forecasting of electricity is an important activity for electrical agents to know the description of electricity demand in future. Prediction of demand electricity can be done using time series models. In this paper, double moving average model, Holt’s exponential smoothing model, and grey model GM(1,1) are used to predict electricity demand in Indonesia under the condition of limited historical data. The result shows that grey model GM(1,1) has the smallest value of MAE (mean absolute error), MSE (mean squared error), and MAPE (mean absolute percentage error).

  13. Traffic forecasts ignoring induced demand

    DEFF Research Database (Denmark)

    Næss, Petter; Nicolaisen, Morten Skou; Strand, Arvid

    2012-01-01

    the model calculations included only a part of the induced traffic, the difference in cost-benefit results compared to the model excluding all induced traffic was substantial. The results show lower travel time savings, more adverse environmental impacts and a considerably lower benefitcost ratio when...... induced traffic is partly accounted for than when it is ignored. By exaggerating the economic benefits of road capacity increase and underestimating its negative effects, omission of induced traffic can result in over-allocation of public money on road construction and correspondingly less focus on other...... performance of a proposed road project in Copenhagen with and without short-term induced traffic included in the transport model. The available transport model was not able to include long-term induced traffic resulting from changes in land use and in the level of service of public transport. Even though...

  14. A hierarchical Bayesian model for improving short-term forecasting of hospital demand by including meteorological information

    OpenAIRE

    Sahu, Sujit K.; Baffour, Bernard; Minty, John; Harper, Paul; Sarran, Christophe

    2013-01-01

    The effect of weather on health has been widely researched, and the ability to forecast meteorological events is able to offer valuable insights into the impact on public health services. In addition, better predictions of hospital demand that are more sensitive to fluctuations in weather can allow hospital administrators to optimise resource allocation and service delivery. Using historical hospital admission data and several seasonal and meteorological variables for a site near the hospital...

  15. A Simple Forecasting Model Linking Macroeconomic Policy to Industrial Employment Demand.

    Science.gov (United States)

    Malley, James R.; Hady, Thomas F.

    A study detailed further a model linking monetary and fiscal policy to industrial employment in metropolitan and nonmetropolitan areas of four United States regions. The model was used to simulate the impacts on area and regional employment of three events in the economy: changing real gross national product (GNP) via monetary policy, holding the…

  16. Deep Neural Network Based Demand Side Short Term Load Forecasting

    Directory of Open Access Journals (Sweden)

    Seunghyoung Ryu

    2016-12-01

    Full Text Available In the smart grid, one of the most important research areas is load forecasting; it spans from traditional time series analyses to recent machine learning approaches and mostly focuses on forecasting aggregated electricity consumption. However, the importance of demand side energy management, including individual load forecasting, is becoming critical. In this paper, we propose deep neural network (DNN-based load forecasting models and apply them to a demand side empirical load database. DNNs are trained in two different ways: a pre-training restricted Boltzmann machine and using the rectified linear unit without pre-training. DNN forecasting models are trained by individual customer’s electricity consumption data and regional meteorological elements. To verify the performance of DNNs, forecasting results are compared with a shallow neural network (SNN, a double seasonal Holt–Winters (DSHW model and the autoregressive integrated moving average (ARIMA. The mean absolute percentage error (MAPE and relative root mean square error (RRMSE are used for verification. Our results show that DNNs exhibit accurate and robust predictions compared to other forecasting models, e.g., MAPE and RRMSE are reduced by up to 17% and 22% compared to SNN and 9% and 29% compared to DSHW.

  17. Forecasting telecommunication new service demand by analogy method and combined forecast

    Directory of Open Access Journals (Sweden)

    Lin Feng-Jenq

    2005-01-01

    Full Text Available In the modeling forecast field, we are usually faced with the more difficult problems of forecasting market demand for a new service or product. A new service or product is defined as that there is absence of historical data in this new market. We hardly use models to execute the forecasting work directly. In the Taiwan telecommunication industry, after liberalization in 1996, there are many new services opened continually. For optimal investment, it is necessary that the operators, who have been granted the concessions and licenses, forecast this new service within their planning process. Though there are some methods to solve or avoid this predicament, in this paper, we will propose one forecasting procedure that integrates the concept of analogy method and the idea of combined forecast to generate new service forecast. In view of the above, the first half of this paper describes the procedure of analogy method and the approach of combined forecast, and the second half provides the case of forecasting low-tier phone demand in Taiwan to illustrate this procedure's feasibility.

  18. Forecasting the Demand for Information Security Personnel

    Directory of Open Access Journals (Sweden)

    Anatoliy Alexandrovich Malyuk

    2016-06-01

    Full Text Available During the formation of information society the problem of determining the demand for IS personnel (DfISP, consisting of IS specialists and IS practitioners, is of particular relevance at present. The goal of the paper is to calculate the demand for IS specialists (DfISS. To achieve it we used the informal heuristic methods and introduced some important indicators for DfISP forecast. As a validation of the conceptual approach proposed we show how to apply it on the regional level of one country on one real-world example. All the reasoning and calculations can be narrowed down to the DfISS forecasting within one corporation or IS professionals of a specific profile.

  19. Survey Forecasts and Money Demand Functions: Some International Evidence

    DEFF Research Database (Denmark)

    Stadtmann, Georg; Pierdzioch, Christian; Rülke, Jan

    2011-01-01

    We derive a money demand function from a dynamic macroeconomic general equilibrium model to analyze the correlations between professional economists’ forecasts of the growth rate of money supply, the inflation rate, the growth rate of real output, and the nominal interest rate. Upon estimating...... by the macroeconomic model....

  20. Forecasting the Water Demand in Chongqing, China Using a Grey Prediction Model and Recommendations for the Sustainable Development of Urban Water Consumption.

    Science.gov (United States)

    Wu, Hua'an; Zeng, Bo; Zhou, Meng

    2017-11-15

    High accuracy in water demand predictions is an important basis for the rational allocation of city water resources and forms the basis for sustainable urban development. The shortage of water resources in Chongqing, the youngest central municipality in Southwest China, has significantly increased with the population growth and rapid economic development. In this paper, a new grey water-forecasting model (GWFM) was built based on the data characteristics of water consumption. The parameter estimation and error checking methods of the GWFM model were investigated. Then, the GWFM model was employed to simulate the water demands of Chongqing from 2009 to 2015 and forecast it in 2016. The simulation and prediction errors of the GWFM model was checked, and the results show the GWFM model exhibits better simulation and prediction precisions than those of the classical Grey Model with one variable and single order equation GM(1,1) for short and the frequently-used Discrete Grey Model with one variable and single order equation, DGM(1,1) for short. Finally, the water demand in Chongqing from 2017 to 2022 was forecasted, and some corresponding control measures and recommendations were provided based on the prediction results to ensure a viable water supply and promote the sustainable development of the Chongqing economy.

  1. Demand Modelling in Telecommunications

    Directory of Open Access Journals (Sweden)

    M. Chvalina

    2009-01-01

    Full Text Available This article analyses the existing possibilities for using Standard Statistical Methods and Artificial Intelligence Methods for a short-term forecast and simulation of demand in the field of telecommunications. The most widespread methods are based on Time Series Analysis. Nowadays, approaches based on Artificial Intelligence Methods, including Neural Networks, are booming. Separate approaches will be used in the study of Demand Modelling in Telecommunications, and the results of these models will be compared with actual guaranteed values. Then we will examine the quality of Neural Network models

  2. Forecasting Ontario's blood supply and demand.

    Science.gov (United States)

    Drackley, Adam; Newbold, K Bruce; Paez, Antonio; Heddle, Nancy

    2012-02-01

    Given an aging population that requires increased medical care, an increasing number of deferrals from the donor pool, and a growing immigrant population that typically has lower donation rates, the purpose of this article is to forecast Ontario's blood supply and demand. We calculate age- and sex-specific donation and demand rates for blood supply based on 2008 data and project demand between 2008 and 2036 based on these rates and using population data from the Ontario Ministry of Finance. Results indicate that blood demand will outpace supply as early as 2012. For instance, while the total number of donations made by older cohorts is expected to increase in the coming years, the number of red blood cell (RBC) transfusions in the 70+ age group is forecasted grow from approximately 53% of all RBC transfusions in 2008 (209,515) in 2008 to 68% (546,996) by 2036. A series of alternate scenarios, including projections based on a 2% increase in supply per year and increased use of apheresis technology, delays supply shortfalls, but does not eliminate them without active management and/or multiple methods to increase supply and decrease demand. Predictions show that demand for blood products will outpace supply in the near future given current age- and sex-specific supply and demand rates. However, we note that the careful management of the blood supply by Canadian Blood Services, along with new medical techniques and the recruitment of new donors to the system, will remove future concerns. © 2012 American Association of Blood Banks.

  3. The SEEC United Kingdom energy demand forecast (1993-2000)

    Energy Technology Data Exchange (ETDEWEB)

    Fouquet, R; Hawdon, D; Pearson, P; Robinson, C; Stevens, P

    1993-12-16

    The aims of this paper are to present the underlying determinants of fuel consumption, such as economic activity and prices, develop a series of simple yet reliable sectoral models of energy demand, which incorporate recent modelling developments; provide forecasts of energy demand and its environmental consequences; examine the effects of VAT on domestic fuel and increased competition in the electricity sector; and aid the present debate on energy markets. The paper analyses world oil prices, with a particular focus on Iraq's role, reviews energy policy in the UK and discusses SEEC's expectations about UK fuel prices in coming years and how they vary among sectors. It forecasts final user demand in the domestic, iron and steel, other industry, transport, agricultural, public administration and defence and miscellaneous sectors. The paper also examines the major changes that are underway in electricity generators' demand for fuel, and primary energy consumption and its environmental implications.

  4. Hybrid Forecasting Approach Based on GRNN Neural Network and SVR Machine for Electricity Demand Forecasting

    Directory of Open Access Journals (Sweden)

    Weide Li

    2017-01-01

    Full Text Available Accurate electric power demand forecasting plays a key role in electricity markets and power systems. The electric power demand is usually a non-linear problem due to various unknown reasons, which make it difficult to get accurate prediction by traditional methods. The purpose of this paper is to propose a novel hybrid forecasting method for managing and scheduling the electricity power. EEMD-SCGRNN-PSVR, the proposed new method, combines ensemble empirical mode decomposition (EEMD, seasonal adjustment (S, cross validation (C, general regression neural network (GRNN and support vector regression machine optimized by the particle swarm optimization algorithm (PSVR. The main idea of EEMD-SCGRNN-PSVR is respectively to forecast waveform and trend component that hidden in demand series to substitute directly forecasting original electric demand. EEMD-SCGRNN-PSVR is used to predict the one week ahead half-hour’s electricity demand in two data sets (New South Wales (NSW and Victorian State (VIC in Australia. Experimental results show that the new hybrid model outperforms the other three models in terms of forecasting accuracy and model robustness.

  5. Short term forecasting of petroleum product demand in France

    International Nuclear Information System (INIS)

    Cadren, M.

    1998-01-01

    The analysis of petroleum product demand became a privileged thrust of research following the modifications in terms of structure and level of the petroleum markets since eighties. The greatest importance to econometrics models of Energy demand, joint works about nonstationary data, explained the development of error-correction models and the co-integration. In this context, the short term econometrics modelling of petroleum product demand does not only focus on forecasts but also on the measure of the gain acquired from using error-correction techniques and co-integration. It's filling to take the influence of technical improvement and environment pressures into account in econometrics modelling of petroleum products demand. The first part presents the evolution of Energy Demand in France and more particularly the petroleum product demand since 1986. The objective is to determine the main characteristics of each product, which will help us to analyse and validate the econometrics models. The second part focus on the recent developments in times series modelling. We study the problem of nonstationary data and expose different unit root tests. We examine the main approaches to univariate and multivariate modelling with nonstationary data and distinguish the forecasts of the latter's. The third part is intended to applications; its objective is to illustrate the theoretic developments of the second part with a comparison between the performances of different approaches (approach Box and Jenkins, Johansen approach's and structural approach). The models will be applied to the main French petroleum market. The observed asymmetrical demand behaviour is also considered. (author)

  6. Prediction of a service demand using combined forecasting approach

    Science.gov (United States)

    Zhou, Ling

    2017-08-01

    Forecasting facilitates cutting down operational and management costs while ensuring service level for a logistics service provider. Our case study here is to investigate how to forecast short-term logistic demand for a LTL carrier. Combined approach depends on several forecasting methods simultaneously, instead of a single method. It can offset the weakness of a forecasting method with the strength of another, which could improve the precision performance of prediction. Main issues of combined forecast modeling are how to select methods for combination, and how to find out weight coefficients among methods. The principles of method selection include that each method should apply to the problem of forecasting itself, also methods should differ in categorical feature as much as possible. Based on these principles, exponential smoothing, ARIMA and Neural Network are chosen to form the combined approach. Besides, least square technique is employed to settle the optimal weight coefficients among forecasting methods. Simulation results show the advantage of combined approach over the three single methods. The work done in the paper helps manager to select prediction method in practice.

  7. A Method for the Monthly Electricity Demand Forecasting in Colombia based on Wavelet Analysis and a Nonlinear Autoregressive Model

    Directory of Open Access Journals (Sweden)

    Cristhian Moreno-Chaparro

    2011-12-01

    Full Text Available This paper proposes a monthly electricity forecast method for the National Interconnected System (SIN of Colombia. The method preprocesses the time series using a Multiresolution Analysis (MRA with Discrete Wavelet Transform (DWT; a study for the selection of the mother wavelet and her order, as well as the level decomposition was carried out. Given that original series follows a non-linear behaviour, a neural nonlinear autoregressive (NAR model was used. The prediction was obtained by adding the forecast trend with the estimated obtained by the residual series combined with further components extracted from preprocessing. A bibliographic review of studies conducted internationally and in Colombia is included, in addition to references to investigations made with wavelet transform applied to electric energy prediction and studies reporting the use of NAR in prediction.

  8. Energy Demand Forecasting: Combining Cointegration Analysis and Artificial Intelligence Algorithm

    OpenAIRE

    Huang, Junbing; Tang, Yuee; Chen, Shuxing

    2018-01-01

    Energy is vital for the sustainable development of China. Accurate forecasts of annual energy demand are essential to schedule energy supply and provide valuable suggestions for developing related industries. In the existing literature on energy use prediction, the artificial intelligence-based (AI-based) model has received considerable attention. However, few econometric and statistical evidences exist that can prove the reliability of the current AI-based model, an area that still needs to ...

  9. Demand Forecasting in the Smart Grid Paradigm: Features and Challenges

    Energy Technology Data Exchange (ETDEWEB)

    Khodayar, Mohammad E.; Wu, Hongyu

    2015-07-01

    Demand forecasting faces challenges that include a large volume of data, increasing number of factors that affect the demand profile, uncertainties in the generation profile of the distributed and renewable generation resources and lack of historical data. A hierarchical demand forecasting framework can incorporate the new technologies, customer behaviors and preferences, and environmental factors.

  10. Forecasting fluid milk and cheese demands for the next decade.

    Science.gov (United States)

    Schmit, T M; Kaiser, H M

    2006-12-01

    Predictions of future market demands and farm prices for dairy products are important determinants in developing marketing strategies and farm-production planning decisions. The objective of this report was to use current aggregate forecast data, combined with existing econometric models of demand and supply, to forecast retail demands for fluid milk and cheese and the supply and price of farm milk over the next decade. In doing so, we can investigate whether projections of population and consumer food-spending patterns will extend or alter current consumption trends and examine the implications of future generic advertising strategies for dairy products. To conduct the forecast simulations and appropriately allocate the farm milk supply to various uses, we used a partial equilibrium model of the US domestic dairy sector that segmented the industry into retail, wholesale, and farm markets. Model simulation results indicated that declines in retail per capita demand would persist but at a reduced rate from years past and that retail per capita demand for cheese would continue to grow and strengthen over the next decade. These predictions rely on expected changes in the size of populations of various ages, races, and ethnicities and on existing patterns of spending on food at home and away from home. The combined effect of these forecasted changes in demand levels was reflected in annualized growth in the total farm-milk supply that was similar to growth realized during the past few years. Although we expect nominal farm milk prices to increase over the next decade, we expect real prices (relative to assumed growth in feed costs) to remain relatively stable and show no increase until the end of the forecast period. Supplemental industry model simulations also suggested that net losses in producer revenues would result if only nominal levels of generic advertising spending were maintained in forthcoming years. In fact, if real generic advertising expenditures are

  11. Derivation of travel demand forecasting models for low population areas: the case of Port Said Governorate, North East Egypt

    Directory of Open Access Journals (Sweden)

    Ahmed Mohamed Semeida

    2014-06-01

    Full Text Available In the last decades, there has been substantial development in modeling techniques of travel demand estimation. For low population areas the external trip estimation is important but usually neglected in travel demand modeling process. In Egypt, the researches in this field are scarce due to lack of data. Accordingly, this paper aims to identify and estimate the main variables that affect the travel demand in low population areas, and to develop models to predict them. The study focused on the Port Said Governorate in North East Egypt. A special questionnaire had been prepared in 2010 depending on interviews of passengers at basic taxi terminals in Port Said. And 2211 filled questionnaires were offering for research. To analyze the data, two modeling procedures were used. One is the multiple linear regression and the other is the generalized linear modeling (GLM applying normal distributions. It is found that GLM procedure offers more suitable and accurate approach than the linear regression for developing number of trips. The final demand models have statistics within the acceptable regions and, also, they are conceptually reasonable. These results are so important for Egyptian highway authorities to improve the efficiency of highway transportation system in Egypt.

  12. A Forecast Model for Unemployment by Education

    DEFF Research Database (Denmark)

    Tranæs, Torben; Larsen, Anders Holm; Groes, Niels

    1994-01-01

    We present a dynamic forecast model for the labour market: demand for labour by education and the distribution of labour by education among industries are determined endogenously with overall demand by industry given exogenously. The model is derived from a simple behavioural equation based on a ...... for educational groups, where the initial forecast year is a change point for unemployment....

  13. SKU demand forecasting in the presence of promotions

    NARCIS (Netherlands)

    Gür Ali, Ö.; Sayin, S.; Woensel, van T.; Fransoo, J.C.

    2009-01-01

    Promotions and shorter life cycles make grocery sales forecasting more difficult, requiring more complicated models. We identify methods of increasing complexity and data preparation cost yielding increasing improvements in forecasting accuracy, by varying the forecasting technique, the input

  14. Forecasting monthly peak demand of electricity in India—A critique

    International Nuclear Information System (INIS)

    Rallapalli, Srinivasa Rao; Ghosh, Sajal

    2012-01-01

    The nature of electricity differs from that of other commodities since electricity is a non-storable good and there have been significant seasonal and diurnal variations of demand. Under such condition, precise forecasting of demand for electricity should be an integral part of the planning process as this enables the policy makers to provide directions on cost-effective investment and on scheduling the operation of the existing and new power plants so that the supply of electricity can be made adequate enough to meet the future demand and its variations. Official load forecasting in India done by Central Electricity Authority (CEA) is often criticized for being overestimated due to inferior techniques used for forecasting. This paper tries to evaluate monthly peak demand forecasting performance predicted by CEA using trend method and compare it with those predicted by Multiplicative Seasonal Autoregressive Integrated Moving Average (MSARIMA) model. It has been found that MSARIMA model outperforms CEA forecasts both in-sample static and out-of-sample dynamic forecast horizons in all five regional grids in India. For better load management and grid discipline, this study suggests employing sophisticated techniques like MSARIMA for peak load forecasting in India. - Highlights: ► This paper evaluates monthly peak demand forecasting performance by CEA. ► Compares CEA forecasts it with those predicted by MSARIMA model. ► MSARIMA model outperforms CEA forecasts in all five regional grids in India. ► Opportunity exists to improve the performance of CEA forecasts.

  15. Energy Demand Forecasting: Combining Cointegration Analysis and Artificial Intelligence Algorithm

    Directory of Open Access Journals (Sweden)

    Junbing Huang

    2018-01-01

    Full Text Available Energy is vital for the sustainable development of China. Accurate forecasts of annual energy demand are essential to schedule energy supply and provide valuable suggestions for developing related industries. In the existing literature on energy use prediction, the artificial intelligence-based (AI-based model has received considerable attention. However, few econometric and statistical evidences exist that can prove the reliability of the current AI-based model, an area that still needs to be addressed. In this study, a new energy demand forecasting framework is presented at first. On the basis of historical annual data of electricity usage over the period of 1985–2015, the coefficients of linear and quadratic forms of the AI-based model are optimized by combining an adaptive genetic algorithm and a cointegration analysis shown as an example. Prediction results of the proposed model indicate that the annual growth rate of electricity demand in China will slow down. However, China will continue to demand about 13 trillion kilowatt hours in 2030 because of population growth, economic growth, and urbanization. In addition, the model has greater accuracy and reliability compared with other single optimization methods.

  16. FORECASTING MODELS IN MANAGEMENT

    OpenAIRE

    Sindelar, Jiri

    2008-01-01

    This article deals with the problems of forecasting models. First part of the article is dedicated to definition of the relevant areas (vertical and horizontal pillar of definition) and then the forecasting model itself is defined; as article presents theoretical background for further primary research, this definition is crucial. Finally the position of forecasting models within the management system is identified. The paper is a part of the outputs of FEM CULS grant no. 1312/11/3121.

  17. Safety stock placement in supply chains with demand forecast updates

    Directory of Open Access Journals (Sweden)

    Youssef Boulaksil

    2016-01-01

    Full Text Available Supply chains are exposed to many types of risks and it may not be obvious where to keep safety stocks in the supply chain to hedge against those risks, while maintaining a high customer service level. In this paper, we develop an approach to determine the safety stock levels in supply chain systems that face demand uncertainty. We model customer demand following the Martingale Model of Forecast Evolution (MMFE. An extensive body of literature discusses the safety stock placement problem in supply chains, but most studies assume independent and identically distributed demand. Our approach is based on a simulation study in which mathematical models are solved in a rolling horizon setting. It allows determining the safety stock levels at each stage of the supply chain. Based on a numerical study, we find that a big portion of the safety stocks should be placed downstream in the supply chain to achieve a high customer service level.

  18. Demand forecasts at national and EU level on a computer-based model taking usage costs into account

    DEFF Research Database (Denmark)

    Passamonti, Lucia; Falch, Morten; Björksten, Margareta

    1997-01-01

    The objective of this deliverable is to forecast the residential spending on selected multimedia services such as Tele-entertainment, VOD, AOD, Networked games, Teleshopping and Teleworking.......The objective of this deliverable is to forecast the residential spending on selected multimedia services such as Tele-entertainment, VOD, AOD, Networked games, Teleshopping and Teleworking....

  19. Concerning the justiciability of demand forecasts

    International Nuclear Information System (INIS)

    Nierhaus, M.

    1977-01-01

    This subject plays at present in particular a role in the course of judicial examinations of immediately enforceable orders for the partial construction licences of nuclear power plants. The author distinguishes beween three kinds of forecast decisions: 1. Appraising forecast decisions with standards of judgment taken mainly from the fields of the art, culture, morality, religion are, according to the author, only legally verifyable to a limited extent. 2. With regard to forecast decisions not arguable, e.g. where the future behaviour of persons is concerned, the same should be applied basically. 3. In contrast to this, the following is applicable for programmatic, proceedingslike, or creative forecast decisions, in particular in economics: 'An administrative estimation privilege in a prognostic sense with the consequence that the court has to accept the forecast decision which lies within the forecast margins and which cannot be disproved, and that the court may not replace this forecast decision by its own probability judgment. In these cases, administration has the right to create its own forecast standards.' Judicial control in these cases was limited to certain substantive and procedural mistakes made by the administration in the course of forecast decision finding. (orig./HP) [de

  20. Concerning the justiciability of demand forecasts

    Energy Technology Data Exchange (ETDEWEB)

    Nierhaus, M [Koeln Univ. (Germany, F.R.)

    1977-01-01

    This subject plays at present in particular a role in the course of judicial examinations of immediately enforceable orders for the partial construction licences of nuclear power plants. The author distinguishes beween three kinds of forecast decisions: 1. Appraising forecast decisions with standards of judgment taken mainly from the fields of the art, culture, morality, religion are, according to the author, only legally verifyable to a limited extent. 2. With regard to forecast decisions not arguable, e.g. where the future behaviour of persons is concerned, the same should be applied basically. 3. In contrast to this, the following is applicable for programmatic, proceedingslike, or creative forecast decisions, in particular in economics: 'An administrative estimation privilege in a prognostic sense with the consequence that the court has to accept the forecast decision which lies within the forecast margins and which cannot be disproved, and that the court may not replace this forecast decision by its own probability judgment. In these cases, administration has the right to create its own forecast standards.' Judicial control in these cases was limited to certain substantive and procedural mistakes made by the administration in the course of forecast decision finding.

  1. Forecasting the demand for new telecommunication services

    DEFF Research Database (Denmark)

    Skouby, Knud Erik; Veiro, Bjørn

    1991-01-01

    A forecasting method that is applicable for new services, where little historical data have been recorded, is proposed. The method uses estimators based on economical, demographic and traffic data. Compared to traditional forecasting procedures that are built upon a solid historical record of dat...

  2. Role of hybrid forecasting techniques for transportation planning of broiler meat under uncertain demand in thailand

    Directory of Open Access Journals (Sweden)

    Thoranin Sujjaviriyasup

    2014-12-01

    Full Text Available One of numerous problems experiencing in supply chain management is the demand. Most demands are appeared in terms of uncertainty. The broiler meat industry is inevitably encountering the same problem. In this research, hybrid forecasting model of ARIMA and Support Vector Machine (SVMs are developed to forecast broiler meat export. In addition, ARIMA, SVMs, and Moving Average (MA are chosen for comparing the forecasting efficiency. All the forecasting models are tested and validated using the data of Brazil’s export, Canada’s export, and Thailand’s export. The hybrid model provides accuracy of the forecasted values that are 98.71%, 97.50%, and 93.01%, respectively. In addition, the hybrid model presents the least error of all MAE, RMSE, and MAPE comparing with other forecasting models. As forecasted data are applied to transportation planning, the mean absolute percentage error (MAPE of optimal value of forecasted value and actual value is 14.53%. The hybrid forecasting model shows an ability to reduce risk of total cost of transportation when broiler meat export is forecasted by using MA(2, MA(3, ARIMA, and SVM are 50.59%, 60.18%, 68.01%, and 46.55%, respectively. The results indicate that the developed forecasting model is recommended to broiler meat industries’ supply chain decision.

  3. Optimised control and pipe burst detection by water demand forecasting

    NARCIS (Netherlands)

    Bakker, M.

    2014-01-01

    Water demand forecasting The total water demand in an area is the sum of the water demands of all individual domestic and industrial consumers in that area. These consumers behave in repetitive daily, weekly and annual patterns, and the same repetitive patterns can be observed in the drinking water

  4. The application of seasonal latent variable in forecasting electricity demand as an alternative method

    International Nuclear Information System (INIS)

    Sumer, Kutluk Kagan; Goktas, Ozlem; Hepsag, Aycan

    2009-01-01

    In this study, we used ARIMA, seasonal ARIMA (SARIMA) and alternatively the regression model with seasonal latent variable in forecasting electricity demand by using data that belongs to 'Kayseri and Vicinity Electricity Joint-Stock Company' over the 1997:1-2005:12 periods. This study tries to examine the advantages of forecasting with ARIMA, SARIMA methods and with the model has seasonal latent variable to each other. The results support that ARIMA and SARIMA models are unsuccessful in forecasting electricity demand. The regression model with seasonal latent variable used in this study gives more successful results than ARIMA and SARIMA models because also this model can consider seasonal fluctuations and structural breaks

  5. Demand Forecasting Methods in Accommodation Establishments: A Research with Artificial Neural Networks

    Directory of Open Access Journals (Sweden)

    Ebru ULUCAN

    2018-05-01

    Full Text Available As it being seen in every sector, demand forecasting in tourism is been conducted with various qualitative and quantitative methods. In recent years, artificial neural network models, which have been developed as an alternative to these forecasting methods, give the nearest values in forecasting with the smallest failure percentage. This study aims to reveal that accomodation establishments can use the neural network models as an alternative while forecasting their demand. With this aim, neural network models have been tested by using the sold room values between the period of 2013-2016 of a five star hotel in Istanbul and it is found that the results acquired from the testing models are the nearest values comparing the realized figures. In the light of these results, tourism demand of the hotel for 2017 and 2018 has been forecasted.

  6. Forecasting Tourist Arrivals and Supply and Demand Gap Analysis ...

    African Journals Online (AJOL)

    This paper aims to forecast the long term behavior of tourist arrivals and analyze the gap between supply and demand for the hotel/accommodation sector of the city of Addis Ababa. It also intends to provide vital information in regards to the sparse knowledge in the subject of forecasting tourist arrivals in Ethiopia.

  7. Ontario demand forecast from January 2004 to December 2013

    International Nuclear Information System (INIS)

    2003-01-01

    This document examined the demand forecast for electricity on the Independent Market Operator (IMO)-controlled grid in Ontario for the period 2004-2013. It serves as an assessment tool to determine whether existing and proposed generation and transmission facilities in the province will be sufficient to meet future electricity needs. Changes in methodology have been made to allow for an hourly peak versus the previously reported 20-minute peak value. Actual data through to the end of October 2002 was used to re-estimate energy demand. Compared to other developed countries, the outlook for the Canadian economy is optimistic. In addition, the economic forecast is better than that which formed the basis of the last ten-year forecast. Energy demand in the median growth scenario is increasing at an annual rate of 1.1 per cent rather than 0.9 per cent for the forecasted period of 2003-2012. The combination of a higher growth rate and a higher starting point results in a 2010 forecast of 168 TWh. It is expected that peak demand will grow faster than in the previous forecast. Summer peak demand averaging an annual growth of 1.3 per cent is forecasted for the period 2003-2012, with winter peak demand averaging a growth of 0.8 per cent. Under normal weather conditions, the electricity system is expected to peak in the summer of 2005 due to the continued demand for cooling load. However, under an extreme weather scenario, the system is already summer peaking. The improved economic outlook and higher starting point resulted in a higher forecast for energy. The electricity system is expected to winter peak during the first years of the forecasted period. The heating load is not expected to experience rapid growth in the next few years. 15 tabs., 14 figs

  8. Ex-post evaluations of demand forecast accuracy

    DEFF Research Database (Denmark)

    Nicolaisen, Morten Skou; Driscoll, Patrick Arthur

    2014-01-01

    Travel demand forecasts play a crucial role in the preparation of decision support to policy makers in the field of transport planning. The results feed directly into impact appraisals such as cost benefit analyses and environmental impact assessments, which are mandatory for large public works...... projects in many countries. Over the last couple of decades there has been an increasing attention to the lack of demand forecast accuracy, but since data availability for comprehensive ex- post appraisals is problematic, such studies are still relatively rare. The present paper presents a review...... of the largest ex-post studies of demand forecast accuracy for transport infrastructure projects. The focus is twofold; to provide an overview of observed levels of demand forecast inaccuracy and to explore the primary explanations offered for the observed inaccuracy. Inaccuracy in the form of both bias...

  9. Electricity demand forecasting using regression, scenarios and pattern analysis

    CSIR Research Space (South Africa)

    Khuluse, S

    2009-02-01

    Full Text Available The objective of the study is to forecast national electricity demand patterns for a period of twenty years: total annual consumption and understanding seasonal effects. No constraint on the supply of electricity was assumed...

  10. Sizing inventory of blood products in a blood bank at Brazil based on a model of inventory management and a demand forecast

    Directory of Open Access Journals (Sweden)

    Julia Lorena Marques Gurgel

    2014-02-01

    Full Text Available The management of the stocks of products derived from the blood processing collected in blood banks is a problem for health services in Brazil and the world. Quantify the stocks of these products in order to equalize the demand and supply is not a simple task. It's necessary ensure that the product is available when needed and in due time. However, there is no how overestimate these stocks given that the product is perishable and it is not easy the availability of raw material (blood for processing. There are few studies in Brazil, however, that discuss this issue. This study will focus on one Brazilian Hemocentro, which has faced the challenge of measure the demand for haemotherapic's products and establish parameters to control their stocks. Thus, it was sought to adapt a recent study realized out of the country, about sizing of stocks of a inventory for blood banks, combined with a forecast model of demand for blood derivatives subclassified by blood type. This control aims to increase the availability of the transfusion service, as it intends to reduce shortages and wastage of the blood collected.

  11. Demand Forecasting in the Fashion Industry: A Review

    Directory of Open Access Journals (Sweden)

    Maria Elena Nenni

    2013-08-01

    Full Text Available Forecasting demand is a crucial issue for driving efficient operations management plans. This is especially the case in the fashion industry, where demand uncertainty, lack of historical data and seasonal trends usually coexist. Many approaches to this issue have been proposed in the literature over the past few decades. In this paper, forecasting methods are compared with the aim of linking approaches to the market features.

  12. Comparison between ARIMA and DES Methods of Forecasting Population for Housing Demand in Johor

    Directory of Open Access Journals (Sweden)

    Alias Ahmad Rizal

    2016-01-01

    Full Text Available Forecasting accuracy is a primary criterion in selecting appropriate method of prediction. Even though there are various methods of forecasting however not all of these methods are able to predict with good accuracy. This paper presents an evaluation of two methods of population forecasting for housing demand. These methods are Autoregressive Integrated Moving Average (ARIMA and Double Exponential Smoothing (DES. Both of the methods are principally adopting univariate time series analysis which uses past and present data for forecasting. Secondary data obtained from Department of Statistics, Malaysia was used to forecast population for housing demand in Johor. Forecasting processes had generated 14 models to each of the methods and these models where evaluated using Mean Absolute Percentage Error (MAPE. It was found that 14 of Double Exponential Smoothing models and also 14 of ARIMA models had resulted to 1.674% and 5.524% of average MAPE values respectively. Hence, the Double Exponential Smoothing method outperformed the ARIMA method by reducing 4.00 % in forecasting model population for Johor state. These findings help researchers and government agency in selecting appropriate forecasting model for housing demand.

  13. Research on energy supply, demand and economy forecasting in Japan

    International Nuclear Information System (INIS)

    Shiba, Tsuyoshi; Kamezaki, Hiroshi; Yuyama, Tomonori; Suzuki, Atsushi

    1999-10-01

    This project aims to do research on forecasts of energy demand structure and electricity generation cost in each power plant in Japan in the 21st century, considering constructing successful FBR scenario. During the process of doing research on forecasts of energy demand structure in Japan, documents published from organizations in inside and outside of Japan were collected. These documents include prospects of economic growth rate, forecasts of amount for energy supply and demand, the maximum amount of introducing new energy resources, CO2 regulation, and evaluation of energy best mixture. Organizations in Japan such as Economic Council and Japan Energy Economic Research Institute have provided long-term forecasts until the early 21st century. Meanwhile, organizations overseas have provided forecasts of economic structure, and demand and supply for energy in OECD and East Asia including Japan. In connection with forecasts of electricity generation cost in each power plant, views on the ultimate reserves and cost of resources are reviewed in this report. According to some views on oil reserves, making assumptions based on reserves/production ratio, the maximum length of the time that oil reserves will last is 150 years. In addition, this report provides summaries of cost and potential role of various resources, including solar energy and wind energy; and views on waste, safety, energy security-related externality cost, and the price of transferring CO2 emission right. (author)

  14. Summer 2011 forecast analysis. Forecast analysis of the electricity supply-demand balance in France for the summer of 2011

    International Nuclear Information System (INIS)

    2011-06-01

    Twice a year, RTE publishes a forecast study of the electricity supply and demand in continental France for the summer and winter periods. The study is based on the information supplied by electric utilities concerning the expected availability of power generation means and on statistical meteorological models. Safety margins are calculated using thousands of probabilistic scenarios combining various production and consumption situations. This report is the forecast study for the summer of 2011

  15. Power plant site evaluation, electric energy demand forecasts - Douglas Point Site. Volume 3. Final report

    International Nuclear Information System (INIS)

    Wilson, J.W.

    1975-07-01

    This is part of a series of reports containing an evaluation of the proposed Douglas Point nuclear generating station site located on the Potomac River in Maryland 30 miles south of Washington, D.C. This report contains chapters on the Potomac Electric Power Company's market, forecasting future demand, modelling, a residential demand model, a nonresidential demand model, the Southern Maryland Electric Cooperative Model, short term predictive accuracy, and total system requirements

  16. A supply chain contract with flexibility as a risk-sharing mechanism for demand forecasting

    Science.gov (United States)

    Kim, Whan-Seon

    2013-06-01

    Demand forecasting is one of the main causes of the bullwhip effect in a supply chain. As a countermeasure for demand uncertainty as well as a risk-sharing mechanism for demand forecasting in a supply chain, this article studies a bilateral contract with order quantity flexibility. Under the contract, the buyer places orders in advance for the predetermined horizons and makes minimum purchase commitments. The supplier, in return, provides the buyer with the flexibility to adjust the order quantities later, according to the most updated demand information. To conduct comparative simulations, four-echelon supply chain models, that employ the contracts and different forecasting techniques under dynamic market demands, are developed. The simulation outcomes show that demand fluctuation can be effectively absorbed by the contract scheme, which enables better inventory management and customer service. Furthermore, it has been verified that the contract scheme under study plays a role as an effective coordination mechanism in a decentralised supply chain.

  17. Product demand forecasts using wavelet kernel support vector machine and particle swarm optimization in manufacture system

    Science.gov (United States)

    Wu, Qi

    2010-03-01

    Demand forecasts play a crucial role in supply chain management. The future demand for a certain product is the basis for the respective replenishment systems. Aiming at demand series with small samples, seasonal character, nonlinearity, randomicity and fuzziness, the existing support vector kernel does not approach the random curve of the sales time series in the space (quadratic continuous integral space). In this paper, we present a hybrid intelligent system combining the wavelet kernel support vector machine and particle swarm optimization for demand forecasting. The results of application in car sale series forecasting show that the forecasting approach based on the hybrid PSOWv-SVM model is effective and feasible, the comparison between the method proposed in this paper and other ones is also given, which proves that this method is, for the discussed example, better than hybrid PSOv-SVM and other traditional methods.

  18. Electric power demand forecasting using interval time series. A comparison between VAR and iMLP

    International Nuclear Information System (INIS)

    Garcia-Ascanio, Carolina; Mate, Carlos

    2010-01-01

    Electric power demand forecasts play an essential role in the electric industry, as they provide the basis for making decisions in power system planning and operation. A great variety of mathematical methods have been used for demand forecasting. The development and improvement of appropriate mathematical tools will lead to more accurate demand forecasting techniques. In order to forecast the monthly electric power demand per hour in Spain for 2 years, this paper presents a comparison between a new forecasting approach considering vector autoregressive (VAR) forecasting models applied to interval time series (ITS) and the iMLP, the multi-layer perceptron model adapted to interval data. In the proposed comparison, for the VAR approach two models are fitted per every hour, one composed of the centre (mid-point) and radius (half-range), and another one of the lower and upper bounds according to the interval representation assumed by the ITS in the learning set. In the case of the iMLP, only the model composed of the centre and radius is fitted. The other interval representation composed of the lower and upper bounds is obtained from the linear combination of the two. This novel approach, obtaining two bivariate models each hour, makes possible to establish, for different periods in the day, which interval representation is more accurate. Furthermore, the comparison between two different techniques adapted to interval time series allows us to determine the efficiency of these models in forecasting electric power demand. It is important to note that the iMLP technique has been selected for the comparison, as it has shown its accuracy in forecasting daily electricity price intervals. This work shows the ITS forecasting methods as a potential tool that will lead to a reduction in risk when making power system planning and operational decisions. (author)

  19. The impact of implementing a demand forecasting system into a low-income country's supply chain.

    Science.gov (United States)

    Mueller, Leslie E; Haidari, Leila A; Wateska, Angela R; Phillips, Roslyn J; Schmitz, Michelle M; Connor, Diana L; Norman, Bryan A; Brown, Shawn T; Welling, Joel S; Lee, Bruce Y

    2016-07-12

    To evaluate the potential impact and value of applications (e.g. adjusting ordering levels, storage capacity, transportation capacity, distribution frequency) of data from demand forecasting systems implemented in a lower-income country's vaccine supply chain with different levels of population change to urban areas. Using our software, HERMES, we generated a detailed discrete event simulation model of Niger's entire vaccine supply chain, including every refrigerator, freezer, transport, personnel, vaccine, cost, and location. We represented the introduction of a demand forecasting system to adjust vaccine ordering that could be implemented with increasing delivery frequencies and/or additions of cold chain equipment (storage and/or transportation) across the supply chain during varying degrees of population movement. Implementing demand forecasting system with increased storage and transport frequency increased the number of successfully administered vaccine doses and lowered the logistics cost per dose up to 34%. Implementing demand forecasting system without storage/transport increases actually decreased vaccine availability in certain circumstances. The potential maximum gains of a demand forecasting system may only be realized if the system is implemented to both augment the supply chain cold storage and transportation. Implementation may have some impact but, in certain circumstances, may hurt delivery. Therefore, implementation of demand forecasting systems with additional storage and transport may be the better approach. Significant decreases in the logistics cost per dose with more administered vaccines support investment in these forecasting systems. Demand forecasting systems have the potential to greatly improve vaccine demand fulfilment, and decrease logistics cost/dose when implemented with storage and transportation increases. Simulation modeling can demonstrate the potential health and economic benefits of supply chain improvements. Copyright

  20. Intercity Travel Demand Analysis Model

    Directory of Open Access Journals (Sweden)

    Ming Lu

    2014-01-01

    Full Text Available It is well known that intercity travel is an important component of travel demand which belongs to short distance corridor travel. The conventional four-step method is no longer suitable for short distance corridor travel demand analysis for the time spent on urban traffic has a great impact on traveler's main mode choice. To solve this problem, the author studied the existing intercity travel demand analysis model, then improved it based on the study, and finally established a combined model of main mode choice and access mode choice. At last, an integrated multilevel nested logit model structure system was built. The model system includes trip generation, destination choice, and mode-route choice based on multinomial logit model, and it achieved linkage and feedback of each part through logsum variable. This model was applied in Shenzhen intercity railway passenger demand forecast in 2010 as a case study. As a result, the forecast results were consistent with the actuality. The model's correctness and feasibility were verified.

