WorldWideScience

Sample records for dem icecube detektor

  1. Kosmische Myonen im L3-Detektor

    CERN Document Server

    Saidi, Rachid

    2000-01-01

    Durch die Untersuchung des Mondschattens in der primaren kosmischen Strahlung konnen Informationen uber die Winkelau osung des L3-Detektors gewonnen werden, sowie mit ausreichender Statistik das Verhaltnis von Antiprotonen zu Protonen fur Protonenergien um 1 TeV abgeschatzt werden. Die Bahn der Protonen vom Mond zur Erde wird durch folgende Eekte beein ut: Das Magnetfeld zwischen Mond und Erde lenkt die geladenen Teilchen ab. Fur 1 TeV Protonenenergie wurde ein Wert von 1:70 abgeschatzt. Die Mehrfachstreuung in der 30 m dicken Erdschicht uber L3 verursacht eine Winkelverschmierung von 3.5 mrad fur 100 GeV Myonen. Der Winkel zwischen Proton und den sekundaren Myonen, die durch Wechselwirkung von primaren Kernen mit den oberen Schichten der Atmosphare entstehen, betragt 3 mrad fur 100 GeV Myonen. Die berechnete Winkelau osung dieser Untersuchung fur den L3-Detektor mit verschiedenen Energien betragt einen Wert von 0:170 0:030 fur das starkste Myonschattensignal bei 150 GeV Myonenenergie. Dabei wurde fur den Mon...

  2. Deteksi Kebocoran Gas LPG Menggunakan Detektor Arduino dengan Algoritma Fuzzy Logic Mandani

    Directory of Open Access Journals (Sweden)

    Lukman Hakim

    2017-10-01

    Full Text Available Bencana kebakaran yang diakibatkan oleh kebocoran gas LPG (Liquid  Petroleum   Gas mengalami kenaikan setiap tahun dari tahun 2011 sampai 2015 diantaranya 17% diakibatkan oleh kebocoran gas. Penggunaan detektor kebocoran gas LPG menggunakan arduino yang dilengkapi sensor gas dan suhu memberikan kemudahan untuk deteksi secara awal terjadinya kebocoran dan kebakaran. Perancangan detektor kebocoran gas LPG menggunakan algoritma fuzzy logic mandani, dilengkapi dengan informasi melalui Short Message Service (SMS dan Buzzer. Detektor kebocoran gas LPG dapat melakukan indikasi terjadinya bocor pada konsentrasi gas rata-rata 456 ppm dari 10 pengujian dan indikasi api merah 23,30 dapat mengenal terjadinya kebakaran, detektor mengirimkan SMS kepada pemilik rumah dan pemadam kebakaran.

  3. Deteksi Kebocoran Gas LPG Menggunakan Detektor Arduino dengan Algoritma Fuzzy Logic Mandani

    OpenAIRE

    Hakim, Lukman; Yonatan, Vidi

    2017-01-01

    Bencana kebakaran yang diakibatkan oleh kebocoran gas LPG (Liquid  Petroleum   Gas) mengalami kenaikan setiap tahun dari tahun 2011 sampai 2015 diantaranya 17% diakibatkan oleh kebocoran gas. Penggunaan detektor kebocoran gas LPG menggunakan arduino yang dilengkapi sensor gas dan suhu memberikan kemudahan untuk deteksi secara awal terjadinya kebocoran dan kebakaran. Perancangan detektor kebocoran gas LPG menggunakan algoritma fuzzy logic mandani, dilengkapi dengan informasi mel...

  4. Deteksi Kebocoran Gas LPG Menggunakan Detektor Arduino dengan Algoritma Fuzzy Logic Mandani

    OpenAIRE

    Lukman Hakim; Vidi Yonatan

    2017-01-01

    Bencana kebakaran yang diakibatkan oleh kebocoran gas LPG (Liquid  Petroleum   Gas) mengalami kenaikan setiap tahun dari tahun 2011 sampai 2015 diantaranya 17% diakibatkan oleh kebocoran gas. Penggunaan detektor kebocoran gas LPG menggunakan arduino yang dilengkapi sensor gas dan suhu memberikan kemudahan untuk deteksi secara awal terjadinya kebocoran dan kebakaran. Perancangan detektor kebocoran gas LPG menggunakan algoritma fuzzy logic mandani, dilengkapi dengan informasi melalui Short Mess...

  5. Erwartete Messung der Z Produktionsrate mit dem CMS Detektor und Simulation des Tracker Laser Alignment Systems

    CERN Document Server

    Thomas, Maarten

    2009-01-01

    The Large Hadron Collider is a two-ring, superconducting accelerator and collider which can provide both proton and heavy-ion beams. First collisions are foreseen for 2009. The Compact Muon System (CMS) detector will measure the particles created in the hadron collisions and can confirm the Standard Model by establishing the existence of the Higgs boson, but also search for new phenomena. In order to provide a robust and precise track reconstruction, which can already be used in the High-Level Trigger systems, the positions of the silicon sensors in the CMS tracker have to been known with an accuracy of O(100µm). Therefore the CMS tracker has been equipped with a dedicated alignment system. The Laser Alignment System (LAS) aligns the tracker subdetectors with respect to each other and can also monitor the stability of the sensor positions during data taking. This study describes the implementation of a realistic simulation of the LAS in the CMS software framework (CMSSW) as well as the analysis of the first ...

  6. Messung der semileptonischen $\\Xi^{0}$-Zerfälle mit dem NA48/1-Detektor

    CERN Document Server

    Moosbrugger, Ulrich

    2005-01-01

    In 2002 a high intensity data acquisition for K_S mesons and neutral hyperons was performed by the NA48/1 experiment, in which about 10^9 Xi^0 decay candidates were recorded. Within this work 6657 Xi^0 -> Sigma^+ e^- anti-nu and 581 anti-Xi^0 -> anti-Sigma^+ e^+ nu events were selected from that data sample and the branching ratios BR1(Gamma(Xi^0 -> Sigma^+ e^- anti-nu)/Gamma(Xi^0 total))=( 2.533 +-0.032(stat) -0.076+0.089(syst) )10^-4 and BR2(Gamma(anti-Xi^0 -> anti-Sigma^+ e^+ nu)/Gamma(Anti-Xi^0 total))= ( 2.57 +-0.12(stat) -0.09+0.10(syst) )10^-4 were determined. The result for BR1 is 3.5 times more precise than the previously published measurement. The analysis of anti-Xi^0-beta decays is the first measurement of BR2. Both results agree with the theoretical prediction of 2.6*10^-4. From BR1, the CKM matrix element |Vus| = 0.209 +- 0.004(exp) +- 0.026(syst) was determined by using the experimental value for the form factor ratio g1/f1. The dominant uncertainty is given by the error on g1/f1. Besides, 99 X...

  7. Suche nach solaren Axionen mit dem CCD-Detektor in CAST (CERN Axion Solar Telescope)

    CERN Document Server

    Kang, Donghwa

    2007-01-01

    The CERN Axion Solar Telescope (CAST) experiment at CERN searches for solar axions with energies in the keV range. Axions could be produced in the Sun's core by the interaction of thermal photons with virtual photons of the strong electromagnetic field. In this experiment, the solar axions can be converted to photons in the field of a 9 Tesla superconducting magnet. At both ends of the 10 m long dipole magnet, three different X-ray detectors were installed, which are sensitive in the interesting photon energy range. This thesis is devoted to the determination of an upper limit on the axion-photon coupling constant g$_{a\\gamma}$. The analysis is based on the data taken by the CCD detector in the CAST experiment during the years 2003 and 2004. First results of the 2003 data taking were published showing no significant signal above background. However, these results constrain the upper limit of the axion-photon coupling constant by a factor 5 compared to previous axion search experiments. Moreover, the result of...

  8. Messung der Lebensdauer des $\\Xi^{0}$ -Hyperons mit dem NA48-Detektor

    CERN Document Server

    Marouelli, Peter

    2005-01-01

    One of the main characteristics of particles is the lifetime. The mean lifetime of the Xi0 hyperon, which can be determined theoretically from the Xi- lifetime by using the Delta I=1/2 rule, has been measured a couple of times. The most recent measurement from 1977 has a relative uncertainty of 5%, which could be improved by usind data from new experiments like NA48/1. The Xi0 lifetime is an important input parameter in the determination of the matrix element Vus of the Cabibbo-Kobayashi-Maskawa matrix in semileptonic Xi0 decays. In 2002 a high intensity data acquisition was performed by the NA48/1 collaboration, in which about 10^9 Xi0 decay candidates were recorded. From this sample 192000 events of the decay "Xi0 to Lambda pi0" were reconstructed and a subsample of 107000 could be used to determine the lifetime. The lifetime was determined by comparison of measured and simulated data in ten energy bins to avoid systematic effects. The result has a higher precision than older measurements. It differs from t...

  9. The IceCube Computing Infrastructure Model

    CERN Multimedia

    CERN. Geneva

    2012-01-01

    Besides the big LHC experiments a number of mid-size experiments is coming online which need to define new computing models to meet the demands on processing and storage requirements of those experiments. We present the hybrid computing model of IceCube which leverages GRID models with a more flexible direct user model as an example of a possible solution. In IceCube a central datacenter at UW-Madison servers as Tier-0 with a single Tier-1 datacenter at DESY Zeuthen. We describe the setup of the IceCube computing infrastructure and report on our experience in successfully provisioning the IceCube computing needs.

  10. IceCube Results and PINGU Perspectives

    DEFF Research Database (Denmark)

    Koskinen, David Jason

    2015-01-01

    The last three years of IceCube operation with the completed detector have resulted in a plethora of results, including the first observation of high energy astrophysical neutrinos, tests of a possible neutrino flux from atmospheric charm meson decay, and competitive results of neutrino oscillation...... from atmospheric muon neutrino disappearance. Based on the success of IceCube, a new low energy in-fill, known as the Precision IceCube Next Generation Upgrade, is being proposed with the primary physics goal of resolving the ordering of the neutrino mass hierarchy....

  11. Bestimmung der Mas'se des neutralen Bs-Mesons mit dem ALEPH-Experiment

    CERN Document Server

    Stehle, M

    2001-01-01

    Gegenstand der vorliegenden Arbeit ist die Bestimmung der Masse des neutralen Bs-Mesons. Dazu wurden B~-Mesonen in den beiden Zerfallskanalen B~ -+ J/W P und B~ -+ W(2S) P rekonstruiert, wobei die Subresonanzen in den Zerfallsmoden J /w -+ l+ l-, W(2S) -+ l+ l- und P -+ K+ K- untersucht wurden. Diese beiden Kanale werden auf Grund ihrer eindeutigen Signatur auch als "goldene Kanale" bezeichnet und eignen sich deshalb sehr gut fur eine exklusive Rekonstruktion, wie sie hier angewendet wurde. Grundlage der Analyse waren ca. 4 Millionen hadronische ZO-Zerfalle, die in den Jahren 1991 1995 mit dem ALEPH-Detektor am e+e--Speicherring LEP am CERN aufgezeichnet wurden. Die zwischenzeitliche Reprozessierung der Daten ermoglichte eine prazisere und effizientere Rekonstruktion als das in fruheren Messungen der Fall war. Wegen der niedrigen Verzweigungsverhaltnisse der untersuchten Zerfallsmoden wurden nur wenige einzelne Ereignisse in den Daten erwartet. Die selektierten Kandidaten wurden durch Schnitte in mehreren Ere...

  12. Untersuchung der Produktion charmhaltiger Mesonen in der Photon-Photon-Streuung mit dem OPAL-Experiment

    CERN Document Server

    Patt, Jochen

    2001-01-01

    Die Produktion von Charm-Quarks in der Photon-Photon-Streuung wird ueber den Nachweis charmhaltiger Mesonen untersucht. Die Arbeit basiert auf den Daten, die mit dem OPAL-Detektor am Elektron-Positron-Speicherring LEP am CERN in Genf in den Jahren von 1989 bis 1998 aufgenommen worden sind. Anhand des Charmonium-Zustandes Chi(c2) wird die Resonanzproduktion von Charm-Quarks untersucht und die Zwei-Photon-Breite des Chi(c2)-Mesons wird gemessen. Geladene D*-Mesonen werden zur Untersuchung der offenen Produktion von Charm-Quarks benutzt. Der Anteil des direkten und des einfach-aufgeloesten Produktionsmechanismus, differentielle D*-Wirkungsquerschnitte, der totale Charm-Wirkungsquerschnitt sowie die Charm-Strukturfunktion des Photons werden bestimmt.

  13. First Results from IceCube

    International Nuclear Information System (INIS)

    Klein, Spencer R.

    2006-01-01

    IceCube is a 1 km 3 neutrino observatory being built to study neutrino production in active galactic nuclei, gamma-ray bursts, supernova remnants, and a host of other astrophysical sources. High-energy neutrinos may signal the sources of ultra-high energy cosmic rays. IceCube will also study many particle-physics topics: searches for WIMP annihilation in the Earth or the Sun, and for signatures of supersymmetry in neutrino interactions, studies of neutrino properties, including searches for extra dimensions, and searches for exotica such as magnetic monopoles or Q-balls. IceCube will also study the cosmic-ray composition. In January, 2005, 60 digital optical modules (DOMs) were deployed in the South Polar ice at depths ranging from 1450 to 2450 meters, and 8 ice-tanks, each containing 2 DOMs were deployed as part of a surface air-shower array. All 76 DOMs are collecting high-quality data. After discussing the IceCube physics program and hardware, I will present some initial results with the first DOMs

  14. IceCube: A Cubic Kilometer Radiation Detector

    International Nuclear Information System (INIS)

    IceCube Collaboration; Klein, Spencer R; Klein, S.R.

    2008-01-01

    IceCube is a 1 km 3 neutrino detector now being built at the Amudsen-Scott South Pole Station. It consists of 4800 Digital Optical Modules (DOMs) which detect Cherenkov radiation from the charged particles produced in neutrino interactions. IceCube will observe astrophysical neutrinos with energies above about 100 GeV. IceCube will be able to separate ν μ , ν t , and ν τ interactions because of their different topologies. IceCube construction is currently 50% complete

  15. Cosmic Ray Studies with IceCube

    Science.gov (United States)

    Gonzalez, Javier

    In this contribution we will give an overview of the cosmic ray studies conducted within the IceCube collaboration. The IceCube detector in the geographical south pole can be used to measure various characteristics of the extensive air showers induced by high energy cosmic rays. With IceTop, the surface component of the detector, we detect the electromagnetic and muon components of the air showers, while with the deep detector we detect the high energy muons. We have measured the energy spectrum of cosmic ray primaries in the range between 1.58PeV and 1.26 EeV. A combined analysis of the high energy muon bundles in the ice and the air shower footprint in IceTop provides a measure of primary composition. We will also discuss how the sensitivity to low energy muons in the air showers has the potential to produce additional measures of primary composition.

  16. kawaihae_dem.grd

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NGDC builds and distributes high-resolution, coastal digital elevation models (DEMs) that integrate ocean bathymetry and land topography to support NOAA's mission to...

  17. ICECUBE NEUTRINOS AND LORENTZ INVARIANCE VIOLATION

    Energy Technology Data Exchange (ETDEWEB)

    Amelino-Camelia, Giovanni [Dipartimento di Fisica, Sapienza Università di Roma and INFN, Sez. Roma1, P.le A. Moro 2, I-00185 Roma (Italy); Guetta, D. [Osservatorio astronomico di Roma, v. Frascati 33, I-00040 Monte Porzio Catone (Italy); Piran, Tsvi [The Racah Institute for Physics, The Hebrew University of Jerusalem, Jerusalem 91904 (Israel)

    2015-06-20

    The IceCube neutrino telescope has found so far no evidence of gamma-ray burst (GRB) neutrinos. We here notice that these results assume the same travel times from source to telescope for neutrinos and photons, an assumption that is challenged by some much-studied pictures of spacetime quantization. We briefly review previous results suggesting that limits on quantum-spacetime effects obtained for photons might not be applicable to neutrinos, and we then observe that the outcome of GRB-neutrino searches could depend strongly on whether one allows for neutrinos to be affected by the minute effects of Lorentz invariance violation (LIV) predicted by some relevant quantum-spacetime models. We discuss some relevant issues using as an illustrative example three neutrinos that were detected by IceCube in good spatial coincidence with GRBs, but hours before the corresponding gamma rays. In general, this could happen if the earlier arrival reflects quantum-spacetime-induced LIV, but, as we stress, some consistency criteria must be enforced in order to properly test such a hypothesis. Our analysis sets the stage for future GRB-neutrino searches that could systematically test the possibility of quantum-spacetime-induced LIV.

  18. On the IceCube spectral anomaly

    Energy Technology Data Exchange (ETDEWEB)

    Palladino, Andrea; Vissani, Francesco [Gran Sasso Science Institute, L' Aquila (Italy); Spurio, Maurizio, E-mail: andrea.palladino@gssi.infn.it, E-mail: maurizio.spurio@bo.infn.it, E-mail: francesco.vissani@lngs.infn.it [Dipartimento di Fisica e Astronomia Università di Bologna and INFN Sezione di Bologna, Bologna (Italy)

    2016-12-01

    Recently it was noted that different IceCube datasets are not consistent with the same power law spectrum of the cosmic neutrinos: this is the IceCube spectral anomaly , that suggests that they observe a multicomponent spectrum. In this work, the main possibilities to enhance the description in terms of a single extragalactic neutrino component are examined. The hypothesis of a sizable contribution of Galactic high-energy neutrino events distributed as E {sup −2.7} [ Astrophys. J. 826 (2016) 185] is critically analyzed and its natural generalization is considered. The stability of the expectations is studied by introducing free parameters, motivated by theoretical considerations and observational facts. The upgraded model here examined has 1) a Galactic component with different normalization and shape E {sup −2.4}; 2) an extragalactic neutrino spectrum based on new data; 3) a non-zero prompt component of atmospheric neutrinos. The two key predictions of the model concern the 'high-energy starting events' collected from the Southern sky. The Galactic component produces a softer spectrum and a testable angular anisotropy. A second, radically different class of models, where the second component is instead isotropic, plausibly extragalactic and with a relatively soft spectrum, is disfavored instead by existing observations of muon neutrinos from the Northern sky and below few 100 TeV.

  19. AURA-A radio frequency extension to IceCube

    International Nuclear Information System (INIS)

    Landsman, H.; Ruckman, L.; Varner, G.S.

    2009-01-01

    The excellent radio frequency (RF) transparency of cold polar ice, combined with the coherent Cherenkov emission produced by neutrino-induced showers when viewed at wavelengths longer than a few centimeters, has spurred considerable interest in a large-scale radio-wave neutrino detector array. The AURA (Askaryan Under-ice Radio Array) experimental effort, within the IceCube collaboration, seeks to take advantage of the opportunity presented by IceCube [A. Karle, Nucl. Instr. and Meth. A (2009), this issue, doi: (10.1016/j.nima.2009.03.180).; A. Achtenberg et al., The IceCube Collaboration, Astropart. Phys. 26 (2006) 155 ] drilling through 2010 to establish the RF technology needed to achieve 100-1000km 3 effective volumes. In the 2006-2007 Austral summer, three deep in-ice RF clusters were deployed at depths of ∼1300 and ∼300m on top of the IceCube strings. Additional three clusters will be deployed in the Austral summer of 2008-2009. Verification and calibration results from the current deployed clusters are presented, and the detector design and performances are discussed. Augmentation of IceCube with large-scale (1000km 3 sr) radio and acoustic arrays would extend the physics reach of IceCube into the EeV-ZeV regime and offer substantial technological redundancy.

  20. Coastal Digital Elevation Models (DEMs)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Digital elevation models (DEMs) of U.S. and other coasts that typically integrate ocean bathymetry and land topography. The DEMs support NOAA's mission to understand...

  1. Latest results from the IceCube neutrino observatory

    Energy Technology Data Exchange (ETDEWEB)

    Schukraft, Anne [RWTH Aachen Univ. (Germany). III. Physikalisches Inst.; Collaboration: IceCube-Collaboration

    2013-07-01

    The IceCube Neutrino Observatory is the world's largest neutrino detector with a broad physics program covering the neutrino spectrum from several tens of GeV up to EeV energies. With its completion in 2010 it has reached its full sensitivity and analyses with unprecedented statistics are performed. One of the major research efforts is the search for extraterrestrial neutrino sources, which have not yet been discovered but would be a smoking gun for hadronic acceleration and could allow to identify the sources of high-energy cosmic rays. Such include steady galactic and extragalactic source candidates, e.g. Supernova Remnants and Active Galactic Nuclei, as well as transient phenomena like flaring objects and Gamma Ray Bursts. With its searches for diffuse neutrino fluxes in different energy ranges, IceCube is sensitive to fluxes of prompt atmospheric neutrinos, extragalactic neutrinos and cosmogenic neutrinos. In the low-energy range below 100 GeV, IceCube supplements classical neutrino oscillation experiments with its sensitivity to the deficit of atmospheric muon neutrinos at 25 GeV and searches for neutrinos from the annihilation of dark matter. The IceCube physics program is complemented by the surface array IceTop, which together with the detector part inside the ice serves for cosmic ray anisotropy, spectrum and composition measurements around the knee. The presentation summarizes ongoing IceCube physics analyses and recent results.

  2. Searches for astrophysical neutrinos with IceCube

    International Nuclear Information System (INIS)

    Williams, D.

    2014-01-01

    Powerful astrophysical objects such as active galactic nuclei (AGN), core collapse supernovae and gamma ray bursts (GRBs) are potential sources of the highest energy cosmic rays. Many models of cosmic ray proton acceleration predict a corresponding flux of neutrinos in the TeV-PeV energy range. The detection of astrophysical neutrinos requires the largest neutrino detector ever built: IceCube, a cubic-kilometer array located near the geographic South Pole. IceCube has been collecting data throughout its construction, which was complete in December 2010. Data from the partial IceCube detector have already set interesting limits on astrophysical neutrino fluxes, including stringent limits on neutrino production in GRBs. (authors)

  3. Searches for magnetic monopoles with IceCube

    Directory of Open Access Journals (Sweden)

    Pollmann Anna

    2018-01-01

    IceCube is a high energy neutrino detector using the clear ice at the South Pole as a detection medium. As monopoles pass through this ice they produce optical light by a variety of mechanisms. With increasing velocity, they produce light by catalysis of baryon decay, luminescence in the ice associated with electronic excitations, indirect and direct Cherenkov light from the monopole track, and Cherenkov light from cascades induced by pair creation and photonuclear reactions. By searching for this light, current best limits for the monopole flux over a broad range of velocities was achieved using the IceCube detector. A review of these magnetic monopole searches is presented.

  4. The IceCube Neutrino Observatory: instrumentation and online systems

    International Nuclear Information System (INIS)

    Aartsen, M.G.; Ackermann, M.; Adams, J.; Aguilar, J.A.; Ansseau, I.; Ahlers, M.; Auer, R.; Baccus, J.; Barnet, S.; Ahrens, M.; Altmann, D.; Anton, G.; Andeen, K.; Anderson, T.; Archinger, M.; Argüelles, C.; Axani, S.; Auffenberg, J.; Bai, X.; Barwick, S.W.

    2017-01-01

    The IceCube Neutrino Observatory is a cubic-kilometer-scale high-energy neutrino detector built into the ice at the South Pole. Construction of IceCube, the largest neutrino detector built to date, was completed in 2011 and enabled the discovery of high-energy astrophysical neutrinos. We describe here the design, production, and calibration of the IceCube digital optical module (DOM), the cable systems, computing hardware, and our methodology for drilling and deployment. We also describe the online triggering and data filtering systems that select candidate neutrino and cosmic ray events for analysis. Due to a rigorous pre-deployment protocol, 98.4% of the DOMs in the deep ice are operating and collecting data. IceCube routinely achieves a detector uptime of 99% by emphasizing software stability and monitoring. Detector operations have been stable since construction was completed, and the detector is expected to operate at least until the end of the next decade.

  5. Cosmic-ray anisotropy studies with IceCube

    Science.gov (United States)

    McNally, Frank

    2014-03-01

    The IceCube neutrino observatory detects tens of billions of energetic muons per year produced by cosmic-ray interactions with the atmosphere. The size of this sample has allowed IceCube to observe a significant anisotropy in arrival direction for cosmic rays with median energies between 20 and 400 TeV. This anisotropy is characterized by a large scale structure of per-mille amplitude accompanied by structures with smaller amplitudes and with typical angular sizes between 10° and 20°. IceTop, the surface component of IceCube, has observed a similar anisotropy in the arrival direction distribution of cosmic rays, extending the study to PeV energies. The better energy resolution of IceTop allows for additional studies of the anisotropy, for example a comparison of the energy spectrum in regions of a cosmic-ray excess or deficit to the rest of the sky. We present an update on the cosmic-ray anisotropy observed with IceCube and IceTop and the results of first studies of the energy spectrum at locations of cosmic-ray excess or deficit.

  6. The Latest IceCube Results and the Implications

    Science.gov (United States)

    Mase, Keiichi

    IceCube was built at the South Pole and aims to detect high energy neutrinos from the universe mainly above 100 GeV. The transparent ice media allows us to build a 1 km3 large detection volume to detect the rarely interacting particles. Neutrinos are thought to be generated at astrophysical sources such as active galactic nuclei and gamma-ray bursts. Nature of the rare interaction with matters and little deflection by a magnetic field makes it possible to explore such sources located at the deep universe. Since the neutrinos are produced through collisions of hadronic particles, the observation can elucidate the origin of cosmic rays, which is still mystery after the discovery 100 years ago. The detector was completed at the end of 2010 and is running smoothly. Recently, IceCube has found the first evidence of extraterrestrial neutrinos with energies above approximately 60 TeV. IceCube also contributes to elementary particle physics by searching for neutrinos produced in self-annihilation of SUSY particles such as neutralinos and by investigating atmospheric neutrino oscillations. The latest IceCube results and the corresponding implications are presented.

  7. Coastal DEMs with Cross-Track Interferometry

    NARCIS (Netherlands)

    Greidanus, H.S.F.; Huising, E.J.; Platschorre, Y.; Bree, R.J.P. van; Halsema, D. van; Vaessen, E.M.J.

    1999-01-01

    Digital elevation models (DEMs) are produced from airborne radar cross-track interferometric measurements. Radar DEMs recorded from perpendicular orientations are intercompared, and compared to DEMs derived from airborne laser altimetry

  8. Vermessung von Siliziumsensoren für das Upgrade des CMS-Detektors

    CERN Document Server

    Stegler, Martin; Seibold, Götz

    Aufgrund des Upgrades am LHC (2020-2022), bei dem die Luminosität auf über 5 · 1034 cm − 2 s − 1 erhöht wird, ist am CMS-Tracker eine weit höhere Strahlenbelastung als bisher zu erwarten. Daher werden strahlungshärtere Sensoren benötigt. Aus diesem Grund werden im Rahmen der Hamamatsu-Photonics-KK-Kampagne unter anderem Mpix-Sensoren untersucht. Des Weiteren werden sie auf ihre Materialeigenschaften geprüft, indem sie vor und nach der Bestrahlung charakterisiert werden. Ausserdem wird die optimale Geometrie gesucht. Diese Arbeit untersucht zwei Substrattypen derselben Dicke mit zwei Isolationsmechanismen. Dabei wird auch der Einfluss der Geometrie und unterschiedlicher Biasstrukturen berücksichtigt, um Schlüsse auf die Strahlungshärte zu ziehen.

  9. Blazar origin of some IceCube events

    Energy Technology Data Exchange (ETDEWEB)

    Miranda, Luis Salvador; Leon, Alberto Rosales de; Sahu, Sarira [Universidad Nacional Autonoma de Mexico, Circuito Exterior, C.U., Instituto de Ciencias Nucleares, Mexico, DF (Mexico)

    2016-07-15

    Recently the ANTARES collaboration presented a time dependent analysis of a selected number of flaring blazars to look for upward going muon events produced from the charge current interaction of the muon neutrinos. We use the same list of flaring blazars to look for a possible positional correlation with the IceCube neutrino events. In the context of the photohadronic model we propose that the neutrinos are produced within the nuclear region of the blazar where Fermi accelerated high energy protons interact with the background synchrotron/SSC photons. Although we found that some objects from the ANTARES list are within the error circles of a few IceCube events, the statistical analysis shows that none of these sources have a significant correlation. (orig.)

  10. IceCube Constraints on the Fermi Bubbles

    Energy Technology Data Exchange (ETDEWEB)

    Sherf, Nimrod; Keshet, Uri [Physics Department, Ben-Gurion University of the Negev, POB 653, Be’er-Sheva 84105 (Israel); Gurwich, Ilya, E-mail: sherfnim@post.bgu.ac.il, E-mail: ukeshet@bgu.ac.il, E-mail: gurwichphys@gmail.com [Department of Physics, NRCN, POB 9001, Beer-Sheva 84190 (Israel)

    2017-10-01

    We analyze the IceCube four-year neutrino data in search of a signal from the Fermi bubbles. No signal is found from the bubbles or from their dense shell, even when taking into account the softer background. This imposes a conservative ξ {sub i} < 8% upper limit on the cosmic-ray ion (CRI) acceleration efficiency, and an η ≡ ξ {sub e} / ξ {sub i} ≳ 0.006 lower limit on the electron-to-ion ratio of acceleration efficiencies (at the 2 σ confidence level). For typical ξ {sub i} , a signal should surface once the number of IceCube neutrinos increases by ∼an order of magnitude, unless there is a

  11. IceCube and the Development of Neutrino Astronomy

    CERN Multimedia

    CERN. Geneva

    2016-01-01

    Abstract: IceCube's discovery of a diffuse flux of astrophysical neutrinos started a new era of neutrino astronomy.I will review the multiple diffuse analyses in IceCube that observe the astrophysical flux, and what each can tell us. Then I will focus on spatial analyses that aim to identify the sources of such astrophysical neutrinos. This will be followed by an attempt to reconcile all results to draw a coherent picture that is the state of neutrino astronomy. Current plans for a streamlined real-time alert system to promote multi-messenger observations, and future plans of new detectors at the South Pole will be discussed to map out a path for discovering the first high-energy neutrino source in the sky.

  12. Cosmic Ray Physics with the IceCube Observatory

    International Nuclear Information System (INIS)

    Kolanoski, H

    2013-01-01

    The IceCube Neutrino Observatory with its 1-km 3 in-ice detector and the 1-km 2 surface detector (IceTop) constitutes a three-dimensional cosmic ray detector well suited for general cosmic ray physics. Various measurements of cosmic ray properties, such as energy spectra, mass composition and anisotropies, have been obtained from analyses of air showers at the surface and/or atmospheric muons in the ice.

  13. IceCube systematic errors investigation: Simulation of the ice

    Energy Technology Data Exchange (ETDEWEB)

    Resconi, Elisa; Wolf, Martin [Max-Planck-Institute for Nuclear Physics, Heidelberg (Germany); Schukraft, Anne [RWTH, Aachen University (Germany)

    2010-07-01

    IceCube is a neutrino observatory for astroparticle and astronomy research at the South Pole. It uses one cubic kilometer of Antartica's deepest ice (1500 m-2500 m in depth) to detect Cherenkov light, generated by charged particles traveling through the ice, with an array of phototubes encapsulated in glass pressure spheres. The arrival time as well as the charge deposited of the detected photons represent the base measurements that are used for track and energy reconstruction of those charged particles. The optical properties of the deep antarctic ice vary from layer to layer. Measurements of the ice properties and their correct modeling in Monte Carlo simulation is then of primary importance for the correct understanding of the IceCube telescope behavior. After a short summary about the different methods to investigate the ice properties and to calibrate the detector, we show how the simulation obtained by using this information compares to the measured data and how systematic errors due to uncertain ice properties are determined in IceCube.

  14. Moon and Sun shadow observation with IceCube

    Energy Technology Data Exchange (ETDEWEB)

    Bos, Fabian; Tenholt, Frederik; Becker-Tjus, Julia [Theoretische Physik, Ruhr-Universitaet, Bochum (Germany); Westerhoff, Stefan [University of Wisconsin, Madison (United States); Collaboration: IceCube-Collaboration

    2015-07-01

    The analysis of the Moon shadow is a standard method in IceCube to determine the angular resolution and absolute pointing capabilities of the IceCube detector at the geographic South Pole. The Sun has not been used as a calibrator thus far, as its shadow is expected to be influenced by the solar magnetic field, which deflects the cosmic rays near the solar surface. This, on the other hand, provides indirect pieces of information on the magnetic field structure of the Sun. This talk shows a first analysis of the Sun shadow with IceCube data. The analysis is based on the data of the detector configurations with 79 (IC79) and 86 strings (IC86) from 2010 through 2012. To examine the shadows, a binned method is used to compare all events from one on-source with two off-source windows. For the IC40 and IC59 configuration a deficit with a statistical significance of more than 6σ was observed.

  15. IceCube: An Instrument for Neutrino Astronomy

    Energy Technology Data Exchange (ETDEWEB)

    IceCube Collaboration; Halzen, F.; Klein, S.

    2010-06-04

    Neutrino astronomy beyond the Sun was first imagined in the late 1950s; by the 1970s, it was realized that kilometer-scale neutrino detectors were required. The first such instrument, IceCube, is near completion and taking data. The IceCube project transforms a cubic kilometer of deep and ultra-transparent Antarctic ice into a particle detector. A total of 5,160 optical sensors are embedded into a gigaton of Antarctic ice to detect the Cherenkov light emitted by secondary particles produced when neutrinos interact with nuclei in the ice. Each optical sensor is a complete data acquisition system, including a phototube, digitization electronics, control and trigger systems and LEDs for calibration. The light patterns reveal the type (flavor) of neutrino interaction and the energy and direction of the neutrino, making neutrino astronomy possible. The scientific missions of IceCube include such varied tasks as the search for sources of cosmic rays, the observation of Galactic supernova explosions, the search for dark matter, and the study of the neutrinos themselves. These reach energies well beyond those produced with accelerator beams.

  16. Radar and Lidar Radar DEM

    Science.gov (United States)

    Liskovich, Diana; Simard, Marc

    2011-01-01

    Using radar and lidar data, the aim is to improve 3D rendering of terrain, including digital elevation models (DEM) and estimates of vegetation height and biomass in a variety of forest types and terrains. The 3D mapping of vegetation structure and the analysis are useful to determine the role of forest in climate change (carbon cycle), in providing habitat and as a provider of socio-economic services. This in turn will lead to potential for development of more effective land-use management. The first part of the project was to characterize the Shuttle Radar Topography Mission DEM error with respect to ICESat/GLAS point estimates of elevation. We investigated potential trends with latitude, canopy height, signal to noise ratio (SNR), number of LiDAR waveform peaks, and maximum peak width. Scatter plots were produced for each variable and were fitted with 1st and 2nd degree polynomials. Higher order trends were visually inspected through filtering with a mean and median filter. We also assessed trends in the DEM error variance. Finally, a map showing how DEM error was geographically distributed globally was created.

  17. Digitial Elevation Model (DEM) 100K

    Data.gov (United States)

    Kansas Data Access and Support Center — Digital Elevation Model (DEM) is the terminology adopted by the USG to describe terrain elevation data sets in a digital raster form. The standard DEM consists of a...

  18. Digtial Elevation Model (DEM) 250K

    Data.gov (United States)

    Kansas Data Access and Support Center — Digital Elevation Model (DEM) is the terminology adopted by the USGS to describe terrain elevation data sets in a digital raster form. The standard DEM consists of a...

  19. Digital Elevation Model (DEM) 24K

    Data.gov (United States)

    Kansas Data Access and Support Center — Digital Elevation Model (DEM) is the terminology adopted by the USGS to describe terrain elevation data sets in a digital raster form. The standard DEM consists of a...

  20. IceCube and GRB neutrinos propagating in quantum spacetime

    Directory of Open Access Journals (Sweden)

    Giovanni Amelino-Camelia

    2016-10-01

    Full Text Available Two recent publications have reported intriguing analyses, tentatively suggesting that some aspects of IceCube data might be manifestations of quantum-gravity-modified laws of propagation for neutrinos. We here propose a strategy of data analysis which has the advantage of being applicable to several alternative possibilities for the laws of propagation of neutrinos in a quantum spacetime. In all scenarios here of interest one should find a correlation between the energy of an observed neutrino and the difference between the time of observation of that neutrino and the trigger time of a GRB. We select accordingly some GRB-neutrino candidates among IceCube events, and our data analysis finds a rather strong such correlation. This sort of study naturally lends itself to the introduction of a “false alarm probability”, which for our analysis we estimate conservatively to be of 1%. We therefore argue that our findings should motivate a vigorous program of investigation following the strategy here advocated.

  1. Searches for magnetic monopoles with IceCube

    Science.gov (United States)

    Pollmann, Anna

    2018-01-01

    Particles that carry a magnetic monopole charge are proposed by various theories which go beyond the Standard Model of particle physics. The expected mass of magnetic monopoles varies depending on the theory describing its origin, generally the monopole mass far exceeds those which can be created at accelerators. Magnetic monopoles gain kinetic energy in large scale galactic magnetic fields and, depending on their mass, can obtain relativistic velocities. IceCube is a high energy neutrino detector using the clear ice at the South Pole as a detection medium. As monopoles pass through this ice they produce optical light by a variety of mechanisms. With increasing velocity, they produce light by catalysis of baryon decay, luminescence in the ice associated with electronic excitations, indirect and direct Cherenkov light from the monopole track, and Cherenkov light from cascades induced by pair creation and photonuclear reactions. By searching for this light, current best limits for the monopole flux over a broad range of velocities was achieved using the IceCube detector. A review of these magnetic monopole searches is presented.

  2. Five schools visit CERN and IceCube virtually

    CERN Multimedia

    Abha Eli Phoboo

    2014-01-01

    The ATLAS and CMS experiments hosted a virtual visit together with the IceCube Experiment in the South Pole for students from five different European schools on 2 October. The visit allowed the students to interact with researchers from both the LHC experiments and the IceCube experiment. The virtual visit was the second event in the Open Discovery Space project’s “Bringing Frontier Science to Schools” series.   Angelos Alexopoulos and Steve Goldfarb connect with the schools. The 380 students and 14 teachers and education specialists who took part in the virtual visit were from the John Atanasoff Sofia Vocational High School of Electronics in Bulgaria, Ellinogermaniki Agogi school in Greece, Leo Baeck High School in Israel, Grigore Moisil National College in Romania and Svetozar Marković Grammar School in Serbia. “It was breathtaking and a great opportunity to have our questions answered by the researchers, also live via chat,” said Marco I...

  3. IceCube: Particle Astrophysics with High Energy Neutrinos

    CERN Multimedia

    Université de Genève

    2012-01-01

    GENEVA UNIVERSITY École de physique Département de physique nucléaire et corspusculaire 24, quai Ernest-Ansermet 1211 Genève 4 Tél.: (022) 379 62 73 Fax: (022) 379 69 92 Monday 7 May 2012 17h. - Ecole de Physique, Auditoire Stueckelberg IceCube: Particle Astrophysics with High Energy Neutrinos Prof. Francis Halzen / University of Wisconsin, Madison Construction and commissioning of the cubic-kilometer IceCube neutrino detector and its low energy extension DeepCore have been completed. The instrument detects neutrinos over a wide energy range: from 10 GeV atmospheric neutrinos to 1010 GeV cosmogenic neutrinos. We will discuss initial results based on a subsample of the ~100,000 neutrino events recorded during construction. We will emphasize the first measurement of the high-energy atmospheric neutrino spectrum, the search for the still enigmatic sources of the Galactic and extragalactic cosmic rays and for the particle nature of dark matter. Une ve...

  4. The IceProd (IceCube Production) Framework

    International Nuclear Information System (INIS)

    Díaz-Vélez, J C

    2014-01-01

    IceProd is a data processing and management framework developed by the IceCube Neutrino Observatory for processing of Monte Carlo simulations and data. IceProd runs as a separate layer on top of middleware or cluster job schedulers and can take advantage of a variety of computing resources including grids such as EGI, OSG, and NorduGrid as well as local clusters running batch systems like HT Condor, PBS, and SGE. This is accomplished by a set of dedicated daemons which process job submission in a coordinated fashion through the use of middleware plug-ins that serve to abstract the details of job submission and job management. IceProd can also manage complex workflow DAGs across distributed computing grids in order to optimize usage of resources. We describe several aspects of IceProd's design and it's applications in collaborative computing environments. We also briefly discuss design aspects of a second generation IceProd, currently being tested in IceCube.

  5. The IceCube Collaboration: contributions to the 30th International Cosmic Ray Conference (ICRC 2007)

    International Nuclear Information System (INIS)

    IceCube Collaboration; Ackermann, M.

    2007-01-01

    This paper bundles 40 contributions by the IceCube collaboration that were submitted to the 30th International Cosmic Ray Conference ICRC 2007. The articles cover studies on cosmic rays and atmospheric neutrinos, searches for non-localized, extraterrestrial ν e , ν μ and ν τ signals, scans for steady and intermittent neutrino point sources, searches for dark matter candidates, magnetic monopoles and other exotic particles, improvements in analysis techniques, as well as future detector extensions. The IceCube observatory will be finalized in 2011 to form a cubic-kilometer ice-Cherenkov detector at the location of the geographic South Pole. At the present state of construction, IceCube consists of 52 paired IceTop surface tanks and 22 IceCube strings with a total of 1426 Digital Optical Modules deployed at depths up to 2350 m. The observatory also integrates the 19 string AMANDA subdetector, that was completed in 2000 and extends IceCube's reach to lower energies. Before the deployment of IceTop, cosmic air showers were registered with the 30 station SPASE-2 surface array. IceCube's low noise Digital Optical Modules are very reliable, show a uniform response and record waveforms of arriving photons that are resolvable with nanosecond precision over a large dynamic range. Data acquisition, reconstruction and simulation software are running in production mode and the analyses, profiting from the improved data quality and increased overall sensitivity, are well under way

  6. Measuring the optical properties of IceCube drill holes

    Directory of Open Access Journals (Sweden)

    Rongen Martin

    2016-01-01

    Full Text Available The IceCube Neutrino Observatory consists of 5160 digital optical modules (DOMs in a cubic kilometer of deep ice below the South Pole. The DOMs record the Cherenkov light from charged particles interacting in the ice. A good understanding of the optical properties of the ice is crucial to the quality of the event reconstruction. While the optical properties of the undisturbed ice are well understood, the properties of the refrozen drill holes still pose a challenge. A new data-acquisition and analysis approach using light originating from LEDs within one DOM detected by the photomultiplier of the same DOM will be described. This method allows us to explore the scattering length in the immediate vicinity of the considered DOMs.

  7. Automated Quality Control for Ortholmages and DEMs

    DEFF Research Database (Denmark)

    Höhle, Joachim; Potucková, Marketa

    2005-01-01

    The checking of geometric accurancy of orthoimages and digital elevation models (DEMs) is discussed. As a reference, an existing orthoimage and a second orthoimage derived from an overlapping aerial image, are used. The proposed automated procedures for checking the orthoimages and DEMs are based...

  8. Catching cosmic clues in the ice - recent results from IceCube

    CERN Multimedia

    CERN. Geneva

    2014-01-01

    IceCube is a neutrino observatory located deep in the Antarctic glacier close to the geographical South Pole. Close to a gigaton of ice has been instrumented with optical sensors with the primary goal of searching for neutrinos from the still unknown sources of the highest-energy cosmic rays. Last year, IceCube observed for the first time ever a handful of high-energy neutrinos which must have originated outside the solar system. The discovery was named the 2013 Breakthrough of the Year by the British magazine Physics World. It is the first necessary step to actually achieve the dream of charting the places in the universe able to accelerate hadrons to energies over a million times higher than those at the LHC. The science goals of IceCube extend beyond astrophysics: IceCube is also a powerful tool for searches of dark matter and can be used to study phenomena connected to the neutrinos themselves, like neutrino oscillations. The talk will be an update on the most recent results from IceCube.

  9. IceCube Gen2. The next-generation neutrino observatory for the South Pole

    Energy Technology Data Exchange (ETDEWEB)

    Santen, Jakob van [DESY, Zeuthen (Germany); Collaboration: IceCube-Collaboration

    2016-07-01

    The IceCube Neutrino Observatory is a cubic-kilometer Cherenkov telescope buried in the ice sheet at the South Pole that detects neutrinos of all flavors with energies from tens of GeV to several PeV. The instrument provided the first measurement of the flux of high-energy astrophysical neutrinos, opening a new window to the TeV universe. At the other end of its sensitivity range, IceCube has provided precision measurements of neutrino oscillation parameters that are competitive with dedicated accelerator-based experiments. Here we present design studies for IceCube Gen2, the next-generation neutrino observatory for the South Pole. Instrumenting a volume of more that 5 km{sup 3} with over 100 new strings, IceCube Gen2 will have substantially greater sensitivity to high-energy neutrinos than current-generation instruments. PINGU, a dense infill array, will lower the energy threshold of the inner detector region to 4 GeV, allowing a determination of the neutrino mass hierarchy. On the surface, a large air shower detector will veto high-energy atmospheric muons and neutrinos from the southern hemisphere, enhancing the reach of astrophysical neutrino searches. With its versatile instrumentation, the IceCube Gen2 facility will allow us to explore the neutrino sky with unprecedented sensitivity, providing new constraints on the sources of the highest-energy cosmic rays, and yield precision data on the mixing and mass ordering of neutrinos.

  10. ArcticDEM Validation and Accuracy Assessment

    Science.gov (United States)

    Candela, S. G.; Howat, I.; Noh, M. J.; Porter, C. C.; Morin, P. J.

    2017-12-01

    ArcticDEM comprises a growing inventory Digital Elevation Models (DEMs) covering all land above 60°N. As of August, 2017, ArcticDEM had openly released 2-m resolution, individual DEM covering over 51 million km2, which includes areas of repeat coverage for change detection, as well as over 15 million km2 of 5-m resolution seamless mosaics. By the end of the project, over 80 million km2 of 2-m DEMs will be produced, averaging four repeats of the 20 million km2 Arctic landmass. ArcticDEM is produced from sub-meter resolution, stereoscopic imagery using open source software (SETSM) on the NCSA Blue Waters supercomputer. These DEMs have known biases of several meters due to errors in the sensor models generated from satellite positioning. These systematic errors are removed through three-dimensional registration to high-precision Lidar or other control datasets. ArcticDEM is registered to seasonally-subsetted ICESat elevations due its global coverage and high report accuracy ( 10 cm). The vertical accuracy of ArcticDEM is then obtained from the statistics of the fit to the ICESat point cloud, which averages -0.01 m ± 0.07 m. ICESat, however, has a relatively coarse measurement footprint ( 70 m) which may impact the precision of the registration. Further, the ICESat data predates the ArcticDEM imagery by a decade, so that temporal changes in the surface may also impact the registration. Finally, biases may exist between different the different sensors in the ArcticDEM constellation. Here we assess the accuracy of ArcticDEM and the ICESat registration through comparison to multiple high-resolution airborne lidar datasets that were acquired within one year of the imagery used in ArcticDEM. We find the ICESat dataset is performing as anticipated, introducing no systematic bias during the coregistration process, and reducing vertical errors to within the uncertainty of the airborne Lidars. Preliminary sensor comparisons show no significant difference post coregistration

  11. Estimating Coastal Digital Elevation Model (DEM) Uncertainty

    Science.gov (United States)

    Amante, C.; Mesick, S.

    2017-12-01

    Integrated bathymetric-topographic digital elevation models (DEMs) are representations of the Earth's solid surface and are fundamental to the modeling of coastal processes, including tsunami, storm surge, and sea-level rise inundation. Deviations in elevation values from the actual seabed or land surface constitute errors in DEMs, which originate from numerous sources, including: (i) the source elevation measurements (e.g., multibeam sonar, lidar), (ii) the interpolative gridding technique (e.g., spline, kriging) used to estimate elevations in areas unconstrained by source measurements, and (iii) the datum transformation used to convert bathymetric and topographic data to common vertical reference systems. The magnitude and spatial distribution of the errors from these sources are typically unknown, and the lack of knowledge regarding these errors represents the vertical uncertainty in the DEM. The National Oceanic and Atmospheric Administration (NOAA) National Centers for Environmental Information (NCEI) has developed DEMs for more than 200 coastal communities. This study presents a methodology developed at NOAA NCEI to derive accompanying uncertainty surfaces that estimate DEM errors at the individual cell-level. The development of high-resolution (1/9th arc-second), integrated bathymetric-topographic DEMs along the southwest coast of Florida serves as the case study for deriving uncertainty surfaces. The estimated uncertainty can then be propagated into the modeling of coastal processes that utilize DEMs. Incorporating the uncertainty produces more reliable modeling results, and in turn, better-informed coastal management decisions.

  12. Cosmic ray spectrum, composition, and anisotropy measured with IceCube

    International Nuclear Information System (INIS)

    Tamburro, Alessio

    2014-01-01

    Analysis of cosmic ray surface data collected with the IceTop array of Cherenkov detectors at the South Pole provides an accurate measurement of the cosmic ray spectrum and its features in the “knee” region up to energies of about 1 EeV. IceTop is part of the IceCube Observatory that includes a deep-ice cubic kilometer detector that registers signals of penetrating muons and other particles. Surface and in-ice signals detected in coincidence provide clear insights into the nuclear composition of cosmic rays. IceCube already measured an increase of the average primary mass as a function of energy. We present preliminary results on both IceTop-only and coincident events analysis. Furthermore, we review the recent measurement of the cosmic ray anisotropy with IceCube

  13. Cosmic ray spectrum, composition, and anisotropy measured with IceCube

    Science.gov (United States)

    Tamburro, Alessio

    2014-04-01

    Analysis of cosmic ray surface data collected with the IceTop array of Cherenkov detectors at the South Pole provides an accurate measurement of the cosmic ray spectrum and its features in the "knee" region up to energies of about 1 EeV. IceTop is part of the IceCube Observatory that includes a deep-ice cubic kilometer detector that registers signals of penetrating muons and other particles. Surface and in-ice signals detected in coincidence provide clear insights into the nuclear composition of cosmic rays. IceCube already measured an increase of the average primary mass as a function of energy. We present preliminary results on both IceTop-only and coincident events analysis. Furthermore, we review the recent measurement of the cosmic ray anisotropy with IceCube.

  14. Prospects for identifying the sources of the Galactic cosmic rays with IceCube

    International Nuclear Information System (INIS)

    Halzen, Francis; Kappes, Alexander; O Murchadha, Aongus

    2008-01-01

    We quantitatively address whether IceCube, a kilometer-scale neutrino detector under construction at the South Pole, can observe neutrinos pointing back at the accelerators of the Galactic cosmic rays. The photon flux from candidate sources identified by the Milagro detector in a survey of the TeV sky is consistent with the flux expected from a typical cosmic-ray generating supernova remnant interacting with the interstellar medium. We show here that IceCube can provide incontrovertible evidence of cosmic-ray acceleration in these sources by detecting neutrinos. We find that the signal is optimally identified by specializing to events with energies above 30 TeV where the atmospheric neutrino background is low. We conclude that evidence for a correlation between the Milagro and IceCube sky maps should be conclusive after several years.

  15. High Energy Neutrinos from the Cold: Status and Prospects of the IceCube Experiment

    International Nuclear Information System (INIS)

    IceCube Collaboration; Portello-Roucelle, Cecile; Collaboration, IceCube

    2008-01-01

    The primary motivation for building neutrino telescopes is to open the road for neutrino astronomy, and to offer another observational window for the study of cosmic ray origins. Other physics topics, such as the search for WIMPs, can also be developed with neutrino telescope. As of March 2008, the IceCube detector, with half of its strings deployed, is the world largest neutrino telescope taking data to date and it will reach its completion in 2011. Data taken with the growing detector are being analyzed. The results of some of these works are summarized here. AMANDA has been successfully integrated into IceCube data acquisition system and continues to accumulate data. Results obtained using only AMANDA data taken between the years 2000 and 2006 are also presented. The future of IceCube and the extensions in both low and high energy regions will finally be discussed in the last section

  16. Search for neutrino point sources with an all-sky autocorrelation analysis in IceCube

    Energy Technology Data Exchange (ETDEWEB)

    Turcati, Andrea; Bernhard, Anna; Coenders, Stefan [TU, Munich (Germany); Collaboration: IceCube-Collaboration

    2016-07-01

    The IceCube Neutrino Observatory is a cubic kilometre scale neutrino telescope located in the Antarctic ice. Its full-sky field of view gives unique opportunities to study the neutrino emission from the Galactic and extragalactic sky. Recently, IceCube found the first signal of astrophysical neutrinos with energies up to the PeV scale, but the origin of these particles still remains unresolved. Given the observed flux, the absence of observations of bright point-sources is explainable with the presence of numerous weak sources. This scenario can be tested using autocorrelation methods. We present here the sensitivities and discovery potentials of a two-point angular correlation analysis performed on seven years of IceCube data, taken between 2008 and 2015. The test is applied on the northern and southern skies separately, using the neutrino energy information to improve the effectiveness of the method.

  17. Sterile neutrinos and indirect dark matter searches in IceCube

    Science.gov (United States)

    Argüelles, Carlos A.; Kopp, Joachim

    2012-07-01

    If light sterile neutrinos exist and mix with the active neutrino flavors, this mixing will affect the propagation of high-energy neutrinos from dark matter annihilation in the Sun. In particular, new Mikheyev-Smirnov-Wolfenstein resonances can occur, leading to almost complete conversion of some active neutrino flavors into sterile states. We demonstrate how this can weaken IceCube limits on neutrino capture and annihilation in the Sun and how potential future conflicts between IceCube constraints and direct detection or collider data might be resolved by invoking sterile neutrinos. We also point out that, if the dark matter-nucleon scattering cross section and the allowed annihilation channels are precisely measured in direct detection and collider experiments in the future, IceCube can be used to constrain sterile neutrino models using neutrinos from the dark matter annihilation.

  18. Urban DEM generation, analysis and enhancements using TanDEM-X

    Science.gov (United States)

    Rossi, Cristian; Gernhardt, Stefan

    2013-11-01

    This paper analyzes the potential of the TanDEM-X mission for the generation of urban Digital Elevation Models (DEMs). The high resolution of the sensors and the absence of temporal decorrelation are exploited. The interferometric chain and the problems encountered for correct mapping of urban areas are analyzed first. The operational Integrated TanDEM-X Processor (ITP) algorithms are taken as reference. The ITP main product is called the raw DEM. Whereas the ITP coregistration stage is demonstrated to be robust enough, large improvements in the raw DEM such as fewer percentages of phase unwrapping errors, can be obtained by using adaptive fringe filters instead of the conventional ones in the interferogram generation stage. The shape of the raw DEM in the layover area is also shown and determined to be regular for buildings with vertical walls. Generally, in the presence of layover, the raw DEM exhibits a height ramp, resulting in a height underestimation for the affected structure. Examples provided confirm the theoretical background. The focus is centered on high resolution DEMs produced using spotlight acquisitions. In particular, a raw DEM over Berlin (Germany) with a 2.5 m raster is generated and validated. For this purpose, ITP is modified in its interferogram generation stage by adopting the Intensity Driven Adaptive Neighbourhood (IDAN) algorithm. The height Root Mean Square Error (RMSE) between the raw DEM and a reference is about 8 m for the two classes defining the urban DEM: structures and non-structures. The result can be further improved for the structure class using a DEM generated with Persistent Scatterer Interferometry. A DEM fusion is thus proposed and a drop of about 20% in the RMSE is reported.

  19. Searches for relativistic magnetic monopoles in IceCube

    Energy Technology Data Exchange (ETDEWEB)

    Aartsen, M.G.; Hill, G.C.; Robertson, S.; Wallace, A.; Whelan, B.J. [University of Adelaide, Department of Physics, Adelaide (Australia); Abraham, K.; Bernhard, A.; Coenders, S.; Gross, A.; Holzapfel, K.; Huber, M.; Jurkovic, M.; Krings, K.; Resconi, E.; Turcati, A.; Veenkamp, J. [Technische Universitaet Muenchen, Garching (Germany); Ackermann, M.; Berghaus, P.; Bernardini, E.; Bretz, H.P.; Cruz Silva, A.H.; Gluesenkamp, T.; Gora, D.; Jacobi, E.; Karg, T.; Middell, E.; Mohrmann, L.; Nahnhauer, R.; Schoenwald, A.; Spiering, C.; Stasik, A.; Stoessl, A.; Strotjohann, N.L.; Terliuk, A.; Usner, M.; Santen, J. van; Yanez, J.P. [DESY, Zeuthen (Germany); Adams, J. [University of Canterbury, Department of Physics and Astronomy, Christchurch (New Zealand); Aguilar, J.A.; Ansseau, I.; Heereman, D.; Meagher, K.; Meures, T.; O' Murchadha, A.; Pinat, E.; Raab, C. [Universite Libre de Bruxelles, Brussels (Belgium); Ahlers, M.; Arguelles, C.; Beiser, E.; Braun, J.; Chirkin, D.; Day, M.; Desiati, P.; Diaz-Velez, J.C.; Fahey, S.; Feintzeig, J.; Ghorbani, K.; Gladstone, L.; Griffith, Z.; Halzen, F.; Hanson, K.; Hoshina, K.; Jero, K.; Karle, A.; Kelley, J.L.; Kheirandish, A.; McNally, F.; Merino, G.; Morse, R.; Richter, S.; Sabbatini, L.; Tobin, M.N.; Tosi, D.; Vandenbroucke, J.; Wandkowsky, N.; Wendt, C.; Westerhoff, S.; Wille, L.; Xu, D.L. [University of Wisconsin, Department of Physics and Wisconsin IceCube Particle Astrophysics Center, Madison, WI (United States); Ahrens, M.; Bohm, C.; Dumm, J.P.; Finley, C.; Flis, S.; Hulth, P.O.; Hultqvist, K.; Walck, C.; Wolf, M.; Zoll, M. [Stockholm University, Department of Physics, Oskar Klein Centre, Stockholm (Sweden); Altmann, D.; Classen, L.; Kappes, A.; Tselengidou, M. [Friedrich-Alexander-Universitaet Erlangen-Nuernberg, Erlangen Centre for Astroparticle Physics, Erlangen (Germany); Anderson, T.; Arlen, T.C.; Dunkman, M.; Huang, F.; Keivani, A.; Lanfranchi, J.L.; Pankova, D.V.; Quinnan, M.; Tesic, G. [Pennsylvania State University, Department of Physics, University Park, PA (United States); Archinger, M.; Baum, V.; Boeser, S.; Del Pino Rosendo, E.; Di Lorenzo, V.; Eberhardt, B.; Ehrhardt, T.; Foesig, C.C.; Koepke, L.; Kroll, G.; Krueckl, G.; Sander, H.G.; Sandroos, J.; Schatto, K.; Steuer, A.; Wiebe, K. [University of Mainz, Institute of Physics, Mainz (Germany); Auffenberg, J.; Bissok, M.; Blumenthal, J.; Gier, D.; Glagla, M.; Haack, C.; Hansmann, B.; Kemp, J.; Konietz, R.; Leuermann, M.; Leuner, J.; Paul, L.; Puetz, J.; Raedel, L.; Reimann, R.; Rongen, M.; Schimp, M.; Schoenen, S.; Schumacher, L.; Stahlberg, M.; Vehring, M.; Wallraff, M.; Wiebusch, C.H. [RWTH Aachen University, III. Physikalisches Institut, Aachen (Germany); Bai, X. [South Dakota School of Mines and Technology, Physics Department, Rapid City, SD (United States); Barwick, S.W.; Yodh, G. [University of California, Department of Physics and Astronomy, Irvine, CA (United States); Bay, R.; Filimonov, K.; Price, P.B.; Woschnagg, K. [University of California, Department of Physics, Berkeley, CA (United States); Beatty, J.J. [Ohio State University, Department of Physics and Center for Cosmology and Astro-Particle Physics, Columbus, OH (United States); Ohio State University, Department of Astronomy, Columbus, OH (United States); Tjus, J.B.; Bos, F.; Eichmann, B.; Kroll, M.; Mandelartz, M.; Schoeneberg, S. [Ruhr-Universitaet Bochum, Fakultaet fuer Physik and Astronomie, Bochum (Germany); Becker, K.H.; Bindig, D.; Fischer-Wasels, T.; Helbing, K.; Hickford, S.; Hoffmann, R.; Klaes, J.; Kopper, S.; Naumann, U.; Obertacke Pollmann, A.; Omairat, A.; Posselt, J.; Soldin, D. [University of Wuppertal, Department of Physics, Wuppertal (Germany); Benabderrahmane, M.L. [New York University Abu Dhabi, Abu Dhabi (United Arab Emirates); Berley, D.; Blaufuss, E.; Cheung, E.; Felde, J.; Hellauer, R.; Hoffman, K.D.; Huelsnitz, W.; Maunu, R.; Olivas, A.; Schmidt, T.; Song, M.; Sullivan, G.W.; Wissing, H. [University of Maryland, Department of Physics, College Park, MD (United States); Besson, D.Z. [University of Kansas, Department of Physics and Astronomy, Lawrence, KS (United States); Binder, G.; Gerhardt, L.; Ha, C.; Klein, S.R.; Miarecki, S.; Tatar, J. [University of California, Department of Physics, Berkeley, CA (United States); Lawrence Berkeley National Laboratory, Berkeley, CA (United States); Boersma, D.J.; Botner, O.; Euler, S.; Hallgren, A.; Perez de los Heros, C.; Stroem, R.; Taavola, H.; Unger, E. [Uppsala University, Department of Physics and Astronomy, Box 516, Uppsala (Sweden); and others

    2016-03-15

    Various extensions of the Standard Model motivate the existence of stable magnetic monopoles that could have been created during an early high-energy epoch of the Universe. These primordial magnetic monopoles would be gradually accelerated by cosmic magnetic fields and could reach high velocities that make them visible in Cherenkov detectors such as IceCube. Equivalently to electrically charged particles, magnetic monopoles produce direct and indirect Cherenkov light while traversing through matter at relativistic velocities. This paper describes searches for relativistic (v ≥ 0.76 c) and mildly relativistic (v ≥ 0.51 c) monopoles, each using one year of data taken in 2008/2009 and 2011/2012, respectively. No monopole candidate was detected. For a velocity above 0.51 c the monopole flux is constrained down to a level of 1.55 x 10{sup -18} cm{sup -2} s{sup -1} sr{sup -1}. This is an improvement of almost two orders of magnitude over previous limits. (orig.)

  20. Searches for Sterile Neutrinos with the IceCube Detector

    Science.gov (United States)

    Aartsen, M. G.; Abraham, K.; Ackermann, M.; Adams, J.; Aguilar, J. A.; Ahlers, M.; Ahrens, M.; Altmann, D.; Andeen, K.; Anderson, T.; Ansseau, I.; Anton, G.; Archinger, M.; Argüelles, C.; Arlen, T. C.; Auffenberg, J.; Axani, S.; Bai, X.; Barwick, S. W.; Baum, V.; Bay, R.; Beatty, J. J.; Becker Tjus, J.; Becker, K.-H.; BenZvi, S.; Berghaus, P.; Berley, D.; Bernardini, E.; Bernhard, A.; Besson, D. Z.; Binder, G.; Bindig, D.; Blaufuss, E.; Blot, S.; Boersma, D. J.; Bohm, C.; Börner, M.; Bos, F.; Bose, D.; Böser, S.; Botner, O.; Braun, J.; Brayeur, L.; Bretz, H.-P.; Burgman, A.; Casey, J.; Casier, M.; Cheung, E.; Chirkin, D.; Christov, A.; Clark, K.; Classen, L.; Coenders, S.; Collin, G. H.; Conrad, J. M.; Cowen, D. F.; Cruz Silva, A. H.; Daughhetee, J.; Davis, J. C.; Day, M.; de André, J. P. A. M.; De Clercq, C.; del Pino Rosendo, E.; Dembinski, H.; De Ridder, S.; Desiati, P.; de Vries, K. D.; de Wasseige, G.; de With, M.; DeYoung, T.; Díaz-Vélez, J. C.; di Lorenzo, V.; Dujmovic, H.; Dumm, J. P.; Dunkman, M.; Eberhardt, B.; Ehrhardt, T.; Eichmann, B.; Euler, S.; Evenson, P. A.; Fahey, S.; Fazely, A. R.; Feintzeig, J.; Felde, J.; Filimonov, K.; Finley, C.; Flis, S.; Fösig, C.-C.; Fuchs, T.; Gaisser, T. K.; Gaior, R.; Gallagher, J.; Gerhardt, L.; Ghorbani, K.; Giang, W.; Gladstone, L.; Glüsenkamp, T.; Goldschmidt, A.; Golup, G.; Gonzalez, J. G.; Góra, D.; Grant, D.; Griffith, Z.; Haj Ismail, A.; Hallgren, A.; Halzen, F.; Hansen, E.; Hanson, K.; Hebecker, D.; Heereman, D.; Helbing, K.; Hellauer, R.; Hickford, S.; Hignight, J.; Hill, G. C.; Hoffman, K. D.; Hoffmann, R.; Holzapfel, K.; Homeier, A.; Hoshina, K.; Huang, F.; Huber, M.; Huelsnitz, W.; Hultqvist, K.; In, S.; Ishihara, A.; Jacobi, E.; Japaridze, G. S.; Jeong, M.; Jero, K.; Jones, B. J. P.; Jurkovic, M.; Kappes, A.; Karg, T.; Karle, A.; Katz, U.; Kauer, M.; Keivani, A.; Kelley, J. L.; Kheirandish, A.; Kim, M.; Kintscher, T.; Kiryluk, J.; Kittler, T.; Klein, S. R.; Kohnen, G.; Koirala, R.; Kolanoski, H.; Köpke, L.; Kopper, C.; Kopper, S.; Koskinen, D. J.; Kowalski, M.; Krings, K.; Kroll, M.; Krückl, G.; Krüger, C.; Kunnen, J.; Kunwar, S.; Kurahashi, N.; Kuwabara, T.; Labare, M.; Lanfranchi, J. L.; Larson, M. J.; Lennarz, D.; Lesiak-Bzdak, M.; Leuermann, M.; Lu, L.; Lünemann, J.; Madsen, J.; Maggi, G.; Mahn, K. B. M.; Mancina, S.; Mandelartz, M.; Maruyama, R.; Mase, K.; Maunu, R.; McNally, F.; Meagher, K.; Medici, M.; Meier, M.; Meli, A.; Menne, T.; Merino, G.; Meures, T.; Miarecki, S.; Middell, E.; Mohrmann, L.; Montaruli, T.; Moulai, M.; Nahnhauer, R.; Naumann, U.; Neer, G.; Niederhausen, H.; Nowicki, S. C.; Nygren, D. R.; Obertacke Pollmann, A.; Olivas, A.; Omairat, A.; O'Murchadha, A.; Palczewski, T.; Pandya, H.; Pankova, D. V.; Pepper, J. A.; Pérez de los Heros, C.; Pfendner, C.; Pieloth, D.; Pinat, E.; Posselt, J.; Price, P. B.; Przybylski, G. T.; Quinnan, M.; Raab, C.; Rameez, M.; Rawlins, K.; Relich, M.; Resconi, E.; Rhode, W.; Richman, M.; Riedel, B.; Robertson, S.; Rott, C.; Ruhe, T.; Ryckbosch, D.; Rysewyk, D.; Sabbatini, L.; Salvado, J.; Sanchez Herrera, S. E.; Sandrock, A.; Sandroos, J.; Sarkar, S.; Satalecka, K.; Schlunder, P.; Schmidt, T.; Schöneberg, S.; Schönwald, A.; Seckel, D.; Seunarine, S.; Soldin, D.; Song, M.; Spiczak, G. M.; Spiering, C.; Stamatikos, M.; Stanev, T.; Stasik, A.; Steuer, A.; Stezelberger, T.; Stokstad, R. G.; Stößl, A.; Ström, R.; Strotjohann, N. L.; Sullivan, G. W.; Sutherland, M.; Taavola, H.; Taboada, I.; Tatar, J.; Ter-Antonyan, S.; Terliuk, A.; Tešić, G.; Tilav, S.; Toale, P. A.; Tobin, M. N.; Toscano, S.; Tosi, D.; Tselengidou, M.; Turcati, A.; Unger, E.; Usner, M.; Vallecorsa, S.; Vandenbroucke, J.; van Eijndhoven, N.; Vanheule, S.; van Rossem, M.; van Santen, J.; Veenkamp, J.; Voge, M.; Vraeghe, M.; Walck, C.; Wallace, A.; Wandkowsky, N.; Weaver, Ch.; Wendt, C.; Westerhoff, S.; Whelan, B. J.; Wiebe, K.; Wille, L.; Williams, D. R.; Wills, L.; Wissing, H.; Wolf, M.; Wood, T. R.; Woolsey, E.; Woschnagg, K.; Xu, D. L.; Xu, X. W.; Xu, Y.; Yanez, J. P.; Yodh, G.; Yoshida, S.; Zoll, M.; IceCube Collaboration

    2016-08-01

    The IceCube neutrino telescope at the South Pole has measured the atmospheric muon neutrino spectrum as a function of zenith angle and energy in the approximate 320 GeV to 20 TeV range, to search for the oscillation signatures of light sterile neutrinos. No evidence for anomalous νμ or ν¯μ disappearance is observed in either of two independently developed analyses, each using one year of atmospheric neutrino data. New exclusion limits are placed on the parameter space of the 3 +1 model, in which muon antineutrinos experience a strong Mikheyev-Smirnov-Wolfenstein-resonant oscillation. The exclusion limits extend to sin22 θ24≤0.02 at Δ m2˜0.3 eV2 at the 90% confidence level. The allowed region from global analysis of appearance experiments, including LSND and MiniBooNE, is excluded at approximately the 99% confidence level for the global best-fit value of |Ue 4 |2 .

  1. Searches for relativistic magnetic monopoles in IceCube

    International Nuclear Information System (INIS)

    Aartsen, M.G.; Hill, G.C.; Robertson, S.; Wallace, A.; Whelan, B.J.; Abraham, K.; Bernhard, A.; Coenders, S.; Gross, A.; Holzapfel, K.; Huber, M.; Jurkovic, M.; Krings, K.; Resconi, E.; Turcati, A.; Veenkamp, J.; Ackermann, M.; Berghaus, P.; Bernardini, E.; Bretz, H.P.; Cruz Silva, A.H.; Gluesenkamp, T.; Gora, D.; Jacobi, E.; Karg, T.; Middell, E.; Mohrmann, L.; Nahnhauer, R.; Schoenwald, A.; Spiering, C.; Stasik, A.; Stoessl, A.; Strotjohann, N.L.; Terliuk, A.; Usner, M.; Santen, J. van; Yanez, J.P.; Adams, J.; Aguilar, J.A.; Ansseau, I.; Heereman, D.; Meagher, K.; Meures, T.; O'Murchadha, A.; Pinat, E.; Raab, C.; Ahlers, M.; Arguelles, C.; Beiser, E.; Braun, J.; Chirkin, D.; Day, M.; Desiati, P.; Diaz-Velez, J.C.; Fahey, S.; Feintzeig, J.; Ghorbani, K.; Gladstone, L.; Griffith, Z.; Halzen, F.; Hanson, K.; Hoshina, K.; Jero, K.; Karle, A.; Kelley, J.L.; Kheirandish, A.; McNally, F.; Merino, G.; Morse, R.; Richter, S.; Sabbatini, L.; Tobin, M.N.; Tosi, D.; Vandenbroucke, J.; Wandkowsky, N.; Wendt, C.; Westerhoff, S.; Wille, L.; Xu, D.L.; Ahrens, M.; Bohm, C.; Dumm, J.P.; Finley, C.; Flis, S.; Hulth, P.O.; Hultqvist, K.; Walck, C.; Wolf, M.; Zoll, M.; Altmann, D.; Classen, L.; Kappes, A.; Tselengidou, M.; Anderson, T.; Arlen, T.C.; Dunkman, M.; Huang, F.; Keivani, A.; Lanfranchi, J.L.; Pankova, D.V.; Quinnan, M.; Tesic, G.; Archinger, M.; Baum, V.; Boeser, S.; Del Pino Rosendo, E.; Di Lorenzo, V.; Eberhardt, B.; Ehrhardt, T.; Foesig, C.C.; Koepke, L.; Kroll, G.; Krueckl, G.; Sander, H.G.; Sandroos, J.; Schatto, K.; Steuer, A.; Wiebe, K.; Auffenberg, J.; Bissok, M.; Blumenthal, J.; Gier, D.; Glagla, M.; Haack, C.; Hansmann, B.; Kemp, J.; Konietz, R.; Leuermann, M.; Leuner, J.; Paul, L.; Puetz, J.; Raedel, L.; Reimann, R.; Rongen, M.; Schimp, M.; Schoenen, S.; Schumacher, L.; Stahlberg, M.; Vehring, M.; Wallraff, M.; Wiebusch, C.H.; Bai, X.; Barwick, S.W.; Yodh, G.; Bay, R.; Filimonov, K.; Price, P.B.; Woschnagg, K.; Beatty, J.J.; Tjus, J.B.; Bos, F.; Eichmann, B.; Kroll, M.; Mandelartz, M.; Schoeneberg, S.; Becker, K.H.; Bindig, D.; Fischer-Wasels, T.; Helbing, K.; Hickford, S.; Hoffmann, R.; Klaes, J.; Kopper, S.; Naumann, U.; Obertacke Pollmann, A.; Omairat, A.; Posselt, J.; Soldin, D.; Benabderrahmane, M.L.; Berley, D.; Blaufuss, E.; Cheung, E.; Felde, J.; Hellauer, R.; Hoffman, K.D.; Huelsnitz, W.; Maunu, R.; Olivas, A.; Schmidt, T.; Song, M.; Sullivan, G.W.; Wissing, H.; Besson, D.Z.; Binder, G.; Gerhardt, L.; Ha, C.; Klein, S.R.; Miarecki, S.; Tatar, J.; Boersma, D.J.; Botner, O.; Euler, S.; Hallgren, A.; Perez de los Heros, C.; Stroem, R.; Taavola, H.; Unger, E.

    2016-01-01

    Various extensions of the Standard Model motivate the existence of stable magnetic monopoles that could have been created during an early high-energy epoch of the Universe. These primordial magnetic monopoles would be gradually accelerated by cosmic magnetic fields and could reach high velocities that make them visible in Cherenkov detectors such as IceCube. Equivalently to electrically charged particles, magnetic monopoles produce direct and indirect Cherenkov light while traversing through matter at relativistic velocities. This paper describes searches for relativistic (v ≥ 0.76 c) and mildly relativistic (v ≥ 0.51 c) monopoles, each using one year of data taken in 2008/2009 and 2011/2012, respectively. No monopole candidate was detected. For a velocity above 0.51 c the monopole flux is constrained down to a level of 1.55 x 10 -18 cm -2 s -1 sr -1 . This is an improvement of almost two orders of magnitude over previous limits. (orig.)

  2. IceCube Sensitivity for Low-Energy Neutrinos from Nearby Supernovae

    Science.gov (United States)

    Stamatikos, M.; Abbasi, R.; Berghaus, P.; Chirkin, D.; Desiati, P.; Diaz-Velez, J.; Dumm, J. P.; Eisch, J.; Feintzeig, J.; Hanson, K.; hide

    2012-01-01

    This paper describes the response of the IceCube neutrino telescope located at the geographic South Pole to outbursts of MeV neutrinos from the core collapse of nearby massive stars. IceCube was completed in December 2010 forming a lattice of 5160 photomultiplier tubes that monitor a volume of approx. 1 cu km in the deep Antarctic ice for particle induced photons. The telescope was designed to detect neutrinos with energies greater than 100 GeV. Owing to subfreezing ice temperatures, the photomultiplier dark noise rates are particularly low. Hence IceCube can also detect large numbers of MeV neutrinos by observing a collective rise in all photomultiplier rates on top of the dark noise. With 2 ms timing resolution, IceCube can detect subtle features in the temporal development of the supernova neutrino burst. For a supernova at the galactic center, its sensitivity matches that of a background-free megaton-scale supernova search experiment. The sensitivity decreases to 20 standard deviations at the galactic edge (30 kpc) and 6 standard deviations at the Large Magellanic Cloud (50 kpc). IceCube is sending triggers from potential supernovae to the Supernova Early Warning System. The sensitivity to neutrino properties such as the neutrino hierarchy is discussed, as well as the possibility to detect the neutronization burst, a short outbreak's released by electron capture on protons soon after collapse. Tantalizing signatures, such as the formation of a quark star or a black hole as well as the characteristics of shock waves, are investigated to illustrate IceCube's capability for supernova detection.

  3. Trajectory Design for a Cislunar Cubesat Leveraging Dynamical Systems Techniques: The Lunar Icecube Mission

    Science.gov (United States)

    Bosanac, Natasha; Cox, Andrew; Howell, Kathleen C.; Folta, David

    2017-01-01

    Lunar IceCube is a 6U CubeSat that is designed to detect and observe lunar volatiles from a highly inclined orbit. This spacecraft, equipped with a low-thrust engine, will be deployed from the upcoming Exploration Mission-1 vehicle in late 2018. However, significant uncertainty in the deployment conditions for secondary payloads impacts both the availability and geometry of transfers that deliver the spacecraft to the lunar vicinity. A framework that leverages dynamical systems techniques is applied to a recently updated set of deployment conditions and spacecraft parameter values for the Lunar IceCube mission, demonstrating the capability for rapid trajectory design.

  4. 2014 USACE NCMP Topobathy Lidar DEM: Oregon

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These Digital Elevation Model (DEM) files contain rasterized topobathy lidar elevations at a 1 m grid size, generated from data collected by the Coastal Zone Mapping...

  5. 2016 USGS Lidar DEM: Maine QL2

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Product: These are Digital Elevation Model (DEM) data for Franklin, Oxford, Piscataquis, and Somerset Counties, Maine as part of the required deliverables for the...

  6. Eine Analyse des Zusammenhangs zwischen dem Konsum von Alkopops und dem Problemverhalten von Jugendlichen

    OpenAIRE

    Metzner, Cornelia Beate Isabel

    2007-01-01

    Zielsetzung: In dieser Arbeit wird untersucht, ob bei Jugendlichen ein Zusammenhang zwischen dem Konsum von Alkopops einerseits und dem sonstigen Alkoholtrinkverhalten, dem Konsum von Zigaretten und illegalen Drogen sowie weiteren Risikoverhaltensweisen andererseits besteht, ferner ob sich Unterschiede im Verhalten von Jungen und Mädchen ergeben. Theoretischer und empirischer Hintergrund: �Alkopops�, d. h. Mischgetränke diverser Hersteller aus Likör bzw. Schnaps und Limonade sowie wein- ...

  7. Landbrugets trædemølle

    DEFF Research Database (Denmark)

    Hansen, Henning Otte

    2016-01-01

    Teorien om landbrugets trædemølle siger, at teknologi medfører stigende produktivitet, stigende udbud og dermed faldende priser. Dermed øges behovet for ny teknologi. Det vedvarende teknologipres gavner de innovative landmænd, mens de mere afventende landmænd kun oplever de negative virkninger i...... form af prisfald. I denne artikel beskrives nærmere de enkelte elementer i trædemøllen. Samtidig vurderes trædemøllens betydning og mulige påvirkning. Det konkluderes, at trædemøllen, dens forudsætninger og afledte virkninger stadig er fuldt gældende. Det er ikke muligt for et enkelt land eller region...... af bremse trædemøllen på lang sigt. På lokalt plan kan man løse nogle sociale og økonomiske problemer skabt af trædemøllen gennem nemmere afvandring....

  8. Characterization of the atmospheric muon flux in IceCube

    Science.gov (United States)

    Aartsen, M. G.; Abraham, K.; Ackermann, M.; Adams, J.; Aguilar, J. A.; Ahlers, M.; Ahrens, M.; Altmann, D.; Anderson, T.; Archinger, M.; Argüelles, C.; Arlen, T. C.; Auffenberg, J.; Bai, X.; Barwick, S. W.; Baum, V.; Bay, R.; Beatty, J. J.; Becker Tjus, J.; Becker, K.-H.; Beiser, E.; BenZvi, S.; Berghaus, P.; Berley, D.; Bernardini, E.; Bernhard, A.; Besson, D. Z.; Binder, G.; Bindig, D.; Bissok, M.; Blaufuss, E.; Blumenthal, J.; Boersma, D. J.; Bohm, C.; Börner, M.; Bos, F.; Bose, D.; Böser, S.; Botner, O.; Braun, J.; Brayeur, L.; Bretz, H.-P.; Brown, A. M.; Buzinsky, N.; Casey, J.; Casier, M.; Cheung, E.; Chirkin, D.; Christov, A.; Christy, B.; Clark, K.; Classen, L.; Coenders, S.; Cowen, D. F.; Cruz Silva, A. H.; Daughhetee, J.; Davis, J. C.; Day, M.; de André, J. P. A. M.; De Clercq, C.; Dembinski, H.; De Ridder, S.; Desiati, P.; de Vries, K. D.; de Wasseige, G.; de With, M.; DeYoung, T.; Díaz-Vélez, J. C.; Dumm, J. P.; Dunkman, M.; Eagan, R.; Eberhardt, B.; Ehrhardt, T.; Eichmann, B.; Euler, S.; Evenson, P. A.; Fadiran, O.; Fahey, S.; Fazely, A. R.; Fedynitch, A.; Feintzeig, J.; Felde, J.; Filimonov, K.; Finley, C.; Fischer-Wasels, T.; Flis, S.; Fuchs, T.; Glagla, M.; Gaisser, T. K.; Gaior, R.; Gallagher, J.; Gerhardt, L.; Ghorbani, K.; Gier, D.; Gladstone, L.; Glüsenkamp, T.; Goldschmidt, A.; Golup, G.; Gonzalez, J. G.; Góra, D.; Grant, D.; Gretskov, P.; Groh, J. C.; Groß, A.; Ha, C.; Haack, C.; Haj Ismail, A.; Hallgren, A.; Halzen, F.; Hansmann, B.; Hanson, K.; Hebecker, D.; Heereman, D.; Helbing, K.; Hellauer, R.; Hellwig, D.; Hickford, S.; Hignight, J.; Hill, G. C.; Hoffman, K. D.; Hoffmann, R.; Holzapfel, K.; Homeier, A.; Hoshina, K.; Huang, F.; Huber, M.; Huelsnitz, W.; Hulth, P. O.; Hultqvist, K.; In, S.; Ishihara, A.; Jacobi, E.; Japaridze, G. S.; Jero, K.; Jurkovic, M.; Kaminsky, B.; Kappes, A.; Karg, T.; Karle, A.; Kauer, M.; Keivani, A.; Kelley, J. L.; Kemp, J.; Kheirandish, A.; Kiryluk, J.; Kläs, J.; Klein, S. R.; Kohnen, G.; Koirala, R.; Kolanoski, H.; Konietz, R.; Koob, A.; Köpke, L.; Kopper, C.; Kopper, S.; Koskinen, D. J.; Kowalski, M.; Krings, K.; Kroll, G.; Kroll, M.; Kunnen, J.; Kurahashi, N.; Kuwabara, T.; Labare, M.; Lanfranchi, J. L.; Larson, M. J.; Lesiak-Bzdak, M.; Leuermann, M.; Leuner, J.; Lünemann, J.; Madsen, J.; Maggi, G.; Mahn, K. B. M.; Maruyama, R.; Mase, K.; Matis, H. S.; Maunu, R.; McNally, F.; Meagher, K.; Medici, M.; Meli, A.; Menne, T.; Merino, G.; Meures, T.; Miarecki, S.; Middell, E.; Middlemas, E.; Miller, J.; Mohrmann, L.; Montaruli, T.; Morse, R.; Nahnhauer, R.; Naumann, U.; Niederhausen, H.; Nowicki, S. C.; Nygren, D. R.; Obertacke, A.; Olivas, A.; Omairat, A.; O'Murchadha, A.; Palczewski, T.; Pandya, H.; Paul, L.; Pepper, J. A.; Pérez de los Heros, C.; Pfendner, C.; Pieloth, D.; Pinat, E.; Posselt, J.; Price, P. B.; Przybylski, G. T.; Pütz, J.; Quinnan, M.; Rädel, L.; Rameez, M.; Rawlins, K.; Redl, P.; Reimann, R.; Relich, M.; Resconi, E.; Rhode, W.; Richman, M.; Richter, S.; Riedel, B.; Robertson, S.; Rongen, M.; Rott, C.; Ruhe, T.; Ryckbosch, D.; Saba, S. M.; Sabbatini, L.; Sander, H.-G.; Sandrock, A.; Sandroos, J.; Sarkar, S.; Schatto, K.; Scheriau, F.; Schimp, M.; Schmidt, T.; Schmitz, M.; Schoenen, S.; Schöneberg, S.; Schönwald, A.; Schukraft, A.; Schulte, L.; Seckel, D.; Seunarine, S.; Shanidze, R.; Smith, M. W. E.; Soldin, D.; Spiczak, G. M.; Spiering, C.; Stahlberg, M.; Stamatikos, M.; Stanev, T.; Stanisha, N. A.; Stasik, A.; Stezelberger, T.; Stokstad, R. G.; Stößl, A.; Strahler, E. A.; Ström, R.; Strotjohann, N. L.; Sullivan, G. W.; Sutherland, M.; Taavola, H.; Taboada, I.; Ter-Antonyan, S.; Terliuk, A.; Tešić, G.; Tilav, S.; Toale, P. A.; Tobin, M. N.; Tosi, D.; Tselengidou, M.; Turcati, A.; Unger, E.; Usner, M.; Vallecorsa, S.; van Eijndhoven, N.; Vandenbroucke, J.; van Santen, J.; Vanheule, S.; Veenkamp, J.; Vehring, M.; Voge, M.; Vraeghe, M.; Walck, C.; Wallraff, M.; Wandkowsky, N.; Weaver, Ch.; Wendt, C.; Westerhoff, S.; Whelan, B. J.; Whitehorn, N.; Wichary, C.; Wiebe, K.; Wiebusch, C. H.; Wille, L.; Williams, D. R.; Wissing, H.; Wolf, M.; Wood, T. R.; Woschnagg, K.; Xu, D. L.; Xu, X. W.; Xu, Y.; Yáñez, J. P.; Yodh, G.; Yoshida, S.; Zarzhitsky, P.; Zoll, M.

    2016-05-01

    Muons produced in atmospheric cosmic ray showers account for the by far dominant part of the event yield in large-volume underground particle detectors. The IceCube detector, with an instrumented volume of about a cubic kilometer, has the potential to conduct unique investigations on atmospheric muons by exploiting the large collection area and the possibility to track particles over a long distance. Through detailed reconstruction of energy deposition along the tracks, the characteristics of muon bundles can be quantified, and individual particles of exceptionally high energy identified. The data can then be used to constrain the cosmic ray primary flux and the contribution to atmospheric lepton fluxes from prompt decays of short-lived hadrons. In this paper, techniques for the extraction of physical measurements from atmospheric muon events are described and first results are presented. The multiplicity spectrum of TeV muons in cosmic ray air showers for primaries in the energy range from the knee to the ankle is derived and found to be consistent with recent results from surface detectors. The single muon energy spectrum is determined up to PeV energies and shows a clear indication for the emergence of a distinct spectral component from prompt decays of short-lived hadrons. The magnitude of the prompt flux, which should include a substantial contribution from light vector meson di-muon decays, is consistent with current theoretical predictions. The variety of measurements and high event statistics can also be exploited for the evaluation of systematic effects. In the course of this study, internal inconsistencies in the zenith angle distribution of events were found which indicate the presence of an unexplained effect outside the currently applied range of detector systematics. The underlying cause could be related to the hadronic interaction models used to describe muon production in air showers.

