WorldWideScience

Sample records for delivery modifies protein

  1. Highly Efficient Intracellular Protein Delivery by Cationic Polyethyleneimine-Modified Gelatin Nanoparticles

    Directory of Open Access Journals (Sweden)

    Ming-Ju Chou

    2018-02-01

    Full Text Available Intracellular protein delivery may provide a safe and non-genome integrated strategy for targeting abnormal or specific cells for applications in cell reprogramming therapy. Thus, highly efficient intracellular functional protein delivery would be beneficial for protein drug discovery. In this study, we generated a cationic polyethyleneimine (PEI-modified gelatin nanoparticle and evaluated its intracellular protein delivery ability in vitro and in vivo. The experimental results showed that the PEI-modified gelatin nanoparticle had a zeta potential of approximately +60 mV and the particle size was approximately 135 nm. The particle was stable at different biological pH values and temperatures and high protein loading efficiency was observed. The fluorescent image results revealed that large numbers of particles were taken up into the mammalian cells and escaped from the endosomes into the cytoplasm. In a mouse C26 cell-xenograft cancer model, particles accumulated in cancer cells. In conclusion, the PEI-modified gelatin particle may provide a biodegradable and highly efficient protein delivery system for use in regenerative medicine and cancer therapy.

  2. Development of Cy5.5-Labeled Hydrophobically Modified Glycol Chitosan Nanoparticles for Protein Delivery

    Science.gov (United States)

    Chin, Amanda

    Therapeutic proteins are often highly susceptible to enzymatic degradation, thus restricting their in vivo stability. To overcome this limitation, delivery systems designed to promote uptake and reduce degradation kinetics have undergone a rapid shift from macro-scale systems to nanomaterial based carriers. Many of these nanomaterials, however, elicit immune responses and may have cytotoxic effects both in vitro and in vivo. The naturally derived polysaccharide chitosan has emerged as a promising biodegradable material and has been utilized for many biomedical applications; nevertheless, its function is often constrained by poor solubility. Glycol chitosan, a derivative of chitosan, can be hydrophobically modified to impart amphiphilic properties that enable the self-assembly into nanoparticles in aqueous media at neutral pH. This nanoparticle system has shown initial success as a therapeutic agent in several model cell culture systems, but little is known about its stability against enzymatic degradation. Therefore, the goal of this research was to investigate the resistance of hydrophobically modified glycol chitosan against enzyme-catalyzed degradation using an in vivo simulated system containing lysozyme. To synthesize the nanoparticles, hydrophobic cholanic acid was first covalently conjugated to glycol chitosan using of N-(3-Dimethylaminopropyl)-N'-ethylcarbodiimide hydrochloride (EDC) and N-hydroxysuccinimide (NHS). Conjugates were purified by dialysis, lyophilized, and ultra-sonicated to form nanoparticles. Fourier transform infrared (FT-IR) spectroscopy confirmed the binding of 5beta-cholanic acid to the glycol chitosan. Particle size and stability over time were determined with dynamic light scattering (DLS), and particle morphology was evaluated by transmission electron microscopy (TEM). The average diameter of the nanoparticles was approximately 200 nm, which remained stable at 4°C for up to 10 days. Additionally, a near infrared fluorescent (NIRF) dye

  3. Improved mucoadhesion and cell uptake of chitosan and chitosan oligosaccharide surface-modified polymer nanoparticles for mucosal delivery of proteins.

    Science.gov (United States)

    Dyawanapelly, Sathish; Koli, Uday; Dharamdasani, Vimisha; Jain, Ratnesh; Dandekar, Prajakta

    2016-08-01

    The main aim of the present study was to compare mucoadhesion and cellular uptake efficiency of chitosan (CS) and chitosan oligosaccharide (COS) surface-modified polymer nanoparticles (NPs) for mucosal delivery of proteins. We have developed poly (D, L-lactide-co-glycolide) (PLGA) NPs, surface-modified COS-PLGA NPs and CS-PLGA NPs, by using double emulsion solvent evaporation method, for encapsulating bovine serum albumin (BSA) as a model protein. Surface modification of NPs was confirmed using physicochemical characterization methods such as particle size and zeta potential, SEM, TEM and FTIR analysis. Both surface-modified PLGA NPs displayed a slow release of protein compared to PLGA NPs. Furthermore, we have explored the mucoadhesive property of COS as a material for modifying the surface of polymeric NPs. During in vitro mucoadhesion test, positively charged COS-PLGA NPs and CS-PLGA NPs exhibited enhanced mucoadhesion, compared to negatively charged PLGA NPs. This interaction was anticipated to improve the cell interaction and uptake of NPs, which is an important requirement for mucosal delivery of proteins. All nanoformulations were found to be safe for cellular delivery when evaluated in A549 cells. Moreover, intracellular uptake behaviour of FITC-BSA loaded NPs was extensively investigated by confocal laser scanning microscopy and flow cytometry. As we hypothesized, positively charged COS-PLGA NPs and CS-PLGA NPs displayed enhanced intracellular uptake compared to negatively charged PLGA NPs. Our results demonstrated that CS- and COS-modified polymer NPs could be promising carriers for proteins, drugs and nucleic acids via nasal, oral, buccal, ocular and vaginal mucosal routes.

  4. The mechanism of lauric acid-modified protein nanocapsules escape from intercellular trafficking vesicles and its implication for drug delivery.

    Science.gov (United States)

    Jiang, Lijuan; Liang, Xin; Liu, Gan; Zhou, Yun; Ye, Xinyu; Chen, Xiuli; Miao, Qianwei; Gao, Li; Zhang, Xudong; Mei, Lin

    2018-11-01

    Protein nanocapsules have exhibited promising potential applications in the field of protein drug delivery. A major issue with various promising nano-sized biotherapeutics including protein nanocapsules is that owing to their particle size they are subject to cellular uptake via endocytosis, and become entrapped and then degraded within endolysosomes, which can significantly impair their therapeutic efficacy. In addition, many nano-sized biotherapeutics could be also sequestered by autophagosomes and degraded through the autolysosomal pathway. Thus, a limiting step in achieving an effective protein therapy is to facilitate the endosomal escape and auto-lysosomal escape to ensure cytosolic delivery of the protein drugs. Here, we prepared a protein nanocapsule based on BSA (nBSA) and the BSA nanocapsules modified with a bilayer of lauric acid (LA-nBSA) to investigate the escape effects from the endosome and autophagosome. The size distribution of nBSA and LA-nBSA analyzed using DLS presents a uniform diameter centered at 10 nm and 16 nm. The data also showed that FITC-labeled nBSA and LA-nBSA were taken up by the cells mainly through Arf-6-dependent endocytosis and Rab34-mediated macropinocytosis. In addition, LA-nBSA could efficiently escape from endosomal before the degradation in endo-lysosomes. Autophagy could also sequester the LA-nBSA through p62 autophagosome vesicles. These two types of nanocapsules underwent different intracellular destinies and lauric acid (LA) coating played a vital role in intracellular particle retention. In conclusion, the protein nanocapsules modified with LA could enhance the protein nanocapsules escape from intercellular trafficking vesicles, and protect the protein from degradation by the lysosomes.

  5. Pokemon siRNA Delivery Mediated by RGD-Modified HBV Core Protein Suppressed the Growth of Hepatocellular Carcinoma.

    Science.gov (United States)

    Kong, Jing; Liu, Xiaoping; Jia, Jianbo; Wu, Jinsheng; Wu, Ning; Chen, Jun; Fang, Fang

    2015-10-01

    Hepatocellular carcinoma (HCC) is a deadly human malignant tumor that is among the most common cancers in the world, especially in Asia. Hepatitis B virus (HBV) infection has been well established as a high risk factor for hepatic malignance. Studies have shown that Pokemon is a master oncogene for HCC growth, suggesting it as an ideal therapeutic target. However, efficient delivery system is still lacking for Pokemon targeting treatment. In this study, we used core proteins of HBV, which is modified with RGD peptides, to construct a biomimetic vector for the delivery of Pokemon siRNAs (namely, RGD-HBc-Pokemon siRNA). Quantitative PCR and Western blot assays revealed that RGD-HBc-Pokemon siRNA possessed the highest efficiency of Pokemon suppression in HCC cells. In vitro experiments further indicated that RGD-HBc-Pokemon-siRNA exerted a higher tumor suppressor activity on HCC cell lines, evidenced by reduced proliferation and attenuated invasiveness, than Pokemon-siRNA or RGD-HBc alone. Finally, animal studies demonstrated that RGD-HBc-Pokemon siRNA suppressed the growth of HCC xenografts in mice by a greater extent than Pokemon-siRNA or RGD-HBc alone. Based on the above results, Pokemon siRNA delivery mediated by RGD-modified HBV core protein was shown to be an effective strategy of HCC gene therapy.

  6. Awake intranasal insulin delivery modifies protein complexes and alters memory, anxiety, and olfactory behaviors.

    Science.gov (United States)

    Marks, David R; Tucker, Kristal; Cavallin, Melissa A; Mast, Thomas G; Fadool, Debra A

    2009-05-20

    The role of insulin pathways in olfaction is of significant interest with the widespread pathology of diabetes mellitus and its associated metabolic and neuronal comorbidities. The insulin receptor (IR) kinase is expressed at high levels in the olfactory bulb, in which it suppresses a dominant Shaker ion channel (Kv1.3) via tyrosine phosphorylation of critical N- and C-terminal residues. We optimized a 7 d intranasal insulin delivery (IND) in awake mice to ascertain the biochemical and behavioral effects of insulin to this brain region, given that nasal sprays for insulin have been marketed notwithstanding our knowledge of the role of Kv1.3 in olfaction, metabolism, and axon targeting. IND evoked robust phosphorylation of Kv1.3, as well as increased channel protein-protein interactions with IR and postsynaptic density 95. IND-treated mice had an increased short- and long-term object memory recognition, increased anxiolytic behavior, and an increased odor discrimination using an odor habituation protocol but only moderate change in odor threshold using a two-choice paradigm. Unlike Kv1.3 gene-targeted deletion that alters metabolism, adiposity, and axonal targeting to defined olfactory glomeruli, suppression of Kv1.3 via IND had no effect on body weight nor the size and number of M72 glomeruli or the route of its sensory axon projections. There was no evidence of altered expression of sensory neurons in the epithelium. In mice made prediabetic via diet-induced obesity, IND was no longer effective in increasing long-term object memory recognition nor increasing anxiolytic behavior, suggesting state dependency or a degree of insulin resistance related to these behaviors.

  7. Peptide and protein delivery using new drug delivery systems.

    Science.gov (United States)

    Jain, Ashish; Jain, Aviral; Gulbake, Arvind; Shilpi, Satish; Hurkat, Pooja; Jain, Sanjay K

    2013-01-01

    Pharmaceutical and biotechnological research sorts protein drug delivery systems by importance based on their various therapeutic applications. The effective and potent action of the proteins/peptides makes them the drugs of choice for the treatment of numerous diseases. Major research issues in protein delivery include the stabilization of proteins in delivery devices and the design of appropriate target-specific protein carriers. Many efforts have been made for effective delivery of proteins/peptidal drugs through various routes of administrations for successful therapeutic effects. Nanoparticles made of biodegradable polymers such as poly lactic acid, polycaprolactone, poly(lactic-co-glycolic acid), the poly(fumaric-co-sebacic) anhydride chitosan, and modified chitosan, as well as solid lipids, have shown great potential in the delivery of proteins/peptidal drugs. Moreover, scientists also have used liposomes, PEGylated liposomes, niosomes, and aquasomes, among others, for peptidal drug delivery. They also have developed hydrogels and transdermal drug delivery systems for peptidal drug delivery. A receptor-mediated delivery system is another attractive strategy to overcome the limitation in drug absorption that enables the transcytosis of the protein across the epithelial barrier. Modification such as PEGnology is applied to various proteins and peptides of the desired protein and peptides also increases the circulating life, solubility and stability, pharmacokinetic properties, and antigenicity of protein. This review focuses on various approaches for effective protein/peptidal drug delivery, with special emphasis on insulin delivery.

  8. Protein nanoparticles for therapeutic protein delivery.

    Science.gov (United States)

    Herrera Estrada, L P; Champion, J A

    2015-06-01

    Therapeutic proteins can face substantial challenges to their activity, requiring protein modification or use of a delivery vehicle. Nanoparticles can significantly enhance delivery of encapsulated cargo, but traditional small molecule carriers have some limitations in their use for protein delivery. Nanoparticles made from protein have been proposed as alternative carriers and have benefits specific to therapeutic protein delivery. This review describes protein nanoparticles made by self-assembly, including protein cages, protein polymers, and charged or amphipathic peptides, and by desolvation. It presents particle fabrication and delivery characterization for a variety of therapeutic and model proteins, as well as comparison of the features of different protein nanoparticles.

  9. Nanochemistry of protein-based delivery agents

    Science.gov (United States)

    Rajendran, Subin; Udenigwe, Chibuike; Yada, Rickey

    2016-07-01

    The past decade has seen an increased interest in the conversion of food proteins into functional biomaterials, including their use for loading and delivery of physiologically active compounds such as nutraceuticals and pharmaceuticals. Proteins possess a competitive advantage over other platforms for the development of nanodelivery systems since they are biocompatible, amphipathic, and widely available. Proteins also have unique molecular structures and diverse functional groups that can be selectively modified to alter encapsulation and release properties. A number of physical and chemical methods have been used for preparing protein nanoformulations, each based on different underlying protein chemistry. This review focuses on the chemistry of the reorganization and/or modification of proteins into functional nanostructures for delivery, from the perspective of their preparation, functionality, stability and physiological behavior.

  10. Nanochemistry of protein-based delivery agents

    Directory of Open Access Journals (Sweden)

    Subin R.C.K. Rajendran

    2016-07-01

    Full Text Available The past decade has seen an increased interest in the conversion of food proteins into functional biomaterials, including their use for loading and delivery of physiologically active compounds such as nutraceuticals and pharmaceuticals. Proteins possess a competitive advantage over other platforms for the development of nanodelivery systems since they are biocompatible, amphipathic, and widely available. Proteins also have unique molecular structures and diverse functional groups that can be selectively modified to alter encapsulation and release properties. A number of physical and chemical methods have been used for preparing protein nanoformulations, each based on different underlying protein chemistry. This review focuses on the chemistry of the reorganization and/or modification of proteins into functional nanostructures for delivery, from the perspective of their preparation, functionality, stability and physiological behavior.

  11. Nanostructures for protein drug delivery.

    Science.gov (United States)

    Pachioni-Vasconcelos, Juliana de Almeida; Lopes, André Moreni; Apolinário, Alexsandra Conceição; Valenzuela-Oses, Johanna Karina; Costa, Juliana Souza Ribeiro; Nascimento, Laura de Oliveira; Pessoa, Adalberto; Barbosa, Leandro Ramos Souza; Rangel-Yagui, Carlota de Oliveira

    2016-02-01

    Use of nanoscale devices as carriers for drugs and imaging agents has been extensively investigated and successful examples can already be found in therapy. In parallel, recombinant DNA technology together with molecular biology has opened up numerous possibilities for the large-scale production of many proteins of pharmaceutical interest, reflecting in the exponentially growing number of drugs of biotechnological origin. When we consider protein drugs, however, there are specific criteria to take into account to select adequate nanostructured systems as drug carriers. In this review, we highlight the main features, advantages, drawbacks and recent developments of nanostructures for protein encapsulation, such as nanoemulsions, liposomes, polymersomes, single-protein nanocapsules and hydrogel nanoparticles. We also discuss the importance of nanoparticle stabilization, as well as future opportunities and challenges in nanostructures for protein drug delivery.

  12. Modified montmorillonite as vector for gene delivery.

    Science.gov (United States)

    Lin, Feng-Huei; Chen, Chia-Hao; Cheng, Winston T K; Kuo, Tzang-Fu

    2006-06-01

    Currently, gene delivery systems can be divided into two parts: viral or non-viral vectors. In general, viral vectors have a higher efficiency on gene delivery. However, they may sometimes provoke mutagenesis and carcinogenesis once re-activating in human body. Lots of non-viral vectors have been developed that tried to solve the problems happened on viral vectors. Unfortunately, most of non-viral vectors showed relatively lower transfection rate. The aim of this study is to develop a non-viral vector for gene delivery system. Montmorillonite (MMT) is one of clay minerals that consist of hydrated aluminum with Si-O tetrahedrons on the bottom of the layer and Al-O(OH)2 octahedrons on the top. The inter-layer space is about 12 A. The room is not enough to accommodate DNA for gene delivery. In the study, the cationic hexadecyltrimethylammonium (HDTMA) will be intercalated into the interlayer of MMT as a layer expander to expand the layer space for DNA accommodation. The optimal condition for the preparation of DNA-HDTMA-MMT is as follows: 1 mg of 1.5CEC HDTMA-MMT was prepared under pH value of 10.7 and with soaking time for 2 h. The DNA molecules can be protected from nuclease degradation, which can be proven by the electrophoresis analysis. DNA was successfully transfected into the nucleus of human dermal fibroblast and expressed enhanced green fluorescent protein (EGFP) gene with green fluorescence emission. The HDTMA-MMT has a great potential as a vector for gene delivery in the future.

  13. Preparing and evaluating delivery systems for proteins

    DEFF Research Database (Denmark)

    Jorgensen, L; Moeller, E H; van de Weert, M

    2006-01-01

    From a formulation perspective proteins are complex and therefore challenging molecules to develop drug delivery systems for. The success of a formulation depends on the ability of the protein to maintain the native structure and activity during preparation and delivery as well as during shipping...... and long-term storage of the formulation. Therefore, the development and evaluation of successful and promising drug delivery systems is essential. In the present review, some of the particulate drug delivery systems for parenteral delivery of protein are presented and discussed. The challenge...... for incorporation of protein in particulate delivery systems is exemplified by water-in-oil emulsions....

  14. Functionalization of protein-based nanocages for drug delivery applications.

    Science.gov (United States)

    Schoonen, Lise; van Hest, Jan C M

    2014-07-07

    Traditional drug delivery strategies involve drugs which are not targeted towards the desired tissue. This can lead to undesired side effects, as normal cells are affected by the drugs as well. Therefore, new systems are now being developed which combine targeting functionalities with encapsulation of drug cargo. Protein nanocages are highly promising drug delivery platforms due to their perfectly defined structures, biocompatibility, biodegradability and low toxicity. A variety of protein nanocages have been modified and functionalized for these types of applications. In this review, we aim to give an overview of different types of modifications of protein-based nanocontainers for drug delivery applications.

  15. Adhesives from modified soy protein

    Science.gov (United States)

    Sun, Susan [Manhattan, KS; Wang, Donghai [Manhattan, KS; Zhong, Zhikai [Manhattan, KS; Yang, Guang [Shanghai, CN

    2008-08-26

    The present invention provides useful adhesive compositions having similar adhesive properties to conventional UF and PPF resins. The compositions generally include a protein portion and modifying ingredient portion selected from the group consisting of carboxyl-containing compounds, aldehyde-containing compounds, epoxy group-containing compounds, and mixtures thereof. The composition is preferably prepared at a pH level at or near the isoelectric point of the protein. In other preferred forms, the adhesive composition includes a protein portion and a carboxyl-containing group portion.

  16. Sulfonate-modified phenylboronic acid-rich nanoparticles as a novel mucoadhesive drug delivery system for vaginal administration of protein therapeutics: improved stability, mucin-dependent release and effective intravaginal placement.

    Science.gov (United States)

    Li, ChunYan; Huang, ZhiGang; Liu, ZheShuo; Ci, LiQian; Liu, ZhePeng; Liu, Yu; Yan, XueYing; Lu, WeiYue

    Effective interaction between mucoadhesive drug delivery systems and mucin is the basis of effective local placement of drugs to play its therapeutic role after mucosal administration including vaginal use, which especially requires prolonged drug presence for the treatment of gynecological infectious diseases. Our previous report on phenylboronic acid-rich nanoparticles (PBNPs) demonstrated their strong interaction with mucin and mucin-sensitive release profiles of the model protein therapeutics interferon (IFN) in vitro, but their poor stability and obvious tendency to aggregate over time severely limited future application. In this study, sulfonate-modified PBNPs (PBNP-S) were designed as a stable mucoadhesive drug delivery system where the negative charges conferred by sulfonate groups prevented aggregation of nanoparticles and the phenylboronic acid groups ensured effective interaction with mucin over a wide pH range. Results suggested that PBNP-S were of spherical morphology with narrow size distribution (123.5 nm, polydispersity index 0.050), good stability over a wide pH range and 3-month storage and considerable in vitro mucoadhesion capability at vaginal pH as shown by mucin adsorption determination. IFN could be loaded to PBNP-S by physical adsorption with high encapsulation efficiency and released in a mucin-dependent manner in vitro. In vivo near-infrared fluorescent whole animal imaging and quantitative vaginal lavage followed by enzyme-linked immunosorbent assay (ELISA) assay of IFN demonstrated that PBNP-S could stay in the vagina and maintain intravaginal IFN level for much longer time than IFN solution (24 hours vs several hours) without obvious histological irritation to vaginal mucosa after vaginal administration to mice. In summary, good stability, easy loading and controllable release of protein therapeutics, in vitro and in vivo mucoadhesive properties and local safety of PBNP-S suggested it as a promising nanoscale mucoadhesive drug delivery

  17. Sulfonate-modified phenylboronic acid-rich nanoparticles as a novel mucoadhesive drug delivery system for vaginal administration of protein therapeutics: improved stability, mucin-dependent release and effective intravaginal placement

    Directory of Open Access Journals (Sweden)

    Li CY

    2016-11-01

    Full Text Available ChunYan Li,1 ZhiGang Huang,2 ZheShuo Liu,1 LiQian Ci,3 ZhePeng Liu,3 Yu Liu,2 XueYing Yan,1 WeiYue Lu2 1School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, 2Department of Pharmaceutics, School of Pharmacy, Key Laboratory of Smart Drug Delivery, Ministry of Education, Fudan University, 3School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, People’s Republic of China Abstract: Effective interaction between mucoadhesive drug delivery systems and mucin is the basis of effective local placement of drugs to play its therapeutic role after mucosal administration including vaginal use, which especially requires prolonged drug presence for the treatment of gynecological infectious diseases. Our previous report on phenylboronic acid-rich nanoparticles (PBNPs demonstrated their strong interaction with mucin and mucin-sensitive release profiles of the model protein therapeutics interferon (IFN in vitro, but their poor stability and obvious tendency to aggregate over time severely limited future application. In this study, sulfonate-modified PBNPs (PBNP-S were designed as a stable mucoadhesive drug delivery system where the negative charges conferred by sulfonate groups prevented aggregation of nanoparticles and the phenylboronic acid groups ensured effective interaction with mucin over a wide pH range. Results suggested that PBNP-S were of spherical morphology with narrow size distribution (123.5 nm, polydispersity index 0.050, good stability over a wide pH range and 3-month storage and considerable in vitro mucoadhesion capability at vaginal pH as shown by mucin adsorption determination. IFN could be loaded to PBNP-S by physical adsorption with high encapsulation efficiency and released in a mucin-dependent manner in vitro. In vivo near-infrared fluorescent whole animal imaging and quantitative vaginal lavage followed by enzyme-linked immunosorbent assay (ELISA assay of

  18. Injectable nanocomposite cryogels for versatile protein drug delivery.

    Science.gov (United States)

    Koshy, Sandeep T; Zhang, David K Y; Grolman, Joshua M; Stafford, Alexander G; Mooney, David J

    2018-01-01

    Sustained, localized protein delivery can enhance the safety and activity of protein drugs in diverse disease settings. While hydrogel systems are widely studied as vehicles for protein delivery, they often suffer from rapid release of encapsulated cargo, leading to a narrow duration of therapy, and protein cargo can be denatured by incompatibility with the hydrogel crosslinking chemistry. In this work, we describe injectable nanocomposite hydrogels that are capable of sustained, bioactive, release of a variety of encapsulated proteins. Injectable and porous cryogels were formed by bio-orthogonal crosslinking of alginate using tetrazine-norbornene coupling. To provide sustained release from these hydrogels, protein cargo was pre-adsorbed to charged Laponite nanoparticles that were incorporated within the walls of the cryogels. The presence of Laponite particles substantially hindered the release of a number of proteins that otherwise showed burst release from these hydrogels. By modifying the Laponite content within the hydrogels, the kinetics of protein release could be precisely tuned. This versatile strategy to control protein release simplifies the design of hydrogel drug delivery systems. Here we present an injectable nanocomposite hydrogel for simple and versatile controlled release of therapeutic proteins. Protein release from hydrogels often requires first entrapping the protein in particles and embedding these particles within the hydrogel to allow controlled protein release. This pre-encapsulation process can be cumbersome, can damage the protein's activity, and must be optimized for each protein of interest. The strategy presented in this work simply premixes the protein with charged nanoparticles that bind strongly with the protein. These protein-laden particles are then placed within a hydrogel and slowly release the protein into the surrounding environment. Using this method, tunable release from an injectable hydrogel can be achieved for a variety of

  19. Protein-Based Drug-Delivery Materials

    OpenAIRE

    Jao, Dave; Xue, Ye; Medina, Jethro; Hu, Xiao

    2017-01-01

    There is a pressing need for long-term, controlled drug release for sustained treatment of chronic or persistent medical conditions and diseases. Guided drug delivery is difficult because therapeutic compounds need to survive numerous transport barriers and binding targets throughout the body. Nanoscale protein-based polymers are increasingly used for drug and vaccine delivery to cross these biological barriers and through blood circulation to their molecular site of action. Protein-based pol...

  20. Modified Protein Improves Vitiligo Symptoms in Mice

    Science.gov (United States)

    ... Vitiligo Symptoms in Mice Spotlight on Research Modified Protein Improves Vitiligo Symptoms in Mice By Colleen Labbe, ... D., Ph.D., Rush University. Altering a key protein involved in the development of vitiligo may protect ...

  1. Protein-Based Drug-Delivery Materials

    Directory of Open Access Journals (Sweden)

    Dave Jao

    2017-05-01

    Full Text Available There is a pressing need for long-term, controlled drug release for sustained treatment of chronic or persistent medical conditions and diseases. Guided drug delivery is difficult because therapeutic compounds need to survive numerous transport barriers and binding targets throughout the body. Nanoscale protein-based polymers are increasingly used for drug and vaccine delivery to cross these biological barriers and through blood circulation to their molecular site of action. Protein-based polymers compared to synthetic polymers have the advantages of good biocompatibility, biodegradability, environmental sustainability, cost effectiveness and availability. This review addresses the sources of protein-based polymers, compares the similarity and differences, and highlights characteristic properties and functionality of these protein materials for sustained and controlled drug release. Targeted drug delivery using highly functional multicomponent protein composites to guide active drugs to the site of interest will also be discussed. A systematical elucidation of drug-delivery efficiency in the case of molecular weight, particle size, shape, morphology, and porosity of materials will then be demonstrated to achieve increased drug absorption. Finally, several important biomedical applications of protein-based materials with drug-delivery function—including bone healing, antibiotic release, wound healing, and corneal regeneration, as well as diabetes, neuroinflammation and cancer treatments—are summarized at the end of this review.

  2. Cationic polymers for intracellular delivery of proteins

    NARCIS (Netherlands)

    Coué, G.M.J.P.C.; Engbersen, Johannes F.J.; Samal, Sangram; Dubruel, Peter

    2015-01-01

    Many therapeutic proteins exert their pharmaceutical action inside the cytoplasm or onto individual organelles inside the cell. Intracellular protein delivery is considered to be the most direct, fastest and safest approach for curing gene-deficiency diseases, enhancing vaccination and triggering

  3. Long-term delivery of protein therapeutics.

    Science.gov (United States)

    Vaishya, Ravi; Khurana, Varun; Patel, Sulabh; Mitra, Ashim K

    2015-03-01

    Proteins are effective biotherapeutics with applications in diverse ailments. Despite being specific and potent, their full clinical potential has not yet been realized. This can be attributed to short half-lives, complex structures, poor in vivo stability, low permeability, frequent parenteral administrations and poor adherence to treatment in chronic diseases. A sustained release system, providing controlled release of proteins, may overcome many of these limitations. This review focuses on recent development in approaches, especially polymer-based formulations, which can provide therapeutic levels of proteins over extended periods. Advances in particulate, gel-based formulations and novel approaches for extended protein delivery are discussed. Emphasis is placed on dosage form, method of preparation, mechanism of release and stability of biotherapeutics. Substantial advancements have been made in the field of extended protein delivery via various polymer-based formulations over last decade despite the unique delivery-related challenges posed by protein biologics. A number of injectable sustained-release formulations have reached market. However, therapeutic application of proteins is still hampered by delivery-related issues. A large number of protein molecules are under clinical trials, and hence, there is an urgent need to develop new methods to deliver these highly potent biologics.

  4. Chromatin-modifying proteins in cancer

    DEFF Research Database (Denmark)

    Fog, Cathrine K; Jensen, Klaus T; Lund, Anders Henrik

    2007-01-01

    -despite the fact that all cells in the organism contain the same genetic information. A large amount of data gathered over the last decades has demonstrated that deregulation of chromatin-modifying proteins is etiologically involved in the development and progression of cancer. Here we discuss how epigenetic...... alterations influence cancer development and review known cancer-associated alterations in chromatin-modifying proteins....

  5. Drug delivery systems with modified release for systemic and biophase bioavailability.

    Science.gov (United States)

    Leucuta, Sorin E

    2012-11-01

    This review describes the most important new generations of pharmaceutical systems: medicines with extended release, controlled release pharmaceutical systems, pharmaceutical systems for the targeted delivery of drug substances. The latest advances and approaches for delivering small molecular weight drugs and other biologically active agents such as proteins and nucleic acids require novel delivery technologies, the success of a drug being many times dependent on the delivery method. All these dosage forms are qualitatively superior to medicines with immediate release, in that they ensure optimal drug concentrations depending on specific demands of different disease particularities of the body. Drug delivery of these pharmaceutical formulations has the benefit of improving product efficacy and safety, as well as patient convenience and compliance. This paper describes the biopharmaceutical, pharmacokinetic, pharmacologic and technological principles in the design of drug delivery systems with modified release as well as the formulation criteria of prolonged and controlled release drug delivery systems. The paper presents pharmaceutical prolonged and controlled release dosage forms intended for different routes of administration: oral, ocular, transdermal, parenteral, pulmonary, mucoadhesive, but also orally fast dissolving tablets, gastroretentive drug delivery systems, colon-specific drug delivery systems, pulsatile drug delivery systems and carrier or ligand mediated transport for site specific or receptor drug targeting. Specific technologies are given on the dosage forms with modified release as well as examples of marketed products, and current research in these areas.

  6. Lentiviral Delivery of Proteins for Genome Engineering.

    Science.gov (United States)

    Cai, Yujia; Mikkelsen, Jacob Giehm

    2016-01-01

    Viruses have evolved to traverse cellular barriers and travel to the nucleus by mechanisms that involve active transport through the cytoplasm and viral quirks to resist cellular restriction factors and innate immune responses. Virus-derived vector systems exploit the capacity of viruses to ferry genetic information into cells, and now - more than three decades after the discovery of HIV - lentiviral vectors based on HIV-1 have become instrumental in biomedical research and gene therapies that require genomic insertion of transgenes. By now, the efficacy of lentiviral gene delivery to stem cells, cells of the immune system including T cells, hepatic cells, and many other therapeutically relevant cell types is well established. Along with nucleic acids, HIV-1 virions carry the enzymatic tools that are essential for early steps of infection. Such capacity to package enzymes, even proteins of nonviral origin, has unveiled new ways of exploiting cellular intrusion of HIV-1. Based on early findings demonstrating the packaging of heterologous proteins into virus particles as part of the Gag and GagPol polypeptides, we have established lentiviral protein transduction for delivery of DNA transposases and designer nucleases. This strategy for delivering genome-engineering proteins facilitates high enzymatic activity within a short time frame and may potentially improve the safety of genome editing. Exploiting the full potential of lentiviral vectors, incorporation of foreign protein can be combined with the delivery of DNA transposons or a donor sequence for homology-directed repair in so-called 'all-in-one' lentiviral vectors. Here, we briefly describe intracellular restrictions that may affect lentiviral gene and protein delivery and review the current status of lentiviral particles as carriers of tool kits for genome engineering.

  7. Sustained subconjunctival protein delivery using a thermosetting gel delivery system.

    Science.gov (United States)

    Rieke, Erin R; Amaral, Juan; Becerra, S Patricia; Lutz, Robert J

    2010-02-01

    An effective treatment modality for posterior eye diseases would provide prolonged delivery of therapeutic agents, including macromolecules, to eye tissues using a safe and minimally invasive method. The goal of this study was to assess the ability of a thermosetting gel to deliver a fluorescently labeled protein, Alexa 647 ovalbumin, to the choroid and retina of rats following a single subconjunctival injection of the gel. Additional experiments were performed to compare in vitro to in vivo ovalbumin release rates from the gel. The ovalbumin content of the eye tissues was monitored by spectrophotometric assays of tissue extracts of Alexa 647 ovalbumin from dissected sclera, choroid, and retina at time points ranging from 2 h to 14 days. At the same time points, fluorescence microscopy images of tissue samples were also obtained. Measurement of intact ovalbumin was verified by LDS-PAGE analysis of the tissue extract solutions. In vitro release of Alexa 488 ovalbumin into 37 degrees C PBS solutions from ovalbumin-loaded gel pellets was also monitored over time by spectrophotometric assay. In vivo ovalbumin release rates were determined by measurement of residual ovalbumin extracted from gel pellets removed from rat eyes at various time intervals. Our results indicate that ovalbumin concentrations can be maintained at measurable levels in the sclera, choroid, and retina of rats for up to 14 days using the thermosetting gel delivery system. The concentration of ovalbumin exhibited a gradient that decreased from sclera to choroid and to retina. The in vitro release rate profiles were similar to the in vivo release profiles. Our findings suggest that the thermosetting gel system may be a feasible method for safe and convenient sustained delivery of proteins to choroidal and retinal tissue in the posterior segments of the eye.

  8. Bioengineered protein-based nanocage for drug delivery.

    Science.gov (United States)

    Lee, Eun Jung; Lee, Na Kyeong; Kim, In-San

    2016-11-15

    Nature, in its wonders, presents and assembles the most intricate and delicate protein structures and this remarkable phenomenon occurs in all kingdom and phyla of life. Of these proteins, cage-like multimeric proteins provide spatial control to biological processes and also compartmentalizes compounds that may be toxic or unstable and avoids their contact with the environment. Protein-based nanocages are of particular interest because of their potential applicability as drug delivery carriers and their perfect and complex symmetry and ideal physical properties, which have stimulated researchers to engineer, modify or mimic these qualities. This article reviews various existing types of protein-based nanocages that are used for therapeutic purposes, and outlines their drug-loading mechanisms and bioengineering strategies via genetic and chemical functionalization. Through a critical evaluation of recent advances in protein nanocage-based drug delivery in vitro and in vivo, an outlook for de novo and in silico nanocage design, and also protein-based nanocage preclinical and future clinical applications will be presented. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Recombinant Amphiphilic Protein Micelles for Drug Delivery

    OpenAIRE

    Kim, Wookhyun; Xiao, Jiantao; Chaikof, Elliot L.

    2011-01-01

    Amphiphilic block polypeptides can self-assemble into a range of nanostructures in solution, including micelles and vesicles. Our group has recently described the capacity of recombinant amphiphilic diblock copolypeptides to form highly stable micelles. In this report, we demonstrate the utility of protein nanoparticles to serve as a vehicle for controlled drug delivery. Drug-loaded micelles were produced by encapsulating dipyridamole as a model hydrophobic drug with anti-inflammatory activit...

  10. Efficient ex vivo delivery of chemically modified messenger RNA using lipofection and magnetofection.

    Science.gov (United States)

    Badieyan, Zohreh Sadat; Pasewald, Tamara; Mykhaylyk, Olga; Rudolph, Carsten; Plank, Christian

    2017-01-22

    Recently, chemically modified mRNA (cmRNA) therapeutics have been the subject of extensive application-oriented research in both academia and industry as a safer alternative for gene and recombinant protein therapies. However, the lack of an efficient delivery system hinders widespread application. Here we used ∼100-nm lipoplexes and magnetic lipoplexes that can protect cmRNA from RNases and efficiently deliver it into muscle and fat tissues as well as to the endothelium of the carotid artery. Establishing magnetofection for ex vivo cmRNA delivery for the first time, we suggest this method for potential enhanced and targeted delivery of cmRNA. This study introduces optimal cmRNA complexes with high ex vivo efficiency as good candidates for further in vivo cmRNA delivery. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. How proteins modify water dynamics

    Science.gov (United States)

    Persson, Filip; Söderhjelm, Pär; Halle, Bertil

    2018-06-01

    Much of biology happens at the protein-water interface, so all dynamical processes in this region are of fundamental importance. Local structural fluctuations in the hydration layer can be probed by 17O magnetic relaxation dispersion (MRD), which, at high frequencies, measures the integral of a biaxial rotational time correlation function (TCF)—the integral rotational correlation time. Numerous 17O MRD studies have demonstrated that this correlation time, when averaged over the first hydration shell, is longer than in bulk water by a factor 3-5. This rotational perturbation factor (RPF) has been corroborated by molecular dynamics simulations, which can also reveal the underlying molecular mechanisms. Here, we address several outstanding problems in this area by analyzing an extensive set of molecular dynamics data, including four globular proteins and three water models. The vexed issue of polarity versus topography as the primary determinant of hydration water dynamics is resolved by establishing a protein-invariant exponential dependence of the RPF on a simple confinement index. We conclude that the previously observed correlation of the RPF with surface polarity is a secondary effect of the correlation between polarity and confinement. Water rotation interpolates between a perturbed but bulk-like collective mechanism at low confinement and an exchange-mediated orientational randomization (EMOR) mechanism at high confinement. The EMOR process, which accounts for about half of the RPF, was not recognized in previous simulation studies, where only the early part of the TCF was examined. Based on the analysis of the experimentally relevant TCF over its full time course, we compare simulated and measured RPFs, finding a 30% discrepancy attributable to force field imperfections. We also compute the full 17O MRD profile, including the low-frequency dispersion produced by buried water molecules. Computing a local RPF for each hydration shell, we find that the

  12. Establishment of protein delivery systems targeting podocytes.

    Directory of Open Access Journals (Sweden)

    Wen Chih Chiang

    2010-07-01

    Full Text Available Podocytes are uniquely structured cells that are critical to the kidney filtration barrier. Their anatomic location on the outer side of the glomerular capillaries expose podocytes to large quantities of both plasma and urinary components and thus are reachable for drug delivery. Recent years have made clear that interference with podocyte-specific disease pathways can modulate glomerular function and influence severity and progression of glomerular disease.Here, we describe studies that show efficient transport of proteins into the mammalian cells mouse 3T3 fibroblasts and podocytes, utilizing an approach termed profection. We are using synthetic lipid structures that allow the safe packing of proteins or antibodies resulting in the subsequent delivery of protein into the cell. The uptake of lipid coated protein is facilitated by the intrinsic characteristic of cells such as podocytes to engulf particles that are physiologically retained in the extracellular matrix. Profection of the restriction enzyme MunI in 3T3 mouse fibroblasts caused an increase in DNA degradation. Moreover, purified proteins such as beta-galactosidase and the large GTPase dynamin could be profected into podocytes using two different profection reagents with the success rate of 95-100%. The delivered beta-galactosidase enzyme was properly folded and able to cleave its substrate X-gal in podocytes. Diseased podocytes are also potential recipients of protein cargo as we also delivered fluorophore labeled IgG into puromycin treated podocytes. We are currently optimizing our protocol for in vivo profection.Protein transfer is developing as an exciting tool to study and target highly differentiated cells such as podocytes.

  13. Targeted Delivery of Protein Drugs by Nanocarriers

    Directory of Open Access Journals (Sweden)

    Antonella Battisti

    2010-03-01

    Full Text Available Recent advances in biotechnology demonstrate that peptides and proteins are the basis of a new generation of drugs. However, the transportation of protein drugs in the body is limited by their high molecular weight, which prevents the crossing of tissue barriers, and by their short lifetime due to immuno response and enzymatic degradation. Moreover, the ability to selectively deliver drugs to target organs, tissues or cells is a major challenge in the treatment of several human diseases, including cancer. Indeed, targeted delivery can be much more efficient than systemic application, while improving bioavailability and limiting undesirable side effects. This review describes how the use of targeted nanocarriers such as nanoparticles and liposomes can improve the pharmacokinetic properties of protein drugs, thus increasing their safety and maximizing the therapeutic effect.

  14. Maize Arabinoxylan Gels as Protein Delivery Matrices

    Directory of Open Access Journals (Sweden)

    Ana Luisa Martínez-López

    2009-04-01

    Full Text Available The laccase induced gelation of maize bran arabinoxylans at 2.5% (w/v in the presence of insulin or β-lactoglobulin at 0.1% (w/v was investigated. Insulin and β-lacto-globulin did not modify either the gel elasticity (9 Pa or the cross-links content (0.03 and 0.015 mg di- and triferulic acids/mg arabinoxylan, respectively. The protein release capability of the gel was also investigated. The rate of protein release from gels was dependent on the protein molecular weight. The apparent diffusion coefficient was 0.99 × 10-7 and 0.79 × 10-7 cm2/s for insulin (5 kDa and β-lactoglobulin (18 kDa, respectively. The results suggest that maize bran arabinoxylan gels can be potential candidates for the controlled release of proteins.

  15. Modified biomolecule as potential vehicle for buccal delivery of doxepin.

    Science.gov (United States)

    Laffleur, Flavia; Zilio, Martina; Shuwisitkul, Duangratana

    2016-10-01

    Doxepin is a traditional tricyclic antidepressant with analgesic and anesthetic properties when applied topically to the mucosa. Doxepin is one approach in treating insomnia and depression in Parkinson's disease. Patients with Parkinson's disease suffer difficulties in swallowing. Therefore, it was the aim of this study to develop a buccal-adhesive delivery system. Pectin was modified with cysteine. Stability assays in form of disintegration assay according to the Ph.Eur were performed. Furthermore, bioadhesiveness on buccal mucosa was investigated incorporating the drug doxepin. The adhesiveness was improved 1.4-fold and revealed a sustained release over 3 h. Taking these findings into account, the modifications render this designed excipient fruitful for buccal delivery.

  16. Mannan-Modified PLGA Nanoparticles for Targeted Gene Delivery

    Directory of Open Access Journals (Sweden)

    Fansheng Kong

    2012-01-01

    Full Text Available The studies of targeted gene delivery nanocarriers have gained increasing attention during the past decades. In this study, mannan modified DNA loaded bioadhesive PLGA nanoparticles (MAN-DNA-NPs were investigated for targeted gene delivery to the Kupffer cells (KCs. Bioadhesive PLGA nanoparticles were prepared and subsequently bound with pEGFP. Following the coupling of the mannan-based PE-grafted ligands (MAN-PE with the DNA-NPs, the MAN-DNA-NPs were delivered intravenously to rats. The transfection efficiency was determined from the isolated KCs and flow cytometry was applied for the quantitation of gene expression after 48 h post transfection. The size of the MAN-DNA-NPs was found to be around 190 nm and the Zeta potential was determined to be −15.46mV. The pEGFP binding capacity of MAN-DNA-NPs was (88.9±5.8% and the in vitro release profiles of the MAN-DNA-NPs follow the Higuchi model. When compared with non-modified DNA-NPs and Lipofectamine 2000-DNA, MAN-DNA-NPs produced the highest gene expressions, especially in vivo. The in vivo data from flow cytometry analysis showed that MAN-DNA-NPs displayed a remarkably higher transfection efficiency (39% than non-modified DNA-NPs (25% and Lipofectamine 2000-DNA (23% in KCs. The results illustrate that MAN-DNA-NPs have the ability to target liver KCs and could function as promising active targeting drug delivery vectors.

  17. Application of Ferriferous Oxide Modified by Chitosan in Gene Delivery

    Directory of Open Access Journals (Sweden)

    Yu Kuang

    2012-01-01

    Full Text Available New approaches to improve the traditional gene carriers are still required. Here we explore Fe3O4 modified with degradable polymers that enhances gene delivery and target delivery using permanent magnetic field. Two magnetic Fe3O4 nanoparticles coated with chitosan (CTS and polyethylene glycol (PEG were synthesized by means of controlled chemical coprecipitation. Plasmid pEGFP was encapsulated as a reported gene. The ferriferous oxide complexes were approximately spherical; surface charge of CTS-Fe3O4 and PEG-Fe3O4 was about 20 mv and 0 mv, respectively. The controlled release of DNA from the CTS-Fe3O4 nanoparticles was observed. Concurrently, a desired Fe3O4 concentration of less than 2 mM was verified as safe by means of a cytotoxicity test in vitro. Presence of the permanent magnetic field significantly increased the transfection efficiency. Furthermore, the passive target property and safety of magnetic nanoparticles were also demonstrated in an in vivo test. The novel gene delivery system was proved to be an effective tool required for future target expression and gene therapy in vivo.

  18. Stimuli-Responsive Polymeric Systems for Controlled Protein and Peptide Delivery: Future Implications for Ocular Delivery.

    Science.gov (United States)

    Mahlumba, Pakama; Choonara, Yahya E; Kumar, Pradeep; du Toit, Lisa C; Pillay, Viness

    2016-07-30

    Therapeutic proteins and peptides have become notable in the drug delivery arena for their compatibility with the human body as well as their high potency. However, their biocompatibility and high potency does not negate the existence of challenges resulting from physicochemical properties of proteins and peptides, including large size, short half-life, capability to provoke immune responses and susceptibility to degradation. Various delivery routes and delivery systems have been utilized to improve bioavailability, patient acceptability and reduce biodegradation. The ocular route remains of great interest, particularly for responsive delivery of macromolecules due to the anatomy and physiology of the eye that makes it a sensitive and complex environment. Research in this field is slowly gaining attention as this could be the breakthrough in ocular drug delivery of macromolecules. This work reviews stimuli-responsive polymeric delivery systems, their use in the delivery of therapeutic proteins and peptides as well as examples of proteins and peptides used in the treatment of ocular disorders. Stimuli reviewed include pH, temperature, enzymes, light, ultrasound and magnetic field. In addition, it discusses the current progress in responsive ocular drug delivery. Furthermore, it explores future prospects in the use of stimuli-responsive polymers for ocular delivery of proteins and peptides. Stimuli-responsive polymers offer great potential in improving the delivery of ocular therapeutics, therefore there is a need to consider them in order to guarantee a local, sustained and ideal delivery of ocular proteins and peptides, evading tissue invasion and systemic side-effects.

  19. Gelatin modified lipid nanoparticles for anti- viral drug delivery.

    Science.gov (United States)

    K S, Joshy; S, Snigdha; Kalarikkal, Nandakumar; Pothen, Laly A; Thomas, Sabu

    2017-10-01

    The major challenges to clinical application of zidovudine are its moderate aqueous solubility and relative short half-life and serious side effects due to frequent administrations. We investigated the preparation of zidovudine-loaded nanoparticles based on lipids which were further modified with the polymer gelatin. Formulation and stability of the modified nanoparticles were analysed from the physico-chemical characterizations. The interactions of nanoparticles with blood components were tested by haemolysis and aggregation studies. The drug content and entrapment efficiencies were assessed by UV analysis. The effect of nanoparticles on protein adsorption was assessed by native polyacrylamide gel electrophoresis (PAGE). In vitro release studies showed a sustained release profile of zidovudine. In vitro cytotoxicity and cellular uptake of the zidovudine-loaded nanoparticles were performed in MCF-7 and neuro 2a brain cells. The enhanced cellular internalization of drug loaded modified nanoparticles in both the cell lines were revealed by fluorescence microscopy. Hence the present study focuses on the feasibility of zidovudine-loaded polymer modified lipid nanoparticles as carriers for safe and efficient HIV/AIDS therapy. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Stimuli-responsive nanomaterials for therapeutic protein delivery.

    Science.gov (United States)

    Lu, Yue; Sun, Wujin; Gu, Zhen

    2014-11-28

    Protein therapeutics have emerged as a significant role in treatment of a broad spectrum of diseases, including cancer, metabolic disorders and autoimmune diseases. The efficacy of protein therapeutics, however, is limited by their instability, immunogenicity and short half-life. In order to overcome these barriers, tremendous efforts have recently been made in developing controlled protein delivery systems. Stimuli-triggered release is an appealing and promising approach for protein delivery and has made protein delivery with both spatiotemporal- and dosage-controlled manners possible. This review surveys recent advances in controlled protein delivery of proteins or peptides using stimuli-responsive nanomaterials. Strategies utilizing both physiological and external stimuli are introduced and discussed. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Hydrophobically modified chitosan/gold nanoparticles for DNA delivery

    International Nuclear Information System (INIS)

    Bhattarai, Shanta Raj; Remant Bahadur, K.C.; Aryal, Santosh; Bhattarai, Narayan; Kim, Sun Young; Yi, Ho Keun; Hwang, Pyoung Han; Kim, Hak Yong

    2008-01-01

    Present study dealt an application of modified chitosan gold nanoparticles (Nac-6-Au) for the immobilization of necked plasmid DNA. Gold nanoparticles stabilized with N-acylated chitosan were prepared by graft-onto approach. The stabilized gold nanoparticles were characterized by different physico-chemical techniques such as UV-vis, TEM, ELS and DLS. MTT assay was used for in vitro cytotoxicity of the nanoparticles into three different cell lines (NIH 3T3, CT-26 and MCF-7). The formulation of plasmid DNA with the nanoparticles corresponds to the complex forming capacity and in-vitro/in-vivo transfection efficiency was studied via gel electrophoresis and transfection methods, respectively. Results showed the modified chitosan gold nanoparticles were well-dispersed and spherical in shape with average size around 10∼12 nm in triple distilled water at pH 7.4, and showed relatively no cytotoxicity at low concentration. Addition of plasmid DNA on the aqueous solution of the nanoparticles markedly reduced surface potential (50.0∼66.6%) as well as resulted in a 13.33% increase in hydrodynamic diameters of the formulated nanoparticles. Transfection efficiency of Nac-6-Au/DNA was dependent on cell type, and higher β-galactosidase activity was observed on MCF-7 breast cancer cell. Typically, this activity was 5 times higher in 4.5 mg/ml nanoparticles concentration than that achieved by the nanoparticles of other concentrations (and/or control). However, this activity was lower in in-vitro and dramatically higher in in-vivo than that of commercially available transfection kit (Lipofectin (registered) ) and DNA. From these results, it can be expected to develop alternative new vectors for gene delivery

  2. A novel nanoemulsion-based method to produce ultrasmall, water-dispersible nanoparticles from chitosan, surface modified with cell-penetrating peptide for oral delivery of proteins and peptides

    Directory of Open Access Journals (Sweden)

    Barbari GR

    2017-05-01

    Full Text Available Ghullam Reza Barbari,1 Farid Abedin Dorkoosh,1 Mohsen Amini,2 Mohammad Sharifzadeh,3 Fateme Atyabi,1 Saeed Balalaie,4 Niyousha Rafiee Tehrani,5 Morteza Rafiee Tehrani1 1Department of Pharmaceutics, 2Department of Medicinal Chemistry, 3Department of Pharmacology, School of Pharmacy, Tehran University of Medical Sciences, 4Department of Chemistry, Khaje Nasiroddin University, 5Department of Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran Abstract: A simple and reproducible water-in-oil (W/O nanoemulsion technique for making ultrasmall (<15 nm, monodispersed and water-dispersible nanoparticles (NPs from chitosan (CS is reported. The nano-sized (50 nm water pools of the W/O nanoemulsion serve as “nano-containers and nano-reactors”. The entrapped polymer chains of CS inside these “nano-reactors” are covalently cross-linked with the chains of polyethylene glycol (PEG, leading to rigidification and formation of NPs. These NPs possess excessive swelling properties in aqueous medium and preserve integrity in all pH ranges due to chemical cross-linking with PEG. A potent and newly developed cell-penetrating peptide (CPP is further chemically conjugated to the surface of the NPs, leading to development of a novel peptide-conjugated derivative of CS with profound tight-junction opening properties. The CPP-conjugated NPs can easily be loaded with almost all kinds of proteins, peptides and nucleotides for oral delivery applications. Feasibility of this nanoparticulate system for oral delivery of a model peptide (insulin is investigated in Caco-2 cell line. The cell culture results for translocation of insulin across the cell monolayer are very promising (15%–19% increase, and animal studies are actively under progress and will be published separately. Keywords: ultrasmall, cell-penetrating peptide, chitosan, oral insulin, nanoemulsion, Caco-2 cell

  3. Scleroglucan: A Versatile Polysaccharide for Modified Drug Delivery

    Directory of Open Access Journals (Sweden)

    Franco Alhaique

    2005-01-01

    Full Text Available Scleroglucan is a natural polysaccharide, produced by fungi of the genus Sclerotium, that has been extensively studied for various commercial applications (secondary oil recovery, ceramic glazes, food, paints, etc. and also shows several interesting pharmacological properties. This review focuses its attention on the use of scleroglucan, and some derivatives, in the field of pharmaceutics and in particular for the formulation of modified-release dosage forms. The reported investigations refer mainly to the following topics: natural scleroglucan suitable for the preparation of sustained release tablets and ocular formulations; oxidized and crosslinked scleroglucan used as a matrix for dosage forms sensitive to environmental conditions; co-crosslinked scleroglucan/gellan whose delivery rate can be affected by calcium ions. Furthermore, a novel hydrogel obtained with this polysaccharide and borate ions is described, and the particular structure of this hydrogel network has been interpreted in terms of conformational analysis and molecular dynamics. Profound attention is devoted to the mechanisms involved in drug release from the tested dosage forms that depend, according to the specific preparation, on swelling and/or diffusion. Experimental data are also discussed on the basis of a mathematical approach that allows a better understanding of the behavior of the tested polymeric materials.

  4. Protein based therapeutic delivery agents: Contemporary developments and challenges.

    Science.gov (United States)

    Yin, Liming; Yuvienco, Carlo; Montclare, Jin Kim

    2017-07-01

    As unique biopolymers, proteins can be employed for therapeutic delivery. They bear important features such as bioavailability, biocompatibility, and biodegradability with low toxicity serving as a platform for delivery of various small molecule therapeutics, gene therapies, protein biologics and cells. Depending on size and characteristic of the therapeutic, a variety of natural and engineered proteins or peptides have been developed. This, coupled to recent advances in synthetic and chemical biology, has led to the creation of tailor-made protein materials for delivery. This review highlights strategies employing proteins to facilitate the delivery of therapeutic matter, addressing the challenges for small molecule, gene, protein and cell transport. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Handheld Delivery System for Modified Boron-Type Fire Extinguishment Agent

    Science.gov (United States)

    1993-11-01

    was to develop and test a handheld portable delivery system for use with the modified boron-type fire extinguishing agent for metal fires . B...BACKGROUND A need exists for an extinguishing agent and accompanying delivery system that are effective against complex geometry metal fires . A modified...agent and its delivery system have proven effective against complex geometry metal fires containing up to 200 pounds of magnesium metal. Further

  6. Characterization of particulate drug delivery systems for oral delivery of Peptide and protein drugs.

    Science.gov (United States)

    Christophersen, Philip Carsten; Fano, Mathias; Saaby, Lasse; Yang, Mingshi; Nielsen, Hanne Mørck; Mu, Huiling

    2015-01-01

    Oral drug delivery is a preferred route because of good patient compliance. However, most peptide/ protein drugs are delivered via parenteral routes because of the absorption barriers in the gastrointestinal (GI) tract such as enzymatic degradation by proteases and low permeability acrossthe biological membranes. To overcome these barriers, different formulation strategies for oral delivery of biomacromolecules have been proposed, including lipid based formulations and polymer-based particulate drug delivery systems (DDS). The aim of this review is to summarize the existing knowledge about oral delivery of peptide/protein drugs and to provide an overview of formulationand characterization strategies. For a better understanding of the challenges in oral delivery of peptide/protein drugs, the composition of GI fluids and the digestion processes of different kinds of excipients in the GI tract are summarized. Additionally, the paper provides an overview of recent studies on characterization of solid drug carriers for peptide/protein drugs, drug distribution in particles, drug release and stability in simulated GI fluids, as well as the absorption of peptide/protein drugs in cell-based models. The use of biorelevant media when applicable can increase the knowledge about the quality of DDS for oral protein delivery. Hopefully, the knowledge provided in this review will aid the establishment of improved biorelevant models capable of forecasting the performance of particulate DDS for oral peptide/protein delivery.

  7. Recent developments in protein and peptide parenteral delivery approaches

    Science.gov (United States)

    Patel, Ashaben; Cholkar, Kishore; Mitra, Ashim K

    2014-01-01

    Discovery of insulin in the early 1900s initiated the research and development to improve the means of therapeutic protein delivery in patients. In the past decade, great emphasis has been placed on bringing protein and peptide therapeutics to market. Despite tremendous efforts, parenteral delivery still remains the major mode of administration for protein and peptide therapeutics. Other routes such as oral, nasal, pulmonary and buccal are considered more opportunistic rather than routine application. Improving biological half-life, stability and therapeutic efficacy is central to protein and peptide delivery. Several approaches have been tried in the past to improve protein and peptide in vitro/in vivo stability and performance. Approaches may be broadly categorized as chemical modification and colloidal delivery systems. In this review we have discussed various chemical approaches such as PEGylation, hyperglycosylation, mannosylation, and colloidal carriers including microparticles, nanoparticles, liposomes, carbon nanotubes and micelles for improving protein and peptide delivery. Recent developments on in situ thermosensitive gel-based protein and peptide delivery have also been described. This review summarizes recent developments on some currently existing approaches to improve stability, bioavailability and bioactivity of peptide and protein therapeutics following parenteral administration. PMID:24592957

  8. Characterization of particulate drug delivery systems for oral delivery of Peptide and protein drugs

    DEFF Research Database (Denmark)

    Christophersen, Philip Carsten; Fano, Mathias; Saaby, Lasse

    2015-01-01

    Oral drug delivery is a preferred route because of good patient compliance. However, most peptide/ protein drugs are delivered via parenteral routes because of the absorption barriers in the gastrointestinal (GI) tract such as enzymatic degradation by proteases and low permeability acrossthe...... delivery of peptide/protein drugs and to provide an overview of formulationand characterization strategies. For a better understanding of the challenges in oral delivery of peptide/protein drugs, the composition of GI fluids and the digestion processes of different kinds of excipients in the GI tract...... biological membranes. To overcome these barriers, different formulation strategies for oral delivery of biomacromolecules have been proposed, including lipid based formulations and polymer-based particulate drug delivery systems (DDS). The aim of this review is to summarize the existing knowledge about oral...