  1. Demand forecast of turbines in the offshore wind power industry

    DEFF Research Database (Denmark)

    Martinez-Neri, Ivan

    2014-01-01

    How important is it for a manufacturing company to be able to predict the demand of their products? How much will it lose in inventory costs due to a bad forecasting technique? And what if the product in question is composed of more than 100,000 parts and costs millions of euros a piece......? This article summarises the reasoning followed by a European manufacturer to determine the demand curve of finished offshore wind turbines and how to forecast it for the purpose of production planning....

  2. Forecasting Demand for Automotive Aftermarket Inventories

    Directory of Open Access Journals (Sweden)

    Ovidiu-Alin DOBRICAN

    2013-01-01

    Full Text Available Management decisions regarding the resource allocation in the automotive aftermarket in-volves a good understanding of it. This includes a better understanding of the participants in this market, the supply chains, specificities products and demand for these products. A useful instrument to anticipate the latter is the use of simulation methods, one of them being the Monte Carlo method, which, in this paper, is used to create various scenarios of supply.

  3. Case study of forecasting uranium supply and demand

    International Nuclear Information System (INIS)

    Noritake, Kazumitsu

    1992-01-01

    PNC collects and analyzes information about uranium market trend, world uranium supply and demand, and world uranium resources potential in order to establish the strategy of uranium exploration. This paper outlines the results obtained to forecast uranium supply and demand. Our forecast indicates that 8,500 tU, accounting for one-sixth of the demand in the year 2001, must be met by uranium produced by mines to be newly developed. After 2019, demand cannot be met by the 123 mines currently in operation or expected to have gone into production by this year. The projected shortage must therefore be covered by uranium to be newly discovered. To preclude this occurrence, uranium exploration will have to be steadily continued in order to ensure future new uranium resources, to alleviate anxiety about future supply, and to prevent sharp price hikes. (author)

  4. Aggregate electricity demand in South Africa: Conditional forecasts to 2030

    Energy Technology Data Exchange (ETDEWEB)

    Inglesi, Roula [Department of Economics, Faculty of Economic and Management Sciences, University of Pretoria, Main Campus, Pretoria 0002 (South Africa)

    2010-01-15

    In 2008, South Africa experienced a severe electricity crisis. Domestic and industrial electricity users had to suffer from black outs all over the country. It is argued that partially the reason was the lack of research on energy, locally. However, Eskom argues that the lack of capacity can only be solved by building new power plants. The objective of this study is to specify the variables that explain the electricity demand in South Africa and to forecast electricity demand by creating a model using the Engle-Granger methodology for co-integration and Error Correction models. By producing reliable results, this study will make a significant contribution that will improve the status quo of energy research in South Africa. The findings indicate that there is a long run relationship between electricity consumption and price as well as economic growth/income. The last few years in South Africa, price elasticity was rarely taken into account because of the low and decreasing prices in the past. The short-run dynamics of the system are affected by population growth, too After the energy crisis, Eskom, the national electricity supplier, is in search for substantial funding in order to build new power plants that will help with the envisaged lack of capacity that the company experienced. By using two scenarios for the future of growth, this study shows that the electricity demand will drop substantially due to the price policies agreed - until now - by Eskom and the National Energy Regulator South Africa (NERSA) that will affect the demand for some years. (author)

  5. Aggregate electricity demand in South Africa: Conditional forecasts to 2030

    International Nuclear Information System (INIS)

    Inglesi, Roula

    2010-01-01

    In 2008, South Africa experienced a severe electricity crisis. Domestic and industrial electricity users had to suffer from black outs all over the country. It is argued that partially the reason was the lack of research on energy, locally. However, Eskom argues that the lack of capacity can only be solved by building new power plants. The objective of this study is to specify the variables that explain the electricity demand in South Africa and to forecast electricity demand by creating a model using the Engle-Granger methodology for co-integration and Error Correction models. By producing reliable results, this study will make a significant contribution that will improve the status quo of energy research in South Africa. The findings indicate that there is a long run relationship between electricity consumption and price as well as economic growth/income. The last few years in South Africa, price elasticity was rarely taken into account because of the low and decreasing prices in the past. The short-run dynamics of the system are affected by population growth, too After the energy crisis, Eskom, the national electricity supplier, is in search for substantial funding in order to build new power plants that will help with the envisaged lack of capacity that the company experienced. By using two scenarios for the future of growth, this study shows that the electricity demand will drop substantially due to the price policies agreed - until now - by Eskom and the National Energy Regulator South Africa (NERSA) that will affect the demand for some years. (author)

  6. Planning and forecasting demand for aircraft engines airline fleet

    Directory of Open Access Journals (Sweden)

    А.Г. Кучер

    2007-03-01

    Full Text Available  The questions of air-engines supply system processes analysis on the basis of order planning and air-engine demand forecasting of airline’s air fleet with the use of imitating simulation methods are considered.

  7. Computerized early warning tool for material demand forecast

    NARCIS (Netherlands)

    Zhang, Wei

    2007-01-01

    One way to manage the material flows in supply chain is based on the purchase orders and the demand forecast for the next company in the chain. ASML in Veldhoven is a world leader in manufacturing lithography systems for the semiconductor industry. Within the company, a SAP system supports the

  8. PCBA demand forecasting using an evolving Takagi-Sugeno system

    NARCIS (Netherlands)

    van Rooijen, M.; Almeida, R.J.; Kaymak, U.

    2016-01-01

    This paper investigates the use of using an evolving fuzzy system for printed circuit board (PCBA) demand forecasting. The algorithm is based on the evolving Takagi-Sugeno (eTS) fuzzy system, which has the ability to incorporate new patterns by changing its internal structure in an on-line fashion.

  9. Entity’s Irregular Demand Scheduling of the Wholesale Electricity Market based on the Forecast of Hourly Price Ratios

    Directory of Open Access Journals (Sweden)

    O. V. Russkov

    2015-01-01

    Full Text Available The article considers a hot issue to forecast electric power demand amounts and prices for the entities of wholesale electricity market (WEM, which are in capacity of a large user with production technology requirements prevailing over hourly energy planning ones. An electric power demand of such entities is on irregular schedule. The article analyses mathematical models, currently applied to forecast demand amounts and prices. It describes limits of time-series models and fundamental ones in case of hourly forecasting an irregular demand schedule of the electricity market entity. The features of electricity trading at WEM are carefully analysed. Factors that influence on irregularity of demand schedule of the metallurgical plant are shown. The article proposes method for the qualitative forecast of market price ratios as a tool to reduce a dependence on the accuracy of forecasting an irregular schedule of demand. It describes the differences between the offered method and the similar ones considered in research studies and scholarly works. The correlation between price ratios and relaxation in the requirements for the forecast accuracy of the electric power consumption is analysed. The efficiency function of forecast method is derived. The article puts an increased focus on description of the mathematical model based on the method of qualitative forecast. It shows main model parameters and restrictions the electricity market imposes on them. The model prototype is described as a programme module. Methods to assess an effectiveness of the proposed forecast model are examined. The positive test results of the model using JSC «Volzhsky Pipe Plant» data are given. A conclusion is drawn concerning the possibility to decrease dependence on the forecast accuracy of irregular schedule of entity’s demand at WEM. The effective trading tool has been found for the entities of irregular demand schedule at WEM. The tool application allows minimizing cost

  10. Energy demand forecasting method based on international statistical data

    International Nuclear Information System (INIS)

    Glanc, Z.; Kerner, A.

    1997-01-01

    Poland is in a transition phase from a centrally planned to a market economy; data collected under former economic conditions do not reflect a market economy. Final energy demand forecasts are based on the assumption that the economic transformation in Poland will gradually lead the Polish economy, technologies and modes of energy use, to the same conditions as mature market economy countries. The starting point has a significant influence on the future energy demand and supply structure: final energy consumption per capita in 1992 was almost half the average of OECD countries; energy intensity, based on Purchasing Power Parities (PPP) and referred to GDP, is more than 3 times higher in Poland. A method of final energy demand forecasting based on regression analysis is described in this paper. The input data are: output of macroeconomic and population growth forecast; time series 1970-1992 of OECD countries concerning both macroeconomic characteristics and energy consumption; and energy balance of Poland for the base year of the forecast horizon. (author). 1 ref., 19 figs, 4 tabs

  11. Energy demand forecasting method based on international statistical data

    Energy Technology Data Exchange (ETDEWEB)

    Glanc, Z; Kerner, A [Energy Information Centre, Warsaw (Poland)

    1997-09-01

    Poland is in a transition phase from a centrally planned to a market economy; data collected under former economic conditions do not reflect a market economy. Final energy demand forecasts are based on the assumption that the economic transformation in Poland will gradually lead the Polish economy, technologies and modes of energy use, to the same conditions as mature market economy countries. The starting point has a significant influence on the future energy demand and supply structure: final energy consumption per capita in 1992 was almost half the average of OECD countries; energy intensity, based on Purchasing Power Parities (PPP) and referred to GDP, is more than 3 times higher in Poland. A method of final energy demand forecasting based on regression analysis is described in this paper. The input data are: output of macroeconomic and population growth forecast; time series 1970-1992 of OECD countries concerning both macroeconomic characteristics and energy consumption; and energy balance of Poland for the base year of the forecast horizon. (author). 1 ref., 19 figs, 4 tabs.

  12. Forecasting the demand for petroleum industrial equipment

    Energy Technology Data Exchange (ETDEWEB)

    Buvailo, I A; Koval' chuk, V M; Yakovlev, Yu D

    1977-01-01

    An examination is made of a broad method of future industrial planning which yields optimal results and is based on the fact that the need for new technology stems from the number of operations which must be completed within the period being analyzed and from the productivity of the machinery slated for use. Formulas are presented for determining the need for several types of new petroleum industrial machinery, and an analysis is made of the components of a mathematical model. 3 references.

  13. Demand forecasting for automotive sector in Malaysia by system dynamics approach

    International Nuclear Information System (INIS)

    Zulkepli, Jafri; Abidin, Norhaslinda Zainal; Fong, Chan Hwa

    2015-01-01

    In general, Proton as an automotive company needs to forecast future demand of the car to assist in decision making related to capacity expansion planning. One of the forecasting approaches that based on judgemental or subjective factors is normally used to forecast the demand. As a result, demand could be overstock that eventually will increase the operation cost; or the company will face understock, which resulted losing their customers. Due to automotive industry is very challenging process because of high level of complexity and uncertainty involved in the system, an accurate tool to forecast the future of automotive demand from the modelling perspective is required. Hence, the main objective of this paper is to forecast the demand of automotive Proton car industry in Malaysia using system dynamics approach. Two types of intervention namely optimistic and pessimistic experiments scenarios have been tested to determine the capacity expansion that can prevent the company from overstocking. Finding from this study highlighted that the management needs to expand their production for optimistic scenario, whilst pessimistic give results that would otherwise. Finally, this study could help Proton Edar Sdn. Bhd (PESB) to manage the long-term capacity planning in order to meet the future demand of the Proton cars

  14. Demand forecasting for automotive sector in Malaysia by system dynamics approach

    Energy Technology Data Exchange (ETDEWEB)

    Zulkepli, Jafri, E-mail: zhjafri@uum.edu.my; Abidin, Norhaslinda Zainal, E-mail: nhaslinda@uum.edu.my [School of Quantitative Sciences, Universiti Utara Malaysia, Sintok, Kedah (Malaysia); Fong, Chan Hwa, E-mail: hfchan7623@yahoo.com [SWM Environment Sdn. Bhd.Level 17, Menara LGB, Taman Tun Dr. Ismail Kuala Lumpur (Malaysia)

    2015-12-11

    In general, Proton as an automotive company needs to forecast future demand of the car to assist in decision making related to capacity expansion planning. One of the forecasting approaches that based on judgemental or subjective factors is normally used to forecast the demand. As a result, demand could be overstock that eventually will increase the operation cost; or the company will face understock, which resulted losing their customers. Due to automotive industry is very challenging process because of high level of complexity and uncertainty involved in the system, an accurate tool to forecast the future of automotive demand from the modelling perspective is required. Hence, the main objective of this paper is to forecast the demand of automotive Proton car industry in Malaysia using system dynamics approach. Two types of intervention namely optimistic and pessimistic experiments scenarios have been tested to determine the capacity expansion that can prevent the company from overstocking. Finding from this study highlighted that the management needs to expand their production for optimistic scenario, whilst pessimistic give results that would otherwise. Finally, this study could help Proton Edar Sdn. Bhd (PESB) to manage the long-term capacity planning in order to meet the future demand of the Proton cars.

  15. Nambe Pueblo Water Budget and Forecasting model.

    Energy Technology Data Exchange (ETDEWEB)

    Brainard, James Robert

    2009-10-01

    This report documents The Nambe Pueblo Water Budget and Water Forecasting model. The model has been constructed using Powersim Studio (PS), a software package designed to investigate complex systems where flows and accumulations are central to the system. Here PS has been used as a platform for modeling various aspects of Nambe Pueblo's current and future water use. The model contains three major components, the Water Forecast Component, Irrigation Scheduling Component, and the Reservoir Model Component. In each of the components, the user can change variables to investigate the impacts of water management scenarios on future water use. The Water Forecast Component includes forecasting for industrial, commercial, and livestock use. Domestic demand is also forecasted based on user specified current population, population growth rates, and per capita water consumption. Irrigation efficiencies are quantified in the Irrigated Agriculture component using critical information concerning diversion rates, acreages, ditch dimensions and seepage rates. Results from this section are used in the Water Demand Forecast, Irrigation Scheduling, and the Reservoir Model components. The Reservoir Component contains two sections, (1) Storage and Inflow Accumulations by Categories and (2) Release, Diversion and Shortages. Results from both sections are derived from the calibrated Nambe Reservoir model where historic, pre-dam or above dam USGS stream flow data is fed into the model and releases are calculated.

  16. Year Ahead Demand Forecast of City Natural Gas Using Seasonal Time Series Methods

    Directory of Open Access Journals (Sweden)

    Mustafa Akpinar

    2016-09-01

    Full Text Available Consumption of natural gas, a major clean energy source, increases as energy demand increases. We studied specifically the Turkish natural gas market. Turkey’s natural gas consumption increased as well in parallel with the world‘s over the last decade. This consumption growth in Turkey has led to the formation of a market structure for the natural gas industry. This significant increase requires additional investments since a rise in consumption capacity is expected. One of the reasons for the consumption increase is the user-based natural gas consumption influence. This effect yields imbalances in demand forecasts and if the error rates are out of bounds, penalties may occur. In this paper, three univariate statistical methods, which have not been previously investigated for mid-term year-ahead monthly natural gas forecasting, are used to forecast natural gas demand in Turkey’s Sakarya province. Residential and low-consumption commercial data is used, which may contain seasonality. The goal of this paper is minimizing more or less gas tractions on mid-term consumption while improving the accuracy of demand forecasting. In forecasting models, seasonality and single variable impacts reinforce forecasts. This paper studies time series decomposition, Holt-Winters exponential smoothing and autoregressive integrated moving average (ARIMA methods. Here, 2011–2014 monthly data were prepared and divided into two series. The first series is 2011–2013 monthly data used for finding seasonal effects and model requirements. The second series is 2014 monthly data used for forecasting. For the ARIMA method, a stationary series was prepared and transformation process prior to forecasting was done. Forecasting results confirmed that as the computation complexity of the model increases, forecasting accuracy increases with lower error rates. Also, forecasting errors and the coefficients of determination values give more consistent results. Consequently

  17. Turkey's short-term gross annual electricity demand forecast by fuzzy logic approach

    International Nuclear Information System (INIS)

    Kucukali, Serhat; Baris, Kemal

    2010-01-01

    This paper aims to forecast Turkey's short-term gross annual electricity demand by applying fuzzy logic methodology while general information on economical, political and electricity market conditions of the country is also given. Unlike most of the other forecast models about Turkey's electricity demand, which usually uses more than one parameter, gross domestic product (GDP) based on purchasing power parity was the only parameter used in the model. Proposed model made good predictions and captured the system dynamic behavior covering the years of 1970-2014. The model yielded average absolute relative errors of 3.9%. Furthermore, the model estimates a 4.5% decrease in electricity demand of Turkey in 2009 and the electricity demand growth rates are projected to be about 4% between 2010 and 2014. It is concluded that forecasting the Turkey's short-term gross electricity demand with the country's economic performance will provide more reliable projections. Forecasting the annual electricity consumption of a country could be made by any designer with the help of the fuzzy logic procedure described in this paper. The advantage of this model lies on the ability to mimic the human thinking and reasoning.

  18. Turkey's short-term gross annual electricity demand forecast by fuzzy logic approach

    Energy Technology Data Exchange (ETDEWEB)

    Kucukali, Serhat [Civil Engineering Department, Zonguldak Karaelmas University, Incivez 67100, Zonguldak (Turkey); Baris, Kemal [Mining Engineering Department, Zonguldak Karaelmas University, Incivez 67100, Zonguldak (Turkey)

    2010-05-15

    This paper aims to forecast Turkey's short-term gross annual electricity demand by applying fuzzy logic methodology while general information on economical, political and electricity market conditions of the country is also given. Unlike most of the other forecast models about Turkey's electricity demand, which usually uses more than one parameter, gross domestic product (GDP) based on purchasing power parity was the only parameter used in the model. Proposed model made good predictions and captured the system dynamic behavior covering the years of 1970-2014. The model yielded average absolute relative errors of 3.9%. Furthermore, the model estimates a 4.5% decrease in electricity demand of Turkey in 2009 and the electricity demand growth rates are projected to be about 4% between 2010 and 2014. It is concluded that forecasting the Turkey's short-term gross electricity demand with the country's economic performance will provide more reliable projections. Forecasting the annual electricity consumption of a country could be made by any designer with the help of the fuzzy logic procedure described in this paper. The advantage of this model lies on the ability to mimic the human thinking and reasoning. (author)

  19. A Framework for Sustainable Urban Water Management through Demand and Supply Forecasting: The Case of Istanbul

    Directory of Open Access Journals (Sweden)

    Murat Yalçıntaş

    2015-08-01

    Full Text Available The metropolitan city of Istanbul is becoming overcrowded and the demand for clean water is steeply rising in the city. The use of analytical approaches has become more and more critical for forecasting the water supply and demand balance in the long run. In this research, Istanbul’s water supply and demand data is collected for the period during 2006 and 2014. Then, using an autoregressive integrated moving average (ARIMA model, the time series water supply and demand forecasting model is constructed for the period between 2015 and 2018. Three important sustainability metrics such as water loss to supply ratio, water loss to demand ratio, and water loss to residential demand ratio are also presented. The findings show that residential water demand is responsible for nearly 80% of total water use and the consumption categories including commercial, industrial, agriculture, outdoor, and others have a lower share in total water demand. The results also show that there is a considerable water loss in the water distribution system which requires significant investments on the water supply networks. Furthermore, the forecasting results indicated that pipeline projects will be critical in the near future due to expected increases in the total water demand of Istanbul. The authors suggest that sustainable management of water can be achieved by reducing the residential water use through the use of water efficient technologies in households and reduction in water supply loss through investments on distribution infrastructure.

  20. Energy and electricity demand forecasting for nuclear power planning in developing countries

    International Nuclear Information System (INIS)

    1988-07-01

    This Guidebook is designed to be a reference document to forecast energy and electricity demand. It presents concepts and methodologies that have been developed to make an analytical approach to energy/electricity demand forecasting as part of the planning process. The Guidebook is divided into 6 main chapters: (Energy demand and development, energy demand analysis, electric load curve analysis, energy and electricity demand forecasting, energy and electricity demand forecasting tools used in various organizations, IAEA methodologies for energy and electricity demand forecasting) and 3 appendices (experience with case studies carried out by the IAEA, reference technical data, reference economic data). A bibliography and a glossary complete the Guidebook. Refs, figs and tabs

  1. Application of residual modification approach in seasonal ARIMA for electricity demand forecasting: A case study of China

    International Nuclear Information System (INIS)

    Wang Yuanyuan; Wang Jianzhou; Zhao Ge; Dong Yao

    2012-01-01

    Electricity demand forecasting could prove to be a useful policy tool for decision-makers; thus, accurate forecasting of electricity demand is valuable in allowing both power generators and consumers to make their plans. Although a seasonal ARIMA model is widely used in electricity demand analysis and is a high-precision approach for seasonal data forecasting, errors are unavoidable in the forecasting process. Consequently, a significant research goal is to further improve forecasting precision. To help people in the electricity sectors make more sensible decisions, this study proposes residual modification models to improve the precision of seasonal ARIMA for electricity demand forecasting. In this study, PSO optimal Fourier method, seasonal ARIMA model and combined models of PSO optimal Fourier method with seasonal ARIMA are applied in the Northwest electricity grid of China to correct the forecasting results of seasonal ARIMA. The modification models forecasting of the electricity demand appears to be more workable than that of the single seasonal ARIMA. The results indicate that the prediction accuracy of the three residual modification models is higher than the single seasonal ARIMA model and that the combined model is the most satisfactory of the three models. - Highlights: ► Three residual modification models are proposed to improve the precision of seasonal ARIMA. ► Accurate electricity demand forecast is helpful for a power production sector to come to a correct and reasonable decision. ► The results conclude that the residual modification approaches could enhance the prediction accuracy of seasonal ARIMA. ► The modification models could be applied to forecast electricity demand.

  2. Using Adaptive Neural-Fuzzy Inference Systems (ANFIS for Demand Forecasting and an Application

    Directory of Open Access Journals (Sweden)

    Onur Doğan

    2016-06-01

    Full Text Available Due to the rapid increase in global competition among organizations and companies, rational approaches in decision making have become indispensable for organizations in today’s world. Establishing a safe and robust path through uncertainties and risks depends on the decision units’ ability of using scientific methods as well as technology. Demand forecasting is known to be one of the most critical problems in organizations.  A company which supports its demand forecasting mechanism with scientific methodologies could increase its productivity and efficiency in all other functions. New methods, such as fuzzy logic and artificial neural networks are frequently being used as a decision-making mechanism in organizations and companies recently.  In this study, it is aimed to solve a critical demand forecasting problem with ANFIS. In the first phase of the study, the factors which impact demand forecasting are determined, and then a database of the model is established using these factors. It has been shown that ANFIS could be used for demand forecasting.

  3. Market-based demand forecasting promotes informed strategic financial planning.

    Science.gov (United States)

    Beech, A J

    2001-11-01

    Market-based demand forecasting is a method of estimating future demand for a healthcare organization's services by using a broad range of data that describe the nature of demand within the organization's service area. Such data include the primary and secondary service areas, the service-area populations by various demographic groupings, discharge utilization rates, market size, and market share by service line and organizationwide. Based on observable market dynamics, strategic planners can make a variety of explicit assumptions about future trends regarding these data to develop scenarios describing potential future demand. Financial planners then can evaluate each scenario to determine its potential effect on selected financial and operational measures, such as operating margin, days cash on hand, and debt-service coverage, and develop a strategic financial plan that covers a range of contingencies.

  4. Energy Demand and Supply Analysis and Outlook - Energy Forecast for 2001 and Policy Issues

    Energy Technology Data Exchange (ETDEWEB)

    Na, In Gang; Ryu, Ji Chul [Korea Energy Economics Institute, Euiwang (Korea)

    2000-12-01

    The energy consumption in Korea has grown at impressive rates during the last 3 decades, along with the economic growth. The global concern about the environment issue and the restructuring in Korea energy industry has an effect on the pattern and trend of energy demand in Korea. Under the situation, this research are focusing on the analysis of energy consumption and forecast of energy demand. First of all, we analyze the trends and major characteristics of energy consumption, beginning with 1970s and up to the third quarter of 2000. In the analysis of energy consumption by energy types, we also perform qualitative analysis on the trends and characteristics of each energy types, including institutional analysis. In model section, we start with the brief description of synopsis and outline the survey on empirical models for energy demand. The econometric model used in KEEI's short-term energy forecast is outlined, followed by the result of estimations. The 2001 energy demand forecast is predicted in detail by sectors and energy types. In the year 2001, weak demand is projected to continue through the First Half, and pick up its pace of growth only in the Second Half. Projected total demand is 201.3 million TOE or 4.4% growth. In the last section, the major policy issues are summarized in three sub-sections: the restructuring in energy industry, the security of energy demand and supply, international energy cooperation including south-north energy cooperation. (author). 86 refs., 43 figs., 73 tabs.

  5. Technology and demand forecasting for carbon capture and storage technology in South Korea

    International Nuclear Information System (INIS)

    Shin, Jungwoo; Lee, Chul-Yong; Kim, Hongbum

    2016-01-01

    Among the various alternatives available to reduce greenhouse gas (GHG) emissions, carbon capture and storage (CCS) is considered to be a prospective technology that could both improve economic growth and meet GHG emission reduction targets. Despite the importance of CCS, however, studies of technology and demand forecasting for CCS are scarce. This study bridges this gap in the body of knowledge on this topic by forecasting CCS technology and demand based on an integrated model. For technology forecasting, a logistic model and patent network analysis are used to compare the competitiveness of CCS technology for selected countries. For demand forecasting, a competition diffusion model is adopted to consider competition among renewable energies and forecast demand. The results show that the number of patent applications for CCS technology will increase to 16,156 worldwide and to 4,790 in Korea by 2025. We also find that the United States has the most competitive CCS technology followed by Korea and France. Moreover, about 5 million tCO_2e of GHG will be reduced by 2040 if CCS technology is adopted in Korea after 2020. - Highlights: • Carbon capture and storage (CCS) can help mitigate climate change globally. • It can both improve economic growth and meet GHG emission reduction targets. • We forecast CCS technology and demand based on an integrated model. • The US has the most competitive CCS technology followed by Korea and France. • 5 million tCO_2e of GHG will be reduced by 2040 if CCS is adopted in Korea.

  6. Evaluation of Ensemble Water Supply and Demands Forecasts for Water Management in the Klamath River Basin

    Science.gov (United States)

    Broman, D.; Gangopadhyay, S.; McGuire, M.; Wood, A.; Leady, Z.; Tansey, M. K.; Nelson, K.; Dahm, K.

    2017-12-01

    The Upper Klamath River Basin in south central Oregon and north central California is home to the Klamath Irrigation Project, which is operated by the Bureau of Reclamation and provides water to around 200,000 acres of agricultural lands. The project is managed in consideration of not only water deliveries to irrigators, but also wildlife refuge water demands, biological opinion requirements for Endangered Species Act (ESA) listed fish, and Tribal Trust responsibilities. Climate change has the potential to impact water management in terms of volume and timing of water and the ability to meet multiple objectives. Current operations use a spreadsheet-based decision support tool, with water supply forecasts from the National Resources Conservation Service (NRCS) and California-Nevada River Forecast Center (CNRFC). This tool is currently limited in its ability to incorporate in ensemble forecasts, which offer the potential for improved operations by quantifying forecast uncertainty. To address these limitations, this study has worked to develop a RiverWare based water resource systems model, flexible enough to use across multiple decision time-scales, from short-term operations out to long-range planning. Systems model development has been accompanied by operational system development to handle data management and multiple modeling components. Using a set of ensemble hindcasts, this study seeks to answer several questions: A) Do a new set of ensemble streamflow forecasts have additional skill beyond what?, and allow for improved decision making under changing conditions? B) Do net irrigation water requirement forecasts developed in this project to quantify agricultural demands and reservoir evaporation forecasts provide additional benefits to decision making beyond water supply forecasts? C) What benefit do ensemble forecasts have in the context of water management decisions?

  7. A multi-scale relevance vector regression approach for daily urban water demand forecasting

    Science.gov (United States)

    Bai, Yun; Wang, Pu; Li, Chuan; Xie, Jingjing; Wang, Yin

    2014-09-01

    Water is one of the most important resources for economic and social developments. Daily water demand forecasting is an effective measure for scheduling urban water facilities. This work proposes a multi-scale relevance vector regression (MSRVR) approach to forecast daily urban water demand. The approach uses the stationary wavelet transform to decompose historical time series of daily water supplies into different scales. At each scale, the wavelet coefficients are used to train a machine-learning model using the relevance vector regression (RVR) method. The estimated coefficients of the RVR outputs for all of the scales are employed to reconstruct the forecasting result through the inverse wavelet transform. To better facilitate the MSRVR forecasting, the chaos features of the daily water supply series are analyzed to determine the input variables of the RVR model. In addition, an adaptive chaos particle swarm optimization algorithm is used to find the optimal combination of the RVR model parameters. The MSRVR approach is evaluated using real data collected from two waterworks and is compared with recently reported methods. The results show that the proposed MSRVR method can forecast daily urban water demand much more precisely in terms of the normalized root-mean-square error, correlation coefficient, and mean absolute percentage error criteria.

  8. The Use of Artificial Neural Networks for Forecasting the Electric Demand of Stand-Alone Consumers

    Science.gov (United States)

    Ivanin, O. A.; Direktor, L. B.

    2018-05-01

    The problem of short-term forecasting of electric power demand of stand-alone consumers (small inhabited localities) situated outside centralized power supply areas is considered. The basic approaches to modeling the electric power demand depending on the forecasting time frame and the problems set, as well as the specific features of such modeling, are described. The advantages and disadvantages of the methods used for the short-term forecast of the electric demand are indicated, and difficulties involved in the solution of the problem are outlined. The basic principles of arranging artificial neural networks are set forth; it is also shown that the proposed method is preferable when the input information necessary for prediction is lacking or incomplete. The selection of the parameters that should be included into the list of the input data for modeling the electric power demand of residential areas using artificial neural networks is validated. The structure of a neural network is proposed for solving the problem of modeling the electric power demand of residential areas. The specific features of generation of the training dataset are outlined. The results of test modeling of daily electric demand curves for some settlements of Kamchatka and Yakutia based on known actual electric demand curves are provided. The reliability of the test modeling has been validated. A high value of the deviation of the modeled curve from the reference curve obtained in one of the four reference calculations is explained. The input data and the predicted power demand curves for the rural settlement of Kuokuiskii Nasleg are provided. The power demand curves were modeled for four characteristic days of the year, and they can be used in the future for designing a power supply system for the settlement. To enhance the accuracy of the method, a series of measures based on specific features of a neural network's functioning are proposed.

  9. Analysis of PG&E`s residential end-use metered data to improve electricity demand forecasts -- final report

    Energy Technology Data Exchange (ETDEWEB)

    Eto, J.H.; Moezzi, M.M.

    1993-12-01

    This report summarizes findings from a unique project to improve the end-use electricity load shape and peak demand forecasts made by the Pacific Gas and Electric Company (PG&E) and the California Energy Commission (CEC). First, the direct incorporation of end-use metered data into electricity demand forecasting models is a new approach that has only been made possible by recent end-use metering projects. Second, and perhaps more importantly, the joint-sponsorship of this analysis has led to the development of consistent sets of forecasting model inputs. That is, the ability to use a common data base and similar data treatment conventions for some of the forecasting inputs frees forecasters to concentrate on those differences (between their competing forecasts) that stem from real differences of opinion, rather than differences that can be readily resolved with better data. The focus of the analysis is residential space cooling, which represents a large and growing demand in the PG&E service territory. Using five years of end-use metered, central air conditioner data collected by PG&E from over 300 residences, we developed consistent sets of new inputs for both PG&E`s and CEC`s end-use load shape forecasting models. We compared the performance of the new inputs both to the inputs previously used by PG&E and CEC, and to a second set of new inputs developed to take advantage of a recently added modeling option to the forecasting model. The testing criteria included ability to forecast total daily energy use, daily peak demand, and demand at 4 P.M. (the most frequent hour of PG&E`s system peak demand). We also tested the new inputs with the weather data used by PG&E and CEC in preparing their forecasts.

  10. Satellite provided customer premise services: A forecast of potential domestic demand through the year 2000. Volume 2: Technical report

    Science.gov (United States)

    Kratochvil, D.; Bowyer, J.; Bhushan, C.; Steinnagel, K.; Al-Kinani, G.

    1983-08-01

    The potential United States domestic telecommunications demand for satellite provided customer premises voice, data and video services through the year 2000 were forecast, so that this information on service demand would be available to aid in NASA program planning. To accomplish this overall purpose the following objectives were achieved: development of a forecast of the total domestic telecommunications demand, identification of that portion of the telecommunications demand suitable for transmission by satellite systems, identification of that portion of the satellite market addressable by Computer premises services systems, identification of that portion of the satellite market addressabble by Ka-band CPS system, and postulation of a Ka-band CPS network on a nationwide and local level. The approach employed included the use of a variety of forecasting models, a market distribution model and a network optimization model. Forecasts were developed for; 1980, 1990, and 2000; voice, data and video services; terrestrial and satellite delivery modes; and C, Ku and Ka-bands.

  11. Forecast electricity demand in Quebec: Development plan 1993

    International Nuclear Information System (INIS)

    1992-01-01

    Demographic, economic, and energy prospects are the determining factors in estimating demand for electricity in Quebec. In average scenarios developed for 1992-2010, the Quebec population will grow 0.5%/y and the gross domestic product will increase 2.6%/y. Firm electricity sales by Hydro-Quebec will grow to 197.9 TWh by 2010, or 2.2%/y. Sales in the residential and farm sectors should grow 1.3%/y and sales in the general and institutional sectors should rise by 2.2%/y. Electricity demand in the industrial sector, rising at an estimated 2.9%/y in 1992-2010, is chiefly responsible for the anticipated growth in Hydro-Quebec's overall sales. The nonferrous smelting, refining, chemicals, and paper industries will account for ca 60% of this growth. In the municipal services and public transportation sectors, demand should grow 3.3%/y, and over half the growth forecast in this sector can be attributed to the impact that new uses of electricity are expected to have after 2005. High- and low-growth scenarios offer alternative visions of demand growth based on different but equally valid assumptions about demographic and economic growth. In terms of firm electricity sales, the high- and low-growth scenarios differ by 50 TWh in 2010. Hydro-Quebec has retained two strategic orientations that will influence growth in electricity sales: the development of industrial markets and extension of the energy-savings objective of 9.3 TWh forecast to the year 2000. Taking these two orientations into account, the growth rate for electricity sales in the average scenario would be 1.8%/y rather than 2.2%/y. 25 figs., 81 tabs

  12. Demand Forecasting: An Evaluation of DODs Accuracy Metric and Navys Procedures

    Science.gov (United States)

    2016-06-01

    dataset ci = unit cost for item i fi = demand forecast for item i 28 ai = actual demand for item i A close look at fCIMIP metric reveals a...NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA MBA PROFESSIONAL REPORT DEMAND FORECASTING : AN EVALUATION OF DOD’S ACCURACY...June 2016 3. REPORT TYPE AND DATES COVERED MBA professional report 4. TITLE AND SUBTITLE DEMAND FORECASTING : AN EVALUATION OF DOD’S ACCURACY

  13. Forecasting operational demand for an urban water supply zone

    Science.gov (United States)

    Zhou, S. L.; McMahon, T. A.; Walton, A.; Lewis, J.

    2002-03-01

    A time series forecasting model of hourly water consumption 24 h in advance for an urban zone within the Melbourne (Australia) water supply system is developed. The model comprises two modules—daily and hourly. The daily module is formulated as a set of equations representing the effects of three factors on water use namely seasonality, climatic correlation, and autocorrelation. The hourly module is developed to disaggregate the estimated daily consumption into hourly consumption. The models were calibrated using hourly and daily data for a 6 year period, and independently validated over an additional seven month period. Over this latter period, the hourly forecast model accounted for 66% of the variance in the peak hourly water consumption with a standard error of 162 l/p/d.

  14. NYHOPS Forecast Model Results

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — 3D Marine Nowcast/Forecast System for the New York Bight NYHOPS subdomain. Currents, waves, surface meteorology, and water conditions.

  15. Power without manpower: Forecasting labour demand for Estonian energy sector

    International Nuclear Information System (INIS)

    Meriküll, Jaanika; Eamets, Raul; Humal, Katrin; Espenberg, Kerly

    2012-01-01

    As energy demand and prices continue to grow, oil shale might help mitigate the energy crisis—it can widely be found all over the world but so far has not been widely used. Estonia is unique in the world for producing a large majority of energy out of oil shale and has been set as an example in numerous papers covering oil shale deposits, technology etc. This paper is the first to analyse oil shale energy related workforce and provides scenario forecasts of the labour demand for the Estonian energy sector in 2010–2020. The contribution of the paper is twofold. First, the paper provides a valuable insight into oil shale energy related workforce, enabling to take into consideration the educational needs in countries where oil shale industry might be set up. Second, methodology-wise, the paper relates labour demand and supply to different scenarios of energy production capacities. The results illustrate problems related to aging of the workforce in energy production. If the existing trends continue in educational attainment in Estonia, there will be a serious shortage of high-skilled engineering and manufacturing specialists. Our method provides a simple yet reliable enough way to check for such problems early enough. - Highlights: ► This paper analyses oil shale energy related workforce and provides scenario forecasts. ► This is the first study to investigate the workforce related to oil shale energy production. ► The main workforce-related problem in the sector is ageing of the workforce. ► Workers immigrating to the sector during the Soviet times are at the retirement age. ► There will be a serious shortage of engineers for energy sector in the near future.

  16. The Impact of Implementing a Demand Forecasting System into a Low-Income Country’s Supply Chain

    Science.gov (United States)

    Mueller, Leslie E.; Haidari, Leila A.; Wateska, Angela R.; Phillips, Roslyn J.; Schmitz, Michelle M.; Connor, Diana L.; Norman, Bryan A.; Brown, Shawn T.; Welling, Joel S.; Lee, Bruce Y.

    2016-01-01

    OBJECTIVE To evaluate the potential impact and value of applications (e.g., ordering levels, storage capacity, transportation capacity, distribution frequency) of data from demand forecasting systems implemented in a lower-income country’s vaccine supply chain with different levels of population change to urban areas. MATERIALS AND METHODS Using our software, HERMES, we generated a detailed discrete event simulation model of Niger’s entire vaccine supply chain, including every refrigerator, freezer, transport, personnel, vaccine, cost, and location. We represented the introduction of a demand forecasting system to adjust vaccine ordering that could be implemented with increasing delivery frequencies and/or additions of cold chain equipment (storage and/or transportation) across the supply chain during varying degrees of population movement. RESULTS Implementing demand forecasting system with increased storage and transport frequency increased the number of successfully administered vaccine doses and lowered the logistics cost per dose up to 34%. Implementing demand forecasting system without storage/transport increases actually decreased vaccine availability in certain circumstances. DISCUSSION The potential maximum gains of a demand forecasting system may only be realized if the system is implemented to both augment the supply chain cold storage and transportation. Implementation may have some impact but, in certain circumstances, may hurt delivery. Therefore, implementation of demand forecasting systems with additional storage and transport may be the better approach. Significant decreases in the logistics cost per dose with more administered vaccines support investment in these forecasting systems. CONCLUSION Demand forecasting systems have the potential to greatly improve vaccine demand fulfillment, and decrease logistics cost/dose when implemented with storage and transportation increases direct vaccines. Simulation modeling can demonstrate the potential

  17. Forecasting with Dynamic Regression Models

    CERN Document Server

    Pankratz, Alan

    2012-01-01

    One of the most widely used tools in statistical forecasting, single equation regression models is examined here. A companion to the author's earlier work, Forecasting with Univariate Box-Jenkins Models: Concepts and Cases, the present text pulls together recent time series ideas and gives special attention to possible intertemporal patterns, distributed lag responses of output to input series and the auto correlation patterns of regression disturbance. It also includes six case studies.

  18. INFERENCE AND SENSITIVITY IN STOCHASTIC WIND POWER FORECAST MODELS.

    KAUST Repository

    Elkantassi, Soumaya

    2017-10-03

    Reliable forecasting of wind power generation is crucial to optimal control of costs in generation of electricity with respect to the electricity demand. Here, we propose and analyze stochastic wind power forecast models described by parametrized stochastic differential equations, which introduce appropriate fluctuations in numerical forecast outputs. We use an approximate maximum likelihood method to infer the model parameters taking into account the time correlated sets of data. Furthermore, we study the validity and sensitivity of the parameters for each model. We applied our models to Uruguayan wind power production as determined by historical data and corresponding numerical forecasts for the period of March 1 to May 31, 2016.

  19. INFERENCE AND SENSITIVITY IN STOCHASTIC WIND POWER FORECAST MODELS.

    KAUST Repository

    Elkantassi, Soumaya; Kalligiannaki, Evangelia; Tempone, Raul

    2017-01-01

    Reliable forecasting of wind power generation is crucial to optimal control of costs in generation of electricity with respect to the electricity demand. Here, we propose and analyze stochastic wind power forecast models described by parametrized stochastic differential equations, which introduce appropriate fluctuations in numerical forecast outputs. We use an approximate maximum likelihood method to infer the model parameters taking into account the time correlated sets of data. Furthermore, we study the validity and sensitivity of the parameters for each model. We applied our models to Uruguayan wind power production as determined by historical data and corresponding numerical forecasts for the period of March 1 to May 31, 2016.