  9. Search for Galactic PeV gamma rays with the IceCube Neutrino Observatory

    NARCIS (Netherlands)

    Abbasi, R.; Abdou, Y.; Ackermann, M.; Adams, J.; Aguilar, J. A.; Ahlers, M.; Altmann, D.; Andeen, K.; Auffenberg, J.; Bai, X.; Baker, M.; Barwick, S. W.; Baum, V.; Bay, R.; Beattie, K.; Beatty, J. J.; Bechet, S.; Tjus, J. Becker; Becker, K.-H.; Bell, M.; Benabderrahmane, M. L.; BenZvi, S.; Berdermann, J.; Berghaus, P.; Berley, D.; Bernardini, E.; Bertrand, D.; Besson, D. Z.; Bindig, D.; Bissok, M.; Blaufuss, E.; Blumenthal, J.; Boersma, D. J.; Bohaichuk, S.; Bohm, C.; Bose, D.; Boeser, S.; Botner, O.; Brayeur, L.; Brown, A. M.; Bruijn, R.; Brunner, J.; Buitink, S.; Carson, M.; Casey, J.; Casier, M.; Chirkin, D.; Christy, B.; Clark, K.; Clevermann, F.

    2013-01-01

    Gamma-ray induced air showers are notable for their lack of muons, compared to hadronic showers. Hence, air shower arrays with large underground muon detectors can select a sample greatly enriched in photon showers by rejecting showers containing muons. IceCube is sensitive to muons with energies

  10. Invited review article: IceCube: an instrument for neutrino astronomy.

    Science.gov (United States)

    Halzen, Francis; Klein, Spencer R

    2010-08-01

    Neutrino astronomy beyond the Sun was first imagined in the late 1950s; by the 1970s, it was realized that kilometer-scale neutrino detectors were required. The first such instrument, IceCube, is near completion and taking data. The IceCube project transforms 1 km(3) of deep and ultratransparent Antarctic ice into a particle detector. A total of 5160 optical sensors is embedded into a gigaton of Antarctic ice to detect the Cherenkov light emitted by secondary particles produced when neutrinos interact with nuclei in the ice. Each optical sensor is a complete data acquisition system including a phototube, digitization electronics, control and trigger systems, and light-emitting diodes for calibration. The light patterns reveal the type (flavor) of neutrino interaction and the energy and direction of the neutrino, making neutrino astronomy possible. The scientific missions of IceCube include such varied tasks as the search for sources of cosmic rays, the observation of galactic supernova explosions, the search for dark matter, and the study of the neutrinos themselves. These reach energies well beyond those produced with accelerator beams. The outline of this review is as follows: neutrino astronomy and kilometer-scale detectors, high-energy neutrino telescopes: methodologies of neutrino detection, IceCube hardware, high-energy neutrino telescopes: beyond astronomy, and future projects.

  11. A consistent theory of decaying Dark Matter connecting IceCube to the Sesame Street

    Energy Technology Data Exchange (ETDEWEB)

    Chianese, Marco [INFN, Sezione di Napoli, Complesso Univ. Monte S. Angelo, I-80126 Napoli (Italy); Merle, Alexander, E-mail: chianese@na.infn.it, E-mail: amerle@mpp.mpg.de [Max-Planck-Institut für Physik (Werner-Heisenberg-Institut), Föhringer Ring 6, 80805 München (Germany)

    2017-04-01

    The high energy events observed at the IceCube Neutrino Observatory have triggered many investigations interpreting the highly energetic neutrinos detected as decay products of heavy unstable Dark Matter particles. However, while very detailed treatments of the IceCube phenomenology exist, only a few references focus on the (non-trivial) Dark Matter production part—and all of those rely on relatively complicated new models which are not always testable directly. We instead investigate two of the most minimal scenarios possible, where the operator responsible for the IceCube events is directly involved in Dark Matter production. We show that the simplest (four-dimensional) operator is not powerful enough to accommodate all constraints. A more non-minimal setting (at mass dimension six), however, can do both fitting all the data and also allowing for a comparatively small parameter space only, parts of which can be in reach of future observations. We conclude that minimalistic approaches can be enough to explain all data required, while complicated new physics seems not to be required by IceCube.

  12. Measurement of the Anisotropy of Cosmic Ray Arrival Directions with IceCube

    DEFF Research Database (Denmark)

    IceCube Collaboration, The; Abbasi, R.; Abdou, Y.

    2010-01-01

    with 1320 digital optical sensors distributed over 22 strings at depths between 1450 and 2450 meters inside the Antarctic ice. IceCube is a neutrino detector, but the data are dominated by a large background of cosmic ray muons. Therefore, the background data are suitable for high-statistics studies...

  13. First search for dark matter annihilations in the Earth with the IceCube detector

    International Nuclear Information System (INIS)

    Aartsen, M.G.; Hill, G.C.; Robertson, S.; Wallace, A.; Whelan, B.J.; Abraham, K.; Bernhard, A.; Coenders, S.; Holzapfel, K.; Huber, M.; Jurkovic, M.; Krings, K.; Resconi, E.; Turcati, A.; Veenkamp, J.; Ackermann, M.; Bernardini, E.; Blot, S.; Bretz, H.P.; Franckowiak, A.; Gluesenkamp, T.; Jacobi, E.; Karg, T.; Kintscher, T.; Kunwar, S.; Mohrmann, L.; Nahnhauer, R.; Satalecka, K.; Spiering, C.; Stasik, A.; Stoessl, A.; Strotjohann, N.L.; Terliuk, A.; Usner, M.; Santen, J. van; Yanez, J.P.; Adams, J.; Aguilar, J.A.; Ansseau, I.; Heereman, D.; Meagher, K.; Meures, T.; O'Murchadha, A.; Pinat, E.; Raab, C.; Ahlers, M.; Braun, J.; Chirkin, D.; Day, M.; Desiati, P.; Diaz-Velez, J.C.; Fahey, S.; Feintzeig, J.; Ghorbani, K.; Gladstone, L.; Griffith, Z.; Halzen, F.; Hanson, K.; Jero, K.; Karle, A.; Kauer, M.; Kelley, J.L.; Kheirandish, A.; Krueger, C.; Mancina, S.; McNally, F.; Merino, G.; Sabbatini, L.; Tobin, M.N.; Tosi, D.; Vandenbroucke, J.; Rossem, M. van; Wandkowsky, N.; Wendt, C.; Westerhoff, S.; Wille, L.; Xu, D.L.; Ahrens, M.; Bohm, C.; Dumm, J.P.; Finley, C.; Flis, S.; Hultqvist, K.; Walck, C.; Wolf, M.; Zoll, M.; Altmann, D.; Anton, G.; Katz, U.; Kittler, T.; Tselengidou, M.; Andeen, K.; Anderson, T.; Dunkman, M.; Eller, P.; Huang, F.; Keivani, A.; Lanfranchi, J.L.; Pankova, D.V.; Quinnan, M.; Tesic, G.; Weiss, M.J.; Archinger, M.; Baum, V.; Boeser, S.; Pino Rosendo, E. del; Di Lorenzo, V.; Eberhardt, B.; Ehrhardt, T.; Foesig, C.C.; Koepke, L.; Krueckl, G.; Peiffer, P.; Sandroos, J.; Steuer, A.; Wiebe, K.; Argueelles, C.; Axani, S.; Collin, G.H.; Conrad, J.M.; Jones, B.J.P.; Moulai, M.; Auffenberg, J.; Bissok, M.; Glagla, M.; Glauch, T.; Haack, C.; Hansmann, B.; Hansmann, T.; Kemp, J.; Konietz, R.; Leuermann, M.; Leuner, J.; Penek, Oe.; Raedel, L.; Reimann, R.; Rongen, M.; Schimp, M.; Schoenen, S.; Schumacher, L.; Stahlberg, M.; Stettner, J.; Vehring, M.; Vogel, E.; Wallraff, M.; Wickmann, S.; Wiebusch, C.H.; Bai, X.; Barwick, S.W.; Yodh, G.; Bay, R.; Filimonov, K.; Price, P.B.; Woschnagg, K.; Beatty, J.J.; Becker Tjus, J.; Bos, F.; Eichmann, B.; Kroll, M.; Mandelartz, M.; Schoeneberg, S.; Tenholt, F.; Becker, K.H.; Bindig, D.; Helbing, K.; Hickford, S.; Hoffmann, R.; Kopper, S.; Lauber, F.; Naumann, U.; Obertacke Pollmann, A.; Soldin, D.; BenZvi, S.; Cross, R.; Berley, D.; Blaufuss, E.; Cheung, E.; Felde, J.; Friedman, E.; Hellauer, R.; Hoffman, K.D.; Maunu, R.; Olivas, A.; Schmidt, T.; Song, M.; Sullivan, G.W.; Besson, D.Z.; Binder, G.; Gerhardt, L.; Klein, S.R.; Miarecki, S.; Tatar, J.

    2017-01-01

    We present the results of the first IceCube search for dark matter annihilation in the center of the Earth. Weakly interacting massive particles (WIMPs), candidates for dark matter, can scatter off nuclei inside the Earth and fall below its escape velocity. Over time the captured WIMPs will be accumulated and may eventually self-annihilate. Among the annihilation products only neutrinos can escape from the center of the Earth. Large-scale neutrino telescopes, such as the cubic kilometer IceCube Neutrino Observatory located at the South Pole, can be used to search for such neutrino fluxes. Data from 327 days of detector livetime during 2011/2012 were analyzed. No excess beyond the expected background from atmospheric neutrinos was detected. The derived upper limits on the annihilation rate of WIMPs in the Earth and the resulting muon flux are an order of magnitude stronger than the limits of the last analysis performed with data from IceCube's predecessor AMANDA. The limits can be translated in terms of a spin-independent WIMP-nucleon cross section. For a WIMP mass of 50 GeV this analysis results in the most restrictive limits achieved with IceCube data. (orig.)

  14. Search for non-relativistic Magnetic Monopoles with IceCube

    DEFF Research Database (Denmark)

    Aartsen, M.G.; Abbasi, R.; Ackermann, M.

    2014-01-01

    Theory (GUT) era shortly after the Big Bang. Depending on the underlying gauge group these monopoles may catalyze the decay of nucleons via the Rubakov–Callan effect with a cross section suggested to be in the range of 10^−27 to 10^−21cm2 . In IceCube, the Cherenkov light from nucleon decays along...

  15. Large Scale Landform Mapping Using Lidar DEM

    Directory of Open Access Journals (Sweden)

    Türkay Gökgöz

    2015-08-01

    Full Text Available In this study, LIDAR DEM data was used to obtain a primary landform map in accordance with a well-known methodology. This primary landform map was generalized using the Focal Statistics tool (Majority, considering the minimum area condition in cartographic generalization in order to obtain landform maps at 1:1000 and 1:5000 scales. Both the primary and the generalized landform maps were verified visually with hillshaded DEM and an orthophoto. As a result, these maps provide satisfactory visuals of the landforms. In order to show the effect of generalization, the area of each landform in both the primary and the generalized maps was computed. Consequently, landform maps at large scales could be obtained with the proposed methodology, including generalization using LIDAR DEM.

  16. Observation of oscillations of atmospheric neutrinos with the IceCube Neutrino Observatory

    International Nuclear Information System (INIS)

    Euler, Sebastian

    2014-01-01

    Neutrino oscillations have become one of the most important research topics in particle physics since their discovery 15 years ago. In the past, the study of neutrino oscillations has been largely the domain of dedicated experiments, but in the last year also the large-volume neutrino telescopes ANTARES and IceCube reported their results on the oscillations of atmospheric muon neutrinos and thus joined the community of experiments studying neutrino oscillations. The precision of their results is not yet competitive, but their sheer size and the consequently enormous statistics give rise to the expectation of a competitive measurement in the future. This thesis describes an analysis that was done on IceCube data taken with the nearly complete detector in the years 2010/2011. IceCube is the world's largest neutrino detector, located at the geographic South Pole, where it uses the Antarctic ice sheet as its detection medium. It detects neutrinos interacting within or close to the instrumented volume by observing the Cherenkov light which is emitted by secondary particles produced in these interactions. An array of optical sensors deployed within a cubic kilometer of ice detects the Cherenkov light and makes it possible to reconstruct the energy and direction of the initial neutrino. Unfortunately, IceCube detects not only neutrinos: the desired neutrino signal is buried in a huge background of atmospheric muons, produced in air showers induced by cosmic rays. This background has to be rejected first. The analysis presented here employs an event selection that is based on the idea of using the outer layers of IceCube as an active veto against the background of atmospheric muons and achieves the necessary background rejection of more than 6 orders of magnitude while keeping a high-statistics sample of several thousands of muon neutrinos. In contrast to the earlier IceCube analysis, which used only the zenith angle, it then performs a 2-dimensional likelihood fit on

  17. S1-Leitlinie Lipödem.

    Science.gov (United States)

    Reich-Schupke, Stefanie; Schmeller, Wilfried; Brauer, Wolfgang Justus; Cornely, Manuel E; Faerber, Gabriele; Ludwig, Malte; Lulay, Gerd; Miller, Anya; Rapprich, Stefan; Richter, Dirk Frank; Schacht, Vivien; Schrader, Klaus; Stücker, Markus; Ure, Christian

    2017-07-01

    Die vorliegende überarbeitete Leitlinie zum Lipödem wurde unter der Federführung der Deutschen Gesellschaft für Phlebologie (DGP) erstellt und finanziert. Die Inhalte beruhen auf einer systematischen Literaturrecherche und dem Konsens von acht medizinischen Fachgesellschaften und Berufsverbänden. Die Leitlinie beinhaltet Empfehlungen zu Diagnostik und Therapie des Lipödems. Die Diagnose ist dabei auf der Basis von Anamnese und klinischem Befund zu stellen. Charakteristisch ist eine umschriebene, symmetrisch lokalisierte Vermehrung des Unterhautfettgewebes an den Extremitäten mit deutlicher Disproportion zum Stamm. Zusätzlich finden sich Ödeme, Hämatomneigung und eine gesteigerte Schmerzhaftigkeit der betroffenen Körperabschnitte. Weitere apparative Untersuchungen sind bisher besonderen Fragestellungen vorbehalten. Die Erkrankung ist chronisch progredient mit individuell unterschiedlichem und nicht vorhersehbarem Verlauf. Die Therapie besteht aus vier Säulen, die individuell kombiniert und an das aktuelle Beschwerdebild angepasst werden sollten: komplexe physikalische Entstauungstherapie (manuelle Lymphdrainage, Kompressionstherapie, Bewegungstherapie, Hautpflege), Liposuktion und plastisch-chirurgische Interventionen, Ernährung und körperliche Aktivität sowie ggf. additive Psychotherapie. Operative Maßnahmen sind insbesondere dann angezeigt, wenn trotz konsequent durchgeführter konservativer Therapie noch Beschwerden bestehen bzw. eine Progredienz des Befundes und/oder der Beschwerden auftritt. Eine begleitend zum Lipödem bestehende morbide Adipositas sollte vor einer Liposuktion therapeutisch angegangen werden. © 2017 The Authors | Journal compilation © Blackwell Verlag GmbH, Berlin.

  18. ASTER Orthorectified Digital Elevation Model (DEM) V003

    Data.gov (United States)

    National Aeronautics and Space Administration — The ASTER L3 DEM and Orthorectified Images form a multi-file product that contains both the Digital Elevation Model (DEM), and the Orthorectified Image products....

  19. A Search for Neutrinos from Fast Radio Bursts with IceCube

    International Nuclear Information System (INIS)

    Fahey, Samuel; Kheirandish, Ali; Vandenbroucke, Justin; Xu, Donglian

    2017-01-01

    We present a search for neutrinos in coincidence in time and direction with four fast radio bursts (FRBs) detected by the Parkes and Green Bank radio telescopes during the first year of operation of the complete IceCube Neutrino Observatory (2011 May through 2012 May). The neutrino sample consists of 138,322 muon neutrino candidate events, which are dominated by atmospheric neutrinos and atmospheric muons but also contain an astrophysical neutrino component. Considering only neutrinos detected on the same day as each FRB, zero IceCube events were found to be compatible with the FRB directions within the estimated 99% error radius of the neutrino directions. Based on the non-detection, we present the first upper limits on the neutrino fluence from FRBs.

  20. Low energy IceCube data and a possible Dark Matter related excess

    Energy Technology Data Exchange (ETDEWEB)

    Chianese, M., E-mail: chianese@na.infn.it [INFN, Sezione di Napoli, Complesso Univ. Monte S. Angelo, I-80126 Napoli (Italy); Dipartimento di Fisica Ettore Pancini, Università di Napoli Federico II, Complesso Univ. Monte S. Angelo, I-80126 Napoli (Italy); Miele, G.; Morisi, S. [INFN, Sezione di Napoli, Complesso Univ. Monte S. Angelo, I-80126 Napoli (Italy); Dipartimento di Fisica Ettore Pancini, Università di Napoli Federico II, Complesso Univ. Monte S. Angelo, I-80126 Napoli (Italy); Vitagliano, E. [Dipartimento di Fisica Ettore Pancini, Università di Napoli Federico II, Complesso Univ. Monte S. Angelo, I-80126 Napoli (Italy); Max-Planck-Institut für Physik (Werner-Heisenberg-Institut), Föhringer Ring 6, 80805 München (Germany)

    2016-06-10

    In this Letter we focus our attention on the IceCube events in the energy range between 60 and 100 TeV, which show an order 2-sigma excess with respect to a power-law with spectral index 2. We analyze the possible origin of such an excess by comparing the distribution of the arrival directions of IceCube events with the angular distributions of simply distributed astrophysical galactic/extragalactic sources, as well as with the expected flux coming from DM interactions (decay and annihilation) for different DM profiles. The statistical analysis performed seems to disfavor the correlation with the galactic plane, whereas rules out the DM annihilation scenario only in case of small clumpiness effect. The small statistics till now collected does not allow to scrutinize the cases of astrophysical isotropic distribution and DM decay scenarios. For this reason we perform a forecast analysis in order to stress the role of future Neutrino Telescopes.

  1. Core-collapse supernovae as possible counterparts of IceCube neutrino multiplets

    Energy Technology Data Exchange (ETDEWEB)

    Strotjohann, Nora Linn; Kowalski, Marek; Franckowiak, Anna [DESY, Zeuthen (Germany); Voge, Markus [Bonn Univ. (Germany). Physikalisches Institut; Collaboration: IceCube-Collaboration

    2016-07-01

    While an astrophysical neutrino flux has been detected by the IceCube Neutrino Observatory its sources remain so far unidentified. IceCube's Optical Follow-up Program is designed to search for the counterparts of neutrino multiplets using the full energy range of the IceCube detector down to 100 GeV. Two or more muon neutrinos arriving from the same direction within few seconds can trigger follow-up observations with optical and X-ray telescopes. Since 2010 the Palomar Transient Factory has followed up about 40 such neutrino alerts and detected several supernovae. Many of the detections are however likely random coincidences. In this talk I describe our search for supernovae and the prospects of identifying a supernova as a source of high-energy neutrinos.

  2. A Search for Neutrinos from Fast Radio Bursts with IceCube

    Energy Technology Data Exchange (ETDEWEB)

    Fahey, Samuel; Kheirandish, Ali; Vandenbroucke, Justin; Xu, Donglian, E-mail: justin.vandenbroucke@wisc.edu [Wisconsin IceCube Particle Astrophysics Center and Department of Physics, University of Wisconsin, Madison, WI 53706 (United States)

    2017-08-10

    We present a search for neutrinos in coincidence in time and direction with four fast radio bursts (FRBs) detected by the Parkes and Green Bank radio telescopes during the first year of operation of the complete IceCube Neutrino Observatory (2011 May through 2012 May). The neutrino sample consists of 138,322 muon neutrino candidate events, which are dominated by atmospheric neutrinos and atmospheric muons but also contain an astrophysical neutrino component. Considering only neutrinos detected on the same day as each FRB, zero IceCube events were found to be compatible with the FRB directions within the estimated 99% error radius of the neutrino directions. Based on the non-detection, we present the first upper limits on the neutrino fluence from FRBs.

  3. Progress on the WOM (Wavelength-shifting optical module) development for IceCube

    Energy Technology Data Exchange (ETDEWEB)

    Hebecker, Dustin [DESY Zeuthen (Germany)

    2015-07-01

    For ongoing studies for the extension of the IceCube neutrino observatory to low energies (PINGU) and high energies the noise rate of the optical modules should be decreased and the effective area increased in order to improve energy resolution and overall sensitivity. The WOM (Wavelength-shifting optical module) targets this points by expanding the capture area while decreasing the size of the PMT and thus decreasing the noise rate. Photons are first captured in an organic wavelength-shifting material (WLS) that is coated on light guiding material to guide the light to two smaller PMTs. This allows to achieve a very large collection area and reduces the noise to the order of 10 Hz in comparison to 600-800 Hz (IceCube DOM). The progress on the necessary WLS paint development and substrate selection will be presented. Also a brief status / outlook on the prototype assembly will be given.

  4. IceCube point source searches using through-going muon tracks

    Energy Technology Data Exchange (ETDEWEB)

    Coenders, Stefan [TU Muenchen, Physik-Department, Excellence Cluster Universe, Boltzmannstr. 2, 85748 Garching (Germany); Collaboration: IceCube-Collaboration

    2015-07-01

    The IceCube neutrino observatory located at the South Pole is the current largest neutrino telescope. Using through-going muon tracks, IceCube records approximately 130,000 events per year with reconstruction accuracy as low as 0.7 deg for energies of 10 TeV. Having analysed an integrated time-scale of 4 years, no sources of neutrinos have yet been observed. This talk deals with the current progress in point-source searches, adding another two years of data recorded in the years 2012 and 2013. In a combined search with starting events, sources of hard and soft spectra with- and with-out cut-offs are characterised.

  5. Extending the search for neutrino point sources with IceCube above the horizon

    Energy Technology Data Exchange (ETDEWEB)

    IceCube Collaboration; Abbasi, R.

    2009-11-20

    Point source searches with the IceCube neutrino telescope have been restricted to one hemisphere, due to the exclusive selection of upward going events as a way of rejecting the atmospheric muon background. We show that the region above the horizon can be included by suppressing the background through energy-sensitive cuts. This approach improves the sensitivity above PeV energies, previously not accessible for declinations of more than a few degrees below the horizon due to the absorption of neutrinos in Earth. We present results based on data collected with 22 strings of IceCube, extending its field of view and energy reach for point source searches. No significant excess above the atmospheric background is observed in a sky scan and in tests of source candidates. Upper limits are reported, which for the first time cover point sources in the southern sky up to EeV energies.

  6. IceCube Polar Virtual Reality exhibit: immersive learning for learners of all ages

    Science.gov (United States)

    Madsen, J.; Bravo Gallart, S.; Chase, A.; Dougherty, P.; Gagnon, D.; Pronto, K.; Rush, M.; Tredinnick, R.

    2017-12-01

    The IceCube Polar Virtual Reality project is an innovative, interactive exhibit that explains the operation and science of a flagship experiment in polar research, the IceCube Neutrino Observatory. The exhibit allows users to travel from the South Pole, where the detector is located, to the furthest reaches of the universe, learning how the detection of high-energy neutrinos has opened a new view to the universe. This novel exhibit combines a multitouch tabletop display system and commercially available virtual reality (VR) head-mounted displays to enable informal STEM learning of polar research. The exhibit, launched in early November 2017 during the Wisconsin Science Festival in Madison, WI, will study how immersive VR can enhance informal STEM learning. The foundation of this project is built upon a strong collaborative effort between the Living Environments Laboratory (LEL), the Wisconsin IceCube Particle Astrophysics Center (WIPAC), and the Field Day Laboratory groups from the University of Wisconsin-Madison campus. The project is funded through an NSF Advancing Informal STEM Learning (AISL) grant, under a special call for engaging students and the public in polar research. This exploratory pathways project seeks to build expertise to allow future extensions. The plan is to submit a subsequent AISL Broad Implementation proposal to add more 3D environments for other Antarctic research topics and locations in the future. We will describe the current implementation of the project and discuss the challenges and opportunities of working with an interdisciplinary team of scientists and technology and education researchers. We will also present preliminary assessment results, which seek to answer questions such as: Did users gain a better understanding of IceCube research from interacting with the exhibit? Do both technologies (touch table and VR headset) provide the same level of engagement? Is one technology better suited for specific learning outcomes?

  7. Prospects for dark matter detection with IceCube in the context of the CMSSM

    International Nuclear Information System (INIS)

    Trotta, Roberto; Austri, Roberto Ruiz de; Heros, Carlos Pérez de los

    2009-01-01

    We study in detail the ability of the nominal configuration of the IceCube neutrino telescope (with 80 strings) to probe the parameter space of the Constrained MSSM (CMSSM) favoured by current collider and cosmological data. Adopting conservative assumptions about the galactic halo model and the expected experiment performance, we find that IceCube has a probability between 2% and 12% of achieving a 5σ detection of dark matter annihilation in the Sun, depending on the choice of priors for the scalar and gaugino masses and on the astrophysical assumptions. We identify the most important annihilation channels in the CMSSM parameter space favoured by current constraints, and we demonstrate that assuming that the signal is dominated by a single annihilation channel can lead to large systematic errors in the inferred WIMP annihilation cross section. We demonstrate that ∼ 66% of the CMSSM parameter space violates the equilibrium condition between capture and annihilation in the center of the Sun. By cross-correlating our predictions with direct detection methods, we conclude that if IceCube does detect a neutrino flux from the Sun at high significance while direct detection experiments do not find a signal above a spin-independent cross section σ p SI ∼> 7 × 10 −9 pb, the CMSSM will be strongly disfavoured, given standard astrophysical assumptions for the WIMP distribution. This result is robust with respect to a change of priors. We argue that the proposed low-energy DeepCore extension of IceCube will be an ideal instrument to focus on relevant CMSSM areas of parameter space

  8. Searches for sterile neutrinos and other BSM physics with the IceCube detector

    CERN Multimedia

    CERN. Geneva

    2016-01-01

    In this talk I will show the potential of IceCube to explore new physics in the context of neutrino oscillations. In the first part I will discus the recent analysis on the O(eV) light sterile neutrino that, up to date, gives the most stringent bounds in the region motivated by the short baseline neutrino anomalies. In the second part I will present other new physics scenarios which might be tested at neutrino telescopes.

  9. First search for dark matter annihilations in the Earth with the IceCube detector

    Energy Technology Data Exchange (ETDEWEB)

    Aartsen, M.G.; Hill, G.C.; Robertson, S.; Wallace, A.; Whelan, B.J. [University of Adelaide, Department of Physics, Adelaide (Australia); Abraham, K.; Bernhard, A.; Coenders, S.; Holzapfel, K.; Huber, M.; Jurkovic, M.; Krings, K.; Resconi, E.; Turcati, A.; Veenkamp, J. [Technische Universitaet Muenchen, Physik-Department, Garching (Germany); Ackermann, M.; Bernardini, E.; Blot, S.; Bretz, H.P.; Franckowiak, A.; Gluesenkamp, T.; Jacobi, E.; Karg, T.; Kintscher, T.; Kunwar, S.; Mohrmann, L.; Nahnhauer, R.; Satalecka, K.; Spiering, C.; Stasik, A.; Stoessl, A.; Strotjohann, N.L.; Terliuk, A.; Usner, M.; Santen, J. van; Yanez, J.P. [DESY, Zeuthen (Germany); Adams, J. [University of Canterbury, Department of Physics and Astronomy, Private Bag 4800, Christchurch (New Zealand); Aguilar, J.A.; Ansseau, I.; Heereman, D.; Meagher, K.; Meures, T.; O' Murchadha, A.; Pinat, E.; Raab, C. [Universite Libre de Bruxelles, Science Faculty CP230, Brussels (Belgium); Ahlers, M.; Braun, J.; Chirkin, D.; Day, M.; Desiati, P.; Diaz-Velez, J.C.; Fahey, S.; Feintzeig, J.; Ghorbani, K.; Gladstone, L.; Griffith, Z.; Halzen, F.; Hanson, K.; Jero, K.; Karle, A.; Kauer, M.; Kelley, J.L.; Kheirandish, A.; Krueger, C.; Mancina, S.; McNally, F.; Merino, G.; Sabbatini, L.; Tobin, M.N.; Tosi, D.; Vandenbroucke, J.; Rossem, M. van; Wandkowsky, N.; Wendt, C.; Westerhoff, S.; Wille, L.; Xu, D.L. [University of Wisconsin, Department of Physics and Wisconsin IceCube Particle Astrophysics Center, Madison, WI (United States); Ahrens, M.; Bohm, C.; Dumm, J.P.; Finley, C.; Flis, S.; Hultqvist, K.; Walck, C.; Wolf, M.; Zoll, M. [Stockholm University, Department of Physics, Oskar Klein Centre, Stockholm (Sweden); Altmann, D.; Anton, G.; Katz, U.; Kittler, T.; Tselengidou, M. [Friedrich-Alexander-Universitaet Erlangen-Nuernberg, Centre for Astroparticle Physics, Erlangen (Germany); Andeen, K. [Marquette University, Department of Physics, Milwaukee, WI (United States); Anderson, T.; Dunkman, M.; Eller, P.; Huang, F.; Keivani, A.; Lanfranchi, J.L.; Pankova, D.V.; Quinnan, M.; Tesic, G.; Weiss, M.J. [Pennsylvania State University, Department of Physics, University Park, PA (United States); Archinger, M.; Baum, V.; Boeser, S.; Pino Rosendo, E. del; Di Lorenzo, V.; Eberhardt, B.; Ehrhardt, T.; Foesig, C.C.; Koepke, L.; Krueckl, G.; Peiffer, P.; Sandroos, J.; Steuer, A.; Wiebe, K. [University of Mainz, Institute of Physics, Mainz (Germany); Argueelles, C.; Axani, S.; Collin, G.H.; Conrad, J.M.; Jones, B.J.P.; Moulai, M. [Massachusetts Institute of Technology, Department of Physics, Cambridge, MA (United States); Auffenberg, J.; Bissok, M.; Glagla, M.; Glauch, T.; Haack, C.; Hansmann, B.; Hansmann, T.; Kemp, J.; Konietz, R.; Leuermann, M.; Leuner, J.; Penek, Oe.; Raedel, L.; Reimann, R.; Rongen, M.; Schimp, M.; Schoenen, S.; Schumacher, L.; Stahlberg, M.; Stettner, J.; Vehring, M.; Vogel, E.; Wallraff, M.; Wickmann, S.; Wiebusch, C.H. [RWTH Aachen University, III. Physikalisches Institut, Aachen (Germany); Bai, X. [South Dakota School of Mines and Technology, Physics Department, Rapid City, SD (United States); Barwick, S.W.; Yodh, G. [University of California, Department of Physics and Astronomy, Irvine, CA (United States); Bay, R.; Filimonov, K.; Price, P.B.; Woschnagg, K. [University of California, Department of Physics, Berkeley, CA (United States); Beatty, J.J. [Ohio State University, Department of Physics and Center for Cosmology and Astro-Particle Physics, Columbus, OH (United States); Ohio State University, Department of Astronomy, Columbus, OH (United States); Becker Tjus, J.; Bos, F.; Eichmann, B.; Kroll, M.; Mandelartz, M.; Schoeneberg, S.; Tenholt, F. [Ruhr-Universitaet Bochum, Fakultaet fuer Physik and Astronomie, Bochum (Germany); Becker, K.H.; Bindig, D.; Helbing, K.; Hickford, S.; Hoffmann, R.; Kopper, S.; Lauber, F.; Naumann, U.; Obertacke Pollmann, A.; Soldin, D. [University of Wuppertal, Department of Physics, Wuppertal (Germany); BenZvi, S.; Cross, R. [University of Rochester, Department of Physics and Astronomy, Rochester, NY (United States); Berley, D.; Blaufuss, E.; Cheung, E.; Felde, J.; Friedman, E.; Hellauer, R.; Hoffman, K.D.; Maunu, R.; Olivas, A.; Schmidt, T.; Song, M.; Sullivan, G.W. [University of Maryland, Department of Physics, College Park, MD (United States); Besson, D.Z. [University of Kansas, Department of Physics and Astronomy, Lawrence, KS (United States); Binder, G.; Gerhardt, L.; Klein, S.R.; Miarecki, S.; Tatar, J. [University of California, Department of Physics, Berkeley, CA (United States); Lawrence Berkeley National Laboratory, Berkeley, CA (United States); Collaboration: IceCube Collaboration; and others

    2017-02-15

    We present the results of the first IceCube search for dark matter annihilation in the center of the Earth. Weakly interacting massive particles (WIMPs), candidates for dark matter, can scatter off nuclei inside the Earth and fall below its escape velocity. Over time the captured WIMPs will be accumulated and may eventually self-annihilate. Among the annihilation products only neutrinos can escape from the center of the Earth. Large-scale neutrino telescopes, such as the cubic kilometer IceCube Neutrino Observatory located at the South Pole, can be used to search for such neutrino fluxes. Data from 327 days of detector livetime during 2011/2012 were analyzed. No excess beyond the expected background from atmospheric neutrinos was detected. The derived upper limits on the annihilation rate of WIMPs in the Earth and the resulting muon flux are an order of magnitude stronger than the limits of the last analysis performed with data from IceCube's predecessor AMANDA. The limits can be translated in terms of a spin-independent WIMP-nucleon cross section. For a WIMP mass of 50 GeV this analysis results in the most restrictive limits achieved with IceCube data. (orig.)

  10. Search for dark matter annihilation in the Galactic Center with IceCube-79

    International Nuclear Information System (INIS)

    Aartsen, M.G.; Hill, G.C.; Robertson, S.; Whelan, B.J.; Abraham, K.; Bernhard, A.; Coenders, S.; Gross, A.; Holzapfel, K.; Huber, M.; Jurkovic, M.; Krings, K.; Resconi, E.; Veenkamp, J.; Ackermann, M.; Berghaus, P.; Bernardini, E.; Bretz, H.P.; Cruz Silva, A.H.; Gluesenkamp, T.; Gora, D.; Jacobi, E.; Kaminsky, B.; Karg, T.; Middell, E.; Mohrmann, L.; Nahnhauer, R.; Schoenwald, A.; Shanidze, R.; Spiering, C.; Stasik, A.; Stoessl, A.; Strotjohann, N.L.; Terliuk, A.; Usner, M.; Yanez, J.P.; Adams, J.; Brown, A.M.; Aguilar, J.A.; Heereman, D.; Meagher, K.; Meures, T.; O'Murchadha, A.; Pinat, E.; Ahlers, M.; Arguelles, C.; Beiser, E.; BenZvi, S.; Braun, J.; Chirkin, D.; Day, M.; Desiati, P.; Diaz-Velez, J.C.; Fadiran, O.; Fahey, S.; Feintzeig, J.; Ghorbani, K.; Gladstone, L.; Halzen, F.; Hanson, K.; Hoshina, K.; Jero, K.; Karle, A.; Kelley, J.L.; Kheirandish, A.; McNally, F.; Merino, G.; Middlemas, E.; Morse, R.; Richter, S.; Sabbatini, L.; Tobin, M.N.; Tosi, D.; Vandenbroucke, J.; Van Santen, J.; Wandkowsky, N.; Weaver, C.; Wendt, C.; Westerhoff, S.; Whitehorn, N.; Wille, L.; Ahrens, M.; Bohm, C.; Dumm, J.P.; Finley, C.; Flis, S.; Hulth, P.O.; Hultqvist, K.; Walck, C.; Wolf, M.; Zoll, M.; Altmann, D.; Classen, L.; Kappes, A.; Tselengidou, M.; Anderson, T.; Arlen, T.C.; Dunkman, M.; Eagan, R.; Groh, J.C.; Huang, F.; Keivani, A.; Lanfranchi, J.L.; Quinnan, M.; Smith, M.W.E.; Stanisha, N.A.; Tesic, G.; Archinger, M.; Baum, V.; Boeser, S.; Eberhardt, B.; Ehrhardt, T.; Koepke, L.; Kroll, G.; Luenemann, J.; Sander, H.G.; Schatto, K.; Wiebe, K.; Auffenberg, J.; Bissok, M.; Blumenthal, J.; Glagla, M.; Gier, D.; Gretskov, P.; Haack, C.; Hansmann, B.; Hellwig, D.; Kemp, J.; Konietz, R.; Koob, A.; Leuermann, M.; Leuner, J.; Paul, L.; Puetz, J.; Raedel, L.; Reimann, R.; Rongen, M.; Schimp, M.; Schoenen, S.; Schukraft, A.; Stahlberg, M.; Vehring, M.; Wallraff, M.; Wichary, C.; Wiebusch, C.H.; Bai, X.; Barwick, S.W.; Yodh, G.; Bay, R.; Filimonov, K.; Price, P.B.; Woschnagg, K.; Beatty, J.J.; Becker Tjus, J.; Bos, F.; Eichmann, B.; Fedynitch, A.; Kroll, M.; Saba, S.M.; Schoeneberg, S.; Becker, K.H.; Bindig, D.; Fischer-Wasels, T.; Helbing, K.; Hickford, S.; Hoffmann, R.; Klaes, J.; Kopper, S.; Naumann, U.; Obertacke, A.; Omairat, A.; Posselt, J.; Soldin, D.; Berley, D.; Blaufuss, E.; Cheung, E.; Christy, B.; Felde, J.; Hellauer, R.; Hoffman, K.D.; Huelsnitz, W.; Maunu, R.; Olivas, A.; Redl, P.; Schmidt, T.; Sullivan, G.W.; Wissing, H.; Besson, D.Z.; Binder, G.; Gerhardt, L.; Ha, C.; Klein, S.R.; Miarecki, S.; Boersma, D.J.; Botner, O.; Euler, S.; Hallgren, A.

    2015-01-01

    The Milky Way is expected to be embedded in a halo of dark matter particles, with the highest density in the central region, and decreasing density with the halo-centric radius. Dark matter might be indirectly detectable at Earth through a flux of stable particles generated in dark matter annihilations and peaked in the direction of the Galactic Center. We present a search for an excess flux of muon (anti-) neutrinos from dark matter annihilation in the Galactic Center using the cubic-kilometer-sized IceCube neutrino detector at the South Pole. There, the Galactic Center is always seen above the horizon. Thus, new and dedicated veto techniques against atmospheric muons are required to make the southern hemisphere accessible for IceCube. We used 319.7 live-days of data from IceCube operating in its 79-string configuration during 2010 and 2011. No neutrino excess was found and the final result is compatible with the background. We present upper limits on the self-annihilation cross-section, left angle σ A right angle, for WIMP masses ranging from 30 GeV up to 10 TeV, assuming cuspy (NFW) and flat-cored (Burkert) dark matter halo profiles, reaching down to ≅ 4 . 10 -24 cm 3 s -1 , and ≅ 2.6 . 10 -23 cm 3 s -1 for the νanti ν channel, respectively. (orig.)

  11. IceCube events and decaying dark matter: hints and constraints

    Science.gov (United States)

    Esmaili, Arman; Kang, Sin Kyu; Dario Serpico, Pasquale

    2014-12-01

    In the light of the new IceCube data on the (yet unidentified) astrophysical neutrino flux in the PeV and sub-PeV range, we present an update on the status of decaying dark matter interpretation of the events. In particular, we develop further the angular distribution analysis and discuss the perspectives for diagnostics. By performing various statistical tests (maximum likelihood, Kolmogorov-Smirnov and Anderson-Darling tests) we conclude that currently the data show a mild preference (below the two sigma level) for the angular distribution expected from dark matter decay vs. the isotropic distribution foreseen for a conventional astrophysical flux of extragalactic origin. Also, we briefly develop some general considerations on heavy dark matter model building and on the compatibility of the expected energy spectrum of decay products with the IceCube data, as well as with existing bounds from gamma-rays. Alternatively, assuming that the IceCube data originate from conventional astrophysical sources, we derive bounds on both decaying and annihilating dark matter for various final states. The lower limits on heavy dark matter lifetime improve by up to an order of magnitude with respect to existing constraints, definitively making these events—even if astrophysical in origin—an important tool for astroparticle physics studies.

  12. IceCube events and decaying dark matter: hints and constraints

    International Nuclear Information System (INIS)

    Esmaili, Arman; Kang, Sin Kyu; Serpico, Pasquale Dario

    2014-01-01

    In the light of the new IceCube data on the (yet unidentified) astrophysical neutrino flux in the PeV and sub-PeV range, we present an update on the status of decaying dark matter interpretation of the events. In particular, we develop further the angular distribution analysis and discuss the perspectives for diagnostics. By performing various statistical tests (maximum likelihood, Kolmogorov-Smirnov and Anderson-Darling tests) we conclude that currently the data show a mild preference (below the two sigma level) for the angular distribution expected from dark matter decay vs. the isotropic distribution foreseen for a conventional astrophysical flux of extragalactic origin. Also, we briefly develop some general considerations on heavy dark matter model building and on the compatibility of the expected energy spectrum of decay products with the IceCube data, as well as with existing bounds from gamma-rays. Alternatively, assuming that the IceCube data originate from conventional astrophysical sources, we derive bounds on both decaying and annihilating dark matter for various final states. The lower limits on heavy dark matter lifetime improve by up to an order of magnitude with respect to existing constraints, definitively making these events—even if astrophysical in origin—an important tool for astroparticle physics studies

  13. Measurement of the ν _{μ } energy spectrum with IceCube-79

    Science.gov (United States)

    Aartsen, M. G.; Ackermann, M.; Adams, J.; Aguilar, J. A.; Ahlers, M.; Ahrens, M.; Al Samarai, I.; Altmann, D.; Andeen, K.; Anderson, T.; Ansseau, I.; Anton, G.; Archinger, M.; Argüelles, C.; Auffenberg, J.; Axani, S.; Bagherpour, H.; Bai, X.; Barwick, S. W.; Baum, V.; Bay, R.; Beatty, J. J.; Becker Tjus, J.; Becker, K.-H.; BenZvi, S.; Berley, D.; Bernardini, E.; Besson, D. Z.; Binder, G.; Bindig, D.; Blaufuss, E.; Blot, S.; Bohm, C.; Börner, M.; Bos, F.; Bose, D.; Böser, S.; Botner, O.; Bradascio, F.; Braun, J.; Brayeur, L.; Bretz, H.-P.; Bron, S.; Burgman, A.; Carver, T.; Casier, M.; Cheung, E.; Chirkin, D.; Christov, A.; Clark, K.; Classen, L.; Coenders, S.; Collin, G. H.; Conrad, J. M.; Cowen, D. F.; Cross, R.; Day, M.; de André, J. P. A. M.; De Clercq, C.; del Pino Rosendo, E.; Dembinski, H.; De Ridder, S.; Desiati, P.; de Vries, K. D.; de Wasseige, G.; de With, M.; DeYoung, T.; Díaz-Vélez, J. C.; di Lorenzo, V.; Dujmovic, H.; Dumm, J. P.; Dunkman, M.; Eberhardt, B.; Ehrhardt, T.; Eichmann, B.; Eller, P.; Euler, S.; Evenson, P. A.; Fahey, S.; Fazely, A. R.; Feintzeig, J.; Felde, J.; Filimonov, K.; Finley, C.; Flis, S.; Fösig, C.-C.; Franckowiak, A.; Friedman, E.; Fuchs, T.; Gaisser, T. K.; Gallagher, J.; Gerhardt, L.; Ghorbani, K.; Giang, W.; Gladstone, L.; Glauch, T.; Glüsenkamp, T.; Goldschmidt, A.; Gonzalez, J. G.; Grant, D.; Griffith, Z.; Haack, C.; Hallgren, A.; Halzen, F.; Hansen, E.; Hansmann, T.; Hanson, K.; Hebecker, D.; Heereman, D.; Helbing, K.; Hellauer, R.; Hickford, S.; Hignight, J.; Hill, G. C.; Hoffman, K. D.; Hoffmann, R.; Hoshina, K.; Huang, F.; Huber, M.; Hultqvist, K.; In, S.; Ishihara, A.; Jacobi, E.; Japaridze, G. S.; Jeong, M.; Jero, K.; Jones, B. J. P.; Kang, W.; Kappes, A.; Karg, T.; Karle, A.; Katz, U.; Kauer, M.; Keivani, A.; Kelley, J. L.; Kheirandish, A.; Kim, J.; Kim, M.; Kintscher, T.; Kiryluk, J.; Kittler, T.; Klein, S. R.; Kohnen, G.; Koirala, R.; Kolanoski, H.; Konietz, R.; Köpke, L.; Kopper, C.; Kopper, S.; Koskinen, D. J.; Kowalski, M.; Krings, K.; Kroll, M.; Krückl, G.; Krüger, C.; Kunnen, J.; Kunwar, S.; Kurahashi, N.; Kuwabara, T.; Kyriacou, A.; Labare, M.; Lanfranchi, J. L.; Larson, M. J.; Lauber, F.; Lennarz, D.; Lesiak-Bzdak, M.; Leuermann, M.; Lu, L.; Lünemann, J.; Madsen, J.; Maggi, G.; Mahn, K. B. M.; Mancina, S.; Maruyama, R.; Mase, K.; Maunu, R.; McNally, F.; Meagher, K.; Medici, M.; Meier, M.; Menne, T.; Merino, G.; Meures, T.; Miarecki, S.; Micallef, J.; Momenté, G.; Montaruli, T.; Moulai, M.; Nahnhauer, R.; Naumann, U.; Neer, G.; Niederhausen, H.; Nowicki, S. C.; Nygren, D. R.; Obertacke Pollmann, A.; Olivas, A.; O'Murchadha, A.; Palczewski, T.; Pandya, H.; Pankova, D. V.; Peiffer, P.; Penek, Ö.; Pepper, J. A.; Pérez de los Heros, C.; Pieloth, D.; Pinat, E.; Price, P. B.; Przybylski, G. T.; Quinnan, M.; Raab, C.; Rädel, L.; Rameez, M.; Rawlins, K.; Reimann, R.; Relethford, B.; Relich, M.; Resconi, E.; Rhode, W.; Richman, M.; Riedel, B.; Robertson, S.; Rongen, M.; Rott, C.; Ruhe, T.; Ryckbosch, D.; Rysewyk, D.; Sabbatini, L.; Sanchez Herrera, S. E.; Sandrock, A.; Sandroos, J.; Sarkar, S.; Satalecka, K.; Schlunder, P.; Schmidt, T.; Schoenen, S.; Schöneberg, S.; Schumacher, L.; Seckel, D.; Seunarine, S.; Soldin, D.; Song, M.; Spiczak, G. M.; Spiering, C.; Stachurska, J.; Stanev, T.; Stasik, A.; Stettner, J.; Steuer, A.; Stezelberger, T.; Stokstad, R. G.; Stößl, A.; Ström, R.; Strotjohann, N. L.; Sullivan, G. W.; Sutherland, M.; Taavola, H.; Taboada, I.; Tatar, J.; Tenholt, F.; Ter-Antonyan, S.; Terliuk, A.; Tešić, G.; Tilav, S.; Toale, P. A.; Tobin, M. N.; Toscano, S.; Tosi, D.; Tselengidou, M.; Tung, C. F.; Turcati, A.; Unger, E.; Usner, M.; Vandenbroucke, J.; van Eijndhoven, N.; Vanheule, S.; van Rossem, M.; van Santen, J.; Vehring, M.; Voge, M.; Vogel, E.; Vraeghe, M.; Walck, C.; Wallace, A.; Wallraff, M.; Wandkowsky, N.; Waza, A.; Weaver, Ch.; Weiss, M. J.; Wendt, C.; Westerhoff, S.; Whelan, B. J.; Wickmann, S.; Wiebe, K.; Wiebusch, C. H.; Wille, L.; Williams, D. R.; Wills, L.; Wolf, M.; Wood, T. R.; Woolsey, E.; Woschnagg, K.; Xu, D. L.; Xu, X. W.; Xu, Y.; Yanez, J. P.; Yodh, G.; Yoshida, S.; Zoll, M.

    2017-10-01

    IceCube is a neutrino observatory deployed in the glacial ice at the geographic South Pole. The ν _μ energy unfolding described in this paper is based on data taken with IceCube in its 79-string configuration. A sample of muon neutrino charged-current interactions with a purity of 99.5% was selected by means of a multivariate classification process based on machine learning. The subsequent unfolding was performed using the software Truee. The resulting spectrum covers an E_ν -range of more than four orders of magnitude from 125 GeV to 3.2 PeV. Compared to the Honda atmospheric neutrino flux model, the energy spectrum shows an excess of more than 1.9 σ in four adjacent bins for neutrino energies E_ν ≥ 177.8 {TeV}. The obtained spectrum is fully compatible with previous measurements of the atmospheric neutrino flux and recent IceCube measurements of a flux of high-energy astrophysical neutrinos.

  14. A consistent model for leptogenesis, dark matter and the IceCube signal

    Energy Technology Data Exchange (ETDEWEB)

    Fiorentin, M. Re [School of Physics and Astronomy, University of Southampton,SO17 1BJ Southampton (United Kingdom); Niro, V. [Departamento de Física Teórica, Universidad Autónoma de Madrid,Cantoblanco, E-28049 Madrid (Spain); Instituto de Física Teórica UAM/CSIC,Calle Nicolás Cabrera 13-15, Cantoblanco, E-28049 Madrid (Spain); Fornengo, N. [Dipartimento di Fisica, Università di Torino,via P. Giuria, 1, 10125 Torino (Italy); Istituto Nazionale di Fisica Nucleare, Sezione di Torino,via P. Giuria, 1, 10125 Torino (Italy)

    2016-11-04

    We discuss a left-right symmetric extension of the Standard Model in which the three additional right-handed neutrinos play a central role in explaining the baryon asymmetry of the Universe, the dark matter abundance and the ultra energetic signal detected by the IceCube experiment. The energy spectrum and neutrino flux measured by IceCube are ascribed to the decays of the lightest right-handed neutrino N{sub 1}, thus fixing its mass and lifetime, while the production of N{sub 1} in the primordial thermal bath occurs via a freeze-in mechanism driven by the additional SU(2){sub R} interactions. The constraints imposed by IceCube and the dark matter abundance allow nonetheless the heavier right-handed neutrinos to realize a standard type-I seesaw leptogenesis, with the B−L asymmetry dominantly produced by the next-to-lightest neutrino N{sub 2}. Further consequences and predictions of the model are that: the N{sub 1} production implies a specific power-law relation between the reheating temperature of the Universe and the vacuum expectation value of the SU(2){sub R} triplet; leptogenesis imposes a lower bound on the reheating temperature of the Universe at 7×10{sup 9} GeV. Additionally, the model requires a vanishing absolute neutrino mass scale m{sub 1}≃0.

  15. Cosmic ray spectrum and composition from three years of IceTop and IceCube

    Science.gov (United States)

    Rawlins, K.; IceCube Collaboration

    2016-05-01

    IceTop is the surface component of the IceCube Observatory, composed of frozen water tanks at the top of IceCube’s strings. Data from this detector can be analyzed in different ways with the goal of measuring cosmic ray spectrum and composition. The shower size S125 from IceTop alone can be used as a proxy for primary energy, and unfolded into an all-particle spectrum. In addition, S125 from the surface can be combined with high-energy muon energy loss information from the deep IceCube detector for those air showers which pass through both. Using these coincident events in a complementary analysis, both the spectrum and mass composition of primary cosmic rays can be extracted in parallel using a neural network. Both of these analyses have been performed on three years of IceTop and IceCube data. Both all-particle spectra as well as individual spectra for elemental groups are presented.

  16. PeV IceCube signals and Dark Matter relic abundance in modified cosmologies

    Science.gov (United States)

    Lambiase, G.; Mohanty, S.; Stabile, An.

    2018-04-01

    The discovery by the IceCube experiment of a high-energy astrophysical neutrino flux with energies of the order of PeV, has opened new scenarios in astroparticles physics. A possibility to explain this phenomenon is to consider the minimal models of Dark Matter (DM) decay, the 4-dimensional operator ˜ y_{α χ }\\overline{{L_{L_{α }}}} H χ , which is also able to generate the correct abundance of DM in the Universe. Assuming that the cosmological background evolves according to the standard cosmological model, it follows that the rate of DM decay Γ _χ ˜ |y_{α χ }|^2 needed to get the correct DM relic abundance (Γ _χ ˜ 10^{-58}) differs by many orders of magnitude with respect that one needed to explain the IceCube data (Γ _χ ˜ 10^{-25}), making the four-dimensional operator unsuitable. In this paper we show that assuming that the early Universe evolution is governed by a modified cosmology, the discrepancy between the two the DM decay rates can be reconciled, and both the IceCube neutrino rate and relic density can be explained in a minimal model.

  17. Flavor composition of the IceCube neutrinos: A quest for sterile neutrinos?

    International Nuclear Information System (INIS)

    Biondi, R.

    2016-01-01

    The identification of flavor content in the cosmic high-energy neutrinos recently observed by the IceCube collaboration could spread the light on the origin of these neutrinos. We study the expected fraction of muon tracks for different cases of the neutrino flavor composition at the sources taking into account uncertainties in the neutrino mixing angles and CP-phase. We show that in the frame of the three known neutrinos it is hard to explain the ν_μ fraction observed at IceCube. However if the cosmic component is produced in some hidden sector, in the form of sterile neutrinos which then oscillate into ordinary ones, a better agreement can be obtained. Especially, in a scenario when heavy dark matter with mass of few PeV decay into sterile neutrinos which then oscillate in ordinary neutrinos due to tiny mixing with the latter, it is possible to explain the low fraction of muon tracks in the events observed by IceCube in the energy region from 60TeV to 2PeV

  18. Search for dark matter annihilation in the Galactic Center with IceCube-79

    Energy Technology Data Exchange (ETDEWEB)

    Aartsen, M.G.; Hill, G.C.; Robertson, S.; Whelan, B.J. [University of Adelaide, School of Chemistry and Physics, Adelaide, SA (Australia); Abraham, K.; Bernhard, A.; Coenders, S.; Gross, A.; Holzapfel, K.; Huber, M.; Jurkovic, M.; Krings, K.; Resconi, E.; Veenkamp, J. [Technische Universitaet Muenchen, Garching (Germany); Ackermann, M.; Berghaus, P.; Bernardini, E.; Bretz, H.P.; Cruz Silva, A.H.; Gluesenkamp, T.; Gora, D.; Jacobi, E.; Kaminsky, B.; Karg, T.; Middell, E.; Mohrmann, L.; Nahnhauer, R.; Schoenwald, A.; Shanidze, R.; Spiering, C.; Stasik, A.; Stoessl, A.; Strotjohann, N.L.; Terliuk, A.; Usner, M.; Yanez, J.P. [DESY, Zeuthen (Germany); Adams, J.; Brown, A.M. [University of Canterbury, Department of Physics and Astronomy, Private Bag 4800, Christchurch (New Zealand); Aguilar, J.A.; Heereman, D.; Meagher, K.; Meures, T.; O' Murchadha, A.; Pinat, E. [Universite Libre de Bruxelles, Science Faculty CP230, Brussels (Belgium); Ahlers, M.; Arguelles, C.; Beiser, E.; BenZvi, S.; Braun, J.; Chirkin, D.; Day, M.; Desiati, P.; Diaz-Velez, J.C.; Fadiran, O.; Fahey, S.; Feintzeig, J.; Ghorbani, K.; Gladstone, L.; Halzen, F.; Hanson, K.; Hoshina, K.; Jero, K.; Karle, A.; Kelley, J.L.; Kheirandish, A.; McNally, F.; Merino, G.; Middlemas, E.; Morse, R.; Richter, S.; Sabbatini, L.; Tobin, M.N.; Tosi, D.; Vandenbroucke, J.; Van Santen, J.; Wandkowsky, N.; Weaver, C.; Wendt, C.; Westerhoff, S.; Whitehorn, N.; Wille, L. [Wisconsin IceCube Particle Astrophysics Center, University of Wisconsin, Department of Physics, Madison, WI (United States); Ahrens, M.; Bohm, C.; Dumm, J.P.; Finley, C.; Flis, S.; Hulth, P.O.; Hultqvist, K.; Walck, C.; Wolf, M.; Zoll, M. [Oskar Klein Centre, Stockholm University, Department of Physics, Stockholm (Sweden); Altmann, D.; Classen, L.; Kappes, A.; Tselengidou, M. [Friedrich-Alexander-Universitaet Erlangen-Nuernberg, Erlangen Centre for Astroparticle Physics, Erlangen (Germany); Anderson, T.; Arlen, T.C.; Dunkman, M.; Eagan, R.; Groh, J.C.; Huang, F.; Keivani, A.; Lanfranchi, J.L.; Quinnan, M.; Smith, M.W.E.; Stanisha, N.A.; Tesic, G. [Pennsylvania State University, Department of Physics, University Park, PA (United States); Archinger, M.; Baum, V.; Boeser, S.; Eberhardt, B.; Ehrhardt, T.; Koepke, L.; Kroll, G.; Luenemann, J.; Sander, H.G.; Schatto, K.; Wiebe, K. [University of Mainz, Institute of Physics, Mainz (Germany); Auffenberg, J.; Bissok, M.; Blumenthal, J.; Glagla, M.; Gier, D.; Gretskov, P.; Haack, C.; Hansmann, B.; Hellwig, D.; Kemp, J.; Konietz, R.; Koob, A.; Leuermann, M.; Leuner, J.; Paul, L.; Puetz, J.; Raedel, L.; Reimann, R.; Rongen, M.; Schimp, M.; Schoenen, S.; Schukraft, A.; Stahlberg, M.; Vehring, M.; Wallraff, M.; Wichary, C.; Wiebusch, C.H. [RWTH Aachen University, III. Physikalisches Institut, Aachen (Germany); Bai, X. [South Dakota School of Mines and Technology, Physics Department, Rapid City, SD (United States); Barwick, S.W.; Yodh, G. [University of California, Department of Physics and Astronomy, Irvine, CA (United States); Bay, R.; Filimonov, K.; Price, P.B.; Woschnagg, K. [University of California, Department of Physics, Berkeley, CA (United States); Beatty, J.J. [Ohio State University, Department of Physics and Center for Cosmology and Astro-Particle Physics, Columbus, OH (United States); Ohio State University, Department of Astronomy, Columbus, OH (United States); Becker Tjus, J.; Bos, F.; Eichmann, B.; Fedynitch, A.; Kroll, M.; Saba, S.M.; Schoeneberg, S. [Ruhr-Universitaet Bochum, Fakultaet fuer Physik and Astronomie, Bochum (Germany); Becker, K.H.; Bindig, D.; Fischer-Wasels, T.; Helbing, K.; Hickford, S.; Hoffmann, R.; Klaes, J.; Kopper, S.; Naumann, U.; Obertacke, A.; Omairat, A.; Posselt, J.; Soldin, D. [University of Wuppertal, Department of Physics, Wuppertal (Germany); Berley, D.; Blaufuss, E.; Cheung, E.; Christy, B.; Felde, J.; Hellauer, R.; Hoffman, K.D.; Huelsnitz, W.; Maunu, R.; Olivas, A.; Redl, P.; Schmidt, T.; Sullivan, G.W.; Wissing, H. [University of Maryland, Department of Physics, College Park, MD (United States); Besson, D.Z. [University of Kansas, Department of Physics and Astronomy, Lawrence, KS (United States); Binder, G.; Gerhardt, L.; Ha, C.; Klein, S.R.; Miarecki, S. [University of California, Department of Physics, Berkeley, CA (United States); Lawrence Berkeley National Laboratory, Berkeley, CA (United States); Boersma, D.J.; Botner, O.; Euler, S.; Hallgren, A.; Collaboration: IceCube Collaboration; and others

    2015-10-15

    The Milky Way is expected to be embedded in a halo of dark matter particles, with the highest density in the central region, and decreasing density with the halo-centric radius. Dark matter might be indirectly detectable at Earth through a flux of stable particles generated in dark matter annihilations and peaked in the direction of the Galactic Center. We present a search for an excess flux of muon (anti-) neutrinos from dark matter annihilation in the Galactic Center using the cubic-kilometer-sized IceCube neutrino detector at the South Pole. There, the Galactic Center is always seen above the horizon. Thus, new and dedicated veto techniques against atmospheric muons are required to make the southern hemisphere accessible for IceCube. We used 319.7 live-days of data from IceCube operating in its 79-string configuration during 2010 and 2011. No neutrino excess was found and the final result is compatible with the background. We present upper limits on the self-annihilation cross-section, left angle σ{sub A} right angle, for WIMP masses ranging from 30 GeV up to 10 TeV, assuming cuspy (NFW) and flat-cored (Burkert) dark matter halo profiles, reaching down to ≅ 4 . 10{sup -24} cm{sup 3}s{sup -1}, and ≅ 2.6 . 10{sup -23} cm{sup 3}s{sup -1} for the νanti ν channel, respectively. (orig.)

  19. Measurement of the ν{sub μ} energy spectrum with IceCube-79

    Energy Technology Data Exchange (ETDEWEB)

    Aartsen, M.G.; Hill, G.C.; Kyriacou, A.; Robertson, S.; Wallace, A.; Whelan, B.J. [University of Adelaide, Department of Physics, Adelaide (Australia); Ackermann, M.; Bernardini, E.; Blot, S.; Bradascio, F.; Bretz, H.P.; Franckowiak, A.; Jacobi, E.; Karg, T.; Kintscher, T.; Kunwar, S.; Nahnhauer, R.; Satalecka, K.; Spiering, C.; Stachurska, J.; Stasik, A.; Strotjohann, N.L.; Terliuk, A.; Usner, M.; Santen, J. van [DESY, Zeuthen (Germany); Adams, J.; Bagherpour, H. [University of Canterbury, Department of Physics and Astronomy, Christchurch (New Zealand); Aguilar, J.A.; Ansseau, I.; Heereman, D.; Meagher, K.; Meures, T.; O' Murchadha, A.; Pinat, E.; Raab, C. [Universite Libre de Bruxelles, Science Faculty CP230, Brussels (Belgium); Ahlers, M.; Braun, J.; Chirkin, D.; Day, M.; Desiati, P.; Diaz-Velez, J.C.; Fahey, S.; Feintzeig, J.; Ghorbani, K.; Gladstone, L.; Griffith, Z.; Halzen, F.; Hanson, K.; Hoshina, K.; Jero, K.; Karle, A.; Kauer, M.; Kelley, J.L.; Kheirandish, A.; Krueger, C.; Mancina, S.; McNally, F.; Merino, G.; Sabbatini, L.; Tobin, M.N.; Tosi, D.; Vandenbroucke, J.; Van Rossem, M.; Wandkowsky, N.; Wendt, C.; Westerhoff, S.; Wille, L.; Xu, D.L. [University of Wisconsin, Department of Physics and Wisconsin IceCube Particle Astrophysics Center, Madison, WI (United States); Ahrens, M.; Bohm, C.; Dumm, J.P.; Finley, C.; Flis, S.; Hultqvist, K.; Walck, C.; Wolf, M.; Zoll, M. [Stockholm University, Department of Physics, Oskar Klein Centre, Stockholm (Sweden); Al Samarai, I.; Bron, S.; Carver, T.; Christov, A.; Montaruli, T. [Universite de Geneve, Departement de physique nucleaire et corpusculaire, Geneva (Switzerland); Altmann, D.; Anton, G.; Gluesenkamp, T.; Katz, U.; Kittler, T.; Tselengidou, M. [Friedrich-Alexander-Universitaet Erlangen-Nuernberg, Erlangen Centre for Astroparticle Physics, Erlangen (Germany); Andeen, K. [Marquette University, Department of Physics, Milwaukee, WI (United States); Anderson, T.; Dunkman, M.; Eller, P.; Huang, F.; Keivani, A.; Lanfranchi, J.L.; Pankova, D.V.; Quinnan, M.; Tesic, G.; Weiss, M.J. [Pennsylvania State University, Department of Physics, University Park, PA (United States); Archinger, M.; Baum, V.; Boeser, S.; Del Pino Rosendo, E.; Di Lorenzo, V.; Eberhardt, B.; Ehrhardt, T.; Foesig, C.C.; Koepke, L.; Krueckl, G.; Momente, G.; Peiffer, P.; Sandroos, J.; Steuer, A.; Wiebe, K. [University of Mainz, Institute of Physics, Mainz (Germany); Argueelles, C.; Axani, S.; Collin, G.H.; Conrad, J.M.; Jones, B.J.P.; Moulai, M. [Massachusetts Institute of Technology, Department of Physics, Cambridge, MA (United States); Auffenberg, J.; Glauch, T.; Haack, C.; Hansmann, T.; Konietz, R.; Leuermann, M.; Penek, Oe.; Raedel, L.; Reimann, R.; Rongen, M.; Schoenen, S.; Schumacher, L.; Stettner, J.; Vehring, M.; Vogel, E.; Wallraff, M.; Waza, A.; Wickmann, S.; Wiebusch, C.H. [RWTH Aachen University, III. Physikalisches Institut, Aachen (Germany); Bai, X. [South Dakota School of Mines and Technology, Physics Department, Rapid City, SD (United States); Barwick, S.W.; Yodh, G. [University of California, Department of Physics and Astronomy, Irvine, CA (United States); Bay, R.; Filimonov, K.; Price, P.B.; Woschnagg, K. [University of California, Department of Physics, Berkeley, CA (United States); Beatty, J.J. [Ohio State University, Department of Physics and Center for Cosmology and Astro-Particle Physics, Columbus, OH (United States); Ohio State University, Department of Astronomy, Columbus, OH (United States); Becker Tjus, J.; Bos, F.; Eichmann, B.; Kroll, M.; Schoeneberg, S.; Tenholt, F. [Ruhr-Universitaet Bochum, Fakultaet fuer Physik and Astronomie, Bochum (Germany); Becker, K.H.; Bindig, D.; Helbing, K.; Hickford, S.; Hoffmann, R.; Kopper, S.; Lauber, F.; Naumann, U.; Obertacke Pollmann, A.; Soldin, D. [University of Wuppertal, Department of Physics, Wuppertal (Germany); BenZvi, S.; Cross, R. [University of Rochester, Department of Physics and Astronomy, Rochester, NY (United States); Berley, D.; Blaufuss, E.; Cheung, E.; Felde, J.; Friedman, E.; Hellauer, R.; Hoffman, K.D.; Maunu, R.; Olivas, A.; Schmidt, T.; Song, M.; Sullivan, G.W. [University of Maryland, Department of Physics, College Park, MD (United States); Besson, D.Z. [University of Kansas, Department of Physics and Astronomy, Lawrence, KS (United States); Binder, G.; Gerhardt, L.; Klein, S.R.; Miarecki, S.; Palczewski, T.; Tatar, J. [University of California, Department of Physics, Berkeley, CA (United States); Lawrence Berkeley National Laboratory, Berkeley, CA (United States); Boerner, M.; Fuchs, T.; Meier, M.; Menne, T.; Pieloth, D.; Rhode, W.; Ruhe, T.; Sandrock, A.; Schlunder, P. [TU Dortmund University, Department of Physics, Dortmund (Germany); Collaboration: IceCube Collaboration; and others

    2017-10-15

    IceCube is a neutrino observatory deployed in the glacial ice at the geographic South Pole. The ν{sub μ} energy unfolding described in this paper is based on data taken with IceCube in its 79-string configuration. A sample of muon neutrino charged-current interactions with a purity of 99.5% was selected by means of a multivariate classification process based on machine learning. The subsequent unfolding was performed using the software Truee. The resulting spectrum covers an E{sub ν}-range of more than four orders of magnitude from 125 GeV to 3.2 PeV. Compared to the Honda atmospheric neutrino flux model, the energy spectrum shows an excess of more than 1.9σ in four adjacent bins for neutrino energies E{sub ν} ≥ 177.8 TeV. The obtained spectrum is fully compatible with previous measurements of the atmospheric neutrino flux and recent IceCube measurements of a flux of high-energy astrophysical neutrinos. (orig.)

  20. Early decay of Peccei–Quinn fermion and the IceCube neutrino events

    Energy Technology Data Exchange (ETDEWEB)

    Ema, Yohei, E-mail: ema@hep-th.phys.s.u-tokyo.ac.jp; Moroi, Takeo

    2016-11-10

    IceCube observed high-energy neutrino flux in the energy region from TeV to PeV. The decay of a massive long-lived particle in the early universe can be the origin of the IceCube neutrino events, which we call an “early decay scenario.” In this paper, we construct a particle physics model that contains such a massive long-lived particle based on the Peccei–Quinn model. We calculate the present neutrino flux, taking account of realistic initial energy distributions of particles produced by the decay of the massive long-lived particle. We show that the early decay scenario naturally fits into the Peccei–Quinn model, and that the neutrino flux observed by IceCube can be explained in such a framework. We also see that, based on that model, a consistent cosmological history that explains the abundance of the massive long-lived particle is realized.

  1. Measurement of the νμ energy spectrum with IceCube-79

    International Nuclear Information System (INIS)

    Aartsen, M.G.; Hill, G.C.; Kyriacou, A.; Robertson, S.; Wallace, A.; Whelan, B.J.; Ackermann, M.; Bernardini, E.; Blot, S.; Bradascio, F.; Bretz, H.P.; Franckowiak, A.; Jacobi, E.; Karg, T.; Kintscher, T.; Kunwar, S.; Nahnhauer, R.; Satalecka, K.; Spiering, C.; Stachurska, J.; Stasik, A.; Strotjohann, N.L.; Terliuk, A.; Usner, M.; Santen, J. van; Adams, J.; Bagherpour, H.; Aguilar, J.A.; Ansseau, I.; Heereman, D.; Meagher, K.; Meures, T.; O'Murchadha, A.; Pinat, E.; Raab, C.; Ahlers, M.; Braun, J.; Chirkin, D.; Day, M.; Desiati, P.; Diaz-Velez, J.C.; Fahey, S.; Feintzeig, J.; Ghorbani, K.; Gladstone, L.; Griffith, Z.; Halzen, F.; Hanson, K.; Hoshina, K.; Jero, K.; Karle, A.; Kauer, M.; Kelley, J.L.; Kheirandish, A.; Krueger, C.; Mancina, S.; McNally, F.; Merino, G.; Sabbatini, L.; Tobin, M.N.; Tosi, D.; Vandenbroucke, J.; Van Rossem, M.; Wandkowsky, N.; Wendt, C.; Westerhoff, S.; Wille, L.; Xu, D.L.; Ahrens, M.; Bohm, C.; Dumm, J.P.; Finley, C.; Flis, S.; Hultqvist, K.; Walck, C.; Wolf, M.; Zoll, M.; Al Samarai, I.; Bron, S.; Carver, T.; Christov, A.; Montaruli, T.; Altmann, D.; Anton, G.; Gluesenkamp, T.; Katz, U.; Kittler, T.; Tselengidou, M.; Andeen, K.; Anderson, T.; Dunkman, M.; Eller, P.; Huang, F.; Keivani, A.; Lanfranchi, J.L.; Pankova, D.V.; Quinnan, M.; Tesic, G.; Weiss, M.J.; Archinger, M.; Baum, V.; Boeser, S.; Del Pino Rosendo, E.; Di Lorenzo, V.; Eberhardt, B.; Ehrhardt, T.; Foesig, C.C.; Koepke, L.; Krueckl, G.; Momente, G.; Peiffer, P.; Sandroos, J.; Steuer, A.; Wiebe, K.; Argueelles, C.; Axani, S.; Collin, G.H.; Conrad, J.M.; Jones, B.J.P.; Moulai, M.; Auffenberg, J.; Glauch, T.; Haack, C.; Hansmann, T.; Konietz, R.; Leuermann, M.; Penek, Oe.; Raedel, L.; Reimann, R.; Rongen, M.; Schoenen, S.; Schumacher, L.; Stettner, J.; Vehring, M.; Vogel, E.; Wallraff, M.; Waza, A.; Wickmann, S.; Wiebusch, C.H.; Bai, X.; Barwick, S.W.; Yodh, G.; Bay, R.; Filimonov, K.; Price, P.B.; Woschnagg, K.; Beatty, J.J.; Becker Tjus, J.; Bos, F.; Eichmann, B.; Kroll, M.; Schoeneberg, S.; Tenholt, F.; Becker, K.H.; Bindig, D.; Helbing, K.; Hickford, S.; Hoffmann, R.; Kopper, S.; Lauber, F.; Naumann, U.; Obertacke Pollmann, A.; Soldin, D.; BenZvi, S.; Cross, R.; Berley, D.; Blaufuss, E.; Cheung, E.; Felde, J.; Friedman, E.; Hellauer, R.; Hoffman, K.D.; Maunu, R.; Olivas, A.; Schmidt, T.; Song, M.; Sullivan, G.W.; Besson, D.Z.; Binder, G.; Gerhardt, L.; Klein, S.R.; Miarecki, S.; Palczewski, T.; Tatar, J.; Boerner, M.; Fuchs, T.; Meier, M.; Menne, T.; Pieloth, D.; Rhode, W.; Ruhe, T.; Sandrock, A.; Schlunder, P.

    2017-01-01

    IceCube is a neutrino observatory deployed in the glacial ice at the geographic South Pole. The ν μ energy unfolding described in this paper is based on data taken with IceCube in its 79-string configuration. A sample of muon neutrino charged-current interactions with a purity of 99.5% was selected by means of a multivariate classification process based on machine learning. The subsequent unfolding was performed using the software Truee. The resulting spectrum covers an E ν -range of more than four orders of magnitude from 125 GeV to 3.2 PeV. Compared to the Honda atmospheric neutrino flux model, the energy spectrum shows an excess of more than 1.9σ in four adjacent bins for neutrino energies E ν ≥ 177.8 TeV. The obtained spectrum is fully compatible with previous measurements of the atmospheric neutrino flux and recent IceCube measurements of a flux of high-energy astrophysical neutrinos. (orig.)

  2. The IceCube MasterClass: providing high school students an authentic research experience

    Science.gov (United States)

    Bravo Gallart, Silvia; Bechtol, Ellen; Schultz, David; Madsen, Megan; Demerit, Jean; IceCube Collaboration

    2017-01-01

    In May 2014, the first one-day long IceCube Masterclass for high school students was offered. The program was inspired by the masterclasses started in 2005 by the International Particle Physics Outreach Group and supported in the U.S. by QuarkNet. Participation in the IceCube masterclasses has grown each year, with a total of over 500 students in three U.S states and three European countries after three editions. In a masterclass, students join an IceCube research team to learn about astrophysics and replicate the results of a published paper, such as the discovery of astrophysical neutrinos or a measurement of the cosmic ray flux. We will discuss both the scientific and educational goals of the program as well as the organizational challenges. Data from the program evaluation will be used to support the need of educational activities based on actual research as a powerful approach for motivating more students to pursue STEM college programs, making science and scientists more approachable to teenagers, and helping students envision a career in science.

  3. Leveraging Community to Promote Diversity and Inclusion within the IceCube Collaboration

    Science.gov (United States)

    Knackert, J.

    2017-12-01

    The IceCube Collaboration is an international research collaboration working to advance the field of particle astrophysics. It is comprised of more than 300 scientists, engineers, students, and support staff at 48 institutions in 12 countries. IceCube recognizes the value of increased diversity within STEM fields and is committed to improving this situation both within the collaboration and more broadly. The collaboration has dedicated a community manager to help coordinate and promote these efforts and has established a diversity task force as an internal resource and advising body. Here we will discuss how existing community structure was utilized to establish and maintain a focus on diversity within the collaboration. We will discuss methods for getting community members interested, informed, and invested, while helping them better understand the benefits associated with increased STEM diversity. We will also highlight the advantages of building a team of advocates within a community and the impact these individuals can have both internally and beyond. This work has been informed by the American Association for the Advancement of Science's inaugural cohort of the Community Engagement Fellows Program. The author has made the submission on behalf of the IceCube Collaboration Diversity Task Force.

  4. The role of DEM at CERN

    CERN Document Server

    Van der Bij, E

    2005-01-01

    The DEM group in the Technical Support department provides services for the fabrication of special printed circuits that are invaluable for the whole particle physics community. The capability is based around a core technology that is developed by using skills to etch and process materials that are not commonly used in industry, combined with production methods used in PCB manufacturing. The role of the prototyping facilities is to assist engineers and physicists and to offer them easy access to competencies often not available from industry. At the same time, with the expertise and production capacity available, it makes that CERN is always geared up to handle emergency situations. The design office and the assembly workshop that are also part of DEM have similar roles that lower the cost and improve the quality and maintainability of electronics developed at CERN.

  5. The IceCube Neutrino Observatory, the Pierre Auger Observatory and the Telescope Array : Joint Contribution to the 34th International Cosmic Ray Conference (ICRC 2015)

    NARCIS (Netherlands)

    Collaboration, IceCube; Aartsen, M. G.; Abraham, K.; Ackermann, M.; Adams, J.; Aguilar, J. A.; Ahlers, M.; Ahrens, M.; Altmann, D.; Anderson, T.; Ansseau, I.; Archinger, M.; Arguelles, C.; Arlen, T. C.; Auffenberg, J.; Bai, X.; Barwick, S. W.; Baum, V.; Bay, R.; Beatty, J. J.; Tjus, J. Becker; Becker, K. H.; Beiser, E.; BenZvi, S.; Berghaus, P.; Berley, D.; Bernardini, E.; Bernhard, A.; Besson, D. Z.; Binder, G.; Bindig, D.; Bissok, M.; Blaufuss, E.; Blumenthal, J.; Boersma, D. J.; Bohm, C.; Börner, M.; Bos, F.; Bose, D.; Böser, S.; Botner, O.; Braun, J.; Brayeur, L.; Bretz, H. -P.; Buzinsky, N.; Casey, J.; Casier, M.; Cheung, E.; Chirkin, D.; Christov, A.; Clark, K.; Classen, L.; Coenders, S.; Cowen, D. F.; Silva, A. H. Cruz; Daughhetee, J.; Davis, J. C.; Day, M.; André, J. P. A. M. de; Clercq, C. De; Rosendo, E. del Pino; Dembinski, H.; Ridder, S. De; Desiati, P.; Vries, K. D. de; Wasseige, G. de; With, M. de; DeYoung, T.; Díaz-Vélez, J. C.; Lorenzo, V. di; Dumm, J. P.; Dunkman, M.; Eagan, R.; Eberhardt, B.; Ehrhardt, T.; Eichmann, B.; Euler, S.; Evenson, P. A.; Fadiran, O.; Fahey, S.; Fazely, A. R.; Fedynitch, A.; Feintzeig, J.; Felde, J.; Filimonov, K.; Finley, C.; Fischer-Wasels, T.; Flis, S.; Fösig, C. -C.; Fuchs, T.; Gaisser, T. K.; Gaior, R.; Gallagher, J.; Gerhardt, L.; Ghorbani, K.; Gier, D.; Gladstone, L.; Glagla, M.; Glüsenkamp, T.; Goldschmidt, A.; Golup, G.; Gonzalez, J. G.; Góra, D.; Grant, D.; Groh, J. C.; Groß, A.; Ha, C.; Haack, C.; Ismail, A. Haj; Hallgren, A.; Halzen, F.; Hansmann, B.; Hanson, K.; Hebecker, D.; Heereman, D.; Helbing, K.; Hellauer, R.; Hellwig, D.; Hickford, S.; Hignight, J.; Hill, G. C.; Hoffman, K. D.; Hoffmann, R.; Holzapfel, K.; Homeier, A.; Hoshina, K.; Huang, F.; Huber, M.; Huelsnitz, W.; Hulth, P. O.; Hultqvist, K.; In, S.; Ishihara, A.; Jacobi, E.; Japaridze, G. S.; Jero, K.; Jurkovic, M.; Kaminsky, B.; Kappes, A.; Karg, T.; Karle, A.; Kauer, M.; Keivani, A.; Kelley, J. L.; Kemp, J.; Kheirandish, A.; Kiryluk, J.; Kläs, J.; Klein, S. R.; Kohnen, G.; Koirala, R.; Kolanoski, H.; Konietz, R.; Koob, A.; Köpke, L.; Kopper, C.; Kopper, S.; Koskinen, D. J.; Kowalski, M.; Krings, K.; Kroll, G.; Kroll, M.; Kunnen, J.; Kurahashi, N.; Kuwabara, T.; Labare, M.; Lanfranchi, J. L.; Larson, M. J.; Lesiak-Bzdak, M.; Leuermann, M.; Leuner, J.; Lu, L.; Lünemann, J.; Madsen, J.; Maggi, G.; Mahn, K. B. M.; Maruyama, R.; Mase, K.; Matis, H. S.; Maunu, R.; McNally, F.; Meagher, K.; Medici, M.; Meli, A.; Menne, T.; Merino, G.; Meures, T.; Miarecki, S.; Middell, E.; Middlemas, E.; Mohrmann, L.; Montaruli, T.; Morse, R.; Nahnhauer, R.; Naumann, U.; Neer, G.; Niederhausen, H.; Nowicki, S. C.; Nygren, D. R.; Obertacke, A.; Olivas, A.; Omairat, A.; O'Murchadha, A.; Palczewski, T.; Pandya, H.; Paul, L.; Pepper, J. A.; Heros, C. Pérez de los; Pfendner, C.; Pieloth, D.; Pinat, E.; Posselt, J.; Price, P. B.; Przybylski, G. T.; Pütz, J.; Quinnan, M.; Raab, C.; Rädel, L.; Rameez, M.; Rawlins, K.; Reimann, R.; Relich, M.; Resconi, E.; Rhode, W.; Richman, M.; Richter, S.; Riedel, B.; Robertson, S.; Rongen, M.; Rott, C.; Ruhe, T.; Ryckbosch, D.; Saba, S. M.; Sabbatini, L.; Sander, H. -G.; Sandrock, A.; Sandroos, J.; Sarkar, S.; Schatto, K.; Scheriau, F.; Schimp, M.; Schmidt, T.; Schmitz, M.; Schoenen, S.; Schöneberg, S.; Schönwald, A.; Schulte, L.; Seckel, D.; Seunarine, S.; Shanidze, R.; Smith, M. W. E.; Soldin, D.; Song, M.; Spiczak, G. M.; Spiering, C.; Stahlberg, M.; Stamatikos, M.; Stanev, T.; Stanisha, N. A.; Stasik, A.; Stezelberger, T.; Stokstad, R. G.; Stößl, A.; Ström, R.; Strotjohann, N. L.; Sullivan, G. W.; Sutherland, M.; Taavola, H.; Taboada, I.; Ter-Antonyan, S.; Terliuk, A.; Tešić, G.; Tilav, S.; Toale, P. A.; Tobin, M. N.; Toscano, S.; Tosi, D.; Tselengidou, M.; Turcati, A.; Unger, E.; Usner, M.; Vallecorsa, S.; Vandenbroucke, J.; Eijndhoven, N. van; Vanheule, S.; Santen, J. van; Veenkamp, J.; Vehring, M.; Voge, M.; Vraeghe, M.; Walck, C.; Wallace, A.; Wallraff, M.; Wandkowsky, N.; Weaver, Ch; Wendt, C.; Westerhoff, S.; Whelan, B. J.; Whitehorn, N.; Wichary, C.; Wiebe, K.; Wiebusch, C. H.; Wille, L.; Williams, D. R.; Wissing, H.; Wolf, M.; Wood, T. R.; Woschnagg, K.; Xu, D. L.; Xu, X. W.; Xu, Y.; Yanez, J. P.; Yodh, G.; Yoshida, S.; Zoll, M.; Collaboration, Pierre Auger; Aab, A.; Abreu, P.; Aglietta, M.; Ahn, E. J.; Samarai, I. Al; Albuquerque, I. F. M.; Allekotte, I.; Allison, P.; Almela, A.; Castillo, J. Alvarez; Alvarez-Muñiz, J.; Batista, R. Alves; Ambrosio, M.; Aminaei, A.; Anastasi, G. A.; Anchordoqui, L.; Andringa, S.; Aramo, C.; Arqueros, F.; Arsene, N.; Asorey, H.; Assis, P.; Aublin, J.; Avila, G.; Awal, N.; Badescu, A. M.; Baus, C.; Beatty, J. J.; Becker, K. H.; Bellido, J. A.; Berat, C.; Bertaina, M. E.; Bertou, X.; Biermann, P. L.; Billoir, P.; Blaess, S. G.; Blanco, A.; Blanco, M.; Blazek, J.; Bleve, C.; Blümer, H.; Boháčová, M.; Boncioli, D.; Bonifazi, C.; Borodai, N.; Brack, J.; Brancus, I.; Bretz, T.; Bridgeman, A.; Brogueira, P.; Buchholz, P.; Bueno, A.; Buitink, S.; Buscemi, M.; Caballero-Mora, K. S.; Caccianiga, B.; Caccianiga, L.; Candusso, M.; Caramete, L.; Caruso, R.; Castellina, A.; Cataldi, G.; Cazon, L.; Cester, R.; Chavez, A. G.; Chiavassa, A.; Chinellato, J. A.; Chudoba, J.; Cilmo, M.; Clay, R. W.; Cocciolo, G.; Colalillo, R.; Coleman, A.; Collica, L.; Coluccia, M. R.; Conceição, R.; Contreras, F.; Cooper, M. J.; Cordier, A.; Coutu, S.; Covault, C. E.; Dallier, R.; Daniel, B.; Dasso, S.; Daumiller, K.; Dawson, B. R.; Almeida, R. M. de; Jong, S. J. de; Mauro, G. De; Neto, J. R. T. de Mello; Mitri, I. De; Oliveira, J. de; Souza, V. de; Peral, L. del; Deligny, O.; Dhital, N.; Giulio, C. Di; Matteo, A. Di; Diaz, J. C.; Castro, M. L. Díaz; Diogo, F.; Dobrigkeit, C.; Docters, W.; D'Olivo, J. C.; Dorofeev, A.; Hasankiadeh, Q. Dorosti; Anjos, R. C. dos; Dova, M. T.; Ebr, J.; Engel, R.; Erdmann, M.; Erfani, M.; Escobar, C. O.; Espadanal, J.; Etchegoyen, A.; Falcke, H.; Fang, K.; Farrar, G.; Fauth, A. C.; Fazzini, N.; Ferguson, A. P.; Fick, B.; Figueira, J. M.; Filevich, A.; Filipčič, A.; Fratu, O.; Freire, M. M.; Fujii, T.; García, B.; García-Gámez, D.; Garcia-Pinto, D.; Gate, F.; Gemmeke, H.; Gherghel-Lascu, A.; Ghia, P. L.; Giaccari, U.; Giammarchi, M.; Giller, M.; Głas, D.; Glaser, C.; Glass, H.; Golup, G.; Berisso, M. Gómez; Vitale, P. F. Gómez; González, N.; Gookin, B.; Gordon, J.; Gorgi, A.; Gorham, P.; Gouffon, P.; Griffith, N.; Grillo, A. F.; Grubb, T. D.; Guarino, F.; Guedes, G. P.; Hampel, M. R.; Hansen, P.; Harari, D.; Harrison, T. A.; Hartmann, S.; Harton, J. L.; Haungs, A.; Hebbeker, T.; Heck, D.; Heimann, P.; Hervé, A. E.; Hill, G. C.; Hojvat, C.; Hollon, N.; Holt, E.; Homola, P.; Hörandel, J. R.; Horvath, P.; Hrabovský, M.; Huber, D.; Huege, T.; Insolia, A.; Isar, P. G.; Jandt, I.; Jansen, S.; Jarne, C.; Johnsen, J. A.; Josebachuili, M.; Kääpä, A.; Kambeitz, O.; Kampert, K. H.; Kasper, P.; Katkov, I.; Keilhauer, B.; Kemp, E.; Kieckhafer, R. M.; Klages, H. O.; Kleifges, M.; Kleinfeller, J.; Krause, R.; Krohm, N.; Kuempel, D.; Mezek, G. Kukec; Kunka, N.; Awad, A. W. Kuotb; LaHurd, D.; Latronico, L.; Lauer, R.; Lauscher, M.; Lautridou, P.; Coz, S. Le; Lebrun, D.; Lebrun, P.; Oliveira, M. A. Leigui de; Letessier-Selvon, A.; Lhenry-Yvon, I.; Link, K.; Lopes, L.; López, R.; Casado, A. López; Louedec, K.; Lucero, A.; Malacari, M.; Mallamaci, M.; Maller, J.; Mandat, D.; Mantsch, P.; Mariazzi, A. G.; Marin, V.; Mariş, I. C.; Marsella, G.; Martello, D.; Martinez, H.; Bravo, O. Martínez; Martraire, D.; Meza, J. J. Masías; Mathes, H. J.; Mathys, S.; Matthews, J.; Matthews, J. A. J.; Matthiae, G.; Maurizio, D.; Mayotte, E.; Mazur, P. O.; Medina, C.; Medina-Tanco, G.; Meissner, R.; Mello, V. B. B.; Melo, D.; Menshikov, A.; Messina, S.; Micheletti, M. I.; Middendorf, L.; Minaya, I. A.; Miramonti, L.; Mitrica, B.; Molina-Bueno, L.; Mollerach, S.; Montanet, F.; Morello, C.; Mostafá, M.; Moura, C. A.; Müller, G.; Muller, M. A.; Müller, S.; Navas, S.; Necesal, P.; Nellen, L.; Nelles, A.; Neuser, J.; Nguyen, P. H.; Niculescu-Oglinzanu, M.; Niechciol, M.; Niemietz, L.; Niggemann, T.; Nitz, D.; Nosek, D.; Novotny, V.; Nožka, L.; Núñez, L. A.; Ochilo, L.; Oikonomou, F.; Olinto, A.; Pacheco, N.; Selmi-Dei, D. Pakk; Palatka, M.; Pallotta, J.; Papenbreer, P.; Parente, G.; Parra, A.; Paul, T.; Pech, M.; Pȩkala, J.; Pelayo, R.; Pepe, I. M.; Perrone, L.; Petermann, E.; Peters, C.; Petrera, S.; Petrov, Y.; Phuntsok, J.; Piegaia, R.; Pierog, T.; Pieroni, P.; Pimenta, M.; Pirronello, V.; Platino, M.; Plum, M.; Porcelli, A.; Porowski, C.; Prado, R. R.; Privitera, P.; Prouza, M.; Quel, E. J.; Querchfeld, S.; Quinn, S.; Rautenberg, J.; Ravel, O.; Ravignani, D.; Reinert, D.; Revenu, B.; Ridky, J.; Risse, M.; Ristori, P.; Rizi, V.; Carvalho, W. Rodrigues de; Rojo, J. Rodriguez; Rodríguez-Frías, M. D.; Rogozin, D.; Rosado, J.; Roth, M.; Roulet, E.; Rovero, A. C.; Saffi, S. J.; Saftoiu, A.; Salamida, F.; Salazar, H.; Saleh, A.; Greus, F. Salesa; Salina, G.; Gomez, J. D. Sanabria; Sánchez, F.; Sanchez-Lucas, P.; Santos, E. M.; Santos, E.; Sarazin, F.; Sarkar, B.; Sarmento, R.; Sarmiento-Cano, C.; Sato, R.; Scarso, C.; Schauer, M.; Scherini, V.; Schieler, H.; Schmidt, D.; Scholten, O.; Schoorlemmer, H.; Schovánek, P.; Schröder, F. G.; Schulz, A.; Schulz, J.; Schumacher, J.; Sciutto, S. J.; Segreto, A.; Settimo, M.; Shadkam, A.; Shellard, R. C.; Sigl, G.; Sima, O.; Śmiałkowski, A.; Šmída, R.; Snow, G. R.; Sommers, P.; Sonntag, S.; Sorokin, J.; Squartini, R.; Srivastava, Y. N.; Stanca, D.; Stanič, S.; Stapleton, J.; Stasielak, J.; Stephan, M.; Stutz, A.; Suarez, F.; Durán, M. Suarez; Suomijärvi, T.; Supanitsky, A. D.; Sutherland, M. S.; Swain, J.; Szadkowski, Z.; Taborda, O. A.; Tapia, A.; Tepe, A.; Theodoro, V. M.; Tibolla, O.; Timmermans, C.; Peixoto, C. J. Todero; Toma, G.; Tomankova, L.; Tomé, B.; Tonachini, A.; Elipe, G. Torralba; Machado, D. Torres; Travnicek, P.; Trini, M.; Ulrich, R.; Unger, M.; Urban, M.; Galicia, J. F. Valdés; Valiño, I.; Valore, L.; Aar, G. van; Bodegom, P. van; Berg, A. M. van den; Velzen, S. van; Vliet, A. van; Varela, E.; Cárdenas, B. Vargas; Varner, G.; Vasquez, R.; Vázquez, J. R.; Vázquez, R. A.; Veberič, D.; Verzi, V.; Vicha, J.; Videla, M.; Villaseñor, L.; Vlcek, B.; Vorobiov, S.; Wahlberg, H.; Wainberg, O.; Walz, D.; Watson, A. A.; Weber, M.; Weidenhaupt, K.; Weindl, A.; Welling, C.; Werner, F.; Widom, A.; Wiencke, L.; Wilczyński, H.; Winchen, T.; Wittkowski, D.; Wundheiler, B.; Wykes, S.; Yang, L.; Yapici, T.; Yushkov, A.; Zas, E.; Zavrtanik, D.; Zavrtanik, M.; Zepeda, A.; Zimmermann, B.; Ziolkowski, M.; Zuccarello, F.; Collaboration, Telescope Array; Abbasi, R. U.; Abe, M.; Abu-Zayyad, T.; Allen, M.; Azuma, R.; Barcikowski, E.; Belz, J. W.; Bergman, D. R.; Blake, S. A.; Cady, R.; Chae, M. J.; Cheon, B. G.; Chiba, J.; Chikawa, M.; Cho, W. R.; Fujii, T.; Fukushima, M.; Goto, T.; Hanlon, W.; Hayashi, Y.; Hayashida, N.; Hibino, K.; Honda, K.; Ikeda, D.; Inoue, N.; Ishii, T.; Ishimori, R.; Ito, H.; Ivanov, D.; Jui, C. C. H.; Kadota, K.; Kakimoto, F.; Kalashev, O.; Kasahara, K.; Kawai, H.; Kawakami, S.; Kawana, S.; Kawata, K.; Kido, E.; Kim, H. B.; Kim, J. H.; Kim, J. H.; Kitamura, S.; Kitamura, Y.; Kuzmin, V.; Kwon, Y. J.; Lan, J.; Lim, S. I.; Lundquist, J. P.; Machida, K.; Martens, K.; Matsuda, T.; Matsuyama, T.; Matthews, J. N.; Minamino, M.; Mukai, Y.; Myers, I.; Nagasawa, K.; Nagataki, S.; Nakamura, T.; Nonaka, T.; Nozato, A.; Ogio, S.; Ogura, J.; Ohnishi, M.; Ohoka, H.; Oki, K.; Okuda, T.; Ono, M.; Oshima, A.; Ozawa, S.; Park, I. H.; Pshirkov, M. S.; Rodriguez, D. C.; Rubtsov, G.; Ryu, D.; Sagawa, H.; Sakurai, N.; Scott, L. M.; Shah, P. D.; Shibata, F.; Shibata, T.; Shimodaira, H.; Shin, B. K.; Shin, H. S.; Smith, J. D.; Sokolsky, P.; Springer, R. W.; Stokes, B. T.; Stratton, S. R.; Stroman, T. A.; Suzawa, T.; Takamura, M.; Takeda, M.; Takeishi, R.; Taketa, A.; Takita, M.; Tameda, Y.; Tanaka, H.; Tanaka, K.; Tanaka, M.; Thomas, S. B.; Thomson, G. B.; Tinyakov, P.; Tkachev, I.; Tokuno, H.; Tomida, T.; Troitsky, S.; Tsunesada, Y.; Tsutsumi, K.; Uchihori, Y.; Udo, S.; Urban, F.; Vasiloff, G.; Wong, T.; Yamane, R.; Yamaoka, H.; Yamazaki, K.; Yang, J.; Yashiro, K.; Yoneda, Y.; Yoshida, S.; Yoshii, H.; Zollinger, R.; Zundel, Z.