  9. Oral delivery of peptides and proteins using lipid-based drug delivery systems

    DEFF Research Database (Denmark)

    Li, Ping; Nielsen, Hanne Mørck; Müllertz, Anette

    2012-01-01

    INTRODUCTION: In order to successfully develop lipid-based drug delivery systems (DDS) for oral administration of peptides and proteins, it is important to gain an understanding of the colloid structures formed by these DDS, the mode of peptide and protein incorporation as well as the mechanism...... by which intestinal absorption of peptides and proteins is promoted. AREAS COVERED: The present paper reviews the literature on lipid-based DDS, employed for oral delivery of peptides and proteins and highlights the mechanisms by which the different lipid-based carriers are expected to overcome the two...... and proteins. EXPERT OPINION: Lipid-based DDS are safe and suitable for oral delivery of peptides and proteins. Significant progress has been made in this area with several technologies on clinical trials. However, a better understanding of the mechanism of action in vivo is needed in order to improve...

  10. Correlating In Vitro Splice Switching Activity With Systemic In Vivo Delivery Using Novel ZEN-modified Oligonucleotides

    Directory of Open Access Journals (Sweden)

    Suzan M Hammond

    2014-01-01

    Full Text Available Splice switching oligonucleotides (SSOs induce alternative splicing of pre-mRNA and typically employ chemical modifications to increase nuclease resistance and binding affinity to target pre-mRNA. Here we describe a new SSO non-base modifier (a naphthyl-azo group, “ZEN™” to direct exon exclusion in mutant dystrophin pre-mRNA to generate functional dystrophin protein. The ZEN modifier is placed near the ends of a 2′-O-methyl (2′OMe oligonucleotide, increasing melting temperature and potency over unmodified 2′OMe oligonucleotides. In cultured H2K cells, a ZEN-modified 2′OMe phosphorothioate (PS oligonucleotide delivered by lipid transfection greatly enhanced dystrophin exon skipping over the same 2′OMePS SSO lacking ZEN. However, when tested using free gymnotic uptake in vitro and following systemic delivery in vivo in dystrophin deficient mdx mice, the same ZEN-modified SSO failed to enhance potency. Importantly, we show for the first time that in vivo activity of anionic SSOs is modelled in vitro only when using gymnotic delivery. ZEN is thus a novel modifier that enhances activity of SSOs in vitro but will require improved delivery methods before its in vivo clinical potential can be realized.

  11. Nanostructured Mineral Coatings Stabilize Proteins for Therapeutic Delivery.

    Science.gov (United States)

    Yu, Xiaohua; Biedrzycki, Adam H; Khalil, Andrew S; Hess, Dalton; Umhoefer, Jennifer M; Markel, Mark D; Murphy, William L

    2017-09-01

    Proteins tend to lose their biological activity due to their fragile structural conformation during formulation, storage, and delivery. Thus, the inability to stabilize proteins in controlled-release systems represents a major obstacle in drug delivery. Here, a bone mineral inspired protein stabilization strategy is presented, which uses nanostructured mineral coatings on medical devices. Proteins bound within the nanostructured coatings demonstrate enhanced stability against extreme external stressors, including organic solvents, proteases, and ethylene oxide gas sterilization. The protein stabilization effect is attributed to the maintenance of protein conformational structure, which is closely related to the nanoscale feature sizes of the mineral coatings. Basic fibroblast growth factor (bFGF) released from a nanostructured mineral coating maintains its biological activity for weeks during release, while it maintains activity for less than 7 d during release from commonly used polymeric microspheres. Delivery of the growth factors bFGF and vascular endothelial growth factor using a mineral coated surgical suture significantly improves functional Achilles tendon healing in a rabbit model, resulting in increased vascularization, more mature collagen fiber organization, and a two fold improvement in mechanical properties. The findings of this study demonstrate that biomimetic interactions between proteins and nanostructured minerals provide a new, broadly applicable mechanism to stabilize proteins in the context of drug delivery and regenerative medicine. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Intracellular Protein Delivery for treating Breast Cancer

    Science.gov (United States)

    2013-06-01

    concentration increases, but not as dramatic as cytoplamic fractions possible due to slower nuclear transport than cellular internalization. The nucleus...polymers, dendrimers , and hydrogels for drug delivery. Pharmaceutical research 29, 902-921. Wilson, J.M. (2005). Gendicine: the first commercial gene...sequences were not ccessible to the transport machinery. In stark contrast, hen HeLa cells were treated with S S Rho—APO NC, strong ed fluorescence of

  13. The Protein-Sparing Modified Fast Diet

    Directory of Open Access Journals (Sweden)

    Marwan Bakhach MD

    2016-01-01

    Full Text Available Objectives: The protein-sparing modified fast (PSMF is a rigorous way of rapidly losing a large amount of weight. Although adult studies have shown the PSMF to be effective, data in adolescents are lacking. The aim of this study was to determine the efficacy and safety of the PSMF in severely obese adolescents. Methods: 12 subjects who were evaluated in the Obesity Management Program at the Cleveland Clinic from 2011 to 2014 were included. The subjects were initiated on the PSMF after failing other conventional methods of weight loss. Once the goal weight was achieved, subjects were transitioned to the refeeding phase for weight maintenance. Results: Follow-up was scheduled at 3-month (11 patients and 6-month (6 patients intervals. At the 6-month follow-up visit, the average weight loss was 11.19 kg (95% confidence interval = -5.4, -27.8, P = .028, with average of 9.8% from baseline. Fifty percent of subjects had >5% weight loss and 20% had >10% weight loss. Four patients were lost to the follow-up (40%. An improvement was noted in total cholesterol and high-density lipoprotein. Due to a small sample size these results were not statistically significant. Side effects reported by subjects were mild dehydration due to nausea (2 patients, decreased energy (1 patient, and transient labile mood (1 patient. No life-threatening side effects were reported. Conclusion: Our results show that the PSMF diet can be used as an effective and safe method in the outpatient setting for rapid weight loss in adolescents with severe obesity.

  14. Photochemistry of modified proteins benzophenone-containing bovine serum albumin

    International Nuclear Information System (INIS)

    Mariano, P.S.; Glover, G.I.; Wilkinson, T.J.

    1976-01-01

    The results of exploratory and mechanistic studies of the photochemistry of poly-p-benzoyl-acetimido-bovine serum albumin, a modified protein containing photoreactive and photosensitizing groups, are reported. Specifically described are recent findings concerning (1) the synthesis and characterization of a modified bovine serum albumin that contains benzophenone-like moieties, (2) the photochemistry of this modified protein which appeared to involve photoreductive coupling of the benzophenone chromophores to the protein backbone, and (3) triplet energy transfer from modified bovine serum albumin to small molecule acceptors resulting in quenching of the photoreaction. (author)

  15. Protein Nanoparticles as Drug Delivery Carriers for Cancer Therapy

    Directory of Open Access Journals (Sweden)

    Warangkana Lohcharoenkal

    2014-01-01

    Full Text Available Nanoparticles have increasingly been used for a variety of applications, most notably for the delivery of therapeutic and diagnostic agents. A large number of nanoparticle drug delivery systems have been developed for cancer treatment and various materials have been explored as drug delivery agents to improve the therapeutic efficacy and safety of anticancer drugs. Natural biomolecules such as proteins are an attractive alternative to synthetic polymers which are commonly used in drug formulations because of their safety. In general, protein nanoparticles offer a number of advantages including biocompatibility and biodegradability. They can be prepared under mild conditions without the use of toxic chemicals or organic solvents. Moreover, due to their defined primary structure, protein-based nanoparticles offer various possibilities for surface modifications including covalent attachment of drugs and targeting ligands. In this paper, we review the most significant advancements in protein nanoparticle technology and their use in drug delivery arena. We then examine the various sources of protein materials that have been used successfully for the construction of protein nanoparticles as well as their methods of preparation. Finally, we discuss the applications of protein nanoparticles in cancer therapy.

  16. Protein nanoparticles as drug delivery carriers for cancer therapy.

    Science.gov (United States)

    Lohcharoenkal, Warangkana; Wang, Liying; Chen, Yi Charlie; Rojanasakul, Yon

    2014-01-01

    Nanoparticles have increasingly been used for a variety of applications, most notably for the delivery of therapeutic and diagnostic agents. A large number of nanoparticle drug delivery systems have been developed for cancer treatment and various materials have been explored as drug delivery agents to improve the therapeutic efficacy and safety of anticancer drugs. Natural biomolecules such as proteins are an attractive alternative to synthetic polymers which are commonly used in drug formulations because of their safety. In general, protein nanoparticles offer a number of advantages including biocompatibility and biodegradability. They can be prepared under mild conditions without the use of toxic chemicals or organic solvents. Moreover, due to their defined primary structure, protein-based nanoparticles offer various possibilities for surface modifications including covalent attachment of drugs and targeting ligands. In this paper, we review the most significant advancements in protein nanoparticle technology and their use in drug delivery arena. We then examine the various sources of protein materials that have been used successfully for the construction of protein nanoparticles as well as their methods of preparation. Finally, we discuss the applications of protein nanoparticles in cancer therapy.

  17. Intracellular Protein Delivery for Treating Breast Cancer

    Science.gov (United States)

    2014-08-01

    les prepare likely here the numbe of relative action, we lick reactio itive protein nce spectra o ieties onto ancer target lp-His- Trp - ressed...While protein transduction domain (PTD)-fused apoptin has been delivered to cells(Sun et al., 2009; Tavassoli et al., 2004), this approach suffers from...forms the central spoke of the wheel- like structure (Figure 1b), with the larger MBP portion distributes around the apoptin. The planar arrangement

  18. Orally active-targeted drug delivery systems for proteins and peptides.

    Science.gov (United States)

    Li, Xiuying; Yu, Miaorong; Fan, Weiwei; Gan, Yong; Hovgaard, Lars; Yang, Mingshi

    2014-09-01

    In the past decade, extensive efforts have been devoted to designing 'active targeted' drug delivery systems (ATDDS) to improve oral absorption of proteins and peptides. Such ATDDS enhance cellular internalization and permeability of proteins and peptides via molecular recognition processes such as ligand-receptor or antigen-antibody interaction, and thus enhance drug absorption. This review focuses on recent advances with orally ATDDS, including ligand-protein conjugates, recombinant ligand-protein fusion proteins and ligand-modified carriers. In addition to traditional intestinal active transport systems of substrates and their corresponding receptors, transporters and carriers, new targets such as intercellular adhesion molecule-1 and β-integrin are also discussed. ATDDS can improve oral absorption of proteins and peptides. However, currently, no clinical studies on ATDDS for proteins and peptides are underway, perhaps due to the complexity and limited knowledge of transport mechanisms. Therefore, more research is warranted to optimize ATDDS efficiency.

  19. Co-delivery of chemotherapeutics and proteins for synergistic therapy.

    Science.gov (United States)

    He, Chaoliang; Tang, Zhaohui; Tian, Huayu; Chen, Xuesi

    2016-03-01

    Combination therapy with chemotherapeutics and protein therapeutics, typically cytokines and antibodies, has been a type of crucial approaches for synergistic cancer treatment. However, conventional approaches by simultaneous administration of free chemotherapeutic drugs and proteins lead to limitations for further optimizing the synergistic effects, due to the distinct in vivo pharmacokinetics and distribution of small drugs and proteins, insufficient tumor selectivity and tumor accumulation, unpredictable drug/protein ratios at tumor sites, short half-lives, and serious systemic adverse effects. Consequently, to obtain optimal synergistic anti-tumor efficacy, considerable efforts have been devoted to develop the co-delivery systems for co-incorporating chemotherapeutics and proteins into a single carrier system and subsequently releasing the dual or multiple payloads at desired target sites in a more controllable manner. The co-delivery systems result in markedly enhanced blood stability and in vivo half-lives of the small drugs and proteins, elevated tumor accumulation, as well as the capability of delivering the multiple agents to the same target sites with rational drug/protein ratios, which may facilitate maximizing the synergistic effects and therefore lead to optimal antitumor efficacy. This review emphasizes the recent advances in the co-delivery systems for chemotherapeutics and proteins, typically cytokines and antibodies, for systemic or localized synergistic cancer treatment. Moreover, the proposed mechanisms responsible for the synergy of chemotherapeutic drugs and proteins are discussed. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Supercritical fluid extraction of uranium and thorium using modifier free delivery of ligands

    International Nuclear Information System (INIS)

    Sujatha, K.; Kumar, R.; Sivaraman, N.; Srinivasan, T.G.; Vasudeva Rao, P.R.

    2009-01-01

    The modifier free controlled delivery of octyl (phenyl)-N,N-diisobutylcarbamoylmethy phosphineoxide (CMPO) using supercritical carbon dioxide was established for the extraction of uranyl nitrate as well as uranyl nitrate sorbed on tissue paper matrix and the results were compared with modifier method. The preferential extraction of uranium over thorium was also demonstrated using di (2-ethylhexyl)isobutyramide (D2EHIBA). (author)

  1. Protein instability and immunogenicity: roadblocks to clinical application of injectable protein delivery systems for sustained release.

    Science.gov (United States)

    Jiskoot, Wim; Randolph, Theodore W; Volkin, David B; Middaugh, C Russell; Schöneich, Christian; Winter, Gerhard; Friess, Wolfgang; Crommelin, Daan J A; Carpenter, John F

    2012-03-01

    Protein instability and immunogenicity are two main roadblocks to the clinical success of novel protein drug delivery systems. In this commentary, we discuss the need for more extensive analytical characterization in relation to concerns about protein instability in injectable drug delivery systems for sustained release. We then will briefly address immunogenicity concerns and outline current best practices for using state-of-the-art analytical assays to monitor protein stability for both conventional and novel therapeutic protein dosage forms. Next, we provide a summary of the stresses on proteins arising during preparation of drug delivery systems and subsequent in vivo release. We note the challenges and difficulties in achieving the absolute requirement of quantitatively assessing the degradation of protein molecules in a drug delivery system. We describe the potential roles for academic research in further improving protein stability and developing new analytical technologies to detect protein degradation byproducts in novel drug delivery systems. Finally, we provide recommendations for the appropriate approaches to formulation design and assay development to ensure that stable, minimally immunogenic formulations of therapeutic proteins are created. These approaches should help to increase the probability that novel drug delivery systems for sustained protein release will become more readily available as effective therapeutic agents to treat and benefit patients. Copyright © 2011 Wiley Periodicals, Inc.

  2. Molecular design and nanoparticle-mediated intracellular delivery of functional proteins to target cellular pathways

    Science.gov (United States)

    Shah, Dhiral Ashwin

    Intracellular delivery of specific proteins and peptides represents a novel method to influence stem cells for gain-of-function and loss-of-function. Signaling control is vital in stem cells, wherein intricate control of and interplay among critical pathways directs the fate of these cells into either self-renewal or differentiation. The most common route to manipulate cellular function involves the introduction of genetic material such as full-length genes and shRNA into the cell to generate (or prevent formation of) the target protein, and thereby ultimately alter cell function. However, viral-mediated gene delivery may result in relatively slow expression of proteins and prevalence of oncogene insertion into the cell, which can alter cell function in an unpredictable fashion, and non-viral delivery may lead to low efficiency of genetic delivery. For example, the latter case plagues the generation of induced pluripotent stem cells (iPSCs) and hinders their use for in vivo applications. Alternatively, introducing proteins into cells that specifically recognize and influence target proteins, can result in immediate deactivation or activation of key signaling pathways within the cell. In this work, we demonstrate the cellular delivery of functional proteins attached to hydrophobically modified silica (SiNP) nanoparticles to manipulate specifically targeted cell signaling proteins. In the Wnt signaling pathway, we have targeted the phosphorylation activity of glycogen synthase kinase-3beta (GSK-3beta) by designing a chimeric protein and delivering it in neural stem cells. Confocal imaging indicates that the SiNP-chimeric protein conjugates were efficiently delivered to the cytosol of human embryonic kidney cells and rat neural stem cells, presumably via endocytosis. This uptake impacted the Wnt signaling cascade, indicated by the elevation of beta-catenin levels, and increased transcription of Wnt target genes, such as c-MYC. The results presented here suggest that

  3. Oral delivery of peptides and proteins using lipid-based drug delivery systems.

    Science.gov (United States)

    Li, Ping; Nielsen, Hanne Mørck; Müllertz, Anette

    2012-10-01

    In order to successfully develop lipid-based drug delivery systems (DDS) for oral administration of peptides and proteins, it is important to gain an understanding of the colloid structures formed by these DDS, the mode of peptide and protein incorporation as well as the mechanism by which intestinal absorption of peptides and proteins is promoted. The present paper reviews the literature on lipid-based DDS, employed for oral delivery of peptides and proteins and highlights the mechanisms by which the different lipid-based carriers are expected to overcome the two most important barriers (extensive enzymatic degradation and poor transmucosal permeability). This paper also gives a clear-cut idea about advantages and drawbacks of using different lipidic colloidal carriers ((micro)emulsions, solid lipid core particles and liposomes) for oral delivery of peptides and proteins. Lipid-based DDS are safe and suitable for oral delivery of peptides and proteins. Significant progress has been made in this area with several technologies on clinical trials. However, a better understanding of the mechanism of action in vivo is needed in order to improve the design and development of lipid-based DDS with the desired bioavailability and therapeutic profile.

  4. Integrating Protein Engineering and Bioorthogonal Click Conjugation for Extracellular Vesicle Modulation and Intracellular Delivery.

    Directory of Open Access Journals (Sweden)

    Ming Wang

    Full Text Available Exosomes are small, cell-secreted vesicles that transfer proteins and genetic information between cells. This intercellular transmission regulates many physiological and pathological processes. Therefore, exosomes have emerged as novel biomarkers for disease diagnosis and as nanocarriers for drug delivery. Here, we report an easy-to-adapt and highly versatile methodology to modulate exosome composition and conjugate exosomes for intracellular delivery. Our strategy combines the metabolic labeling of newly synthesized proteins or glycan/glycoproteins of exosome-secreting cells with active azides and bioorthogonal click conjugation to modify and functionalize the exosomes. The azide-integrated can be conjugated to a variety of small molecules and proteins and can efficiently deliver conjugates into cells. The metabolic engineering of exosomes diversifies the chemistry of exosomes and expands the functions that can be introduced into exosomes, providing novel, powerful tools to study the roles of exosomes in biology and expand the biomedical potential of exosomes.

  5. Liposome-based Formulation for Intracellular Delivery of Functional Proteins

    Directory of Open Access Journals (Sweden)

    Benoît Chatin

    2015-01-01

    Full Text Available The intracellular delivery of biologically active protein represents an important emerging strategy for both fundamental and therapeutic applications. Here, we optimized in vitro delivery of two functional proteins, the β-galactosidase (β-gal enzyme and the anti-cytokeratin8 (K8 antibody, using liposome-based formulation. The guanidinium-cholesterol cationic lipid bis (guanidinium-tren-cholesterol (BGTC (bis (guanidinium-tren-cholesterol combined to the colipid dioleoyl phosphatidylethanolamine (DOPE (dioleoyl phosphatidylethanolamine was shown to efficiently deliver the β-gal intracellularly without compromising its activity. The lipid/protein molar ratio, protein amount, and culture medium were demonstrated to be key parameters affecting delivery efficiency. The protein itself is an essential factor requiring selection of the appropriate cationic lipid as illustrated by low K8 binding activity of the anti-K8 antibody using guanidinium-based liposome. Optimization of various lipids led to the identification of the aminoglycoside lipid dioleyl succinyl paromomycin (DOSP associated with the imidazole-based helper lipid MM27 as a potent delivery system for K8 antibody, achieving delivery in 67% of HeLa cells. Cryo-transmission electron microscopy showed that the structure of supramolecular assemblies BGTC:DOPE/β-gal and DOSP:MM27/K8 were different depending on liposome types and lipid/protein molar ratio. Finally, we observed that K8 treatment with DOSP:MM27/K8 rescues the cyclic adenosine monophosphate (cAMP-dependent chloride efflux in F508del-CFTR expressing cells, providing a new tool for the study of channelopathies.

  6. The modified nanocrystalline cellulose for hydrophobic drug delivery

    Energy Technology Data Exchange (ETDEWEB)

    Qing, Weixia [Institute of Environmental and Analytical Sciences, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004 (China); Medical College, Henan University, Kaifeng 475004 (China); Wang, Yong [Institute of Environmental and Analytical Sciences, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004 (China); Wang, Youyou [Institute of Environmental and Analytical Sciences, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004 (China); Key Lab of Natural Medicine and Immun-engineering of Henan Province, Henan University, Kaifeng 475004 (China); Zhao, Dongbao [Institute of Environmental and Analytical Sciences, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004 (China); Liu, Xiuhua, E-mail: ll514527@163.com [Institute of Environmental and Analytical Sciences, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004 (China); Key Lab of Natural Medicine and Immun-engineering of Henan Province, Henan University, Kaifeng 475004 (China); Zhu, Jinhua [Institute of Environmental and Analytical Sciences, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004 (China)

    2016-03-15

    Graphical abstract: - Highlights: • Torispherical NCC was synthesized through the improvements on the hydrolysis method. • NCC was firstly modified with CTMAB as a drug carrier. • Luteolin and luteoloside loading CTMAB-coated NCC were studied. - Abstract: In this work, torispherical nanocrystalline cellulose (NCC) was synthesized, and firstly modified with a cationic surfactant cetyltrimethylammonium bromide (CTMAB). It was proved that the kinetics of NCC adsorbing CTMAB followed the pseudo-second-order kinetics equation, and the adsorption isotherm model followed Freundlich which was multi molecular layer adsorption model. The morphology and structure of NCC and CTMAB-coated NCC were characterized by transmission electron microscopy (TEM) and X-ray powder diffraction (XRD). Stabilities of NCC and CTMAB-coated NCC were assayed by zeta potential. The results showed that NCC in CTMAB solution was well-dispersed and stable. Moreover, the drug loading and release performance of CTMAB-coated NCC were studied using luteolin (LUT) and luteoloside (LUS) as model drugs.

  7. The modified nanocrystalline cellulose for hydrophobic drug delivery

    International Nuclear Information System (INIS)

    Qing, Weixia; Wang, Yong; Wang, Youyou; Zhao, Dongbao; Liu, Xiuhua; Zhu, Jinhua

    2016-01-01

    Graphical abstract: - Highlights: • Torispherical NCC was synthesized through the improvements on the hydrolysis method. • NCC was firstly modified with CTMAB as a drug carrier. • Luteolin and luteoloside loading CTMAB-coated NCC were studied. - Abstract: In this work, torispherical nanocrystalline cellulose (NCC) was synthesized, and firstly modified with a cationic surfactant cetyltrimethylammonium bromide (CTMAB). It was proved that the kinetics of NCC adsorbing CTMAB followed the pseudo-second-order kinetics equation, and the adsorption isotherm model followed Freundlich which was multi molecular layer adsorption model. The morphology and structure of NCC and CTMAB-coated NCC were characterized by transmission electron microscopy (TEM) and X-ray powder diffraction (XRD). Stabilities of NCC and CTMAB-coated NCC were assayed by zeta potential. The results showed that NCC in CTMAB solution was well-dispersed and stable. Moreover, the drug loading and release performance of CTMAB-coated NCC were studied using luteolin (LUT) and luteoloside (LUS) as model drugs.

  8. Proteins mediating intra- and intercellular transport of lipids and lipid-modified proteins

    NARCIS (Netherlands)

    Neumann, S.

    2008-01-01

    Proteins mediating intra- and intercellular transport of lipids and lipid-modified proteins In this thesis, I studied the intra- and intercellular transport of lipidic molecules, in particular glycosphingolipids and lipid-modified proteins. The first part focuses on the intracellular transport of

  9. Recent trends in drug delivery system using protein nanoparticles.

    Science.gov (United States)

    Sripriyalakshmi, S; Jose, Pinkybel; Ravindran, Aswathy; Anjali, C H

    2014-09-01

    Engineered nanoparticles that can facilitate drug formulation and passively target tumours have been under extensive research in recent years. These successes have driven a new wave of significant innovation in the generation of advanced particles. The fate and transport of diagnostic nanoparticles would significantly depend on nonselective drug delivery, and hence the use of high drug dosage is implemented. In this perspective, nanocarrier-based drug targeting strategies can be used which improve the selective delivery of drugs to the site of action, i.e. drug targeting. Pharmaceutical industries majorly focus on reducing the toxicity and side effects of drugs but only recently it has been realised that carrier systems themselves may pose risks to the patient. Proteins are compatible with biological systems and they are biodegradable. They offer a multitude of moieties for modifications to tailor drug binding, imaging or targeting entities. Thus, protein nanoparticles provide outstanding contributions as a carrier for drug delivery systems. This review summarises recent progress in particle-based therapeutic delivery and discusses important concepts in particle design and biological barriers for developing the next generation of particles drug delivery systems.

  10. Gene Delivery into Plant Cells for Recombinant Protein Production

    Directory of Open Access Journals (Sweden)

    Qiang Chen

    2015-01-01

    Full Text Available Recombinant proteins are primarily produced from cultures of mammalian, insect, and bacteria cells. In recent years, the development of deconstructed virus-based vectors has allowed plants to become a viable platform for recombinant protein production, with advantages in versatility, speed, cost, scalability, and safety over the current production paradigms. In this paper, we review the recent progress in the methodology of agroinfiltration, a solution to overcome the challenge of transgene delivery into plant cells for large-scale manufacturing of recombinant proteins. General gene delivery methodologies in plants are first summarized, followed by extensive discussion on the application and scalability of each agroinfiltration method. New development of a spray-based agroinfiltration and its application on field-grown plants is highlighted. The discussion of agroinfiltration vectors focuses on their applications for producing complex and heteromultimeric proteins and is updated with the development of bridge vectors. Progress on agroinfiltration in Nicotiana and non-Nicotiana plant hosts is subsequently showcased in context of their applications for producing high-value human biologics and low-cost and high-volume industrial enzymes. These new advancements in agroinfiltration greatly enhance the robustness and scalability of transgene delivery in plants, facilitating the adoption of plant transient expression systems for manufacturing recombinant proteins with a broad range of applications.

  11. A modified method of planning and delivery for dynamic multileaf collimator intensity-modulated radiation therapy

    International Nuclear Information System (INIS)

    Dogan, Nesrin; Leybovich, Leonid B.; Sethi, Anil; Krasin, Matthew; Emami, Bahman

    2000-01-01

    Purpose: To develop a modified planning and delivery technique that reduces dose nonuniformity for tomographic delivery of intensity-modulated radiation therapy (IMRT). Methods and Materials: The NOMOS-CORVUS system delivers IMRT in a tomographic paradigm. This type of delivery is prone to create multiple dose nonuniformity regions at the arc abutment regions. The modified technique was based on the cyclical behavior of arc positions as a function of a target length. With the modified technique, two plans are developed for the same patient, one with the original target and the second with a slightly increased target length and the abutment regions shifted by ∼5 mm compared to the first plan. Each plan is designed to deliver half of the target prescription dose delivered on alternate days, resulting in periodic shifts of abutment regions. This method was experimentally tested in phantoms with and without intentionally introduced errors in couch indexing. Results: With the modified technique, the degree of dose nonuniformity was reduced. For example, with 1 mm error in couch indexing, the degree of dose nonuniformity changed from ∼25% to ∼12%. Conclusion: Use of the modified technique reduces dose nonuniformity due to periodic shifts of abutment regions during treatment delivery

  12. Ligand-Modified Human Serum Albumin Nanoparticles for Enhanced Gene Delivery.

    Science.gov (United States)

    Look, Jennifer; Wilhelm, Nadine; von Briesen, Hagen; Noske, Nadja; Günther, Christine; Langer, Klaus; Gorjup, Erwin

    2015-09-08

    The development of nonviral gene delivery systems is a great challenge to enable safe gene therapy. In this study, ligand-modified nanoparticles based on human serum albumin (HSA) were developed and optimized for an efficient gene therapy. Different glutaraldehyde cross-linking degrees were investigated to optimize the HSA nanoparticles for gene delivery. The peptide sequence arginine-glycine-aspartate (RGD) and the HIV-1 transactivator of transduction sequence (Tat) are well-known as promising targeting ligands. Plasmid DNA loaded HSA nanoparticles were covalently modified on their surface with these different ligands. The transfection potential of the obtained plasmid DNA loaded RGD- and Tat-modified nanoparticles was investigated in vitro, and optimal incubation conditions for these preparations were studied. It turned out that Tat-modified HSA nanoparticles with the lowest cross-linking degree of 20% showed the highest transfection potential. Taken together, ligand-functionalized HSA nanoparticles represent promising tools for efficient and safe gene therapy.

  13. Bioreducible Lipid-like Nanoparticles for Intracellular Protein Delivery

    Science.gov (United States)

    Arellano, Carlos Luis

    Protein-based therapy is one of the most direct ways to manipulate cell function and treat human disease. Although protein therapeutics has made its way to clinical practice, with five of the top fifteen global pharmaceuticals being peptide or protein-based drugs, one common limitation is that the effects of protein therapy are only achieved through the targeting of cell surface receptors and intracellular domains. Due to the impermeability of the cell membrane to most foreign materials, entire classes of potentially therapeutic proteins cannot thoroughly be studied without a safe and efficient method of transporting proteins into the cytosol. We report the use of a combinatorially-designed bioreducible lipid-like material (termed "lipidoid") - based protein delivery platform for the transfection of human cancer cell lines. Lipidoid nanoparticles are synthesized through a thin film dispersion method. The degradation of the bioreducible nanoparticles was observed when exposed to glutathione, a highly reductive compound present in the cytosol. We demonstrate that the nanoparticles are capable of transfecting a dose-dependent concentration of our model protein, beta-galactosidase into HeLa cells. Furthermore, formulations of the lipidoid containing the cytotoxic proteins saporin and RNase-A are both capable of inhibiting tumor cell proliferation as observed in in vitro treatment of different human cancer cell lines. There was no observed loss in protein activity after lyophilization and long--term storage, indicating the potential of pre-clinical applications. Overall, we demonstrate an effective approach to protein formulation and intracellular delivery. We believe that our formulations will lead to the study of a whole class of previously untapped therapeutics that may generate new solutions for previously untreatable diseases.

  14. Peptide-chaperone-directed transdermal protein delivery requires energy.

    Science.gov (United States)

    Ruan, Renquan; Jin, Peipei; Zhang, Li; Wang, Changli; Chen, Chuanjun; Ding, Weiping; Wen, Longping

    2014-11-03

    The biologically inspired transdermal enhanced peptide TD1 has been discovered to specifically facilitate transdermal delivery of biological macromolecules. However, the biological behavior of TD1 has not been fully defined. In this study, we find that energy is required for the TD1-mediated transdermal protein delivery through rat and human skins. Our results show that the permeation activity of TD1-hEGF, a fusion protein composed of human epidermal growth factor (hEGF) and the TD1 sequence connected with a glycine-serine linker (GGGGS), can be inhibited by the energy inhibitor, rotenone or oligomycin. In addition, adenosine triphosphate (ATP), the essential energetic molecule in organic systems, can effectively facilitate the TD1 directed permeation of the protein-based drug into the skin in a dose-dependent fashion. Our results here demonstrate a novel energy-dependent permeation process during the TD1-mediated transdermal protein delivery that could be valuable for the future development of promising new transdermal drugs.

  15. Gene delivery to skeletal muscle results in sustained expression and systemic delivery of a therapeutic protein.

    Science.gov (United States)

    Kessler, P D; Podsakoff, G M; Chen, X; McQuiston, S A; Colosi, P C; Matelis, L A; Kurtzman, G J; Byrne, B J

    1996-11-26

    Somatic gene therapy has been proposed as a means to achieve systemic delivery of therapeutic proteins. However, there is limited evidence that current methods of gene delivery can practically achieve this goal. In this study, we demonstrate that, following a single intramuscular administration of a recombinant adeno-associated virus (rAAV) vector containing the beta-galactosidase (AAV-lacZ) gene into adult BALB/c mice, protein expression was detected in myofibers for at least 32 weeks. A single intramuscular administration of an AAV vector containing a gene for human erythropoietin (AAV-Epo) into mice resulted in dose-dependent secretion of erythropoietin and corresponding increases in red blood cell production that persisted for up to 40 weeks. Primary human myotubes transduced in vitro with the AAV-Epo vector also showed dose-dependent production of Epo. These results demonstrate that rAAV vectors are able to transduce skeletal muscle and are capable of achieving sustained expression and systemic delivery of a therapeutic protein following a single intramuscular administration. Gene therapy using AAV vectors may provide a practical strategy for the treatment of inherited and acquired protein deficiencies.

  16. Protein cages and synthetic polymers: a fruitful symbiosis for drug delivery applications, bionanotechnology and materials science.

    Science.gov (United States)

    Rother, Martin; Nussbaumer, Martin G; Renggli, Kasper; Bruns, Nico

    2016-11-07

    Protein cages are hollow protein nanoparticles, such as viral capsids, virus-like particles, ferritin, heat-shock proteins and chaperonins. They have well-defined capsule-like structures with a monodisperse size. Their protein subunits can be modified by genetic engineering at predetermined positions, allowing for example site-selective introduction of attachment points for functional groups, catalysts or targeting ligands on their outer surface, in their interior and between subunits. Therefore, protein cages have been extensively explored as functional entities in bionanotechnology, as drug-delivery or gene-delivery vehicles, as nanoreactors or as templates for the synthesis of organic and inorganic nanomaterials. The scope of functionalities and applications of protein cages can be significantly broadened if they are combined with synthetic polymers on their surface or within their interior. For example, PEGylation reduces the immunogenicity of protein cage-based delivery systems and active targeting ligands can be attached via polymer chains to favour their accumulation in diseased tissue. Polymers within protein cages offer the possibility of increasing the loading density of drug molecules, nucleic acids, magnetic resonance imaging contrast agents or catalysts. Moreover, the interaction of protein cages and polymers can be used to modulate the size and shape of some viral capsids to generate structures that do not occur with native viruses. Another possibility is to use the interior of polymer cages as a confined reaction space for polymerization reactions such as atom transfer radical polymerization or rhodium-catalysed polymerization of phenylacetylene. The protein nanoreactors facilitate a higher degree of control over polymer synthesis. This review will summarize the hybrid structures that have been synthesized by polymerizing from protein cage-bound initiators, by conjugating polymers to protein cages, by embedding protein cages into bulk polymeric

  17. Oral Delivery of Protein Drugs Bioencapsulated in Plant Cells.

    Science.gov (United States)

    Kwon, Kwang-Chul; Daniell, Henry

    2016-08-01

    Plants cells are now approved by the FDA for cost-effective production of protein drugs (PDs) in large-scale current Good Manufacturing Practice (cGMP) hydroponic growth facilities. In lyophilized plant cells, PDs are stable at ambient temperature for several years, maintaining their folding and efficacy. Upon oral delivery, PDs bioencapsulated in plant cells are protected in the stomach from acids and enzymes but are subsequently released into the gut lumen by microbes that digest the plant cell wall. The large mucosal area of the human intestine offers an ideal system for oral drug delivery. When tags (receptor-binding proteins or cell-penetrating peptides) are fused to PDs, they efficiently cross the intestinal epithelium and are delivered to the circulatory or immune system. Unique tags to deliver PDs to human immune or nonimmune cells have been developed recently. After crossing the epithelium, ubiquitous proteases cleave off tags at engineered sites. PDs are also delivered to the brain or retina by crossing the blood-brain or retinal barriers. This review highlights recent advances in PD delivery to treat Alzheimer's disease, diabetes, hypertension, Gaucher's or ocular diseases, as well as the development of affordable drugs by eliminating prohibitively expensive purification, cold chain and sterile delivery.

  18. Multi-protein delivery by nanodiamonds promotes bone formation.

    Science.gov (United States)

    Moore, L; Gatica, M; Kim, H; Osawa, E; Ho, D

    2013-11-01

    Bone morphogenetic proteins (BMPs) are well-studied regulators of cartilage and bone development that have been Food and Drug Administration (FDA)-approved for the promotion of bone formation in certain procedures. BMPs are seeing more use in oral and maxillofacial surgeries because of recent FDA approval of InFUSE(®) for sinus augmentation and localized alveolar ridge augmentation. However, the utility of BMPs in medical and dental applications is limited by the delivery method. Currently, BMPs are delivered to the surgical site by the implantation of bulky collagen sponges. Here we evaluate the potential of detonation nanodiamonds (NDs) as a delivery vehicle for BMP-2 and basic fibroblast growth factor (bFGF). Nanodiamonds are biocompatible, 4- to 5-nm carbon nanoparticles that have previously been used to deliver a wide variety of molecules, including proteins and peptides. We find that both BMP-2 and bFGF are readily loaded onto NDs by physisorption, forming a stable colloidal solution, and are triggered to release in slightly acidic conditions. Simultaneous delivery of BMP-2 and bFGF by ND induces differentiation and proliferation in osteoblast progenitor cells. Overall, we find that NDs provide an effective injectable alternative for the delivery of BMP-2 and bFGF to promote bone formation.

  19. Huntingtin interacting proteins are genetic modifiers of neurodegeneration.

    Directory of Open Access Journals (Sweden)

    Linda S Kaltenbach

    2007-05-01

    Full Text Available Huntington's disease (HD is a fatal neurodegenerative condition caused by expansion of the polyglutamine tract in the huntingtin (Htt protein. Neuronal toxicity in HD is thought to be, at least in part, a consequence of protein interactions involving mutant Htt. We therefore hypothesized that genetic modifiers of HD neurodegeneration should be enriched among Htt protein interactors. To test this idea, we identified a comprehensive set of Htt interactors using two complementary approaches: high-throughput yeast two-hybrid screening and affinity pull down followed by mass spectrometry. This effort led to the identification of 234 high-confidence Htt-associated proteins, 104 of which were found with the yeast method and 130 with the pull downs. We then tested an arbitrary set of 60 genes encoding interacting proteins for their ability to behave as genetic modifiers of neurodegeneration in a Drosophila model of HD. This high-content validation assay showed that 27 of 60 orthologs tested were high-confidence genetic modifiers, as modification was observed with more than one allele. The 45% hit rate for genetic modifiers seen among the interactors is an order of magnitude higher than the 1%-4% typically observed in unbiased genetic screens. Genetic modifiers were similarly represented among proteins discovered using yeast two-hybrid and pull-down/mass spectrometry methods, supporting the notion that these complementary technologies are equally useful in identifying biologically relevant proteins. Interacting proteins confirmed as modifiers of the neurodegeneration phenotype represent a diverse array of biological functions, including synaptic transmission, cytoskeletal organization, signal transduction, and transcription. Among the modifiers were 17 loss-of-function suppressors of neurodegeneration, which can be considered potential targets for therapeutic intervention. Finally, we show that seven interacting proteins from among 11 tested were able to

  20. Delivery of bioactive peptides and proteins across oral (buccal) mucosa.

    Science.gov (United States)

    Senel, S; Kremer, M; Nagy, K; Squier, C

    2001-06-01

    The identification of an increasing array of highly potent, endogenous peptide and protein factors termed cytokines, that can be efficiently synthesized using recombinant DNA technology, offers exciting new approaches for drug therapy. However, the physico-chemical and biological properties of these agents impose limitations in formulation and development of optimum drug delivery systems as well as on the routes of delivery. Oral mucosa, including the lining of the cheek (buccal mucosa), floor of mouth and underside of tongue (sublingual mucosa) and gingival mucosa, has received much attention in the last decade because it offers excellent accessibility, is not easily traumatized and avoids degradation of proteins and peptides that occurs as a result of oral administration, gastrointestinal absorption and first-pass hepatic metabolism. Peptide absorption occurs across oral mucosa by passive diffusion and it is unlikely that there is a carrier-mediated transport mechanism. The principal pathway is probably via the intercellular route where the major permeability barrier is represented by organized array of neutral lipids in the superficial layers of the epithelium. The relative role of aqueous as opposed to the lipid pathway in drug transport is still under investigation; penetration is not necessarily enhanced by simply increasing lipophilicity, for other effects, such as charge and molecular size, also play an important role in absorption of peptide and protein drugs. Depending on the pharmacodynamics of the peptides, various oral mucosal delivery systems can be designed. Delivery of peptide/protein drugs by conventional means such as solutions has some limitations. The possibility of excluding a major part of drug from absorption by involuntary swallowing and the continuous dilution due to salivary flow limits a controlled release. However these limitations can be overcome by adhesive dosage forms such as gels, films, tablets, and patches. They can localize the

  1. Updates on smart polymeric carrier systems for protein delivery.

    Science.gov (United States)

    El-Sherbiny, Ibrahim; Khalil, Islam; Ali, Isra; Yacoub, Magdi

    2017-10-01

    Smart materials are those materials that are responsive to chemical (organic molecules, chemical agents or specific agents), biochemical (protein, enzymes, growth factors, substrates or ligands), physical (electric field, magnetic field, temperature, pH, ionic strength or radiation) or mechanical (pressure or mechanical stress) signals. These responsive materials interact with the stimuli by changing their properties or conformational structures in a predictable manner. Recently, smart polymers have been utilized in various biomedical applications. Particularly, they have been used as a platform to synthesize stimuli-responsive systems that could deliver therapeutics to a specific site for a specific period with minimal adverse effects. For instance, stimuli-responsive polymers-based systems have been recently reported to deliver different bioactive molecules such as carbohydrates (heparin), chemotherapeutic agents (doxorubicin), small organic molecules (anti-coagulants), nucleic acids (siRNA), and proteins (growth factors and hormones). Protein therapeutics played a fundamental role in treatment of various chronic and some autoimmune diseases. For instance insulin has been used in treatment of diabetes. However, being a protein in nature, insulin delivery is limited by its instability, short half-life, and easy denaturation when administered orally. To overcome these challenges, and as highlighted in this review article, much research efforts have been recently devoted to design and develop convenient smart controlled nanosystems for protein therapeutics delivery.

  2. Controlling chitosan-based encapsulation for protein and vaccine delivery

    Science.gov (United States)

    Koppolu, Bhanu prasanth; Smith, Sean G.; Ravindranathan, Sruthi; Jayanthi, Srinivas; Kumar, Thallapuranam K.S.; Zaharoff, David A.

    2014-01-01

    Chitosan-based nano/microencapsulation is under increasing investigation for the delivery of drugs, biologics and vaccines. Despite widespread interest, the literature lacks a defined methodology to control chitosan particle size and drug/protein release kinetics. In this study, the effects of precipitation-coacervation formulation parameters on chitosan particle size, protein encapsulation efficiency and protein release were investigated. Chitosan particle sizes, which ranged from 300 nm to 3 μm, were influenced by chitosan concentration, chitosan molecular weight and addition rate of precipitant salt. The composition of precipitant salt played a significant role in particle formation with upper Hofmeister series salts containing strongly hydrated anions yielding particles with a low polydispersity index (PDI) while weaker anions resulted in aggregated particles with high PDIs. Sonication power had minimal effect on mean particle size, however, it significantly reduced polydispersity. Protein loading efficiencies in chitosan nano/microparticles, which ranged from 14.3% to 99.2%, was inversely related to the hydration strength of precipitant salts, protein molecular weight and directly related to the concentration and molecular weight of chitosan. Protein release rates increased with particle size and were generally inversely related to protein molecular weight. This study demonstrates that chitosan nano/microparticles with high protein loading efficiencies can be engineered with well-defined sizes and controllable release kinetics through manipulation of specific formulation parameters. PMID:24560459

  3. Controlled release and intracellular protein delivery from mesoporous silica nanoparticles.

    Science.gov (United States)

    Deodhar, Gauri V; Adams, Marisa L; Trewyn, Brian G

    2017-01-01

    Protein therapeutics are promising candidates for disease treatment due to their high specificity and minimal adverse side effects; however, targeted protein delivery to specific sites has proven challenging. Mesoporous silica nanoparticles (MSN) have demonstrated to be ideal candidates for this application, given their high loading capacity, biocompatibility, and ability to protect host molecules from degradation. These materials exhibit tunable pore sizes, shapes and volumes, and surfaces which can be easily functionalized. This serves to control the movement of molecules in and out of the pores, thus entrapping guest molecules until a specific stimulus triggers release. In this review, we will cover the benefits of using MSN as protein therapeutic carriers, demonstrating that there is great diversity in the ways MSN can be used to service proteins. Methods for controlling the physical dimensions of pores via synthetic conditions, applications of therapeutic protein loaded MSN materials in cancer therapies, delivering protein loaded MSN materials to plant cells using biolistic methods, and common stimuli-responsive functionalities will be discussed. New and exciting strategies for controlled release and manipulation of proteins are also covered in this review. While research in this area has advanced substantially, we conclude this review with future challenges to be tackled by the scientific community. Copyright © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. A modified Poisson-Boltzmann equation applied to protein adsorption.

    Science.gov (United States)

    Gama, Marlon de Souza; Santos, Mirella Simões; Lima, Eduardo Rocha de Almeida; Tavares, Frederico Wanderley; Barreto, Amaro Gomes Barreto

    2018-01-05

    Ion-exchange chromatography has been widely used as a standard process in purification and analysis of protein, based on the electrostatic interaction between the protein and the stationary phase. Through the years, several approaches are used to improve the thermodynamic description of colloidal particle-surface interaction systems, however there are still a lot of gaps specifically when describing the behavior of protein adsorption. Here, we present an improved methodology for predicting the adsorption equilibrium constant by solving the modified Poisson-Boltzmann (PB) equation in bispherical coordinates. By including dispersion interactions between ions and protein, and between ions and surface, the modified PB equation used can describe the Hofmeister effects. We solve the modified Poisson-Boltzmann equation to calculate the protein-surface potential of mean force, treated as spherical colloid-plate system, as a function of process variables. From the potential of mean force, the Henry constants of adsorption, for different proteins and surfaces, are calculated as a function of pH, salt concentration, salt type, and temperature. The obtained Henry constants are compared with experimental data for several isotherms showing excellent agreement. We have also performed a sensitivity analysis to verify the behavior of different kind of salts and the Hofmeister effects. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Comparison of different cationized proteins as biomaterials for nanoparticle-based ocular gene delivery.

    Science.gov (United States)

    Zorzi, Giovanni K; Párraga, Jenny E; Seijo, Begoña; Sanchez, Alejandro

    2015-11-01

    Cationized polymers have been proposed as transfection agents for gene therapy. The present work aims to improve the understanding of the potential use of different cationized proteins (atelocollagen, albumin and gelatin) as nanoparticle components and to investigate the possibility of modulating the physicochemical properties of the resulting nanoparticle carriers by selecting specific protein characteristics in an attempt to improve current ocular gene-delivery approaches. The toxicity profiles, as well as internalization and transfection efficiency, of the developed nanoparticles can be modulated by modifying the molecular weight of the selected protein and the amine used for cationization. The most promising systems are nanoparticles based on intermediate molecular weight gelatin cationized with the endogenous amine spermine, which exhibit an adequate toxicological profile, as well as effective association and protection of pDNA or siRNA molecules, thereby resulting in higher transfection efficiency and gene silencing than the other studied formulations. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Hybrid protein-synthetic polymer nanoparticles for drug delivery.

    Science.gov (United States)

    Koseva, Neli S; Rydz, Joanna; Stoyanova, Ekaterina V; Mitova, Violeta A

    2015-01-01

    Among the most common nanoparticulate systems, the polymeric nanocarriers have a number of key benefits, which give a great choice of delivery platforms. Nevertheless, polymeric nanoparticles possess some limitations that include use of toxic solvents in the production process, polymer degradation, drug leakage outside the diseased tissue, and polymer cytotoxicity. The combination of polymers of biological and synthetic origin is an appealing modern strategy for the production of novel nanocarriers with unprecedented properties. Proteins' interface can play an important role in determining bioactivity and toxicity and gives perspective for future development of the polymer-based nanoparticles. The design of hybrid constructs composed of synthetic polymer and biological molecules such as proteins can be considered as a straightforward tool to integrate a broad spectrum of properties and biofunctions into a single device. This review discusses hybrid protein-synthetic polymer nanoparticles with different structures and levels in complexity and functionality, in view of their applications as drug delivery systems. © 2015 Elsevier Inc. All rights reserved.

  7. 4-Hydroxyhexenal- and 4-Hydroxynonenal-Modified Proteins in Pterygia

    Directory of Open Access Journals (Sweden)

    Ichiya Sano

    2013-01-01

    Full Text Available Oxidative stress has been suspected of contributing to the pathogenesis of pterygia. We evaluated the immunohistochemical localization of the markers of oxidative stress, that is, the proteins modified by 4-hydroxyhexenal (4-HHE and 4-hydroxynonenal (4-HNE, which are reactive aldehydes derived from nonenzymatic oxidation of n-3 and n-6 polyunsaturated fatty acids, respectively. In the pterygial head, labeling of 4-HHE- and 4-HNE-modified proteins was prominent in the nuclei and cytosol of the epithelium. In the pterygial body, strong labeling was observed in the nuclei and cytosol of the epithelium and proliferating subepithelial connective tissue. In normal conjunctival specimens, only trace immunoreactivity of both proteins was observed in the epithelial and stromal layers. Exposures of ultraviolet (330 nm, 48.32 ± 0.55 J/cm2 or blue light (400 nm, 293.0 ± 2.0 J/cm2 to rat eyes enhanced labeling of 4-HHE- and 4-HNE-modified proteins in the nuclei of conjunctival epithelium. Protein modifications by biologically active aldehydes are a molecular event involved in the development of pterygia.

  8. Synthesis and characterization of modified starch/polybutadiene as novel transdermal drug delivery system.

    Science.gov (United States)

    Saboktakin, Mohammad Reza; Akhyari, Shahab; Nasirov, Fizuli A

    2014-08-01

    Transdermal drug delivery systems are topically administered medicaments in the form of patches that deliver drugs for systemic effects at a predetermined and controlled rate. It works very simply in which drug is applied inside the patch and it is worn on skin for long period of time. Polymer matrix, drug, permeation enhancers are the main components of transdermal drug delivery systems. The objective of the present study was to develop the modified starch and 1,4-cis polybutadiene nanoparticles as novel polymer matrix system. We have been studied the properties of a novel transdermal drug delivery system with clonidine as drug model. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Protein-modified nanocrystalline diamond thin films for biosensor applications.

    Science.gov (United States)

    Härtl, Andreas; Schmich, Evelyn; Garrido, Jose A; Hernando, Jorge; Catharino, Silvia C R; Walter, Stefan; Feulner, Peter; Kromka, Alexander; Steinmüller, Doris; Stutzmann, Martin

    2004-10-01

    Diamond exhibits several special properties, for example good biocompatibility and a large electrochemical potential window, that make it particularly suitable for biofunctionalization and biosensing. Here we show that proteins can be attached covalently to nanocrystalline diamond thin films. Moreover, we show that, although the biomolecules are immobilized at the surface, they are still fully functional and active. Hydrogen-terminated nanocrystalline diamond films were modified by using a photochemical process to generate a surface layer of amino groups, to which proteins were covalently attached. We used green fluorescent protein to reveal the successful coupling directly. After functionalization of nanocrystalline diamond electrodes with the enzyme catalase, a direct electron transfer between the enzyme's redox centre and the diamond electrode was detected. Moreover, the modified electrode was found to be sensitive to hydrogen peroxide. Because of its dual role as a substrate for biofunctionalization and as an electrode, nanocrystalline diamond is a very promising candidate for future biosensor applications.

  10. Using modified soy protein to enhance foaming of egg white protein.

    Science.gov (United States)

    Wang, Guang; Troendle, Molly; Reitmeier, Cheryll A; Wang, Tong

    2012-08-15

    It is well known that the foaming properties of egg white protein are significantly reduced when a small amount of yolk is mixed in the white. To improve foaming properties of yolk-contaminated egg white protein, soy protein isolate (SPI) and egg proteins were modified to make basic proteins, and effects of these modified proteins on egg white foaming were evaluated in a model and an angel cake system. SPI and egg yolk proteins were modified to have an isoelectric point of 10, and sonication was used to increase protein dispersibility after the ethyl esterification reaction. However, only the addition of sonicated and modified SPI (SMSPI) showed improvement of foaming in the 5% egg protein model system with 0.4% yolk addition. SMSPI was then used in making angel food cake to examine whether the cake performance reduction due to yolk contamination of the white would be restored by such alkaline protein. Cake performance was improved when cream of tartar was used together with SMSPI. Basic soy protein can be made and used to improve egg white foaming properties and cake performance. Copyright © 2012 Society of Chemical Industry.

  11. Biocompatible hyperbranched polyglycerol modified β-cyclodextrin derivatives for docetaxel delivery

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Zejun; Zhang, Yi; Hu, Qian; Tang, Qiao [Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering, Jinan University, Guangzhou, 510632 (China); Xu, Jiake [The School of Pathology and Laboratory Medicine, University of Western Australia, Perth (Australia); Wu, Jianping; Kirk, Thomas Brett [3D Imaging and Bioengineering Laboratory, Department of Mechanical Engineering, Curtin University (Australia); Ma, Dong, E-mail: tmadong@jnu.edu.cn [Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering, Jinan University, Guangzhou, 510632 (China); Xue, Wei, E-mail: weixue_jnu@hotmail.com [Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering, Jinan University, Guangzhou, 510632 (China)

    2017-02-01

    The development of biocompatible vector for hydrophobic drug delivery remains a longstanding issue in cancer therapy. We design and synthesis a drug delivery system based on HPG modified β-CD (β-CD-HPG) by conjugating HPG branches onto β-CD core and its structure was confirmed by NMR, FTIR, GPC and solubility. In vitro biocompatibility tests showed that HPG modification significantly improved red blood cells morphology alteration and hemolysis cause by β-CD and β-CD-HPG displayed cell safety apparently in a wide range of 0.01–1 mg/mL. An anti-cancer drug, docetaxel, was effectively encapsulated into β-CD-HPG which was confirmed by DSC analysis. This copolymer could form nanoparticles with small size (< 200 nm) and exhibited better DTX loading capacity and controlled release kinetics without initial burst release behavior compared with β-CD. Furthermore, antitumor assay in vitro show that β-CD-HPG/DTX effectively inhibited proliferation of human breast adenocarcinoma cells. Therefore, β-CD-HPG/DTX exhibit great potential for cancer chemotherapy. - Highlights: • A new drug delivery system based on HPG modified β-CD (β-CD-HPG) has been synthesized. • It showed excellent cytocompatibility, hemocompatibility and docetaxel delivery ability. • It could effectively inhibited proliferation of human breast adenocarcinoma cells.

  12. Competitive Protein Adsorption on Polysaccharide and Hyaluronate Modified Surfaces

    Science.gov (United States)

    Ombelli, Michela; Costello, Lauren; Postle, Corinne; Anantharaman, Vinod; Meng, Qing Cheng; Composto, Russell J.; Eckmann, David M.

    2011-01-01

    We measured adsorption of bovine serum albumin (BSA) and fibrinogen (Fg) onto six distinct bare and dextran- and hyaluronate-modified silicon surfaces created using two dextran grafting densities and three hyaluronic acid (HA) sodium salts derived from human umbilical cord, rooster comb and streptococcus zooepidemicus. Film thickness and surface morphology depended on HA molecular weight and concentration. BSA coverage was enhanced on surfaces upon competitive adsorption of BSA:Fg mixtures. Dextranization differentially reduced protein adsorption onto surfaces based on oxidation state. Hyaluronization was demonstrated to provide the greatest resistance to protein coverage, equivalent to that of the most resistant dextranized surface. Resistance to protein adsorption was independent of the type of hyaluronic acid utilized. With changing bulk protein concentration from 20 to 40 µg ml−1 for each species, Fg coverage on silicon increased by 4×, whereas both BSA and Fg adsorption on dextran and HA were far less dependent of protein bulk concentration. PMID:21623481

  13. Electrospun fish protein fibers as a biopolymer-based carrier – implications for oral protein delivery

    DEFF Research Database (Denmark)

    Boutrup Stephansen, Karen; García-Díaz, María; Jessen, Flemming

    2014-01-01

    Purpose: Protein-based electrospun fibers have emerged as novel nanostructured materials for tissue engineering and drug delivery due to their unique structural characteristics, biocompatibility and biodegradability. The aim of this study was to explore the use of electrospun fibers based on fish...... sarcoplasmic proteins as an oral delivery platform for biopharmaceuticals, using insulin as a model protein. Methods: Fish sarcoplasmic proteins (FSP) were isolated from fresh cod and electrospun into nanomicrofibers using insulin as a model payload. The morphology of FSP fibers was characterized using...... differentiated Caco-2 cell monolayers was followed by RP-HPLC and ELISA, and the transepithelial electrical resistance (TEER) was measured before and after the experiment. Cell viability was assessed by the MTS/PMS assay. Results: Insulin was encapsulated in the electrospun FSP fibers with high efficiency, high...