  20. Forecasting Monthly Electricity Demands by Wavelet Neuro-Fuzzy System Optimized by Heuristic Algorithms

    Directory of Open Access Journals (Sweden)

    Jeng-Fung Chen

    2018-02-01

    Full Text Available Electricity load forecasting plays a paramount role in capacity planning, scheduling, and the operation of power systems. Reliable and accurate planning and prediction of electricity load are therefore vital. In this study, a novel approach for forecasting monthly electricity demands by wavelet transform and a neuro-fuzzy system is proposed. Firstly, the most appropriate inputs are selected and a dataset is constructed. Then, Haar wavelet transform is utilized to decompose the load data and eliminate noise. In the model, a hierarchical adaptive neuro-fuzzy inference system (HANFIS is suggested to solve the curse-of-dimensionality problem. Several heuristic algorithms including Gravitational Search Algorithm (GSA, Cuckoo Optimization Algorithm (COA, and Cuckoo Search (CS are utilized to optimize the clustering parameters which help form the rule base, and adaptive neuro-fuzzy inference system (ANFIS optimize the parameters in the antecedent and consequent parts of each sub-model. The proposed approach was applied to forecast the electricity load of Hanoi, Vietnam. The constructed models have shown high forecasting performances based on the performance indices calculated. The results demonstrate the validity of the approach. The obtained results were also compared with those of several other well-known methods including autoregressive integrated moving average (ARIMA and multiple linear regression (MLR. In our study, the wavelet CS-HANFIS model outperformed the others and provided more accurate forecasting.

  1. Demand Forecasting for Heavy-Duty Diesel Engines Considering Emission Regulations

    Directory of Open Access Journals (Sweden)

    Yoon Seong Kim

    2017-01-01

    Full Text Available Makers of heavy-duty diesel engines (HDDEs need to reduce their inventory of old-generation products in preparation for the demand for next-generation products that satisfy new emission regulations. In this paper, a new demand forecasting model is proposed to reflect special conditions raised by the technological generational shift owing to new emission regulation enforcement. In addition, sensitivity analyses are conducted to better accommodate uncertainty involved at the time of prediction. Our proposed model can help support manufacturers’ production and sales management for a series of products in response to new emission regulations.

  2. Forecast demand and supply of energy in the short period. Its forecast and sensitivity analysis until the 2004 fiscal year

    International Nuclear Information System (INIS)

    Yamashita, Yukari; Suehiro, Shigeru; Yanagisawa, Akira; Imaeda, Toshiya; Komiyama, Ryouichi

    2004-01-01

    The object of this report is forecast demand and supply of energy in the 2003 and 2004 fiscal year, which correspond to a business recovery period. A macroeconomics model and an energy supply model are calculated by changing actual GNP, crude oil rate and the rerunning period of nuclear power plants. The calculation results are compared with the reference case. In the first chapter, forecast Japanese economy until the 2004 fiscal year is explained. In the second chapter, the results of energy demand and supply in the first chapter are investigated by the home supply and consumption of primary energy (the reference case) and each energy resources. The sensitivity analytical results of actual GNP, consumer price index, home supply of the primary energy, energy expenditure, sales account of electric power, city gas and fuel by five cases such as reference, increase and decrease of oil cost and increase and decrease of economic growth are investigated. The effects of fast rerunning period of nuclear power plant and atmosphere temperature on these above demands of energies are indicated in the third chapter. (S.Y.)

  3. Prevendo a demanda de ligações em um call center por meio de um modelo de Regressão Múltipla Forecasting a call center demand using a Multiple Regression model

    Directory of Open Access Journals (Sweden)

    Marco Aurélio Carino Bouzada

    2009-09-01

    Full Text Available Este trabalho descreve - por meio do estudo de um caso - o problema da previsão de demanda de chamadas para um determinado produto no call center de uma grande empresa brasileira do setor - a Contax - e como ele foi abordado com o uso de Regressão Múltipla com variáveis dummy. Depois de destacar e justificar a importância do tema, o estudo apresenta uma breve revisão de literatura acerca de métodos de previsão de demanda e de sua aplicação em call centers. O caso é descrito, contextualizando, inicialmente, a empresa estudada e descrevendo, a seguir, a forma como ela lida com o problema de previsão de demanda de chamadas para o produto 103 - serviços relacionados à telefonia fixa. Um modelo de Regressão Múltipla com variáveis dummy é, então, desenvolvido para servir como base do processo de previsão de demanda proposto. Este modelo utiliza informações disponíveis capazes de influenciar a demanda, tais como o dia da semana, a ocorrência ou não de feriado e a proximidade da data com eventos críticos, como a chegada da conta à residência do cliente e seu vencimento; e apresentou ganhos de acurácia da ordem de 3 pontos percentuais para o período estudado, quando comparado com a ferramenta anteriormente em uso.This work describes - with the aid of a case study -a demand forecast problem for a specific product reported to the call center of a large Brazilian company in an industry called Contax, and the way it was approached with the use of Multiple Regression using dummy variables. After highlighting and justifying the studied matter relevance, the article presents a small literature review regarding demand forecast methods and their use in the call center industry. The case is described presenting the studied company and the way it deals with the Forecasting Demand for a telephone all center regarding telephone services products. Therefore, a Multiple Regression with dummy variables model was developed to work as the

  4. Forecasting seasonal demand : a serious limitation of Winters' forecasting procedure and the added value of product-aggregation

    NARCIS (Netherlands)

    Donselaar, van K.H.

    2003-01-01

    The well-known method for forecasting seasonal demand, Winters’ procedure, has a serious drawback: if the relative demand uncertainty increases (e.g. due to larger product assortments) or if the amount of historical demand data decreases (e.g. due to smaller product life cycles), the quality of the

  5. Natural gas demand forecast system based on the application of artificial neural networks

    International Nuclear Information System (INIS)

    Sanfeliu, J.M.; Doumanian, J.E.

    1997-01-01

    Gas Natural BAN, as a distribution gas company since 1993 in the north and west area of Buenos Aires Argentina, with 1,000,000 customers, had to develop a gas demand forecast system which should comply with the following basic requirements: Be able to do reliable forecasts with short historical information (2 years); Distinguish demands in areas of different characteristics, i.e. mainly residential, mainly industrial; Self-learning capability. To accomplish above goals, Gas Natural BAN chose in view of its own necessities, an artificial intelligence application (neural networks). 'SANDRA', the gas demand forecast system for gas distribution used by Gas Natural BAN, has the following features: Daily gas demand forecast, Hourly gas demand forecast and Breakdown of both forecast for each of the 3 basic zones in which the distribution area of Gas Natural BAN is divided. (au)

  6. Demand forecast: a case study at a meat agribusiness in west Santa Catarina

    Directory of Open Access Journals (Sweden)

    Cleunice Zanella

    2016-03-01

    Full Text Available Based on demand forecasts, companies plan production, financial and personnel scenarios, both in the long and short term. The forecasts are essential, especially for companies working with a push production system, for which there is no sale of collateral. They should therefore plan their production and financial systems with the aim of meeting the demand forecast of their products or services. Thus, this study was conducted at a meat agribusiness located in Chapecó, in the state of Santa Catarina, in order to analyze the demand forecasting methods used by the company. It is a case study with a qualitative approach. Data collection was conducted through semi-structured interviews with the operations manager, commercial manager and analysts who respond to the demand forecasts made. The main results highlight the use of both quantitative and qualitative methods, as well as indicating the importance of demand forecasts for the planning of the company

  7. Study of forecasting maximum demand of electric power

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, B.C.; Hwang, Y.J. [Korea Energy Economics Institute, Euiwang (Korea, Republic of)

    1997-08-01

    As far as the past performances of power supply and demand in Korea is concerned, one of the striking phenomena is that there have been repeated periodic surpluses and shortages of power generation facilities. Precise assumption and prediction of power demands is the basic work in establishing a supply plan and carrying out the right policy since facilities investment of the power generation industry requires a tremendous amount of capital and a long construction period. The purpose of this study is to study a model for the inference and prediction of a more precise maximum demand under these backgrounds. The non-parametric model considered in this study, paying attention to meteorological factors such as temperature and humidity, does not have a simple proportionate relationship with the maximum power demand, but affects it through mutual complicated nonlinear interaction. I used the non-parametric inference technique by introducing meteorological effects without importing any literal assumption on the interaction of temperature and humidity preliminarily. According to the analysis result, it is found that the non-parametric model that introduces the number of tropical nights which shows the continuity of the meteorological effect has better prediction power than the linear model. The non- parametric model that considers both the number of tropical nights and the number of cooling days at the same time is a model for predicting maximum demand. 7 refs., 6 figs., 9 tabs.

  8. Forecast analysis of the electricity supply-demand balance in France during the summer of 2008. Supply-demand balance analysis during the summer of 2008

    International Nuclear Information System (INIS)

    2008-05-01

    Twice a year, RTE publishes a forecast study of the electricity supply and demand in continental France for the summer and winter periods. The study is based on the information supplied by electric utilities concerning the expected availability of power generation means and on statistical meteorological models. Safety margins are calculated using thousands of probabilistic scenarios combining various production and consumption situations. This report is the forecast study for the summer of 2008

  9. Stochastic weather inputs for improved urban water demand forecasting: application of nonlinear input variable selection and machine learning methods

    Science.gov (United States)

    Quilty, J.; Adamowski, J. F.

    2015-12-01

    Urban water supply systems are often stressed during seasonal outdoor water use as water demands related to the climate are variable in nature making it difficult to optimize the operation of the water supply system. Urban water demand forecasts (UWD) failing to include meteorological conditions as inputs to the forecast model may produce poor forecasts as they cannot account for the increase/decrease in demand related to meteorological conditions. Meteorological records stochastically simulated into the future can be used as inputs to data-driven UWD forecasts generally resulting in improved forecast accuracy. This study aims to produce data-driven UWD forecasts for two different Canadian water utilities (Montreal and Victoria) using machine learning methods by first selecting historical UWD and meteorological records derived from a stochastic weather generator using nonlinear input variable selection. The nonlinear input variable selection methods considered in this work are derived from the concept of conditional mutual information, a nonlinear dependency measure based on (multivariate) probability density functions and accounts for relevancy, conditional relevancy, and redundancy from a potential set of input variables. The results of our study indicate that stochastic weather inputs can improve UWD forecast accuracy for the two sites considered in this work. Nonlinear input variable selection is suggested as a means to identify which meteorological conditions should be utilized in the forecast.

  10. Two-Stage Electricity Demand Modeling Using Machine Learning Algorithms

    Directory of Open Access Journals (Sweden)

    Krzysztof Gajowniczek

    2017-10-01

    Full Text Available Forecasting of electricity demand has become one of the most important areas of research in the electric power industry, as it is a critical component of cost-efficient power system management and planning. In this context, accurate and robust load forecasting is supposed to play a key role in reducing generation costs, and deals with the reliability of the power system. However, due to demand peaks in the power system, forecasts are inaccurate and prone to high numbers of errors. In this paper, our contributions comprise a proposed data-mining scheme for demand modeling through peak detection, as well as the use of this information to feed the forecasting system. For this purpose, we have taken a different approach from that of time series forecasting, representing it as a two-stage pattern recognition problem. We have developed a peak classification model followed by a forecasting model to estimate an aggregated demand volume. We have utilized a set of machine learning algorithms to benefit from both accurate detection of the peaks and precise forecasts, as applied to the Polish power system. The key finding is that the algorithms can detect 96.3% of electricity peaks (load value equal to or above the 99th percentile of the load distribution and deliver accurate forecasts, with mean absolute percentage error (MAPE of 3.10% and resistant mean absolute percentage error (r-MAPE of 2.70% for the 24 h forecasting horizon.

  11. Forecasting long-term energy demand of Croatian transport sector

    DEFF Research Database (Denmark)

    Pukšec, Tomislav; Krajačić, Goran; Lulić, Zoran

    2013-01-01

    predictions for the Croatian transport sector are presented. Special emphasis is given to different influencing mechanisms, both legal and financial. The energy demand predictions presented in this paper are based on an end-use simulation model developed and tested with Croatia as a case study. The model...

  12. Demand Forecasting at Low Aggregation Levels using Factored Conditional Restricted Boltzmann Machine

    DEFF Research Database (Denmark)

    Mocanu, Elena; Nguyen, Phuong H.; Gibescu, Madeleine

    2016-01-01

    electric power consumption, local price and meteorological data collected from 1900 customers. The households are equipped with local generation and smart appliances capable of responding to realtime pricing signals. The results show that for the short-term (5 minute to 1 day ahead) prediction problems......The electrical demand forecasting problem can be regarded as a nonlinear time series prediction problem depending on many complex factors since it is required at various aggregation levels and at high temporal resolution. To solve this challenging problem, various time series and machine learning...... developed deep learning model for time series prediction, namely Factored Conditional Restricted Boltzmann Machine (FCRBM), and extend it for electrical demand forecasting. The assessment is made on the EcoGrid dataset, originating from the Bornholm island experiment in Denmark, consisting of aggregated...

  13. Demand Forecast at the Foodstuff Retail Segment: a Strategic Sustainability Tool at a Small-Sized Brazilian Company

    Directory of Open Access Journals (Sweden)

    Claudimar Pereira Da Veiga

    2013-12-01

    Full Text Available Demand forecasting plays an increasingly relevant role within competitive and globalized marketplaces, in as much as operations planning and subsequent transition into a sustainable chain of supplies, is concerned. To this effect, the purpose of this study is to present the application of demand forecasting as a strategic sustainability tool at a Brazilian SME. Therefore, this is a descriptive, ex-post facto and cross-cut, sectional time case study, which employs qualitative and historical quantitative and direct observational data and that utilizes, as both indicators of the level of service offered to consumers and of opportunity costs the artificial neural networks model and fill-rates, for demand forecasting and response purposes. The study further established cause-effect relationships between prediction accuracy, demand responsiveness and process-resulting economic, environmental and social performances. Findings additionally concurred with both widely acknowledged sustainability concepts - NRBV (Natural-Resource-Based View and 3BL (Triple Bottom Line - by demonstrating that demand forecasts ensure the efficient use of resources, improvements in customer responsiveness and also mitigate supply chain stock out and overstock losses. Further to the mentioned economic benefit, demand forecasting additionally reduced the amount of waste that arises from retail product shelf-life expiration, improving the addressing of demand itself and of customer satisfaction, thus driving consequent environmental and social gains.

  14. Too Many, Too Few, or Just Right? Making Sense Of Conflicting RN Supply and Demand Forecasts.

    Science.gov (United States)

    Spetz, Joanne

    2015-01-01

    Forecasts of future supply and demand of health professionals are tools to guide policy, not a final statement about how the world will be in the future. Recent forecasts of RN supply and demand vary widely and are incredibly confusing for nurse leaders, nurse educators, and policymakers. To effectively incorporate forecasts into policy and planning, one must understand the structure of the forecasts and underlying assumptions. One should treat all forecasts cautiously, and use them as guides to policy rather than definitive future outcomes.

  15. Promotion demand forecast: A Case Study of Coca Cola Enterprise

    OpenAIRE

    Lai, Hoi-Yin Cecilia

    2007-01-01

    In this highly competitive business environment, forecasting becomes one of the hot topics. Every business organization uses forecasts for decision marking. Forecasting can help companies to determine the market strategy. It also helps in production planning and resources allocation. A good forecast can help the management team to make the best decision. Nowadays, it is important to develop a collaborative partnership within the supply chain. Coca Cola Enterprise (CCE) is working with its cus...

  16. Medium- and long-term electric power demand forecasting based on the big data of smart city

    Science.gov (United States)

    Wei, Zhanmeng; Li, Xiyuan; Li, Xizhong; Hu, Qinghe; Zhang, Haiyang; Cui, Pengjie

    2017-08-01

    Based on the smart city, this paper proposed a new electric power demand forecasting model, which integrates external data such as meteorological information, geographic information, population information, enterprise information and economic information into the big database, and uses an improved algorithm to analyse the electric power demand and provide decision support for decision makers. The data mining technology is used to synthesize kinds of information, and the information of electric power customers is analysed optimally. The scientific forecasting is made based on the trend of electricity demand, and a smart city in north-eastern China is taken as a sample.

  17. Open-source Software for Demand Forecasting of Clinical Laboratory Test Volumes Using Time-series Analysis.

    Science.gov (United States)

    Mohammed, Emad A; Naugler, Christopher

    2017-01-01

    Demand forecasting is the area of predictive analytics devoted to predicting future volumes of services or consumables. Fair understanding and estimation of how demand will vary facilitates the optimal utilization of resources. In a medical laboratory, accurate forecasting of future demand, that is, test volumes, can increase efficiency and facilitate long-term laboratory planning. Importantly, in an era of utilization management initiatives, accurately predicted volumes compared to the realized test volumes can form a precise way to evaluate utilization management initiatives. Laboratory test volumes are often highly amenable to forecasting by time-series models; however, the statistical software needed to do this is generally either expensive or highly technical. In this paper, we describe an open-source web-based software tool for time-series forecasting and explain how to use it as a demand forecasting tool in clinical laboratories to estimate test volumes. This tool has three different models, that is, Holt-Winters multiplicative, Holt-Winters additive, and simple linear regression. Moreover, these models are ranked and the best one is highlighted. This tool will allow anyone with historic test volume data to model future demand.

  18. Open-source software for demand forecasting of clinical laboratory test volumes using time-series analysis

    Directory of Open Access Journals (Sweden)

    Emad A Mohammed

    2017-01-01

    Full Text Available Background: Demand forecasting is the area of predictive analytics devoted to predicting future volumes of services or consumables. Fair understanding and estimation of how demand will vary facilitates the optimal utilization of resources. In a medical laboratory, accurate forecasting of future demand, that is, test volumes, can increase efficiency and facilitate long-term laboratory planning. Importantly, in an era of utilization management initiatives, accurately predicted volumes compared to the realized test volumes can form a precise way to evaluate utilization management initiatives. Laboratory test volumes are often highly amenable to forecasting by time-series models; however, the statistical software needed to do this is generally either expensive or highly technical. Method: In this paper, we describe an open-source web-based software tool for time-series forecasting and explain how to use it as a demand forecasting tool in clinical laboratories to estimate test volumes. Results: This tool has three different models, that is, Holt-Winters multiplicative, Holt-Winters additive, and simple linear regression. Moreover, these models are ranked and the best one is highlighted. Conclusion: This tool will allow anyone with historic test volume data to model future demand.

  19. Improving wave forecasting by integrating ensemble modelling and machine learning

    Science.gov (United States)

    O'Donncha, F.; Zhang, Y.; James, S. C.

    2017-12-01

    Modern smart-grid networks use technologies to instantly relay information on supply and demand to support effective decision making. Integration of renewable-energy resources with these systems demands accurate forecasting of energy production (and demand) capacities. For wave-energy converters, this requires wave-condition forecasting to enable estimates of energy production. Current operational wave forecasting systems exhibit substantial errors with wave-height RMSEs of 40 to 60 cm being typical, which limits the reliability of energy-generation predictions thereby impeding integration with the distribution grid. In this study, we integrate physics-based models with statistical learning aggregation techniques that combine forecasts from multiple, independent models into a single "best-estimate" prediction of the true state. The Simulating Waves Nearshore physics-based model is used to compute wind- and currents-augmented waves in the Monterey Bay area. Ensembles are developed based on multiple simulations perturbing input data (wave characteristics supplied at the model boundaries and winds) to the model. A learning-aggregation technique uses past observations and past model forecasts to calculate a weight for each model. The aggregated forecasts are compared to observation data to quantify the performance of the model ensemble and aggregation techniques. The appropriately weighted ensemble model outperforms an individual ensemble member with regard to forecasting wave conditions.

  20. Probabilistic Forecast of Wind Power Generation by Stochastic Differential Equation Models

    KAUST Repository

    Elkantassi, Soumaya

    2017-01-01

    Reliable forecasting of wind power generation is crucial to optimal control of costs in generation of electricity with respect to the electricity demand. Here, we propose and analyze stochastic wind power forecast models described by parametrized

  1. Increased performance in the short-term water demand forecasting through the use of a parallel adaptive weighting strategy

    Science.gov (United States)

    Sardinha-Lourenço, A.; Andrade-Campos, A.; Antunes, A.; Oliveira, M. S.

    2018-03-01

    Recent research on water demand short-term forecasting has shown that models using univariate time series based on historical data are useful and can be combined with other prediction methods to reduce errors. The behavior of water demands in drinking water distribution networks focuses on their repetitive nature and, under meteorological conditions and similar consumers, allows the development of a heuristic forecast model that, in turn, combined with other autoregressive models, can provide reliable forecasts. In this study, a parallel adaptive weighting strategy of water consumption forecast for the next 24-48 h, using univariate time series of potable water consumption, is proposed. Two Portuguese potable water distribution networks are used as case studies where the only input data are the consumption of water and the national calendar. For the development of the strategy, the Autoregressive Integrated Moving Average (ARIMA) method and a short-term forecast heuristic algorithm are used. Simulations with the model showed that, when using a parallel adaptive weighting strategy, the prediction error can be reduced by 15.96% and the average error by 9.20%. This reduction is important in the control and management of water supply systems. The proposed methodology can be extended to other forecast methods, especially when it comes to the availability of multiple forecast models.

  2. Forecasting Electricity Demand in Thailand with an Artificial Neural Network Approach

    Directory of Open Access Journals (Sweden)

    Karin Kandananond

    2011-08-01

    Full Text Available Demand planning for electricity consumption is a key success factor for the development of any countries. However, this can only be achieved if the demand is forecasted accurately. In this research, different forecasting methods—autoregressive integrated moving average (ARIMA, artificial neural network (ANN and multiple linear regression (MLR—were utilized to formulate prediction models of the electricity demand in Thailand. The objective was to compare the performance of these three approaches and the empirical data used in this study was the historical data regarding the electricity demand (population, gross domestic product: GDP, stock index, revenue from exporting industrial products and electricity consumption in Thailand from 1986 to 2010. The results showed that the ANN model reduced the mean absolute percentage error (MAPE to 0.996%, while those of ARIMA and MLR were 2.80981 and 3.2604527%, respectively. Based on these error measures, the results indicated that the ANN approach outperformed the ARIMA and MLR methods in this scenario. However, the paired test indicated that there was no significant difference among these methods at α = 0.05. According to the principle of parsimony, the ARIMA and MLR models might be preferable to the ANN one because of their simple structure and competitive performance

  3. Forecasting domestic water demand in the Haihe river basin under changing environment

    Directory of Open Access Journals (Sweden)

    X.-J. Wang

    2018-02-01

    Full Text Available A statistical model has been developed for forecasting domestic water demand in Haihe river basin of China due to population growth, technological advances and climate change. Historical records of domestic water use, climate, population and urbanization are used for the development of model. An ensemble of seven general circulation models (GCMs namely, BCC-CSM1-1, BNU-ESM, CNRM-CM5, GISS-E2-R, MIROC-ESM, PI-ESM-LR, MRI-CGCM3 were used for the projection of climate and the changes in water demand in the Haihe River basin under Representative Concentration Pathways (RCPs 4.5. The results showed that domestic water demand in different sub-basins of the Haihe river basin will gradually increase due to continuous increase of population and rise in temperature. It is projected to increase maximum 136.22  ×  108 m3 by GCM BNU-ESM and the minimum 107.25  ×  108 m3 by CNRM-CM5 in 2030. In spite of uncertainty in projection, it can be remarked that climate change and population growth would cause increase in water demand and consequently, reduce the gap between water supply and demand, which eventually aggravate the condition of existing water stress in the basin. Water demand management should be emphasized for adaptation to ever increasing water demand and mitigation of the impacts of environmental changes.

  4. Forecasting domestic water demand in the Haihe river basin under changing environment

    Science.gov (United States)

    Wang, Xiao-Jun; Zhang, Jian-Yun; Shahid, Shamsuddin; Xie, Yu-Xuan; Zhang, Xu

    2018-02-01

    A statistical model has been developed for forecasting domestic water demand in Haihe river basin of China due to population growth, technological advances and climate change. Historical records of domestic water use, climate, population and urbanization are used for the development of model. An ensemble of seven general circulation models (GCMs) namely, BCC-CSM1-1, BNU-ESM, CNRM-CM5, GISS-E2-R, MIROC-ESM, PI-ESM-LR, MRI-CGCM3 were used for the projection of climate and the changes in water demand in the Haihe River basin under Representative Concentration Pathways (RCPs) 4.5. The results showed that domestic water demand in different sub-basins of the Haihe river basin will gradually increase due to continuous increase of population and rise in temperature. It is projected to increase maximum 136.22 × 108 m3 by GCM BNU-ESM and the minimum 107.25 × 108 m3 by CNRM-CM5 in 2030. In spite of uncertainty in projection, it can be remarked that climate change and population growth would cause increase in water demand and consequently, reduce the gap between water supply and demand, which eventually aggravate the condition of existing water stress in the basin. Water demand management should be emphasized for adaptation to ever increasing water demand and mitigation of the impacts of environmental changes.

  5. Forecast of energy demand in Colombia by means of a system of inference diffuse neuronal

    International Nuclear Information System (INIS)

    Medina Hurtado, Santiago; Garcia Aguado, Josefina

    2005-01-01

    This work two artificial intelligence techniques are used lo forecast the monthly demand of electric power in Colombia, the objective is determinate the error of the prediction and they can be compared later with other traditional models of forecast time series, an important decrease in the prediction errors, would bring economic benefits for all the agents that operate in the electric market. The artificial neural networks - RNA and Adaptative Neural Fuzzy Inference Systems - ANFIS are actually broadly used in forecast problems in many fields of the science and the technology with good performance, for our case these models were fed with explanatory variables of the demand. We used a RNA totally interconnected with forward propagation and three hidden layer, two learned algorithms were proved for the net find significantly different results in the prediction error as we as in the time of training. The ANFIS model used was of type Takawi - Sugeno of order zero and it was fed with the main components of the defined entrance variables. The results were compared by means of the function of error Root of the Mean Square Error RMSE and the Percentage of Error Mean Absolute (MAPE) we find a better performance of the RNA

  6. [Demography perspectives and forecasts of the demand for electricity].

    Science.gov (United States)

    Roy, L; Guimond, E

    1995-01-01

    "Demographic perspectives form an integral part in the development of electric load forecasts. These forecasts in turn are used to justify the addition and repair of generating facilities that will supply power in the coming decades. The goal of this article is to present how demographic perspectives are incorporated into the electric load forecasting in Quebec. The first part presents the methods, hypotheses and results of population and household projections used by Hydro-Quebec in updating its latest development plan. The second section demonstrates applications of such demographic projections for forecasting the electric load, with a focus on the residential sector." (SUMMARY IN ENG AND SPA) excerpt

  7. PETRA. The Forecast Model. Synthesis report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-09-01

    The aim of the PETRA project was to develop a model that could recreate the main aspects involved in the demand for travel. The attainment of this objective requires that the model system should retain a high degree of detail and be based on disaggregate models. This was both to ensure an accurate representation of the underlying behavioural intentions, and allow analysis of the underlying travel demand and related aspects across a number of dimensions. This has been achieved in all main respects. The model system is capable of close reproduction of the observed behaviour and generally responds as expected to changes, exhibiting consistent and plausible reactions. The dis-aggregation of the forecast population, according to the various criteria, allows the model to clearly illustrates the behavioural differences between different population segments. Thus, it seems reasonable to conclude that PETRA is capable of detailed analyses of the distributional and behavioural effects of policy changes. (au) EFP-94. 20 refs.

  8. Global-warming forecasting models

    International Nuclear Information System (INIS)

    Moeller, K.P.

    1992-01-01

    In spite of an annual man-made quantity of about 20 billion tons, carbon dioxide has remained a trace gas in the atmosphere (350 ppm at present). The reliability of model calculations which forecast temperatures is dicussed in view of the world-wide increase in carbon dioxides. Computer simulations reveal a general, serious threat to the future of mankind. (DG) [de

  9. The energy markets to 1995 - sector demand forecasts and summary. [United Kingdom

    Energy Technology Data Exchange (ETDEWEB)

    Buckley, J

    1983-01-01

    Energy demand forecasts are often based on assumptions which are uncertain and dependent upon both political and economic factors. However, there is a need for long-term energy forecasting for the benefit of industry and commerce. CIRS (Cambridge Information and Research Services Limited) have tried to fulfill this need, based on forecasts of useful heat demand sector by sector which are then converted to heat energy supply and primary requirements. The first such forecast was produced in 1975. This 1983 updated projection examines coal, oil and gas supplies in the UK to the year 1995.

  10. Forecast of useful energy for the TIMES-Norway model

    International Nuclear Information System (INIS)

    Rosenberg, Eva

    2012-01-01

    A regional forecast of useful energy demand in seven Norwegian regions is calculated based on an earlier work with a national forecast. This forecast will be input to the energy system model TIMES-Norway and analyses will result in forecasts of energy use of different energy carriers with varying external conditions (not included in this report). The forecast presented here describes the methodology used and the resulting forecast of useful energy. lt is based on information of the long-term development of the economy by the Ministry of Finance, projections of population growths from Statistics Norway and several other studies. The definition of a forecast of useful energy demand is not absolute, but depends on the purpose. One has to be careful not to include parts that are a part of the energy system model, such as energy efficiency measures. In the forecast presented here the influence of new building regulations and the prohibition of production of incandescent light bulbs in EU etc. are included. Other energy efficiency measures such as energy management, heat pumps, tightening of leaks etc. are modelled as technologies to invest in and are included in the TIMES-Norway model. The elasticity between different energy carriers are handled by the TIMES-Norway model and some elasticity is also included as the possibility to invest in energy efficiency measures. The forecast results in an increase of the total useful energy from 2006 to 2050 by 18 o/o. The growth is expected to be highest in the regions South and East. The industry remains at a constant level in the base case and increased or reduced energy demand is analysed as different scenarios with the TIMES-Norway model. The most important driver is the population growth. Together with the assumptions made it results in increased useful energy demand in the household and service sectors of 25 o/o and 57 % respectively.(au)

  11. Forecast of useful energy for the TIMES-Norway model

    Energy Technology Data Exchange (ETDEWEB)

    Rosenberg, Eva

    2012-07-25

    A regional forecast of useful energy demand in seven Norwegian regions is calculated based on an earlier work with a national forecast. This forecast will be input to the energy system model TIMES-Norway and analyses will result in forecasts of energy use of different energy carriers with varying external conditions (not included in this report). The forecast presented here describes the methodology used and the resulting forecast of useful energy. lt is based on information of the long-term development of the economy by the Ministry of Finance, projections of population growths from Statistics Norway and several other studies. The definition of a forecast of useful energy demand is not absolute, but depends on the purpose. One has to be careful not to include parts that are a part of the energy system model, such as energy efficiency measures. In the forecast presented here the influence of new building regulations and the prohibition of production of incandescent light bulbs in EU etc. are included. Other energy efficiency measures such as energy management, heat pumps, tightening of leaks etc. are modelled as technologies to invest in and are included in the TIMES-Norway model. The elasticity between different energy carriers are handled by the TIMES-Norway model and some elasticity is also included as the possibility to invest in energy efficiency measures. The forecast results in an increase of the total useful energy from 2006 to 2050 by 18 o/o. The growth is expected to be highest in the regions South and East. The industry remains at a constant level in the base case and increased or reduced energy demand is analysed as different scenarios with the TIMES-Norway model. The most important driver is the population growth. Together with the assumptions made it results in increased useful energy demand in the household and service sectors of 25 o/o and 57 % respectively.(au)

  12. 39 CFR 3050.26 - Documentation of demand elasticities and volume forecasts.

    Science.gov (United States)

    2010-07-01

    ... 39 Postal Service 1 2010-07-01 2010-07-01 false Documentation of demand elasticities and volume... § 3050.26 Documentation of demand elasticities and volume forecasts. By January 20 of each year, the Postal Service shall provide econometric estimates of demand elasticity for all postal products...

  13. Forecasting Air Traffic and corresponding Jet-Fuel Demand until 2025

    International Nuclear Information System (INIS)

    Cheze, Benoit; Gastineau, Pascal; Chevallier, Julien

    2010-01-01

    This paper provides i) air traffic and ii) Jet-Fuel demand projections at the worldwide level and for eight geographical zones until 2025. The general methodology may be summarized in two steps. First, air traffic forecasts are estimated using econometric methods. The modeling is performed for eight geographical zones, by using dynamic panel-data econometrics. Once estimated from historical data, the model is then used to generate air traffic forecasts. Second, the conversion of air traffic projections into quantities of Jet-Fuel is accomplished using the 'Traffic Efficiency' method developed previously by UK DTI to support the IPCC (IPCC (1999)). One of our major contribution consists in proposing an alternative methodology to obtain Energy Efficiency coefficients and energy efficiency improvements estimates based on modeling at the macro-level. These estimates are obtained by directly comparing the evolution of both Jet-Fuel consumption and air traffic time series from 1983 to 2006. According to our 'Business As Usual' scenario, air traffic should increase by about 100% between 2008 and 2025 at the world level, corresponding to a yearly average growth rate of about 4.7%. World Jet-Fuel demand is expected to increase by about 38% during the same period, corresponding to a yearly average growth rate of about 1, 9% per year. Air traffic energy efficiency improvements yield effectively to reduce the effect of air traffic rise on the Jet-Fuel demand increase, but do not annihilate it. Thus, Jet- Fuel demand is unlikely to diminish unless there is a radical technological shift, or air travel demand is restricted. (authors)

  14. Comparison between ARIMA and DES Methods of Forecasting Population for Housing Demand in Johor

    OpenAIRE

    Alias Ahmad Rizal; Zainun Noor Yasmin; Abdul Rahman Ismail

    2016-01-01

    Forecasting accuracy is a primary criterion in selecting appropriate method of prediction. Even though there are various methods of forecasting however not all of these methods are able to predict with good accuracy. This paper presents an evaluation of two methods of population forecasting for housing demand. These methods are Autoregressive Integrated Moving Average (ARIMA) and Double Exponential Smoothing (DES). Both of the methods are principally adopting univariate time series analysis w...

  15. Long-term energy demand forecasting for the Sao Paulo state, Brazil, applying the structural decomposition model for three alternative growth sceneries of the state economy; Projecao da demanda setorial de energia do Estado de Sao Paulo no longo prazo, aplicando o modelo de desagregacao estrutural em tres cenarios alternativos de crescimento da economia do estado

    Energy Technology Data Exchange (ETDEWEB)

    Laite, Alvaro Afonso Furtado; Bajay, Sergio Valdir; Pereira, Andre Flavio Soares [Universidade Estadual de Campinas, SP (Brazil). Faculdade de Engenharia Mecanica. Dept. de Energia]|[Universidade Estadual de Campinas, SP (Brazil). Nucleo Interdisciplinar de Planejamento Energetico (NIPE)]. E-mails: afurtado@fem.unicamp.br; bajay@fem.unicamp.br; apereira@fem.unicamp.br

    2006-07-01

    Long-term demand forecasts (up to 2025) are presented in this paper for the main energy forms consumed in the residential, trade and services, rural, transport, and industrial sectors in the State of Sao Paulo. They were obtained with the help of a flexible forecasting model based on the structural decomposition of the demand, for three alternative scenarios concerning the growth of the state economy. These three state-wise scenarios are related to initially nation-wide defined scenarios, through assumptions concerning the evolution on the ratio between the state GDP and the national GDP. (author)

  16. Electricity price forecasting through transfer function models

    International Nuclear Information System (INIS)

    Nogales, F.J.; Conejo, A.J.

    2006-01-01

    Forecasting electricity prices in present day competitive electricity markets is a must for both producers and consumers because both need price estimates to develop their respective market bidding strategies. This paper proposes a transfer function model to predict electricity prices based on both past electricity prices and demands, and discuss the rationale to build it. The importance of electricity demand information is assessed. Appropriate metrics to appraise prediction quality are identified and used. Realistic and extensive simulations based on data from the PJM Interconnection for year 2003 are conducted. The proposed model is compared with naive and other techniques. Journal of the Operational Research Society (2006) 57, 350-356.doi:10.1057/palgrave.jors.2601995; published online 18 May 2005. (author)

  17. Modelling and Forecasting Multivariate Realized Volatility

    DEFF Research Database (Denmark)

    Halbleib, Roxana; Voev, Valeri

    2011-01-01

    This paper proposes a methodology for dynamic modelling and forecasting of realized covariance matrices based on fractionally integrated processes. The approach allows for flexible dependence patterns and automatically guarantees positive definiteness of the forecast. We provide an empirical appl...

  18. Travel demand modeling for the small and medium sized MPOs in Illinois.

    Science.gov (United States)

    2011-09-01

    Travel demand modeling is an important tool in the transportation planning community. It helps forecast travel : characteristics into the future at various planning levels such as state, region and corridor. Using travel demand : modeling to evaluate...

  19. Interval Forecast for Smooth Transition Autoregressive Model ...

    African Journals Online (AJOL)

    In this paper, we propose a simple method for constructing interval forecast for smooth transition autoregressive (STAR) model. This interval forecast is based on bootstrapping the residual error of the estimated STAR model for each forecast horizon and computing various Akaike information criterion (AIC) function. This new ...

  20. A Review of Demand Forecast for Charging Facilities of Electric Vehicles

    Science.gov (United States)

    Jiming, Han; Lingyu, Kong; Yaqi, Shen; Ying, Li; Wenting, Xiong; Hao, Wang

    2017-05-01

    The demand forecasting of charging facilities is the basis of its planning and locating, which has important role in promoting the development of electric vehicles and alleviating the energy crisis. Firstly, this paper analyzes the influence of the charging mode, the electric vehicle population and the user’s charging habits on the demand of charging facilities; Secondly, considering these factors, the recent analysis on charging and switching equipment demand forecast is divided into two methods—forecast based on electric vehicle population and user traveling behavior. Then, the article analyzes the two methods and puts forward the advantages and disadvantages. Finally, in view of the defects of current research, combined with the current situation of the development of the city and comprehensive consideration of economic, political, environmental and other factors, this paper proposes an improved demand forecasting method which has great practicability and pertinence and lays the foundation for the plan of city electric facilities.

  1. Model for Adjustment of Aggregate Forecasts using Fuzzy Logic

    Directory of Open Access Journals (Sweden)

    Taracena–Sanz L. F.

    2010-07-01

    Full Text Available This research suggests a contribution in the implementation of forecasting models. The proposed model is developed with the aim to fit the projection of demand to surroundings of firms, and this is based on three considerations that cause that in many cases the forecasts of the demand are different from reality, such as: 1 one of the problems most difficult to model in the forecasts is the uncertainty related to the information available; 2 the methods traditionally used by firms for the projection of demand mainly are based on past behavior of the market (historical demand; and 3 these methods do not consider in their analysis the factors that are influencing so that the observed behaviour occurs. Therefore, the proposed model is based on the implementation of Fuzzy Logic, integrating the main variables that affect the behavior of market demand, and which are not considered in the classical statistical methods. The model was applied to a bottling of carbonated beverages, and with the adjustment of the projection of demand a more reliable forecast was obtained.

  2. Satellite provided customer promises services, a forecast of potential domestic demand through the year 2000. Volume 4: Sensitivity analysis

    Science.gov (United States)

    Kratochvil, D.; Bowyer, J.; Bhushan, C.; Steinnagel, K.; Kaushal, D.; Al-Kinani, G.

    1984-03-01

    The overall purpose was to forecast the potential United States domestic telecommunications demand for satellite provided customer promises voice, data and video services through the year 2000, so that this information on service demand would be available to aid in NASA program planning. To accomplish this overall purpose the following objectives were achieved: (1) development of a forecast of the total domestic telecommunications demand; (2) identification of that portion of the telecommunications demand suitable for transmission by satellite systems; (3) identification of that portion of the satellite market addressable by consumer promises service (CPS) systems; (4) identification of that portion of the satellite market addressable by Ka-band CPS system; and (5) postulation of a Ka-band CPS network on a nationwide and local level. The approach employed included the use of a variety of forecasting models, a parametric cost model, a market distribution model and a network optimization model. Forecasts were developed for: 1980, 1990, and 2000; voice, data and video services; terrestrial and satellite delivery modes; and C, Ku and Ka-bands.

  3. Models for forecasting energy use in the US farm sector

    Science.gov (United States)

    Christensen, L. R.

    1981-07-01

    Econometric models were developed and estimated for the purpose of forecasting electricity and petroleum demand in US agriculture. A structural approach is pursued which takes account of the fact that the quantity demanded of any one input is a decision made in conjunction with other input decisions. Three different functional forms of varying degrees of complexity are specified for the structural cost function, which describes the cost of production as a function of the level of output and factor prices. Demand for materials (all purchased inputs) is derived from these models. A separate model which break this demand up into demand for the four components of materials is used to produce forecasts of electricity and petroleum is a stepwise manner.

  4. Developing energy forecasting model using hybrid artificial intelligence method

    Institute of Scientific and Technical Information of China (English)

    Shahram Mollaiy-Berneti

    2015-01-01

    An important problem in demand planning for energy consumption is developing an accurate energy forecasting model. In fact, it is not possible to allocate the energy resources in an optimal manner without having accurate demand value. A new energy forecasting model was proposed based on the back-propagation (BP) type neural network and imperialist competitive algorithm. The proposed method offers the advantage of local search ability of BP technique and global search ability of imperialist competitive algorithm. Two types of empirical data regarding the energy demand (gross domestic product (GDP), population, import, export and energy demand) in Turkey from 1979 to 2005 and electricity demand (population, GDP, total revenue from exporting industrial products and electricity consumption) in Thailand from 1986 to 2010 were investigated to demonstrate the applicability and merits of the present method. The performance of the proposed model is found to be better than that of conventional back-propagation neural network with low mean absolute error.

  5. Demand forecasting: methodology used to electric power consumers for irrigation

    International Nuclear Information System (INIS)

    Gangi, R.D.; Atmann, J.L.