    2015-01-01

    We have conducted three searches for correlations between ultra-high energy cosmic rays detected by the Telescope Array and the Pierre Auger Observatory, and high-energy neutrino candidate events from IceCube. Two cross-correlation analyses with UHECRs are done: one with 39 cascades from the IceCube

  6. Volcanic geomorphology using TanDEM-X

    Science.gov (United States)

    Poland, Michael; Kubanek, Julia

    2016-04-01

    Topography is perhaps the most fundamental dataset for any volcano, yet is surprisingly difficult to collect, especially during the course of an eruption. For example, photogrammetry and lidar are time-intensive and often expensive, and they cannot be employed when the surface is obscured by clouds. Ground-based surveys can operate in poor weather but have poor spatial resolution and may expose personnel to hazardous conditions. Repeat passes of synthetic aperture radar (SAR) data provide excellent spatial resolution, but topography in areas of surface change (from vegetation swaying in the wind to physical changes in the landscape) between radar passes cannot be imaged. The German Space Agency's TanDEM-X satellite system, however, solves this issue by simultaneously acquiring SAR data of the surface using a pair of orbiting satellites, thereby removing temporal change as a complicating factor in SAR-based topographic mapping. TanDEM-X measurements have demonstrated exceptional value in mapping the topography of volcanic environments in as-yet limited applications. The data provide excellent resolution (down to ~3-m pixel size) and are useful for updating topographic data at volcanoes where surface change has occurred since the most recent topographic dataset was collected. Such data can be used for applications ranging from correcting radar interferograms for topography, to modeling flow pathways in support of hazards mitigation. The most valuable contributions, however, relate to calculating volume changes related to eruptive activity. For example, limited datasets have provided critical measurements of lava dome growth and collapse at volcanoes including Merapi (Indonesia), Colima (Mexico), and Soufriere Hills (Montserrat), and of basaltic lava flow emplacement at Tolbachik (Kamchatka), Etna (Italy), and Kīlauea (Hawai`i). With topographic data spanning an eruption, it is possible to calculate eruption rates - information that might not otherwise be available

  7. Geometric compatibility of IceCube TeV-PeV neutrino excess and its galactic dark matter origin

    Energy Technology Data Exchange (ETDEWEB)

    Bai, Yang [Department of Physics, University of Wisconsin,University Avenue, Madison, WI 53706 (United States); Lu, Ran [Department of Physics, University of Wisconsin,University Avenue, Madison, WI 53706 (United States); Michigan Center for Theoretical Physics, University of Michigan,Church Street, Ann Arbor, MI 48109 (United States); Salvado, Jordi [Department of Physics, University of Wisconsin,University Avenue, Madison, WI 53706 (United States); Wisconsin IceCube Particle Astrophysics Center,West Washington Avenue, Madison, WI 53706 (United States)

    2016-01-27

    We perform a geometric analysis for the sky map of the IceCube TeV-PeV neutrino excess and test its compatibility with the sky map of decaying dark matter signals in our galaxy. We have found that a galactic decaying dark matter component in general improve the goodness of the fit of our model, although the pure isotropic hypothesis has a better fit than the pure dark matter one. We also consider several representative decaying dark matter, which can provide a good fit to the observed spectrum at IceCube with a dark matter lifetime of around 12 orders of magnitude longer than the age of the universe.

  8. Detection of a Type IIn Supernova in Optical Follow-up Observations of IceCube Neutrino Events

    OpenAIRE

    Aartsen, M. G.; Abraham, K.; Ackermann, M.; Adams, J.; Aguilar, J. A.; Ahlers, M.; Ahrens, M.; Altmann, D.; Anderson, T.; Archinger, M.; Arguelles, C.; Arlen, T. C.; Auffenberg, J.; Bai, X.; Barwick, S. W.

    2015-01-01

    The IceCube neutrino observatory pursues a follow-up program selecting interesting neutrino events in real-time and issuing alerts for electromagnetic follow-up observations. In 2012 March, the most significant neutrino alert during the first three years of operation was issued by IceCube. In the follow-up observations performed by the Palomar Transient Factory (PTF), a Type IIn supernova (SN IIn) PTF12csy was found 0.degrees 2 away from the neutrino alert direction, with an error radius of 0...

  9. DEM Calibration Approach: design of experiment

    Science.gov (United States)

    Boikov, A. V.; Savelev, R. V.; Payor, V. A.

    2018-05-01

    The problem of DEM models calibration is considered in the article. It is proposed to divide models input parameters into those that require iterative calibration and those that are recommended to measure directly. A new method for model calibration based on the design of the experiment for iteratively calibrated parameters is proposed. The experiment is conducted using a specially designed stand. The results are processed with technical vision algorithms. Approximating functions are obtained and the error of the implemented software and hardware complex is estimated. The prospects of the obtained results are discussed.

  10. Small catchments DEM creation using Unmanned Aerial Vehicles

    Science.gov (United States)

    Gafurov, A. M.

    2018-01-01

    Digital elevation models (DEM) are an important source of information on the terrain, allowing researchers to evaluate various exogenous processes. The higher the accuracy of DEM the better the level of the work possible. An important source of data for the construction of DEMs are point clouds obtained with terrestrial laser scanning (TLS) and unmanned aerial vehicles (UAV). In this paper, we present the results of constructing a DEM on small catchments using UAVs. Estimation of the UAV DEM showed comparable accuracy with the TLS if real time kinematic Global Positioning System (RTK-GPS) ground control points (GCPs) and check points (CPs) were used. In this case, the main source of errors in the construction of DEMs are the errors in the referencing of survey results.

  11. Sensitivity of the IceCube detector for ultra-high energy electron neutrino events

    International Nuclear Information System (INIS)

    Voigt, Bernhard

    2008-01-01

    IceCube is a neutrino telescope currently under construction in the glacial ice at South Pole. At the moment half of the detector is installed, when completed it will instrument 1 km 3 of ice providing a unique experimental setup to detect high energy neutrinos from astrophysical sources. In this work the sensitivity of the complete IceCube detector for a diffuse electron-neutrino flux is analyzed, with a focus on energies above 1 PeV. Emphasis is put on the correct simulation of the energy deposit of electromagnetic cascades from charged-current electron-neutrino interactions. Since existing parameterizations lack the description of suppression effects at high energies, a simulation of the energy deposit of electromagnetic cascades with energies above 1 PeV is developed, including cross sections which account for the LPM suppression of bremsstrahlung and pair creation. An attempt is made to reconstruct the direction of these elongated showers. The analysis presented here makes use of the full charge waveform recorded with the data acquisition system of the IceCube detector. It introduces new methods to discriminate efficiently between the background of atmospheric muons, including muon bundles, and cascade signal events from electron-neutrino interactions. Within one year of operation of the complete detector a sensitivity of 1.5.10 -8 E -2 GeVs -1 sr -1 cm -2 is reached, which is valid for a diffuse electron neutrino flux proportional to E -2 in the energy range from 16 TeV to 13 PeV. Sensitivity is defined as the upper limit that could be set in absence of a signal at 90% confidence level. Including all neutrino flavors in this analysis, an improvement of at least one order of magnitude is expected, reaching the anticipated performance of a diffuse muon analysis. (orig.)

  12. Search for non-relativistic magnetic monopoles with IceCube

    Energy Technology Data Exchange (ETDEWEB)

    Aartsen, M.G.; Hill, G.C.; Robertson, S.; Whelan, B.J. [University of Adelaide, School of Chemistry and Physics, Adelaide, SA (Australia); Abbasi, R.; Ahlers, M.; Arguelles, C.; Baker, M.; BenZvi, S.; Chirkin, D.; Day, M.; Desiati, P.; Diaz-Velez, J.C.; Eisch, J.; Fadiran, O.; Feintzeig, J.; Gladstone, L.; Halzen, F.; Hoshina, K.; Jacobsen, J.; Jero, K.; Karle, A.; Kauer, M.; Kelley, J.L.; Kopper, C.; Krasberg, M.; Kurahashi, N.; Landsman, H.; Maruyama, R.; McNally, F.; Merck, M.; Morse, R.; Riedel, B.; Rodrigues, J.P.; Santander, M.; Tobin, M.N.; Toscano, S.; Van Santen, J.; Weaver, C.; Wellons, M.; Wendt, C.; Westerhoff, S.; Whitehorn, N. [University of Wisconsin, Department of Physics and Wisconsin IceCube Particle Astrophysics Center, Madison, WI (United States); Ackermann, M.; Benabderrahmane, M.L.; Berghaus, P.; Bernardini, E.; Bretz, H.P.; Cruz Silva, A.H.; Gluesenkamp, T.; Jacobi, E.; Kaminsky, B.; Karg, T.; Middell, E.; Mohrmann, L.; Nahnhauer, R.; Schoenwald, A.; Shanidze, R.; Spiering, C.; Stoessl, A.; Yanez, J.P. [DESY, Zeuthen (Germany); Adams, J.; Brown, A.M.; Hickford, S.; Macias, O. [University of Canterbury, Department of Physics and Astronomy, Private Bag 4800, Christchurch (New Zealand); Aguilar, J.A.; Christov, A.; Montaruli, T.; Rameez, M.; Vallecorsa, S. [Universite de Geneve, Departement de physique nucleaire et corpusculaire, Geneva (Switzerland); Altmann, D.; Classen, L.; Gora, D.; Kappes, A.; Tselengidou, M. [Friedrich-Alexander-Universitaet Erlangen-Nuernberg, Erlangen Centre for Astroparticle Physics, Erlangen (Germany); Arlen, T.C.; De Andre, J.P.A.M.; DeYoung, T.; Dunkman, M.; Eagan, R.; Groh, J.C.; Huang, F.; Quinnan, M.; Smith, M.W.E.; Stanisha, N.A.; Tesic, G. [Pennsylvania State University, Department of Physics, University Park, PA (United States); Auffenberg, J.; Bissok, M.; Blumenthal, J.; Gretskov, P.; Haack, C.; Hallen, P.; Heinen, D.; Jagielski, K.; Kriesten, A.; Krings, K.; Leuermann, M.; Paul, L.; Raedel, L.; Reimann, R.; Schoenen, S.; Schukraft, A.; Vehring, M.; Wallraff, M.; Wiebusch, C.H.; Zierke, S. [RWTH Aachen University, III. Physikalisches Institut, Aachen (Germany); Bai, X.; Evenson, P.A.; Gaisser, T.K.; Gonzalez, J.G.; Hussain, S.; Kuwabara, T.; Ruzybayev, B.; Seckel, D.; Stanev, T.; Tamburro, A.; Tilav, S. [University of Delaware, Bartol Research Institute and Department of Physics and Astronomy, Newark, DE (United States); Barwick, S.W.; Yodh, G. [University of California, Department of Physics and Astronomy, Irvine, CA (United States); Baum, V.; Eberhardt, B.; Koepke, L.; Kroll, G.; Luenemann, J.; Sander, H.G.; Schatto, K.; Wiebe, K. [University of Mainz, Institute of Physics, Mainz (Germany); Bay, R.; Filimonov, K.; Price, P.B.; Woschnagg, K. [University of California, Department of Physics, Berkeley, CA (United States); Beatty, J.J. [Ohio State University, Department of Physics and Center for Cosmology and Astro-Particle Physics, Columbus, OH (United States); Ohio State University, Department of Astronomy, Columbus, OH (United States); Becker Tjus, J.; Eichmann, B.; Fedynitch, A.; Saba, S.M.; Schoeneberg, S.; Unger, E. [Ruhr-Universitaet Bochum, Fakultaet fuer Physik and Astronomie, Bochum (Germany); Becker, K.H.; Bindig, D.; Fischer-Wasels, T.; Helbing, K.; Hoffmann, R.; Klaes, J.; Kopper, S.; Naumann, U.; Obertacke, A.; Omairat, A.; Posselt, J.; Soldin, D.; Tepe, A. [University of Wuppertal, Department of Physics, Wuppertal (Germany); Berley, D.; Blaufuss, E.; Christy, B.; Goodman, J.A.; Hellauer, R.; Hoffman, K.D.; Huelsnitz, W.; Meagher, K.; Olivas, A.; Redl, P.; Richman, M.; Schmidt, T.; Sullivan, G.W.; Wissing, H. [University of Maryland, Department of Physics, College Park, MD (United States); Bernhard, A.; Coenders, S.; Gross, A.; Leute, J.; Resconi, E.; Schulz, O.; Sestayo, Y. [T.U. Munich, Garching (Germany); Besson, D.Z. [University of Kansas, Department of Physics and Astronomy, Lawrence, KS (United States); Binder, G.; Gerhardt, L.; Ha, C.; Klein, S.R.; Miarecki, S. [University of California, Department of Physics, Berkeley, CA (United States); Lawrence Berkeley National Laboratory, Berkeley, CA (United States); Boersma, D.J.; Botner, O.; Euler, S.; Hallgren, A.; Perez de los Heros, C.; Stroem, R.; Taavola, H. [Uppsala University, Department of Physics and Astronomy, Box 516, Uppsala (Sweden); Bohm, C.; Danninger, M.; Finley, C.; Flis, S.; Hulth, P.O.; Hultqvist, K.; Walck, C.; Wolf, M.; Zoll, M. [Stockholm University, Oskar Klein Centre and Department of Physics, Stockholm (Sweden); Bose, D.; Rott, C. [Sungkyunkwan University, Department of Physics, Suwon (Korea, Republic of); Collaboration: IceCube Collaboration; and others

    2014-07-15

    The IceCube Neutrino Observatory is a large Cherenkov detector instrumenting 1 km{sup 3} of Antarctic ice. The detector can be used to search for signatures of particle physics beyond the Standard Model. Here, we describe the search for non-relativistic, magnetic monopoles as remnants of the Grand Unified Theory (GUT) era shortly after the Big Bang. Depending on the underlying gauge group these monopoles may catalyze the decay of nucleons via the Rubakov-Callan effect with a cross section suggested to be in the range of 10{sup -27} to 10{sup -21} cm{sup 2}. In IceCube, the Cherenkov light from nucleon decays along the monopole trajectory would produce a characteristic hit pattern. This paper presents the results of an analysis of first data taken from May 2011 until May 2012 with a dedicated slow particle trigger for DeepCore, a subdetector of IceCube. A second analysis provides better sensitivity for the brightest non-relativistic monopoles using data taken from May 2009 until May 2010. In both analyses no monopole signal was observed. For catalysis cross sections of 10{sup -22} (10{sup -24}) cm{sup 2} the flux of non-relativistic GUT monopoles is constrained up to a level of Φ{sub 90} ≤ 10{sup -18} (10{sup -17}) cm{sup -2} s{sup -1} sr{sup -1} at a 90 % confidence level, which is three orders of magnitude below the Parker bound. The limits assume a dominant decay of the proton into a positron and a neutral pion. These results improve the current best experimental limits by one to two orders of magnitude, for a wide range of assumed speeds and catalysis cross sections. (orig.)

  13. Sensitivity of the IceCube detector for ultra-high energy electron neutrino events

    Energy Technology Data Exchange (ETDEWEB)

    Voigt, Bernhard

    2008-07-16

    IceCube is a neutrino telescope currently under construction in the glacial ice at South Pole. At the moment half of the detector is installed, when completed it will instrument 1 km{sup 3} of ice providing a unique experimental setup to detect high energy neutrinos from astrophysical sources. In this work the sensitivity of the complete IceCube detector for a diffuse electron-neutrino flux is analyzed, with a focus on energies above 1 PeV. Emphasis is put on the correct simulation of the energy deposit of electromagnetic cascades from charged-current electron-neutrino interactions. Since existing parameterizations lack the description of suppression effects at high energies, a simulation of the energy deposit of electromagnetic cascades with energies above 1 PeV is developed, including cross sections which account for the LPM suppression of bremsstrahlung and pair creation. An attempt is made to reconstruct the direction of these elongated showers. The analysis presented here makes use of the full charge waveform recorded with the data acquisition system of the IceCube detector. It introduces new methods to discriminate efficiently between the background of atmospheric muons, including muon bundles, and cascade signal events from electron-neutrino interactions. Within one year of operation of the complete detector a sensitivity of 1.5.10{sup -8}E{sup -2} GeVs{sup -1}sr{sup -1}cm{sup -2} is reached, which is valid for a diffuse electron neutrino flux proportional to E{sup -2} in the energy range from 16 TeV to 13 PeV. Sensitivity is defined as the upper limit that could be set in absence of a signal at 90% confidence level. Including all neutrino flavors in this analysis, an improvement of at least one order of magnitude is expected, reaching the anticipated performance of a diffuse muon analysis. (orig.)

  14. Everybody Wins: How the IceCube Collaboration Capitalizes Teacher Deployments to the South Pole

    Science.gov (United States)

    Madsen, J.

    2017-12-01

    Over the last fifteen years, the IceCube Collaboration and its predecessor AMANDA have hosted eight teachers at South Pole with the ninth scheduled to deploy in the upcoming 2017-18 season. These deployments have been organized in conjunction with NSF funded programs that pair polar researchers with teachers. Teachers Experiencing the Arctic and Antarctica in the early years, and now PolarTREC, provide valuable structure, general training, build community among polar researchers and teachers, and archive resources developed by participants. The IceCube Collaboration has developed a successful team building approach for newly selected teachers that utilizes past polar teachers. For about a decade, we have provided a two week summer residential science course for a diverse group of ninth to twelve grade students in the University of Wisconsin-River Falls Upward Bound program. An authentic research experience is delivered by focusing on the process of science using a different accessible and meaningful project each year. For example, this summer students learned about design and construction by creating their own LED-embedded clothing. They programmed a microcontroller so the LEDs responded to an external input such as motion or sound. This panel presentation in the K-12 Education/Outreach: Effective Partnerships between Scientists and K-12 Teachers/Informal Educators including Authentic Student Research session will describe how this is a win for all involved. It gives the new teacher extensive opportunities to learn about living and working at the South Pole from past teachers, experience integrating into to an established team as they will do when they deploy, and lets them see creative ways to incorporate IceCube research into the classroom. It also provides a rich active learning experience for the UWRF Upward Bound students, and a way to keep engaged with teachers who have deployed in the past.

  15. Search for non-relativistic magnetic monopoles with IceCube

    International Nuclear Information System (INIS)

    Aartsen, M.G.; Hill, G.C.; Robertson, S.; Whelan, B.J.; Abbasi, R.; Ahlers, M.; Arguelles, C.; Baker, M.; BenZvi, S.; Chirkin, D.; Day, M.; Desiati, P.; Diaz-Velez, J.C.; Eisch, J.; Fadiran, O.; Feintzeig, J.; Gladstone, L.; Halzen, F.; Hoshina, K.; Jacobsen, J.; Jero, K.; Karle, A.; Kauer, M.; Kelley, J.L.; Kopper, C.; Krasberg, M.; Kurahashi, N.; Landsman, H.; Maruyama, R.; McNally, F.; Merck, M.; Morse, R.; Riedel, B.; Rodrigues, J.P.; Santander, M.; Tobin, M.N.; Toscano, S.; Van Santen, J.; Weaver, C.; Wellons, M.; Wendt, C.; Westerhoff, S.; Whitehorn, N.; Ackermann, M.; Benabderrahmane, M.L.; Berghaus, P.; Bernardini, E.; Bretz, H.P.; Cruz Silva, A.H.; Gluesenkamp, T.; Jacobi, E.; Kaminsky, B.; Karg, T.; Middell, E.; Mohrmann, L.; Nahnhauer, R.; Schoenwald, A.; Shanidze, R.; Spiering, C.; Stoessl, A.; Yanez, J.P.; Adams, J.; Brown, A.M.; Hickford, S.; Macias, O.; Aguilar, J.A.; Christov, A.; Montaruli, T.; Rameez, M.; Vallecorsa, S.; Altmann, D.; Classen, L.; Gora, D.; Kappes, A.; Tselengidou, M.; Arlen, T.C.; De Andre, J.P.A.M.; DeYoung, T.; Dunkman, M.; Eagan, R.; Groh, J.C.; Huang, F.; Quinnan, M.; Smith, M.W.E.; Stanisha, N.A.; Tesic, G.; Auffenberg, J.; Bissok, M.; Blumenthal, J.; Gretskov, P.; Haack, C.; Hallen, P.; Heinen, D.; Jagielski, K.; Kriesten, A.; Krings, K.; Leuermann, M.; Paul, L.; Raedel, L.; Reimann, R.; Schoenen, S.; Schukraft, A.; Vehring, M.; Wallraff, M.; Wiebusch, C.H.; Zierke, S.; Bai, X.; Evenson, P.A.; Gaisser, T.K.; Gonzalez, J.G.; Hussain, S.; Kuwabara, T.; Ruzybayev, B.; Seckel, D.; Stanev, T.; Tamburro, A.; Tilav, S.; Barwick, S.W.; Yodh, G.; Baum, V.; Eberhardt, B.; Koepke, L.; Kroll, G.; Luenemann, J.; Sander, H.G.; Schatto, K.; Wiebe, K.; Bay, R.; Filimonov, K.; Price, P.B.; Woschnagg, K.; Beatty, J.J.; Becker Tjus, J.; Eichmann, B.; Fedynitch, A.; Saba, S.M.; Schoeneberg, S.; Unger, E.; Becker, K.H.; Bindig, D.; Fischer-Wasels, T.; Helbing, K.; Hoffmann, R.; Klaes, J.; Kopper, S.; Naumann, U.; Obertacke, A.; Omairat, A.; Posselt, J.; Soldin, D.; Tepe, A.; Berley, D.; Blaufuss, E.; Christy, B.; Goodman, J.A.; Hellauer, R.; Hoffman, K.D.; Huelsnitz, W.; Meagher, K.; Olivas, A.; Redl, P.; Richman, M.; Schmidt, T.; Sullivan, G.W.; Wissing, H.; Bernhard, A.; Coenders, S.; Gross, A.; Leute, J.; Resconi, E.; Schulz, O.; Sestayo, Y.; Besson, D.Z.; Binder, G.; Gerhardt, L.; Ha, C.; Klein, S.R.; Miarecki, S.; Boersma, D.J.; Botner, O.; Euler, S.; Hallgren, A.; Perez de los Heros, C.; Stroem, R.; Taavola, H.; Bohm, C.; Danninger, M.; Finley, C.; Flis, S.; Hulth, P.O.; Hultqvist, K.; Walck, C.; Wolf, M.; Zoll, M.; Bose, D.; Rott, C.

    2014-01-01

    The IceCube Neutrino Observatory is a large Cherenkov detector instrumenting 1 km 3 of Antarctic ice. The detector can be used to search for signatures of particle physics beyond the Standard Model. Here, we describe the search for non-relativistic, magnetic monopoles as remnants of the Grand Unified Theory (GUT) era shortly after the Big Bang. Depending on the underlying gauge group these monopoles may catalyze the decay of nucleons via the Rubakov-Callan effect with a cross section suggested to be in the range of 10 -27 to 10 -21 cm 2 . In IceCube, the Cherenkov light from nucleon decays along the monopole trajectory would produce a characteristic hit pattern. This paper presents the results of an analysis of first data taken from May 2011 until May 2012 with a dedicated slow particle trigger for DeepCore, a subdetector of IceCube. A second analysis provides better sensitivity for the brightest non-relativistic monopoles using data taken from May 2009 until May 2010. In both analyses no monopole signal was observed. For catalysis cross sections of 10 -22 (10 -24 ) cm 2 the flux of non-relativistic GUT monopoles is constrained up to a level of Φ 90 ≤ 10 -18 (10 -17 ) cm -2 s -1 sr -1 at a 90 % confidence level, which is three orders of magnitude below the Parker bound. The limits assume a dominant decay of the proton into a positron and a neutral pion. These results improve the current best experimental limits by one to two orders of magnitude, for a wide range of assumed speeds and catalysis cross sections. (orig.)

  16. Measurement of neutrino oscillations in atmospheric neutrinos with the IceCube DeepCore detector

    Energy Technology Data Exchange (ETDEWEB)

    Yanez Garza, Juan Pablo

    2014-06-02

    The study of neutrino oscillations is an active field of research. During the last couple of decades many experiments have measured the effects of oscillations, pushing the field from the discovery stage towards an era of precision and deeper understanding of the phenomenon. The IceCube Neutrino Observatory, with its low energy subarray, DeepCore, has the possibility of contributing to this field. IceCube is a 1 km{sup 3} ice Cherenkov neutrino telescope buried deep in the Antarctic glacier. DeepCore, a region of denser instrumentation in the lower center of IceCube, permits the detection of neutrinos with energies as low as 10 GeV. Every year, thousands of atmospheric neutrinos around these energies leave a strong signature in DeepCore. Due to their energy and the distance they travel before being detected, these neutrinos can be used to measure the phenomenon of oscillations. This work starts with a study of the potential of IceCube DeepCore to measure neutrino oscillations in different channels, from which the disappearance of ν{sub μ} is chosen to move forward. It continues by describing a novel method for identifying Cherenkov photons that traveled without being scattered until detected direct photons. These photons are used to reconstruct the incoming zenith angle of muon neutrinos. The total energy of the interacting neutrino is also estimated. In data taken in 343 days during 2011-2012, 1487 neutrino candidates with an energy between 7 GeV and 100 GeV are found inside the DeepCore volume. Compared to the expectation from the atmospheric neutrino flux without oscillations, this corresponds to a deficit of about 500 muon neutrino events. The oscillation parameters that describe the data best are sin{sup 2}(2θ{sub 23})=1(>0.94 at 68 % C.L.) and vertical stroke Δm{sup 2}{sub 32} vertical stroke =2.4{sub -0.4}{sup +0.6}.10{sup -3} eV{sup 2}, which are in agreement with the results reported by other experiments. The simulation follows the data closely

  17. Search for small-scale angular correlations of neutrino arrival directions in IceCube

    Energy Technology Data Exchange (ETDEWEB)

    Schimp, Michael; Glagla, Martin; Haack, Christian; Leuermann, Martin; Raedel, Leif; Reimann, Rene; Schoenen, Sebastian; Wiebusch, Christopher [III. Physikalisches Institut, RWTH Aachen University, 52056 Aachen (Germany); Collaboration: IceCube-Collaboration

    2015-07-01

    Recently, the IceCube Neutrino Observatory discovered a diffuse flux of extra-terrestrial high-energy neutrinos. The identification of their astrophysical sources is one of the goals of current investigations. This analysis is based on the expansion of muon neutrino arrival directions in spherical harmonics, which is sensitive to angular correlations. A large number of point sources distributed over the sky would leave an imprint on the spectrum of observed expansion coefficients, even if the sources are too weak to be detected individually. We present the analysis method and discuss possible astrophysical interpretations for the observation or non-observation of such a correlation.

  18. Towards an unbiased, full-sky clustering search with IceCube in real time

    Energy Technology Data Exchange (ETDEWEB)

    Bernardini, Elisa; Franckowiak, Anna; Kintscher, Thomas; Kowalski, Marek; Stasik, Alexander [DESY, Zeuthen (Germany); Collaboration: IceCube-Collaboration

    2016-07-01

    The IceCube neutrino observatory is a 1 km{sup 3} detector for Cherenkov light in the ice at the South Pole. Having observed the presence of a diffuse astrophysical neutrino flux, static point source searches have come up empty handed. Thus, transient and variable objects emerge as promising, detectable source candidates. An unbiased, full-sky clustering search - run in real time - can find neutrino events with close temporal and spatial proximity. The most significant of these clusters serve as alerts to third-party observatories in order to obtain a complete picture of cosmic accelerators. The talk showcases the status and prospects of this project.

  19. IceCube potential for detecting Q-ball dark matter in gauge mediation

    International Nuclear Information System (INIS)

    Kasuya, Shinta; Kawasaki, Masahiro; Yanagida, Tsutomu T.

    2015-01-01

    We study Q-ball dark matter in gauge-mediated supersymmetry breaking, and seek the possibility of detection in the IceCube experiment. We find that the Q balls would be the dark matter in the parameter region different from that for gravitino dark matter. In particular, the Q ball is a good dark matter candidate for low reheating temperature, which may be suitable for the Affleck–Dine baryogenesis and/or nonthermal leptogenesis. Dark matter Q balls are detectable by IceCube-like experiments in the future, which is a peculiar feature compared to the case of gravitino dark matter

  20. High-energy Neutrino follow-up search of Gravitational Wave Event GW150914 with ANTARES and IceCube

    NARCIS (Netherlands)

    Adrian-Martinez, S.; van Haren, H.; ANTARES Collaboration; IceCube Collaboration; Ligo Scientific Collaboration; Virgo Collaboration

    2016-01-01

    We present the high-energy-neutrino follow-up observations of the ?rst gravitational wave tran-sient GW150914 observed by the Advanced LIGO detectors on Sept. 14th, 2015. We search forcoincident neutrino candidates within the data recorded by the IceCube and Antares neutrino de-tectors. A possible

  1. Advancing Diversity and Inclusion within the IceCube Collaboration: Lessons from an International Particle Astrophysics Research Collaboration

    Science.gov (United States)

    Knackert, J.

    2017-12-01

    The IceCube Collaboration is comprised of 300 scientists, engineers, students, and support staff at 48 institutions in 12 countries. IceCube recognizes the value of increased diversity within STEM fields and is committed to improving this situation both within the collaboration and more broadly. The process of establishing and maintaining a focus on diversity and inclusion within an international research collaboration has yielded many lessons and best practices relevant for broader STEM diversity efforts. Examples of events, training activities, and workshops to promote diversity both internally and within the broader STEM community will be provided. We will outline strategies to promote an environment of inclusivity and increase diversity in hiring within IceCube. We will describe collaborations with local networks and advocacy groups that have helped to guide our efforts and maximize their impact. We will also discuss methods for getting community members interested, informed, and invested, while helping them better understand the benefits associated with increased STEM diversity. This work has been informed by the American Association for the Advancement of Science's inaugural cohort of the Community Engagement Fellows Program. The author has made this submission on behalf of the IceCube Collaboration Diversity Task Force.

  2. High-energy neutrino follow-up search of gravitational wave event GW150914 with ANTARES and IceCube

    NARCIS (Netherlands)

    Adrian-Martinez, S.; Albert, M.A.; Andre, M.; Anghinolfi, M.; Anton, G.; Ardid, M.; Aubert, J-J.; Avgitas, T.; Baret, B.; Barrios-Marti, J.; Basa, S.; Bertin, V.; Biagi, S.; Bormuth, R.; Bouwhuis, M. C.; Bruijn, J.R.; Brunner, J; Busto, J.A.A.; Capone, A.; Caramete, L.; Carr, J.; Celli, S.; Chiarusi, T.; Circella, M.; Coleiro, A.; Coniglione, R.; Costantini, H.; Coyle, P.K.; Creusot, A.; Deschamps, A.; De Bonis, G.; Distefano, C.; Donzaud, C.; Dornic, D.; Drouhin, D.; Eberl, T.; El Bojaddaini, I.; Elsaesser, D.; Enzenhoefer, A.; Fehn, K.; Felis, I.; Fusco, L. A.; Galata, S.; Gay, P.; Geisselsoeder, S.; Geyer, K.; Giordano, V.; Gleixner, A.; Glotin, H.; Gracia-Ruiz, R.; Graf, K.; Hallmann, S.; van Haren, H.; Heijboer, A. J.; Hello, Y.; Hernandez-Rey, J. J.; Hoessl, J.; Hofestaedt, J.; Hugon, C.; Illuminati, G.; James, C. W.; de Jong, M.; Jongen, E.M.M.; Kadler, M.; Kalekin, O.; Katz, U.; Kiessling, D.; Kouchner, A.; Kreter, M.; Kreykenbohm, I.; Kulikovskiy, V.; Lachaud, C.; Lahmann, R.; Lefevre, D.; Leonora, E.; Loucatos, S.; Marcelin, M.; Margiotta, A.; Marinelli, AW; Martinez-Mora, J. A.; Mathieu, A.; Melis, K.; Michael, T.; Migliozzi, P.; Moussa, A.; Mueller, C. L.; Nezri, E.; Pavalas, G. E.; Pellegrino, A.C.; Perrina, C.; Piattelli, P.; Popa, V.; Pradier, T.; Racca, C.; Riccobene, G.; Roensch, K.; Saldana, M.; Samtleben, D. F. E.; Sanchez-Losa, A.; Sanguineti, M.; Sapienza, P.; Schnabel, J.A.; Schuessler, F.; Seitz, T.; Sieger, C.; Spurio, M.; Stolarczyk, Th; Taiuti, M.; Trovato, A.; Tselengidou, M.; Turpin, D.; Toennis, C.; Vallage, B.; Vallee, C.; Van Elewyck, V.; Vivolo, D.; Wagner, S.; Wilms-Schopman, F.J.; Zornoza, J. D.; Zuniga, J.; Aartsen, M. G.; Abraham, K.; Ackermann, M; Adams, J.; Aguilar, J. A.; Ahlers, M.; Ahrens, M.; Altmann, D.; Anderson, T.; Ansseau, I.; Anton, G.; Archinger, M.; Arguelles, C.; Arlen, T. C.; Auffenberg, J.; Bai, X.; Barwick, S. W.; Baum, V.; Bay, R.; Beatty, J. J.; Tjus, J. Becker; Becker, K-H.; Beiser, E.; BenZvi, S.; Berghaus, P.; Berley, D.; Bernardini, E.; Bernhard, A.; Besson, D. Z.; Binder, G.; Bindig, D.; Bissok, M.; Blaufuss, E.; Blumenthal, J.; Boersma, D.J.; Bohm, C.K.; Boerner, M.; Bos, M.F.; Bose, D.; Boeser, S.; Botner, O.; Braun, J.; Brayeur, L.; Bretz, H-P.; Buzinsky, N.; Casey, B.J.; Casier, M.; Cheung, E.; Chirkin, D.; Christov, A.; Clark, K.; Classen, L.; Coenders, S.; Collin, G. H.; Conrad, J. M.; Cowen, D. F.; Silva, A. H. Cruz; Daughhetee, J.; Davis, J.C.; Day, B.M.; de Andre, J. P. A. M.; le Clercq, C.M.C.; Rosendo, E. del Pino; Dembinski, H.; De Ridder, S.; Desiati, P.; de Vries, K. D.; de Wasseige, G.; de With, L.M.; DeYoung, T.; Diaz-Velez, J. C.; De Lorenzo, V.; Dujmovic, H.; Dumm, J. P.; Dunkman, M.; Eberhardt, B.; Ehrhardt, T.; Eichmann, B.; Euler, S.; Evenson, P. A.; Fahey, S.; Fazely, A. R.; Feintzeig, J.; Felde, J.; Filimonov, K.; Finley, C.; Flis, S.; Foesig, C-C.; Fuchs, T.; Gaisser, T. K.; Gaior, R.; Gallagher, J.; Gerhardt, L.M.S.; Ghorbani, K.; de Gier, L.; Gladstone, L.; Glagla, M.; Gluesenkamp, T.; Goldschmidt, A.; Golup, G.; Gonzalez-Macias, J.; Gora, D.; Grant, D.; Griffith, Z.; Ha, C.; Haack, C.; Ismail, A. Haj; Hallgren, A.; Halzen, F.; Hansen, B.E.; Hansmann, B.; Hansmann, T.; Hanson, K.; Hebecker, D.; Heereman, D.; Helbing, K.; Hellauer, R.; Hickford, S.; Hignight, J.; Hill, G. C.; Hoffman, K. D.; Hoffmann, R.; Holzapfel, K.; Homeier, A.; Hoshina, K.; Huang, F.; Huber, M.; Huelsnitz, W.; Hulth, P. O.; Hultqvist, K.; Schulte in den Baumen, T.; Ishihara, A.; Jacobi, C.E.; Japaridze, G. S.; Jeong, M.H.; Jero, K.; Jones, B. J. P.; Jurkovic, M.; Kappes, A.; Karg, T.; Karle, A.; Katz, U.; Kauer, M.; Keivani, A.; Kelley, J. L.; Kemp, J.; Kheirandish, A.; Kim, M.; Kintscher, T.; Kiryluk, J.; Klein, S. R.; Kohnen, G.; Koirala, R.; Kolanoski, H.; Konietz, R.; Koepke, L.; Kopper, C.; Kopper, S.; Koskinen, D. J.; Kowalski, M.L.; Krings, K.; Kroll, G.; Kroll, M.; Krueckl, G.; Kunnen, S.J.; Kunwar, S.; Kurahashi, N.; Kuwabara, T.; Labare, M.; Lanfranchi, J. L.; Larson, M. J.; Lennarz, D.; Lesiak-Bzdak, M.; Leuermann, M.; Leuner, J.; Lu, L.; Luenemann, J.D.; Madsen, J.; Maggi, G.; Mahn, K. B. M.; Mandelartz, M.; Maruyama, R.; Mase, K.; Matis, H. S.; Maunu, R.; McNally, F.; Meagher-Villemure, K.; Medici, M.; Meier, M.; Meli, A.; Menne, T.; Merino, G.; Meures, T.; Miarecki, S.; Middell, E.; Mohrmann, L.; Montaruli, T.; Morse, R.; Nahnhauer, R.; Naumann, U.; Neer, G.; Niederhausen, H.; Nowicki, S. C.; Nygren, D. R.; Pollmann, A. Obertacke; Olivas, A.; Omairat, A.; O'Murchadha, A.; Palczewski, T.; Pandya, H.; Pankova, D. V.; Paul, L.; Pepper, J. A.; de los Heros, C. Perez; Pfendner, C.; Pieloth, D.; Pinat, E.; Posselt, J.; Price, P. B.; Przybylski, G. T.; Quinnan, M.; Raab, C.; Raedel, L.; Rameez, M.; Rawlins, K.; Reimann, R.; Relich, M.; Resconi, E.; Rhode, W.; Richman, M.; Richter, S.; Riedel, B.; Robertson, S.; Rongen, M.; Rott, C.; Ruhe, T.; Ryckbosch, D.; Sabbatini, L.; Sander, H-G.; Sandrock, A.W.; Sandroos, J.; Sarkar, S.; Schatto, K.; Schimp, M.; Schlunder, P.; Schmidt, T.; Schoenen, S.; Schoeneberg, S.; Schoenwald, A.; Schumacher, L.; Seckel, D.; Seunarine, S.; Soldin, D.; Song, Michael; Spiczak, G. M.; Spiering, C.; Stahlberg, M.; Stamatikos, M.; Stanev, T.; Stasik, A.; Steuer, A.; Stezelberger, T.; Stokstad, R. G.; Stoessl, A.; Stroem, R.; Strotjohann, N. L.; Sullivan, G. W.; Sutherland, M.; Taavola, H.; Taboada, I.; Tatar, J.; Ter-Antonyan, S.; Terliuk, A.; Tesic, G.; Tilav, S.; Toale, P. A.; Tobin, M. N.; Toscano, S.; Tosi, D.; Tselengidou, M.; Turcati, A.; Unger, E.; Usner, M.; Vallecorsa, S.; Vandenbroucke, J.P.; van Eijndhoven, N.; Vanheule, S.; van Santen, J.; Veenkamp, J.; Vehring, M.; Voge, M.; Vraeghe, M.; Walck, C.; Wallace, A.M.; Wallraff, M.; Wandkowsky, N.; Weaver, Ch; Wendt, C.; Westerhoff, S.; Whelan, B. J.; Wiebe, K.; Wiebusch, C. H.; Wille, L.; Williams, D. R.; Wills, L.; Wissing, H.; Wolf, M.; Wood, T. R.; Woschnagg, K.; Xu, D. L.; Xu, X. W.; Xu, Y.; Yanez, J. P.; Yodh, G.; Yoshida, S.; Zoll, M.; Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M. R.; Acernese, F.; Ackley, K.; Adams, C.; Phythian-Adams, A.T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Agathos, M.; Agatsuma, K.; Aggarwal, N.T.; Aguiar, O. D.; Aiello, L.; Ain, A.; Ajith, P.; Allen, B.; Allocca, A.; Altin, P. A.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Araya, M. C.; Arceneaux, C. C.; Areeda, J. S.; Arnaud, N.; Arun, K. G.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; Babak, S.; Bacon, P.; Bader, M. K. M.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker, R.D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Baune, C.; Bavigadda, V.; Bazzan, M.; Behnke, B.; Bejger, M.; Belczynski, C.; Bell, A. S.; Bell, C. J.; Berger, B. K.; Bergman, J.; Bergmann, G.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Birch, M.J.; Birney, R.; Biscans, S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bloemen, A.L.S.; Bock, O.; Bodiya, T. P.; Boer, M.; Bogaert, J.G.; Bogan, C.; Bohe, A.; Bojtos, P.; Bond, T.C; Bondu, F.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.; Bose, S.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Brooks, A. F.; Brown, A.D.; Brown, D.; Brown, N. M.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Calderon Bustillo, J.; Callister, T. A.; Calloni, E.; Camp, J. B.; Cannon, K. C.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Casanueva Diaz, J.; Casentini, C.; Caudill, S.; Cavaglia, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C. B.; Cerboni Baiardi, L.; Cerretani, G.; Cesarini, E.; Chakraborty, R.; Chalermsongsak, T.; Chamberlin, S. J.; Chan, M.; Chao, D. S.; Charlton, P.; Chassande-Mottin, E.; Chen, H. Y.; Chen, Y; Cheng, C.; Chincarini, A.; Chiummo, A.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Qian; Chua, S. E.; Chung, E.S.; Ciani, G.; Clara, F.; Clark, J. A.; Cleva, F.; Coccia, E.; Cohadon, P. -F.; Colla, A.; Collette, C. G.; Cominsky, L.; Constancio, M., Jr.; Conte, A.; Conti, L.; Cook, D.; Corbitt, T. R.; Cornish, N.; Corsi, A.; Cortese, S.; Costa, A.C.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J. -P.; Countryman, S. T.; Couvares, P.; Cowan, E. E.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Craig, K.; Creighton, J. D. E.; Cripe, J.; Crowder, S. G.; Cumming, A.; Cunningham, A.L.; Cuoco, E.; Dal Canton, T.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Darman, N. S.; Dattilo, V.; Dave, I.; Daveloza, H. P.; Davier, M.; Davies, G. S.; Daw, E. J.; Day, R.; Debra, D.; Debreczeni, G.; Degallaix, J.; De laurentis, M.; Deleglise, S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dereli, H.; Dergachev, V.A.; DeRosa, R. T.; Rosa, R.; DeSalvo, R.; Dhurandhar, S.; Diaz, M. C.; Di Fiore, L.; Giovanni, M.G.; Di Lieto, A.; Di Pace, S.; Di Palma, I.; Di Virgilio, A.; Dojcinoski, G.; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Douglas, R.; Downes, T. P.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Du, Z.; Ducrot, M.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H. -B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Engels, W.; Essick, R. C.; Etzel, T.; Evans, T. M.; Evans, T. M.; Everett, R.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.M.; Fang, Q.; Farinon, S.; Farr, B.; Farr, W. M.; Favata, M.; Fays, M.; Fehrmann, H.; Fejer, M. M.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Fiori, I.; Fiorucci, D.; Fisher, R. P.; Flaminio, R.; Fletcher, M; Fournier, J. -D.; Franco, S; Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.; Frey, V.; Fricke, T. T.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H. A. G.; Gair, J. R.; Gammaitoni, L.; Gaonkar, S. G.; Garufi, F.; Gatto, A.; Gaur, G.; Gehrels, N.; Gemme, G.; Gendre, B.; Genin, E.; Gennai, A.; George, J.; Gergely, L.; Germain, V.; Ghosh, Archisman; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.P.; Glaefke, A.; Goetz, E.; Goetz, R.; Gondan, L.; Gonzalez, Idelmis G.; Gonzalez Castro, J. M.; Gopakumar, A.; Gordon, N. A.; Gorodetsky, M. L.; Gossan, S. E.; Lee-Gosselin, M.; Gouaty, R.; Graef, C.; Graff, P. B.; Granata, M.; Grant, A.; Gras, S.; Gray, C.M.; Greco, G.; Green, A. C.; Groot, P.; Grote, H.; Grunewald, S.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Hacker, J. J.; Buffoni-Hall, R.; Hall, E. D.; Hammond, G.L.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hannam, M. D.; Hanson, P.J.; Hardwick, T.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Hartman, M. T.; Haster, C. -J.; Haughian, K.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hoak, D.; Hodge, K. A.; Hofman, D.; Hollitt, S. E.; Holt, K.; Holz, D. E.; Hopkins, P.; Hosken, D. J.; Hough, J.; Houston, E. A.; Howell, E. J.; Hu, Y. M.; Huang, S.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Idrisy, A.; Indik, N.; Ingram, D. R.; Inta, R.; Isa, H. N.; Isac, J. -M.; Isi, M.; Islas, G.; Isogai, T.; Iyer, B. R.; Izumi, K.; Jacqmin, T.; Jang, D.H.; Jani, K.; Jaranowski, P.; Jawahar, S.; Jimenez-Forteza, F.; Johnson, W.; Jones, I.D.; Jones, R.; Jonker, R. J. G.; Ju, L.; Haris, K.; Kalaghatgi, C. V.; Kalogera, V.; Kandhasamy, S.; Kang, G.H.; Kanner, J. B.; Karki, S.; Kasprzack, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kaur, T.; Kawabe, K.; Kawazoe, F.; Kefelian, F.; Kehl, M. S.; Keitel, D.; Kelley, D. B.; Kells, W.; Kennedy, R.E.; Key, J. S.; Khalaidovski, A.; Khalili, F. Y.; Khan, I.; Khan., S.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, C.; Kim, J.; Kim, K.; Kim, Nam-Gyu; Kim, Namjun; Kim, Y.M.; King, E. J.; King, P. J.; Kinzel, D. L.; Kissel, J. S.; Kleybolte, L.; Klimenko, S.; Koehlenbeck, S. M.; Kokeyama, K.; Koley, S.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Kringel, V.; Krishnan, B.; Krolak, A.; Krueger, C.; Kuehn, G.; Kumar, P.; Kuo, L.; Kutynia, A.; Lackey, B. D.; Landry, M.; Lange, J.; Lantz, B.; Lasky, P. D.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lebigot, E. O.; Lee, C.H.; Lee, K.H.; Lee, M.H.; Lee, K.; Lenon, A.; Leonardi, M.; Leong, J. R.; Leroy, N.; Letendre, N.; Levin, Y.; Levine, B. M.; Li, T. G. F.; Libson, A.; Littenberg, T. B.; Lockerbie, N. A.; Logue, J.; Lombardi, A. L.; Lord, J. E.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lueck, H.; Lundgren, A. P.; Luo, J.; Lynch, R.; Ma, Y.; MacDonald, T.T.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magana-Sandoval, F.; Magee, R. M.; Mageswaran, M.; Majorana, E.; Maksimovic, I.; Malvezzi, V.; Man, N.; Mandel, I.; Mandic, V.; Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni, F.; Marion, F.; Marka, S.; Marka, Z.; Markosyan, A. S.; Maros, E.; Martelli, F.; Martellini, L.; Martin, I. W.; Martin, R.M.; Martynov, D. V.; Marx, J. N.; Mason, K.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder, N.; Mazzolo, G.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McGuire, S. C.; McIntyre, G.; McIver, J.; McManus, D. J.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.; Meidam, J.; Melatos, A.; Mendell, G.; Mendoza-Gandara, D.; Mercer, R. A.; Merilh, E. L.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick, C.; Meyers, P. M.; Mezzani, F.; Miao, H.; Michel, C.; Middleton, H.; Mikhailov, E. E.; Milano, L.; Miller, J.; Millhouse, M.; Minenkov, Y.; Ming, J.; Mirshekari, S.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moggi, A.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore, B.C.; Moore, J.C.; Moraru, D.; Gutierrez Moreno, M.; Morriss, S. R.; Mossavi, K.; Mours, B.; Mow-Lowry, C. M.; Mueller, C. L.; Mueller, G.; Muir, A. W.; Mukherjee, Arunava; Mukherjee, S.D.; Mukherjee, S.; Mukund, N.; Mullavey, A.; Munch, J.; Murphy, D. J.; Murray, P.G.; Mytidis, A.; Nardecchia, I.; Naticchioni, L.; Nayak, R. K.; Necula, V.; Nedkova, K.; Nelemans, G.; Gutierrez-Neri, M.; Neunzert, A.; Newton-Howes, G.; Nguyen, T. T.; Nielsen, A. B.; Nissanke, S.; Nitz, A.; Nocera, F.; Nolting, D.; Normandin, M. E. N.; Nuttall, L. K.; Oberling, J.; Ochsner, E.; O'Dell, J.; Oelker, E.; Ogin, G. H.; Oh, J.; Oh, S. H.; Ohme, F.; Oliver, M. B.; Oppermann, P.; Oram, Richard J.; O'Reilly, B.; O'Shaughnessy, R.; Ott, C. D.; Ottaway, D. J.; Ottens, R. S.; Overmier, H.; Owen, B. J.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, H.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.; Paris, H. R.; Parker, W.S; Pascucci, D.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patricelli, B.; Patrick, Z.; Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele, A.; Penn, S.; Perreca, A.; Phelps, M.; Piccinni, O. J.; Pichot, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Poggiani, R.; Popolizio, P.; Post, A.; Powell, J.; Prasad, J.; Predoi, V.; Premachandra, S. S.; Prestegard, T.; Price, L. R.; Prijatelj, M.; Principe, M.; Privitera, S.; Prix, R.; Prodi, G. A.; Prokhorov, L. G.; Puncken, O.; Punturo, M.; Puppo, P.; Puerrer, M.; Qi, H.; Qin, J.; Quetschke, V.; Quintero, E. A.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rakhmanov, M.; Rapagnani, P.; Raymond, V.; Razzano, M.; Re, V.; Read, J.; Reed, C. M.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Rew, H.; Reyes, S. D.; Ricci, F.; Riles, K.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.; Roma, V. J.; Romano, J. D.; Romano, R.; Romanov, G.; Romie, J. H.; Rosinska, D.; Rowan, S.; Ruediger, A.; Ruggi, P.; Ryan, K.A.; Sachdev, P.S.; Sadecki, T.; Sadeghian, L.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.; Sanchez, E. J.; Sandberg, V.; Sandeen, B.; Sanders, J. R.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Sauter, O.; Savage, R. L.; Sawadsky, A.; Schale, P.; Schilling, R.; Schmidt, J; Schmidt, P.; Schnabel, R.B.; Schofield, R. M. S.; Schoenbeck, A.; Schreiber, K.E.C.; Schuette, D.; Schutz, B. F.; Scott, J.; Scott, M.S.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sequino, V.; Sergeev, A.; Serna, G.; Setyawati, Y.; Sevigny, A.; Shaddock, D. A.; Shah, S.; Shahriar, M. S.; Shaltev, M.; Shao, Z.M.; Shapiro, B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.; Siellez, K.; Siemens, X.; Sigg, D.; Silva, António Dias da; Simakov, D.; Singer, A; Singer, L. P.; Singh, A.; Singh, R.; Singhal, A.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, R. J. E.; Smith, N.D.; Smith, R. J. E.; Son, E. J.; Sorazu, B.; Sorrentino, F.; Souradeep, T.; Srivastava, A. K.; Staley, A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stephens, B. C.; Stone, J.R.; Strain, K. A.; Straniero, N.; Stratta, G.; Strauss, N. A.; Strigin, S. E.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sutton, P. J.; Swinkels, B. L.; Szczepanczyk, M. J.; Tacca, M.D.; Talukder, D.; Tanner, D. B.; Tapai, M.; Tarabrin, S. P.; Taracchini, A.; Taylor, W.R.; Theeg, T.; Thirugnanasambandam, M. P.; Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thorne, K. S.; Thrane, E.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Tomlinson, C.; Tonelli, M.; Torres, C. V.; Torrie, C. I.; Toeyrae, D.; Travasso, F.; Traylor, G.; Trifiro, D.; Tringali, M. C.; Trozzo, L.; Tse, M.; Turconi, M.; Tuyenbayev, D.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; van Bakel, N.; Van Beuzekom, Martin; van den Brand, J. F. J.; Van Den Broeck, C.F.F.; Vander-Hyde, D. C.; van der Schaaf, L.; van Heijningen, J. V.; van Veggel, A. A.; Vardaro, M.; Vass, S.; Vasuth, M.; Vaulin, R.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P.J.; Venkateswara, K.; Verkindt, D.; Vetrano, F.; Vicere, A.; Vinciguerra, S.; Vine, D. J.; Vinet, J. -Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Voss, D. V.; Vousden, W. D.; Vyatchanin, S. P.; Wade, A. R.; Wade, L. E.; Wade, MT; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, M.; Wang, X.; Wang, Y.; Ward, R. L.; Warner, J.; Was, M.; Weaver, B.; Wei, L. -W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Welborn, T.; Wen, L.M.; Wessels, P.; Westphal, T.; Wette, K.; Whelan, J. T.; Whitcomb, S. E.; White, D. J.; Whiting, B. F.; Williams, D.R.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Worden, J.; Wright, J.L.; Wu, G.; Yablon, J.; Yam, W.; Yamamoto, H.; Yancey, C. C.; Yap, M. J.; Yu, H.; Yvert, M.; Zadrozny, A.; Zangrando, L.; Zanolin, M.; Zendri, J. -P.; Zevin, M.; Zhang, F.; Zhang, L.; Zhang, M.; Zhang, Y.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, X. J.; Zucker, M. E.; Zuraw, S. E.; Zweizig, J.

    2016-01-01

    We present the high-energy-neutrino follow-up observations of the first gravitational wave transient GW150914 observed by the Advanced LIGO detectors on September 14, 2015. We search for coincident neutrino candidates within the data recorded by the IceCube and Antares neutrino detectors. A possible

  3. LOWERING ICECUBE'S ENERGY THRESHOLD FOR POINT SOURCE SEARCHES IN THE SOUTHERN SKY

    Energy Technology Data Exchange (ETDEWEB)

    Aartsen, M. G. [Department of Physics, University of Adelaide, Adelaide, 5005 (Australia); Abraham, K. [Physik-department, Technische Universität München, D-85748 Garching (Germany); Ackermann, M. [DESY, D-15735 Zeuthen (Germany); Adams, J. [Department of Physics and Astronomy, University of Canterbury, Private Bag 4800, Christchurch (New Zealand); Aguilar, J. A.; Ansseau, I. [Université Libre de Bruxelles, Science Faculty CP230, B-1050 Brussels (Belgium); Ahlers, M. [Department of Physics and Wisconsin IceCube Particle Astrophysics Center, University of Wisconsin, Madison, WI 53706 (United States); Ahrens, M. [Oskar Klein Centre and Department of Physics, Stockholm University, SE-10691 Stockholm (Sweden); Altmann, D.; Anton, G. [Erlangen Centre for Astroparticle Physics, Friedrich-Alexander-Universität Erlangen-Nürnberg, D-91058 Erlangen (Germany); Andeen, K. [Department of Physics, Marquette University, Milwaukee, WI, 53201 (United States); Anderson, T.; Arlen, T. C. [Department of Physics, Pennsylvania State University, University Park, PA 16802 (United States); Archinger, M.; Baum, V. [Institute of Physics, University of Mainz, Staudinger Weg 7, D-55099 Mainz (Germany); Arguelles, C. [Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Auffenberg, J. [III. Physikalisches Institut, RWTH Aachen University, D-52056 Aachen (Germany); Bai, X. [Physics Department, South Dakota School of Mines and Technology, Rapid City, SD 57701 (United States); Barwick, S. W. [Department of Physics and Astronomy, University of California, Irvine, CA 92697 (United States); Bay, R., E-mail: jacob.feintzeig@gmail.com, E-mail: naoko@icecube.wisc.edu [Department of Physics, University of California, Berkeley, CA 94720 (United States); Collaboration: IceCube Collaboration; and others

    2016-06-20

    Observation of a point source of astrophysical neutrinos would be a “smoking gun” signature of a cosmic-ray accelerator. While IceCube has recently discovered a diffuse flux of astrophysical neutrinos, no localized point source has been observed. Previous IceCube searches for point sources in the southern sky were restricted by either an energy threshold above a few hundred TeV or poor neutrino angular resolution. Here we present a search for southern sky point sources with greatly improved sensitivities to neutrinos with energies below 100 TeV. By selecting charged-current ν{sub μ} interacting inside the detector, we reduce the atmospheric background while retaining efficiency for astrophysical neutrino-induced events reconstructed with sub-degree angular resolution. The new event sample covers three years of detector data and leads to a factor of 10 improvement in sensitivity to point sources emitting below 100 TeV in the southern sky. No statistically significant evidence of point sources was found, and upper limits are set on neutrino emission from individual sources. A posteriori analysis of the highest-energy (∼100 TeV) starting event in the sample found that this event alone represents a 2.8 σ deviation from the hypothesis that the data consists only of atmospheric background.

  4. Search for annihilating dark matter in the Sun with 3 years of IceCube data

    Energy Technology Data Exchange (ETDEWEB)

    Aartsen, M.G.; Hill, G.C.; Robertson, S.; Wallace, A.; Whelan, B.J. [University of Adelaide, Department of Physics, Adelaide (Australia); Ackermann, M.; Bernardini, E.; Blot, S.; Bretz, H.P.; Franckowiak, A.; Jacobi, E.; Karg, T.; Kintscher, T.; Kunwar, S.; Nahnhauer, R.; Satalecka, K.; Spiering, C.; Stasik, A.; Strotjohann, N.L.; Terliuk, A.; Usner, M.; Santen, J. van [DESY, Zeuthen (Germany); Adams, J. [University of Canterbury, Department of Physics and Astronomy, Private Bag 4800, Christchurch (New Zealand); Aguilar, J.A.; Ansseau, I.; Heereman, D.; Meagher, K.; Meures, T.; O' Murchadha, A.; Pinat, E.; Raab, C. [Universite Libre de Bruxelles, Science Faculty CP230, Brussels (Belgium); Ahlers, M.; Braun, J.; Chirkin, D.; Day, M.; Desiati, P.; Diaz-Velez, J.C.; Fahey, S.; Feintzeig, J.; Ghorbani, K.; Gladstone, L.; Griffith, Z.; Halzen, F.; Hanson, K.; Jero, K.; Karle, A.; Kauer, M.; Kelley, J.L.; Kheirandish, A.; Krueger, C.; Mancina, S.; McNally, F.; Merino, G.; Sabbatini, L.; Tobin, M.N.; Tosi, D.; Vandenbroucke, J.; Van Rossem, M.; Wandkowsky, N.; Wendt, C.; Westerhoff, S.; Wille, L.; Xu, D.L. [University of Wisconsin, Department of Physics and Wisconsin IceCube Particle Astrophysics Center, Madison, WI (United States); Ahrens, M.; Bohm, C.; Dumm, J.P.; Finley, C.; Flis, S.; Hultqvist, K.; Walck, C.; Wolf, M.; Zoll, M. [Stockholm University, Department of Physics, Oskar Klein Centre, Stockholm (Sweden); Altmann, D.; Anton, G.; Gluesenkamp, T.; Katz, U.; Kittler, T.; Tselengidou, M. [Friedrich-Alexander-Universitaet Erlangen-Nuernberg, Erlangen Centre for Astroparticle Physics, Erlangen (Germany); Andeen, K. [Marquette University, Department of Physics, Milwaukee, WI (United States); Anderson, T.; Dunkman, M.; Eller, P.; Huang, F.; Keivani, A.; Lanfranchi, J.L.; Pankova, D.V.; Quinnan, M.; Tesic, G.; Weiss, M.J. [Pennsylvania State University, Department of Physics, University Park, PA (United States); Archinger, M.; Baum, V.; Boeser, S.; Pino Rosendo, E. del; Lorenzo, V. di; Eberhardt, B.; Ehrhardt, T.; Foesig, C.C.; Koepke, L.; Krueckl, G.; Peiffer, P.; Sandroos, J.; Steuer, A.; Wiebe, K. [University of Mainz, Institute of Physics, Mainz (Germany); Argueelles, C.; Axani, S.; Collin, G.H.; Conrad, J.M.; Jones, B.J.P.; Moulai, M. [Massachusetts Institute of Technology, Department of Physics, Cambridge, MA (United States); Auffenberg, J.; Bissok, M.; Glauch, T.; Haack, C.; Hansmann, T.; Konietz, R.; Leuermann, M.; Penek, Oe.; Raedel, L.; Reimann, R.; Rongen, M.; Schoenen, S.; Schumacher, L.; Stettner, J.; Vehring, M.; Vogel, E.; Wallraff, M.; Wickmann, S.; Wiebusch, C.H. [RWTH Aachen University, III. Physikalisches Institut, Aachen (Germany); Bai, X. [South Dakota School of Mines and Technology, Physics Department, Rapid City, SD (United States); Barwick, S.W.; Yodh, G. [University of California, Department of Physics and Astronomy, Irvine, CA (United States); Bay, R.; Filimonov, K.; Price, P.B.; Woschnagg, K. [University of California, Department of Physics, Berkeley, CA (United States); Beatty, J.J. [Ohio State University, Department of Physics and Center for Cosmology and Astro-Particle Physics, Columbus, OH (United States); Ohio State University, Department of Astronomy, Columbus, OH (United States); Becker Tjus, J.; Bos, F.; Eichmann, B.; Kroll, M.; Mandelartz, M.; Schoeneberg, S.; Tenholt, F. [Ruhr-Universitaet Bochum, Fakultaet fuer Physik and Astronomie, Bochum (Germany); Becker, K.H.; Bindig, D.; Helbing, K.; Hickford, S.; Hoffmann, R.; Kopper, S.; Lauber, F.; Naumann, U.; Obertacke Pollmann, A.; Soldin, D. [University of Wuppertal, Department of Physics, Wuppertal (Germany); BenZvi, S.; Cross, R. [University of Rochester, Department of Physics and Astronomy, Rochester, NY (United States); Berley, D.; Blaufuss, E.; Cheung, E.; Felde, J.; Friedman, E.; Hellauer, R.; Hoffman, K.D.; Maunu, R.; Olivas, A.; Schmidt, T.; Song, M.; Sullivan, G.W. [University of Maryland, Department of Physics, College Park, MD (United States); Bernhard, A.; Coenders, S.; Huber, M.; Krings, K.; Resconi, E.; Turcati, A. [Technische Universitaet Muenchen, Physik-Department, Garching (Germany); Besson, D.Z. [University of Kansas, Department of Physics and Astronomy, Lawrence, KS (United States); Binder, G.; Gerhardt, L.; Klein, S.R.; Miarecki, S.; Palczewski, T.; Tatar, J. [University of California, Department of Physics, Berkeley, CA (United States); Lawrence Berkeley National Laboratory, Berkeley, CA (United States); Boerner, M.; Fuchs, T.; Meier, M.; Menne, T.; Pieloth, D.; Rhode, W.; Ruhe, T.; Sandrock, A.; Schlunder, P. [TU Dortmund University, Department of Physics, Dortmund (Germany); Bose, D.; Dujmovic, H.; In, S.; Jeong, M.; Kang, W.; Kim, J.; Kim, M.; Rott, C. [Sungkyunkwan University, Department of Physics, Suwon (Korea, Republic of); Collaboration: IceCube Collaboration; and others

    2017-03-15

    We present results from an analysis looking for dark matter annihilation in the Sun with the IceCube neutrino telescope. Gravitationally trapped dark matter in the Sun's core can annihilate into Standard Model particles making the Sun a source of GeV neutrinos. IceCube is able to detect neutrinos with energies >100 GeV while its low-energy infill array DeepCore extends this to >10 GeV. This analysis uses data gathered in the austral winters between May 2011 and May 2014, corresponding to 532 days of live time when the Sun, being below the horizon, is a source of up-going neutrino events, easiest to discriminate against the dominant background of atmospheric muons. The sensitivity is a factor of two to four better than previous searches due to additional statistics and improved analysis methods involving better background rejection and reconstructions. The resultant upper limits on the spin-dependent dark matter-proton scattering cross section reach down to 1.46 x 10{sup -5} pb for a dark matter particle of mass 500 GeV annihilating exclusively into τ{sup +}τ{sup -} particles. These are currently the most stringent limits on the spin-dependent dark matter-proton scattering cross section for WIMP masses above 50 GeV. (orig.)

  5. Search for nonstandard neutrino interactions with IceCube DeepCore

    Science.gov (United States)

    Aartsen, M. G.; Ackermann, M.; Adams, J.; Aguilar, J. A.; Ahlers, M.; Ahrens, M.; Al Samarai, I.; Altmann, D.; Andeen, K.; Anderson, T.; Ansseau, I.; Anton, G.; Argüelles, C.; Auffenberg, J.; Axani, S.; Bagherpour, H.; Bai, X.; Barron, J. P.; Barwick, S. W.; Baum, V.; Bay, R.; Beatty, J. J.; Becker Tjus, J.; Becker, K.-H.; BenZvi, S.; Berley, D.; Bernardini, E.; Besson, D. Z.; Binder, G.; Bindig, D.; Blaufuss, E.; Blot, S.; Bohm, C.; Börner, M.; Bos, F.; Bose, D.; Böser, S.; Botner, O.; Bourbeau, E.; Bourbeau, J.; Bradascio, F.; Braun, J.; Brayeur, L.; Brenzke, M.; Bretz, H.-P.; Bron, S.; Brostean-Kaiser, J.; Burgman, A.; Carver, T.; Casey, J.; Casier, M.; Cheung, E.; Chirkin, D.; Christov, A.; Clark, K.; Classen, L.; Coenders, S.; Collin, G. H.; Conrad, J. M.; Cowen, D. F.; Cross, R.; Day, M.; de André, J. P. A. M.; De Clercq, C.; DeLaunay, J. J.; Dembinski, H.; De Ridder, S.; Desiati, P.; de Vries, K. D.; de Wasseige, G.; de With, M.; DeYoung, T.; Díaz-Vélez, J. C.; di Lorenzo, V.; Dujmovic, H.; Dumm, J. P.; Dunkman, M.; Dvorak, E.; Eberhardt, B.; Ehrhardt, T.; Eichmann, B.; Eller, P.; Evenson, P. A.; Fahey, S.; Fazely, A. R.; Felde, J.; Filimonov, K.; Finley, C.; Flis, S.; Franckowiak, A.; Friedman, E.; Fuchs, T.; Gaisser, T. K.; Gallagher, J.; Gerhardt, L.; Ghorbani, K.; Giang, W.; Glauch, T.; Glüsenkamp, T.; Goldschmidt, A.; Gonzalez, J. G.; Grant, D.; Griffith, Z.; Haack, C.; Hallgren, A.; Halzen, F.; Hanson, K.; Hebecker, D.; Heereman, D.; Helbing, K.; Hellauer, R.; Hickford, S.; Hignight, J.; Hill, G. C.; Hoffman, K. D.; Hoffmann, R.; Hokanson-Fasig, B.; Hoshina, K.; Huang, F.; Huber, M.; Hultqvist, K.; Hünnefeld, M.; In, S.; Ishihara, A.; Jacobi, E.; Japaridze, G. S.; Jeong, M.; Jero, K.; Jones, B. J. P.; Kalaczynski, P.; Kang, W.; Kappes, A.; Karg, T.; Karle, A.; Katz, U.; Kauer, M.; Keivani, A.; Kelley, J. L.; Kheirandish, A.; Kim, J.; Kim, M.; Kintscher, T.; Kirby, C.; Kiryluk, J.; Kittler, T.; Klein, S. R.; Kohnen, G.; Koirala, R.; Kolanoski, H.; Köpke, L.; Kopper, C.; Kopper, S.; Koschinsky, J. P.; Koskinen, D. J.; Kowalski, M.; Krings, K.; Kroll, M.; Krückl, G.; Kunnen, J.; Kunwar, S.; Kurahashi, N.; Kuwabara, T.; Kyriacou, A.; Labare, M.; Lanfranchi, J. L.; Larson, M. J.; Lauber, F.; Lennarz, D.; Lesiak-Bzdak, M.; Leuermann, M.; Liu, Q. R.; Lu, L.; Lünemann, J.; Luszczak, W.; Madsen, J.; Maggi, G.; Mahn, K. B. M.; Mancina, S.; Maruyama, R.; Mase, K.; Maunu, R.; McNally, F.; Meagher, K.; Medici, M.; Meier, M.; Menne, T.; Merino, G.; Meures, T.; Miarecki, S.; Micallef, J.; Momenté, G.; Montaruli, T.; Moore, R. W.; Moulai, M.; Nahnhauer, R.; Nakarmi, P.; Naumann, U.; Neer, G.; Niederhausen, H.; Nowicki, S. C.; Nygren, D. R.; Obertacke Pollmann, A.; Olivas, A.; O'Murchadha, A.; Palczewski, T.; Pandya, H.; Pankova, D. V.; Peiffer, P.; Pepper, J. A.; Pérez de los Heros, C.; Pieloth, D.; Pinat, E.; Plum, M.; Price, P. B.; Przybylski, G. T.; Raab, C.; Rädel, L.; Rameez, M.; Rawlins, K.; Rea, I. C.; Reimann, R.; Relethford, B.; Relich, M.; Resconi, E.; Rhode, W.; Richman, M.; Robertson, S.; Rongen, M.; Rott, C.; Ruhe, T.; Ryckbosch, D.; Rysewyk, D.; Sälzer, T.; Sanchez Herrera, S. E.; Sandrock, A.; Sandroos, J.; Santander, M.; Sarkar, S.; Sarkar, S.; Satalecka, K.; Schlunder, P.; Schmidt, T.; Schneider, A.; Schoenen, S.; Schöneberg, S.; Schumacher, L.; Seckel, D.; Seunarine, S.; Soedingrekso, J.; Soldin, D.; Song, M.; Spiczak, G. M.; Spiering, C.; Stachurska, J.; Stamatikos, M.; Stanev, T.; Stasik, A.; Stettner, J.; Steuer, A.; Stezelberger, T.; Stokstad, R. G.; Stößl, A.; Strotjohann, N. L.; Stuttard, T.; Sullivan, G. W.; Sutherland, M.; Taboada, I.; Tatar, J.; Tenholt, F.; Ter-Antonyan, S.; Terliuk, A.; Tešić, G.; Tilav, S.; Toale, P. A.; Tobin, M. N.; Toscano, S.; Tosi, D.; Tselengidou, M.; Tung, C. F.; Turcati, A.; Turley, C. F.; Ty, B.; Unger, E.; Usner, M.; Vandenbroucke, J.; Van Driessche, W.; van Eijndhoven, N.; Vanheule, S.; van Santen, J.; Vehring, M.; Vogel, E.; Vraeghe, M.; Walck, C.; Wallace, A.; Wallraff, M.; Wandler, F. D.; Wandkowsky, N.; Waza, A.; Weaver, C.; Weiss, M. J.; Wendt, C.; Werthebach, J.; Westerhoff, S.; Whelan, B. J.; Wiebe, K.; Wiebusch, C. H.; Wille, L.; Williams, D. R.; Wills, L.; Wolf, M.; Wood, J.; Wood, T. R.; Woolsey, E.; Woschnagg, K.; Xu, D. L.; Xu, X. W.; Xu, Y.; Yanez, J. P.; Yodh, G.; Yoshida, S.; Yuan, T.; Zoll, M.; IceCube Collaboration

    2018-04-01

    As atmospheric neutrinos propagate through the Earth, vacuumlike oscillations are modified by Standard Model neutral- and charged-current interactions with electrons. Theories beyond the Standard Model introduce heavy, TeV-scale bosons that can produce nonstandard neutrino interactions. These additional interactions may modify the Standard Model matter effect producing a measurable deviation from the prediction for atmospheric neutrino oscillations. The result described in this paper constrains nonstandard interaction parameters, building upon a previous analysis of atmospheric muon-neutrino disappearance with three years of IceCube DeepCore data. The best fit for the muon to tau flavor changing term is ɛμ τ=-0.0005 , with a 90% C.L. allowed range of -0.0067 <ɛμ τ<0.0081 . This result is more restrictive than recent limits from other experiments for ɛμ τ. Furthermore, our result is complementary to a recent constraint on ɛμ τ using another publicly available IceCube high-energy event selection. Together, they constitute the world's best limits on nonstandard interactions in the μ -τ sector.

  6. The IceCube data acquisition system: Signal capture, digitization,and timestamping

    Energy Technology Data Exchange (ETDEWEB)

    The IceCube Collaboration; Matis, Howard

    2009-03-02

    IceCube is a km-scale neutrino observatory under construction at the South Pole with sensors both in the deep ice (InIce) and on the surface (IceTop). The sensors, called Digital Optical Modules (DOMs), detect, digitize and timestamp the signals from optical Cherenkov-radiation photons. The DOM Main Board (MB) data acquisition subsystem is connected to the central DAQ in the IceCube Laboratory (ICL) by a single twisted copper wire-pair and transmits packetized data on demand. Time calibration ismaintained throughout the array by regular transmission to the DOMs of precisely timed analog signals, synchronized to a central GPS-disciplined clock. The design goals and consequent features, functional capabilities, and initial performance of the DOM MB, and the operation of a combined array of DOMs as a system, are described here. Experience with the first InIce strings and the IceTop stations indicates that the system design and performance goals have been achieved.

  7. IceCube constraints on fast-spinning pulsars as high-energy neutrino sources

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Ke [Department of Astronomy, University of Maryland, College Park, MD, 20742 (United States); Kotera, Kumiko [Institut d' Astrophysique de Paris, UMR 7095 – CNRS, Université Pierre $ and $ Marie Curie, 98 bis boulevard Arago, 75014, Paris (France); Murase, Kohta [Department of Physics, Department of Astronomy and Astrophysics, Center for Particle and Gravitational Astrophysics, The Pennsylvania State University, PA 16802 (United States); Olinto, Angela V., E-mail: kefang@umd.edu, E-mail: kotera@iap.fr, E-mail: murase@psu.edu, E-mail: olinto@kicp.uchicago.edu [Department of Astronomy and Astrophysics, Kavli Institute for Cosmological Physics, University of Chicago, Chicago, IL 60637 (United States)

    2016-04-01

    Relativistic winds of fast-spinning pulsars have been proposed as a potential site for cosmic-ray acceleration from very high energies (VHE) to ultrahigh energies (UHE). We re-examine conditions for high-energy neutrino production, considering the interaction of accelerated particles with baryons of the expanding supernova ejecta and the radiation fields in the wind nebula. We make use of the current IceCube sensitivity in diffusive high-energy neutrino background, in order to constrain the parameter space of the most extreme neutron stars as sources of VHE and UHE cosmic rays. We demonstrate that the current non-observation of 10{sup 18} eV neutrinos put stringent constraints on the pulsar scenario. For a given model, birthrates, ejecta mass and acceleration efficiency of the magnetar sources can be constrained. When we assume a proton cosmic ray composition and spherical supernovae ejecta, we find that the IceCube limits almost exclude their significant contribution to the observed UHE cosmic-ray flux. Furthermore, we consider scenarios where a fraction of cosmic rays can escape from jet-like structures piercing the ejecta, without significant interactions. Such scenarios would enable the production of UHE cosmic rays and help remove the tension between their EeV neutrino production and the observational data.

  8. Composition from high pT muons in IceCube

    Directory of Open Access Journals (Sweden)

    Soldin Dennis

    2015-01-01

    Full Text Available Cosmic rays with energies up to 1011 GeV enter the atmosphere and produce showers of secondary particles. Inside these showers muons with high transverse momentum (pT ≳ 2 GeV are produced from the decay of heavy hadrons, or from high pT pions and kaons very early in the shower development. These isolated muons can have large transverse separations from the shower core up to several hundred meters, together with the muon bundle forming a double or triple track signature in IceCube. The separation from the core is a measure of the transverse momentum of the muon's parent particle. Assuming the validity of perturbative quantum chromodynamics (pQCD the muon lateral distribution depends on the composition of the incident nuclei, thus the composition of high energy cosmic rays can be determined from muon separation measurements. Vice versa these muons can help to understand uncertainties due to phenomenological models as well as test pQCD predictions of high energy interactions involving heavy nuclei. After introducing the physics scenario of high pT muons in kilometer-scale neutrino telescopes we will review results from IceCube in its 59-string configuration as a starting point and discuss recent studies on composition using laterally separated muons in the final detector configuration.

  9. Search for Astrophysical Sources of Neutrinos Using Cascade Events in IceCube

    Energy Technology Data Exchange (ETDEWEB)

    Aartsen, M. G. [Department of Physics, University of Adelaide, Adelaide, 5005 (Australia); Ackermann, M. [DESY, D-15735 Zeuthen (Germany); Adams, J.; Bagherpour, H. [Dept. of Physics and Astronomy, University of Canterbury, Private Bag 4800, Christchurch (New Zealand); Aguilar, J. A.; Ansseau, I. [Université Libre de Bruxelles, Science Faculty CP230, B-1050 Brussels (Belgium); Ahlers, M. [Niels Bohr Institute, University of Copenhagen, DK-2100 Copenhagen (Denmark); Ahrens, M. [Oskar Klein Centre and Dept. of Physics, Stockholm University, SE-10691 Stockholm (Sweden); Al Samarai, I. [Département de physique nucléaire et corpusculaire, Université de Genève, CH-1211 Genève (Switzerland); Altmann, D.; Anton, G. [Erlangen Centre for Astroparticle Physics, Friedrich-Alexander-Universität Erlangen-Nürnberg, D-91058 Erlangen (Germany); Andeen, K. [Department of Physics, Marquette University, Milwaukee, WI, 53201 (United States); Anderson, T. [Dept. of Physics, Pennsylvania State University, University Park, PA 16802 (United States); Argüelles, C.; Axani, S. [Dept. of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Auffenberg, J. [III. Physikalisches Institut, RWTH Aachen University, D-52056 Aachen (Germany); Bai, X. [Physics Department, South Dakota School of Mines and Technology, Rapid City, SD 57701 (United States); Barwick, S. W. [Dept. of Physics and Astronomy, University of California, Irvine, CA 92697 (United States); Baum, V. [Institute of Physics, University of Mainz, Staudinger Weg 7, D-55099 Mainz (Germany); Collaboration: IceCube Collaboration; and others

    2017-09-10

    The IceCube neutrino observatory has established the existence of a flux of high-energy astrophysical neutrinos, which is inconsistent with the expectation from atmospheric backgrounds at a significance greater than 5 σ . This flux has been observed in analyses of both track events from muon neutrino interactions and cascade events from interactions of all neutrino flavors. Searches for astrophysical neutrino sources have focused on track events due to the significantly better angular resolution of track reconstructions. To date, no such sources have been confirmed. Here we present the first search for astrophysical neutrino sources using cascades interacting in IceCube with deposited energies as small as 1 TeV. No significant clustering was observed in a selection of 263 cascades collected from 2010 May to 2012 May. We show that compared to the classic approach using tracks, this statistically independent search offers improved sensitivity to sources in the southern sky, especially if the emission is spatially extended or follows a soft energy spectrum. This enhancement is due to the low background from atmospheric neutrinos forming cascade events and the additional veto of atmospheric neutrinos at declinations ≲−30°.