  14. Noninvasive delivery systems for peptides and proteins in osteoporosis therapy: a retroperspective.

    Science.gov (United States)

    Hoyer, Herbert; Perera, Glen; Bernkop-Schnürch, Andreas

    2010-01-01

    The aim of this review is to provide the reader general and inspiring prospects in various attempts to make noninvasive delivery systems of calcitonin and teriparatide feasible and as convenient as possible. Calcitonin and teriparatide play an important role in both calcium homeostasis and bone remodelling. Currently calcitonin is available as a subcutaneous injection and as a nasal spray whereas teriparatide is administered subcutaneously. In the past few years, an increasing number of articles about drug delivery systems for calcitonin and teriparatide have been published. These delivery systems have been developed to overcome the inherent barriers for the uptake across the diverse membranes on the various routes for protein and peptide delivery. Co-administration of permeation enhancers, mucoadhesive agents, viscosity modifying agents, multifunctional polymers, protease inhibitors as well as encapsulation and chemical modification are utilized in order to improve calcitonin and teriparatide absorption after oral, nasal, pulmonal, or buccal administration. The majority of research groups have been working on the development of formulations based on the encapsulation of molecules in biodegradable and biocompatible polymeric nanoparticles. However these observations are based on data obtained under different experimental conditions. Hence, it is difficult to compare the obtained results in order to draw general conclusions about the most promising characteristics required for oral and nasal formulations for these peptides.

  15. Needle-free and microneedle drug delivery in children: a case for disease-modifying antirheumatic drugs (DMARDs).

    Science.gov (United States)

    Shah, Utpal U; Roberts, Matthew; Orlu Gul, Mine; Tuleu, Catherine; Beresford, Michael W

    2011-09-15

    Parenteral routes of drug administration have poor acceptability and tolerability in children. Advances in transdermal drug delivery provide a potential alternative for improving drug administration in this patient group. Issues with parenteral delivery in children are highlighted and thus illustrate the scope for the application of needle-free and microneedle technologies. This mini-review discusses the opportunities and challenges for providing disease-modifying antirheumatic drugs (DMARDs) currently prescribed to paediatric rheumatology patients using such technologies. The aim is to raise further awareness of the need for age-appropriate formulations and drug delivery systems and stimulate exploration of these options for DMARDs, and in particular, rapidly emerging biologics on the market. The ability of needle-free and microneedle technologies to deliver monoclonal antibodies and fusion proteins still remains largely untested. Such an understanding is crucial for future drug design opportunities. The bioavailability, safety and tolerance of delivering biologics into the viable epidermis also need to be studied. Copyright © 2011 Elsevier B.V. All rights reserved.

  16. Peptides, proteins and peptide/protein-polymer conjugates as drug delivery system.

    Science.gov (United States)

    Mukherjee, Biswajit; Karmakar, Swapna D; Hossain, Chowdhury M; Bhattacharya, Sanchari

    2014-01-01

    In the last few decades, novel drug delivery strategies have been a big priority to the formulation scientists. Peptides and proteins have drawn a special attention for their wide scope in the area. Serum albumin, transferrin, recom- binant proteins, virus capsids etc. are used as carrier for drug and biomolecules. Conjugates of polymers with proteins have also shown strong potency in the field of drug delivery. Polyethylene glycol is one of the most successful polymers that has been used extensively to develop protein conjugated formulations. Besides, polyvinyl pyrrolidone, polylactic-co- glycolic acid, N-(2-hydroxypropyl) methacrylamide copolymer, polyglutamic acid have also been investigated. In this re- view, we will highlight on the most recent overview of various advantages, limitations and marketed products of proteins, peptides and protein/peptide-polymer conjugates as drug carriers, such products in clinical trials and their various uses in the field of modern drug delivery. Understanding the key features of these materials and the vigorous research in this field will develop new drug formulations that will combat various types of life-threatening diseases.

  17. Defective Proteasome Delivery of Polyubiquitinated Proteins by Ubiquilin-2 Proteins Containing ALS Mutations.

    Directory of Open Access Journals (Sweden)

    Lydia Chang

    Full Text Available Ubiquilin proteins facilitate delivery of ubiquitinated proteins to the proteasome for degradation. Interest in the proteins has been heightened by the discovery that gene mutations in UBQLN2 cause dominant inheritance of amyotrophic lateral sclerosis (ALS. However, the mechanisms by which the mutations cause ALS are not known. Here we report on the underlying defect of ubiquilin-2 proteins containing ALS-linked mutations in affecting proteasome-mediated degradation. We found that overexpression of ubiquilin-2 proteins containing any one of five different ALS mutations slow degradation of Myc, a prototypic proteasome substrate. Examination of coprecipitating proteins indicated that the mutant proteins are generally capable of binding polyubiquitinated proteins, but defective in binding the proteasome. GST-pulldown studies revealed that many of the mutants bind weaker to the S5a subunit of the proteasome, compared with wild type (WT ubiquilin-2 protein. The results suggest the mutant proteins are unable to deliver their captured cargo to the proteasome for degradation, which presumably leads to toxicity. Quantification of cell death is consistent with this idea. Measurement of protein turnover further indicated the mutant proteins have longer half-lives than WT ubiquilin-2. Our studies provide novel insight into the mechanism by which ALS-linked mutations in UBQLN2 interfere with protein degradation.

  18. Protein stability in pulmonary drug delivery via nebulization.

    Science.gov (United States)

    Hertel, Sebastian P; Winter, Gerhard; Friess, Wolfgang

    2015-10-01

    Protein inhalation is a delivery route which offers high potential for direct local lung application of proteins. Liquid formulations are usually available in early stages of biopharmaceutical development and nebulizers are the device of choice for atomization avoiding additional process steps like drying and enabling fast progression to clinical trials. While some proteins were proven to remain stable throughout aerosolization e.g. DNase, many biopharmaceuticals are more susceptible towards the stresses encountered during nebulization. The main reason for protein instability is unfolding and aggregation at the air-liquid interface, a problem which is of particular challenge in the case of ultrasound and jet nebulizers due to recirculation of much of the generated droplets. Surfactants are an important formulation component to protect the sensitive biomolecules. A second important challenge is warming of ultrasound and vibrating mesh devices, which can be overcome by overfilling, precooled solutions or cooling of the reservoir. Ultimately, formulation development has to go hand in hand with device evaluation. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Hydrophobically modified inulin as an amphiphilic carbohydrate polymer for micellar delivery of paclitaxel for intravenous route.

    Science.gov (United States)

    Muley, Pratik; Kumar, Sunny; El Kourati, Fadoua; Kesharwani, Siddharth S; Tummala, Hemachand

    2016-03-16

    Micellization offers several advantages for the delivery of water insoluble drugs including a nanoparticulate 'core-shell' delivery system for drug targeting. Recently, hydrophobically modified polysaccharides (HMPs) are gaining recognition as micelle forming polymers to encapsulate hydrophobic drugs. In this manuscript, for the first time, we have evaluated the self-assembling properties of a lauryl carbamate derivative of the poly-fructose natural polymer inulin (Inutec SP1(®) (INT)) to form paclitaxel (PTX) loaded micelles. INT self-assembled into well-defined micellar structures in aqueous environment with a low critical micellar concentration of 27.8 μg/ml. INT micelles exhibited excellent hemocompatibility and low toxicity to cultured cells. PTX loaded INT micelles exhibited a mean size of 256.37 ± 10.45 nm with excellent drug encapsulation efficiency (95.66 ± 2.25%) and loading (8.69 ± 0.22%). PTX loaded micelles also displayed sustained release of PTX and enhanced anti-cancer efficacy in-vitro in mouse melanoma cells (B16F10) compared to Taxol formulation with Cremophor EL as solvent. In addition, PTX loaded INT micelles exhibited comparable in-vivo antitumor activity in B16F10 allograft mouse model at half the dose of Taxol. In conclusion, INT offers safe, inexpensive and natural alternative to widely used PEG-modified polymers for the formulation of micellar delivery systems for paclitaxel. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Postruminal Delivery System for Amino Acids and Proteins in Cattle

    Directory of Open Access Journals (Sweden)

    T. Sýkora

    2007-01-01

    Full Text Available The purpose of this experiment was to develop an effective postruminal transport system (PTS with a high content of suitable vegetable proteins and amino acids. PTS serves for nutrient delivery to the abomasum and small intestine of dairy cows in order to increase the milk yield. Direct addition of proteins and amino acids to the diet is not useful as the ruminal microbes will utilize active substances before they reach absorption sites in the small intestine. PTS has several advantages, e.g. a possibility of the direct application in a food, low cost, and nutritional and therapeutical improvement. PTS consists of a core (pellets, small tablets and a coating, which protects the core against the environment of rumen and enables to release the core content in the environment of abomasum and small intestine. Lenticular tablets - cores of PTS were prepared by wet granulation method and compression. Qualitative indicators of tablets (average weight, weight uniformity, hardness, friability, disintegration time were determined according to valid Czech and European Pharmacopoeias. Cores were subsequently coated with several types of coating - ethylcellulose, stearic acid and pH sensitive polymer poly-(2-vinylpyridine-co-styren, alone or in combination of various rates. Nine samples of coated protein tablets exhibiting appropriate characteristics in vitro were prepared. The presence of the pH sensitive polymer at least in 10% concentration of the coating and the coating amount of 9.0 to 12.6% per tablet were necessary to ensure the requested PTS properties.

  1. Polyethylenimine-modified Pluronics (PCMs) Improve Morpholino Oligomer Delivery in Cell Culture and Dystrophic mdx Mice

    OpenAIRE

    Wang, Mingxing; Wu, Bo; Lu, Peijuan; Cloer, Caryn; Tucker, Jay D; Lu, Qilong

    2012-01-01

    We investigated a series of small-sized polyethylenimine (PEI, 0.8/1.2 k)-conjugated pluronic copolymers (PCMs) for their potential to enhance delivery of an antisense phosphorodiamidate morpholino oligomer (PMO) in vitro and in dystrophic mdx mice. PCM polymers containing pluronics of molecular weight (Mw) ranging 2–6 k, with hydrophilic-lipophilic balance (HLB) 7–23, significantly enhanced PMO-induced exon-skipping in a green fluorescent protein (GFP) reporter-based myoblast culture system....

  2. Effect of penetration modifiers on the dermal and transdermal delivery of drugs and cosmetic active ingredients.

    Science.gov (United States)

    Otto, A; Wiechers, J W; Kelly, C L; Hadgraft, J; du Plessis, J

    2008-01-01

    In this study the effect of 2 penetration modifiers, dimethyl isosorbide (DMI) and diethylene glycol monoethyl ether (DGME) on the skin delivery of hydroquinone (HQ), salicylic acid (SA) and octadecenedioic acid (DIOIC) was investigated. Ten percent DMI and DGME were separately formulated into oil-in-water emulsions containing 1.8% HQ, SA and DIOIC, respectively. Skin delivery and the flux across split-thickness human skin of the active ingredients were determined using Franz diffusion cells. An emulsion with 10% water incorporated instead of the water-soluble penetration modifiers served as a control. The study showed that neither 10% DMI nor 10% DGME significantly enhanced the skin permeation of the various lipophilic active ingredients or the uptake into the skin. It was hypothesized that the addition of the penetration modifiers to the emulsions not only enhanced the solubility of the various active ingredients in the skin but also in the formulation, resulting in a reduced thermodynamic activity and hence a weaker driving force for penetration. Therefore, the effect of DMI and DGME on the solubility of the active ingredients in the skin was counteracted by a simultaneous reduction in the thermodynamic activity in the formulation. Copyright 2008 S. Karger AG, Basel.

  3. Design and evaluate alginate nanoparticles as a protein delivery system

    Directory of Open Access Journals (Sweden)

    Saraei, F.

    2013-12-01

    Full Text Available In recent years, encapsulation of drugs and antigens in hydrogels, specifically in calcium alginate particles, is an interesting and practical technique that was developed widespread. It is well known that alginate solution, under proper conditions, can form suitable nanoparticles as a promising carrier system, for vaccine delivery. The aim of this study was to synthesis alginate nanoparticles as protein carrier and to evaluate the influence of various factors on nanoparticles properties. Alginate nanoparticles were prepared by ionic gelation method. Briefly, various concentrations of CaCl2 were added to different concentrations of sodium alginate dropwisly by homogenizing magnetically at 1300 rpm. The effects of homogenization time and (- rate were investigated on nanoparticle feature. Nanoparticles were characterized for their morphology and size distribution. Evaluation of loading capacity and loading efficiency of nanoparticles were performed by using various concentration of BSA. The concentration of 0.3%w/v sodium alginate and 0.1%w/v CaCl2 solution, homogenization time 45 min and homogenization rate 1300 rpm were observed as suitable condition - to prepare optimized nanoparticles. It can be concluded that the properties of nanoparticles are strongly dependent on the physicochemical conditions. The optimum concentrations of alginate and CaCl2and appropriate condition led to forming desirable nanoparticles that can be used as carrier for drug and vaccine delivery.

  4. Preparation of Modified Films with Protein from Grouper Fish

    Science.gov (United States)

    Tecante, A.; Granados-Navarrete, S.; Martínez-García, C.

    2016-01-01

    A protein concentrate (PC) was obtained from Grouper fish skin and it was used to prepare films with different amounts of sorbitol and glycerol as plasticizers. The best performing films regarding resistance were then modified with various concentrations of CaCl2, CaSO4 (calcium salts), and glucono-δ-lactone (GDL) with the purpose of improving their mechanical and barrier properties. These films were characterized by determining their mechanical properties and permeability to water vapor and oxygen. Formulations with 5% (w/v) protein and 75% sorbitol and 4% (w/v) protein with a mixture of 15% glycerol and 15% sorbitol produced adequate films. Calcium salts and GDL increased the tensile fracture stress but reduced the fracture strain and decreased water vapor permeability compared with control films. The films prepared represent an attractive alternative for being used as food packaging materials. PMID:27597950

  5. Preparation of Modified Films with Protein from Grouper Fish

    Directory of Open Access Journals (Sweden)

    M. A. Valdivia-López

    2016-01-01

    Full Text Available A protein concentrate (PC was obtained from Grouper fish skin and it was used to prepare films with different amounts of sorbitol and glycerol as plasticizers. The best performing films regarding resistance were then modified with various concentrations of CaCl2, CaSO4 (calcium salts, and glucono-δ-lactone (GDL with the purpose of improving their mechanical and barrier properties. These films were characterized by determining their mechanical properties and permeability to water vapor and oxygen. Formulations with 5% (w/v protein and 75% sorbitol and 4% (w/v protein with a mixture of 15% glycerol and 15% sorbitol produced adequate films. Calcium salts and GDL increased the tensile fracture stress but reduced the fracture strain and decreased water vapor permeability compared with control films. The films prepared represent an attractive alternative for being used as food packaging materials.

  6. Self-assembling bubble carriers for oral protein delivery.

    Science.gov (United States)

    Chuang, Er-Yuan; Lin, Kun-Ju; Lin, Po-Yen; Chen, Hsin-Lung; Wey, Shiaw-Pyng; Mi, Fwu-Long; Hsiao, Hsu-Chan; Chen, Chiung-Tong; Sung, Hsing-Wen

    2015-09-01

    Successful oral delivery of therapeutic proteins such as insulin can greatly improve the quality of life of patients. This study develops a bubble carrier system by loading diethylene triamine pentaacetic acid (DTPA) dianhydride, a foaming agent (sodium bicarbonate; SBC), a surfactant (sodium dodecyl sulfate; SDS), and a protein drug (insulin) in an enteric-coated gelatin capsule. Following oral administration to diabetic rats, the intestinal fluid that has passed through the gelatin capsule saturates the mixture; concomitantly, DTPA dianhydride produces an acidic environment, while SBC decomposes to form CO2 bubbles at acidic pH. The gas bubbles grow among the surfactant molecules (SDS) owing to the expansion of the generated CO2. The walls of the CO2 bubbles consist of a self-assembled film of water that is in nanoscale and may serve as a colloidal carrier to transport insulin and DTPA. The grown gas bubbles continue to expand until they bump into the wall and burst, releasing their transported insulin, DTPA, and SDS into the mucosal layer. The released DTPA and SDS function as protease inhibitors to protect the insulin molecules as well as absorption enhancers to augment their epithelial permeability and eventual absorption into systemic circulation, exerting their hypoglycemic effects. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Polysaccharides-based polyelectrolyte nanoparticles as protein drugs delivery system

    Energy Technology Data Exchange (ETDEWEB)

    Shu Shujun; Sun Lei; Zhang Xinge, E-mail: zhangxinge@nankai.edu.cn [Nankai University, Key Laboratory of Functional Polymer Materials Ministry of Education, Institute of Polymer Chemistry (China); Wu Zhongming [Tianjin Medical University, Metabolic Diseases Hospital (China); Wang Zhen; Li Chaoxing, E-mail: lcx@nankai.edu.cn [Nankai University, Key Laboratory of Functional Polymer Materials Ministry of Education, Institute of Polymer Chemistry (China)

    2011-09-15

    Polysaccharides-based nanoparticles were prepared by synthesized quaternized chitosan and dextran sulfate through simple ionic-gelation self-assembled method. Introduction of quaternized groups was intended to increase water solubility of chitosan and make the nanoparticles have broader pH sensitive range which can remain more stable in physiological pH and decrease the loss of protein drugs caused by the gastric cavity. The load of BSA was affected by molecular parameter, i.e., degree of substitution, and average molecular weight of quaternized chitosan, as well as concentration of BSA. Fast release occurred in phosphate buffer solution (pH 7.4) while the release was slow in hydrochloric acid (pH 1.4). The drug release mechanism is Fickian diffusion through release kinetics analysis. Cell uptake demonstrated nanoparicles can internalize into Caco-2 cells, which suggested that nanoparticles had good biocompatibility. No significant conformation change was noted for the released BSA in comparison with native BSA using circular dichroism spectroscopy. This kind of novel composite nanoparticles may be a promising delivery system for oral protein and peptide drugs.

  8. Functionalized linear poly(amidoamine)s are efficient vectors for intracellular protein delivery

    NARCIS (Netherlands)

    Coué, G.M.J.P.C.; Engbersen, Johannes F.J.

    2011-01-01

    An effective intracellular protein delivery system was developed based on functionalized linear poly(amidoamine)s (PAAs) that form self-assembled cationic nanocomplexes with oppositely charged proteins. Three differently functionalized PAAs were synthesized, two of these having repetitive disulfide

  9. Oxidatively Modified Proteins in the Serous Subtype of Ovarian Carcinoma

    Directory of Open Access Journals (Sweden)

    Sharifeh Mehrabi

    2014-01-01

    Full Text Available Serous subtype of ovarian cancer is considered to originate from fallopian epithelium mucosa that has been exposed to physiological changes resulting from ovulation. Ovulation influences an increased in inflammation of epithelial ovarian cells as results of constant exposure of cells to ROS. The imbalance between ROS and antioxidant capacities, as well as a disruption of redox signaling, causes a wide range of damage to DNA, proteins, and lipids. This study applied spectrophotometric, dinitrophenylhydrazone (DNPH assay, two-dimensional gel electrophoresis, and Western blot analyses to assess the levels of oxidatively modified proteins in 100 primary serous epithelial ovarian carcinoma and normal/surrounding tissues. These samples were obtained from 56 Caucasian and 44 African-American patients within the age range of 61±10 years. Analyses showed that the levels of reactive protein carbonyl groups increased as stages progressed to malignancy. Additionally, the levels of protein carbonyls in serous ovarian carcinoma among African Americans are 40% (P<0.05 higher relative to Caucasian at similar advanced stages. Results suggest that oxidative stress is involved in the modification of carbonyl protein groups, leading to increased aggressiveness of epithelial ovarian tumors and may contribute to the disease's invasiveness among African Americans.

  10. A genetically modified protein-based hydrogel for 3D culture of AD293 cells.

    Directory of Open Access Journals (Sweden)

    Xiao Du

    Full Text Available Hydrogels have strong application prospects for drug delivery, tissue engineering and cell therapy because of their excellent biocompatibility and abundant availability as scaffolds for drugs and cells. In this study, we created hybrid hydrogels based on a genetically modified tax interactive protein-1 (TIP1 by introducing two or four cysteine residues in the primary structure of TIP1. The introduced cysteine residues were crosslinked with a four-armed poly (ethylene glycol having their arm ends capped with maleimide residues (4-armed-PEG-Mal to form hydrogels. In one form of the genetically modification, we incorporated a peptide sequence 'GRGDSP' to introduce bioactivity to the protein, and the resultant hydrogel could provide an excellent environment for a three dimensional cell culture of AD293 cells. The AD293 cells continued to divide and displayed a polyhedron or spindle-shape during the 3-day culture period. Besides, AD293 cells could be easily separated from the cell-gel constructs for future large-scale culture after being cultured for 3 days and treating hydrogel with trypsinase. This work significantly expands the toolbox of recombinant proteins for hydrogel formation, and we believe that our hydrogel will be of considerable interest to those working in cell therapy and controlled drug delivery.

  11. Adsorption and Desorption of Bioactive Proteins on Hydroxyapatite for Protein Delivery Systems

    Directory of Open Access Journals (Sweden)

    Chie Kojima

    2012-01-01

    Full Text Available Hydroxyapatite (HA is a precursor of bone and has been studied as a biomaterial. We attempted HA to apply to protein delivery systems. In this study, the association and dissociation properties of two types of bioactive proteins, cytochrom c and insulin, to HA were investigated. Cytochrom c was less associated with HA than insulin, which was easily released from it. However, the release of insulin from HA was slow. Insulin was released from HA at pH 7.4 more rapidly than at pH 3. The association and dissociation properties might be influenced by the size, solubility and net charge of protein. HA is a potential protein carrier with controlled release.

  12. Thermo-responsive human α-elastin self-assembled nanoparticles for protein delivery.

    Science.gov (United States)

    Kim, Jae Dong; Jung, Youn Jae; Woo, Chang Hee; Choi, Young Chan; Choi, Ji Suk; Cho, Yong Woo

    2017-01-01

    Self-assembled nanoparticles based on PEGylated human α-elastin were prepared as a potential vehicle for sustained protein delivery. The α-elastin was extracted from human adipose tissue and modified with methoxypolyethyleneglycol (mPEG) to control particle size and enhance the colloidal stability. The PEGylated human α-elastin showed sol-to-particle transition with a lower critical solution temperature (LCST) of 25°C-40°C in aqueous media. The PEGylated human α-elastin nanoparticles (PhENPs) showed a narrow size distribution with an average diameter of 330±33nm and were able to encapsulate significant amounts of insulin and bovine serum albumin (BSA) upon simple mixing at low temperature in water and subsequent heating to physiological temperature. The release profiles of insulin and BSA showed sustained release for 72h. Overall, the thermo-responsive self-assembled PhENPs provide a useful tool for a range of protein delivery and tissue engineering applications. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Stabilization and delivery approaches for protein and peptide pharmaceuticals: an extensive review of patents.

    Science.gov (United States)

    Swain, Suryakanta; Mondal, Debanik; Beg, Sarwar; Patra, Chinam Niranjan; Dinda, Subas Chandra; Sruti, Jammula; Rao, Muddana Eswara Bhanoji

    2013-04-01

    Proteins and peptides are the building blocks of human body and act as the arsenal to combat against the invading pathogenic organisms for treatment and management of diseases. Majority of such biomacromolecules are synthesized by the human body itself. However, entry of disease causing pathogens causes misleading in the synthesis of desired proteins for antibody formation. In such alarming situations, the delivery of requisite protein and peptide from external source helps in augmenting the body's immunity. The major drawbacks underlying poor biopharmaceutical performance of high molecular weight protein and peptide drugs are due to poor oral absorption, formulation stability, degradation in the gastric milieu, susceptible to presystemic metabolism. Numerous literature recounts the application of myriad drug delivery strategies for the effective delivery of protein and peptides viz. parentral, oral, transdermal, nasal, pulmonary, rectal, buccal and ocular drug delivery systems. There are many reviews on various delivery strategies for protein and peptide pharmaceuticals, but the present review article provides a bird's eye view on various novel drug delivery systems used for enhanced delivery of protein and peptide pharmaceuticals in the light of patent literature. Apart from this, the present manuscript endeavor provides idea on possible causes and major degradation pathways responsible for poor stability of protein and peptide drugs along with recent market instances on them utilizing novel drug delivery systems.

  14. An overview of site-specific delivery of orally administered proteins ...

    African Journals Online (AJOL)

    Oral delivery of proteins and peptides poses one of the greatest challenges in controlled drug delivery due to degradation by proteolytic enzymes, poor membrane permeability and large molecular size. Therapeutic proteins/peptides are useful in correcting metabolic disorders (e.g., insulin in diabetes mellitus), ...

  15. Nicotine–magnesium aluminum silicate microparticle surface modified with chitosan for mucosal delivery

    Energy Technology Data Exchange (ETDEWEB)

    Kanjanakawinkul, Watchara [Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002 (Thailand); Rades, Thomas [School of Pharmacy, University of Otago, Dunedin 9054 (New Zealand); Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2100 Copenhagen (Denmark); Puttipipatkhachorn, Satit [Department of Manufacturing Pharmacy, Faculty of Pharmacy, Mahidol University, Bangkok 10400 (Thailand); Pongjanyakul, Thaned, E-mail: thaned@kku.ac.th [Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002 (Thailand)

    2013-04-01

    Magnesium aluminum silicate (MAS), a negatively charged clay, and nicotine (NCT), a basic drug, can interact electrostatically to form microparticles. Chitosan (CS) was used for the surface modification of the microparticles, and a lyophilization method was used to preserve the original particle morphology. The microparticles were characterized in terms of their physicochemical properties, NCT content, mucoadhesive properties, and release and permeation across porcine esophageal mucosa. The results showed that the microparticles formed via electrostatic interaction between MAS and protonated NCT had an irregular shape and that their NCT content increased with increasing NCT ratios in the microparticle preparation solution. High molecular weight CS (800 kDa) adsorbed to the microparticle surface and induced a positive surface charge. CS molecules intercalated into the MAS silicate layers and decreased the crystallinity of the microparticles, leading to an increase in the release rate and diffusion coefficient of NCT from the microparticles. Moreover, the microparticle surface modified with CS was found to have higher NCT permeation fluxes and mucoadhesive properties, which indicated the significant role of CS for NCT mucosal delivery. However, the enhancement of NCT permeation and of mucoadhesive properties depended on the molecular weight and concentration of CS. These findings suggest that NCT-MAS microparticle surface modified with CS represents a promising mucosal delivery system for NCT. Highlights: ► Nicotine–magnesium aluminum silicate microparticles were prepared using electrostatic interaction. ► Lyophilization was used for drying and maintaining an original morphology of the microparticles. ► Chitosan (CS) was used for surface modification of the microparticles at acidic pH. ► Surface modification using CS caused an increase in release and permeation of nicotine. ► Microparticle surface-modified with CS presented better mucoadhesive properties.

  16. Nicotine–magnesium aluminum silicate microparticle surface modified with chitosan for mucosal delivery

    International Nuclear Information System (INIS)

    Kanjanakawinkul, Watchara; Rades, Thomas; Puttipipatkhachorn, Satit; Pongjanyakul, Thaned

    2013-01-01

    Magnesium aluminum silicate (MAS), a negatively charged clay, and nicotine (NCT), a basic drug, can interact electrostatically to form microparticles. Chitosan (CS) was used for the surface modification of the microparticles, and a lyophilization method was used to preserve the original particle morphology. The microparticles were characterized in terms of their physicochemical properties, NCT content, mucoadhesive properties, and release and permeation across porcine esophageal mucosa. The results showed that the microparticles formed via electrostatic interaction between MAS and protonated NCT had an irregular shape and that their NCT content increased with increasing NCT ratios in the microparticle preparation solution. High molecular weight CS (800 kDa) adsorbed to the microparticle surface and induced a positive surface charge. CS molecules intercalated into the MAS silicate layers and decreased the crystallinity of the microparticles, leading to an increase in the release rate and diffusion coefficient of NCT from the microparticles. Moreover, the microparticle surface modified with CS was found to have higher NCT permeation fluxes and mucoadhesive properties, which indicated the significant role of CS for NCT mucosal delivery. However, the enhancement of NCT permeation and of mucoadhesive properties depended on the molecular weight and concentration of CS. These findings suggest that NCT-MAS microparticle surface modified with CS represents a promising mucosal delivery system for NCT. Highlights: ► Nicotine–magnesium aluminum silicate microparticles were prepared using electrostatic interaction. ► Lyophilization was used for drying and maintaining an original morphology of the microparticles. ► Chitosan (CS) was used for surface modification of the microparticles at acidic pH. ► Surface modification using CS caused an increase in release and permeation of nicotine. ► Microparticle surface-modified with CS presented better mucoadhesive properties

  17. Renal-targeted delivery of triptolide by entrapment in pegylated TRX-20-modified liposomes.

    Science.gov (United States)

    Yuan, Zhi-Xiang; Jia, Lu; Lim, Lee Yong; Lin, Ju-Chun; Shu, Gang; Zhao, Ling; Ye, Gang; Liang, Xiao-Xia; Ji, Hongming; Fu, Hua-Lin

    2017-01-01

    Previously, 3,5-dipentadecyloxybenzamidine hydrochloride (TRX-20)-modified liposomes were reported to specifically target mesangial cells (MCs) in glomeruli. To further gain a better understanding of the characteristics and potential application for glomerular diseases of TRX-20-modified liposomes, we synthesized TRX-20 and prepared TRX-20-modified liposomes (TRX-LPs) with different molar ratios - 6% (6%-TRX-LP), 11% (11%-TRX-LP), and 14% (14%-TRX-LP) - of TRX-20 to total lipid in the present study. All TRX-LPs exhibited concentration-dependent toxicity against the MCs at a lipid concentration ranging from 0.01 to 1.0 mg/mL with IC 50 values of 3.45, 1.13, and 0.55 mg/mL, respectively. Comparison of the cell viability of TRX-LPs indicated that high levels of TRX-20 caused severe cell mortality, with 11%-TRX-LP showing the higher cytoplasmic accumulation in the MCs. Triptolide (TP) as a model drug was first loaded into 11%-TRX-LP and the liposomes were further modified with PEG 5000 (PEG-TRX-TP-LP) in an attempt to prolong their circulation in blood and enhance TP-mediated immune suppression. Due to specific binding to MCs, PEG-TRX-TP-LP undoubtedly showed better anti-inflammatory action in vitro, evidenced by the inhibition of release of nitric oxide (NO) and tumor necrosis factor-α from lipopolysaccharide-stimulated MCs, compared with free TP at the same dose. In vivo, the PEG-TRX-TP-LP effectively attenuated the symptoms of membranous nephropathic (MN) rats and improved biochemical markers including proteinuria, serum cholesterol, and albumin. Therefore, it can be concluded that the TRX-modified liposome is an effective platform to target the delivery of TP to glomeruli for the treatment of MN.

  18. Recent advances in protein and Peptide drug delivery: a special emphasis on polymeric nanoparticles.

    Science.gov (United States)

    Patel, Ashaben; Patel, Mitesh; Yang, Xiaoyan; Mitra, Ashim K

    2014-01-01

    Proteins and peptides are widely indicated in many diseased states. Parenteral route is the most commonly em- ployed method of administration for therapeutic proteins and peptides. However, requirement of frequent injections due to short in vivo half-life results in poor patient compliance. Non-invasive drug delivery routes such as nasal, transdermal, pulmonary, and oral offer several advantages over parenteral administration. Intrinsic physicochemical properties and low permeability across biological membrane limit protein delivery via non-invasive routes. One of the strategies to improve protein and peptide absorption is by delivering through nanostructured delivery carriers. Among nanocarriers, polymeric nanoparticles (NPs) have demonstrated significant advantages over other delivery systems. This article summarizes the application of polymeric NPs for protein and peptide drug delivery following oral, nasal, pulmonary, parenteral, transder mal, and ocular administrations.

  19. Intracellular cargo delivery by virus capsid protein-based vehicles: From nano to micro.

    Science.gov (United States)

    Gao, Ding; Lin, Xiu-Ping; Zhang, Zhi-Ping; Li, Wei; Men, Dong; Zhang, Xian-En; Cui, Zong-Qiang

    2016-02-01

    Cellular delivery is an important concern for the efficiency of medicines and sensors for disease diagnoses and therapy. However, this task is quite challenging. Self-assembly virus capsid proteins might be developed as building blocks for multifunctional cellular delivery vehicles. In this work, we found that SV40 VP1 (Simian virus 40 major capsid protein) could function as a new cell-penetrating protein. The VP1 protein could carry foreign proteins into cells in a pentameric structure. A double color structure, with red QDs (Quantum dots) encapsulated by viral capsids fused with EGFP, was created for imaging cargo delivery and release from viral capsids. The viral capsids encapsulating QDs were further used for cellular delivery of micron-sized iron oxide particles (MPIOs). MPIOs were efficiently delivered into live cells and controlled by a magnetic field. Therefore, our study built virus-based cellular delivery systems for different sizes of cargos: protein molecules, nanoparticles, and micron-sized particles. Much research is being done to investigate methods for efficient and specific cellular delivery of drugs, proteins or genetic material. In this article, the authors describe their approach in using self-assembly virus capsid proteins SV40 VP1 (Simian virus 40 major capsid protein). The cell-penetrating behavior provided excellent cellular delivery and should give a new method for biomedical applications. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Poloxamer surface modified trimethyl chitosan nanoparticles for the effective delivery of methotrexate in osteosarcoma.

    Science.gov (United States)

    Li, Shenglong; Xiong, Yuyuan; Zhang, Xiaojing

    2017-06-01

    The present work is an effort to explore the poloxamer-modified trimethyl chitosan (TMC) encapsulated MTX for osteosarcoma treatment in order to improve the therapeutic efficacy and minimize severe toxicity associated with the clinical usage of MTX. The methotrexate-loaded pluronic-chitosan nanoparticles (MTCN) was nanosized and exhibited a controlled release of drug from the carrier system. The MTCN showed higher accumulation in cell cytoplasm region evident by the high red fluorescence indicating its uptake through energy-dependent endocytosis process. MTCN exhibited the increased cytotoxicity in MG63 cells compared free MTX due to its enhanced cellular uptake. Especially, MTCN exhibited a superior apoptosis effect with bright chromatin condensation and nuclear fragmentation was observed and showed remarkably higher apoptosis (∼48%) compared to that of free drug. The results of this investigation clearly demonstrate that the poloxamer-modified trimethyl chitosan (TMC) seems to have a great potential as a drug carrier in cancer chemotherapy. The present research work offers immense scope for further exploitation of poloxamer-modified trimethyl chitosan (TMC) in future for the development of nanoparticulate drug delivery system for cancer chemotherapy. Copyright © 2017. Published by Elsevier Masson SAS.

  1. Anchoring of self-assembled plasmid DNA/ anti-DNA antibody/cationic lipid micelles on bisphosphonate-modified stent for cardiovascular gene delivery

    Directory of Open Access Journals (Sweden)

    Ma G

    2013-03-01

    Full Text Available Guilei Ma,1,# Yong Wang,1,# Ilia Fishbein,2 Mei Yu,1 Linhua Zhang,1 Ivan S Alferiev,2 Jing Yang,1 Cunxian Song,1 Robert J Levy2 1Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, People's Republic of China; 2Children's Hospital of Philadelphia, Abramson Research Building, Philadelphia, PA, USA #These authors contributed equally to this work Purpose: To investigate the anchoring of plasmid DNA/anti-DNA antibody/cationic lipid tri-complex (DAC micelles onto bisphosphonate-modified 316 L coronary stents for cardiovascular site-specific gene delivery. Methods: Stents were first modified with polyallylamine bisphosphonate (PAA-BP, thereby enabling the retention of a PAA-BP molecular monolayer that permits the anchoring (via vector-binding molecules of DAC micelles. DAC micelles were then chemically linked onto the PAA-BP-modified stents by using N-succinimidyl-3-(2-pyridyldithiol-propionate (SPDP as a crosslinker. Rhodamine-labeled DNA was used to assess the anchoring of DAC micelles, and radioactive-labeled antibody was used to evaluate binding capacity and stability. DAC micelles (encoding green fluorescent protein were tethered onto the PAA-BP-modified stents, which were assessed in cell culture. The presence of a PAA-BP molecular monolayer on the steel surface was confirmed by X-ray photoelectron spectroscopy and atomic force microscope analysis. Results: The anchoring of DAC micelles was generally uniform and devoid of large-scale patches of defects. Isotopic quantification confirmed that the amount of antibody chemically linked on the stents was 17-fold higher than that of the physical adsorbed control stents and its retention time was also significantly longer. In cell culture, numerous green fluorescent protein-positive cells were found on the PAA-BP modified stents, which demonstrated high localization and efficiency of gene delivery. Conclusion: The DAC micelle

  2. In vitro and in vivo delivery of therapeutic proteins using cell penetrating peptides.

    Science.gov (United States)

    Bolhassani, Azam; Jafarzade, Behnaz Sadat; Mardani, Golnaz

    2017-01-01

    The failure of proteins to penetrate mammalian cells or target tumor cells restricts their value as therapeutic tools in a variety of diseases such as cancers. Recently, protein transduction domains (PTDs) or cell penetrating peptides (CPPs) have been shown to promote the delivery of therapeutic proteins or peptides into live cells. The successful delivery of proteins mainly depends on their physicochemical properties. Although, linear cell penetrating peptides are one of the most effective delivery vehicles; but currently, cyclic CPPs has been developed to potently transport bioactive full-length proteins into cells. Up to now, several small protein transduction domains from viral proteins including Tat or VP22 could be fused to other peptides or proteins to entry them in various cell types at a dose-dependent approach. A major disadvantage of PTD-fusion proteins is primary uptake into endosomal vesicles leading to inefficient release of the fusion proteins into the cytosol. Recently, non-covalent complex formation (Chariot) between proteins and CPPs has attracted a special interest to overcome some delivery limitations (e.g., toxicity). Many preclinical and clinical trials of CPP-based delivery are currently under evaluation. Generally, development of more efficient protein transduction domains would significantly increase the potency of protein therapeutics. Moreover, the synergistic or combined effects of CPPs with other delivery systems for protein/peptide drug delivery would promote their therapeutic effects in cancer and other diseases. In this review, we will describe the functions and implications of CPPs for delivering the therapeutic proteins or peptides in preclinical and clinical studies. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Poly methacrylic acid modified CDHA nanocomposites as potential pH responsive drug delivery vehicles.

    Science.gov (United States)

    Victor, Sunita Prem; Sharma, Chandra P

    2013-08-01

    The objective of this study was to prepare pH sensitive polymethacrylic acid-calcium deficient hydroxyapatite (CDHA) nanocomposites. The CDHA nanoparticles were prepared by coprecipitation method. The modification of CDHA by methacrylic acid (MA) was achieved by AIBN initiated free radical polymerization with sodium bisulphite as catalyst followed by emulsion technique. These nanocomposites with a half life of 8h consisted of high aspect ratio, needle like particles and exhibited an increase in swelling behaviour with pH. The in vivo potential of the nanocomposites was evaluated in vitro by the results of cell aggregation, protein adsorption, MTT assay and haemolytic activity. The invitro loading and release studies using albumin as a model drug indicate that the nanocomposites gave better loading when compared to the CDHA nanoparticles and altered the drug release rates. The nanocomposites also exhibited good uptake on C6 glioma cells as studied by fluorescence microscopy. The results obtained suggest that these nanocomposites have great potential for oral controlled protein delivery and can be extended further for intracellular drug delivery applications. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Enzyme-modified starch as an oil delivery system for bake-only chicken nuggets.

    Science.gov (United States)

    Purcell, Sarah; Wang, Ya-Jane; Seo, Han-Seok

    2014-05-01

    This study investigated the effects of enzyme modification on starch as an effective oil delivery system for bake-only chicken nuggets. Various native starches were hydrolyzed by amyloglucosidase to a hydrolysis degree of 20% to 25% and plated with 50% (w/w, starch dry basis) with canola oil to create a starch-oil matrix. This matrix was then blended into a dry ingredient blend for batter and breader components. Nuggets were prepared by coated with predust, hydrated batter, and breader, and the coated nuggets were steam-baked until fully cooked and then frozen until texture and sensory analyses. The enzyme-modified starches showed a significant decrease in pasting viscosities for all starch types. For textural properties of nuggets, no clear relationship was found between peak force and starch source or amylose content. Sensory attributes related to fried foods (for example, crispness and mouth-coating) did not significantly differ between bake-only nuggets formulated using the enzyme-modified starches and the partially fried and baked ones. The present findings suggest that enzyme-modified starches can deliver sufficient quantity of oil to create sensory attributes similar to those of partially fried chicken nuggets. Further study is needed to optimize the coating formulation of bake-only chicken nugget to become close to the fried one in sensory aspects. The food industry has become increasingly focused on healthier items. Frying imparts several critical and desirable product functionalities, such as developing texture and color, and providing mouth-feel and flavor. The food industry has yet to duplicate all of the unique characteristics of fried chicken nuggets with a baking process. This study investigated the application of enzyme-modified starch as an oil delivery system in bake-only chicken nugget formulation in attempts to provide characteristics of fried items. This information is useful to improve the nutritional value of fried food by eliminating the

  5. RGD-modified lipid disks as drug carriers for tumor targeted drug delivery

    Science.gov (United States)

    Gao, Jie; Xie, Cao; Zhang, Mingfei; Wei, Xiaoli; Yan, Zhiqiang; Ren, Yachao; Ying, Man; Lu, Weiyue

    2016-03-01

    Melittin, the major component of the European bee venom, is a potential anticancer candidate due to its lytic properties. However, in vivo applications of melittin are limited due to its main side effect, hemolysis, especially when applied through intravenous administration. The polyethylene glycol-stabilized lipid disk is a novel type of nanocarrier, and the rim of lipid disks has a high affinity to amphiphilic peptides. In our study, a c(RGDyK) modified lipid disk was developed as a tumor targeted drug delivery system for melittin. Cryo-TEM was used to confirm the shape and size of lipid disks with or without c(RGDyK) modification. In vitro and in vivo hemolysis analyses revealed that the hemolysis effect significantly decreased after melittin associated with lipid disks. Importantly, the results of our in vivo biodistribution and tumor growth inhibitory experiments showed that c(RGDyK) modification increased the distribution of lipid disks in the tumor and the anticancer efficacy of melittin loaded lipid disks. Thus, we successfully achieved a targeted drug delivery system for melittin and other amphiphilic peptides with a good therapeutic effect and low side effects.

  6. Hyaluronic acid oligosaccharide modified redox-responsive mesoporous silica nanoparticles for targeted drug delivery.

    Science.gov (United States)

    Zhao, Qinfu; Geng, Hongjian; Wang, Ying; Gao, Yikun; Huang, Jiahao; Wang, Yan; Zhang, Jinghai; Wang, Siling

    2014-11-26

    A redox-responsive delivery system based on colloidal mesoporous silica (CMS) has been developed, in which 6-mercaptopurine (6-MP) was conjugated to vehicles by cleavable disulfide bonds. The oligosaccharide of hyaluronic acid (oHA) was modified on the surface of CMS by disulfide bonds as a targeting ligand and was able to increase the stability and biocompatibility of CMS under physiological conditions. In vitro release studies indicated that the cumulative release of 6-MP was less than 3% in the absence of glutathione (GSH), and reached nearly 80% within 2 h in the presence of 3 mM GSH. Confocal microscopy and fluorescence-activated cell sorter (FACS) methods were used to evaluate the cellular uptake performance of fluorescein isothiocyanate (FITC) labeled CMS, with and without oHA modification. The CMS-SS-oHA exhibited a higher cellular uptake performance via CD44 receptor-mediated endocytosis in HCT-116 (CD44 receptor-positive) cells than in NIH-3T3 (CD44 receptor-negative) cells. 6-MP loaded CMS-SS-oHA exhibited greater cytotoxicity against HCT-116 cells than NIH-3T3 cells due to the enhanced cell uptake behavior of CMS-SS-oHA. This study provides a novel strategy to covalently link bioactive drug and targeting ligand to the interiors and exteriors of mesoporous silica to construct a stimulus-responsive targeted drug delivery system.

  7. Advanced glycation end product (AGE) modified proteins in tears of diabetic patients.

    Science.gov (United States)

    Zhao, Zhenjun; Liu, Jingfang; Shi, Bingyin; He, Shuixiang; Yao, Xiaoli; Willcox, Mark D P

    2010-08-11

    High glucose level in diabetic patients may lead to advanced glycation end product (AGE) modified proteins. This study investigated AGE modified proteins in tears and compared their levels in diabetic patients (DM) with non-diabetic controls (CTL). Basal tears were collected from DM with (DR) or without (DNR) retinopathy and CTL. Total AGE modified proteins were detected quantitatively by a dot immunobinding assay. The AGE modified proteins were separated in 1D- and 2D-SDS gels and detected by western-blotting. The individual AGE modified proteins were also compared between groups using densitometry. Compared with the CTL group, tear concentrations of AGE modified proteins were significantly elevated in DR and DNR groups. The concentration of AGE modified proteins in diabetic tears were positively correlated with AGE modified hemoglobin (HbA1c) and postprandial blood glucose level (PBG). Western blotting of AGE modified proteins from 1D-SDS gels showed several bands, the major one at around 60 kDa. The intensities of AGE modified protein bands were higher in DM tears than in CTL tears. Western blotting from 2D-SDS gels showed a strongly stained horizontal strip, which corresponded to the major band in 1D-SDS gels. Most of the other AGE modified protein species were within molecular weight of 30-60 kDa, PI 5.2-7.0. Densitometry analysis demonstrated several AGE modified proteins were elevated in DR or DNR tears. Total and some individual AGE modified proteins were elevated in DM tears. AGE modified proteins in tears may be used as biomarkers to diagnose diabetes and/or diabetic retinopathy.

  8. Intracellular Protein Delivery System Using a Target-Specific Repebody and Translocation Domain of Bacterial Exotoxin.

    Science.gov (United States)

    Kim, Hee-Yeon; Kang, Jung Ae; Ryou, Jeong-Hyun; Lee, Gyeong Hee; Choi, Dae Seong; Lee, Dong Eun; Kim, Hak-Sung

    2017-11-17

    With the high efficacy of protein-based therapeutics and plenty of intracellular drug targets, cytosolic protein delivery in a cell-specific manner has attracted considerable attention in the field of precision medicine. Herein, we present an intracellular protein delivery system based on a target-specific repebody and the translocation domain of Pseudomonas aeruginosa exotoxin A. The delivery platform was constructed by genetically fusing an EGFR-specific repebody as a targeting moiety to the translocation domain, while a protein cargo was fused to the C-terminal end of the delivery platform. The delivery platform was revealed to efficiently translocate a protein cargo to the cytosol in a target-specific manner. We demonstrate the utility and potential of the delivery platform by showing a remarkable tumor regression with negligible toxicity in a xenograft mice model when gelonin was used as the cytotoxic protein cargo. The present platform can find wide applications to the cell-selective cytosolic delivery of diverse proteins in many areas.

  9. Serum lipids modify periodontal infection - C-reactive protein association.

    Science.gov (United States)

    Haro, Anniina; Saxlin, Tuomas; Suominen, Anna-Liisa; Ylöstalo, Pekka; Leiviskä, Jaana; Tervonen, Tellervo; Knuuttila, Matti

    2012-09-01

    To investigate whether low-grade inflammation-related factors such as serum low-density (LDL-C) and high-density lipoprotein cholesterol (HDL-C) modify the association between periodontal infection and C-reactive protein. This study was based on a subpopulation of the Health 2000 Survey, which consisted of dentate, non-diabetic, non-rheumatic subjects who were 30-49 years old (n = 2710). The extent of periodontal infection was measured by means of the number of teeth with periodontal pocket ≥4 mm and teeth with periodontal pocket ≥6 mm and systemic inflammation using high sensitive C-reactive protein. The extent of periodontal infection was associated with elevated levels of C-reactive protein among those subjects whose HDL-C value was below the median value of 1.3 mmol/l or LDL-C above the median value of 3.4 mmol/l. Among those with HDL-C ≥ 1.3 mmol/l or LDL-C ≤ 3.4 mmol/l, the association between periodontal infection and serum concentrations of C-reactive protein was practically non-existent. This study suggests that the relation of periodontal infection to the systemic inflammatory condition is more complicated than previously presumed. The findings of this study suggest that the possible systemic effect of periodontal infection is dependent on serum lipid composition. © 2012 John Wiley & Sons A/S.

  10. Ultrasound-mediated drug delivery using liposomes modified with a thermosensitive polymer.

    Science.gov (United States)

    Ninomiya, Kazuaki; Kawabata, Shinya; Tashita, Hiroyuki; Shimizu, Nobuaki

    2014-01-01

    Ultrasound-mediated drug delivery was established using liposomes that were modified with the thermosensitive polymer (TSP) poly(NIPMAM-co-NIPAM), which sensitized the liposomes to high temperatures. TSP-modified liposomes (TSP liposomes) released encapsulated calcein under 1 MHz ultrasound irradiation at 0.5 W/cm(2) for 120 s as well as the case under incubation at 42 °C for 15 min. In addition, uptake of the drug released from TSP liposomes by cancer cells was enhanced by ultrasound irradiation. In a cell injury assay using doxorubicin (DOX)-loaded TSP liposomes and ultrasound irradiation, cell viability of HepG2 cells at 6 h after ultrasound irradiation (1 MHz, 0.5 W/cm(2) for 30 s) with DOX-loaded TSP liposomes (TSP/lipid ratio=1) was 60%, which was significantly lower than that of the control conditions such as DOX-loaded TSP liposomes alone and DOX-loaded intact liposomes under ultrasound irradiation. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Arginine-rich intracellular delivery peptides noncovalently transport protein into living cells

    International Nuclear Information System (INIS)

    Wang, Y.-H.; Chen, C.-P.; Chan, M.-H.; Chang, M.; Hou, Y.-W.; Chen, H.-H.; Hsu, H.-R.; Liu, Kevin; Lee, H.-J.

    2006-01-01

    Plasma membranes of plant or animal cells are generally impermeable to peptides or proteins. Many basic peptides have previously been investigated and covalently cross-linked with cargoes for cellular internalization. In the current study, we demonstrate that arginine-rich intracellular delivery (AID) peptides are able to deliver fluorescent proteins or β-galactosidase enzyme into animal and plant cells, as well as animal tissue. Cellular internalization and transdermal delivery of protein could be mediated by effective and nontoxic AID peptides in a neither fusion protein nor conjugation fashion. Therefore, noncovalent AID peptides may provide a useful strategy to have active proteins function in living cells and tissues in vivo

  12. Gene delivery to skeletal muscle results in sustained expression and systemic delivery of a therapeutic protein

    Science.gov (United States)

    Kessler, Paul D.; Podsakoff, Gregory M.; Chen, Xiaojuan; McQuiston, Susan A.; Colosi, Peter C.; Matelis, Laura A.; Kurtzman, Gary J.; Byrne, Barry J.

    1996-01-01

    Somatic gene therapy has been proposed as a means to achieve systemic delivery of therapeutic proteins. However, there is limited evidence that current methods of gene delivery can practically achieve this goal. In this study, we demonstrate that, following a single intramuscular administration of a recombinant adeno-associated virus (rAAV) vector containing the β-galactosidase (AAV-lacZ) gene into adult BALB/c mice, protein expression was detected in myofibers for at least 32 weeks. A single intramuscular administration of an AAV vector containing a gene for human erythropoietin (AAV-Epo) into mice resulted in dose-dependent secretion of erythropoietin and corresponding increases in red blood cell production that persisted for up to 40 weeks. Primary human myotubes transduced in vitro with the AAV-Epo vector also showed dose-dependent production of Epo. These results demonstrate that rAAV vectors are able to transduce skeletal muscle and are capable of achieving sustained expression and systemic delivery of a therapeutic protein following a single intramuscular administration. Gene therapy using AAV vectors may provide a practical strategy for the treatment of inherited and acquired protein deficiencies. PMID:8943064

  13. Mucosal Immunogenicity of Genetically Modified Lactobacillus acidophilus Expressing an HIV-1 Epitope within the Surface Layer Protein.

    Directory of Open Access Journals (Sweden)

    Akinobu Kajikawa

    Full Text Available Surface layer proteins of probiotic lactobacilli are theoretically efficient epitope-displaying scaffolds for oral vaccine delivery due to their high expression levels and surface localization. In this study, we constructed genetically modified Lactobacillus acidophilus strains expressing the membrane proximal external region (MPER from human immunodeficiency virus type 1 (HIV-1 within the context of the major S-layer protein, SlpA. Intragastric immunization of mice with the recombinants induced MPER-specific and S-layer protein-specific antibodies in serum and mucosal secretions. Moreover, analysis of systemic SlpA-specific cytokines revealed that the responses appeared to be Th1 and Th17 dominant. These findings demonstrated the potential use of the Lactobacillus S-layer protein for development of oral vaccines targeting specific peptides.

  14. A novel folate-modified self-microemulsifying drug delivery system of curcumin for colon targeting

    Directory of Open Access Journals (Sweden)

    Zhang L

    2012-01-01

    Full Text Available Lin Zhang1*, Weiwei Zhu2*, Chunfen Yang1, Hongxia Guo1, Aihua Yu1, Jianbo Ji3, Yan Gao1, Min Sun1, Guangxi Zhai11Department of Pharmaceutical Engineering, College of Pharmacy, Shandong University, Jinan; 2Department of Pharmacy, Yantai Yuhuangding Hospital, Yantai; 3Department of Pharmacology, College of Pharmacy, Shandong University, Jinan, China*These authors contributed equally to the workBackground: The objective of this study was to prepare, characterize, and evaluate a folate-modified self-microemulsifying drug delivery system (FSMEDDS with the aim to improve the solubility of curcumin and its delivery to the colon, facilitating endocytosis of FSMEDDS mediated by folate receptors on colon cancer cells.Methods: Ternary phase diagrams were constructed in order to obtain the most efficient self-emulsification region, and the formulation of curcumin-loaded SMEDDS was optimized by a simplex lattice experiment design. Then, three lipophilic folate derivatives (folate-polyethylene glycol-distearoylphosphatidylethanolamine, folate-polyethylene glycol-cholesteryl hemisuccinate, and folate-polyethylene glycol-cholesterol used as a surfactant were added to curcumin-loaded SMEDDS formulations. An in situ colon perfusion method in rats was used to optimize the formulation of FSMEDDS. Curcumin-loaded FSMEDDS was then filled into colon-targeted capsules and the in vitro release was investigated. Cytotoxicity studies and cellular uptake studies was used in this research.Results: The optimal formulation of FSMEDDS obtained with the established in situ colon perfusion method in rats was comprised of 57.5% Cremophor® EL, 32.5% Transcutol® HP, 10% Capryol™ 90, and a small amount of folate-polyethylene glycol-cholesteryl hemisuccinate (the weight ratio of folate materials to Cremophor EL was 1:100. The in vitro release results indicated that the obtained formulation of curcumin could reach the colon efficiently and release the drug immediately. Cellular

  15. The potential of protein-nanomaterial interaction for advanced drug delivery

    DEFF Research Database (Denmark)

    Peng, Qiang; Mu, Huiling

    2016-01-01

    Nanomaterials, like nanoparticles, micelles, nano-sheets, nanotubes and quantum dots, have great potentials in biomedical fields. However, their delivery is highly limited by the formation of protein corona upon interaction with endogenous proteins. This new identity, instead of nanomaterial itself...... of such interaction for advanced drug delivery are presented........ Therefore, protein-nanomaterial interaction is a great challenge for nanomaterial systems and should be inhibited. However, this interaction can also be used to functionalize nanomaterials by forming a selected protein corona. Unlike other decoration using exogenous molecules, nanomaterials functionalized...

  16. Intracellular protein delivery activity of peptides derived from insulin-like growth factor binding proteins 3 and 5

    International Nuclear Information System (INIS)

    Goda, Natsuko; Tenno, Takeshi; Inomata, Kosuke; Shirakawa, Masahiro; Tanaka, Toshiki; Hiroaki, Hidekazu

    2008-01-01

    Insulin-like growth factor binding proteins (IGFBPs) have various IGF-independent cellular activities, including receptor-independent cellular uptake followed by transcriptional regulation, although mechanisms of cellular entry remain unclear. Herein, we focused on their receptor-independent cellular entry mechanism in terms of protein transduction domain (PTD) activity, which is an emerging technique useful for clinical applications. The peptides of 18 amino acid residues derived from IGFBP-3 and IGFBP-5, which involve heparin-binding regions, mediated cellular delivery of an exogenous protein into NIH3T3 and HeLa cells. Relative protein delivery activities of IGFBP-3/5-derived peptides were approximately 20-150% compared to that of the HIV-Tat peptide, a potent PTD. Heparin inhibited the uptake of the fusion proteins with IGFBP-3 and IGFBP-5, indicating that the delivery pathway is heparin-dependent endocytosis, similar to that of HIV-Tat. The delivery of GST fused to HIV-Tat was competed by either IGFBP-3 or IGFBP-5-derived synthetic peptides. Therefore, the entry pathways of the three PTDs are shared. Our data has shown a new approach for designing protein delivery systems using IGFBP-3/5 derived peptides based on the molecular mechanisms of IGF-independent activities of IGFBPs

  17. Chitosan-based delivery systems for protein therapeutics and antigens

    NARCIS (Netherlands)

    Amidi, M.; Mastrobattista, E.; Jiskoot, W.; Hennink, W.E.

    Therapeutic peptides/proteins and protein-based antigens are chemically and structurally labile compounds, which are almost exclusively administered by parenteral injections. Recently, non-invasive mucosal routes have attracted interest for administration of these biotherapeutics. Chitosan-based

  18. A Promising Combo Gene Delivery System Developed from (3-Aminopropyl)triethoxysilane-Modified Iron Oxide Nanoparticles and Cationic Polymers

    Science.gov (United States)

    Zhang, Zubin; Song, Lina; Dong, Jinlai; Guo, Dawei; Du, Xiaolin; Cao, Biyin; Zhang, Yu; Gu, Ning; Mao, Xinliang

    2013-05-01

    (3-Aminopropyl)triethoxysilane-modified iron oxide nanoparticles (APTES-IONPs) have been evaluated for various biomedical applications, including medical imaging and drug delivery. Cationic polymers (CPs) such as Lipofectamine and TurboFect are widely used for research in gene delivery, but their toxicity and low in vivo efficiency limited their further application. In the present study, we synthesized water-soluble APTES-IONPs and developed a combo gene delivery system based on APTES-IONPs and CPs. This system significantly increased gene-binding capacity, protected genes from degradation, and improved gene transfection efficiency for DNA and siRNA in both adherent and suspension cells. Because of its great biocompatibility, high gene-carrying ability, and very low cytotoxicity, this combo gene delivery system will be expected for a wide application, and it might provide a new method for gene therapy.