    1989-01-01

    The utilization of load curves on the evaluation of systems behaviour, consumers and in the owners and users brought a new subsidy for the performance of forecast techniques. This paper shows how we can use these forecasting techniques and load curves in a specify situation joined to Guaira Substation, where the predominance is rural consumers with large activities in irrigation. The main objective of this study is bring by load curve modulation and the expansion of consumer market, a optimized view of load for the future years. (C.G.C.)

  6. Intercity Travel Demand Analysis Model

    OpenAIRE

    Ming Lu; Hai Zhu; Xia Luo; Lei Lei

    2014-01-01

    It is well known that intercity travel is an important component of travel demand which belongs to short distance corridor travel. The conventional four-step method is no longer suitable for short distance corridor travel demand analysis for the time spent on urban traffic has a great impact on traveler's main mode choice. To solve this problem, the author studied the existing intercity travel demand analysis model, then improved it based on the study, and finally established a combined model...

  7. A model for Long-term Industrial Energy Forecasting (LIEF)

    Energy Technology Data Exchange (ETDEWEB)

    Ross, M. [Lawrence Berkeley Lab., CA (United States)]|[Michigan Univ., Ann Arbor, MI (United States). Dept. of Physics]|[Argonne National Lab., IL (United States). Environmental Assessment and Information Sciences Div.; Hwang, R. [Lawrence Berkeley Lab., CA (United States)

    1992-02-01

    The purpose of this report is to establish the content and structural validity of the Long-term Industrial Energy Forecasting (LIEF) model, and to provide estimates for the model`s parameters. The model is intended to provide decision makers with a relatively simple, yet credible tool to forecast the impacts of policies which affect long-term energy demand in the manufacturing sector. Particular strengths of this model are its relative simplicity which facilitates both ease of use and understanding of results, and the inclusion of relevant causal relationships which provide useful policy handles. The modeling approach of LIEF is intermediate between top-down econometric modeling and bottom-up technology models. It relies on the following simple concept, that trends in aggregate energy demand are dependent upon the factors: (1) trends in total production; (2) sectoral or structural shift, that is, changes in the mix of industrial output from energy-intensive to energy non-intensive sectors; and (3) changes in real energy intensity due to technical change and energy-price effects as measured by the amount of energy used per unit of manufacturing output (KBtu per constant $ of output). The manufacturing sector is first disaggregated according to their historic output growth rates, energy intensities and recycling opportunities. Exogenous, macroeconomic forecasts of individual subsector growth rates and energy prices can then be combined with endogenous forecasts of real energy intensity trends to yield forecasts of overall energy demand. 75 refs.

  8. Demand Forecasting in the Early Stage of the Technology’s Life Cycle Using a Bayesian Update

    Directory of Open Access Journals (Sweden)

    Chul-Yong Lee

    2017-08-01

    Full Text Available The forecasting demand for new technology for which few historical data observations are available is difficult but essential to sustainable development. The current study suggests an alternative forecasting methodology based on a hazard rate model using stated and revealed preferences of consumers. In estimating the hazard rate, information is initially derived through conjoint analysis based on a consumer survey and then updated using Bayes’ theorem with available market data. To compare the proposed models’ performance with benchmark models, the Bass model, the logistic growth model, and a Bayesian approach based on analogy are adopted. The results show that the proposed model outperforms the benchmark models in terms of pre-launch and post-launch forecasting performances.

  9. New interval forecast for stationary autoregressive models ...

    African Journals Online (AJOL)

    In this paper, we proposed a new forecasting interval for stationary Autoregressive, AR(p) models using the Akaike information criterion (AIC) function. Ordinarily, the AIC function is used to determine the order of an AR(p) process. In this study however, AIC forecast interval compared favorably with the theoretical forecast ...

  10. Short term load forecasting: two stage modelling

    Directory of Open Access Journals (Sweden)

    SOARES, L. J.

    2009-06-01

    Full Text Available This paper studies the hourly electricity load demand in the area covered by a utility situated in the Seattle, USA, called Puget Sound Power and Light Company. Our proposal is put into proof with the famous dataset from this company. We propose a stochastic model which employs ANN (Artificial Neural Networks to model short-run dynamics and the dependence among adjacent hours. The model proposed treats each hour's load separately as individual single series. This approach avoids modeling the intricate intra-day pattern (load profile displayed by the load, which varies throughout days of the week and seasons. The forecasting performance of the model is evaluated in similiar mode a TLSAR (Two-Level Seasonal Autoregressive model proposed by Soares (2003 using the years of 1995 and 1996 as the holdout sample. Moreover, we conclude that non linearity is present in some series of these data. The model results are analyzed. The experiment shows that our tool can be used to produce load forecasting in tropical climate places.

  11. Modelling UK energy demand to 2000

    International Nuclear Information System (INIS)

    Thomas, S.D.

    1980-01-01

    A recent long-term demand forecast for the UK was made by Cheshire and Surrey. (SPRU Occasional Paper Series No.5, Science Policy Research Unit, Univ. Of Sussex, 1978.) Although they adopted a sectoral approach their study leaves some questions unanswered. Do they succeed in their aim of making all their assumptions fully explicit. How sensitive are their estimates to changes in assumptions and policies. Are important problems and 'turning points' fully identified in the period up to and immediately beyond their time horizon of 2000. The author addresses these questions by using a computer model based on the study by Cheshire and Surrey. This article is a shortened version of the report, S.D. Thomas, 'Modelling UK Energy Demand to 2000', Operational Research, Univ. of Sussex, Brighton, UK, 1979, in which full details of the author's model are given. Copies are available from the author. (author)

  12. Modelling UK energy demand to 2000

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, S D [Sussex Univ., Brighton (UK)

    1980-03-01

    A recent long-term demand forecast for the UK was made by Cheshire and Surrey. (SPRU Occasional Paper Series No.5, Science Policy Research Unit, Univ. Of Sussex, 1978.) Although they adopted a sectoral approach their study leaves some questions unanswered. Do they succeed in their aim of making all their assumptions fully explicit. How sensitive are their estimates to changes in assumptions and policies. Are important problems and 'turning points' fully identified in the period up to and immediately beyond their time horizon of 2000. The author addresses these questions by using a computer model based on the study by Cheshire and Surrey. This article is a shortened version of the report, S.D. Thomas, 'Modelling UK Energy Demand to 2000', Operational Research, Univ. of Sussex, Brighton, UK, 1979, in which full details of the author's model are given. Copies are available from the author.

  13. Demand Forecast of Petroleum Product Consumption in the Chinese Transportation Industry

    Directory of Open Access Journals (Sweden)

    Shouyang Wang

    2012-03-01

    Full Text Available In this paper, petroleum product (mainly petrol and diesel consumption in the transportation sector of China is analyzed. This was based on the Bayesian linear regression theory and Markov Chain Monte Carlo method (MCMC, establishing a demand-forecast model of petrol and diesel consumption introduced into the analytical framework with explanatory variables of urbanization level, per capita GDP, turnover of passengers (freight in aggregate (TPA, TFA, and civilian vehicle number (CVN and explained variables of petrol and diesel consumption. Furthermore, we forecast the future consumer demand for oil products during “The 12th Five Year Plan” (2011–2015 based on the historical data covering from 1985 to 2009, finding that urbanization is the most sensitive factor, with a strong marginal effect on petrol and diesel consumption in this sector. From the viewpoint of prediction interval value, urbanization expresses the lower limit of the predicted results, and CVN the upper limit of the predicted results. Predicted value from other independent variables is in the range of predicted values which display a validation range and reference standard being much more credible for policy makers. Finally, a comparison between the predicted results from autoregressive integrated moving average models (ARIMA and others is made to assess our task.

  14. A model for Long-term Industrial Energy Forecasting (LIEF)

    Energy Technology Data Exchange (ETDEWEB)

    Ross, M. (Lawrence Berkeley Lab., CA (United States) Michigan Univ., Ann Arbor, MI (United States). Dept. of Physics Argonne National Lab., IL (United States). Environmental Assessment and Information Sciences Div.); Hwang, R. (Lawrence Berkeley Lab., CA (United States))

    1992-02-01

    The purpose of this report is to establish the content and structural validity of the Long-term Industrial Energy Forecasting (LIEF) model, and to provide estimates for the model's parameters. The model is intended to provide decision makers with a relatively simple, yet credible tool to forecast the impacts of policies which affect long-term energy demand in the manufacturing sector. Particular strengths of this model are its relative simplicity which facilitates both ease of use and understanding of results, and the inclusion of relevant causal relationships which provide useful policy handles. The modeling approach of LIEF is intermediate between top-down econometric modeling and bottom-up technology models. It relies on the following simple concept, that trends in aggregate energy demand are dependent upon the factors: (1) trends in total production; (2) sectoral or structural shift, that is, changes in the mix of industrial output from energy-intensive to energy non-intensive sectors; and (3) changes in real energy intensity due to technical change and energy-price effects as measured by the amount of energy used per unit of manufacturing output (KBtu per constant $ of output). The manufacturing sector is first disaggregated according to their historic output growth rates, energy intensities and recycling opportunities. Exogenous, macroeconomic forecasts of individual subsector growth rates and energy prices can then be combined with endogenous forecasts of real energy intensity trends to yield forecasts of overall energy demand. 75 refs.

  15. Forecasting need and demand for home health care: a selective review.

    Science.gov (United States)

    Sharma, R K

    1980-01-01

    THREE MODELS FOR FORECASTING HOME HEALTH CARE (HHC) NEEDS ARE ANALYZED: HSA/SP model (Health Systems Agency of Southwestern Pennsylvania); Florida model (Florida State Department of Health and Rehabilitative Services); and Rhode Island model (Rhode Island Department of Community Affairs). A utilization approach to forecasting is also presented.In the HSA/SP and Florida models, need for HHC is based on a certain proportion of (a) hospital admissions and (b) patients entering HHC from other sources. The major advantage of these models is that they are relatively easy to use and explain; their major weaknesses are an imprecise definition of need and an incomplete model specification.The Rhode Island approach defines need for HHC in terms of the health status of the population as measured by chronic activity limitations. The major strengths of this approach are its explicit assumptions and its emphasis on consumer needs. The major drawback is that it requires considerable local area data.The utilization approach is based on extrapolation from observed utilization experience of the target population. Its main limitation is that it is based on current market imperfections; its major advantage is that it exposes existing deficiencies in HHC.The author concludes that each approach should be tested empirically in order to refine it, and that need and demand approaches be used jointly in the planning process.

  16. Short-term forecasting model for aggregated regional hydropower generation

    International Nuclear Information System (INIS)

    Monteiro, Claudio; Ramirez-Rosado, Ignacio J.; Fernandez-Jimenez, L. Alfredo

    2014-01-01

    Highlights: • Original short-term forecasting model for the hourly hydropower generation. • The use of NWP forecasts allows horizons of several days. • New variable to represent the capacity level for generating hydroelectric energy. • The proposed model significantly outperforms the persistence model. - Abstract: This paper presents an original short-term forecasting model of the hourly electric power production for aggregated regional hydropower generation. The inputs of the model are previously recorded values of the aggregated hourly production of hydropower plants and hourly water precipitation forecasts using Numerical Weather Prediction tools, as well as other hourly data (load demand and wind generation). This model is composed of three modules: the first one gives the prediction of the “monthly” hourly power production of the hydropower plants; the second module gives the prediction of hourly power deviation values, which are added to that obtained by the first module to achieve the final forecast of the hourly hydropower generation; the third module allows a periodic adjustment of the prediction of the first module to improve its BIAS error. The model has been applied successfully to the real-life case study of the short-term forecasting of the aggregated hydropower generation in Spain and Portugal (Iberian Peninsula Power System), achieving satisfactory results for the next-day forecasts. The model can be valuable for agents involved in electricity markets and useful for power system operations

  17. Job demands-resources model

    OpenAIRE

    Bakker, Arnold; Demerouti, Eva

    2013-01-01

    markdownabstract* The question of what causes job stress and what motivates people has received a lot of research attention during the past five decades. In this paper, we discuss Job Demands-Resources (JD-R) theory, which represents an extension of the Job Demands-Resources model (Bakker & Demerouti, 2007; Demerouti, Bakker, Nachreiner, & Schaufeli, 2001) and is inspired by job design and job stress theories. JD-R theory explains how job demands and resources have unique and multiplicative e...

  18. Forecasting demand for single-period products : A case study in the apparel industry

    NARCIS (Netherlands)

    Mostard, Julien; Teunter, Ruud; de Koster, Rene

    2011-01-01

    The problem considered is that of forecasting demand for single-period products before the period starts. We study this problem for the case of a mail order apparel company that needs to order its products pre-season. The lack of historical demand data implies that other sources of data are needed.

  19. Use of artificial neural networks for transport energy demand modeling

    International Nuclear Information System (INIS)

    Murat, Yetis Sazi; Ceylan, Halim

    2006-01-01

    The paper illustrates an artificial neural network (ANN) approach based on supervised neural networks for the transport energy demand forecasting using socio-economic and transport related indicators. The ANN transport energy demand model is developed. The actual forecast is obtained using a feed forward neural network, trained with back propagation algorithm. In order to investigate the influence of socio-economic indicators on the transport energy demand, the ANN is analyzed based on gross national product (GNP), population and the total annual average veh-km along with historical energy data available from 1970 to 2001. Comparing model predictions with energy data in testing period performs the model validation. The projections are made with two scenarios. It is obtained that the ANN reflects the fluctuation in historical data for both dependent and independent variables. The results obtained bear out the suitability of the adopted methodology for the transport energy-forecasting problem

  20. Job demands-resources model

    NARCIS (Netherlands)

    A.B. Bakker (Arnold); E. Demerouti (Eva)

    2013-01-01

    markdownabstract* The question of what causes job stress and what motivates people has received a lot of research attention during the past five decades. In this paper, we discuss Job Demands-Resources (JD-R) theory, which represents an extension of the Job Demands-Resources model (Bakker &

  1. Fundamental Travel Demand Model Example

    Science.gov (United States)

    Hanssen, Joel

    2010-01-01

    Instances of transportation models are abundant and detailed "how to" instruction is available in the form of transportation software help documentation. The purpose of this paper is to look at the fundamental inputs required to build a transportation model by developing an example passenger travel demand model. The example model reduces the scale to a manageable size for the purpose of illustrating the data collection and analysis required before the first step of the model begins. This aspect of the model development would not reasonably be discussed in software help documentation (it is assumed the model developer comes prepared). Recommendations are derived from the example passenger travel demand model to suggest future work regarding the data collection and analysis required for a freight travel demand model.

  2. A critical review of IEA's oil demand forecast for China

    International Nuclear Information System (INIS)

    Nel, Willem P.; Cooper, Christopher J.

    2008-01-01

    China has a rapidly growing economy with a rapidly increasing demand for oil. The International Energy Agency (IEA) investigated possible future oil demand scenarios for China in the 2006 World Energy Outlook. The debate on whether oil supplies will be constrained in the near future, because of limited new discoveries, raises the concern that the oil industry may not be able to produce sufficient oil to meet this demand. This paper examines the historical relationship between economic growth and oil consumption in a number of countries. Logistic curve characteristics are observed in the relationship between per capita economic activity and oil consumption. This research has determined that the minimum statistical (lower-bound) annual oil consumption for developed countries is 11 barrels per capita. Despite the increase reported in total energy efficiency, no developed country has been able to reduce oil consumption below this lower limit. Indeed, the IEA projections to 2030 for the OECD countries show no reduction in oil demand on a per capita basis. If this lower limit is applied to China, it is clear that the IEA projections for China are under-estimating the growth in demand for oil. This research has determined that this under-estimation could be as high as 10 million barrels per day by 2025. If proponents of Peak Oil such as Laherrere, Campbell and Deffeyes are correct about the predicted peak in oil production before 2020 then the implications of this reassessment of China's oil demand will have profound implications for mankind

  3. Methodology of demand forecast by market analysis of electric power and load curves

    International Nuclear Information System (INIS)

    Barreiro, C.J.; Atmann, J.L.

    1989-01-01

    A methodology for demand forecast of consumer classes and their aggregation is presented. An analysis of the actual attended market can be done by appropriate measures and load curves studies. The suppositions for the future market behaviour by consumer classes (industrial, residential, commercial, others) are shown, and the actions for optimise this market are foreseen, obtained by load curves modulations. The process of future demand determination is obtained by the appropriate aggregation of this segmented demands. (C.G.C.)

  4. Time series modelling and forecasting of emergency department overcrowding.

    Science.gov (United States)

    Kadri, Farid; Harrou, Fouzi; Chaabane, Sondès; Tahon, Christian

    2014-09-01

    Efficient management of patient flow (demand) in emergency departments (EDs) has become an urgent issue for many hospital administrations. Today, more and more attention is being paid to hospital management systems to optimally manage patient flow and to improve management strategies, efficiency and safety in such establishments. To this end, EDs require significant human and material resources, but unfortunately these are limited. Within such a framework, the ability to accurately forecast demand in emergency departments has considerable implications for hospitals to improve resource allocation and strategic planning. The aim of this study was to develop models for forecasting daily attendances at the hospital emergency department in Lille, France. The study demonstrates how time-series analysis can be used to forecast, at least in the short term, demand for emergency services in a hospital emergency department. The forecasts were based on daily patient attendances at the paediatric emergency department in Lille regional hospital centre, France, from January 2012 to December 2012. An autoregressive integrated moving average (ARIMA) method was applied separately to each of the two GEMSA categories and total patient attendances. Time-series analysis was shown to provide a useful, readily available tool for forecasting emergency department demand.

  5. Forecasting world and regional aviation jet fuel demands to the mid-term (2025)

    International Nuclear Information System (INIS)

    Cheze, Benoit; Gastineau, Pascal; Chevallier, Julien

    2011-01-01

    This article provides jet fuel demand projections at the worldwide level and for eight geographical zones until 2025. Air traffic forecasts are performed using dynamic panel-data econometrics. Then, the conversion of air traffic projections into quantities of jet fuel is accomplished by using a complementary approach to the 'Traffic Efficiency' method developed previously by the UK Department of Trade and Industry to support the Intergovernmental Panel on Climate Change (). According to our main scenario, air traffic should increase by about 100% between 2008 and 2025 at the world level, corresponding to a yearly average growth rate of 4.7%. World jet fuel demand is expected to increase by about 38% during the same period, corresponding to a yearly average growth rate of 1.9% per year. According to these results, energy efficiency improvements allow reducing the effect of air traffic rise on the increase in jet fuel demand, but do not annihilate it. Jet fuel demand is thus unlikely to diminish unless there is a radical technological shift, or air travel demand is restricted. - Highlights: → Jet fuel demand is forecasted at the worldwide and regional level until 2025. → Regional heterogeneity must be considered when forecasting jet fuel demand. → World air traffic should increase by about 100% between 2008 and 2025. → World jet fuel demand is expected to increase by about 38% during the same period. → Technological progress will not be enough to decrease the world jet fuel demand.

  6. Best practices in demand forecasting: tests of universalistic, contingency and configurational theories

    OpenAIRE

    Kalchschmidt, Matteo Giacomo Maria

    2011-01-01

    While the literature on demand forecasting has examined the best practices in the field, the interpretation and definition of best practices can be difficult due to the different perspectives that the literature has adopted. First, a universalistic perspective can be considered because some specific practices are really best regardless of the context, the forecasting problems, etc. Some other contributions have also taken a contingent approach, which states that best practices depend on the s...

  7. Demand, supply and fuel prices forecast to the year 2000

    International Nuclear Information System (INIS)

    1984-01-01

    This paper summarizes the Western European energy situation, and deals with specific aspects under the headings: European oil prices fall until 1987; prospects for oil recovery; transport sector holds oil demand up as oil demand loses favour in other sectors; upstream uncertainties; continued slackness of European natural gas market poses threat to oil; problems for European coal industry; dramatic growth in nuclear power; breeder reactors to play minimal role; PWRs will remain dominant. The situation in individual countries - Belgium, the Netherlands, France, Germany, United Kingdom, Italy and Spain - is analysed. (U.K.)

  8. A heuristic forecasting model for stock decision

    OpenAIRE

    Zhang, D.; Jiang, Q.; Li, X.

    2005-01-01

    This paper describes a heuristic forecasting model based on neural networks for stock decision-making. Some heuristic strategies are presented for enhancing the learning capability of neural networks and obtaining better trading performance. The China Shanghai Composite Index is used as case study. The forecasting model can forecast the buying and selling signs according to the result of neural network prediction. Results are compared with a benchmark buy-and-hold strategy. ...

  9. Aggregated Demand Modelling Including Distributed Generation, Storage and Demand Response

    OpenAIRE

    Marzooghi, Hesamoddin; Hill, David J.; Verbic, Gregor

    2014-01-01

    It is anticipated that penetration of renewable energy sources (RESs) in power systems will increase further in the next decades mainly due to environmental issues. In the long term of several decades, which we refer to in terms of the future grid (FG), balancing between supply and demand will become dependent on demand actions including demand response (DR) and energy storage. So far, FG feasibility studies have not considered these new demand-side developments for modelling future demand. I...

  10. Tourism Demand Modelling and Forecasting: an overview

    Directory of Open Access Journals (Sweden)

    Célia M.Q. Ramos

    2014-12-01

    Full Text Available A investigação da demanda turística de um país ou região é indispensável uma vez que o crescimento econômico e a demanda turística estão relacionados de forma positiva. Na análise da demanda turística, que deve ser iniciada pela identificação dos fatores e determinantes que explicam a preferência por um determinado destino, é necessário identificar a relação funcional, mais adequada, entre as variáveis independentes de forma a definir o modelo, mais representativo, para investigar sobre o que condiciona ou motiva a demanda por um determinado destino turístico enquanto possibilita a previsão da sua evolução. Deste modo, o presente artigo trata-se de uma análise de literatura existente e pretende contribuir para uma melhor compreensão da problemática associada ao processo de modelação e de previsão da demanda turística por um determinado destino.

  11. Forecasting international tourism demand from the US, Japan and South Korea to Malaysia: A SARIMA approach

    Science.gov (United States)

    Borhan, Nurbaizura; Arsad, Zainudin

    2014-07-01

    One of the major contributing sectors for Malaysia's economic growth is tourism. The number of international tourist arrivals to Malaysia has been showing an upward trend as a result of several programs and promotion introduced by the Malaysian government to attract international tourists to the country. This study attempts to model and to forecast tourism demand for Malaysia by three selected countries: the US, Japan and South Korea. This study utilized monthly time series data for the period from January 1999 to December 2012 and employed the well-known Box-Jenkins seasonal ARIMA modeling procedures. Not surprisingly the results show the number of tourist arrivals from the three countries contain strong seasonal component as the arrivals strongly dependent on the season in the country of origin. The findings of the study also show that the number of tourist arrivals from the US and South Korea will continue to increase in the near future. Meanwhile the arrivals from Japan is forecasted to show a drop in the near future and as such tourism authorities in Malaysia need to enhance the promotional effort to attract more tourists from Japan to visit Malaysia.

  12. Huge supply/demand increases seen in oxygenate forecasts

    International Nuclear Information System (INIS)

    Rhoades, A.K.

    1992-01-01

    Industry originally projected that oxygenate supply would not be able to meet the demand created by U.S. oxygenated and reformulated gasoline mandates. This paper reports that those projections have been reserved in two recent industry reports - one from Chemical Market Associates Inc. (CMAI) and one from Pace Consultants Inc. Pace's report, by Paulo Nery and Nathan Sims, predicts gasoline and oxygenates demand, and examines the role ethanol may play in changing those values. CMAI's report estimates captive supply and demand of butylenes and oxygenates. Oxygenates are entering the domestic gasoline market this winter as a result of the 1990 U.S. Clean Air Act Amendments. Methyl tertiary butyl ether (MTBE) is the most important oxygenate, although ethanol, ethyl tertiary butyl ether (ETBE), and tertiary amyl methyl ether (TAME) are gathering market strength. Ethanol's strength is derived from President Bush's ruling granting a waiver to reformulated gasoline containing ethanol. This waiver allows ethanol blends to have a vapor pressure 1 psi higher than other types of gasoline

  13. Modeling of petroleum products demand in France

    International Nuclear Information System (INIS)

    Chauvel, A.; Jamin, F.; Cholet, G.

    1995-01-01

    This project was carried out under the responsibility of the Strategy-Economics-Program Division of the ''Institut Francais du Petrole''. The goal was the short-term (12 months) forecasting of the demand with regard to the four leading petroleum products in France - gas oil (GO), automotive (CA), home heating oil (FOD) and heavy fuel oil (FL). It was decided to test an original method (1) and to compare it with the widely used Box and Jenkins method (2), which gives good results for the GO and CA series but which proves disappointing for the FOD and FL series. This study is in two parts: (1) the first part describes the original method by breaking it down into trends and seasonality, with the model being additive or multiplicative. We improved its performances by using the theory of the Weiner filter; (2) the second part concerns Box an Jenkins modeling. This model was used on the unprocessed series and then on the series corrected for the influence of working days with the help of the ''Census-X11'' deseasonalization program. For each method, the principal phases are described for the modeling of gas oil on the French domestic market. For the other products, only the principal results are given, i.e. structure of the model retained, matching with reality, reliability of forecasts. (authors). 5 refs., 5 figs., 9 tabs

  14. Evaluating Extensions to Coherent Mortality Forecasting Models

    Directory of Open Access Journals (Sweden)

    Syazreen Shair

    2017-03-01

    Full Text Available Coherent models were developed recently to forecast the mortality of two or more sub-populations simultaneously and to ensure long-term non-divergent mortality forecasts of sub-populations. This paper evaluates the forecast accuracy of two recently-published coherent mortality models, the Poisson common factor and the product-ratio functional models. These models are compared to each other and the corresponding independent models, as well as the original Lee–Carter model. All models are applied to age-gender-specific mortality data for Australia and Malaysia and age-gender-ethnicity-specific data for Malaysia. The out-of-sample forecast error of log death rates, male-to-female death rate ratios and life expectancy at birth from each model are compared and examined across groups. The results show that, in terms of overall accuracy, the forecasts of both coherent models are consistently more accurate than those of the independent models for Australia and for Malaysia, but the relative performance differs by forecast horizon. Although the product-ratio functional model outperforms the Poisson common factor model for Australia, the Poisson common factor is more accurate for Malaysia. For the ethnic groups application, ethnic-coherence gives better results than gender-coherence. The results provide evidence that coherent models are preferable to independent models for forecasting sub-populations’ mortality.

  15. Forecasting with periodic autoregressive time series models

    NARCIS (Netherlands)

    Ph.H.B.F. Franses (Philip Hans); R. Paap (Richard)

    1999-01-01

    textabstractThis paper is concerned with forecasting univariate seasonal time series data using periodic autoregressive models. We show how one should account for unit roots and deterministic terms when generating out-of-sample forecasts. We illustrate the models for various quarterly UK consumption

  16. Midway Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Midway Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model. MOST is a suite...

  17. Modelling and forecasting WIG20 daily returns

    DEFF Research Database (Denmark)

    Amado, Cristina; Silvennoinen, Annestiina; Terasvirta, Timo

    of the model is that the deterministic component is specified before estimating the multiplicative conditional variance component. The resulting model is subjected to misspecification tests and its forecasting performance is compared with that of commonly applied models of conditional heteroskedasticity....

  18. Yakutat Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Yakutat, Alaska Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model. MOST...

  19. Bermuda Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Bermuda Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model. MOST is a...

  20. Forecasting Ebola with a regression transmission model

    Directory of Open Access Journals (Sweden)

    Jason Asher

    2018-03-01

    Full Text Available We describe a relatively simple stochastic model of Ebola transmission that was used to produce forecasts with the lowest mean absolute error among Ebola Forecasting Challenge participants. The model enabled prediction of peak incidence, the timing of this peak, and final size of the outbreak. The underlying discrete-time compartmental model used a time-varying reproductive rate modeled as a multiplicative random walk driven by the number of infectious individuals. This structure generalizes traditional Susceptible-Infected-Recovered (SIR disease modeling approaches and allows for the flexible consideration of outbreaks with complex trajectories of disease dynamics. Keywords: Ebola, Forecasting, Mathematical modeling, Bayesian inference

  1. Short term forecasting of petroleum product demand in France; Modelisation a court terme des consommations de produits petroliers en France

    Energy Technology Data Exchange (ETDEWEB)

    Cadren, M

    1998-06-23

    The analysis of petroleum product demand became a privileged thrust of research following the modifications in terms of structure and level of the petroleum markets since eighties. The greatest importance to econometrics models of Energy demand, joint works about nonstationary data, explained the development of error-correction models and the co-integration. In this context, the short term econometrics modelling of petroleum product demand does not only focus on forecasts but also on the measure of the gain acquired from using error-correction techniques and co-integration. It`s filling to take the influence of technical improvement and environment pressures into account in econometrics modelling of petroleum products demand. The first part presents the evolution of Energy Demand in France and more particularly the petroleum product demand since 1986. The objective is to determine the main characteristics of each product, which will help us to analyse and validate the econometrics models. The second part focus on the recent developments in times series modelling. We study the problem of nonstationary data and expose different unit root tests. We examine the main approaches to univariate and multivariate modelling with nonstationary data and distinguish the forecasts of the latter`s. The third part is intended to applications; its objective is to illustrate the theoretic developments of the second part with a comparison between the performances of different approaches (approach Box and Jenkins, Johansen approach`s and structural approach). The models will be applied to the main French petroleum market. The observed asymmetrical demand behaviour is also considered. (author) 153 refs.

  2. Human-model hybrid Korean air quality forecasting system.

    Science.gov (United States)

    Chang, Lim-Seok; Cho, Ara; Park, Hyunju; Nam, Kipyo; Kim, Deokrae; Hong, Ji-Hyoung; Song, Chang-Keun

    2016-09-01

    The Korean national air quality forecasting system, consisting of the Weather Research and Forecasting, the Sparse Matrix Operator Kernel Emissions, and the Community Modeling and Analysis (CMAQ), commenced from August 31, 2013 with target pollutants of particulate matters (PM) and ozone. Factors contributing to PM forecasting accuracy include CMAQ inputs of meteorological field and emissions, forecasters' capacity, and inherent CMAQ limit. Four numerical experiments were conducted including two global meteorological inputs from the Global Forecast System (GFS) and the Unified Model (UM), two emissions from the Model Intercomparison Study Asia (MICS-Asia) and the Intercontinental Chemical Transport Experiment (INTEX-B) for the Northeast Asia with Clear Air Policy Support System (CAPSS) for South Korea, and data assimilation of the Monitoring Atmospheric Composition and Climate (MACC). Significant PM underpredictions by using both emissions were found for PM mass and major components (sulfate and organic carbon). CMAQ predicts PM2.5 much better than PM10 (NMB of PM2.5: -20~-25%, PM10: -43~-47%). Forecasters' error usually occurred at the next day of high PM event. Once CMAQ fails to predict high PM event the day before, forecasters are likely to dismiss the model predictions on the next day which turns out to be true. The best combination of CMAQ inputs is the set of UM global meteorological field, MICS-Asia and CAPSS 2010 emissions with the NMB of -12.3%, the RMSE of 16.6μ/m(3) and the R(2) of 0.68. By using MACC data as an initial and boundary condition, the performance skill of CMAQ would be improved, especially in the case of undefined coarse emission. A variety of methods such as ensemble and data assimilation are considered to improve further the accuracy of air quality forecasting, especially for high PM events to be comparable to for all cases. The growing utilization of the air quality forecast induced the public strongly to demand that the accuracy of the

  3. Supply and demand forecasts for natural gas in the WCSB

    International Nuclear Information System (INIS)

    Crowfoot, C.; Laustsen, G.

    2001-01-01

    A historical review of supply of natural gas in the Western Canada Sedimentary Basin (WCSB) was presented along with export capacity versus demand and the affect of reconnection on Alberta prices. This power point presentation included several graphs and charts which showed that the decline rate per well groupings suggest the pre-1996 wells are declining at about 10 per cent and flattening. The productivity profiles of recent well additions exhibit a very steep initial decline, indicating that a basin decline of 25 per cent is apparent with an expected flattening to a decline of around 20 per cent. This presentation also included a review of WCSB natural gas drilling activity and discussed natural gas well completions by type in Western Canada and British Columbia. Pipeline capacity and throughput for 1999 was also discussed with an illustration of the North American natural gas transportation grid and a graphical illustration of gas exports and Canadian sales. tabs., figs

  4. Natural gas, NGL's and crude: supply, demand and price forecasts

    International Nuclear Information System (INIS)

    Stauft, T.L.

    2003-01-01

    This paper presents an overview of the major issues to watch in the crude oil, natural gas, and natural gas liquids (NGL) markets in North America. The presentation began with background information concerning Purvin and Gertz, an employee-owned consulting firm whose employees are chemical engineers, holders of a Master of Business Administration (MBA), or economists. They specialize in providing strategic, commercial, and technical advice to the international energy industry. A closer look at each individual market was provided, looking at demand, supply, price drivers and others. The author concluded that world oil prices continue to be influenced by a war premium. Oil prices support natural gas, as well as the possibility of a supply issue. The gas processing margins have remained strong. The unknown quantities are the weather and economic recovery. figs

  5. Peak load demand forecasting using two-level discrete wavelet decomposition and neural network algorithm

    Science.gov (United States)

    Bunnoon, Pituk; Chalermyanont, Kusumal; Limsakul, Chusak

    2010-02-01

    This paper proposed the discrete transform and neural network algorithms to obtain the monthly peak load demand in mid term load forecasting. The mother wavelet daubechies2 (db2) is employed to decomposed, high pass filter and low pass filter signals from the original signal before using feed forward back propagation neural network to determine the forecasting results. The historical data records in 1997-2007 of Electricity Generating Authority of Thailand (EGAT) is used as reference. In this study, historical information of peak load demand(MW), mean temperature(Tmean), consumer price index (CPI), and industrial index (economic:IDI) are used as feature inputs of the network. The experimental results show that the Mean Absolute Percentage Error (MAPE) is approximately 4.32%. This forecasting results can be used for fuel planning and unit commitment of the power system in the future.

  6. Clustering and Support Vector Regression for Water Demand Forecasting and Anomaly Detection

    Directory of Open Access Journals (Sweden)

    Antonio Candelieri

    2017-03-01

    Full Text Available This paper presents a completely data-driven and machine-learning-based approach, in two stages, to first characterize and then forecast hourly water demand in the short term with applications of two different data sources: urban water demand (SCADA data and individual customer water consumption (AMR data. In the first case, reliable forecasting can be used to optimize operations, particularly the pumping schedule, in order to reduce energy-related costs, while in the second case, the comparison between forecast and actual values may support the online detection of anomalies, such as smart meter faults, fraud or possible cyber-physical attacks. Results are presented for a real case: the water distribution network in Milan.

  7. Econometric Models for Forecasting of Macroeconomic Indices

    Science.gov (United States)

    Sukhanova, Elena I.; Shirnaeva, Svetlana Y.; Mokronosov, Aleksandr G.

    2016-01-01

    The urgency of the research topic was stipulated by the necessity to carry out an effective controlled process by the economic system which can hardly be imagined without indices forecasting characteristic of this system. An econometric model is a safe tool of forecasting which makes it possible to take into consideration the trend of indices…

  8. The (in)accuracy of travel demand forecasts in the case of no-build alternatives

    DEFF Research Database (Denmark)

    Nicolaisen, Morten Skou; Næss, Petter

    -build alternatives, in order to assess the impact of doing something rather than doing nothing. Previous research on the accuracy of demand forecasts has focused exclusively on the build alternatives, and revealed inaccuracies in the form of large imprecisions as well as systematic biases. However, little...... of dealing with congestion problems, which might prove more sustainable and resilient in the long run....

  9. Forecasting with nonlinear time series models

    DEFF Research Database (Denmark)

    Kock, Anders Bredahl; Teräsvirta, Timo

    In this paper, nonlinear models are restricted to mean nonlinear parametric models. Several such models popular in time series econo- metrics are presented and some of their properties discussed. This in- cludes two models based on universal approximators: the Kolmogorov- Gabor polynomial model...... applied to economic fore- casting problems, is briefly highlighted. A number of large published studies comparing macroeconomic forecasts obtained using different time series models are discussed, and the paper also contains a small simulation study comparing recursive and direct forecasts in a partic...... and two versions of a simple artificial neural network model. Techniques for generating multi-period forecasts from nonlinear models recursively are considered, and the direct (non-recursive) method for this purpose is mentioned as well. Forecasting with com- plex dynamic systems, albeit less frequently...

  10. Forecasting Ebola with a regression transmission model

    OpenAIRE

    Asher, Jason

    2017-01-01

    We describe a relatively simple stochastic model of Ebola transmission that was used to produce forecasts with the lowest mean absolute error among Ebola Forecasting Challenge participants. The model enabled prediction of peak incidence, the timing of this peak, and final size of the outbreak. The underlying discrete-time compartmental model used a time-varying reproductive rate modeled as a multiplicative random walk driven by the number of infectious individuals. This structure generalizes ...

  11. Forecasting energy demand and CO{sub 2}-emissions from energy production in the forest industry

    Energy Technology Data Exchange (ETDEWEB)

    Malinen, H

    1998-12-31

    The purpose of this study was to develops new energy forecasting methods for the forest industry energy use. The scenarios have been the most commonly used forecasts, but they require a lot of work. The recent scenarios, which are made for the forest industry, give a wide range of results; e.g. from 27,8 TWh to 38 TWh for electricity use in 2010. There is a need for more simple and accurate methods for forecasting. The time scale for the study is from 1975 to 2010, i.e. 36 years. The basic data for the study is collected from time period 1975 - 1995. It includes the wood use, production of main product categories and energy use in the forest industry. The factors affecting energy use at both industry level and at mill level are presented. The most probable technology trends, which can have an effect on energy production and use and CO{sub 2}-emissions are studied. Recent forecasts for the forest industry energy use till the year 2010 are referred and analysed. Three alternative forecasting methods are studied more closely. These methods are (a) Regression analysis, (b) Growth curves and (c) Delphi-method. Total electricity demand, share of purchased electricity, total fuel demand and share of process-based biofuels are estimated for the time period 1996 - 2010. The results from the different methods are compared to each other and to the recent scenarios. The comparison is made for the results concerning the energy use and the usefulness of the methods in practical work. The average energy consumption given by the forecasts for electricity was 31,6 TWh and for fuel 6,2 Mtoe in 2010. The share of purchased electricity totalled 73 % and process based fuels 77 %. The figures from 1995 are 22,8 TWh, 5,5 Mtoe, 64 % and 68 % respectively. All three methods were suitable for forecasting. All the methods required less working hours and were easier to use than scenarios. The methods gave results with a smaller deviation than scenarios, e.g. with electricity use in 2010 from

  12. Forecasting energy demand and CO{sub 2}-emissions from energy production in the forest industry

    Energy Technology Data Exchange (ETDEWEB)

    Malinen, H.

    1997-12-31

    The purpose of this study was to develops new energy forecasting methods for the forest industry energy use. The scenarios have been the most commonly used forecasts, but they require a lot of work. The recent scenarios, which are made for the forest industry, give a wide range of results; e.g. from 27,8 TWh to 38 TWh for electricity use in 2010. There is a need for more simple and accurate methods for forecasting. The time scale for the study is from 1975 to 2010, i.e. 36 years. The basic data for the study is collected from time period 1975 - 1995. It includes the wood use, production of main product categories and energy use in the forest industry. The factors affecting energy use at both industry level and at mill level are presented. The most probable technology trends, which can have an effect on energy production and use and CO{sub 2}-emissions are studied. Recent forecasts for the forest industry energy use till the year 2010 are referred and analysed. Three alternative forecasting methods are studied more closely. These methods are (a) Regression analysis, (b) Growth curves and (c) Delphi-method. Total electricity demand, share of purchased electricity, total fuel demand and share of process-based biofuels are estimated for the time period 1996 - 2010. The results from the different methods are compared to each other and to the recent scenarios. The comparison is made for the results concerning the energy use and the usefulness of the methods in practical work. The average energy consumption given by the forecasts for electricity was 31,6 TWh and for fuel 6,2 Mtoe in 2010. The share of purchased electricity totalled 73 % and process based fuels 77 %. The figures from 1995 are 22,8 TWh, 5,5 Mtoe, 64 % and 68 % respectively. All three methods were suitable for forecasting. All the methods required less working hours and were easier to use than scenarios. The methods gave results with a smaller deviation than scenarios, e.g. with electricity use in 2010 from

  13. Coal demand prediction based on a support vector machine model

    Energy Technology Data Exchange (ETDEWEB)

    Jia, Cun-liang; Wu, Hai-shan; Gong, Dun-wei [China University of Mining & Technology, Xuzhou (China). School of Information and Electronic Engineering

    2007-01-15

    A forecasting model for coal demand of China using a support vector regression was constructed. With the selected embedding dimension, the output vectors and input vectors were constructed based on the coal demand of China from 1980 to 2002. After compared with lineal kernel and Sigmoid kernel, a radial basis function(RBF) was adopted as the kernel function. By analyzing the relationship between the error margin of prediction and the model parameters, the proper parameters were chosen. The support vector machines (SVM) model with multi-input and single output was proposed. Compared the predictor based on RBF neural networks with test datasets, the results show that the SVM predictor has higher precision and greater generalization ability. In the end, the coal demand from 2003 to 2006 is accurately forecasted. l0 refs., 2 figs., 4 tabs.