  10. IC at IC: IceCube can constrain the intrinsic charm of the proton

    Energy Technology Data Exchange (ETDEWEB)

    Laha, Ranjan; /KIPAC, Menlo Park /Stanford U., Phys. Dept. /SLAC; Brodsky, Stanley J.; /SLAC

    2016-08-09

    The discovery of extraterrestrial neutrinos in the 30 TeV { PeV energy range by IceCube provides new constraints on high energy astrophysics. An important background to the signal are the prompt neutrinos which originate from the decay of charm hadrons produced by high energy cosmic- ray particles interacting in the Earth's atmosphere. It is conventional to use pQCD calculations of charm hadroproduction based on gluon splitting g ! c c alone. However, QCD predicts an additional \\intrinsic" component of the heavy quark distribution which arises from diagrams where heavy quarks are multiply connected to the proton's valence quarks. We estimate the prompt neutrino spectrum due to intrinsic charm. We nd that the atmospheric prompt neutrino ux from intrinsic charm is comparable to the pQCD contribution once we normalize the intrinsic charm di erential cross sections to the ISR and the LEBC-MPS collaboration data. In future, IceCube will constrain the intrinsic charm content of the proton and will contribute to one of the major uncertainties in high energy physics phenomenology.

  11. Non-standard interactions with high-energy atmospheric neutrinos at IceCube

    Energy Technology Data Exchange (ETDEWEB)

    Salvado, Jordi; Mena, Olga; Palomares-Ruiz, Sergio; Rius, Nuria [Instituto de Física Corpuscular (IFIC), CSIC-Universitat de València,Apartado de Correos 22085, E-46071 Valencia (Spain)

    2017-01-31

    Non-standard interactions in the propagation of neutrinos in matter can lead to significant deviations from expectations within the standard neutrino oscillation framework and atmospheric neutrino detectors have been considered to set constraints. However, most previous works have focused on relatively low-energy atmospheric neutrino data. Here, we consider the one-year high-energy through-going muon data in IceCube, which has been already used to search for light sterile neutrinos, to constrain new interactions in the μτ-sector. In our analysis we include several systematic uncertainties on both, the atmospheric neutrino flux and on the detector properties, which are accounted for via nuisance parameters. After considering different primary cosmic-ray spectra and hadronic interaction models, we improve over previous analysis by using the latest data and showing that systematics currently affect very little the bound on the off-diagonal ε{sub μτ}, with the 90% credible interval given by −6.0×10{sup −3}<ε{sub μτ}<5.4×10{sup −3}, comparable to previous results. In addition, we also estimate the expected sensitivity after 10 years of collected data in IceCube and study the precision at which non-standard parameters could be determined for the case of ε{sub μτ} near its current bound.

  12. 1020eV cosmic ray and particle physics with IceCube

    International Nuclear Information System (INIS)

    Alvarez-Muniz, J.; Halzen, F.

    2001-01-01

    We show that a kilometer-scale neutrino observatory, though optimized for detecting neutrinos of TeV to PeV energy, can reveal the science associated with the enigmatic super-EeV radiation in the Universe. Speculations regarding its origin include heavy relics from the early Universe, particle interactions associated with the Greisen cutoff, and topological defects which are remnant cosmic structures associated with phase transitions in grand unified gauge theories. We show that it is a misconception that new instruments optimized to EeV energy can exclusively do this important science. Because kilometer-scale neutrino telescopes such as IceCube can reject the atmospheric neutrino background by identifying the very high energy of the signal events, they have sensitivity over the full solid angle, including the horizon where most of the signal is concentrated. This is critical because upgoing neutrino-induced muons, considered in previous calculations, are absorbed by the Earth. Previous calculations have underestimated the event rates of IceCube for EeV signals by over one order of magnitude

  13. Impacts of DEM resolution and area threshold value uncertainty on ...

    African Journals Online (AJOL)

    ... that DEM resolution influences the selected flow accumulation threshold value; the suitable flow accumulation threshold value increases as the DEM resolution increases, and shows greater variability for basins with lower drainage densities. The link between drainage area threshold value and stream network extraction ...

  14. Search for high-energy muon neutrinos from the "naked-eye" GRB 080319B with the IceCube neutrino telescope

    DEFF Research Database (Denmark)

    Abbasi, R.; Abdou, Y.; Abu-Zayyad, T.

    2009-01-01

    We report on a search with the IceCube detector for high-energy muon neutrinos from GRB 080319B, one of the brightest gamma-ray bursts (GRBs) ever observed. The fireball model predicts that a mean of 0.1 events should be detected by IceCube for a bulk Lorentz boost of the jet of 300. In both the ......V and 2.2 PeV, which contains 90% of the expected events....

  15. Boosted dark matter and its implications for the features in IceCube HESE data

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharya, Atri [Space sciences, Technologies and Astrophysics Research (STAR) Institute, Université de Liège, Bât. B5a, 4000 Liège (Belgium); Gandhi, Raj; Gupta, Aritra [Harish-Chandra Research Institute, Chhatnag Road, Jhunsi, Allahabad-211019 (India); Mukhopadhyay, Satyanarayan, E-mail: A.Bhattacharya@ulg.ac.be, E-mail: raj@hri.res.in, E-mail: aritra@hri.res.in, E-mail: satya@pitt.edu [PITT-PACC, Department of Physics and Astronomy, University of Pittsburgh, PA 15260 (United States)

    2017-05-01

    We study the implications of the premise that any new, relativistic, highly energetic neutral particle that interacts with quarks and gluons would create cascade-like events in the IceCube (IC) detector. Such events would be observationally indistinguishable from neutral current deep-inelastic (DIS) scattering events due to neutrinos. Consequently, one reason for deviations, breaks or excesses in the expected astrophysical power-law neutrino spectrum could be the flux of such a particle. Motivated by features in the recent 1347-day IceCube high energy starting event (HESE) data, we focus on particular boosted dark matter (χ) related realizations of this premise. Here, χ is assumed to be much lighter than, and the result of, the slow decay of a massive scalar (φ ) which constitutes a major fraction of the Universe's dark matter (DM) . We show that this hypothesis, coupled with a standard power-law astrophysical neutrino flux is capable of providing very good fits to the present data, along with a possible explanation of other features in the HESE sample. These features include a) the paucity of events beyond ∼ 2 PeV b) a spectral feature resembling a dip or a spectral change in the 400 TeV–1 PeV region and c) an excess in the 50−100 TeV region. We consider two different boosted DM scenarios, and determine the allowed mass ranges and couplings for four different types of mediators (scalar, pseudoscalar, vector and axial-vector) which could connect the standard and dark sectors.We consider constraints from gamma-ray observations and collider searches. We find that the gamma-ray observations provide the most restrictive constraints, disfavouring the 1σ allowed parameter space from IC fits, while still being consistent with the 3σ allowed region. We also test our proposal and its implications against the (statistically independent) sample of six year through-going muon track data recently released by IceCube.

  16. ASPECTS OF DEM GENERATION FROM UAS IMAGERY

    Directory of Open Access Journals (Sweden)

    A. Greiwe

    2013-08-01

    Full Text Available Since a few years, micro UAS (unmanned aerial systems with vertical take off and landing capabilities like quadro- or octocopter are used as sensor platform for Aerophotogrammetry. Since the restricted payload of micro UAS with a total weight up of 5 kg (payload only up to 1.5 kg, these systems are often equipped with small format cameras. These cameras can be classified as amateur cameras and it is often the case, that these systems do not meet the requirements of a geometric stable camera for photogrammetric measurement purposes. However, once equipped with a suitable camera system, an UAS is an interesting alternative to expensive manned flights for small areas. The operating flight height of the above described UAS is about 50 up to 150 meters above ground level. This low flight height lead on the one hand to a very high spatial resolution of the aerial imagery. Depending on the cameras focal length and the sensor's pixel size, the ground sampling distance (GSD is usually about 1 up to 5 cm. This high resolution is useful especially for the automatic generation of homologous tie-points, which are a precondition for the image alignment (bundle block adjustment. On the other hand, the image scale depends on the object's height and the UAV operating height. Objects like mine heaps or construction sites show high variations of the object's height. As a result, operating the UAS with a constant flying height will lead to high variations in the image scale. For some processing approaches this will lead to problems e.g. the automatic tie-point generation in stereo image pairs. As precondition to all DEM generating approaches, first of all a geometric stable camera, sharp images are essentially. Well known calibration parameters are necessary for the bundle adjustment, to control the exterior orientations. It can be shown, that a simultaneous on site camera calibration may lead to misaligned aerial images. Also, the success rate of an automatic tie

  17. Hydraulic fracturing - an attempt of DEM simulation

    Science.gov (United States)

    Kosmala, Alicja; Foltyn, Natalia; Klejment, Piotr; Dębski, Wojciech

    2017-04-01

    Hydraulic fracturing is a technique widely used in oil, gas and unconventional reservoirs exploitation in order to enable the oil/gas to flow more easily and enhance the production. It relays on pumping into a rock a special fluid under a high pressure which creates a set of microcracks which enhance porosity of the reservoir rock. In this research, attempt of simulation of such hydrofracturing process using the Discrete Element Method approach is presented. The basic assumption of this approach is that the rock can be represented as an assembly of discrete particles cemented into a rigid sample (Potyondy 2004). An existence of voids among particles simulates then a pore system which can be filled out by fracturing fluid, numerically represented by much smaller particles. Following this microscopic point of view and its numerical representation by DEM method we present primary results of numerical analysis of hydrofracturing phenomena, using the ESyS-Particle Software. In particular, we consider what is happening in distinct vicinity of the border between rock sample and fracking particles, how cracks are creating and evolving by breaking bonds between particles, how acoustic/seismic energy is releasing and so on. D.O. Potyondy, P.A. Cundall. A bonded-particle model for rock. International Journal of Rock Mechanics and Mining Sciences, 41 (2004), pp. 1329-1364.

  18. Search for Dark Matter Annihilation in the Galactic Halo using IceCube

    DEFF Research Database (Denmark)

    Medici, Morten Ankersen

    , and with the right properties of this hypothesized particle, it is possible to look for a signal from dark matter annihilation. In this work, the dark matter particle candidate of weakly interacting massive particles shall be presented, and the possibilities of observing it’s self-annihilation to neutrinos shall......The existence of dark matter has by now been demonstrated to such a de- gree that the next step is to understand what actually constitute this unknown gravitational mass. The total amount of matter in the universe cannot be explained without the introduction of a particle beyond the Standard Model...... detector for atmospheric muons it is possible to search for a neutrino signals form the center of the Milky Way located on the souther hemisphere. In this thesis, a complete analysis is carried out on data from 1004 days of IceCube data, looking for an excess of neutrinos consistent with the dark matter...

  19. Unfolding measurement of the atmospheric muon neutrino spectrum using IceCube

    Energy Technology Data Exchange (ETDEWEB)

    Boerner, Mathis; Ruhe, Tim; Meier, Maximilian; Schlunder, Philipp; Menne, Thorben; Fuchs, Tomasz [Dept. of Physics, Technical University of Dortmund, 44227 Dortmund (Germany); Collaboration: IceCube-Collaboration

    2016-07-01

    IceCube is a cubic kilometer neutrino observatory located at the geographic South Pole. With its huge volume, the detector is well suited for measurements of the atmospheric muon neutrino energy spectrum. Over the last years, several unfolding analyses for single years were able to provide model independent measurements for the northern hemisphere in an energy region between 200 GeV and 3.2 PeV. In this talk, the extension of the analyses to four additional years of data is presented. With this significant enlargement of the data basis, it is possible to reanalyze the full northern hemisphere with smaller statistical errors. Moreover, the spectrum can be unfolded in several small zenith bands. Measurements of the energy spectrum for different zenith regions provide further information on the composition and the shape of the flux.

  20. Neutrino oscillations with the full IceCube DeepCore detector

    Energy Technology Data Exchange (ETDEWEB)

    Yanez Garza, Juan Pablo [DESY, Zeuthen (Germany); Collaboration: IceCube-Collaboration

    2013-07-01

    The IceCube detector and its low energy extension, DeepCore, have recorded over 300,000 atmospheric neutrino events since completion almost two years ago. With an energy threshold of about 10 GeV and the possibility of observing different baselines between source and detector location, these events can be used to probe neutrino oscillations with unprecedented statistics. However, the measurement uncertainties, due to unknown properties of the detector and the medium where it stands, limit the sensitivity of such a study. The particular analysis under discussion is a special attempt to diminish the impact of systematic uncertainties while keeping a large high quality neutrino sample. The tools developed for it, as well as the current status of the analysis are presented.

  1. Origin of the High-energy Neutrino Flux at IceCube

    Science.gov (United States)

    Carceller, J. M.; Illana, J. I.; Masip, M.; Meloni, D.

    2018-01-01

    We discuss the spectrum of the different components in the astrophysical neutrino flux reaching the Earth, and the possible contribution of each component to the high-energy IceCube data. We show that the diffuse flux from cosmic ray (CR) interactions with gas in our galaxy implies just two events among the 54-event sample. We argue that the neutrino flux from CR interactions in the intergalactic (intracluster) space depends critically on the transport parameter δ describing the energy dependence in the diffusion coefficient of galactic CRs. Our analysis motivates a {E}-2.1 neutrino spectrum with a drop at PeV energies that fits the data well, including the non-observation of the Glashow resonance at 6.3 PeV. We also show that a CR flux described by an unbroken power law may produce a neutrino flux with interesting spectral features (bumps and breaks) related to changes in the CR composition.

  2. Testing the Dark Matter Scenario for PeV Neutrinos Observed in IceCube.

    Science.gov (United States)

    Murase, Kohta; Laha, Ranjan; Ando, Shin'ichiro; Ahlers, Markus

    2015-08-14

    Late time decay of very heavy dark matter is considered as one of the possible explanations for diffuse PeV neutrinos observed in IceCube. We consider implications of multimessenger constraints, and show that proposed models are marginally consistent with the diffuse γ-ray background data. Critical tests are possible by a detailed analysis and identification of the sub-TeV isotropic diffuse γ-ray data observed by Fermi and future observations of sub-PeV γ rays by observatories like HAWC or Tibet AS+MD. In addition, with several-year observations by next-generation telescopes such as IceCube-Gen2, muon neutrino searches for nearby dark matter halos such as the Virgo cluster should allow us to rule out or support the dark matter models, independently of γ-ray and anisotropy tests.

  3. Search for sterile neutrinos with IceCube DeepCore

    Energy Technology Data Exchange (ETDEWEB)

    Terliuk, Andrii [DESY, Platanenallee 6, 15738 Zeuthen (Germany); Collaboration: IceCube-Collaboration

    2016-07-01

    The DeepCore detector is a sub-array of the IceCube Neutrino Observatory that lowers the energy threshold for neutrino detection down to approximately 10 GeV. DeepCore is used for a variety of studies including atmospheric neutrino oscillations. The standard three-neutrino oscillation paradigm is tested using the DeepCore detector by searching for an additional light, sterile neutrino with a mass on the order of 1 eV. Sterile neutrinos do not interact with the ordinary matter, however they can be mixed with the three active neutrino states. Such mixture changes the picture of standard neutrino oscillations for atmospheric neutrinos with energies below 100 GeV. The capabilities of DeepCore detector to measure such sterile neutrino mixing will be presented in this talk.

  4. Search for tau-neutrino induced cascades in the IceCube detector

    Energy Technology Data Exchange (ETDEWEB)

    Usner, Marcel; Kowalski, Marek [DESY, Zeuthen (Germany); Collaboration: IceCube-Collaboration

    2016-07-01

    The IceCube Neutrino Observatory at the South Pole is a Cherenkov detector built to measure high-energy neutrinos from cosmic sources. A total volume of about one cubic kilometer of the Antarctic ice is instrumented with 5160 optical modules. A tau lepton is created in the charged current interaction of a tau neutrino with an ice nucleus. The Double Bang signature links two subsequent cascades from the hadronic interaction and the tau decay within the detection volume. It can only be resolved at the highest energies around 1 PeV where the decay length of the tau is about 50 m. The work is focused on optimizing reconstruction methods of Double Bang events incorporating the latest ice model. The goal is to measure a flavor ratio that, for the first time, is sensitive to tau neutrinos.

  5. Constraints on self interacting dark matter from IceCube results

    International Nuclear Information System (INIS)

    Albuquerque, Ivone F.M.; Robertson, Denis S.; Heros, Carlos Pérez de los

    2014-01-01

    If dark matter particles self-interact, their capture by astrophysical objects should be enhanced. As a consequence, the rate by which they annihilate at the center of the object will increase. If their self scattering is strong, it can be observed indirectly through an enhancement of the flux of their annihilation products. Here we investigate the effect of self-interaction on the neutrino flux produced by annihilating dark matter in the center of the Sun. We consider annihilation into two channels: W + W − (or τ + τ − for a dark matter mass below the W mass) and b b-bar . We estimate the event rate in the IceCube detector, using its 79-string configuration, and compare our prediction to their experimental results, hence probing dark matter self interacting models

  6. Observing the Birth of Supermassive Black Holes with the Planned ICECUBE Neutrino Detector

    International Nuclear Information System (INIS)

    Shi, X.; Fuller, G.M.; Halzen, F.

    1998-01-01

    It has been suggested that the supermassive black holes, at the centers of galaxies and quasars, may initially form in single collapses of relativistic star clusters or supermassive stars built up during the evolution of dense star clusters. We show that it may be possible for ICECUBE (a planned 1km 3 neutrino detector in Antarctica) to detect the neutrino bursts associated with those collapses at redshift z approx-lt 0.2 with a rate of ∼ 0.1 - 1 burst per year. Such detections could give new insights into the formation of structure in the Universe, especially when correlated with gravitational wave signatures or even gamma-ray bursts. copyright 1998 The American Physical Society

  7. Constraints on atmospheric charmed-meson production from IceCube

    Directory of Open Access Journals (Sweden)

    Palczewski Tomasz Jan

    2016-01-01

    Full Text Available At very-high energies (100 TeV - 1 PeV, the small value of Bjorken-x (≤ 10−3 − 10−7 at which the parton distribution functions are evaluated makes the calculation of charm quark production very difficult. The charm quark has mass (~1.5±0.2 GeV significantly above the ΛQCD scale (~200 MeV, and therefore its production is perturbatively calculable. However, the uncertainty in the data and the calculations cannot exclude some smaller non-perturbative contribution. To evaluate the prompt neutrino flux, one needs to know the charm production cross-section in pN -> cc̄ X, and hadronization of charm particles. This contribution briefly discusses computation of prompt neutrino flux and presents the strongest limit on prompt neutrino flux from IceCube.

  8. Heavy Right-Handed Neutrino Dark Matter and PeV Neutrinos at IceCube

    Science.gov (United States)

    Bhupal Dev, P. S.; Kazanas, D.; Mohapatra, R. N.; Teplitz, V. L.; Zhang, Yongchao

    2016-01-01

    We discuss a simple non-supersymmetric model based on the electroweak gauge group SU(2) (sub L) times SU(2) prime times U(1) (Sub B-L) where the lightest of the right-handed neutrinos, which are part of the leptonic doublet of SU(2) prime, play the role of a long-lived unstable dark matter with mass in the multi-Peta-electronvolt range. We use a resonant s-channel annihilation to obtain the correct thermal relic density and relax the unitarity bound on dark matter mass. In this model, there exists a 3-body dark matter decay mode producing tau leptons and neutrinos, which could be the source for the Peta-electronvolt cascade events observed in the IceCube experiment. The model can be tested with more precise flavor information of the highest-energy neutrino events in future data.

  9. Heavy right-handed neutrino dark matter and PeV neutrinos at IceCube

    Energy Technology Data Exchange (ETDEWEB)

    Dev, P.S. Bhupal [Max-Planck-Institut für Kernphysik,Saupfercheckweg 1, D-69117 Heidelberg (Germany); Kazanas, D. [Astrophysics Science Division, NASA Goddard Space Flight Center,Greenbelt, MD 20771 (United States); Mohapatra, R.N. [Maryland Center for Fundamental Physics, Department of Physics, University of Maryland,College Park, MD 20742 (United States); Teplitz, V.L. [Astrophysics Science Division, NASA Goddard Space Flight Center,Greenbelt, MD 20771 (United States); Department of Physics, Southern Methodist University,Dallas, TX 75205 (United States); Zhang, Yongchao [Service de Physique Théorique, Université Libre de Bruxelles,Boulevard du Triomphe, CP225, 1050 Brussels (Belgium); School of Physics, Sun Yat-Sen University,Guangzhou 510275 (China)

    2016-08-17

    We discuss a simple non-supersymmetric model based on the electroweak gauge group SU(2){sub L}×SU(2){sup ′}×U(1){sub B−L} where the lightest of the right-handed neutrinos, which are part of the leptonic doublet of SU(2){sup ′}, play the role of a long-lived unstable dark matter with mass in the multi-PeV range. We use a resonant s-channel annihilation to obtain the correct thermal relic density and relax the unitarity bound on dark matter mass. In this model, there exists a 3-body dark matter decay mode producing tau leptons and neutrinos, which could be the source for the PeV cascade events observed in the IceCube experiment. The model can be tested with more precise flavor information of the highest-energy neutrino events in future data.

  10. NEUTRINOS AS COSMIC MESSENGERS IN THE ERA OF ICECUBE, ANTARES AND KM3NET

    Directory of Open Access Journals (Sweden)

    Uli F. Katz

    2013-12-01

    Full Text Available Using neutrinos as cosmic messengers for observation of non-thermal processes in the Universe is a highly attractive and promising vision, which has been pursued in various neutrino telescope projects for more than two decades. Recent results from ground-based TeV gamma-ray observatories and refinements of model calculations of the expected neutrino fluxes indicate that Gigaton target volumes will be necessary to establish neutrino astronomy. A first neutrino telescope of that size, IceCube, is operational at the South Pole. Based on experience with the smaller first-generation ANTARES telescope in the Mediterranean Sea, the multi-Gigaton KM3NeT device is in preparation. These neutrino telescopes are presented, and some selected results and the expected KM3NeT performance are discussed.

  11. Angular correlation between IceCube high-energy starting events and starburst sources

    Energy Technology Data Exchange (ETDEWEB)

    Moharana, Reetanjali; Razzaque, Soebur, E-mail: moharana.reetanjali@mail.huji.ac.il, E-mail: srazzaque@uj.ac.za [Department of Physics, University of Johannesburg, P.O. Box 524, Auckland Park 2006 (South Africa)

    2016-12-01

    Starburst galaxies and star-forming regions in the Milkyway, with high rate of supernova activities, are candidate sources of high-energy neutrinos. Using a gamma-ray selected sample of these sources we perform statistical analysis of their angular correlation with the four-year sample of high-energy starting events (HESE), detected by the IceCube Neutrino Observatory. We find that the two samples (starburst galaxies and local star-forming regions) are correlated with cosmic neutrinos at ∼ (2–3)σ (pre-trial) significance level, when the full HESE sample with deposited energy ∼> 20 TeV is considered. However when we consider the HESE sample with deposited energy ∼> 60 TeV, which is almost free of atmospheric neutrino and muon backgrounds, the significance of correlation decreased drastically. We perform a similar study for Galactic sources in the 2nd Catalog of Hard Fermi -LAT Sources (2FHL, >50 GeV) catalog as well, obtaining ∼ (2–3)σ (pre-trial) correlation, however the significance of correlation increases with higher cutoff energy in the HESE sample for this case. We also fit available gamma-ray data from these sources using a pp interaction model and calculate expected neutrino fluxes. We find that the expected neutrino fluxes for most of the sources are at least an order of magnitude lower than the fluxes required to produce the HESE neutrinos from these sources. This puts the starburst sources being the origin of the IceCube HESE neutrinos in question.

  12. Digital Elevation Models (DEMs) for the main 8 Hawaiian Islands

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Digital elevation model (DEM) data are arrays of regularly spaced elevation values referenced horizontally either to a Universal Transverse Mercator (UTM) projection...

  13. VT USGS NED Hydro-flattened DEM (30 meter) - statewide

    Data.gov (United States)

    Vermont Center for Geographic Information — (Link to Metadata) VTHYDRODEM was created to produce a "hydrologically correct" DEM, compliant with the Vermont Hydrography Dataset (VHD) in support of the "flow...

  14. An Overview of the CapDEM Integrated Engineering Environment

    National Research Council Canada - National Science Library

    Lam, Sylvia; Poursina, Shiva; Spafford, Tim

    2005-01-01

    In order to gain a better understanding of the approach and the technology requirements to support collaborative engineering activities, the Collaborative Capability Definition, Engineering and Management (CapDEM...

  15. 2015 USACE NCMP Topobathy Lidar DEM: Avalon (NJ)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These Digital Elevation Model (DEM) files contain rasterized topobathy lidar elevations at a 1 m grid size, generated from data collected by the Coastal Zone Mapping...

  16. IceBridge DMS L3 Photogrammetric DEM

    Data.gov (United States)

    National Aeronautics and Space Administration — The IceBridge DMS L3 Photogrammetric DEM (IODMS3) data set contains gridded digital elevation models and orthorectified images of Greenland derived from the Digital...

  17. 2013 USACE NCMP Topobathy Lidar DEM: Niihau (HI)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These Digital Elevation Model (DEM) files contain rasterized topobathy lidar elevations at a 1 m grid size, generated from data collected by the Coastal Zone Mapping...

  18. 2015 USACE NCMP Topobathy Lidar DEM: Sand Island (WA)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These Digital Elevation Model (DEM) files contain rasterized topobathy lidar elevations at a 1 m grid size, generated from data collected by the Coastal Zone Mapping...

  19. 2016 USACE NCMP Topobathy Lidar DEM: Gulf Coast (TX)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These bare earth Digital Elevation Model (DEM) files contain rasterized topobathy lidar elevations at a 1 meter grid size, generated from data collected by the...

  20. 2016 NOAA Topobathy Lidar DEM: Upper Lake Michigan Islands

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This digital elevation model (DEM) was created from data collected by Leading Edge Geomatics using a Leica Chiroptera II Bathymetric & Topographic Sensor. The...

  1. 2015 USACE NCMP Topobathy Lidar DEM: Egmont Key (FL)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These 1 m gridded bare earth Digital Elevation Model (DEM) files contain rasterized topobathy lidar elevations generated from data collected by the Coastal Zone...

  2. Greenland 5 km DEM, Ice Thickness, and Bedrock Elevation Grids

    Data.gov (United States)

    National Aeronautics and Space Administration — A Digital Elevation Model (DEM), ice thickness grid, and bedrock elevation grid of Greenland acquired as part of the PARCA program are available in ASCII text format...

  3. Boreal forest biomass classification with TanDEM-X

    OpenAIRE

    Torano Caicoya, Astor; Kugler, Florian; Papathanassiou, Kostas; Hajnsek, Irena

    2013-01-01

    High spatial resolution X-band interferometric SAR data from the TanDEM-X, in the operational DEM generation mode, are sensitive to forest structure and can therefore be used for thematic boreal forest classification of forest environments. The interferometric coherence in absence of temporal decorrelation depends strongly on forest height and structure. Due to the rather homogenous structure of boreal forest, forest biomass can be derived from forest height, on the basis of allometric equati...

  4. Neues aus dem Forschungsfeld Deutsch als Zweitsprache. Sammelrezension

    Directory of Open Access Journals (Sweden)

    Claus Altmayer

    2015-03-01

    Full Text Available Neues aus dem Forschungsfeld Deutsch als Zweitsprache. Sammelrezension (Teil 2 von Bernt Ahrenholz (Hrsg. (2009, Empirische Befunde zu DaZ-Erwerb und Sprachförderung. Beiträge aus dem 3. ‚Workshop Kinder mit Migrationshintergrund‘; Karen Schramm & Christoph Schröder (Hrsg. (2009, Empirische Zugänge zu Spracherwerb und Sprachförderung in Deutsch als Zweitsprache; Stefan Jeuk (2010, Deutsch als Zweitsprache in der Schule. Grundlagen - Diagnose – Förderung

  5. Paraffin Phase Change Material for Maintaining Temperature Stability of IceCube Type of CubeSats in LEO

    Science.gov (United States)

    Choi, Michael K.

    2015-01-01

    The MLA and IFA of the instrument on the IceCube require a 20 C temperature and a thermal stability of +/-1 C. The thermal environment of the ISS orbit for the IceCube is very unstable due to solar beta angles in the -75deg to +75deg range. Additionally the instrument is powered off in every eclipse to conserve electrical power. These two factors cause thermal instability to the MLA and IFA. This paper presents a thermal design of using mini paraffin PCM packs to meet the thermal requirements of these instrument components. With a 31 g mass plus a 30% margin of n-hexadecane, the MLA and IFA are powered on for 32.3 minutes in sunlight at a 0deg beta angle to melt the paraffin. The powered-on time increases to 38 minutes at a 75deg (+/-) beta angle. When the MLA and IFA are powered off, the paraffin freezes.

  6. Limits on neutrino emission from gamma-ray bursts with the 40 string IceCube detector.

    Science.gov (United States)

    Abbasi, R; Abdou, Y; Abu-Zayyad, T; Adams, J; Aguilar, J A; Ahlers, M; Andeen, K; Auffenberg, J; Bai, X; Baker, M; Barwick, S W; Bay, R; Bazo Alba, J L; Beattie, K; Beatty, J J; Bechet, S; Becker, J K; Becker, K-H; Benabderrahmane, M L; BenZvi, S; Berdermann, J; Berghaus, P; Berley, D; Bernardini, E; Bertrand, D; Besson, D Z; Bindig, D; Bissok, M; Blaufuss, E; Blumenthal, J; Boersma, D J; Bohm, C; Bose, D; Böser, S; Botner, O; Braun, J; Brown, A M; Buitink, S; Carson, M; Chirkin, D; Christy, B; Clem, J; Clevermann, F; Cohen, S; Colnard, C; Cowen, D F; D'Agostino, M V; Danninger, M; Daughhetee, J; Davis, J C; De Clercq, C; Demirörs, L; Depaepe, O; Descamps, F; Desiati, P; de Vries-Uiterweerd, G; DeYoung, T; Díaz-Vélez, J C; Dierckxsens, M; Dreyer, J; Dumm, J P; Ehrlich, R; Eisch, J; Ellsworth, R W; Engdegård, O; Euler, S; Evenson, P A; Fadiran, O; Fazely, A R; Fedynitch, A; Feusels, T; Filimonov, K; Finley, C; Fischer-Wasels, T; Foerster, M M; Fox, B D; Franckowiak, A; Franke, R; Gaisser, T K; Gallagher, J; Geisler, M; Gerhardt, L; Gladstone, L; Glüsenkamp, T; Goldschmidt, A; Goodman, J A; Grant, D; Griesel, T; Gross, A; Grullon, S; Gurtner, M; Ha, C; Hallgren, A; Halzen, F; Han, K; Hanson, K; Heinen, D; Helbing, K; Herquet, P; Hickford, S; Hill, G C; Hoffman, K D; Homeier, A; Hoshina, K; Hubert, D; Huelsnitz, W; Hülss, J-P; Hulth, P O; Hultqvist, K; Hussain, S; Ishihara, A; Jacobsen, J; Japaridze, G S; Johansson, H; Joseph, J M; Kampert, K-H; Kappes, A; Karg, T; Karle, A; Kelley, J L; Kemming, N; Kenny, P; Kiryluk, J; Kislat, F; Klein, S R; Köhne, J-H; Kohnen, G; Kolanoski, H; Köpke, L; Kopper, S; Koskinen, D J; Kowalski, M; Kowarik, T; Krasberg, M; Krings, T; Kroll, G; Kuehn, K; Kuwabara, T; Labare, M; Lafebre, S; Laihem, K; Landsman, H; Larson, M J; Lauer, R; Lehmann, R; Lünemann, J; Madsen, J; Majumdar, P; Marotta, A; Maruyama, R; Mase, K; Matis, H S; Meagher, K; Merck, M; Mészáros, P; Meures, T; Middell, E; Milke, N; Miller, J; Montaruli, T; Morse, R; Movit, S M; Nahnhauer, R; Nam, J W; Naumann, U; Niessen, P; Nygren, D R; Odrowski, S; Olivas, A; Olivo, M; O'Murchadha, A; Ono, M; Panknin, S; Paul, L; Pérez de los Heros, C; Petrovic, J; Piegsa, A; Pieloth, D; Porrata, R; Posselt, J; Price, P B; Prikockis, M; Przybylski, G T; Rawlins, K; Redl, P; Resconi, E; Rhode, W; Ribordy, M; Rizzo, A; Rodrigues, J P; Roth, P; Rothmaier, F; Rott, C; Ruhe, T; Rutledge, D; Ruzybayev, B; Ryckbosch, D; Sander, H-G; Santander, M; Sarkar, S; Schatto, K; Schmidt, T; Schoenwald, A; Schukraft, A; Schultes, A; Schulz, O; Schunck, M; Seckel, D; Semburg, B; Seo, S H; Sestayo, Y; Seunarine, S; Silvestri, A; Slipak, A; Spiczak, G M; Spiering, C; Stamatikos, M; Stanev, T; Stephens, G; Stezelberger, T; Stokstad, R G; Stoyanov, S; Strahler, E A; Straszheim, T; Sullivan, G W; Swillens, Q; Taavola, H; Taboada, I; Tamburro, A; Tarasova, O; Tepe, A; Ter-Antonyan, S; Tilav, S; Toale, P A; Toscano, S; Tosi, D; Turčan, D; van Eijndhoven, N; Vandenbroucke, J; Van Overloop, A; van Santen, J; Vehring, M; Voge, M; Voigt, B; Walck, C; Waldenmaier, T; Wallraff, M; Walter, M; Weaver, C; Wendt, C; Westerhoff, S; Whitehorn, N; Wiebe, K; Wiebusch, C H; Williams, D R; Wischnewski, R; Wissing, H; Wolf, M; Woschnagg, K; Xu, C; Xu, X W; Yodh, G; Yoshida, S; Zarzhitsky, P

    2011-04-08

    IceCube has become the first neutrino telescope with a sensitivity below the TeV neutrino flux predicted from gamma-ray bursts if gamma-ray bursts are responsible for the observed cosmic-ray flux above 10(18)  eV. Two separate analyses using the half-complete IceCube detector, one a dedicated search for neutrinos from pγ interactions in the prompt phase of the gamma-ray burst fireball and the other a generic search for any neutrino emission from these sources over a wide range of energies and emission times, produced no evidence for neutrino emission, excluding prevailing models at 90% confidence.

  7. Characterization of an IceTop tank for the IceCube surface extension IceVeto

    Energy Technology Data Exchange (ETDEWEB)

    Kemp, Julian; Auffenberg, Jan; Hansmann, Bengt; Rongen, Martin; Stahlberg, Martin; Wiebusch, Christopher [III. Physikalisches Institut B, RWTH Aachen University (Germany); Collaboration: IceCube-Collaboration

    2015-07-01

    IceTop is an air-shower detector located at the South Pole on the surface above the IceCube detector. It consists of 81 detector stations with two Cherenkov tanks each. The tanks are filled with clear ice and instrumented with two photomultipliers. IceTop detects cosmic-ray induced air-showers above an energy threshold of ∝300 TeV. Muons and neutrinos from these air-showers are the main background for astrophysical neutrino searches with IceCube. The usage of IceTop to veto air-showers largely reduces this background in the field of view. To enlarge the field of view an extension of the surface detector, IceVeto, is planned. Therefore, we investigate the properties of an original IceTop tank as a laboratory reference for the development of new detection module designs. First results of these measurements are presented.

  8. Measurement of the atmospheric muon neutrino energy spectrum with IceCube in the 79- and 86-String configuration

    Directory of Open Access Journals (Sweden)

    Ruhe T.

    2016-01-01

    Full Text Available IceCube is a neutrino telescope with an instrumented volume of one cubic kilometer. A total of 5160 Digital Optical Modules (DOMs is deployed on 86 strings forming a three dimensional detector array. Although primarily designed for the detection of neutrinos from astrophysical sources, the detector can be used for spectral measurements of atmospheric neutrinos. These spectral measurements are hindered by a dominant background of atmospheric muons. State-of-the-art techniques from Machine Learning and Data Mining are required to select a high-purity sample of atmospheric neutrino candidates. The energy spectrum of muon neutrinos is obtained from energy-dependent input variables by utilizing regularized unfolding. The results obtained using IceCube in the 79- and 86-string configuration are presented in this paper.

  9. A Search for Neutrino Emission from Fast Radio Bursts with Six Years of IceCube Data

    Science.gov (United States)

    Aartsen, M. G.; Ackermann, M.; Adams, J.; Aguilar, J. A.; Ahlers, M.; Ahrens, M.; Samarai, I. Al; Altmann, D.; Andeen, K.; Anderson, T.; Ansseau, I.; Anton, G.; Argüelles, C.; Auffenberg, J.; Axani, S.; Bagherpour, H.; Bai, X.; Barron, J. P.; Barwick, S. W.; Baum, V.; Bay, R.; Beatty, J. J.; Becker Tjus, J.; Becker, K.-H.; BenZvi, S.; Berley, D.; Bernardini, E.; Besson, D. Z.; Binder, G.; Bindig, D.; Blaufuss, E.; Blot, S.; Bohm, C.; Börner, M.; Bos, F.; Böser, S.; Botner, O.; Bourbeau, E.; Bourbeau, J.; Bradascio, F.; Braun, J.; Brenzke, M.; Bretz, H.-P.; Bron, S.; Brostean-Kaiser, J.; Burgman, A.; Busse, R. S.; Carver, T.; Cheung, E.; Chirkin, D.; Christov, A.; Clark, K.; Classen, L.; Collin, G. H.; Conrad, J. M.; Coppin, P.; Correa, P.; Cowen, D. F.; Cross, R.; Dave, P.; Day, M.; de André, J. P. A. M.; De Clercq, C.; DeLaunay, J. J.; Dembinski, H.; De Ridder, S.; Desiati, P.; de Vries, K. D.; de Wasseige, G.; de With, M.; DeYoung, T.; Díaz-Vélez, J. C.; di Lorenzo, V.; Dujmovic, H.; Dumm, J. P.; Dunkman, M.; Dvorak, E.; Eberhardt, B.; Ehrhardt, T.; Eichmann, B.; Eller, P.; Evenson, P. A.; Fahey, S.; Fazely, A. R.; Felde, J.; Filimonov, K.; Finley, C.; Flis, S.; Franckowiak, A.; Friedman, E.; Fritz, A.; Gaisser, T. K.; Gallagher, J.; Gerhardt, L.; Ghorbani, K.; Giang, W.; Glauch, T.; Glüsenkamp, T.; Goldschmidt, A.; Gonzalez, J. G.; Grant, D.; Griffith, Z.; Haack, C.; Hallgren, A.; Halzen, F.; Hanson, K.; Hebecker, D.; Heereman, D.; Helbing, K.; Hellauer, R.; Hickford, S.; Hignight, J.; Hill, G. C.; Hoffman, K. D.; Hoffmann, R.; Hoinka, T.; Hokanson-Fasig, B.; Hoshina, K.; Huang, F.; Huber, M.; Hultqvist, K.; Hünnefeld, M.; Hussain, R.; In, S.; Iovine, N.; Ishihara, A.; Jacobi, E.; Japaridze, G. S.; Jeong, M.; Jero, K.; Jones, B. J. P.; Kalaczynski, P.; Kang, W.; Kappes, A.; Kappesser, D.; Karg, T.; Karle, A.; Katz, U.; Kauer, M.; Keivani, A.; Kelley, J. L.; Kheirandish, A.; Kim, J.; Kim, M.; Kintscher, T.; Kiryluk, J.; Kittler, T.; Klein, S. R.; Koirala, R.; Kolanoski, H.; Köpke, L.; Kopper, C.; Kopper, S.; Koschinsky, J. P.; Koskinen, D. J.; Kowalski, M.; Krings, K.; Kroll, M.; Krückl, G.; Kunwar, S.; Kurahashi, N.; Kuwabara, T.; Kyriacou, A.; Labare, M.; Lanfranchi, J. L.; Larson, M. J.; Lauber, F.; Leonard, K.; Lesiak-Bzdak, M.; Leuermann, M.; Liu, Q. R.; Lozano Mariscal, C. J.; Lu, L.; Lünemann, J.; Luszczak, W.; Madsen, J.; Maggi, G.; Mahn, K. B. M.; Mancina, S.; Maruyama, R.; Mase, K.; Maunu, R.; Meagher, K.; Medici, M.; Meier, M.; Menne, T.; Merino, G.; Meures, T.; Miarecki, S.; Micallef, J.; Momenté, G.; Montaruli, T.; Moore, R. W.; Moulai, M.; Nahnhauer, R.; Nakarmi, P.; Naumann, U.; Neer, G.; Niederhausen, H.; Nowicki, S. C.; Nygren, D. R.; Obertacke Pollmann, A.; Olivas, A.; O’Murchadha, A.; O’Sullivan, E.; Palczewski, T.; Pandya, H.; Pankova, D. V.; Peiffer, P.; Pepper, J. A.; Pérez de los Heros, C.; Pieloth, D.; Pinat, E.; Plum, M.; Price, P. B.; Przybylski, G. T.; Raab, C.; Rädel, L.; Rameez, M.; Rauch, L.; Rawlins, K.; Rea, I. C.; Reimann, R.; Relethford, B.; Relich, M.; Resconi, E.; Rhode, W.; Richman, M.; Robertson, S.; Rongen, M.; Rott, C.; Ruhe, T.; Ryckbosch, D.; Rysewyk, D.; Safa, I.; Sälzer, T.; Sanchez Herrera, S. E.; Sandrock, A.; Sandroos, J.; Santander, M.; Sarkar, S.; Sarkar, S.; Satalecka, K.; Schlunder, P.; Schmidt, T.; Schneider, A.; Schoenen, S.; Schöneberg, S.; Schumacher, L.; Sclafani, S.; Seckel, D.; Seunarine, S.; Soedingrekso, J.; Soldin, D.; Song, M.; Spiczak, G. M.; Spiering, C.; Stachurska, J.; Stamatikos, M.; Stanev, T.; Stasik, A.; Stein, R.; Stettner, J.; Steuer, A.; Stezelberger, T.; Stokstad, R. G.; Stößl, A.; Strotjohann, N. L.; Stuttard, T.; Sullivan, G. W.; Sutherland, M.; Taboada, I.; Tatar, J.; Tenholt, F.; Ter-Antonyan, S.; Terliuk, A.; Tilav, S.; Toale, P. A.; Tobin, M. N.; Tönnis, C.; Toscano, S.; Tosi, D.; Tselengidou, M.; Tung, C. F.; Turcati, A.; Turley, C. F.; Ty, B.; Unger, E.; Usner, M.; Vandenbroucke, J.; Van Driessche, W.; van Eijk, D.; van Eijndhoven, N.; Vanheule, S.; van Santen, J.; Vogel, E.; Vraeghe, M.; Walck, C.; Wallace, A.; Wallraff, M.; Wandler, F. D.; Wandkowsky, N.; Waza, A.; Weaver, C.; Weiss, M. J.; Wendt, C.; Werthebach, J.; Westerhoff, S.; Whelan, B. J.; Wiebe, K.; Wiebusch, C. H.; Wille, L.; Williams, D. R.; Wills, L.; Wolf, M.; Wood, J.; Wood, T. R.; Woolsey, E.; Woschnagg, K.; Xu, D. L.; Xu, X. W.; Xu, Y.; Yanez, J. P.; Yodh, G.; Yoshida, S.; Yuan, T.; IceCube Collaboration

    2018-04-01

    We present a search for coincidence between IceCube TeV neutrinos and fast radio bursts (FRBs). During the search period from 2010 May 31 to 2016 May 12, a total of 29 FRBs with 13 unique locations have been detected in the whole sky. An unbinned maximum likelihood method was used to search for spatial and temporal coincidence between neutrinos and FRBs in expanding time windows, in both the northern and southern hemispheres. No significant correlation was found in six years of IceCube data. Therefore, we set upper limits on neutrino fluence emitted by FRBs as a function of time window duration. We set the most stringent limit obtained to date on neutrino fluence from FRBs with an E ‑2 energy spectrum assumed, which is 0.0021 GeV cm‑2 per burst for emission timescales up to ∼102 s from the northern hemisphere stacking search.

  10. The IceCube Collaboration:contributions to the 30 th International Cosmic Ray Conference (ICRC 2007),

    Energy Technology Data Exchange (ETDEWEB)

    IceCube Collaboration; Ackermann, M.

    2007-11-02

    This paper bundles 40 contributions by the IceCube collaboration that were submitted to the 30th International Cosmic Ray Conference ICRC 2007. The articles cover studies on cosmic rays and atmospheric neutrinos, searches for non-localized, extraterrestrial {nu}{sub e}, {nu}{sub {mu}} and {nu}{sub {tau}} signals, scans for steady and intermittent neutrino point sources, searches for dark matter candidates, magnetic monopoles and other exotic particles, improvements in analysis techniques, as well as future detector extensions. The IceCube observatory will be finalized in 2011 to form a cubic-kilometer ice-Cherenkov detector at the location of the geographic South Pole. At the present state of construction, IceCube consists of 52 paired IceTop surface tanks and 22 IceCube strings with a total of 1426 Digital Optical Modules deployed at depths up to 2350 m. The observatory also integrates the 19 string AMANDA subdetector, that was completed in 2000 and extends IceCube's reach to lower energies. Before the deployment of IceTop, cosmic air showers were registered with the 30 station SPASE-2 surface array. IceCube's low noise Digital Optical Modules are very reliable, show a uniform response and record waveforms of arriving photons that are resolvable with nanosecond precision over a large dynamic range. Data acquisition, reconstruction and simulation software are running in production mode and the analyses, profiting from the improved data quality and increased overall sensitivity, are well under way.

  11. An all-sky, three-flavor search for neutrinos from gamma-ray bursts with the icecube neutrino observatory

    Science.gov (United States)

    Hellauer, Robert Eugene, III

    Ultra high energy cosmic rays (UHECRs), defined by energy greater than 10. 18 eV, have been observed for decades, but their sources remain unknown. Protons and heavy ions, which comprise cosmic rays, interact with galactic and intergalactic magnetic fields and, consequently, do not point back to their sources upon measurement. Neutrinos, which are inevitably produced in photohadronic interactions, travel unimpeded through the universe and disclose the directions of their sources. Among the most plausible candidates for the origins of UHECRs is a class of astrophysical phenomena known as gamma-ray bursts (GRBs). GRBs are the most violent and energetic events witnessed in the observable universe. The IceCube Neutrino Observatory, located in the glacial ice 1450 m to 2450 m below the South Pole surface, is the largest neutrino detector in operation. IceCube detects charged particles, such as those emitted in high energy neutrino interactions in the ice, by the Cherenkov light radiated by these particles. The measurement of neutrinos of 100 TeV energy or greater in IceCube correlated with gamma-ray photons from GRBs, measured by spacecraft detectors, would provide evidence of hadronic interaction in these powerful phenomena and confirm their role in ultra high energy cosmic ray production. This work presents the first IceCube GRB-neutrino coincidence search optimized for charged-current interactions of electron and tau neutrinos as well as neutral-current interactions of all neutrino flavors, which produce nearly spherical Cherenkov light showers in the ice. These results for three years of data are combined with the results of previous searches over four years of data optimized for charged-current muon neutrino interactions, which produce extended Cherenkov light tracks. Several low significance events correlated with GRBs were detected, but are consistent with the background expectation from atmospheric muons and neutrinos. The combined results produce limits that

  12. Search for GeV and X-Ray Flares Associated with the IceCube Track-like Neutrinos

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Fang-Kun; Wang, Xiang-Yu, E-mail: xywang@nju.edu.cn [School of Astronomy and Space Science, Nanjing University, Nanjing 210093 (China)

    2017-02-01

    Dozens of high-energy neutrinos have been detected by the IceCube neutrino telescope, but no clear association with any classes of astrophysical sources has been identified so far. Recently, Kadler et al. reported that a PeV cascade-like neutrino event occurred in positional and temporal coincidence with a giant gamma-ray flare of the blazar PKS B1424-418. Since IceCube track-like events have much better angular resolution, we here search for possible short-term gamma-ray flares that are associated with the IceCube track-like events with Fermi Large Area Telescope (LAT) observations. Among them, three track-like neutrino events occur within the field of view of Fermi -LAT at the time of the detection, so searching for the prompt gamma-ray emission associated with neutrinos is possible. Assuming a point source origin and a single power-law spectrum for the possible gamma-ray sources associated with neutrinos, a likelihood analysis of 0.2–100 GeV photons observed by Fermi -LAT on the timescales of ∼12 hr and one year are performed, and for the three special neutrinos, the analyses are also performed on the timescales of thousands of seconds before and after the neutrino detection. No significant GeV excesses over the background are found and upper limit fluxes at the 95% confidence level are obtained for different timescales. We also search for possible the Swift hard X-ray transient sources associated with the IceCube track-like neutrino events, but the search also yields null results. We discuss the implication of the non-detection of gamma-ray flares for the constraints on the neutrino source density.

  13. Interpretation of astrophysical neutrinos observed by IceCube experiment by setting Galactic and extra-Galactic spectral components

    CERN Document Server

    Marinelli, Antonio; Grasso, Dario; Urbano, Alfredo; Valli, Mauro

    2016-01-01

    The last IceCube catalog of High Energy Starting Events (HESE) obtained with a livetime of 1347 days comprises 54 neutrino events equally-distributed between the three families with energies between 25 TeV and few PeVs. Considering the homogeneous flavors distribution (1:1:1) and the spectral features of these neutrinos the IceCube collaboration claims the astrophysical origin of these events with more than $5\\sigma$. The spatial distribution of cited events does not show a clear correlation with known astrophysical accelerators leaving opened both the Galactic and the extra-Galactic origin interpretations. Here, we compute the neutrino diffuse emission of our Galaxy on the basis of a recently proposed phenomenological model characterized by radially-dependent cosmic-ray (CR) transport properties. We show that the astrophysical spectrum measured by IceCube experiment can be well explained adding to the diffuse Galactic neutrino flux (obtained with this new model) a extra-Galactic component derived from the as...

  14. Anisotropy of TeV and PeV cosmic rays with IceCube and IceTop

    Energy Technology Data Exchange (ETDEWEB)

    Santander, M., E-mail: santander@icecube.wisc.edu [University of Wisconsin-Madison, Madison, WI 53703 (United States)

    2013-10-11

    The interaction of high energy cosmic rays with the Earth's atmosphere produces extensive air showers of secondary particles with a large muon component. By exploiting the sensitivity of neutrino telescopes to high energy muons, it is possible to use these detectors for precision cosmic ray studies. The high rate of cosmic-ray muon events provides a high-statistics data sample that can be used to look for anisotropy in the arrival directions of the parent particles at the per-mille level. This paper will report on the observation of anisotropy in the cosmic ray data collected with the IceCube neutrino telescope in the 20-400 TeV energy range at multiple angular scales. New data from the IceTop air shower array, located on the ice surface above IceCube, shows an anisotropy that is consistent with the high-energy IceCube results. The sensitivity of IceTop to all the components of the extensive air shower will allow us to explore in more detail the characteristics of the primary cosmic rays associated with the observed anisotropy.

  15. Extending the Search for Muon Neutrinos Coincident with Gamma-Ray Bursts in IceCube Data

    Energy Technology Data Exchange (ETDEWEB)

    Aartsen, M. G. [Department of Physics, University of Adelaide, Adelaide, 5005 (Australia); Ackermann, M. [DESY, D-15735 Zeuthen (Germany); Adams, J. [Dept. of Physics and Astronomy, University of Canterbury, Private Bag 4800, Christchurch (New Zealand); Aguilar, J. A.; Ansseau, I. [Université Libre de Bruxelles, Science Faculty CP230, B-1050 Brussels (Belgium); Ahlers, M. [Dept. of Physics and Wisconsin IceCube Particle Astrophysics Center, University of Wisconsin, Madison, WI 53706 (United States); Ahrens, M. [Oskar Klein Centre and Dept. of Physics, Stockholm University, SE-10691 Stockholm (Sweden); Samarai, I. Al [Département de Physique Nucléaire et Corpusculaire, Université de Genève, CH-1211 Genève (Switzerland); Altmann, D.; Anton, G. [Erlangen Centre for Astroparticle Physics, Friedrich-Alexander-Universität Erlangen-Nürnberg, D-91058 Erlangen (Germany); Andeen, K. [Department of Physics, Marquette University, Milwaukee, WI 53201 (United States); Anderson, T. [Dept. of Physics, Pennsylvania State University, University Park, PA 16802 (United States); Archinger, M.; Baum, V. [Institute of Physics, University of Mainz, Staudinger Weg 7, D-55099 Mainz (Germany); Argüelles, C.; Axani, S. [Dept. of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Auffenberg, J. [III. Physikalisches Institut, RWTH Aachen University, D-52056 Aachen (Germany); Bai, X. [Physics Department, South Dakota School of Mines and Technology, Rapid City, SD 57701 (United States); Barwick, S. W. [Dept. of Physics and Astronomy, University of California, Irvine, CA 92697 (United States); Collaboration: IceCube Collaboration; and others

    2017-07-10

    We present an all-sky search for muon neutrinos produced during the prompt γ -ray emission of 1172 gamma-ray bursts (GRBs) with the IceCube Neutrino Observatory. The detection of these neutrinos would constitute evidence for ultra-high-energy cosmic-ray (UHECR) production in GRBs, as interactions between accelerated protons and the prompt γ -ray field would yield charged pions, which decay to neutrinos. A previously reported search for muon neutrino tracks from northern hemisphere GRBs has been extended to include three additional years of IceCube data. A search for such tracks from southern hemisphere GRBs in five years of IceCube data has been introduced to enhance our sensitivity to the highest energy neutrinos. No significant correlation between neutrino events and observed GRBs is seen in the new data. Combining this result with previous muon neutrino track searches and a search for cascade signature events from all neutrino flavors, we obtain new constraints for single-zone fireball models of GRB neutrino and UHECR production.

  16. Search for a diffuse flux of astrophysical muon neutrinos with the IceCube 40-string detector

    International Nuclear Information System (INIS)

    Abbasi, R.; Aguilar, J. A.; Andeen, K.; Baker, M.; BenZvi, S.; Chirkin, D.; Desiati, P.; Diaz-Velez, J. C.; Dumm, J. P.; Eisch, J.; Feintzeig, J.; Gladstone, L.; Grullon, S.; Halzen, F.; Hill, G. C.; Hoshina, K.; Jacobsen, J.; Karle, A.; Krasberg, M.; Kurahashi, N.

    2011-01-01

    The IceCube Neutrino Observatory is a 1 km 3 detector currently taking data at the South Pole. One of the main strategies used to look for astrophysical neutrinos with IceCube is the search for a diffuse flux of high-energy neutrinos from unresolved sources. A hard energy spectrum of neutrinos from isotropically distributed astrophysical sources could manifest itself as a detectable signal that may be differentiated from the atmospheric neutrino background by spectral measurement. This analysis uses data from the IceCube detector collected in its half completed configuration which operated between April 2008 and May 2009 to search for a diffuse flux of astrophysical muon neutrinos. A total of 12 877 upward-going candidate neutrino events have been selected for this analysis. No evidence for a diffuse flux of astrophysical muon neutrinos was found in the data set leading to a 90% C.L. upper limit on the normalization of an E -2 astrophysical ν μ flux of 8.9x10 -9 GeV cm -2 s -1 sr -1 . The analysis is sensitive in the energy range between 35 TeV and 7 PeV. The 12 877 candidate neutrino events are consistent with atmospheric muon neutrinos measured from 332 GeV to 84 TeV and no evidence for a prompt component to the atmospheric neutrino spectrum is found.

  17. Enhanced ASTER DEMs for Decadal Measurements of Glacier Elevation Changes

    Science.gov (United States)

    Girod, L.; Nuth, C.; Kääb, A.

    2016-12-01

    Elevation change data is critical to the understanding of a number of geophysical processes, including glaciers through the measurement their volume change. The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) system on-board the Terra (EOS AM-1) satellite has been a unique source of systematic stereoscopic images covering the whole globe at 15m resolution and at a consistent quality for over 15 years. While satellite stereo sensors with significantly improved radiometric and spatial resolution are available today, the potential of ASTER data lies in its long consistent time series that is unrivaled, though not fully exploited for change analysis due to lack of data accuracy and precision. ASTER data are strongly affected by attitude jitter, mainly of approximately 4 and 30 km wavelength, and improving the generation of ASTER DEMs requires removal of this effect. We developed MMASTER, an improved method for ASTER DEM generation and implemented it in the open source photogrammetric library and software suite MicMac. The method relies on the computation of a rational polynomial coefficients (RPC) model and the detection and correction of cross-track sensor jitter in order to compute DEMs. Our sensor modeling does not require ground control points and thus potentially allows for automatic processing of large data volumes. When compared to ground truth data, we have assessed a ±5m accuracy in DEM differencing when using our processing method, improved from the ±30m when using the AST14DMO DEM product. We demonstrate and discuss this improved ASTER DEM quality for a number of glaciers in Greenland (See figure attached), Alaska, and Svalbard. The quality of our measurements promises to further unlock the underused potential of ASTER DEMs for glacier volume change time series on a global scale. The data produced by our method will thus help to better understand the response of glaciers to climate change and their influence on runoff and sea level.

  18. Algumas anedotas sobre Demóstenes: uma releitura

    Directory of Open Access Journals (Sweden)

    Maddalena Vallozza

    2013-06-01

    Full Text Available Muitas das anedotas sobre Demóstenes estão relacionados a seus problemas de voz e a suas dificuldades no momento da hypokrisis. Eu proponho uma reinterpretação das páginas em que eles nos são transmitidos: de Quintiliano (11, 3, a principal testemunha, a Cícero (Orator 26 e 56-58, Brutus 142, De Oratore I 261 e III 213, do autor da seção sobre Demóstenes nas Vidas dos Dez Oradores (844 d-845 b à Vida de Demóstene, de Plutarco. Com base nisso, particularmente graças a Plutarco, que cita Hermipo e Demétrio de Fáleros, é possível formular a hipótese de que a tradição nasceu no Perípato, na área de interesses pela hypokrisis que demonstram o perdido Perì hypokríseos de Teofrasto e os fragmentos da Retórica de Demétrio de Fáleros.

  19. Search for neutrino-induced cascade events in the icecube detector

    Energy Technology Data Exchange (ETDEWEB)

    Panknin, Sebastian

    2011-09-15

    This thesis presents results of a search for a diffuse flux of high energetic neutrinos from extra-terrestrial origin. Such a flux is predicted by several models of sources of cosmic ray particles. In a neutrino detector, such as IceCube, there are mainly two signatures available for detection of neutrinos: The track-like light signal of a neutrino induced muon and the spherical light pattern of a neutrino induced particle shower, called cascades in this context. The search is based on the measurement of neutrino induced cascades within the IceCube neutrino detector. The data were taken in 2008/2009 with a total uptime of 367 days. At that time the detector was still under construction and had just reached half of its final size. A search for a neutrino flux using cascades is sensitive to all neutrino flavors. A cascade develops within few meters, in contrast to the muon track of several kilometers length. Therefore a good energy reconstruction is possible. With such a reconstruction the astrophysical neutrino flux can be statistically distinguished from the background of atmospheric neutrinos. In the simulation of cascades so far it was not included, that in hadronic cascades muons are produced. This can influence the shape of the cascade, to a less spherical one. Therefore the effect was parameterized in this thesis and included in the simulation. Further cuts on the event topology and reconstructed energy were developed, in order to reduce the background of atmospheric muons and atmospheric neutrinos. Four events from the measured data pass these cuts. Taking the high systematic uncertainties into account, this result is in agreement with the expected background of 0.72{+-}0.28{+-}{sup 1.54}{sub 0.49} events. For an assumed flavor ratio of {nu}{sub e}:{nu}{sub {mu}}:{nu}{sub {tau}}=1:1:1 the upper limit for the all flavor neutrino flux is 9.5.10{sup -8}E{sup -2} GeVs{sup -1}sr{sup -1}cm{sup -2}.

  20. Search for neutrino-induced cascade events in the icecube detector

    International Nuclear Information System (INIS)

    Panknin, Sebastian

    2011-01-01

    This thesis presents results of a search for a diffuse flux of high energetic neutrinos from extra-terrestrial origin. Such a flux is predicted by several models of sources of cosmic ray particles. In a neutrino detector, such as IceCube, there are mainly two signatures available for detection of neutrinos: The track-like light signal of a neutrino induced muon and the spherical light pattern of a neutrino induced particle shower, called cascades in this context. The search is based on the measurement of neutrino induced cascades within the IceCube neutrino detector. The data were taken in 2008/2009 with a total uptime of 367 days. At that time the detector was still under construction and had just reached half of its final size. A search for a neutrino flux using cascades is sensitive to all neutrino flavors. A cascade develops within few meters, in contrast to the muon track of several kilometers length. Therefore a good energy reconstruction is possible. With such a reconstruction the astrophysical neutrino flux can be statistically distinguished from the background of atmospheric neutrinos. In the simulation of cascades so far it was not included, that in hadronic cascades muons are produced. This can influence the shape of the cascade, to a less spherical one. Therefore the effect was parameterized in this thesis and included in the simulation. Further cuts on the event topology and reconstructed energy were developed, in order to reduce the background of atmospheric muons and atmospheric neutrinos. Four events from the measured data pass these cuts. Taking the high systematic uncertainties into account, this result is in agreement with the expected background of 0.72±0.28± 1.54 0.49 events. For an assumed flavor ratio of ν e :ν μ :ν τ =1:1:1 the upper limit for the all flavor neutrino flux is 9.5.10 -8 E -2 GeVs -1 sr -1 cm -2 .

  1. Novel application of DEM to modelling comminution processes

    International Nuclear Information System (INIS)

    Delaney, Gary W; Cleary, Paul W; Sinnott, Matt D; Morrison, Rob D

    2010-01-01

    Comminution processes in which grains are broken down into smaller and smaller sizes represent a critical component in many industries including mineral processing, cement production, food processing and pharmaceuticals. We present a novel DEM implementation capable of realistically modelling such comminution processes. This extends on a previous implementation of DEM particle breakage that utilized spherical particles. Our new extension uses super-quadric particles, where daughter fragments with realistic size and shape distributions are packed inside a bounding parent super-quadric. We demonstrate the flexibility of our approach in different particle breakage scenarios and examine the effect of the chosen minimum resolved particle size. This incorporation of the effect of particle shape in the breakage process allows for more realistic DEM simulations to be performed, that can provide additional fundamental insights into comminution processes and into the behaviour of individual pieces of industrial machinery.

  2. EVALUATING THE ACCURACY OF DEM GENERATION ALGORITHMS FROM UAV IMAGERY

    Directory of Open Access Journals (Sweden)

    J. J. Ruiz

    2013-08-01

    Full Text Available In this work we evaluated how the use of different positioning systems affects the accuracy of Digital Elevation Models (DEMs generated from aerial imagery obtained with Unmanned Aerial Vehicles (UAVs. In this domain, state-of-the-art DEM generation algorithms suffer from typical errors obtained by GPS/INS devices in the position measurements associated with each picture obtained. The deviations from these measurements to real world positions are about meters. The experiments have been carried out using a small quadrotor in the indoor testbed at the Center for Advanced Aerospace Technologies (CATEC. This testbed houses a system that is able to track small markers mounted on the UAV and along the scenario with millimeter precision. This provides very precise position measurements, to which we can add random noise to simulate errors in different GPS receivers. The results showed that final DEM accuracy clearly depends on the positioning information.

  3. Influence of Terraced area DEM Resolution on RUSLE LS Factor

    Science.gov (United States)

    Zhang, Hongming; Baartman, Jantiene E. M.; Yang, Xiaomei; Gai, Lingtong; Geissen, Viollette

    2017-04-01

    Topography has a large impact on the erosion of soil by water. Slope steepness and slope length are combined (the LS factor) in the universal soil-loss equation (USLE) and its revised version (RUSLE) for predicting soil erosion. The LS factor is usually extracted from a digital elevation model (DEM). The grid size of the DEM will thus influence the LS factor and the subsequent calculation of soil loss. Terracing is considered as a support practice factor (P) in the USLE/RUSLE equations, which is multiplied with the other USLE/RUSLE factors. However, as terraces change the slope length and steepness, they also affect the LS factor. The effect of DEM grid size on the LS factor has not been investigated for a terraced area. We obtained a high-resolution DEM by unmanned aerial vehicles (UAVs) photogrammetry, from which the slope steepness, slope length, and LS factor were extracted. The changes in these parameters at various DEM resolutions were then analysed. The DEM produced detailed LS-factor maps, particularly for low LS factors. High (small valleys, gullies, and terrace ridges) and low (flats and terrace fields) spatial frequencies were both sensitive to changes in resolution, so the areas of higher and lower slope steepness both decreased with increasing grid size. Average slope steepness decreased and average slope length increased with grid size. Slope length, however, had a larger effect than slope steepness on the LS factor as the grid size varied. The LS factor increased when the grid size increased from 0.5 to 30-m and increased significantly at grid sizes >5-m. The LS factor was increasingly overestimated as grid size decreased. The LS factor decreased from grid sizes of 30 to 100-m, because the details of the terraced terrain were gradually lost, but the factor was still overestimated.

  4. Discrete Element Modeling (DEM) of Triboelectrically Charged Particles: Revised Experiments

    Science.gov (United States)

    Hogue, Michael D.; Calle, Carlos I.; Curry, D. R.; Weitzman, P. S.

    2008-01-01

    In a previous work, the addition of basic screened Coulombic electrostatic forces to an existing commercial discrete element modeling (DEM) software was reported. Triboelectric experiments were performed to charge glass spheres rolling on inclined planes of various materials. Charge generation constants and the Q/m ratios for the test materials were calculated from the experimental data and compared to the simulation output of the DEM software. In this paper, we will discuss new values of the charge generation constants calculated from improved experimental procedures and data. Also, planned work to include dielectrophoretic, Van der Waals forces, and advanced mechanical forces into the software will be discussed.

  5. Probing decaying heavy dark matter with the 4-year IceCube HESE data

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharya, Atri [Space sciences, Technologies and Astrophysics Research (STAR) Institute, Université de Liège, Bât. B5a, 4000 Liège (Belgium); Esmaili, Arman [Departamento de Física, Pontifícia Universidade Católica do Rio de Janeiro, C.P. 38071, 22452- 970, Rio de Janeiro (Brazil); Palomares-Ruiz, Sergio [Instituto de Física Corpuscular (IFIC), CSIC-Universitat de València, Apartado de Correos 22085, E-46071 Valencia (Spain); Sarcevic, Ina, E-mail: a.bhattacharya@ulg.ac.be, E-mail: arman@puc-rio.br, E-mail: sergio.palomares.ruiz@ific.uv.es, E-mail: ina@physics.arizona.edu [Department of Physics, University of Arizona, 1118 E. 4th St. Tucson, AZ 85704 (United States)

    2017-07-01

    After the first four years of data taking, the IceCube neutrino telescope has observed 54 high-energy starting events (HESE) with deposited energies between 20 TeV and 2 PeV . The background from atmospheric muons and neutrinos is expected to be of about 20 events, all below 100 TeV, thus pointing towards the astrophysical origin of about 8 events per year in that data set. However, their precise origin remains unknown. Here, we perform a detailed analysis of this event sample (considering simultaneously the energy, hemisphere and topology of the events) by assuming two contributions for the signal events: an isotropic power-law flux and a flux from decaying heavy dark matter. We fit the mass and lifetime of the dark matter and the normalization and spectral index of an isotropic power-law flux, for various decay channels of dark matter. We find that a significant contribution from dark matter decay is always slightly favored, either to explain the excess below 100 TeV, as in the case of decays to quarks or, as in the case of neutrino channels, to explain the three multi-PeV events. Also, we consider the possibility to interpret all the data by dark matter decays only, considering various combinations of two decay channels. We show that the decaying dark matter scenario provides a better fit to HESE data than the isotropic power-law flux.

  6. Gamma ray astronomy above 30 TeV and the IceCube results

    Directory of Open Access Journals (Sweden)

    Vernetto Silvia

    2017-01-01

    Full Text Available The study of the diffuse Galactic gamma ray emission is of fundamental importance to understand the properties of cosmic ray propagation in the Milky Way, and extending the measurements to E ≳ 30 TeV is of great interest. In the same energy range the IceCube detector has also recently observed a flux of astrophysical neutrinos, and it is important to test experimentally if the neutrino production is accompanied by a comparable emission of high energy photons. For E ≳ 30 TeV, the absorption effects due to e+e− pair production when the high energy photons interact with radiation fields present in space are not negligible and must be taken into account. Gamma rays, in good approximation, are completely absorbed if they have an extragalactic origin, but the absorption is significant also for Galactic photons. In this case the size and angular dependence of the absorption depends on the space distribution of the emission. In this work we estimate the absorption for different models of the space distribution of the gamma ray emission, and discuss the potential of future detectors.

  7. The impact of the Ice Model on tau neutrino reconstruction in IceCube

    Energy Technology Data Exchange (ETDEWEB)

    Usner, Marcel; Kowalski, Marek [DESY Zeuthen (Germany); Collaboration: IceCube-Collaboration

    2015-07-01

    The IceCube Neutrino Observatory at the South Pole is a Cherenkov detector with an instrumented volume of about one cubic kilometer of the Antarctic ice. Tau neutrinos can be measured via the double bang signature that links two subsequent cascades from the neutrino interaction and the tau decay. Reconstruction of double bang events is currently limited to PeV energies and above where the decay length of the tau is greater than 50 m. At lower energies it is important to consider small effects that affect the propagation of Cherenkov photons in the ice. The most recent model of the glacial ice below South pole contains a tilt of the ice layers and an anisotropy of the scattering coefficient in the direction of the glacier flow. These effects cannot be incorporated trivially into the existing reconstruction methods and can have a significant impact on single and double cascade reconstruction. Updates on finding a solution to this problem are presented, and the effect on the reconstruction of tau neutrino events is discussed.

  8. Atmospheric and astrophysical Neutrinos above 1 TeV Interacting in IceCube

    DEFF Research Database (Denmark)

    Aartsen, M.G.; Ackermann, M.; Adam, J.

    2015-01-01

    The IceCube Neutrino Observatory was designed primarily to search for high-energy (TeV-PeV) neutrinos produced in distant astrophysical objects. A search for ≳100  TeV neutrinos interacting inside the instrumented volume has recently provided evidence for an isotropic flux of such neutrinos...... the energy threshold for neutrinos from the southern sky below 10 TeV for the first time, far below the threshold of the previous high-energy analysis. Astrophysical neutrinos remain the dominant component in the southern sky down to a deposited energy of 10 TeV. From these data we derive new constraints...... on the diffuse astrophysical neutrino spectrum, Φ_ν=2.06_{-0.3}^{+0.4}×10-18(E_ν/10^5  GeV)^{-2.46±0.12} GeV^-1 cm^−2 sr^−1 s^-1 for 25  TeV

  9. Precise baseline determination for the TanDEM-X mission

    Science.gov (United States)

    Koenig, Rolf; Moon, Yongjin; Neumayer, Hans; Wermuth, Martin; Montenbruck, Oliver; Jäggi, Adrian

    The TanDEM-X mission will strive for generating a global precise Digital Elevation Model (DEM) by way of bi-static SAR in a close formation of the TerraSAR-X satellite, already launched on June 15, 2007, and the TanDEM-X satellite to be launched in May 2010. Both satellites carry the Tracking, Occultation and Ranging (TOR) payload supplied by the GFZ German Research Centre for Geosciences. The TOR consists of a high-precision dual-frequency GPS receiver, called Integrated GPS Occultation Receiver (IGOR), and a Laser retro-reflector (LRR) for precise orbit determination (POD) and atmospheric sounding. The IGOR is of vital importance for the TanDEM-X mission objectives as the millimeter level determination of the baseline or distance between the two spacecrafts is needed to derive meter level accurate DEMs. Within the TanDEM-X ground segment GFZ is responsible for the operational provision of precise baselines. For this GFZ uses two software chains, first its Earth Parameter and Orbit System (EPOS) software and second the BERNESE software, for backup purposes and quality control. In a concerted effort also the German Aerospace Center (DLR) generates precise baselines independently with a dedicated Kalman filter approach realized in its FRNS software. By the example of GRACE the generation of baselines with millimeter accuracy from on-board GPS data can be validated directly by way of comparing them to the intersatellite K-band range measurements. The K-band ranges are accurate down to the micrometer-level and therefore may be considered as truth. Both TanDEM-X baseline providers are able to generate GRACE baselines with sub-millimeter accuracy. By merging the independent baselines by GFZ and DLR, the accuracy can even be increased. The K-band validation however covers solely the along-track component as the K-band data measure just the distance between the two GRACE satellites. In addition they inhibit an un-known bias which must be modelled in the comparison, so the

  10. IceVeto: Extended PeV neutrino astronomy in the Southern Hemisphere with IceCube

    Energy Technology Data Exchange (ETDEWEB)

    Auffenberg, Jan [Physikalisches Institut IIIB RWTH Aachen D-52056, Aachen (Germany); Collaboration: IceCube Collaboration

    2014-11-18

    IceCube, the world's largest high-energy neutrino observatory, built at the South Pole, recently reported evidence of an astrophysical neutrino flux extending to PeV energies in the Southern Hemisphere. This observation raises the question of how the sensitivity in this energy range could be further increased. In the down-going sector, in IceCube's case the Southern Hemisphere, backgrounds from atmospheric muons and neutrinos pose a challenge to the identification of an astrophysical neutrino flux. The IceCube analysis, that led to the evidence for astrophysical neutrinos, is based on an in-ice veto strategy for background rejection. One possibility available to IceCube is the concept of an extended surface detector, IceVeto, which could allow the rejection of a large fraction of atmospheric backgrounds, primarily for muons from cosmic ray (CR) air showers as well as from neutrinos in the same air showers. Building on the experience of IceTop/IceCube, possibly the most cost-effective and sensitive way to build IceVeto is as an extension of the IceTop detector, with simple photomultiplier based detector modules for CR air shower detection. Initial simulations and estimates indicate that such a veto detector will significantly increase the sensitivity to an astrophysical flux of ν{sub μ} induced muon tracks in the Southern Hemisphere compared to current analyses. Here we present the motivation and capabilities based on initial simulations. Conceptual ideas for a simplified surface array will be discussed briefly.

  11. Resource Management in Diffserv On DemAnd (RODA) PHR

    NARCIS (Netherlands)

    Westberg, L.; Jacobsson, M.; de Kogel, M.; Oosthoek, S.; Partain, D.; Rexhepi, V.; Wallentin, P.; Karagiannis, Georgios

    The purpose of this draft is to present the Resource Management in Diffserv (RMD) On DemAnd (RODA) Per Hop Reservation (PHR) protocol. The RODA PHR protocol is used on a per-hop basis in a Differentiated Services (Diffserv) domain and extends the Diffserv Per Hop Behavior (PHB) with resource

  12. Spatial Characterization of Landscapes through Multifractal Analysis of DEM

    Directory of Open Access Journals (Sweden)

    P. L. Aguado

    2014-01-01

    Full Text Available Landscape evolution is driven by abiotic, biotic, and anthropic factors. The interactions among these factors and their influence at different scales create a complex dynamic. Landscapes have been shown to exhibit numerous scaling laws, from Horton’s laws to more sophisticated scaling of heights in topography and river network topology. This scaling and multiscaling analysis has the potential to characterise the landscape in terms of the statistical signature of the measure selected. The study zone is a matrix obtained from a digital elevation model (DEM (map 10 × 10 m, and height 1 m that corresponds to homogeneous region with respect to soil characteristics and climatology known as “Monte El Pardo” although the water level of a reservoir and the topography play a main role on its organization and evolution. We have investigated whether the multifractal analysis of a DEM shows common features that can be used to reveal the underlying patterns and information associated with the landscape of the DEM mapping and studied the influence of the water level of the reservoir on the applied analysis. The results show that the use of the multifractal approach with mean absolute gradient data is a useful tool for analysing the topography represented by the DEM.

  13. Eine neue Tornaria aus dem Ostindischen Archipel (Tornaria Sunieri)

    NARCIS (Netherlands)

    Stiasny, G.

    1921-01-01

    Da aus dem malayischen Archipel durch die Siboga-Monographie Spengels (2) zwar eine Anzahl Enteropneusten, jedoch nur eine einzige Tornaria bekannt worden ist, war anzunehmen, dass noch andere Tornarien in diesem Gebiete nachzuweisen sein würden. Von dieser Erwartung ausgehend wandte ich mich an

  14. Artificial terraced field extraction based on high resolution DEMs

    Science.gov (United States)

    Na, Jiaming; Yang, Xin; Xiong, Liyang; Tang, Guoan

    2017-04-01

    With the increase of human activities, artificial landforms become one of the main terrain features with special geographical and hydrological value. Terraced field, as the most important artificial landscapes of the loess plateau, plays an important role in conserving soil and water. With the development of digital terrain analysis (DTA), there is a current and future need in developing a robust, repeatable and cost-effective research methodology for terraced fields. In this paper, a novel method using bidirectional DEM shaded relief is proposed for terraced field identification based on high resolution DEM, taking Zhifanggou watershed, Shannxi province as the study area. Firstly, 1m DEM is obtained by low altitude aerial photogrammetry using Unmanned Aerial Vehicle (UAV), and 0.1m DOM is also obtained as the test data. Then, the positive and negative terrain segmentation is done to acquire the area of terraced field. Finally, a bidirectional DEM shaded relief is simulated to extract the ridges of each terraced field stages. The method in this paper can get not only polygon feature of the terraced field areas but also line feature of terraced field ridges. The accuracy is 89.7% compared with the artificial interpretation result from DOM. And additional experiment shows that this method has a strong robustness as well as high accuracy.

  15. Evaluating DEM results with FEM perspectives of load : soil interaction

    NARCIS (Netherlands)

    Tadesse, D.

    2004-01-01

    Keywords: Load - soil interaction, soil structure, soil mechanical properties, FEM (Finite Element Method), Plaxis (Finite Element Code), granular particles, shear stress, DEM (Distinct Element Method),

  16. Estimating River Surface Elevation From ArcticDEM

    Science.gov (United States)

    Dai, Chunli; Durand, Michael; Howat, Ian M.; Altenau, Elizabeth H.; Pavelsky, Tamlin M.

    2018-04-01

    ArcticDEM is a collection of 2-m resolution, repeat digital surface models created from stereoscopic satellite imagery. To demonstrate the potential of ArcticDEM for measuring river stages and discharges, we estimate river surface heights along a reach of Tanana River near Fairbanks, Alaska, by the precise detection of river shorelines and mapping of shorelines to land surface elevation. The river height profiles over a 15-km reach agree with in situ measurements to a standard deviation less than 30 cm. The time series of ArcticDEM-derived river heights agree with the U.S. Geological Survey gage measurements with a standard deviation of 32 cm. Using the rating curve for that gage, we obtain discharges with a validation accuracy (root-mean-square error) of 234 m3/s (23% of the mean discharge). Our results demonstrate that ArcticDEM can accurately measure spatial and temporal variations of river surfaces, providing a new and powerful data set for hydrologic analysis.

  17. DEM-based research on the landform features of China

    Science.gov (United States)

    Tang, Guoan; Liu, Aili; Li, Fayuan; Zhou, Jieyu

    2006-10-01

    Landforms can be described and identified by parameterization of digital elevation model (DEM). This paper discusses the large-scale geomorphological characteristics of China based on numerical analysis of terrain parameters and develop a methodology for characterizing landforms from DEMs. The methodology is implemented as a two-step process. First, terrain variables are derived from a 1-km DEM in a given statistical unit including local relief, the earth's surface incision, elevation variance coefficient, roughness, mean slope and mean elevation. Second, every parameter regarded as a single-band image is combined into a multi-band image. Then ISODATA unsupervised classification and the Bayesian technique of Maximum Likelihood supervised classification are applied for landform classification. The resulting landforms are evaluated by the means of Stratified Sampling with respect to an existing map and the overall classification accuracy reaches to rather high value. It's shown that the derived parameters carry sufficient physiographic information and can be used for landform classification. Since the classification method integrates manifold terrain indexes, conquers the limitation of the subjective cognition, as well as a low cost, apparently it could represent an applied foreground in the classification of macroscopic relief forms. Furthermore, it exhibits significance in consummating the theory and the methodology of DEMs on digital terrain analysis.

  18. Grain sedimentation with SPH-DEM and its validation

    NARCIS (Netherlands)

    Robinson, M.J.; Luding, Stefan; Ramaioli, Marco; Yu, A; Dong, K; Yang, R; Luding, S

    2013-01-01

    Our mesoscale simulation method [M. Robinson, S. Luding, and M. Ramaioli, submitted (2013)] for multiphase fluid-particle flows couples Smoothed Particle Hydrodynamics (SPH) and the Discrete Element Method (DEM) and enjoys the flexibility of meshless methods, such as being capable to handling free

  19. Search for point-like sources using the diffuse astrophysical muon-neutrino flux in IceCube

    Energy Technology Data Exchange (ETDEWEB)

    Reimann, Rene; Haack, Christian; Raedel, Leif; Schoenen, Sebastian; Schumacher, Lisa; Wiebusch, Christopher [III. Physikalisches Institut B, RWTH Aachen (Germany); Collaboration: IceCube-Collaboration

    2016-07-01

    IceCube, a cubic-kilometer sized neutrino detector at the geographic South Pole, has recently confirmed a flux of high-energy astrophysical neutrinos in the track-like muon channel. Although this muon-neutrino flux has now been observed with high significance, no point sources or source classes could be identified yet with these well pointing events. We present a search for point-like sources based on a six year sample of upgoing muon-neutrinos with very low background contamination. To improve the sensitivity, the standard likelihood approach has been modified to focus on the properties of the measured astrophysical muon-neutrino flux.

  20. a High Precision dem Extraction Method Based on Insar Data

    Science.gov (United States)

    Wang, Xinshuang; Liu, Lingling; Shi, Xiaoliang; Huang, Xitao; Geng, Wei

    2018-04-01

    In the 13th Five-Year Plan for Geoinformatics Business, it is proposed that the new InSAR technology should be applied to surveying and mapping production, which will become the innovation driving force of geoinformatics industry. This paper will study closely around the new outline of surveying and mapping and then achieve the TerraSAR/TanDEM data of Bin County in Shaanxi Province in X band. The studying steps are as follows; Firstly, the baseline is estimated from the orbital data; Secondly, the interferometric pairs of SAR image are accurately registered; Thirdly, the interferogram is generated; Fourth, the interferometric correlation information is estimated and the flat-earth phase is removed. In order to solve the phase noise and the discontinuity phase existing in the interferometric image of phase, a GAMMA adaptive filtering method is adopted. Aiming at the "hole" problem of missing data in low coherent area, the interpolation method of low coherent area mask is used to assist the phase unwrapping. Then, the accuracy of the interferometric baseline is estimated from the ground control points. Finally, 1 : 50000 DEM is generated, and the existing DEM data is used to verify the accuracy through statistical analysis. The research results show that the improved InSAR data processing method in this paper can obtain the high-precision DEM of the study area, exactly the same with the topography of reference DEM. The R2 can reach to 0.9648, showing a strong positive correlation.

  1. ArcticDEM Year 3; Improving Coverage, Repetition and Resolution

    Science.gov (United States)

    Morin, P. J.; Porter, C. C.; Cloutier, M.; Howat, I.; Noh, M. J.; Willis, M. J.; Candela, S. G.; Bauer, G.; Kramer, W.; Bates, B.; Williamson, C.

    2017-12-01

    Surface topography is among the most fundamental data sets for geosciences, essential for disciplines ranging from glaciology to geodynamics. The ArcticDEM project is using sub-meter, commercial imagery licensed by the National Geospatial-Intelligence Agency, petascale computing, and open source photogrammetry software to produce a time-tagged 2m posting elevation model and a 5m posting mosaic of the entire Arctic region. As ArcticDEM enters its third year, the region has gone from having some of the sparsest and poorest elevation data to some of the most precise and complete data of any region on the globe. To date, we have produced and released over 80,000,000 km2 as 57,000 - 2m posting, time-stamped DEMs. The Arctic, on average, is covered four times though there are hotspots with more than 100 DEMs. In addition, the version 1 release includes a 5m posting mosaic covering the entire 20,000,000 km2 region. All products are publically available through arctidem.org, ESRI web services, and a web viewer. The final year of the project will consist of a complete refiltering of clouds/water and re-mosaicing of all elevation data. Since inception of the project, post-processing techniques have improved significantly, resulting in fewer voids, better registration, sharper coastlines, and fewer inaccuracies due to clouds. All ArcticDEM data will be released in 2018. Data, documentation, web services and web viewer are available at arcticdem.org

  2. Hydraulic correction method (HCM) to enhance the efficiency of SRTM DEM in flood modeling

    Science.gov (United States)

    Chen, Huili; Liang, Qiuhua; Liu, Yong; Xie, Shuguang

    2018-04-01

    Digital Elevation Model (DEM) is one of the most important controlling factors determining the simulation accuracy of hydraulic models. However, the currently available global topographic data is confronted with limitations for application in 2-D hydraulic modeling, mainly due to the existence of vegetation bias, random errors and insufficient spatial resolution. A hydraulic correction method (HCM) for the SRTM DEM is proposed in this study to improve modeling accuracy. Firstly, we employ the global vegetation corrected DEM (i.e. Bare-Earth DEM), developed from the SRTM DEM to include both vegetation height and SRTM vegetation signal. Then, a newly released DEM, removing both vegetation bias and random errors (i.e. Multi-Error Removed DEM), is employed to overcome the limitation of height errors. Last, an approach to correct the Multi-Error Removed DEM is presented to account for the insufficiency of spatial resolution, ensuring flow connectivity of the river networks. The approach involves: (a) extracting river networks from the Multi-Error Removed DEM using an automated algorithm in ArcGIS; (b) correcting the location and layout of extracted streams with the aid of Google Earth platform and Remote Sensing imagery; and (c) removing the positive biases of the raised segment in the river networks based on bed slope to generate the hydraulically corrected DEM. The proposed HCM utilizes easily available data and tools to improve the flow connectivity of river networks without manual adjustment. To demonstrate the advantages of HCM, an extreme flood event in Huifa River Basin (China) is simulated on the original DEM, Bare-Earth DEM, Multi-Error removed DEM, and hydraulically corrected DEM using an integrated hydrologic-hydraulic model. A comparative analysis is subsequently performed to assess the simulation accuracy and performance of four different DEMs and favorable results have been obtained on the corrected DEM.

  3. Der Ritter mit dem Hemd : drei Fassungen einer mittelalterlichen Erzählung

    OpenAIRE

    Dunphy, Graeme

    2011-01-01

    Unter den zahlreichen Motiven, die in der mittelalterlichen Literatur mit Frauendienst verbunden sind, gehört das vom Ritter mit dem Hemd zu den besonders interessanten. Es erscheint zunächst in dem ersten von fünf Fabliaux aus einer verlorenen Turiner Handschrift, die dem sonst unbekannten altfranzösischen Dichter Jacques de Baisieux zugeschrieben werden, einer heiteren Kurzgeschichte mit dem Titel "Des trois chevaliers et del chainse". In der vorliegenden Untersuchung gilt es, der Frage der...

  4. The digital optical module - How IceCube will acquire data

    International Nuclear Information System (INIS)

    Stokstad, R.G.