  19. A Promising Combo Gene Delivery System Developed from (3-Aminopropyl)triethoxysilane-Modified Iron Oxide Nanoparticles and Cationic Polymers

    International Nuclear Information System (INIS)

    Zhang Zubin; Song Lina; Dong Jinlai; Guo Dawei; Du Xiaolin; Cao Biyin; Zhang Yu; Gu Ning; Mao Xinliang

    2013-01-01

    (3-Aminopropyl)triethoxysilane-modified iron oxide nanoparticles (APTES-IONPs) have been evaluated for various biomedical applications, including medical imaging and drug delivery. Cationic polymers (CPs) such as Lipofectamine and TurboFect are widely used for research in gene delivery, but their toxicity and low in vivo efficiency limited their further application. In the present study, we synthesized water-soluble APTES-IONPs and developed a combo gene delivery system based on APTES-IONPs and CPs. This system significantly increased gene-binding capacity, protected genes from degradation, and improved gene transfection efficiency for DNA and siRNA in both adherent and suspension cells. Because of its great biocompatibility, high gene-carrying ability, and very low cytotoxicity, this combo gene delivery system will be expected for a wide application, and it might provide a new method for gene therapy.

  20. Novel Hydrogel-Advanced Modified Clay Nanocomposites as Possible Vehicles for Drug Delivery and Controlled Release

    Directory of Open Access Journals (Sweden)

    Raluca Ianchis

    2017-12-01

    Full Text Available Present study refers to the synthesis of new advanced materials based on poly(methacrylic acid (PMAA with previously reported own advanced modified clays by edge covalent bonding. This will create the premises to obtain nanocomposite hydrogels with combined hydrophilic-hydrophobic behavior absolutely necessary for co-delivery of polar/nonpolar substances. For the synthesis, N,N’-methylenebisacrylamide was used as cross-linker and ammonium persulphate as initiator. As a consequence of the inclusion of clay into the polymer matrix and the intercalation of PMAA between the layers as well as the presence of hydrophobic interactions occurred between partners, the final hydrogel nanocomposites possessed greater swelling degrees, slower de-swelling process and enhanced mechanical properties depending on the clay type in comparison with pure hydrogel. In vitro MTS ([3-(4,5-dimethylthiazol-2-yl-5-(3-carboxymethoxyphenyl-2-(4-sulfophenyl-2H-tetrazolium, inner salt] colorimetric assay showed that direct exposure with PMMA-clay-based constructs did not affect cell viability and proliferation in time (24 and 48 h on either normal or adenocarcinoma cell lines.

  1. Novel Hydrogel-Advanced Modified Clay Nanocomposites as Possible Vehicles for Drug Delivery and Controlled Release.

    Science.gov (United States)

    Ianchis, Raluca; Ninciuleanu, Claudia M; Gifu, Ioana C; Alexandrescu, Elvira; Somoghi, Raluca; Gabor, Augusta R; Preda, Silviu; Nistor, Cristina L; Nitu, Sabina; Petcu, Cristian; Icriverzi, Madalina; Florian, Paula E; Roseanu, Anca M

    2017-12-13

    Present study refers to the synthesis of new advanced materials based on poly(methacrylic acid) (PMAA) with previously reported own advanced modified clays by edge covalent bonding. This will create the premises to obtain nanocomposite hydrogels with combined hydrophilic-hydrophobic behavior absolutely necessary for co-delivery of polar/nonpolar substances. For the synthesis, N , N '-methylenebisacrylamide was used as cross-linker and ammonium persulphate as initiator. As a consequence of the inclusion of clay into the polymer matrix and the intercalation of PMAA between the layers as well as the presence of hydrophobic interactions occurred between partners, the final hydrogel nanocomposites possessed greater swelling degrees, slower de-swelling process and enhanced mechanical properties depending on the clay type in comparison with pure hydrogel. In vitro MTS ([3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2 H -tetrazolium, inner salt]) colorimetric assay showed that direct exposure with PMMA-clay-based constructs did not affect cell viability and proliferation in time (24 and 48 h) on either normal or adenocarcinoma cell lines.

  2. Nano-hybrid carboxymethyl-hexanoyl chitosan modified with (3-aminopropyl)triethoxysilane for camptothecin delivery.

    Science.gov (United States)

    Hsiao, Meng-Hsuan; Tung, Tsan-Hua; Hsiao, Chi-Sheng; Liu, Dean-Mo

    2012-06-20

    Silane-modified amphiphilic chitosan was synthesized by anchoring a silane coupling agent, (3-aminopropyl)triethoxysilane, to a novel amphiphilic carboxymethyl-hexanoyl chitosan (CHC). The chemical structure of this new organic-inorganic hybrid molecule was characterized by FTIR and 13C-, 29Si-nuclear magnetic resonance, while the structural evolution was examined using scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and dynamic light scattering (DLS). Experimental results indicated a self-assembly behaviour of molecules into nanoparticles with a stable polygonal geometry, consisting of ordered silane layers of 6 nm in thickness. The self-assembly property was found to be influenced by chemical composition and concentration of silane incorporated, while the size can be varied by the amount of anchored silane. It was also demonstrated that such vesicle exhibited excellent cytocompatibility and cellular internalization capability in ARPE-19 cell line, and presented well-controlled encapsulation and release profiles for (S)-(+)-camptothecin. These unique properties render it as a potential drug delivery nanosystem. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. Octaarginine-modified chitosan as a nonviral gene delivery vector: properties and in vitro transfection efficiency

    International Nuclear Information System (INIS)

    Zhao Xiaoli; Li Zhaoyang; Liu Wenguang; Lam, Wingmoon; Sun Peng; Kao, Richard Y. T.; Luk, Keith D. K.; Lu, William W.

    2011-01-01

    Protein transduction domains (PTD) have been identified to have the capacity to facilitate molecular cargo to translocate through cell membrane. This study aims to utilize the cell membrane penetrating ability of octaarginine oligopeptide, a simplified prototype of the PTD, to enhance the transfection efficiency of chitosan. Octaarginine-modified chitosan (R 8 -CS) was synthesized as a gene transfer carrier by carbodiimide chemistry. The structure and composition of R 8 -CSs were characterized using FTIR and 1 H NMR. Agarose gel electrophoresis assay showed that R 8 -CS could efficiently condense the DNA. The particle size of R 8 -CS/DNA complexes were determined to be around 100–200 nm. The nanoparticle complexes exhibited a spherical and compact morphology. R 8 -CS demonstrated higher transfection activity and lower cytotoxicity as compared to the unmodified chitosan and also showed good serum resistance.

  4. Bioreducible poly(amidoamine)s as carriers for intracellular protein delivery to intestinal cells

    NARCIS (Netherlands)

    Cohen, S.; Coué, G.M.J.P.C.; Beno, D.; Korenstein, R.; Engbersen, Johannes F.J.

    2012-01-01

    An effective intracellular protein delivery system was developed based on linear poly(amidoamine)s (PAAs) that form self-assembled cationic nanocomplexes with oppositely charged proteins. Two differently functionalized PAAs were synthesized by Michael-type polyaddition of 4-amino-1-butanol (ABOL) to

  5. Delivery of proteins to mammalian cells via gold nanoparticle mediated laser transfection

    International Nuclear Information System (INIS)

    Heinemann, D; Kalies, S; Schomaker, M; Ertmer, W; Meyer, H; Ripken, T; Murua Escobar, H

    2014-01-01

    Nanoparticle laser interactions are in widespread use in cell manipulation. In particular, molecular medicine needs techniques for the directed delivery of molecules into mammalian cells. Proteins are the final mediator of most cellular cascades. However, despite several methodical approaches, the efficient delivery of proteins to cells remains challenging. This paper presents a new protein transfection technique via laser scanning of cells previously incubated with gold nanoparticles. The laser-induced plasmonic effects on the gold nanoparticles cause a transient permeabilization of the cellular membrane, allowing proteins to enter the cell. Applying this technique, it was possible to deliver green fluorescent protein into mammalian cells with an efficiency of 43%, maintaining a high level of cell viability. Furthermore, a functional delivery of Caspase 3, an apoptosis mediating protein, was demonstrated and evaluated in several cellular assays. Compared to conventional protein transfection techniques such as microinjection, the methodical approach presented here enables high-throughput transfection of about 10 000 cells per second. Moreover, a well-defined point in time of delivery is guaranteed by gold nanoparticle mediated laser transfection, allowing the detailed temporal analysis of cellular pathways and protein trafficking. (papers)

  6. Efficient delivery of genome-editing proteins using bioreducible lipid nanoparticles

    Science.gov (United States)

    A central challenge to the development of protein-based therapeutics is the inefficiency of delivery of protein cargo across the mammalian cell membrane, including escape from endosomes. Here we report that combining bioreducible lipid nanoparticles with negatively supercharged Cre recombinase or an...

  7. Bioresponsive nanoparticles based on poly(amidoamine)s for protein delivery

    NARCIS (Netherlands)

    Coué, G.M.J.P.C.

    2011-01-01

    This study describes the design and development of multifuctional poly(amidoamine)s (PAAs) capable to form self-assembled nanocomplexes with peptides and proteins, as functional bioresponsive vectors for protein delivery to targeting cells in vitro and in vivo. The representative examples of this

  8. Bioreducible poly(amidoamine)s with charge-reversel properties for intracellular protein delivery

    NARCIS (Netherlands)

    Coué, G.M.J.P.C.; Engbersen, Johannes F.J.; Hennink, W.E.; Engbersen, J.F.J.

    2010-01-01

    An effective intracellular protein delivery system was developed using bioreducible disulfide-containing poly(amidoamine)s with negatively charged citraconic side groups that can give charge-reversal upon pH decrease. These water-soluble and linear polymers efficiently self-assemble with proteins

  9. Method for Targeted Therapeutic Delivery of Proteins into Cells | NCI Technology Transfer Center | TTC

    Science.gov (United States)

    The Protein Expression Laboratory at the National Cancer Institute in Frederick, MD is seeking statements of capability or interest from parties interested in collaborative research to further develop a platform technology for the targeted intra-cellular delivery of proteins using virus-like particles (VLPs).

  10. Folate-modified lipid–polymer hybrid nanoparticles for targeted paclitaxel delivery

    Directory of Open Access Journals (Sweden)

    Zhang L

    2015-03-01

    Full Text Available Linhua Zhang,1 Dunwan Zhu,1 Xia Dong,1 Hongfan Sun,1 Cunxian Song,1 Chun Wang,2 Deling Kong1 1Tianjin Key Laboratory of Biomaterials, Institute of Biomedical Engineering, Peking Union Medical College and Chinese Academy of Medical Sciences, Tianjin, People’s Republic of China; 2Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA Abstract: The purpose of this study was to develop a novel lipid–polymer hybrid drug carrier comprised of folate (FA modified lipid-shell and polymer-core nanoparticles (FLPNPs for sustained, controlled, and targeted delivery of paclitaxel (PTX. The core-shell NPs consist of 1 a poly(ε-caprolactone hydrophobic core based on self-assembly of poly(ε-caprolactone–poly(ethylene glycol–poly(ε-caprolactone (PCL-PEG-PCL amphiphilic copolymers, 2 a lipid monolayer formed with 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy (polyethylene glycol-2000] (DSPE-PEG2000, 3 a targeting ligand (FA on the surface, and were prepared using a thin-film hydration and ultrasonic dispersion method. Transmission electron microscopy and dynamic light scattering analysis confirmed the coating of the lipid monolayer on the hydrophobic polymer core. Physicochemical characterizations of PTX-loaded FLPNPs, such as particle size and size distribution, zeta potential, morphology, drug loading content, encapsulation efficiency, and in vitro drug release, were also evaluated. Fluorescent microscopy proved the internalization efficiency and targeting ability of the folate conjugated on the lipid monolayer for the EMT6 cancer cells which overexpress folate receptor. In vitro cytotoxicity assay demonstrated that the cytotoxic effect of PTX-loaded FLPNPs was lower than that of Taxol®, but higher than that of PTX-loaded LPNPs (without folate conjugation. In EMT6 breast tumor model, intratumoral administration of PTX-loaded FLPNPs showed similar antitumor efficacy but low toxicity compared to Taxol®. More

  11. Increased Loading, Efficacy and Sustained Release of Silibinin, a Poorly Soluble Drug Using Hydrophobically-Modified Chitosan Nanoparticles for Enhanced Delivery of Anticancer Drug Delivery Systems

    Directory of Open Access Journals (Sweden)

    Cha Yee Kuen

    2017-11-01

    Full Text Available Conventional delivery of anticancer drugs is less effective due to pharmacological drawbacks such as lack of aqueous solubility and poor cellular accumulation. This study reports the increased drug loading, therapeutic delivery, and cellular accumulation of silibinin (SLB, a poorly water-soluble phenolic compound using a hydrophobically-modified chitosan nanoparticle (pCNP system. In this study, chitosan nanoparticles were hydrophobically-modified to confer a palmitoyl group as confirmed by 2,4,6-Trinitrobenzenesulfonic acid (TNBS assay. Physicochemical features of the nanoparticles were studied using the TNBS assay, and Attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR analyses. The FTIR profile and electron microscopy correlated the successful formation of pCNP and pCNP-SLB as nano-sized particles, while Dynamic Light Scattering (DLS and Field Emission-Scanning Electron Microscopy (FESEM results exhibited an expansion in size between pCNP and pCNP-SLB to accommodate the drug within its particle core. To evaluate the cytotoxicity of the nanoparticles, a Methylthiazolyldiphenyl-tetrazolium bromide (MTT cytotoxicity assay was subsequently performed using the A549 lung cancer cell line. Cytotoxicity assays exhibited an enhanced efficacy of SLB when delivered by CNP and pCNP. Interestingly, controlled release delivery of SLB was achieved using the pCNP-SLB system, conferring higher cytotoxic effects and lower IC50 values in 72-h treatments compared to CNP-SLB, which was attributed to the hydrophobic modification of the CNP system.

  12. Multidisciplinary perspectives for Alzheimer's and Parkinson's diseases: hydrogels for protein delivery and cell-based drug delivery as therapeutic strategies.

    Science.gov (United States)

    Giordano, Carmen; Albani, Diego; Gloria, Antonio; Tunesi, Marta; Batelli, Sara; Russo, Teresa; Forloni, Gianluigi; Ambrosio, Luigi; Cigada, Alberto

    2009-12-01

    This review presents two intriguing multidisciplinary strategies that might make the difference in the treatment of neurodegenerative disorders such as Alzheimer's and Parkinson's diseases. The first proposed strategy is based on the controlled delivery of recombinant proteins known to play a key role in these neurodegenerative disorders that are released in situ by optimized polymer-based systems. The second strategy is the use of engineered cells, encapsulated and delivered in situ by suitable polymer-based systems, that act as drug reservoirs and allow the delivery of selected molecules to be used in the treatment of Alzheimer's and Parkinson's diseases. In both these scenarios, the design and development of optimized polymer-based drug delivery and cell housing systems for central nervous system applications represent a key requirement. Materials science provides suitable hydrogel-based tools to be optimized together with suitably designed recombinant proteins or drug delivering-cells that, once in situ, can provide an effective treatment for these neurodegenerative disorders. In this scenario, only interdisciplinary research that fully integrates biology, biochemistry, medicine and materials science can provide a springboard for the development of suitable therapeutic tools, not only for the treatment of Alzheimer's and Parkinson's diseases but also, prospectively, for a wide range of severe neurodegenerative disorders.

  13. [Fewer breech deliveries after implementation of a modified cephalic version protocol].

    Science.gov (United States)

    Kuppens, Simone M I; Francois, Anne M H; Hasaart, Tom H M; van der Donk, Maria W P; Pop, Victor J M

    2010-01-01

    To investigate the effect of implementation of a number of process policy guidelines (protocol), on the success rate of external cephalic version (ECV) for breech presentation. Prospective study. During a 3-year period (2004-2006) a standardized protocol for an ECV consultation was developed, evaluated and adapted. After implementing this modified protocol as 'process policy guidelines', the effect on the rate of successful ECV was prospectively evaluated during the period 1 January 2007-31 July 2008. Success was defined as cephalic presentation (ultrasound) immediately after ECV. A secondary outcome measure was the elective caesarean section rate for breech presentation. The rate of successful ECV increased significantly from 47% (110/236 pregnant women) in the period January 2004-December 2006 to 61% (85/139, p = 0.006) in the period January 2007-July 2008. Patient characteristics were similar in both groups, with the exception of 2 subgroups of term of version. The increase was preferentially found in nulliparous and multiparous women with frank breech. Nulliparity, frank breech, anterior placenta and low birth weight were associated with a lower success rate of ECV. The term of pregnancy at which ECV was performed did not seem to affect the success rate. Implementing the process policy guidelines increased the number of cephalic presentations at delivery and decreased the rate of elective caesarean sections for breech presentation from 39% to 27% (p = 0.03). The number needed to treat to prevent 1 elective caesarean section by ECV according to the process policy guidelines was 8. After implementation of the process policy guidelines, the success rate of ECV increased considerably. The rate of elective caesarean section for breech presentation declined. These findings are in favour of establishing specialized ECV centres in the Netherlands.

  14. Tat-mediated protein delivery in living Caenorhabditis elegans

    International Nuclear Information System (INIS)

    Delom, Frederic; Fessart, Delphine; Caruso, Marie-Elaine; Chevet, Eric

    2007-01-01

    The Tat protein from HIV-1 fused with heterologous proteins traverses biological membranes in a transcellular process called: protein transduction. This has already been successfully exploited in various biological models, but never in the nematode worm Caenorhabditis elegans. TAT-eGFP or GST-eGFP proteins were fed to C. elegans worms, which resulted in the specific localization of Tat-eGFP to epithelial intestinal cells. This system represents an efficient tool for transcellular transduction in C. elegans intestinal cells. Indeed, this approach avoids the use of tedious purification steps to purify the TAT fusion proteins and allows for rapid analyses of the transduced proteins. In addition, it may represent an efficient tool to functionally analyze the mechanisms of protein transduction as well as to complement RNAi/KO in the epithelial intestinal system. To sum up, the advantage of this technology is to combine the potential of bacterial expression system and the Tat-mediated transduction technique in living worm

  15. Preparation and characterization of alginate microspheres for sustained protein delivery within tissue scaffolds

    International Nuclear Information System (INIS)

    Zhai Peng; Chen, X B; Schreyer, David J

    2013-01-01

    Tissue engineering scaffolds are designed not only to provide structural support for the repair of damaged tissue, but can also serve the function of bioactive protein delivery. Here we present a study on the preparation and characterization of protein-loaded microspheres, either alone or incorporated into mock tissue scaffolds, for sustained protein delivery. Alginate microspheres were prepared by a novel, small-scale water-in-oil emulsion technique and loaded with fluorescently labeled immunoglobulin G (IgG). Microsphere size appears to be influenced by the magnitude and distribution of force generated by mechanical stirring during emulsion. Protein release studies show that sustained IgG release from microspheres could be achieved and that application of a secondary coating of chitosan could further slow the rate of protein release. Preservation of bioactivity of released IgG protein was confirmed using an immunohistochemical assay. When IgG-loaded microspheres were incorporated into mock scaffolds, initial protein release was diminished and the overall time course of release was extended. The present study demonstrates that protein-loaded microspheres can be prepared with a controlled release profile and preserved biological activity, and can be incorporated into scaffolds to achieve sustained and prolonged protein delivery in a tissue engineering application. (paper)

  16. Construction and characterization of a pure protein hydrogel for drug delivery application.

    Science.gov (United States)

    Xu, Xu; Xu, ZhaoKang; Yang, XiaoFeng; He, YanHao; Lin, Rong

    2017-02-01

    Injectable hydrogels have a variety of applications, including regenerative medicine, tissue engineering and controlled drug delivery. In this paper, we reported on a pure protein hydrogel based on tetrameric recombinant proteins for the potential drug delivery application. This protein hydrogel was formed instantly by simply mixing two recombinant proteins (ULD-TIP1 and ULD-GGGWRESAI) through the specific protein-peptide interaction. The protein hydrogel was characterized by rheology and scanning electron microscopy (SEM). In vitro cytotoxicity test indicated that the developed protein hydrogel had no apparent cytotoxicity against L-929 cells and HCEC cells after 48h incubation. The formed protein hydrogels was gradually degraded after incubation in phosphate buffered solution (PBS, pH=7.4) for a period of 144h study, as indicated by in vitro degradation test. Encapsulation of model drug (sodium diclofenac; DIC) were achieved by simple mixing of drugs with hydrogelator and the entrapped drugs was almost completely released from hydrogels within 24h via a diffusion manner. As a conclusion, the simple and mild preparation procedure and good biocompatibility of protein hydrogel would render its good promising candidate for drug delivery applications. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Elastin-like-polypeptide based fusion proteins for osteogenic factor delivery in bone healing.

    Science.gov (United States)

    McCarthy, Bryce; Yuan, Yuan; Koria, Piyush

    2016-07-08

    Modern treatments of bone injuries and diseases are becoming increasingly dependent on the usage of growth factors to stimulate bone growth. Bone morphogenetic protein-2 (BMP-2), a potent osteogenic inductive protein, exhibits promising results in treatment models, but recently has had its practical efficacy questioned due to the lack of local retention, ectopic bone formation, and potentially lethal inflammation. Where a new delivery technique of the BMP-2 is necessary, here we demonstrate the viability of an elastin-like peptide (ELP) fusion protein containing BMP-2 for delivery of the BMP-2. This fusion protein retains the performance characteristics of both the BMP-2 and ELP. The fusion protein was found to induce osteogenic differentiation of mesenchymal stem cells as evidenced by the production of alkaline phosphatase and extracellular calcium deposits in response to treatment by the fusion protein. Retention of the ELPs inverse phase transition property has allowed for expression of the fusion protein within a bacterial host (such as Escherichia coli) and easy and rapid purification using inverse transition cycling. The fusion protein formed self-aggregating nanoparticles at human-body temperature. The data collected suggests the viability of these fusion protein nanoparticles as a dosage-efficient and location-precise noncytotoxic delivery vehicle for BMP-2 in bone treatment. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:1029-1037, 2016. © 2016 American Institute of Chemical Engineers.

  18. Polyethyleneimine-modified iron oxide nanoparticles for brain tumor drug delivery using magnetic targeting and intra-carotid administration

    OpenAIRE

    Chertok, Beata; David, Allan E.; Yang, Victor C.

    2010-01-01

    This study aimed to examine the applicability of polyethyleneimine (PEI)-modified magnetic nanoparticles (GPEI) as a potential vascular drug/gene carrier to brain tumors. In vitro, GPEI exhibited high cell association and low cell toxicity – properties which are highly desirable for intracellular drug/gene delivery. In addition, a high saturation magnetization of 93 emu/g Fe was expected to facilitate magnetic targeting of GPEI to brain tumor lesions. However, following intravenous administra...

  19. Immobilization of ferrocene-modified SNAP-fusion proteins

    NARCIS (Netherlands)

    Wasserberg, D.; Uhlenheuer, D.; Neirynck, P.; Neirynck, Pauline; Cabanas Danés, Jordi; Schenkel, J.H.; Ravoo, B.J.; An, Q.; Huskens, Jurriaan; Milroy, L.G.; Brunsveld, Luc; Jonkheijm, Pascal

    2013-01-01

    The supramolecular assembly of proteins on surfaces has been investigated via the site-selective incorporation of a supramolecular moiety on proteins. To this end, fluorescent proteins have been site-selectively labeled with ferrocenes, as supramolecular guest moieties, via SNAP-tag technology. The

  20. Exploring advantages/disadvantages and improvements in overcoming gene delivery barriers of amino acid modified trimethylated chitosan.

    Science.gov (United States)

    Zheng, Hao; Tang, Cui; Yin, Chunhua

    2015-06-01

    Present study aimed at exploring advantages/disadvantages of amino acid modified trimethylated chitosan in conquering multiple gene delivery obstacles and thus providing comprehensive understandings for improved transfection efficiency. Arginine, cysteine, and histidine modified trimethyl chitosan were synthesized and employed to self-assemble with plasmid DNA (pDNA) to form nanocomplexes, namely TRNC, TCNC, and THNC, respectively. They were assessed by structural stability, cellular uptake, endosomal escape, release behavior, nuclear localization, and in vitro and in vivo transfection efficiencies. Besides, sodium tripolyphosphate (TPP) was added into TRNC to compromise certain disadvantageous attributes for pDNA delivery. Optimal endosomal escape ability failed to bring in satisfactory transfection efficiency of THNC due to drawbacks in structural stability, cellular uptake, pDNA liberation, and nuclear distribution. TCNC evoked the most potent gene expression owing to multiple advantages including sufficient stability, preferable uptake, efficient pDNA release, and high nucleic accumulation. Undesirable stability and insufficient pDNA release adversely affected TRNC-mediated gene transfer. However, incorporation of TPP could improve such disadvantages and consequently resulted in enhanced transfection efficiencies. Coordination of multiple contributing effects to conquer all delivery obstacles was necessitated for improved transfection efficiency, which would provide insights into rational design of gene delivery vehicles.

  1. Aerosol delivery of Akt controls protein translation in the lungs of dual luciferase reporter mice.

    Science.gov (United States)

    Tehrani, A M; Hwang, S-K; Kim, T-H; Cho, C-S; Hua, J; Nah, W-S; Kwon, J-T; Kim, J-S; Chang, S-H; Yu, K-N; Park, S-J; Bhandari, D R; Lee, K-H; An, G-H; Beck, G R; Cho, M-H

    2007-03-01

    Lung cancer has emerged as a leading cause of cancer death in the world; however, most of the current conventional therapies are not sufficiently effective in altering the progression of disease. Therefore, development of novel treatment approaches is needed. Although several genes and methods have been used for cancer gene therapy, a number of problems such as specificity, efficacy and toxicity reduce their application. This has led to re-emergence of aerosol gene delivery as a noninvasive method for lung cancer treatment. In this study, nano-sized glucosylated polyethyleneimine (GPEI) was used as a gene delivery carrier to investigate the effects of Akt wild type (WT) and kinase deficient (KD) on Akt-related signaling pathways and protein translation in the lungs of CMV- LucR-cMyc-IRES-LucF dual reporter mice. These mice are a powerful tool for the discrimination between cap-dependent/-independent protein translation. Aerosols containing self-assembled nano-sized GPEI/Akt WT or GPEI/Akt KD were delivered into the lungs of reporter mice through nose-only-inhalation-chamber with the aid of nebulizer. Aerosol delivery of Akt WT caused the increase of protein expression levels of Akt-related signals, whereas aerosol delivery of Akt KD did not. Furthermore, dual luciferase activity assay showed that aerosol delivery of Akt WT enhanced cap-dependent protein translation, whereas a reduction in cap-dependent protein translation by Akt KD was observed. Our results clearly showed that targeting Akt may be a good strategy for prevention as well as treatment of lung cancer. These studies suggest that our aerosol delivery is compatible for in vivo gene delivery which could be used as a noninvasive gene therapy in the future.

  2. Overview on zein protein: a promising pharmaceutical excipient in drug delivery systems and tissue engineering.

    Science.gov (United States)

    Labib, Gihan

    2018-01-01

    Natural pharmaceutical excipients have been applied extensively in the past decades owing to their safety and biocompatibility. Zein, a natural protein of plant origin offers great benefit over other synthetic polymers used in controlled drug and biomedical delivery systems. It was used in a variety of medical fields including pharmaceutical and biomedical drug targeting, vaccine, tissue engineering, and gene delivery. Being biodegradable and biocompatible, the current review focuses on the history and the medical application of zein as an attractive still promising biopolymer. Areas covered: The current review gives a broadscope on zein as a still promising protein excipient in different fields. Zein- based drug and biomedical delivery systems are discussed with special focus on current and potential application in controlled drug delivery systems, and tissue engineering. Expert opinion: Zein as a protein of natural origin can still be considered a promising polymer in the field of drug delivery systems as well as in tissue engineering. Although different researchers spotted light on zein application in different industrial fields extensively, the feasibility of its use in the field of drug delivery replenished by investigators in recent years has not yet been fully approached.

  3. A sight on protein-based nanoparticles as drug/gene delivery systems.

    Science.gov (United States)

    Salatin, Sara; Jelvehgari, Mitra; Maleki-Dizaj, Solmaz; Adibkia, Khosro

    2015-01-01

    Polymeric nanomaterials have extensively been applied for the preparation of targeted and controlled release drug/gene delivery systems. However, problems involved in the formulation of synthetic polymers such as using of the toxic solvents and surfactants have limited their desirable applications. In this regard, natural biomolecules including proteins and polysaccharide are suitable alternatives due to their safety. According to literature, protein-based nanoparticles possess many advantages for drug and gene delivery such as biocompatibility, biodegradability and ability to functionalize with targeting ligands. This review provides a general sight on the application of biodegradable protein-based nanoparticles in drug/gene delivery based on their origins. Their unique physicochemical properties that help them to be formulated as pharmaceutical carriers are also discussed.

  4. Recent advances in topical delivery of proteins and peptides mediated by soft matter nanocarriers.

    Science.gov (United States)

    Witting, Madeleine; Obst, Katja; Friess, Wolfgang; Hedtrich, Sarah

    2015-11-01

    Proteins and peptides are increasingly important therapeutics for the treatment of severe and complex diseases like cancer or autoimmune diseases due to their high specificity and potency. Their unique structure and labile physicochemical properties, however, require special attention in the production and formulation process as well as during administration. Aside from conventional systemic injections, the topical application of proteins and peptides is an appealing alternative due to its non-invasive nature and thus high acceptance by patients. For this approach, soft matter nanocarriers are interesting delivery systems which offer beneficial properties such as high biocompatibility, easiness of modifications, as well as targeted drug delivery and release. This review aims to highlight and discuss technological developments in the field of soft matter nanocarriers for the delivery of proteins and peptides via the skin, the eye, the nose, and the lung, and to provide insights in advantages, limitations, and practicability of recent advances. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Characterization and Preparation of Broken Rice Proteins Modified by Proteases

    Directory of Open Access Journals (Sweden)

    Lixia Hou

    2010-01-01

    Full Text Available Broken rice is an underutilized by-product of milling. Proteins prepared from broken rice by treatments with alkaline protease and papain have been characterized with regard to nutritional and functional properties. The protein content and the protein recovery were 56.45 and 75.45 % for alkaline protease treatment, and 65.45 and 46.32 % for papain treatment, respectively. Protease treatment increased the lysine and valine content, leading to a more balanced amino acid profile. Broken rice proteins had high emulsifying capacity, 58.3–71.6 % at neutral pH, and adequate water holding capacity, ranging from 1.96 to 2.93 g/g of proteins. At pH=7.0, the broken rice protein had the highest water holding capacity and the best interfacial activities (emulsifying capacity, emulsifying stability, foaming capacity and foaming stability, which may be the result of the higher solubility at pH=7.0. The interfacial activities increased with the increase in the mass fraction of broken rice proteins. The proteins prepared by the papain treatment had higher water holding capacity (p>0.05, emulsifying capacity (p0.05 than alkaline protease treatment at the same pH or mass fraction. To test the fortification of food products with broken rice proteins, pork sausages containing the proteins were prepared. Higher yield of the sausages was obtained with the increased content of broken rice proteins, in the range of 2.0–9.0 %. The results indicate that broken rice proteins have potential to be used as the protein fortification ingredient for food products.

  6. PLGA/alginate composite microspheres for hydrophilic protein delivery

    International Nuclear Information System (INIS)

    Zhai, Peng; Chen, X.B.; Schreyer, David J.

    2015-01-01

    Poly(lactic-co-glycolic acid) (PLGA) microspheres and PLGA/alginate composite microspheres were prepared by a novel double emulsion and solvent evaporation technique and loaded with bovine serum albumin (BSA) or rabbit anti-laminin antibody protein. The addition of alginate and the use of a surfactant during microsphere preparation increased the encapsulation efficiency and reduced the initial burst release of hydrophilic BSA. Confocal laser scanning microcopy (CLSM) of BSA-loaded PLGA/alginate composite microspheres showed that PLGA, alginate, and BSA were distributed throughout the depths of microspheres; no core/shell structure was observed. Scanning electron microscopy revealed that PLGA microspheres erode and degrade more quickly than PLGA/alginate composite microspheres. When loaded with anti-laminin antibody, the function of released antibody was well preserved in both PLGA and PLGA/alginate composite microspheres. The biocompatibility of PLGA and PLGA/alginate microspheres were examined using four types of cultured cell lines, representing different tissue types. Cell survival was variably affected by the inclusion of alginate in composite microspheres, possibly due to the sensitivity of different cell types to excess calcium that may be released from the calcium cross-linked alginate. - Highlights: • A double emulsion technique is used to prepare protein-loaded PLGA or PLGA/alginate microspheres. • PLGA, alginate and protein are distributed evenly within microsphere structure. • Addition of alginate improves loading efficiency and slows degradation and protein release. • PLGA/alginate microspheres have favorable biocompatibility

  7. Optimising oral systems for the delivery of therapeutic proteins and ...

    African Journals Online (AJOL)

    Therapeutic proteins/peptides are mostly administered as parenteral (injectable) preparations as a result of their poor oral bioavailability which is due to degradation by proteolytic enzymes, poor membrane permeability and large molecular size. However, the oral route would be preferred to the parenteral administration ...

  8. PLGA/alginate composite microspheres for hydrophilic protein delivery

    Energy Technology Data Exchange (ETDEWEB)

    Zhai, Peng [Department of Anatomy and Cell Biology, University of Saskatchewan, S7N5E5 (Canada); Division of Biomedical Engineering, University of Saskatchewan, S7N5A9 (Canada); Chen, X.B. [Department of Mechanical Engineering, University of Saskatchewan, S7N5A9 (Canada); Division of Biomedical Engineering, University of Saskatchewan, S7N5A9 (Canada); Schreyer, David J., E-mail: david.schreyer@usask.ca [Department of Anatomy and Cell Biology, University of Saskatchewan, S7N5E5 (Canada); Division of Biomedical Engineering, University of Saskatchewan, S7N5A9 (Canada)

    2015-11-01

    Poly(lactic-co-glycolic acid) (PLGA) microspheres and PLGA/alginate composite microspheres were prepared by a novel double emulsion and solvent evaporation technique and loaded with bovine serum albumin (BSA) or rabbit anti-laminin antibody protein. The addition of alginate and the use of a surfactant during microsphere preparation increased the encapsulation efficiency and reduced the initial burst release of hydrophilic BSA. Confocal laser scanning microcopy (CLSM) of BSA-loaded PLGA/alginate composite microspheres showed that PLGA, alginate, and BSA were distributed throughout the depths of microspheres; no core/shell structure was observed. Scanning electron microscopy revealed that PLGA microspheres erode and degrade more quickly than PLGA/alginate composite microspheres. When loaded with anti-laminin antibody, the function of released antibody was well preserved in both PLGA and PLGA/alginate composite microspheres. The biocompatibility of PLGA and PLGA/alginate microspheres were examined using four types of cultured cell lines, representing different tissue types. Cell survival was variably affected by the inclusion of alginate in composite microspheres, possibly due to the sensitivity of different cell types to excess calcium that may be released from the calcium cross-linked alginate. - Highlights: • A double emulsion technique is used to prepare protein-loaded PLGA or PLGA/alginate microspheres. • PLGA, alginate and protein are distributed evenly within microsphere structure. • Addition of alginate improves loading efficiency and slows degradation and protein release. • PLGA/alginate microspheres have favorable biocompatibility.

  9. A modified gelatin zymography technique incorporating total protein normalization.

    Science.gov (United States)

    Raykin, Julia; Snider, Eric; Bheri, Sruti; Mulvihill, John; Ethier, C Ross

    2017-03-15

    Gelatinase zymography is a commonly used laboratory procedure; however, variability in sample loading and concentration reduce the accuracy of quantitative results obtained from this technique. To facilitate normalization of gelatinase activity by loaded protein amount, we developed a protocol using the trihalocompound 2,2,2-trichloroethanol to allow for gelatin zymography and total protein labeling within the same gel. We showed that detected protein levels increased linearly with loading, and describe a loading concentration range over which normalized gelatinase activity was constant. We conclude that in-gel total protein detection is feasible in gelatin zymography and greatly improves comparison of gelatinase activity between samples. Published by Elsevier Inc.

  10. Factors of importance for a successful delivery system for proteins

    DEFF Research Database (Denmark)

    van de Weert, Marco; Jorgensen, Lene; Horn Moeller, Eva

    2005-01-01

    Protein pharmaceuticals have matured into an important class of drugs, now comprising one in three novel drugs introduced on the market. However, significant gains are still to be made in reducing the costs of production, ensuring proper pharmacokinetics and efficacy, increasing patient compliance...... and convenience, and reducing side effects such as immunogenicity. This review summarises these issues and provides recent examples of methods to reduce costs, alter pharmacokinetics and increase patient compliance. It also discusses the increasing interest in understanding immunogenicity in order to prevent...

  11. Modulating Protein Adsorption on Oxygen Plasma Modified Polysiloxane Surfaces

    International Nuclear Information System (INIS)

    Marletta, G.

    2006-01-01

    In the present paper we report the study on the adsorption behaviour of three model globular proteins, Human Serum Albumin, Lactoferrin and Egg Chicken Lysozyme onto both unmodified surfaces of a silicon-based polymer and the corresponding plasma treated surfaces. In particular, thin films of hydrophobic polysiloxane (about 90 degree of static water contact angle, WCA) were converted by oxygen plasma treatment at reduced pressure into very hydrophilic phases of SiOx (WCA less than 5 degree). The kinetics of protein adsorption processes were investigated by QCM-D technique, while the chemical structure and topography of the protein adlayer have been studied by Angular resolved-XPS and AFM respectively. It turned out that Albumin and Lysozyme exhibited the opposite preferential adsorption respectively onto the hydrophobic and hydrophilic surfaces, while Lactoferrin did not exhibit significant differences. The observed protein behaviour are discussed both in terms of surface-dependent parameters, including surface free energy and chemical structure, and in terms of protein-dependent parameters, including charge as well as the average molecular orientation in the adlayers. Finally, some examples of differential adsorption behaviour of the investigated proteins are reported onto nanopatterned polysiloxane surfaces consisting of hydrophobic nanopores surrounded by hydrophilic (plasma-treated) matrix and the reverse

  12. Photo-synthesis of protein-based nanoparticles and the application in drug delivery

    International Nuclear Information System (INIS)

    Xie, Jinbing; Wang, Hongyang; Cao, Yi; Qin, Meng; Wang, Wei

    2015-01-01

    Recently, protein-based nanoparticles as drug delivery systems have attracted great interests due to the excellent behavior of high biocompatibility and biodegradability, and low toxicity. However, the synthesis techniques are generally costly, chemical reagents introduced, and especially present difficulties in producing homogeneous monodispersed nanoparticles. Here, we introduce a novel physical method to synthesize protein nanoparticles which can be accomplished under physiological condition only through ultraviolet (UV) illumination. By accurately adjusting the intensity and illumination time of UV light, disulfide bonds in proteins can be selectively reduced and the subsequent self-assembly process can be well controlled. Importantly, the co-assembly can also be dominated when the proteins mixed with either anti-cancer drugs, siRNA, or active targeting molecules. Both in vitro and in vivo experiments indicate that our synthesized protein–drug nanoparticles (drug-loading content and encapsulation efficiency being ca. 8.2% and 70%, respectively) not only possess the capability of traditional drug delivery systems (DDS), but also have a greater drug delivery efficiency to the tumor sites and a better inhibition of tumor growth (only 35% of volume comparing to the natural growing state), indicating it being a novel drug delivery system in tumor therapy

  13. A novel application of maleimide for advanced drug delivery: in vitro and in vivo evaluation of maleimide-modified pH-sensitive liposomes

    Directory of Open Access Journals (Sweden)

    Li T

    2013-10-01

    Full Text Available Tianshu Li, Shinji TakeokaDepartment of Life Science and Medical Bioscience, Graduate School of Advanced Science and Engineering, Waseda University (TWIns, Shinjuku-ku, Tokyo, JapanAbstract: Maleimide is a stable and easy-to-handle moiety that rapidly and covalently conjugates thiol groups of cysteine residues in proteins or peptides. Herein, we use maleimide to modify the surface of liposomes in order to obtain an advanced drug delivery system. Employing a small amount (0.3 mol% of maleimide-polyethylene glycol (PEG to modify the surface of the liposomes M-GGLG-liposomes, composed of 1,5-dihexadecyl N,N-diglutamyl-lysyl-L-glutamate (GGLG/cholesterol/poly(ethylene glycol 1,2-distearoyl-sn-glycero-3-phosphoethanolamine (PEG5000-DSPE/maleimide-PEG5000-Glu2C18 at a molar ratio of 5:5:0.03:0.03, drug delivery efficiency was remarkably improved both in vitro and in vivo compared to unmodified liposomes (GGLG-liposomes, composed of GGLG/cholesterol/PEG5000-DSPE/PEG5000-Glu2C18 at a molar ratio of 5:5:0.03:0.03. Moreover, this modification did not elicit any detectable increase in cytotoxicity. The maleimide-modification did not alter the physical characteristics of the liposomes such as size, zeta potential, pH sensitivity, dispersibility and drug encapsulation efficiency. However, M-GGLG-liposomes were more rapidly (≥2-fold internalized into HeLa, HCC1954, and MDA-MB-468 cells compared to GGLG-liposomes. In vivo, M-GGLG-liposomes encapsulating doxorubicin (M-GGLG-DOX-liposomes also showed a more potent antitumor effect than GGLG-DOX-liposomes and the widely used 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC-DOX-liposomes after two subcutaneous injections around breast cancer tissue in mice. The biodistribution of liposomes in this model was observed using an in vivo imaging system, which showed that M-GGLG-liposomes were present for significantly longer at the injection site compared to GGLG-liposomes. The outstanding biological functions of

  14. Sonochemical synthesis of (3-aminopropyl)triethoxysilane-modified monodispersed silica nanoparticles for protein immobilization

    International Nuclear Information System (INIS)

    Shen, Shou-Cang; Ng, Wai Kiong; Chia, Leonard; Dong, Yuan-Cai; Tan, Reginald B.H.

    2011-01-01

    Graphical abstract: 3-Aminopropyltriethoxysilane modified monodispersed silica nanoparticles were synthesized by rapid sonochemical co-condensation to achieve high capability for protein immobilization. Highlights: → Amino-modified monodispersed silica nanoparticles were synthesized by rapid co-condensation. → Strong positive charge was created by aminopropyl-modification. → Capability for immobilization of negatively charged protein was enhanced. → Electrostatic interaction between proteins and surface contributed to the enhanced adsorption. -- Abstract: 3-Aminopropyltriethoxysilane modified monodispersed silica nanoparticles were synthesized by a rapid sonochemical co-condensation synthesis procedure. The chemical nature of surface organic modifier on the obtained modified silica nanoparticle was characterized by 13 C and 29 Si MAS Nuclear Magnetic Resonance (NMR) spectroscopies, Fourier-transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA)- differential scanning calorimetry (DSC). Due to the strengthened positive surface charge of the silica nanoparticles by the modification with aminopropyl groups, the capability for bovine serum albumin (BSA) adsorption was significantly increased as compared with bare silica nanoparticles. 80 mg/g BSA was adsorbed on modified silica nanoparticles, whereas only 20 mg/g BSA could be loaded on pure silica nanoparticles. The enhanced positive surface charge repelled proteins with net positive charge and the modified silica nanoparticles exhibited negligible adsorption of lysozyme, thus a selective adsorption of proteins could be achieved.

  15. Sonochemical synthesis of (3-aminopropyl)triethoxysilane-modified monodispersed silica nanoparticles for protein immobilization

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Shou-Cang, E-mail: shen_shoucang@ices.a-star.edu.sg [Institute of Chemical and Engineering Sciences, A-STAR (Agency for Science, Technology and Research), 1 Pesek Road, Jurong Island, Singapore 627833 (Singapore); Ng, Wai Kiong; Chia, Leonard; Dong, Yuan-Cai [Institute of Chemical and Engineering Sciences, A-STAR (Agency for Science, Technology and Research), 1 Pesek Road, Jurong Island, Singapore 627833 (Singapore); Tan, Reginald B.H., E-mail: reginald_tan@ices.a-star.edu.sg [Institute of Chemical and Engineering Sciences, A-STAR (Agency for Science, Technology and Research), 1 Pesek Road, Jurong Island, Singapore 627833 (Singapore); Department of Chemical and Biomolecular Engineering, The National University of Singapore, 4 Engineering Drive 4, Singapore 117576 (Singapore)

    2011-10-15

    Graphical abstract: 3-Aminopropyltriethoxysilane modified monodispersed silica nanoparticles were synthesized by rapid sonochemical co-condensation to achieve high capability for protein immobilization. Highlights: {yields} Amino-modified monodispersed silica nanoparticles were synthesized by rapid co-condensation. {yields} Strong positive charge was created by aminopropyl-modification. {yields} Capability for immobilization of negatively charged protein was enhanced. {yields} Electrostatic interaction between proteins and surface contributed to the enhanced adsorption. -- Abstract: 3-Aminopropyltriethoxysilane modified monodispersed silica nanoparticles were synthesized by a rapid sonochemical co-condensation synthesis procedure. The chemical nature of surface organic modifier on the obtained modified silica nanoparticle was characterized by {sup 13}C and {sup 29}Si MAS Nuclear Magnetic Resonance (NMR) spectroscopies, Fourier-transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA)- differential scanning calorimetry (DSC). Due to the strengthened positive surface charge of the silica nanoparticles by the modification with aminopropyl groups, the capability for bovine serum albumin (BSA) adsorption was significantly increased as compared with bare silica nanoparticles. 80 mg/g BSA was adsorbed on modified silica nanoparticles, whereas only 20 mg/g BSA could be loaded on pure silica nanoparticles. The enhanced positive surface charge repelled proteins with net positive charge and the modified silica nanoparticles exhibited negligible adsorption of lysozyme, thus a selective adsorption of proteins could be achieved.

  16. AND logic-like pH- and light-dual controlled drug delivery by surface modified mesoporous silica nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Junwei; He, Zhaoshuai; Li, Biao; Cheng, Tanyu, E-mail: tycheng@shnu.edu.cn; Liu, Guohua

    2017-04-01

    Recently, the controlled drug delivery system has become a potential platform for biomedical application. Herein, we developed a pH and light-dual controlled cargo release system exhibiting AND logic based on MCM-41 mesoporous silica nanoparticles, which was surface modified using β-cyclodextrin (β-CD) with imine bond and azobenzene derivative. The complex of β-CD and azobenzene derivative effectively blocked the cargo delivery in pH = 7.0 phosphate buffered saline (PBS) solution without 365 nm UV light irradiation. The cargo was fully released when both factors of acidic environment (pH = 5.0 PBS) and 365 nm UV light irradiation were satisfied, meanwhile only very little cargo was delivered if one factor was satisfied. The result also demonstrates that the opening/closing of the gate and the release of the cargo in small portions can be controlled. - Highlights: • A pH and light-dual controlled cargo release system exhibiting AND logic is developed. • The delivery system can release the cargo in small potions by controlling the opening/closing of the gate. • The delivery system realizes the controlled release in zebrafish.

  17. Synergistic effect of amino acids modified on dendrimer surface in gene delivery.

    Science.gov (United States)

    Wang, Fei; Wang, Yitong; Wang, Hui; Shao, Naimin; Chen, Yuanyuan; Cheng, Yiyun

    2014-11-01

    Design of an efficient gene vector based on dendrimer remains a great challenge due to the presence of multiple barriers in gene delivery. Single-functionalization on dendrimer cannot overcome all the barriers. In this study, we synthesized a list of single-, dual- and triple-functionalized dendrimers with arginine, phenylalanine and histidine for gene delivery using a one-pot approach. The three amino acids play different roles in gene delivery: arginine is essential in formation of stable complexes, phenylalanine improves cellular uptake efficacy, and histidine increases pH-buffering capacity and minimizes cytotoxicity of the cationic dendrimer. A combination of these amino acids on dendrimer generates a synergistic effect in gene delivery. The dual- and triple-functionalized dendrimers show minimal cytotoxicity on the transfected NIH 3T3 cells. Using this combination strategy, we can obtain triple-functionalized dendrimers with comparable transfection efficacy to several commercial transfection reagents. Such a combination strategy should be applicable to the design of efficient and biocompatible gene vectors for gene delivery. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Lactoferrin modified graphene oxide iron oxide nanocomposite for glioma-targeted drug delivery.

    Science.gov (United States)

    Song, Meng-Meng; Xu, Huai-Liang; Liang, Jun-Xing; Xiang, Hui-Hui; Liu, Rui; Shen, Yu-Xian

    2017-08-01

    Targeting delivery of drugs in a specific manner represents a potential powerful technology in gliomas. Herein, we prepared a multifunctional targeted delivery system based on graphene oxide (GO) that contains a molecular bio-targeting ligand and superparamagnetic iron oxide nanoparticles on the surface of GO for magnetic targeting. Superparamagnetic Fe 3 O 4 nanoparticles was loaded on the surface of GO via chemical precipitation method to form GO@Fe 3 O 4 nanocomposites. Lactoferrin (Lf), an iron-transporting serum glycoprotein that binds to receptors overexpressed at the surface of glioma cells and vascular endothelial cell of the blood brain barrier, was chosen as the targeted ligand to construct the targeted delivery system Lf@GO@Fe 3 O 4 through EDC/NHS chemistry. With the confirmation of TEM, DLS and VSM, the resulting Lf@GO@Fe 3 O 4 had a size distribution of 200-1000nm and exhibited a superparamagnetic behavior. The nano delivery system had a high loading capacity and exhibited a pH-dependent release behavior. Compared with free DOX and DOX@GO@Fe 3 O 4 , Lf@GO@Fe 3 O 4 @DOX displayed greater intracellular delivery efficiency and stronger cytotoxicity against C6 glioma cells. The results demonstrated the potential utility of Lf conjugated GO@Fe 3 O 4 nanocomposites for therapeutic application in the treatment of gliomas. Copyright © 2017. Published by Elsevier B.V.

  19. Intracellular localisation of proteins to specific cellular areas by nanocapsule mediated delivery.

    Science.gov (United States)

    Wang, Huabin; Chen, Ligang; Sun, Xianchao; Fu, Ailing

    2017-09-01

    Nanocapsules are promising carriers with great potential for intracellular protein transport. Although many studies have intended to improve cell uptake efficacy, there is an increasing interest in understanding of subcellular distribution of cargoes inside cells, which is essential for purposeful delivery of biomolecules into specific sites within cells. Herein, we interrogate the intracellular localisation of exogenous proteins, including fluorescein isothiocyanate (FITC)-labelled bovine serum albumin (BSA) and green fluorescent protein (GFP), mediated by specially designed nanocapsules. The results show that the designed nanocapsules can deliver the two types of fluorescent proteins into different cellular destinations (cytosol, nucleus or the whole cell), depending on the composition of nanocapsules. Meanwhile, several impact factors that influence the distribution of proteins in cells have also been investigated, and the results suggest that the localisation of capsule-mediated proteins in cells is strongly affected by the surface properties of nanocapsules, the types of stabilisers and proteins, and environmental temperatures. The rational control of intracellular localised delivery of exogenous proteins as we demonstrated in this study might open new avenues to obtain desired magnitude of drug effects for modulating cell activity.

  20. Intracellular Delivery of Nanobodies for Imaging of Target Proteins in Live Cells.

    Science.gov (United States)

    Röder, Ruth; Helma, Jonas; Preiß, Tobias; Rädler, Joachim O; Leonhardt, Heinrich; Wagner, Ernst

    2017-01-01

    Cytosolic delivery of nanobodies for molecular target binding and fluorescent labeling in living cells. Fluorescently labeled nanobodies were formulated with sixteen different sequence-defined oligoaminoamides. The delivery of formulated anti-GFP nanobodies into different target protein-containing HeLa cell lines was investigated by flow cytometry and fluorescence microscopy. Nanoparticle formation was analyzed by fluorescence correlation spectroscopy. The initial oligomer screen identified two cationizable four-arm structured oligomers (734, 735) which mediate intracellular nanobody delivery in a receptor-independent (734) or folate receptor facilitated (735) process. The presence of disulfide-forming cysteines in the oligomers was found critical for the formation of stable protein nanoparticles of around 20 nm diameter. Delivery of labeled GFP nanobodies or lamin nanobodies to their cellular targets was demonstrated by fluorescence microscopy including time lapse studies. Two sequence-defined oligoaminoamides with or without folate for receptor targeting were identified as effective carriers for intracellular nanobody delivery, as exemplified by GFP or lamin binding in living cells. Due to the conserved nanobody core structure, the methods should be applicable for a broad range of nanobodies directed to different intracellular targets.

  1. Addressing challenges of heterogeneous tumor treatment through bispecific protein-mediated pretargeted drug delivery.

    Science.gov (United States)

    Yang, Qi; Parker, Christina L; McCallen, Justin D; Lai, Samuel K

    2015-12-28

    Tumors are frequently characterized by genomically and phenotypically distinct cancer cell subpopulations within the same tumor or between tumor lesions, a phenomenon termed tumor heterogeneity. These diverse cancer cell populations pose a major challenge to targeted delivery of diagnostic and/or therapeutic agents, as the conventional approach of conjugating individual ligands to nanoparticles is often unable to facilitate intracellular delivery to the full spectrum of cancer cells present in a given tumor lesion or patient. As a result, many cancers are only partially suppressed, leading to eventual tumor regrowth and/or the development of drug-resistant tumors. Pretargeting (multistep targeting) approaches involving the administration of 1) a cocktail of bispecific proteins that can collectively bind to the entirety of a mixed tumor population followed by 2) nanoparticles containing therapeutic and/or diagnostic agents that can bind to the bispecific proteins accumulated on the surface of target cells offer the potential to overcome many of the challenges associated with drug delivery to heterogeneous tumors. Despite its considerable success in improving the efficacy of radioimmunotherapy, the pretargeting strategy remains underexplored for a majority of nanoparticle therapeutic applications, especially for targeted delivery to heterogeneous tumors. In this review, we will present concepts in tumor heterogeneity, the shortcomings of conventional targeted systems, lessons learned from pretargeted radioimmunotherapy, and important considerations for harnessing the pretargeting strategy to improve nanoparticle delivery to heterogeneous tumors. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Intrathecal delivery of protein therapeutics to the brain: a critical reassessment.

    Science.gov (United States)

    Calias, Pericles; Banks, William A; Begley, David; Scarpa, Maurizio; Dickson, Patricia

    2014-11-01

    Disorders of the central nervous system (CNS), including stroke, neurodegenerative diseases, and brain tumors, are the world's leading causes of disability. Delivery of drugs to the CNS is complicated by the blood-brain barriers that protect the brain from the unregulated leakage and entry of substances, including proteins, from the blood. Yet proteins represent one of the most promising classes of therapeutics for the treatment of CNS diseases. Many strategies for overcoming these obstacles are in development, but the relatively straightforward approach of bypassing these barriers through direct intrathecal administration has been largely overlooked. Originally discounted because of its lack of usefulness for delivering small, lipid-soluble drugs to the brain, the intrathecal route has emerged as a useful, in some cases perhaps the ideal, route of administration for certain therapeutic protein and targeted disease combinations. Here, we review blood-brain barrier functions and cerebrospinal fluid dynamics and their relevance to drug delivery via the intrathecal route, discuss animal and human studies that have investigated intrathecal delivery of protein therapeutics, and outline several characteristics of protein therapeutics that can allow them to be successfully delivered intrathecally. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. Plant protein-based hydrophobic fine and ultrafine carrier particles in drug delivery systems.

    Science.gov (United States)

    Malekzad, Hedieh; Mirshekari, Hamed; Sahandi Zangabad, Parham; Moosavi Basri, S M; Baniasadi, Fazel; Sharifi Aghdam, Maryam; Karimi, Mahdi; Hamblin, Michael R

    2018-02-01

    For thousands of years, plants and their products have been used as the mainstay of medicinal therapy. In recent years, besides attempts to isolate the active ingredients of medicinal plants, other new applications of plant products, such as their use to prepare drug delivery vehicles, have been discovered. Nanobiotechnology is a branch of pharmacology that can provide new approaches for drug delivery by the preparation of biocompatible carrier nanoparticles (NPs). In this article, we review recent studies with four important plant proteins that have been used as carriers for targeted delivery of drugs and genes. Zein is a water-insoluble protein from maize; Gliadin is a 70% alcohol-soluble protein from wheat and corn; legumin is a casein-like protein from leguminous seeds such as peas; lectins are glycoproteins naturally occurring in many plants that recognize specific carbohydrate residues. NPs formed from these proteins show good biocompatibility, possess the ability to enhance solubility, and provide sustained release of drugs and reduce their toxicity and side effects. The effects of preparation methods on the size and loading capacity of these NPs are also described in this review.