  14. Research on strategy and optimization method of PRT empty vehicles resource allocation based on traffic demand forecast

    Science.gov (United States)

    Xiang, Yu; Tao, Cheng

    2018-05-01

    During the operation of the personal rapid transit system(PRT), the empty vehicle resources is distributed unevenly because of different passenger demand. In order to maintain the balance between supply and demand, and to meet the passenger needs of the ride, PRT empty vehicle resource allocation model is constructed based on the future demand forecasted by historical demand in this paper. The improved genetic algorithm is implied in distribution of the empty vehicle which can reduce the customers waiting time and improve the operation efficiency of the PRT system so that all passengers can take the PRT vehicles in the shortest time. The experimental result shows that the improved genetic algorithm can allocate the empty vehicle from the system level optimally, and realize the distribution of the empty vehicle resources reasonably in the system.

  15. Combining SKU-level sales forecasts from models and experts

    NARCIS (Netherlands)

    Ph.H.B.F. Franses (Philip Hans); R. Legerstee (Rianne)

    2009-01-01

    textabstractWe study the performance of SKU-level sales forecasts which linearly combine statistical model forecasts and expert forecasts. Using a large and unique database containing model forecasts for monthly sales of various pharmaceutical products and forecasts given by about fifty experts, we

  16. Ensemble Prediction Model with Expert Selection for Electricity Price Forecasting

    Directory of Open Access Journals (Sweden)

    Bijay Neupane

    2017-01-01

    Full Text Available Forecasting of electricity prices is important in deregulated electricity markets for all of the stakeholders: energy wholesalers, traders, retailers and consumers. Electricity price forecasting is an inherently difficult problem due to its special characteristic of dynamicity and non-stationarity. In this paper, we present a robust price forecasting mechanism that shows resilience towards the aggregate demand response effect and provides highly accurate forecasted electricity prices to the stakeholders in a dynamic environment. We employ an ensemble prediction model in which a group of different algorithms participates in forecasting 1-h ahead the price for each hour of a day. We propose two different strategies, namely, the Fixed Weight Method (FWM and the Varying Weight Method (VWM, for selecting each hour’s expert algorithm from the set of participating algorithms. In addition, we utilize a carefully engineered set of features selected from a pool of features extracted from the past electricity price data, weather data and calendar data. The proposed ensemble model offers better results than the Autoregressive Integrated Moving Average (ARIMA method, the Pattern Sequence-based Forecasting (PSF method and our previous work using Artificial Neural Networks (ANN alone on the datasets for New York, Australian and Spanish electricity markets.

  17. Monthly electric energy demand forecasting with neural networks and Fourier series

    International Nuclear Information System (INIS)

    Gonzalez-Romera, E.; Jaramillo-Moran, M.A.; Carmona-Fernandez, D.

    2008-01-01

    Medium-term electric energy demand forecasting is a useful tool for grid maintenance planning and market research of electric energy companies. Several methods, such as ARIMA, regression or artificial intelligence, have been usually used to carry out those predictions. Some approaches include weather or economic variables, which strongly influence electric energy demand. Economic variables usually influence the general series trend, while weather provides a periodic behavior because of its seasonal nature. This work investigates the periodic behavior of the Spanish monthly electric demand series, obtained by rejecting the trend from the consumption series. A novel hybrid approach is proposed: the periodic behavior is forecasted with a Fourier series while the trend is predicted with a neural network. Satisfactory results have been obtained, with a lower than 2% MAPE, which improve those reached when only neural networks or ARIMA were used for the same purpose. (author)

  18. Peculiarities in the demand forecast for an HSRL connecting two countries. Case of Kuala Lumpur Singapore HSRL

    Energy Technology Data Exchange (ETDEWEB)

    Tadeo Martin, A.; Rey Romero, P.

    2016-07-01

    The High Speed Rail Line (HSRL) between Kuala Lumpur (KL) and Singapore (SP) is aimed at reducing to 90 minutes the travel time between two of Southeast Asia’s most vibrant and fast-growing economic engines. Ineco was hired by the Government of Malaysia to forecast the demand for the future HSRL. The Government of Malaysia played a key role when firstly defining the current situation on the corridor and the features of the HSRL, and then providing Ineco with the studies previously developed by them. Besides the obvious interest in connecting both capital cities, Malaysia wishes to promote the economic development of intermediate cities, whereas Singapore, a 718 square-kilometer city-state and island, is interested in improving its connection with Nusajaya - a Malaysian city that is being developed just across the border and regarded as land reserves. Two kinds of services will be provided on the new rail infrastructure: non-stop services between KL and SP, and services with 6 intermediate stops on the Malaysian side. The aim of this paper is to describe the process to forecast the demand for the HSRL Kuala Lumpur – Singapore by focusing on the peculiarities of an international HSRL. Identifying these aspects at an early stage is vital to get a better demand estimate and to reconsider the HSRL characteristics if necessary. The demand for the new line was calculated by applying a three-step model: generation model, distribution model and modal split model. In 2030, 10 years after the opening year, the HSRL is expected to move 23 - 26 million passengers – baseline and optimistic scenarios, respectively -, which represents an 18.5% share of the total demand on the corridor. The demand for the KL-SP pair will account for 30% the demand for the future HSRL. (Author)

  19. Energy demand in Portuguese manufacturing: a two-stage model

    International Nuclear Information System (INIS)

    Borges, A.M.; Pereira, A.M.

    1992-01-01

    We use a two-stage model of factor demand to estimate the parameters determining energy demand in Portuguese manufacturing. In the first stage, a capital-labor-energy-materials framework is used to analyze the substitutability between energy as a whole and other factors of production. In the second stage, total energy demand is decomposed into oil, coal and electricity demands. The two stages are fully integrated since the energy composite used in the first stage and its price are obtained from the second stage energy sub-model. The estimates obtained indicate that energy demand in manufacturing responds significantly to price changes. In addition, estimation results suggest that there are important substitution possibilities among energy forms and between energy and other factors of production. The role of price changes in energy-demand forecasting, as well as in energy policy in general, is clearly established. (author)

  20. Modelling Commodity Demands and Labour Supply with m-Demands

    OpenAIRE

    Browning, Martin

    1999-01-01

    In the empirical modelling of demands and labour supply we often lack data on a full set of goods. The usual response is to invoke separability assumptions. Here we present an alternative based on modelling demands as a function of prices and the quantity of a reference good rather than total expenditure. We term such demands m-demands. The advantage of this approach is that we make maximum use of the data to hand without invoking implausible separability assumptions. In the theory section qu...

  1. A national econometric forecasting model of the dental sector.

    Science.gov (United States)

    Feldstein, P J; Roehrig, C S

    1980-01-01

    The Econometric Model of the the Dental Sector forecasts a broad range of dental sector variables, including dental care prices; the amount of care produced and consumed; employment of hygienists, dental assistants, and clericals; hours worked by dentists; dental incomes; and number of dentists. These forecasts are based upon values specified by the user for the various factors which help determine the supply an demand for dental care, such as the size of the population, per capita income, the proportion of the population covered by private dental insurance, the cost of hiring clericals and dental assistants, and relevant government policies. In a test of its reliability, the model forecast dental sector behavior quite accurately for the period 1971 through 1977. PMID:7461974

  2. Weather forecasting based on hybrid neural model

    Science.gov (United States)

    Saba, Tanzila; Rehman, Amjad; AlGhamdi, Jarallah S.

    2017-11-01

    Making deductions and expectations about climate has been a challenge all through mankind's history. Challenges with exact meteorological directions assist to foresee and handle problems well in time. Different strategies have been investigated using various machine learning techniques in reported forecasting systems. Current research investigates climate as a major challenge for machine information mining and deduction. Accordingly, this paper presents a hybrid neural model (MLP and RBF) to enhance the accuracy of weather forecasting. Proposed hybrid model ensure precise forecasting due to the specialty of climate anticipating frameworks. The study concentrates on the data representing Saudi Arabia weather forecasting. The main input features employed to train individual and hybrid neural networks that include average dew point, minimum temperature, maximum temperature, mean temperature, average relative moistness, precipitation, normal wind speed, high wind speed and average cloudiness. The output layer composed of two neurons to represent rainy and dry weathers. Moreover, trial and error approach is adopted to select an appropriate number of inputs to the hybrid neural network. Correlation coefficient, RMSE and scatter index are the standard yard sticks adopted for forecast accuracy measurement. On individual standing MLP forecasting results are better than RBF, however, the proposed simplified hybrid neural model comes out with better forecasting accuracy as compared to both individual networks. Additionally, results are better than reported in the state of art, using a simple neural structure that reduces training time and complexity.

  3. Pollen Forecast and Dispersion Modelling

    Science.gov (United States)

    Costantini, Monica; Di Giuseppe, Fabio; Medaglia, Carlo Maria; Travaglini, Alessandro; Tocci, Raffaella; Brighetti, M. Antonia; Petitta, Marcello

    2014-05-01

    The aim of this study is monitoring, mapping and forecast of pollen distribution for the city of Rome using in-situ measurements of 10 species of common allergenic pollens and measurements of PM10. The production of daily concentration maps, associated to a mobile phone app, are innovative compared to existing dedicated services to people who suffer from respiratory allergies. The dispersal pollen is one of the most well-known causes of allergic disease that is manifested by disorders of the respiratory functions. Allergies are the third leading cause of chronic disease and it is estimated that tens millions of people in Italy suffer from it. Recent works reveal that during the last few years there was a progressive increase of affected subjects, especially in urban areas. This situation may depend: on the ability to transport of pollutants, on the ability to react between pollutants and pollen and from a combination of other irritants, existing in densely populated and polluted urban areas. The methodology used to produce maps is based on in-situ measurements time series relative to 2012, obtained from networks of air quality and pollen stations in the metropolitan area of Rome. The monitoring station aerobiological of University of Rome "Tor Vergata" is located at the Department of Biology. The instrument used to pollen monitoring is a volumetric sampler type Hirst (Hirst 1952), Model 2000 VPPS Lanzoni; the data acquisition is carried out as reported in Standard UNI 11008:2004 - "Qualità dell'aria - Metodo di campionamento e conteggio dei granuli pollinici e delle spore fungine aerodisperse" - the protocol that describes the procedure for measuring of the concentration of pollen grains and fungal spores dispersed into the atmosphere, and reported in the "Manuale di gestione e qualità della R.I.M.A" (Travaglini et. al. 2009). All 10 allergenic pollen are monitored since 1996. At Tor Vergata university is also operating a meteorological station (SP2000, CAE

  4. Spatiotemporal drought forecasting using nonlinear models

    Science.gov (United States)

    Vasiliades, Lampros; Loukas, Athanasios

    2010-05-01

    Spatiotemporal data mining is the extraction of unknown and implicit knowledge, structures, spatiotemporal relationships, or patterns not explicitly stored in spatiotemporal databases. As one of data mining techniques, forecasting is widely used to predict the unknown future based upon the patterns hidden in the current and past data. In order to achieve spatiotemporal forecasting, some mature analysis tools, e.g., time series and spatial statistics are extended to the spatial dimension and the temporal dimension, respectively. Drought forecasting plays an important role in the planning and management of natural resources and water resource systems in a river basin. Early and timelines forecasting of a drought event can help to take proactive measures and set out drought mitigation strategies to alleviate the impacts of drought. Despite the widespread application of nonlinear mathematical models, comparative studies on spatiotemporal drought forecasting using different models are still a huge task for modellers. This study uses a promising approach, the Gamma Test (GT), to select the input variables and the training data length, so that the trial and error workload could be greatly reduced. The GT enables to quickly evaluate and estimate the best mean squared error that can be achieved by a smooth model on any unseen data for a given selection of inputs, prior to model construction. The GT is applied to forecast droughts using monthly Standardized Precipitation Index (SPI) timeseries at multiple timescales in several precipitation stations at Pinios river basin in Thessaly region, Greece. Several nonlinear models have been developed efficiently, with the aid of the GT, for 1-month up to 12-month ahead forecasting. Several temporal and spatial statistical indices were considered for the performance evaluation of the models. The predicted results show reasonably good agreement with the actual data for short lead times, whereas the forecasting accuracy decreases with

  5. A multi-scale adaptive model of residential energy demand

    International Nuclear Information System (INIS)

    Farzan, Farbod; Jafari, Mohsen A.; Gong, Jie; Farzan, Farnaz; Stryker, Andrew

    2015-01-01

    Highlights: • We extend an energy demand model to investigate changes in behavioral and usage patterns. • The model is capable of analyzing why demand behaves the way it does. • The model empowers decision makers to investigate DSM strategies and effectiveness. • The model provides means to measure the effect of energy prices on daily profile. • The model considers the coupling effects of adopting multiple new technologies. - Abstract: In this paper, we extend a previously developed bottom-up energy demand model such that the model can be used to determine changes in behavioral and energy usage patterns of a community when: (i) new load patterns from Plug-in Electrical Vehicles (PEV) or other devices are introduced; (ii) new technologies and smart devices are used within premises; and (iii) new Demand Side Management (DSM) strategies, such as price responsive demand are implemented. Unlike time series forecasting methods that solely rely on historical data, the model only uses a minimal amount of data at the atomic level for its basic constructs. These basic constructs can be integrated into a household unit or a community model using rules and connectors that are, in principle, flexible and can be altered according to the type of questions that need to be answered. Furthermore, the embedded dynamics of the model works on the basis of: (i) Markovian stochastic model for simulating human activities, (ii) Bayesian and logistic technology adoption models, and (iii) optimization, and rule-based models to respond to price signals without compromising users’ comfort. The proposed model is not intended to replace traditional forecasting models. Instead it provides an analytical framework that can be used at the design stage of new products and communities to evaluate design alternatives. The framework can also be used to answer questions such as why demand behaves the way it does by examining demands at different scales and by playing What-If games. These

  6. Probabilistic Forecast of Wind Power Generation by Stochastic Differential Equation Models

    KAUST Repository

    Elkantassi, Soumaya

    2017-04-01

    Reliable forecasting of wind power generation is crucial to optimal control of costs in generation of electricity with respect to the electricity demand. Here, we propose and analyze stochastic wind power forecast models described by parametrized stochastic differential equations, which introduce appropriate fluctuations in numerical forecast outputs. We use an approximate maximum likelihood method to infer the model parameters taking into account the time correlated sets of data. Furthermore, we study the validity and sensitivity of the parameters for each model. We applied our models to Uruguayan wind power production as determined by historical data and corresponding numerical forecasts for the period of March 1 to May 31, 2016.

  7. Forecasting annual gross electricity demand by artificial neural networks using predicted values of socio-economic indicators and climatic conditions: Case of Turkey

    International Nuclear Information System (INIS)

    Günay, M. Erdem

    2016-01-01

    In this work, the annual gross electricity demand of Turkey was modeled by multiple linear regression and artificial neural networks as a function population, gross domestic product per capita, inflation percentage, unemployment percentage, average summer temperature and average winter temperature. Among these, the unemployment percentage and the average winter temperature were found to be insignificant to determine the demand for the years between 1975 and 2013. Next, the future values of the statistically significant variables were predicted by time series ANN models, and these were simulated in a multilayer perceptron ANN model to forecast the future annual electricity demand. The results were validated with a very high accuracy for the years that the electricity demand was known (2007–2013), and they were also superior to the official predictions (done by Ministry of Energy and Natural Resources of Turkey). The model was then used to forecast the annual gross electricity demand for the future years, and it was found that, the demand will be doubled reaching about 460 TW h in the year 2028. Finally, it was concluded that the approach applied in this work can easily be implemented for other countries to make accurate predictions for the future. - Highlights: • Electricity demand of Turkey increased from 15.6 to 246.4 TW h in 1975–2013 period. • Population, GDP per capita, inflation and average summer temperature influence demand. • Future values of descriptor variables can be predicted by time series ANN models. • ANN model simulated by the predicted values of descriptors can forecast the demand. • Demand is forecasted to be doubled reaching about 460 TW h in the year 2028.

  8. Multicomponent ensemble models to forecast induced seismicity

    Science.gov (United States)

    Király-Proag, E.; Gischig, V.; Zechar, J. D.; Wiemer, S.

    2018-01-01

    In recent years, human-induced seismicity has become a more and more relevant topic due to its economic and social implications. Several models and approaches have been developed to explain underlying physical processes or forecast induced seismicity. They range from simple statistical models to coupled numerical models incorporating complex physics. We advocate the need for forecast testing as currently the best method for ascertaining if models are capable to reasonably accounting for key physical governing processes—or not. Moreover, operational forecast models are of great interest to help on-site decision-making in projects entailing induced earthquakes. We previously introduced a standardized framework following the guidelines of the Collaboratory for the Study of Earthquake Predictability, the Induced Seismicity Test Bench, to test, validate, and rank induced seismicity models. In this study, we describe how to construct multicomponent ensemble models based on Bayesian weightings that deliver more accurate forecasts than individual models in the case of Basel 2006 and Soultz-sous-Forêts 2004 enhanced geothermal stimulation projects. For this, we examine five calibrated variants of two significantly different model groups: (1) Shapiro and Smoothed Seismicity based on the seismogenic index, simple modified Omori-law-type seismicity decay, and temporally weighted smoothed seismicity; (2) Hydraulics and Seismicity based on numerically modelled pore pressure evolution that triggers seismicity using the Mohr-Coulomb failure criterion. We also demonstrate how the individual and ensemble models would perform as part of an operational Adaptive Traffic Light System. Investigating seismicity forecasts based on a range of potential injection scenarios, we use forecast periods of different durations to compute the occurrence probabilities of seismic events M ≥ 3. We show that in the case of the Basel 2006 geothermal stimulation the models forecast hazardous levels

  9. Optimal Ordering Policy and Coordination Mechanism of a Supply Chain with Controllable Lead-Time-Dependent Demand Forecast

    Directory of Open Access Journals (Sweden)

    Hua-Ming Song

    2011-01-01

    Full Text Available This paper investigates the ordering decisions and coordination mechanism for a distributed short-life-cycle supply chain. The objective is to maximize the whole supply chain's expected profit and meanwhile make the supply chain participants achieve a Pareto improvement. We treat lead time as a controllable variable, thus the demand forecast is dependent on lead time: the shorter lead time, the better forecast. Moreover, optimal decision-making models for lead time and order quantity are formulated and compared in the decentralized and centralized cases. Besides, a three-parameter contract is proposed to coordinate the supply chain and alleviate the double margin in the decentralized scenario. In addition, based on the analysis of the models, we develop an algorithmic procedure to find the optimal ordering decisions. Finally, a numerical example is also presented to illustrate the results.

  10. Modeling and forecasting petroleum futures volatility

    International Nuclear Information System (INIS)

    Sadorsky, Perry

    2006-01-01

    Forecasts of oil price volatility are important inputs into macroeconometric models, financial market risk assessment calculations like value at risk, and option pricing formulas for futures contracts. This paper uses several different univariate and multivariate statistical models to estimate forecasts of daily volatility in petroleum futures price returns. The out-of-sample forecasts are evaluated using forecast accuracy tests and market timing tests. The TGARCH model fits well for heating oil and natural gas volatility and the GARCH model fits well for crude oil and unleaded gasoline volatility. Simple moving average models seem to fit well in some cases provided the correct order is chosen. Despite the increased complexity, models like state space, vector autoregression and bivariate GARCH do not perform as well as the single equation GARCH model. Most models out perform a random walk and there is evidence of market timing. Parametric and non-parametric value at risk measures are calculated and compared. Non-parametric models outperform the parametric models in terms of number of exceedences in backtests. These results are useful for anyone needing forecasts of petroleum futures volatility. (author)

  11. The AviaDem forecasting model: illustration of a forecasting case at Amsterdam Schiphol Airport

    NARCIS (Netherlands)

    Veldhuis, J.; Lieshout, R.

    2010-01-01

    The paper describes an aviation market forecasting model which focuses on market forecasts for airports. Most forecasting models in use today assess aviation trends resulting from macroeconomic trends. The model described in this paper has this feature built in, but the added value of this model is

  12. A novel hybrid approach based on Particle Swarm Optimization and Ant Colony Algorithm to forecast energy demand of Turkey

    International Nuclear Information System (INIS)

    Kıran, Mustafa Servet; Özceylan, Eren; Gündüz, Mesut; Paksoy, Turan

    2012-01-01

    Highlights: ► PSO and ACO algorithms are hybridized for forecasting energy demands of Turkey. ► Linear and quadratic forms are developed to meet the fluctuations of indicators. ► GDP, population, export and import have significant impacts on energy demand. ► Quadratic form provides better fit solution than linear form. ► Proposed approach gives lower estimation error than ACO and PSO, separately. - Abstract: This paper proposes a new hybrid method (HAP) for estimating energy demand of Turkey using Particle Swarm Optimization (PSO) and Ant Colony Optimization (ACO). Proposed energy demand model (HAPE) is the first model which integrates two mentioned meta-heuristic techniques. While, PSO, developed for solving continuous optimization problems, is a population based stochastic technique; ACO, simulating behaviors between nest and food source of real ants, is generally used for discrete optimizations. Hybrid method based PSO and ACO is developed to estimate energy demand using gross domestic product (GDP), population, import and export. HAPE is developed in two forms which are linear (HAPEL) and quadratic (HAPEQ). The future energy demand is estimated under different scenarios. In order to show the accuracy of the algorithm, a comparison is made with ACO and PSO which are developed for the same problem. According to obtained results, relative estimation errors of the HAPE model are the lowest of them and quadratic form (HAPEQ) provides better-fit solutions due to fluctuations of the socio-economic indicators.

  13. Growing an emerging energy workforce: forecasting labour demand and gaining access to emerging energy skills

    International Nuclear Information System (INIS)

    Thomsen, V.

    2006-01-01

    This paper discusses the needs of emerging energies sector in terms of growing an emerging energy workforce, forecasting labour demands and gaining access to emerging energy skills. It will require industrial renewal and innovation and not just selling our resources. It will also require educating ourselves to utilise our own finished products. Conservation is a key element in a sustainable energy future. finally, a market for renewable energy has been established in Canada

  14. Forecasted electric power demands for the Baltimore Gas and Electric Company. Volume 1 and Volume 2. Documentation manual

    International Nuclear Information System (INIS)

    Estomin, S.L.; Beach, J.E.; Goldsmith, J.V.

    1991-05-01

    The two-volume report presents the results of an econometric forecast of peak load and electric power demand for the Baltimore Gas and Electric Company (BG ampersand E) through the year 2009. Separate energy sales models were estimated for residential sales in Baltimore City, residential sales in the BG ampersand E service area excluding Baltimore City, commercial sales, industrial sales, streetlighting sales, and Company use plus losses. Econometric equations were also estimated for electric space heating and air conditioning saturation in Baltimore City and in the remainder of the BG ampersand E service territory. In addition to the energy sales models and the electric space conditioning saturation models, econometric models of summer and winter peak demand on the BG ampersand E system were estimated

  15. Short term load forecasting technique based on the seasonal exponential adjustment method and the regression model

    International Nuclear Information System (INIS)

    Wu, Jie; Wang, Jianzhou; Lu, Haiyan; Dong, Yao; Lu, Xiaoxiao

    2013-01-01

    Highlights: ► The seasonal and trend items of the data series are forecasted separately. ► Seasonal item in the data series is verified by the Kendall τ correlation testing. ► Different regression models are applied to the trend item forecasting. ► We examine the superiority of the combined models by the quartile value comparison. ► Paired-sample T test is utilized to confirm the superiority of the combined models. - Abstract: For an energy-limited economy system, it is crucial to forecast load demand accurately. This paper devotes to 1-week-ahead daily load forecasting approach in which load demand series are predicted by employing the information of days before being similar to that of the forecast day. As well as in many nonlinear systems, seasonal item and trend item are coexisting in load demand datasets. In this paper, the existing of the seasonal item in the load demand data series is firstly verified according to the Kendall τ correlation testing method. Then in the belief of the separate forecasting to the seasonal item and the trend item would improve the forecasting accuracy, hybrid models by combining seasonal exponential adjustment method (SEAM) with the regression methods are proposed in this paper, where SEAM and the regression models are employed to seasonal and trend items forecasting respectively. Comparisons of the quartile values as well as the mean absolute percentage error values demonstrate this forecasting technique can significantly improve the accuracy though models applied to the trend item forecasting are eleven different ones. This superior performance of this separate forecasting technique is further confirmed by the paired-sample T tests

  16. Forecasted electric power demands for the Delmarva Power and Light Company. Volume 1 and Volume 2. Documentation manual

    International Nuclear Information System (INIS)

    Estomin, S.L.; Beach, J.E.

    1990-10-01

    The two-volume report presents the results of an econometric forecast of peak load and electric power demands for the Delmarva Power and Light Company (DP ampersand L) through the year 2008. Separate sets of models were estimated for the three jurisdictions served by DP ampersand L: Delaware, Maryland and Virginia. For both Delaware and Maryland, econometric equations were estimated for residential, commercial, industrial, and streetlighting sales. For Virginia, equations were estimated for residential, commercial plus industrial, and streetlighting sales; separate industrial and commercial equations were not estimated for Virginia due to the relatively small size of DP ampersand L's Virginia Industrial load. Wholesale sales were econometrically estimated for the DP ampersand L system as a whole. In addition to the energy sales models, an econometric model of annual (summer) peak demand was estimated for the Company

  17. Forecasting Inflation through Econometrics Models: An Empirical ...

    African Journals Online (AJOL)

    This article aims at modeling and forecasting inflation in Pakistan. For this purpose a number of econometric approaches are implemented and their results are compared. In ARIMA models, adding additional lags for p and/or q necessarily reduced the sum of squares of the estimated residuals. When a model is estimated ...

  18. Modelling and Forecasting Multivariate Realized Volatility

    DEFF Research Database (Denmark)

    Chiriac, Roxana; Voev, Valeri

    . We provide an empirical application of the model, in which we show by means of stochastic dominance tests that the returns from an optimal portfolio based on the model's forecasts second-order dominate returns of portfolios optimized on the basis of traditional MGARCH models. This result implies...

  19. Forecasting freight flows

    DEFF Research Database (Denmark)

    Lyk-Jensen, Stéphanie

    2011-01-01

    Trade patterns and transport markets are changing as a result of the growth and globalization of international trade, and forecasting future freight flow has to rely on trade forecasts. Forecasting freight flows is critical for matching infrastructure supply to demand and for assessing investment...... constitute a valuable input to freight models for forecasting future capacity problems.......Trade patterns and transport markets are changing as a result of the growth and globalization of international trade, and forecasting future freight flow has to rely on trade forecasts. Forecasting freight flows is critical for matching infrastructure supply to demand and for assessing investment...

  20. Forecasting water demand using back propagation networks in the operation of reservoirs in the citarum cascade, west java, indonesia

    Directory of Open Access Journals (Sweden)

    Mulya R. Mashudi

    2017-11-01

    Full Text Available This study investigates the use of Neural Networks (NN as a potential means of more accurately forecasting water demand in the Citarum River basin cascade. Neural Networks have the ability to recognise nonlinear patterns when sufficiently trained with historical data. The study constructs a NN model of the cascade, based on Back Propagation Networks (BPN. Data representing physical characteristics and meteorological conditions in the Citarum River basin from 1989 through 1995 were used to train the BPN. Nonlinear activation functions (sigmoid, tangent, and gaussian functions and hidden layers in the BPN were chosen for the study.

  1. Information Sharing in a Closed-Loop Supply Chain with Asymmetric Demand Forecasts

    Directory of Open Access Journals (Sweden)

    Pan Zhang

    2017-01-01

    Full Text Available This paper studies the problem of sharing demand forecast information in a closed-loop supply chain with the manufacturer collecting and remanufacturing. We investigate two scenarios: the “make-to-order” scenario, in which the manufacturer schedules production based on the realized demand, and the “make-to-stock” scenario, in which the manufacturer schedules production before the demand is known. For each scenario, we find that it is possible for the retailer to share his forecast without incentives when the collection efficiency of the manufacturer is high. When the efficiency is moderate, information sharing can be realized by a bargaining mechanism, and when the efficiency is low, non-information sharing is a unique equilibrium. Moreover, the possibility of information sharing in the make-to-stock scenario is higher than that in the make-to-order scenario. In addition, we analyze the impact of demand forecasts’ characteristics on the value of information sharing in both scenarios.

  2. Analysis of the demand status and forecast of food cold chain in Beijing

    Directory of Open Access Journals (Sweden)

    Hongjie Lan

    2013-03-01

    Full Text Available Purpose: Food cold chain is very important for ensuring food safety and decreasing the loss in the supply process. It is also benefit for the citizen, because cold chain could promise the food safety and the demand of the special cold food. Beijing, as the capital, the level of food chain is high, compared to other cities, and analysis of the demand status and forecast of food cold chain in Beijing is necessary, it could direct the scientific and health development of cold chain all over our country. Design/methodology/approach: In this paper, in accordance with the investigation, we analysis the demand status of food cold chain from two aspects, then according to the status, we forecast the demand of refrigerated cars and warehouse for food cold chain in Beijing with the multivariate statistics. Findings: From the analysis of the paper, we can see that the need of cold chain logistics grows rapidly, but most consumers are lack of the awareness of the importance of the cold chain and many companies cannot bear the huge investment, it make the gap of the resources of cold chain logistics large and cannot meet the normal need of cold chain logistics in Beijing. Originality/value: The result of this paper could support the relative enterprise to run business in terms of the refrigerated car and warehouse. 

  3. Modelling future private car energy demand in Ireland

    International Nuclear Information System (INIS)

    Daly, Hannah E.; Ó Gallachóir, Brian P.

    2011-01-01

    Targeted measures influencing vehicle technology are increasingly a tool of energy policy makers within the EU as a means of meeting energy efficiency, renewable energy, climate change and energy security goals. This paper develops the modelling capacity for analysing and evaluating such legislation, with a focus on private car energy demand. We populate a baseline car stock and car activity model for Ireland to 2025 using historical car stock data. The model takes account of the lifetime survival profile of different car types, the trends in vehicle activity over the fleet and the fuel price and income elasticities of new car sales and total fleet activity. The impacts of many policy alternatives may only be simulated by such a bottom-up approach, which can aid policy development and evaluation. The level of detail achieved provides specific insights into the technological drivers of energy consumption, thus aiding planning for meeting climate targets. This paper focuses on the methodology and baseline scenario. Baseline results for Ireland forecast a decline in private car energy demand growth (0.2%, compared with 4% in the period 2000–2008), caused by the relative growth in fleet efficiency compared with activity. - Highlights: ► Bottom-up private car energy forecasting model developed. ► The demographic and technological distribution of vehicle activity is a key veriable. ► Irish car energy demand growth predicted to slow steadily. ► Change in vehicle taxation forecast to save 10% energy.

  4. Forecast analysis of the electricity supply-demand balance in France for summer 2013

    International Nuclear Information System (INIS)

    2013-05-01

    Under normal meteorological conditions, and notwithstanding localized risks associated with the vulnerability of certain regions, the forecast outlook for the electricity supply-demand balance in continental France shows no particular risk for the entire summer 2013 period. Special vigilance is maintained in the Provence-Alpes-Cote d'Azur region, given the risk of forest fires and potential outages affecting the dual 400 kV link from Toulon. This assessment is based on the assumption that forecast demand for summer 2013 will remain broadly stable as compared with summer 2012, given public economic indicators, but also that the forecast availability of the French generating fleet will increase by 1100 MW compared with summer 2012. This increased availability is based on information supplied by generators, and notably includes scheduled temporary outages of certain combined cycle gas turbines. Finally, growth in photovoltaic generation (3,700 MW of installed capacity currently in France) is continuing at a sustained pace, leading to a 700 MW increase in the mean availability rate for this generation technology as compared with summer 2012. Moreover, the substantial investments already made by RTE or currently in progress to develop its network (voltage support measures, Cotentin-Maine line, etc.) have had a very positive impact on the reliability of the power system. (authors)

  5. A Framework for Sustainable Urban Water Management through Demand and Supply Forecasting: The Case of Istanbul

    OpenAIRE

    Yalçıntaş, Murat; Bulu, Melih; Küçükvar, Murat; Samadi, Hamidreza

    2015-01-01

    Yayın, Endüstri Mühendisliği Bölümü ile ortak hazırlanmıştır; ancak tekrara düşmemek için ilk yazarın bölümü alınmıştır. The metropolitan city of Istanbul is becoming overcrowded and the demand for clean water is steeply rising in the city. The use of analytical approaches has become more and more critical for forecasting the water supply and demand balance in the long run. In this research, Istanbul’s water supply and demand data is collected for the period during 2006 and 2014. Then, usi...

  6. The relationship between energy intensity and income levels: Forecasting long term energy demand in Asian emerging countries

    International Nuclear Information System (INIS)

    Galli, R.; Univ. della Svizzera Italiana, Lugano

    1998-01-01

    This paper analyzes long-term trends in energy intensity for ten Asian emerging countries to test for a non-monotonic relationship between energy intensity and income in the author's sample. Energy demand functions are estimated during 1973--1990 using a quadratic function of log income. The long-run coefficient on squared income is found to be negative and significant, indicating a change in trend of energy intensity. The estimates are then used to evaluate a medium-term forecast of energy demand in the Asian countries, using both a log-linear and a quadratic model. It is found that in medium to high income countries the quadratic model performs better than the log-linear, with an average error of 9% against 43% in 1995. For the region as a whole, the quadratic model appears more adequate with a forecast error of 16% against 28% in 1995. These results are consistent with a process of dematerialization, which occurs as a result of a reduction of resource use per unit of GDP once an economy passes some threshold level of GDP per capita

  7. A Hybrid Model for Forecasting Sales in Turkish Paint Industry

    OpenAIRE

    Alp Ustundag

    2009-01-01

    Sales forecasting is important for facilitating effective and efficient allocation of scarce resources. However, how to best model and forecast sales has been a long-standing issue. There is no best forecasting method that is applicable in all circumstances. Therefore, confidence in the accuracy of sales forecasts is achieved by corroborating the results using two or more methods. This paper proposes a hybrid forecasting model that uses an artificial intelligence method (AI) w...

  8. Micro-generation dispatch in a smart residential multi-carrier energy system considering demand forecast error

    International Nuclear Information System (INIS)

    Sanjari, M.J.; Karami, H.; Gooi, H.B.

    2016-01-01

    Highlights: • Combination of day-ahead and hour-ahead optimizations to design online controller. • Investigating the effect of load forecast error on the system operating cost. • Proposing effective method for hour-ahead resource re-dispatch. • Using the HSS algorithm as a powerful and effective optimization method. • Combining long-term and short-term strategies for optimal dispatch of resources. - Abstract: This paper deals with a residential hybrid thermal/electrical grid-connected home energy system incorporating real data for the load demand. A day-ahead scheduling (DAS) algorithm for dispatching different resources has been developed in previous studies to determine the optimal operation scheduling for the distributed energy resources at each time interval so that the operational cost of a smart house is minimized. However, demand of houses may be changed in each hour and cannot be exactly predicted one day ahead. System complexity caused by nonlinear dynamics of the fuel cell, as a combined heat and power device, and battery charging and discharging time make it difficult to find the optimal operating point of the system by using the optimization algorithms quickly in online applications. In this paper, the demand forecast error is studied and a near-optimal dispatch strategy by using artificial neural network (ANN) is proposed for the residential energy system when the demand changes are known one hour ahead with respect to the predicted day-ahead values. The day-ahead and hour-ahead optimizations are combined and ANN training inputs are adjusted according to the problem such that the economic dispatch of different energy resources can be achieved by the proposed method compared with previous studies. Using the model of the fuel cell extracted from experimental measurement and real data for the load demand makes the results more applicable in real residential energy systems.

  9. The long-run forecasting of energy prices using the model of shifting trend

    International Nuclear Information System (INIS)

    Radchenko, Stanislav

    2005-01-01

    Developing models for accurate long-term energy price forecasting is an important problem because these forecasts should be useful in determining both supply and demand of energy. On the supply side, long-term forecasts determine investment decisions of energy-related companies. On the demand side, investments in physical capital and durable goods depend on price forecasts of a particular energy type. Forecasting long-run rend movements in energy prices is very important on the macroeconomic level for several developing countries because energy prices have large impacts on their real output, the balance of payments, fiscal policy, etc. Pindyck (1999) argues that the dynamics of real energy prices is mean-reverting to trend lines with slopes and levels that are shifting unpredictably over time. The hypothesis of shifting long-term trend lines was statistically tested by Benard et al. (2004). The authors find statistically significant instabilities for coal and natural gas prices. I continue the research of energy prices in the framework of continuously shifting levels and slopes of trend lines started by Pindyck (1999). The examined model offers both parsimonious approach and perspective on the developments in energy markets. Using the model of depletable resource production, Pindyck (1999) argued that the forecast of energy prices in the model is based on the long-run total marginal cost. Because the model of a shifting trend is based on the competitive behavior, one may examine deviations of oil producers from the competitive behavior by studying the difference between actual prices and long-term forecasts. To construct the long-run forecasts (10-year-ahead and 15-year-ahead) of energy prices, I modify the univariate shifting trends model of Pindyck (1999). I relax some assumptions on model parameters, the assumption of white noise error term, and propose a new Bayesian approach utilizing a Gibbs sampling algorithm to estimate the model with autocorrelation. To

  10. A mathematical model to forecast uranium production

    International Nuclear Information System (INIS)

    Camisani-Calzolari, F.A.G.M.

    1987-01-01

    The uranium production forecasting program described in this paper projects production from reasonably assured, estimated additional and speculative resources in the cost categories of less than $130/kg U. Originally designed to handle South African production, it has been expanded and redimensioned using available published information to forecast production for countries of the Western World. The program forecasts production from up to 400 plants over a period of fifty years and has built-in production models derived from documented historical data of the more important uranium provinces. It is particularly suitable to assess production capabilities on a national and global scale where variations in outputs for the individual plants tend to even out. The program is aimed at putting the uranium potential of any one country into a realistic perspective, and it could thus be useful for planning purposes and marketing strategies

  11. Satellite fixed communications service: A forecast of potential domestic demand through the year 2000. Volume 3: Appendices

    Science.gov (United States)

    Kratochvil, D.; Bowyer, J.; Bhushan, C.; Steinnagel, K.; Kaushal, D.; Al-Kinani, G.

    1983-09-01

    Voice applications, data applications, video applications, impacted baseline forecasts, market distribution model, net long haul forecasts, trunking earth station definition and costs, trunking space segment cost, trunking entrance/exit links, trunking network costs and crossover distances with terrestrial tariffs, net addressable forecasts, capacity requirements, improving spectrum utilization, satellite system market development, and the 30/20 net accessible market are considered.

  12. Development of a forecasting method of a region`s electric power demand. 1. Forecasting economic and social indexes; Chiikibetsu denryoku juyo yosoku shuhono kaihatsu ni tsuite. 1. Keizai shakai shihyo no yosoku

    Energy Technology Data Exchange (ETDEWEB)

    Minato, Y. [Shikoku Research Institute Inc., Kagawa (Japan); Yokoi, Y. [The University of Tokushima, Tokushima (Japan)

    1996-01-20

    This paper relates to the forecasting method of the electric power demands (kWh and kW) of a region, approached by not only time series analysis but economic and social indexes. Those indexes, based on historical statistics such as census and establishment statistics, are rearranged from an administrative division to a managerial division of the electric power company, and applied as fundamental information for forecasting the area`s kWh and also sales promotion. This method of forecasting the area`s kWh is based on the concept that area`s kWh is strongly connected with the population their lifestyle and their activity within the region. In the paper, the framework of the computational model system and forecast result are discussed. The population, number of households and their members, and number of employed persons, are all evaluated. The forecasting method of the area`s population proposed here is based on the concept that the transition of population consists of both natural growth and immigration. By estimating both factors, the future area`s population can be easily forecasted. The information of whether the population is increasing or decreasing is useful for forecasting the region`s kWh and required sales promotion. 8 refs., 8 figs., 3 tabs.

  13. Electricity generation modeling and photovoltaic forecasts in China

    Science.gov (United States)

    Li, Shengnan

    With the economic development of China, the demand for electricity generation is rapidly increasing. To explain electricity generation, we use gross GDP, the ratio of urban population to rural population, the average per capita income of urban residents, the electricity price for industry in Beijing, and the policy shift that took place in China. Ordinary least squares (OLS) is used to develop a model for the 1979--2009 period. During the process of designing the model, econometric methods are used to test and develop the model. The final model is used to forecast total electricity generation and assess the possible role of photovoltaic generation. Due to the high demand for resources and serious environmental problems, China is pushing to develop the photovoltaic industry. The system price of PV is falling; therefore, photovoltaics may be competitive in the future.

  14. How uncertainty in socio-economic variables affects large-scale transport model forecasts

    DEFF Research Database (Denmark)

    Manzo, Stefano; Nielsen, Otto Anker; Prato, Carlo Giacomo

    2015-01-01

    A strategic task assigned to large-scale transport models is to forecast the demand for transport over long periods of time to assess transport projects. However, by modelling complex systems transport models have an inherent uncertainty which increases over time. As a consequence, the longer...... the period forecasted the less reliable is the forecasted model output. Describing uncertainty propagation patterns over time is therefore important in order to provide complete information to the decision makers. Among the existing literature only few studies analyze uncertainty propagation patterns over...

  15. Accounting for the inaccuracies in demand forecasts and construction cost estimations in transport project evaluation

    DEFF Research Database (Denmark)

    Salling, Kim Bang; Leleur, Steen

    2014-01-01

    For decades researchers have claimedthat particularly demand forecasts and construction cost estimations are assigned with/affected by a large degree of uncertainty. Massively, articles,research documents and reports agree that there exists a tendencytowards underestimating the costs...... in demand and cost estimations and hence the evaluation of transport infrastructure projects. Currently, research within this area is scarce and scattered with no commonagreement on how to embed and operationalise the huge amount of empiricaldata that exist within the frame of Optimism Bias. Therefore...... convertingdeterministic benefit-cost ratios (BCRs) into stochasticinterval results. A new data collection (2009–2013) forms the empirical basis for any risk simulation embeddedwithin the so-calledUP database (UNITE project database),revealing the inaccuracy of both construction costs and demandforecasts. Accordingly...