    2003-01-01

    IceCube will be a km-scale neutrino detector consisting of 4800 optical modules (OMs) on 80 strings of 60 OMs each. The DAQ technology will have the following desirable features: (1) the robustness of copper cable between the OMs and the surface. (2) digitization and time-stamping of signals that are unattenuated and undispersed. (3) calibration methods (particularly for timing) appropriate for a large number of OMs. The PMT anode waveform is digitized and time-stamped in the OM. The time calibration procedure is both accurate and automatic. A system having these features has been tested in AMANDA. A prototype digital system consisting of 40 OMs was deployed in Jan., 2000. The principal components of the Digital Optical Module (DOM) signal processing circuitry are: the analog transient waveform digitizer (ATWD), a low-power custom integrated circuit that captures the waveform in 128 samples at a rate of ∼500 Megasamples/s; an ADC operating at ∼30 MS/s covering several microseconds; a FPGA that provides state control, time stamps events, handles communications, etc.; a low-power 32-bit ARM CPU with a real-time operating system. A 16.8 MHz oscillator, made by Toyocom, is free-running, very stable ((delta)f/f ∼ 5 · 10 -11 over ∼ 5s) and provides clock signals to several components. Short (12 m) cables connecting adjacent modules enable a local time coincidence, which eliminates most of the ∼1 kHz of dark noise pulses. A critical requirement is the ability to calibrate the DOM oscillator against a master clock at the surface. In essence, timing pulses sent in one direction at known time intervals can be used to determine relative frequency, and the round trip time of pulses sent in both directions can determine the offset. After receiving a timing pulse at the DOM and waiting for a short time, (delta)t, measured on the DOM clock, a pulse is sent from the DOM to the surface. The shapes of the pulses sent down and up are identical and are analyzed in the same

  5. On the compatibility of the IceCube results with a universal neutrino spectrum

    Energy Technology Data Exchange (ETDEWEB)

    Palladino, Andrea; Mascaretti, Carlo [Gran Sasso Science Institute, L' Aquila (Italy); Vissani, Francesco [Gran Sasso Science Institute, L' Aquila (Italy); INFN, Laboratori Nazionali del Gran Sasso, Assergi (Italy)

    2017-10-15

    There is mounting evidence that the IceCube findings cannot be described simply invoking a single power-law spectrum for cosmic neutrinos. We discuss which the minimal modifications are of the spectrum that are required by the existing observations and we obtain a universal cosmic neutrino spectrum, i.e. valid for all neutrino flavors. Our approach to such task can be outlined in three points: (1) we rely on the throughgoing muon analysis above 200 TeV and on the high-energy starting events (HESE) analysis below this energy, requiring the continuity of the spectrum; (2) we assume that cosmic neutrinos are subject to three-flavor neutrino oscillations in vacuum; (3) we make no assumption on the astrophysical mechanism of production, except for no ν{sub τ} (anti ν{sub τ}) component at the source. We test our model using the information provided by HESE shower-like events and by the lack of double pulses and resonant events. We find that a two-component power-law spectrum is compatible with all observations. The model agrees with the standard picture of pion decay as a source of neutrinos, and indicates a slight preference for a pγ mechanism of production. We discuss the tension between the HESE and the ''throughgoing muons'' datasets around few tens TeV, focussing on the angular distributions of the spectra. The expected number of smoking-gun signatures of ν{sub τ}-induced events (referred to as double pulses) is quantified: in the baseline model we predict 0.65 double pulse events in 5.7 years. Uncertainties in the predictions are quantified. (orig.)

  6. Digital Elevation Model (DEM), The county-wide DEM is published with a 20-foot grid size, though we have a more detailed DEM/DTM for some parts of the county, particularly the Green Bay Metro area, Published in 2000, 1:4800 (1in=400ft) scale, Brown County Government.

    Data.gov (United States)

    NSGIC Local Govt | GIS Inventory — Digital Elevation Model (DEM) dataset current as of 2000. The county-wide DEM is published with a 20-foot grid size, though we have a more detailed DEM/DTM for some...

  7. Accuracy of Cartosat-1 DEM and its derived attribute at multiple ...

    Indian Academy of Sciences (India)

    and information content was compared using mean elevation, variance and entropy statistics. Various ... required, but for local studies large scale represen- tation is ... been made to examine the effect of DEM accuracy ... accuracy of DEM is evaluated with respect to grid .... that loss of entropy is a measure of DEM quality or.

  8. Multimessenger search for sources of gravitational waves and high-energy neutrinos: Initial results for LIGO-Virgo and IceCube

    NARCIS (Netherlands)

    Aartsen, M.G.; Agathos, M.; Bertolini, A.; Bulten, H.J.; Del Pozzo, W.; Jonker, R.; Meidam, J.; van den Brand, J.F.J.; LIGO Sci Collaboration, Virgo Colla; IceCube, Collaboration

    2014-01-01

    We report the results of a multimessenger search for coincident signals from the LIGO and Virgo gravitational-wave observatories and the partially completed IceCube high-energy neutrino detector, including periods of joint operation between 2007-2010. These include parts of the 2005-2007 run and the

  9. The bright and choked gamma-ray burst contribution to the IceCube and ANTARES low-energy excess

    Science.gov (United States)

    Denton, Peter B.; Tamborra, Irene

    2018-04-01

    The increasing statistics of the high-energy neutrino flux observed by the IceCube Observatory points towards an excess of events above the atmospheric neutrino background in the 30–400 TeV energy range. Such an excess is compatible with the findings of the ANTARES Telescope and it would naturally imply the possibility that more than one source class contributes to the observed flux. Electromagnetically hidden sources have been invoked to interpret this excess of events at low energies. By adopting a unified model for the electromagnetically bright and choked gamma-ray bursts and taking into account particle acceleration at the internal and collimation shock radii, we discuss whether bright and choked bursts are viable candidates. Our findings suggest that, although producing a copious neutrino flux, choked and bright astrophysical jets cannot be the dominant sources of the excess of neutrino events. A fine tuning of the model parameters or distinct scenarios for choked jets should be invoked in order to explain the low-energy neutrino data of IceCube and ANTARES.

  10. THE GAMMA-RAY AND NEUTRINO SKY: A CONSISTENT PICTURE OF FERMI-LAT, MILAGRO, AND ICECUBE RESULTS

    International Nuclear Information System (INIS)

    Gaggero, Daniele; Urbano, Alfredo; Valli, Mauro; Grasso, Dario; Marinelli, Antonio

    2015-01-01

    We compute the γ-ray and neutrino diffuse emission of the Galaxy on the basis of a recently proposed phenomenological model characterized by radially dependent cosmic-ray (CR) transport properties. We show how this model, designed to reproduce both Fermi-LAT γ-ray data and local CR observables, naturally reproduces the anomalous TeV diffuse emission observed by Milagro in the inner Galactic plane. Above 100 TeV our picture predicts a neutrino flux that is about five (two) times larger than the neutrino flux computed with conventional models in the Galactic Center region (full-sky). Explaining in that way up to ∼25% of the flux measured by IceCube, we reproduce the full-sky IceCube spectrum adding an extra-Galactic component derived from the muonic neutrinos flux in the northern hemisphere. We also present precise predictions for the Galactic plane region where the flux is dominated by the Galactic emission

  11. Multipole analysis of IceCube data to search for dark matter accumulated in the Galactic halo

    Energy Technology Data Exchange (ETDEWEB)

    Aartsen, M.G.; Hill, G.C.; Robertson, S.; Whelan, B.J. [University of Adelaide, School of Chemistry and Physics, Adelaide, SA (Australia); Ackermann, M.; Berghaus, P.; Bernardini, E.; Bretz, H.P.; Cruz Silva, A.H.; Gluesenkamp, T.; Gora, D.; Jacobi, E.; Kaminsky, B.; Karg, T.; Middell, E.; Mohrmann, L.; Nahnhauer, R.; Schoenwald, A.; Shanidze, R.; Spiering, C.; Stoessl, A.; Terliuk, A.; Yanez, J.P. [DESY, Zeuthen (Germany); Adams, J.; Brown, A.M.; Hickford, S.; Macias, O. [University of Canterbury, Department of Physics and Astronomy, Christchurch (New Zealand); Aguilar, J.A.; Altmann, D.; Christov, A.; Montaruli, T.; Rameez, M.; Vallecorsa, S. [Universite de Geneve, Departement de physique nucleaire et corpusculaire, Geneva (Switzerland); Ahlers, M.; Arguelles, C.; BenZvi, S.; Chirkin, D.; Day, M.; Desiati, P.; Diaz-Velez, J.C.; Eisch, J.; Fadiran, O.; Feintzeig, J.; Gladstone, L.; Halzen, F.; Hoshina, K.; Jacobsen, J.; Jero, K.; Karle, A.; Kauer, M.; Kelley, J.L.; Kheirandish, A.; Kopper, C.; Kurahashi, N.; Larsen, D.T.; Maruyama, R.; McNally, F.; Middlemas, E.; Morse, R.; Rees, I.; Riedel, B.; Rodrigues, J.P.; Santander, M.; Tobin, M.N.; Tosi, D.; Vandenbroucke, J.; Van Santen, J.; Weaver, C.; Wellons, M.; Wendt, C.; Westerhoff, S.; Whitehorn, N. [University of Wisconsin, Department of Physics, Wisconsin IceCube Particle Astrophysics Center, Madison, WI (United States); Ahrens, M.; Bohm, C.; Danninger, M.; Finley, C.; Flis, S.; Hulth, P.O.; Hultqvist, K.; Walck, C.; Wolf, M.; Zoll, M. [Stockholm University, Department of Physics, Oskar Klein Centre, Stockholm (Sweden); Anderson, T.; Arlen, T.C.; De Andre, J.P.A.M.; DeYoung, T.; Dunkman, M.; Eagan, R.; Groh, J.C.; Huang, F.; Quinnan, M.; Smith, M.W.E.; Stanisha, N.A.; Tesic, G. [Pennsylvania State University, Department of Physics, University Park, PA (United States); Auffenberg, J.; Bissok, M.; Blumenthal, J.; Gier, D.; Gretskov, P.; Haack, C.; Hallen, P.; Heinen, D.; Hellwig, D.; Jagielski, K.; Koob, A.; Kriesten, A.; Krings, K.; Leuermann, M.; Paul, L.; Penek, Oe.; Puetz, J.; Raedel, L.; Reimann, R.; Rongen, M.; Schoenen, S.; Schukraft, A.; Vehring, M.; Wallraff, M.; Wichary, C.; Wiebusch, C.H.; Zierke, S. [RWTH Aachen University, III. Physikalisches Institut, Aachen (Germany); Bai, X. [South Dakota School of Mines and Technology, Physics Department, Rapid City, SD (United States); Barwick, S.W.; Yodh, G. [University of California, Department of Physics and Astronomy, Irvine, CA (United States); Baum, V.; Eberhardt, B.; Koepke, L.; Kroll, G.; Luenemann, J.; Sander, H.G.; Schatto, K.; Wiebe, K. [University of Mainz, Institute of Physics, Mainz (Germany); Beatty, J.J. [Ohio State University, Department of Physics, Center for Cosmology and Astro-Particle Physics, Columbus, OH (United States); Ohio State University, Department of Astronomy, Columbus, OH (United States); Becker Tjus, J.; Bos, F.; Eichmann, B.; Fedynitch, A.; Kroll, M.; Saba, S.M.; Schoeneberg, S.; Unger, E. [Ruhr-Universitaet Bochum, Fakultaet fuer Physik und Astronomie, Bochum (Germany); Becker, K.H.; Bindig, D.; Fischer-Wasels, T.; Helbing, K.; Hoffmann, R.; Klaes, J.; Kopper, S.; Naumann, U.; Obertacke, A.; Omairat, A.; Posselt, J.; Soldin, D.; Tepe, A. [University of Wuppertal, Department of Physics, Wuppertal (Germany); Berley, D.; Blaufuss, E.; Christy, B.; Felde, J.; Goodman, J.A.; Hellauer, R.; Hoffman, K.D.; Huelsnitz, W.; Meagher, K.; Olivas, A.; Redl, P.; Richman, M.; Schmidt, T.; Sullivan, G.W.; Wissing, H. [University of Maryland, Department of Physics, College Park, MD (United States); Bernhard, A.; Coenders, S.; Gross, A.; Jurkovic, M.; Leute, J.; Resconi, E.; Schulz, O.; Sestayo, Y. [Technische Universitaet Muenchen, Garching (Germany); Besson, D.Z. [University of Kansas, Department of Physics and Astronomy, Lawrence, KS (United States); Binder, G.; Gerhardt, L.; Ha, C.; Klein, S.R.; Miarecki, S. [University of California, Department of Physics, Berkeley, CA (United States); Lawrence Berkeley National Laboratory, Berkeley, CA (United States); Boersma, D.J.; Botner, O.; Euler, S.; Hallgren, A.; Perez de los Heros, C.; Stroem, R.; Taavola, H. [Uppsala University, Department of Physics and Astronomy, Uppsala (Sweden); Bose, D.; Rott, C. [Sungkyunkwan University, Department of Physics, Suwon (Korea, Republic of); Collaboration: IceCube Collaboration; and others

    2015-01-01

    Dark matter which is bound in the Galactic halo might self-annihilate and produce a flux of stable final state particles, e.g. high energy neutrinos. These neutrinos can be detected with IceCube, a cubic-kilometer sized Cherenkov detector. Given IceCube's large field of view, a characteristic anisotropy of the additional neutrino flux is expected. In this paper we describe a multipole method to search for such a large-scale anisotropy in IceCube data. This method uses the expansion coefficients of a multipole expansion of neutrino arrival directions and incorporates signal-specific weights for each expansion coefficient. We apply the technique to a high-purity muon neutrino sample from the Northern Hemisphere. The final result is compatible with the nullhypothesis. As no signal was observed, we present limits on the self-annihilation cross-section averaged over the relative velocity distribution left angle σ{sub A}υ right angle down to 1.9 x 10{sup -23} cm{sup 3} s{sup -1} for a dark matter particle mass of 700-1,000 GeV and direct annihilation into ν anti ν. The resulting exclusion limits come close to exclusion limits from γ-ray experiments, that focus on the outer Galactic halo, for high dark matter masses of a few TeV and hard annihilation channels. (orig.)

  12. Measurement of Atmospheric Neutrino Oscillations at 6-56 GeV with IceCube DeepCore

    Science.gov (United States)

    Aartsen, M. G.; Ackermann, M.; Adams, J.; Aguilar, J. A.; Ahlers, M.; Ahrens, M.; Al Samarai, I.; Altmann, D.; Andeen, K.; Anderson, T.; Ansseau, I.; Anton, G.; Argüelles, C.; Auffenberg, J.; Axani, S.; Bagherpour, H.; Bai, X.; Barron, J. P.; Barwick, S. W.; Baum, V.; Bay, R.; Beatty, J. J.; Becker Tjus, J.; Becker, K.-H.; BenZvi, S.; Berley, D.; Bernardini, E.; Besson, D. Z.; Binder, G.; Bindig, D.; Blaufuss, E.; Blot, S.; Bohm, C.; Börner, M.; Bos, F.; Bose, D.; Böser, S.; Botner, O.; Bourbeau, J.; Bradascio, F.; Braun, J.; Brayeur, L.; Brenzke, M.; Bretz, H.-P.; Bron, S.; Brostean-Kaiser, J.; Burgman, A.; Carver, T.; Casey, J.; Casier, M.; Cheung, E.; Chirkin, D.; Christov, A.; Clark, K.; Classen, L.; Coenders, S.; Collin, G. H.; Conrad, J. M.; Cowen, D. F.; Cross, R.; Day, M.; de André, J. P. A. M.; De Clercq, C.; DeLaunay, J. J.; Dembinski, H.; De Ridder, S.; Desiati, P.; de Vries, K. D.; de Wasseige, G.; de With, M.; DeYoung, T.; Díaz-Vélez, J. C.; di Lorenzo, V.; Dujmovic, H.; Dumm, J. P.; Dunkman, M.; Eberhardt, B.; Ehrhardt, T.; Eichmann, B.; Eller, P.; Evenson, P. A.; Fahey, S.; Fazely, A. R.; Felde, J.; Filimonov, K.; Finley, C.; Flis, S.; Franckowiak, A.; Friedman, E.; Fuchs, T.; Gaisser, T. K.; Gallagher, J.; Gerhardt, L.; Ghorbani, K.; Giang, W.; Glauch, T.; Glüsenkamp, T.; Goldschmidt, A.; Gonzalez, J. G.; Grant, D.; Griffith, Z.; Haack, C.; Hallgren, A.; Halzen, F.; Hanson, K.; Hebecker, D.; Heereman, D.; Helbing, K.; Hellauer, R.; Hickford, S.; Hignight, J.; Hill, G. C.; Hoffman, K. D.; Hoffmann, R.; Hokanson-Fasig, B.; Hoshina, K.; Huang, F.; Huber, M.; Hultqvist, K.; Hünnefeld, M.; In, S.; Ishihara, A.; Jacobi, E.; Japaridze, G. S.; Jeong, M.; Jero, K.; Jones, B. J. P.; Kalaczynski, P.; Kang, W.; Kappes, A.; Karg, T.; Karle, A.; Katz, U.; Kauer, M.; Keivani, A.; Kelley, J. L.; Kheirandish, A.; Kim, J.; Kim, M.; Kintscher, T.; Kiryluk, J.; Kittler, T.; Klein, S. R.; Kohnen, G.; Koirala, R.; Kolanoski, H.; Köpke, L.; Kopper, C.; Kopper, S.; Koschinsky, J. P.; Koskinen, D. J.; Kowalski, M.; Krings, K.; Kroll, M.; Krückl, G.; Kunnen, J.; Kunwar, S.; Kurahashi, N.; Kuwabara, T.; Kyriacou, A.; Labare, M.; Lanfranchi, J. L.; Larson, M. J.; Lauber, F.; Lennarz, D.; Lesiak-Bzdak, M.; Leuermann, M.; Liu, Q. R.; Lu, L.; Lünemann, J.; Luszczak, W.; Madsen, J.; Maggi, G.; Mahn, K. B. M.; Mancina, S.; Maruyama, R.; Mase, K.; Maunu, R.; McNally, F.; Meagher, K.; Medici, M.; Meier, M.; Menne, T.; Merino, G.; Meures, T.; Miarecki, S.; Micallef, J.; Momenté, G.; Montaruli, T.; Moore, R. W.; Moulai, M.; Nahnhauer, R.; Nakarmi, P.; Naumann, U.; Neer, G.; Niederhausen, H.; Nowicki, S. C.; Nygren, D. R.; Obertacke Pollmann, A.; Olivas, A.; O'Murchadha, A.; Palczewski, T.; Pandya, H.; Pankova, D. V.; Peiffer, P.; Pepper, J. A.; Pérez de los Heros, C.; Pieloth, D.; Pinat, E.; Plum, M.; Price, P. B.; Przybylski, G. T.; Raab, C.; Rädel, L.; Rameez, M.; Rawlins, K.; Rea, I. C.; Reimann, R.; Relethford, B.; Relich, M.; Resconi, E.; Rhode, W.; Richman, M.; Robertson, S.; Rongen, M.; Rott, C.; Ruhe, T.; Ryckbosch, D.; Rysewyk, D.; Sälzer, T.; Sanchez Herrera, S. E.; Sandrock, A.; Sandroos, J.; Sarkar, S.; Sarkar, S.; Satalecka, K.; Schlunder, P.; Schmidt, T.; Schneider, A.; Schoenen, S.; Schöneberg, S.; Schumacher, L.; Seckel, D.; Seunarine, S.; Soedingrekso, J.; Soldin, D.; Song, M.; Spiczak, G. M.; Spiering, C.; Stachurska, J.; Stamatikos, M.; Stanev, T.; Stasik, A.; Stettner, J.; Steuer, A.; Stezelberger, T.; Stokstad, R. G.; Stößl, A.; Strotjohann, N. L.; Sullivan, G. W.; Sutherland, M.; Taboada, I.; Tatar, J.; Tenholt, F.; Ter-Antonyan, S.; Terliuk, A.; Tešić, G.; Tilav, S.; Toale, P. A.; Tobin, M. N.; Toscano, S.; Tosi, D.; Tselengidou, M.; Tung, C. F.; Turcati, A.; Turley, C. F.; Ty, B.; Unger, E.; Usner, M.; Vandenbroucke, J.; Van Driessche, W.; van Eijndhoven, N.; Vanheule, S.; van Santen, J.; Vehring, M.; Vogel, E.; Vraeghe, M.; Walck, C.; Wallace, A.; Wallraff, M.; Wandler, F. D.; Wandkowsky, N.; Waza, A.; Weaver, C.; Weiss, M. J.; Wendt, C.; Werthebach, J.; Westerhoff, S.; Whelan, B. J.; Wiebe, K.; Wiebusch, C. H.; Wille, L.; Williams, D. R.; Wills, L.; Wolf, M.; Wood, J.; Wood, T. R.; Woolsey, E.; Woschnagg, K.; Xu, D. L.; Xu, X. W.; Xu, Y.; Yanez, J. P.; Yodh, G.; Yoshida, S.; Yuan, T.; Zoll, M.; IceCube Collaboration

    2018-02-01

    We present a measurement of the atmospheric neutrino oscillation parameters using three years of data from the IceCube Neutrino Observatory. The DeepCore infill array in the center of IceCube enables the detection and reconstruction of neutrinos produced by the interaction of cosmic rays in Earth's atmosphere at energies as low as ˜5 GeV . That energy threshold permits measurements of muon neutrino disappearance, over a range of baselines up to the diameter of the Earth, probing the same range of L /Eν as long-baseline experiments but with substantially higher-energy neutrinos. This analysis uses neutrinos from the full sky with reconstructed energies from 5.6 to 56 GeV. We measure Δ m322=2.31-0.13+0.11×10-3 eV2 and sin2θ23=0.5 1-0.09+0.07, assuming normal neutrino mass ordering. These results are consistent with, and of similar precision to, those from accelerator- and reactor-based experiments.

  13. A comparative appraisal of hydrological behavior of SRTM DEM at catchment level

    Science.gov (United States)

    Sharma, Arabinda; Tiwari, K. N.

    2014-11-01

    The Shuttle Radar Topography Mission (SRTM) data has emerged as a global elevation data in the past one decade because of its free availability, homogeneity and consistent accuracy compared to other global elevation dataset. The present study explores the consistency in hydrological behavior of the SRTM digital elevation model (DEM) with reference to easily available regional 20 m contour interpolated DEM (TOPO DEM). Analysis ranging from simple vertical accuracy assessment to hydrological simulation of the studied Maithon catchment, using empirical USLE model and semidistributed, physical SWAT model, were carried out. Moreover, terrain analysis involving hydrological indices was performed for comparative assessment of the SRTM DEM with respect to TOPO DEM. Results reveal that the vertical accuracy of SRTM DEM (±27.58 m) in the region is less than the specified standard (±16 m). Statistical analysis of hydrological indices such as topographic wetness index (TWI), stream power index (SPI), slope length factor (SLF) and geometry number (GN) shows a significant differences in hydrological properties of the two studied DEMs. Estimation of soil erosion potentials of the catchment and conservation priorities of microwatersheds of the catchment using SRTM DEM and TOPO DEM produce considerably different results. Prediction of soil erosion potential using SRTM DEM is far higher than that obtained using TOPO DEM. Similarly, conservation priorities determined using the two DEMs are found to be agreed for only 34% of microwatersheds of the catchment. ArcSWAT simulation reveals that runoff predictions are less sensitive to selection of the two DEMs as compared to sediment yield prediction. The results obtained in the present study are vital to hydrological analysis as it helps understanding the hydrological behavior of the DEM without being influenced by the model structural as well as parameter uncertainty. It also reemphasized that SRTM DEM can be a valuable dataset for

  14. DEM analysis of FOXSI-2 microflare using AIA observations

    Science.gov (United States)

    Athiray Panchapakesan, Subramania; Glesener, Lindsay; Vievering, Juliana; Camilo Buitrago-Casas, Juan; Christe, Steven; Inglis, Andrew; Krucker, Sam; Musset, Sophie

    2017-08-01

    The second flight of Focusing Optics X-ray Solar Imager (FOXSI) sounding rocket experiment was successfully completed on 11 December 2014. FOXSI makes direct imaging and spectral observation of the Sun in hard X-rays using grazing incidence optics modules which focus X-rays onto seven focal plane detectors kept at a 2m distance, in the energy range 4 to 20 keV, to study particle acceleration and coronal heating. Significant HXR emissions were observed by FOXSI during microflare events with A0.5 and A2.5 class, as classified by GOES, that occurred during FOXSI-2 flight.Spectral analysis of FOXSI data for these events indicate presence of plasma at higher temperatures (>10MK). We attempt to study the plasma content in the corona at different temperatures, characterized by the differential emission measure (DEM), over the FOXSI-2 observed flare regions using the Atmospheric Imaging Assembly (SDO/AIA) data. We utilize AIA observations in different EUV filters that are sensitive to ionized iron lines, to determine the DEM by using a regularized inversion method. This poster will show the properties of hot plasma as derived from FOXSI-2 HXR spectra with supporting DEM analysis using AIA observations.

  15. THE GLOBAL TANDEM-X DEM: PRODUCTION STATUS AND FIRST VALIDATION RESULTS

    Directory of Open Access Journals (Sweden)

    M. Huber

    2012-07-01

    Full Text Available The TanDEM-X mission will derive a global digital elevation model (DEM with satellite SAR interferometry. Two radar satellites (TerraSAR-X and TanDEM-X will map the Earth in a resolution and accuracy with an absolute height error of 10m and a relative height error of 2m for 90% of the data. In order to fulfill the height requirements in general two global coverages are acquired and processed. Besides the final TanDEM-X DEM, an intermediate DEM with reduced accuracy is produced after the first coverage is completed. The last step in the whole workflow for generating the TanDEM-X DEM is the calibration of remaining systematic height errors and the merge of single acquisitions to 1°x1° DEM tiles. In this paper the current status of generating the intermediate DEM and first validation results based on GPS tracks, laser scanning DEMs, SRTM data and ICESat points are shown for different test sites.

  16. Icecube: Spaceflight Validation of an 874-GHz Submillimeter Wave Radiometer for Ice Cloud Remote Sensing

    Science.gov (United States)

    Wu, D. L.; Esper, J.; Ehsan, N.; Piepmeier, J. R.; Racette, P.

    2014-12-01

    Ice clouds play a key role in the Earth's radiation budget, mostly through their strong regulation of infrared radiation exchange. Submillimeter wave remote sensing offers a unique capability to improve cloud ice measurements from space. At 874 GHz cloud scattering produces a larger brightness temperature depression from cirrus than lower frequencies, which can be used to retrieve vertically-integrated cloud ice water path (IWP) and ice particle size. The objective of the IceCube project is to retire risks of 874-GHz receiver technology by raising its TRL from 5 to 7. The project will demonstrate, on a 3-U CubeSat in a low Earth orbit (LEO) environment, the 874-GHz receiver system with noise equivalent differential temperature (NEDT) of ~0.2 K for 1-second integration and calibration error of 2.0 K or less as measured from deep-space observations. The Goddard Space Flight Center (GSFC) is partnering with Virginia Diodes, Inc (VDI) to qualify commercially available 874-GHz receiver technology for spaceflight, and demonstrate the radiometer performance. The instrument (submm-wave cloud radiometer, or SCR), along with the CubeSat system developed and integrated by GSFC, will be ready for launch in two years. The instrument subsystem includes a reflector antenna, sub-millimeter wave mixer, frequency multipliers and stable local oscillator, an intermediate frequency (IF) circuit with noise injection, and data-power boards. The mixer and frequency multipliers are procured from VDI with GSFC insight into fabrication and testing processes to ensure scalability to spaceflight beyond TRL 7. The remaining components are a combination of GSFC-designed and commercial off-the-shelf (COTS) at TRLs of 5 or higher. The spacecraft system is specified by GSFC and comprises COTS components including three-axis stabilizer and sun sensor, GPS receiver, deployable solar arrays, UHF radio, and 2 GB of on-board storage. The spacecraft and instrument are integrated and flight qualified

  17. Modelling above Ground Biomass in Tanzanian Miombo Woodlands Using TanDEM-X WorldDEM and Field Data

    Directory of Open Access Journals (Sweden)

    Stefano Puliti

    2017-09-01

    Full Text Available The use of Interferometric Synthetic Aperture Radar (InSAR data has great potential for monitoring large scale forest above ground biomass (AGB in the tropics due to the increased ability to retrieve 3D information even under cloud cover. To date; results in tropical forests have been inconsistent and further knowledge on the accuracy of models linking AGB and InSAR height data is crucial for the development of large scale forest monitoring programs. This study provides an example of the use of TanDEM-X WorldDEM data to model AGB in Tanzanian woodlands. The primary objective was to assess the accuracy of a model linking AGB with InSAR height from WorldDEM after the subtraction of ground heights. The secondary objective was to assess the possibility of obtaining InSAR height for field plots when the terrain heights were derived from global navigation satellite systems (GNSS; i.e., as an alternative to using airborne laser scanning (ALS. The results revealed that the AGB model using InSAR height had a predictive accuracy of R M S E = 24.1 t·ha−1; or 38.8% of the mean AGB when terrain heights were derived from ALS. The results were similar when using terrain heights from GNSS. The accuracy of the predicted AGB was improved when compared to a previous study using TanDEM-X for a sub-area of the area of interest and was of similar magnitude to what was achieved in the same sub-area using ALS data. Overall; this study sheds new light on the opportunities that arise from the use of InSAR data for large scale AGB modelling in tropical woodlands.

  18. Der Meteorologe : (aus dem Band "V". Tallinn 1998) / Elo Viiding ; aus dem Estnischen von Gisbert Jänicke

    Index Scriptorium Estoniae

    Viiding, Elo, 1974-

    2002-01-01

    Sisu : Die Möglichkeit des Meteorologen = Meteoroloogi võimalikkusest ; "Der Meteorologe kam 1990 in die Stadt..." = "Meteoroloog saabus linna aastal 1990..." ; "Was wäre dir "Arbeit" des Meteorologen..." = "Mis oleks meteoroloogi töö..." ; "Und ein Unglück für den Meteorologen ist es auch..." = "Ja Meteoroloogi õnnetus on veel see..." ; Angst vor dem Altwerden des Meteorologen = Hirm Meteoroloogi vanakssaamise ees ; Fest. Geschenk = Pidu. Kink ; "Wenn der Meteorologe eine Grösse sieht, ist er darüber..." = "Kui meteoroloog näeb suurust, on ta selle kohal..." ; Der Meteorologe wird im Saal erwartet = Meteoroloogi oodatakse saali ; "Das Abkommen mit der Meteorologenerwartung kündigen..." = "Katkestada leping meteoroloogiootusega..." ; "Die "Wege des Herrn" sind der Meteorologe..." = "Looja tee" on Meteoroloog..." ; Von dem Fremden, der im Saal den Meteorologen traf = Võõra lugu, kes Meteoroloogi saalis kohtas ; "Den Fremden hervorzuhusten, der von dem..." = "Köhida enesest välja võõras, kes tahtis teha..." ; Der Fremde beruhigt sich nicht = Võõras ei jää rahule

  19. [Julia Rosche. Zwischen den Fronten. Die Rolle Estlands zwischen dem Hitler-Stalin-Pakt und dem Ende des Zweiten Weltkriegs im internationalen Kontext] / Olaf Mertelsmann

    Index Scriptorium Estoniae

    Mertelsmann, Olaf, 1969-

    2014-01-01

    Arvustus: Rosche, Julia. Zwischen den Fronten. Die Rolle Estlands zwischen dem Hitler-Stalin-Pakt und dem Ende des Zweiten Weltkriegs im internationalen Kontext. Diplomica Verlag. Hamburg 2012. Unter demselben Titel mit identischem Text auch: Grin Verlag. München 2013

  20. Systematic Studies of Cosmic-Ray Anisotropy and Energy Spectrum with IceCube and IceTop

    Science.gov (United States)

    McNally, Frank

    Anisotropy in the cosmic-ray arrival direction distribution has been well documented over a large energy range, but its origin remains largely a mystery. In the TeV to PeV energy range, the galactic magnetic field thoroughly scatters cosmic rays, but anisotropy at the part-per-mille level and smaller persists, potentially carrying information about nearby cosmic-ray accelerators and the galactic magnetic field. The IceCube Neutrino Observatory was the first detector to observe anisotropy at these energies in the Southern sky. This work uses 318 billion cosmic-ray induced muon events, collected between May 2009 and May 2015 from both the in-ice component of IceCube as well as the surface component, IceTop. The observed global anisotropy features large regions of relative excess and deficit, with amplitudes on the order of 10-3. While a decomposition of the arrival direction distribution into spherical harmonics shows that most of the power is contained in the low-multipole (ℓ ≤ 4) moments, higher-multipole components are found to be statistically significant down to an angular scale of less than 10°, approaching the angular resolution of the detector. Above 100TeV, a change in the topology of the arrival direction distribution is observed, and the anisotropy is characterized by a wide relative deficit whose amplitude increases with primary energy up to at least 5PeV, the highest energies currently accessible to IceCube with sufficient event statistics. No time dependence of the large- and small-scale structures is observed in the six-year period covered by this analysis within statistical and systematic uncertainties. Analysis of the energy spectrum and composition in the PeV energy range as a function of sky position is performed with IceTop data over a five-year period using a likelihood-based reconstruction. Both the energy spectrum and the composition distribution are found to be consistent with a single source population over declination bands. This work

  1. Research on a dem Coregistration Method Based on the SAR Imaging Geometry

    Science.gov (United States)

    Niu, Y.; Zhao, C.; Zhang, J.; Wang, L.; Li, B.; Fan, L.

    2018-04-01

    Due to the systematic error, especially the horizontal deviation that exists in the multi-source, multi-temporal DEMs (Digital Elevation Models), a method for high precision coregistration is needed. This paper presents a new fast DEM coregistration method based on a given SAR (Synthetic Aperture Radar) imaging geometry to overcome the divergence and time-consuming problem of the conventional DEM coregistration method. First, intensity images are simulated for two DEMs under the given SAR imaging geometry. 2D (Two-dimensional) offsets are estimated in the frequency domain using the intensity cross-correlation operation in the FFT (Fast Fourier Transform) tool, which can greatly accelerate the calculation process. Next, the transformation function between two DEMs is achieved via the robust least-square fitting of 2D polynomial operation. Accordingly, two DEMs can be precisely coregistered. Last, two DEMs, i.e., one high-resolution LiDAR (Light Detection and Ranging) DEM and one low-resolution SRTM (Shutter Radar Topography Mission) DEM, covering the Yangjiao landslide region of Chongqing are taken as an example to test the new method. The results indicate that, in most cases, this new method can achieve not only a result as much as 80 times faster than the minimum elevation difference (Least Z-difference, LZD) DEM registration method, but also more accurate and more reliable results.

  2. Research on the method of extracting DEM based on GBInSAR

    Science.gov (United States)

    Yue, Jianping; Yue, Shun; Qiu, Zhiwei; Wang, Xueqin; Guo, Leping

    2016-05-01

    Precise topographical information has a very important role in geology, hydrology, natural resources survey and deformation monitoring. The extracting DEM technology based on synthetic aperture radar interferometry (InSAR) obtains the three-dimensional elevation of the target area through the phase information of the radar image data. The technology has large-scale, high-precision, all-weather features. By changing track in the location of the ground radar system up and down, it can form spatial baseline. Then we can achieve the DEM of the target area by acquiring image data from different angles. Three-dimensional laser scanning technology can quickly, efficiently and accurately obtain DEM of target area, which can verify the accuracy of DEM extracted by GBInSAR. But research on GBInSAR in extracting DEM of the target area is a little. For lack of theory and lower accuracy problems in extracting DEM based on GBInSAR now, this article conducted research and analysis on its principle deeply. The article extracted the DEM of the target area, combined with GBInSAR data. Then it compared the DEM obtained by GBInSAR with the DEM obtained by three-dimensional laser scan data and made statistical analysis and normal distribution test. The results showed the DEM obtained by GBInSAR was broadly consistent with the DEM obtained by three-dimensional laser scanning. And its accuracy is high. The difference of both DEM approximately obeys normal distribution. It indicated that extracting the DEM of target area based on GBInSAR is feasible and provided the foundation for the promotion and application of GBInSAR.

  3. Simulation studies of an air Cherenkov telescope, IceACT, for future IceCube surface extensions

    Energy Technology Data Exchange (ETDEWEB)

    Hansmann, Bengt; Auffenberg, Jan; Bekman, Ilja; Kemp, Julian; Roegen, Martin; Schaufel, Merlin; Stahlberg, Martin; Wiebusch, Christopher [III. Physikalisches Institut B, RWTH Aachen, Aachen (Germany); Bretz, Thomas; Hebbeker, Thomas; Middendorf, Lukas; Niggemann, Tim; Schumacher, Johannes [III. Physikalisches Institut A, RWTH Aachen, Aachen (Germany); Collaboration: IceCube-Collaboration

    2015-07-01

    IceACT is a compact air Cherenkov telescope using silicon photomultipliers. The Fresnel lens based design has been adopted from the fluorescence telescope FAMOUS. The goal of IceACT is the efficient detection of cosmic ray induced air showers above the IceCube Neutrino Observatory at the geographic South Pole. This allows to distinguish cosmic ray induced muons and neutrinos in the southern sky from astrophysical neutrinos in the deep ice detector. This leads to an increase in low-background astrophysical neutrinos of several dozen events per year for a detection threshold of several 100 TeV cosmic ray primary energy. To determine the actual telescope performance, dedicated CORSIKA air shower simulations incorporating the full Cherenkov light information are performed.

  4. IceVeto. An extension of IceTop to veto air showers for neutrino astronomy with IceCube

    Energy Technology Data Exchange (ETDEWEB)

    Auffenberg, Jan; Kemp, Julian; Raedel, Leif; Rongen, Martin; Schaufel, Merlin; Stahlberg, Martin; Hansmann, Bengt; Wiebusch, Christopher [RWTH Aachen University, Physikalische Institut III b (Germany); Collaboration: IceCube-Collaboration

    2015-07-01

    IceCube is the world's largest high-energy neutrino observatory, built at the geographic South Pole. For neutrino astronomy, a large background-free sample of well-reconstructed astrophysical neutrinos is essential. The main background for this signal are muons and neutrinos which are produced in cosmic-ray air showers in the Earth's atmosphere. The coincident detection of these air showers by the surface detector IceTop has been proven to be a powerful veto for atmospheric neutrinos and muons in the field of view of the southern hemisphere. This motivates a significant extension of IceTop. First estimates indicate that such a veto detector will more than double the discovery potential of current point source analyses. Here, we present the motivation and capabilities of different technologies based on simulations and measurements.

  5. A coupled DEM-CFD method for impulse wave modelling

    Science.gov (United States)

    Zhao, Tao; Utili, Stefano; Crosta, GiovanBattista

    2015-04-01

    Rockslides can be characterized by a rapid evolution, up to a possible transition into a rock avalanche, which can be associated with an almost instantaneous collapse and spreading. Different examples are available in the literature, but the Vajont rockslide is quite unique for its morphological and geological characteristics, as well as for the type of evolution and the availability of long term monitoring data. This study advocates the use of a DEM-CFD framework for the modelling of the generation of hydrodynamic waves due to the impact of a rapid moving rockslide or rock-debris avalanche. 3D DEM analyses in plane strain by a coupled DEM-CFD code were performed to simulate the rockslide from its onset to the impact with still water and the subsequent wave generation (Zhao et al., 2014). The physical response predicted is in broad agreement with the available observations. The numerical results are compared to those published in the literature and especially to Crosta et al. (2014). According to our results, the maximum computed run up amounts to ca. 120 m and 170 m for the eastern and western lobe cross sections, respectively. These values are reasonably similar to those recorded during the event (i.e. ca. 130 m and 190 m respectively). In these simulations, the slope mass is considered permeable, such that the toe region of the slope can move submerged in the reservoir and the impulse water wave can also flow back into the slope mass. However, the upscaling of the grains size in the DEM model leads to an unrealistically high hydraulic conductivity of the model, such that only a small amount of water is splashed onto the northern bank of the Vajont valley. The use of high fluid viscosity and coarse grain model has shown the possibility to model more realistically both the slope and wave motions. However, more detailed slope and fluid properties, and the need for computational efficiency should be considered in future research work. This aspect has also been

  6. 3D DEM analyses of the 1963 Vajont rock slide

    Science.gov (United States)

    Boon, Chia Weng; Houlsby, Guy; Utili, Stefano

    2013-04-01

    The 1963 Vajont rock slide has been modelled using the distinct element method (DEM). The open-source DEM code, YADE (Kozicki & Donzé, 2008), was used together with the contact detection algorithm proposed by Boon et al. (2012). The critical sliding friction angle at the slide surface was sought using a strength reduction approach. A shear-softening contact model was used to model the shear resistance of the clayey layer at the slide surface. The results suggest that the critical sliding friction angle can be conservative if stability analyses are calculated based on the peak friction angles. The water table was assumed to be horizontal and the pore pressure at the clay layer was assumed to be hydrostatic. The influence of reservoir filling was marginal, increasing the sliding friction angle by only 1.6˚. The results of the DEM calculations were found to be sensitive to the orientations of the bedding planes and cross-joints. Finally, the failure mechanism was investigated and arching was found to be present at the bend of the chair-shaped slope. References Boon C.W., Houlsby G.T., Utili S. (2012). A new algorithm for contact detection between convex polygonal and polyhedral particles in the discrete element method. Computers and Geotechnics, vol 44, 73-82, doi.org/10.1016/j.compgeo.2012.03.012. Kozicki, J., & Donzé, F. V. (2008). A new open-source software developed for numerical simulations using discrete modeling methods. Computer Methods in Applied Mechanics and Engineering, 197(49-50), 4429-4443.

  7. Optimization of Particle Search Algorithm for CFD-DEM Simulations

    Directory of Open Access Journals (Sweden)

    G. Baryshev

    2013-09-01

    Full Text Available Discrete element method has numerous applications in particle physics. However, simulating particles as discrete entities can become costly for large systems. In time-driven DEM simulation most computation time is taken by contact search stage. We propose an efficient collision detection method which is based on sorting particles by their coordinates. Using multiple sorting criteria allows minimizing number of potential neighbours and defines fitness of this approach for simulation of massive systems in 3D. This method is compared to a common approach that consists of placing particles onto a grid of cells. Advantage of the new approach is independence of simulation parameters upon particle radius and domain size.

  8. Der antiskeptische Boden unter dem Gehirn im Tank

    OpenAIRE

    Müller, Olaf L.

    2001-01-01

    Crispin Wright hat die bislang beste Rekonstruktion von Putnams Beweis gegen die skeptische Hypothese vom Gehirn im Tank vorgelegt. Aber selbst in Wrights Fassung hat der Beweis einen Mangel: Er wird mithilfe eines Prädikates wie z.B. "Tiger" geführt und funktioniert nur, wenn man sich darauf verlassen kann, dass es Tiger wirklich gibt. Aber die Skeptikerin bestreitet, über die Existenz von Tigern bescheid zu wissen. Das Problem lässt sich dadurch beheben, dass man den Beweis – statt mit dem ...

  9. The Importance of Precise Digital Elevation Models (DEM) in Modelling Floods

    Science.gov (United States)

    Demir, Gokben; Akyurek, Zuhal

    2016-04-01

    Digital elevation Models (DEM) are important inputs for topography for the accurate modelling of floodplain hydrodynamics. Floodplains have a key role as natural retarding pools which attenuate flood waves and suppress flood peaks. GPS, LIDAR and bathymetric surveys are well known surveying methods to acquire topographic data. It is not only time consuming and expensive to obtain topographic data through surveying but also sometimes impossible for remote areas. In this study it is aimed to present the importance of accurate modelling of topography for flood modelling. The flood modelling for Samsun-Terme in Blacksea region of Turkey is done. One of the DEM is obtained from the point observations retrieved from 1/5000 scaled orthophotos and 1/1000 scaled point elevation data from field surveys at x-sections. The river banks are corrected by using the orthophotos and elevation values. This DEM is named as scaled DEM. The other DEM is obtained from bathymetric surveys. 296 538 number of points and the left/right bank slopes were used to construct the DEM having 1 m spatial resolution and this DEM is named as base DEM. Two DEMs were compared by using 27 x-sections. The maximum difference at thalweg of the river bed is 2m and the minimum difference is 20 cm between two DEMs. The channel conveyance capacity in base DEM is larger than the one in scaled DEM and floodplain is modelled in detail in base DEM. MIKE21 with flexible grid is used in 2- dimensional shallow water flow modelling. The model by using two DEMs were calibrated for a flood event (July 9, 2012). The roughness is considered as the calibration parameter. From comparison of input hydrograph at the upstream of the river and output hydrograph at the downstream of the river, the attenuation is obtained as 91% and 84% for the base DEM and scaled DEM, respectively. The time lag in hydrographs does not show any difference for two DEMs and it is obtained as 3 hours. Maximum flood extents differ for the two DEMs

  10. Search for a diffuse flux of extragalactic neutrinos with the IceCube neutrino observatory

    Energy Technology Data Exchange (ETDEWEB)

    Schukraft, Anne

    2013-06-07

    Since the discovery of cosmic rays it has been one of the major research goals to identify the sources and acceleration mechanisms behind these high-energy particles observed from space, with energies up to several EeV. The study of high-energy charged particles and photons has advantages and disadvantages: the detection techniques for charged cosmic rays are very advanced though high-energy charged nuclei are not able to reveal their sources due to magnetic deflection. In the last years, there have been discoveries of many gamma-ray sources, where photon fluxes up to energies of 100 TeV have been observed. However, the universe is opaque to photons with energies larger than 100 TeV since gamma rays interact with the cosmic microwave background. Neutrinos suffer from neither of these limitations. They are ideal messenger particles in order to investigate the sources of cosmic rays since they propagate unaffected, but their detection is difficult and no extraterrestrial neutrino sources at high energies have yet been found. The IceCube experiment, located at the geographic South Pole, was built in order to detect high-energy neutrinos from the universe. It was completed in December 2010 and is the largest neutrino observatory on Earth. It detects neutrinos via their interaction with the Antarctic ice inside and around the detection volume. In these interactions, high-energy leptons are produced, which follow the direction of the initial neutrino and produce a cone of Cherenkov light along their path. This light is detected by optical sensors deployed in the instrumented volume. The search for a diffuse neutrino flux is a very promising approach to look for an extragalactic flux of astrophysical neutrinos. Its sensitivity is mainly based on neutrino energies since astrophysical neutrinos are expected to be more energetic than atmospheric neutrinos. It searches for an astrophysical flux from the sum of all sources in the universe. These sources can be individually

  11. Search for a diffuse flux of extragalactic neutrinos with the IceCube neutrino observatory

    International Nuclear Information System (INIS)

    Schukraft, Anne

    2013-01-01

    Since the discovery of cosmic rays it has been one of the major research goals to identify the sources and acceleration mechanisms behind these high-energy particles observed from space, with energies up to several EeV. The study of high-energy charged particles and photons has advantages and disadvantages: the detection techniques for charged cosmic rays are very advanced though high-energy charged nuclei are not able to reveal their sources due to magnetic deflection. In the last years, there have been discoveries of many gamma-ray sources, where photon fluxes up to energies of 100 TeV have been observed. However, the universe is opaque to photons with energies larger than 100 TeV since gamma rays interact with the cosmic microwave background. Neutrinos suffer from neither of these limitations. They are ideal messenger particles in order to investigate the sources of cosmic rays since they propagate unaffected, but their detection is difficult and no extraterrestrial neutrino sources at high energies have yet been found. The IceCube experiment, located at the geographic South Pole, was built in order to detect high-energy neutrinos from the universe. It was completed in December 2010 and is the largest neutrino observatory on Earth. It detects neutrinos via their interaction with the Antarctic ice inside and around the detection volume. In these interactions, high-energy leptons are produced, which follow the direction of the initial neutrino and produce a cone of Cherenkov light along their path. This light is detected by optical sensors deployed in the instrumented volume. The search for a diffuse neutrino flux is a very promising approach to look for an extragalactic flux of astrophysical neutrinos. Its sensitivity is mainly based on neutrino energies since astrophysical neutrinos are expected to be more energetic than atmospheric neutrinos. It searches for an astrophysical flux from the sum of all sources in the universe. These sources can be individually

  12. First combined search for neutrino point-sources in the southern sky with the ANTARES and IceCube neutrino telescopes

    Directory of Open Access Journals (Sweden)

    Barrios-Martí J.

    2016-01-01

    Full Text Available A search for cosmic neutrino point-like sources using the ANTARES and IceCube neutrino telescopes over the Southern Hemisphere is presented. The ANTARES data were collected between January 2007 and December 2012, whereas the IceCube data ranges from April 2008 to May 2011. An unbinned maximum likelihood method is used to search for a localized excess of muon events in the southern sky assuming an E−2 neutrino source spectrum. A search over a pre-selected list of candidate sources has also been carried out for different source assumptions: spectral indices of 2.0 and 2.5, and energy cutoffs of 1 PeV, 300 TeV and 100 TeV. No significant excess over the background has been found, and upper limits for the candidate sources are presented compared to the individual experiments.

  13. GPU based contouring method on grid DEM data

    Science.gov (United States)

    Tan, Liheng; Wan, Gang; Li, Feng; Chen, Xiaohui; Du, Wenlong

    2017-08-01

    This paper presents a novel method to generate contour lines from grid DEM data based on the programmable GPU pipeline. The previous contouring approaches often use CPU to construct a finite element mesh from the raw DEM data, and then extract contour segments from the elements. They also need a tracing or sorting strategy to generate the final continuous contours. These approaches can be heavily CPU-costing and time-consuming. Meanwhile the generated contours would be unsmooth if the raw data is sparsely distributed. Unlike the CPU approaches, we employ the GPU's vertex shader to generate a triangular mesh with arbitrary user-defined density, in which the height of each vertex is calculated through a third-order Cardinal spline function. Then in the same frame, segments are extracted from the triangles by the geometry shader, and translated to the CPU-side with an internal order in the GPU's transform feedback stage. Finally we propose a "Grid Sorting" algorithm to achieve the continuous contour lines by travelling the segments only once. Our method makes use of multiple stages of GPU pipeline for computation, which can generate smooth contour lines, and is significantly faster than the previous CPU approaches. The algorithm can be easily implemented with OpenGL 3.3 API or higher on consumer-level PCs.

  14. Effect of aging in HDPE blended with DEM in decalin

    International Nuclear Information System (INIS)

    Silva, P.; Albano, C.; Karam, A.; Vargas, M.G.; Perera, R.

    2006-01-01

    Electron paramagnetic resonance (EPR) was used to study the effect of aging on irradiated samples of high-density polyethylene (HDPE) blended with diethyl maleate (DEM) in different proportions. Initially, we synthesize the HDPE using bis-(cyclopentadienyl) zirconium dichloride and P-MAO. The functionalization of the synthesized HDPE was carried out in a 10% weight/vol of polyethylene in decalin solution using different percentages of diethyl maleate (5, 10, 15 and 30% in weight). The samples were irradiated at 5, 15 and 30 kGy. An exponential decay in the total free radicals concentration was observed in the pure HDPE sample at the 15 and 30 kGy irradiation doses, as it was expected. For the 15 and 30 kGy irradiation doses the HDPE blended with 15 and 30% of DEM in decalin shows an increase in the total free radical concentrations as the storage time is increased. This behavior has been interpreted in terms of trapped free radicals. (Author)

  15. Multi-scale sensitivity analysis of pile installation using DEM

    Science.gov (United States)

    Esposito, Ricardo Gurevitz; Velloso, Raquel Quadros; , Eurípedes do Amaral Vargas, Jr.; Danziger, Bernadete Ragoni

    2017-12-01

    The disturbances experienced by the soil due to the pile installation and dynamic soil-structure interaction still present major challenges to foundation engineers. These phenomena exhibit complex behaviors, difficult to measure in physical tests and to reproduce in numerical models. Due to the simplified approach used by the discrete element method (DEM) to simulate large deformations and nonlinear stress-dilatancy behavior of granular soils, the DEM consists of an excellent tool to investigate these processes. This study presents a sensitivity analysis of the effects of introducing a single pile using the PFC2D software developed by Itasca Co. The different scales investigated in these simulations include point and shaft resistance, alterations in porosity and stress fields and particles displacement. Several simulations were conducted in order to investigate the effects of different numerical approaches showing indications that the method of installation and particle rotation could influence greatly in the conditions around the numerical pile. Minor effects were also noted due to change in penetration velocity and pile-soil friction. The difference in behavior of a moving and a stationary pile shows good qualitative agreement with previous experimental results indicating the necessity of realizing a force equilibrium process prior to any load-test to be simulated.

  16. Optimizing digital elevation models (DEMs) accuracy for planning and design of mobile communication networks

    Science.gov (United States)

    Hassan, Mahmoud A.

    2004-02-01

    Digital elevation models (DEMs) are important tools in the planning, design and maintenance of mobile communication networks. This research paper proposes a method for generating high accuracy DEMs based on SPOT satellite 1A stereo pair images, ground control points (GCP) and Erdas OrthoBASE Pro image processing software. DEMs with 0.2911 m mean error were achieved for the hilly and heavily populated city of Amman. The generated DEM was used to design a mobile communication network resulted in a minimum number of radio base transceiver stations, maximum number of covered regions and less than 2% of dead zones.

  17. DEM Resolution Impact on the Estimation of the Physical Characteristics of Watersheds by Using SWAT

    Directory of Open Access Journals (Sweden)

    Waranyu Buakhao

    2016-01-01

    Full Text Available A digital elevation model (DEM is an important spatial input for automatic extraction of topographic parameters for the soil and water assessment tool (SWAT. The objective of this study was to investigate the impact of DEM resolution (from 5 to 90 m on the delineation process of a SWAT model with two types of watershed characteristics (flat area and mountain area and three sizes of watershed area (about 20,000, 200,000, and 1,500,000 hectares. The results showed that the total lengths of the streamline, main channel slope, watershed area, and area slope were significantly different when using the DEM datasets to delineate. Delineation using the SRTM DEM (90 m, ASTER DEM (30 m, and LDD DEM (5 m for all watershed characteristics showed that the watershed sizes and shapes obtained were only slightly different, whereas the area slopes obtained were significantly different. The total lengths of the generated streams increased when the resolution of the DEM used was higher. The stream slopes obtained using the small area sizes were insignificant, whereas the slopes obtained using the large area sizes were significantly different. This suggests that water resource model users should use the ASTER DEM as opposed to a finer resolution DEM for model input to save time for the model calibration and validation.

  18. Envolving the Operations of the TerraSAR-X/TanDEM-X Mission Planning System during the TanDEM-X Science Phase

    OpenAIRE

    Stathopoulos, Fotios; Guillermin, Guillaume; Garcia Acero, Carlos; Reich, Karin; Mrowka, Falk

    2016-01-01

    After the successful Global Coverage of the Digital Elevation Model, the TanDEM-X Science phase was initiated in September of 2014, dedicated to the demonstration of innovative techniques and experiments. The TanDEM-X Science phase had a large impact on the TerraSAR-X/TanDEM-X Mission Planning System. The two main challenges were the formation flying changes and the activation of a new acquisition mode, the so called Dual Receive Antenna (DRA) acquisition mode. This paper describes all action...

  19. Results on the spectrum and composition of cosmic rays from the IceTop air shower array of the IceCube Observatory

    Directory of Open Access Journals (Sweden)

    Tilav Serap

    2013-06-01

    Full Text Available We report on measurements of the energy spectrum and mass composition of cosmic rays above 1 PeV with the data taken during the construction phase of the IceTop and IceCube detectors. We discuss our current systematics and observation of a structure in the energy spectrum above 20 PeV where the mass composition gets heavier than iron nuclei.

  20. Study of the reaction {gamma}p{yields}K{sup +}{sigma}{sup -}{pi}{sup +} for photon energies up to 2.65 GeV with the SAPHIR detector at ELSA; Untersuchung der Reaktion {gamma}p{yields}K{sup +}{sigma}{sup -}{pi}{sup +} fuer Photonenenergien bis 2.65 GeV mit dem SAPHIR-Detektor an ELSA

    Energy Technology Data Exchange (ETDEWEB)

    Schulday, I.

    2004-10-01

    The reaction {gamma}p{yields}K{sup +}{sigma}{sup -}{pi}{sup +} was measured in the photon energy range from threshold up to 2.65 GeV. The cross section is dominated by the production of the resonances {sigma}(1385), {lambda}(1405) and {lambda}(1520) which decay into {sigma}{sup -}{pi}{sup +}. Cross sections were obtained as a function of the photon energy and the K{sup +} production angle for the reaction and the resonance production. The cross section for {lambda}(1520) rises up to (0.230{+-}0.029) {mu}b in the photon energy range 1.80

  1. Measurement of the reaction {gamma}p{yields}K{sup 0}{sigma}{sup +} for photon energies up to 2.65 GeV with the SAPHIR detector at ELSA; Messung der Reaktion {gamma}p {yields} K{sup 0}{sigma}{sup +} fuer Photonenergien bis 2.65 GeV mit dem SAPHIR-Detektor an ELSA

    Energy Technology Data Exchange (ETDEWEB)

    Lawall, R.

    2004-01-01

    The reaction {gamma}p {yields} K{sup 0}{sigma}{sup +} was measured with the SAPHIR-detector at ELSA during the run periods 1997 and 1998. Results were obtained for cross sections in the photon energy range from threshold up to 2.65 GeV for all production angles and for the {sigma}{sup +}-polarization. Emphasis has been put on the determination and reduction of the contributions of background reactions and the comparison with other measurements and theoretical predictions. (orig.)

  2. Measurement of the B{sub s} oscillations with the semileptonic deacy B{sup 0}{sub s} {yields} D{sup -}{sub s} ({phi}{pi}{sup -}) {mu}{sup +}{nu}{sub {mu}} with the DOe detector; Messung der B{sub s}-Oszillation mit dem semileptonischen Zerfall B{sup 0}{sub s} {yields} D{sup -}{sub s} ({phi}{pi}{sup -}) {mu}{sup +}{nu}{sub {mu}} mit dem DOe-Detektor

    Energy Technology Data Exchange (ETDEWEB)

    Ay, C.

    2006-07-01

    in this thesis the measurement of B{sub s} oscillations by means of the decay B{sub s}{yields}D{sub s}{sup -}({phi}{pi}{sup -}){sub {mu}}{sup +}X at the Tevatron at a c. m. energy of {radical}(s)=1.96 TeV is described. From the results a lower limit of the oscillation frequency of {delta}m{sub s}>15.5 ps{sup -1} has been derived. (HSI)

  3. High-energy gamma-ray and neutrino production in star-forming galaxies across cosmic time: Difficulties in explaining the IceCube data

    Science.gov (United States)

    Sudoh, Takahiro; Totani, Tomonori; Kawanaka, Norita

    2018-04-01

    We present new theoretical modeling to predict the luminosity and spectrum of gamma-ray and neutrino emission of a star-forming galaxy, from the star formation rate (ψ), gas mass (Mgas), stellar mass, and disk size, taking into account production, propagation, and interactions of cosmic rays. The model reproduces the observed gamma-ray luminosities of nearby galaxies detected by Fermi better than the simple power-law models as a function of ψ or ψMgas. This model is then used to predict the cosmic background flux of gamma-rays and neutrinos from star-forming galaxies, by using a semi-analytical model of cosmological galaxy formation that reproduces many observed quantities of local and high-redshift galaxies. Calibration of the model using gamma-ray luminosities of nearby galaxies allows us to make a more reliable prediction than previous studies. In our baseline model, star-forming galaxies produce about 20% of the isotropic gamma-ray background unresolved by Fermi, and only 0.5% of IceCube neutrinos. Even with an extreme model assuming a hard injection cosmic-ray spectral index of 2.0 for all galaxies, at most 22% of IceCube neutrinos can be accounted for. These results indicate that it is difficult to explain most of the IceCube neutrinos by star-forming galaxies, without violating the gamma-ray constraints from nearby galaxies.

  4. The IceCube Neutrino Observatory, the Pierre Auger Observatory and the Telescope Array: Joint Contribution to the 34th International Cosmic Ray Conference (ICRC 2015)

    Energy Technology Data Exchange (ETDEWEB)

    Aartsen, M.G.; et al.

    2015-11-06

    We have conducted three searches for correlations between ultra-high energy cosmic rays detected by the Telescope Array and the Pierre Auger Observatory, and high-energy neutrino candidate events from IceCube. Two cross-correlation analyses with UHECRs are done: one with 39 cascades from the IceCube `high-energy starting events' sample and the other with 16 high-energy `track events'. The angular separation between the arrival directions of neutrinos and UHECRs is scanned over. The same events are also used in a separate search using a maximum likelihood approach, after the neutrino arrival directions are stacked. To estimate the significance we assume UHECR magnetic deflections to be inversely proportional to their energy, with values $3^\\circ$, $6^\\circ$ and $9^\\circ$ at 100 EeV to allow for the uncertainties on the magnetic field strength and UHECR charge. A similar analysis is performed on stacked UHECR arrival directions and the IceCube sample of through-going muon track events which were optimized for neutrino point-source searches.

  5. Evaluation of the astrophysical origin of a vertical high-energy neutrino event in IceCube using IceTop information

    Energy Technology Data Exchange (ETDEWEB)

    Stahlberg, Martin; Auffenberg, Jan; Rongen, Martin; Kemp, Julian; Hansmann, Bengt; Schaufel, Merlin; Wiebusch, Christopher [RWTH Aachen, III. Physikalisches Institut B, Otto-Blumenthal-Strasse, 52074 Aachen (Germany); Collaboration: IceCube-Collaboration

    2015-07-01

    A main goal of the IceCube neutrino observatory is the detection of high-energy astrophysical neutrinos. IceCube's surface detector component IceTop is an array of 81 stations comprised of two Cherenkov-light detecting tanks, each of which is filled with clear ice and contains two photomultiplier modules. IceTop allows for the detection of cosmic-ray induced air-showers above energies of a few 100 TeV. In addition, the atmospheric origin of neutrino events detected with IceCube can be verified by the observation of a coincident air-shower component on the surface with IceTop. In 2014, a vertically down-going high-energy muon neutrino event starting in IceCube has been observed. The astrophysical origin of this event is tested by a close examination of the IceTop data. The outcome of this analysis is used to assess the potential of the proposed IceTop extension, IceVeto, which further increases the geometrical acceptance of the surface detector.

  6. Uncertainty of soil erosion modelling using open source high resolution and aggregated DEMs

    Directory of Open Access Journals (Sweden)

    Arun Mondal

    2017-05-01

    Full Text Available Digital Elevation Model (DEM is one of the important parameters for soil erosion assessment. Notable uncertainties are observed in this study while using three high resolution open source DEMs. The Revised Universal Soil Loss Equation (RUSLE model has been applied to analysis the assessment of soil erosion uncertainty using open source DEMs (SRTM, ASTER and CARTOSAT and their increasing grid space (pixel size from the actual. The study area is a part of the Narmada river basin in Madhya Pradesh state, which is located in the central part of India and the area covered 20,558 km2. The actual resolution of DEMs is 30 m and their increasing grid spaces are taken as 90, 150, 210, 270 and 330 m for this study. Vertical accuracy of DEMs has been assessed using actual heights of the sample points that have been taken considering planimetric survey based map (toposheet. Elevations of DEMs are converted to the same vertical datum from WGS 84 to MSL (Mean Sea Level, before the accuracy assessment and modelling. Results indicate that the accuracy of the SRTM DEM with the RMSE of 13.31, 14.51, and 18.19 m in 30, 150 and 330 m resolution respectively, is better than the ASTER and the CARTOSAT DEMs. When the grid space of the DEMs increases, the accuracy of the elevation and calculated soil erosion decreases. This study presents a potential uncertainty introduced by open source high resolution DEMs in the accuracy of the soil erosion assessment models. The research provides an analysis of errors in selecting DEMs using the original and increased grid space for soil erosion modelling.

  7. Comparative DEMS study on the electrochemical oxidation of carbon blacks

    DEFF Research Database (Denmark)

    Ashton, Sean James; Arenz, Matthias

    2012-01-01

    Publication year: 2012 Source:Journal of Power Sources, Volume 217 Sean J. Ashton, Matthias Arenz The intention of the study presented here is to compare the electrochemical oxidation tendencies of a pristine Ketjen Black EC300 high surface area (HSA) carbon black, and four graphitised counterparts...... heat-treated between 2100 and 3200 °C, such as those typically used as corrosion resistant carbon (CRC) supports for polymer electrolyte membrane fuel cell (PEMFC) catalysts. A methodology combining cyclic voltammetry (CV) and differential electrochemical mass spectrometry (DEMS) is used, which allows......; however, CRC samples graphitised =2800 °C did not exhibit this same behaviour. Highlights ¿ We quantitatively determine electrooxidation of carbon support materials. ¿ We can distinguish between the total and partial electrooxidation. ¿ Non or mildly heat treated carbon forms passivating layer. ¿ Heat...

  8. Pharmakobotanische Untersuchungen von Lavendelsorten auf dem Plattensee- Plateau

    Directory of Open Access Journals (Sweden)

    Tóth, Frida

    2014-09-01

    Full Text Available Auf dem Hof Dörgicsei Levendula Major GmbH wurden 9 Lavendelsorten (6 Sorten von Lavandula angustifolia und 3 Sorten von Lavandula x intermedia untersucht. Neben den morphologischen und Wachstumseigenschaften wurden auch Frisch- und Trockengewichte bewertet. Quantitative und qualitative Untersuchungen von den Blüten- und Ätherischöldrogen wurden auch durchgeführt. Die statistische Analyse zeigte signifikant höhere Erträge bei den Sorten L. angustifolia ’Essence Purple’ und L. x intermedia ’Edelweiss’. Gehalt und Zusammensetzung von ätherischem Öl war eindeutig bei der Sorte L. angustifolia ’Ellagance Purple’ am günstigsten.

  9. Inferring sediment connectivity from high-resolution DEMs of Difference

    Science.gov (United States)

    Heckmann, Tobias; Vericat, Damià

    2017-04-01

    Topographic changes due to the erosion and deposition of bedrock, sediments and soil can be measured by differencing Digital Elevation Models (DEM) acquired at different points in time. So-called morphological sediment budgets can be computed from such DEMs of Difference (DoD) on an areal rather than a point basis. The advent of high-resolution and highly accurate surveying techniques (e.g. LiDAR, SfM), together with recent advances of survey platforms (e.g. UaVs) provides opportunities to improve the spatial and temporal scale (in terms of extent and resolution), the availability and quality of such measurements. Many studies have used DoD to investigate and interpret the spatial pattern of positive and negative vertical differences in terms of erosion and deposition, or of horizontal movement. Vertical differences can be converted to volumes, and negative (erosion) and positive (deposition) volumetric changes aggregated for spatial units (e.g., landforms, hillslopes, river channels) have been used to compute net balances. We argue that flow routing algorithms common in digital terrain analysis provide a means to enrich DoD-based investigations with some information about (potential) sediment pathways - something that has been widely neglected in previous studies. Where the DoD indicates a positive surface change, flow routing delineates the upslope area where the deposited sediment has potentially been derived from. In the downslope direction, flow routing indicates probable downslope pathways of material eroded/detached/entrained where the DoD shows negative surface change. This material has either been deposited along these pathways or been flushed out of the area of investigation. This is a question of sediment connectivity, a property of a system (i.e. a hillslope, a sub-/catchment) that describes its potential to move sediment through itself. The sediment pathways derived from the DEM are related to structural connectivity, while the spatial pattern of (net

  10. Cross Validation on the Equality of Uav-Based and Contour-Based Dems

    Science.gov (United States)

    Ma, R.; Xu, Z.; Wu, L.; Liu, S.

    2018-04-01

    Unmanned Aerial Vehicles (UAV) have been widely used for Digital Elevation Model (DEM) generation in geographic applications. This paper proposes a novel framework of generating DEM from UAV images. It starts with the generation of the point clouds by image matching, where the flight control data are used as reference for searching for the corresponding images, leading to a significant time saving. Besides, a set of ground control points (GCP) obtained from field surveying are used to transform the point clouds to the user's coordinate system. Following that, we use a multi-feature based supervised classification method for discriminating non-ground points from ground ones. In the end, we generate DEM by constructing triangular irregular networks and rasterization. The experiments are conducted in the east of Jilin province in China, which has been suffered from soil erosion for several years. The quality of UAV based DEM (UAV-DEM) is compared with that generated from contour interpolation (Contour-DEM). The comparison shows a higher resolution, as well as higher accuracy of UAV-DEMs, which contains more geographic information. In addition, the RMSE errors of the UAV-DEMs generated from point clouds with and without GCPs are ±0.5 m and ±20 m, respectively.

  11. Dementia-free life expectancy (demFLE) in the Netherlands

    NARCIS (Netherlands)

    Perenboom, R.J.M.; Boshuizen, H.C.; Breteler, M.M.B.; Alewijn, O.; Water, H.P.A. van de

    1996-01-01

    To gain an insight into the burden of dementia in an aging society, life expectancy with dementia and its counterpart dementia-free life expectancy (DemFLE) in The Netherlands are presented. Sullivan's method was used to calculate DemFLE. For elderly living either independently or in homes for the

  12. INFLUENCE OF DEM IN WATERSHED MANAGEMENT AS FLOOD ZONATION MAPPING

    Directory of Open Access Journals (Sweden)

    M. Alrajhi

    2016-06-01

    Full Text Available Despite of valuable efforts from working groups and research organizations towards flood hazard reduction through its program, still minimal diminution from these hazards has been realized. This is mainly due to the fact that with rapid increase in population and urbanization coupled with climate change, flood hazards are becoming increasingly catastrophic. Therefore there is a need to understand and access flood hazards and develop means to deal with it through proper preparations, and preventive measures. To achieve this aim, Geographical Information System (GIS, geospatial and hydrological models were used as tools to tackle with influence of flash floods in the Kingdom of Saudi Arabia due to existence of large valleys (Wadis which is a matter of great concern. In this research paper, Digital Elevation Models (DEMs of different resolution (30m, 20m,10m and 5m have been used, which have proven to be valuable tool for the topographic parameterization of hydrological models which are the basis for any flood modelling process. The DEM was used as input for performing spatial analysis and obtaining derivative products and delineate watershed characteristics of the study area using ArcGIS desktop and its Arc Hydro extension tools to check comparability of different elevation models for flood Zonation mapping. The derived drainage patterns have been overlaid over aerial imagery of study area, to check influence of greater amount of precipitation which can turn into massive destructions. The flow accumulation maps derived provide zones of highest accumulation and possible flow directions. This approach provide simplified means of predicting extent of inundation during flood events for emergency action especially for large areas because of large coverage area of the remotely sensed data.

  13. On the measurement of high-energetic neutrinos with the IceCube neutrino telescope and with acoustic detection methods

    International Nuclear Information System (INIS)

    Schunck, Matthias

    2011-01-01

    In this thesis, two subjects have been addressed to enhance the detection of astrophysical neutrinos with the existing IceCube neutrino telescope as well as to explore new detection methods, namely the acoustic detection. In the first part of this thesis, the determination of the acoustic attenuation length in South-Pole ice is presented. This is part of a feasibility study to investigate the acoustic neutrino detection as a possibility to enhance the detection of the highest-energy neutrinos. For this, the acoustic properties of the ice have to be known, and the South-Pole Acoustic Test Setup (SPATS) has been built to determine these. The attenuation length is determined using in-situ measurements with SPATS and a retrievable transmitter (pinger), which was deployed in a depth between 190 and 500 m into the water-filled drilling holes. Even though, the unknown angular-dependent sensitivities of the SPATS sensor channels cannot be avoided and are considered as the dominant systematic effect for these measurements. In this thesis, the acoustic attenuation length is calculated by comparing the energy contents of the pinger pulses recorded by the various SPATS sensor channels for different distances between the pinger and the respective channel. The energy was calculated from the Fourier spectra of the pinger pulses for a frequency range between 5 and 35 kHz. The attenuation coefficient is calculated for each channel individually and the weighted mean over the distribution of all considered channels leads to an attenuation length of 264 +52 -37 m. The dependence of the attenuation on both depth and frequency has been investigated, showing no indications for either. In the second part, a new event reconstruction method based on a Top-Down approach is presented. The method has been implemented for the IC40 detector and applied to the muon energy reconstruction. The Top-Down method is based on the direct comparison of single measured events with a large sample of

  14. On the measurement of high-energetic neutrinos with the IceCube neutrino telescope and with acoustic detection methods

    Energy Technology Data Exchange (ETDEWEB)

    Schunck, Matthias

    2011-10-07

    In this thesis, two subjects have been addressed to enhance the detection of astrophysical neutrinos with the existing IceCube neutrino telescope as well as to explore new detection methods, namely the acoustic detection. In the first part of this thesis, the determination of the acoustic attenuation length in South-Pole ice is presented. This is part of a feasibility study to investigate the acoustic neutrino detection as a possibility to enhance the detection of the highest-energy neutrinos. For this, the acoustic properties of the ice have to be known, and the South-Pole Acoustic Test Setup (SPATS) has been built to determine these. The attenuation length is determined using in-situ measurements with SPATS and a retrievable transmitter (pinger), which was deployed in a depth between 190 and 500 m into the water-filled drilling holes. Even though, the unknown angular-dependent sensitivities of the SPATS sensor channels cannot be avoided and are considered as the dominant systematic effect for these measurements. In this thesis, the acoustic attenuation length is calculated by comparing the energy contents of the pinger pulses recorded by the various SPATS sensor channels for different distances between the pinger and the respective channel. The energy was calculated from the Fourier spectra of the pinger pulses for a frequency range between 5 and 35 kHz. The attenuation coefficient is calculated for each channel individually and the weighted mean over the distribution of all considered channels leads to an attenuation length of 264{sup +52} {sub -37} m. The dependence of the attenuation on both depth and frequency has been investigated, showing no indications for either. In the second part, a new event reconstruction method based on a Top-Down approach is presented. The method has been implemented for the IC40 detector and applied to the muon energy reconstruction. The Top-Down method is based on the direct comparison of single measured events with a large sample

  15. Accuracy assessment of the global TanDEM-X Digital Elevation Model with GPS data

    Science.gov (United States)

    Wessel, Birgit; Huber, Martin; Wohlfart, Christian; Marschalk, Ursula; Kosmann, Detlev; Roth, Achim

    2018-05-01

    The primary goal of the German TanDEM-X mission is the generation of a highly accurate and global Digital Elevation Model (DEM) with global accuracies of at least 10 m absolute height error (linear 90% error). The global TanDEM-X DEM acquired with single-pass SAR interferometry was finished in September 2016. This paper provides a unique accuracy assessment of the final TanDEM-X global DEM using two different GPS point reference data sets, which are distributed across all continents, to fully characterize the absolute height error. Firstly, the absolute vertical accuracy is examined by about three million globally distributed kinematic GPS (KGPS) points derived from 19 KGPS tracks covering a total length of about 66,000 km. Secondly, a comparison is performed with more than 23,000 "GPS on Bench Marks" (GPS-on-BM) points provided by the US National Geodetic Survey (NGS) scattered across 14 different land cover types of the US National Land Cover Data base (NLCD). Both GPS comparisons prove an absolute vertical mean error of TanDEM-X DEM smaller than ±0.20 m, a Root Means Square Error (RMSE) smaller than 1.4 m and an excellent absolute 90% linear height error below 2 m. The RMSE values are sensitive to land cover types. For low vegetation the RMSE is ±1.1 m, whereas it is slightly higher for developed areas (±1.4 m) and for forests (±1.8 m). This validation confirms an outstanding absolute height error at 90% confidence level of the global TanDEM-X DEM outperforming the requirement by a factor of five. Due to its extensive and globally distributed reference data sets, this study is of considerable interests for scientific and commercial applications.

  16. OPEN-SOURCE DIGITAL ELEVATION MODEL (DEMs EVALUATION WITH GPS AND LiDAR DATA

    Directory of Open Access Journals (Sweden)

    N. F. Khalid

    2016-09-01

    Full Text Available Advanced Spaceborne Thermal Emission and Reflection Radiometer-Global Digital Elevation Model (ASTER GDEM, Shuttle Radar Topography Mission (SRTM, and Global Multi-resolution Terrain Elevation Data 2010 (GMTED2010 are freely available Digital Elevation Model (DEM datasets for environmental modeling and studies. The quality of spatial resolution and vertical accuracy of the DEM data source has a great influence particularly on the accuracy specifically for inundation mapping. Most of the coastal inundation risk studies used the publicly available DEM to estimated the coastal inundation and associated damaged especially to human population based on the increment of sea level. In this study, the comparison between ground truth data from Global Positioning System (GPS observation and DEM is done to evaluate the accuracy of each DEM. The vertical accuracy of SRTM shows better result against ASTER and GMTED10 with an RMSE of 6.054 m. On top of the accuracy, the correlation of DEM is identified with the high determination of coefficient of 0.912 for SRTM. For coastal zone area, DEMs based on airborne light detection and ranging (LiDAR dataset was used as ground truth data relating to terrain height. In this case, the LiDAR DEM is compared against the new SRTM DEM after applying the scale factor. From the findings, the accuracy of the new DEM model from SRTM can be improved by applying scale factor. The result clearly shows that the value of RMSE exhibit slightly different when it reached 0.503 m. Hence, this new model is the most suitable and meets the accuracy requirement for coastal inundation risk assessment using open source data. The suitability of these datasets for further analysis on coastal management studies is vital to assess the potentially vulnerable areas caused by coastal inundation.

  17. Antarctic 1 km Digital Elevation Model (DEM) from Combined ERS-1 Radar and ICESat Laser Satellite Altimetry

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set provides a 1 km resolution Digital Elevation Model (DEM) of Antarctica. The DEM combines measurements from the European Remote Sensing Satellite-1...

  18. Original Product Resolution (OPR) Source Digital Elevation Models (DEMs) - USGS National Map 3DEP Downloadable Data Collection

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This data collection is the Original Product Resolution (OPR) Digital Elevation Model (DEM) as provided to the USGS. This DEM is delivered in the original...

  19. Sensitivity of Particle Size in Discrete Element Method to Particle Gas Method (DEM_PGM) Coupling in Underbody Blast Simulations

    Science.gov (United States)

    2016-06-12

    Particle Size in Discrete Element Method to Particle Gas Method (DEM_PGM) Coupling in Underbody Blast Simulations Venkatesh Babu, Kumar Kulkarni, Sanjay...buried in soil viz., (1) coupled discrete element & particle gas methods (DEM-PGM) and (2) Arbitrary Lagrangian-Eulerian (ALE), are investigated. The...DEM_PGM and identify the limitations/strengths compared to the ALE method. Discrete Element Method (DEM) can model individual particle directly, and

  20. Which DEM is best for analyzing fluvial landscape development in mountainous terrains?

    Science.gov (United States)

    Boulton, Sarah J.; Stokes, Martin

    2018-06-01

    Regional studies of fluvial landforms and long-term (Quaternary) landscape development in remote mountain landscapes routinely use satellite-derived DEM data sets. The SRTM and ASTER DEMs are the most commonly utilised because of their longer availability, free cost, and ease of access. However, rapid technological developments mean that newer and higher resolution DEM data sets such as ALOS World 3D (AW3D) and TanDEM-X are being released to the scientific community. Geomorphologists are thus faced with an increasingly problematic challenge of selecting an appropriate DEM for their landscape analyses. Here, we test the application of four medium resolution DEM products (30 m = SRTM, ASTER, AW3D; 12 m = TanDEM-X) for qualitative and quantitative analysis of a fluvial mountain landscape using the Dades River catchment (High Atlas Mountains, Morocco). This landscape comprises significant DEM remote sensing challenges, notably a high mountain relief, steep slopes, and a deeply incised high sinuosity drainage network with narrow canyon/gorge reaches. Our goal was to see which DEM produced the most representative best fit drainage network and meaningful quantification. To achieve this, we used ArcGIS and Stream Profiler platforms to generate catchment hillshade and slope rasters and to extract drainage network, channel long profile and channel slope, and area data. TanDEM-X produces the clearest landscape representation but with channel routing errors in localised high relief areas. Thirty-metre DEMs are smoother and less detailed, but the AW3D shows the closest fit to the real drainage network configuration. The TanDEM-X elevation values are the closest to field-derived GPS measurements. Long profiles exhibit similar shapes but with minor differences in length, elevation, and the degree of noise/smoothing, with AW3D producing the best representation. Slope-area plots display similarly positioned slope-break knickpoints with modest differences in steepness and concavity

  1. Italian Physical Society Galactic diffuse neutrino component in the astrophysical excess measured by the IceCube experiment

    CERN Document Server

    Grasso, D; Marinelli, A; Taoso, M; Urbano, A

    2017-01-01

    The Galaxy is a guaranteed source of neutrinos produced by the interaction of cosmic rays (CRs) with the interstellar gas. According to conventional CR propagation models, however, this emission may be too weak to be detected even by km3-scale neutrino telescopes. This expectation has to be revisited in the light of recent Fermi LAT findings showing that the CR spectrum in the inner Galactic plane is significantly harder than that inferred from local CR measurements. Here we discuss some relevant predictions of a phenomenological model —based on a spatially-dependent CR diffusion —which was recently developed to reproduce that large-scale trend. In particular, we show how that model correctly predicts the TeV γ-ray diffuse emission measured by Milagro and H.E.S.S. in the inner Galaxy. We will then compute the corresponding neutrino emission, compare it with ANTARES and IceCube results and discuss the perspectives of KM3NeT.

  2. The IceCube Data Acquisition Software: Lessons Learned during Distributed, Collaborative, Multi-Disciplined Software Development.

    Energy Technology Data Exchange (ETDEWEB)

    Beattie, Keith S; Beattie, Keith; Day Ph.D., Christopher; Glowacki, Dave; Hanson Ph.D., Kael; Jacobsen Ph.D., John; McParland, Charles; Patton Ph.D., Simon

    2007-09-21

    In this experiential paper we report on lessons learned during the development ofthe data acquisition software for the IceCube project - specifically, how to effectively address the unique challenges presented by a distributed, collaborative, multi-institutional, multi-disciplined project such as this. While development progress in software projects is often described solely in terms of technical issues, our experience indicates that non- and quasi-technical interactions play a substantial role in the effectiveness of large software development efforts. These include: selection and management of multiple software development methodologies, the effective useof various collaborative communication tools, project management structure and roles, and the impact and apparent importance of these elements when viewed through the differing perspectives of hardware, software, scientific and project office roles. Even in areas clearly technical in nature, success is still influenced by non-technical issues that can escape close attention. In particular we describe our experiences on software requirements specification, development methodologies and communication tools. We make observations on what tools and techniques have and have not been effective in this geographically disperse (including the South Pole) collaboration and offer suggestions on how similarly structured future projects may build upon our experiences.

  3. Analysis the Accuracy of Digital Elevation Model (DEM) for Flood Modelling on Lowland Area

    Science.gov (United States)

    Zainol Abidin, Ku Hasna Zainurin Ku; Razi, Mohd Adib Mohammad; Bukari, Saifullizan Mohd

    2018-04-01

    Flood is one type of natural disaster that occurs almost every year in Malaysia. Commonly the lowland areas are the worst affected areas. This kind of disaster is controllable by using an accurate data for proposing any kinds of solutions. Elevation data is one of the data used to produce solutions for flooding. Currently, the research about the application of Digital Elevation Model (DEM) in hydrology was increased where this kind of model will identify the elevation for required areas. University of Tun Hussein Onn Malaysia is one of the lowland areas which facing flood problems on 2006. Therefore, this area was chosen in order to produce DEM which focussed on University Health Centre (PKU) and drainage area around Civil and Environment Faculty (FKAAS). Unmanned Aerial Vehicle used to collect aerial photos data then undergoes a process of generating DEM according to three types of accuracy and quality from Agisoft PhotoScan software. The higher the level of accuracy and quality of DEM produced, the longer time taken to generate a DEM. The reading of the errors created while producing the DEM shows almost 0.01 different. Therefore, it has been identified there are some important parameters which influenced the accuracy of DEM.

  4. Generation and performance assessment of the global TanDEM-X digital elevation model

    Science.gov (United States)

    Rizzoli, Paola; Martone, Michele; Gonzalez, Carolina; Wecklich, Christopher; Borla Tridon, Daniela; Bräutigam, Benjamin; Bachmann, Markus; Schulze, Daniel; Fritz, Thomas; Huber, Martin; Wessel, Birgit; Krieger, Gerhard; Zink, Manfred; Moreira, Alberto

    2017-10-01

    The primary objective of the TanDEM-X mission is the generation of a global, consistent, and high-resolution digital elevation model (DEM) with unprecedented global accuracy. The goal is achieved by exploiting the interferometric capabilities of the two twin SAR satellites TerraSAR-X and TanDEM-X, which fly in a close orbit formation, acting as an X-band single-pass interferometer. Between December 2010 and early 2015 all land surfaces have been acquired at least twice, difficult terrain up to seven or eight times. The acquisition strategy, data processing, and DEM calibration and mosaicking have been systematically monitored and optimized throughout the entire mission duration, in order to fulfill the specification. The processing of all data has finally been completed in September 2016 and this paper reports on the final performance of the TanDEM-X global DEM and presents the acquisition and processing strategy which allowed to obtain the final DEM quality. The results confirm the outstanding global accuracy of the delivered product, which can be now utilized for both scientific and commercial applications.

  5. Eröffnung des „Hauses der Astronomie“ auf dem Königsstuhl

    OpenAIRE

    Pössel, Markus; Tschira, Klaus

    2012-01-01

    Mit dem „Haus der Astronomie“ (HdA) auf dem Königsstuhl ist ein neues Zentrum für astronomische Bildungs- und Öffentlichkeitsarbeit in Heidelberg eröffnet. Das Haus der Astronomie ist eine gemeinsame Einrichtung der Max-Planck-Gesellschaft (MPG) und der Klaus Tschira Stiftung unter Beteiligung der Stadt Heidelberg und der Ruperto Carola, deren Zentrum für Astronomie eng mit dem HdA zusammenarbeitet. Ziel des HdA ist es, astronomische Forschung einer breiten Öffentlichkeit in verständlicher Fo...

  6. DEM Simulation of Particle Stratification and Segregation in Stockpile Formation

    Directory of Open Access Journals (Sweden)

    Zhang Dizhe

    2017-01-01

    Full Text Available Granular stockpiles are commonly observed in nature and industry, and their formation has been extensively investigated experimentally and mathematically in the literature. One of the striking features affecting properties of stockpiles are the internal patterns formed by the stratification and segregation processes. In this work, we conduct a numerical study based on DEM (discrete element method model to study the influencing factors and triggering mechanisms of these two phenomena. With the use of a previously developed mixing index, the effects of parameters including size ratio, injection height and mass ratio are investigated. We found that it is a void-filling mechanism that differentiates the motions of particles with different sizes. This mechanism drives the large particles to flow over the pile surface and segregate at the pile bottom, while it also pushes small particles to fill the voids between large particles, giving rise to separate layers. Consequently, this difference in motion will result in the observed stratification and segregation phenomena.