  4. Oral delivery of bioencapsulated proteins across blood-brain and blood-retinal barriers.

    Science.gov (United States)

    Kohli, Neha; Westerveld, Donevan R; Ayache, Alexandra C; Verma, Amrisha; Shil, Pollob; Prasad, Tuhina; Zhu, Ping; Chan, Sic L; Li, Qiuhong; Daniell, Henry

    2014-03-01

    Delivering neurotherapeutics to target brain-associated diseases is a major challenge. Therefore, we investigated oral delivery of green fluorescence protein (GFP) or myelin basic protein (MBP) fused with the transmucosal carrier cholera toxin B subunit (CTB), expressed in chloroplasts (bioencapsulated within plant cells) to the brain and retinae of triple transgenic Alzheimer's disease (3×TgAD) mice, across the blood-brain barriers (BBB) and blood-retinal barriers (BRB). Human neuroblastoma cells internalized GFP when incubated with CTB-GFP but not with GFP alone. Oral delivery of CTB-MBP in healthy and 3×TgAD mice shows increased MBP levels in different regions of the brain, crossing intact BBB. Thioflavin S-stained amyloid plaque intensity was reduced up to 60% by CTB-MBP incubation with human AD and 3×TgAD mice brain sections ex vivo. Amyloid loads were reduced in vivo by 70% in hippocampus and cortex brain regions of 3×TgAD mice fed with bioencapsulated CTB-MBP, along with reduction in the ratio of insoluble amyloid β 42 (Aβ42) to soluble fractions. CTB-MBP oral delivery reduced Aβ42 accumulation in retinae and prevented loss of retinal ganglion cells in 3×TgAD mice. Lyophilization of leaves increased CTB-MBP concentration by 17-fold and stabilized it during long-term storage in capsules, facilitating low-cost oral delivery of therapeutic proteins across the BBB and BRB.

  5. Chromatographic and traditional albumin isotherms on cellulose: a model for wound protein adsorption on modified cotton

    Science.gov (United States)

    Albumin is the most abundant protein found in healing wounds. Traditional and chromatogrpahic protein isotherms of albumin binding on modified cotton fibers are useful in understanding albumin binding to cellulose wound dressings. An important consideration in the design of cellulosic wound dressin...

  6. Topical ocular delivery to laser-induced choroidal neovascularization by dual internalizing RGD and TAT peptide-modified nanoparticles

    Directory of Open Access Journals (Sweden)

    Chu YC

    2017-02-01

    Full Text Available Yongchao Chu,1,* Ning Chen,2,* Huajun Yu,2,* Hongjie Mu,1 Bin He,1 Hongchen Hua,1 Aiping Wang,1 Kaoxiang Sun1 1School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Yantai University, Yantai, Shandong, People’s Republic of China; 2Department of Ophthalmology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, People’s Republic of China *These authors contributed equally to this work Abstract: A nanoparticle (NP was developed to target choroidal neovascularization (CNV via topical ocular administration. The NPs were prepared through conjugation of internalizing arginine-glycine-aspartic acid RGD (iRGD; Ac-CCRGDKGPDC and transactivated transcription (TAT (RKKRRQRRRC peptide to polymerized ethylene glycol and lactic-co-glycolic acid. The iRGD sequence can specifically bind with integrin αvβ3, while TAT facilitates penetration through the ocular barrier. 1H nuclear magnetic resonance and high-performance liquid chromatography demonstrated that up to 80% of iRGD and TAT were conjugated to poly(ethylene glycol–poly(lactic-co-glycolic acid. The resulting particle size was 67.0±1.7 nm, and the zeta potential of the particles was −6.63±0.43 mV. The corneal permeation of iRGD and TAT NPs increased by 5.50- and 4.56-fold compared to that of bare and iRGD-modified NPs, respectively. Cellular uptake showed that the red fluorescence intensity of iRGD and TAT NPs was highest among primary NPs and iRGD- or TAT-modified NPs. CNV was fully formed 14 days after photocoagulation in Brown Norway (BN rats as shown by optical coherence tomography and fundus fluorescein angiography analyses. Choroidal flat mounts in BN rats showed that the red fluorescence intensity of NPs followed the order of iRGD and TAT NPs > TAT-modified NPs > iRGD-modified NPs

  7. The potential of protein-nanomaterial interaction for advanced drug delivery.

    Science.gov (United States)

    Peng, Qiang; Mu, Huiling

    2016-03-10

    Nanomaterials, like nanoparticles, micelles, nano-sheets, nanotubes and quantum dots, have great potentials in biomedical fields. However, their delivery is highly limited by the formation of protein corona upon interaction with endogenous proteins. This new identity, instead of nanomaterial itself, would be the real substance the organs and cells firstly encounter. Consequently, the behavior of nanomaterials in vivo is uncontrollable and some undesired effects may occur, like rapid clearance from blood stream; risk of capillary blockage; loss of targeting capacity; and potential toxicity. Therefore, protein-nanomaterial interaction is a great challenge for nanomaterial systems and should be inhibited. However, this interaction can also be used to functionalize nanomaterials by forming a selected protein corona. Unlike other decoration using exogenous molecules, nanomaterials functionalized by selected protein corona using endogenous proteins would have greater promise for clinical use. In this review, we aim to provide a comprehensive understanding of protein-nanomaterial interaction. Importantly, a discussion about how to use such interaction is launched and some possible applications of such interaction for advanced drug delivery are presented. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Hybrid protein-inorganic nanoparticles: From tumor-targeted drug delivery to cancer imaging.

    Science.gov (United States)

    Elzoghby, Ahmed O; Hemasa, Ayman L; Freag, May S

    2016-12-10

    Recently, a great interest has been paid to the development of hybrid protein-inorganic nanoparticles (NPs) for drug delivery and cancer diagnostics in order to combine the merits of both inorganic and protein nanocarriers. This review primarily discusses the most outstanding advances in the applications of the hybrids of naturally-occurring proteins with iron oxide, gadolinium, gold, silica, calcium phosphate NPs, carbon nanotubes, and quantum dots in drug delivery and cancer imaging. Various strategies that have been utilized for the preparation of protein-functionalized inorganic NPs and the mechanisms involved in the drug loading process are discussed. How can the protein functionalization overcome the limitations of colloidal stability, poor dispersibility and toxicity associated with inorganic NPs is also investigated. Moreover, issues relating to the influence of protein hybridization on the cellular uptake, tumor targeting efficiency, systemic circulation, mucosal penetration and skin permeation of inorganic NPs are highlighted. A special emphasis is devoted to the novel approaches utilizing the protein-inorganic nanohybrids in combined cancer therapy, tumor imaging, and theranostic applications as well as stimuli-responsive drug release from the nanohybrids. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Biocontainment of genetically modified organisms by synthetic protein design

    Science.gov (United States)

    Mandell, Daniel J.; Lajoie, Marc J.; Mee, Michael T.; Takeuchi, Ryo; Kuznetsov, Gleb; Norville, Julie E.; Gregg, Christopher J.; Stoddard, Barry L.; Church, George M.

    2015-02-01

    Genetically modified organisms (GMOs) are increasingly deployed at large scales and in open environments. Genetic biocontainment strategies are needed to prevent unintended proliferation of GMOs in natural ecosystems. Existing biocontainment methods are insufficient because they impose evolutionary pressure on the organism to eject the safeguard by spontaneous mutagenesis or horizontal gene transfer, or because they can be circumvented by environmentally available compounds. Here we computationally redesign essential enzymes in the first organism possessing an altered genetic code (Escherichia coli strain C321.ΔA) to confer metabolic dependence on non-standard amino acids for survival. The resulting GMOs cannot metabolically bypass their biocontainment mechanisms using known environmental compounds, and they exhibit unprecedented resistance to evolutionary escape through mutagenesis and horizontal gene transfer. This work provides a foundation for safer GMOs that are isolated from natural ecosystems by a reliance on synthetic metabolites.

  10. Microspheres for protein delivery prepared from amphiphilic multiblock copolymers. 1. Influence of preparation techniques on particle characteristics and protein delivery.

    Science.gov (United States)

    Bezemer, J M; Radersma, R; Grijpma, D W; Dijkstra, P J; van Blitterswijk, C A; Feijen, J

    2000-07-03

    The entrapment of lysozyme in amphiphilic multiblock copolymer microspheres by emulsification and subsequent solvent removal processes was studied. The copolymers are composed of hydrophilic poly(ethylene glycol) (PEG) blocks and hydrophobic poly(butylene terephthalate) (PBT) blocks. Direct solvent extraction from a water-in-oil (w/o) emulsion in ethanol or methanol did not result in the formation of microspheres, due to massive polymer precipitation caused by rapid solvent extraction in these non-solvents. In a second process, microspheres were first prepared by a water-in-oil-in-water (w/o/w) emulsion system with 4% poly(vinyl alcohol) (PVA) as stabilizer in the external phase, followed by extraction of the remaining solvent. As non-solvents ethanol, methanol and mixtures of methanol and water were employed. However, the use of alcohols in the extraction medium resulted in microspheres which gave an incomplete lysozyme release at a non-constant rate. Complete lysozyme release was obtained from microspheres prepared by an emulsification-solvent evaporation method in PBS containing poly(vinyl pyrrolidone) (PVP) or PVA as stabilizer. PVA was most effective in stabilizing the w/o/w emulsion. Perfectly spherical microspheres were produced, with high protein entrapment efficiencies. These microspheres released lysozyme at an almost constant rate for approximately 28 days. The reproducibility of the w/o/w emulsion process was demonstrated by comparing particle characteristics and release profiles of three batches, prepared under similar conditions.

  11. Effectiveness and short-term safety of modified sodium hyaluronic acid-carboxymethylcellulose at cesarean delivery: a randomized trial.

    Science.gov (United States)

    Kiefer, Daniel G; Muscat, Jolene C; Santorelli, Jarrett; Chavez, Martin R; Ananth, Cande V; Smulian, John C; Vintzileos, Anthony M

    2016-03-01

    The rising cesarean birth rate has drawn attention to risks associated with repeat cesarean birth. Prevention of adhesions with adhesion barriers has been promoted as a way to decrease operative difficulty. However, robust data demonstrating effectiveness of such interventions are lacking. We report data from a multicenter trial designed to evaluate the short-term safety and effectiveness of a modified sodium hyaluronic acid (HA)-carboxymethylcellulose (CMC) absorbable adhesion barrier for reduction of adhesions following cesarean delivery. Patients who underwent primary or repeat cesarean delivery were included in this multicenter, single-blinded (patient), randomized controlled trial. Patients were randomized into either HA-CMC (N = 380) or no treatment (N = 373). No other modifications to their treatment were part of the protocol. Short-term safety data were collected following randomization. The location and density of adhesions (primary outcome) were assessed at their subsequent delivery using a validated tool, which can also be used to derive an adhesion score that ranges from 0-12. No differences in baseline characteristics, postoperative course, or incidence of complications between the groups following randomization were noted. Eighty patients from the HA-CMC group and 92 controls returned for subsequent deliveries. Adhesions in any location were reported in 75.6% of the HA-CMC group and 75.9% of the controls (P = .99). There was no significant difference in the median adhesion score; 2 (range 0-10) for the HA-CMC group vs 2 (range 0-8) for the control group (P = .65). One third of the HA-CMC patients met the definition for severe adhesions (adhesion score >4) compared to 15.5% in the control group (P = .052). There were no significant differences in the time from incision to delivery (P = .56). Uterine dehiscence in the next pregnancy was reported in 2 patients in HA-CMC group vs 1 in the control group (P = .60). Although we did not identify any short

  12. Efficiency of Database Search for Identification of Mutated and Modified Proteins via Mass Spectrometry

    OpenAIRE

    Pevzner, Pavel A.; Mulyukov, Zufar; Dancik, Vlado; Tang, Chris L

    2001-01-01

    Although protein identification by matching tandem mass spectra (MS/MS) against protein databases is a widespread tool in mass spectrometry, the question about reliability of such searches remains open. Absence of rigorous significance scores in MS/MS database search makes it difficult to discard random database hits and may lead to erroneous protein identification, particularly in the case of mutated or post-translationally modified peptides. This problem is especially important for high-thr...

  13. On prilled Nanotubes-in-Microgel Oral Systems for protein delivery.

    Science.gov (United States)

    de Kruif, Jan Kendall; Ledergerber, Gisela; Garofalo, Carla; Fasler-Kan, Elizaveta; Kuentz, Martin

    2016-04-01

    Newly discovered active macromolecules are highly promising for therapy, but poor bioavailability hinders their oral use. Microencapsulation approaches, such as protein prilling into microspheres, may enable protection from gastrointestinal (GI) enzymatic degradation. This would increase bioavailability mainly for local delivery to GI lumen or mucosa. This work's purpose was to design a novel architecture, namely a Nanotubes-in-Microgel Oral System, by prilling for protein delivery. Halloysite nanotubes (HNT) were selected as orally acceptable clay particles and their lumen was enlarged by alkaline etching. This chemical modification increased the luminal volume to a mean of 216.3 μL g(-1) (+40.8%). After loading albumin as model drug, the HNT were entrapped in microgels by prilling. The formation of Nanoparticles-in-Microsphere Oral System (NiMOS) yielded entrapment efficiencies up to 63.2%. NiMOS shape was spherical to toroidal, with a diameter smaller than 320 μm. Release profiles depended largely on the employed system and HNT type. Protein stability was determined throughout prilling and after in vitro enzymatic degradation. Prilling did not harm protein structure, and NiMOS demonstrated higher enzymatic protection than pure nanotubes or microgels, since up to 82% of BSA remained unscathed after in vitro digestion. Therefore, prilled NiMOS was shown to be a promising and flexible multi-compartment system for oral (local) macromolecular delivery. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Influence of Crude Protein Intake on the Duration of Delivery and Litter Size in Sows

    Directory of Open Access Journals (Sweden)

    D. Tydlitát

    2008-01-01

    Full Text Available The aim of the study was to evaluate the influence of different intakes of crude protein during the period from 94 to 100 days of pregnancy to the parturition, lengths of pregnancy and delivery, number and birth weights of piglets and concentrations of progesterone, 17-β estradiol and cortisol on days 100, 110 and 114 of pregnancy in sows. Daily feed intake of the sow represented 2.5 kg of complete mixtures containing 13% (group A, n = 23, 15% (group B, n = 52, 18% (group C, n = 10 and 21% (group D, n = 10 of crude protein. Lengths of pregnancy in experimental groups were not significantly different. The mean durations of delivery synchronously increased with the intake of crude protein; significant difference was found between groups A (4.5 h and D (8.6 h (p p < 0.05. The average birth weights of piglets did not differ between experimental groups. No statistical differences in hormone concentrations were found between experimental groups. High intake of crude protein in sows before parturition prolonged delivery and increased the number of stillborn piglets.

  15. Intracellular Delivery of Proteins with Cell-Penetrating Peptides for Therapeutic Uses in Human Disease.

    Science.gov (United States)

    Dinca, Ana; Chien, Wei-Ming; Chin, Michael T

    2016-02-22

    Protein therapy exhibits several advantages over small molecule drugs and is increasingly being developed for the treatment of disorders ranging from single enzyme deficiencies to cancer. Cell-penetrating peptides (CPPs), a group of small peptides capable of promoting transport of molecular cargo across the plasma membrane, have become important tools in promoting the cellular uptake of exogenously delivered proteins. Although the molecular mechanisms of uptake are not firmly established, CPPs have been empirically shown to promote uptake of various molecules, including large proteins over 100 kiloDaltons (kDa). Recombinant proteins that include a CPP tag to promote intracellular delivery show promise as therapeutic agents with encouraging success rates in both animal and human trials. This review highlights recent advances in protein-CPP therapy and discusses optimization strategies and potential detrimental effects.

  16. Matricellular proteins in drug delivery: Therapeutic targets, active agents, and therapeutic localization.

    Science.gov (United States)

    Sawyer, Andrew J; Kyriakides, Themis R

    2016-02-01

    Extracellular matrix is composed of a complex array of molecules that together provide structural and functional support to cells. These properties are mainly mediated by the activity of collagenous and elastic fibers, proteoglycans, and proteins such as fibronectin and laminin. ECM composition is tissue-specific and could include matricellular proteins whose primary role is to modulate cell-matrix interactions. In adults, matricellular proteins are primarily expressed during injury, inflammation and disease. Particularly, they are closely associated with the progression and prognosis of cardiovascular and fibrotic diseases, and cancer. This review aims to provide an overview of the potential use of matricellular proteins in drug delivery including the generation of therapeutic agents based on the properties and structures of these proteins as well as their utility as biomarkers for specific diseases. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Using the Ubiquitin-modified Proteome to Monitor Distinct and Spatially Restricted Protein Homeostasis Dysfunction.

    Science.gov (United States)

    Gendron, Joshua M; Webb, Kristofor; Yang, Bing; Rising, Lisa; Zuzow, Nathan; Bennett, Eric J

    2016-08-01

    Protein homeostasis dysfunction has been implicated in the development and progression of aging related human pathologies. There is a need for the establishment of quantitative methods to evaluate global protein homoeostasis function. As the ubiquitin (ub) proteasome system plays a key role in regulating protein homeostasis, we applied quantitative proteomic methods to evaluate the sensitivity of site-specific ubiquitylation events as markers for protein homeostasis dysfunction. Here, we demonstrate that the ub-modified proteome can exceed the sensitivity of engineered fluorescent reporters as a marker for proteasome dysfunction and can provide unique signatures for distinct proteome challenges which is not possible with engineered reporters. We demonstrate that combining ub-proteomics with subcellular fractionation can effectively separate degradative and regulatory ubiquitylation events on distinct protein populations. Using a recently developed potent inhibitor of the critical protein homeostasis factor p97/VCP, we demonstrate that distinct insults to protein homeostasis function can elicit robust and largely unique alterations to the ub-modified proteome. Taken together, we demonstrate that proteomic approaches to monitor the ub-modified proteome can be used to evaluate global protein homeostasis and can be used to monitor distinct functional outcomes for spatially separated protein populations. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  18. Delivery of peptide and protein drugs over the blood-brain barrier.

    Science.gov (United States)

    Brasnjevic, Ivona; Steinbusch, Harry W M; Schmitz, Christoph; Martinez-Martinez, Pilar

    2009-04-01

    Peptide and protein (P/P) drugs have been identified as showing great promises for the treatment of various neurodegenerative diseases. A major challenge in this regard, however, is the delivery of P/P drugs over the blood-brain barrier (BBB). Intense research over the last 25 years has enabled a better understanding of the cellular and molecular transport mechanisms at the BBB, and several strategies for enhanced P/P drug delivery over the BBB have been developed and tested in preclinical and clinical-experimental research. Among them, technology-based approaches (comprising functionalized nanocarriers and liposomes) and pharmacological strategies (such as the use of carrier systems and chimeric peptide technology) appear to be the most promising ones. This review combines a comprehensive overview on the current understanding of the transport mechanisms at the BBB with promising selected strategies published so far that can be applied to facilitate enhanced P/P drug delivery over the BBB.

  19. Development of Modified-Release Tablets of Zolpidem Tartrate by Biphasic Quick/Slow Delivery System

    OpenAIRE

    Mahapatra, Anjan Kumar; Sameeraja, N. H.; Murthy, P. N.

    2014-01-01

    Zolpidem tartrate is a non-benzodiazepine analogue of imidazopyridine of sedative and hypnotic category. It has a short half-life with usual dosage regimen being 5 mg, two times a day, or 10 mg, once daily. The duration of action is considered too short in certain circumstances. Thus, it is desirable to lengthen the duration of action. The formulation design was implemented by preparing extended-release tablets of zolpidem tartrate using the biphasic delivery system technology, where sodium s...

  20. pH-responsive and enzymatically-responsive hydrogel microparticles for the oral delivery of therapeutic proteins: Effects of protein size, crosslinking density, and hydrogel degradation on protein delivery.

    Science.gov (United States)

    Koetting, Michael Clinton; Guido, Joseph Frank; Gupta, Malvika; Zhang, Annie; Peppas, Nicholas A

    2016-01-10

    Two potential platform technologies for the oral delivery of protein therapeutics were synthesized and tested. pH-responsive poly(itaconic acid-co-N-vinyl-2-pyrrolidone) (P(IA-co-NVP)) hydrogel microparticles were tested in vitro with model proteins salmon calcitonin, urokinase, and rituximab to determine the effects of particle size, protein size, and crosslinking density on oral delivery capability. Particle size showed no significant effect on overall delivery potential but did improve percent release of encapsulated protein over the micro-scale particle size range studied. Protein size was shown to have a significant impact on the delivery capability of the P(IA-co-NVP) hydrogel. We show that when using P(IA-co-NVP) hydrogel microparticles with 3 mol% tetra(ethylene glycol) dimethacrylate crosslinker, a small polypeptide (salmon calcitonin) loads and releases up to 45 μg/mg hydrogel while the mid-sized protein urokinase and large monoclonal antibody rituximab load and release only 19 and 24 μg/mg hydrogel, respectively. We further demonstrate that crosslinking density offers a simple method for tuning hydrogel properties to variously sized proteins. Using 5 mol% TEGDMA crosslinker offers optimal performance for the small peptide, salmon calcitonin, whereas lower crosslinking density of 1 mol% offers optimal performance for the much larger protein rituximab. Finally, an enzymatically-degradable hydrogels of P(MAA-co-NVP) crosslinked with the peptide sequence MMRRRKK were synthesized and tested in simulated gastric and intestinal conditions. These hydrogels offer ideal loading and release behavior, showing no degradative release of encapsulated salmon calcitonin in gastric conditions while yielding rapid and complete release of encapsulated protein within 1h in intestinal conditions. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Modeling the modified drug release from curved shape drug delivery systems - Dome Matrix®.

    Science.gov (United States)

    Caccavo, D; Barba, A A; d'Amore, M; De Piano, R; Lamberti, G; Rossi, A; Colombo, P

    2017-12-01

    The controlled drug release from hydrogel-based drug delivery systems is a topic of large interest for research in pharmacology. The mathematical modeling of the behavior of these systems is a tool of emerging relevance, since the simulations can be of use in the design of novel systems, in particular for complex shaped tablets. In this work a model, previously developed, was applied to complex-shaped oral drug delivery systems based on hydrogels (Dome Matrix®). Furthermore, the model was successfully adopted in the description of drug release from partially accessible Dome Matrix® systems (systems with some surfaces coated). In these simulations, the erosion rate was used asa fitting parameter, and its dependence upon the surface area/volume ratio and upon the local fluid dynamics was discussed. The model parameters were determined by comparison with the drug release profile from a cylindrical tablet, then the model was successfully used for the prediction of the drug release from a Dome Matrix® system, for simple module configuration and for module assembled (void and piled) configurations. It was also demonstrated that, given the same initial S/V ratio, the drug release is independent upon the shape of the tablets but it is only influenced by the S/V evolution. The model reveals itself able to describe the observed phenomena, and thus it can be of use for the design of oral drug delivery systems, even if complex shaped. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Poly(lactic-co-glycolic acid) devices: Production and applications for sustained protein delivery.

    Science.gov (United States)

    Lee, Parker W; Pokorski, Jonathan K

    2018-03-13

    Injectable or implantable poly(lactic-co-glycolic acid) (PLGA) devices for the sustained delivery of proteins have been widely studied and utilized to overcome the necessity of repeated administrations for therapeutic proteins due to poor pharmacokinetic profiles of macromolecular therapies. These devices can come in the form of microparticles, implants, or patches depending on the disease state and route of administration. Furthermore, the release rate can be tuned from weeks to months by controlling the polymer composition, geometry of the device, or introducing additives during device fabrication. Slow-release devices have become a very powerful tool for modern medicine. Production of these devices has initially focused on emulsion-based methods, relying on phase separation to encapsulate proteins within polymeric microparticles. Process parameters and the effect of additives have been thoroughly researched to ensure protein stability during device manufacturing and to control the release profile. Continuous fluidic production methods have also been utilized to create protein-laden PLGA devices through spray drying and electrospray production. Thermal processing of PLGA with solid proteins is an emerging production method that allows for continuous, high-throughput manufacturing of PLGA/protein devices. Overall, polymeric materials for protein delivery remain an emerging field of research for the creation of single administration treatments for a wide variety of disease. This review describes, in detail, methods to make PLGA devices, comparing traditional emulsion-based methods to emerging methods to fabricate protein-laden devices. This article is categorized under: Biology-Inspired Nanomaterials > Protein and Virus-Based Structures Implantable Materials and Surgical Technologies > Nanomaterials and Implants Biology-Inspired Nanomaterials > Peptide-Based Structures. © 2018 Wiley Periodicals, Inc.

  3. Production of Remedial Proteins through Genetically Modified Bacteria

    Directory of Open Access Journals (Sweden)

    Fatima Tariq

    2018-02-01

    Full Text Available Recombinant DNA technology has created biological organisms with advanced genetic sequences and has been extensively used to express multiple genes for therapeutic purposes when expressed in a suitable host. Microbial systems such as prokaryotic bacteria has been successfully utilized as a heterologous systems showing high therapeutic potency for various human diseases. Bioengineered bacteria have been successfully utilized for producing therapeutic proteins, treating infectious diseases, and disease arise due to increasing resistance to antibiotics. Prominently E. coli found to be the most widely used expression system for recombinant therapeutic protein production i.e. hormones, enzymes and antibodies. Besides E. coli, non-pathogenic lactic acid bacteria has also been considered as an excellent candidate for live mucosal vaccine. Likewise, S. typhimurium has been deployed as attenuated type of vaccination as well as in treatment strategy of various cancers due to its ability of wide progression in tumors. The present article is a summarized view of the main achievements and current developments in the field of recombinant therapeutics using bacterial strains focusing on their usability in therapeutics and future potential.

  4. Promotion of the transdermal delivery of protein drugs by N-trimethyl chitosan nanoparticles combined with polypropylene electret.

    Science.gov (United States)

    Tu, Ye; Wang, Xinxia; Lu, Ying; Zhang, He; Yu, Yuan; Chen, Yan; Liu, Junjie; Sun, Zhiguo; Cui, Lili; Gao, Jing; Zhong, Yanqiang

    We recently reported that electret, which was prepared by a corona charging system with polypropylene film, could enhance the transdermal delivery of several drugs of low molecular weight. The aim of this study was to investigate whether electret could enhance the transdermal delivery of protein drugs by N -trimethyl chitosan nanoparticles (TMC NPs) prepared by an ionic gelation method. A series of experiments were performed, including in vitro skin permeation assays and anti-inflammatory effects, to evaluate the transdermal delivery of protein drugs by TMC NPs in the presence of electret. The results showed that in the presence of electret, the transdermal delivery of protein drugs in TMC NPs was significantly enhanced, as demonstrated by in vitro permeation studies and confocal laser scanning microscopy. Notably, superoxide dismutase-loaded TMC NPs combined with electret exhibited the best inhibitory effect on the edema of the mouse ear. TMC NPs combined with electret represent a novel platform for the transdermal delivery of protein drugs.

  5. An overview on the delivery of antitumor drug doxorubicin by carrier proteins.

    Science.gov (United States)

    Agudelo, D; Bérubé, G; Tajmir-Riahi, H A

    2016-07-01

    Serum proteins play an increasing role as drug carriers in the clinical settings. In this review, we have compared the binding modalities of anticancer drug doxorubicin (DOX) to three model carrier proteins, human serum albumin (HSA), bovine serum albumin (BSA) and milk beta-lactoglobulin (β-LG) in order to determine the potential application of these model proteins in DOX delivery. Molecular modeling studies showed stronger binding of DOX with HSA than BSA and β-LG with the free binding energies of -10.75 (DOX-HSA), -9.31 (DOX-BSA) and -8.12kcal/mol (DOX-β-LG). Extensive H-boding network stabilizes DOX-protein conjugation and played a major role in drug-protein complex formation. DOX complexation induced major alterations of HSA and BSA conformations, while did not alter β-LG secondary structure. The literature review shows that these proteins can potentially be used for delivery of DOX in vitro and in vivo. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Functional relevance of G-protein-coupled-receptor-associated proteins, exemplified by receptor-activity-modifying proteins (RAMPs).

    Science.gov (United States)

    Fischer, J A; Muff, R; Born, W

    2002-08-01

    The calcitonin (CT) receptor (CTR) and the CTR-like receptor (CRLR) are close relatives within the type II family of G-protein-coupled receptors, demonstrating sequence identity of 50%. Unlike the interaction between CT and CTR, receptors for the related hormones and neuropeptides amylin, CT-gene-related peptide (CGRP) and adrenomedullin (AM) require one of three accessory receptor-activity-modifying proteins (RAMPs) for ligand recognition. An amylin/CGRP receptor is revealed when CTR is co-expressed with RAMP1. When complexed with RAMP3, CTR interacts with amylin alone. CRLR, initially classed as an orphan receptor, is a CGRP receptor when co-expressed with RAMP1. The same receptor is specific for AM in the presence of RAMP2. Together with human RAMP3, CRLR defines an AM receptor, and with mouse RAMP3 it is a low-affinity CGRP/AM receptor. CTR-RAMP1, antagonized preferentially by salmon CT-(8-32) and not by CGRP-(8-37), and CRLR-RAMP1, antagonized by CGRP-(8-37), are two CGRP receptor isotypes. Thus amylin and CGRP interact specifically with heterodimeric complexes between CTR and RAMP1 or RAMP3, and CGRP and AM interact with complexes between CRLR and RAMP1, RAMP2 or RAMP3.

  7. Effects of insecticidal crystal proteins (Cry proteins) produced by genetically modified maize (Bt maize) on the nematode Caenorhabditis elegans

    International Nuclear Information System (INIS)

    Höss, Sebastian; Menzel, Ralph; Gessler, Frank; Nguyen, Hang T.; Jehle, Johannes A.; Traunspurger, Walter

    2013-01-01

    The genetically modified maize MON89034 × MON88017 expresses different crystal (Cry) proteins with pesticidal activity against the European corn borer (Cry1.105; Cry2Ab2) and the Western corn root worm (Cry3Bb1). Non-target organisms, such as soil nematodes, might be exposed to the Cry proteins that enter the soil in course of crop growing. Therefore, the risk of those proteins for nematodes was assessed by testing their toxic effects on Caenorhabditis elegans. All three insecticidal Cry proteins showed dose-dependent inhibitory effects on C. elegans reproduction (EC50: 0.12–0.38 μmol L −1 ), however, at concentrations that were far above the expected soil concentrations. Moreover, a reduced toxicity was observed when Cry proteins were added jointly. A C. elegans mutant strain deficient for receptors for the nematicidal Cry5B was also resistant against Cry1.105 and Cry2Ab2, suggesting that these Cry proteins bound to the same or similar receptors as nematicidal Cry proteins and thereby affect the reproduction of C. elegans. -- Highlights: •Insecticidal Cry proteins dose-dependently inhibited the reproduction of C. elegans. •Mixture toxicity was lower than expected from concentration-additive single effects. •Genes for MAPK-defense-pathway were up-regulated in presence of Cry protein mixture. •Knock-out strains deficient for Cry5B-receptors showed lower susceptibility to insecticidal Cry proteins. •Toxicity of insecticidal Cry-proteins on C. elegans occurred at concentrations far above expected field concentrations. -- Insecticidal Cry proteins expressed by genetically modified maize act on nematodes via a similar mode of action as nematicidal Cry proteins, however, at concentrations far above expected soil levels

  8. The Educational Efficacy of Distinct Information Delivery Systems in Modified Video Games

    Science.gov (United States)

    Moshirnia, Andrew; Israel, Maya

    2010-01-01

    Despite the increasing popularity of many commercial video games, this popularity is not shared by educational video games. Modified video games, however, can bridge the gap in quality between commercial and education video games by embedding educational content into popular commercial video games. This study examined how different information…

  9. Water-in-Oil Microemulsions for Protein Delivery: Loading Optimization and Stability.

    Science.gov (United States)

    Perinelli, Diego R; Cespi, Marco; Pucciarelli, Stefania; Vincenzetti, Silvia; Casettari, Luca; Lam, Jenny K W; Logrippo, Serena; Canala, Elisa; Soliman, Mahmoud E; Bonacucina, Giulia; Palmieri, Giovanni F

    2017-01-01

    Microemulsions are attractive delivery systems for therapeutic proteins and peptides due to their ability to enhance bioavailability. Although different proteins and peptides have been successfully delivered through such ternary systems, no information can be found about protein loading and the formulation stability when such microemulsions are prepared with pharmaceuticallyapproved oils and surfactants. The aim of this work was to optimise a ternary system consisting of water/ ethyl oleate/Span® 80-Tween® 80 and to determine its protein loading capacity and stability, using bovine serum albumin (BSA) as a model of biomolecule. The optimization was carried out using a Central Composite Design and all the prepared formulations were characterised through dynamic light scattering, rheology, optical and polarized microscopy. Subsequently, the maximum loading capacity was determined and the stability of the final microemulsion with the highest content of protein was followed over six months. To investigate the structural features of the protein, BSA was recovered from the microemulsion and analysed through fluorescence spectroscopy. After incorporation of the protein in the microemulsion, a decrease of its aqueous solubility was observed. However, the formulation remained stable over six months and the native-like state of the recovered protein was demonstrated by fluorescence spectroscopy Conclusion: This study demonstrated the feasibility of preparing microemulsions with the highest content of protein and their long-term stability. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  10. Increase in DNA vaccine efficacy by virosome delivery and co-expression of a cytolytic protein.

    Science.gov (United States)

    Gargett, Tessa; Grubor-Bauk, Branka; Miller, Darren; Garrod, Tamsin; Yu, Stanley; Wesselingh, Steve; Suhrbier, Andreas; Gowans, Eric J

    2014-06-01

    The potential of DNA vaccines has not been realised due to suboptimal delivery, poor antigen expression and the lack of localised inflammation, essential for antigen presentation and an effective immune response to the immunogen. Initially, we examined the delivery of a DNA vaccine encoding a model antigen, luciferase (LUC), to the respiratory tract of mice by encapsulation in a virosome. Virosomes that incorporated influenza virus haemagglutinin effectively delivered DNA to cells in the mouse respiratory tract and resulted in antigen expression and systemic and mucosal immune responses to the immunogen after an intranasal (IN) prime/intradermal (ID) boost regimen, whereas a multidose ID regimen only generated systemic immunity. We also examined systemic immune responses to LUC after ID vaccination with a DNA vaccine, which also encoded one of the several cytolytic or toxic proteins. Although the herpes simplex virus thymidine kinase, in the presence of the prodrug, ganciclovir, resulted in cell death, this failed to increase the humoral or cell-mediated immune responses. In contrast, the co-expression of LUC with the rotavirus non-structural protein 4 (NSP4) protein or a mutant form of mouse perforin, proteins which are directly cytolytic, resulted in increased LUC-specific humoral and cell-mediated immunity. On the other hand, co-expression of LUC with diphtheria toxin subunit A or overexpression of perforin or NSP4 resulted in a lower level of immunity. In summary, the efficacy of DNA vaccines can be improved by targeted IN delivery of DNA or by the induction of cell death in vaccine-targeted cells after ID delivery.

  11. Delivery, Effect on Cell Viability, and Plasticity of Modified Aptamer Constructs

    DEFF Research Database (Denmark)

    Gissberg, Olof; Zaghloul, Eman M; Lundin, Karin E

    2016-01-01

    AS1411 is a g-quadruplex-forming aptamer capable of selectively entering cancer cells by nucleolin receptor-mediated uptake. In this study, we investigated the cell internalization properties and plasticity of AS1411 carrying different locked nucleic acid-containing cargo oligonucleotides (ONs......) for delivery into A549 and U2OS cells. We found that internalization efficiency is highly governed by ON cargo chemistry and composition since the inherent antitumor properties of AS1411 were lost when attached to a nontoxic ON, noTox. However, a toxic ON, Tox, demonstrated potent cytotoxicity after aptamer...

  12. Development of novel drug delivery systems using phage display technology for clinical application of protein drugs.

    Science.gov (United States)

    Nagano, Kazuya; Tsutsumi, Yasuo

    2016-01-01

    Attempts are being made to develop therapeutic proteins for cancer, hepatitis, and autoimmune conditions, but their clinical applications are limited, except in the cases of drugs based on erythropoietin, granulocyte colony-stimulating factor, interferon-alpha, and antibodies, owing to problems with fundamental technologies for protein drug discovery. It is difficult to identify proteins useful as therapeutic seeds or targets. Another problem in using bioactive proteins is pleiotropic actions through receptors, making it hard to elicit desired effects without side effects. Additionally, bioactive proteins have poor therapeutic effects owing to degradation by proteases and rapid excretion from the circulatory system. Therefore, it is essential to establish a series of novel drug delivery systems (DDS) to overcome these problems. Here, we review original technologies in DDS. First, we introduce antibody proteomics technology for effective selection of proteins useful as therapeutic seeds or targets and identification of various kinds of proteins, such as cancer-specific proteins, cancer metastasis-related proteins, and a cisplatin resistance-related protein. Especially Ephrin receptor A10 is expressed in breast tumor tissues but not in normal tissues and is a promising drug target potentially useful for breast cancer treatment. Moreover, we have developed a system for rapidly creating functional mutant proteins to optimize the seeds for therapeutic applications and used this system to generate various kinds of functional cytokine muteins. Among them, R1antTNF is a TNFR1-selective antagonistic mutant of TNF and is the first mutein converted from agonist to antagonist. We also review a novel polymer-conjugation system to improve the in vivo stability of bioactive proteins. Site-specific PEGylated R1antTNF is uniform at the molecular level, and its bioactivity is similar to that of unmodified R1antTNF. In the future, we hope that many innovative protein drugs will be

  13. Intracellular Protein Delivery and Gene Transfection by Electroporation Using a Microneedle Electrode Array

    Science.gov (United States)

    Choi, Seong-O; Kim, Yeu-Chun; Lee, Jeong Woo; Park, Jung-Hwan

    2012-01-01

    The impact of many biopharmaceuticals, including protein- and gene-based therapies, has been limited by the need for better methods of delivery into cells within tissues. Here, we present intracellular delivery of molecules and transfection with plasmid DNA by electroporation using a novel microneedle electrode array designed for targeted treatment of skin and other tissue surfaces. The microneedle array is molded out of polylactic acid. Electrodes and circuitry required for electroporation are applied to the microneedle array surface by a new metal-transfer micromolding method. The microneedle array maintains mechanical integrity after insertion into pig cadaver skin and is able to electroporate human prostate cancer cells in vitro. Quantitative measurements show that increasing electroporation pulse voltage increases uptake efficiency of calcein and bovine serum albumin, whereas increasing pulse length has lesser effects over the range studied. Uptake of molecules by up to 50 % of cells and transfection of 12 % of cells with a gene for green fluorescent protein is demonstrated at high cell viability. We conclude that the microneedle electrode array is able to electroporate cells, resulting in intracellular uptake of molecules, and has potential applications to improve intracellular delivery of proteins, DNA and other biopharmaceuticals. PMID:22328093

  14. Vaccine delivery system for tuberculosis based on nano-sized hepatitis B virus core protein particles

    Directory of Open Access Journals (Sweden)

    Dhanasooraj D

    2013-02-01

    Full Text Available Dhananjayan Dhanasooraj, R Ajay Kumar, Sathish MundayoorMycobacterium Research Group, Rajiv Gandhi Centre for Biotechnology, Kerala, IndiaAbstract: Nano-sized hepatitis B virus core virus-like particles (HBc-VLP are suitable for uptake by antigen-presenting cells. Mycobacterium tuberculosis antigen culture filtrate protein 10 (CFP-10 is an important vaccine candidate against tuberculosis. The purified antigen shows low immune response without adjuvant and tends to have low protective efficacy. The present study is based on the assumption that expression of these proteins on HBc nanoparticles would provide higher protection when compared to the native antigen alone. The cfp-10 gene was expressed as a fusion on the major immunodominant region of HBc-VLP, and the immune response in Balb/c mice was studied and compared to pure proteins, a mixture of antigens, and fusion protein-VLP, all without using any adjuvant. The humoral, cytokine, and splenocyte cell proliferation responses suggested that the HBc-VLP bearing CFP-10 generated an antigen-specific immune response in a Th1-dependent manner. By virtue of its self-adjuvant nature and ability to form nano-sized particles, HBc-VLPs are an excellent vaccine delivery system for use with subunit protein antigens identified in the course of recent vaccine research.Keywords: Mycobacterium tuberculosis, VLP, hepatitis B virus core particle, CFP-10, self-adjuvant, vaccine delivery

  15. PEG-Immobilized Keratin for Protein Drug Sequestration and pH-Mediated Delivery

    Directory of Open Access Journals (Sweden)

    Roche C. de Guzman

    2016-01-01

    Full Text Available Protein drugs like growth factors are promising therapeutics for damaged-tissue repair. Their local delivery often requires biomaterial carriers for achieving the therapeutic dose range while extending efficacy. In this study, polyethylene glycol (PEG and keratin were crosslinked and used as sponge-like scaffolds (KTN-PEG to absorb test proteins with different isoelectric points (pI: albumin (~5, hemoglobin (~7, and lysozyme (~11. The protein release kinetics was influenced by charge at physiological pH 7.4. The keratin network, with pI 5.3, electrostatically attracted lysozyme and repulsed albumin generating the release rate profile: albumin > hemoglobin > lysozyme. However, under acidic conditions (pH 4, all proteins including keratins were positively charged and consequently intermolecular repulsion altered the release hierarchy, now determined by size (MW diffusion: lysozyme (14 kDa > hemoglobin (64 kDa > albumin (66 kDa. Vascular endothelial growth factor C (VEGF-C, with properties comparable to lysozyme, was absorbed into the KTN-PEG scaffold. Endothelial cells cultured on this substrate had significantly larger numbers than on scaffolds without VEGF-C suggesting that the ionically bound and retained growth factor at neutral pH indirectly increased acute cell attachment and viability. PEG and keratin based sequestrations of proteins with basic pIs are therefore a feasible strategy with potential applications for selective biologics delivery.

  16. Inclusion bodies as potential vehicles for recombinant protein delivery into epithelial cells

    Science.gov (United States)

    2012-01-01

    Background We present the potential of inclusion bodies (IBs) as a protein delivery method for polymeric filamentous proteins. We used as cell factory a strain of E. coli, a conventional host organism, and keratin 14 (K14) as an example of a complex protein. Keratins build the intermediate filament cytoskeleton of all epithelial cells. In order to build filaments, monomeric K14 needs first to dimerize with its binding partner (keratin 5, K5), which is then followed by heterodimer assembly into filaments. Results K14 IBs were electroporated into SW13 cells grown in culture together with a “reporter” plasmid containing EYFP labeled keratin 5 (K5) cDNA. As SW13 cells do not normally express keratins, and keratin filaments are built exclusively of keratin heterodimers (i.e. K5/K14), the short filamentous structures we obtained in this study can only be the result of: a) if both IBs and plasmid DNA are transfected simultaneously into the cell(s); b) once inside the cells, K14 protein is being released from IBs; c) released K14 is functional, able to form heterodimers with EYFP-K5. Conclusions Soluble IBs may be also developed for complex cytoskeletal proteins and used as nanoparticles for their delivery into epithelial cells. PMID:22624805

  17. Targeted Delivery of Auristatin-Modified Toxins to Pancreatic Cancer Using Aptamers

    Directory of Open Access Journals (Sweden)

    Christina Kratschmer

    2018-03-01

    Full Text Available Pancreatic cancer is one of the most lethal malignancies. Treatment with the first-line agent, gemcitabine, is often unsuccessful because it, like other traditional chemotherapeutic agents, is non-specific, resulting in off-target effects that necessitate administration of subcurative doses. Alternatively, monomethyl auristatin E (MMAE and monomethyl auristatin F (MMAF are highly toxic small molecules that require ligand-targeted delivery. MMAE has already received FDA approval as a component of an anti-CD30 antibody-drug conjugate, brentuximab vedotin. However, in contrast to antibodies, aptamers have distinct advantages. They are chemicals, which allows them to be produced synthetically and facilitates the rapid development of diagnostics and therapeutics with clinical applicability. In addition, their small size allows for enhanced tissue distribution and rapid systemic clearance. Here, we assayed the toxicity of MMAE and MMAF conjugated to an anti-transferrin receptor aptamer, Waz, and an anti-epidermal growth factor receptor aptamer, E07, on the pancreatic cancer cell lines Panc-1, MIA PaCa-2, and BxPC3. In vitro, our results indicate that these aptamers are a viable option for the targeted delivery of toxic payloads to pancreatic cancer cells.

  18. Polyionic hydrocolloids for the intestinal delivery of protein drugs: alginate and chitosan--a review.

    Science.gov (United States)

    George, Meera; Abraham, T Emilia

    2006-08-10

    The protein pharmaceutical market is rapidly growing, since it is gaining support from the recombinant DNA technology. To deliver these drugs via the oral route, the most preferred route, is the toughest challenge. In the design of oral delivery of peptide or protein drugs, pH sensitive hydrogels like alginate and chitosan have attracted increasing attention, since most of the synthetic polymers are immunogenic and the incorporation of proteins in to these polymers require harsh environment which may denature and inactivate the desired protein. Alginate is a water-soluble linear polysaccharide composed of alternating blocks of 1-4 linked alpha-L-guluronic and beta-D-mannuronic acid residues where as chitosan is a co polymer of D-glucosamine and N-acetyl glucosamine. The incorporation of protein into these two matrices can be done under relatively mild environment and hence the chances of protein denaturation are minimal. The limitations of these polymers, like drug leaching during preparation can be overcome by different techniques which increase their encapsulation efficiency. Alginate, being an anionic polymer with carboxyl end groups, is a good mucoadhesive agent. The pore size of alginate gel microbeads has been shown to be between 5 and 200 nm and coated beads and microspheres are found to be better oral delivery vehicles. Cross-linked alginate has more capacity to retain the entrapped drugs and mixing of alginate with other polymers such as neutral gums, pectin, chitosan, and eudragit have been found to solve the problem of drug leaching. Chitosan has only limited ability for controlling the release of encapsulated compound due to its hydrophilic nature and easy solubility in acidic medium. By simple covalent modifications of the polymer, its physicochemical properties can be changed and can be made suitable for the peroral drug delivery purpose. Ionic interactions between positively charged amino groups in chitosan and the negatively charged mucus gel layer

  19. Zinc-Modified Nanotransporter of Doxorubicin for Targeted Prostate Cancer Delivery

    Directory of Open Access Journals (Sweden)

    Sylvie Skalickova

    2017-12-01

    Full Text Available This work investigated the preparation of chitosan nanoparticles used as carriers for doxorubicin for targeted cancer delivery. Prepared nanocarriers were stabilized and functionalized via zinc ions incorporated into the chitosan nanoparticle backbone. We took the advantage of high expression of sarcosine in the prostate cancer cells. The prostate cancer targeting was mediated by the AntiSar antibodies decorated surface of the nanocage. Formation of the chitosan nanoparticles was determined using a ninhydrin assay and differential pulse voltammetry. Obtained results showed the strong effect of tripolyphosphine on the nanoparticle formation. The zinc ions affected strong chitosan backbone coiling both in inner and outer chitosan nanoparticle structure. Zinc electrochemical signal depended on the level of the complex formation and the potential shift from −960 to −950 mV. Formed complex is suitable for doxorubicin delivery. It was observed the 20% entrapment efficiency of doxorubicin and strong dependence of drug release after 120 min in the blood environment. The functionality of the designed nanotransporter was proven. The purposed determination showed linear dependence in the concentration range of Anti-sarcosine IgG labeled gold nanoparticles from 0 to 1000 µg/mL and the regression equation was found to be y = 3.8x − 66.7 and R2 = 0.99. Performed ELISA confirmed the ability of Anti-sarcosine IgG labeled chitosan nanoparticles with loaded doxorubicin to bind to the sarcosine molecule. Observed hemolytic activity of the nanotransporter was 40%. Inhibition activity of our proposed nanotransporter was evaluated to be 0% on the experimental model of S. cerevisiae. Anti-sarcosine IgG labeled chitosan nanoparticles, with loaded doxorubicin stabilized by Zn ions, are a perspective type of nanocarrier for targeted drug therapy managed by specific interaction with sarcosine and metallothionein for prostate cancer.

  20. pH-sensitive degradable nanoparticles for highly efficient intracellular delivery of exogenous protein

    Directory of Open Access Journals (Sweden)

    Xu D

    2013-09-01

    Full Text Available Dan Xu,1 Fei Wu,1 Yinghui Chen,2,* Liangming Wei,3,* Weien Yuan1,* 1School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 2Department of Neurology, Jinshan Hospital, Fudan University, Shanghai, 3Key Laboratory for Thin Film and Microfabrication of the Ministry of Education, Institute of Micro/Nano Science and Technology, Shanghai Jiao Tong University, Shanghai, People's Republic of China*These authors contributed equally to this workBackground: Encapsulating exogenous proteins into a nanosized particulate system for delivery into cells is a great challenge. To address this issue, we developed a novel nanoparticle delivery method that differs from the nanoparticles reported to date because its core was composed of cross-linked dextran glassy nanoparticles which had pH in endosome-responsive environment and the protein was loaded in the core of cross-linked dextran glassy nanoparticles.Methods: In this study, dextran in a poly(ethylene glycol aqueous two-phase system created a different chemical environment in which proteins were encapsulated very efficiently (84.3% and 89.6% for enhanced green fluorescent protein and bovine serum albumin, respectively by thermodynamically favored partition. The structures of the nanoparticles were confirmed by confocal laser scanning microscopy and scanning electron microscopy.Results: The nanoparticles had a normal size distribution and a mean diameter of 186 nm. MTT assays showed that the nanoparticles were nontoxic up to a concentration of 2000 µg/mL in human hepatocarcinoma cell line SMMC-7721, HeLa, and BRL-3A cells. Of note, confocal laser scanning microscopy studies showed that nanoparticles loaded with fluorescein isothiocyanate-bovine serum albumin were efficiently delivered and released proteins into the cytoplasm of HeLa cells. Flow cytometry and terminal deoxynucleotidyl transferase dUTP nick end labeling assays showed that nanoparticles with a functional protein (apoptin efficiently induced

  1. Drug delivery from hydrophobic-modified mesoporous silicas: Control via modification level and site-selective modification

    International Nuclear Information System (INIS)

    Tang Qunli; Chen Yuxi; Chen Jianghua; Li Jin; Xu Yao; Wu Dong; Sun Yuhan

    2010-01-01

    Dimethylsilyl (DMS) modified mesoporous silicas were successfully prepared via co-condensation and post-grafting modification methods. The post-grafting modification was carried out by the reaction of the as-synthesized MCM-41 material (before CTAB removal) with diethoxydimethylsinale (DEDMS). N 2 adsorption-desorption and 29 Si MAS NMR characterization demonstrated that different amount of DMS groups were successfully incorporated into the co-condensation modified samples, and the functional DMS groups were placed selectively on the pore openings and external pore surfaces in the post-grafting modified samples. Subsequently, the controlled drug delivery properties from the resulting DMS-modified mesoporous silicas were investigated in detail. The drug adsorption experiments showed that the adsorption capacities were mainly depended on the content of silanol group (CSG) in the corresponding carriers. The in vitro tests exhibited that the incorporation of DMS groups greatly retarded the ibuprofen release rate. Moreover, the ibuprofen release profiles could be well modulated by varying DMS modification levels and site-selective distribution of functional groups in mesoporous carriers. - The distribution of DMS groups on the pore surfaces of the mesostructures strongly affects the drug release rate. The P-M41-1 and the P-M41-2 possess the close DMS modification levels as the C-M41-10, but the ibuprofen release rates from the P-M41-1 and P-M41-2 are much slower than that from the C-M41-10.

  2. Sonication-Based Improvement of the Physicochemical Properties of Guar Gum as a Potential Substrate for Modified Drug Delivery Systems

    Directory of Open Access Journals (Sweden)

    Siddique Akber Ansari

    2013-01-01

    Full Text Available Guar Gum is a natural polysaccharide that, due to its physicochemical properties, is extensively investigated for biomedical applications as a matrix for modified drug delivery, but it is also used in the food industry as well as in cosmetics. A commercial sample of Guar Gum was sonicated for different periods of time, and the reduction in the average molecular weight was monitored by means of viscometric measurements. At the same time, the rheological behaviour was also followed, in terms of viscoelasticity range, flow curves, and mechanical spectra. Sonicated samples were used for the preparation of gels in the presence of borate ions. The effect of borax on the new samples was investigated by recording mechanical spectra, flow curves, and visible absorption spectra of complexes with Congo Red. The anisotropic elongation, observed in previous studies with tablets of Guar Gum and borax, was remarkably reduced when the sonicated samples were used for the preparation of the gels.

  3. FDM 3D printing of modified drug-delivery systems using hot melt extrusion: a new approach for individualized therapy.

    Science.gov (United States)

    Cunha-Filho, Marcilio; Araújo, Maísa Rp; Gelfuso, Guilherme M; Gratieri, Tais

    2017-11-01

    The production process of 3D-printed drugs offers unique advantages such as the possibility of individualizing the drug therapy and easily associating different drugs and release technologies in the same pharmaceutical unit. Fused deposition modeling, a 3D printing technique, seems especially interesting for pharmaceutical applications, due to its low cost, precise and reproducible control of the printed structures, and versatility for industrial and laboratory scale. This technique combined with another technology already adapted for the pharmaceutical industry, the hot melt extrusion, is able to incorporate various mechanisms of modified drug release. This special report aims to bring together data of the experimental progress achieved using the fused deposition modeling 3D printing combined with hot melt extrusion technique and its potential in drug delivery. [Formula: see text].

  4. The movement protein and coat protein of alfalfa mosaic virus accumulate in structurally modified plasmodesmata

    NARCIS (Netherlands)

    van der Wel, N. N.; Goldbach, R. W.; van Lent, J. W.

    1998-01-01

    In systemically infected tissues of Nicotiana benthamiana, alfalfa mosaic virus (AMV) coat protein (CP) and movement protein (MP) are detected in plasmodesmata in a layer of three to four cells at the progressing front of infection. Besides the presence of these viral proteins, the plasmodesmata are

  5. Heterologous protein secretion in Lactococcus lactis: a novel antigen delivery system

    Directory of Open Access Journals (Sweden)

    Langella P.

    1999-01-01

    Full Text Available Lactic acid bacteria (LAB are Gram-positive bacteria and are generally regarded as safe (GRAS organisms. Therefore, LAB could be used for heterologous protein secretion and they are good potential candidates as antigen delivery vehicles. To develop such live vaccines, a better control of protein secretion is required. We developed an efficient secretion system in the model LAB, Lactococcus lactis. Staphylococcal nuclease (Nuc was used as the reporter protein. We first observed that the quantity of secreted Nuc correlated with the copy number of the cloning vector. The nuc gene was cloned on a high-copy number cloning vector and no perturbation of the metabolism of the secreting strain was observed. Replacement of nuc native promoter by a strong lactococcal one led to a significant increase of nuc expression. Secretion efficiency (SE of Nuc in L. lactis was low, i.e., only 60% of the synthesized Nuc was secreted. Insertion of a synthetic propeptide between the signal peptide and the mature moiety of Nuc increased the SE of Nuc. On the basis of these results, we developed a secretion system and we applied it to the construction of an L. lactis strain which secretes a bovine coronavirus (BCV epitope-protein fusion (BCV-Nuc. BCV-Nuc was recognized by both anti-BCV and anti-Nuc antibodies. Secretion of this antigenic fusion is the first step towards the development of a novel antigen delivery system based on LAB-secreting strains.

  6. A comprehensive screening platform for aerosolizable protein formulations for intranasal and pulmonary drug delivery.

    Science.gov (United States)

    Röhm, Martina; Carle, Stefan; Maigler, Frank; Flamm, Johannes; Kramer, Viktoria; Mavoungou, Chrystelle; Schmid, Otmar; Schindowski, Katharina

    2017-10-30

    Aerosolized administration of biopharmaceuticals to the airways is a promising route for nasal and pulmonary drug delivery, but - in contrast to small molecules - little is known about the effects of aerosolization on safety and efficacy of biopharmaceuticals. Proteins are sensitive against aerosolization-associated shear stress. Tailored formulations can shield proteins and enhance permeation, but formulation development requires extensive screening approaches. Thus, the aim of this study was to develop a cell-based in vitro technology platform that includes screening of protein quality after aerosolization and transepithelial permeation. For efficient screening, a previously published aerosolization-surrogate assay was used in a design of experiments approach to screen suitable formulations for an IgG and its antigen-binding fragment (Fab) as exemplary biopharmaceuticals. Efficient, dose-controlled aerosol-cell delivery was performed with the ALICE-CLOUD system containing RPMI 2650 epithelial cells at the air-liquid interface. We could demonstrate that our technology platform allows for rapid and efficient screening of formulations consisting of different excipients (here: arginine, cyclodextrin, polysorbate, sorbitol, and trehalose) to minimize aerosolization-induced protein aggregation and maximize permeation through an in vitro epithelial cell barrier. Formulations reduced aggregation of native Fab and IgG relative to vehicle up to 50% and enhanced transepithelial permeation rate up to 2.8-fold. Copyright © 2017 The Author(s). Published by Elsevier B.V. All rights reserved.

  7. Mucoadhesive Cyclodextrin-Modified Thiolated Poly(aspartic acid as a Potential Ophthalmic Drug Delivery System

    Directory of Open Access Journals (Sweden)

    Mária Budai-Szűcs

    2018-02-01

    Full Text Available Thiolated poly(aspartic acid is known as a good mucoadhesive polymer in aqueous ophthalmic formulations. In this paper, cyclodextrin-modified thiolated poly(aspartic acid was synthesized for the incorporation of prednisolone, a lipophilic ophthalmic drug, in an aqueous in situ gellable mucoadhesive solution. This polymer combines the advantages of cyclodextrins and thiolated polymers. The formation of the cyclodextrin-drug complex in the gels was analyzed by X-ray powder diffraction. The ocular applicability of the polymer was characterized by means of physicochemical, rheological and drug diffusion tests. It was established that the chemical bonding of the cyclodextrin molecule did not affect the complexation of prednisolone, while the polymer solution preserved its in situ gellable and good mucoadhesive characteristics. The chemical immobilization of cyclodextrin modified the diffusion profile of prednisolone and prolonged drug release was observed. The combination of free and immobilized cyclodextrins provided the best release profile because the free complex can diffuse rapidly, while the bonded complex ensures a prolonged action.

  8. Food-grade protein-based nanoparticles and microparticles for bioactive delivery: fabrication, characterization, and utilization.