  16. Forecasting Costa Rican Quarterly Growth with Mixed-frequency Models

    Directory of Open Access Journals (Sweden)

    Adolfo Rodríguez Vargas

    2014-11-01

    Full Text Available We assess the utility of mixed-frequency models to forecast the quarterly growth rate of Costa Rican real GDP: we estimate bridge and MiDaS models with several lag lengths using information of the IMAE and compute forecasts (horizons of 0-4 quarters which are compared between themselves, with those of ARIMA models and with those resulting from forecast combinations. Combining the most accurate forecasts is most useful when forecasting in real time, whereas MiDaS forecasts are the best-performing overall: as the forecasting horizon increases, their precisionis affected relatively little; their success rates in predicting the direction of changes in the growth rate are stable, and several forecastsremain unbiased. In particular, forecasts computed from simple MiDaS with 9 and 12 lags are unbiased at all horizons and information sets assessed, and show the highest number of significant differences in forecasting ability in comparison with all other models.

  17. Forecasting US renewables in the national energy modelling system

    International Nuclear Information System (INIS)

    Diedrich, R.; Petersik, T.W.

    2001-01-01

    The Energy information Administration (EIA) of the US Department of Energy (DOE) forecasts US renewable energy supply and demand in the context of overall energy markets using the National Energy Modelling System (NEMS). Renewables compete with other supply and demand options within the residential, commercial, industrial, transportation, and electricity sectors of the US economy. NEMS forecasts renewable energy for grid-connected electricity production within the Electricity Market Module (EM), and characterizes central station biomass, geothermal, conventional hydroelectric, municipal solid waste, solar thermal, solar photovoltaic, and wind-powered electricity generating technologies. EIA's Annual Energy Outlook 1998, projecting US energy markets, forecasts marketed renewables to remain a minor part of US energy production and consumption through to 2020. The USA is expected to remain primarily a fossil energy producer and consumer throughout the period. An alternative case indicates that biomass, wind, and to some extent geothermal power would likely increase most rapidly if the US were to require greater use of renewables for power supply, though electricity prices would increase somewhat. (author)

  18. Daily reservoir inflow forecasting combining QPF into ANNs model

    Science.gov (United States)

    Zhang, Jun; Cheng, Chun-Tian; Liao, Sheng-Li; Wu, Xin-Yu; Shen, Jian-Jian

    2009-01-01

    Daily reservoir inflow predictions with lead-times of several days are essential to the operational planning and scheduling of hydroelectric power system. The demand for quantitative precipitation forecasting (QPF) is increasing in hydropower operation with the dramatic advances in the numerical weather prediction (NWP) models. This paper presents a simple and an effective algorithm for daily reservoir inflow predictions which solicits the observed precipitation, forecasted precipitation from QPF as predictors and discharges in following 1 to 6 days as predicted targets for multilayer perceptron artificial neural networks (MLP-ANNs) modeling. An improved error back-propagation algorithm with self-adaptive learning rate and self-adaptive momentum coefficient is used to make the supervised training procedure more efficient in both time saving and search optimization. Several commonly used error measures are employed to evaluate the performance of the proposed model and the results, compared with that of ARIMA model, show that the proposed model is capable of obtaining satisfactory forecasting not only in goodness of fit but also in generalization. Furthermore, the presented algorithm is integrated into a practical software system which has been severed for daily inflow predictions with lead-times varying from 1 to 6 days of more than twenty reservoirs operated by the Fujian Province Grid Company, China.

  19. Research on industrialization of electric vehicles with its demand forecast using exponential smoothing method

    Directory of Open Access Journals (Sweden)

    Zhanglin Peng

    2015-04-01

    Full Text Available Purpose: Electric vehicles industry has gotten a rapid development in the world, especially in the developed countries, but still has a gap among different countries or regions. The advanced industrialization experiences of the EVs in the developed countries will have a great helpful for the development of EVs industrialization in the developing countries. This paper seeks to research the industrialization path & prospect of American EVs by forecasting electric vehicles demand and its proportion to the whole car sales based on the historical 37 EVs monthly sales and Cars monthly sales spanning from Dec. 2010 to Dec. 2013, and find out the key measurements to help Chinese government and automobile enterprises to promote Chinese EVs industrialization. Design/methodology: Compared with Single Exponential Smoothing method and Double Exponential Smoothing method, Triple exponential smoothing method is improved and applied in this study. Findings: The research results show that:  American EVs industry will keep a sustained growth in the next 3 months.  Price of the EVs, price of fossil oil, number of charging station, EVs technology and the government market & taxation polices have a different influence to EVs sales. So EVs manufacturers and policy-makers can adjust or reformulate some technology tactics and market measurements according to the forecast results. China can learn from American EVs polices and measurements to develop Chinese EVs industry. Originality/value: The main contribution of this paper is to use the triple exponential smoothing method to forecast the electric vehicles demand and its proportion to the whole automobile sales, and analyze the industrial development of Chinese electric vehicles by American EVs industry.

  20. Mesoscale Modeling, Forecasting and Remote Sensing Research.

    Science.gov (United States)

    remote sensing , cyclonic scale diagnostic studies and mesoscale numerical modeling and forecasting are summarized. Mechanisms involved in the release of potential instability are discussed and simulated quantitatively, giving particular attention to the convective formulation. The basic mesoscale model is documented including the equations, boundary condition, finite differences and initialization through an idealized frontal zone. Results of tests including a three dimensional test with real data, tests of convective/mesoscale interaction and tests with a detailed

  1. EXPENSES FORECASTING MODEL IN UNIVERSITY PROJECTS PLANNING

    Directory of Open Access Journals (Sweden)

    Sergei A. Arustamov

    2016-11-01

    Full Text Available The paper deals with mathematical model presentation of cash flows in project funding. We describe different types of expenses linked to university project activities. Problems of project budgeting that contribute most uncertainty have been revealed. As an example of the model implementation we consider calculation of vacation allowance expenses for project participants. We define problems of forecast for funds reservation: calculation based on methodology established by the Ministry of Education and Science calculation according to the vacation schedule and prediction of the most probable amount. A stochastic model for vacation allowance expenses has been developed. We have proposed methods and solution of the problems that increase the accuracy of forecasting for funds reservation based on 2015 data.

  2. The long-term forecast of Pakistan's electricity supply and demand: An application of long range energy alternatives planning

    International Nuclear Information System (INIS)

    Perwez, Usama; Sohail, Ahmed; Hassan, Syed Fahad; Zia, Usman

    2015-01-01

    The long-term forecasting of electricity demand and supply has assumed significant importance in fundamental research to provide sustainable solutions to the electricity issues. In this article, we provide an overview of structure of electric power sector of Pakistan and a summary of historical electricity demand & supply data, current status of divergent set of energy policies as a framework for development and application of a LEAP (Long-range Energy Alternate Planning) model of Pakistan's electric power sector. Pakistan's LEAP model is used to analyze the supply policy selections and demand assumptions for future power generation system on the basis of economics, technicality and implicit environmental implications. Three scenarios are enacted over the study period (2011–2030) which include BAU (Business-As-Usual), NC (New Coal) & GF (Green Future). The results of these scenarios are compared in terms of projected electricity demand & supply, net present cost analysis (discount rate at 4%, 7% and 10%) and GHG (greenhouse gas) emission reductions, along with sensitivity analysis to study the effect of varying parameters on total cost. A concluding section illustrates the policy implications of model for futuristic power generation and environmental policies in Pakistan. - Highlights: • Pakistan-specific electricity demand model is presented. • None of the scenarios exceeded the price of 12 US Cents/kWh. • By 2030, fuel cost is the most dominant factor to influence electricity per unit cost. • By 2030, CO_2 emissions per unit electricity will increase significantly in coal scenario relative to others. • By 2030, the penetration of renewable energy and conservation policies can save 70.6 tWh electricity.

  3. Streamlining On-Demand Access to Joint Polar Satellite System (JPSS) Data Products for Weather Forecasting

    Science.gov (United States)

    Evans, J. D.; Tislin, D.

    2017-12-01

    Observations from the Joint Polar Satellite System (JPSS) support National Weather Service (NWS) forecasters, whose Advanced Weather Interactive Processing System (AWIPS) Data Delivery (DD) will access JPSS data products on demand from the National Environmental Satellite, Data, and Information Service (NESDIS) Product Distribution and Access (PDA) service. Based on the Open Geospatial Consortium (OGC) Web Coverage Service, this on-demand service promises broad interoperability and frugal use of data networks by serving only the data that a user needs. But the volume, velocity, and variety of JPSS data products impose several challenges to such a service. It must be efficient to handle large volumes of complex, frequently updated data, and to fulfill many concurrent requests. It must offer flexible data handling and delivery, to work with a diverse and changing collection of data, and to tailor its outputs into products that users need, with minimal coordination between provider and user communities. It must support 24x7 operation, with no pauses in incoming data or user demand; and it must scale to rapid changes in data volume, variety, and demand as new satellites launch, more products come online, and users rely increasingly on the service. We are addressing these challenges in order to build an efficient and effective on-demand JPSS data service. For example, on-demand subsetting by many users at once may overload a server's processing capacity or its disk bandwidth - unless alleviated by spatial indexing, geolocation transforms, or pre-tiling and caching. Filtering by variable (/ band / layer) may also alleviate network loads, and provide fine-grained variable selection; to that end we are investigating how best to provide random access into the variety of spatiotemporal JPSS data products. Finally, producing tailored products (derivatives, aggregations) can boost flexibility for end users; but some tailoring operations may impose significant server loads

  4. Mathematic simulation of mining company’s power demand forecast (by example of “Neryungri” coal strip mine)

    Science.gov (United States)

    Antonenkov, D. V.; Solovev, D. B.

    2017-10-01

    The article covers the aspects of forecasting and consideration of the wholesale market environment in generating the power demand forecast. Major mining companies that operate in conditions of the present day power market have to provide a reliable energy demand request for a certain time period ahead, thus ensuring sufficient reduction of financial losses associated with deviations of the actual power demand from the expected figures. Normally, under the power supply agreement, the consumer is bound to provide a per-month and per-hour request annually. It means that the consumer has to generate one-month-ahead short-term and medium-term hourly forecasts. The authors discovered that empiric distributions of “Yakutugol”, Holding Joint Stock Company, power demand belong to the sustainable rank parameter H-distribution type used for generating forecasts based on extrapolation of such distribution parameters. For this reason they justify the need to apply the mathematic rank analysis in short-term forecasting of the contracted power demand of “Neryungri” coil strip mine being a component of the technocenosis-type system of the mining company “Yakutugol”, Holding JSC.

  5. Forecasted balance sheet of the power supply and demand equilibrium in France. 2007 issue

    International Nuclear Information System (INIS)

    2007-01-01

    Conformably with the law from February 10, 2000, RTE, the French power transportation network is liable for establishing, at least every two year, a pluri-annual forecasted balance sheet of the power supply and demand equilibrium. Its aim is to identify the unbalance risks between the power consumption and the available generation means. To perform this technical expertise, RTE establishes some forecasts of domestic power consumption which are compared to the known perspectives of evolution of the production means. Two main changes have been taken into consideration in this analysis: the improvement of the energy efficiency, and the decay of power consumption in the big industry. Therefore, the new reference scenario indicates a consumption growth of 1.3% per year up to 2010 and 1% only for the next decade, i.e. 534 TWh of annual power consumption for 2020. On the offer side, several projects of new production means (mainly gas combined cycles) have been accepted during the last two years which represent more than 13000 MW of additional power. On the other hand, the decommissioning of several old fossil fuel power plants is foreseen for 2015 and represent 4400 MW. The offer based on decentralized production means is changing too, mainly thanks to the development of the wind power industry. In order to reach the supply-demand equilibrium, an acceptability threshold for failure duration has been defined by the public authorities and is limited to 3 hours per year. According to the reference scenario, the security of supplies in France seems to be reasonably assured for the next five years to come. A complement of 10500 MW will be necessary to meet the demand foreseen for 2020. (J.S.)

  6. A fuzzy inference model for short-term load forecasting

    International Nuclear Information System (INIS)

    Mamlook, Rustum; Badran, Omar; Abdulhadi, Emad

    2009-01-01

    This paper is concerned with the short-term load forecasting (STLF) in power system operations. It provides load prediction for generation scheduling and unit commitment decisions, and therefore precise load forecasting plays an important role in reducing the generation cost and the spinning reserve capacity. Short-term electricity demand forecasting (i.e., the prediction of hourly loads (demand)) is one of the most important tools by which an electric utility/company plans, dispatches the loading of generating units in order to meet system demand. The accuracy of the dispatching system, which is derived from the accuracy of the forecasting algorithm used, will determine the economics of the operation of the power system. The inaccuracy or large error in the forecast simply means that load matching is not optimized and consequently the generation and transmission systems are not being operated in an efficient manner. In the present study, a proposed methodology has been introduced to decrease the forecasted error and the processing time by using fuzzy logic controller on an hourly base. Therefore, it predicts the effect of different conditional parameters (i.e., weather, time, historical data, and random disturbances) on load forecasting in terms of fuzzy sets during the generation process. These parameters are chosen with respect to their priority and importance. The forecasted values obtained by fuzzy method were compared with the conventionally forecasted ones. The results showed that the STLF of the fuzzy implementation have more accuracy and better outcomes

  7. Modelling demand for crude oil products in Spain

    International Nuclear Information System (INIS)

    Pedregal, D.J.; Dejuan, O.; Gomez, N.; Tobarra, M.A.

    2009-01-01

    This paper develops an econometric model for the five most important crude oil products demand in Spain. The aim is the estimation of a range of elasticities of such demands that would serve as the basis for an applied general equilibrium model used for forecasting energy demand in a broader framework. The main distinctive features of the system with respect to previous literature are (1) it takes advantage of monthly information coming from very different information sources and (2) multivariate unobserved components (UC) models are implemented allowing for a separate analysis of long- and short-run relations. UC models decompose time series into a number of unobserved though economic meaningful components mainly trend, seasonal and irregular. A module is added to such structure to take into account the influence of exogenous variables necessary to compute price, cross and income elasticities. Since all models implemented are multivariate in nature, the demand components are allowed to interact among them through the system noises (similar to a seemingly unrelated equations model). The results show unambiguously that the main factor driving demand is real income with prices having little impact on energy consumption. (author)

  8. Modelling demand for crude oil products in Spain

    Energy Technology Data Exchange (ETDEWEB)

    Pedregal, D.J. [Escuela Tecnica Superior de Ingenieros Industriales and Instituto de Matematica Aplicada a la Ciencia y la Ingenieria (IMACI), Universidad de Castilla-La Mancha (UCLM), Avenida Camilo Jose Cela s/n, 13071 Ciudad Real (Spain); Dejuan, O.; Gomez, N.; Tobarra, M.A. [Facultad de Ciencias Economicas y Empresariales, Universidad de Castilla-La Mancha (UCLM) (Spain)

    2009-11-15

    This paper develops an econometric model for the five most important crude oil products demand in Spain. The aim is the estimation of a range of elasticities of such demands that would serve as the basis for an applied general equilibrium model used for forecasting energy demand in a broader framework. The main distinctive features of the system with respect to previous literature are (1) it takes advantage of monthly information coming from very different information sources and (2) multivariate unobserved components (UC) models are implemented allowing for a separate analysis of long- and short-run relations. UC models decompose time series into a number of unobserved though economic meaningful components mainly trend, seasonal and irregular. A module is added to such structure to take into account the influence of exogenous variables necessary to compute price, cross and income elasticities. Since all models implemented are multivariate in nature, the demand components are allowed to interact among them through the system noises (similar to a seemingly unrelated equations model). The results show unambiguously that the main factor driving demand is real income with prices having little impact on energy consumption. (author)

  9. Weather Research and Forecasting (WRF) Regional Atmospheric Model: Samoa

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Weather Research and Forecasting (WRF) mesoscale numerical weather prediction model 7-day hourly forecast for the region surrounding the islands of Samoa at...

  10. Weather Research and Forecasting (WRF) Regional Atmospheric Model: Guam

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Weather Research and Forecasting (WRF) mesoscale numerical weather prediction model 7-day hourly forecast for the region surrounding the island of Guam at...

  11. Weather Research and Forecasting (WRF) Regional Atmospheric Model: Oahu

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Weather Research and Forecasting (WRF) mesoscale numerical weather prediction model 3.5-day hourly forecast for the region surrounding the Hawaiian island of Oahu at...

  12. Weather Research and Forecasting (WRF) Regional Atmospheric Model: CNMI

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Weather Research and Forecasting (WRF) mesoscale numerical weather prediction model 7-day hourly forecast for the region surrounding the Commonwealth of the Northern...

  13. AIRLINE ACTIVITY FORECASTING BY REGRESSION MODELS

    Directory of Open Access Journals (Sweden)

    Н. Білак

    2012-04-01

    Full Text Available Proposed linear and nonlinear regression models, which take into account the equation of trend and seasonality indices for the analysis and restore the volume of passenger traffic over the past period of time and its prediction for future years, as well as the algorithm of formation of these models based on statistical analysis over the years. The desired model is the first step for the synthesis of more complex models, which will enable forecasting of passenger (income level airline with the highest accuracy and time urgency.

  14. Modeling and Forecasting Large Realized Covariance Matrices and Portfolio Choice

    NARCIS (Netherlands)

    Callot, Laurent A.F.; Kock, Anders B.; Medeiros, Marcelo C.

    2017-01-01

    We consider modeling and forecasting large realized covariance matrices by penalized vector autoregressive models. We consider Lasso-type estimators to reduce the dimensionality and provide strong theoretical guarantees on the forecast capability of our procedure. We show that we can forecast

  15. forecasting with nonlinear time series model: a monte-carlo

    African Journals Online (AJOL)

    PUBLICATIONS1

    erated recursively up to any step greater than one. For nonlinear time series model, point forecast for step one can be done easily like in the linear case but forecast for a step greater than or equal to ..... London. Franses, P. H. (1998). Time series models for business and Economic forecasting, Cam- bridge University press.

  16. The Red Sea Modeling and Forecasting System

    KAUST Repository

    Hoteit, Ibrahim

    2015-04-01

    Despite its importance for a variety of socio-economical and political reasons and the presence of extensive coral reef gardens along its shores, the Red Sea remains one of the most under-studied large marine physical and biological systems in the global ocean. This contribution will present our efforts to build advanced modeling and forecasting capabilities for the Red Sea, which is part of the newly established Saudi ARAMCO Marine Environmental Research Center at KAUST (SAMERCK). Our Red Sea modeling system compromises both regional and nested costal MIT general circulation models (MITgcm) with resolutions varying between 8 km and 250 m to simulate the general circulation and mesoscale dynamics at various spatial scales, a 10-km resolution Weather Research Forecasting (WRF) model to simulate the atmospheric conditions, a 4-km resolution European Regional Seas Ecosystem Model (ERSEM) to simulate the Red Sea ecosystem, and a 1-km resolution WAVEWATCH-III model to simulate the wind driven surface waves conditions. We have also implemented an oil spill model, and a probabilistic dispersion and larval connectivity modeling system (CMS) based on a stochastic Lagrangian framework and incorporating biological attributes. We are using the models outputs together with available observational data to study all aspects of the Red Sea circulations. Advanced monitoring capabilities are being deployed in the Red Sea as part of the SAMERCK, comprising multiple gliders equipped with hydrographical and biological sensors, high frequency (HF) surface current/wave mapping, buoys/ moorings, etc, complementing the available satellite ocean and atmospheric observations and Automatic Weather Stations (AWS). The Red Sea models have also been equipped with advanced data assimilation capabilities. Fully parallel ensemble-based Kalman filtering (EnKF) algorithms have been implemented with the MITgcm and ERSEM for assimilating all available multivariate satellite and in-situ data sets. We

  17. The Red Sea Modeling and Forecasting System

    KAUST Repository

    Hoteit, Ibrahim; Gopalakrishnan, Ganesh; Latif, Hatem; Toye, Habib; Zhan, Peng; Kartadikaria, Aditya R.; Viswanadhapalli, Yesubabu; Yao, Fengchao; Triantafyllou, George; Langodan, Sabique; Cavaleri, Luigi; Guo, Daquan; Johns, Burt

    2015-01-01

    Despite its importance for a variety of socio-economical and political reasons and the presence of extensive coral reef gardens along its shores, the Red Sea remains one of the most under-studied large marine physical and biological systems in the global ocean. This contribution will present our efforts to build advanced modeling and forecasting capabilities for the Red Sea, which is part of the newly established Saudi ARAMCO Marine Environmental Research Center at KAUST (SAMERCK). Our Red Sea modeling system compromises both regional and nested costal MIT general circulation models (MITgcm) with resolutions varying between 8 km and 250 m to simulate the general circulation and mesoscale dynamics at various spatial scales, a 10-km resolution Weather Research Forecasting (WRF) model to simulate the atmospheric conditions, a 4-km resolution European Regional Seas Ecosystem Model (ERSEM) to simulate the Red Sea ecosystem, and a 1-km resolution WAVEWATCH-III model to simulate the wind driven surface waves conditions. We have also implemented an oil spill model, and a probabilistic dispersion and larval connectivity modeling system (CMS) based on a stochastic Lagrangian framework and incorporating biological attributes. We are using the models outputs together with available observational data to study all aspects of the Red Sea circulations. Advanced monitoring capabilities are being deployed in the Red Sea as part of the SAMERCK, comprising multiple gliders equipped with hydrographical and biological sensors, high frequency (HF) surface current/wave mapping, buoys/ moorings, etc, complementing the available satellite ocean and atmospheric observations and Automatic Weather Stations (AWS). The Red Sea models have also been equipped with advanced data assimilation capabilities. Fully parallel ensemble-based Kalman filtering (EnKF) algorithms have been implemented with the MITgcm and ERSEM for assimilating all available multivariate satellite and in-situ data sets. We

  18. Development of a sales forecasting model for canopy windows

    OpenAIRE

    2014-01-01

    M.Com. (Business Management) Forecasting is an important function used in a wide range of business planning or decision-making situations. The purpose ofthis study was to build a sales forecasting model that would be practical and cost effective, from the various forecasting methods and techniques available. Various forecast models, methods and techniques are outlined in the initial part of this study by the author. The author has outlined some of the fundamentals and limitations that unde...

  19. Forecast of energy demand in China and introduction of nuclear power using the clean development mechanism

    International Nuclear Information System (INIS)

    Ikemoto, Ichiro

    2003-01-01

    As an economic energy source with low greenhouse gas emissions and essentially no resource limitations, nuclear power is a promising option for meeting the rapidly growing energy demands of China that is being driven by rapid population and economic growth. This paper examines an introduction scenario for nuclear power in China by using the clean development mechanism, based on quantitative evaluation of energy demand forecasts and the nuclear fuel cycle through 2100. The results of the case study concluded that in the short to mid term, large-scale light water reactors will primarily be sited in coastal areas where infrastructure development is advanced. In the future, as dispersed power sources in inland areas, small scale FBRs will be preferred due to their promising safety, operation and maintenance characteristics, ease of transportation of plant equipment and plant construction and the possibility of on-site nuclear fuel cycle. Evaluation of nuclear fuel cycle showed that this introduction scenario is feasible considering natural Uranium demand, Uranium enrichment capacity and reprocessing capacity. (author)

  20. An energy supply and demand model for South Africa

    International Nuclear Information System (INIS)

    Silberberg, R.B.

    1981-08-01

    The topic of this thesis is the development of a model of energy supply and demand in South Africa to project energy flows up to the year 2005 and also to assess the implications of policy actions. In this thesis, a method of determining energy flows taking generally accepted economic and technological factors into account is developed. Also, various situations are tested, in order to determine the following: 1) Likely energy flows up to 2005, as well as possible upper and lower bounds. 2) Significant final demand sectors, in terms of energy requirements. 3) The effects of changes in supply and demand sector technology. 4) The implications of policy options such as enengy independence. Owing to the different characteristics of the energy supply and demand sectors, the following techniques were used: 1) Energy demand sectors. 2) Energy supply sectors. 3) Supply/demand equilibration 4) Output. Through successive runs of the model, the policy-maker is able to indentify likely values of energy flows, as well as upper and lower boundaries given the described set of assumptions. The following statements are made as conclusions: 1) The growth rate of domectic coal demand is likely to be 5,5 % per annum up to 2005. 2) The Iron and Steel industry and the Mining industry have the greatest potential effect on coal demand. 3) The coal growth rate stated above implies certain improvements in coal to liquid fuel and electricity conversion. 4) The coal demands of oil energy independence are listed, highlighting the fact that major coal exports and energy independence may be mutually exclusive. Other conclusions regarding capital requirements, oil imports and coking coal utilization are described. The model permits a consistent and inteqrated forecast of national energy flows to be made, providing the policymaker with projections that include the effects of uncertainty with regard to future technologies and economic output. This feature is crucial for policy formulation

  1. Forecasting Model for IPTV Service in Korea Using Bootstrap Ridge Regression Analysis

    Science.gov (United States)

    Lee, Byoung Chul; Kee, Seho; Kim, Jae Bum; Kim, Yun Bae

    The telecom firms in Korea are taking new step to prepare for the next generation of convergence services, IPTV. In this paper we described our analysis on the effective method for demand forecasting about IPTV broadcasting. We have tried according to 3 types of scenarios based on some aspects of IPTV potential market and made a comparison among the results. The forecasting method used in this paper is the multi generation substitution model with bootstrap ridge regression analysis.

  2. Teaching Aggregate Demand and Supply Models

    Science.gov (United States)

    Wells, Graeme

    2010-01-01

    The author analyzes the inflation-targeting model that underlies recent textbook expositions of the aggregate demand-aggregate supply approach used in introductory courses in macroeconomics. He shows how numerical simulations of a model with inflation inertia can be used as a tool to help students understand adjustments in response to demand and…

  3. How (In)accurate are demand forecasts in public works projects?

    DEFF Research Database (Denmark)

    Flyvbjerg, Bent; Skamris, Mette; Buhl, Søren Ladegaard

    2005-01-01

    by forecasters. The causes of inaccuracy in forecasts are different for rail and road projects, with deliberately slanted forecasts playing a larger role for rail than for road. The cure is transparency, accountability, and new forecasting methods. The challenge is to change the governance structures...

  4. Limited Area Forecasting and Statistical Modelling for Wind Energy Scheduling

    DEFF Research Database (Denmark)

    Rosgaard, Martin Haubjerg

    forecast accuracy for operational wind power scheduling. Numerical weather prediction history and scales of atmospheric motion are summarised, followed by a literature review of limited area wind speed forecasting. Hereafter, the original contribution to research on the topic is outlined. The quality...... control of wind farm data used as forecast reference is described in detail, and a preliminary limited area forecasting study illustrates the aggravation of issues related to numerical orography representation and accurate reference coordinates at ne weather model resolutions. For the o shore and coastal...... sites studied limited area forecasting is found to deteriorate wind speed prediction accuracy, while inland results exhibit a steady forecast performance increase with weather model resolution. Temporal smoothing of wind speed forecasts is shown to improve wind power forecast performance by up to almost...

  5. Real-time Social Internet Data to Guide Forecasting Models

    Energy Technology Data Exchange (ETDEWEB)

    Del Valle, Sara Y. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-09-20

    Our goal is to improve decision support by monitoring and forecasting events using social media, mathematical models, and quantifying model uncertainty. Our approach is real-time, data-driven forecasts with quantified uncertainty: Not just for weather anymore. Information flow from human observations of events through an Internet system and classification algorithms is used to produce quantitatively uncertain forecast. In summary, we want to develop new tools to extract useful information from Internet data streams, develop new approaches to assimilate real-time information into predictive models, validate approaches by forecasting events, and our ultimate goal is to develop an event forecasting system using mathematical approaches and heterogeneous data streams.

  6. Uncertainty calculation in transport models and forecasts

    DEFF Research Database (Denmark)

    Manzo, Stefano; Prato, Carlo Giacomo

    Transport projects and policy evaluations are often based on transport model output, i.e. traffic flows and derived effects. However, literature has shown that there is often a considerable difference between forecasted and observed traffic flows. This difference causes misallocation of (public...... implemented by using an approach based on stochastic techniques (Monte Carlo simulation and Bootstrap re-sampling) or scenario analysis combined with model sensitivity tests. Two transport models are used as case studies: the Næstved model and the Danish National Transport Model. 3 The first paper...... in a four-stage transport model related to different variable distributions (to be used in a Monte Carlo simulation procedure), assignment procedures and levels of congestion, at both the link and the network level. The analysis used as case study the Næstved model, referring to the Danish town of Næstved2...

  7. Modelling the Demand for Money in Pakistan

    OpenAIRE

    Qayyum, Abdul

    2005-01-01

    The study estimates the dynamic demand for money (M2) function in Pakistan by employing cointegration analysis and error correction mechanism. The parameters of preferred model are found to be super-exogenous for the relevant class of interventions. It is found that the rate of inflation is an important determinant of money demand in Pakistan. The analysis reveals that the rates of interest, market rate, and bond yield are important for the long-run money demand behaviour. Since the preferred...

  8. Demand Uncertainty

    DEFF Research Database (Denmark)

    Nguyen, Daniel Xuyen

    This paper presents a model of trade that explains why firms wait to export and why many exporters fail. Firms face uncertain demands that are only realized after the firm enters the destination. The model retools the timing of uncertainty resolution found in productivity heterogeneity models....... This retooling addresses several shortcomings. First, the imperfect correlation of demands reconciles the sales variation observed in and across destinations. Second, since demands for the firm's output are correlated across destinations, a firm can use previously realized demands to forecast unknown demands...... in untested destinations. The option to forecast demands causes firms to delay exporting in order to gather more information about foreign demand. Third, since uncertainty is resolved after entry, many firms enter a destination and then exit after learning that they cannot profit. This prediction reconciles...

  9. Uncertainty Analysis of Multi-Model Flood Forecasts

    Directory of Open Access Journals (Sweden)

    Erich J. Plate

    2015-12-01

    Full Text Available This paper demonstrates, by means of a systematic uncertainty analysis, that the use of outputs from more than one model can significantly improve conditional forecasts of discharges or water stages, provided the models are structurally different. Discharge forecasts from two models and the actual forecasted discharge are assumed to form a three-dimensional joint probability density distribution (jpdf, calibrated on long time series of data. The jpdf is decomposed into conditional probability density distributions (cpdf by means of Bayes formula, as suggested and explored by Krzysztofowicz in a series of papers. In this paper his approach is simplified to optimize conditional forecasts for any set of two forecast models. Its application is demonstrated by means of models developed in a study of flood forecasting for station Stung Treng on the middle reach of the Mekong River in South-East Asia. Four different forecast models were used and pairwise combined: forecast with no model, with persistence model, with a regression model, and with a rainfall-runoff model. Working with cpdfs requires determination of dependency among variables, for which linear regressions are required, as was done by Krzysztofowicz. His Bayesian approach based on transforming observed probability distributions of discharges and forecasts into normal distributions is also explored. Results obtained with his method for normal prior and likelihood distributions are identical to results from direct multiple regressions. Furthermore, it is shown that in the present case forecast accuracy is only marginally improved, if Weibull distributed basic data were converted into normally distributed variables.

  10. Modeling, Forecasting and Mitigating Extreme Earthquakes

    Science.gov (United States)

    Ismail-Zadeh, A.; Le Mouel, J.; Soloviev, A.

    2012-12-01

    Recent earthquake disasters highlighted the importance of multi- and trans-disciplinary studies of earthquake risk. A major component of earthquake disaster risk analysis is hazards research, which should cover not only a traditional assessment of ground shaking, but also studies of geodetic, paleoseismic, geomagnetic, hydrological, deep drilling and other geophysical and geological observations together with comprehensive modeling of earthquakes and forecasting extreme events. Extreme earthquakes (large magnitude and rare events) are manifestations of complex behavior of the lithosphere structured as a hierarchical system of blocks of different sizes. Understanding of physics and dynamics of the extreme events comes from observations, measurements and modeling. A quantitative approach to simulate earthquakes in models of fault dynamics will be presented. The models reproduce basic features of the observed seismicity (e.g., the frequency-magnitude relationship, clustering of earthquakes, occurrence of extreme seismic events). They provide a link between geodynamic processes and seismicity, allow studying extreme events, influence of fault network properties on seismic patterns and seismic cycles, and assist, in a broader sense, in earthquake forecast modeling. Some aspects of predictability of large earthquakes (how well can large earthquakes be predicted today?) will be also discussed along with possibilities in mitigation of earthquake disasters (e.g., on 'inverse' forensic investigations of earthquake disasters).

  11. Motor fuel demand analysis - applied modelling in the European union

    International Nuclear Information System (INIS)

    Chorazewiez, S.

    1998-01-01

    Motor fuel demand in Europe amounts to almost half of petroleum products consumption and to thirty percent of total final energy consumption. This study considers, Firstly, the energy policies of different European countries and the ways in which the consumption of motor gasoline and automotive gas oil has developed. Secondly it provides an abstract of demand models in the energy sector, illustrating their specific characteristics. Then it proposes an economic model of automotive fuel consumption, showing motor gasoline and automotive gas oil separately over a period of thirty years (1960-1993) for five main countries in the European Union. Finally, forecasts of consumption of gasoline and diesel up to the year 2020 are given for different scenarios. (author)

  12. Hospital daily outpatient visits forecasting using a combinatorial model based on ARIMA and SES models.

    Science.gov (United States)

    Luo, Li; Luo, Le; Zhang, Xinli; He, Xiaoli

    2017-07-10

    Accurate forecasting of hospital outpatient visits is beneficial for the reasonable planning and allocation of healthcare resource to meet the medical demands. In terms of the multiple attributes of daily outpatient visits, such as randomness, cyclicity and trend, time series methods, ARIMA, can be a good choice for outpatient visits forecasting. On the other hand, the hospital outpatient visits are also affected by the doctors' scheduling and the effects are not pure random. Thinking about the impure specialty, this paper presents a new forecasting model that takes cyclicity and the day of the week effect into consideration. We formulate a seasonal ARIMA (SARIMA) model on a daily time series and then a single exponential smoothing (SES) model on the day of the week time series, and finally establish a combinatorial model by modifying them. The models are applied to 1 year of daily visits data of urban outpatients in two internal medicine departments of a large hospital in Chengdu, for forecasting the daily outpatient visits about 1 week ahead. The proposed model is applied to forecast the cross-sectional data for 7 consecutive days of daily outpatient visits over an 8-weeks period based on 43 weeks of observation data during 1 year. The results show that the two single traditional models and the combinatorial model are simplicity of implementation and low computational intensiveness, whilst being appropriate for short-term forecast horizons. Furthermore, the combinatorial model can capture the comprehensive features of the time series data better. Combinatorial model can achieve better prediction performance than the single model, with lower residuals variance and small mean of residual errors which needs to be optimized deeply on the next research step.

  13. Perturbations of modeling and forecast of karachi coastal region seawater

    International Nuclear Information System (INIS)

    Hussain, M.A.; Abbas, S.; Ansari, M.R.K.; Zaffar, A.

    2013-01-01

    Global warming is now a stark reality affecting the humanity in many hazardous ways. Continuous floods in Pakistan in past two years are an eye opener in this regard. A great loss of property, agriculture and life as a result of these floods suggests for an intelligent monitoring of the future projections of climate change and global warming. This is necessary because the harmful impacts of natural hazards can be coped and alleviated with a good planning in advance. This monitoring demands for enhanced forecasting capabilities, use of better analytical techniques and a clear determination and study of the controlling factors. Karachi is a coastal city which is also the industrial hub of Pakistan. Moreover, it is among one of the largest metropolitans of the world. So expectedly is most suitable for the study of high level of complex natural and anthropogenic activities. It is peculiar in the sense that it has two summer seasons, a situation scarcely observable on the globe. Here, summer season seawater temperature fluctuations are studied with the help of Seasonal Autoregressive Integrated Moving Average (SARIMA) models and short- and long-term forecasts are made. Our short-term forecasts determine months for the summer wise temperature extremes. It appears that the months of May, June, July and August are the months of extreme temperature for the first summer and October is the month of extreme temperature for the second summer. The long-term forecasts predict that 2014, 2016, 2018, and 2019 will be the years of warm summers. The analysis appearing here would be useful for coastal-urban planners in emphasizing the impact of seawater extreme temperatures on urban industrial activities, etc. (author)

  14. Modeling and forecasting energy consumption for heterogeneous buildings using a physical–statistical approach

    International Nuclear Information System (INIS)

    Lü, Xiaoshu; Lu, Tao; Kibert, Charles J.; Viljanen, Martti

    2015-01-01

    Highlights: • This paper presents a new modeling method to forecast energy demands. • The model is based on physical–statistical approach to improving forecast accuracy. • A new method is proposed to address the heterogeneity challenge. • Comparison with measurements shows accurate forecasts of the model. • The first physical–statistical/heterogeneous building energy modeling approach is proposed and validated. - Abstract: Energy consumption forecasting is a critical and necessary input to planning and controlling energy usage in the building sector which accounts for 40% of the world’s energy use and the world’s greatest fraction of greenhouse gas emissions. However, due to the diversity and complexity of buildings as well as the random nature of weather conditions, energy consumption and loads are stochastic and difficult to predict. This paper presents a new methodology for energy demand forecasting that addresses the heterogeneity challenges in energy modeling of buildings. The new method is based on a physical–statistical approach designed to account for building heterogeneity to improve forecast accuracy. The physical model provides a theoretical input to characterize the underlying physical mechanism of energy flows. Then stochastic parameters are introduced into the physical model and the statistical time series model is formulated to reflect model uncertainties and individual heterogeneity in buildings. A new method of model generalization based on a convex hull technique is further derived to parameterize the individual-level model parameters for consistent model coefficients while maintaining satisfactory modeling accuracy for heterogeneous buildings. The proposed method and its validation are presented in detail for four different sports buildings with field measurements. The results show that the proposed methodology and model can provide a considerable improvement in forecasting accuracy

  15. Neural Network Models for Time Series Forecasts

    OpenAIRE

    Tim Hill; Marcus O'Connor; William Remus

    1996-01-01

    Neural networks have been advocated as an alternative to traditional statistical forecasting methods. In the present experiment, time series forecasts produced by neural networks are compared with forecasts from six statistical time series methods generated in a major forecasting competition (Makridakis et al. [Makridakis, S., A. Anderson, R. Carbone, R. Fildes, M. Hibon, R. Lewandowski, J. Newton, E. Parzen, R. Winkler. 1982. The accuracy of extrapolation (time series) methods: Results of a ...

  16. Modelling curves of manufacturing feasibilities and demand

    Directory of Open Access Journals (Sweden)

    Soloninko K.S.

    2017-03-01

    Full Text Available The authors research the issue of functional properties of curves of manufacturing feasibilities and demand. Settlement of the problem, and its connection with important scientific and practical tasks. According to its nature, the market economy is unstable and is in constant movement. Economy has an effective instrument for explanation of changes in economic environment; this tool is called the modelling of economic processes. The modelling of economic processes depends first and foremost on the building of economic model which is the base for the formalization of economic process, that is, the building of mathematical model. The effective means for formalization of economic process is the creation of the model of hypothetic or imaginary economy. The building of demand model is significant for the market of goods and services. The problem includes the receiving (as the result of modelling definite functional properties of curves of manufacturing feasibilities and demand according to which one can determine their mathematical model. Another problem lies in obtaining majorant properties of curves of joint demand on the market of goods and services. Analysis of the latest researches and publications. Many domestic and foreign scientists dedicated their studies to the researches and building of the models of curves of manufacturing feasibilities and demand. In spite of considerable work of the scientists, such problems as functional properties of the curves and their practical use in modelling. The purpose of the article is to describe functional properties of curves of manufacturing feasibilities and demand on the market of goods and services on the base of modelling of their building. Scientific novelty and practical value. The theoretical regulations (for functional properties of curves of manufacturing feasibilities and demand received as a result of the present research, that is convexity, give extra practical possibilities in a microeconomic

  17. Adaptive methods for flood forecasting using linear regression models in the upper basin of Senegal River

    International Nuclear Information System (INIS)

    Sambou, Soussou

    2004-01-01

    In flood forecasting modelling, large basins are often considered as hydrological systems with multiple inputs and one output. Inputs are hydrological variables such rainfall, runoff and physical characteristics of basin; output is runoff. Relating inputs to output can be achieved using deterministic, conceptual, or stochastic models. Rainfall runoff models generally lack of accuracy. Physical hydrological processes based models, either deterministic or conceptual are highly data requirement demanding and by the way very complex. Stochastic multiple input-output models, using only historical chronicles of hydrological variables particularly runoff are by the way very popular among the hydrologists for large river basin flood forecasting. Application is made on the Senegal River upstream of Bakel, where the River is formed by the main branch, Bafing, and two tributaries, Bakoye and Faleme; Bafing being regulated by Manantaly Dam. A three inputs and one output model has been used for flood forecasting on Bakel. Influence of the lead forecasting, and of the three inputs taken separately, then associated two by two, and altogether has been verified using a dimensionless variance as criterion of quality. Inadequacies occur generally between model output and observations; to put model in better compliance with current observations, we have compared four parameter updating procedure, recursive least squares, Kalman filtering, stochastic gradient method, iterative method, and an AR errors forecasting model. A combination of these model updating have been used in real time flood forecasting.(Author)

  18. Space weather: Modeling and forecasting ionospheric

    International Nuclear Information System (INIS)

    Calzadilla Mendez, A.