  7. Time-Dependent Searches for Point Sources of Neutrinos with the 4O-String and 22-String Configurations of IceCube

    Science.gov (United States)

    Abbasi, R.; Abdou, Y.; Abu-Zayyad, T.; Adams, J.; Aguilar, J. A.; Ahlers, M.; Andeen, K.; Auffenberg, J.; Bai, X.; Baker, M.; hide

    2012-01-01

    This paper presents four searches for flaring sources of neutrinos using the IceCube neutrino telescope. For the first time, a search is performed over the entire parameter space of energy, direction, and time with sensitivity to neutrino flares lasting between 20 micro-s and a year duration from astrophysical sources. Searches that integrate over time are less sensitive to flares because they are affected by a larger background of atmospheric neutrinos and muons that can be reduced by the use of additional timing information. Flaring sources considered here, such as active galactic nuclei, soft gamma-ray repeaters, and gamma-ray bursts, are promising candidate neutrino emitters. Two searches are "untriggered" in the sense that they look for any possible flare in the entire sky and from a predefined catalog of sources from which photon flares have been recorded. The other two searches are triggered by multi-wavelength information on flares from blazars and from a soft gamma-ray repeater. One triggered search uses lightcurves from Fermi-LAT which provides continuous monitoring. A second triggered search uses information where the flux states have been measured only for short periods of time near the flares. The untriggered searches use data taken by 40 strings of IceCube between 2008 April 5 and 2009 May 20. The triggered searches also use data taken by the 22-string configuration of IceCube operating between 2007 May 31 and 2008 April 5. The results from all four searches are compatible with a fluctuation of the background.

  8. Time-Dependent Searches for Point Sources of Neutrinos with the 40-String and 22-String Configurations of IceCube

    Science.gov (United States)

    Stamatikos, M.

    2012-01-01

    This paper presents four searches for flaring sources of neutrinos using the IceCube neutrino telescope. For the first time, a search is performed over the entire parameter space of energy, direction and time with sensitivity to neutrino flares lasting between 20 microseconds and a year duration from astrophysical sources. Searches which integrate over time are less sensitive to flares because they are affected by a larger background of atmospheric neutrinos and muons that can be reduced by the use of additional timing information. Flaring sources considered here, such as active galactic nuclei, soft gamma ray repeaters and gamma-ray bursts, are promising candidate neutrino emitters. Two searches are untriggered in the sense that they look for any possible flare in the entire sky and from a predefined catalog of sources from which photon flares have been recorded. The other two searches are triggered by multi-wavelength information on flares from blazars and from a soft gamma-ray repeater. One triggered search uses lightcurves from Fermi-LAT which provides continuous monitoring. A second triggered search uses information where the flux states have been measured only for short periods of time near the flares. The untriggered searches use data taken by 40 strings of IceCube between Apr 5, 2008 and May 20, 2009. The triggered searches also use data taken by the 22-string configuration of IceCube operating between May 31, 2007 and Apr 5, 2008. The results from all four searches are compatible with a fluctuation of the background.

  9. A modified likelihood-method to search for point-sources in the diffuse astrophysical neutrino-flux in IceCube

    Energy Technology Data Exchange (ETDEWEB)

    Reimann, Rene; Haack, Christian; Leuermann, Martin; Raedel, Leif; Schoenen, Sebastian; Schimp, Michael; Wiebusch, Christopher [III. Physikalisches Institut, RWTH Aachen (Germany); Collaboration: IceCube-Collaboration

    2015-07-01

    IceCube, a cubic-kilometer sized neutrino detector at the geographical South Pole, has recently measured a flux of high-energy astrophysical neutrinos. Although this flux has now been observed in multiple analyses, no point sources or source classes could be identified yet. Standard point source searches test many points in the sky for a point source of astrophysical neutrinos individually and therefore produce many trials. Our approach is to additionally use the measured diffuse spectrum to constrain the number of possible point sources and their properties. Initial studies of the method performance are shown.

  10. Constraints on ultrahigh-energy cosmic-ray sources from a search for neutrinos above 10 PeV with IceCube

    DEFF Research Database (Denmark)

    Aartsen, M.G.; Abraham, K.; Ackermann, M.

    2016-01-01

    We report constraints on the sources of ultrahigh-energy cosmic rays (UHECRs) above 109 GeV, based on an analysis of seven years of IceCube data. This analysis efficiently selects very high- energy neutrino-induced events which have deposited energies from 5×105 GeV to above 1011 GeV. Two neutrin...... for active galactic nuclei and new-born pulsar models. These limits on the ultrahigh-energy neutrino flux models are the most stringent to date....

  11. A photogrammetric DEM of Greenland based on 1978-1987 aerial photos: validation and integration with laser altimetry and satellite-derived DEMs

    DEFF Research Database (Denmark)

    Korsgaard, Niels Jákup; Kjær, Kurt H.; Nuth, Christopher

    Here we present a DEM of Greenland covering all ice-free terrain and the margins of the GrIS and local glaciers and ice caps. The DEM is based on the 3534 photos used in the aero-triangulation which were recorded by the Danish Geodata Agency (then the Geodetic Institute) in survey campaigns...... spanning the period 1978-1987. The GrIS is covered tens of kilometers into the interior due to the large footprints of the photos (30 x 30 km) and control provided by the aero-triangulation. Thus, the data are ideal for providing information for analysis of ice marginal elevation change and also control...

  12. 2012 Oregon Department of Geology and Mineral Industries (DOGAMI) Lidar DEM: Rogue River Oregon

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The dataset encompasses portions of Coos, Curry, Douglas, Jackson, and Josephine Counties.The bare earth digital elevation model (DEM) represents the earth's surface...

  13. Relative Error Evaluation to Typical Open Global dem Datasets in Shanxi Plateau of China

    Science.gov (United States)

    Zhao, S.; Zhang, S.; Cheng, W.

    2018-04-01

    Produced by radar data or stereo remote sensing image pairs, global DEM datasets are one of the most important types for DEM data. Relative error relates to surface quality created by DEM data, so it relates to geomorphology and hydrologic applications using DEM data. Taking Shanxi Plateau of China as the study area, this research evaluated the relative error to typical open global DEM datasets including Shuttle Radar Terrain Mission (SRTM) data with 1 arc second resolution (SRTM1), SRTM data with 3 arc second resolution (SRTM3), ASTER global DEM data in the second version (GDEM-v2) and ALOS world 3D-30m (AW3D) data. Through process and selection, more than 300,000 ICESat/GLA14 points were used as the GCP data, and the vertical error was computed and compared among four typical global DEM datasets. Then, more than 2,600,000 ICESat/GLA14 point pairs were acquired using the distance threshold between 100 m and 500 m. Meanwhile, the horizontal distance between every point pair was computed, so the relative error was achieved using slope values based on vertical error difference and the horizontal distance of the point pairs. Finally, false slope ratio (FSR) index was computed through analyzing the difference between DEM and ICESat/GLA14 values for every point pair. Both relative error and FSR index were categorically compared for the four DEM datasets under different slope classes. Research results show: Overall, AW3D has the lowest relative error values in mean error, mean absolute error, root mean square error and standard deviation error; then the SRTM1 data, its values are a little higher than AW3D data; the SRTM3 and GDEM-v2 data have the highest relative error values, and the values for the two datasets are similar. Considering different slope conditions, all the four DEM data have better performance in flat areas but worse performance in sloping regions; AW3D has the best performance in all the slope classes, a litter better than SRTM1; with slope increasing

  14. VT Lidar Hydro-flattened DEM (0.7 meter) - 2014 - Chittenden, Lamoille, Orleans, & Washington Counties

    Data.gov (United States)

    Vermont Center for Geographic Information — (Link to Metadata) This metadata applies to the following collection area(s): Eastern VT 2014 0.7m and Digital Elevation Model (DEM) dataset of the following...

  15. Evaluation of TanDEMx and SRTM DEM on watershed simulated ...

    Indian Academy of Sciences (India)

    57

    **Department of Environmental and Water Resource Engineering. School of Civil .... Few studies have investigated the impact of DEM on watershed delineation like ..... on Integrating GIS and Environmental Modelling, Santa Fe, New. Mexico.

  16. VT Lidar Hydro-flattened DEM (0.7 meter) - 2015 - Windham County

    Data.gov (United States)

    Vermont Center for Geographic Information — (Link to Metadata) This metadata applies to the following collection area(s): Windham County 2015 0.7m and Digital Elevation Model (DEM) dataset of the following...

  17. 5 Meter Alaska Digital Elevation Models (DEMs) - USGS National Map 3DEP Downloadable Data Collection

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This dataset is comprised of 5-meter ifsar-derived Digital Elevation Models (DEMs) over Alaska only. It is distributed as one-degree blocks with overedge. Horizontal...

  18. Glacier Volume Change Estimation Using Time Series of Improved Aster Dems

    Science.gov (United States)

    Girod, Luc; Nuth, Christopher; Kääb, Andreas

    2016-06-01

    Volume change data is critical to the understanding of glacier response to climate change. The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) system embarked on the Terra (EOS AM-1) satellite has been a unique source of systematic stereoscopic images covering the whole globe at 15m resolution and at a consistent quality for over 15 years. While satellite stereo sensors with significantly improved radiometric and spatial resolution are available to date, the potential of ASTER data lies in its long consistent time series that is unrivaled, though not fully exploited for change analysis due to lack of data accuracy and precision. Here, we developed an improved method for ASTER DEM generation and implemented it in the open source photogrammetric library and software suite MicMac. The method relies on the computation of a rational polynomial coefficients (RPC) model and the detection and correction of cross-track sensor jitter in order to compute DEMs. ASTER data are strongly affected by attitude jitter, mainly of approximately 4 km and 30 km wavelength, and improving the generation of ASTER DEMs requires removal of this effect. Our sensor modeling does not require ground control points and allows thus potentially for the automatic processing of large data volumes. As a proof of concept, we chose a set of glaciers with reference DEMs available to assess the quality of our measurements. We use time series of ASTER scenes from which we extracted DEMs with a ground sampling distance of 15m. Our method directly measures and accounts for the cross-track component of jitter so that the resulting DEMs are not contaminated by this process. Since the along-track component of jitter has the same direction as the stereo parallaxes, the two cannot be separated and the elevations extracted are thus contaminated by along-track jitter. Initial tests reveal no clear relation between the cross-track and along-track components so that the latter seems not to be

  19. GLACIER VOLUME CHANGE ESTIMATION USING TIME SERIES OF IMPROVED ASTER DEMS

    Directory of Open Access Journals (Sweden)

    L. Girod

    2016-06-01

    Full Text Available Volume change data is critical to the understanding of glacier response to climate change. The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER system embarked on the Terra (EOS AM-1 satellite has been a unique source of systematic stereoscopic images covering the whole globe at 15m resolution and at a consistent quality for over 15 years. While satellite stereo sensors with significantly improved radiometric and spatial resolution are available to date, the potential of ASTER data lies in its long consistent time series that is unrivaled, though not fully exploited for change analysis due to lack of data accuracy and precision. Here, we developed an improved method for ASTER DEM generation and implemented it in the open source photogrammetric library and software suite MicMac. The method relies on the computation of a rational polynomial coefficients (RPC model and the detection and correction of cross-track sensor jitter in order to compute DEMs. ASTER data are strongly affected by attitude jitter, mainly of approximately 4 km and 30 km wavelength, and improving the generation of ASTER DEMs requires removal of this effect. Our sensor modeling does not require ground control points and allows thus potentially for the automatic processing of large data volumes. As a proof of concept, we chose a set of glaciers with reference DEMs available to assess the quality of our measurements. We use time series of ASTER scenes from which we extracted DEMs with a ground sampling distance of 15m. Our method directly measures and accounts for the cross-track component of jitter so that the resulting DEMs are not contaminated by this process. Since the along-track component of jitter has the same direction as the stereo parallaxes, the two cannot be separated and the elevations extracted are thus contaminated by along-track jitter. Initial tests reveal no clear relation between the cross-track and along-track components so that the latter

  20. Sterblichkeit: der paradoxe Kunstgriff des Lebens - Eine Betrachtung vor dem Hintergrund der modernen Biologie

    Science.gov (United States)

    Verbeek, Bernhard

    Leben gibt es auf der Erde seit fast 4 Mio. Jahren, trotz allen Katastrophen. Die Idee des Lebens scheint unsterblich. Der Tod aber offenbar auch. Jedes Lebewesen ist davon bedroht, ja für Menschen und andere "höhere“ Lebewesen ist er im Lebensprogramm eingebaut - todsicher. Diese Tatsache ist alles andere als selbstverständlich. Ist sie überhaupt kompatibel mit dem Prinzip der Evolution, nach dem der am besten Angepasste überlebt?

  1. Uncertainty of SWAT model at different DEM resolutions in a large mountainous watershed.

    Science.gov (United States)

    Zhang, Peipei; Liu, Ruimin; Bao, Yimeng; Wang, Jiawei; Yu, Wenwen; Shen, Zhenyao

    2014-04-15

    The objective of this study was to enhance understanding of the sensitivity of the SWAT model to the resolutions of Digital Elevation Models (DEMs) based on the analysis of multiple evaluation indicators. The Xiangxi River, a large tributary of Three Gorges Reservoir in China, was selected as the study area. A range of 17 DEM spatial resolutions, from 30 to 1000 m, was examined, and the annual and monthly model outputs based on each resolution were compared. The following results were obtained: (i) sediment yield was greatly affected by DEM resolution; (ii) the prediction of dissolved oxygen load was significantly affected by DEM resolutions coarser than 500 m; (iii) Total Nitrogen (TN) load was not greatly affected by the DEM resolution; (iv) Nitrate Nitrogen (NO₃-N) and Total Phosphorus (TP) loads were slightly affected by the DEM resolution; and (v) flow and Ammonia Nitrogen (NH₄-N) load were essentially unaffected by the DEM resolution. The flow and dissolved oxygen load decreased more significantly in the dry season than in the wet and normal seasons. Excluding flow and dissolved oxygen, the uncertainties of the other Hydrology/Non-point Source (H/NPS) pollution indicators were greater in the wet season than in the dry and normal seasons. Considering the temporal distribution uncertainties, the optimal DEM resolutions for flow was 30-200 m, for sediment and TP was 30-100 m, for dissolved oxygen and NO₃-N was 30-300 m, for NH₄-N was 30 to 70 m and for TN was 30-150 m. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. An experimentally validated DEM study of powder mixing in a paddle blade mixer

    OpenAIRE

    Pantaleev, Stefan; Yordanova, Slavina; Janda, Alvaro; Marigo, Michele; Ooi, Jin

    2017-01-01

    An investigation on the predictive capabilities of Discrete Element Method simulations of a powder mixing process in a laboratory scale paddle blade mixer is presented. The visco-elasto-plastic frictional adhesive DEM contactmodel of Thakur et al. (2014) was used to represent the cohesive behaviour of an aluminosilicate powder in which the model parameters were determined using experimental flow energy measurements from the FT4powder rheometer. DEM simulations of the mixing process using the ...

  3. An Investigation into Solution Verification for CFD-DEM

    Energy Technology Data Exchange (ETDEWEB)

    Fullmer, William D. [National Energy Technology Lab. (NETL), AECOM, Morgantown, WV (United States); Musser, Jordan [National Energy Technology Lab. (NETL), Morgantown, WV (United States)

    2017-10-01

    This report presents the study of the convergence behavior of the computational fluid dynamicsdiscrete element method (CFD-DEM) method, specifically National Energy Technology Laboratory’s (NETL) open source MFiX code (MFiX-DEM) with a diffusion based particle-tocontinuum filtering scheme. In particular, this study focused on determining if the numerical method had a solution in the high-resolution limit where the grid size is smaller than the particle size. To address this uncertainty, fixed particle beds of two primary configurations were studied: i) fictitious beds where the particles are seeded with a random particle generator, and ii) instantaneous snapshots from a transient simulation of an experimentally relevant problem. Both problems considered a uniform inlet boundary and a pressure outflow. The CFD grid was refined from a few particle diameters down to 1/6th of a particle diameter. The pressure drop between two vertical elevations, averaged across the bed cross-section was considered as the system response quantity of interest. A least-squares regression method was used to extrapolate the grid-dependent results to an approximate “grid-free” solution in the limit of infinite resolution. The results show that the diffusion based scheme does yield a converging solution. However, the convergence is more complicated than encountered in simpler, single-phase flow problems showing strong oscillations and, at times, oscillations superimposed on top of globally non-monotonic behavior. The challenging convergence behavior highlights the importance of using at least four grid resolutions in solution verification problems so that (over-determined) regression-based extrapolation methods may be applied to approximate the grid-free solution. The grid-free solution is very important in solution verification and VVUQ exercise in general as the difference between it and the reference solution largely determines the numerical uncertainty. By testing

  4. ASTER Global DEM contribution to GEOSS demonstrates open data sharing

    Science.gov (United States)

    Sohre, T.; Duda, K. A.; Meyer, D. J.; Behnke, J.; Nasa Esdis Lp Daac

    2010-12-01

    across all the GEOSS Societal Benefit areas was shown. The release of the global tiled research-grade DEM resulted in a significant increase in demand for ASTER elevation models, and increased awareness of related products. No cost access to these data has also promoted new applications of remotely sensed data, increasing their use across the full range of the GEOSS societal benefit areas. In addition, the simplified data access and greatly expanded pool of users resulted in a number of suggestions from researchers in many disciplines for possible enhancements to future versions of the ASTER GDEM. The broad distribution of the product can be directly attributed to the adoption of fundamental GEOSS data sharing principles, which are directed toward expanded access by minimizing time delay and cost, thus facilitating data use for education, research, and a range of other applications. The ASTER GDEM demonstrated the need and user demand for an improved global DEM product as well as the added benefit of not only “full and open” distribution, but “free and open” distribution.

  5. DEM simulation of granular flows in a centrifugal acceleration field

    Science.gov (United States)

    Cabrera, Miguel Angel; Peng, Chong; Wu, Wei

    2017-04-01

    The main purpose of mass-flow experimental models is abstracting distinctive features of natural granular flows, and allow its systematic study in the laboratory. In this process, particle size, space, time, and stress scales must be considered for the proper representation of specific phenomena [5]. One of the most challenging tasks in small scale models, is matching the range of stresses and strains among the particle and fluid media observed in a field event. Centrifuge modelling offers an alternative to upscale all gravity-driven processes, and it has been recently employed in the simulation of granular flows [1, 2, 3, 6, 7]. Centrifuge scaling principles are presented in Ref. [4], collecting a wide spectrum of static and dynamic models. However, for the case of kinematic processes, the non-uniformity of the centrifugal acceleration field plays a major role (i.e., Coriolis and inertial effects). In this work, we discuss a general formulation for the centrifugal acceleration field, implemented in a discrete element model framework (DEM), and validated with centrifuge experimental results. Conventional DEM simulations relate the volumetric forces as a function of the gravitational force Gp = mpg. However, in the local coordinate system of a rotating centrifuge model, the cylindrical centrifugal acceleration field needs to be included. In this rotating system, the centrifugal acceleration of a particle depends on the rotating speed of the centrifuge, as well as the position and speed of the particle in the rotating model. Therefore, we obtain the formulation of centrifugal acceleration field by coordinate transformation. The numerical model is validated with a series of centrifuge experiments of monodispersed glass beads, flowing down an inclined plane at different acceleration levels and slope angles. Further discussion leads to the numerical parameterization necessary for simulating equivalent granular flows under an augmented acceleration field. The premise of

  6. Modelling of Singapore's topographic transformation based on DEMs

    Science.gov (United States)

    Wang, Tao; Belle, Iris; Hassler, Uta

    2015-02-01

    Singapore's topography has been heavily transformed by industrialization and urbanization processes. To investigate topographic changes and evaluate soil mass flows, historical topographic maps of 1924 and 2012 were employed, and basic topographic features were vectorized. Digital elevation models (DEMs) for the two years were reconstructed based on vector features. Corresponding slope maps, a surface difference map and a scatter plot of elevation changes were generated and used to quantify and categorize the nature of the topographic transformation. The surface difference map is aggregated into five main categories of changes: (1) areas without significant height changes, (2) lowered-down areas where hill ranges were cut down, (3) raised-up areas where valleys and swamps were filled in, (4) reclaimed areas from the sea, and (5) new water-covered areas. Considering spatial proximity and configurations of different types of changes, topographic transformation can be differentiated as either creating inland flat areas or reclaiming new land from the sea. Typical topographic changes are discussed in the context of Singapore's urbanization processes. The two slope maps and elevation histograms show that generally, the topographic surface of Singapore has become flatter and lower since 1924. More than 89% of height changes have happened within a range of 20 m and 95% have been below 40 m. Because of differences in land surveying and map drawing methods, uncertainties and inaccuracies inherent in the 1924 topographic maps are discussed in detail. In this work, a modified version of a traditional scatter plot is used to present height transformation patterns intuitively. This method of deriving categorical maps of topographical changes from a surface difference map can be used in similar studies to qualitatively interpret transformation. Slope maps and histograms were also used jointly to reveal additional patterns of topographic change.

  7. COMPARISON AND CO-REGISTRATION OF DEMS GENERATED FROM HiRISE AND CTX IMAGES

    Directory of Open Access Journals (Sweden)

    Y. Wang

    2016-06-01

    Full Text Available Images from two sensors, the High-Resolution Imaging Science Experiment (HiRISE and the Context Camera (CTX, both on-board the Mars Reconnaissance Orbiter (MRO, were used to generate high-quality DEMs (Digital Elevation Models of the Martian surface. However, there were discrepancies between the DEMs generated from the images acquired by these two sensors due to various reasons, such as variations in boresight alignment between the two sensors during the flight in the complex environment. This paper presents a systematic investigation of the discrepancies between the DEMs generated from the HiRISE and CTX images. A combined adjustment algorithm is presented for the co-registration of HiRISE and CTX DEMs. Experimental analysis was carried out using the HiRISE and CTX images collected at the Mars Rover landing site and several other typical regions. The results indicated that there were systematic offsets between the HiRISE and CTX DEMs in the longitude and latitude directions. However, the offset in the altitude was less obvious. After combined adjustment, the offsets were eliminated and the HiRISE and CTX DEMs were co-registered to each other. The presented research is of significance for the synergistic use of HiRISE and CTX images for precision Mars topographic mapping.

  8. TanDEM-X the Earth surface observation project from space level - basis and mission status

    Directory of Open Access Journals (Sweden)

    Jerzy Wiśniowski

    2015-03-01

    Full Text Available TanDEM-X is DLR (Deutsches Zentrum für Luft- und Raumfahrt the Earth surface observation project using high-resolution SAR interferometry. It opens a new era in space borne radar remote sensing. The system is based on two satellites: TerraSAR-X (TSX and TanDEM-X (TDX flying on the very close, strictly controlled orbits. This paper gives an overview of the radar technology and overview of the TanDEM-X mission concept which is based on several innovative technologies. The primary objective of the mission is to deliver a global digital elevation model (DEM with an unprecedented accuracy, which is equal to or surpass the HRTI-3 specifications (12 m posting, relative height accuracy ±2 m for slope < 20% and ±4 m for slope > 20% [8]. Beyond that, TanDEM-X provides a highly reconfigurable platform for the demonstration of new radar imaging techniques and applications.[b]Keywords[/b]: remote sensing, Bistatic SAR, digital elevation model (DEM, Helix formation, SAR interferomery, HRTI-3, synchronization

  9. Search for correlations between the arrival directions of IceCube neutrino events and ultrahigh-energy cosmic rays detected by the Pierre Auger Observatory and the Telescope Array

    NARCIS (Netherlands)

    Collaboration, The IceCube; Aartsen, M. G.; Abraham, K.; Ackermann, M.; Adams, J.; Aguilar, J. A.; Ahlers, M.; Ahrens, M.; Altmann, D.; Anderson, T.; Ansseau, I.; Archinger, M.; Arguelles, C.; Arlen, T. C.; Auffenberg, J.; Bai, X.; Barwick, S. W.; Baum, V.; Bay, R.; Beatty, J. J.; Tjus, J. Becker; Becker, K. -H.; Beiser, E.; Berghaus, P.; Berley, D.; Bernardini, E.; Bernhard, A.; Besson, D. Z.; Binder, G.; Bindig, D.; Bissok, M.; Blaufuss, E.; Blumenthal, J.; Boersma, D. J.; Bohm, C.; Börner, M.; Bos, F.; Bose, D.; Böser, S.; Botner, O.; Braun, J.; Brayeur, L.; Bretz, H. -P.; Buzinsky, N.; Casey, J.; Casier, M.; Cheung, E.; Chirkin, D.; Christov, A.; Clark, K.; Classen, L.; Coenders, S.; Cowen, D. F.; Silva, A. H. Cruz; Daughhetee, J.; Davis, J. C.; Day, M.; André, J. P. A. M. de; Clercq, C. De; Rosendo, E. del Pino; Dembinski, H.; Ridder, S. De; Desiati, P.; Vries, K. D. de; Wasseige, G. de; With, M. de; DeYoung, T.; Díaz-Vélez, J. C.; Lorenzo, V. di; Dumm, J. P.; Dunkman, M.; Eberhardt, B.; Ehrhardt, T.; Eichmann, B.; Euler, S.; Evenson, P. A.; Fahey, S.; Fazely, A. R.; Feintzeig, J.; Felde, J.; Filimonov, K.; Finley, C.; Fischer-Wasels, T.; Flis, S.; Fösig, C. -C.; Fuchs, T.; Gaisser, T. K.; Gaior, R.; Gallagher, J.; Gerhardt, L.; Ghorbani, K.; Gier, D.; Gladstone, L.; Glagla, M.; Glüsenkamp, T.; Goldschmidt, A.; Golup, G.; Gonzalez, J. G.; Góra, D.; Grant, D.; Griffith, Z.; Groß, A.; Ha, C.; Haack, C.; Ismail, A. Haj; Hallgren, A.; Halzen, F.; Hansen, E.; Hansmann, B.; Hanson, K.; Hebecker, D.; Heereman, D.; Helbing, K.; Hellauer, R.; Hickford, S.; Hignight, J.; Hill, G. C.; Hoffman, K. D.; Hoffmann, R.; Holzapfel, K.; Homeier, A.; Hoshina, K.; Huang, F.; Huber, M.; Huelsnitz, W.; Hulth, P. O.; Hultqvist, K.; In, S.; Ishihara, A.; Jacobi, E.; Japaridze, G. S.; Jeong, M.; Jero, K.; Jurkovic, M.; Kappes, A.; Karg, T.; Karle, A.; Kauer, M.; Keivani, A.; Kelley, J. L.; Kemp, J.; Kheirandish, A.; Kiryluk, J.; Kläs, J.; Klein, S. R.; Kohnen, G.; Koirala, R.; Kolanoski, H.; Konietz, R.; Köpke, L.; Kopper, C.; Kopper, S.; Koskinen, D. J.; Kowalski, M.; Krings, K.; Kroll, G.; Kroll, M.; Krückl, G.; Kunnen, J.; Kurahashi, N.; Kuwabara, T.; Labare, M.; Lanfranchi, J. L.; Larson, M. J.; Lesiak-Bzdak, M.; Leuermann, M.; Leuner, J.; Lu, L.; Lünemann, J.; Madsen, J.; Maggi, G.; Mahn, K. B. M.; Mandelartz, M.; Maruyama, R.; Mase, K.; Matis, H. S.; Maunu, R.; McNally, F.; Meagher, K.; Medici, M.; Meli, A.; Menne, T.; Merino, G.; Meures, T.; Miarecki, S.; Middell, E.; Mohrmann, L.; Montaruli, T.; Morse, R.; Nahnhauer, R.; Naumann, U.; Neer, G.; Niederhausen, H.; Nowicki, S. C.; Nygren, D. R.; Pollmann, A. Obertacke; Olivas, A.; Omairat, A.; O'Murchadha, A.; Palczewski, T.; Pandya, H.; Pankova, D. V.; Paul, L.; Pepper, J. A.; Heros, C. Pérez de los; Pfendner, C.; Pieloth, D.; Pinat, E.; Posselt, J.; Price, P. B.; Przybylski, G. T.; Quinnan, M.; Raab, C.; Rädel, L.; Rameez, M.; Rawlins, K.; Reimann, R.; Relich, M.; Resconi, E.; Rhode, W.; Richman, M.; Richter, S.; Riedel, B.; Robertson, S.; Rongen, M.; Rott, C.; Ruhe, T.; Ryckbosch, D.; Sabbatini, L.; Sander, H. -G.; Sandrock, A.; Sandroos, J.; Sarkar, S.; Schatto, K.; Schimp, M.; Schmidt, T.; Schoenen, S.; Schöneberg, S.; Schönwald, A.; Schulte, L.; Schumacher, L.; Seckel, D.; Seunarine, S.; Soldin, D.; Song, M.; Spiczak, G. M.; Spiering, C.; Stahlberg, M.; Stamatikos, M.; Stanev, T.; Stasik, A.; Steuer, A.; Stezelberger, T.; Stokstad, R. G.; Stößl, A.; Ström, R.; Strotjohann, N. L.; Sullivan, G. W.; Sutherland, M.; Taavola, H.; Taboada, I.; Tatar, J.; Ter-Antonyan, S.; Terliuk, A.; Tešić, G.; Tilav, S.; Toale, P. A.; Tobin, M. N.; Toscano, S.; Tosi, D.; Tselengidou, M.; Turcati, A.; Unger, E.; Usner, M.; Vallecorsa, S.; Vandenbroucke, J.; Eijndhoven, N. van; Vanheule, S.; Santen, J. van; Veenkamp, J.; Vehring, M.; Voge, M.; Vraeghe, M.; Walck, C.; Wallace, A.; Wallraff, M.; Wandkowsky, N.; Weaver, Ch; Wendt, C.; Westerhoff, S.; Whelan, B. J.; Wiebe, K.; Wiebusch, C. H.; Wille, L.; Williams, D. R.; Wissing, H.; Wolf, M.; Wood, T. R.; Woschnagg, K.; Xu, D. L.; Xu, X. W.; Xu, Y.; Yanez, J. P.; Yodh, G.; Yoshida, S.; Collaboration, M. Zoll The Pierre Auger; Aab, A.; Abreu, P.; Aglietta, M.; Ahn, E. J.; Samarai, I. Al; Albuquerque, I. F. M.; Allekotte, I.; Allison, P.; Almela, A.; Castillo, J. Alvarez; Alvarez-Muñiz, J.; Batista, R. Alves; Ambrosio, M.; Aminaei, A.; Anchordoqui, L.; Andrada, B.; Andringa, S.; Aramo, C.; Arqueros, F.; Arsene, N.; Asorey, H.; Assis, P.; Aublin, J.; Avila, G.; Awal, N.; Badescu, A. M.; Baus, C.; Beatty, J. J.; Becker, K. H.; Bellido, J. A.; Berat, C.; Bertaina, M. E.; Bertou, X.; Biermann, P. L.; Billoir, P.; Blaess, S. G.; Blanco, A.; Blanco, M.; Blazek, J.; Bleve, C.; Blümer, H.; Boháčová, M.; Boncioli, D.; Bonifazi, C.; Borodai, N.; Botti, A. M.; Brack, J.; Brancus, I.; Bretz, T.; Bridgeman, A.; Briechle, F. L.; Buchholz, P.; Bueno, A.; Buitink, S.; Buscemi, M.; Caballero-Mora, K. S.; Caccianiga, B.; Caccianiga, L.; Candusso, M.; Caramete, L.; Caruso, R.; Castellina, A.; Cataldi, G.; Cazon, L.; Cester, R.; Chavez, A. G.; Chiavassa, A.; Chinellato, J. A.; Diaz, J. C. Chirinos; Chudoba, J.; Clay, R. W.; Colalillo, R.; Coleman, A.; Collica, L.; Coluccia, M. R.; Conceição, R.; Contreras, F.; Cooper, M. J.; Cordier, A.; Coutu, S.; Covault, C. E.; Dallier, R.; D'Amico, S.; Daniel, B.; Dasso, S.; Daumiller, K.; Dawson, B. R.; Almeida, R. M. de; Jong, S. J. de; Mauro, G. De; Neto, J. R. T. de Mello; Mitri, I. De; Oliveira, J. de; Souza, V. de; Debatin, J.; Peral, L. del; Deligny, O.; Dhital, N.; Giulio, C. Di; Matteo, A. Di; Castro, M. L. Díaz; Diogo, F.; Dobrigkeit, C.; Docters, W.; D'Olivo, J. C.; Dorofeev, A.; Anjos, R. C. dos; Dova, M. T.; Dundovic, A.; Ebr, J.; Engel, R.; Erdmann, M.; Erfani, M.; Escobar, C. O.; Espadanal, J.; Etchegoyen, A.; Falcke, H.; Fang, K.; Farrar, G.; Fauth, A. C.; Fazzini, N.; Ferguson, A. P.; Fick, B.; Figueira, J. M.; Filevich, A.; Filipčič, A.; Fratu, O.; Freire, M. M.; Fujii, T.; Fuster, A.; Gallo, F.; García, B.; Garcia-Gamez, D.; Garcia-Pinto, D.; Gate, F.; Gemmeke, H.; Gherghel-Lascu, A.; Ghia, P. L.; Giaccari, U.; Giammarchi, M.; Giller, M.; Głas, D.; Glaser, C.; Glass, H.; Golup, G.; Berisso, M. Gómez; Vitale, P. F. Gómez; González, N.; Gookin, B.; Gordon, J.; Gorgi, A.; Gorham, P.; Gouffon, P.; Griffith, N.; Grillo, A. F.; Grubb, T. D.; Guarino, F.; Guedes, G. P.; Hampel, M. R.; Hansen, P.; Harari, D.; Harrison, T. A.; Harton, J. L.; Hasankiadeh, Q.; Haungs, A.; Hebbeker, T.; Heck, D.; Heimann, P.; Herve, A. E.; Hill, G. C.; Hojvat, C.; Hollon, N.; Holt, E.; Homola, P.; Hörandel, J. R.; Horvath, P.; Hrabovský, M.; Huege, T.; Insolia, A.; Isar, P. G.; Jandt, I.; Jansen, S.; Jarne, C.; Johnsen, J. A.; Josebachuili, M.; Kääpä, A.; Kambeitz, O.; Kampert, K. H.; Kasper, P.; Katkov, I.; Keilhauer, B.; Kemp, E.; Kieckhafer, R. M.; Klages, H. O.; Kleifges, M.; Kleinfeller, J.; Krause, R.; Krohm, N.; Kuempel, D.; Mezek, G. Kukec; Kunka, N.; Awad, A. Kuotb; LaHurd, D.; Latronico, L.; Lauer, R.; Lauscher, M.; Lautridou, P.; Lebrun, D.; Lebrun, P.; Oliveira, M. A. Leigui de; Letessier-Selvon, A.; Lhenry-Yvon, I.; Link, K.; Lopes, L.; López, R.; Casado, A. López; Lucero, A.; Malacari, M.; Mallamaci, M.; Mandat, D.; Mantsch, P.; Mariazzi, A. G.; Marin, V.; Mariş, I. C.; Marsella, G.; Martello, D.; Martinez, H.; Bravo, O. Martínez; Meza, J. J. Masías; Mathes, H. J.; Mathys, S.; Matthews, J.; Matthews, J. A. J.; Matthiae, G.; Maurizio, D.; Mayotte, E.; Mazur, P. O.; Medina, C.; Medina-Tanco, G.; Mello, V. B. B.; Melo, D.; Menshikov, A.; Messina, S.; Micheletti, M. I.; Middendorf, L.; Minaya, I. A.; Miramonti, L.; Mitrica, B.; Molina-Bueno, L.; Mollerach, S.; Montanet, F.; Morello, C.; Mostafá, M.; Moura, C. A.; Müller, G.; Muller, M. A.; Müller, S.; Naranjo, I.; Navas, S.; Necesal, P.; Nellen, L.; Nelles, A.; Neuser, J.; Nguyen, P. H.; Niculescu-Oglinzanu, M.; Niechciol, M.; Niemietz, L.; Niggemann, T.; Nitz, D.; Nosek, D.; Novotny, V.; Nožka, H.; Núñez, L. A.; Ochilo, L.; Oikonomou, F.; Olinto, A.; Pacheco, N.; Selmi-Dei, D. Pakk; Palatka, M.; Pallotta, J.; Papenbreer, P.; Parente, G.; Parra, A.; Paul, T.; Pech, M.; Pękala, J.; Pelayo, R.; Peña-Rodriguez, J.; Pepe, I. M.; Perrone, L.; Petermann, E.; Peters, C.; Petrera, S.; Phuntsok, J.; Piegaia, R.; Pierog, T.; Pieroni, P.; Pimenta, M.; Pirronello, V.; Platino, M.; Plum, M.; Porowski, C.; Prado, R. R.; Privitera, P.; Prouza, M.; Quel, E. J.; Querchfeld, S.; Quinn, S.; Rautenberg, J.; Ravel, O.; Ravignani, D.; Reinert, D.; Revenu, B.; Ridky, J.; Risse, M.; Ristori, P.; Rizi, V.; Carvalho, W. Rodrigues de; Rojo, J. Rodriguez; Rodríguez-Frías, M. D.; Rogozin, D.; Rosado, J.; Roth, M.; Roulet, E.; Rovero, A. C.; Saffi, S. J.; Saftoiu, A.; Salazar, H.; Saleh, A.; Greus, F. Salesa; Salina, G.; Gomez, J. D. Sanabria; Sánchez, F.; Sanchez-Lucas, P.; Santos, E. M.; Santos, E.; Sarazin, F.; Sarkar, B.; Sarmento, R.; Sarmiento-Cano, C.; Sato, R.; Scarso, C.; Schauer, M.; Scherini, V.; Schieler, H.; Schmidt, D.; Scholten, O.; Schoorlemmer, H.; Schovánek, P.; Schröder, F. G.; Schulz, A.; Schulz, J.; Schumacher, J.; Segreto, A.; Settimo, M.; Shadkam, A.; Shellard, R. C.; Sigl, G.; Sima, O.; Śmiałkowski, A.; Šmída, R.; Snow, G. R.; Sommers, P.; Sonntag, S.; Sorokin, J.; Squartini, R.; Stanca, D.; Stanič, S.; Stapleton, J.; Stasielak, J.; Stephan, M.; Strafella, F.; Stutz, A.; Suarez, F.; Durán, M. Suarez; Suomijärvi, T.; Supanitsky, A. D.; Sutherland, M. S.; Swain, J.; Szadkowski, Z.; Taborda, O. A.; Tapia, A.; Tepe, A.; Theodoro, V. M.; Timmermans, C.; Peixoto, C. J. Todero; Toma, G.; Tomankova, L.; Tomé, B.; Tonachini, A.; Elipe, G. Torralba; Machado, D. Torres; Travnicek, P.; Trini, M.; Ulrich, R.; Unger, M.; Urban, M.; Galicia, J. F. Valdés; Valiño, I.; Valore, L.; Aar, G. van; Bodegom, P. van; Berg, A. M. van den; Vliet, A. van; Varela, E.; Cárdenas, B. Vargas; Varner, G.; Vasquez, R.; Vázquez, J. R.; Vázquez, R. A.; Veberič, D.; Verzi, V.; Vicha, J.; Videla, M.; Villaseñor, L.; Vorobiov, S.; Wahlberg, H.; Wainberg, O.; Walz, D.; Watson, A. A.; Weber, M.; Weidenhaupt, K.; Weindl, A.; Wiencke, L.; Wilczyński, H.; Winchen, T.; Wittkowski, D.; Wundheiler, B.; Wykes, S.; Yang, L.; Yapici, T.; Yushkov, A.; Zas, E.; Zavrtanik, D.; Zavrtanik, M.; Zepeda, A.; Zimmermann, B.; Ziolkowski, M.; Zong, Z.; Collaboration, F. Zuccarello The Telescope Array; Abbasi, R. U.; Abe, M.; Abu-Zayyad, T.; Allen, M.; Azuma, R.; Barcikowski, E.; Belz, J. W.; Bergman, D. R.; Blake, S. A.; Cady, R.; Chae, M. J.; Cheon, B. G.; Chiba, J.; Chikawa, M.; Cho, W. R.; Fujii, T.; Fukushima, M.; Goto, T.; Hanlon, W.; Hayashi, Y.; Hayashida, N.; Hibino, K.; Honda, K.; Ikeda, D.; Inoue, N.; Ishii, T.; Ishimori, R.; Ito, H.; Ivanov, D.; Jui, C. C. H.; Kadota, K.; Kakimoto, F.; Kalashev, O.; Kasahara, K.; Kawai, H.; Kawakami, S.; Kawana, S.; Kawata, K.; Kido, E.; Kim, H. B.; Kim, J. H.; Kim, J. H.; Kitamura, S.; Kitamura, Y.; Kuzmin, V.; Kwon, Y. J.; Lan, J.; Lim, S. I.; Lundquist, J. P.; Machida, K.; Martens, K.; Matsuda, T.; Matsuyama, T.; Matthews, J. N.; Minamino, M.; Mukai, Y.; Myers, I.; Nagasawa, K.; Nagataki, S.; Nakamura, T.; Nonaka, T.; Nozato, A.; Ogio, S.; Ogura, J.; Ohnishi, M.; Ohoka, H.; Oki, K.; Okuda, T.; Ono, M.; Oshima, A.; Ozawa, S.; Park, I. H.; Pshirkov, M. S.; Rodriguez, D. C.; Rubtsov, G.; Ryu, D.; Sagawa, H.; Sakurai, N.; Scott, L. M.; Shah, P. D.; Shibata, F.; Shibata, T.; Shimodaira, H.; Shin, B. K.; Shin, H. S.; Smith, J. D.; Sokolsky, P.; Springer, R. W.; Stokes, B. T.; Stratton, S. R.; Stroman, T. A.; Suzawa, T.; Takamura, M.; Takeda, M.; Takeishi, R.; Taketa, A.; Takita, M.; Tameda, Y.; Tanaka, H.; Tanaka, K.; Tanaka, M.; Thomas, S. B.; Thomson, G. B.; Tinyakov, P.; Tkachev, I.; Tokuno, H.; Tomida, T.; Troitsky, S.; Tsunesada, Y.; Tsutsumi, K.; Uchihori, Y.; Udo, S.; Urban, F.; Vasiloff, G.; Wong, T.; Yamane, R.; Yamaoka, H.; Yamazaki, K.; Yang, J.; Yashiro, K.; Yoneda, Y.; Yoshida, S.; Yoshii, H.; Zollinger, R.; Zundel, Z.

    2015-01-01

    This paper presents the results of different searches for correlations between very high-energy neutrino candidates detected by IceCube and the highest-energy cosmic rays measured by the Pierre Auger Observatory and the Telescope Array. We first consider samples of cascade neutrino events and of

  10. Multi-component fermionic dark matter and IceCube PeV scale neutrinos in left-right model with gauge unification

    Science.gov (United States)

    Borah, Debasish; Dasgupta, Arnab; Dey, Ujjal Kumar; Patra, Sudhanwa; Tomar, Gaurav

    2017-09-01

    We consider a simple extension of the minimal left-right symmetric model (LRSM) in order to explain the PeV neutrino events seen at the IceCube experiment from a heavy decaying dark matter. The dark matter sector is composed of two fermions: one at PeV scale and the other at TeV scale such that the heavier one can decay into the lighter one and two neutrinos. The gauge annihilation cross sections of PeV dark matter are not large enough to generate its relic abundance within the observed limit. We include a pair of real scalar triplets Ω L,R which can bring the thermally overproduced PeV dark matter abundance into the observed range through late time decay and consequent entropy release thereby providing a consistent way to obtain the correct relic abundance without violating the unitarity bound on dark matter mass. Another scalar field, a bitriplet under left-right gauge group is added to assist the heavier dark matter decay. The presence of an approximate global U(1) X symmetry can naturally explain the origin of tiny couplings required for long-lived nature of these decaying particles. We also show, how such an extended LRSM can be incorporated within a non-supersymmetric SO(10) model where the gauge coupling unification at a very high scale naturally accommodate a PeV scale intermediate symmetry, required to explain the PeV events at IceCube.

  11. Acute environmental toxicity and persistence of DEM, a chemical agent simulant: Diethyl malonate. [Diethyl malonate

    Energy Technology Data Exchange (ETDEWEB)

    Cataldo, D.A.; Ligotke, M.W.; Harvey, S.D.; Fellows, R.J.; Li, Shu-mei W.; Van Voris, P.; Wentsel, R.S.

    1990-05-01

    The purpose of the following chemical simulant studies is to assess the potential acute environmental effects and persistence of diethyl malonate (DEM). Deposition velocities for DEM to soil surfaces ranged from 0.04 to 0.2 cm/sec. For foliar surfaces, deposition velocities ranged from 0.0002 cm/sec at low air concentrations to 0.05 cm/sec for high dose levels. The residence times or half-lives of DEM deposited to soils was 2 h for the fast component and 5 to 16 h for the residual material. DEM deposited to foliar surfaces also exhibited biphasic depuration. The half-life of the short residence time component ranged from 1 to 3 h, while the longer time component had half-times of 16 to 242 h. Volatilization and other depuration mechanisms reduce surface contaminant levels in both soils and foliage to less than 1% of initial dose within 96 h. DEM is not phytotoxic at foliar mass loading levels of less than 10 {mu}m/cm{sup 2}. However, severe damage is evident at mass loading levels in excess of 17 {mu}g/cm{sup 2}. Tall fescue and sagebrush were more affected than was short-needle pine, however, mass loading levels were markedly different. Regrowth of tall fescue indicated that the effects of DEM are residual, and growth rates are affected only at higher mass loadings through the second harvest. Results from in vitro testing of DEM indicated concentrations below 500 {mu}g/g dry soil generally did not negatively impact soil microbial activity. Short-term effects of DEM were more profound on soil dehydrogenase activity than on soil phosphatase activity. No enzyme inhibition or enhancement was observed after 28 days in incubation. Results of the earthworm bioassay indicate survival to be 86 and 66% at soil doses of 107 and 204 {mu}g DEM/cm{sup 2}, respectively. At higher dose level, activity or mobility was judged to be affected in over 50% of the individuals. 21 refs., 10 figs., 15 tabs.

  12. Dem Generation from Close-Range Photogrammetry Using Extended Python Photogrammetry Toolbox

    Science.gov (United States)

    Belmonte, A. A.; Biong, M. M. P.; Macatulad, E. G.

    2017-10-01

    Digital elevation models (DEMs) are widely used raster data for different applications concerning terrain, such as for flood modelling, viewshed analysis, mining, land development, engineering design projects, to name a few. DEMs can be obtained through various methods, including topographic survey, LiDAR or photogrammetry, and internet sources. Terrestrial close-range photogrammetry is one of the alternative methods to produce DEMs through the processing of images using photogrammetry software. There are already powerful photogrammetry software that are commercially-available and can produce high-accuracy DEMs. However, this entails corresponding cost. Although, some of these software have free or demo trials, these trials have limits in their usable features and usage time. One alternative is the use of free and open-source software (FOSS), such as the Python Photogrammetry Toolbox (PPT), which provides an interface for performing photogrammetric processes implemented through python script. For relatively small areas such as in mining or construction excavation, a relatively inexpensive, fast and accurate method would be advantageous. In this study, PPT was used to generate 3D point cloud data from images of an open pit excavation. The PPT was extended to add an algorithm converting the generated point cloud data into a usable DEM.

  13. Uncertainty modelling and analysis of volume calculations based on a regular grid digital elevation model (DEM)

    Science.gov (United States)

    Li, Chang; Wang, Qing; Shi, Wenzhong; Zhao, Sisi

    2018-05-01

    The accuracy of earthwork calculations that compute terrain volume is critical to digital terrain analysis (DTA). The uncertainties in volume calculations (VCs) based on a DEM are primarily related to three factors: 1) model error (ME), which is caused by an adopted algorithm for a VC model, 2) discrete error (DE), which is usually caused by DEM resolution and terrain complexity, and 3) propagation error (PE), which is caused by the variables' error. Based on these factors, the uncertainty modelling and analysis of VCs based on a regular grid DEM are investigated in this paper. Especially, how to quantify the uncertainty of VCs is proposed by a confidence interval based on truncation error (TE). In the experiments, the trapezoidal double rule (TDR) and Simpson's double rule (SDR) were used to calculate volume, where the TE is the major ME, and six simulated regular grid DEMs with different terrain complexity and resolution (i.e. DE) were generated by a Gauss synthetic surface to easily obtain the theoretical true value and eliminate the interference of data errors. For PE, Monte-Carlo simulation techniques and spatial autocorrelation were used to represent DEM uncertainty. This study can enrich uncertainty modelling and analysis-related theories of geographic information science.

  14. Identification and delineation of areas flood hazard using high accuracy of DEM data

    Science.gov (United States)

    Riadi, B.; Barus, B.; Widiatmaka; Yanuar, M. J. P.; Pramudya, B.

    2018-05-01

    Flood incidents that often occur in Karawang regency need to be mitigated. These expectations exist on technologies that can predict, anticipate and reduce disaster risks. Flood modeling techniques using Digital Elevation Model (DEM) data can be applied in mitigation activities. High accuracy DEM data used in modeling, will result in better flooding flood models. The result of high accuracy DEM data processing will yield information about surface morphology which can be used to identify indication of flood hazard area. The purpose of this study was to identify and describe flood hazard areas by identifying wetland areas using DEM data and Landsat-8 images. TerraSAR-X high-resolution data is used to detect wetlands from landscapes, while land cover is identified by Landsat image data. The Topography Wetness Index (TWI) method is used to detect and identify wetland areas with basic DEM data, while for land cover analysis using Tasseled Cap Transformation (TCT) method. The result of TWI modeling yields information about potential land of flood. Overlay TWI map with land cover map that produces information that in Karawang regency the most vulnerable areas occur flooding in rice fields. The spatial accuracy of the flood hazard area in this study was 87%.

  15. Automatic relative RPC image model bias compensation through hierarchical image matching for improving DEM quality

    Science.gov (United States)

    Noh, Myoung-Jong; Howat, Ian M.

    2018-02-01

    The quality and efficiency of automated Digital Elevation Model (DEM) extraction from stereoscopic satellite imagery is critically dependent on the accuracy of the sensor model used for co-locating pixels between stereo-pair images. In the absence of ground control or manual tie point selection, errors in the sensor models must be compensated with increased matching search-spaces, increasing both the computation time and the likelihood of spurious matches. Here we present an algorithm for automatically determining and compensating the relative bias in Rational Polynomial Coefficients (RPCs) between stereo-pairs utilizing hierarchical, sub-pixel image matching in object space. We demonstrate the algorithm using a suite of image stereo-pairs from multiple satellites over a range stereo-photogrammetrically challenging polar terrains. Besides providing a validation of the effectiveness of the algorithm for improving DEM quality, experiments with prescribed sensor model errors yield insight into the dependence of DEM characteristics and quality on relative sensor model bias. This algorithm is included in the Surface Extraction through TIN-based Search-space Minimization (SETSM) DEM extraction software package, which is the primary software used for the U.S. National Science Foundation ArcticDEM and Reference Elevation Model of Antarctica (REMA) products.

  16. TecDEM: A MATLAB Based Toolbox for understanding Tectonics from Digital Elevation Models

    Science.gov (United States)

    Shahzad, F.; Mahmood, S. A.; Gloaguen, R.

    2009-04-01

    TecDEM is a MATLAB based tool box for understanding the tectonics from digital elevation models (DEMs) of any area. These DEMs can be derived from data of any spatial resolution (Low, medium and High). In the first step we extract drainage network from the DEMs using flow grid approach. Drainage network is a group of streams having elevation and catchment area information as a function of spatial locations. We implement an array of stream structure to study this drainage network. Knickpoints can be identified on each stream of the drainage network by a graphical user interface and are helpful for understanding stream morphology. Stream profile analysis in steady state condition is applied on all streams to calculate geomorphic parameters and regional uplift rates. Hack index is calculated for all the profiles at a certain interval and over the change of knickpoints. Reports menu of this tool box generates detailed statistics report, complete tabulated report, graphical output of each analyzed stream profile and Hack index profile. All the calculated values are part of stream structure and is saved as .mat file for later use with this tool box. The spatial distribution of geomorphic parameters, uplift rates and knickpoints are exported as a shape files for visualization in professional GIS software. We test this tool box on DEMs from different tectonic settings worldwide and received verifiable results with other studies.

  17. FUSION OF MULTI-SCALE DEMS FROM DESCENT AND NAVCM IMAGES OF CHANG’E-3 USING COMPRESSED SENSING METHOD

    Directory of Open Access Journals (Sweden)

    M. Peng

    2017-07-01

    Full Text Available The multi-source DEMs generated using the images acquired in the descent and landing phase and after landing contain supplementary information, and this makes it possible and beneficial to produce a higher-quality DEM through fusing the multi-scale DEMs. The proposed fusion method consists of three steps. First, source DEMs are split into small DEM patches, then the DEM patches are classified into a few groups by local density peaks clustering. Next, the grouped DEM patches are used for sub-dictionary learning by stochastic coordinate coding. The trained sub-dictionaries are combined into a dictionary for sparse representation. Finally, the simultaneous orthogonal matching pursuit (SOMP algorithm is used to achieve sparse representation. We use the real DEMs generated from Chang’e-3 descent images and navigation camera (Navcam stereo images to validate the proposed method. Through the experiments, we have reconstructed a seamless DEM with the highest resolution and the largest spatial coverage among the input data. The experimental results demonstrated the feasibility of the proposed method.

  18. Blaze-DEMGPU: Modular high performance DEM framework for the GPU architecture

    Directory of Open Access Journals (Sweden)

    Nicolin Govender

    2016-01-01

    Full Text Available Blaze-DEMGPU is a modular GPU based discrete element method (DEM framework that supports polyhedral shaped particles. The high level performance is attributed to the light weight and Single Instruction Multiple Data (SIMD that the GPU architecture offers. Blaze-DEMGPU offers suitable algorithms to conduct DEM simulations on the GPU and these algorithms can be extended and modified. Since a large number of scientific simulations are particle based, many of the algorithms and strategies for GPU implementation present in Blaze-DEMGPU can be applied to other fields. Blaze-DEMGPU will make it easier for new researchers to use high performance GPU computing as well as stimulate wider GPU research efforts by the DEM community.

  19. Granular dynamics, contact mechanics and particle system simulations a DEM study

    CERN Document Server

    Thornton, Colin

    2015-01-01

    This book is devoted to the Discrete Element Method (DEM) technique, a discontinuum modelling approach that takes into account the fact that granular materials are composed of discrete particles which interact with each other at the microscale level. This numerical simulation technique can be used both for dispersed systems in which the particle-particle interactions are collisional and compact systems of particles with multiple enduring contacts. The book provides an extensive and detailed explanation of the theoretical background of DEM. Contact mechanics theories for elastic, elastic-plastic, adhesive elastic and adhesive elastic-plastic particle-particle interactions are presented. Other contact force models are also discussed, including corrections to some of these models as described in the literature, and important areas of further research are identified. A key issue in DEM simulations is whether or not a code can reliably simulate the simplest of systems, namely the single particle oblique impact wit...

  20. Diagnostic of the temperature and differential emission measure (DEM based on Hinode/XRT data

    Directory of Open Access Journals (Sweden)

    P. Rudawy

    2008-10-01

    Full Text Available We discuss here various methodologies and an optimal strategy of the temperature and emission measure diagnostics based on Hinode X-Ray Telescope data. As an example of our results we present the determination of the temperature distribution of the X-rays emitting plasma using a filters ratio method and three various methods of the calculation of the differential emission measure (DEM. We have found that all these methods give results similar to the two filters ratio method. Additionally, all methods of the DEM calculation gave similar solutions. We can state that the majority of the pairs of the Hinode filters allows one to derive the temperature and emission measure in the isothermal plasma approximation using standard diagnostics based on the two filters ratio method. In cases of strong flares one can also expect good conformity of the results obtained using a Withbroe – Sylwester, genetic algorithm and least-squares methods of the DEM evaluation.

  1. FEM × DEM: a new efficient multi-scale approach for geotechnical problems with strain localization

    Directory of Open Access Journals (Sweden)

    Nguyen Trung Kien

    2017-01-01

    Full Text Available The paper presents a multi-scale modeling of Boundary Value Problem (BVP approach involving cohesive-frictional granular materials in the FEM × DEM multi-scale framework. On the DEM side, a 3D model is defined based on the interactions of spherical particles. This DEM model is built through a numerical homogenization process applied to a Volume Element (VE. It is then paired with a Finite Element code. Using this numerical tool that combines two scales within the same framework, we conducted simulations of biaxial and pressuremeter tests on a cohesive-frictional granular medium. In these cases, it is known that strain localization does occur at the macroscopic level, but since FEMs suffer from severe mesh dependency as soon as shear band starts to develop, the second gradient regularization technique has been used. As a consequence, the objectivity of the computation with respect to mesh dependency is restored.

  2. Developmental Eye Movement (DEM Test Norms for Mandarin Chinese-Speaking Chinese Children.

    Directory of Open Access Journals (Sweden)

    Yachun Xie

    Full Text Available The Developmental Eye Movement (DEM test is commonly used as a clinical visual-verbal ocular motor assessment tool to screen and diagnose reading problems at the onset. No established norm exists for using the DEM test with Mandarin Chinese-speaking Chinese children. This study aims to establish the normative values of the DEM test for the Mandarin Chinese-speaking population in China; it also aims to compare the values with three other published norms for English-, Spanish-, and Cantonese-speaking Chinese children. A random stratified sampling method was used to recruit children from eight kindergartens and eight primary schools in the main urban and suburban areas of Nanjing. A total of 1,425 Mandarin Chinese-speaking children aged 5 to 12 years took the DEM test in Mandarin Chinese. A digital recorder was used to record the process. All of the subjects completed a symptomatology survey, and their DEM scores were determined by a trained tester. The scores were computed using the formula in the DEM manual, except that the "vertical scores" were adjusted by taking the vertical errors into consideration. The results were compared with the three other published norms. In our subjects, a general decrease with age was observed for the four eye movement indexes: vertical score, adjusted horizontal score, ratio, and total error. For both the vertical and adjusted horizontal scores, the Mandarin Chinese-speaking children completed the tests much more quickly than the norms for English- and Spanish-speaking children. However, the same group completed the test slightly more slowly than the norms for Cantonese-speaking children. The differences in the means were significant (P0.05; compared with Spanish-speaking children, the scores were statistically significant (P0.05. DEM norms may be affected by differences in language, cultural, and educational systems among various ethnicities. The norms of the DEM test are proposed for use with Mandarin Chinese

  3. How large is the Upper Indus Basin? The pitfalls of auto-delineation using DEMs

    Science.gov (United States)

    Khan, Asif; Richards, Keith S.; Parker, Geoffrey T.; McRobie, Allan; Mukhopadhyay, Biswajit

    2014-02-01

    Extraction of watershed areas from Digital Elevation Models (DEMs) is increasingly required in a variety of environmental analyses. It is facilitated by the availability of DEMs based on remotely sensed data, and by Geographical Information System (GIS) software. However, accurate delineation depends on the quality of the DEM and the methodology adopted. This paper considers automated and supervised delineation in a case study of the Upper Indus Basin (UIB), Pakistan, for which published estimates of the basin area show significant disagreement, ranging from 166,000 to 266,000 km2. Automated delineation used ArcGIS Archydro and hydrology tools applied to three good quality DEMs (two from SRTM data with 90m resolution, and one from 30m resolution ASTER data). Automatic delineation defined a basin area of c.440,000 km2 for the UIB, but included a large area of internal drainage in the western Tibetan Plateau. It is shown that discrepancies between different estimates reflect differences in the initial extent of the DEM used for watershed delineation, and the unchecked effect of iterative pit-filling of the DEM (going beyond the filling of erroneous pixels to filling entire closed basins). For the UIB we have identified critical points where spurious addition of catchment area has arisen, and use Google Earth to examine the geomorphology adjacent to these points, and also examine the basin boundary data provided by the HydroSHEDS database. We show that the Pangong Tso watershed and some other areas in the western Tibetan plateau are not part of the UIB, but are areas of internal drainage. Our best estimate of the area of the Upper Indus Basin (at Besham Qila) is 164,867 km2 based on the SRTM DEM, and 164,853 km2 using the ASTER DEM). This matches the catchment area measured by WAPDA SWHP. An important lesson from this investigation is that one should not rely on automated delineation, as iterative pit-filling can produce spurious drainage networks and basins, when

  4. Evaluation of fracturing process of soft rocks at great depth by AE measurement and DEM simulation

    International Nuclear Information System (INIS)

    Aoki, Kenji; Mito, Yoshitada; Kurokawa, Susumu; Matsui, Hiroya; Niunoya, Sumio; Minami, Masayuki

    2007-01-01

    The authors developed the stress-based evaluation system of EDZ by AE monitoring and Distinct Element Method (DEM) simulation. In order to apply this system to the soft rock site, the authors try to grasp the relationship between AE parameters, stress change and rock fracturing process by performing the high stiffness tri-axial compression tests including AE measurements on the soft rock samples, and its simulations by DEM using bonded particle model. As the result, it is found that change in predominant AE frequency is effective to evaluate fracturing process in sedimentary soft rocks, and the relationship between stress change and fracturing process is also clarified. (author)

  5. Rehkitzrettung mit dem Fliegenden Wildretter: Erfahrungen der ersten Feldeinsätze

    OpenAIRE

    Wimmer, Tilman; Israel, Martin; Haschberger, Peter; Weimann, Anita

    2013-01-01

    Der Fliegende Wildretter des Deutschen Zentrums für Luft- und Raumfahrt ist als prototypische Kleinserie seit dem Jahr 2010 erfolgreich in Deutsch-land und Österreich im Einsatz, um aus der Luft Wildtiere während der Wiesenmahd aufzuspüren, und diese so vor dem Tod durch das Mähwerk zu retten. Der Prototyp basiert auf einem ferngesteuerten Multikopter, der mit mehreren Kameras ausgestattet ist und damit im Flug zuverlässiger und wesentlich schneller Wildtiere er-kennen kann, als dies mit b...

  6. Constraining Secluded Dark Matter models with the public data from the 79-string IceCube search for dark matter in the Sun

    Energy Technology Data Exchange (ETDEWEB)

    Ardid, M.; Felis, I.; Martínez-Mora, J.A. [Institut d' Investigació per a la Gestió Integrada de les Zones Costaneres (IGIC), Universitat Politècnica de València, C/Paranimf 1, 46730 Gandia (Spain); Herrero, A., E-mail: mardid@fis.upv.es, E-mail: ivfeen@upv.es, E-mail: aherrero@mat.upv.es, E-mail: jmmora@fis.upv.es [Institut de Matemàtica Multidisciplinar, Universitat Politècnica de València, Camí de Vera s/n, 46022 València (Spain)

    2017-04-01

    The 79-string IceCube search for dark matter in the Sun public data is used to test Secluded Dark Matter models. No significant excess over background is observed and constraints on the parameters of the models are derived. Moreover, the search is also used to constrain the dark photon model in the region of the parameter space with dark photon masses between 0.22 and ∼ 1 GeV and a kinetic mixing parameter ε ∼ 10{sup −9}, which remains unconstrained. These are the first constraints of dark photons from neutrino telescopes. It is expected that neutrino telescopes will be efficient tools to test dark photons by means of different searches in the Sun, Earth and Galactic Center, which could complement constraints from direct detection, accelerators, astrophysics and indirect detection with other messengers, such as gamma rays or antiparticles.

  7. Multimessenger search for sources of gravitational waves and high-energy neutrinos: Initial results for LIGO-Virgo and IceCube

    DEFF Research Database (Denmark)

    Aartsen, M.G.; Ackermann, M.; Adams, J.

    2014-01-01

    We report the results of a multimessenger search for coincident signals from the LIGO and Virgo gravitational-wave observatories and the partially completed IceCube high-energy neutrino detector, including periods of joint operation between 2007–2010. These include parts of the 2005–2007 run...... and the 2009–2010 run for LIGO-Virgo, and IceCube’s observation periods with 22, 59 and 79 strings. We find no significant coincident events, and use the search results to derive upper limits on the rate of joint sources for a range of source emission parameters. For the optimistic assumption of gravitational-wave...... waves and neutrinos will aid discovery in the advanced gravitational-wave detector era....

  8. Tropical-forest biomass estimation at X-Band from the spaceborne TanDEM-X interferometer

    Science.gov (United States)

    R. Treuhaft; F. Goncalves; J.R. dos Santos; M. Keller; M. Palace; S.N. Madsen; F. Sullivan; P.M.L.A. Graca

    2014-01-01

    This letter reports the sensitivity of X-band interferometric synthetic aperture radar (InSAR) data from the first dual-spacecraft radar interferometer, TanDEM-X, to variations in tropical-forest aboveground biomass (AGB). It also reports the first tropical-forest AGB estimates fromTanDEM-X data. Tropical forests account for...

  9. High-Accuracy Tidal Flat Digital Elevation Model Construction Using TanDEM-X Science Phase Data

    Science.gov (United States)

    Lee, Seung-Kuk; Ryu, Joo-Hyung

    2017-01-01

    This study explored the feasibility of using TanDEM-X (TDX) interferometric observations of tidal flats for digital elevation model (DEM) construction. Our goal was to generate high-precision DEMs in tidal flat areas, because accurate intertidal zone data are essential for monitoring coastal environment sand erosion processes. To monitor dynamic coastal changes caused by waves, currents, and tides, very accurate DEMs with high spatial resolution are required. The bi- and monostatic modes of the TDX interferometer employed during the TDX science phase provided a great opportunity for highly accurate intertidal DEM construction using radar interferometry with no time lag (bistatic mode) or an approximately 10-s temporal baseline (monostatic mode) between the master and slave synthetic aperture radar image acquisitions. In this study, DEM construction in tidal flat areas was first optimized based on the TDX system parameters used in various TDX modes. We successfully generated intertidal zone DEMs with 57-m spatial resolutions and interferometric height accuracies better than 0.15 m for three representative tidal flats on the west coast of the Korean Peninsula. Finally, we validated these TDX DEMs against real-time kinematic-GPS measurements acquired in two tidal flat areas; the correlation coefficient was 0.97 with a root mean square error of 0.20 m.

  10. Development of a LiDAR derived digital elevation model (DEM) as Input to a METRANS geographic information system (GIS).

    Science.gov (United States)

    2011-05-01

    This report describes an assessment of digital elevation models (DEMs) derived from : LiDAR data for a subset of the Ports of Los Angeles and Long Beach. A methodology : based on Monte Carlo simulation was applied to investigate the accuracy of DEMs ...

  11. Illustrations to “Gespräche in dem Reiche derer Todten zwischen dem vortreflichen Moscowitischen Czaar Petro Magno und dem grossen Tyrannen Ivan Basilowiz II” (Peter the Great and Ivan the Terrible) by David Fassmann (1725)

    OpenAIRE

    Ekaterina A. Skvortcova

    2017-01-01

    The journal created by David Fassmann (1683–1744), Gespräche in dem Reiche derer Todten, edited in Leipzig, was a huge success. Each of the 240 issues presents a dialogue between two historical figures from the afterworld. In the 83rd–86th Entrevuë, the interlocutors are Peter the Great and Ivan the Terrible. The texts of the four conversations were thoroughly examined by Eckhard Matthes (1987). The present paper explores how the illustrations to the 83rd–86th Entrevuë visualize the texts, w...

  12. DEM GPU studies of industrial scale particle simulations for granular flow civil engineering applications

    Science.gov (United States)

    Pizette, Patrick; Govender, Nicolin; Wilke, Daniel N.; Abriak, Nor-Edine

    2017-06-01

    The use of the Discrete Element Method (DEM) for industrial civil engineering industrial applications is currently limited due to the computational demands when large numbers of particles are considered. The graphics processing unit (GPU) with its highly parallelized hardware architecture shows potential to enable solution of civil engineering problems using discrete granular approaches. We demonstrate in this study the pratical utility of a validated GPU-enabled DEM modeling environment to simulate industrial scale granular problems. As illustration, the flow discharge of storage silos using 8 and 17 million particles is considered. DEM simulations have been performed to investigate the influence of particle size (equivalent size for the 20/40-mesh gravel) and induced shear stress for two hopper shapes. The preliminary results indicate that the shape of the hopper significantly influences the discharge rates for the same material. Specifically, this work shows that GPU-enabled DEM modeling environments can model industrial scale problems on a single portable computer within a day for 30 seconds of process time.

  13. DEM Simulation of Biaxial Compression Experiments of Inherently Anisotropic Granular Materials and the Boundary Effects

    Directory of Open Access Journals (Sweden)

    Zhao-Xia Tong

    2013-01-01

    Full Text Available The reliability of discrete element method (DEM numerical simulations is significantly dependent on the particle-scale parameters and boundary conditions. To verify the DEM models, two series of biaxial compression tests on ellipse-shaped steel rods are used. The comparisons on the stress-strain relationship, strength, and deformation pattern of experiments and simulations indicate that the DEM models are able to capture the key macro- and micromechanical behavior of inherently anisotropic granular materials with high fidelity. By using the validated DEM models, the boundary effects on the macrodeformation, strain localization, and nonuniformity of stress distribution inside the specimens are investigated using two rigid boundaries and one flexible boundary. The results demonstrate that the boundary condition plays a significant role on the stress-strain relationship and strength of granular materials with inherent fabric anisotropy if the stresses are calculated by the force applied on the wall. However, the responses of the particle assembly measured inside the specimens are almost the same with little influence from the boundary conditions. The peak friction angle obtained from the compression tests with flexible boundary represents the real friction angle of particle assembly. Due to the weak lateral constraints, the degree of stress nonuniformity under flexible boundary is higher than that under rigid boundary.

  14. An Optimal DEM Reconstruction Method for Linear Array Synthetic Aperture Radar Based on Variational Model

    Directory of Open Access Journals (Sweden)

    Shi Jun

    2015-02-01

    Full Text Available Downward-looking Linear Array Synthetic Aperture Radar (LASAR has many potential applications in the topographic mapping, disaster monitoring and reconnaissance applications, especially in the mountainous area. However, limited by the sizes of platforms, its resolution in the linear array direction is always far lower than those in the range and azimuth directions. This disadvantage leads to the blurring of Three-Dimensional (3D images in the linear array direction, and restricts the application of LASAR. To date, the research on 3D SAR image enhancement has focused on the sparse recovery technique. In this case, the one-to-one mapping of Digital Elevation Model (DEM brakes down. To overcome this, an optimal DEM reconstruction method for LASAR based on the variational model is discussed in an effort to optimize the DEM and the associated scattering coefficient map, and to minimize the Mean Square Error (MSE. Using simulation experiments, it is found that the variational model is more suitable for DEM enhancement applications to all kinds of terrains compared with the Orthogonal Matching Pursuit (OMPand Least Absolute Shrinkage and Selection Operator (LASSO methods.

  15. Modeling bubble heat transfer in gas-solid fluidized beds using DEM

    NARCIS (Netherlands)

    Patil, A.V.; Peters, E.A.J.F.; Kolkman, T.; Kuipers, J.A.M.

    2014-01-01

    Discrete element method (DEM) simulations of a pseudo 2-D fluidized bed at non-isothermal conditions are presented. First implementation details are discussed. This is followed by a validation study where heating of a packed column by a flow of heated fluid is considered. Next hot gas injected into

  16. Rockslide and Impulse Wave Modelling in the Vajont Reservoir by DEM-CFD Analyses

    Science.gov (United States)

    Zhao, T.; Utili, S.; Crosta, G. B.

    2016-06-01

    This paper investigates the generation of hydrodynamic water waves due to rockslides plunging into a water reservoir. Quasi-3D DEM analyses in plane strain by a coupled DEM-CFD code are adopted to simulate the rockslide from its onset to the impact with the still water and the subsequent generation of the wave. The employed numerical tools and upscaling of hydraulic properties allow predicting a physical response in broad agreement with the observations notwithstanding the assumptions and characteristics of the adopted methods. The results obtained by the DEM-CFD coupled approach are compared to those published in the literature and those presented by Crosta et al. (Landslide spreading, impulse waves and modelling of the Vajont rockslide. Rock mechanics, 2014) in a companion paper obtained through an ALE-FEM method. Analyses performed along two cross sections are representative of the limit conditions of the eastern and western slope sectors. The max rockslide average velocity and the water wave velocity reach ca. 22 and 20 m/s, respectively. The maximum computed run up amounts to ca. 120 and 170 m for the eastern and western lobe cross sections, respectively. These values are reasonably similar to those recorded during the event (i.e. ca. 130 and 190 m, respectively). Therefore, the overall study lays out a possible DEM-CFD framework for the modelling of the generation of the hydrodynamic wave due to the impact of a rapid moving rockslide or rock-debris avalanche.

  17. Landsat 5 TM images and DEM in lithologic mapping of Payen Volcanic Field (Mendoza Province, Argentina)

    International Nuclear Information System (INIS)

    Fornaciai, A.; Bisson, M.; Mazzarini, F.; Del Carlo, P.; Pasquare, G.

    2009-01-01

    Satellite image such as Landsat 5 TM scene provides excellent representation of Earth and synoptic view of large geographic areas in different band combination. Landsat TM images allow automatic and semi-automatic classification of land cover, nevertheless the software frequently may some difficulties in distinguishing between similar radiometric surfaces. In this case, the use of Digital Elevation Model (DEM) can be an important tool to identify different surface covers. In this study, several False Color Composite (FCC) of Landsat 5 TM Image, DEM and the respective draped image of them, were used to delineate lithological boundaries and tectonic features of regional significance of the Paven Volcanic Field (PVF). PFV is a Quaternary fissural structure belonging to the black-arc extensional areas of the Andes in the Mendoza Province (Argentina) characterized by many composite basaltic lava flow fields. The necessity to identify different lava flows with the same composition, and then with same spectral features, allows to highlight the improvement of synergic use of TM images and shaded DEM in the visual interpretation. Information obtained from Satellite data and DEM have been compared with previous geological maps and transferred into a topographical base map. Based on these data a new lithological map at 1:100.000 scale has been presented [it

  18. Discrete element simulation of mill charge in 3D using the BLAZE-DEM GPU framework

    CSIR Research Space (South Africa)

    Govender, Nicolin

    2015-08-01

    Full Text Available The Discrete Element Method (DEM) simulation of charge motion in ball, semi autogenous (SAG) and autogenous mills has advanced to a stage where the effects of lifter design, power draft and product size can be evaluated with sufficient accuracy...

  19. Die Geburt des Kosmos aus dem Nichts die Theorie des inflationären Universums

    CERN Document Server

    Guth, Alan

    2002-01-01

    Selten wird die Wissenschaft über Nacht so stark revolutioniert wie die Kosmologie durch Alan Guths Entdeckung der inflationären Theorie des Universums. Noch seltener gelingt es dem Urheber einer solchen Revolution, eine derart verständliche und einprägsame Darstellung von einer der aufregendsten Epochen in der modernen Kosmologie zu geben. Sogar Kenner werden Neues lernen.

  20. Kinematic behaviour of a large earthflow defined by surface displacement monitoring, DEM differencing, and ERT imaging

    Czech Academy of Sciences Publication Activity Database

    Prokešová, R.; Kardoš, M.; Tábořík, Petr; Medveďová, A.; Stacke, V.; Chudý, F.

    2014-01-01

    Roč. 224, NOV 1 (2014), s. 86-101 ISSN 0169-555X R&D Projects: GA MŠk LM2010008 Institutional support: RVO:67985891 Keywords : earthflow * surface displacement * strain modelling * DEM differencing * kinematic behaviour Subject RIV: DE - Earth Magnetism, Geodesy, Geography Impact factor: 2.577, year: 2013

  1. Impact of mesh and DEM resolutions in SEM simulation of 3D seismic response

    NARCIS (Netherlands)

    Khan, Saad; van der Meijde, M.; van der Werff, H.M.A.; Shafique, Muhammad

    2017-01-01

    This study shows that the resolution of a digital elevation model (DEM) and model mesh strongly influences 3D simulations of seismic response. Topographic heterogeneity scatters seismic waves and causes variation in seismic response (am-plification and deamplification of seismic amplitudes) at the

  2. Estimating Horizontal Displacement between DEMs by Means of Particle Image Velocimetry Techniques

    Directory of Open Access Journals (Sweden)

    Juan F. Reinoso

    2015-12-01

    Full Text Available To date, digital terrain model (DTM accuracy has been studied almost exclusively by computing its height variable. However, the largely ignored horizontal component bears a great influence on the positional accuracy of certain linear features, e.g., in hydrological features. In an effort to fill this gap, we propose a means of measurement different from the geomatic approach, involving fluid mechanics (water and air flows or aerodynamics. The particle image velocimetry (PIV algorithm is proposed as an estimator of horizontal differences between digital elevation models (DEM in grid format. After applying a scale factor to the displacement estimated by the PIV algorithm, the mean error predicted is around one-seventh of the cell size of the DEM with the greatest spatial resolution, and around one-nineteenth of the cell size of the DEM with the least spatial resolution. Our methodology allows all kinds of DTMs to be compared once they are transformed into DEM format, while also allowing comparison of data from diverse capture methods, i.e., LiDAR versus photogrammetric data sources.

  3. Use of DEMs Derived from TLS and HRSI Data for Landslide Feature Recognition

    Directory of Open Access Journals (Sweden)

    Maurizio Barbarella

    2018-04-01

    Full Text Available This paper addresses the problems arising from the use of data acquired with two different remote sensing techniques—high-resolution satellite imagery (HRSI and terrestrial laser scanning (TLS—for the extraction of digital elevation models (DEMs used in the geomorphological analysis and recognition of landslides, taking into account the uncertainties associated with DEM production. In order to obtain a georeferenced and edited point cloud, the two data sets require quite different processes, which are more complex for satellite images than for TLS data. The differences between the two processes are highlighted. The point clouds are interpolated on a DEM with a 1 m grid size using kriging. Starting from these DEMs, a number of contour, slope, and aspect maps are extracted, together with their associated uncertainty maps. Comparative analysis of selected landslide features drawn from the two data sources allows recognition and classification of hierarchical and multiscale landslide components. Taking into account the uncertainty related to the map enables areas to be located for which one data source was able to give more reliable results than another. Our case study is located in Southern Italy, in an area known for active landslides.

  4. Demência na doença de Parkinson Dementia in Parkinsn's disease

    Directory of Open Access Journals (Sweden)

    Leonardo Caixeta

    2008-12-01

    Full Text Available OBJETIVO: A presença de síndromes psiquiátricas, incluindo demência, associada a distúrbios motores tem sido cada vez mais reconhecida durante a última década, com destaque para o prejuízo cognitivo na doença de Parkinson idiopática. Esta revisão enfocará a epidemiologia, os aspectos clínicos, diagnósticos diferenciais, mecanismos subjacentes e o tratamento da demência na doença de Parkinson idiopática. MÉTODO: Uma revisão da literatura dos estudos que investigaram a demência da doença de Parkinson idiopática foi realizada. RESULTADOS: A demência é altamente prevalente na doença de Parkinson idiopática. O protótipo da demência na doença de Parkinson idiopática consiste numa síndrome disexecutiva com comprometimento da atenção, funções executivas e, secundariamente, a memória. Neuroquimicamente, o déficit mais significativo parece ser colinérgico; a demência se correlaciona com a presença de corpos de Lewy corticais e límbicos. Evidências preliminares sugerem que os anticolinesterásicos podem ser efetivos na demência da doença de Parkinson idiopática. CONCLUSÕES: O prejuízo cognitivo na doença de Parkinson idiopática é associado a características próprias e é responsável por importante incapacidade nestes pacientes.OBJECTIVE: The concomitant presence of psychiatric syndromes, including dementia, with motor disturbance has been increasingly recognized during the last decade, with emphasis on cognitive impairment in idiopatic Parkinson's disease. This review will focus on the epidemiology, clinical aspects, differential diagnosis, underlying mechanisms and treatment of dementia in Parkinson's disease. METHOD: A literature review of the studies that investigated the dementia in Parkinson's disease was performed. RESULTS: Dementia is highly prevalent in Parkinson's disease. The prototype of dementia in Parkinson's disease is a dysexecutive syndrome with impaired attention, executive functions and

  5. Effect of DEM resolution and comparison between different weighting factors for hydrologic connectivity index

    Science.gov (United States)

    Cantreul, Vincent; Cavalli, Marco; Degré, Aurore

    2016-04-01

    The emerging concept of hydrological connectivity is difficult to quantify. Some indices have been proposed. The most cited is Borselli's one. It mainly uses the DEM as input. The pixel size may strongly impacts the result of the calculation. It has not been studied yet in silty areas. Another important aspect is the choice of the weighting factor which strongly influences the index value. The objective of this poster is so to compare 8 different DEM's resolutions (12, 24, 48, 72, 96, 204, 504 and 996cm) and 3 different weighting factors (factor C of Wischmeier, Manning's factor and rugosity index) in the Borselli's index calculation. The IC was calculated in a 124ha catchment (Hevillers), in the loess belt, in Belgium. The DEM used is coming from a UAV with a maximum resolution of 12 cm. Permanent covered surfaces are not considered in order to avoid artefact due to the vegetation (2% of the surface). Regarding the DEM pixel size, the IC increases for a given pixel when the pixel size decreases. That confirms some results observed in the Alpine region by Cavalli (2014). The mean difference between 12 cm and 10 m resolution is 35% with higher values up to 100% for higher connectivity zones (flow paths). Another result is the lower impact of connections in the watershed (grass strips…) at lower pixel sizes. This is linked to the small width of some connections which are sometimes comparing to cell size. Furthermore, a great loss of precision is observed from the 500 cm pixel size and upper. That remark is quite intuitive. Finally, some very well disconnected zones appear for the highest resolutions. Regarding the weighting factor, IC values calculated using C factor are lower than with the rugosity index which is only a topographic factor. With very high resolution DEM, it permits to represent the fine topography. For the C factor, the zones up to very well disconnected areas (grass strips, wood…) are well represented with lower index values than downstream

  6. DemQSAR: predicting human volume of distribution and clearance of drugs.

    Science.gov (United States)

    Demir-Kavuk, Ozgur; Bentzien, Jörg; Muegge, Ingo; Knapp, Ernst-Walter

    2011-12-01

    In silico methods characterizing molecular compounds with respect to pharmacologically relevant properties can accelerate the identification of new drugs and reduce their development costs. Quantitative structure-activity/-property relationship (QSAR/QSPR) correlate structure and physico-chemical properties of molecular compounds with a specific functional activity/property under study. Typically a large number of molecular features are generated for the compounds. In many cases the number of generated features exceeds the number of molecular compounds with known property values that are available for learning. Machine learning methods tend to overfit the training data in such situations, i.e. the method adjusts to very specific features of the training data, which are not characteristic for the considered property. This problem can be alleviated by diminishing the influence of unimportant, redundant or even misleading features. A better strategy is to eliminate such features completely. Ideally, a molecular property can be described by a small number of features that are chemically interpretable. The purpose of the present contribution is to provide a predictive modeling approach, which combines feature generation, feature selection, model building and control of overtraining into a single application called DemQSAR. DemQSAR is used to predict human volume of distribution (VD(ss)) and human clearance (CL). To control overtraining, quadratic and linear regularization terms were employed. A recursive feature selection approach is used to reduce the number of descriptors. The prediction performance is as good as the best predictions reported in the recent literature. The example presented here demonstrates that DemQSAR can generate a model that uses very few features while maintaining high predictive power. A standalone DemQSAR Java application for model building of any user defined property as well as a web interface for the prediction of human VD(ss) and CL is

  7. DEM GENERATION FROM HIGH RESOLUTION SATELLITE IMAGES THROUGH A NEW 3D LEAST SQUARES MATCHING ALGORITHM

    Directory of Open Access Journals (Sweden)

    T. Kim

    2012-09-01

    Full Text Available Automated generation of digital elevation models (DEMs from high resolution satellite images (HRSIs has been an active research topic for many years. However, stereo matching of HRSIs, in particular based on image-space search, is still difficult due to occlusions and building facades within them. Object-space matching schemes, proposed to overcome these problem, often are very time consuming and critical to the dimensions of voxels. In this paper, we tried a new least square matching (LSM algorithm that works in a 3D object space. The algorithm starts with an initial height value on one location of the object space. From this 3D point, the left and right image points are projected. The true height is calculated by iterative least squares estimation based on the grey level differences between the left and right patches centred on the projected left and right points. We tested the 3D LSM to the Worldview images over 'Terrassa Sud' provided by the ISPRS WG I/4. We also compared the performance of the 3D LSM with the correlation matching based on 2D image space and the correlation matching based on 3D object space. The accuracy of the DEM from each method was analysed against the ground truth. Test results showed that 3D LSM offers more accurate DEMs over the conventional matching algorithms. Results also showed that 3D LSM is sensitive to the accuracy of initial height value to start the estimation. We combined the 3D COM and 3D LSM for accurate and robust DEM generation from HRSIs. The major contribution of this paper is that we proposed and validated that LSM can be applied to object space and that the combination of 3D correlation and 3D LSM can be a good solution for automated DEM generation from HRSIs.

  8. A new DEM of the Austfonna ice cap by combining differential SAR interferometry with ICESat laser altimetry

    Directory of Open Access Journals (Sweden)

    Geir Moholdt

    2012-05-01

    Full Text Available We present a new digital elevation model (DEM of the Austfonna ice cap in the Svalbard Archipelago, Norwegian Arctic. Previous DEMs derived from synthetic aperture radar (SAR and optical shape-from-shading have been tied to airborne radio echo-sounding surface profiles from 1983 which contain an elevation-dependent bias of up to several tens of metres compared with recent elevation data. The new and freely available DEM is constructed purely from spaceborne remote sensing data using differential SAR interferometry (DInSAR in combination with ICESat laser altimetry. Interferograms were generated from pairs of SAR scenes from the one-day repeat tandem phase of the European Remote Sensing Satellites 1/2 (ERS-1/2 in 1996. ICESat elevations from winter 2006–08 were used as ground control points to refine the interferometric baseline. The resulting DEM is validated against the same ground control points and independent surface elevation profiles from Global Navigation Satellite Systems (GNSS and airborne laser altimetry, yielding root mean square (RMS errors of about 10 m in all cases. This quality is sufficient for most glaciological applications, and the new DEM will be a baseline data set for ongoing and future research at Austfonna. The technique of combining satellite DInSAR with high-resolution satellite altimetry for DEM generation might also be a good solution in other glacier regions with similar characteristics, especially when data from TanDEM-X and CryoSat-2 become available.

  9. Assessment of neuro-optometric rehabilitation using the Developmental Eye Movement (DEM) test in adults with acquired brain injury.

    Science.gov (United States)

    Kapoor, Neera; Ciuffreda, Kenneth Joseph

    This pilot study sought to determine the efficacy of using the Developmental Eye Movement (DEM) test in the adult, acquired brain injury (ABI) population to quantify clinically the effects of controlled, laboratory-performed, oculomotor-based vision therapy/vision rehabilitation. Nine adult subjects with mild traumatic brain injury (mTBI) and five with stroke were assessed before and after an eight-week, computer-based, versional oculomotor (fixation, saccades, pursuit, and simulated reading) training program (9.6h total). The protocol incorporated a cross-over, interventional design with and without the addition of auditory feedback regarding two-dimensional eye position. The clinical outcome measure was the Developmental Eye Movement (DEM) test score (ratio, errors) taken before, midway, and immediately following training. For the DEM ratio parameter, improvements were found in 80-89% of the subjects. For the DEM error parameter, improvements were found in 100% of the subjects. Incorporation of the auditory feedback component revealed a trend toward enhanced performance. The findings were similar for both DEM parameters, as well as for incorporation of the auditory feedback, in both diagnostic groups. The results of the present study demonstrated considerable improvements in the DEM test scores following the oculomotor-based training, thus reflecting more time-optimal and accurate saccadic tracking after the training. The DEM test should be considered as another clinical test of global saccadic tracking performance in the ABI population. Copyright © 2017 Spanish General Council of Optometry. All rights reserved.