    Science.gov (United States)

    Davidov-Pardo, Gabriel; Joye, Iris J; McClements, David Julian

    2015-01-01

    Proteins can be used to fabricate nanoparticles and microparticles suitable for use as delivery systems for bioactive compounds in pharmaceutical, food, cosmetic, and other products. Food proteins originate from various animal or vegetal sources and exhibit a wide diversity of molecular and physicochemical characteristics, e.g., molecular weight, conformation, flexibility, polarity, charge, isoelectric point, solubility, and interactions. As a result, protein particles can be assembled using numerous different preparation methods, from one or more types of protein or from a combination of a protein and another type of biopolymer (usually a polysaccharide). The final characteristics of the particles produced are determined by the proteins and/or polysaccharides used, as well as the fabrication techniques employed. This chapter provides an overview of the functional properties of food proteins that can be used to assemble nanoparticles and microparticles, the fabrication techniques available to create those particles, the factors that influence their stability, and their potential applications within the food industry. © 2015 Elsevier Inc. All rights reserved.

  9. Novel surface-modified nanostructured lipid carriers with partially deacetylated water-soluble chitosan for efficient ocular delivery.

    Science.gov (United States)

    Tian, Baocheng; Luo, Qiuhua; Song, Shuangshuang; Liu, Dandan; Pan, Hao; Zhang, Wenji; He, Ling; Ma, Shilin; Yang, Xinggang; Pan, Weisan

    2012-03-01

    The objective of this study was to propose novel surface-modified nanostructured lipid carriers with partially deacetylated water-soluble chitosan (NLC-PDSC) as an efficient ocular delivery system to improve its transcorneal penetration and precorneal retention. PDSC with a deacetylation degree of around 50% was synthesized using an improved method. NLC loaded with flurbiprofen (FB) were prepared by melt emulsification method. They presented spherical morphology under both transmission electron microscope and scanning electron microscope. After coating with 0.15% (w/v) PDSC solution, the NLC showed a core-shell structure and a reversed zeta potential. The enhanced transcorneal penetration of the coated NLC was evaluated using isolated rabbit corneas, with significantly increased apparent permeability coefficient being 1.40- and 1.75-fold of the NLC and FB phosphate solution (FB-sol; p < 0.05), respectively. Precorneal retention assessed by gamma scintigraphy in vivo showed that the area under the remaining activity-time curve of the PDSC-coated formulation was 1.3-fold of the NLC and 2.4-fold of FB-sol. Moreover, in vivo ocular tolerance study indicated that there was no difference in irritation between the coated and noncoated NLC. In conclusion, novel NLC demonstrate high potential for ocular drug delivery. Copyright © 2011 Wiley Periodicals, Inc.

  10. Self assembling nanocomposites for protein delivery: supramolecular interactions of soluble polymers with protein drugs.

    Science.gov (United States)

    Salmaso, Stefano; Caliceti, Paolo

    2013-01-02

    Translation of therapeutic proteins to pharmaceutical products is often encumbered by their inadequate physicochemical and biopharmaceutical properties, namely low stability and poor bioavailability. Over the last decades, several academic and industrial research programs have been focused on development of biocompatible polymers to produce appropriate formulations that provide for enhanced therapeutic performance. According to their physicochemical properties, polymers have been exploited to obtain a variety of formulations including biodegradable microparticles, 3-dimensional hydrogels, bioconjugates and soluble nanocomposites. Several soluble polymers bearing charges or hydrophobic moieties along the macromolecular backbone have been found to physically associate with proteins to form soluble nanocomplexes. Physical complexation is deemed a valuable alternative tool to the chemical bioconjugation. Soluble protein/polymer nanocomplexes formed by physical specific or unspecific interactions have been found in fact to possess peculiar physicochemical, and biopharmaceutical properties. Accordingly, soluble polymeric systems have been developed to increase the protein stability, enhance the bioavailability, promote the absorption across the biological barriers, and prolong the protein residence in the bloodstream. Furthermore, a few polymers have been found to favour the protein internalisation into cells or boost their immunogenic potential by acting as immunoadjuvant in vaccination protocols. Copyright © 2011 Elsevier B.V. All rights reserved.

  11. Mussel-Inspired Protein Nanoparticles Containing Iron(III)-DOPA Complexes for pH-Responsive Drug Delivery.

    Science.gov (United States)

    Kim, Bum Jin; Cheong, Hogyun; Hwang, Byeong Hee; Cha, Hyung Joon

    2015-06-15

    A novel bioinspired strategy for protein nanoparticle (NP) synthesis to achieve pH-responsive drug release exploits the pH-dependent changes in the coordination stoichiometry of iron(III)-3,4-dihydroxyphenylalanine (DOPA) complexes, which play a major cross-linking role in mussel byssal threads. Doxorubicin-loaded polymeric NPs that are based on Fe(III)-DOPA complexation were thus synthesized with a DOPA-modified recombinant mussel adhesive protein through a co-electrospraying process. The release of doxorubicin was found to be predominantly governed by a change in the structure of the Fe(III)-DOPA complexes induced by an acidic pH value. It was also demonstrated that the fabricated NPs exhibited effective cytotoxicity towards cancer cells through efficient cellular uptake and cytosolic release. Therefore, it is anticipated that Fe(III)-DOPA complexation can be successfully utilized as a new design principle for pH-responsive NPs for diverse controlled drug-delivery applications. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Multilayer Choline Phosphate Molecule Modified Surface with Enhanced Cell Adhesion but Resistance to Protein Adsorption.

    Science.gov (United States)

    Chen, Xingyu; Yang, Ming; Liu, Botao; Li, Zhiqiang; Tan, Hong; Li, Jianshu

    2017-08-22

    Choline phosphate (CP), which is a new zwitterionic molecule, and has the reverse order of phosphate choline (PC) and could bind to the cell membrane though the unique CP-PC interaction. Here we modified a glass surface with multilayer CP molecules using surface-initiated atom-transfer radical polymerization (SI-ATRP) and the ring-opening method. Polymeric brushes of (dimethylamino)ethyl methacrylate (DMAEMA) were synthesized by SI-ATRP from the glass surface. Then the grafted PDMAEMA brushes were used to introduce CP groups to fabricate the multilayer CP molecule modified surface. The protein adsorption experiment and cell culture test were used to evaluate the biocompatibility of the modified surfaces by using human umbilical veinendothelial cells (HUVECs). The protein adsorption results demonstrated that the multilayer CP molecule decorated surface could prevent the adsorption of fibrinogen and serum protein. The adhesion and proliferation of cells were improved significantly on the multilayer CP molecule modified surface. Therefore, the biocompatibility of the material surface could be improved by the modified multilayer CP molecule, which exhibits great potential for biomedical applications, e.g., scaffolds in tissue engineering.

  13. A modified FASP protocol for high-throughput preparation of protein samples for mass spectrometry.

    Directory of Open Access Journals (Sweden)

    Jeremy Potriquet

    Full Text Available To facilitate high-throughput proteomic analyses we have developed a modified FASP protocol which improves the rate at which protein samples can be processed prior to mass spectrometry. Adapting the original FASP protocol to a 96-well format necessitates extended spin times for buffer exchange due to the low centrifugation speeds tolerated by these devices. However, by using 96-well plates with a more robust polyethersulfone molecular weight cutoff membrane, instead of the cellulose membranes typically used in these devices, we could use isopropanol as a wetting agent, decreasing spin times required for buffer exchange from an hour to 30 minutes. In a typical work flow used in our laboratory this equates to a reduction of 3 hours per plate, providing processing times similar to FASP for the processing of up to 96 samples per plate. To test whether our modified protocol produced similar results to FASP and other FASP-like protocols we compared the performance of our modified protocol to the original FASP and the more recently described eFASP and MStern-blot. We show that all FASP-like methods, including our modified protocol, display similar performance in terms of proteins identified and reproducibility. Our results show that our modified FASP protocol is an efficient method for the high-throughput processing of protein samples for mass spectral analysis.

  14. Golgi bypass for local delivery of axonal proteins, fact or fiction?

    Science.gov (United States)

    González, Carolina; Cornejo, Víctor Hugo; Couve, Andrés

    2018-04-06

    Although translation of cytosolic proteins is well described in axons, much less is known about the synthesis, processing and trafficking of transmembrane and secreted proteins. A canonical rough endoplasmic reticulum or a stacked Golgi apparatus has not been detected in axons, generating doubts about the functionality of a local route. However, axons contain mRNAs for membrane and secreted proteins, translation factors, ribosomal components, smooth endoplasmic reticulum and post-endoplasmic reticulum elements that may contribute to local biosynthesis and plasma membrane delivery. Here we consider the evidence supporting a local secretory system in axons. We discuss exocytic elements and examples of autonomous axonal trafficking that impact development and maintenance. We also examine whether unconventional post-endoplasmic reticulum pathways may replace the canonical Golgi apparatus. Copyright © 2018. Published by Elsevier Ltd.

  15. Development of modified-release tablets of zolpidem tartrate by biphasic quick/slow delivery system.

    Science.gov (United States)

    Mahapatra, Anjan Kumar; Sameeraja, N H; Murthy, P N

    2015-06-01

    Zolpidem tartrate is a non-benzodiazepine analogue of imidazopyridine of sedative and hypnotic category. It has a short half-life with usual dosage regimen being 5 mg, two times a day, or 10 mg, once daily. The duration of action is considered too short in certain circumstances. Thus, it is desirable to lengthen the duration of action. The formulation design was implemented by preparing extended-release tablets of zolpidem tartrate using the biphasic delivery system technology, where sodium starch glycolate acts as a superdisintegrant in immediate-release part and hydroxypropyl methyl cellulose as a release retarding agent in extended-release core. Tablets were prepared by direct compression. Both the core and the coat contained the drug. The pre-compression blends were evaluated for angle of repose, bulk density, and compressibility index. The tablets were evaluated for thickness, hardness, weight variation test, friability, and in vitro release studies. No interaction was observed between zolpidem tartrate and excipients from the Fourier transform infrared spectroscopy and differential scanning calorimetry analysis. The results of all the formulations prepared were compared with reference product Stilnoct®. Optimized formulations showed release patterns that match the United States Pharmacopeia (USP) guidelines for zolpidem tartrate extended-release tablets. The mechanism of drug release was studied using different mathematical models, and the optimized formulation has shown Fickian diffusion. Accelerated stability studies were performed on the optimized formulation.

  16. Mini-tablets versus pellets as promising multiparticulate modified release delivery systems for highly soluble drugs.

    Science.gov (United States)

    Gaber, Dina M; Nafee, Noha; Abdallah, Osama Y

    2015-07-05

    Whether mini-tablets (tablets, diameters ≤6mm) belong to single- or multiple-unit dosage forms is still questionable. Accordingly, Pharmacopoeial evaluation procedures for mini-tablets are lacking. In this study, the aforementioned points were discussed. Moreover, their potential for oral controlled delivery was assessed. The antidepressant venlafaxine hydrochloride (Vx), a highly soluble drug undergoing first pass effect, low bioavailability and short half-life was selected as a challenging payload. In an attempt to weigh up mini-tablets versus pellets as multiparticulate carriers, Vx-loaded mini-tablets were compared to formulated pellets of the same composition and the innovator Effexor(®)XR pellets. Formulations were prepared using various polymer hydrogels in the core and ethyl cellulose film coating with increasing thickness. Mini-tablets (diameter 2mm) showed extended Vx release (<60%, 8h). Indeed, release profiles comparable to Effexor(®)XR pellets were obtained. Remarkably higher coating thickness was required for pellets to provide equivalent retardation. Ethyl cellulose in the core ensured faster release due to polymer migration to the surface and pore formation in the coat. mini-tablets showed higher stability to pellets upon storage. Industrially speaking, mini-tablets proved to be superior to pellets in terms of manufacturing, product quality and economical aspects. Results point out the urgent need for standardized evaluation procedures for mini-tablets. Copyright © 2015. Published by Elsevier B.V.

  17. Alendronate-Loaded Modified Drug Delivery Lipid Particles Intended for Improved Oral and Topical Administration

    Directory of Open Access Journals (Sweden)

    Lacramioara Ochiuz

    2016-06-01

    Full Text Available The present paper focuses on solid lipid particles (SLPs, described in the literature as the most effective lipid drug delivery systems that have been introduced in the last decades, as they actually combine the advantages of polymeric particles, hydrophilic/lipophilic emulsions and liposomes. In the current study, we present our most recent advances in the preparation of alendronate (AL-loaded SLPs prepared by hot homogenization and ultrasonication using various ratios of a self-emulsifying lipidic mixture of Compritol 888, Gelucire 44/14, and Cremophor A 25. The prepared AL-loaded SLPs were investigated for their physicochemical, morphological and structural characteristics by dynamic light scattering, differential scanning calorimetry, thermogravimetric and powder X-ray diffraction analysis, infrared spectroscopy, optical and scanning electron microscopy. Entrapment efficacy and actual drug content were assessed by a validated HPLC method. In vitro dissolution tests performed in simulated gastro-intestinal fluids and phosphate buffer solution pH 7.4 revealed a prolonged release of AL of 70 h. Additionally, release kinetics analysis showed that both in simulated gastrointestinal fluids and in phosphate buffer solution, AL is released from SLPs based on equal ratios of lipid excipients following zero-order kinetics, which characterizes prolonged-release drug systems.

  18. Genetically Modified Lactococcus lactis for Delivery of Human Interleukin-10 to Dendritic Cells

    Directory of Open Access Journals (Sweden)

    Inge L. Huibregtse

    2012-01-01

    Full Text Available Interleukin-10 (IL-10 plays an indispensable role in mucosal tolerance by programming dendritic cells (DCs to induce suppressor Th-cells. We have tested the modulating effect of L. lactis secreting human IL-10 (L.  lactisIL-10 on DC function in vitro. Monocyte-derived DC incubated with L.  lactisIL-10 induced effector Th-cells that markedly suppressed the proliferation of allogenic Th-cells as compared to L. lactis. This suppressive effect was only seen when DC showed increased CD83 and CD86 expression. Furthermore, enhanced production of IL-10 was measured in both L.  lactisIL-10-derived DC and Th-cells compared to L. lactis-derived DC and Th-cells. Neutralizing IL-10 during DC-Th-cell interaction and coculturing L.  lactisIL-10-derived suppressor Th-cells with allogenic Th-cells in a transwell system prevented the induction of suppressor Th-cells. Only 130 pg/mL of bacterial-derived IL-10 and 40 times more exogenously added recombinant human IL-10 were needed during DC priming for the generation of suppressor Th-cells. The spatially restricted delivery of IL-10 by food-grade bacteria is a promising strategy to induce suppressor Th-cells in vivo and to treat inflammatory diseases.

  19. Magnetic silica hybrids modified with guanidine containing co-polymers for drug delivery applications

    Energy Technology Data Exchange (ETDEWEB)

    Timin, Alexander S., E-mail: a_timin@mail.ru [Inorganic Chemistry Department, Ivanovo State University of Chemistry and Technology (ISUCT), 7, Sheremetevsky prosp., 153000 Ivanovo (Russian Federation); RASA Center in Tomsk, Tomsk Polytechnic University, 30, Lenin Avenue, 634500 Tomsk (Russian Federation); Khashirova, Svetlana Yu. [Kabardino-Balkar State University, ul. Chernyshevskogo 173, Nal' chik, 360004 Kabardino-Balkaria (Russian Federation); Rumyantsev, Evgeniy V.; Goncharenko, Alexander A. [Inorganic Chemistry Department, Ivanovo State University of Chemistry and Technology (ISUCT), 7, Sheremetevsky prosp., 153000 Ivanovo (Russian Federation)

    2016-07-01

    Guanidine containing co-polymers grafted onto silica nanoparticles to form core-shell structure were prepared by sol-gel method in the presence of γ-Fe{sub 2}O{sub 3} nanoparticles. The morphological features for uncoated and coated silica particles have been characterized with scanning electron microscopy. The results show that the polymer coated silicas exhibit spherical morphology with rough polymeric surface covered by γ-Fe{sub 2}O{sub 3} nanoparticles. The grafting amount of guanidine containing co-polymers evaluated by thermogravimetric analysis was in the range from 17 to 30%. Then, the drug loading properties and cumulative release of silica hybrids modified with guanidine containing co-polymers were evaluated using molsidomine as a model drug. It was shown that after polymer grafting the loading content of molsidomine could reach up to 3.42 ± 0.21 and 2.34 ± 0.14 mg/g respectively. The maximum drug release of molsidomine is achieved at pH 1.6 (approximately 71–75% release at 37 °C), whereas at pH 7.4 drug release is lower (50.4–59.6% release at 37 °C). These results have an important implication that our magneto-controlled silica hybrids modified with guanidine containing co-polymers are promising as drug carriers with controlled behaviour under influence of magnetic field. - Highlights: • Polymer coated silica hybrids containing γ-Fe{sub 2}O{sub 3} were prepared via sol–gel method. • Polymer grafting influences pH-response and surface properties of final products. • Molsidomine as a model drug was effectively loaded into polymer coated silicas. • The drug loading depends on the nature of grafted polymer and its content.

  20. Pyrenebutanoate as a dynamic protein modifier for fluorometric detection in capillary zone electrophoresis

    Czech Academy of Sciences Publication Activity Database

    Horká, Marie; Šlais, Karel

    2002-01-01

    Roč. 23, 7-8 (2002), s. 1090-1095 ISSN 0173-0835 R&D Projects: GA AV ČR IAA4031901 Institutional research plan: CEZ:AV0Z4031919 Keywords : pyrenebutanoate * dynamic protein modifier * CZE Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 4.325, year: 2002

  1. A review of advanced oral drug delivery technologies facilitating the protection and absorption of protein and peptide molecules.

    Science.gov (United States)

    Choonara, Bibi F; Choonara, Yahya E; Kumar, Pradeep; Bijukumar, Divya; du Toit, Lisa C; Pillay, Viness

    2014-11-15

    The oral delivery of proteins and peptides is a dynamic research field despite the numerous challenges limiting their effective delivery. Successful oral delivery of proteins and peptides requires the accomplishment of three key tasks: protection of the macromolecules from degradation in the gastrointestinal tract (GIT), permeation through the intestinal barrier and absorption of molecules into the systemic circulation. Currently, no clinically useful oral formulations have been developed but several attempts have been made to overcome the challenges of low oral bioavailability resulting from poor absorption, poor permeation and enzymatic degradation of the proteins and peptides in the GIT. Present strategies attempt to provide structural protection of the proteins and peptides and improved absorption through the use of enzyme inhibitors, absorption enhancers, novel polymeric delivery systems and chemical modification. However, each of these technologies has their limitations despite showing positive results. This review attempts to discuss the physical and chemical barriers of the GIT with particular emphasis on the current approaches employed to overcome these barriers, including the evaluation of other non-parenteral routes of protein and peptide delivery. In addition, this review assimilates oral formulation strategies under development and within the clinical trial stage in relation to their benefits and drawbacks with regard to facilitating optimal protection and absorption of proteins and peptides, as well as pertinent future challenges and opportunities governing oral drug delivery. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. Targeted delivery of 10-hydroxycamptothecin to human breast cancers by cyclic RGD-modified lipid-polymer hybrid nanoparticles.

    Science.gov (United States)

    Yang, Zhe; Luo, Xingen; Zhang, Xiaofang; Liu, Jie; Jiang, Qing

    2013-04-01

    Lipid-polymer hybrid nanoparticles (NPs) combining the positive attributes of both liposomes and polymeric NPs are increasingly being considered as promising candidates to carry therapeutic agents safely and efficiently into targeted sites. Herein, a modified emulsification technique was developed and optimized for the targeting lipid-polymer hybrid NPs fabrication; the surface properties and stability of the hybrid NPs were systematically investigated, which confirmed that the hybrid NPs consisted of a poly (lactide-co-glycolide) core with ∼90% surface coverage of the lipid monolayer and a ∼4.4 nm hydrated polyethylene glycol (PEG) shell. Optimization results showed that the lipid:polymer mass ratio and the lipid-PEG:lipid molar ratio could affect the size, lipid association efficiency and stability of hybrid NPs. Furthermore, a model chemotherapy drug, 10-hydroxycamptothecin, was encapsulated into hybrid NPs with a higher drug loading compared to PLGA NPs. Surface modification of the lipid layer and the PEG conjugated targeting ligand did not affect their drug release kinetics. Finally, the cytotoxicity and cellular uptake studies indicated that the lipid coverage and the c(RGDyk) conjugation of the hybrid NPs gained a significantly enhanced ability of cell killing and endocytosis. Our results suggested that lipid-polymer hybrid NPs prepared by the modified emulsion technique have great potential to be utilized as an engineered drug delivery system with precise control ability of surface targeting modification.

  3. Targeted delivery of 10-hydroxycamptothecin to human breast cancers by cyclic RGD-modified lipid–polymer hybrid nanoparticles

    International Nuclear Information System (INIS)

    Yang, Zhe; Luo, Xingen; Zhang, Xiaofang; Liu, Jie; Jiang, Qing

    2013-01-01

    Lipid–polymer hybrid nanoparticles (NPs) combining the positive attributes of both liposomes and polymeric NPs are increasingly being considered as promising candidates to carry therapeutic agents safely and efficiently into targeted sites. Herein, a modified emulsification technique was developed and optimized for the targeting lipid–polymer hybrid NPs fabrication; the surface properties and stability of the hybrid NPs were systematically investigated, which confirmed that the hybrid NPs consisted of a poly (lactide-co-glycolide) core with ∼90% surface coverage of the lipid monolayer and a ∼4.4 nm hydrated polyethylene glycol (PEG) shell. Optimization results showed that the lipid:polymer mass ratio and the lipid-PEG:lipid molar ratio could affect the size, lipid association efficiency and stability of hybrid NPs. Furthermore, a model chemotherapy drug, 10-hydroxycamptothecin, was encapsulated into hybrid NPs with a higher drug loading compared to PLGA NPs. Surface modification of the lipid layer and the PEG conjugated targeting ligand did not affect their drug release kinetics. Finally, the cytotoxicity and cellular uptake studies indicated that the lipid coverage and the c(RGDyk) conjugation of the hybrid NPs gained a significantly enhanced ability of cell killing and endocytosis. Our results suggested that lipid–polymer hybrid NPs prepared by the modified emulsion technique have great potential to be utilized as an engineered drug delivery system with precise control ability of surface targeting modification. (paper)

  4. Delivery of bone morphogenetic protein-2 and substance P using graphene oxide for bone regeneration

    Directory of Open Access Journals (Sweden)

    La WG

    2014-05-01

    Full Text Available Wan-Geun La,1 Min Jin,1 Saibom Park,1,2 Hee-Hun Yoon,1 Gun-Jae Jeong,1 Suk Ho Bhang,1 Hoyoung Park,1,2 Kookheon Char,1,2 Byung-Soo Kim1,31School of Chemical and Biological Engineering, Seoul National University, Seoul, Republic of Korea; 2The National Creative Research Initiative Center for Intelligent Hybrids, Seoul National University, Seoul, Republic of Korea; 3Institute of Bioengineering, Institute of Chemical Processes, Engineering Research Institute, Seoul National University, Seoul, Republic of KoreaAbstract: In this study, we demonstrate that graphene oxide (GO can be used for the delivery of bone morphogenetic protein-2 (BMP-2 and substance P (SP, and that this delivery promotes bone formation on titanium (Ti implants that are coated with GO. GO coating on Ti substrate enabled a sustained release of BMP-2. BMP-2 delivery using GO-coated Ti exhibited a higher alkaline phosphatase activity in bone-forming cells in vitro compared with bare Ti. SP, which is known to recruit mesenchymal stem cells (MSCs, was co-delivered using Ti or GO-coated Ti to further promote bone formation. SP induced the migration of MSCs in vitro. The dual delivery of BMP-2 and SP using GO-coated Ti showed the greatest new bone formation on Ti implanted in the mouse calvaria compared with other groups. This approach may be useful to improve osteointegration of Ti in dental or orthopedic implants.Keywords: bone morphogenetic protein-2, bone regeneration, graphene oxides, stem cell recruitment, substance P

  5. Delivery of nicotine aerosol to mice via a modified electronic cigarette device.

    Science.gov (United States)

    Lefever, Timothy W; Lee, Youn O K; Kovach, Alexander L; Silinski, Melanie A R; Marusich, Julie A; Thomas, Brian F; Wiley, Jenny L

    2017-03-01

    Although both men and women use e-cigarettes, most preclinical nicotine research has focused on its effects in male rodents following injection. The goals of the present study were to develop an effective e-cigarette nicotine delivery system, to compare results to those obtained after subcutaneous (s.c.) injection, and to examine sex differences in the model. Hypothermia and locomotor suppression were assessed following aerosol exposure or s.c. injection with nicotine in female and male mice. Subsequently, plasma and brain concentrations of nicotine and cotinine were measured. Passive exposure to nicotine aerosol produced concentration-dependent and mecamylamine reversible hypothermic and locomotor suppressant effects in female and male mice, as did s.c. nicotine injection. In plasma and brain, nicotine and cotinine concentrations showed dose/concentration-dependent increases in both sexes following each route of administration. Sex differences in nicotine-induced hypothermia were dependent upon route of administration, with females showing greater hypothermia following aerosol exposure and males showing greater hypothermia following injection. In contrast, when they occurred, sex differences in nicotine and cotinine levels in brain and plasma consistently showed greater concentrations in females than males, regardless of route of administration. In summary, the e-cigarette exposure device described herein was used successfully to deliver pharmacologically active doses of nicotine to female and male mice. Further, plasma nicotine concentrations following exposure were similar to those after s.c. injection with nicotine and within the range observed in human smokers. Future research on vaped products can be strengthened by inclusion of translationally relevant routes of administration. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Expression, Delivery and Function of Insecticidal Proteins Expressed by Recombinant Baculoviruses

    Science.gov (United States)

    Kroemer, Jeremy A.; Bonning, Bryony C.; Harrison, Robert L.

    2015-01-01

    Since the development of methods for inserting and expressing genes in baculoviruses, a line of research has focused on developing recombinant baculoviruses that express insecticidal peptides and proteins. These recombinant viruses have been engineered with the goal of improving their pesticidal potential by shortening the time required for infection to kill or incapacitate insect pests and reducing the quantity of crop damage as a consequence. A wide variety of neurotoxic peptides, proteins that regulate insect physiology, degradative enzymes, and other potentially insecticidal proteins have been evaluated for their capacity to reduce the survival time of baculovirus-infected lepidopteran host larvae. Researchers have investigated the factors involved in the efficient expression and delivery of baculovirus-encoded insecticidal peptides and proteins, with much effort dedicated to identifying ideal promoters for driving transcription and signal peptides that mediate secretion of the expressed target protein. Other factors, particularly translational efficiency of transcripts derived from recombinant insecticidal genes and post-translational folding and processing of insecticidal proteins, remain relatively unexplored. The discovery of RNA interference as a gene-specific regulation mechanism offers a new approach for improvement of baculovirus biopesticidal efficacy through genetic modification. PMID:25609310

  7. Protein-lipid nanohybrids as emerging platforms for drug and gene delivery: Challenges and outcomes.

    Science.gov (United States)

    Gaber, Mohamed; Medhat, Waseem; Hany, Mark; Saher, Nourhan; Fang, Jia-You; Elzoghby, Ahmed

    2017-05-28

    Nanoparticulate drug delivery systems have been long used to deliver a vast range of drugs and bioactives owing to their ability to demonstrate novel physical, chemical, and/or biological properties. An exponential growth has spurred in research and development of these nanocarriers which led to the evolution of a great number of diverse nanosystems including liposomes, nanoemulsions, solid lipid nanoparticles (SLNs), micelles, dendrimers, polymeric nanoparticles (NPs), metallic NPs, and carbon nanotubes. Among them, lipid-based nanocarriers have made the largest progress whether commercially or under development. Despite this progress, these lipid-based nanocarriers suffer from several limitations that led to the development of many protein-coated lipid nanocarriers. To less extent, protein-based nanocarriers suffer from limitations that led to the fabrication of some lipid bilayer enveloping protein nanocarriers. This review discusses in-depth some limitations associated with the lipid-based or protein-based nanocarriers and the fruitful outcomes brought by protein-lipid hybridization. Also discussed are the various hybridization techniques utilized to formulate these protein-lipid nanohybrids and the mechanisms involved in the drug loading process. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Single chain Fc-dimer-human growth hormone fusion protein for improved drug delivery.

    Science.gov (United States)

    Zhou, Li; Wang, Hsuan-Yao; Tong, Shanshan; Okamoto, Curtis T; Shen, Wei-Chiang; Zaro, Jennica L

    2017-02-01

    Fc fusion protein technology has been successfully used to generate long-acting forms of several protein therapeutics. In this study, a novel Fc-based drug carrier, single chain Fc-dimer (sc(Fc) 2 ), was designed to contain two Fc domains recombinantly linked via a flexible linker. Since the Fc dimeric structure is maintained through the flexible linker, the hinge region was omitted to further stabilize it against proteolysis and reduce FcγR-related effector functions. The resultant sc(Fc) 2 candidate preserved the neonatal Fc receptor (FcRn) binding. sc(Fc) 2 -mediated delivery was then evaluated using a therapeutic protein with a short plasma half-life, human growth hormone (hGH), as the protein drug cargo. This novel carrier protein showed a prolonged in vivo half-life and increased hGH-mediated bioactivity compared to the traditional Fc-based drug carrier. sc(Fc) 2 technology has the potential to greatly advance and expand the use of Fc-technology for improving the pharmacokinetics and bioactivity of protein therapeutics. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Imaging the lipidome: omega-alkynyl fatty acids for detection and cellular visualization of lipid-modified proteins.

    Science.gov (United States)

    Hannoush, Rami N; Arenas-Ramirez, Natalia

    2009-07-17

    Fatty acylation or lipid modification of proteins controls their cellular activation and diverse roles in physiology. It mediates protein-protein and protein-membrane interactions and plays an important role in regulating cellular signaling pathways. Currently, there is need for visualizing lipid modifications of proteins in cells. Herein we report novel chemical probes based on omega-alkynyl fatty acids for biochemical detection and cellular imaging of lipid-modified proteins. Our study shows that omega-alkynyl fatty acids of varying chain length are metabolically incorporated onto cellular proteins. Using fluorescence imaging, we describe the subcellular distribution of lipid-modified proteins across a panel of different mammalian cell lines and during cell division. Our results demonstrate that this methodology is a useful diagnostic tool for analyzing the lipid content of cellular proteins and for studying the dynamic behavior of lipid-modified proteins in various disease or physiological states.

  10. Synthesis and structural characterization of carboxyethylpyrrole-modified proteins: mediators of age-related macular degeneration.

    Science.gov (United States)

    Lu, Liang; Gu, Xiaorong; Hong, Li; Laird, James; Jaffe, Keeve; Choi, Jaewoo; Crabb, John; Salomon, Robert G

    2009-11-01

    Protein modifications in which the epsilon-amino group of lysyl residues is incorporated into a 2-(omega-carboxyethyl)pyrrole (CEP) are mediators of age-related macular degeneration (AMD). They promote both angiogenesis into the retina ('wet AMD') and geographic retinal atrophy ('dry AMD'). Blood levels of CEPs are biomarkers for clinical prognosis of the disease. To enable mechanistic studies of their role in promoting AMD, for example, through the activation of B- and T-cells, interaction with receptors, or binding with complement proteins, we developed an efficient synthesis of CEP derivatives, that is especially effective for proteins. The structures of tryptic peptides derived from CEP-modified proteins were also determined. A key finding is that 4,7-dioxoheptanoic acid 9-fluorenylmethyl ester reacts with primary amines to provide 9-fluorenylmethyl esters of CEP-modified proteins that can be deprotected in situ with 1,8-diazabicyclo[5.4.0]undec-7-ene without causing protein denaturation. The introduction of multiple CEP-modifications with a wide variety of CEP:protein ratios is readily achieved using this strategy.

  11. Doxycycline delivery from PLGA microspheres prepared by a modified solvent removal method.

    Science.gov (United States)

    Patel, Roshni S; Cho, Daniel Y; Tian, Cheng; Chang, Amy; Estrellas, Kenneth M; Lavin, Danya; Furtado, Stacia; Mathiowitz, Edith

    2012-01-01

    We report on the development of a modified solvent removal method for the encapsulation of hydrophilic drugs within poly(lactic-co-glycolic acid) (PLGA). Using a water/oil/oil double emulsion, hydrophilic doxycycline was encapsulated within PLGA spheres with particle diameters ranging from approximately 600 nm to 19 µm. Encapsulation efficiencies of up to 74% were achieved for theoretical loadings from 1% to 10% (w/w), with biphasic release over 85 days with nearly complete release at the end of this time course. About 1% salt was added to the formulations to examine its effects on doxycycline release; salt modulated release only by increasing the magnitude of initial release without altering kinetics. Fourier transform infrared spectroscopy indicated no characteristic differences between doxycycline-loaded and control spheres. Differential scanning calorimetry and X-ray diffraction suggest that there may be a molecular dispersion of the doxycycline within the spheres and the doxycycline may be in an amorphous state, which could explain the slow, prolonged release of the drug.

  12. Receptor-mediated oral delivery of a bioencapsulated green fluorescent protein expressed in transgenic chloroplasts into the mouse circulatory system.

    Science.gov (United States)

    Limaye, Arati; Koya, Vijay; Samsam, Mohtashem; Daniell, Henry

    2006-05-01

    Oral delivery of biopharmaceutical proteins expressed in plant cells should reduce their cost of production, purification, processing, cold storage, transportation, and delivery. However, poor intestinal absorption of intact proteins is a major challenge. To overcome this limitation, we investigate here the concept of receptor-mediated oral delivery of chloroplast-expressed foreign proteins. Therefore, the transmucosal carrier cholera toxin B-subunit and green fluorescent protein (CTB-GFP), separated by a furin cleavage site, was expressed via the tobacco chloroplast genome. Polymerase chain reaction (PCR) and Southern blot analyses confirmed site-specific transgene integration and homoplasmy. Immunoblot analysis and ELISA confirmed expression of monomeric and pentameric forms of CTB-GFP, up to 21.3% of total soluble proteins. An in vitro furin cleavage assay confirmed integrity of the engineered furin cleavage site, and a GM1 binding assay confirmed the functionality of CTB-GFP pentamers. Following oral administration of CTB-GFP expressing leaf material to mice, GFP was observed in the mice intestinal mucosa, liver, and spleen in fluorescence and immunohistochemical studies, while CTB remained in the intestinal cell. This report of receptor-mediated oral delivery of a foreign protein into the circulatory system opens the door for low-cost production and delivery of human therapeutic proteins.

  13. Near-Infrared Light Activation of Proteins Inside Living Cells Enabled by Carbon Nanotube-Mediated Intracellular Delivery.

    Science.gov (United States)

    Li, He; Fan, Xinqi; Chen, Xing

    2016-02-01

    Light-responsive proteins have been delivered into the cells for controlling intracellular events with high spatial and temporal resolution. However, the choice of wavelength is limited to the UV and visible range; activation of proteins inside the cells using near-infrared (NIR) light, which has better tissue penetration and biocompatibility, remains elusive. Here, we report the development of a single-walled carbon nanotube (SWCNT)-based bifunctional system that enables protein intracellular delivery, followed by NIR activation of the delivered proteins inside the cells. Proteins of interest are conjugated onto SWCNTs via a streptavidin-desthiobiotin (SA-DTB) linkage, where the protein activity is blocked. SWCNTs serve as both a nanocarrier for carrying proteins into the cells and subsequently a NIR sensitizer to photothermally cleave the linkage and release the proteins. The released proteins become active and exert their functions inside the cells. We demonstrated this strategy by intracellular delivery and NIR-triggered nuclear translocation of enhanced green fluorescent protein, and by intracellular delivery and NIR-activation of a therapeutic protein, saporin, in living cells. Furthermore, we showed that proteins conjugated onto SWCNTs via the SA-DTB linkage could be delivered to the tumors, and optically released and activated by using NIR light in living mice.

  14. Brown pigment formation in heated sugar-protein mixed suspensions containing unmodified and peptically modified whey protein concentrates.

    Science.gov (United States)

    Rongsirikul, Narumol; Hongsprabhas, Parichat

    2016-01-01

    Commercial whey protein concentrate (WPC) was modified by heating the acidified protein suspensions (pH 2.0) at 80 °C for 30 min and treating with pepsin at 37 °C for 60 min. Prior to spray-drying, such modification did not change the molecular weights (MWs) of whey proteins determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). After spray-drying the modified whey protein concentrate with trehalose excipient (MWPC-TH), it was found that the α-lactalbumin (α-La) was the major protein that was further hydrolyzed the most. The reconstituted MWPC-TH contained β-lactoglobulin (β-Lg) as the major protein and small molecular weight (MW) peptides of less than 6.5 kDa. The reconstituted MWPC-TH had higher NH2 group, Trolox equivalent antioxidant capacity (TEAC), lower exposed aromatic ring and thiol (SH) contents than did the commercial WPC. Kinetic studies revealed that the addition of MWPC-TH in fructose-glycine solution was able to reduce brown pigment formation in the mixtures heated at 80 to 95 °C by increasing the activation energy (Ea) of brown pigment formation due to the retardation of fluoresced advanced glycation end product (AGEs) formation. The addition of MWPC to reducing sugar-glycine/commercial WPC was also able to lower brown pigment formation in the sterilized (121 °C, 15 min) mixed suspensions containing 0.1 M reducing sugar and 0.5-1.0 % glycine and/or commercial (P < 0.05). It was demonstrated that the modification investigated in this study selectively hydrolyzed α-La and retained β-Lg for the production of antibrowning whey protein concentrate.

  15. Potential allergenicity research of Cry1C protein from genetically modified rice.

    Science.gov (United States)

    Cao, Sishuo; He, Xiaoyun; Xu, Wentao; Luo, Yunbo; Ran, Wenjun; Liang, Lixing; Dai, Yunqing; Huang, Kunlun

    2012-07-01

    With the development of genetically modified crops, there has been a growing interest in available approaches to assess the potential allergenicity of novel gene products. We were not sure whether Cry1C could induce allergy. We examined the protein with three other proteins to determine the potential allergenicity of Cry1C protein from genetically modified rice. Female Brown Norway (BN) rats received 0.1 mg peanut agglutinin (PNA), 1mg potato acid phosphatase (PAP), 1mg ovalbumin (OVA) or 5 mg purified Cry1C protein dissolved in 1 mL water by daily gavage for 42 days to test potential allergenicity. Ten days after the last gavage, rats were orally challenged with antigens, and physiologic and immunologic responses were studied. In contrast to sensitization with PNA, PAP and OVA Cry1C protein did not induce antigen-specific IgG2a in BN rats. Cytokine expression, serum IgE and histamine levels and the number of eosinophils and mast cells in the blood of Cry1C group rats were comparable to the control group rats, which were treated with water alone. As Cry1C did not show any allergenicity, we make the following conclusion that the protein could be safety used in rice or other plants. Copyright © 2012 Elsevier Inc. All rights reserved.

  16. Peptide and low molecular weight proteins based kidney targeted drug delivery systems.

    Science.gov (United States)

    Xu, Pengfei; Zhang, Hailiang; Dang, Ruili; Jiang, Pei

    2018-05-30

    Renal disease is a worldwide public health problem, and unfortunately, the therapeutic index of regular drugs is limited. Thus, it is a great need to develop effective treatment strategies. Among the reported strategies, kidney-targeted drug delivery system is a promising method to increase renal efficacy and reduce extra-renal toxicity. In recent years, working as vehicles for targeted drug delivery, low molecular weight proteins (LMWP) and peptide have received immense attention due to their many advantages, such as selective accumulation in kidney, high drug loading capability, control over routes of biodegradation, convenience in modification at the amino terminus, and good biocompatibility. In this review, we describe the current LMWP and peptide carriers for kidney targeted drug delivery systems. In addition, we discuss different linking strategies between carriers and drugs. Furthermore, we briefly outline the current status and attempt to give an outlook on the further study. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  17. Silk-elastin-like protein polymer matrix for intraoperative delivery of an oncolytic vaccinia virus.

    Science.gov (United States)

    Price, Daniel L; Li, Pingdong; Chen, Chun-Hao; Wong, Danni; Yu, Zhenkun; Chen, Nanhai G; Yu, Yong A; Szalay, Aladar A; Cappello, Joseph; Fong, Yuman; Wong, Richard J

    2016-02-01

    Oncolytic viral efficacy may be limited by the penetration of the virus into tumors. This may be enhanced by intraoperative application of virus immediately after surgical resection. Oncolytic vaccinia virus GLV-1h68 was delivered in silk-elastin-like protein polymer (SELP) in vitro and in vivo in anaplastic thyroid carcinoma cell line 8505c in nude mice. GLV-1h68 in SELP infected and lysed anaplastic thyroid cancer cells in vitro equally as effectively as in phosphate-buffered saline (PBS), and at 1 week retains a thousand fold greater infectious plaque-forming units. In surgical resection models of residual tumor, GLV-1h68 in SELP improves tumor control and shows increased viral β-galactosidase expression as compared to PBS. The use of SELP matrix for intraoperative oncolytic viral delivery protects infectious viral particles from degradation, facilitates sustained viral delivery and transgene expression, and improves tumor control. Such optimization of methods of oncolytic viral delivery may enhance therapeutic outcomes. © 2014 Wiley Periodicals, Inc.

  18. Denatured protein-coated docetaxel nanoparticles: Alterable drug state and cytosolic delivery.

    Science.gov (United States)

    Zhang, Li; Xiao, Qingqing; Wang, Yiran; Zhang, Chenshuang; He, Wei; Yin, Lifang

    2017-05-15

    Many lead compounds have a low solubility in water, which substantially hinders their clinical application. Nanosuspensions have been considered a promising strategy for the delivery of water-insoluble drugs. Here, denatured soy protein isolate (SPI)-coated docetaxel nanosuspensions (DTX-NS) were developed using an anti-solvent precipitation-ultrasonication method to improve the water-solubility of DTX, thus improving its intracellular delivery. DTX-NS, with a diameter of 150-250nm and drug-loading up to 18.18%, were successfully prepared by coating drug particles with SPI. Interestingly, the drug state of DTX-NS was alterable. Amorphous drug nanoparticles were obtained at low drug-loading, whereas at a high drug-loading, the DTX-NS drug was mainly present in the crystalline state. Moreover, DTX-NS could be internalized at high levels by cancer cells and enter the cytosol by lysosomal escape, enhancing cell cytotoxicity and apoptosis compared with free DTX. Taken together, denatured SPI has a strong stabilization effect on nanosuspensions, and the drug state in SPI-coated nanosuspensions is alterable by changing the drug-loading. Moreover, DTX-NS could achieve cytosolic delivery, generating enhanced cell cytotoxicity against cancer cells. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. DNA-modified electrodes fabricated using copper-free click chemistry for enhanced protein detection.

    Science.gov (United States)

    Furst, Ariel L; Hill, Michael G; Barton, Jacqueline K

    2013-12-31

    A method of DNA monolayer formation has been developed using copper-free click chemistry that yields enhanced surface homogeneity and enables variation in the amount of DNA assembled; extremely low-density DNA monolayers, with as little as 5% of the monolayer being DNA, have been formed. These DNA-modified electrodes (DMEs) were characterized visually, with AFM, and electrochemically, and were found to facilitate DNA-mediated reduction of a distally bound redox probe. These low-density monolayers were found to be more homogeneous than traditional thiol-modified DNA monolayers, with greater helix accessibility through an increased surface area-to-volume ratio. Protein binding efficiency of the transcriptional activator TATA-binding protein (TBP) was also investigated on these surfaces and compared to that on DNA monolayers formed with standard thiol-modified DNA. Our low-density monolayers were found to be extremely sensitive to TBP binding, with a signal decrease in excess of 75% for 150 nM protein. This protein was detectable at 4 nM, on the order of its dissociation constant, with our low-density monolayers. The improved DNA helix accessibility and sensitivity of our low-density DNA monolayers to TBP binding reflects the general utility of this method of DNA monolayer formation for DNA-based electrochemical sensor development.

  20. Polyethyleneimine-modified iron oxide nanoparticles for brain tumor drug delivery using magnetic targeting and intra-carotid administration.

    Science.gov (United States)

    Chertok, Beata; David, Allan E; Yang, Victor C

    2010-08-01

    This study aimed to examine the applicability of polyethyleneimine (PEI)-modified magnetic nanoparticles (GPEI) as a potential vascular drug/gene carrier to brain tumors. In vitro, GPEI exhibited high cell association and low cell toxicity--properties which are highly desirable for intracellular drug/gene delivery. In addition, a high saturation magnetization of 93 emu/g Fe was expected to facilitate magnetic targeting of GPEI to brain tumor lesions. However, following intravenous administration, GPEI could not be magnetically accumulated in tumors of rats harboring orthotopic 9L-gliosarcomas due to its poor pharmacokinetic properties, reflected by a negligibly low plasma AUC of 12 +/- 3 microg Fe/ml min. To improve "passive" GPEI presentation to brain tumor vasculature for subsequent "active" magnetic capture, we examined the intra-carotid route as an alternative for nanoparticle administration. Intra-carotid administration in conjunction with magnetic targeting resulted in 30-fold (p=0.002) increase in tumor entrapment of GPEI compared to that seen with intravenous administration. In addition, magnetic accumulation of cationic GPEI (zeta-potential = + 37.2 mV) in tumor lesions was 5.2-fold higher (p=0.004) than that achieved with slightly anionic G100 (zeta-potential= -12 mV) following intra-carotid administration, while no significant accumulation difference was detected between the two types of nanoparticles in the contra-lateral brain (p=0.187). These promising results warrant further investigation of GPEI as a potential cell-permeable, magnetically-responsive platform for brain tumor delivery of drugs and genes. 2010 Elsevier Ltd. All rights reserved.

  1. Improved intracellular delivery of glucocerebrosidase mediated by the HIV-1 TAT protein transduction domain

    International Nuclear Information System (INIS)

    Lee, Kyun Oh; Luu, Nga; Kaneski, Christine R.; Schiffmann, Raphael; Brady, Roscoe O.; Murray, Gary J.

    2005-01-01

    Enzyme replacement therapy (ERT) for Gaucher disease designed to target glucocerebrosidase (GC) to macrophages via mannose-specific endocytosis is very effective in reversing hepatosplenomegaly, and normalizing hematologic parameters but is less effective in improving bone and lung involvement and ineffective in brain. Recombinant GCs containing an in-frame fusion to the HIV-1 trans-activator protein transduction domain (TAT) were expressed in eukaryotic cells in order to obtain active, normally glycosylated GC fusion proteins for enzyme uptake studies. Despite the absence of mannose-specific endocytic receptors on the plasma membranes of various fibroblasts, the recombinant GCs with C-terminal TAT fusions were readily internalized by these cells. Immunofluorescent confocal microscopy demonstrated the recombinant TAT-fusion proteins with a mixed endosomal and lysosomal localization. Thus, TAT-modified GCs represent a novel strategy for a new generation of therapeutic enzymes for ERT for Gaucher disease

  2. Poly lactic acid based injectable delivery systems for controlled release of a model protein, lysozyme.

    Science.gov (United States)

    Al-Tahami, Khaled; Meyer, Amanda; Singh, Jagdish

    2006-02-01

    The objective of this study was to evaluate the critical formulation parameters (i.e., polymer concentration, polymer molecular weight, and solvent nature) affecting the controlled delivery of a model protein, lysozyme, from injectable polymeric implants. The conformational stability and biological activity of the released lysozyme were also investigated. Three formulations containing 10%, 20%, and 30% (w/v) poly lactic acid (PLA) in triacetin were investigated. It was found that increasing polymer concentration in the formulations led to a lower burst effect and a slower release rate. Formulation with a high molecular weight polymer showed a greater burst effect as compared to those containing low molecular weight. Conformational stability and biological activity of released samples were studied by differential scanning calorimeter and enzyme activity assay, respectively. The released samples had significantly (P solution kept at same conditions). Increasing polymer concentration increased both the conformational stability and the biological activity of released lysozyme. In conclusion, phase sensitive polymer-based delivery systems were able to deliver a model protein, lysozyme, in a conformationally stable and biologically active form at a controlled rate over an extended period.

  3. Biodegradable "Smart" Polyphosphazenes with Intrinsic Multifunctionality as Intracellular Protein Delivery Vehicles.

    Science.gov (United States)

    Martinez, Andre P; Qamar, Bareera; Fuerst, Thomas R; Muro, Silvia; Andrianov, Alexander K

    2017-06-12

    A series of biodegradable drug delivery polymers with intrinsic multifunctionality have been designed and synthesized utilizing a polyphosphazene macromolecular engineering approach. Novel water-soluble polymers, which contain carboxylic acid and pyrrolidone moieties attached to an inorganic phosphorus-nitrogen backbone, were characterized by a suite of physicochemical methods to confirm their structure, composition, and molecular sizes. All synthesized polyphosphazenes displayed composition-dependent hydrolytic degradability in aqueous solutions at neutral pH. Their formulations were stable at lower temperatures, potentially indicating adequate shelf life, but were characterized by accelerated degradation kinetics at elevated temperatures, including 37 °C. It was found that synthesized polyphosphazenes are capable of environmentally triggered self-assembly to produce nanoparticles with narrow polydispersity in the size range of 150-700 nm. Protein loading capacity of copolymers has been validated via their ability to noncovalently bind avidin without altering biological functionality. Acid-induced membrane-disruptive activity of polyphosphazenes has been established with an onset corresponding to the endosomal pH range and being dependent on polymer composition. The synthesized polyphosphazenes facilitated cell-surface interactions followed by time-dependent, vesicular-mediated, and saturable internalization of a model protein cargo into cancer cells, demonstrating the potential for intracellular delivery.

  4. Biodegradable Magnetic Silica@Iron Oxide Nanovectors with Ultra-Large Mesopores for High Protein Loading, Magnetothermal Release, and Delivery

    KAUST Repository

    Omar, Haneen

    2016-11-29

    The delivery of large cargos of diameter above 15 nm for biomedical applications has proved challenging since it requires biocompatible, stably-loaded, and biodegradable nanomaterials. In this study, we describe the design of biodegradable silica-iron oxide hybrid nanovectors with large mesopores for large protein delivery in cancer cells. The mesopores of the nanomaterials spanned from 20 to 60 nm in diameter and post-functionalization allowed the electrostatic immobilization of large proteins (e.g. mTFP-Ferritin, ~ 534 kDa). Half of the content of the nanovectors was based with iron oxide nanophases which allowed the rapid biodegradation of the carrier in fetal bovine serum and a magnetic responsiveness. The nanovectors released large protein cargos in aqueous solution under acidic pH or magnetic stimuli. The delivery of large proteins was then autonomously achieved in cancer cells via the silica-iron oxide nanovectors, which is thus a promising for biomedical applications.

  5. Ionically crosslinked alginate–carboxymethyl cellulose beads for the delivery of protein therapeutics

    International Nuclear Information System (INIS)

    Kim, Min Sup; Park, Sang Jun; Gu, Bon Kang; Kim, Chun-Ho

    2012-01-01

    Highlights: ► We prepared Fe 3+ crosslinked alginate–carboxymethyl cellulose (AC) beads. ► Different surface and inner morphology of AC beads were observed on volume of CMC. ► AC beads showed minimum swelling degree in acidic condition. ► Protein release from AC beads was to control in gastrointestinal condition. - Abstract: We developed Fe 3+ -crosslinked alginate–carboxymethyl cellulose (AC) beads in various volume ratios by dropping an AC solution into a ferric chloride solution to form protein therapeutic carrier beads. Scanning electron microscopy revealed that the roughness and pore size of the crosslinked beads increased with the volume ratio of the carboxymethyl cellulose. Fourier transform-infrared analysis revealed the formation of a three-dimensional bonding structure between the anionic polymeric chains of AC and the Fe 3+ ions. The degree of swelling and the release profile of albumin from the beads were investigated under simulated gastrointestinal conditions (pH 1.2, 4.5, and 7.4). The Fe 3+ -crosslinked AC beads displayed different degrees of swelling and albumin release for the various AC volume ratios and under various pH conditions. An in vitro release test was used to monitor the controlled release of albumin from the AC beads under simulated gastrointestinal conditions over 24 h. The Fe 3+ -crosslinked AC beads protected and controlled the release of protein, demonstrating that such beads present a promising protein therapeutic carrier for the oral delivery.

  6. Effective delivery of recombinant proteins to rod photoreceptors via lipid nanovesicles

    Energy Technology Data Exchange (ETDEWEB)

    Asteriti, Sabrina [Dept. of Translational Research, University of Pisa, Pisa (Italy); Dal Cortivo, Giuditta [Dept. of Life Sciences and Reproduction, University of Verona, Strada Le Grazie 8, Verona (Italy); Pontelli, Valeria [Dept. of Neurological and Movement Sciences, University of Verona, Strada Le Grazie 8, Verona (Italy); Cangiano, Lorenzo [Dept. of Translational Research, University of Pisa, Pisa (Italy); Buffelli, Mario, E-mail: mario.buffelli@univr.it [Dept. of Neurological and Movement Sciences, University of Verona, Strada Le Grazie 8, Verona (Italy); Center for Biomedical Computing, University of Verona, Strada le Grazie 8, 37134 Verona (Italy); Dell’Orco, Daniele, E-mail: daniele.dellorco@univr.it [Dept. of Life Sciences and Reproduction, University of Verona, Strada Le Grazie 8, Verona (Italy); Center for Biomedical Computing, University of Verona, Strada le Grazie 8, 37134 Verona (Italy)

    2015-06-12

    The potential of liposomes to deliver functional proteins in retinal photoreceptors and modulate their physiological response was investigated by two experimental approaches. First, we treated isolated mouse retinas with liposomes encapsulating either recoverin, an important endogenous protein operating in visual phototransduction, or antibodies against recoverin. We then intravitrally injected in vivo liposomes encapsulating either rhodamin B or recoverin and we investigated the distribution in retina sections by confocal microscopy. The content of liposomes was found to be released in higher amount in the photoreceptor layer than in the other regions of the retina and the functional effects of the release were in line with the current model of phototransduction. Our study sets the basis for quantitative investigations aimed at assessing the potential of intraocular protein delivery via biocompatible nanovesicles, with promising implications for the treatment of retinal diseases affecting the photoreceptor layer. - Highlights: • Recombinant proteins encapsulated in nano-sized liposomes injected intravitreally reach retinal photoreceptors. • The phototransduction cascade in rods is modulated by the liposome content. • Mathematical modeling predicts the alteration of the photoresponses following liposome fusion.

  7. Functionalization of 3D scaffolds with protein-releasing biomaterials for intracellular delivery.

    Science.gov (United States)

    Seras-Franzoso, Joaquin; Steurer, Christoph; Roldán, Mònica; Vendrell, Meritxell; Vidaurre-Agut, Carla; Tarruella, Anna; Saldaña, Laura; Vilaboa, Nuria; Parera, Marc; Elizondo, Elisa; Ratera, Imma; Ventosa, Nora; Veciana, Jaume; Campillo-Fernández, Alberto J; García-Fruitós, Elena; Vázquez, Esther; Villaverde, Antonio

    2013-10-10

    Appropriate combinations of mechanical and biological stimuli are required to promote proper colonization of substrate materials in regenerative medicine. In this context, 3D scaffolds formed by compatible and biodegradable materials are under continuous development in an attempt to mimic the extracellular environment of mammalian cells. We have here explored how novel 3D porous scaffolds constructed by polylactic acid, polycaprolactone or chitosan can be decorated with bacterial inclusion bodies, submicron protein particles formed by releasable functional proteins. A simple dipping-based decoration method tested here specifically favors the penetration of the functional particles deeper than 300μm from the materials' surface. The functionalized surfaces support the intracellular delivery of biologically active proteins to up to more than 80% of the colonizing cells, a process that is slightly influenced by the chemical nature of the scaffold. The combination of 3D soft scaffolds and protein-based sustained release systems (Bioscaffolds) offers promise in the fabrication of bio-inspired hybrid matrices for multifactorial control of cell proliferation in tissue engineering under complex architectonic setting-ups. © 2013.

  8. Simple protein structure-sensitive chronopotentiometric analysis with dithiothreitol-modified Hg electrodes

    Czech Academy of Sciences Publication Activity Database

    Ostatná, Veronika; Černocká, Hana; Paleček, Emil

    2012-01-01

    Roč. 87, SI (2012), s. 84-88 ISSN 1567-5394 R&D Projects: GA AV ČR(CZ) KJB100040901; GA ČR(CZ) GAP301/11/2055; GA MŠk(CZ) LC06035 Institutional research plan: CEZ:AV0Z50040507; CEZ:AV0Z50040702 Keywords : protein electroanalysis * DTT-modified electrodes * electrocatalysis Subject RIV: BO - Biophysics Impact factor: 3.947, year: 2012

  9. Microencapsulation of protein drugs for drug delivery: strategy, preparation, and applications.

    Science.gov (United States)

    Ma, Guanghui

    2014-11-10

    Bio-degradable poly(lactide) (PLA)/poly(lactide-glycolide) (PLGA) and chitosan microspheres (or microcapsules) have important applications in Drug Delivery Systems (DDS) of protein/peptide drugs. By encapsulating protein/peptide drugs in the microspheres, the serum drug concentration can be maintained at a higher constant value for a prolonged time, or injection formulation can be changed to orally or mucosally administered formulation. PLA/PLGA and chitosan are most often used in injection formulation and oral formulation. However, in the preparation and applications of PLA/PLGA and chitosan microspheres containing protein/peptide drugs, the problems of broad size distribution and poor reproducibility of microspheres, and deactivation of protein during the preparation, storage and release, are still big challenges. In this article, the techniques for control of the diameter of microspheres and microcapsules will be introduced at first, then the strategies about how to maintain the bioactivity of protein drugs during preparation and drug release will be reviewed and developed in our research group. The membrane emulsification techniques including direct membrane emulsification and rapid membrane emulsification processes were developed to prepare uniform-sized microspheres, the diameter of microspheres can be controlled from submicron to 100μm by these two processes, and the reproducibility of products can be guaranteed. Furthermore, compared with conventional stirring method, the big advantages of membrane emulsification process were that the uniform microspheres with much higher encapsulation efficiency can be obtained, and the release behavior can be adjusted by selecting microsphere size. Mild membrane emulsification condition also can prevent the deactivation of proteins, which frequently occurred under high shear force in mechanical stirring, sonification, and homogenization methods. The strategies for maintaining the bioactivity of protein drug were

  10. Comparison of Zirconium Phosphonate-Modified Surfaces for Immobilizing Phosphopeptides and Phosphate-Tagged Proteins.