    2008-01-01

    Full text: Space weather is the set of phenomena and interactions that take place in the interplanetary medium. It is regulated primarily by the activity originating in the Sun and affects both the artificial satellites that are outside of the protective cover of the Earth's atmosphere as the rest of the planets in the solar system. Among the phenomena that are of great relevance and impact on Earth are the auroras and geomagnetic storms , these are a direct result of irregularities in the flow of the solar wind and the interplanetary magnetic field . Given the high complexity of the physical phenomena involved (magnetic reconnection , particle inlet and ionizing radiation to the atmosphere) one of the great scientific challenges today is to forecast the state of plasmatic means either the interplanetary medium , the magnetosphere and ionosphere , for their importance to the development of various human activities such as radio , global positioning , navigation, etc. . It briefly address some of the international ionospheric modeling methods and contributions and participation that currently has the space group of the Institute of Geophysics Geophysics and Astronomy (IGA) in these activities of modeling and forecasting ionospheric. (author)

  19. The forecast of primary energy demand and electricity demand and the participation of coal in covering this demand; Prognoza zapotrzebowania na energie pierwotna i elektryczna oraz udziat wegla w pokryciu tego zapotrzebowania

    Energy Technology Data Exchange (ETDEWEB)

    Solinski, J.

    2004-07-01

    The paper presents a preliminary forecast of Poland's future coal demand until 2030, particularly the demand for electric power. Two scenarios are examined - one of average GDP growth rate of 3.5% and a second of 4.5%. Implementation of the first scenario would enable Poland to achieve in 2030 today's levels of per capita electricity consumption in main EU countries, with a forecast consumption level of 280 TWh. By 2030, coal's share in electricity production would fall to about 7%, the remainder being from gas, nuclear and renewable sources. 11 refs., 5 tabs.

  20. Previsão de demanda: uma aplicação dos modelos Box-Jenkins na área de assistência técnica de computadores pessoais Demand forecasting: an application of the Box-Jenkins models in the technical assistance of personal computer

    Directory of Open Access Journals (Sweden)

    Liane Werner

    2003-04-01

    Full Text Available A previsão de demanda é uma atividade importante para auxiliar na determinação dos recursos necessários para a empresa. Neste artigo, a metodologia de Box-Jenkins foi utilizada para analisar dados históricos de uma empresa de assistência técnica de computadores pessoais e obter previsões do número de atendimentos. A empresa estudada apresenta três tipos de clientes diferenciados: contratos, garantia e avulsos. Como cada segmento de clientes tem suas peculiaridades, a previsão de demanda foi direcionada a cada tipo, buscando representar o comportamento de tendência e a sazonalidade por meio dos modelos de Box-Jenkins. A obtenção dos modelos mais adequados foi baseada na análise de gráficos e em testes estatísticos próprios da metodologia, os quais subsidiaram a decisão de adotar o modelo AR(1 para prever o número de atendimentos dos clientes tipo contrato, o modelo ARIMA(2,1,0 para os clientes tipo garantia e um modelo sazonal SARIMA(0,1,0(0,1,112 para os clientes tipo avulsos.Demand forecasting is an important tool to aid on the determination of necessary resources of a given company. In this paper, the Box-Jenkins methodology was applied to analyze historical data of a personal computer repair company and provide a forecast for the number of service calls. The company studied presents three segments of clients: contracts, warranty, and on-call. As each client has it own characteristics, in order to better represent tendency and seasonality behavior through the Box-Jenkins models, a specific forecasting model was developed for each segment. The choice of the optimum models were based into graphic analysis and statistical tests, which lead to the decision of adopting the AR(1 model to foresee the number of contract clients, the ARIMA(2,1,0 model for warranty clients and the SARIMA(0,1,0(0,1,112 seasonal model for on-call clients.

  1. Modelling energy demand of Croatian industry sector

    DEFF Research Database (Denmark)

    Medić, Zlatko Bačelić; Pukšec, Tomislav; Mathiesen, Brian Vad

    2014-01-01

    Industry represents one of the most interesting sectors when analysing Croatian final energy demand. Croatian industry represents 20% of nation's GDP and employs 25% of total labour force making it a significant subject for the economy. Today, with around 60 PJ of final energy demand...... it is the third most energy intensive sector in Croatia after transport and households. Implementing mechanisms that would lead to improvements in energy efficiency in this sector seems relevant. Through this paper, long-term energy demand projections for Croatian industry will be shown. The central point...... for development of the model will be parameters influencing the industry in Croatia. Energy demand predictions in this paper are based upon bottom-up approach model. IED model produces results which can be compared to Croatian National Energy Strategy. One of the conclusions shown in this paper is significant...

  2. Modelling of demand response and market power

    International Nuclear Information System (INIS)

    Kristoffersen, B.B.; Donslund, B.; Boerre Eriksen, P.

    2004-01-01

    Demand-side flexibility and demand response to high prices are prerequisites for the proper functioning of the Nordic power market. If the consumers are unwilling to respond to high prices, the market may fail the clearing, and this may result in unwanted forced demand disconnections. Being the TSO of Western Denmark, Eltra is responsible of both security of supply and the design of the power market within its area. On this basis, Eltra has developed a new mathematical model tool for analysing the Nordic wholesale market. The model is named MARS (MARket Simulation). The model is able to handle hydropower and thermal production, nuclear power and wind power. Production, demand and exchanges modelled on an hourly basis are new important features of the model. The model uses the same principles as Nord Pool (The Nordic Power Exchange), including the division of the Nordic countries into price areas. On the demand side, price elasticity is taken into account and described by a Cobb-Douglas function. Apart from simulating perfect competition markets, particular attention has been given to modelling imperfect market conditions, i.e. exercise of market power on the supply side. Market power is simulated by using game theory, including the Nash equilibrium concept. The paper gives a short description of the MARS model. Besides, focus is on the application of the model in order to illustrate the importance of demand response in the Nordic market. Simulations with different values of demand elasticity are compared. Calculations are carried out for perfect competition and for the situation in which market power is exercised by the large power producers in the Nordic countries (oligopoly). (au)

  3. Neural network versus classical time series forecasting models

    Science.gov (United States)

    Nor, Maria Elena; Safuan, Hamizah Mohd; Shab, Noorzehan Fazahiyah Md; Asrul, Mohd; Abdullah, Affendi; Mohamad, Nurul Asmaa Izzati; Lee, Muhammad Hisyam

    2017-05-01

    Artificial neural network (ANN) has advantage in time series forecasting as it has potential to solve complex forecasting problems. This is because ANN is data driven approach which able to be trained to map past values of a time series. In this study the forecast performance between neural network and classical time series forecasting method namely seasonal autoregressive integrated moving average models was being compared by utilizing gold price data. Moreover, the effect of different data preprocessing on the forecast performance of neural network being examined. The forecast accuracy was evaluated using mean absolute deviation, root mean square error and mean absolute percentage error. It was found that ANN produced the most accurate forecast when Box-Cox transformation was used as data preprocessing.

  4. Supply based on demand dynamical model

    Science.gov (United States)

    Levi, Asaf; Sabuco, Juan; Sanjuán, Miguel A. F.

    2018-04-01

    We propose and numerically analyze a simple dynamical model that describes the firm behaviors under uncertainty of demand. Iterating this simple model and varying some parameter values, we observe a wide variety of market dynamics such as equilibria, periodic, and chaotic behaviors. Interestingly, the model is also able to reproduce market collapses.

  5. An EMD–SARIMA-Based Modeling Approach for Air Traffic Forecasting

    Directory of Open Access Journals (Sweden)

    Wei Nai

    2017-12-01

    Full Text Available The ever-increasing air traffic demand in China has brought huge pressure on the planning and management of, and investment in, air terminals as well as airline companies. In this context, accurate and adequate short-term air traffic forecasting is essential for the operations of those entities. In consideration of such a problem, a hybrid air traffic forecasting model based on empirical mode decomposition (EMD and seasonal auto regressive integrated moving average (SARIMA has been proposed in this paper. The model proposed decomposes the original time series into components at first, and models each component with the SARIMA forecasting model, then integrates all the models together to form the final combined forecast result. By using the monthly air cargo and passenger flow data from the years 2006 to 2014 available at the official website of the Civil Aviation Administration of China (CAAC, the effectiveness in forecasting of the model proposed has been demonstrated, and by a horizontal performance comparison between several other widely used forecasting models, the advantage of the proposed model has also been proved.

  6. Statistical and RBF NN models : providing forecasts and risk assessment

    OpenAIRE

    Marček, Milan

    2009-01-01

    Forecast accuracy of economic and financial processes is a popular measure for quantifying the risk in decision making. In this paper, we develop forecasting models based on statistical (stochastic) methods, sometimes called hard computing, and on a soft method using granular computing. We consider the accuracy of forecasting models as a measure for risk evaluation. It is found that the risk estimation process based on soft methods is simplified and less critical to the question w...

  7. Data Driven Broiler Weight Forecasting using Dynamic Neural Network Models

    DEFF Research Database (Denmark)

    Johansen, Simon Vestergaard; Bendtsen, Jan Dimon; Riisgaard-Jensen, Martin

    2017-01-01

    In this article, the dynamic influence of environmental broiler house conditions and broiler growth is investigated. Dynamic neural network forecasting models have been trained on farm-scale broiler batch production data from 12 batches from the same house. The model forecasts future broiler weight...... and uses environmental conditions such as heating, ventilation, and temperature along with broiler behavior such as feed and water consumption. Training data and forecasting data is analyzed to explain when the model might fail at generalizing. We present ensemble broiler weight forecasts to day 7, 14, 21...

  8. Models of Investor Forecasting Behavior — Experimental Evidence

    Directory of Open Access Journals (Sweden)

    Federico Bonetto

    2017-12-01

    Full Text Available Different forecasting behaviors affect investors’ trading decisions and lead to qualitatively different asset price trajectories. It has been shown in the literature that the weights that investors place on observed asset price changes when forecasting future price changes, and the nature of their confidence when price changes are forecast, determine whether price bubbles, price crashes, and unpredictable price cycles occur. In this paper, we report the results of behavioral experiments involving multiple investors who participated in a market for a virtual asset. Our goal is to study investors’ forecast formation. We conducted three experimental sessions with different participants in each session. We fit different models of forecast formation to the observed data. There is strong evidence that the investors forecast future prices by extrapolating past price changes, even when they know the fundamental value of the asset exactly and the extrapolated forecasts differ significantly from the fundamental value. The rational expectations hypothesis seems inconsistent with the observed forecasts. The forecasting models of all participants that best fit the observed forecasting data were of the type that cause price bubbles and cycles in dynamical systems models, and price bubbles and cycles ended up occurring in all three sessions.

  9. A Hybrid Model for Forecasting Sales in Turkish Paint Industry

    Directory of Open Access Journals (Sweden)

    Alp Ustundag

    2009-12-01

    Full Text Available Sales forecasting is important for facilitating effective and efficient allocation of scarce resources. However, how to best model and forecast sales has been a long-standing issue. There is no best forecasting method that is applicable in all circumstances. Therefore, confidence in the accuracy of sales forecasts is achieved by corroborating the results using two or more methods. This paper proposes a hybrid forecasting model that uses an artificial intelligence method (AI with multiple linear regression (MLR to predict product sales for the largest Turkish paint producer. In the hybrid model, three different AI methods, fuzzy rule-based system (FRBS, artificial neural network (ANN and adaptive neuro fuzzy network (ANFIS, are used and compared to each other. The results indicate that FRBS yields better forecasting accuracy in terms of root mean squared error (RMSE and mean absolute percentage error (MAPE.

  10. Model documentation report: Industrial sector demand module of the National Energy Modeling System

    International Nuclear Information System (INIS)

    1997-01-01

    This report documents the objectives, analytical approach, and development of the National Energy Modeling System (NEMS) Industrial Demand Model. The report catalogues and describes model assumptions, computational methodology, parameter estimation techniques, and model source code. This document serves three purposes. First, it is a reference document providing a detailed description of the NEMS Industrial Model for model analysts, users, and the public. Second, this report meets the legal requirement of the Energy Information Administration (EIA) to provide adequate documentation in support of its models. Third, it facilitates continuity in model development by providing documentation from which energy analysts can undertake model enhancements, data updates, and parameter refinements as future projects. The NEMS Industrial Demand Model is a dynamic accounting model, bringing together the disparate industries and uses of energy in those industries, and putting them together in an understandable and cohesive framework. The Industrial Model generates mid-term (up to the year 2015) forecasts of industrial sector energy demand as a component of the NEMS integrated forecasting system. From the NEMS system, the Industrial Model receives fuel prices, employment data, and the value of industrial output. Based on the values of these variables, the Industrial Model passes back to the NEMS system estimates of consumption by fuel types

  11. Short-Term Multiple Forecasting of Electric Energy Loads for Sustainable Demand Planning in Smart Grids for Smart Homes

    Directory of Open Access Journals (Sweden)

    Adeshina Y. Alani

    2017-10-01

    Full Text Available Energy consumption in the form of fuel or electricity is ubiquitous globally. Among energy types, electricity is crucial to human life in terms of cooking, warming and cooling of shelters, powering of electronic devices as well as commercial and industrial operations. Users of electronic devices sometimes consume fluctuating amounts of electricity generated from smart-grid infrastructure owned by the government or private investors. However, frequent imbalance is noticed between the demand and supply of electricity, hence effective planning is required to facilitate its distribution among consumers. Such effective planning is stimulated by the need to predict future consumption within a short period. Although several interesting classical techniques have been used for such predictions, they still require improvement for the purpose of reducing significant predictive errors when used for short-term load forecasting. This research develops a near-zero cooperative probabilistic scenario analysis and decision tree (PSA-DT model to address the lacuna of enormous predictive error faced by the state-of-the-art models. The PSA-DT is based on a probabilistic technique in view of the uncertain nature of electricity consumption, complemented by a DT to reinforce the collaboration of the two techniques. Based on detailed experimental analytics on residential, commercial and industrial data loads, the PSA-DT model outperforms the state-of-the-art models in terms of accuracy to a near-zero error rate. This implies that its deployment for electricity demand planning will be of great benefit to various smart-grid operators and homes.

  12. Forecasting the Electricity Demand and Market Shares in Retail Electricity Market Based on System Dynamics and Markov Chain

    OpenAIRE

    Qingyou Yan; Chao Qin; Mingjian Nie; Le Yang

    2018-01-01

    Due to the deregulation of retail electricity market, consumers can choose retail electric suppliers freely, and market entities are facing fierce competition because of the increasing number of new entrants. Under these circumstances, forecasting the changes in all market entities, when market share stabilized, is important for suppliers making marketing decisions. In this paper, a market share forecasting model was established based on Markov chain, and a system dynamics model was construct...

  13. INDIA’S ELECTRICITY DEMAND FORECAST USING REGRESSION ANALYSIS AND ARTIFICIAL NEURAL NETWORKS BASED ON PRINCIPAL COMPONENTS

    Directory of Open Access Journals (Sweden)

    S. Saravanan

    2012-07-01

    Full Text Available Power System planning starts with Electric load (demand forecasting. Accurate electricity load forecasting is one of the most important challenges in managing supply and demand of the electricity, since the electricity demand is volatile in nature; it cannot be stored and has to be consumed instantly. The aim of this study deals with electricity consumption in India, to forecast future projection of demand for a period of 19 years from 2012 to 2030. The eleven input variables used are Amount of CO2 emission, Population, Per capita GDP, Per capita gross national income, Gross Domestic savings, Industry, Consumer price index, Wholesale price index, Imports, Exports and Per capita power consumption. A new methodology based on Artificial Neural Networks (ANNs using principal components is also used. Data of 29 years used for training and data of 10 years used for testing the ANNs. Comparison made with multiple linear regression (based on original data and the principal components and ANNs with original data as input variables. The results show that the use of ANNs with principal components (PC is more effective.

  14. Modeling money demand components in Lebanon using autoregressive models

    International Nuclear Information System (INIS)

    Mourad, M.

    2008-01-01

    This paper analyses monetary aggregate in Lebanon and its different component methodology of AR model. Thirteen variables in monthly data have been studied for the period January 1990 through December 2005. Using the Augmented Dickey-Fuller (ADF) procedure, twelve variables are integrated at order 1, thus they need the filter (1-B)) to become stationary, however the variable X 1 3,t (claims on private sector) becomes stationary with the filter (1-B)(1-B 1 2) . The ex-post forecasts have been calculated for twelve horizons and for one horizon (one-step ahead forecast). The quality of forecasts has been measured using the MAPE criterion for which the forecasts are good because the MAPE values are lower. Finally, a pursuit of this research using the cointegration approach is proposed. (author)

  15. A Simple Hybrid Model for Short-Term Load Forecasting

    Directory of Open Access Journals (Sweden)

    Suseelatha Annamareddi

    2013-01-01

    Full Text Available The paper proposes a simple hybrid model to forecast the electrical load data based on the wavelet transform technique and double exponential smoothing. The historical noisy load series data is decomposed into deterministic and fluctuation components using suitable wavelet coefficient thresholds and wavelet reconstruction method. The variation characteristics of the resulting series are analyzed to arrive at reasonable thresholds that yield good denoising results. The constitutive series are then forecasted using appropriate exponential adaptive smoothing models. A case study performed on California energy market data demonstrates that the proposed method can offer high forecasting precision for very short-term forecasts, considering a time horizon of two weeks.

  16. Financial impact of errors in business forecasting: a comparative study of linear models and neural networks

    Directory of Open Access Journals (Sweden)

    Claudimar Pereira da Veiga

    2012-08-01

    Full Text Available The importance of demand forecasting as a management tool is a well documented issue. However, it is difficult to measure costs generated by forecasting errors and to find a model that assimilate the detailed operation of each company adequately. In general, when linear models fail in the forecasting process, more complex nonlinear models are considered. Although some studies comparing traditional models and neural networks have been conducted in the literature, the conclusions are usually contradictory. In this sense, the objective was to compare the accuracy of linear methods and neural networks with the current method used by the company. The results of this analysis also served as input to evaluate influence of errors in demand forecasting on the financial performance of the company. The study was based on historical data from five groups of food products, from 2004 to 2008. In general, one can affirm that all models tested presented good results (much better than the current forecasting method used, with mean absolute percent error (MAPE around 10%. The total financial impact for the company was 6,05% on annual sales.

  17. [Medical human resources planning in Europe: A literature review of the forecasting models].

    Science.gov (United States)

    Benahmed, N; Deliège, D; De Wever, A; Pirson, M

    2018-02-01

    Healthcare is a labor-intensive sector in which half of the expenses are dedicated to human resources. Therefore, policy makers, at national and internal levels, attend to the number of practicing professionals and the skill mix. This paper aims to analyze the European forecasting model for supply and demand of physicians. To describe the forecasting tools used for physician planning in Europe, a grey literature search was done in the OECD, WHO, and European Union libraries. Electronic databases such as Pubmed, Medine, Embase and Econlit were also searched. Quantitative methods for forecasting medical supply rely mainly on stock-and-flow simulations and less often on systemic dynamics. Parameters included in forecasting models exhibit wide variability for data availability and quality. The forecasting of physician needs is limited to healthcare consumption and rarely considers overall needs and service targets. Besides quantitative methods, horizon scanning enables an evaluation of the changes in supply and demand in an uncertain future based on qualitative techniques such as semi-structured interviews, Delphi Panels, or focus groups. Finally, supply and demand forecasting models should be regularly updated. Moreover, post-hoc analyze is also needed but too rarely implemented. Medical human resource planning in Europe is inconsistent. Political implementation of the results of forecasting projections is essential to insure efficient planning. However, crucial elements such as mobility data between Member States are poorly understood, impairing medical supply regulation policies. These policies are commonly limited to training regulations, while horizontal and vertical substitution is less frequently taken into consideration. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  18. Forecasting electric demand of distribution system planing in rural and sparsely populated regions

    Energy Technology Data Exchange (ETDEWEB)

    Willis, H.L.; Buri, M.J. [ABB Automated Distribution Div., Raleigh, NC (United States); Finley, L.A. [Snohomish County PUD, Everett, WA (United States)

    1995-11-01

    Modern computerized distribution load forecasting methods, although accurate when applied to urban areas, give somewhat less satisfactory results when forecasting load growth in sparsely populated rural areas. This paper examines the differences between rural and urban load growth histories, identifying a major difference in the observed behavior of load growth. This difference is exploited in a new simulation forecasting algorithm. Tests show the new method is as accurate in forecasting rural load growth and as useful for analyzing DSM impacts than past methods, while requiring considerably lower computer resources and data than other simulation methods of comparable accuracy.

  19. Socioeconomic Forecasting : [Technical Summary

    Science.gov (United States)

    2012-01-01

    Because the traffic forecasts produced by the Indiana : Statewide Travel Demand Model (ISTDM) are driven by : the demographic and socioeconomic inputs to the model, : particular attention must be given to obtaining the most : accurate demographic and...

  20. Nawiliwili, Hawaii Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Nawiliwili, Hawaii Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model....

  1. Neah Bay, Washington Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Neah Bay, Washington Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model....

  2. Bar Harbor, ME Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Bar Harbor, Maine Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model. MOST...

  3. Sitka, Alaska Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Sitka, Alaska Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model. MOST is...

  4. Newport, Oregon Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Newport, Oregon Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model. MOST...

  5. Wake Island Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Wake Island Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model. MOST is a...

  6. Garibaldi, Oregon Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Garibaldi, Oregon Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model. MOST...

  7. Keauhou, Hawaii Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Keauhou, Hawaii Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model. MOST...

  8. Westport, Washington Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Westport, Washington Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model....

  9. Daytona Beach, Florida Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Daytona Beach, Florida Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model....

  10. Lahaina, Hawaii Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Lahaina, Hawaii Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model. MOST...

  11. Fajardo, Puerto Rico Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Fajardo, Puerto Rico Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model....

  12. Florence, Oregon Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Florence, Oregon Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model. MOST...

  13. Ponce, Puerto Rico Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Ponce, Puerto Rico Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model....

  14. Shemya, Alaska Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Shemya, Alaska Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model. MOST is...

  15. Key West, Florida Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Key West, Florida Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model. MOST...

  16. Montauk, New York Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Montauk, New York Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model. MOST...

  17. Kodiak, Alaska Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Kodiak, Alaska Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model. MOST is...

  18. Sand Point, Alaska Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Sand Point, Alaska Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model....

  19. Ocean City, Maryland Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Ocean City, Maryland Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model....

  20. Kahului, Hawaii Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Kahului, Hawaii Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model. MOST...

  1. Port Orford, Oregon Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Port Orford, Oregon Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model....

  2. Kailua-Kona, Hawaii Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Kailua-Kona, Hawaii Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model....

  3. Seward, Alaska Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Seward, Alaska Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model. MOST is...

  4. Seaside, Oregon Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Seaside, Oregon Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model. MOST...

  5. Apra Harbor, Guam Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Apra Harbor, Guam Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model. MOST...

  6. Kihei, Hawaii Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Kihei, Hawaii Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model. MOST is...

  7. Adak, Alaska Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Adak, Alaska Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model. MOST is a...

  8. Arecibo, Puerto Rico Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Arecibo, Puerto Rico Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model....

  9. San Juan, Puerto Rico Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The San Juan, Puerto Rico Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model....

  10. Pearl Harbor, Hawaii Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Pearl Harbor, Hawaii Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model....

  11. Palm Beach, Florida Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Palm Beach, Florida Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model....

  12. Toke Point, Washington Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Toke Point, Washington Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model....

  13. Hanalei, Hawaii Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Hanalei, Hawaii Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model. MOST...

  14. Homer, Alaska Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Homer, Alaska Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model. MOST is...

  15. Nikolski, Alaska Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Nikolski, Alaska Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model. MOST...

  16. Monterey, California Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Monterey, California Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model....

  17. Port Alexander, Alaska Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Port Alexander, Alaska Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model....

  18. La Push, Washington Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The La Push, Washington Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model....

  19. Haleiwa, Hawaii Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Haleiwa, Hawaii Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model. MOST...

  20. Hilo, Hawaii Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Hilo, Hawaii Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model. MOST is a...

  1. Savannah, Georgia Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Savannah, Georgia Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model. MOST...

  2. Forecasting house prices in the 50 states using Dynamic Model Averaging and Dynamic Model Selection

    DEFF Research Database (Denmark)

    Bork, Lasse; Møller, Stig Vinther

    2015-01-01

    We examine house price forecastability across the 50 states using Dynamic Model Averaging and Dynamic Model Selection, which allow for model change and parameter shifts. By allowing the entire forecasting model to change over time and across locations, the forecasting accuracy improves substantia......We examine house price forecastability across the 50 states using Dynamic Model Averaging and Dynamic Model Selection, which allow for model change and parameter shifts. By allowing the entire forecasting model to change over time and across locations, the forecasting accuracy improves...

  3. When mechanism matters: Bayesian forecasting using models of ecological diffusion

    Science.gov (United States)

    Hefley, Trevor J.; Hooten, Mevin B.; Russell, Robin E.; Walsh, Daniel P.; Powell, James A.

    2017-01-01

    Ecological diffusion is a theory that can be used to understand and forecast spatio-temporal processes such as dispersal, invasion, and the spread of disease. Hierarchical Bayesian modelling provides a framework to make statistical inference and probabilistic forecasts, using mechanistic ecological models. To illustrate, we show how hierarchical Bayesian models of ecological diffusion can be implemented for large data sets that are distributed densely across space and time. The hierarchical Bayesian approach is used to understand and forecast the growth and geographic spread in the prevalence of chronic wasting disease in white-tailed deer (Odocoileus virginianus). We compare statistical inference and forecasts from our hierarchical Bayesian model to phenomenological regression-based methods that are commonly used to analyse spatial occurrence data. The mechanistic statistical model based on ecological diffusion led to important ecological insights, obviated a commonly ignored type of collinearity, and was the most accurate method for forecasting.

  4. Day ahead price forecasting of electricity markets by a mixed data model and hybrid forecast method

    International Nuclear Information System (INIS)

    Amjady, Nima; Keynia, Farshid

    2008-01-01

    In a competitive electricity market, forecast of energy prices is a key information for the market participants. However, price signal usually has a complex behavior due to its nonlinearity, nonstationarity, and time variancy. In spite of all performed researches on this area in the recent years, there is still an essential need for more accurate and robust price forecast methods. In this paper, a combination of wavelet transform (WT) and a hybrid forecast method is proposed for this purpose. The hybrid method is composed of cascaded forecasters where each forecaster consists of a neural network (NN) and an evolutionary algorithms (EA). Both time domain and wavelet domain features are considered in a mixed data model for price forecast, in which the candidate input variables are refined by a feature selection technique. The adjustable parameters of the whole method are fine-tuned by a cross-validation technique. The proposed method is examined on PJM electricity market and compared with some of the most recent price forecast methods. (author)

  5. Regional Model Nesting Within GFS Daily Forecasts Over West Africa

    Science.gov (United States)

    Druyan, Leonard M.; Fulakeza, Matthew; Lonergan, Patrick; Worrell, Ruben

    2010-01-01

    The study uses the RM3, the regional climate model at the Center for Climate Systems Research of Columbia University and the NASA/Goddard Institute for Space Studies (CCSR/GISS). The paper evaluates 30 48-hour RM3 weather forecasts over West Africa during September 2006 made on a 0.5 grid nested within 1 Global Forecast System (GFS) global forecasts. September 2006 was the Special Observing Period #3 of the African Monsoon Multidisciplinary Analysis (AMMA). Archived GFS initial conditions and lateral boundary conditions for the simulations from the US National Weather Service, National Oceanographic and Atmospheric Administration were interpolated four times daily. Results for precipitation forecasts are validated against Tropical Rainfall Measurement Mission (TRMM) satellite estimates and data from the Famine Early Warning System (FEWS), which includes rain gauge measurements, and forecasts of circulation are compared to reanalysis 2. Performance statistics for the precipitation forecasts include bias, root-mean-square errors and spatial correlation coefficients. The nested regional model forecasts are compared to GFS forecasts to gauge whether nesting provides additional realistic information. They are also compared to RM3 simulations driven by reanalysis 2, representing high potential skill forecasts, to gauge the sensitivity of results to lateral boundary conditions. Nested RM3/GFS forecasts generate excessive moisture advection toward West Africa, which in turn causes prodigious amounts of model precipitation. This problem is corrected by empirical adjustments in the preparation of lateral boundary conditions and initial conditions. The resulting modified simulations improve on the GFS precipitation forecasts, achieving time-space correlations with TRMM of 0.77 on the first day and 0.63 on the second day. One realtime RM3/GFS precipitation forecast made at and posted by the African Centre of Meteorological Application for Development (ACMAD) in Niamey, Niger

  6. China’s primary energy demands in 2020: Predictions from an MPSO–RBF estimation model

    International Nuclear Information System (INIS)

    Yu Shiwei; Wei Yiming; Wang Ke

    2012-01-01

    Highlights: ► A Mix-encoding PSO and RBF network-based energy demand forecasting model is proposed. ► The proposed model has simpler structure and smaller estimated errors than other ANN models. ► China’s energy demand could reach 6.25 billion, 4.16 billion, and 5.29 billion tons tce. ► China’s energy efficiency in 2020 will increase by more than 30% compared with 2009. - Abstract: In the present study, a Mix-encoding Particle Swarm Optimization and Radial Basis Function (MPSO–RBF) network-based energy demand forecasting model is proposed and applied to forecast China’s energy consumption until 2020. The energy demand is analyzed for the period from 1980 to 2009 based on GDP, population, proportion of industry in GDP, urbanization rate, and share of coal energy. The results reveal that the proposed MPSO–RBF based model has fewer hidden nodes and smaller estimated errors compared with other ANN-based estimation models. The average annual growth of China’s energy demand will be 6.70%, 2.81%, and 5.08% for the period between 2010 and 2020 in three scenarios and could reach 6.25 billion, 4.16 billion, and 5.29 billion tons coal equivalent in 2020. Regardless of future scenarios, China’s energy efficiency in 2020 will increase by more than 30% compared with 2009.

  7. DETERMINANTS OF DEMAND FOR AGRICULTURAL CREDIT IN NICARAGUA (1996-2009 AND FORECAST (2010-2012

    Directory of Open Access Journals (Sweden)

    Iván Salvador Romero A.

    2014-11-01

    Full Text Available Nicaragua has a small economy with a high degree of trade openness, structural deficit in its balance of trade and services, with a low supply of exportable value added agro-based growth model and therefore vulnerable to exogenous shocks altering its relations  of terms of trade. The time series analyzed in this study shows that despite the nature of their agro-export model are the secondary and tertiary sectors and not the primary, the ones driving the growth of the Nicaraguan economy; We will explain the observed, considering what determines the demand for agricultural credit in this economy.

  8. Wind-Farm Forecasting Using the HARMONIE Weather Forecast Model and Bayes Model Averaging for Bias Removal.

    Science.gov (United States)

    O'Brien, Enda; McKinstry, Alastair; Ralph, Adam

    2015-04-01

    Building on previous work presented at EGU 2013 (http://www.sciencedirect.com/science/article/pii/S1876610213016068 ), more results are available now from a different wind-farm in complex terrain in southwest Ireland. The basic approach is to interpolate wind-speed forecasts from an operational weather forecast model (i.e., HARMONIE in the case of Ireland) to the precise location of each wind-turbine, and then use Bayes Model Averaging (BMA; with statistical information collected from a prior training-period of e.g., 25 days) to remove systematic biases. Bias-corrected wind-speed forecasts (and associated power-generation forecasts) are then provided twice daily (at 5am and 5pm) out to 30 hours, with each forecast validation fed back to BMA for future learning. 30-hr forecasts from the operational Met Éireann HARMONIE model at 2.5km resolution have been validated against turbine SCADA observations since Jan. 2014. An extra high-resolution (0.5km grid-spacing) HARMONIE configuration has been run since Nov. 2014 as an extra member of the forecast "ensemble". A new version of HARMONIE with extra filters designed to stabilize high-resolution configurations has been run since Jan. 2015. Measures of forecast skill and forecast errors will be provided, and the contributions made by the various physical and computational enhancements to HARMONIE will be quantified.

  9. Dispersion Modeling Using Ensemble Forecasts Compared to ETEX Measurements.

    Science.gov (United States)

    Straume, Anne Grete; N'dri Koffi, Ernest; Nodop, Katrin

    1998-11-01

    Numerous numerical models are developed to predict long-range transport of hazardous air pollution in connection with accidental releases. When evaluating and improving such a model, it is important to detect uncertainties connected to the meteorological input data. A Lagrangian dispersion model, the Severe Nuclear Accident Program, is used here to investigate the effect of errors in the meteorological input data due to analysis error. An ensemble forecast, produced at the European Centre for Medium-Range Weather Forecasts, is then used as model input. The ensemble forecast members are generated by perturbing the initial meteorological fields of the weather forecast. The perturbations are calculated from singular vectors meant to represent possible forecast developments generated by instabilities in the atmospheric flow during the early part of the forecast. The instabilities are generated by errors in the analyzed fields. Puff predictions from the dispersion model, using ensemble forecast input, are compared, and a large spread in the predicted puff evolutions is found. This shows that the quality of the meteorological input data is important for the success of the dispersion model. In order to evaluate the dispersion model, the calculations are compared with measurements from the European Tracer Experiment. The model manages to predict the measured puff evolution concerning shape and time of arrival to a fairly high extent, up to 60 h after the start of the release. The modeled puff is still too narrow in the advection direction.

  10. Operational forecasting based on a modified Weather Research and Forecasting model

    Energy Technology Data Exchange (ETDEWEB)

    Lundquist, J; Glascoe, L; Obrecht, J

    2010-03-18

    Accurate short-term forecasts of wind resources are required for efficient wind farm operation and ultimately for the integration of large amounts of wind-generated power into electrical grids. Siemens Energy Inc. and Lawrence Livermore National Laboratory, with the University of Colorado at Boulder, are collaborating on the design of an operational forecasting system for large wind farms. The basis of the system is the numerical weather prediction tool, the Weather Research and Forecasting (WRF) model; large-eddy simulations and data assimilation approaches are used to refine and tailor the forecasting system. Representation of the atmospheric boundary layer is modified, based on high-resolution large-eddy simulations of the atmospheric boundary. These large-eddy simulations incorporate wake effects from upwind turbines on downwind turbines as well as represent complex atmospheric variability due to complex terrain and surface features as well as atmospheric stability. Real-time hub-height wind speed and other meteorological data streams from existing wind farms are incorporated into the modeling system to enable uncertainty quantification through probabilistic forecasts. A companion investigation has identified optimal boundary-layer physics options for low-level forecasts in complex terrain, toward employing decadal WRF simulations to anticipate large-scale changes in wind resource availability due to global climate change.

  11. A semiparametric model of household gasoline demand

    Energy Technology Data Exchange (ETDEWEB)

    Wadud, Zia [Department of Civil Engineering, Bangladesh University of Engineering and Technology, Dhaka 1000 (Bangladesh); Noland, Robert B. [Alan M. Voorhees Transportation Center, Edward J. Bloustein School of Planning and Public Policy, Rutgers University, New Brunswick, NJ 08901 (United States); Graham, Daniel J. [Centre for Transport Studies, Dept of Civil and Environmental Engineering, Imperial College London, London, SW7 2AZ (United Kingdom)

    2010-01-15

    Gasoline demand studies typically generate a single price and income elasticity for a country. It is however possible that these elasticities may differ among various socio-economic groups. At the same time, parametric gasoline demand models may not be flexible enough to capture the changes in price elasticities with different levels of income. This paper models US gasoline demand using more flexible semiparametric techniques, accommodating the possibility of differences in responses among households. The econometric model employs a non-parametric bivariate smoothing for price and income and a parametric representation of other explanatory variables. Possible heterogeneity in price and income elasticities is modelled through interacting price and income with demographic variables. Results show that price responses do vary with demographic variables such as income, multiple vehicle holding, presence of multiple wage earners or rural or urban residential locations. Households' responses to a price change decrease with higher income. Multiple vehicle and multiple earner households also show higher sensitivity to a price change. Households located in urban areas reduce consumption more than those in rural areas in response to an increase in price. Comparison of the flexible semiparametric model with a parametric translog model, however, reveals no significant differences between results, and the parametric models have the advantage of lower computational requirements and better interpretability. (author)

  12. With string model to time series forecasting

    Science.gov (United States)

    Pinčák, Richard; Bartoš, Erik

    2015-10-01

    Overwhelming majority of econometric models applied on a long term basis in the financial forex market do not work sufficiently well. The reason is that transaction costs and arbitrage opportunity are not included, as this does not simulate the real financial markets. Analyses are not conducted on the non equidistant date but rather on the aggregate date, which is also not a real financial case. In this paper, we would like to show a new way how to analyze and, moreover, forecast financial market. We utilize the projections of the real exchange rate dynamics onto the string-like topology in the OANDA market. The latter approach allows us to build the stable prediction models in trading in the financial forex market. The real application of the multi-string structures is provided to demonstrate our ideas for the solution of the problem of the robust portfolio selection. The comparison with the trend following strategies was performed, the stability of the algorithm on the transaction costs for long trade periods was confirmed.

  13. Morehead City, North Carolina Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Morehead City, North Carolina Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST)...

  14. Christiansted, Virgin Islands Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Christiansted, Virgin Islands Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST)...

  15. Arena Cove, California Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Arena Cove, California Forecast Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model. MOST...

  16. Atlantic City, New Jersey Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Atlantic City, New Jersey Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST)...

  17. Crescent City, California Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Crescent City, California Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST)...

  18. Charlotte Amalie, Virgin Islands Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Charlotte Amalie, Virgin Islands Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami...

  19. Pago Pago, American Samoa Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Pago Pago, American Samoa Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST)...

  20. Statistical Studies of Mesoscale Forecast Models MM5 and WRF

    National Research Council Canada - National Science Library

    Henmi, Teizi

    2004-01-01

    ... models were carried out and the results were compared with surface observation data. Both models tended to overforecast temperature and dew-point temperature, although the correlation coefficients between forecast and observations were fairly high...

  1. Myrtle Beach, South Carolina Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Myrtle Beach, South Carolina Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST)...

  2. Los Angeles, California Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Los Angeles, California Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST)...

  3. Port Angeles, Washington Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Port Angeles, Washington Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST)...

  4. Virginia Beach Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Virginia Beach, Virginia Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST)...

  5. Cordova, Alaska Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Cordova, Alaska Forecast Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model. MOST is a...

  6. Nantucket, Massachusetts Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Nantucket, Massachusetts Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST)...

  7. Unalaska, Alaska Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Unalaska, Alaska Forecast Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model. MOST is a...

  8. Santa Barbara, California Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Santa Barbara, California Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST)...

  9. Point Reyes, California Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Point Reyes, California Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST)...

  10. Port San Luis, California Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Port San Luis, California Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST)...

  11. Eureka, California Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Eureka, California Forecast Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model. MOST is a...

  12. Cape Hatteras, North Carolina Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Cape Hatteras, North Carolina Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST)...

  13. San Francisco, California Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The San Francisco, California Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST)...

  14. Elfin Cove, Alaska Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Elfin Cove, Alaska Forecast Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model. MOST is a...

  15. British Columbia, Canada Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The British Columbia, Canada Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST)...

  16. Chignik, Alaska Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Chignik, Alaska Forecast Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model. MOST is a...

  17. Cash flow forecasting model for nuclear power projects

    International Nuclear Information System (INIS)

    Liu Wei; Guo Jilin

    2002-01-01

    Cash flow forecasting is very important for owners and contractors of nuclear power projects to arrange the capital and to decrease the capital cost. The factors related to contractor cash flow forecasting are analyzed and a cash flow forecasting model is presented which is suitable for both contractors and owners. The model is efficiently solved using a cost-schedule data integration scheme described. A program is developed based on the model and verified with real project data. The result indicates that the model is efficient and effective

  18. Data model for Demand Side Management

    Directory of Open Access Journals (Sweden)

    Simona-Vasilica OPREA

    2017-08-01

    Full Text Available Demand Side Management (DSM is a portfolio of measures to improve the energy system mainly at the consumption level. In this paper we propose a data model for DSM stating from the optimization methods approach in SMARTRADE project from different perspectives of several entities that include: Transmission System Operator (TSO/Distribution System Operators (DSOs perspectives in case of security/reliability concerns: minimum amount of load (or generation shedding; aggregators perspective in case of demand or generation shedding request: Which demand (or generators should be shed?; consumers perspective: load shifting (time-of-use (ToU tariffs and optimum contract strategies with the aggregators (also known as balancing responsible parties- BRP for load shedding.

  19. A Time-Varying Potential-Based Demand Response Method for Mitigating the Impacts of Wind Power Forecasting Errors

    Directory of Open Access Journals (Sweden)

    Jia Ning

    2017-11-01

    Full Text Available The uncertainty of wind power results in wind power forecasting errors (WPFE which lead to difficulties in formulating dispatching strategies to maintain the power balance. Demand response (DR is a promising tool to balance power by alleviating the impact of WPFE. This paper offers a control method of combining DR and automatic generation control (AGC units to smooth the system’s imbalance, considering the real-time DR potential (DRP and security constraints. A schematic diagram is proposed from the perspective of a dispatching center that manages smart appliances including air conditioner (AC, water heater (WH, electric vehicle (EV loads, and AGC units to maximize the wind accommodation. The presented model schedules the AC, WH, and EV loads without compromising the consumers’ comfort preferences. Meanwhile, the ramp constraint of generators and power flow transmission constraint are considered to guarantee the safety and stability of the power system. To demonstrate the performance of the proposed approach, simulations are performed in an IEEE 24-node system. The results indicate that considerable benefits can be realized by coordinating the DR and AGC units to mitigate the WPFE impacts.

  20. Short-Term Bus Passenger Demand Prediction Based on Time Series Model and Interactive Multiple Model Approach

    Directory of Open Access Journals (Sweden)

    Rui Xue

    2015-01-01

    Full Text Available Although bus passenger demand prediction has attracted increased attention during recent years, limited research has been conducted in the context of short-term passenger demand forecasting. This paper proposes an interactive multiple model (IMM filter algorithm-based model to predict short-term passenger demand. After aggregated in 15 min interval, passenger demand data collected from a busy bus route over four months were used to generate time series. Considering that passenger demand exhibits various characteristics in different time scales, three time series were developed, named weekly, daily, and 15 min time series. After the correlation, periodicity, and stationarity analyses, time series models were constructed. Particularly, the heteroscedasticity of time series was explored to achieve better prediction performance. Finally, IMM filter algorithm was applied to combine individual forecasting models with dynamically predicted passenger demand for next interval. Different error indices were adopted for the analyses of individual and hybrid models. The performance comparison indicates that hybrid model forecasts are superior to individual ones in accuracy. Findings of this study are of theoretical and practical significance in bus scheduling.