  10. Micromechanics of non-active clays in saturated state and DEM modelling

    Directory of Open Access Journals (Sweden)

    Pagano Arianna Gea

    2017-01-01

    Full Text Available The paper presents a conceptual micromechanical model for 1-D compression behaviour of non-active clays in saturated state. An experimental investigation was carried out on kaolin clay samples saturated with fluids of different pH and dielectric permittivity. The effect of pore fluid characteristics on one-dimensional compressibility behaviour of kaolin was investigated. A three dimensional Discrete Element Method (DEM was implemented in order to simulate the response of saturated kaolin observed during the experiments. A complex contact model was introduced, considering both the mechanical and physico-chemical microscopic interactions between clay particles. A simple analysis with spherical particles only was performed as a preliminary step in the DEM study in the elastic regime.

  11. Study of the electrooxidation of ethanol on hydrophobic electrodes by DEMS and HPLC

    International Nuclear Information System (INIS)

    Gonzalez Pereira, M.; Davila Jimenez, M.; Elizalde, M.P.; Manzo-Robledo, A.; Alonso-Vante, N.

    2004-01-01

    The electrochemical oxidation of ethanol in alkaline solution has been studied on Cu-PVC electrode and Ni/Cu-PVC composite electrodes modified by ruthenium nanoparticles. The techniques used were cyclic voltammetry (CV), steady-state potentiostatic method, on line differential electrochemical mass spectrometry (DEMS), and high-performance liquid chromatography (HPLC). The chemical products: acetaldehyde and acetic acid were detected measuring the proper mass charge (m/z) ratios. These products were also confirmed by HPLC. The surface modification of composite electrodes by ruthenium nanoparticles promotes the formation of acetaldehyde. As shown by DEMS, the surface modification shifts the onset potential for oxygen evolution reaction on the Cu-PVC composite electrode towards more anodic values

  12. Radiosurgery with the gamma knife; Radiochirurgie mit dem Gamma-Knife

    Energy Technology Data Exchange (ETDEWEB)

    Wowra, B.; Reulen, H.J.

    1996-05-10

    Radiosurgery is a novel modality introduced by the neurosurgeon Lars Leksell. For the most important lesions, (arteriovenous angiomas, benign tumors in the base of the skull, formation of metastases in the brain), radiosurgery is a valuable additional tool in the range of therapies available to the benefit of patients. The gamma knife has been gaining a leading rank in the range of therapies applied in Germany. (orig.) [Deutsch] Radiochirurgie ist ein neues, von dem Neurochirurgen Lars Leksell konzipiertes Prinzip. Bei den wichtigsten Indikationen (arteriovenoese Angiome, gutartige Tumoren der Schaedelbasis, Hirnmetastasen etc.) bereichert und ergaenzt die Radiochirurgie das therapeutische Arsenal der Neurochirurgie zum Vorteil der Patienten betraechtlich. Dem Gamma-Knife kommt jetzt auch in Deutschland ein prominenter Platz unter den verschiedenen radiochirurgischen Verfahren zu. (orig.)

  13. Doppler Centroid Estimation for Airborne SAR Supported by POS and DEM

    Directory of Open Access Journals (Sweden)

    CHENG Chunquan

    2015-05-01

    Full Text Available It is difficult to estimate the Doppler frequency and modulating rate for airborne SAR by using traditional vector method due to instable flight and complex terrain. In this paper, it is qualitatively analyzed that the impacts of POS, DEM and their errors on airborne SAR Doppler parameters. Then an innovative vector method is presented based on the range-coplanarity equation to estimate the Doppler centroid taking the POS and DEM as auxiliary data. The effectiveness of the proposed method is validated and analyzed via the simulation experiments. The theoretical analysis and experimental results show that the method can be used to estimate the Doppler centroid with high accuracy even in the cases of high relief, instable flight, and large squint SAR.

  14. Effect of particle breakage on cyclic densification of ballast: A DEM approach

    International Nuclear Information System (INIS)

    Thakur, P K; Vinod, J S; Indraratna, B

    2010-01-01

    In this paper, an attempt has been made to investigate the effect of particle breakage on densification behaviour of ballast under cyclic loading using Discrete Element Method (DEM). Numerical simulations using PFC 2D have been carried out on an assembly of angular particles with and without incorporation of particle breakage. Two-dimensional projection of angular ballast particles were simulated using clusters of bonded circular particles. Degradation of the bonds within a cluster was considered to represent particle breakage. Clump logic was used to make the cluster of particles unbreakable. DEM simulation results highlight that the particle breakage has a profound influence on the cyclic densification behaviour of ballast. The deformation behaviour exhibited by the assembly with breakage is in good agreement with the laboratory experiments. In addition, the evolution of particle displacement vectors clearly explains the breakage mechanism and associated deformations during cyclic loading.

  15. Numerical modelling of powder caking at REV scale by using DEM

    Science.gov (United States)

    Guessasma, Mohamed; Silva Tavares, Homayra; Afrassiabian, Zahra; Saleh, Khashayar

    2017-06-01

    This work deals with numerical simulation of powder caking process caused by capillary condensation phenomenon. Caking consists in unwanted agglomeration of powder particles. This process is often irreversible and not easy to predict. To reproduce mechanism involved by caking phenomenon we have used the Discrete Elements Method (DEM). In the present work, we mainly focus on the role of capillary condensation and subsequent liquid bridge formation within a granular medium exposed to fluctuations of ambient relative humidity. Such bridges cause an attractive force between particles, leading to the formation of a cake with intrinsic physicochemical and mechanical properties. By considering a Representative Elementary Volume (REV), the DEM is then performed by means of a MULTICOR-3D software tacking into account the properties of the cake (degree of saturation) in order to establish relationships between the microscopic parameters and the macroscopic behaviour (tensile strength).

  16. Numerical modelling of powder caking at REV scale by using DEM

    Directory of Open Access Journals (Sweden)

    Guessasma Mohamed

    2017-01-01

    Full Text Available This work deals with numerical simulation of powder caking process caused by capillary condensation phenomenon. Caking consists in unwanted agglomeration of powder particles. This process is often irreversible and not easy to predict. To reproduce mechanism involved by caking phenomenon we have used the Discrete Elements Method (DEM. In the present work, we mainly focus on the role of capillary condensation and subsequent liquid bridge formation within a granular medium exposed to fluctuations of ambient relative humidity. Such bridges cause an attractive force between particles, leading to the formation of a cake with intrinsic physicochemical and mechanical properties. By considering a Representative Elementary Volume (REV, the DEM is then performed by means of a MULTICOR-3D software tacking into account the properties of the cake (degree of saturation in order to establish relationships between the microscopic parameters and the macroscopic behaviour (tensile strength.

  17. Study of the electrooxidation of ethanol on hydrophobic electrodes by DEMS and HPLC

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez Pereira, M.; Davila Jimenez, M.; Elizalde, M.P.; Manzo-Robledo, A.; Alonso-Vante, N

    2004-09-15

    The electrochemical oxidation of ethanol in alkaline solution has been studied on Cu-PVC electrode and Ni/Cu-PVC composite electrodes modified by ruthenium nanoparticles. The techniques used were cyclic voltammetry (CV), steady-state potentiostatic method, on line differential electrochemical mass spectrometry (DEMS), and high-performance liquid chromatography (HPLC). The chemical products: acetaldehyde and acetic acid were detected measuring the proper mass charge (m/z) ratios. These products were also confirmed by HPLC. The surface modification of composite electrodes by ruthenium nanoparticles promotes the formation of acetaldehyde. As shown by DEMS, the surface modification shifts the onset potential for oxygen evolution reaction on the Cu-PVC composite electrode towards more anodic values.

  18. Production of 17-O-demethyl-geldanamycin, a cytotoxic ansamycin polyketide, by Streptomyces hygroscopicus DEM20745.

    Science.gov (United States)

    Baksh, Aron; Kepplinger, Bernhard; Isah, Hadiza A; Probert, Michael R; Clegg, William; Wills, Corinne; Goodfellow, Michael; Errington, Jeff; Allenby, Nick; Hall, Michael J

    2017-08-01

    The actinomycete DEM20745, collected from non-rhizosphere soil adjacent to Paraserianthes falactaria trees (Cangkringan, Indonesia), is an efficient producer of the anticancer ansamycin polyketide 17-O-demethyl-geldanamycin (17-O-DMG), a biosynthetic precursor of the Hsp90 inhibitor geldanamycin (GDM). In DEM20745, 17-O-DMG is the major ansamycin product observed reaching a maximum titre of 17 mg/L in the fermentation broth. 17-O-DMG has the potential to be a key starting material for the semi-synthesis of GDM analogues for use in anticancer therapy. Thus, this preferential biosynthesis of 17-O-DMG facilitates easy access to this important molecule and provides further insight in the biosynthesis of the geldanamycins.

  19. Steueroptimierte Alters- und Berufsunfähigkeitsvorsorge nach dem Alterseinkünftegesetz

    OpenAIRE

    Eberhardt, Michael G.

    2007-01-01

    Eine höhere Lebenserwartung bei gleichzeitiger Überalterung der deutschen Gesellschaft sind maßgebliche Gründe eines heute bereits festzustellenden Defizits der gesetzlichen Rentenversicherung. Die jüngste Rentenreform mit dem Altersvermögens- und Alterseinkünftegesetz setzte deshalb maßgebliche Anreize, die Alterssicherung eigenverantwortlich um eine private, staatlich geförderte Vorsorge zu ergänzen. Jedoch mangelt es derzeit vorwiegend an einer fachkundigen Informations- und Beratungsleist...

  20. All you need is shape: Predicting shear banding in sand with LS-DEM

    Science.gov (United States)

    Kawamoto, Reid; Andò, Edward; Viggiani, Gioacchino; Andrade, José E.

    2018-02-01

    This paper presents discrete element method (DEM) simulations with experimental comparisons at multiple length scales-underscoring the crucial role of particle shape. The simulations build on technological advances in the DEM furnished by level sets (LS-DEM), which enable the mathematical representation of the surface of arbitrarily-shaped particles such as grains of sand. We show that this ability to model shape enables unprecedented capture of the mechanics of granular materials across scales ranging from macroscopic behavior to local behavior to particle behavior. Specifically, the model is able to predict the onset and evolution of shear banding in sands, replicating the most advanced high-fidelity experiments in triaxial compression equipped with sequential X-ray tomography imaging. We present comparisons of the model and experiment at an unprecedented level of quantitative agreement-building a one-to-one model where every particle in the more than 53,000-particle array has its own avatar or numerical twin. Furthermore, the boundary conditions of the experiment are faithfully captured by modeling the membrane effect as well as the platen displacement and tilting. The results show a computational tool that can give insight into the physics and mechanics of granular materials undergoing shear deformation and failure, with computational times comparable to those of the experiment. One quantitative measure that is extracted from the LS-DEM simulations that is currently not available experimentally is the evolution of three dimensional force chains inside and outside of the shear band. We show that the rotations on the force chains are correlated to the rotations in stress principal directions.

  1. Thieves, Parent Abusers, Draft Dodgers... and Homicides?:The authenticity of Dem. 24.105

    OpenAIRE

    Canevaro, Mirko

    2013-01-01

    This article discusses the authenticity of the document preserved at Dem. 24.105. This purportedly reports two laws, one about theft and the other about parent abusers, draft dodgers and homicides. Scholars have often believed it to provide reliable information about the procedures of dike klopes, apagoge phonou and apagoge against atimoi. This analysis shows that the document is inconsistent with other, reliable, information about the same topics and its language does not conform to that of ...

  2. CFD-DEM Onset of Motion Analysis for Application to Bed Scour Risk Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Sitek, M. A. [Argonne National Lab. (ANL), Argonne, IL (United States); Lottes, S. A. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2017-03-01

    This CFD study with DEM was done as a part of the Federal Highway Administration’s (FHWA’s) effort to improve scour design procedures. The Computational Fluid Dynamics-Discrete Element Method (CFD-DEM) model, available in CD-Adapco’s StarCCM+ software, was used to simulate multiphase systems, mainly those which combine fluids and solids. In this method the motion of discrete solids is accounted for by DEM, which applies Newton's laws of motion to every particle. The flow of the fluid is determined by the local averaged Navier–Stokes equations that can be solved using the traditional CFD approach. The interactions between the fluid phase and solids phase are modeled by use of Newton's third law. The inter-particle contact forces are included in the equations of motion. Soft-particle formulation is used, which allows particles to overlap. In this study DEM was used to model separate sediment grains and spherical particles laying on the bed with the aim to analyze their movement due to flow conditions. Critical shear stress causing the incipient movement of the sediment was established and compared to the available experimental data. An example of scour around a cylindrical pier is considered. Various depths of the scoured bed and flow conditions were taken into account to gain a better understanding of the erosion forces existing around bridge foundations. The decay of these forces with increasing scour depth was quantified with a ‘decay function’, which shows that particles become increasingly less likely to be set in motion by flow forces as a scour hole increases in depth. Computational and experimental examples of the scoured bed around a cylindrical pier are presented.

  3. Deep Convolutional Generative Adversarial Network for Procedural 3D Landscape Generation Based on DEM

    OpenAIRE

    Wulff-Jensen, Andreas; Rant, Niclas Nerup; Møller, Tobias Nordvig; Billeskov, Jonas Aksel

    2018-01-01

    This paper proposes a novel framework for improving procedural generation of 3D landscapes using machine learning. We utilized a Deep Convolutional Generative Adversarial Network (DC-GAN) to generate heightmaps. The network was trained on a dataset consisting of Digital Elevation Maps (DEM) of the alps. During map generation, the batch size and learning rate were optimized for the most efficient and satisfying map production. The diversity of the final output was tested against Perlin noise u...

  4. Combined SDO/AIA, Hinode/XRT and FOXSI-2 microflare observations - DEM analysis and energetics

    Science.gov (United States)

    Panchapakesan, S. A.; Glesener, L.; Vievering, J. T.; Ryan, D.; Christe, S.; Inglis, A. R.; Buitrago-Casas, J. C.; Musset, S.; Krucker, S.

    2017-12-01

    The Focusing Optics X-ray Solar Imager (FOXSI) sounding rocket makes directimaging and spectral observation of the Sun in hard X-rays (HXRs) using highlysensitive focusing HXR optics. The second flight of FOXSI was launchedsuccessfully on 11 December 2014 and observed significant HXR emissions duringmicroflares. Some of these flares showed heating up to severalmillion Kelvin and were visible in the Extreme Ultraviolet (EUV) with the AtmosphericImaging Assembly (SDO/AIA). Spectral observations from FOXSI suggest emission upto 10-12 MK. We utilize SDO/AIA EUV, Hinode/XRT soft X-ray, and FOXSI-2 highenergy X-ray observations to derive the differential emission measure (DEM) ofthe microflares. The AIA and XRT observations provide broad temperaturecoverage but are poorly constrained at the hotter end. We therefore use FOXSI-2to better determine the high temperature component, thus producing a moreconstrained DEM than is possible with typically available observations. We usethis more highly constrained DEM to investigate the energetics of the observedmicroflares.

  5. Dissipation consistent fabric tensor definition from DEM to continuum for granular media

    Science.gov (United States)

    Li, X. S.; Dafalias, Y. F.

    2015-05-01

    In elastoplastic soil models aimed at capturing the impact of fabric anisotropy, a necessary ingredient is a measure of anisotropic fabric in the form of an evolving tensor. While it is possible to formulate such a fabric tensor based on indirect phenomenological observations at the continuum level, it is more effective and insightful to have the tensor defined first based on direct particle level microstructural observations and subsequently deduce a corresponding continuum definition. A practical means able to provide such observations, at least in the context of fabric evolution mechanisms, is the discrete element method (DEM). Some DEM defined fabric tensors such as the one based on the statistics of interparticle contact normals have already gained widespread acceptance as a quantitative measure of fabric anisotropy among researchers of granular material behavior. On the other hand, a fabric tensor in continuum elastoplastic modeling has been treated as a tensor-valued internal variable whose evolution must be properly linked to physical dissipation. Accordingly, the adaptation of a DEM fabric tensor definition to a continuum constitutive modeling theory must be thermodynamically consistent in regards to dissipation mechanisms. The present paper addresses this issue in detail, brings up possible pitfalls if such consistency is violated and proposes remedies and guidelines for such adaptation within a recently developed Anisotropic Critical State Theory (ACST) for granular materials.

  6. Drainage network extraction from a high-resolution DEM using parallel programming in the .NET Framework

    Science.gov (United States)

    Du, Chao; Ye, Aizhong; Gan, Yanjun; You, Jinjun; Duan, Qinyun; Ma, Feng; Hou, Jingwen

    2017-12-01

    High-resolution Digital Elevation Models (DEMs) can be used to extract high-accuracy prerequisite drainage networks. A higher resolution represents a larger number of grids. With an increase in the number of grids, the flow direction determination will require substantial computer resources and computing time. Parallel computing is a feasible method with which to resolve this problem. In this paper, we proposed a parallel programming method within the .NET Framework with a C# Compiler in a Windows environment. The basin is divided into sub-basins, and subsequently the different sub-basins operate on multiple threads concurrently to calculate flow directions. The method was applied to calculate the flow direction of the Yellow River basin from 3 arc-second resolution SRTM DEM. Drainage networks were extracted and compared with HydroSHEDS river network to assess their accuracy. The results demonstrate that this method can calculate the flow direction from high-resolution DEMs efficiently and extract high-precision continuous drainage networks.

  7. Flow Dynamics of green sand in the DISAMATIC moulding process using Discrete element method (DEM)

    International Nuclear Information System (INIS)

    Hovad, E; Walther, J H; Thorborg, J; Hattel, J H; Larsen, P

    2015-01-01

    The DISAMATIC casting process production of sand moulds is simulated with DEM (discrete element method). The main purpose is to simulate the dynamics of the flow of green sand, during the production of the sand mould with DEM. The sand shot is simulated, which is the first stage of the DISAMATIC casting process. Depending on the actual casting geometry the mould can be geometrically quite complex involving e.g. shadowing effects and this is directly reflected in the sand flow during the moulding process. In the present work a mould chamber with “ribs” at the walls is chosen as a baseline geometry to emulate some of these important conditions found in the real moulding process. The sand flow is simulated with the DEM and compared with corresponding video footages from the interior of the chamber during the moulding process. The effect of the rolling resistance and the static friction coefficient is analysed and discussed in relation to the experimental findings. (paper)

  8. Simulation of TanDEM-X interferograms for urban change detection

    Science.gov (United States)

    Welte, Amelie; Hammer, Horst; Thiele, Antje; Hinz, Stefan

    2017-10-01

    Damage detection after natural disasters is one of the remote sensing tasks in which Synthetic Aperture Radar (SAR) sensors play an important role. Since SAR is an active sensor, it can record images at all times of day and in all weather conditions, making it ideally suited for this task. While with the newer generation of SAR satellites such as TerraSAR-X or COSMOSkyMed amplitude change detection has become possible even for urban areas, interferometric phase change detection has not been published widely. This is mainly because of the long revisit times of common SAR sensors leading to temporal decorrelation. This situation has changed dramatically with the advent of the TanDEM-X constellation, which can create single-pass interferograms from space at very high resolutions, avoiding temporal decorrelation almost completely. In this paper the basic structures that are present for any building in InSAR phases, i.e. layover, shadow, and roof areas, are examined. Approaches for their extraction from TanDEM-X interferograms are developed using simulated SAR interferograms. The extracted features of the building signature will in the future be used for urban change detection in real TanDEM-X High Resolution Spotlight interferograms.

  9. A Review of Discrete Element Method (DEM) Particle Shapes and Size Distributions for Lunar Soil

    Science.gov (United States)

    Lane, John E.; Metzger, Philip T.; Wilkinson, R. Allen

    2010-01-01

    As part of ongoing efforts to develop models of lunar soil mechanics, this report reviews two topics that are important to discrete element method (DEM) modeling the behavior of soils (such as lunar soils): (1) methods of modeling particle shapes and (2) analytical representations of particle size distribution. The choice of particle shape complexity is driven primarily by opposing tradeoffs with total number of particles, computer memory, and total simulation computer processing time. The choice is also dependent on available DEM software capabilities. For example, PFC2D/PFC3D and EDEM support clustering of spheres; MIMES incorporates superquadric particle shapes; and BLOKS3D provides polyhedra shapes. Most commercial and custom DEM software supports some type of complex particle shape beyond the standard sphere. Convex polyhedra, clusters of spheres and single parametric particle shapes such as the ellipsoid, polyellipsoid, and superquadric, are all motivated by the desire to introduce asymmetry into the particle shape, as well as edges and corners, in order to better simulate actual granular particle shapes and behavior. An empirical particle size distribution (PSD) formula is shown to fit desert sand data from Bagnold. Particle size data of JSC-1a obtained from a fine particle analyzer at the NASA Kennedy Space Center is also fitted to a similar empirical PSD function.

  10. Bank gully extraction from DEMs utilizing the geomorphologic features of a loess hilly area in China

    Science.gov (United States)

    Yang, Xin; Na, Jiaming; Tang, Guoan; Wang, Tingting; Zhu, Axing

    2018-04-01

    As one of most active gully types in the Chinese Loess Plateau, bank gullies generally indicate soil loss and land degradation. This study addressed the lack of detailed, large scale monitoring of bank gullies and proposed a semi-automatic method for extracting bank gullies, given typical topographic features based on 5 m resolution DEMs. First, channel networks, including bank gullies, are extracted through an iterative channel burn-in algorithm. Second, gully heads are correctly positioned based on the spatial relationship between gully heads and their corresponding gully shoulder lines. Third, bank gullies are distinguished from other gullies using the newly proposed topographic measurement of "relative gully depth (RGD)." The experimental results from the loess hilly area of the Linjiajian watershed in the Chinese Loess Plateau show that the producer accuracy reaches 87.5%. The accuracy is affected by the DEM resolution and RGD parameters, as well as the accuracy of the gully shoulder line. The application in the Madigou watershed with a high DEM resolution validated the duplicability of this method in other areas. The overall performance shows that bank gullies can be extracted with acceptable accuracy over a large area, which provides essential information for research on soil erosion, geomorphology, and environmental ecology.

  11. Pre-2014 mudslides at Oso revealed by InSAR and multi-source DEM analysis

    Science.gov (United States)

    Kim, J. W.; Lu, Z.; QU, F.

    2014-12-01

    The landslide is a process that results in the downward and outward movement of slope-reshaping materials including rocks and soils and annually causes the loss of approximately $3.5 billion and tens of casualties in the United States. The 2014 Oso mudslide was an extreme event costing nearly 40 deaths and damaging civilian properties. Landslides are often unpredictable, but in many cases, catastrophic events are repetitive. Historic record in the Oso mudslide site indicates that there have been serial events in decades, though the extent of sliding events varied from time to time. In our study, the combination of multi-source DEMs, InSAR, and time-series InSAR analysis has enabled to characterize the Oso mudslide. InSAR results from ALOS PALSAR show that there was no significant deformation between mid-2006 and 2011. The combination of time-series InSAR analysis and old-dated DEM indicated revealed topographic changes associated the 2006 sliding event, which is confirmed by the difference of multiple LiDAR DEMs. Precipitation and discharge measurements before the 2006 and 2014 landslide events did not exhibit extremely anomalous records, suggesting the precipitation is not the controlling factor in determining the sliding events at Oso. The lack of surface deformation during 2006-2011 and weak correlation between the precipitation and the sliding event, suggest other factors (such as porosity) might play a critical role on the run-away events at this Oso and other similar landslides.

  12. Calibration of DEM parameters on shear test experiments using Kriging method

    Science.gov (United States)

    Xavier, Bednarek; Sylvain, Martin; Abibatou, Ndiaye; Véronique, Peres; Olivier, Bonnefoy

    2017-06-01

    Calibration of powder mixing simulation using Discrete-Element-Method is still an issue. Achieving good agreement with experimental results is difficult because time-efficient use of DEM involves strong assumptions. This work presents a methodology to calibrate DEM parameters using Efficient Global Optimization (EGO) algorithm based on Kriging interpolation method. Classical shear test experiments are used as calibration experiments. The calibration is made on two parameters - Young modulus and friction coefficient. The determination of the minimal number of grains that has to be used is a critical step. Simulations of a too small amount of grains would indeed not represent the realistic behavior of powder when using huge amout of grains will be strongly time consuming. The optimization goal is the minimization of the objective function which is the distance between simulated and measured behaviors. The EGO algorithm uses the maximization of the Expected Improvement criterion to find next point that has to be simulated. This stochastic criterion handles with the two interpolations made by the Kriging method : prediction of the objective function and estimation of the error made. It is thus able to quantify the improvement in the minimization that new simulations at specified DEM parameters would lead to.

  13. Investigation of the fluidized bed-chemical vapor deposition (FBCVD) process using CFD-DEM method

    International Nuclear Information System (INIS)

    Liu Malin; Liu Rongzheng; Wen Yuanyun; Liu Bing; Shao Youlin

    2014-01-01

    The CFD-DEM-CVD multiscale coupling simulation concept was proposed based on the mass/momentum/energy transfer involved in the FB-CVD process. The pyrolysis process of the reaction gas in the spouted bed can be simulated by CFD method, then the concentration field and velocity field can be extracted and coupled with the particle movement behavior which can be simulated by DEM. Particle deposition process can be described by the CVD model based on particle position, velocity and neighboring gas concentration. This multiscale coupling method can be implemented in the Fluent@-EDEM@ software with their UDF (User Definition Function) and API (Application Programming Interface). Base on the multiscale coupling concept, the criterion for evaluating FB-CVD process is given. At first, the volume in the coating furnace is divided into two parts (active coating area and non-active coating area) based on simulation results of chemical pyrolysis process. Then the residence time of all particles in the active coating area can be obtained using the CFD-DEM simulation method. The residence time distribution can be used as a criterion for evaluating the gas-solid contact efficiency and operation performance of the coating furnace. At last different coating parameters of the coating furnace are compared based on the proposed criterion. And also, the future research emphasis is discussed. (author)

  14. KAJIAN PEMANFAATAN DEM SRTM & GOOGLE EARTH UNTUK PARAMETER PENILAIAN POTENSI KERUGIAN EKONOMI AKIBAT BANJIR ROB

    Directory of Open Access Journals (Sweden)

    Arief L Nugraha

    2013-12-01

    Full Text Available Tidal flood is a significant threat for the economic growth rate in the city of Semarang. The threat mitigation requires planning, thereby reducing the impact of the losses. The availability of global data with free access can provide solutions in disaster management, the data are SRTM DEM and Google Earth. With both of these data can be mapped potential economic losses caused by tidal flooding. With the techniques of remote sensing and GIS to handle the SRTM DEM data and Google Earth, the techniques can be generated maps and models of tidal inundation area maps woke up in the city of Semarang. Analysis of potential economic losses can be calculated by doing an overlay of the two maps generated. The results achieved from this study is SRTM DEM and Google Earth can able to produce thematic maps of situational tidal flood disaster so that it can be used as a parameter value calculation of the potential economic losses. This study also obtain the result that the area of ​​land affected by the tidal flood an area of ​​8339.31 hectares and the number of buildings reaching 78 299 pieces, which the district that has the highest impact on the tidal flood that North Semarang.

  15. A Novel DEM Approach to Simulate Block Propagation on Forested Slopes

    Science.gov (United States)

    Toe, David; Bourrier, Franck; Dorren, Luuk; Berger, Frédéric

    2018-03-01

    In order to model rockfall on forested slopes, we developed a trajectory rockfall model based on the discrete element method (DEM). This model is able to take the complex mechanical processes at work during an impact into account (large deformations, complex contact conditions) and can explicitly simulate block/soil, block/tree contacts as well as contacts between neighbouring trees. In this paper, we describe the DEM model developed and we use it to assess the protective effect of different types of forest. In addition, we compared it with a more classical rockfall simulation model. The results highlight that forests can significantly reduce rockfall hazard and that the spatial structure of coppice forests has to be taken into account in rockfall simulations in order to avoid overestimating the protective role of these forest structures against rockfall hazard. In addition, the protective role of the forests is mainly influenced by the basal area. Finally, the advantages and limitations of the DEM model were compared with classical rockfall modelling approaches.

  16. DEM investigation of weathered rocks using a novel bond contact model

    Directory of Open Access Journals (Sweden)

    Zhenming Shi

    2015-06-01

    Full Text Available The distinct element method (DEM incorporated with a novel bond contact model was applied in this paper to shed light on the microscopic physical origin of macroscopic behaviors of weathered rock, and to achieve the changing laws of microscopic parameters from observed decaying properties of rocks during weathering. The changing laws of macroscopic mechanical properties of typical rocks were summarized based on the existing research achievements. Parametric simulations were then conducted to analyze the relationships between macroscopic and microscopic parameters, and to derive the changing laws of microscopic parameters for the DEM model. Equipped with the microscopic weathering laws, a series of DEM simulations of basic laboratory tests on weathered rock samples was performed in comparison with analytical solutions. The results reveal that the relationships between macroscopic and microscopic parameters of rocks against the weathering period can be successfully attained by parametric simulations. In addition, weathering has a significant impact on both stress–strain relationship and failure pattern of rocks.

  17. VT Data - Lidar Hydro-flattened DEM (0.7m) 2016, Essex, Caledonia, Orange, and Windsor Counties

    Data.gov (United States)

    Vermont Center for Geographic Information — (Link to Metadata) This metadata applies to the following collection area(s): Middle CT River subbasin 2016 0.7m and Digital Elevation Model (DEM) dataset of the...

  18. Joint use of multi-orbit high-resolution SAR interferometry for DEM generation in mountainous area

    KAUST Repository

    Zhang, Lu; Jiang, Houjun; Liao, Mingsheng; Balz, Timo; Wang, Teng

    2014-01-01

    SAR interferometry has long been regarded as an effective tool for wide-area topographic mapping in hilly and mountainous areas. However, quality of InSAR DEM product is usually affected by atmospheric disturbances and decorrelation-induced voids, especially for data acquired in repeat-pass mode. In this paper, we proposed an approach for improved topographic mapping by optimal fusion of multi-orbit InSAR DEMs with correction of atmospheric phase screen (APS). An experimental study with highresolution TerraSAR-X and COSMO-SkyMed datasets covering a mountainous area was carried out to demonstrate the effectiveness of the proposed approach. Validation with a reference DEM of scale 1:50,000 indicated that vertical accuracy of the fused DEM can be better than 5 m.

  19. Joint use of multi-orbit high-resolution SAR interferometry for DEM generation in mountainous area

    KAUST Repository

    Zhang, Lu

    2014-07-01

    SAR interferometry has long been regarded as an effective tool for wide-area topographic mapping in hilly and mountainous areas. However, quality of InSAR DEM product is usually affected by atmospheric disturbances and decorrelation-induced voids, especially for data acquired in repeat-pass mode. In this paper, we proposed an approach for improved topographic mapping by optimal fusion of multi-orbit InSAR DEMs with correction of atmospheric phase screen (APS). An experimental study with highresolution TerraSAR-X and COSMO-SkyMed datasets covering a mountainous area was carried out to demonstrate the effectiveness of the proposed approach. Validation with a reference DEM of scale 1:50,000 indicated that vertical accuracy of the fused DEM can be better than 5 m.

  20. Extraction and Validation of Geomorphological Features from EU-DEM in The Vicinity of the Mygdonia Basin, Northern Greece

    Science.gov (United States)

    Mouratidis, Antonios; Karadimou, Georgia; Ampatzidis, Dimitrios

    2017-12-01

    The European Union Digital Elevation Model (EU-DEM) is a relatively new, hybrid elevation product, principally based on SRTM DEM and ASTER GDEM data, but also on publically available Russian topographic maps for regions north of 60° N. More specifically, EU-DEM is a Digital Surface Model (DSM) over Europe from the Global Monitoring for Environment and Security (GMES) Reference Data Access (RDA) project - a realisation of the Copernicus (former GMES) programme, managed by the European Commission/DG Enterprise and Industry. Even if EU-DEM is indeed more reliable in terms of elevation accuracy than its constituents, it ought to be noted that it is not representative of the original elevation measurements, but is rather a secondary (mathematical) product. Therefore, for specific applications, such as those of geomorphological interest, artefacts may be induced. To this end, the purpose of this paper is to investigate the performance of EU-DEM for geomorphological applications and compare it against other available datasets, i.e. topographic maps and (almost) global DEMs such as SRTM, ASTER-GDEM and WorldDEM™. This initial investigation is carried out in Central Macedonia, Northern Greece, in the vicinity of the Mygdonia basin, which corresponds to an area of particular interest for several geoscience applications. This area has also been serving as a test site for the systematic validation of DEMs for more than a decade. Consequently, extensive elevation datasets and experience have been accumulated over the years, rendering the evaluation of new elevation products a coherent and useful exercise on a local to regional scale. In this context, relief classification, drainage basin delineation, slope and slope aspect, as well as extraction and classification of drainage network are performed and validated among the aforementioned elevation sources. The achieved results focus on qualitative and quantitative aspects of automatic geomorphological feature extraction from

  1. Combined DEM Extration Method from StereoSAR and InSAR

    Science.gov (United States)

    Zhao, Z.; Zhang, J. X.; Duan, M. Y.; Huang, G. M.; Yang, S. C.

    2015-06-01

    A pair of SAR images acquired from different positions can be used to generate digital elevation model (DEM). Two techniques exploiting this characteristic have been introduced: stereo SAR and interferometric SAR. They permit to recover the third dimension (topography) and, at the same time, to identify the absolute position (geolocation) of pixels included in the imaged area, thus allowing the generation of DEMs. In this paper, StereoSAR and InSAR combined adjustment model are constructed, and unify DEM extraction from InSAR and StereoSAR into the same coordinate system, and then improve three dimensional positioning accuracy of the target. We assume that there are four images 1, 2, 3 and 4. One pair of SAR images 1,2 meet the required conditions for InSAR technology, while the other pair of SAR images 3,4 can form stereo image pairs. The phase model is based on InSAR rigorous imaging geometric model. The master image 1 and the slave image 2 will be used in InSAR processing, but the slave image 2 is only used in the course of establishment, and the pixels of the slave image 2 are relevant to the corresponding pixels of the master image 1 through image coregistration coefficient, and it calculates the corresponding phase. It doesn't require the slave image in the construction of the phase model. In Range-Doppler (RD) model, the range equation and Doppler equation are a function of target geolocation, while in the phase equation, the phase is also a function of target geolocation. We exploit combined adjustment model to deviation of target geolocation, thus the problem of target solution is changed to solve three unkonwns through seven equations. The model was tested for DEM extraction under spaceborne InSAR and StereoSAR data and compared with InSAR and StereoSAR methods respectively. The results showed that the model delivered a better performance on experimental imagery and can be used for DEM extraction applications.

  2. Digital Elevation Model (DEM), DEM data are useful for terrain analysis and modeling including slope and aspect calculations. They may be used to produced shaded relief maps and contour maps., Published in 2001, 1:24000 (1in=2000ft) scale, Louisiana State University (LSU).

    Data.gov (United States)

    NSGIC Education | GIS Inventory — Digital Elevation Model (DEM) dataset current as of 2001. DEM data are useful for terrain analysis and modeling including slope and aspect calculations. They may be...

  3. FE-DEM Analysis of the Effect of Tread Pattern on the Tractive Performance of Tires Operating on Sand

    Science.gov (United States)

    Nakashima, Hiroshi; Takatsu, Yuzuru; Shinone, Hisanori; Matsukawa, Hisao; Kasetani, Takahiro

    Soil-tire system interaction is a fundamental and important research topic in terramechanics. We applied a 2D finite element, discrete element method (FE-DEM), using FEM for the tire and the bottom soil layer and DEM for the surface soil layer. Satisfactory performance analysis was achieved. In this study, to clarify the capabilities and limitations of the method for soil-tire interaction analysis, the tractive performance of real automobile tires with two different tread patterns—smooth and grooved—was analyzed by FE-DEM, and the numerical results compared with the experimental results obtained using an indoor traction measurement system. The analysis of tractive performance could be performed with sufficient accuracy by the proposed 2D dynamic FE-DEM. FE-DEM obtained larger drawbar pull for a tire with a grooved tread pattern, which was verified by the experimental results. Moreover, the result for the grooved tire showed almost the same gross tractive effort and similar running resistance as in experiments. However, for a tire with smooth tread pattern, the analyzed gross tractive effort and running resistance behaved differently than the experimental results, largely due to the difference in tire sinkage in FE-DEM.

  4. EVALUATION OF AIRBORNE L- BAND MULTI-BASELINE POL-INSAR FOR DEM EXTRACTION BENEATH FOREST CANOPY

    Directory of Open Access Journals (Sweden)

    W. M. Li

    2018-04-01

    Full Text Available DEM beneath forest canopy is difficult to extract with optical stereo pairs, InSAR and Pol-InSAR techniques. Tomographic SAR (TomoSAR based on different penetration and view angles could reflect vertical structure and ground structure. This paper aims at evaluating the possibility of TomoSAR for underlying DEM extraction. Airborne L-band repeat-pass Pol-InSAR collected in BioSAR 2008 campaign was applied to reconstruct the 3D structure of forest. And sum of kronecker product and algebraic synthesis algorithm were used to extract ground structure, and phase linking algorithm was applied to estimate ground phase. Then Goldstein cut-branch approach was used to unwrap the phases and then estimated underlying DEM. The average difference between the extracted underlying DEM and Lidar DEM is about 3.39 m in our test site. And the result indicates that it is possible for underlying DEM estimation with airborne L-band repeat-pass TomoSAR technique.

  5. Evaluation of Airborne l- Band Multi-Baseline Pol-Insar for dem Extraction Beneath Forest Canopy

    Science.gov (United States)

    Li, W. M.; Chen, E. X.; Li, Z. Y.; Jiang, C.; Jia, Y.

    2018-04-01

    DEM beneath forest canopy is difficult to extract with optical stereo pairs, InSAR and Pol-InSAR techniques. Tomographic SAR (TomoSAR) based on different penetration and view angles could reflect vertical structure and ground structure. This paper aims at evaluating the possibility of TomoSAR for underlying DEM extraction. Airborne L-band repeat-pass Pol-InSAR collected in BioSAR 2008 campaign was applied to reconstruct the 3D structure of forest. And sum of kronecker product and algebraic synthesis algorithm were used to extract ground structure, and phase linking algorithm was applied to estimate ground phase. Then Goldstein cut-branch approach was used to unwrap the phases and then estimated underlying DEM. The average difference between the extracted underlying DEM and Lidar DEM is about 3.39 m in our test site. And the result indicates that it is possible for underlying DEM estimation with airborne L-band repeat-pass TomoSAR technique.

  6. On the COSMO-SkyMed Exploitation for Interferometric DEM Generation

    Science.gov (United States)

    Teresa, C. M.; Raffaele, N.; Oscar, N. D.; Fabio, B.

    2011-12-01

    DEM products for Earth observation space-borne applications are being to play a role of increasing importance due to the new generation of high resolution sensors (both optical and SAR). These new sensors demand elevation data for processing and, on the other hand, they provide new possibilities for DEM generation. Till now, for what concerns interferometric DEM, the Shuttle Radar Topography Mission (SRTM) has been the reference product for scientific applications all over the world. SRTM mission [1] had the challenging goal to meet the requirements for a homogeneous and reliable DEM fulfilling the DTED-2 specifications. However, new generation of high resolution sensors (including SAR) pose new requirements for elevation data in terms of vertical precision and spatial resolution. DEM are usually used as ancillary input in different processing steps as for instance geocoding and Differential SAR Interferometry. In this context, the recent SAR missions of DLR (TerraSAR-X and TanDEM-X) and ASI (COSMO-SkyMed) can play a promising role thanks to their high resolution both in space and time. In particular, the present work investigates the potentialities of the COSMO/SkyMed (CSK) constellation for ground elevation measurement with particular attention devoted to the impact of the improved spatial resolution wrt the previous SAR sensors. The recent scientific works, [2] and [3], have shown the advantages of using CSK in the monitoring of terrain deformations caused by landslides, earthquakes, etc. On the other hand, thanks to the high spatial resolution, CSK appears to be very promising in monitoring man-made structures, such as buildings, bridges, railways and highways, thus enabling new potential applications (urban applications, precise DEM, etc.). We present results obtained by processing both SPOTLIGHT and STRIPMAP acquisitions through standard SAR Interferometry as well as multi-pass interferometry [4] with the aim of measuring ground elevation. Acknowledgments

  7. Coastal Digital Elevation Models (DEMs) for tsunami hazard assessment on the French coasts

    Science.gov (United States)

    Maspataud, Aurélie; Biscara, Laurie; Hébert, Hélène; Schmitt, Thierry; Créach, Ronan

    2015-04-01

    Building precise and up-to-date coastal DEMs is a prerequisite for accurate modeling and forecasting of hydrodynamic processes at local scale. Marine flooding, originating from tsunamis, storm surges or waves, is one of them. Some high resolution DEMs are being generated for multiple coast configurations (gulf, embayment, strait, estuary, harbor approaches, low-lying areas…) along French Atlantic and Channel coasts. This work is undertaken within the framework of the TANDEM project (Tsunamis in the Atlantic and the English ChaNnel: Definition of the Effects through numerical Modeling) (2014-2017). DEMs boundaries were defined considering the vicinity of French civil nuclear facilities, site effects considerations and potential tsunamigenic sources. Those were identified from available historical observations. Seamless integrated topographic and bathymetric coastal DEMs will be used by institutions taking part in the study to simulate expected wave height at regional and local scale on the French coasts, for a set of defined scenarii. The main tasks were (1) the development of a new capacity of production of DEM, (2) aiming at the release of high resolution and precision digital field models referred to vertical reference frameworks, that require (3) horizontal and vertical datum conversions (all source elevation data need to be transformed to a common datum), on the basis of (4) the building of (national and/or local) conversion grids of datum relationships based on known measurements. Challenges in coastal DEMs development deal with good practices throughout model development that can help minimizing uncertainties. This is particularly true as scattered elevation data with variable density, from multiple sources (national hydrographic services, state and local government agencies, research organizations and private engineering companies) and from many different types (paper fieldsheets to be digitized, single beam echo sounder, multibeam sonar, airborne laser

  8. Charmed muons in ice. Measurement of the high-energetic atmospheric energy spectrum with IceCube in the detector configuration IC86-1

    International Nuclear Information System (INIS)

    Fuchs, Tomasz

    2016-01-01

    In this thesis the flux of high-energy muons in the energy regime from 10 TeV to 1 PeV is reconstructed and analyzed using data collected with the IceCube detector in the time span 13.05.2011 to 15.05.2012. From a data set containing muon bundles only those events are selected which contain a muon that is energetically dominating the others in the bundle. For the separation a Random Forest model is applied, resulting in a data set of high-energy muons with an efficiency of (40.8±0.6) % and a purity of (93.1±0.4) %. Attributes considered in the separation are selected by the mRMR algorithm. The energy spectrum of muons is reconstructed with a regularized unfolding using the software TRUEE. The hypothesis of a prompt and a conventional component of atmospheric muons results in flux normalizations of N conv. =1.03±0.06 and N prompt =1.59±1.57. Due to the large uncertainty of the prompt component, the hypothesis of a pure conventional flux cannot be excluded. Using these normalizations, it is possible to determine if the measured high-energy neutrino flux above 60 TeV is of atmospheric origin. The p-value for this hypothesis is found to be 0.045, which indicates the need of an astrophysical component to explain the excess at high energies.

  9. Landform classification using a sub-pixel spatial attraction model to increase spatial resolution of digital elevation model (DEM

    Directory of Open Access Journals (Sweden)

    Marzieh Mokarrama

    2018-04-01

    Full Text Available The purpose of the present study is preparing a landform classification by using digital elevation model (DEM which has a high spatial resolution. To reach the mentioned aim, a sub-pixel spatial attraction model was used as a novel method for preparing DEM with a high spatial resolution in the north of Darab, Fars province, Iran. The sub-pixel attraction models convert the pixel into sub-pixels based on the neighboring pixels fraction values, which can only be attracted by a central pixel. Based on this approach, a mere maximum of eight neighboring pixels can be selected for calculating of the attraction value. In the mentioned model, other pixels are supposed to be far from the central pixel to receive any attraction. In the present study by using a sub-pixel attraction model, the spatial resolution of a DEM was increased. The design of the algorithm is accomplished by using a DEM with a spatial resolution of 30 m (the Advanced Space borne Thermal Emission and Reflection Radiometer; (ASTER and a 90 m (the Shuttle Radar Topography Mission; (SRTM. In the attraction model, scale factors of (S = 2, S = 3, and S = 4 with two neighboring methods of touching (T = 1 and quadrant (T = 2 are applied to the DEMs by using MATLAB software. The algorithm is evaluated by taking the best advantages of 487 sample points, which are measured by surveyors. The spatial attraction model with scale factor of (S = 2 gives better results compared to those scale factors which are greater than 2. Besides, the touching neighborhood method is turned to be more accurate than the quadrant method. In fact, dividing each pixel into more than two sub-pixels decreases the accuracy of the resulted DEM. On the other hand, in these cases DEM, is itself in charge of increasing the value of root-mean-square error (RMSE and shows that attraction models could not be used for S which is greater than 2. Thus considering results, the proposed model is highly capable of

  10. A new 100-m Digital Elevation Model of the Antarctic Peninsula derived from ASTER Global DEM: methods and accuracy assessment

    Directory of Open Access Journals (Sweden)

    A. J. Cook

    2012-10-01

    Full Text Available A high resolution surface topography Digital Elevation Model (DEM is required to underpin studies of the complex glacier system on the Antarctic Peninsula. A complete DEM with better than 200 m pixel size and high positional and vertical accuracy would enable mapping of all significant glacial basins and provide a dataset for glacier morphology analyses. No currently available DEM meets these specifications. We present a new 100-m DEM of the Antarctic Peninsula (63–70° S, based on ASTER Global Digital Elevation Model (GDEM data. The raw GDEM products are of high-quality on the rugged terrain and coastal-regions of the Antarctic Peninsula and have good geospatial accuracy, but they also contain large errors on ice-covered terrain and we seek to minimise these artefacts. Conventional data correction techniques do not work so we have developed a method that significantly improves the dataset, smoothing the erroneous regions and hence creating a DEM with a pixel size of 100 m that will be suitable for many glaciological applications. We evaluate the new DEM using ICESat-derived elevations, and perform horizontal and vertical accuracy assessments based on GPS positions, SPOT-5 DEMs and the Landsat Image Mosaic of Antarctica (LIMA imagery. The new DEM has a mean elevation difference of −4 m (± 25 m RMSE from ICESat (compared to −13 m mean and ±97 m RMSE for the original ASTER GDEM, and a horizontal error of less than 2 pixels, although elevation accuracies are lower on mountain peaks and steep-sided slopes. The correction method significantly reduces errors on low relief slopes and therefore the DEM can be regarded as suitable for topographical studies such as measuring the geometry and ice flow properties of glaciers on the Antarctic Peninsula. The DEM is available for download from the NSIDC website: http://nsidc.org/data/nsidc-0516.html (ANALYSIS AND VALIDATION OF GRID DEM GENERATION BASED ON GAUSSIAN MARKOV RANDOM FIELD

    Directory of Open Access Journals (Sweden)

    F. J. Aguilar

    2016-06-01

    Full Text Available Digital Elevation Models (DEMs are considered as one of the most relevant geospatial data to carry out land-cover and land-use classification. This work deals with the application of a mathematical framework based on a Gaussian Markov Random Field (GMRF to interpolate grid DEMs from scattered elevation data. The performance of the GMRF interpolation model was tested on a set of LiDAR data (0.87 points/m2 provided by the Spanish Government (PNOA Programme over a complex working area mainly covered by greenhouses in Almería, Spain. The original LiDAR data was decimated by randomly removing different fractions of the original points (from 10% to up to 99% of points removed. In every case, the remaining points (scattered observed points were used to obtain a 1 m grid spacing GMRF-interpolated Digital Surface Model (DSM whose accuracy was assessed by means of the set of previously extracted checkpoints. The GMRF accuracy results were compared with those provided by the widely known Triangulation with Linear Interpolation (TLI. Finally, the GMRF method was applied to a real-world case consisting of filling the LiDAR-derived DSM gaps after manually filtering out non-ground points to obtain a Digital Terrain Model (DTM. Regarding accuracy, both GMRF and TLI produced visually pleasing and similar results in terms of vertical accuracy. As an added bonus, the GMRF mathematical framework makes possible to both retrieve the estimated uncertainty for every interpolated elevation point (the DEM uncertainty and include break lines or terrain discontinuities between adjacent cells to produce higher quality DTMs.

  11. DEVELOPMENT AND EVALUATION OF SIMPLE MEASUREMENT SYSTEM USING THE OBLIQUE PHOTO AND DEM

    Directory of Open Access Journals (Sweden)

    H. Nonaka

    2016-06-01

    Full Text Available When a disaster occurs, we must grasp and evaluate its damage as soon as possible. Then we try to estimate them from some kind of photographs, such as surveillance camera imagery, satellite imagery, photographs taken from a helicopter and so on. Especially in initial stage, estimation of decent damage situation for a short time is more important than investigation of damage situation for a long time. One of the source of damage situation is the image taken by surveillance camera, satellite sensor and helicopter. If we can measure any targets in these imagery, we can estimate a length of a lava flow, a reach of a cinder and a sediment volume in volcanic eruption or landslide. Therefore in order to measure various information for a short time, we developed a simplified measurement system which uses these photographs. This system requires DEM in addition to photographs, but it is possible to use previously acquired DEM. To measure an object, we require only two steps. One is the determination of the position and the posture in which the photograph is shot. We determine these parameters using DEM. The other step is the measurement of an object in photograph. In this paper, we describe this system and show the experimental results to evaluate this system. In this experiment we measured the top of Mt. Usu by using two measurement method of this system. Then we can measure it about one hour and the difference between the measurement results and the airborne LiDAR data are less than 10 meter.

  12. Numerical probabilistic analysis for slope stability in fractured rock masses using DFN-DEM approach

    Directory of Open Access Journals (Sweden)

    Alireza Baghbanan

    2017-06-01

    Full Text Available Due to existence of uncertainties in input geometrical properties of fractures, there is not any unique solution for assessing the stability of slopes in jointed rock masses. Therefore, the necessity of applying probabilistic analysis in these cases is inevitable. In this study a probabilistic analysis procedure together with relevant algorithms are developed using Discrete Fracture Network-Distinct Element Method (DFN-DEM approach. In the right abutment of Karun 4 dam and downstream of the dam body, five joint sets and one major joint have been identified. According to the geometrical properties of fractures in Karun river valley, instability situations are probable in this abutment. In order to evaluate the stability of the rock slope, different combinations of joint set geometrical parameters are selected, and a series of numerical DEM simulations are performed on generated and validated DFN models in DFN-DEM approach to measure minimum required support patterns in dry and saturated conditions. Results indicate that the distribution of required bolt length is well fitted with a lognormal distribution in both circumstances. In dry conditions, the calculated mean value is 1125.3 m, and more than 80 percent of models need only 1614.99 m of bolts which is a bolt pattern with 2 m spacing and 12 m length. However, as for the slopes with saturated condition, the calculated mean value is 1821.8 m, and more than 80 percent of models need only 2653.49 m of bolts which is equivalent to a bolt pattern with 15 m length and 1.5 m spacing. Comparison between obtained results with numerical and empirical method show that investigation of a slope stability with different DFN realizations which conducted in different block patterns is more efficient than the empirical methods.

  13. Demência como fator de risco para fraturas graves em idosos

    Directory of Open Access Journals (Sweden)

    Carvalho Aline de Mesquita

    2002-01-01

    Full Text Available INTRODUÇÃO: As quedas entre pessoas idosas constituem importante problema de saúde pública devido à sua alta incidência, às complicações para a saúde e aos altos custos assistenciais. O estudo realizado visa a estimar a associação entre demência e ocorrência de quedas e fraturas entre idosos. MÉTODOS: Foi conduzido estudo caso-controle de 404 indivíduos com 60 ou mais anos de idade, da cidade do Rio de Janeiro, Brasil. Casos e controles foram pareados por idade, sexo e hospital. Os dados foram coletados por meio de entrevista estruturada com os idosos. Foram considerados portadores de quadro demencial idosos cuja pontuação no questionário BOAS fosse superior a dois. Foram obtidos odds ratios (OR ajustados por fatores potenciais de confusão, utilizando-se regressão logística condicional. RESULTADOS: As quedas distribuíram-se igualmente entre os períodos da manhã, tarde e noite, havendo uma redução em sua freqüência durante a madrugada. Acidentaram-se dentro de casa 78% dos idosos com demência, contra 55% daqueles sem essa doença. O OR não-ajustado para a associação entre demência e fratura grave foi de 2,0 (IC95%, 1,23-3,25. Após o ajuste por fatores de confusão, houve uma pequena redução dessa associação (OR=1,82, 1,03-3,23. CONCLUSÃO: Idosos com quadro demencial apresentam maior risco de caírem e ser hospitalizados por fratura do que idosos sem demência. Tal fato implica a necessidade de cuidados especiais com esses indivíduos, visando a minimizar o risco desses acidentes.

  14. DEM L241, A SUPERNOVA REMNANT CONTAINING A HIGH-MASS X-RAY BINARY

    International Nuclear Information System (INIS)

    Seward, F. D.; Charles, P. A.; Foster, D. L.; Dickel, J. R.; Romero, P. S.; Edwards, Z. I.; Perry, M.; Williams, R. M.

    2012-01-01

    A Chandra observation of the Large Magellanic Cloud supernova remnant DEM L241 reveals an interior unresolved source which is probably an accretion-powered binary. The optical counterpart is an O5III(f) star making this a high-mass X-ray binary with an orbital period likely to be of the order of tens of days. Emission from the remnant interior is thermal and spectral information is used to derive density and mass of the hot material. Elongation of the remnant is unusual and possible causes of this are discussed. The precursor star probably had mass >25 M ☉

  15. DEM L241, A SUPERNOVA REMNANT CONTAINING A HIGH-MASS X-RAY BINARY

    Energy Technology Data Exchange (ETDEWEB)

    Seward, F. D. [Smithsonian Astrophysical Observatory, 60 Garden Street, Cambridge, MA 02138 (United States); Charles, P. A. [School of Physics and Astronomy, University of Southampton, Highfield, Southampton SO17 1BJ (United Kingdom); Foster, D. L. [South African Astronomical Observatory, P.O. Box 9, Observatory 7935, Cape Town (South Africa); Dickel, J. R.; Romero, P. S. [Department of Physics and Astronomy, University of New Mexico, 1919 Lomas Boulevard NE, Albuquerque, NM 87131 (United States); Edwards, Z. I.; Perry, M.; Williams, R. M. [Department of Earth and Space Sciences, Columbus State University, Coca Cola Space Science Center, 701 Front Avenue, Columbus, GA 31901 (United States)

    2012-11-10

    A Chandra observation of the Large Magellanic Cloud supernova remnant DEM L241 reveals an interior unresolved source which is probably an accretion-powered binary. The optical counterpart is an O5III(f) star making this a high-mass X-ray binary with an orbital period likely to be of the order of tens of days. Emission from the remnant interior is thermal and spectral information is used to derive density and mass of the hot material. Elongation of the remnant is unusual and possible causes of this are discussed. The precursor star probably had mass >25 M {sub Sun}.

  16. Was kommt nach dem Handel? Umnutzung von Einzelhandelsflächen und deren Beitrag zur Stadtentwicklung

    OpenAIRE

    Sperle, Tilman

    2012-01-01

    In der Stadt europäischen Typs sind Stadt und Handel eng miteinander verwoben. Die Bedeutung des Handels geht weit über dessen originäre Versorgungsfunktion hinaus. Für die städtischen Zentren und Nebenzentren übernimmt er sowohl gestaltende als auch soziale Funktionen und trägt mit seiner belebenden Wirkung maßgeblich zum urbanen Leben bei. Mit dem tief greifenden Strukturwandel im Einzelhandel verändert sich diese Beziehung zwischen Stadt und Handel dramatisch, Trading-down-Prozesse geh...

  17. Social Entrepreneurship im etablierten Wohlfahrtsstaat : Aktuelle empirische Befunde zu neuen und alten Akteuren auf dem Wohlfahrtsmarkt

    OpenAIRE

    Heinze, Rolf G.; Schönauer, Anna-Lena; Schneiders, Katrin; Grohs, Stephan; Ruddat, Claudia

    2013-01-01

    Im internationalen Vergleich hat sich die wissenschaftliche Diskussion um die gesellschaftliche Relevanz des Phänomens „Social Entrepreneurship“ (SE) in Deutschland relativ spät entwickelt. In Asien wurde die Debatte insbesondere durch die von Muhammad Yunus 1983 gegründete Grameen Bank angestoßen und spätestens seit der Auszeichnung Yunus‘ mit dem Friedensnobelpreis wird SE in vielen Nationen zunehmend als Chance wahrgenommen, soziale Missstände effektiv und nachhaltig zu bekämpfen....

  18. Rechargable Lithium-Air Batteries: Investigation of Redox Mediators Using DEMS

    DEFF Research Database (Denmark)

    Christensen, Mathias Kjærgård; Storm, Mie Møller; Norby, Poul

    2016-01-01

    material or electrolyte is being decomposed. This is also seen with Thermally reduced Graphene Oxide (TrGO). The graphene based cathode is interesting as it exhibits a high surface area which in turn increases capacity. Using the additive LiI, functioning as a redox mediator, the discharge curve remains...... is observed without the redox mediator [2]. This results in higher energy densities and ideally higher cyclability due to the lower over-potentials. Using DEMS we have investigated the gas evolved in the process to determine the electron to oxygen ratio using both cathode materials mentioned. As has been...

  19. O efeito de um programa psicomotor para idosos com demência

    OpenAIRE

    Henriques, Bebiana Maria Pais

    2013-01-01

    Trabalho de Projeto apresentado à Universidade Fernando Pessoa como parte dos requisitos para obtenção do grau de Mestre em Fisioterapia, ramo de Fisioterapia da Senescência Resultados de vários estudos fornecem informações relevantes à literatura do envelhecimento, sugerindo que há uma relação positiva entre a intervenção motora e cognitiva em idosos com demência (p. ex. Ferrer et al., 2003). Segundo a Alzheimer Europe (2012) existem 7,3 milhões de europeus dementes (153.000 port...

  1. Der Zusammenhang von Partnermarktopportunitäten aus dem Freundeskreis und der Stabilität von Paarbeziehungen : Eine Analyse mit den Daten des Partnermarktsurvey

    OpenAIRE

    Häring, Armando

    2014-01-01

    "Der Beitrag analysiert den Zusammenhang zwischen Partnermarktoportunitäten aus dem Freundeskreis und der Stabilität von Paarbeziehungen. Unter Verwendung des theoretischen Konzepts der Theorie der Interaktionsgelegenheiten sowie von Annahmen der Austauschtheorie und der Familienökonomie, werden mögliche Zusammenhänge zwischen gemeinsamen Freundeskreisen mit dem Partner, Partnermarktgelegenheiten aus dem Freundeskreis (sex ratio) und der Stabilität von Paarbeziehungen diskutiert. Der Beitrag ...

  2. Investigações epidemiológicas sobre demência nos países em desenvolvimento

    Directory of Open Access Journals (Sweden)

    M Scazufca

    2002-12-01

    Full Text Available Na medida em que a população mundial está envelhecendo, a demência está se constituindo em importante problema de saúde pública, particularmente nos países em desenvolvimento. Investigações epidemiológicas nestes países são escassas e apresentam dificuldades metodológicas adicionais, principalmente no que se refere à adequação sociocultural dos instrumentos utilizados para a definição de casos. Tendo em vista estas preocupações, foi fundado o "Grupo de Pesquisa em Demência 10/66", que é constituído por uma rede internacional de pesquisadores, predominantemente de países em desenvolvimento. O nome do grupo tem como referência o paradoxo de que menos de 10% dos estudos populacionais sobre demência são dirigidos aos 2/3 ou mais de casos de pessoas com demência que vivem em países em desenvolvimento. O objetivo do artigo é atualizar informações da literatura sobre as diferenças de prevalência e incidência de demência encontradas em países desenvolvidos e em desenvolvimento.

  3. Investigações epidemiológicas sobre demência nos países em desenvolvimento

    Directory of Open Access Journals (Sweden)

    Scazufca M

    2002-01-01

    Full Text Available Na medida em que a população mundial está envelhecendo, a demência está se constituindo em importante problema de saúde pública, particularmente nos países em desenvolvimento. Investigações epidemiológicas nestes países são escassas e apresentam dificuldades metodológicas adicionais, principalmente no que se refere à adequação sociocultural dos instrumentos utilizados para a definição de casos. Tendo em vista estas preocupações, foi fundado o "Grupo de Pesquisa em Demência 10/66", que é constituído por uma rede internacional de pesquisadores, predominantemente de países em desenvolvimento. O nome do grupo tem como referência o paradoxo de que menos de 10% dos estudos populacionais sobre demência são dirigidos aos 2/3 ou mais de casos de pessoas com demência que vivem em países em desenvolvimento. O objetivo do artigo é atualizar informações da literatura sobre as diferenças de prevalência e incidência de demência encontradas em países desenvolvidos e em desenvolvimento.

  4. Comparison of elevation derived from insar data with dem from topography map in Son Dong, Bac Giang, Viet Nam

    Science.gov (United States)

    Nguyen, Duy

    2012-07-01

    Digital Elevation Models (DEMs) are used in many applications in the context of earth sciences such as in topographic mapping, environmental modeling, rainfall-runoff studies, landslide hazard zonation, seismic source modeling, etc. During the last years multitude of scientific applications of Synthetic Aperture Radar Interferometry (InSAR) techniques have evolved. It has been shown that InSAR is an established technique of generating high quality DEMs from space borne and airborne data, and that it has advantages over other methods for the generation of large area DEM. However, the processing of InSAR data is still a challenging task. This paper describes InSAR operational steps and processing chain for DEM generation from Single Look Complex (SLC) SAR data and compare a satellite SAR estimate of surface elevation with a digital elevation model (DEM) from Topography map. The operational steps are performed in three major stages: Data Search, Data Processing, and product Validation. The Data processing stage is further divided into five steps of Data Pre-Processing, Co-registration, Interferogram generation, Phase unwrapping, and Geocoding. The Data processing steps have been tested with ERS 1/2 data using Delft Object-oriented Interferometric (DORIS) InSAR processing software. Results of the outcome of the application of the described processing steps to real data set are presented.

  5. Limiting Superluminal Electron and Neutrino Velocities Using the 2010 Crab Nebula Flare and the IceCube PeV Neutrino Events

    Science.gov (United States)

    Stecker, Floyd W.

    2014-01-01

    The observation of two PetaelectronVolt (PeV)-scale neutrino events reported by Ice Cube allows one to place constraints on Lorentz invariance violation (LIV) in the neutrino sector. After first arguing that at least one of the PetaelectronVolt IceCube events was of extragalactic origin, I derive an upper limit for the difference between putative superluminal neutrino and electron velocities of less than or equal to approximately 5.6 x 10(exp -19) in units where c = 1, confirming that the observed PetaelectronVolt neutrinos could have reached Earth from extragalactic sources. I further derive a new constraint on the superluminal electron velocity, obtained from the observation of synchrotron radiation from the Crab Nebula flare of September, 2010. The inference that the greater than 1 GigaelectronVolt gamma-rays from synchrotron emission in the flare were produced by electrons of energy up to approx. 5.1 PetaelectronVolt indicates the nonoccurrence of vacuum Cerenkov radiation by these electrons. This implies a new, strong constraint on superluminal electron velocities delta(sub e) less than or equal to approximately 5 x 10(exp -21). It immediately follows that one then obtains an upper limit on the superluminal neutrino velocity alone of delta(sub v) less than or equal to approximately 5.6 x 10(exp -19), many orders of magnitude better than the time-of-flight constraint from the SN1987A neutrino burst. However, if the electrons are subluminal the constraint on the absolute value of delta(sub e) less than or equal to approximately 8 x 10(exp -17), obtained from the Crab Nebula gamma-ray spectrum, places a weaker constraint on superluminal neutrino velocity of delta(sub v) less than or equal to approximately 8 x 10(exp -17).

  6. Constraints on Ultrahigh-Energy Cosmic-Ray Sources from a Search for Neutrinos above 10 PeV with IceCube.

    Science.gov (United States)

    Aartsen, M G; Abraham, K; Ackermann, M; Adams, J; Aguilar, J A; Ahlers, M; Ahrens, M; Altmann, D; Andeen, K; Anderson, T; Ansseau, I; Anton, G; Archinger, M; Argüelles, C; Auffenberg, J; Axani, S; Bai, X; Barwick, S W; Baum, V; Bay, R; Beatty, J J; Becker Tjus, J; Becker, K-H; BenZvi, S; Berghaus, P; Berley, D; Bernardini, E; Bernhard, A; Besson, D Z; Binder, G; Bindig, D; Bissok, M; Blaufuss, E; Blot, S; Bohm, C; Börner, M; Bos, F; Bose, D; Böser, S; Botner, O; Braun, J; Brayeur, L; Bretz, H-P; Burgman, A; Carver, T; Casier, M; Cheung, E; Chirkin, D; Christov, A; Clark, K; Classen, L; Coenders, S; Collin, G H; Conrad, J M; Cowen, D F; Cross, R; Day, M; de André, J P A M; De Clercq, C; Del Pino Rosendo, E; Dembinski, H; De Ridder, S; Desiati, P; de Vries, K D; de Wasseige, G; de With, M; DeYoung, T; Díaz-Vélez, J C; di Lorenzo, V; Dujmovic, H; Dumm, J P; Dunkman, M; Eberhardt, B; Ehrhardt, T; Eichmann, B; Eller, P; Euler, S; Evenson, P A; Fahey, S; Fazely, A R; Feintzeig, J; Felde, J; Filimonov, K; Finley, C; Flis, S; Fösig, C-C; Franckowiak, A; Friedman, E; Fuchs, T; Gaisser, T K; Gallagher, J; Gerhardt, L; Ghorbani, K; Giang, W; Gladstone, L; Glagla, M; Glüsenkamp, T; Goldschmidt, A; Golup, G; Gonzalez, J G; Grant, D; Griffith, Z; Haack, C; Haj Ismail, A; Hallgren, A; Halzen, F; Hansen, E; Hansmann, B; Hansmann, T; Hanson, K; Hebecker, D; Heereman, D; Helbing, K; Hellauer, R; Hickford, S; Hignight, J; Hill, G C; Hoffman, K D; Hoffmann, R; Holzapfel, K; Hoshina, K; Huang, F; Huber, M; Hultqvist, K; In, S; Ishihara, A; Jacobi, E; Japaridze, G S; Jeong, M; Jero, K; Jones, B J P; Jurkovic, M; Kappes, A; Karg, T; Karle, A; Katz, U; Kauer, M; Keivani, A; Kelley, J L; Kemp, J; Kheirandish, A; Kim, M; Kintscher, T; Kiryluk, J; Kittler, T; Klein, S R; Kohnen, G; Koirala, R; Kolanoski, H; Konietz, R; Köpke, L; Kopper, C; Kopper, S; Koskinen, D J; Kowalski, M; Krings, K; Kroll, M; Krückl, G; Krüger, C; Kunnen, J; Kunwar, S; Kurahashi, N; Kuwabara, T; Labare, M; Lanfranchi, J L; Larson, M J; Lauber, F; Lennarz, D; Lesiak-Bzdak, M; Leuermann, M; Leuner, J; Lu, L; Lünemann, J; Madsen, J; Maggi, G; Mahn, K B M; Mancina, S; Mandelartz, M; Maruyama, R; Mase, K; Maunu, R; McNally, F; Meagher, K; Medici, M; Meier, M; Meli, A; Menne, T; Merino, G; Meures, T; Miarecki, S; Mohrmann, L; Montaruli, T; Moulai, M; Nahnhauer, R; Naumann, U; Neer, G; Niederhausen, H; Nowicki, S C; Nygren, D R; Obertacke Pollmann, A; Olivas, A; O'Murchadha, A; Palczewski, T; Pandya, H; Pankova, D V; Penek, Ö; Pepper, J A; Pérez de Los Heros, C; Pieloth, D; Pinat, E; Price, P B; Przybylski, G T; Quinnan, M; Raab, C; Rädel, L; Rameez, M; Rawlins, K; Reimann, R; Relethford, B; Relich, M; Resconi, E; Rhode, W; Richman, M; Riedel, B; Robertson, S; Rongen, M; Rott, C; Ruhe, T; Ryckbosch, D; Rysewyk, D; Sabbatini, L; Sanchez Herrera, S E; Sandrock, A; Sandroos, J; Sarkar, S; Satalecka, K; Schimp, M; Schlunder, P; Schmidt, T; Schoenen, S; Schöneberg, S; Schumacher, L; Seckel, D; Seunarine, S; Soldin, D; Song, M; Spiczak, G M; Spiering, C; Stahlberg, M; Stanev, T; Stasik, A; Steuer, A; Stezelberger, T; Stokstad, R G; Stößl, A; Ström, R; Strotjohann, N L; Sullivan, G W; Sutherland, M; Taavola, H; Taboada, I; Tatar, J; Tenholt, F; Ter-Antonyan, S; Terliuk, A; Tešić, G; Tilav, S; Toale, P A; Tobin, M N; Toscano, S; Tosi, D; Tselengidou, M; Turcati, A; Unger, E; Usner, M; Vandenbroucke, J; van Eijndhoven, N; Vanheule, S; van Rossem, M; van Santen, J; Veenkamp, J; Vehring, M; Voge, M; Vraeghe, M; Walck, C; Wallace, A; Wallraff, M; Wandkowsky, N; Weaver, Ch; Weiss, M J; Wendt, C; Westerhoff, S; Whelan, B J; Wickmann, S; Wiebe, K; Wiebusch, C H; Wille, L; Williams, D R; Wills, L; Wolf, M; Wood, T R; Woolsey, E; Woschnagg, K; Xu, D L; Xu, X W; Xu, Y; Yanez, J P; Yodh, G; Yoshida, S; Zoll, M

    2016-12-09

    We report constraints on the sources of ultrahigh-energy cosmic rays (UHECRs) above 10^{9}  GeV, based on an analysis of seven years of IceCube data. This analysis efficiently selects very high- energy neutrino-induced events which have deposited energies from 5×10^{5}  GeV to above 10^{11}  GeV. Two neutrino-induced events with an estimated deposited energy of (2.6±0.3)×10^{6}  GeV, the highest neutrino energy observed so far, and (7.7±2.0)×10^{5}  GeV were detected. The atmospheric background-only hypothesis of detecting these events is rejected at 3.6σ. The hypothesis that the observed events are of cosmogenic origin is also rejected at >99% CL because of the limited deposited energy and the nonobservation of events at higher energy, while their observation is consistent with an astrophysical origin. Our limits on cosmogenic neutrino fluxes disfavor the UHECR sources having a cosmological evolution stronger than the star formation rate, e.g., active galactic nuclei and γ-ray bursts, assuming proton-dominated UHECRs. Constraints on UHECR sources including mixed and heavy UHECR compositions are obtained for models of neutrino production within UHECR sources. Our limit disfavors a significant part of parameter space for active galactic nuclei and new-born pulsar models. These limits on the ultrahigh-energy neutrino flux models are the most stringent to date.

  7. DEM study of granular flow around blocks attached to inclined walls

    Directory of Open Access Journals (Sweden)

    Samsu Joel

    2017-01-01

    Full Text Available Damage due to intense particle-wall contact in industrial applications can cause severe problems in industries such as mineral processing, mining and metallurgy. Studying the flow dynamics and forces on containing walls can provide valuable feedback for equipment design and optimising operations to prolong the equipment lifetime. Therefore, solids flow-wall interaction phenomena, i.e. induced wall stress and particle flow patterns should be well understood. In this work, discrete element method (DEM is used to study steady state granular flow in a gravity-fed hopper like geometry with blocks attached to an inclined wall. The effects of different geometries, e.g. different wall angles and spacing between blocks are studied by means of a 3D DEM slot model with periodic boundary conditions. The findings of this work include (i flow analysis in terms of flow patterns and particle velocities, (ii force distributions within the model geometry, and (iii wall stress vs. model height diagrams. The model enables easy transfer of the key findings to other industrial applications handling granular materials.

  8. Historic Low Wall Detection via Topographic Parameter Images Derived from Fine-Resolution DEM

    Directory of Open Access Journals (Sweden)

    Hone-Jay Chu

    2017-11-01

    Full Text Available Coral walls protect vegetation gardens from strong winds that sweep across Xiji Island, Taiwan Strait for half the year. Topographic parameters based on light detection and ranging (LiDAR-based high-resolution digital elevation model (DEM provide obvious correspondence with the expected form of landscape features. The information on slope, curvature, and openness can help identify the location of landscape features. This study applied the automatic landscape line detection to extract historic vegetable garden wall lines from a LiDAR-derived DEM. The three rapid processes used in this study included the derivation of topographic parameters, line extraction, and aggregation. The rules were extracted from a decision tree to check the line detection from multiple topographic parameters. Results show that wall line detection with multiple topographic parameter images is an alternative means of obtaining essential historic wall feature information. Multiple topographic parameters are highly related to low wall feature identification. Furthermore, the accuracy of wall feature detection is 74% compared with manual interpretation. Thus, this study provides rapid wall detection systems with multiple topographic parameters for further historic landscape management.

  9. DEM study of granular flow around blocks attached to inclined walls

    Science.gov (United States)

    Samsu, Joel; Zhou, Zongyan; Pinson, David; Chew, Sheng

    2017-06-01

    Damage due to intense particle-wall contact in industrial applications can cause severe problems in industries such as mineral processing, mining and metallurgy. Studying the flow dynamics and forces on containing walls can provide valuable feedback for equipment design and optimising operations to prolong the equipment lifetime. Therefore, solids flow-wall interaction phenomena, i.e. induced wall stress and particle flow patterns should be well understood. In this work, discrete element method (DEM) is used to study steady state granular flow in a gravity-fed hopper like geometry with blocks attached to an inclined wall. The effects of different geometries, e.g. different wall angles and spacing between blocks are studied by means of a 3D DEM slot model with periodic boundary conditions. The findings of this work include (i) flow analysis in terms of flow patterns and particle velocities, (ii) force distributions within the model geometry, and (iii) wall stress vs. model height diagrams. The model enables easy transfer of the key findings to other industrial applications handling granular materials.

  10. CFD-DEM Simulation of Minimum Fluidisation Velocity in Two Phase Medium

    Directory of Open Access Journals (Sweden)

    H Khawaja

    2016-09-01

    Full Text Available In this work, CFD-DEM (computational fluid dynamics - discrete element method has been used to model the 2 phase flow composed of solid particle and gas in the fluidised bed. This technique uses the Eulerian and the Langrangian methods to solve fluid and particles respectively. Each particle is treated as a discrete entity whose motion is governed by Newton's laws of motion. The particle-particle and particle-wall interaction is modelled using the classical contact mechanics. The particles motion is coupled with the volume averaged equations of the fluid dynamics using drag law. In fluidised bed, particles start experiencing drag once the fluid is passing through. The solid particles response to it once drag experienced is just equal to the weight of the particles. At this moment pressure drop across the bed is just equal to the weight of particles divide by the cross-section area. This is the first regime of fluidization, also referred as ‘the regime of minimum fluidization’. In this study, phenomenon of minimum fluidization is studied using CFD-DEM simulation with 4 different sizes of particles 0.15 mm, 0.3 mm, 0.6 mm, and 1.2 mm diameters. The results are presented in the form of pressure drop across the bed with the fluid superficial velocity. The achieved results are found in good agreement with the experimental and theoretical data available in literature.

  11. CFD-DEM Simulation of Propagation of Sound Waves in Fluid Particles Fluidised Medium

    Directory of Open Access Journals (Sweden)

    H Khawaja

    2016-09-01

    Full Text Available In this work, speed of sound in 2 phase mixture has been explored using CFD-DEM (Computational Fluid Dynamcis - Discrete Element Modelling. In this method volume averaged Navier Stokes, continuity and energy equations are solved for fluid. Particles are simulated as individual entities; their behaviour is captured by Newton's laws of motion and classical contact mechanics. Particle-fluid interaction is captured using drag laws given in literature. The speed of sound in a medium depends on physical properties. It has been found experimentally that speed of sound drops significantly in 2 phase mixture of fluidised particles because of its increased density relative to gas while maintaining its compressibility. Due to the high rate of heat transfer within 2 phase medium as given in Roy et al. (1990, it has been assumed that the fluidised gas-particle medium is isothermal. The similar phenomenon has been tried to be captured using CFD-DEM numerical simulation. The disturbance is introduced and fundamental frequency in the medium is noted to measure the speed of sound for e.g. organ pipe. It has been found that speed of sound is in agreement with the relationship given in Roy et al. (1990. Their assumption that the system is isothermal also appears to be valid.

  12. Toward the modeling of combustion reactions through discrete element method (DEM) simulations

    Science.gov (United States)

    Reis, Martina Costa; Alobaid, Falah; Wang, Yongqi

    2018-03-01

    In this work, the process of combustion of coal particles under turbulent regime in a high-temperature reaction chamber is modeled through 3D discrete element method (DEM) simulations. By assuming the occurrence of interfacial transport phenomena between the gas and solid phases, one investigates the influence of the physicochemical properties of particles on the rates of heterogeneous chemical reactions, as well as the influence of eddies present in the gas phase on the mass transport of reactants toward the coal particles surface. Moreover, by considering a simplistic chemical mechanism for the combustion process, thermochemical and kinetic parameters obtained from the simulations are employed to discuss some phenomenological aspects of the combustion process. In particular, the observed changes in the mass and volume of coal particles during the gasification and combustion steps are discussed by emphasizing the changes in the chemical structure of the coal. In addition to illustrate how DEM simulations can be used in the modeling of consecutive and parallel chemical reactions, this work also shows how heterogeneous and homogeneous chemical reactions become a source of mass and energy for the gas phase.

  13. Magnetisches Tracking für die Navigation mit dem da Vinci® Surgical System

    Science.gov (United States)

    Nickel, Felix; Wegner, Ingmar; Kenngott, Hannes; Neuhaus, Jochen; Müller-Stich, Beat P.; Meinzer, Hans-Peter; Gutt, Carsten N.

    In dieser Studie wurde untersucht ob in einem typischen OP-Aufbau mit dem da Vinci® Telemanipulator elektromagnetisches Tracking für die Realisation eines Navigationssystems eingesetzt werden kann. Hierfür wurde in einem realen OP-Aufbau untersucht, wie stark metallische und ferromagnetisch wirksame Objekte wie Operationstisch und Telemanipulator das elektromagnetische Feld des Trackingsystems beeinflussen. Die Ergebnisse zeigen, dass der Telemanipulator nur unwesentlich die Störung des Magnetfeldes durch den OP-Tisch verstärkt. Insbesondere die Bewegung der Instrumente im Trackingvolumen verursachte keine zusätzliche relevante Störung des Magnetfeldes. Bei Begrenzung des Trackingvolumens auf eine Länge von 190 mm, Höhe von 200mm und Breite von 400 mm war der maximale Fehler in diesem Bereich an allen Messpunkten kleiner 10 mm. Der Einsatz von elektromagnetischem Tracking für die Navigation mit dem da Vinci® Surgical System ist somit in einem begrenzten Arbeitsvolumen mit hinreichender Genauigkeit möglich.

  14. 1963 Vajont rock slide: a comparison between 3D DEM and 3D FEM

    Science.gov (United States)

    Crosta, Giovanni; Utili, Stefano; Castellanza, Riccardo; Agliardi, Federico; Bistacchi, Andrea; Weng Boon, Chia

    2013-04-01

    Data on the exact location of the failure surface of the landslide have been used as the starting point for the modelling of the landslide. 3 dimensional numerical analyses were run employing both the discrete element method (DEM) and a Finite Element Method (FEM) code. In this work the focus is on the prediction of the movement of the landlside during its initial phase of detachment from Mount Toc. The results obtained by the two methods are compared and conjectures on the observed discrepancies of the predictions between the two methods are formulated. In the DEM simulations the internal interaction of the sliding blocks and the expansion of the debris is obtained as a result of the kinematic interaction among the rock blocks resulting from the jointing of the rock mass involved in the slide. In the FEM analyses, the c-phi reduction technique was employed along the predefine failure surface until the onset of the landslide occurred. In particular, two major blocks of the landslide were identified and the stress, strain and displacement fields at the interface between the two blocks were analysed in detail.

  15. DEM modeling of failure mechanisms induced by excavations on the Moon

    Science.gov (United States)

    jiang, mingjing; shen, zhifu; Utili, Stefano

    2013-04-01

    2D Discrete Element Method (DEM) analyses were performed for excavations supported by retaining walls in lunar environment. The lunar terrain is made of a layer of sand (regolith) which differs from terrestrial sands for two main features: the presence of adhesive attractive forces due to van der Waals interactions and grains being very irregular in shape leading to high interlocking. A simplified contact model based on linear elasticity and perfect plasticity was employed. The contact model includes a moment - relative rotation law to account for high interlocking among grains and a normal adhesion law to account for the van der Waals interactions. Analyses of the excavations were run under both lunar and terrestrial environments. Under lunar environment, gravity is approximately one sixth than the value on Earth and adhesion forces between grains of lunar regolith due to van der Waals interactions are not negligible. From the DEM simulations it emerged that van der Waals interactions may significantly increase the bending moment and deflection of the retaining wall, and the ground displacements. Hence this study indicates that an unsafe estimate of the wall response to an excavation on the Moon would be obtained from physical experiments performed in a terrestrial environment, i.e., considering the effect of gravity but neglecting the van der Waals interactions.

  16. An Automated Processing Algorithm for Flat Areas Resulting from DEM Filling and Interpolation

    Directory of Open Access Journals (Sweden)

    Xingwei Liu

    2017-11-01

    Full Text Available Correction of digital elevation models (DEMs for flat areas is a critical process for hydrological analyses and modeling, such as the determination of flow directions and accumulations, and the delineation of drainage networks and sub-basins. In this study, a new algorithm is proposed for flat correction/removal. It uses the puddle delineation (PD program to identify depressions (including their centers and overflow/spilling thresholds, compute topographic characteristics, and further fill the depressions. Three different levels of elevation increments are used for flat correction. The first and second level of increments create flows toward the thresholds and centers of the filled depressions or flats, while the third level of small random increments is introduced to cope with multiple threshold conditions. A set of artificial surfaces and two real-world landscapes were selected to test the new algorithm. The results showed that the proposed method was not limited by the shapes, the number of thresholds, and the surrounding topographic conditions of flat areas. Compared with the traditional methods, the new algorithm simplified the flat correction procedure and reduced the final elevation increments by 5.71–33.33%. This can be used to effectively remove/correct topographic flats and create flat-free DEMs.

  17. Application of the PROMETHEE technique to determine depression outlet location and flow direction in DEM

    Science.gov (United States)

    Chou, Tien-Yin; Lin, Wen-Tzu; Lin, Chao-Yuan; Chou, Wen-Chieh; Huang, Pi-Hui

    2004-02-01

    With the fast growing progress of computer technologies, spatial information on watersheds such as flow direction, watershed boundaries and the drainage network can be automatically calculated or extracted from a digital elevation model (DEM). The stubborn problem that depressions exist in DEMs has been frequently encountered while extracting the spatial information of terrain. Several filling-up methods have been proposed for solving depressions. However, their suitability for large-scale flat areas is inadequate. This study proposes a depression watershed method coupled with the Preference Ranking Organization METHod for Enrichment Evaluations (PROMETHEEs) theory to determine the optimal outlet and calculate the flow direction in depressions. Three processing procedures are used to derive the depressionless flow direction: (1) calculating the incipient flow direction; (2) establishing the depression watershed by tracing the upstream drainage area and determining the depression outlet using PROMETHEE theory; (3) calculating the depressionless flow direction. The developed method was used to delineate the Shihmen Reservoir watershed located in Northern Taiwan. The results show that the depression watershed method can effectively solve the shortcomings such as depression outlet differentiating and looped flow direction between depressions. The suitability of the proposed approach was verified.

  18. Landslide Detection in the Carlyon Beach, WA Peninsula: Analysis Of High Resolution DEMs

    Science.gov (United States)

    Fayne, J.; Tran, C.; Mora, O. E.

    2017-12-01

    Landslides are geological events caused by slope instability and degradation, leading to the sliding of large masses of rock and soil down a mountain or hillside. These events are influenced by topography, geology, weather and human activity, and can cause extensive damage to the environment and infrastructure, such as the destruction of transportation networks, homes, and businesses. It is therefore imperative to detect early-warning signs of landslide hazards as a means of mitigation and disaster prevention. Traditional landslide surveillance consists of field mapping, but the process is expensive and time consuming. This study uses Light Detection and Ranging (LiDAR) derived Digital Elevation Models (DEMs) and k-means clustering and Gaussian Mixture Model (GMM) to analyze surface roughness and extract spatial features and patterns of landslides and landslide-prone areas. The methodology based on several feature extractors employs an unsupervised classifier on the Carlyon Beach Peninsula in the state of Washington to attempt to identify slide potential terrain. When compared with the independently compiled landslide inventory map, the proposed algorithm correctly classifies up to 87% of the terrain. These results suggest that the proposed methods and LiDAR-derived DEMs can provide important surface information and be used as efficient tools for digital terrain analysis to create accurate landslide maps.

  19. Experimental study and DEM simulation of granular flow through a new sphere discharge valve

    International Nuclear Information System (INIS)

    Zhang He; Li Tianjin; Huang Zhiyong; Gao Zhi; Qi Weiwei; Bo Hanliang

    2015-01-01

    Experiments and DEM simulation have been conducted to investigate the granular flow through a new type of sphere discharge valve. The new sphere discharge valve was based on the principle of angle of repose. The glass sphere was used in the granular discharge experiments. Experimental results showed that the relation between the averaging sphere discharge mass flow rate and the stroke of the sphere discharge valve were consisted of three zones, i.e. the idle stroke zone, linearly zone and orifice restriction zone. The Beverloo's law was suitable for the granular flow through multi-orifices in the orifice restriction zone. The variation of averaging sphere discharge mass flow rate with the stroke of the sphere discharge valve was described by Beverloo's law with the modification based on the stroke of the sphere discharge valve. DEM simulation results showed that the drained angle of repose during granular flow in the sphere storage vessel remained 23 degrees with different stroke of the sphere discharge valve. (authors)

  20. Kinematic behaviour of a large earthflow defined by surface displacement monitoring, DEM differencing, and ERT imaging

    Science.gov (United States)

    Prokešová, Roberta; Kardoš, Miroslav; Tábořík, Petr; Medveďová, Alžbeta; Stacke, Václav; Chudý, František

    2014-11-01

    Large earthflow-type landslides are destructive mass movement phenomena with highly unpredictable behaviour. Knowledge of earthflow kinematics is essential for understanding the mechanisms that control its movements. The present paper characterises the kinematic behaviour of a large earthflow near the village of Ľubietová in Central Slovakia over a period of 35 years following its most recent reactivation in 1977. For this purpose, multi-temporal spatial data acquired by point-based in-situ monitoring and optical remote sensing methods have been used. Quantitative data analyses including strain modelling and DEM differencing techniques have enabled us to: (i) calculate the annual landslide movement rates; (ii) detect the trend of surface displacements; (iii) characterise spatial variability of movement rates; (iv) measure changes in the surface topography on a decadal scale; and (v) define areas with distinct kinematic behaviour. The results also integrate the qualitative characteristics of surface topography, in particular the distribution of surface structures as defined by a high-resolution DEM, and the landslide subsurface structure, as revealed by 2D resistivity imaging. Then, the ground surface kinematics of the landslide is evaluated with respect to the specific conditions encountered in the study area including slope morphology, landslide subsurface structure, and local geological and hydrometeorological conditions. Finally, the broader implications of the presented research are discussed with particular focus on the role that strain-related structures play in landslide kinematic behaviour.