    Science.gov (United States)

    Forato, Florian; Liu, Hao; Benoit, Roland; Fayon, Franck; Charlier, Cathy; Fateh, Amina; Defontaine, Alain; Tellier, Charles; Talham, Daniel R; Queffélec, Clémence; Bujoli, Bruno

    2016-06-07

    Different routes for preparing zirconium phosphonate-modified surfaces for immobilizing biomolecular probes are compared. Two chemical-modification approaches were explored to form self-assembled monolayers on commercially available primary amine-functionalized slides, and the resulting surfaces were compared to well-characterized zirconium phosphonate monolayer-modified supports prepared using Langmuir-Blodgett methods. When using POCl3 as the amine phosphorylating agent followed by treatment with zirconyl chloride, the result was not a zirconium-phosphonate monolayer, as commonly assumed in the literature, but rather the process gives adsorbed zirconium oxide/hydroxide species and to a lower extent adsorbed zirconium phosphate and/or phosphonate. Reactions giving rise to these products were modeled in homogeneous-phase studies. Nevertheless, each of the three modified surfaces effectively immobilized phosphopeptides and phosphopeptide tags fused to an affinity protein. Unexpectedly, the zirconium oxide/hydroxide modified surface, formed by treating the amine-coated slides with POCl3/Zr(4+), afforded better immobilization of the peptides and proteins and efficient capture of their targets.

  11. Effect of Surface-Modified Paclitaxel Nanowires on U937 Cells In Vitro: A Novel Drug Delivery Vehicle

    Directory of Open Access Journals (Sweden)

    Mohamed H. Abumaree

    2012-01-01

    Full Text Available We have fabricated surface-modified paclitaxel nanowires (SM-PNs with a precise diameter and an average length of 50 μm. The surface of these nanowires is coated with a monolayer of octadecylsiloxane (ODS, which prevents aggregation and enhances dispersivity in aqueous media. This system constitutes a novel drug delivery vehicle based on one-dimensional (1D nanostructures with a large drug to vehicle ratio. We assayed the cytotoxicity of different diameter SM-PNs (200, 80, 35, and 18 nm with U937 cells and compared their activity to microcrystalline paclitaxel. SM-PNs reduced U937 cell proliferation in culture followed by cell death. For the same amount of paclitaxel, different diameter SM-PNs displayed different cytotoxic effect at the same incubation time period. SM-PNs with 35 nm diameters were the most efficient in completely halting cell proliferation following the first 24 hours of treatment, associated with 42% cell death. SM-PNs with 18 nm diameters were least effective. These SM-PNs can be tailored to fit a certain treatment protocol by simply choosing the appropriate diameter.

  12. D-Glucose as a modifying agent in gelatin/collagen matrix and reservoir nanoparticles for Calendula officinalis delivery.

    Science.gov (United States)

    Lam, P-L; Kok, S H-L; Bian, Z-X; Lam, K-H; Tang, J C-O; Lee, K K-H; Gambari, R; Chui, C-H

    2014-05-01

    Gelatin/Collagen-based matrix and reservoir nanoparticles require crosslinkers to stabilize the formed nanosuspensions, considering that physical instability is the main challenge of nanoparticulate systems. The use of crosslinkers improves the physical integrity of nanoformulations under the-host environment. Aldehyde-based fixatives, such as formaldehyde and glutaraldehyde, have been widely applied to the crosslinking process of polymeric nanoparticles. However, their potential toxicity towards human beings has been demonstrated in many previous studies. In order to tackle this problem, D-glucose was used during nanoparticle formation to stabilize the gelatin/collagen-based matrix wall and reservoir wall for the deliveries of Calendula officinalis powder and oil, respectively. In addition, therapeutic selectivity between malignant and normal cells could be observed. The C. officinalis powder loaded nanoparticles significantly strengthened the anti-cancer effect towards human breast adenocarcinoma MCF7 cells and human hepatoma SKHep1 cells when compared with the free powder. On the contrary, the nanoparticles did not show significant cytotoxicity towards normal esophageal epithelial NE3 cells and human skin keratinocyte HaCaT cells. On the basis of these evidences, D-glucose modified gelatin/collagen matrix nanoparticles containing C. officinalis powder might be proposed as a safer alternative vehicle for anti-cancer treatments. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Isolation of pronephros cells which endocytose chemically modified proteins in the rainbow trout

    International Nuclear Information System (INIS)

    Dannevig, B.H.; Berg, T.

    1986-01-01

    Modified serum albumin is cleared from the blood by kidney cells in salmonid fishes. The present study deals with isolation of cells from pronephros which endocytose formaldehyde-treated human serum albumin (fHSA). Radioactively labelled fHSA or dinitrophenyl-conjugated albumin (DNP-HSA) were injected intravenously into rainbow trouts. Pronephros cells, containing the endocytosed protein, were isolated and further separated by centrifugal elutriation and density-gradient centrifugation. Most of the radioactive protein was elutriated together with small cells. After centrifuging the cells through a Percoll density gradient, radioactive protein was located in cells recovered in the upper part of the gradient. In mammals, fHSA and other modified proteins are mainly taken up by sinusoidal endothelial cells in the liver via a scavenger receptor 0. Our results suggest that a comparable function in salmonids is located in a subpopulation of relatively small cells in kidney tissue, possibly sinusoidal lining cells. The separation techniques used seemed to be suitable for isolation of different populations of pronephros cells

  14. Development of amphiphilic gamma-PGA-nanoparticle based tumor vaccine: potential of the nanoparticulate cytosolic protein delivery carrier.

    Science.gov (United States)

    Yoshikawa, Tomoaki; Okada, Naoki; Oda, Atsushi; Matsuo, Kazuhiko; Matsuo, Keisuke; Mukai, Yohei; Yoshioka, Yasuo; Akagi, Takami; Akashi, Mitsuru; Nakagawa, Shinsaku

    2008-02-08

    Nanoscopic therapeutic systems that incorporate biomacromolecules, such as protein and peptides, are emerging as the next generation of nanomedicine aimed at improving the therapeutic efficacy of biomacromolecular drugs. In this study, we report that poly(gamma-glutamic acid)-based nanoparticles (gamma-PGA NPs) are excellent protein delivery carriers for tumor vaccines that delivered antigenic proteins to antigen-presenting cells and elicited potent immune responses. Importantly, gamma-PGA NPs efficiently delivered entrapped antigenic proteins through cytosolic translocation from the endosomes, which is a key process of gamma-PGA NP-mediated anti-tumor immune responses. Our findings suggest that the gamma-PGA NP system is suitable for the intracellular delivery of protein-based drugs as well as tumor vaccines.

  15. Whey protein-derived biomaterials and their use as bioencapsulation and delivery systems

    Directory of Open Access Journals (Sweden)

    Subirade Muriel

    2003-01-01

    Full Text Available The emergence of bioactive food compounds (nutraceutical compounds with health benefits provides an excellent opportunity for improving public health. The incorporation of bioactive compounds into food systems is therefore of great interest to researchers in their efforts to develop innovative functional foods that may have physiological benefits or reduce the risk of disease beyond basic nutritional functions. However, the effectiveness of these products in preventing diseases relies on preserving the bioavailability of their active ingredients. This represents undoubtedly a great challenge since these molecules are generally sensitive to environmental conditions encountered in food processes (i.e., temperature oxygen, and light or in the gastrointestinal tract (i.e., pH, enzymes presence of other nutrients, which limit their activity and potential health benefits. However, bio- and microencapsulation can be used to overcome these limitations. Whey proteins, also known as the serum proteins of milk, are widely used in food products, because of their high nutritional value and their ability to form gels, emulsions, or foams. The aim of this article is to provide information on the different types of materials obtained from whey proteins and to examine their use as bioencapsulation and delivery systems.

  16. Hyaline cartilage regeneration by combined therapy of microfracture and long-term bone morphogenetic protein-2 delivery.

    Science.gov (United States)

    Yang, Hee Seok; La, Wan-Geun; Bhang, Suk Ho; Kim, Hak-Jun; Im, Gun-Il; Lee, Haeshin; Park, Jung-Ho; Kim, Byung-Soo

    2011-07-01

    Microfracture of cartilage induces migration of bone-marrow-derived mesenchymal stem cells. However, this treatment often results in fibrocartilage regeneration. Growth factors such as bone morphogenetic protein (BMP)-2 induce the differentiation of bone-marrow-derived mesenchymal stem cells into chondrocytes, which can be used for hyaline cartilage regeneration. Here, we tested the hypothesis that long-term delivery of BMP-2 to cartilage defects subjected to microfracture results in regeneration of high-quality hyaline-like cartilage, as opposed to short-term delivery of BMP-2 or no BMP-2 delivery. Heparin-conjugated fibrin (HCF) and normal fibrin were used as carriers for the long- and short-term delivery of BMP-2, respectively. Rabbit articular cartilage defects were treated with microfracture combined with one of the following: no treatment, fibrin, short-term delivery of BMP-2, HCF, or long-term delivery of BMP-2. Eight weeks after treatment, histological analysis revealed that the long-term delivery of BMP-2 group (microfracture + HCF + BMP-2) showed the most staining with alcian blue. A biochemical assay, real-time polymerase chain reaction assay and Western blot analysis all revealed that the long-term delivery of BMP-2 group had the highest glucosaminoglycan content as well as the highest expression level of collagen type II. Taken together, the long-term delivery of BMP-2 to cartilage defects subjected to microfracture resulted in regeneration of hyaline-like cartilage, as opposed to short-term delivery or no BMP-2 delivery. Therefore, this method could be more convenient for hyaline cartilage regeneration than autologous chondrocyte implantation due to its less invasive nature and lack of cell implantation.

  17. Challenges in the local delivery of peptides and proteins for oral mucositis management.

    Science.gov (United States)

    Campos, João C; Cunha, João D; Ferreira, Domingos C; Reis, Salette; Costa, Paulo J

    2018-04-24

    Oral mucositis, a common inflammatory side effect of oncological treatments, is a disorder of the oral mucosa that can cause painful ulcerations, local motor disabilities, and an increased risk of infections. Due to the discomfort it produces and the associated health risks, it can lead to cancer treatment restrains, such as the need for dose reduction, cycle delays or abandonment. Current mucositis management has low efficiency in prevention and treatment. A topical drug application for a local action can be a more effective approach than systemic routes when addressing oral cavity pathologies. Local delivery of growth factors, antibodies, and anti-inflammatory cytokines have shown promising results. However, due to the peptide and protein nature of these novel agents, and the several anatomic, physiological and environmental challenges of the oral cavity, their local action might be limited when using traditional delivering systems. This review is an awareness of the issues and strategies in the local delivery of macromolecules for the management of oral mucositis. Copyright © 2018. Published by Elsevier B.V.

  18. Preparation and Characterization of P(MAA-g-EG) Nanospheres for Protein Delivery Applications

    Energy Technology Data Exchange (ETDEWEB)

    Torres-Lugo, Madeline [University of Puerto Rico, Mayagueez Campus, Department of Chemical Engineering (United States); Peppas, Nicholas A. [Purdue University, NSF Program on Therapeutic and Diagnostic Devices, School of Chemical Engineering (United States)], E-mail: peppas@ecn.purdue.edu

    2002-04-15

    Novel complexation hydrogel nanospheres of poly(methacrylic acid-grafted-poly(ethylene glycol)) (P(MAA-g-EG)) were prepared by dispersion polymerization to be used for protein delivery applications. Polymerization was conducted in solvents such as deionized water, ethanol/water, sodium hydroxide, hydrochloric acid, and acetic acid solutions. When polymerizing in deionized water we produced nanospheres without agglomeration. Photon correlation spectroscopy studies revealed that the nanospheres possessed a narrow particle size distribution and the size was inversely proportional to the concentration of poly(ethylene glycol) incorporated in the monomer mixture. These nanospheres exhibited pH-sensitivity comparable to that encountered in hydrogel films with the same composition. The composition of the nanospheres was investigated by transmission Fourier transform infrared spectroscopy. The comparison between hydrogel films and nanospheres with the same monomer composition revealed that nanospheres possessed similar spectral characteristics than hydrogel films prepared by the same techniques. These nanospheres could be used for calcitonin release under physiological conditions.

  19. In Vitro and In Vivo Investigation of the Potential of Amorphous Microporous Silica as a Protein Delivery Vehicle

    Directory of Open Access Journals (Sweden)

    Amol Chaudhari

    2013-01-01

    Full Text Available Delivering growth factors (GFs at bone/implant interface needs to be optimized to achieve faster osseointegration. Amorphous microporous silica (AMS has a potential to be used as a carrier and delivery platform for GFs. In this work, adsorption (loading and release (delivery mechanism of a model protein, bovine serum albumin (BSA, from AMS was investigated in vitro as well as in vivo. In general, strong BSA adsorption to AMS was observed. The interaction was stronger at lower pH owing to favorable electrostatic interaction. In vitro evaluation of BSA release revealed a peculiar release profile, involving a burst release followed by a 6 h period without appreciable BSA release and a further slower release later. Experimental data supporting this observation are discussed. Apart from understanding protein/biomaterial (BSA/AMS interaction, determination of in vivo protein release is an essential aspect of the evaluation of a protein delivery system. In this regard micropositron emission tomography (μ-PET was used in an exploratory experiment to determine in vivo BSA release profile from AMS. Results suggest stronger in vivo retention of BSA when adsorbed on AMS. This study highlights the possible use of AMS as a controlled protein delivery platform which may facilitate osseointegration.

  20. Characterisation of chemically-modified proteins by electrospray ionisation mass spectrometry

    International Nuclear Information System (INIS)

    Bennett, K.L.

    1996-09-01

    Electrospray mass spectrometry (ESI-MS) has been used to examine a range of intact monoclonal antibodies (MAbs), antibody fragments such as F(ab') 2 , F ab and F c , chemically-modified fragments and a range of other chemically-modified peptides and proteins as part of a broader study aimed at establishing ESI-MS as a method for the characterisation of radioimmunoconjugates (radiolabelled monoclonal antibodies). For example, the addition of up to 10 biotin molecules to the 'papain-sensitive' 50 kDa F ab fragment can be easily detected in ESI mass spectra. For intact MAbs, however, it is only possible to detect average shifts in the mass of intact antibodies following modification. Successful ESI-MS analysis of complexes formed between chelators and other small molecules conjugated to synthetic peptides, hen egg-white Iysozyme (HEL) (M r 14 306) and horse heart myoglobin (M r 16 951) has been demonstrated. ESI-MS offers considerable advantages compared with existing methods for the characterisation of chemically-conjugated proteins including speed and sensitivity of analysis and the capability for obtaining specific structural information. The conditions for ESI-MS of intact MAbs and MAb fragments have been examined in detail and it was found that 150 kDa MAbs generally required lower sample concentration and higher skimmer potentials compared with the 50 kDa F ab fragment and other lower molecular weight proteins. In addition, the m/z range over which ions from MAbs were observed was higher (m/z ∼2000-4500) than for smaller proteins. ESI-MS was also found to be useful for probing the action of the protease papain, that is used to generate MAb fragments (F(ab) '2, F ab and F c ). Further, different sensitivities to papain for different MAb preparations was demonstrated. Finally, the tandem mass spectra of a range of peptides modified by iodine and biotin were examined. In the case of biotinylated peptides, a characteristic fragment ion was identified that could

  1. Genome Editing for Cancer Therapy: Delivery of Cas9 Protein/sgRNA Plasmid via a Gold Nanocluster/Lipid Core-Shell Nanocarrier.

    Science.gov (United States)

    Wang, Peng; Zhang, Lingmin; Xie, Yangzhouyun; Wang, Nuoxin; Tang, Rongbing; Zheng, Wenfu; Jiang, Xingyu

    2017-11-01

    The type II bacterial clustered, regularly interspaced, short palindromic repeats (CRISPR)-Cas9 (CRISPR-associated protein) system (CRISPR-Cas9) is a powerful toolbox for gene-editing, however, the nonviral delivery of CRISPR-Cas9 to cells or tissues remains a key challenge. This paper reports a strategy to deliver Cas9 protein and single guide RNA (sgRNA) plasmid by a nanocarrier with a core of gold nanoclusters (GNs) and a shell of lipids. By modifying the GNs with HIV-1-transactivator of transcription peptide, the cargo (Cas9/sgRNA) can be delivered into cell nuclei. This strategy is utilized to treat melanoma by designing sgRNA targeting Polo-like kinase-1 ( Plk1 ) of the tumor. The nanoparticle (polyethylene glycol-lipid/GNs/Cas9 protein/sgPlk1 plasmid, LGCP) leads to >70% down-regulation of Plk1 protein expression of A375 cells in vitro. Moreover, the LGCP suppresses melanoma progress by 75% on mice. Thus, this strategy can deliver protein-nucleic acid hybrid agents for gene therapy.

  2. Protein arrangement on modified diamond-like carbon surfaces – An ARXPS study

    Energy Technology Data Exchange (ETDEWEB)

    Oosterbeek, Reece N., E-mail: reece.oosterbeek@auckland.ac.nz [Department of Chemical and Materials Engineering, The University of Auckland, Private Bag 92019 (New Zealand); Seal, Christopher K. [Light Metals Research Centre, The University of Auckland, Private Bag 92019 (New Zealand); Hyland, Margaret M. [Department of Chemical and Materials Engineering, The University of Auckland, Private Bag 92019 (New Zealand)

    2014-12-01

    Highlights: • DLC coatings were modified by Ar{sup +} ion sputtering and laser graphitisation. • The surface properties of the coatings were measured, and it was found that the above methods increased sp{sup 2} content and altered surface energy. • ARXPS was used to observe protein arrangement on the surface. • Polar CO/CN groups were seen to be segregated towards the interface, indicating they play an important role in bonding. • This segregation increased with increasing polar surface energy, indicating an increased net attraction between polar groups. - Abstract: Understanding the nature of the interface between a biomaterial implant and the biological fluid is an essential step towards creating improved implant materials. This study examined a diamond-like carbon coating biomaterial, the surface energy of which was modified by Ar{sup +} ion sputtering and laser graphitisation. The arrangement of proteins was analysed by angle resolved X-ray photoelectron spectroscopy, and the effects of the polar component of surface energy on this arrangement were observed. It was seen that polar groups (such as CN, CO) are more attracted to the coating surface due to the stronger polar interactions. This results in a segregation of these groups to the DLC–protein interface; at increasing takeoff angle (further from to DLC–protein interface) fewer of these polar groups are seen. Correspondingly, groups that interact mainly by dispersive forces (CC, CH) were found to increase in intensity as takeoff angle increased, indicating they are segregated away from the DLC–protein interface. The magnitude of the segregation was seen to increase with increasing polar surface energy, this was attributed to an increased net attraction between the solid surface and polar groups at higher polar surface energy (γ{sub S}{sup p})

  3. Protein arrangement on modified diamond-like carbon surfaces – An ARXPS study

    International Nuclear Information System (INIS)

    Oosterbeek, Reece N.; Seal, Christopher K.; Hyland, Margaret M.

    2014-01-01

    Highlights: • DLC coatings were modified by Ar + ion sputtering and laser graphitisation. • The surface properties of the coatings were measured, and it was found that the above methods increased sp 2 content and altered surface energy. • ARXPS was used to observe protein arrangement on the surface. • Polar CO/CN groups were seen to be segregated towards the interface, indicating they play an important role in bonding. • This segregation increased with increasing polar surface energy, indicating an increased net attraction between polar groups. - Abstract: Understanding the nature of the interface between a biomaterial implant and the biological fluid is an essential step towards creating improved implant materials. This study examined a diamond-like carbon coating biomaterial, the surface energy of which was modified by Ar + ion sputtering and laser graphitisation. The arrangement of proteins was analysed by angle resolved X-ray photoelectron spectroscopy, and the effects of the polar component of surface energy on this arrangement were observed. It was seen that polar groups (such as CN, CO) are more attracted to the coating surface due to the stronger polar interactions. This results in a segregation of these groups to the DLC–protein interface; at increasing takeoff angle (further from to DLC–protein interface) fewer of these polar groups are seen. Correspondingly, groups that interact mainly by dispersive forces (CC, CH) were found to increase in intensity as takeoff angle increased, indicating they are segregated away from the DLC–protein interface. The magnitude of the segregation was seen to increase with increasing polar surface energy, this was attributed to an increased net attraction between the solid surface and polar groups at higher polar surface energy (γ S p )

  4. BSA Nanoparticles for siRNA Delivery: Coating Effects on Nanoparticle Properties, Plasma Protein Adsorption, and In Vitro siRNA Delivery

    Directory of Open Access Journals (Sweden)

    Haran Yogasundaram

    2012-01-01

    Full Text Available Developing vehicles for the delivery of therapeutic molecules, like siRNA, is an area of active research. Nanoparticles composed of bovine serum albumin, stabilized via the adsorption of poly-L-lysine (PLL, have been shown to be potentially inert drug-delivery vehicles. With the primary goal of reducing nonspecific protein adsorption, the effect of using comb-type structures of poly(ethylene glycol (1 kDa, PEG units conjugated to PLL (4.2 and 24 kDa on BSA-NP properties, apparent siRNA release rate, cell viability, and cell uptake were evaluated. PEGylated PLL coatings resulted in NPs with ζ-potentials close to neutral. Incubation with platelet-poor plasma showed the composition of the adsorbed proteome was similar for all systems. siRNA was effectively encapsulated and released in a sustained manner from all NPs. With 4.2 kDa PLL, cellular uptake was not affected by the presence of PEG, but PEG coating inhibited uptake with 24 kDa PLL NPs. Moreover, 24 kDa PLL systems were cytotoxic and this cytotoxicity was diminished upon PEG incorporation. The overall results identified a BSA-NP coating structure that provided effective siRNA encapsulation while reducing ζ-potential, protein adsorption, and cytotoxicity, necessary attributes for in vivo application of drug-delivery vehicles.

  5. Protein classification using modified n-grams and skip-grams.

    Science.gov (United States)

    Islam, S M Ashiqul; Heil, Benjamin J; Kearney, Christopher Michel; Baker, Erich J

    2018-05-01

    Classification by supervised machine learning greatly facilitates the annotation of protein characteristics from their primary sequence. However, the feature generation step in this process requires detailed knowledge of attributes used to classify the proteins. Lack of this knowledge risks the selection of irrelevant features, resulting in a faulty model. In this study, we introduce a supervised protein classification method with a novel means of automating the work-intensive feature generation step via a Natural Language Processing (NLP)-dependent model, using a modified combination of n-grams and skip-grams (m-NGSG). A meta-comparison of cross-validation accuracy with twelve training datasets from nine different published studies demonstrates a consistent increase in accuracy of m-NGSG when compared to contemporary classification and feature generation models. We expect this model to accelerate the classification of proteins from primary sequence data and increase the accessibility of protein characteristic prediction to a broader range of scientists. m-NGSG is freely available at Bitbucket: https://bitbucket.org/sm_islam/mngsg/src. A web server is available at watson.ecs.baylor.edu/ngsg. erich_baker@baylor.edu. Supplementary data are available at Bioinformatics online.

  6. Thiomers and thiomer-based nanoparticles in protein and DNA drug delivery.

    Science.gov (United States)

    Hauptstein, Sabine; Bernkop-Schnürch, Andreas

    2012-09-01

    Thanks to advances in biotechnology, more and more highly efficient protein- and DNA-based drugs have been developed. Unfortunately, these kinds of drugs underlie poor non-parental bioavailability. To overcome hindrances like low mucosal permeability and enzymatic degradation polymeric excipients are utilized as drug carrier whereat thiolated excipients showed several promising qualities in comparison to the analogical unmodified polymer. The article deals with the comparatively easy modification of well-established polymers like chitosan or poly(acrylates) to synthesize thiomers. Further, the recently developed "next generation" thiomers e.g. preactivated or S-protected thiomers are introduced. Designative properties like mucoadhesion, uptake and permeation enhancement, efflux pump inhibition and protection against enzymatic degradation will be discussed and differences between first and next generation thiomers will be pointed out. Additionally, nanoparticles prepared with thiomers will be dealt with regarding to protein and DNA drug delivery as thiomers seem to be a promising approach to avoid parenteral application. Properties of thiomers per se and results of in vivo studies carried out so far for peptide and DNA drugs demonstrate their potential as multifunctional excipients. However, further investigations and optimizations have to be done before establishing a carrier system ready for clinical approval.

  7. Protein encapsulated magnetic carriers for micro/nanoscale drug delivery systems.

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Y.; Kaminski, M. D.; Mertz, C. J.; Finck, M. R.; Guy, S. G.; Chen, H.; Rosengart, A. J.; Chemical Engineering; Univ. of Chicago, Pritzker School of Medicine

    2005-01-01

    Novel methods for drug delivery may be based on nanotechnology using non-invasive magnetic guidance of drug loaded magnetic carriers to the targeted site and thereafter released by external ultrasound energy. The key building block of this system is to successfully synthesize biodegradable, magnetic drug carriers. Magnetic carriers using poly(D,L-lactide-co-glycolide) (PLGA) or poly(lactic acid)-poly(ethylene glycol) (PLA-PEG) as matrix materials were loaded with bovine serum albumin (BSA) by a double-emulsion technique. BSA-loaded magnetic microspheres were characterized for size, morphology, surface charge, and magnetization. The BSA encapsulation efficiency was determined by recovering albumin from the microspheres using dimethyl sulfoxide and 0.05N NaOH/0.5% SDS then quantifying with the Micro-BCA protein assay. BSA release profiles were also determined by the Micro-BCA protein assay. The microspheres had drug encapsulation efficiencies up to 90% depending on synthesis parameters. Particles were spherical with a smooth or porous surface having a size range less than 5 {mu}m. The surface charge (expressed as zeta potential) was near neutral, optimal for prolonged intravascular survival. The magnetization of these BSA loaded magnetic carriers was 2 to 6 emu/g, depending on the specific magnetic materials used during synthesis.

  8. Tragacanth as an oral peptide and protein delivery carrier: Characterization and mucoadhesion.

    Science.gov (United States)

    Nur, M; Ramchandran, L; Vasiljevic, T

    2016-06-05

    Biopolymers such as tragacanth, an anionic polysaccharide gum, can be alternative polymeric carrier for physiologically important peptides and proteins. Characterization of tragacanth is thus essential for providing a foundation for possible applications. Rheological studies colloidal solution of tragacanth at pH 3, 5 or 7 were carried out by means of steady shear and small amplitude oscillatory measurements. Tragacanth mucoadhesivity was also analyzed using an applicable rheological method and compared to chitosan, alginate and PVP. The particle size and zeta potential were measured by a zetasizer. Thermal properties of solutions were obtained using a differential scanning calorimetry. The solution exhibited shear-thinning characteristics. The value of the storage modulus (G') and the loss modulus (G″) increased with an increase in angular frequency (Ω). In all cases, loss modulus values were higher than storage values (G″>G') and viscous character was, therefore, dominant. Tragacanth and alginate showed a good mucoadhesion. Tragacanth upon dispersion created particles of a submicron size with a negative zeta potential (-7.98 to -11.92 mV). These properties were pH dependant resulting in acid gel formation at pH 3.5. Tragacanth has thus a potential to be used as an excipient for peptide/protein delivery. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Hydrodynamic Delivery of Cre Protein to Lineage-Mark or Time-Stamp Mouse Hepatocytes In situ

    Science.gov (United States)

    Sonsteng, Katherine M.; Prigge, Justin R.; Talago, Emily A.; June, Ronald K.; Schmidt, Edward E.

    2014-01-01

    Cre-responsive fluorescent marker alleles are powerful tools for cell lineage tracing in mice; however their utility is limited by regulation of Cre activity. When targeting hepatocytes, hydrodynamic delivery of a Cre-expression plasmid can convert Cre-responsive alleles without inducing the intracellular or systemic antiviral responses often associated with viral-derived Cre-expression vectors. In this method, rapid high-volume intravenous inoculation induces hepatocyte-targeted uptake of extracellular molecules. Here we tested whether hydrodynamic delivery of Cre protein or Cre fused to the HIV-TAT cell-penetrating peptide could convert Cre-responsive reporters in hepatocytes of mice. Hydrodynamic delivery of 2 nmol of either Cre or TAT-Cre protein converted the reporter allele in 5 to 20% of hepatocytes. Neither protein gave detectable Cre activity in endothelia, non-liver organs, or non-hepatocyte cells in liver. Using mice homozygous for a Cre-responsive marker that directs red- (Cre-naïve) or green- (Cre-converted) fluorescent proteins to the nucleus, we assessed sub-saturation Cre-activity. One month after hydrodynamic inoculation with Cre protein, 58% of hepatocyte nuclei that were green were also red, indicating that less than half of the hepatocytes that had obtained enough Cre to convert one marker allele to green were able to convert all alleles. For comparison, one month after hydrodynamic delivery of a Cre-expression plasmid with a weak promoter, only 26% of the green nuclei were also red. Our results show that hydrodynamic delivery of Cre protein allows rapid allelic conversion in hepatocytes, but Cre-activity is sub-saturating so many cells will not convert multiple Cre-responsive alleles. PMID:24626158

  10. Hot-spot analysis to dissect the functional protein-protein interface of a tRNA-modifying enzyme.

    Science.gov (United States)

    Jakobi, Stephan; Nguyen, Tran Xuan Phong; Debaene, François; Metz, Alexander; Sanglier-Cianférani, Sarah; Reuter, Klaus; Klebe, Gerhard

    2014-10-01

    Interference with protein-protein interactions of interfaces larger than 1500 Ų by small drug-like molecules is notoriously difficult, particularly if targeting homodimers. The tRNA modifying enzyme Tgt is only functionally active as a homodimer. Thus, blocking Tgt dimerization is a promising strategy for drug therapy as this protein is key to the development of Shigellosis. Our goal was to identify hot-spot residues which, upon mutation, result in a predominantly monomeric state of Tgt. The detailed understanding of the spatial location and stability contribution of the individual interaction hot-spot residues and the plasticity of motifs involved in the interface formation is a crucial prerequisite for the rational identification of drug-like inhibitors addressing the respective dimerization interface. Using computational analyses, we identified hot-spot residues that contribute particularly to dimer stability: a cluster of hydrophobic and aromatic residues as well as several salt bridges. This in silico prediction led to the identification of a promising double mutant, which was validated experimentally. Native nano-ESI mass spectrometry showed that the dimerization of the suggested mutant is largely prevented resulting in a predominantly monomeric state. Crystal structure analysis and enzyme kinetics of the mutant variant further support the evidence for enhanced monomerization and provide first insights into the structural consequences of the dimer destabilization. © 2014 Wiley Periodicals, Inc.

  11. Delivery of Therapeutic Proteins via Extracellular Vesicles: Review and Potential Treatments for Parkinson's Disease, Glioma, and Schwannoma.

    Science.gov (United States)

    Hall, Justin; Prabhakar, Shilpa; Balaj, Leonora; Lai, Charles P; Cerione, Richard A; Breakefield, Xandra O

    2016-04-01

    Extracellular vesicles present an attractive delivery vehicle for therapeutic proteins. They intrinsically contain many proteins which can provide information to other cells. Advantages include reduced immune reactivity, especially if derived from the same host, stability in biologic fluids, and ability to target uptake. Those from mesenchymal stem cells appear to be intrinsically therapeutic, while those from cancer cells promote tumor progression. Therapeutic proteins can be loaded into vesicles by overexpression in the donor cell, with oligomerization and membrane sequences increasing their loading. Examples of protein delivery for therapeutic benefit in pre-clinical models include delivery of: catalase for Parkinson's disease to reduce oxidative stress and thus help neurons to survive; prodrug activating enzymes which can convert a prodrug which crosses the blood-brain barrier into a toxic chemotherapeutic drug for schwannomas and gliomas; and the apoptosis-inducing enzyme, caspase-1 under a Schwann cell specific promoter for schwannoma. This therapeutic delivery strategy is novel and being explored for a number of diseases.

  12. Evaluation of a modified IRMA for anti-D quantitation, using 3H protein A

    International Nuclear Information System (INIS)

    Dumasia, A.; Gupte, S.

    1993-01-01

    A modified immunoradiometric assay (IRMA) using tritiated ( 3 H) protein A was developed to estimate anti-D concentration. The main advantages of the assay were longer shelf life of the labelled reagent (more than two years); minimum radiation hazard and; low non specific binding. Levels of anti-D were estimated in 23 Rh (D) immunized women. A good correlation of anti-D concentration (μg/ml) with Rh antibody titre was observed (r=+ 0.89, P 3 H protein A IRMA correlated well with the severity of Rh-HDN. This assay could quantitate anti-D in sera having exclusively IgG 3 subtype. (author). 20 refs., 2 figs., 2 tabs

  13. Lactose repressor protein modified with dansyl chloride: activity effects and fluorescence properties

    International Nuclear Information System (INIS)

    Hsieh, W.T.; Matthews, K.S.

    1985-01-01

    Chemical modification using 5-(dimethylamino)naphthalene-1-sulfonyl chloride (dansyl chloride) has been used to explore the importance of lysine residues involved in the binding activities of the lactose repressor and to introduce a fluorescent probe into the protein. Dansyl chloride modification of lac repressor resulted in loss of operator DNA binding at low molar ratios of reagent/monomer. Loss of nonspecific DNA binding was observed only at higher molar ratios, while isopropyl beta-D-thiogalactoside binding was not affected at any of the reagent levels studied. Lysine residues were the only modified amino acids detected. Protection of lysines-33 and -37 from modification by the presence of nonspecific DNA correlated with maintenance of operator DNA binding activity, and reaction of lysine-37 paralleled operator binding activity loss. Energy transfer between dansyl incorporated in the core region of the repressor protein and tryptophan-201 was observed, with an approximate distance of 23 A calculated between these two moieties

  14. Development and evaluation of mucoadhesive nanoparticles based on thiolated Eudragit for oral delivery of protein drugs

    International Nuclear Information System (INIS)

    Zhang, Yan; Yang, Zhijie; Hu, Xi; Zhang, Ling; Li, Feng; Li, Meimei; Tang, Xing; Xiao, Wei

    2015-01-01

    The objective of this study was to develop pH-sensitive Eudragit L100–cysteine/reduced glutathione (Eul–cys/GSH) nanoparticles (NPs), which provided the mucoadhesion and protection for protein drugs against enzymatic degradation. Insulin was chosen as a model biomolecule for testing this system. The Eul–cys conjugate, which was obtained by grafting cysteine onto the carboxy group of Eudragit L100, was analyzed by HNMR and SEM, and the swelling degree (SD), cation binding, and enzymatic inhibition were also determined. The results obtained showed that the Eul–cys conjugate represent a pH-sensitive delivery system which effectively protected the insulin from being degraded by the proteases, and this is related to the mechanism of Ca 2+ binding. Insulin-loaded Eul–cys/GSH NPs were prepared by a diffusion method involving an electrostatic interaction between the network structure of the polymer and the embedded proteins, including insulin and GSH. TEM images indicated that Eul–cys/GSH existed as smooth and spherical NPs in aqueous solution with particle sizes of 260 ± 20 nm. The X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) findings showed the presence of amorphous insulin in thiolated NPs and higher free thiol oxidation than the result obtained by Ellman’s reagent method. In addition, thiolated NPs showed excellent binding efficiency to the mucin in rat intestine, indicating that Eul–cys/GSH NPs have great potential to be applied as safe carriers for the oral administration of protein drugs

  15. Development and evaluation of mucoadhesive nanoparticles based on thiolated Eudragit for oral delivery of protein drugs

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yan [Shenyang University, Normal College (China); Yang, Zhijie; Hu, Xi; Zhang, Ling [Shenyang Pharmaceutical University, Department of Pharmaceutics (China); Li, Feng; Li, Meimei [Shenyang University, Normal College (China); Tang, Xing [Shenyang Pharmaceutical University, Department of Pharmaceutics (China); Xiao, Wei, E-mail: wzhzh-nj@tom.com [Jiangsu Kanion Pharmaceutical Co., Ltd (China)

    2015-02-15

    The objective of this study was to develop pH-sensitive Eudragit L100–cysteine/reduced glutathione (Eul–cys/GSH) nanoparticles (NPs), which provided the mucoadhesion and protection for protein drugs against enzymatic degradation. Insulin was chosen as a model biomolecule for testing this system. The Eul–cys conjugate, which was obtained by grafting cysteine onto the carboxy group of Eudragit L100, was analyzed by HNMR and SEM, and the swelling degree (SD), cation binding, and enzymatic inhibition were also determined. The results obtained showed that the Eul–cys conjugate represent a pH-sensitive delivery system which effectively protected the insulin from being degraded by the proteases, and this is related to the mechanism of Ca{sup 2+} binding. Insulin-loaded Eul–cys/GSH NPs were prepared by a diffusion method involving an electrostatic interaction between the network structure of the polymer and the embedded proteins, including insulin and GSH. TEM images indicated that Eul–cys/GSH existed as smooth and spherical NPs in aqueous solution with particle sizes of 260 ± 20 nm. The X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) findings showed the presence of amorphous insulin in thiolated NPs and higher free thiol oxidation than the result obtained by Ellman’s reagent method. In addition, thiolated NPs showed excellent binding efficiency to the mucin in rat intestine, indicating that Eul–cys/GSH NPs have great potential to be applied as safe carriers for the oral administration of protein drugs.

  16. Development and evaluation of mucoadhesive nanoparticles based on thiolated Eudragit for oral delivery of protein drugs

    Science.gov (United States)

    Zhang, Yan; Yang, Zhijie; Hu, Xi; Zhang, Ling; Li, Feng; Li, Meimei; Tang, Xing; Xiao, Wei

    2015-02-01

    The objective of this study was to develop pH-sensitive Eudragit L100-cysteine/reduced glutathione (Eul-cys/GSH) nanoparticles (NPs), which provided the mucoadhesion and protection for protein drugs against enzymatic degradation. Insulin was chosen as a model biomolecule for testing this system. The Eul-cys conjugate, which was obtained by grafting cysteine onto the carboxy group of Eudragit L100, was analyzed by HNMR and SEM, and the swelling degree (SD), cation binding, and enzymatic inhibition were also determined. The results obtained showed that the Eul-cys conjugate represent a pH-sensitive delivery system which effectively protected the insulin from being degraded by the proteases, and this is related to the mechanism of Ca2+ binding. Insulin-loaded Eul-cys/GSH NPs were prepared by a diffusion method involving an electrostatic interaction between the network structure of the polymer and the embedded proteins, including insulin and GSH. TEM images indicated that Eul-cys/GSH existed as smooth and spherical NPs in aqueous solution with particle sizes of 260 ± 20 nm. The X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) findings showed the presence of amorphous insulin in thiolated NPs and higher free thiol oxidation than the result obtained by Ellman's reagent method. In addition, thiolated NPs showed excellent binding efficiency to the mucin in rat intestine, indicating that Eul-cys/GSH NPs have great potential to be applied as safe carriers for the oral administration of protein drugs.

  17. Highly stable, protein capped gold nanoparticles as effective drug delivery vehicles for amino-glycosidic antibiotics

    International Nuclear Information System (INIS)

    Rastogi, Lori; Kora, Aruna Jyothi; Arunachalam, J.

    2012-01-01

    A method for the production of highly stable gold nanoparticles (Au NP) was optimized using sodium borohydride as reducing agent and bovine serum albumin as capping agent. The synthesized nanoparticles were characterized using UV–visible spectroscopy, transmission electron microscopy, X‐ray diffraction (XRD) and dynamic light scattering techniques. The formation of gold nanoparticles was confirmed from the appearance of pink colour and an absorption maximum at 532 nm. These protein capped nanoparticles exhibited excellent stability towards pH modification and electrolyte addition. The produced nanoparticles were found to be spherical in shape, nearly monodispersed and with an average particle size of 7.8 ± 1.7 nm. Crystalline nature of the nanoparticles in face centered cubic structure is confirmed from the selected‐area electron diffraction and XRD patterns. The nanoparticles were functionalized with various amino-glycosidic antibiotics for utilizing them as drug delivery vehicles. Using Fourier transform infrared spectroscopy, the possible functional groups of antibiotics bound to the nanoparticle surface have been examined. These drug loaded nanoparticle solutions were tested for their antibacterial activity against Gram-negative and Gram-positive bacterial strains, by well diffusion assay. The antibiotic conjugated Au NP exhibited enhanced antibacterial activity, compared to pure antibiotic at the same concentration. Being protein capped and highly stable, these gold nanoparticles can act as effective carriers for drugs and might have considerable applications in the field of infection prevention and therapeutics. - Highlights: ► Method for NaBH 4 reduced and BSA capped gold nanoparticle was standardized. ► Nanoparticles were spherical and nearly monodispersed with a size of 7.8 nm. ► Nanoparticles are extremely stable towards pH modification and electrolyte addition. ► Antibiotic conjugated nanoparticles exhibited enhanced antibacterial activity

  18. Characterization and Oral Delivery of Proinsulin-Transferrin Fusion Protein Expressed Using ExpressTec

    Directory of Open Access Journals (Sweden)

    Yu-Sheng Chen

    2018-01-01

    Full Text Available Proinsulin-transferrin fusion protein (ProINS-Tf has been designed and successfully expressed from the mammalian HEK293 cells (HEK-ProINS-Tf. It was found that HEK-ProINS-Tf could be converted into an activated form in the liver. Furthermore, HEK-ProINS-Tf was demonstrated as an extra-long acting insulin analogue with liver-specific insulin action in streptozotocin (STZ-induced type 1 diabetic mice. However, due to the low production yield from transfected HEK293 cells, there are other interesting features, including the oral bioavailability, which have not been fully explored and characterized. To improve the protein production yield, an alternative protein expression system, ExpressTec using transgenic rice (Oryza sativa L., was used. The intact and active rice-derived ProINS-Tf (ExpressTec-ProINS-Tf was successfully expressed from the transgenic rice expression system. Our results suggested that, although the insulin-like bioactivity of ExpressTec-ProINS-Tf was slightly lower in vitro, its potency of in vivo blood glucose control was considerably stronger than that of HEK-ProINS-Tf. The oral delivery studies in type 1 diabetic mice demonstrated a prolonged control of blood glucose to near-normal levels after oral administration of ExpressTec-ProINS-Tf. Results in this report suggest that ExpressTec-ProINS-Tf is a promising insulin analog with advantages including low cost, prolonged and liver targeting effects, and most importantly, oral bioactivity.

  19. Dry powder pulmonary delivery of cationic PGA-co-PDL nanoparticles with surface adsorbed model protein.

    Science.gov (United States)

    Kunda, Nitesh K; Alfagih, Iman M; Dennison, Sarah R; Somavarapu, Satyanarayana; Merchant, Zahra; Hutcheon, Gillian A; Saleem, Imran Y

    2015-08-15

    Pulmonary delivery of macromolecules has been the focus of attention as an alternate route of delivery with benefits such as; large surface area, thin alveolar epithelium, rapid absorption and extensive vasculature. In this study, a model protein, bovine serum albumin (BSA) was adsorbed onto cationic PGA-co-PDL polymeric nanoparticles (NPs) prepared by a single emulsion solvent evaporation method using a cationic surfactant didodecyldimethylammonium bromide (DMAB) at 2% w/w (particle size: 128.64±06.01 nm and zeta-potential: +42.32±02.70 mV). The optimum cationic NPs were then surface adsorbed with BSA, NP:BSA (100:4) ratio yielded 10.01±1.19 μg of BSA per mg of NPs. The BSA adsorbed NPs (5 mg/ml) were then spray-dried in an aqueous suspension of L-leucine (7.5 mg/ml, corresponding to a ratio of 1:1.5/NP:L-leu) using a Büchi-290 mini-spray dryer to produce nanocomposite microparticles (NCMPs) containing cationic NPs. The aerosol properties showed a fine particle fraction (FPF, dae<4.46 μm) of 70.67±4.07% and mass median aerodynamic diameter (MMAD) of 2.80±0.21 μm suggesting a deposition in the respiratory bronchiolar region of the lungs.The cell viability was 75.76±03.55% (A549 cell line) at 156.25 μg/ml concentration after 24 h exposure. SDS-PAGE and circular dichroism (CD) confirmed that the primary and secondary structure of the released BSA was maintained. Moreover, the released BSA showed 78.76±1.54% relative esterolytic activity compared to standard BSA. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Local Delivery Is Critical for Monocyte Chemotactic Protein-1 Mediated Site-Specific Murine Aneurysm Healing.

    Science.gov (United States)

    Hourani, Siham; Motwani, Kartik; Wajima, Daisuke; Fazal, Hanain; Jones, Chad H; Doré, Sylvain; Hosaka, Koji; Hoh, Brian L

    2018-01-01

    Local delivery of monocyte chemotactic protein-1 (MCP-1/CCL2) via our drug-eluting coil has been shown to promote intrasaccular aneurysm healing via an inflammatory pathway. In this study, we validate the importance of local MCP-1 in murine aneurysm healing. Whether systemic, rather than local, delivery of MCP-1 can direct site-specific aneurysm healing has significant translational implications. If systemic MCP-1 is effective, then MCP-1 could be administered as a pill rather than by endovascular procedure. Furthermore, we confirm that MCP-1 is the primary effector in our MCP-1 eluting coil-mediated murine aneurysm healing model. We compare aneurysm healing with repeated intraperitoneal MCP-1 versus vehicle injection, in animals with control poly(lactic-co-glycolic) acid (PLGA)-coated coils. We demonstrate elimination of the MCP-1-associated tissue-healing response by knockout of MCP-1 or CCR2 (MCP-1 receptor) and by selectively inhibiting MCP-1 or CCR2. Using immunofluorescent probing, we explore the cell populations found in healed aneurysm tissue following each intervention. Systemically administered MCP-1 with PLGA coil control does not produce comparable aneurysm healing, as seen with MCP-1 eluting coils. MCP-1-directed aneurysm healing is eliminated by selective inhibition of MCP-1 or CCR2 and in MCP-1-deficient or CCR2-deficient mice. No difference was detected in M2 macrophage and myofibroblast/smooth muscle cell staining with systemic MCP-1 versus vehicle in aneurysm wall, but a significant increase in these cell types was observed with MCP-1 eluting coil implant and attenuated by MCP-1/CCR2 blockade or deficiency. We show that systemic MCP-1 concurrent with PLGA-coated platinum coil implant is not sufficient to produce site-specific aneurysm healing. MCP-1 is a critical, not merely complementary, actor in the aneurysm healing pathway.

  1. Development of antibody-modified chitosan nanoparticles for the targeted delivery of siRNA across the blood-brain barrier as a strategy for inhibiting HIV replication in astrocytes.

    Science.gov (United States)

    Gu, Jijin; Al-Bayati, Karam; Ho, Emmanuel A

    2017-08-01

    RNA interference (RNAi)-mediated gene silencing offers a novel treatment and prevention strategy for human immunodeficiency virus (HIV) infection. HIV was found to infect and replicate in human brain cells and can cause neuroinfections and neurological deterioration. We designed dual-antibody-modified chitosan/small interfering RNA (siRNA) nanoparticles to deliver siRNA across the blood-brain barrier (BBB) targeting HIV-infected brain astrocytes as a strategy for inhibiting HIV replication. We hypothesized that transferrin antibody and bradykinin B2 antibody could specifically bind to the transferrin receptor (TfR) and bradykinin B2 receptor (B2R), respectively, and deliver siRNA across the BBB into astrocytes as potential targeting ligands. In this study, chitosan nanoparticles (CS-NPs) were prepared by a complex coacervation method in the presence of siRNA, and antibody was chemically conjugated to the nanoparticles. The antibody-modified chitosan nanoparticles (Ab-CS-NPs) were spherical in shape, with an average particle size of 235.7 ± 10.2 nm and a zeta potential of 22.88 ± 1.78 mV. The therapeutic potential of the nanoparticles was evaluated based on their cellular uptake and gene silencing efficiency. Cellular accumulation and gene silencing efficiency of Ab-CS-NPs in astrocytes were significantly improved compared to non-modified CS-NPs and single-antibody-modified CS-NPs. These results suggest that the combination of anti-Tf antibody and anti-B2 antibody significantly increased the knockdown effect of siRNA-loaded nanoparticles. Thus, antibody-mediated dual-targeting nanoparticles are an efficient and promising delivery strategy for inhibiting HIV replication in astrocytes. Graphical abstract Graphic representation of dual-antibody-conjugated chitosan nanoparticles for the targeted delivery of siRNA across the blood-brain barrier (BBB) for inhibiting HIV replication in astrocytes. a Nanoparticle delivery to the BBB and penetration. b Tf

  2. A thiophene-modified screen printed electrode for detection of dengue virus NS1 protein.

    Science.gov (United States)

    Silva, M M S; Dias, A C M S; Cordeiro, M T; Marques, E; Goulart, M O F; Dutra, R F

    2014-10-01

    A thiophene-modified screen printed electrode (SPE) for detection of the Dengue virus non-structural protein 1 (NS1), an important marker for acute phase diagnosis, is described. A sulfur-containing heterocyclic compound, the thiophene was incorporated to a carbon ink to prepare reproducible screen printed electrodes. After cured, the thiophene SPE was coated by gold nanoparticles conjugated to Protein A to form a nanostrutured surface. The Anti-NS1 antibodies immobilized via their Fc portions via Protein A, leaving their antigen specific sites free circumventing the problem of a random antibodies immobilization. Amperometric responses to the NS1 protein of dengue virus were obtained by cyclic voltammetries performed in presence of ferrocyanide/ferricyanide as redox probe. The calibration curve of immunosensor showed a linear response from 0.04 µg mL(-1) to 0.6 µg mL(-1) of NS1 with a good linear correlation (r=0.991, pink enhanced the electroanalytical properties of the SPEs, increasing their reproducibility and sensitivity. This point-of-care testing represents a great potential for use in epidemic situations, facilitating the early diagnosis in acute phase of dengue virus. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Protein arrangement on modified diamond-like carbon surfaces - An ARXPS study

    Science.gov (United States)

    Oosterbeek, Reece N.; Seal, Christopher K.; Hyland, Margaret M.

    2014-12-01

    Understanding the nature of the interface between a biomaterial implant and the biological fluid is an essential step towards creating improved implant materials. This study examined a diamond-like carbon coating biomaterial, the surface energy of which was modified by Ar+ ion sputtering and laser graphitisation. The arrangement of proteins was analysed by angle resolved X-ray photoelectron spectroscopy, and the effects of the polar component of surface energy on this arrangement were observed. It was seen that polar groups (such as CN, CO) are more attracted to the coating surface due to the stronger polar interactions. This results in a segregation of these groups to the DLC-protein interface; at increasing takeoff angle (further from to DLC-protein interface) fewer of these polar groups are seen. Correspondingly, groups that interact mainly by dispersive forces (CC, CH) were found to increase in intensity as takeoff angle increased, indicating they are segregated away from the DLC-protein interface. The magnitude of the segregation was seen to increase with increasing polar surface energy, this was attributed to an increased net attraction between the solid surface and polar groups at higher polar surface energy (γSp).

  4. Chemically modified carbon nanotubes as material enhanced laser desorption ionisation (MELDI) material in protein profiling

    International Nuclear Information System (INIS)

    Najam-ul-Haq, M.; Rainer, M.; Schwarzenauer, T.; Huck, C.W.; Bonn, G.K.

    2006-01-01

    Biomarkers play a potential role in the early detection and diagnosis of a disease. Our aim is to derivatize carbon nanotubes for exploration of the differences in human body fluids e.g. serum, through matrix assisted laser desorption ionisation/time of flight mass spectrometry (MALDI/TOF-MS) that can be related to disease and subsequently to be employed in the biomarker discovery process. This application we termed as the material enhanced laser desorption ionisation (MELDI). The versatility of this technology is meant to increase the amount of information from biological samples on the protein level, which will have a major impact to serve the cause of diagnostic markers. Serum peptides and proteins are immobilized on derivatized carbon nanotubes, which function as binding material. Protein-loaded suspension is placed on a stainless steel target or buckypaper on aluminum target for direct analysis with MALDI-MS. The elution method to wash the bound proteins from carbon nanotubes was employed to compare with the direct analysis procedure. Elution is carried out by MALDI matrix solution to get them out of the entangled nanotubes, which are difficult to desorb by laser due to the complex nanotube structures. The advantage of these optimized methods compared to the conventional screening methods is the improved sensitivity, selectivity and the short analysis time without prior albumin and immunoglobulin depletion. The comparison of similarly modified diamond and carbon nanotubes exhibit differences in their nature to bind the proteins out of serum due to the differences in their physical characteristics. Infrared (IR) spectroscopy provided hint for the presence of tertiary amine peak at the crucial chemical step of iminodiacetic acid addition to acid chloride functionality on carbon nanotubes. Atomic absorption spectroscopy (AAS) was utilized to quantitatively measure the copper capacity of these derivatized carbon nanotubes which is a direct measure of capacity of

  5. Mesoporous silica particles modified with graphitic carbon: interaction with human red blood cells and plasma proteins

    Energy Technology Data Exchange (ETDEWEB)

    Martinez, Diego Stefani Teodoro; Franqui, Lidiane Silva; Bettini, Jefferson; Strauss, Mathias, E-mail: diego.martinez@lnnano.cnpem.br [Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Campinas, SP (Brazil); Damasceno, Joao Paulo Vita; Mazali, Italo Odone [Universidade Estadual de Campinas (UNICAMP), SP (Brazil)

    2016-07-01

    Full text: In this work the interaction of the mesoporous silica particles (SBA-15, ∼700 nm) modified with graphitic carbon (SBA-15/C) on human red blood cells (hemolysis) and plasma proteins (protein corona formation) is studied. XPS and CHN analysis showed that the carbon content on the SBA-15/C samples varied from 2 to 10% and was tuned by the functionalization step. The formed carbon structures where associated to graphitic nanodomains coating the pores surface as verified by Raman spectroscopy and {sup 13}C NMR. Advanced TEM/EELS analysis showed that the carbon structures are distributed along the SBA-15 mesopores. SAXS and textural analyses were used to confirm that the porous structure of the silica support is kept after the modification procedure and to calculate the number of graphitic carbon stacked layers coating the mesopores. After incubation of SBA-15 with human red blood cells (RBCs), it was observed a dose-dependent hemolytic effect, probably, due to binding of the material silanol-rich surface to the phosphatidylcholine molecules from the RBC membrane. The graphitic carbon modifications have mitigated this effect, indicating that the graphitic carbon coating protected the silanol groups of the particle surface hindering the hemolysis. Considering the protein corona formation, selective biomolecular interaction of proteins was observed for the different materials using gel electrophoresis (SDS-PAGE) analysis. Besides, graphitic carbon modification decreased the amount of proteins on the corona. Together, the in vitro hemolysis and protein corona assays are promising biological models to understand the influence of silica surface functionalization on their bionano-interactions. Finally, our work contributes to the development of fundamental research on such nanomaterials chemistry in the emerging field of nanobioscience and nanotoxicology. (author)

  6. Novel Highly Sensitive Protein Sensors Based on Tapered Optical Fibres Modified with Au-Based Nanocoatings

    Directory of Open Access Journals (Sweden)

    Aitor Urrutia

    2016-01-01

    Full Text Available Novel protein sensors based on tapered optical fibres modified with Au coatings deposited using two different procedures are proposed. Au-based coatings are deposited onto a nonadiabatic tapered optical fibre using (i a novel facile method composed of layer-by-layer deposition consisting of polycation (poly(allylamine hydrochloride, PAH and negatively charged SiO2 nanoparticles (NPs followed by the deposition of the charged Au NPs and (ii the sputtering technique. The Au NPs and Au thin film surfaces are then modified with biotin in order to bind streptavidin (SV molecules and detect them. The sensing principle is based on the sensitivity of the transmission spectrum of the device to changes in the refractive index of the coatings induced by the SV binding to the biotin. Both sensors showed high sensitivity to SV, with the lowest measured concentration levels below 2.5 nM. The calculated binding constant for the biotin-SV pair was 2.2×10-11 M−1 when a tapered fibre modified with the LbL method was used, with a limit of detection (LoD of 271 pM. The sensor formed using sputtering had a binding constant of 1.01×10-10 M−1 with a LoD of 806 pM. These new structures and their simple fabrication technique could be used to develop other biosensors.

  7. Agrobacterium-mediated transformation of modified antifreeze protein gene in strawberry

    Directory of Open Access Journals (Sweden)

    Srisulak Dheeranupattana

    2005-07-01

    Full Text Available The optimum condition for shoot regeneration from leaf explants of strawberry cultivar Tiogar was investigated. It was found that the best regeneration condition was MS medium containing N6-Benzyladenine (BA and 2,4-Dichlorophenoxy acetic acid (2,4-D at concentrations of 1 mg.l-1 and 0.2 mg.l-1, respectively. Antibiotics sensitivity test found that shoot regeneration from leaf explant was inhibited more than 90% at the concentration of kanamycin (Km as low as 5 mg.l-1. The modified gene encoding antifreeze protein isoform HPLC 6 was successfully constructed using codons which were optimally expressed in the strawberry plant. The antifreeze protein genes, naturally in plasmid pSW1 and modified in plasmid BB, were transformed to strawberry leaf explants by Agrobacterium tumefaciens LBA 4404. The strawberry plants, transformed with both AFP genes, were able to root in MS media containing 50 mg.l-1 Km, while no roots grew from nontransformed plant in this condition. Polymerase chain reaction indicated that the transgenes were integrated in the genome of transformants.