  1. Forecasting optimal solar energy supply in Jiangsu Province (China): a systematic approach using hybrid of weather and energy forecast models.

    Science.gov (United States)

    Zhao, Xiuli; Asante Antwi, Henry; Yiranbon, Ethel

    2014-01-01

    The idea of aggregating information is clearly recognizable in the daily lives of all entities whether as individuals or as a group, since time immemorial corporate organizations, governments, and individuals as economic agents aggregate information to formulate decisions. Energy planning represents an investment-decision problem where information needs to be aggregated from credible sources to predict both demand and supply of energy. To do this there are varying methods ranging from the use of portfolio theory to managing risk and maximizing portfolio performance under a variety of unpredictable economic outcomes. The future demand for energy and need to use solar energy in order to avoid future energy crisis in Jiangsu province in China require energy planners in the province to abandon their reliance on traditional, "least-cost," and stand-alone technology cost estimates and instead evaluate conventional and renewable energy supply on the basis of a hybrid of optimization models in order to ensure effective and reliable supply. Our task in this research is to propose measures towards addressing optimal solar energy forecasting by employing a systematic optimization approach based on a hybrid of weather and energy forecast models. After giving an overview of the sustainable energy issues in China, we have reviewed and classified the various models that existing studies have used to predict the influences of the weather influences and the output of solar energy production units. Further, we evaluate the performance of an exemplary ensemble model which combines the forecast output of two popular statistical prediction methods using a dynamic weighting factor.

  2. Forecasting Optimal Solar Energy Supply in Jiangsu Province (China: A Systematic Approach Using Hybrid of Weather and Energy Forecast Models

    Directory of Open Access Journals (Sweden)

    Xiuli Zhao

    2014-01-01

    Full Text Available The idea of aggregating information is clearly recognizable in the daily lives of all entities whether as individuals or as a group, since time immemorial corporate organizations, governments, and individuals as economic agents aggregate information to formulate decisions. Energy planning represents an investment-decision problem where information needs to be aggregated from credible sources to predict both demand and supply of energy. To do this there are varying methods ranging from the use of portfolio theory to managing risk and maximizing portfolio performance under a variety of unpredictable economic outcomes. The future demand for energy and need to use solar energy in order to avoid future energy crisis in Jiangsu province in China require energy planners in the province to abandon their reliance on traditional, “least-cost,” and stand-alone technology cost estimates and instead evaluate conventional and renewable energy supply on the basis of a hybrid of optimization models in order to ensure effective and reliable supply. Our task in this research is to propose measures towards addressing optimal solar energy forecasting by employing a systematic optimization approach based on a hybrid of weather and energy forecast models. After giving an overview of the sustainable energy issues in China, we have reviewed and classified the various models that existing studies have used to predict the influences of the weather influences and the output of solar energy production units. Further, we evaluate the performance of an exemplary ensemble model which combines the forecast output of two popular statistical prediction methods using a dynamic weighting factor.

  3. Indonesia’s Electricity Demand Dynamic Modelling

    Science.gov (United States)

    Sulistio, J.; Wirabhuana, A.; Wiratama, M. G.

    2017-06-01

    Electricity Systems modelling is one of the emerging area in the Global Energy policy studies recently. System Dynamics approach and Computer Simulation has become one the common methods used in energy systems planning and evaluation in many conditions. On the other hand, Indonesia experiencing several major issues in Electricity system such as fossil fuel domination, demand - supply imbalances, distribution inefficiency, and bio-devastation. This paper aims to explain the development of System Dynamics modelling approaches and computer simulation techniques in representing and predicting electricity demand in Indonesia. In addition, this paper also described the typical characteristics and relationship of commercial business sector, industrial sector, and family / domestic sector as electricity subsystems in Indonesia. Moreover, it will be also present direct structure, behavioural, and statistical test as model validation approach and ended by conclusions.

  4. Energy demand projections based on an uncertain dynamic system modeling approach

    International Nuclear Information System (INIS)

    Dong, S.

    2000-01-01

    Today, China has become the world's second largest pollution source of CO 2 . Owing to coal-based energy consumption, it is estimated that 85--90% of the SO 2 and CO 2 emission of China results from coal use. With high economic growth and increasing environmental concerns, China's energy consumption in the next few decades has become an issue of active concern. Forecasting of energy demand over long periods, however, is getting more complex and uncertain. It is believed that the economic and energy systems are chaotic and nonlinear. Traditional linear system modeling, used mostly in energy demand forecasts, therefore, is not a useful approach. In view of uncertainty and imperfect information about future economic growth and energy development, an uncertain dynamic system model, which has the ability to incorporate and absorb the nature of an uncertain system with imperfect or incomplete information, is developed. Using the model, the forecasting of energy demand in the next 25 years is provided. The model predicts that China's energy demand in 2020 will be about 2,700--3,000 Mtce, coal demand 3,500 Mt, increasing by 128% and 154%, respectively, compared with that of 1995

  5. Australia's long-term electricity demand forecasting using deep neural networks

    OpenAIRE

    Hamedmoghadam, Homayoun; Joorabloo, Nima; Jalili, Mahdi

    2018-01-01

    Accurate prediction of long-term electricity demand has a significant role in demand side management and electricity network planning and operation. Demand over-estimation results in over-investment in network assets, driving up the electricity prices, while demand under-estimation may lead to under-investment resulting in unreliable and insecure electricity. In this manuscript, we apply deep neural networks to predict Australia's long-term electricity demand. A stacked autoencoder is used in...

  6. Forecasting Analysis of Shanghai Stock Index Based on ARIMA Model

    Directory of Open Access Journals (Sweden)

    Li Chenggang

    2017-01-01

    Full Text Available Prediction and analysis of the Shanghai Composite Index is conducive for investors to investing in the stock market, and providing investors with reference. This paper selects Shanghai Composite Index monthly closing price from Jan, 2005 to Oct, 2016 to construct ARIMA model. This paper carries on the forecast of the last three monthly closing price of Shanghai Stock Index that have occurred, and compared it with the actual value, which tests the accuracy and feasibility of the model in the short term Shanghai Stock Index forecast. At last, this paper uses the ARIMA model to forecast the Shanghai Composite Index closing price of the last two months in 2016.

  7. Spatial electric load forecasting

    CERN Document Server

    Willis, H Lee

    2002-01-01

    Containing 12 new chapters, this second edition contains offers increased-coverage of weather correction and normalization of forecasts, anticipation of redevelopment, determining the validity of announced developments, and minimizing risk from over- or under-planning. It provides specific examples and detailed explanations of key points to consider for both standard and unusual utility forecasting situations, information on new algorithms and concepts in forecasting, a review of forecasting pitfalls and mistakes, case studies depicting challenging forecast environments, and load models illustrating various types of demand.

  8. Evaluation of statistical models for forecast errors from the HBV model

    Science.gov (United States)

    Engeland, Kolbjørn; Renard, Benjamin; Steinsland, Ingelin; Kolberg, Sjur

    2010-04-01

    SummaryThree statistical models for the forecast errors for inflow into the Langvatn reservoir in Northern Norway have been constructed and tested according to the agreement between (i) the forecast distribution and the observations and (ii) median values of the forecast distribution and the observations. For the first model observed and forecasted inflows were transformed by the Box-Cox transformation before a first order auto-regressive model was constructed for the forecast errors. The parameters were conditioned on weather classes. In the second model the Normal Quantile Transformation (NQT) was applied on observed and forecasted inflows before a similar first order auto-regressive model was constructed for the forecast errors. For the third model positive and negative errors were modeled separately. The errors were first NQT-transformed before conditioning the mean error values on climate, forecasted inflow and yesterday's error. To test the three models we applied three criterions: we wanted (a) the forecast distribution to be reliable; (b) the forecast intervals to be narrow; (c) the median values of the forecast distribution to be close to the observed values. Models 1 and 2 gave almost identical results. The median values improved the forecast with Nash-Sutcliffe R eff increasing from 0.77 for the original forecast to 0.87 for the corrected forecasts. Models 1 and 2 over-estimated the forecast intervals but gave the narrowest intervals. Their main drawback was that the distributions are less reliable than Model 3. For Model 3 the median values did not fit well since the auto-correlation was not accounted for. Since Model 3 did not benefit from the potential variance reduction that lies in bias estimation and removal it gave on average wider forecasts intervals than the two other models. At the same time Model 3 on average slightly under-estimated the forecast intervals, probably explained by the use of average measures to evaluate the fit.

  9. A high resolution WRF model for wind energy forecasting

    Science.gov (United States)

    Vincent, Claire Louise; Liu, Yubao

    2010-05-01

    The increasing penetration of wind energy into national electricity markets has increased the demand for accurate surface layer wind forecasts. There has recently been a focus on forecasting the wind at wind farm sites using both statistical models and numerical weather prediction (NWP) models. Recent advances in computing capacity and non-hydrostatic NWP models means that it is possible to nest mesoscale models down to Large Eddy Simulation (LES) scales over the spatial area of a typical wind farm. For example, the WRF model (Skamarock 2008) has been run at a resolution of 123 m over a wind farm site in complex terrain in Colorado (Liu et al. 2009). Although these modelling attempts indicate a great hope for applying such models for detailed wind forecasts over wind farms, one of the obvious challenges of running the model at this resolution is that while some boundary layer structures are expected to be modelled explicitly, boundary layer eddies into the inertial sub-range can only be partly captured. Therefore, the amount and nature of sub-grid-scale mixing that is required is uncertain. Analysis of Liu et al. (2009) modelling results in comparison to wind farm observations indicates that unrealistic wind speed fluctuations with a period of around 1 hour occasionally occurred during the two day modelling period. The problem was addressed by re-running the same modelling system with a) a modified diffusion constant and b) two-way nesting between the high resolution model and its parent domain. The model, which was run with horizontal grid spacing of 370 m, had dimensions of 505 grid points in the east-west direction and 490 points in the north-south direction. It received boundary conditions from a mesoscale model of resolution 1111 m. Both models had 37 levels in the vertical. The mesoscale model was run with a non-local-mixing planetary boundary layer scheme, while the 370 m model was run with no planetary boundary layer scheme. It was found that increasing the

  10. A System Dynamics Modeling of Water Supply and Demand in Las Vegas Valley

    Science.gov (United States)

    Parajuli, R.; Kalra, A.; Mastino, L.; Velotta, M.; Ahmad, S.

    2017-12-01

    The rise in population and change in climate have posed the uncertainties in the balance between supply and demand of water. The current study deals with the water management issues in Las Vegas Valley (LVV) using Stella, a system dynamics modeling software, to model the feedback based relationship between supply and demand parameters. Population parameters were obtained from Center for Business and Economic Research while historical water demand and conservation practices were modeled as per the information provided by local authorities. The water surface elevation of Lake Mead, which is the prime source of water supply to the region, was modeled as the supply side whereas the water demand in LVV was modeled as the demand side. The study was done from the period of 1989 to 2049 with 1989 to 2012 as the historical one and the period from 2013 to 2049 as the future period. This study utilizes Coupled Model Intercomparison Project data sets (2013-2049) (CMIP3&5) to model different future climatic scenarios. The model simulates the past dynamics of supply and demand, and then forecasts the future water budget for the forecasted future population and future climatic conditions. The results can be utilized by the water authorities in understanding the future water status and hence plan suitable conservation policies to allocate future water budget and achieve sustainable water management.

  11. Verification of short lead time forecast models: applied to Kp and Dst forecasting

    Science.gov (United States)

    Wintoft, Peter; Wik, Magnus

    2016-04-01

    In the ongoing EU/H2020 project PROGRESS models that predicts Kp, Dst, and AE from L1 solar wind data will be used as inputs to radiation belt models. The possible lead times from L1 measurements are shorter (10s of minutes to hours) than the typical duration of the physical phenomena that should be forecast. Under these circumstances several metrics fail to single out trivial cases, such as persistence. In this work we explore metrics and approaches for short lead time forecasts. We apply these to current Kp and Dst forecast models. This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 637302.

  12. Short-Term Price Forecasting Models Based on Artificial Neural Networks for Intraday Sessions in the Iberian Electricity Market

    Directory of Open Access Journals (Sweden)

    Claudio Monteiro

    2016-09-01

    Full Text Available This paper presents novel intraday session models for price forecasts (ISMPF models for hourly price forecasting in the six intraday sessions of the Iberian electricity market (MIBEL and the analysis of mean absolute percentage errors (MAPEs obtained with suitable combinations of their input variables in order to find the best ISMPF models. Comparisons of errors from different ISMPF models identified the most important variables for forecasting purposes. Similar analyses were applied to determine the best daily session models for price forecasts (DSMPF models for the day-ahead price forecasting in the daily session of the MIBEL, considering as input variables extensive hourly time series records of recent prices, power demands and power generations in the previous day, forecasts of demand, wind power generation and weather for the day-ahead, and chronological variables. ISMPF models include the input variables of DSMPF models as well as the daily session prices and prices of preceding intraday sessions. The best ISMPF models achieved lower MAPEs for most of the intraday sessions compared to the error of the best DSMPF model; furthermore, such DSMPF error was very close to the lowest limit error for the daily session. The best ISMPF models can be useful for MIBEL agents of the electricity intraday market and the electric energy industry.

  13. Probabilistic Electricity Price Forecasting Models by Aggregation of Competitive Predictors

    Directory of Open Access Journals (Sweden)

    Claudio Monteiro

    2018-04-01

    Full Text Available This article presents original probabilistic price forecasting meta-models (PPFMCP models, by aggregation of competitive predictors, for day-ahead hourly probabilistic price forecasting. The best twenty predictors of the EEM2016 EPF competition are used to create ensembles of hourly spot price forecasts. For each hour, the parameter values of the probability density function (PDF of a Beta distribution for the output variable (hourly price can be directly obtained from the expected and variance values associated to the ensemble for such hour, using three aggregation strategies of predictor forecasts corresponding to three PPFMCP models. A Reliability Indicator (RI and a Loss function Indicator (LI are also introduced to give a measure of uncertainty of probabilistic price forecasts. The three PPFMCP models were satisfactorily applied to the real-world case study of the Iberian Electricity Market (MIBEL. Results from PPFMCP models showed that PPFMCP model 2, which uses aggregation by weight values according to daily ranks of predictors, was the best probabilistic meta-model from a point of view of mean absolute errors, as well as of RI and LI. PPFMCP model 1, which uses the averaging of predictor forecasts, was the second best meta-model. PPFMCP models allow evaluations of risk decisions based on the price to be made.

  14. Long-term forecasts of regional, customer and use-specific energy demand

    International Nuclear Information System (INIS)

    Schwarz, Juerg

    1999-11-01

    In the future the Swiss electricity market will have to contend with changes stemming from market liberalization. The need for instruments to analyze and predict market shares of electricity is greater than ever; tools are also greatly needed to help managers and workers prepare for new beginnings and to reorient customers. The development and application of such an instrument are the object of the present thesis. A computer program produced within the context of this work can, based on an adapted bottom-up model, be used to analyze and predict the energy demand in the supply area of a medium-sized electric utility. Elektra Birseck Muenchenstein was included in the investigation as a representative medium-sized electric utility, and it provided the basis for a supply area. Current energy demand was depicted with a bottom-up approach and different scenarios of future development were calculated using a prognosis horizon of 30 years. For the market segmentation all consumer sectors had to be considered in detail. In addition, 'regionality', 'substitution' and 'customer proximity' factors had to be illustrated in the model, i.e. the regional development in the supply area, the substitution of energy sources -above all natural gas -and the detailed view of large, individual customers. The choice of a bottom-up approach created a demand for a large quantity of data, not all of which were available or could be produced. An additional crucial capability of the computer simulation was the comparison of assumptions and results of the prognoses. The users needed to be able to consider multiple future eventualities if they were to play out different scenarios to the end. Fulfilling these partly divergent criteria in the structural definition of the energy demand model was one of the large challenges of this work. The result of the dissertation is a differentiated prognosis instrument for the supply area of an electric utility. The structure of the suggested solution is

  15. eWaterCycle: A global operational hydrological forecasting model

    Science.gov (United States)

    van de Giesen, Nick; Bierkens, Marc; Donchyts, Gennadii; Drost, Niels; Hut, Rolf; Sutanudjaja, Edwin

    2015-04-01

    Development of an operational hyper-resolution hydrological global model is a central goal of the eWaterCycle project (www.ewatercycle.org). This operational model includes ensemble forecasts (14 days) to predict water related stress around the globe. Assimilation of near-real time satellite data is part of the intended product that will be launched at EGU 2015. The challenges come from several directions. First, there are challenges that are mainly computer science oriented but have direct practical hydrological implications. For example, we aim to make use as much as possible of existing standards and open-source software. For example, different parts of our system are coupled through the Basic Model Interface (BMI) developed in the framework of the Community Surface Dynamics Modeling System (CSDMS). The PCR-GLOBWB model, built by Utrecht University, is the basic hydrological model that is the engine of the eWaterCycle project. Re-engineering of parts of the software was needed for it to run efficiently in a High Performance Computing (HPC) environment, and to be able to interface using BMI, and run on multiple compute nodes in parallel. The final aim is to have a spatial resolution of 1km x 1km, which is currently 10 x 10km. This high resolution is computationally not too demanding but very memory intensive. The memory bottleneck becomes especially apparent for data assimilation, for which we use OpenDA. OpenDa allows for different data assimilation techniques without the need to build these from scratch. We have developed a BMI adaptor for OpenDA, allowing OpenDA to use any BMI compatible model. To circumvent memory shortages which would result from standard applications of the Ensemble Kalman Filter, we have developed a variant that does not need to keep all ensemble members in working memory. At EGU, we will present this variant and how it fits well in HPC environments. An important step in the eWaterCycle project was the coupling between the hydrological and

  16. A hybrid spatiotemporal drought forecasting model for operational use

    Science.gov (United States)

    Vasiliades, L.; Loukas, A.

    2010-09-01

    Drought forecasting plays an important role in the planning and management of natural resources and water resource systems in a river basin. Early and timelines forecasting of a drought event can help to take proactive measures and set out drought mitigation strategies to alleviate the impacts of drought. Spatiotemporal data mining is the extraction of unknown and implicit knowledge, structures, spatiotemporal relationships, or patterns not explicitly stored in spatiotemporal databases. As one of data mining techniques, forecasting is widely used to predict the unknown future based upon the patterns hidden in the current and past data. This study develops a hybrid spatiotemporal scheme for integrated spatial and temporal forecasting. Temporal forecasting is achieved using feed-forward neural networks and the temporal forecasts are extended to the spatial dimension using a spatial recurrent neural network model. The methodology is demonstrated for an operational meteorological drought index the Standardized Precipitation Index (SPI) calculated at multiple timescales. 48 precipitation stations and 18 independent precipitation stations, located at Pinios river basin in Thessaly region, Greece, were used for the development and spatiotemporal validation of the hybrid spatiotemporal scheme. Several quantitative temporal and spatial statistical indices were considered for the performance evaluation of the models. Furthermore, qualitative statistical criteria based on contingency tables between observed and forecasted drought episodes were calculated. The results show that the lead time of forecasting for operational use depends on the SPI timescale. The hybrid spatiotemporal drought forecasting model could be operationally used for forecasting up to three months ahead for SPI short timescales (e.g. 3-6 months) up to six months ahead for large SPI timescales (e.g. 24 months). The above findings could be useful in developing a drought preparedness plan in the region.

  17. Network Bandwidth Utilization Forecast Model on High Bandwidth Network

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Wucherl; Sim, Alex

    2014-07-07

    With the increasing number of geographically distributed scientific collaborations and the scale of the data size growth, it has become more challenging for users to achieve the best possible network performance on a shared network. We have developed a forecast model to predict expected bandwidth utilization for high-bandwidth wide area network. The forecast model can improve the efficiency of resource utilization and scheduling data movements on high-bandwidth network to accommodate ever increasing data volume for large-scale scientific data applications. Univariate model is developed with STL and ARIMA on SNMP path utilization data. Compared with traditional approach such as Box-Jenkins methodology, our forecast model reduces computation time by 83.2percent. It also shows resilience against abrupt network usage change. The accuracy of the forecast model is within the standard deviation of the monitored measurements.

  18. Network bandwidth utilization forecast model on high bandwidth networks

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Wuchert (William) [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Sim, Alex [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2015-03-30

    With the increasing number of geographically distributed scientific collaborations and the scale of the data size growth, it has become more challenging for users to achieve the best possible network performance on a shared network. We have developed a forecast model to predict expected bandwidth utilization for high-bandwidth wide area network. The forecast model can improve the efficiency of resource utilization and scheduling data movements on high-bandwidth network to accommodate ever increasing data volume for large-scale scientific data applications. Univariate model is developed with STL and ARIMA on SNMP path utilization data. Compared with traditional approach such as Box-Jenkins methodology, our forecast model reduces computation time by 83.2%. It also shows resilience against abrupt network usage change. The accuracy of the forecast model is within the standard deviation of the monitored measurements.

  19. Three essays on resource economics. Demand systems for energy forecasting: Practical considerations for estimating a generalized logit model, To borrow or not to borrow: A variation on the MacDougal-Kemp theme, and, Valuing reduced risk for households with children or the retired

    Science.gov (United States)

    Weng, Weifeng

    This thesis presents papers on three areas of study within resource and environmental economics. "Demand Systems For Energy Forecasting" provides some practical considerations for estimating a Generalized Logit model. The main reason for using this demand system for energy and other factors is that the derived price elasticities are robust when expenditure shares are small. The primary objective of the paper is to determine the best form of the cross-price weights, and a simple inverse function of the expenditure share is selected. A second objective is to demonstrate that the estimated elasticities are sensitive to the units specified for the prices, and to show how price scales can be estimated as part of the model. "To Borrow or Not to Borrow: A Variation on the MacDougal-Kemp Theme" studies the impact of international capital movements on the conditional convergence of economies differing from each other only in initial wealth. We found that in assets, income, consumption and utility, convergence obtains, with and only with, the absence of international capital movement. When a rich country invests in a poor country, the balance of debt increases forever. Asset ownership is increased in all periods for the lender, and asset ownership of the borrower is deceased. Also, capital investment decreases the lender's utility for early periods, but increases it forever after a cross-over point. In contrast, the borrower's utility increases for early periods, but then decreases forever. "Valuing Reduced Risk for Households with Children or the Retired" presents a theoretical model of how families value risk and then exams family automobile purchases to impute the average Value of a Statistical Life (VSL) for each type of family. Data for fatal accidents are used to estimate survival rates for individuals in different types of accidents, and the probabilities of having accidents for different types of vehicle. These models are used to determine standardized risks for

  20. A hierarchical spatiotemporal analog forecasting model for count data.

    Science.gov (United States)

    McDermott, Patrick L; Wikle, Christopher K; Millspaugh, Joshua

    2018-01-01

    Analog forecasting is a mechanism-free nonlinear method that forecasts a system forward in time by examining how past states deemed similar to the current state moved forward. Previous applications of analog forecasting has been successful at producing robust forecasts for a variety of ecological and physical processes, but it has typically been presented in an empirical or heuristic procedure, rather than as a formal statistical model. The methodology presented here extends the model-based analog method of McDermott and Wikle (Environmetrics, 27, 2016, 70) by placing analog forecasting within a fully hierarchical statistical framework that can accommodate count observations. Using a Bayesian approach, the hierarchical analog model is able to quantify rigorously the uncertainty associated with forecasts. Forecasting waterfowl settling patterns in the northwestern United States and Canada is conducted by applying the hierarchical analog model to a breeding population survey dataset. Sea surface temperature (SST) in the Pacific Ocean is used to help identify potential analogs for the waterfowl settling patterns.

  1. Mean Bias in Seasonal Forecast Model and ENSO Prediction Error.

    Science.gov (United States)

    Kim, Seon Tae; Jeong, Hye-In; Jin, Fei-Fei

    2017-07-20

    This study uses retrospective forecasts made using an APEC Climate Center seasonal forecast model to investigate the cause of errors in predicting the amplitude of El Niño Southern Oscillation (ENSO)-driven sea surface temperature variability. When utilizing Bjerknes coupled stability (BJ) index analysis, enhanced errors in ENSO amplitude with forecast lead times are found to be well represented by those in the growth rate estimated by the BJ index. ENSO amplitude forecast errors are most strongly associated with the errors in both the thermocline slope response and surface wind response to forcing over the tropical Pacific, leading to errors in thermocline feedback. This study concludes that upper ocean temperature bias in the equatorial Pacific, which becomes more intense with increasing lead times, is a possible cause of forecast errors in the thermocline feedback and thus in ENSO amplitude.

  2. A forecasting model of gaming revenues in Clark County, Nevada

    International Nuclear Information System (INIS)

    Edwards, B.; Bando, A.; Basset, G.; Rosen, A.; Meenan, C.; Carlson, J.

    1992-01-01

    This paper describes the Western Area Gaming and Economic Response Simulator (WAGERS), a forecasting model that emphasizes the role of the gaming industry in Clark County, Nevada. It is designed to generate forecasts of gaming revenues in Clark County, whose regional economy is dominated by the gaming industry, and identify the exogenous variables that affect gaming revenues. This model will provide baseline forecasts of Clark County gaming revenues in order to assess changes in gaming related economic activity resulting from future events like the siting of a permanent high-level radioactive waste repository at Yucca Mountain

  3. Forecasting daily meteorological time series using ARIMA and regression models

    Science.gov (United States)

    Murat, Małgorzata; Malinowska, Iwona; Gos, Magdalena; Krzyszczak, Jaromir

    2018-04-01

    The daily air temperature and precipitation time series recorded between January 1, 1980 and December 31, 2010 in four European sites (Jokioinen, Dikopshof, Lleida and Lublin) from different climatic zones were modeled and forecasted. In our forecasting we used the methods of the Box-Jenkins and Holt- Winters seasonal auto regressive integrated moving-average, the autoregressive integrated moving-average with external regressors in the form of Fourier terms and the time series regression, including trend and seasonality components methodology with R software. It was demonstrated that obtained models are able to capture the dynamics of the time series data and to produce sensible forecasts.

  4. A forecasting model of gaming revenues in Clark County, Nevada

    International Nuclear Information System (INIS)

    Edwards, B.; Bando, A.; Bassett, G.; Rosen, A.; Carlson, J.; Meenan, C.

    1992-01-01

    This paper describes the Western Area Gaining and Economic Response Simulator (WAGERS), a forecasting model that emphasizes the role of the gaming industry in Clark County, Nevada. It is designed to generate forecasts of gaming revenues in Clark County, whose regional economy is dominated by the gaming industry, an identify the exogenous variables that affect gaming revenues. This model will provide baseline forecasts of Clark County gaming revenues in order to assess changes in gaming related economic activity resulting from future events like the siting of a permanent high-level radioactive waste repository at Yucca Mountain

  5. A forecasting model of gaming revenues in Clark County, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Edwards, B.; Bando, A.; Bassett, G.; Rosen, A. [Argonne National Lab., IL (United States); Carlson, J.; Meenan, C. [Science Applications International Corp., Las Vegas, NV (United States)

    1992-04-01

    This paper describes the Western Area Gaming and Economic Response Simulator (WAGERS), a forecasting model that emphasizes the role of the gaming industry in Clark County, Nevada. It is designed to generate forecasts of gaming revenues in Clark County, whose regional economy is dominated by the gaming industry, an identify the exogenous variables that affect gaming revenues. This model will provide baseline forecasts of Clark County gaming revenues in order to assess changes in gaming related economic activity resulting from future events like the siting of a permanent high-level radioactive waste repository at Yucca Mountain.

  6. Medium Range Forecast (MRF) and Nested Grid Model (NGM)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Nested Grid Model (NGM) and Medium Range Forecast (MRF) Archive is historical digital data set DSI-6140, archived at the NOAA National Centers for Environmental...

  7. Empirical evaluation of a forecasting model for successful facilitation ...

    African Journals Online (AJOL)

    During 2000 the annual Facilitator Customer Satisfaction Survey was ... the forecasting model is successful concerning the CSI value and a high positive linear ... namely that of human behaviour to incorporate other influences than just the ...

  8. forecasting with nonlinear time series model: a monte-carlo

    African Journals Online (AJOL)

    PUBLICATIONS1

    Carlo method of forecasting using a special nonlinear time series model, called logistic smooth transition ... We illustrate this new method using some simulation ..... in MATLAB 7.5.0. ... process (DGP) using the logistic smooth transi-.

  9. Development of rainfall-runoff forecast model | Oyebode | Journal of ...

    African Journals Online (AJOL)

    ... and meterological variables involved in rainfall-runoff process to improve forecast accuracy of rainfallrunoff. ... The simulation was done using MATLAB® 7.0. The simulation results showed that neurofuzzy-based model has higher coefficient ...

  10. Evaluation and Application of the Weather Research and Forecast Model

    National Research Council Canada - National Science Library

    Passner, Jeffrey E

    2007-01-01

    ... by the U.S. Army Research Laboratory (ARL) to determine how accurate and robust the model is under a variety of meteorological conditions, with an emphasis on fine resolution, short-range forecasts in complex terrain...

  11. Density prediction and dimensionality reduction of mid-term electricity demand in China: A new semiparametric-based additive model

    International Nuclear Information System (INIS)

    Shao, Zhen; Yang, Shan-Lin; Gao, Fei

    2014-01-01

    Highlights: • A new stationary time series smoothing-based semiparametric model is established. • A novel semiparametric additive model based on piecewise smooth is proposed. • We model the uncertainty of data distribution for mid-term electricity forecasting. • We provide efficient long horizon simulation and extraction for external variables. • We provide stable and accurate density predictions for mid-term electricity demand. - Abstract: Accurate mid-term electricity demand forecasting is critical for efficient electric planning, budgeting and operating decisions. Mid-term electricity demand forecasting is notoriously complicated, since the demand is subject to a range of external drivers, such as climate change, economic development, which will exhibit monthly, seasonal, and annual complex variations. Conventional models are based on the assumption that original data is stable and normally distributed, which is generally insignificant in explaining actual demand pattern. This paper proposes a new semiparametric additive model that, in addition to considering the uncertainty of the data distribution, includes practical discussions covering the applications of the external variables. To effectively detach the multi-dimensional volatility of mid-term demand, a novel piecewise smooth method which allows reduction of the data dimensionality is developed. Besides, a semi-parametric procedure that makes use of bootstrap algorithm for density forecast and model estimation is presented. Two typical cases in China are presented to verify the effectiveness of the proposed methodology. The results suggest that both meteorological and economic variables play a critical role in mid-term electricity consumption prediction in China, while the extracted economic factor is adequate to reveal the potentially complex relationship between electricity consumption and economic fluctuation. Overall, the proposed model can be easily applied to mid-term demand forecasting, and

  12. Supply shortage forecast in Ontario: The significance of demand-side management (DSM); its tools and techniques

    International Nuclear Information System (INIS)

    Saini, S.

    2004-01-01

    Aspects of the recent report by the Ontario Electricity Conservation and Supply Task Force and Independent Market Operator which forecasts acute power supply shortages in Ontario, are discussed. Immediate action is recommended to avert the problem. The principal recommendation concerns the adoption of Demand Side Management as a tool to reduce the widening gap between supply and demand, citing supply shortage, imports, high prices, deregulated market and environmental concerns as the driving forces which push for the adoption of DSM. It is claimed that DSM, through its tools such as Demand/Load Response Programs and Time-of-Use rates has the capacity to create the necessary balance between supply and demand more efficiently, and in a more timely fashion than supply side management. The demand for adoption of DSM is justified on the basis of a careful examination of the magnitude and significance of each of the driving forces affecting the electricity supply in Ontario, as well as the benefits and techniques of DSM designed to manage power shortages. Energy Conservation and Efficiency and Demand/Load Response Programs are discussed as the principal DSM techniques, while Dynamic/Real Time Pricing, Time-of-Use Rates, Automated /Smart Metering, Web-based/Communication Systems, Reliability-based Programs, Market/Price-based programs, and Types of Load Control are described as the principal tools used by DSM. DSM program approaches and strategies are also reviewed, along with a brief list of successful examples of DSM applications. 3 figs

  13. Supply shortage forecast in Ontario: The significance of demand-side management (DSM); its tools and techniques

    Energy Technology Data Exchange (ETDEWEB)

    Saini, S.

    2004-06-01

    Aspects of the recent report by the Ontario Electricity Conservation and Supply Task Force and Independent Market Operator which forecasts acute power supply shortages in Ontario, are discussed. Immediate action is recommended to avert the problem. The principal recommendation concerns the adoption of Demand Side Management as a tool to reduce the widening gap between supply and demand, citing supply shortage, imports, high prices, deregulated market and environmental concerns as the driving forces which push for the adoption of DSM. It is claimed that DSM, through its tools such as Demand/Load Response Programs and Time-of-Use rates has the capacity to create the necessary balance between supply and demand more efficiently, and in a more timely fashion than supply side management. The demand for adoption of DSM is justified on the basis of a careful examination of the magnitude and significance of each of the driving forces affecting the electricity supply in Ontario, as well as the benefits and techniques of DSM designed to manage power shortages. Energy Conservation and Efficiency and Demand/Load Response Programs are discussed as the principal DSM techniques, while Dynamic/Real Time Pricing, Time-of-Use Rates, Automated /Smart Metering, Web-based/Communication Systems, Reliability-based Programs, Market/Price-based programs, and Types of Load Control are described as the principal tools used by DSM. DSM program approaches and strategies are also reviewed, along with a brief list of successful examples of DSM applications. 3 figs.

  14. Formation of an Integrated Stock Price Forecast Model in Lithuania

    Directory of Open Access Journals (Sweden)

    Audrius Dzikevičius

    2016-12-01

    Full Text Available Technical and fundamental analyses are widely used to forecast stock prices due to lack of knowledge of other modern models and methods such as Residual Income Model, ANN-APGARCH, Support Vector Machine, Probabilistic Neural Network and Genetic Fuzzy Systems. Although stock price forecast models integrating both technical and fundamental analyses are currently used widely, their integration is not justified comprehensively enough. This paper discusses theoretical one-factor and multi-factor stock price forecast models already applied by investors at a global level and determines possibility to create and apply practically a stock price forecast model which integrates fundamental and technical analysis with the reference to the Lithuanian stock market. The research is aimed to determine the relationship between stock prices of the 14 Lithuanian companies listed in the Main List by the Nasdaq OMX Baltic and various fundamental variables. Based on correlation and regression analysis results and application of c-Squared Test, ANOVA method, a general stock price forecast model is generated. This paper discusses practical implications how the developed model can be used to forecast stock prices by individual investors and suggests additional check measures.

  15. Model documentation report: Commercial Sector Demand Module of the National Energy Modeling System

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-01-01

    This report documents the objectives, analytical approach and development of the National Energy Modeling System (NEMS) Commercial Sector Demand Module. The report catalogues and describes the model assumptions, computational methodology, parameter estimation techniques, model source code, and forecast results generated through the synthesis and scenario development based on these components. The NEMS Commercial Sector Demand Module is a simulation tool based upon economic and engineering relationships that models commercial sector energy demands at the nine Census Division level of detail for eleven distinct categories of commercial buildings. Commercial equipment selections are performed for the major fuels of electricity, natural gas, and distillate fuel, for the major services of space heating, space cooling, water heating, ventilation, cooking, refrigeration, and lighting. The algorithm also models demand for the minor fuels of residual oil, liquefied petroleum gas, steam coal, motor gasoline, and kerosene, the renewable fuel sources of wood and municipal solid waste, and the minor services of office equipment. Section 2 of this report discusses the purpose of the model, detailing its objectives, primary input and output quantities, and the relationship of the Commercial Module to the other modules of the NEMS system. Section 3 of the report describes the rationale behind the model design, providing insights into further assumptions utilized in the model development process to this point. Section 3 also reviews alternative commercial sector modeling methodologies drawn from existing literature, providing a comparison to the chosen approach. Section 4 details the model structure, using graphics and text to illustrate model flows and key computations.

  16. Remote sensing inputs to water demand modeling

    Science.gov (United States)

    Estes, J. E.; Jensen, J. R.; Tinney, L. R.; Rector, M.

    1975-01-01

    In an attempt to determine the ability of remote sensing techniques to economically generate data required by water demand models, the Geography Remote Sensing Unit, in conjunction with the Kern County Water Agency of California, developed an analysis model. As a result it was determined that agricultural cropland inventories utilizing both high altitude photography and LANDSAT imagery can be conducted cost effectively. In addition, by using average irrigation application rates in conjunction with cropland data, estimates of agricultural water demand can be generated. However, more accurate estimates are possible if crop type, acreage, and crop specific application rates are employed. An analysis of the effect of saline-alkali soils on water demand in the study area is also examined. Finally, reference is made to the detection and delineation of water tables that are perched near the surface by semi-permeable clay layers. Soil salinity prediction, automated crop identification on a by-field basis, and a potential input to the determination of zones of equal benefit taxation are briefly touched upon.

  17. Research and Application of a Hybrid Forecasting Model Based on Data Decomposition for Electrical Load Forecasting

    Directory of Open Access Journals (Sweden)

    Yuqi Dong

    2016-12-01

    Full Text Available Accurate short-term electrical load forecasting plays a pivotal role in the national economy and people’s livelihood through providing effective future plans and ensuring a reliable supply of sustainable electricity. Although considerable work has been done to select suitable models and optimize the model parameters to forecast the short-term electrical load, few models are built based on the characteristics of time series, which will have a great impact on the forecasting accuracy. For that reason, this paper proposes a hybrid model based on data decomposition considering periodicity, trend and randomness of the original electrical load time series data. Through preprocessing and analyzing the original time series, the generalized regression neural network optimized by genetic algorithm is used to forecast the short-term electrical load. The experimental results demonstrate that the proposed hybrid model can not only achieve a good fitting ability, but it can also approximate the actual values when dealing with non-linear time series data with periodicity, trend and randomness.

  18. Enhancing Nursing Staffing Forecasting With Safety Stock Over Lead Time Modeling.

    Science.gov (United States)

    McNair, Douglas S

    2015-01-01

    In balancing competing priorities, it is essential that nursing staffing provide enough nurses to safely and effectively care for the patients. Mathematical models to predict optimal "safety stocks" have been routine in supply chain management for many years but have up to now not been applied in nursing workforce management. There are various aspects that exhibit similarities between the 2 disciplines, such as an evolving demand forecast according to acuity and the fact that provisioning "stock" to meet demand in a future period has nonzero variable lead time. Under assumptions about the forecasts (eg, the demand process is well fit as an autoregressive process) and about the labor supply process (≥1 shifts' lead time), we show that safety stock over lead time for such systems is effectively equivalent to the corresponding well-studied problem for systems with stationary demand bounds and base stock policies. Hence, we can apply existing models from supply chain analytics to find the optimal safety levels of nurse staffing. We use a case study with real data to demonstrate that there are significant benefits from the inclusion of the forecast process when determining the optimal safety stocks.

  19. A Hybrid Neural Network Model for Sales Forecasting Based on ARIMA and Search Popularity of Article Titles.

    Science.gov (United States)

    Omar, Hani; Hoang, Van Hai; Liu, Duen-Ren

    2016-01-01

    Enhancing sales and operations planning through forecasting analysis and business intelligence is demanded in many industries and enterprises. Publishing industries usually pick attractive titles and headlines for their stories to increase sales, since popular article titles and headlines can attract readers to buy magazines. In this paper, information retrieval techniques are adopted to extract words from article titles. The popularity measures of article titles are then analyzed by using the search indexes obtained from Google search engine. Backpropagation Neural Networks (BPNNs) have successfully been used to develop prediction models for sales forecasting. In this study, we propose a novel hybrid neural network model for sales forecasting based on the prediction result of time series forecasting and the popularity of article titles. The proposed model uses the historical sales data, popularity of article titles, and the prediction result of a time series, Autoregressive Integrated Moving Average (ARIMA) forecasting method to learn a BPNN-based forecasting model. Our proposed forecasting model is experimentally evaluated by comparing with conventional sales prediction techniques. The experimental result shows that our proposed forecasting method outperforms conventional techniques which do not consider the popularity of title words.

  20. A Hybrid Neural Network Model for Sales Forecasting Based on ARIMA and Search Popularity of Article Titles

    Science.gov (United States)

    Omar, Hani; Hoang, Van Hai; Liu, Duen-Ren

    2016-01-01

    Enhancing sales and operations planning through forecasting analysis and business intelligence is demanded in many industries and enterprises. Publishing industries usually pick attractive titles and headlines for their stories to increase sales, since popular article titles and headlines can attract readers to buy magazines. In this paper, information retrieval techniques are adopted to extract words from article titles. The popularity measures of article titles are then analyzed by using the search indexes obtained from Google search engine. Backpropagation Neural Networks (BPNNs) have successfully been used to develop prediction models for sales forecasting. In this study, we propose a novel hybrid neural network model for sales forecasting based on the prediction result of time series forecasting and the popularity of article titles. The proposed model uses the historical sales data, popularity of article titles, and the prediction result of a time series, Autoregressive Integrated Moving Average (ARIMA) forecasting method to learn a BPNN-based forecasting model. Our proposed forecasting model is experimentally evaluated by comparing with conventional sales prediction techniques. The experimental result shows that our proposed forecasting method outperforms conventional techniques which do not consider the popularity of title words. PMID:27313605