  1. Aerial photography flight quality assessment with GPS/INS and DEM data

    Science.gov (United States)

    Zhao, Haitao; Zhang, Bing; Shang, Jiali; Liu, Jiangui; Li, Dong; Chen, Yanyan; Zuo, Zhengli; Chen, Zhengchao

    2018-01-01

    The flight altitude, ground coverage, photo overlap, and other acquisition specifications of an aerial photography flight mission directly affect the quality and accuracy of the subsequent mapping tasks. To ensure smooth post-flight data processing and fulfill the pre-defined mapping accuracy, flight quality assessments should be carried out in time. This paper presents a novel and rigorous approach for flight quality evaluation of frame cameras with GPS/INS data and DEM, using geometric calculation rather than image analysis as in the conventional methods. This new approach is based mainly on the collinearity equations, in which the accuracy of a set of flight quality indicators is derived through a rigorous error propagation model and validated with scenario data. Theoretical analysis and practical flight test of an aerial photography mission using an UltraCamXp camera showed that the calculated photo overlap is accurate enough for flight quality assessment of 5 cm ground sample distance image, using the SRTMGL3 DEM and the POSAV510 GPS/INS data. An even better overlap accuracy could be achieved for coarser-resolution aerial photography. With this new approach, the flight quality evaluation can be conducted on site right after landing, providing accurate and timely information for decision making.

  2. Inundation Analysis of Reservoir Flood Based on Computer Aided Design (CAD and Digital Elevation Model (DEM

    Directory of Open Access Journals (Sweden)

    Jiqing Li

    2018-04-01

    Full Text Available GIS (Geographic Information System can be used to combine multiple hydrologic data and geographic data for FIA (Flood Impact Assessment. For a developing country like China, a lot of geographic data is in the CAD (Computer Aided Design format. The commonly used method for converting CAD into DEM may result in data loss. This paper introduces a solution for the conversion between CAD data and DEM data. The method has been applied to the FIA based on the topographic map of CAD in Hanjiang River. When compared with the other method, the new method solves the data loss problem. Besides, the paper use GIS to simulate the inundation range, area, and the depth distribution of flood backwater. Based on the analysis, the author concludes: (1 the differences of the inundation areas between the flood of HQ100 and the flood of HQ50 are small. (2 The inundation depth shows a decreasing trend along the upstream of the river. (3 The inundation area less than 4 m in flood of HQ50 is larger than that in flood of HQ100, the result is opposite when the inundation depth is greater than 4 m. (4 The flood loss is 392.32 million RMB for flood of HQ50 and 610.02 million RMB for flood of HQ100. The method can be applied to FIA.

  3. Parallel Resolved Open Source CFD-DEM: Method, Validation and Application

    Directory of Open Access Journals (Sweden)

    A. Hager

    2014-03-01

    Full Text Available In the following paper the authors present a fully parallelized Open Source method for calculating the interaction of immersed bodies and surrounding fluid. A combination of computational fluid dynamics (CFD and a discrete element method (DEM accounts for the physics of both the fluid and the particles. The objects considered are relatively big compared to the cells of the fluid mesh, i.e. they cover several cells each. Thus this fictitious domain method (FDM is called resolved. The implementation is realized within the Open Source framework CFDEMcOupling (www.cfdem.com, which provides an interface between OpenFOAM® based CFD-solvers and the DEM software LIGGGHTS (www.liggghts.com. While both LIGGGHTS and OpenFOAM® were already parallelized, only a recent improvement of the algorithm permits the fully parallel computation of resolved problems. Alongside with a detailed description of the method, its implementation and recent improvements, a number of application and validation examples is presented in the scope of this paper.

  4. CFD-DEM simulation of a conceptual gas-cooled fluidized bed nuclear reactor

    International Nuclear Information System (INIS)

    Almeida, Lucilla C.; Su, Jian

    2015-01-01

    Several conceptual designs of the fluidized-bed nuclear reactor have been proposed due to its many advantages over conventional nuclear reactors such as PWRs and BWRs. Amongst their characteristics, the enhanced heat transfer and mixing enables a more uniform temperature distribution, reducing the risk of hot-spot and excessive fuel temperature, in addition to resulting in a higher burnup of the fuel. Furthermore, the relationship between the bed height and reactor neutronics turns the coolant flow rate control into a power production mechanism. Moreover, the possibility of removing the fuel by gravity from the movable core in case of a loss-of-cooling accident increases its safety. High-accuracy modeling of particles and coolant flow in fluidized bed reactors is needed to evaluate reliably the thermal-hydraulic efficiency and safety margin. The two-way coupling between solid and fluid can account for high-fidelity solid-solid interaction and reasonable accuracy in fluid calculation and fluid-solid interaction. In the CFD-DEM model, the particles are modeled as a discrete phase, following the DEM approach, whereas the fluid flow is treated as a continuous phase, described by the averaged Navier-Stokes equations on a computational cell scale. In this work, the coupling methodology between Fluent and Rocky is described. The numerical approach was applied to the simulation of a bubbling fluidized bed and the results were compared to experimental data and showed good agreement. (author)

  5. Constructing Palaeo-DEMs in landscape evolution: example of the Geren catchment, Turkey

    Science.gov (United States)

    van Gorp, Wouter; Schoorl, Jeroen M.; Veldkamp, Tom; Maddy, Darrel; Demir, Tuncer; Aytac, Serdar

    2017-04-01

    How to reconstruct the past landscape and how does this influence your modelling results? This is an important paradigma in the soilscape and landscape evolution modelling community. Here an example of Turkey will be presented where a 300 ka LEM simulation requested to the thoroughly think about the initial landscape as an important input. What information can be used to know the morphology of a landscape 300 ka ago? The Geren catchment, a tributary of the upstream Gediz river near Kula, Turkey, has been influenced by base level changes during the Late Pleistocene and Holocene. Different lavaflows have blocked the Gediz and Geren river several times over in the timespan of the last 300 ka -200 Ka and in the recent Holocene. The heavily dissected Geren catchment shows a landscape evolution which is more complex than just a reaction on these base level changes. The steps and inputs of the palaeo DEM reconstruction will be presented and the modelling results will be presented. Keywords: Digital Elevation Model, Palaeo DEMs, Numerical modelling

  6. Comparison Between Topographic Expression of RADARSAT and DEM in Simpang Pulai to Pos Selim, Malaysia

    Directory of Open Access Journals (Sweden)

    M.F.Ramli

    2010-01-01

    Full Text Available Radar and digital elevation model had been utilised in many structural studies. The main objective of this study is to compare the RADARSAT and digital elevation model for lineament interpretation which probably represent the main joints or faults along the Simpang Pulai to Pos Selim highway, Malaysia. These joints and faults may influence the instability along the highway. Manual comparison in terms of topographical aspect was undertaken between RADARSAT with 25 m spatial resolution and digital elevation model derived from 20 m contour interval of the topographical map. The previously interpreted lineaments of more than 2 km in the study area was draped over the RADARSAT and digital elevation model to compared whether the lineament concurred with the topographical representation. The interpreted lineaments were derived from Landsat TM of 1990 and 2002, where the DEM had been utilised in the negative lineament determination. It is concluded that the application RADARSAT is not very useful in terms of topographical expression in the structural geological interpretation for the study area compared to DEM derived from contour data. Further work is suggested before any conclusion can be confidently derived.

  7. An algorithm for generation of DEMs from contour lines considering geomorphic features

    Directory of Open Access Journals (Sweden)

    Xiao-Ping Rui

    2016-04-01

    Full Text Available Geomorphic information is omitted from many existing methods of generating gridded digital elevation models (DEMs from contour lines, resulting in significant errors during interpolation. Here, we present an advanced schema for improvement of the comprehensive regionalized method of linear interpolation. This approach uses a moving fitting method for an interpolated point and selects elevation points that are representative of geomorphic features as a whole to improve interpolation quality. A total of 16 points are selected, according to certain criteria, in eight directions surrounding the interpolated point; thus, there are two points in each direction, which is sufficient to provide an accurate representation of the geomorphic features of the DEM. Our method introduces virtual control points to prevent sudden changes in the interpolation results, which helps to overcome problems related to the distortion of the local geospatial distribution in areas where feature geomorphic information is inadequate. We construct the spline interpolation function using intersection points and virtual control points, all of which are applied to compute the point elevation. Moreover, we index all elevation values and spatial points of linear features using the R-tree method to ensure that points related to an interpolated position can be retrieved as quickly as possible. Finally, we test our method using a coal mine elevation dataset. The results confirm that our proposed method can generate DEMs smoothly and, in particular, avoid problems related to local distortion.    Resumen La información geomórfica se omite en muchos de los métodos de generación de Modelos Digitales de Elevación (DEM, en inglés que se elaboran a partir de líneas de contorno, lo que resulta en errores significativos durante la interpolación. En este trabajo se presenta un esquema avanzado para el mejoramiento del método comprensivo regionalizado de interpolación lineal. Esta

  8. Satisfação sexual na demência Sexual satisfaction in dementia

    Directory of Open Access Journals (Sweden)

    Marcela Moreira Lima Nogueira

    2013-01-01

    Full Text Available CONTEXTO: A demência pode resultar em comprometimento da intimidade e sexualidade de casais idosos. OBJETIVOS: Avaliar alterações na atividade sexual, bem como os fatores de satisfação e/ou insatisfação sexual de casais nos quais um dos parceiros possua demência. MÉTODO: Busca nas bases de dados ISI, PubMed/Medline e SciELO de artigos sobre sexualidade na demência, entre janeiro de 1990 e março de 2012, utilizando as palavras-chave: "demência", "satisfação sexual", "intimidade" e "sexualidade". RESULTADOS: Foram encontrados 12 artigos. A sobrecarga de cuidados e a alteração de papéis na relação conjugal foram consideradas as principais causas para o declínio da atividade sexual. A disfunção erétil em pacientes e cônjuges, a capacidade decisória para o consentimento da relação sexual por parte do paciente demenciado e os problemas referentes à idade e à saúde (física e emocional do cônjuge e/ou paciente foram os fatores associados à insatisfação sexual. CONCLUSÃO: A intimidade e a atividade sexual dos casais em que um dos parceiros é portador de demência são influenciadas negativamente pela relação de cuidados decorrente da doença e pela sobrecarga dos cônjuges. Por outro lado, a atividade sexual pode ser positivamente substituída por demonstrações de carinho e empatia entre os cônjuges.BACKGROUND: Dementia may result on impairment in intimacy and sexuality of elderly couples. OBJECTIVES: Evaluate changes in sexual activity, as well as the factors which cause sexual satisfaction and/or dissatisfaction in couples in which one of the partners has dementia. METHOD: A search at ISI, PubMed/Medline and SciELO was made for articles about sexuality in dementia, from January 1990 to March 2012, using the keywords: "dementia", "sexual satisfaction", "intimacy" and "sexuality". RESULTS: Twelve articles were selected. The burden of care and the change of roles in couples' relationship were the main reasons for

  9. Optimizing landslide susceptibility zonation: Effects of DEM spatial resolution and slope unit delineation on logistic regression models

    Science.gov (United States)

    Schlögel, R.; Marchesini, I.; Alvioli, M.; Reichenbach, P.; Rossi, M.; Malet, J.-P.

    2018-01-01

    We perform landslide susceptibility zonation with slope units using three digital elevation models (DEMs) of varying spatial resolution of the Ubaye Valley (South French Alps). In so doing, we applied a recently developed algorithm automating slope unit delineation, given a number of parameters, in order to optimize simultaneously the partitioning of the terrain and the performance of a logistic regression susceptibility model. The method allowed us to obtain optimal slope units for each available DEM spatial resolution. For each resolution, we studied the susceptibility model performance by analyzing in detail the relevance of the conditioning variables. The analysis is based on landslide morphology data, considering either the whole landslide or only the source area outline as inputs. The procedure allowed us to select the most useful information, in terms of DEM spatial resolution, thematic variables and landslide inventory, in order to obtain the most reliable slope unit-based landslide susceptibility assessment.

  10. BOREAS HYD-8 DEM Data Over the NSA-MSA and SSA-MSA in the UTM Projection

    Science.gov (United States)

    Wang, Xue-Wen; Hall, Forrest G. (Editor); Knapp, David E. (Editor); Band, L. E.; Smith, David E. (Technical Monitor)

    2000-01-01

    The BOREAS HYD-8 team focused on describing the scaling behavior of water and carbon flux processes at local and regional scales. These DEMs were produced from digitized contours at a cell resolution of 100 meters. Vector contours of the area were used as input to a software package that interpolates between contours to create a DEM representing the terrain surface. The vector contours had a contour interval of 25 feet. The data cover the BOREAS MSAs of the SSA and NSA and are given in a UTM map projection. Most of the elevation data from which the DEM was produced were collected in the 1970s or 1980s. The data are stored in binary, image format files. The data files are available on a CD-ROM (see document number 20010000884) or from the Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC).

  11. The EVE plus RHESSI DEM for Solar Flares, and Implications for Residual Non-Thermal X-Ray Emission

    Science.gov (United States)

    McTiernan, James; Caspi, Amir; Warren, Harry

    2016-05-01

    Solar flare spectra are typically dominated by thermal emission in the soft X-ray energy range. The low energy extent of non-thermal emission can only be loosely quantified using currently available X-ray data. To address this issue, we combine observations from the EUV Variability Experiment (EVE) on-board the Solar Dynamics Observatory (SDO) with X-ray data from the Reuven Ramaty High Energy Spectroscopic Imager (RHESSI) to calculate the Differential Emission Measure (DEM) for solar flares. This improvement over the isothermal approximation helps to resolve the ambiguity in the range where the thermal and non-thermal components may have similar photon fluxes. This "crossover" range can extend up to 30 keV.Previous work (Caspi et.al. 2014ApJ...788L..31C) concentrated on obtaining DEM models that fit both instruments' observations well. For this current project we are interested in breaks and cutoffs in the "residual" non-thermal spectrum; i.e., the RHESSI spectrum that is left over after the DEM has accounted for the bulk of the soft X-ray emission. As in our earlier work, thermal emission is modeled using a DEM that is parametrized as multiple gaussians in temperature. Non-thermal emission is modeled as a photon spectrum obtained using a thin-target emission model ('thin2' from the SolarSoft Xray IDL package). Spectra for both instruments are fit simultaneously in a self-consistent manner.For this study, we have examined the DEM and non-thermal resuidual emission for a sample of relatively large (GOES M class and above) solar flares observed from 2011 to 2014. The results for the DEM and non-thermal parameters found using the combined EVE-RHESSI data are compared with those found using only RHESSI data.

  12. Influence of different DEMs on the quality of the InSAR results: case study over Bankya and Mirovo areas

    Science.gov (United States)

    Nikolov, Hristo; Atanasova, Mila

    2017-10-01

    One of the key input parameters in obtaining end products from SAR data is the DEM used during their processing. This holds true especially when persistent scatterers InSAR method should be applied for example to study slow moving landslides or subsidence. Since nowadays most of the raw SAR data are of space borne origin for their correct processing to high precision products for relatively small areas with centimeter accuracy a DEM taking into account the particularities of the local topography is needed. Most of the DEMs used by the SAR processing software such as SRTM or ASTER are obtained by the same type of instrument and present some disagreements with height information acquired by leveling measurements or other geodetic means. This was the motivation for initiating this research - to prove the need of creating and using local DEM in SAR data processing at small scale and to check what the magnitude of the discrepancy between final InSAR products is in both cases where SRTM/ASTER and local DEM has been used. In addition investigated were two scenarios for SAR data processing - one with small baseline between image pairs and one having large baseline image pairs - in order to find out in which case local DEM has bigger impact. In course of this study two reference areas were considered - Bankya village near Sofia (SW region of Bulgaria) and Mirovo salt extraction site (NE region of Bulgaria). The reason those areas were selected lies in the high number of landslides registered and monitored by the competent authorities in the mentioned locations. The significance of the results obtained is witnessed by the fact that both sites we used have been included as reference sites for Bulgaria in the PanGeo EU funded project dealing with delivering information regarding ground instability geohazard as areas prone to subsidence of natural and manmade origin. In the said project largest part of the information has been extracted from Envisat SAR data, but now this

  13. MARE2DEM: a 2-D inversion code for controlled-source electromagnetic and magnetotelluric data

    Science.gov (United States)

    Key, Kerry

    2016-10-01

    This work presents MARE2DEM, a freely available code for 2-D anisotropic inversion of magnetotelluric (MT) data and frequency-domain controlled-source electromagnetic (CSEM) data from onshore and offshore surveys. MARE2DEM parametrizes the inverse model using a grid of arbitrarily shaped polygons, where unstructured triangular or quadrilateral grids are typically used due to their ease of construction. Unstructured grids provide significantly more geometric flexibility and parameter efficiency than the structured rectangular grids commonly used by most other inversion codes. Transmitter and receiver components located on topographic slopes can be tilted parallel to the boundary so that the simulated electromagnetic fields accurately reproduce the real survey geometry. The forward solution is implemented with a goal-oriented adaptive finite-element method that automatically generates and refines unstructured triangular element grids that conform to the inversion parameter grid, ensuring accurate responses as the model conductivity changes. This dual-grid approach is significantly more efficient than the conventional use of a single grid for both the forward and inverse meshes since the more detailed finite-element meshes required for accurate responses do not increase the memory requirements of the inverse problem. Forward solutions are computed in parallel with a highly efficient scaling by partitioning the data into smaller independent modeling tasks consisting of subsets of the input frequencies, transmitters and receivers. Non-linear inversion is carried out with a new Occam inversion approach that requires fewer forward calls. Dense matrix operations are optimized for memory and parallel scalability using the ScaLAPACK parallel library. Free parameters can be bounded using a new non-linear transformation that leaves the transformed parameters nearly the same as the original parameters within the bounds, thereby reducing non-linear smoothing effects. Data

  14. Illustrations to “Gespräche in dem Reiche derer Todten zwischen dem vortreflichen Moscowitischen Czaar Petro Magno und dem grossen Tyrannen Ivan Basilowiz II” (Peter the Great and Ivan the Terrible by David Fassmann (1725

    Directory of Open Access Journals (Sweden)

    Ekaterina A. Skvortcova

    2017-12-01

    Full Text Available The journal created by David Fassmann (1683–1744, Gespräche in dem Reiche derer Todten, edited in Leipzig, was a huge success. Each of the 240 issues presents a dialogue between two historical figures from the afterworld. In the 83rd–86th Entrevuë, the interlocutors are Peter the Great and Ivan the Terrible. The texts of the four conversations were thoroughly examined by Eckhard Matthes (1987. The present paper explores how the illustrations to the 83rd–86th Entrevuë visualize the texts, which is significant as they were an important instrument for disseminating certain notions about Russia. While the illustration to the first dialogue of the suite juxtaposes Peter and Ivan, the illustration to the second one emphasizes the similarities between them. So the image of the “tyrant” and “barbarian” Ivan becomes a reference point with which a reader is urged to compare Peter’s deeds, seeing not only the differences but also the similarities. This greatly contributes to the creation of the multifaceted image of Russia of the early 18th century. The characters of the second illustration—a tiger and an executioner—can be identified as Ivan and Peter only if the reader takes into consideration an epigram to the illustration, the illustration to the previous dialogue, the text of the next Entrevuë, and facts about the execution of the strel’tsy known from other texts and images, about which Fassmann remains silent in the spirit of ars dissimulandi, which was typical for baroque culture. The paper offers an attempt to trace the iconography of the tyrant as a tiger. In the frontispiece to the 85th Entrevuë, a secretary bringing news from the world of the living and a portrait of Catherine I emphasize the connection of the past and the present, i.e., history and policy. Finally, the illustration to the last dialogue of the series returns to the glorification of Peter the Great declared in the first dialogue.

  15. Robust 3D Quantification of Glacial Landforms: A Use of Idealised Drumlins in a Real DEM

    Science.gov (United States)

    Hillier, J. K.; Smith, M. S.

    2012-04-01

    Drumlins' attributes, such as height (h) and volume (V ), may preserve important information about the dynamics of former ice sheets. However, measurement errors are large (e.g., 39.2% of V within ±25% of their real values for the 'cookie cutter') and, in general, poorly understood. To accurately quantify the morphology of glacial landforms, the relief belonging to that landform must be reliably isolated from other components of the landscape (e.g. buildings, hills). A number of techniques have been proposed for this regional-residual separation (RRS). Which is best? Justifications for those applied remain qualitative assertions. A recently developed, novel method using idealised drumlins of known size (hin, V in) in a real digital elevation model (DEM) is used to quantitatively determine the best RRS technique, allowing general guidelines for quantifying glacial landforms to be proposed. 184 drumlins with digitised outlines in western Central Scotland are used as a case study. The NEXTMap surface model (DSM) is the primary dataset employed. A variety of techniques are then investigated for their ability to recover sizes (hr, V r). A metric, ɛ, is used that maximises the number of Hr/Hin values near 1.0 whilst giving equal weight to different drumlin sizes: a metric dominated by the large number of small drumlins is not desirable. For simplicity, the semi-automated 'cookie cutter' technique is used as a baseline for comparison. This removes heights within a drumlin from a DEM, cuts a hole, then estimates its basal surface by interpolating across the space with a fully tensioned bi-cubic spline (-T1). Metrics for h and V are ɛh = 0.885 and ɛV = 0.247. Other tensions do not improve this significantly, with ɛV of 0.245 at best, but using Delauney triangulation reduces ɛV to 0.206. Windowed 'sliding median' filters, which do not require heights within drumlins to be removed, attain a minimum ɛV of 0.470 at a best width of 340 m (-Fm340). Finally, even crudely

  16. Combined DFT and DEMS investigation of the effect of dopants in secondary zinc‐air batteries

    DEFF Research Database (Denmark)

    Lysgaard, Steen; Christensen, Mathias K.; Hansen, Heine A.

    2018-01-01

    Zinc‐air batteries offer the potential of low cost energy storage with high energy density, but at present secondary batteries suffer from poor cyclability. To develop secondary Zn‐air batteries, several challenges need to be overcome: choking of the cathode, catalyzing the oxygen evolution...... and reduction reactions, limiting dendrite formation and the hydrogen evolution reaction (HER). Understanding and alleviating HER at the anode is a challenge, where it is necessary to involve computational as well as experimental research. Here, we combine Differential Electrochemical Mass Spectrometry (DEMS......) and density functional theory calculations to investigate the fundamental role and stability over cycling of possible additives such as In, Bi and Ag. We show that both In and Bi have the desired property for a secondary battery that upon recharging, they will remain in the surface, thereby retaining...

  17. Revealing topographic lineaments through IHS enhancement of DEM data. [Digital Elevation Model

    Science.gov (United States)

    Murdock, Gary

    1990-01-01

    Intensity-hue-saturation (IHS) processing of slope (dip), aspect (dip direction), and elevation to reveal subtle topographic lineaments which may not be obvious in the unprocessed data are used to enhance digital elevation model (DEM) data from northwestern Nevada. This IHS method of lineament identification was applied to a mosiac of 12 square degrees using a Cray Y-MP8/864. Square arrays from 3 x 3 to 31 x 31 points were tested as well as several different slope enhancements. When relatively few points are used to fit the plane, lineaments of various lengths are observed and a mechanism for lineament classification is described. An area encompassing the gold deposits of the Carlin trend and including the Rain in the southeast to Midas in the northwest is investigated in greater detail. The orientation and density of lineaments may be determined on the gently sloping pediment surface as well as in the more steeply sloping ranges.

  18. FEM-DEM coupling simulations of the tool wear characteristics in prestressed machining superalloy

    Directory of Open Access Journals (Sweden)

    Ruitao Peng

    2016-01-01

    Full Text Available Due to the complicated contact loading at the tool-chip interface, ceramic tool wear in prestressed machining superalloy is rare difficult to evaluate only by experimental approaches. This study aims to develop a methodology to predict the tool wear evolution by using combined FEM and DEM numerical simulations. Firstly, a finite element model for prestressed cutting is established, subsequently a discrete element model to describe the tool-chip behaviour is established based on the obtained boundary conditions by FEM simulations, finally, simulated results are experimentally validated. The predicted tool wear results show nice agreement with experiments, the simulation indicates that, within a certain range, higher cutting speed effectively results in slighter wear of Sialon ceramic tools, and deeper depth of cut leads to more serious tool wear.

  19. Quantenphysik und Kommunikationswissenschaft auf dem Weg zu einer allgemeinen Theorie der Kommunikation

    CERN Document Server

    Hamberger, Erich

    2015-01-01

    Der Quantenphysiker Herbert Pietschmann beschäftigt sich seit Jahrzehnten mit dem Phänomen Kommunikation. Der Kommunikationswissenschaftler Erich Hamberger setzt sich seit langem mit der Frage der Adaptierung erkenntnistheoretischer Einsichten der Quantentheorie für die Geistes- und Biowissenschaften auseinander. 2003 begegnen sich die beiden - und staunen über die „verschränkten Erkenntnisinteressen“. 2006 bestreiten sie eine erste gemeinsame universitäre Lehrveranstaltung. 2011 folgt Das Phänomen Kommunikation transdisziplinär betrachtet. Aus ihrer Zusammenarbeit ist dieses Buch entstanden. Naturwissenschaft arbeitet auf der Grundlage des mechanistischen Denkrahmens. Die bisher einzige Ausnahme ist die Quantenphysik. Weder Leben noch Kommunikation ist mittels des mechanistischen Denkrahmens zu verstehen. Auch der Denkrahmen der Quantenphysik reicht dazu nicht aus. Der Bedarf nach adäquatem Denken im Bereich der Kommunikation kann durch quantenphysikalisches Denken NICHT befriedigt werden, jedoc...

  20. Zur Rekonstruktion einer Typologie jugendlichen Medienhandelns gemäß dem Leitbild der Triangulation

    Directory of Open Access Journals (Sweden)

    Klaus Peter Treumann

    2017-09-01

    Full Text Available Die im Folgenden dargestellten Ergebnisse sind im Rahmen des von der DFG geförderten Forschungsprojekts „Eine Untersuchung zum Mediennutzungsverhalten 12- bis 20-Jähriger und zur Entwicklung von Medienkompetenz im Jugendalter“ entstanden, das gemeinsam von Klaus Peter Treumann, Uwe Sander und Dorothee Meister geleitet wird. Das Forschungsprojekt untersucht das Medienhandeln Jugendlicher sowohl hinsichtlich Neuer als auch alter Medien. Zum einen fragen wir dabei nach den Ausprägungen von Medienkompetenz in verschiedenen Dimensionen und zum anderen konzentrieren wir uns auf die Entwicklung einer empirisch fundierten Typologie jugendlichen Medienhandelns. Methodologisch ist die Untersuchung an dem Leitbild der Triangulation orientiert und kombiniert qualitative und quantitative Zugänge zum Forschungsfeld in Form von Gruppendiskussionen, leitfadengestützten Einzelinterviews und einer Repräsentativerhebung.

  1. DEM-CFD simulation of purge gas flow in a solid breeder pebble bed

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Hao [School of Nuclear Science and Technology, University of Science and Technology of China, Hefei 230027 (China); Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621900 (China); Li, Zhenghong [Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621900 (China); University of Science and Technology of China, Hefei 230027 (China); Guo, Haibing [Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621900 (China); Ye, Minyou [School of Nuclear Science and Technology, University of Science and Technology of China, Hefei 230027 (China); Huang, Hongwen, E-mail: inpclane@sina.com [Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621900 (China)

    2016-12-15

    Solid tritium breeding blanket applying pebble bed concept is promising for fusion reactors. Tritium bred in the pebble bed is purged out by inert gas. The flow characteristics of the purge gas are important for the tritium transport from the solid breeder materials. In this study, a randomly packed pebble bed was generated by Discrete Element Method (DEM) and verified by radial porosity distribution. The flow parameters of the purge gas in channels were solved by Computational Fluid Dynamics (CFD) method. The results show that the normalized velocity magnitudes have the same damped oscillating patterns with radial porosity distribution. Besides, the bypass flow near the wall cannot be ignored in this model, and it has a slight increase with inlet velocity. Furthermore, higher purging efficiency becomes with higher inlet velocity and especially higher in near wall region.

  2. Cerebellar volume in patients with dementia Volume cerebelar em pacientes com demência

    Directory of Open Access Journals (Sweden)

    Leonardo Baldaçara

    2011-01-01

    Mental e do Questionário de Atividades Funcionais. Os sujeitos foram divididos em cinco grupos de acordo com a Escala de Gravidade da Demência. Vinte e seis indivíduos do grupo original que não tinham o diagnóstico de demência no início do estudo foram reavaliados após dois anos para detectar o desenvolvimento da doença. RESULTADOS: Os volumes dos hemisférios cerebelares, lobo cerebelar posterior, vermis e lobo temporal estavam diminuídos proporcionalmente à gravidade da doença. Houve correlações positivas e significativas entre o Questionário de Atividades Funcionais, Mini Exame do Estado Mental e seus respectivos subtestes para linguagem e atenção com os volumes do lobo temporal e cerebelar. A análise de regressão logística demonstrou que o volume reduzido do lobo temporal, lobo cerebelar posterior e vermis pode ser um fator de risco para o futuro desenvolvimento de demência. CONCLUSÃO: Este é o primeiro estudo que demonstrou que o volume do cerebelo pode estar reduzido na fase pré-demência e reforça o papel dessa estrutura na progressão da doença de Alzheimer. Considerando que o cerebelo pode não estar diretamente associado com a origem da doença de Alzheimer, este achado tem valor para o prognóstico.

  3. Cerebellar volume in patients with dementia Volume cerebelar em pacientes com demência

    Directory of Open Access Journals (Sweden)

    Leonardo Baldaçara

    2011-06-01

    Mental e do Questionário de Atividades Funcionais. Os sujeitos foram divididos em cinco grupos de acordo com a Escala de Gravidade da Demência. Vinte e seis indivíduos do grupo original que não tinham o diagnóstico de demência no início do estudo foram reavaliados após dois anos para detectar o desenvolvimento da doença. RESULTADOS: Os volumes dos hemisférios cerebelares, lobo cerebelar posterior, vermis e lobo temporal estavam diminuídos proporcionalmente à gravidade da doença. Houve correlações positivas e significativas entre o Questionário de Atividades Funcionais, Mini Exame do Estado Mental e seus respectivos subtestes para linguagem e atenção com os volumes dos lobos temporal e cerebelar. A análise de regressão logística demonstrou que o volume reduzido do lobo temporal, lobo cerebelar posterior e vermis pode ser um fator de risco para o futuro desenvolvimento de demência. CONCLUSÃO: Este é o primeiro estudo que demonstrou que o volume do cerebelo pode estar reduzido na fase pré-demência e reforça o papel dessa estrutura na progressão da doença de Alzheimer. Considerando que o cerebelo pode não estar diretamente associado com a origem da doença de Alzheimer, este achado tem valor para o prognóstico.

  4. Coupled DEM-CFD analyses of landslide-induced debris flows

    CERN Document Server

    Zhao, Tao

    2017-01-01

    This book reflects the latest research results in computer modelling of landslide-induced debris flows. The book establishes an understanding of the initiation and propagation mechanisms of landslides by means of numerical simulations, so that mitigation strategies to reduce the long-term losses from landslide hazards can be devised. In this context, the book employs the Discrete Element Method (DEM) and Computational Fluid Dynamics (CFD) to investigate the mechanical and hydraulic behaviour of granular materials involved in landslides – an approach that yields meaningful insights into the flow mechanisms, concerning e.g. the mobilization of sediments, the generation and dissipation of excess pore water pressures, and the evolution of effective stresses. As such, the book provides valuable information, useful methods and robust numerical tools that can be successfully applied in the field of debris flow research.

  5. DEM4-26, Least Square Fit for IBM PC by Deming Method

    International Nuclear Information System (INIS)

    Rinard, P.M.; Bosler, G.E.

    1989-01-01

    1 - Description of program or function: DEM4-26 is a generalized least square fitting program based on Deming's method. Functions built into the program for fitting include linear, quadratic, cubic, power, Howard's, exponential, and Gaussian; others can easily be added. The program has the following capabilities: (1) entry, editing, and saving of data; (2) fitting of any of the built-in functions or of a user-supplied function; (3) plotting the data and fitted function on the display screen, with error limits if requested, and with the option of copying the plot to the printer; (4) interpolation of x or y values from the fitted curve with error estimates based on error limits selected by the user; and (5) plotting the residuals between the y data values and the fitted curve, with the option copying the plot to the printer. 2 - Method of solution: Deming's method

  6. Evaluating the Quality and Accuracy of TanDEM-X Digital Elevation Models at Archaeological Sites in the Cilician Plain, Turkey

    Directory of Open Access Journals (Sweden)

    Stefan Erasmi

    2014-10-01

    Full Text Available Satellite remote sensing provides a powerful instrument for mapping and monitoring traces of historical settlements and infrastructure, not only in distant areas and crisis regions. It helps archaeologists to embed their findings from field surveys into the broader context of the landscape. With the start of the TanDEM-X mission, spatially explicit 3D-information is available to researchers at an unprecedented resolution worldwide. We examined different experimental TanDEM-X digital elevation models (DEM that were processed from two different imaging modes (Stripmap/High Resolution Spotlight using the operational alternating bistatic acquisition mode. The quality and accuracy of the experimental DEM products was compared to other available DEM products and a high precision archaeological field survey. The results indicate the potential of TanDEM-X Stripmap (SM data for mapping surface elements at regional scale. For the alluvial plain of Cilicia, a suspected palaeochannel could be reconstructed. At the local scale, DEM products from TanDEM-X High Resolution Spotlight (HS mode were processed at 2 m spatial resolution using a merge of two monostatic/bistatic interferograms. The absolute and relative vertical accuracy of the outcome meet the specification of high resolution elevation data (HRE standards from the National System for Geospatial Intelligence (NSG at the HRE20 level.

  7. Quantitative Analysis of Accuracy of Voidage Computations in CFD-DEM Simulations

    Directory of Open Access Journals (Sweden)

    H. A. Khawaja

    2012-06-01

    Full Text Available CFD-DEM (Computational Fluid Dynamics – Discrete Element Modelling is a two-phase flow numerical modelling technique, where the Eulerian method is used for the fluid and the Lagrangian method for the particles. The two phases are coupled by a fluid-particle interaction force (i.e. drag force which is computed using a correlation. In a two-phase flow, one critical parameter is the voidage (or void fraction, which is defined as the ratio of the volume occupied by the fluid to the total volume. In a CFD-DEM simulation the local voidage is computed by calculating the volume of particles in a given fluid cell. For spherical particles, this computation is difficult when a particle is on the boundary of fluid cells. In this case, it is usual to compute the volume of a particle in a fluid cell approximately. One such approximation divides the volume of a particle into each cell in the same ratio as an equivalent cube of width equal to the particle diameter. Whilst this approach is computationally straight forward, the approximation introduces an error in the voidage computation. Here we estimate the error by comparing the approximate volume calculation with an exact (numerical computation of the volume of a particle in a fluid cell. The results show that the error varies with the position of the particle relative to the cell boundary. A new approach is suggested which limits the error to less than 2.5 %, without significantly increasing the computational complexity.

  8. Comparison Between 2D and 3D Simulations of Rate Dependent Friction Using DEM

    Science.gov (United States)

    Wang, C.; Elsworth, D.

    2017-12-01

    Rate-state dependent constitutive laws of frictional evolution have been successful in representing many of the first- and second- order components of earthquake rupture. Although this constitutive law has been successfully applied in numerical models, difficulty remains in efficient implementation of this constitutive law in computationally-expensive granular mechanics simulations using discrete element methods (DEM). This study introduces a novel approach in implementing a rate-dependent constitutive relation of contact friction into DEM. This is essentially an implementation of a slip-weakening constitutive law onto local particle contacts without sacrificing computational efficiency. This implementation allows the analysis of slip stability of simulated fault gouge materials. Velocity-stepping experiments are reported on both uniform and textured distributions of quartz and talc as 3D analogs of gouge mixtures. Distinct local slip stability parameters (a-b) are assigned to the quartz and talc, respectively. We separately vary talc content from 0 to 100% in the uniform mixtures and talc layer thickness from 1 to 20 particles in the textured mixtures. Applied shear displacements are cycled through velocities of 1μm/s and 10μm/s. Frictional evolution data are collected and compared to 2D simulation results. We show that dimensionality significantly impacts the evolution of friction. 3D simulation results are more representative of laboratory observed behavior and numerical noise is shown at a magnitude of 0.01 in terms of friction coefficient. Stability parameters (a-b) can be straightforwardly obtained from analyzing velocity steps, and are different from locally assigned (a-b) values. Sensitivity studies on normal stress, shear velocity, particle size, local (a-b) values, and characteristic slip distance (Dc) show that the implementation is sensitive to local (a-b) values and relations between (Dc) and particle size.

  9. A robust method of thin plate spline and its application to DEM construction

    Science.gov (United States)

    Chen, Chuanfa; Li, Yanyan

    2012-11-01

    In order to avoid the ill-conditioning problem of thin plate spline (TPS), the orthogonal least squares (OLS) method was introduced, and a modified OLS (MOLS) was developed. The MOLS of TPS (TPS-M) can not only select significant points, termed knots, from large and dense sampling data sets, but also easily compute the weights of the knots in terms of back-substitution. For interpolating large sampling points, we developed a local TPS-M, where some neighbor sampling points around the point being estimated are selected for computation. Numerical tests indicate that irrespective of sampling noise level, the average performance of TPS-M can advantage with smoothing TPS. Under the same simulation accuracy, the computational time of TPS-M decreases with the increase of the number of sampling points. The smooth fitting results on lidar-derived noise data indicate that TPS-M has an obvious smoothing effect, which is on par with smoothing TPS. The example of constructing a series of large scale DEMs, located in Shandong province, China, was employed to comparatively analyze the estimation accuracies of the two versions of TPS and the classical interpolation methods including inverse distance weighting (IDW), ordinary kriging (OK) and universal kriging with the second-order drift function (UK). Results show that regardless of sampling interval and spatial resolution, TPS-M is more accurate than the classical interpolation methods, except for the smoothing TPS at the finest sampling interval of 20 m, and the two versions of kriging at the spatial resolution of 15 m. In conclusion, TPS-M, which avoids the ill-conditioning problem, is considered as a robust method for DEM construction.

  10. Exploring the Potential of TanDEM-X Data in Rice Monitoring

    Science.gov (United States)

    Erten, E.

    2015-12-01

    In this work, phenological parameters such as growth stage, calendar estimation, crop density and yield estimation for rice fields are estimated employing TanDEM-X data. Currently, crop monitoring is country-dependent. Most countries have databases based on cadastral information and annual farmer inputs. Inaccuracies are coming from wrong or missing farmer declarations and/or coarsely updated cadastral boundary definitions. This leads to inefficient regulation of the market, frauds as well as to ecological risks. An accurate crop calendar is also missing, since farmers provide estimations in advance and there is no efficient way to know the growth status over large plantations. SAR data is of particular interest for these purposes. The proposed method includes two step approach including field detection and phenological state estimation. In the context of precise farming it is substantial to define field borders which are usually changing every cultivation period. Linking the SAR inherit properties to transplanting practice such as irrigation, the spatial database of rice-planted agricultural crops can be updated. Boundaries of agricultural fields will be defined in the database, and assignments of crops and sowing dates will be continuously updated by our monitoring system considering that sowing practice variously changes depending on the field owner decision. To define and segment rice crops, the system will make use of the fact that rice fields are characterized as flooded parcels separated by path networks composed by soil or rare grass. This natural segmentation is well detectable by inspecting low amplitude and coherence values of bistatic acquisitions. Once the field borders are defined, the phenology estimation of crops monitored at any time is the key point of monitoring. In this aspect the wavelength and the polarization option of TanDEM-X are enough to characterize the small phenological changes. The combination of bistatic interferometry and Radiative

  11. Application of Digital Elevation Model (DEM for description of soil microtopography changes in laboratory experiments

    Directory of Open Access Journals (Sweden)

    Stańczyk Tomasz

    2016-12-01

    Full Text Available In the study we evaluated spatial and quantitative changes in soil surface microtopography to describe water erosion process under simulated rain with use of a non-contact optical 3D scanner. The experiment was conducted in two variants: with and without drainage layer. Two clay soils collected from farmlands from the catchment of lake Zgorzała (Warsaw were investigated. Six tests of simulated rain were applied, with 55 mm·h−1. The surface roughness and microrelief were determined immediately after every 10 min of rainfall simulation by 3D scanner. The volume of surface and underground runoff as well as soil moisture were measured. The surface points coordinates obtained while scanning were interpolated using natural neighbour method and GIS software to generate Digital Elevation Models (DEM with a 0.5 mm resolution. Two DEM-derived surface roughness indices: Random Roughness (RR and Terrain Ruggedness Index (TRI were used for microrelief description. Calculated values of both roughness factors have decreased with time under the influence of rainfall in all analyzed variants. During the sprinkling the moisture of all samples had been growing rapidly from air-dry state reaching values close to the maximum water capacity (37–48% vol. in 20–30 min. Simultaneously the intensity of surface runoff was increasing and cumulative runoff value was: 17–35% for variants with drainage and 72–83% for the variants without drainage, relative to cumulative rainfall. The observed soil surface elevation changes were associated with aggregates decomposition, erosion and sedimentation, and above all, with a compaction of the soil, which was considered to be a dominant factor hindering the assessment of the erosion intensity of the of the scanned surface.

  12. EXTRACTING PRECISE AND AFFORDABLE DEMS DESPITE OF THE CLOUDS. AJAX: THE JOINING OF RADAR AND OPTICAL STRENGTHS

    Directory of Open Access Journals (Sweden)

    1 L. Cunin

    2012-07-01

    The DEMs extracted from TerraSAR-X and HRS proved extremely consistent with each other, showing a mean difference of 0.80m. This allows to propose a unified Elevation30 product to the users, with a guaranteed accuracy materialized into the product through a dedicated vertical Accuracy Commitment Mask.

  13. Relationship between oculomotor scanning determined by the DEM test and a contextual reading test in schoolchildren with reading difficulties.

    Science.gov (United States)

    Palomo-Alvarez, Catalina; Puell, María C

    2009-09-01

    The relationship between oculomotor scanning and reading in poor readers of primary school age is not well known. This study was designed to assess this relationship by determining mean Developmental Eye Movement (DEM) test times and reading speeds in a Spanish non-clinical population of children with poor reading skills but without dyslexia. We conducted a cross-sectional study on 81 poor readers (8-11 years of age) in the third to fifth grades recruited from 11 elementary schools in Madrid, Spain. In each subject with best spectacle correction, oculomotor scanning was measured using the DEM test, and reading speed (words per minute) was assessed by a standardized Spanish contextual reading test. Mean horizontal DEM times were higher than normative values for children in the third, fourth and fifth grades, by 20 seconds, 12 seconds, and 3 seconds respectively. Mean reading speeds were 18 words per minute lower than the norm for the third and fourth grades respectively, and 30 words per minute lower than the norm for the fifth grade. Reading speeds were significantly related to horizontal DEM times (r = -0.53, p school children at an early stage.

  14. Briefe aus dem Morgenland - Otto Friedrich von Richters Forschungsreise in den Jahren 1814-1816 / Vladimir Sazonov

    Index Scriptorium Estoniae

    Sazonov, Vladimir, 1979-

    2013-01-01

    Arvustus: Briefe aus dem Morgenland - Otto Friedrich von Richters Forschungsreise in den Jahren 1814-1816, hrsg. von Indrek Jürjo, Sergei Stadnikov, Hamburger Beiträge zur Geschichte des östlichen Europa, Bd. 20. Hamburg: Verlag Dr. Kovač 2013, 313 lk.

  15. Assessment of neuro-optometric rehabilitation using the Developmental Eye Movement (DEM test in adults with acquired brain injury

    Directory of Open Access Journals (Sweden)

    Neera Kapoor

    2018-04-01

    Full Text Available Purpose: This pilot study sought to determine the efficacy of using the Developmental Eye Movement (DEM test in the adult, acquired brain injury (ABI population to quantify clinically the effects of controlled, laboratory-performed, oculomotor-based vision therapy/vision rehabilitation. Methods: Nine adult subjects with mild traumatic brain injury (mTBI and five with stroke were assessed before and after an eight-week, computer-based, versional oculomotor (fixation, saccades, pursuit, and simulated reading training program (9.6 h total. The protocol incorporated a cross-over, interventional design with and without the addition of auditory feedback regarding two-dimensional eye position. The clinical outcome measure was the Developmental Eye Movement (DEM test score (ratio, errors taken before, midway, and immediately following training. Results: For the DEM ratio parameter, improvements were found in 80–89% of the subjects. For the DEM error parameter, improvements were found in 100% of the subjects. Incorporation of the auditory feedback component revealed a trend toward enhanced performance. The findings were similar for both DEM parameters, as well as for incorporation of the auditory feedback, in both diagnostic groups. Discussion: The results of the present study demonstrated considerable improvements in the DEM test scores following the oculomotor-based training, thus reflecting more time-optimal and accurate saccadic tracking after the training. The DEM test should be considered as another clinical test of global saccadic tracking performance in the ABI population. Resumen: Objetivo: Este estudio piloto trató de determinar la eficacia del uso de la prueba DEM (Developmental Eye Movement en la población adulta con daño cerebral adquirido (DCA para cuantificar clínicamente los efectos de la rehabilitación/terapia visual controlada, realizada en laboratorio, y de carácter oculomotor. Métodos: Se valoraron nueve sujetos adultos con

  16. DEM Development from Ground-Based LiDAR Data: A Method to Remove Non-Surface Objects

    Directory of Open Access Journals (Sweden)

    Maneesh Sharma

    2010-11-01

    Full Text Available Topography and land cover characteristics can have significant effects on infiltration, runoff, and erosion processes on watersheds. The ability to model the timing and routing of surface water and erosion is affected by the resolution of the digital elevation model (DEM. High resolution ground-based Light Detecting and Ranging (LiDAR technology can be used to collect detailed topographic and land cover characteristic data. In this study, a method was developed to remove vegetation from ground-based LiDAR data to create high resolution DEMs. Research was conducted on intensively studied rainfall–runoff plots on the USDA-ARS Walnut Gulch Experimental Watershed in Southeast Arizona. LiDAR data were used to generate 1 cm resolution digital surface models (DSM for 5 plots. DSMs created directly from LiDAR data contain non-surface objects such as vegetation cover. A vegetation removal method was developed which used a slope threshold and a focal mean filter method to remove vegetation and create bare earth DEMs. The method was validated on a synthetic plot, where rocks and vegetation were added incrementally. Results of the validation showed a vertical error of ±7.5 mm in the final DEM.

  17. Numerical Investigation of Simultaneously Deposition and Re-Entrainment Fouling Processes in Corrugated Tubes by Coupling CFD and DEM

    DEFF Research Database (Denmark)

    Hærvig, Jakob; Condra, Thomas Joseph; Sørensen, Kim

    Computational Fluid Dynamics (CFD) software OpenFOAM is coupled to the Discrete Element Method (DEM) software LIGGGHTS using the coupling software CFDEM. A four-way coupling is used to model fluid-particle and particle-particle interactions and thereby allowing for a particle fouling layer to build up along...

  18. Improving low-relief coastal LiDAR DEMs with hydro-conditioning of fine-scale and artificial drainages

    Directory of Open Access Journals (Sweden)

    Thomas Richard Allen

    2015-11-01

    Full Text Available Improvements in Light Detection and Ranging (LiDAR technology and spatial analysis of high-resolution digital elevation models (DEMs have advanced the accuracy and diversity of applications for coastal hazards and natural resources management. This article presents a concise synthesis of LiDAR analysis for coastal flooding and management applications in low-relief coastal plains and a case study demonstration of a new, efficient drainage mapping algorithm. The impetus for these LiDAR applications follows historic flooding from Hurricane Floyd in 1999, after which the State of North Carolina and the Federal Emergency Management Agency undertook extensive LiDAR data acquisition and technological developments for high-resolution floodplain mapping. An efficient algorithm is outlined for hydro-conditioning bare earth LiDAR DEMs using available US Geological Survey National Hydrography Dataset canal and ditch vectors. The methodology is illustrated in Moyock, North Carolina, for refinement of hydro-conditioning by combines pre-existing bare earth DEMs with spatial analysis of LiDAR point clouds in segmented and buffered ditch and canal networks. The methodology produces improved maps of fine-scale drainage, reduced omission of areal flood inundation, and subwatershed delineations that typify heavily ditched and canalled drainage areas. These preliminary results illustrate the capability of the technique to improve the representation of ditches in DEMs as well as subsequent flow and inundation modeling that could spur further research on low-relief coastal LiDAR applications.

  19. Investigation of Drag Force on Fibres of Bonded Spherical Elements using a Coupled CFD-DEM Approach

    DEFF Research Database (Denmark)

    Jensen, Anna Lyhne; Sørensen, Henrik; Rosendahl, Lasse Aistrup

    2016-01-01

    Clogging in wastewater pumps is often caused by flexible, stringy objects. Therefore, simulation of clogging effects in wastewater pumps entails simulation of such flexible objects and the interaction between these objects and fluid in the pump. Using a coupled CFD-DEM approach, the flexible obje...

  20. BOREAS HYP-8 DEM Data Over The NSA-MSA and SSA-MSA in The AEAC Projection

    Science.gov (United States)

    Knapp, David E.; Hall, Forrest G. (Editor); Wang, Xue-Wen; Band, L. E.; Smith, David E. (Technical Monitor)

    2000-01-01

    These data were derived from the original Digital Elevation Models (DEMs) produced by the Boreal Ecosystem-Atmosphere Study (BOREAS) Hydrology (HYD)-8 team. The original DEMs were in the Universal Transverse Mercator (UTM) projection, while this product is projected in the Albers Equal-Area Conic (AEAC) projection. The pixel size of the data is 100 meters, which is appropriate for the 1:50,000-scale contours from which the DEMs were made. The original data were compiled from information available in the 1970s and 1980s. This data set covers the two Modeling Sub-Areas (MSAs) that are contained within the Southern Study Area (SSA) and the Northern Study Area (NSA). The data are stored in binary, image format files. The DEM data over the NSA-MSA and SSA-MSA in the AEAC projection are available from the Earth Observing System Data and Information System (EOSDIS) Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC). The data files are available on a CD-ROM (see document number 20010000884).

  1. High-accuracy single-pass InSAR DEM for large-scale flood hazard applications

    Science.gov (United States)

    Schumann, G.; Faherty, D.; Moller, D.

    2017-12-01

    In this study, we used a unique opportunity of the GLISTIN-A (NASA airborne mission designed to characterizing the cryosphere) track to Greenland to acquire a high-resolution InSAR DEM of a large area in the Red River of the North Basin (north of Grand Forks, ND, USA), which is a very flood-vulnerable valley, particularly in spring time due to increased soil moisture content near state of saturation and/or, typical for this region, snowmelt. Having an InSAR DEM that meets flood inundation modeling and mapping requirements comparable to LiDAR, would demonstrate great application potential of new radar technology for national agencies with an operational flood forecasting mandate and also local state governments active in flood event prediction, disaster response and mitigation. Specifically, we derived a bare-earth DEM in SAR geometry by first removing the inherent far range bias related to airborne operation, which at the more typical large-scale DEM resolution of 30 m has a sensor accuracy of plus or minus 2.5 cm. Subsequently, an intelligent classifier based on informed relationships between InSAR height, intensity and correlation was used to distinguish between bare-earth, roads or embankments, buildings and tall vegetation in order to facilitate the creation of a bare-earth DEM that would meet the requirements for accurate floodplain inundation mapping. Using state-of-the-art LiDAR terrain data, we demonstrate that capability by achieving a root mean squared error of approximately 25 cm and further illustrating its applicability to flood modeling.

  2. Understanding the microscopic moisture migration in pore space using DEM simulation

    Directory of Open Access Journals (Sweden)

    Yuan Guo

    2015-04-01

    Full Text Available The deformation of soil skeleton and migration of pore fluid are the major factors relevant to the triggering of and damages by liquefaction. The influence of pore fluid migration during earthquake has been demonstrated from recent model experiments and field case studies. Most of the current liquefaction assessment models are based on testing of isotropic liquefiable materials. However the recent New Zealand earthquake shows much severer damages than those predicted by existing models. A fundamental cause has been contributed to the embedded layers of low permeability silts. The existence of these silt layers inhibits water migration under seismic loads, which accelerated liquefaction and caused a much larger settlement than that predicted by existing theories. This study intends to understand the process of moisture migration in the pore space of sand using discrete element method (DEM simulation. Simulations were conducted on consolidated undrained triaxial testing of sand where a cylinder sample of sand was built and subjected to a constant confining pressure and axial loading. The porosity distribution was monitored during the axial loading process. The spatial distribution of porosity change was determined, which had a direct relationship with the distribution of excess pore water pressure. The non-uniform distribution of excess pore water pressure causes moisture migration. From this, the migration of pore water during the loading process can be estimated. The results of DEM simulation show a few important observations: (1 External forces are mainly carried and transmitted by the particle chains of the soil sample; (2 Porosity distribution during loading is not uniform due to non-homogeneous soil fabric (i.e. the initial particle arrangement and existence of particle chains; (3 Excess pore water pressure develops differently at different loading stages. At the early stage of loading, zones with a high initial porosity feature higher

  3. CREATION OF A MULTIRESOLUTION AND MULTIACCURACY DTM: PROBLEMS AND SOLUTIONS FOR HELI-DEM CASE STUDY

    Directory of Open Access Journals (Sweden)

    L. Biagi

    2014-01-01

    Full Text Available The work is part of "HELI-DEM" (HELvetia-Italy Digital Elevation Model project, funded by the European Regional Development Fund within the Italy-Switzerland cooperation program. The aim of the project is the creation of a unique DTM for the alpine and subalpine area between Italy (Piedmont, Lombardy and Switzerland (Ticino and Grisons Cantons; at present, different DTMs, that are in different reference frames and have been obtained with different technologies, accuracies, and resolutions, have been acquired. The final DTM should be correctly georeferenced and produced validating and integrating the data that are available for the project. DTMs are fundamental in hydrogeological studies, especially in alpine areas where hydrogeological risks may exist. Moreover, when an event, like for example a landslide, happens at the border between countries, a unique and integrated DTM which covers the interest area is useful to analyze the scenario. In this sense, HELI-DEM project is helpful. To perform analyses along the borders between countries, transnational geographic information is needed: a transnational DTM can be obtained by merging regional low resolution DTMs. Moreover high resolution local DTMs should be used where they are available. To be merged, low and high resolution DTMs should be in the same three dimensional reference frame, should not present biases and should be consistent in the overlapping areas. Cross-validation between the different DTMs is therefore needed. Two different problems should be solved: the merging of regional, partly overlapping low and medium resolution DTMs into a unique low/medium resolution DTM and the merging with other local high resolution/high accuracy height data. This paper discusses the preliminary processing of the data for the fusion of low and high resolution DTMs in a study-case area within the Lombardy region: Valtellina valley. In this region the Lombardy regional low resolution DTM is available, with

  4. Fusion of space-borne multi-baseline and multi-frequency interferometric results based on extended Kalman filter to generate high quality DEMs

    Science.gov (United States)

    Zhang, Xiaojie; Zeng, Qiming; Jiao, Jian; Zhang, Jingfa

    2016-01-01

    Repeat-pass Interferometric Synthetic Aperture Radar (InSAR) is a technique that can be used to generate DEMs. But the accuracy of InSAR is greatly limited by geometrical distortions, atmospheric effect, and decorrelations, particularly in mountainous areas, such as western China where no high quality DEM has so far been accomplished. Since each of InSAR DEMs generated using data of different frequencies and baselines has their own advantages and disadvantages, it is therefore very potential to overcome some of the limitations of InSAR by fusing Multi-baseline and Multi-frequency Interferometric Results (MMIRs). This paper proposed a fusion method based on Extended Kalman Filter (EKF), which takes the InSAR-derived DEMs as states in prediction step and the flattened interferograms as observations in control step to generate the final fused DEM. Before the fusion, detection of layover and shadow regions, low-coherence regions and regions with large height error is carried out because MMIRs in these regions are believed to be unreliable and thereafter are excluded. The whole processing flow is tested with TerraSAR-X and Envisat ASAR datasets. Finally, the fused DEM is validated with ASTER GDEM and national standard DEM of China. The results demonstrate that the proposed method is effective even in low coherence areas.

  5. Recent developments in the electricity generation market in 2014; Aktuelle Entwicklungen auf dem Stromerzeugungsmarkt im Jahr 2014

    Energy Technology Data Exchange (ETDEWEB)

    Hofmann, Holger [Oppenhoff und Partner Rechtsanwaelte Steuerberater mbB, Koeln (Germany)

    2015-02-16

    Following up the report on the developments in the Electricity market from last year to this case this article shall give an overview of the current developments in 2014. The year 2014 was marked by the energy sector Program of the coalition agreement, which, under the three objectives of security of supply Affordability and environmental impact which has made clear Specifications for the production side in particular with regard to the final Nuclear Phase-out phase, the announced amendment of the EEG, system stability and also Fracking. The predominant theme in 2014 this was certainly the reform of the EEG and around it rambling topics on European level. Too much uncertainty with plant operators, investors and companies in German power generation market, has led in addition to the mentioned legislative package the revision of the EU environmental and energy aid guidelines, State aid procedure of the European Commission regarding the German promotion of electricity from renewable Energy and the process in the case of Aaland Vindkraft before the ECJ. The dynamics on the generation side, inter alia through the increased connection of decentralized generation plants, result in an increasing regulation in power generation. Finally a first bill for Fracking is published at the end of 2014. [German] Anknuepfend an den Bericht ueber die Entwicklungen auf dem Stromerzeugungsmarkt aus dem letzten Jahr soll dieser Beitrag einen Ueberblick ueber die aktuellen Entwicklungen in 2014 geben. Das Jahr 2014 war gepraegt von dem energiewirtschaftlichen Programm des Koalitionsvertrags, das unter dem Zieldreieck aus Versorgungssicherheit, Preisguenstigkeit und Umweltvertraeglichkeit klare Vorgaben fuer die Erzeugerseite vor allem mit Blick auf den endgueltigen Atomausstieg, die angekuendigte Novellierung des EEG, Systemstabilitaet und auch Fracking gemacht hat. Das vorherrschende Thema im Jahr 2014 war hierbei sicherlich die Reform des EEG sowie die sich darum rankenden Themen auf

  6. Experimental dem Extraction from Aster Stereo Pairs and 3d Registration Based on Icesat Laser Altimetry Data in Upstream Area of Lambert Glacier, Antarctica

    Science.gov (United States)

    Hai, G.; Xie, H.; Chen, J.; Chen, L.; Li, R.; Tong, X.

    2017-09-01

    DEM Extraction from ASTER stereo pairs and three-dimensional registration by reference to ICESat laser altimetry data are carried out in upstream area of Lambert Glacier, East Antarctica. Since the study area is located in inland of East Antarctica where few textures exist, registration between DEM and ICESat data is performed. Firstly, the ASTER DEM generation is based on rational function model (RFM) and the procedure includes: a) rational polynomial coefficient (RPC) computation from ASTER metadata, b) L1A image product de-noise and destriping, c) local histogram equalization and matching, d) artificial collection of tie points and bundle adjustment, and e) coarse-to-fine hierarchical matching of five levels and grid matching. The matching results are filtered semi-automatically. Hereafter, DEM is interpolated using spline method with ground points converted from matching points. Secondly, the generated ASTER DEM is registered to ICESat data in three-dimensional space after Least-squares rigid transformation using singular value decomposition (SVD). The process is stated as: a) correspondence selection of terrain feature points from ICESat and DEM profiles, b) rigid transformation of generated ASTER DEM using selected feature correspondences based on least squares technique. The registration shows a good result that the elevation difference between DEM and ICESat data is low with a mean value less than 2 meters and the standard deviation around 7 meters. This DEM is generated and specially registered in Antarctic typical region without obvious ground rock control points and serves as true terrain input for further radar altimetry simulation.

  7. Insight From the Statistics of Nothing: Estimating Limits of Change Detection Using Inferred No-Change Areas in DEM Difference Maps and Application to Landslide Hazard Studies

    Science.gov (United States)

    Haneberg, W. C.

    2017-12-01

    Remote characterization of new landslides or areas of ongoing movement using differences in high resolution digital elevation models (DEMs) created through time, for example before and after major rains or earthquakes, is an attractive proposition. In the case of large catastrophic landslides, changes may be apparent enough that simple subtraction suffices. In other cases, statistical noise can obscure landslide signatures and place practical limits on detection. In ideal cases on land, GPS surveys of representative areas at the time of DEM creation can quantify the inherent errors. In less-than-ideal terrestrial cases and virtually all submarine cases, it may be impractical or impossible to independently estimate the DEM errors. Examining DEM difference statistics for areas reasonably inferred to have no change, however, can provide insight into the limits of detectability. Data from inferred no-change areas of airborne LiDAR DEM difference maps of the 2014 Oso, Washington landslide and landslide-prone colluvium slopes along the Ohio River valley in northern Kentucky, show that DEM difference maps can have non-zero mean and slope dependent error components consistent with published studies of DEM errors. Statistical thresholds derived from DEM difference error and slope data can help to distinguish between DEM differences that are likely real—and which may indicate landsliding—from those that are likely spurious or irrelevant. This presentation describes and compares two different approaches, one based upon a heuristic assumption about the proportion of the study area likely covered by new landslides and another based upon the amount of change necessary to ensure difference at a specified level of probability.

  8. BRS Deméter: nova cultivar de cevada cervejeira irrigada para o Cerrado do Brasil Central BRS Deméter: new malting barley cultivar for irrigated Brazilian savanna

    Directory of Open Access Journals (Sweden)

    Renato Fernando Amabile

    2008-09-01

    Full Text Available BRS Deméter é uma cultivar de cevada dística (duas fileiras de grãos de ampla adaptação, sob irrigação, ao Cerrado do Brasil Central. Apresenta potencial produtivo de grãos acima de 5.000 kg ha-1, estabilidade de produção e alta qualidade industrial malte-cervejeira. A cultivar atende às demandas do produtor por rendimento competitivo e às da indústria malteira por alta qualidade cervejeira.BRS Deméter is a spring, two-rowed barley, widely adapted to irrigated areas of the savanna, in Central Brazil. It presents production stability and high malting quality, with yield potential above 5,000 kg ha-1. It fulfills both the farmer and malting industry expectations regarding competitive yield and brewing quality.

  9. Volcanic activity at Etna volcano, Sicily, Italy between June 2011 and March 2017 studied with TanDEM-X SAR interferometry

    Science.gov (United States)

    Kubanek, J.; Raible, B.; Westerhaus, M.; Heck, B.

    2017-12-01

    High-resolution and up-to-date topographic data are of high value in volcanology and can be used in a variety of applications such as volcanic flow modeling or hazard assessment. Furthermore, time-series of topographic data can provide valuable insights into the dynamics of an ongoing eruption. Differencing topographic data acquired at different times enables to derive areal coverage of lava, flow volumes, and lava extrusion rates, the most important parameters during ongoing eruptions for estimating hazard potential, yet most difficult to determine. Anyhow, topographic data acquisition and provision is a challenge. Very often, high-resolution data only exists within a small spatial extension, or the available data is already outdated when the final product is provided. This is especially true for very dynamic landscapes, such as volcanoes. The bistatic TanDEM-X radar satellite mission enables for the first time to generate up-to-date and high-resolution digital elevation models (DEMs) repeatedly using the interferometric phase. The repeated acquisition of TanDEM-X data facilitates the generation of a time-series of DEMs. Differencing DEMs generated from bistatic TanDEM-X data over time can contribute to monitor topographic changes at active volcanoes, and can help to estimate magmatic ascent rates. Here, we use the bistatic TanDEM-X data to investigate the activity of Etna volcano in Sicily, Italy. Etna's activity is characterized by lava fountains and lava flows with ash plumes from four major summit crater areas. Especially the newest crater, the New South East Crater (NSEC) that was formed in 2011 has been highly active in recent years. Over one hundred bistatic TanDEM-X data pairs were acquired between January 2011 and March 2017 in StripMap mode, covering episodes of lava fountaining and lava flow emplacement at Etna's NSEC and its surrounding area. Generating DEMs of every bistatic data pair enables us to assess areal extension of the lava flows, to

  10. DEM simulation of particle mixing for optimizing the overcoating drum in HTR fuel fabrication

    Science.gov (United States)

    Liu, Malin; Lu, Zhengming; Liu, Bing; Shao, Youlin

    2013-06-01

    The rotating drum was used for overcoating coated fuel particles in HTR fuel fabrication process. All the coated particles should be adhered to equal amount of graphite powder, which means that the particle should be mixed quickly in both radial and axial directions. This paper investigated the particle flow dynamics and mixing behavior in different regimes using the discrete element method (DEM). By varying the rotation speed, different flow regimes such as slumping, rolling, cascading, cataracting, centrifuging were produced. The mixing entropy based on radial and axial grid was introduced to describe the radial and axial mixing behaviors. From simulation results, it was found that the radial mixing can be achieved in the cascading regime more quickly than the slumping, rolling and centrifuging regimes, but the traditional rotating drum without internal components can not achieve the requirements of axial mixing and should be improved. Three different structures of internal components are proposed and simulated. The new V-shaped deflectors were found to achieve a quick axial mixing behavior and uniform axial distribution in the rotating drum based on simulation results. At last, the superiority was validated by experimental results, and the new V-shaped deflectors were used in the industrial production of the overcoating coated fuel particles in HTR fuel fabrication process.

  11. Investigating the Effects of Underplating at Raukumara Peninsula, New Zealand: Insights from DEM Modeling

    Science.gov (United States)

    Farrell, W. C.; Morgan, J.

    2017-12-01

    It is thought that subcretion and underplating are important processes at subduction zones worldwide. Despite its proposed common occurrence, the physical mechanisms controlling if underplating occurs and the rate of its associated uplift are poorly understood. Basic questions about the tectonic and geomechanical parameters governing subduction channel stability, subcretion, and the rate and shape of associated uplift have proven difficult to answer. In this study we employ the Discrete Element Method (DEM) to address these questions, using the Raukumara Peninsula of New Zealand as the real-world basis of many of our model inputs. Multiple geophysical datasets suggest that the Raukumara Peninsula is underlain by underplated sediments at Moho depths, and these may be responsible for anomalously high rates of uplift in the area. The combined geologic, geophysical, and geodetic data from the region serve to constrain model geometries and boundary conditions, allowing us to test the mechanisms for underplating and upper crustal response. The effects of surface processes and potential for shallow trenchward sliding are also investigated in the modeling effort.

  12. Particle–Mixing Simulations Using DEM and Comparison of the Performance of Mixing Indices

    International Nuclear Information System (INIS)

    Cho, Migyung

    2017-01-01

    Mixing of molecular grains having different characteristics is very important in many industries such as the food and pharmaceutical industries. With the development of computer simulations, it is common practice to find the optimal mixing conditions through a simulation before the actual mixing task to estimate the proper level of mixing. Accordingly, there has been an increasing need for a mixing index to measure the mix of particles in the simulation process. Mixing indices, which have been widely used so far, can largely be classified into two types: first is the statistical-based mixing index, which is prepared using the sampling method, and the second is the mixing index that is prepared using all the particles. In this paper, we calculated mixing indices in different ways for the data in the course of mixing the particles using the DEM simulation. Additionally, we compared the performance, advantages, and disadvantages of each mixing index. Therefore, I propose a standard that can be used to select an appropriate mixing index.

  13. Discrete element method (DEM) simulations of stratified sampling during solid dosage form manufacturing.

    Science.gov (United States)

    Hancock, Bruno C; Ketterhagen, William R

    2011-10-14

    Discrete element model (DEM) simulations of the discharge of powders from hoppers under gravity were analyzed to provide estimates of dosage form content uniformity during the manufacture of solid dosage forms (tablets and capsules). For a system that exhibits moderate segregation the effects of sample size, number, and location within the batch were determined. The various sampling approaches were compared to current best-practices for sampling described in the Product Quality Research Institute (PQRI) Blend Uniformity Working Group (BUWG) guidelines. Sampling uniformly across the discharge process gave the most accurate results with respect to identifying segregation trends. Sigmoidal sampling (as recommended in the PQRI BUWG guidelines) tended to overestimate potential segregation issues, whereas truncated sampling (common in industrial practice) tended to underestimate them. The size of the sample had a major effect on the absolute potency RSD. The number of sampling locations (10 vs. 20) had very little effect on the trends in the data, and the number of samples analyzed at each location (1 vs. 3 vs. 7) had only a small effect for the sampling conditions examined. The results of this work provide greater understanding of the effect of different sampling approaches on the measured content uniformity of real dosage forms, and can help to guide the choice of appropriate sampling protocols. Copyright © 2011 Elsevier B.V. All rights reserved.

  14. Blurring the boundary between rapid granular flow and dense granular flow regimes: Evidence from DEM simulations

    Science.gov (United States)

    Tripathi, Anurag; Prasad, Mahesh; Kumar, Puneet

    2017-11-01

    The saturation of the effective friction coefficient for granular flows at high inertial numbers has been assumed widely by researchers, despite little simulation/experimental evidence. In contrast, a recent simulation study of plane shear flows by Mandal and Khakhar, suggests that the effective friction coefficient becomes maximum and then starts to decrease with increase in the inertial number for I > 0.5 . In order to investigate whether such a dip at higher inertial numbers is indeed a feature of granular rheology, we perform DEM simulations of chute flow of highly inelastic disks. We show that steady, fully developed flows are possible at inclinations much higher than those normally reported in literature. At such high inclinations, the flow is characterised by a significant slip at the base; the height of the layer increases by more than 300 % and kinetic energy of the layer increases by nearly 5 orders of magnitude. We observe, for the first time, steady chute flows at inertial number I 2 and show that the dip at higher inertial numbers can be observed in case of chute flow as well. The predictions of modified μ - I rheology, however, seem to remain valid in the bulk of the layer for packing fractions as low as 0.2. AT acknowledges the funding obtained from IIT Kanpur through the initiation Grant for this study.

  15. Mapping Landslides in Lunar Impact Craters Using Chebyshev Polynomials and Dem's

    Science.gov (United States)

    Yordanov, V.; Scaioni, M.; Brunetti, M. T.; Melis, M. T.; Zinzi, A.; Giommi, P.

    2016-06-01

    Geological slope failure processes have been observed on the Moon surface for decades, nevertheless a detailed and exhaustive lunar landslide inventory has not been produced yet. For a preliminary survey, WAC images and DEM maps from LROC at 100 m/pixels have been exploited in combination with the criteria applied by Brunetti et al. (2015) to detect the landslides. These criteria are based on the visual analysis of optical images to recognize mass wasting features. In the literature, Chebyshev polynomials have been applied to interpolate crater cross-sections in order to obtain a parametric characterization useful for classification into different morphological shapes. Here a new implementation of Chebyshev polynomial approximation is proposed, taking into account some statistical testing of the results obtained during Least-squares estimation. The presence of landslides in lunar craters is then investigated by analyzing the absolute values off odd coefficients of estimated Chebyshev polynomials. A case study on the Cassini A crater has demonstrated the key-points of the proposed methodology and outlined the required future development to carry out.

  16. Effect of Nonsmooth Nose Surface of the Projectile on Penetration Using DEM Simulation

    Directory of Open Access Journals (Sweden)

    Jing Han

    2017-01-01

    Full Text Available The nonsmooth body surface of the reptile in nature plays an important role in reduction of resistance and friction when it lives in a soil environment. To consider whether it was feasible for improving the performance of penetrating projectile we investigated the influence of the convex as one of nonsmooth surfaces for the nose of projectile. A numerical simulation study of the projectile against the concrete target was developed based on the discrete element method (DEM. The results show that the convex nose surface of the projectile is beneficial for reducing the penetration resistance greatly, which is also validated by the experiments. Compared to the traditional smooth nose structure, the main reason of difference is due to the local contact normal pressure, which increases dramatically due to the abrupt change of curvature caused by the convex at the same condition. Accordingly, the broken particles of the concrete target obtain more kinetic energy and their average radial flow velocities will drastically increase simultaneously, which is in favor of decreasing the interface friction and the compaction density of concrete target around the nose of projectile.

  17. Modelling of Coke Layer Collapse during Ore Charging in Ironmaking Blast Furnace by DEM

    Science.gov (United States)

    Narita, Yoichi; Mio, Hiroshi; Orimoto, Takashi; Nomura, Seiji

    2017-06-01

    A technical issue in an ironmaking blast furnace operation is to realize the optimum layer thickness and the radial distribution of burden (ore and coke) to enhance its efficiency and productivity. When ore particles are charged onto the already-embedded coke layer, the coke layer-collapse phenomenon occurs. The coke layer-collapse phenomenon has a significant effect on the distribution of ore and coke layer thickness in the radial direction. In this paper, the mechanical properties of coke packed bed under ore charging were investigated by the impact-loading test and the large-scale direct shear test. Experimental results show that the coke particle is broken by the impact force of ore charging, and the particle breakage leads to weaken of coke-layer strength. The expression of contact force for coke in Discrete Element Method (DEM) was modified based on the measured data, and it followed by the 1/3-scaled experiment on coke's collapse phenomena. Comparing a simulation by modified model to the 1/3-scaled experiment, they agreed well in the burden distribution.

  18. Particle–Mixing Simulations Using DEM and Comparison of the Performance of Mixing Indices

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Migyung [Tongmyong Univ., Busan (Korea, Republic of)

    2017-02-15

    Mixing of molecular grains having different characteristics is very important in many industries such as the food and pharmaceutical industries. With the development of computer simulations, it is common practice to find the optimal mixing conditions through a simulation before the actual mixing task to estimate the proper level of mixing. Accordingly, there has been an increasing need for a mixing index to measure the mix of particles in the simulation process. Mixing indices, which have been widely used so far, can largely be classified into two types: first is the statistical-based mixing index, which is prepared using the sampling method, and the second is the mixing index that is prepared using all the particles. In this paper, we calculated mixing indices in different ways for the data in the course of mixing the particles using the DEM simulation. Additionally, we compared the performance, advantages, and disadvantages of each mixing index. Therefore, I propose a standard that can be used to select an appropriate mixing index.

  19. Waste incineration on its way to the power plants; Muellverbrennung auf dem Weg zum Kraftwerk

    Energy Technology Data Exchange (ETDEWEB)

    Reich, J. [STEAG encotec GmbH, Essen (Germany); Neukirchen, B. [STEAG AG, Essen (Germany)

    2004-07-01

    Looking at the year 2005 and the end of disposal of untreated domestic waste the politic hopes that the prognosticated lack of waste treatment capacity is remedied by coal-fired power plants. The classical municipal waste incinerators by contrast want to get recognition as energetic recycler in comparison with power stations. The decision of the European Court of Justice concerning recycling and disposal of domestic waste by incineration has started the discussion and competition on fuel-rich commercial waste. Are municipal waste incineration plants power stations or must power plants be regarded as incinerators? These questions are still open. (orig.) [German] Mit Blick auf das Jahr 2005 und das Ende der Ablagerung von unbehandeltem Siedlungsabfall hofft die Politik, dass der prognostizierte Mangel an Vorbehandlungskapazitaeten von den Kohlekraftwerken behoben wird. Die klassischen Muellverbrennungsanlagen wollen dagegen mit dem Kraftwerksvergleich die Anerkennung als energetische Verwerter erreichen. Das EuGH-Urteil zur Verwertung oder Beseitigung von Siedlungsabfall durch Verbrennen hat in diesem Jahr die Diskussion und den Kampf um den heizwertreichen Gewerbeabfall angeheizt. Die Frage, wie weit in Zukunft die Muellverbrennungsanlagen als Kraftwerke, aber auch die Kraftwerke als Muellverbrennungsanlagen angesehen werden muessen, ist noch offen. (orig.)

  20. Landslide Change Detection Based on Multi-Temporal Airborne LiDAR-Derived DEMs

    Directory of Open Access Journals (Sweden)

    Omar E. Mora

    2018-01-01

    Full Text Available Remote sensing technologies have seen extraordinary improvements in both spatial resolution and accuracy recently. In particular, airborne laser scanning systems can now provide data for surface modeling with unprecedented resolution and accuracy, which can effectively support the detection of sub-meter surface features, vital for landslide mapping. Also, the easy repeatability of data acquisition offers the opportunity to monitor temporal surface changes, which are essential to identifying developing or active slides. Specific methods are needed to detect and map surface changes due to landslide activities. In this paper, we present a methodology that is based on fusing probabilistic change detection and landslide surface feature extraction utilizing multi-temporal Light Detection and Ranging (LiDAR derived Digital Elevation Models (DEMs to map surface changes demonstrating landslide activity. The proposed method was tested in an area with numerous slides ranging from 200 m2 to 27,000 m2 in area under low vegetation and tree cover, Zanesville, Ohio, USA. The surface changes observed are probabilistically evaluated to determine the likelihood of the changes being landslide activity related. Next, based on surface features, a Support Vector Machine (SVM quantifies and maps the topographic signatures of landslides in the entire area. Finally, these two processes are fused to detect landslide prone changes. The results demonstrate that 53 out of 80 inventory mapped landslides were identified using this method. Additionally, some areas that were not mapped in the inventory map displayed changes that are likely to be developing landslides.

  1. Extraction of Dems and Orthoimages from Archive Aerial Imagery to Support Project Planning in Civil Engineering

    Science.gov (United States)

    Cogliati, M.; Tonelli, E.; Battaglia, D.; Scaioni, M.

    2017-12-01

    Archive aerial photos represent a valuable heritage to provide information about land content and topography in the past years. Today, the availability of low-cost and open-source solutions for photogrammetric processing of close-range and drone images offers the chance to provide outputs such as DEM's and orthoimages in easy way. This paper is aimed at demonstrating somehow and to which level of accuracy digitized archive aerial photos may be used within a such kind of low-cost software (Agisoft Photoscan Professional®) to generate photogrammetric outputs. Different steps of the photogrammetric processing workflow are presented and discussed. The main conclusion is that this procedure may come to provide some final products, which however do not feature the high accuracy and resolution that may be obtained using high-end photogrammetric software packages specifically designed for aerial survey projects. In the last part a case study is presented about the use of four-epoch archive of aerial images to analyze the area where a tunnel has to be excavated.

  2. Case studies of heat conduction in rotary drums with L-shaped lifters via DEM

    Directory of Open Access Journals (Sweden)

    Qiang Xie

    2018-03-01

    Full Text Available Rotary drums are widely used in numerous processes in industry to handle granular materials. In present work, heat transfer processes in drums with L-shaped lifters have been investigated by coupling the discrete element method (DEM with heat transfer model. Effects of both operational and structural parameters have been analyzed. It is found that increasing rotational speed could improve heat transfer to a certain extent, however, just in relatively low speed stage. When lifter number increases, the heat transfer speed slightly decreases. An increasing lifter height could promote heat transfer first and then reduces it, but the amplitude of variation keeps small. The heat transfer rate descends with increasing lifter width. The heat transfer mechanisms have also been discussed by comparing mixing rates, total contact areas for thermal conduction, time constants (TC indicating apparent heat transfer rate and effective heat transfer coefficients(HTC. It is concluded that dynamic conduction due to particle flow is dominated in all cases. The L-shaped lifers are turned out not a good choice when heat conduction between particles is prominent.

  3. Transformation (normalization) of slope gradient and surface curvatures, automated for statistical analyses from DEMs

    Science.gov (United States)

    Csillik, O.; Evans, I. S.; Drăguţ, L.

    2015-03-01

    Automated procedures are developed to alleviate long tails in frequency distributions of morphometric variables. They minimize the skewness of slope gradient frequency distributions, and modify the kurtosis of profile and plan curvature distributions toward that of the Gaussian (normal) model. Box-Cox (for slope) and arctangent (for curvature) transformations are tested on nine digital elevation models (DEMs) of varying origin and resolution, and different landscapes, and shown to be effective. Resulting histograms are illustrated and show considerable improvements over those for previously recommended slope transformations (sine, square root of sine, and logarithm of tangent). Unlike previous approaches, the proposed method evaluates the frequency distribution of slope gradient values in a given area and applies the most appropriate transform if required. Sensitivity of the arctangent transformation is tested, showing that Gaussian-kurtosis transformations are acceptable also in terms of histogram shape. Cube root transformations of curvatures produced bimodal histograms. The transforms are applicable to morphometric variables and many others with skewed or long-tailed distributions. By avoiding long tails and outliers, they permit parametric statistics such as correlation, regression and principal component analyses to be applied, with greater confidence that requirements for linearity, additivity and even scatter of residuals (constancy of error variance) are likely to be met. It is suggested that such transformations should be routinely applied in all parametric analyses of long-tailed variables. Our Box-Cox and curvature automated transformations are based on a Python script, implemented as an easy-to-use script tool in ArcGIS.

  4. Probability- and curve-based fractal reconstruction on 2D DEM terrain profile

    International Nuclear Information System (INIS)

    Lai, F.-J.; Huang, Y.M.

    2009-01-01

    Data compression and reconstruction has been playing important roles in information science and engineering. As part of them, image compression and reconstruction that mainly deal with image data set reduction for storage or transmission and data set restoration with least loss is still a topic deserved a great deal of works to focus on. In this paper we propose a new scheme in comparison with the well-known Improved Douglas-Peucker (IDP) method to extract characteristic or feature points of two-dimensional digital elevation model (2D DEM) terrain profile to compress data set. As for reconstruction in use of fractal interpolation, we propose a probability-based method to speed up the fractal interpolation execution to a rate as high as triple or even ninefold of the regular. In addition, a curve-based method is proposed in the study to determine the vertical scaling factor that much affects the generation of the interpolated data points to significantly improve the reconstruction performance. Finally, an evaluation is made to show the advantage of employing the proposed new method to extract characteristic points associated with our novel fractal interpolation scheme.

  5. Biomass utilisation seen against the background of AGENDA 21; Biomassenutzung vor dem Hintergrund der AGENDA 21

    Energy Technology Data Exchange (ETDEWEB)

    Schoenwiesner-Bozkurt, C. [efreso AG, Muenchen (Germany)

    2000-07-01

    From 3 to 14 June 1992 Rio de Janeiro was host to the largest conference that had ever taken place up to that point in human history, the United Nations Conference on Environment and Development (UNCED). One major programmatic outcome of the conference was the approval of Agenda 21. This document was signed by 179 states, but it is not binding under international law. Altogether AGENDA 21 comprises 40 chapters. The present paper draws on a selection of these chapters to exemplify the significance of energy production from biomass and its relationship with the goals of Agenda 21. The author has refrained from discussing the issue of climate and energy policy in a wider context, as this matter will undoubtedly already be known to the reader. [German] Zwischen dem 03. und 14. Juni 1992 fand in Rio die bis dahin groesste Konferenz der Menschheitsgeschichte statt. Die Konferenz der Vereinten Nationen ueber Umwelt und Entwicklung 'United Nations Conference on Environment and Development (UNCED)'. Als greifbares programmatisches Ergebnis der Konferenz wurde am Ende die Agenda 21 verabschiedet. Sie wurde von 179 Staaten unterzeichnet, ist aber voelkerrechtlich nicht verbindlich. Insgesamt umfasst die Agenda 21 40 Einzelkapitel. Beispielhaft soll anhand einiger Kapitel die Bedeutung und der Zusammenhang zwischen der energetischen Nutzung der Biomasse und den Zielen der Agenda 21 aufgezeigt werden. Bewusst wird hierbei der Themenbereich 'Klima- und Energiepolitik' nicht weiter betrachtet, da dieser Zusammenhang den Teilnehmern sicherlich bekannt ist. (orig.)

  6. Methodological application so as to obtain digital elevation models DEM in wetland areas

    International Nuclear Information System (INIS)

    Quintero, Deiby A; Montoya V, Diana M; Betancur, Teresita

    2009-01-01

    In order to understand hydrological systems and the description of flow processes that occur among its components it is essential to have a physiographic description that morphometric and relief characteristics. When local studies are performed, the basic cartography available, in the best case 1:25,000 scale, tends not to obey the needs required to represent the water dynamics that characterize the interactions between streams, aquifers and lenticular water bodies in flat zones particularly in those where there are wetlands localized in ancient F100D plains of rivers. A lack of financial resources is the principal obstacle to acquiring; information that is current and sufficient for the scale of the project. Geomorphologic conditions of flat relief zones are a good alternative for the construction of the new data. Using the basic cartography available and the new data, it is possible to obtain DEMs that are improved and consistent with the dynamics of surface and groundwater flows in the hydrological system. To accomplish this one must use spatial modeling tools coupled with Geographic Information System - GIS. This article present a methodological application for the region surrounding the catchment of wetland Cienaga Colombia in the Bajo Cauca region of Antioquia.

  7. DEM simulation of undrained behaviour with preshearing history for saturated granular media

    International Nuclear Information System (INIS)

    Gong, Guobin; Zha, Xiaoxiong

    2013-01-01

    This paper presents the results of the three-dimensional (3D) discrete element method (DEM) simulations of undrained axisymmetric/triaxial tests on loose assemblies of polydisperse spheres with and without preshearing history using a periodic cell. Undrained tests are modelled by deforming the samples under constant volume conditions. The simulations show that the preshearing process will not induce initial structural anisotropy, and that the presheared and unpresheared samples follow the same initial stress path along a unique limiting boundary in the q–p space, as observed in the published experimental literature, which was not crossed over by any of the stress paths of the presheared samples. It is also shown that the presheared samples are denser compared with the original unpresheared one, and therefore exhibit higher resistance to (temporary) liquefaction. At the grain scale, such higher resistance is found to be attributed to the evolution of a redundancy factor, a microscopic definition of liquefaction (temporary liquefaction). The Lade instability (peak deviator stress) is found to correspond to a unique mechanical coordination number of 4.5, independent of preshearing history. It is also found that the onset of liquefaction (temporary liquefaction) in terms of the redundancy factor lags behind the onset of macroscopic strain softening in terms of the Lade instability for the presheared and unpresheared samples under undrained conditions. (paper)

  8. Automated Topographic Change Detection via Dem Differencing at Large Scales Using The Arcticdem Database

    Science.gov (United States)

    Candela, S. G.; Howat, I.; Noh, M. J.; Porter, C. C.; Morin, P. J.

    2016-12-01

    In the last decade, high resolution satellite imagery has become an increasingly accessible tool for geoscientists to quantify changes in the Arctic land surface due to geophysical, ecological and anthropomorphic processes. However, the trade off between spatial coverage and spatial-temporal resolution has limited detailed, process-level change detection over large (i.e. continental) scales. The ArcticDEM project utilized over 300,000 Worldview image pairs to produce a nearly 100% coverage elevation model (above 60°N) offering the first polar, high spatial - high resolution (2-8m by region) dataset, often with multiple repeats in areas of particular interest to geo-scientists. A dataset of this size (nearly 250 TB) offers endless new avenues of scientific inquiry, but quickly becomes unmanageable computationally and logistically for the computing resources available to the average scientist. Here we present TopoDiff, a framework for a generalized. automated workflow that requires minimal input from the end user about a study site, and utilizes cloud computing resources to provide a temporally sorted and differenced dataset, ready for geostatistical analysis. This hands-off approach a