  8. Heterologous protein secretion in Lactobacilli with modified pSIP vectors.

    Directory of Open Access Journals (Sweden)

    Ingrid Lea Karlskås

    Full Text Available We describe new variants of the modular pSIP-vectors for inducible gene expression and protein secretion in lactobacilli. The basic functionality of the pSIP system was tested in Lactobacillus strains representing 14 species using pSIP411, which harbors the broad-host-range Lactococcus lactis SH71rep replicon and a β-glucuronidase encoding reporter gene. In 10 species, the inducible gene expression system was functional. Based on these results, three pSIP vectors with different signal peptides were modified by replacing their narrow-host-range L. plantarum 256rep replicon with SH71rep and transformed into strains of five different species of Lactobacillus. All recombinant strains secreted the target protein NucA, albeit with varying production levels and secretion efficiencies. The Lp_3050 derived signal peptide generally resulted in the highest levels of secreted NucA. These modified pSIP vectors are useful tools for engineering a wide variety of Lactobacillus species.

  9. Amperometric Immunosensor Based on a Protein A/Deposited Gold Nanocrystals Modified Electrode for Carbofuran Detection

    Directory of Open Access Journals (Sweden)

    Xia Sun

    2011-12-01

    Full Text Available In this paper, an amperometric immunosensor modified with protein A/deposited gold nanocrystals (DpAu was developed for the ultrasensitive detection of carbofuran residues. First, DpAu were electrodeposited onto the Au electrode surface to absorb protein A (PA and improve the electrode conductivity. Then PA was dropped onto the surface of DpAu film, used for binding antibody Fc fragments. Next, anti-carbofuran monoclonal antibody was immobilized on the PA modified electrode. Finally, bovine serum albumin (BSA was employed to block the possible remaining active sites avoiding any nonspecific adsorption. The fabrication procedure of the immunosensor was characterized by electrochemical impedance spectroscopy (EIS and cyclic voltammetry (CV, respectively. With the excellent electroconductivity of DpAu and the PA’s oriented immobilization of antibodies, a highly efficient immuno-reaction and detection sensitivity could be achieved. The influences of the electrodeposition time of DpAu, pH of the detection solution and incubation time on the current response of the fabricated immunosensor were investigated. Under optimized conditions, the current response was proportional to the concentration of carbofuran which ranged from 1 to 100 ng/mL and 100 ng/mL to 100 μg/mL. The detection limit was 0.1924 ng/mL. The proposed carbofuran immnuosensor exhibited high specificity, reproducibility, stability and regeneration performance, which may open a new door for ultrasensitive detection of carbofuran residues in vegetables and fruits.

  10. Pharmacological characterization of receptor-activity-modifying proteins (RAMPs) and the human calcitonin receptor.

    Science.gov (United States)

    Armour, S L; Foord, S; Kenakin, T; Chen, W J

    1999-12-01

    Receptor-activity-modifying proteins (RAMPs) are a family of single transmembrane domain proteins shown to be important for the transport and ligand specificity of the calcitonin gene-related peptide (CGRP) receptor. In this report, we describe the analysis of pharmacological properties of the human calcitonin receptor (hCTR) coexpressed with different RAMPs with the use of the Xenopus laevis melanophore expression system. We show that coexpression of RAMP3 with human calcitonin receptor changed the relative potency of hCTR to human calcitonin (hCAL) and rat amylin. RAMP1 and RAMP2, in contrast, had little effect on the change of hCTR potency to hCAL or rat amylin. When coexpressed with RAMP3, hCTR reversed the relative potency by a 3.5-fold loss in sensitivity to hCAL and a 19-fold increase in sensitivity to rat amylin. AC66, an inverse agonist, produced apparent simple competitive antagonism of hCAL and rat amylin, as indicated by linear Schild regressions. The potency of AC66 was changed in the blockade of rat amylin but not hCAL responses with RAMP3 coexpression. The mean pK(B) for AC66 to hCAL was 9.4 +/- 0.3 without RAMP3 and 9.45 +/- 0.07 with RAMP3. For the antagonism of AC66 to rat amylin, the pK(B) was 9.25 +/- 0.15 without RAMP3 and 8.2 +/- 0.35 with RAMP3. The finding suggests that RAMP3 might modify the active states of calcitonin receptor in such a way as to create a new receptor phenotype that is "amylin-like." Irrespective of the physiological association of the new receptor species, the finding that a coexpressed membrane protein can completely change agonist and antagonist affinities for a receptor raises implications for screening in recombinant receptor systems.

  11. Adhesion of Trypanosoma cruzi trypomastigotes to fibronectin or laminin modifies tubulin and paraflagellar rod protein phosphorylation.

    Directory of Open Access Journals (Sweden)

    Eliciane C Mattos

    Full Text Available BACKGROUND: The unicellular parasite Trypanosoma cruzi is the causative agent of Chagaś disease in humans. Adherence of the infective stage to elements of the extracellular matrix (ECM, as laminin and fibronectin, is an essential step in host cell invasion. Although members of the gp85/TS, as Tc85, were identified as laminin and fibronectin ligands, the signaling events triggered on the parasite upon binding to these molecules are largely unexplored. METHODOLOGY/PRINCIPAL FINDINGS: Viable infective parasites were incubated with laminin, fibronectin or bovine serum albumin for different periods of time and the proteins were separated by bidimensional gels. The phosphoproteins were envisaged by specific staining and the spots showing phosphorylation levels significantly different from the control were excised and identified by MS/MS. The results of interest were confirmed by immunoblotting or immunoprecipitation and the localization of proteins in the parasite was determined by immunofluorescence. Using a host cell-free system, our data indicate that the phosphorylation contents of T. cruzi proteins encompassing different cellular functions are modified upon incubation of the parasite with fibronectin or laminin. CONCLUSIONS/SIGNIFICANCE: Herein it is shown, for the first time, that paraflagellar rod proteins and α-tubulin, major structural elements of the parasite cytoskeleton, are predominantly dephosphorylated during the process, probably involving the ERK1/2 pathway. It is well established that T. cruzi binds to ECM elements during the cell infection process. The fact that laminin and fibronectin induce predominantly dephosphorylation of the main cytoskeletal proteins of the parasite suggests a possible correlation between cytoskeletal modifications and the ability of the parasite to internalize into host cells.

  12. Physical Activity Modifies the Association between Dietary Protein and Lean Mass of Postmenopausal Women.

    Science.gov (United States)

    Martinez, Jessica A; Wertheim, Betsy C; Thomson, Cynthia A; Bea, Jennifer W; Wallace, Robert; Allison, Matthew; Snetselaar, Linda; Chen, Zhao; Nassir, Rami; Thompson, Patricia A

    2017-02-01

    Maintenance of lean muscle mass and related strength is associated with lower risk for numerous chronic diseases of aging in women. Our aim was to evaluate whether the association between dietary protein and lean mass differs by physical activity level, amino acid composition, and body mass index categories. We performed a cross-sectional analysis of a prospective cohort. Participants were postmenopausal women from the Women's Health Initiative with body composition measurements by dual-energy x-ray absorptiometry (n=8,298). Our study measured percent lean mass, percent fat mass, and lean body mass index. Linear regression models adjusted for scanner serial number, age, calibrated energy intake, race/ethnicity, neighborhood socioeconomic status, and recreational physical activity were used to determine the relationship between protein intake and body composition measures. Likelihood ratio tests and stratified analysis were used to investigate physical activity and body mass index as potential effect modifiers. Biomarker-calibrated protein intake was positively associated with percent lean mass; women in the highest protein quintile had 6.3 percentage points higher lean mass than the lowest quintile (Plean body mass index were both inversely related to protein intake (both Plean body mass index (P interaction =0.011). Leucine intake was associated with lean mass, as were branched chain amino acids combined (both Plean mass in postmenopausal women. Importantly, those that also engage in physical activity have the highest lean mass across body mass index categories. Copyright © 2017 Academy of Nutrition and Dietetics. Published by Elsevier Inc. All rights reserved.

  13. Interaction of DNA/nuclear protein/polycation and the terplexes for gene delivery

    Energy Technology Data Exchange (ETDEWEB)

    Shen Yuan; Pan Shirong; Feng Min; Wen Yuting; Deng Jingjing; Luo Xin; Wu Chuanbin [School of Pharmaceutical Sciences, Sun Yat-sen University, Zhongshan II Road 74, Guangzhou 510080 (China); Peng Hui, E-mail: fengmin@mail.sysu.edu.cn [School of Zhongshan Medicine, Sun Yat-sen University, 74 Zhongshan Road II, Guangzhou 510080 (China)

    2010-01-29

    Nuclear transport of exogenous DNA is a major barrier to nonviral gene delivery that needs to be addressed in the design of new vectors. In this study, we prepared pDNA/HMGB1/PEG-PEI terplexes to promote nuclear import. HMGB1 in the terplexes was used to assist the transportation of pDNA into the nucleus of cells, since it contained nuclear localization signal (NLS); PEG chains were introduced to stabilize pDNA/vector terplexes and reduce the cytotoxicity. HMGB1/PEG-PEI combined vectors have been investigated specifically for their structure interaction by atomic force microscopy and circular dichroic spectroscopy. The results demonstrated that the HMGB1 molecule could bind with the pDNA chains, but not condense pDNA well. The PEG-PEI further compacted pDNA/HMGB1 complexes into nanosized spherical terplexes. The pDNA delivered by HMGB1/PEG-PEI combined vectors was significantly accumulated in the nucleus of cells, as observed by confocal laser scanning microscopy. The percentage of GFP-transfected cells and VEGF protein expression level induced by HMGB1/PEG-PEI were 2.6-4.9-fold and 1.4-2.8-fold higher, respectively, than that of a common cationic polymer PEI 25 kDa. Therefore, the HMGB1/PEG-PEI combined vector could be used as a versatile vector for promoting exogenous DNA nuclear localization, thereby enhancing its expression.

  14. A new biocompatible delivery scaffold containing heparin and bone morphogenetic protein 2

    Directory of Open Access Journals (Sweden)

    Thanyaphoo Suphannee

    2016-09-01

    Full Text Available Silicon-substituted calcium phosphate (Si-CaP was developed in our laboratory as a biomaterial for delivery in bone tissue engineering. It was fabricated as a 3D-construct of scaffolds using chitosan-trisodium polyphosphate (TPP cross-linked networks. In this study, heparin was covalently bonded to the residual -NH2 groups of chitosan on the scaffold applying carbodiimide chemistry. Bonded heparin was not leached away from scaffold surfaces upon vigorous washing or extended storage. Recombinant human bone morphogenetic protein 2 (rhBMP-2 was bound to conjugated scaffolds by ionic interactions between the negatively charged SO42- clusters of heparin and positively charged amino acids of rhBMP-2. The resulting scaffolds were inspected for bone regenerative capacity by subcutaneous implanting in rats. Histological observation and mineralization assay were performed after 4 weeks of implantation. Results from both in vitro and in vivo experiments suggest the potential of the developed scaffolds for bone tissue engineering applications in the future.

  15. Isolation of a macrophage receptor for proteins modified by advanced glycosylation end products

    International Nuclear Information System (INIS)

    Radoff, S.; Vlassara, H.; Cerami, A.

    1987-01-01

    The nonenzymatic reaction of glucose with protein amino groups leads to the formation of irreversible AGE, such as the recently characterized glucose-derived crosslink, [2-furoyl-4(5)-(2-furanyl)-1-H-imidazole] (FFI). These products accumulate with time in aging tissues and diabetes, and are implicated in irreversible tissue damage. The authors have recently shown that macrophages bind and degrade AGE-proteins via a specific surface receptor, which is thus selectively removing senescent macromolecules. Scatchard plot analysis of binding data has indicated 1.5 x 10 5 receptors/cell with a binding affinity (Ka) of 1.7 x 10 7 /M. They have now isolated this receptor from murine macrophage RAW 264.7 membranes, solubilized with octylglucoside/protease inhibitors, and using FFI-Sepharose affinity chromatography and FPLC. The purified receptor binds radioactive FFI-containing compounds competitively. SDS-PAGE gels under reducing conditions indicate the receptor to be composed of two polypeptides, 83 Kda and 36 Kda. Crosslinking experiments with 125 I-AGE-albumin as ligand, indicate the 83 Kda subunit to be the AGE-binding peptide. These studies further characterize a macrophage receptor which selectively recognizes time-dependent glucose-modified proteins associated with aging and diabetes

  16. Spectroscopic detection of fluorescent protein marker gene activity in genetically modified plants

    Science.gov (United States)

    Liew, O. W.; Chong, Jenny P. C.; Asundi, Anand K.

    2005-04-01

    This work focuses on developing a portable fibre optic fluorescence analyser for rapid identification of genetically modified plants tagged with a fluorescent marker gene. Independent transgenic tobacco plant lines expressing the enhanced green fluorescence protein (EGFP) gene were regenerated following Agrobacterium-mediated gene transfer. Molecular characterisation of these plant lines was carried out at the DNA level by PCR screening to confirm their transgenic status. Conventional transgene expression analysis was then carried out at the RNA level by RT-PCR and at the protein level by Western blotting using anti-GFP rabbit antiserum. The amount of plant-expressed EGFP on a Western blot was quantified against known amounts of purified EGFP by scanning densitometry. The expression level of EGFP in transformed plants was found to range from 0.1 - 0.6% of total extractable protein. A comparison between conventional western analysis of transformants and direct spectroscopic quantification using the fibre optic fluorescence analyser was made. The results showed that spectroscopic measurements of fluorescence emission from strong EGFP expressors correlated positively with Western blot data. However, the fluorescence analyser was also able to identify weakly expressing plant transformants below the detection limit of colorimetric Western blotting.

  17. Self-Assembling Peptide Amphiphiles for Therapeutic Delivery of Proteins, Drugs, and Stem Cells

    Science.gov (United States)

    Lee, Sungsoo Seth

    Biomaterials are used to help regenerate or replace the structure and function of damaged tissues. In order to elicit desired therapeutic responses in vivo, biomaterials are often functionalized with bioactive agents, such as growth factors, small molecule drugs, or even stem cells. Therefore, the strategies used to incorporate these bioactive agents in the microstructures and nanostructures of biomaterials can strongly influence the their therapeutic efficacy. Using self-assembling peptide amphiphiles (PAs), this work has investigated supramolecular nanostructures with improved interaction with three types of therapeutic agents: bone morphogenetic protein 2 (BMP-2) which promotes osteogenic differentiation and bone growth, anti-inflammatory drug naproxen which is used to treat osteo- and rheumatoid arthritis, and neural stem cells that could differentiate into neurons to treat neurodegenerative diseases. For BMP-2 delivery, two specific systems were investigated with affinity for BMP-2: 1) heparin-binding nanofibers that display the natural ligand of the osteogenic protein, and 2) nanofibers that display a synthetic peptide ligand discovered in our laboratory through phage display to directly bind BMP-2. Both systems promoted enhanced osteoblast differentiation of pluripotent C2C12 cells and augmented bone regeneration in two in vivo models, a rat critical-size femur defect model and spinal arthrodesis model. The thesis also describes the use of PA nanofibers to improve the delivery of the anti-inflammatory drug naproxen. To promote a controlled release, naproxen was chemically conjugated to the nanofiber surface via an ester bond that would only be cleaved by esterases, which are enzymes found naturally in the body. In the absence of esterases, the naproxen remained conjugated to the nanofibers and was non-bioactive. On the other hand, in the presence of esterases, naproxen was slowly released and inhibited cyclooxygenase-2 (COX-2) activity, an enzyme responsible

  18. Production of bioinspired and rationally designed polymer hydrogels for controlled delivery of therapeutic proteins

    Science.gov (United States)

    Kim, Sung Hye

    patterns of functional groups. However, heterogeneity in the composition and in the polydispersity of heparin has been problematic in controlled delivery system and thus motivated the development of homogeneous heparin mimics. Peptides of appropriate sequence and chemical function have therefore recently emerged as potential replacements for heparin in select applications. Studied was the assessment of the binding affinities of multiple sulfated peptides (SPs) for a set of heparin-binding peptides (HBPs) and for VEGF; these binding partners have application in the selective immobilization of proteins and in hydrogel formation through non-covalent interactions. Sulfated peptides were produced via solid-phase methods, and their affinity for the HBPs and VEGF was assessed via affinity liquid chromatography (ALC), surface plasmon resonance (SPR), and in select cases, isothermal titration calorimetry (ITC). The shortest peptide, SPa, showed the highest affinity binding of HBPs and VEGF165 in both ALC and SPR measurements, with slight exceptions. Of the investigated HBPs, a peptide based on the heparin-binding domain of human platelet factor 4 showed greatest binding affinities toward all of the SPs, consistent with its stronger binding to heparin. The affinity between SPa and PF4ZIP was indicated via SPR ( KD = 5.27 muM) and confirmed via ITC (KD = 8.09 muM). The binding by SPa of both VEGF and HBPs suggests its use as a binding partner to multiple species, and the use of these interactions in assembly of materials. Given that the peptide sequences can be varied to control binding affinity and selectivity, opportunities are also suggested for the production of a wider array of matrices with selective binding and release properties useful for biomaterials applications. Hydrogel consisting of SPa was formed via a covalent Michael Addition reaction between maleimide- and thiol-terminated multi-arm PEGs and Cys-SPa. The mechanical property of hydrogel was tunable from ca. 186 to

  19. Defining Optimized Properties of Modified mRNA to Enhance Virus- and DNA- Independent Protein Expression in Adult Stem Cells and Fibroblasts

    Directory of Open Access Journals (Sweden)

    Frauke Hausburg

    2015-02-01

    Full Text Available Background: By far, most strategies for cell reprogramming and gene therapy are based on the introduction of DNA after viral delivery. To avoid the high risks accompanying these goals, non-viral and DNA-free delivery methods for various cell types are required. Methods: Relying on an initially established PCR-based protocol for convenient template DNA production, we synthesized five differently modified EGFP mRNA (mmRNA species, incorporating various degrees of 5-methylcytidine-5'-triphosphate (5mC and pseudouridine-5'-triphosphate (Ψ. We then investigated their effect on i protein expression efficiencies and ii cell viability for human mesenchymal stem cells (hMSCs and fibroblasts from different origins. Results: Our protocol allows highly efficient mmRNA production in vitro, enabling rapid and stable protein expression after cell transfection. However, our results also demonstrate that the terminally optimal modification needs to be defined in pilot experiments for each particular cell type. Transferring our approach to the conversion of fibroblasts into skeletal myoblasts using mmRNA encoding MyoD, we confirm the huge potential of mmRNA based protein expression for virus- and DNA-free reprogramming strategies. Conclusion: The achieved high protein expression levels combined with good cell viability not only in fibroblasts but also in hMSCs provides a promising option for mmRNA based modification of various cell types including slowly proliferating adult stem cells. Therefore, we are confident that our findings will substantially contribute to the improvement of efficient cell reprogramming and gene therapy approaches.

  20. Protein Delivery System Containing a Nickel-Immobilized Polymer for Multimerization of Affinity-Purified His-Tagged Proteins Enhances Cytosolic Transfer.

    Science.gov (United States)

    Postupalenko, Viktoriia; Desplancq, Dominique; Orlov, Igor; Arntz, Youri; Spehner, Danièle; Mely, Yves; Klaholz, Bruno P; Schultz, Patrick; Weiss, Etienne; Zuber, Guy

    2015-09-01

    Recombinant proteins with cytosolic or nuclear activities are emerging as tools for interfering with cellular functions. Because such tools rely on vehicles for crossing the plasma membrane we developed a protein delivery system consisting in the assembly of pyridylthiourea-grafted polyethylenimine (πPEI) with affinity-purified His-tagged proteins pre-organized onto a nickel-immobilized polymeric guide. The guide was prepared by functionalization of an ornithine polymer with nitrilotriacetic acid groups and shown to bind several His-tagged proteins. Superstructures were visualized by electron and atomic force microscopy using 2 nm His-tagged gold nanoparticles as probes. The whole system efficiently carried the green fluorescent protein, single-chain antibodies or caspase 3, into the cytosol of living cells. Transduction of the protease caspase 3 induced apoptosis in two cancer cell lines, demonstrating that this new protein delivery method could be used to interfere with cellular functions. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. A novel vehicle for local protein delivery to the inner ear: injectable and biodegradable thermosensitive hydrogel loaded with PLGA nanoparticles.

    Science.gov (United States)

    Dai, Juan; Long, Wei; Liang, Zhongping; Wen, Lu; Yang, Fan; Chen, Gang

    2018-01-01

    Delivery of biomacromolecular drugs into the inner ear is challenging, mainly because of their inherent instability as well as physiological and anatomical barriers. Therefore, protein-friendly, hydrogel-based delivery systems following local administration are being developed for inner ear therapy. Herein, biodegradable poly(lactic-co-glycolic acid) (PLGA) nanoparticles (NPs) containing interferon α-2 b (IFN α-2 b) were loaded in chitosan/glycerophosphate (CS/GP)-based thermosensitive hydrogel for IFN delivery by intratympanic injection. The injectable hydrogel possessed a physiological pH and formed semi-solid gel at 37 °C, with good swelling and deswelling properties. The CS/GP hydrogel could slowly degrade as visualized by scanning electron microscopy (SEM). The presence of NPs in CS/GP gel largely influenced in vitro drug release. In the guinea pig cochlea, a 1.5- to 3-fold increase in the drug exposure time of NPs-CS/GP was found than those of the solution, NPs and IFN-loaded hydrogel. Most importantly, a prolonged residence time was attained without obvious histological changes in the inner ear. This biodegradable, injectable, and thermosensitive NPs-CS/GP system may allow longer delivery of protein drugs to the inner ear, thus may be a potential novel vehicle for inner ear therapy.

  2. Caffeic Acid-PLGA Conjugate to Design Protein Drug Delivery Systems Stable to Irradiation

    Directory of Open Access Journals (Sweden)

    Francesca Selmin

    2015-01-01

    Full Text Available This work reports the feasibility of caffeic acid grafted PLGA (g-CA-PLGA to design biodegradable sterile microspheres for the delivery of proteins. Ovalbumin (OVA was selected as model compound because of its sensitiveness of γ-radiation. The adopted grafting procedure allowed us to obtain a material with good free radical scavenging properties, without a significant modification of Mw and Tg of the starting PLGA (Mw PLGA = 26.3 ± 1.3 kDa vs. Mw g-CA-PLGA = 22.8 ± 0.7 kDa; Tg PLGA = 47.7 ± 0.8 °C vs. Tg g-CA-PLGA = 47.4 ± 0.2 °C. By using a W1/O/W2 technique, g-CA-PLGA improved the encapsulation efficiency (EE, suggesting that the presence of caffeic residues improved the compatibility between components (EEPLGA = 35.0% ± 0.7% vs. EEg-CA-PLGA = 95.6% ± 2.7%. Microspheres particle size distribution ranged from 15 to 50 µm. The zeta-potential values of placebo and loaded microspheres were −25 mV and −15 mV, respectively. The irradiation of g-CA-PLGA at the dose of 25 kGy caused a less than 1% variation of Mw and the degradation patterns of the non-irradiated and irradiated microspheres were superimposable. The OVA content in g-CA-PLGA microspheres decreased to a lower extent with respect to PLGA microspheres. These results suggest that g-CA-PLGA is a promising biodegradable material to microencapsulate biological drugs.

  3. Tissue-engineered matrices as functional delivery systems: adsorption and release of bioactive proteins from degradable composite scaffolds.

    Science.gov (United States)

    Cushnie, Emily K; Khan, Yusuf M; Laurencin, Cato T

    2010-08-01

    A tissue-engineered bone graft should imitate the ideal autograft in both form and function. However, biomaterials that have appropriate chemical and mechanical properties for grafting applications often lack biological components that may enhance regeneration. The concept of adding proteins such as growth factors to scaffolds has therefore emerged as a possible solution to improve overall graft design. In this study, we investigated this concept by loading porous hydroxyapatite-poly(lactide-co-glycolide) (HA-PLAGA) scaffolds with a model protein, cytochrome c, and then studying its release in a phosphate-buffered saline solution. The HA-PLAGA scaffold has previously been shown to be bioactive, osteoconductive, and to have appropriate physical properties for tissue engineering applications. The loading experiments demonstrated that the HA-PLAGA scaffold could also function effectively as a substrate for protein adsorption and release. Scaffold protein adsorptive loading (as opposed to physical entrapment within the matrix) was directly related to levels of scaffold HA-content. The HA phase of the scaffold facilitated protein retention in the matrix following incubation in aqueous buffer for periods up to 8 weeks. Greater levels of protein retention time may improve the protein's effective activity by increasing the probability for protein-cell interactions. The ability to control protein loading and delivery simply via composition of the HA-PLAGA scaffold offers the potential of forming robust functionalized bone grafts. (c) 2010 Wiley Periodicals, Inc.

  4. Induction of a robust immune response against avian influenza virus following transdermal inoculation with H5-DNA vaccine formulated in modified dendrimer-based delivery system in mouse model.

    Science.gov (United States)

    Bahadoran, Azadeh; Ebrahimi, Mehdi; Yeap, Swee Keong; Safi, Nikoo; Moeini, Hassan; Hair-Bejo, Mohd; Hussein, Mohd Zobir; Omar, Abdul Rahman

    2017-01-01

    This study was aimed to evaluate the immunogenicity of recombinant plasmid deoxyribonucleic acid (DNA), pBud-H5-green fluorescent protein (GFP)-interferon-regulatory factor (IRF)3 following delivery using polyamidoamine (PAMAM) dendrimer and transactivator of transcription (TAT)-conjugated PAMAM dendrimer as well as the effect of IRF3 as the genetic adjuvant. BALB/c mice were vaccinated transdermally with pBud-H5-GFP, PAMAM/pBud-H5-GFP, TAT-PAMAM/pBud-H5-GFP, and TAT-PAMAM/pBud-H5-GFP-IRF3. The expression analysis of H5 gene from the blood by using quantitative real-time reverse transcriptase polymerase chain reaction confirmed the ability of PAMAM dendrimer as a carrier for gene delivery, as well as the ability of TAT peptide to enhance the delivery efficiency of PAMAM dendrimer. Mice immunized with modified PAMAM by TAT peptide showed higher hemagglutination inhibition titer, and larger CD3 + /CD4 + T cells and CD3 + /CD8 + T cells population, as well as the production of cytokines, namely, interferon (IFN)-γ, interleukin (IL)-2, IL-15, IL-12, IL-6, and tumor necrosis factor-α compared with those immunized with native PAMAM. These results suggest that the function of TAT peptide as a cell-penetrating peptide is able to enhance the gene delivery, which results in rapid distribution of H5 in the tissues of the immunized mice. Furthermore, pBud-H5-GFP co-expressing IRF3 as a genetic adjuvant demonstrated the highest hemagglutination inhibition titer besides larger CD3 + /CD4 + and CD3 + /CD8 + T cells population, and strong Th1-like cytokine responses among all the systems tested. In conclusion, TAT-PAMAM dendrimer-based delivery system with IRF3 as a genetic adjuvant is an attractive transdermal DNA vaccine delivery system utilized to evaluate the efficacy of the developed DNA vaccine in inducing protection during challenge with virulent H5N1 virus.

  5. Thermodynamics of protein folding using a modified Wako-Saitô-Muñoz-Eaton model.

    Science.gov (United States)

    Tsai, Min-Yeh; Yuan, Jian-Min; Teranishi, Yoshiaki; Lin, Sheng Hsien

    2012-09-01

    Herein, we propose a modified version of the Wako-Saitô-Muñoz-Eaton (WSME) model. The proposed model introduces an empirical temperature parameter for the hypothetical structural units (i.e., foldons) in proteins to include site-dependent thermodynamic behavior. The thermodynamics for both our proposed model and the original WSME model were investigated. For a system with beta-hairpin topology, a mathematical treatment (contact-pair treatment) to facilitate the calculation of its partition function was developed. The results show that the proposed model provides better insight into the site-dependent thermodynamic behavior of the system, compared with the original WSME model. From this site-dependent point of view, the relationship between probe-dependent experimental results and model's thermodynamic predictions can be explained. The model allows for suggesting a general principle to identify foldon behavior. We also find that the backbone hydrogen bonds may play a role of structural constraints in modulating the cooperative system. Thus, our study may contribute to the understanding of the fundamental principles for the thermodynamics of protein folding.

  6. Mitochondrial associated ubiquitin fold modifier-1 mediated protein conjugation in Leishmania donovani.

    Directory of Open Access Journals (Sweden)

    Sreenivas Gannavaram

    2011-01-01

    Full Text Available In this report, we demonstrate the existence of the ubiquitin fold modifier-1 (Ufm1 and its conjugation pathway in trypanosomatid parasite Leishmania donovani. LdUfm1 is activated by E1-like enzyme LdUba5. LdUfc1 (E2 specifically interacted with LdUfm1 and LdUba5 to conjugate LdUfm1 to proteinaceous targets. Mass spectrometry analysis revealed that LdUfm1 is conjugated to Leishmania protein targets that are associated with mitochondria. Immunofluorescence experiments showed that Leishmania Ufm1, Uba5 and Ufc1 are associated with the mitochondria. The demonstration that all the components of this system as well as the substrates are associated with mitochondrion suggests it may have physiological roles not yet described in any other organism. Overexpression of a non-conjugatable form of LdUfm1 and an active site mutant of LdUba5 resulted in reduced survival of Leishmania in the macrophage. Since mitochondrial activities are developmentally regulated in the life cycle of trypanosomatids, Ufm1 mediated modifications of mitochondrial proteins may be important in such regulation. Thus, Ufm1 conjugation pathway in Leishmania could be explored as a potential drug target in the control of Leishmaniasis.

  7. Modified human serum albumins as carriers for the specific delivery of antiviral drugs to liver- and blood cells

    NARCIS (Netherlands)

    Jansen, Robert Walter

    1992-01-01

    The general goal of this study, was to determine the possibility of a targeted delivery of antiviral drugs to their site of action. We decided to focus on two viral diseases; HIV and Hepatitis B, that replicate in T,-lymphocytes, monocytes/macrophages and hepatocytes respectively. The specific aims

  8. Pepsin-Assisted Transglutaminase Modifi cation of Functional Properties of a Protein Isolate Obtained from Industrial Sunfl ower Meal

    Directory of Open Access Journals (Sweden)

    Petya Ivanova

    2017-01-01

    Full Text Available The utilization of industrial sunfl ower meal to produce protein-rich products for the food industry is an alternative approach for bett er and more effi cient use of this agricultural by-product. Sunfl ower meal proteins possess specifi c functional properties, which however need improvement to broaden their potential as supplements for delivering high-quality products for human nutrition. The aim of the study is to evaluate the combined infl uence of low-degree pepsin hydrolysis and transglutaminase (TG modifi cation on industrial sunfl ower meal protein isolate functionality at pH=2 to 10. Three TG-modifi ed pepsin hydrolysates with the degree of hydrolysis of 0.48, 0.71 and 1.72 % were produced and named TG-PH1, TG-PH2 and TG-PH3, respectively. All three TG-modifi ed pepsin hydrolysates exhibited improved solubility at pH between 3.5 and 5.5 as the highest was observed of TG-PH3 at protein isoelectric point (pI=4.5. Sunfl ower meal protein isolate and TG-modifi ed sunfl ower meal protein isolate had greater solubility than the three TG-modifi ed hydrolysates at pH7. Signifi cant improvement of foam making capacity (p<0.05 was achieved with all three TG-modifi ed pepsin hydrolysates in the entire pH area studied. Pepsin hydrolysis of the protein isolate with the three degrees of hydrolysis did not improve foam stability. Improved thermal stability was observed with TG-PH3 up to 80 °C compared to the protein isolate (pH=7. At 90 °C, TG modifi cation of the protein isolate alone resulted in the highest thermal stability. Pepsin hydrolysis followed by a treatment with TG could be used to produce sunfl ower protein isolates with improved solubility, foam making capacity and thermal stability for use in the food industry.

  9. Low cost delivery of proteins bioencapsulated in plant cells to human non-immune or immune modulatory cells.

    Science.gov (United States)

    Xiao, Yuhong; Kwon, Kwang-Chul; Hoffman, Brad E; Kamesh, Aditya; Jones, Noah T; Herzog, Roland W; Daniell, Henry

    2016-02-01

    Targeted oral delivery of GFP fused with a GM1 receptor binding protein (CTB) or human cell penetrating peptide (PTD) or dendritic cell peptide (DCpep) was investigated. Presence of GFP(+) intact plant cells between villi of ileum confirm their protection in the digestive system from acids/enzymes. Efficient delivery of GFP to gut-epithelial cells by PTD or CTB and to M cells by all these fusion tags confirm uptake of GFP in the small intestine. PTD fusion delivered GFP more efficiently to most tissues or organs than the other two tags. GFP was efficiently delivered to the liver by all fusion tags, likely through the gut-liver axis. In confocal imaging studies of human cell lines using purified GFP fused with different tags, GFP signal of DCpep-GFP was only detected within dendritic cells. PTD-GFP was only detected within kidney or pancreatic cells but not in immune modulatory cells (macrophages, dendritic, T, B, or mast cells). In contrast, CTB-GFP was detected in all tested cell types, confirming ubiquitous presence of GM1 receptors. Such low-cost oral delivery of protein drugs to sera, immune system or non-immune cells should dramatically lower their cost by elimination of prohibitively expensive fermentation, protein purification cold storage/transportation and increase patient compliance. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  10. In vitro cytotoxicity and phototoxicity of surface-modified gold nanoparticles associated with neutral red as a potential drug delivery system in phototherapy

    Energy Technology Data Exchange (ETDEWEB)

    Verissimo, Tanira V. [School of Health Sciences, University of Brasilia, Brasilia (Brazil); Laboratory of Photochemistry and Nanobiotechnology, Faculty of Ceilandia, University of Brasilia, Brasilia (Brazil); Santos, Naiara T. [School of Health Sciences, University of Brasilia, Brasilia (Brazil); Silva, Jaqueline R.; Azevedo, Ricardo B. [Institute of Biological Sciences, University of Brasilia, Brasilia (Brazil); Gomes, Anderson J., E-mail: ajgomes@unb.br [School of Health Sciences, University of Brasilia, Brasilia (Brazil); Laboratory of Photochemistry and Nanobiotechnology, Faculty of Ceilandia, University of Brasilia, Brasilia (Brazil); Lunardi, Claure N., E-mail: clunardi@unb.br [School of Health Sciences, University of Brasilia, Brasilia (Brazil); Laboratory of Photochemistry and Nanobiotechnology, Faculty of Ceilandia, University of Brasilia, Brasilia (Brazil)

    2016-08-01

    The surface of gold nanoparticles (AuNP) was modified, improving their interaction with neutral red (NR), by using sodium thioglycolate (TGA) as a covering agent. The resulting NR-AuNPTGA system was evaluated as a potential drug delivery system for photodynamic therapy (PDT). The associations of NR with the gold nanoparticles were evaluated using UV-vis spectrometry and measurement of their zeta potential and size distribution. The toxicity and phototoxicity of NR, AuNPTGA and NR-AuNPTGA were evaluated in NIH-3T3 fibroblast and 4T1 tumor cell lines. The compounds NR and NR-AuNPTGA induced toxicity in 4T1 tumor cells and NIH-3T3 fibroblasts under visible light irradiation. Modification of the surface of AuNP with TGA prevented nanoparticle aggregation and allowed greater association with NR molecules than for naked AuNP. The photosensitizer (PS) characteristics were not affected by its association with the modified surface of the gold nanoparticles, leading to a reduction of cell viability in both cell lines assayed. This NR-AuNPTGA system is a promising drug delivery system for photodynamic cancer therapy. - Highlights: • Modified gold nanoparticle (AuNP) by sodium thioglicolate (TGA) prevents aggregation. • Neutral red (NR) adsorbed on the surface of modified gold nanoparticles (AuNPTGA). • AuNPTGA is suitable as a platform to deliver the NR under irradiation process. • Photodamage of 90% was achieved by NR added to AuNPTGA in 4T1 and NIH-3T3 cells.

  11. Median Modified Wiener Filter for nonlinear adaptive spatial denoising of protein NMR multidimensional spectra

    KAUST Repository

    Cannistraci, Carlo Vittorio

    2015-01-26

    Denoising multidimensional NMR-spectra is a fundamental step in NMR protein structure determination. The state-of-the-art method uses wavelet-denoising, which may suffer when applied to non-stationary signals affected by Gaussian-white-noise mixed with strong impulsive artifacts, like those in multi-dimensional NMR-spectra. Regrettably, Wavelet\\'s performance depends on a combinatorial search of wavelet shapes and parameters; and multi-dimensional extension of wavelet-denoising is highly non-trivial, which hampers its application to multidimensional NMR-spectra. Here, we endorse a diverse philosophy of denoising NMR-spectra: less is more! We consider spatial filters that have only one parameter to tune: the window-size. We propose, for the first time, the 3D extension of the median-modified-Wiener-filter (MMWF), an adaptive variant of the median-filter, and also its novel variation named MMWF*. We test the proposed filters and the Wiener-filter, an adaptive variant of the mean-filter, on a benchmark set that contains 16 two-dimensional and three-dimensional NMR-spectra extracted from eight proteins. Our results demonstrate that the adaptive spatial filters significantly outperform their non-adaptive versions. The performance of the new MMWF* on 2D/3D-spectra is even better than wavelet-denoising. Noticeably, MMWF* produces stable high performance almost invariant for diverse window-size settings: this signifies a consistent advantage in the implementation of automatic pipelines for protein NMR-spectra analysis.

  12. Median Modified Wiener Filter for nonlinear adaptive spatial denoising of protein NMR multidimensional spectra

    KAUST Repository

    Cannistraci, Carlo Vittorio; Abbas, Ahmed; Gao, Xin

    2015-01-01

    Denoising multidimensional NMR-spectra is a fundamental step in NMR protein structure determination. The state-of-the-art method uses wavelet-denoising, which may suffer when applied to non-stationary signals affected by Gaussian-white-noise mixed with strong impulsive artifacts, like those in multi-dimensional NMR-spectra. Regrettably, Wavelet's performance depends on a combinatorial search of wavelet shapes and parameters; and multi-dimensional extension of wavelet-denoising is highly non-trivial, which hampers its application to multidimensional NMR-spectra. Here, we endorse a diverse philosophy of denoising NMR-spectra: less is more! We consider spatial filters that have only one parameter to tune: the window-size. We propose, for the first time, the 3D extension of the median-modified-Wiener-filter (MMWF), an adaptive variant of the median-filter, and also its novel variation named MMWF*. We test the proposed filters and the Wiener-filter, an adaptive variant of the mean-filter, on a benchmark set that contains 16 two-dimensional and three-dimensional NMR-spectra extracted from eight proteins. Our results demonstrate that the adaptive spatial filters significantly outperform their non-adaptive versions. The performance of the new MMWF* on 2D/3D-spectra is even better than wavelet-denoising. Noticeably, MMWF* produces stable high performance almost invariant for diverse window-size settings: this signifies a consistent advantage in the implementation of automatic pipelines for protein NMR-spectra analysis.

  13. Protein adsorption capability on polyurethane and modified-polyurethane membrane for periodontal guided tissue regeneration applications

    Energy Technology Data Exchange (ETDEWEB)

    Sheikh, Zeeshan [Matrix Dynamics Group, Faculty of Dentistry, University of Toronto, Fitzgerald Building, 150 College Street, Toronto, ON M5S 3E2 (Canada); School of Engineering and Materials Science, Queen Mary, University of London, Mile End Rd, London, E1 4NS (United Kingdom); Khan, Abdul Samad, E-mail: draskhan@ciitlahore.edu.pk [Interdisciplinary Research Centre in Biomedical Materials, COMSATS Institute of Information Technology, Lahore 54000 (Pakistan); Roohpour, Nima [Oral Care R& D, GSK St., Georges Ave., Weybridge KT13 8PA (United Kingdom); Glogauer, Michael [Matrix Dynamics Group, Faculty of Dentistry, University of Toronto, Fitzgerald Building, 150 College Street, Toronto, ON M5S 3E2 (Canada); Rehman, Ihtesham u [Department of Materials Science and Engineering, The Kroto Research Institute, North Campus, University of Sheffield, Broad Lane, Sheffield S3 7HQ (United Kingdom)

    2016-11-01

    Periodontal disease if left untreated can result in creation of defects within the alveolar ridge. Barrier membranes are frequently used with or without bone replacement graft materials for achieving periodontal guided tissue regeneration (GTR). Surface properties of barrier membranes play a vital role in their functionality and clinical success. In this study polyetherurethane (PEU) membranes were synthesized by using 4,4′-methylene-diphenyl diisocyanate (MDI), polytetramethylene oxide (PTMO) and 1,4-butane diol (BDO) as a chain extender via solution polymerization. Hydroxyl terminated polydimethylsiloxane (PDMS) due to having inherent surface orientation towards air was used for surface modification of PEU on one side of the membranes. This resulting membranes had one surface being PEU and the other being PDMS coated PEU. The prepared membranes were treated with solutions of bovine serum albumin (BSA) in de-ionized water at 37 °C at a pH of 7.2. The surface protein adsorptive potential of PEU membranes was observed using Attenuated Total Reflectance Fourier Transform Infrared Spectroscopy (ATR-FTIR), Raman spectroscopy and Confocal Raman spectroscopy. The contact angle measurement, tensile strength and modulus of prepared membranes were also evaluated. PEU membrane (89.86 ± 1.62°) exhibited less hydrophobic behavior than PEU-PDMS (105.87 ± 3.16°). The ultimate tensile strength and elastic modulus of PEU (27 ± 1 MPa and 14 ± 2 MPa) and PEU-PDMS (8 ± 1 MPa and 26 ± 1 MPa) membranes was in required range. The spectral analysis revealed adsorption of BSA proteins on the surface of non PDMS coated PEU surface. The PDMS modified PEU membranes demonstrated a lack of BSA adsorption. The non PDMS coated side of the membrane which adsorbs proteins could potentially be used facing towards the defect attracting growth factors for periodontal tissue regeneration. Whereas, the PDMS coated side could serve as an occlusive barrier for preventing gingival epithelial

  14. Protein adsorption capability on polyurethane and modified-polyurethane membrane for periodontal guided tissue regeneration applications

    International Nuclear Information System (INIS)

    Sheikh, Zeeshan; Khan, Abdul Samad; Roohpour, Nima; Glogauer, Michael; Rehman, Ihtesham u

    2016-01-01

    Periodontal disease if left untreated can result in creation of defects within the alveolar ridge. Barrier membranes are frequently used with or without bone replacement graft materials for achieving periodontal guided tissue regeneration (GTR). Surface properties of barrier membranes play a vital role in their functionality and clinical success. In this study polyetherurethane (PEU) membranes were synthesized by using 4,4′-methylene-diphenyl diisocyanate (MDI), polytetramethylene oxide (PTMO) and 1,4-butane diol (BDO) as a chain extender via solution polymerization. Hydroxyl terminated polydimethylsiloxane (PDMS) due to having inherent surface orientation towards air was used for surface modification of PEU on one side of the membranes. This resulting membranes had one surface being PEU and the other being PDMS coated PEU. The prepared membranes were treated with solutions of bovine serum albumin (BSA) in de-ionized water at 37 °C at a pH of 7.2. The surface protein adsorptive potential of PEU membranes was observed using Attenuated Total Reflectance Fourier Transform Infrared Spectroscopy (ATR-FTIR), Raman spectroscopy and Confocal Raman spectroscopy. The contact angle measurement, tensile strength and modulus of prepared membranes were also evaluated. PEU membrane (89.86 ± 1.62°) exhibited less hydrophobic behavior than PEU-PDMS (105.87 ± 3.16°). The ultimate tensile strength and elastic modulus of PEU (27 ± 1 MPa and 14 ± 2 MPa) and PEU-PDMS (8 ± 1 MPa and 26 ± 1 MPa) membranes was in required range. The spectral analysis revealed adsorption of BSA proteins on the surface of non PDMS coated PEU surface. The PDMS modified PEU membranes demonstrated a lack of BSA adsorption. The non PDMS coated side of the membrane which adsorbs proteins could potentially be used facing towards the defect attracting growth factors for periodontal tissue regeneration. Whereas, the PDMS coated side could serve as an occlusive barrier for preventing gingival epithelial

  15. Blood-brain barrier drug delivery of IgG fusion proteins with a transferrin receptor monoclonal antibody.

    Science.gov (United States)

    Pardridge, William M

    2015-02-01

    Biologic drugs are large molecules that do not cross the blood- brain barrier (BBB). Brain penetration is possible following the re-engineering of the biologic drug as an IgG fusion protein. The IgG domain is a MAb against an endogenous BBB receptor such as the transferrin receptor (TfR). The TfRMAb acts as a molecular Trojan horse to ferry the fused biologic drug into the brain via receptor-mediated transport on the endogenous BBB TfR. This review discusses TfR isoforms, models of BBB transport of transferrin and TfRMAbs, and the genetic engineering of TfRMAb fusion proteins, including BBB penetrating IgG-neurotrophins, IgG-decoy receptors, IgG-lysosomal enzyme therapeutics and IgG-avidin fusion proteins, as well as BBB transport of bispecific antibodies formed by fusion of a therapeutic antibody to a TfRMAb targeting antibody. Also discussed are quantitative aspects of the plasma pharmacokinetics and brain uptake of TfRMAb fusion proteins, as compared to the brain uptake of small molecules, and therapeutic applications of TfRMAb fusion proteins in mouse models of neural disease, including Parkinson's disease, stroke, Alzheimer's disease and lysosomal storage disorders. The review covers the engineering of TfRMAb-avidin fusion proteins for BBB targeted delivery of biotinylated peptide radiopharmaceuticals, low-affinity TfRMAb Trojan horses and the safety pharmacology of chronic administration of TfRMAb fusion proteins. The BBB delivery of biologic drugs is possible following re-engineering as a fusion protein with a molecular Trojan horse such as a TfRMAb. The efficacy of this technology will be determined by the outcome of future clinical trials.

  16. Screening for Glycosylphosphatidylinositol-Modified Cell Wall Proteins in Pichia pastoris and Their Recombinant Expression on the Cell Surface

    Science.gov (United States)

    Zhang, Li; Liang, Shuli; Zhou, Xinying; Jin, Zi; Jiang, Fengchun; Han, Shuangyan; Zheng, Suiping

    2013-01-01

    Glycosylphosphatidylinositol (GPI)-anchored glycoproteins have various intrinsic functions in yeasts and different uses in vitro. In the present study, the genome of Pichia pastoris GS115 was screened for potential GPI-modified cell wall proteins. Fifty putative GPI-anchored proteins were selected on the basis of (i) the presence of a C-terminal GPI attachment signal sequence, (ii) the presence of an N-terminal signal sequence for secretion, and (iii) the absence of transmembrane domains in mature protein. The predicted GPI-anchored proteins were fused to an alpha-factor secretion signal as a substitute for their own N-terminal signal peptides and tagged with the chimeric reporters FLAG tag and mature Candida antarctica lipase B (CALB). The expression of fusion proteins on the cell surface of P. pastoris GS115 was determined by whole-cell flow cytometry and immunoblotting analysis of the cell wall extracts obtained by β-1,3-glucanase digestion. CALB displayed on the cell surface of P. pastoris GS115 with the predicted GPI-anchored proteins was examined on the basis of potential hydrolysis of p-nitrophenyl butyrate. Finally, 13 proteins were confirmed to be GPI-modified cell wall proteins in P. pastoris GS115, which can be used to display heterologous proteins on the yeast cell surface. PMID:23835174

  17. Applications and Challenges for Use of Cell-Penetrating Peptides as Delivery Vectors for Peptide and Protein Cargos

    Directory of Open Access Journals (Sweden)

    Mie Kristensen

    2016-01-01

    Full Text Available The hydrophilic nature of peptides and proteins renders them impermeable to cell membranes. Thus, in order to successfully deliver peptide and protein-based therapeutics across the plasma membrane or epithelial and endothelial barriers, a permeation enhancing strategy must be employed. Cell-penetrating peptides (CPPs constitute a promising tool and have shown applications for peptide and protein delivery into cells as well as across various epithelia and the blood-brain barrier (BBB. CPP-mediated delivery of peptides and proteins may be pursued via covalent conjugation of the CPP to the cargo peptide or protein or via physical complexation obtained by simple bulk-mixing of the CPP with its cargo. Both approaches have their pros and cons, and which is the better choice likely relates to the physicochemical properties of the CPP and its cargo as well as the route of administration, the specific barrier and the target cell. Besides the physical barrier, a metabolic barrier must be taken into consideration when applying peptide-based delivery vectors, such as the CPPs, and stability-enhancing strategies are commonly employed to prolong the CPP half-life. The mechanisms by which CPPs translocate cell membranes are believed to involve both endocytosis and direct translocation, but are still widely investigated and discussed. The fact that multiple factors influence the mechanisms responsible for cellular CPP internalization and the lack of sensitive methods for detection of the CPP, and in some cases the cargo, further complicates the design and conduction of conclusive mechanistic studies.

  18. Quantitative analysis of modified proteins and their positional isomers by tandem mass spectrometry: human histone H4.

    Science.gov (United States)

    Pesavento, James J; Mizzen, Craig A; Kelleher, Neil L

    2006-07-01

    Here we show that fragment ion abundances from dissociation of ions created from mixtures of multiply modified histone H4 (11 kDa) or of N-terminal synthetic peptides (2 kDa) correspond to their respective intact ion abundances measured by Fourier transform mass spectrometry. Isomeric mixtures of modified forms of the same protein are resolved and quantitated with a precision of protein ions created by electrospray greatly easing many of the systematic biases that more strongly affect small peptides (e.g., differences in ionization efficiency and ion m/z values). The ion fragmentation methods validated here are directly extensible to intact human proteins to derive quantitative information on the highly related and often isomeric protein forms created by combinatorial arrays of posttranslational modifications.

  19. Rational Design of Adjuvant for Skin Delivery: Conjugation of Synthetic β-Glucan Dectin-1 Agonist to Protein Antigen.

    Science.gov (United States)

    Donadei, Agnese; Gallorini, Simona; Berti, Francesco; O'Hagan, Derek T; Adamo, Roberto; Baudner, Barbara C

    2015-05-04

    The potential benefits of skin delivery of vaccines derive from the presence of a densely connected network of antigen presenting cells in the skin layer, most significantly represented by Langerhans cells and dermal dendritic cells. Targeting these cells by adjuvant conjugated to an antigen should result in enhanced immunogenicity of a vaccine. Since one of the most widely used adjuvants is an insoluble salt of aluminum (aluminum hydroxide) that cannot be used for skin delivery due to reactogenicity, we focused our attention on agonists of receptors present on skin dendritic cells, including the Dectin-1 receptor. β-(1-3)-glucans, which are the most abundant components of the fungal surface, are known to activate the innate immune response by interaction with the C-type lectin-like Dectin-1 receptor. In this work we identified by rational design a well-defined synthetic β-(1-3)-glucan hexasaccharide as a Dectin-1 agonist and chemically conjugated it to the genetically detoxified diphtheria toxin (CRM197) protein antigen, as a means to increase the binding to Dectin-1 receptor and to target to skin dendritic cells. We demonstrated that the in vitro activation of the receptor was significantly impacted by the presentation of the glucan on the protein carrier. In vivo results in mice showed that the conjugation of the synthetic β-(1-3)-glucan when delivered intradermally resulted in higher antibody titers in comparison to intramuscular (i.m.) immunization and was not different from subcutaneous (s.c.) delivery. These findings suggest that weak receptor binders can be turned into more potent agonists by the multivalent presentation of many ligands covalently conjugated to the protein core. Moreover, this approach is particularly valuable to increase the immunogenicity of antigens administered via skin delivery.

  20. Novel Peptide/Protein Delivery System Targeting erbB2-Overexpressing Breast Cancer Cells

    National Research Council Canada - National Science Library

    Yu, Dihua

    2002-01-01

    .... During this funding year, we focused on the delivery of erbB2 signal-blocking ESP peptides (objective 2) . Because of the complexity of biotin-penetratin-AHNP-ESP, the synthesis was unsuccessful...

  1. Functionality of whey proteins covalently modified by allyl isothiocyanate. Part 1 physicochemical and antibacterial properties of native and modified whey proteins at pH 2 to 7

    NARCIS (Netherlands)

    Keppler, Julia Katharina; Martin, Dierk; Garamus, Vasil M.; Berton-Carabin, Claire; Nipoti, Elia; Coenye, Tom; Schwarz, Karin

    2017-01-01

    Whey protein isolate (WPI) (∼75% β-lactoglobulin (β-LG)) is frequently used in foods as a natural emulsifying agent. However, at an acidic pH value, its emulsification capacity is greatly reduced. The covalent attachment of natural electrophilic hydrophobic molecules to WPI proteins is a

  2. A novel tyrosine-modified low molecular weight polyethylenimine (P10Y) for efficient siRNA delivery in vitro and in vivo.

    Science.gov (United States)

    Ewe, Alexander; Przybylski, Susanne; Burkhardt, Jana; Janke, Andreas; Appelhans, Dietmar; Aigner, Achim

    2016-05-28

    The delivery of nucleic acids, particularly of small RNA molecules like siRNAs for the induction of RNA interference (RNAi), still represents a major hurdle with regard to their application in vivo. Possible therapeutic applications thus rely on the development of efficient non-viral gene delivery vectors. While low molecular weight polyethylenimines (PEIs) have been successfully explored, the introduction of chemical modifications offers an avenue towards the development of more efficient vectors. In this paper, we describe the synthesis of a novel tyrosine-modified low-molecular weight polyethylenimine (P10Y) for efficient siRNA complexation and delivery. The comparison with the respective parent PEI reveals that knockdown efficacies are considerably enhanced by the tyrosine modification, as determined in different reporter cell lines, without appreciable cytotoxicity. We furthermore identify optimal conditions for complex preparation as well as for storing or lyophilization of the complexes without loss of biological activity. Beyond reporter cell lines, P10Y/siRNA complexes mediate the efficient knockdown of endogenous target genes and, upon knockdown of the anti-apoptotic oncogene survivin, tumor cell inhibitory effects in different carcinoma cell lines. Pushing the system further towards its therapeutic in vivo application, we demonstrate in mice the delivery of intact siRNAs and distinct biodistribution profiles upon systemic (intravenous or intraperitoneal) injection. No adverse effects (hepatotoxicity, immunostimulation/alterations in immunophenotype, weight loss) are observed. More importantly, profound tumor-inhibitory effects in a melanoma xenograft mouse model are observed upon systemic application of P10Y/siRNA complexes for survivin knockdown, indicating the therapeutic efficacy of P10Y/siRNA complexes. Taken together, we (i) establish tyrosine-modified PEI (P10Y) as efficient platform for siRNA delivery in vitro and in vivo, (ii) identify optimal

  3. Chromosomal insertion of the entire Escherichia coli lactose operon, into two strains of Pseudomonas, using a modified mini-Tn5 delivery system

    DEFF Research Database (Denmark)

    Hansen, L. H.; Sørensen, S. J.; Jensen, Lars Bogø

    1997-01-01

    A 12-kb PstI fragment including the entire E. coli lactose operon (lacIPOZYA) was inserted in one copy into the chromosome of Pseudomonas putida, Pseudomonas fluorescens and an E. coli strain with lac(-) phenotype. This was made possible by improvements of an already existing mini-Tn5 transposon...... flanked by NotI sites needed in the mini-Tn5 delivery system; (b) the generation of E. coli nonlysogenic strains expressing the pi protein thus being capable of maintaining and delivering R6K-based mini-Tn5 vectors to other E. coli strains; (c) the successful insertion of the E. coli lactose operon...... into the P. fluorescens chromosome giving P. fluorescens the ability to grow on lactose; (d) evidence from Southern blotting that contradicts the assumption that the mini-Tn5 delivery system always creates one-copy inserts. These improvements allow insertion of large DNA fragments encoding highly expressed...

  4. Fluorinated ionic liquids for protein drug delivery systems: Investigating their impact on the structure and function of lysozyme.

    Science.gov (United States)

    Alves, Márcia; Vieira, Nicole S M; Rebelo, Luís Paulo N; Araújo, João M M; Pereiro, Ana B; Archer, Margarida

    2017-06-30

    Since the approval of recombinant human insulin by FDA in 1982, more than 200 proteins are currently available for pharmaceutical use to treat a wide range of diseases. However, innovation is still required to develop effective approaches for drug delivery. Our aim is to investigate the potential use of fluorinated ionic liquids (FILs) as drug delivery systems (DDS) for therapeutic proteins. Some initial parameters need to be assessed before further studies can proceed. This work evaluates the impact of FILs on the stability, function, structure and aggregation state of lysozyme. Different techniques were used for this purpose, which included differential scanning fluorimetry (DSF), spectrophotometric assays, circular dichroism (CD), dynamic light scattering (DLS), and scanning and transmission electron microscopy (SEM/TEM). Ionic liquids composed of cholinium-, imidazolium- or pyridinium- derivatives were combined with different anions and analysed at different concentrations in aqueous solutions (below and above the critical aggregation concentration, CAC). The results herein presented show that the addition of ionic liquids had no significant effect on the stability and hydrolytic activity of lysozyme. Moreover, a distinct behaviour was observed in DLS experiments for non-surfactant and surfactant ionic liquids, with the latter encapsulating the protein at concentrations above the CAC. These results encourage us to further study ionic liquids as promising tools for DDS of protein drugs. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Multitriggered Tumor-Responsive Drug Delivery Vehicles Based on Protein and Polypeptide Coassembly for Enhanced Photodynamic Tumor Ablation.

    Science.gov (United States)

    Zhang, Ning; Zhao, Fenfang; Zou, Qianli; Li, Yongxin; Ma, Guanghui; Yan, Xuehai

    2016-11-01

    Tumor-responsive nanocarriers are highly valuable and demanded for smart drug delivery particularly in the field of photodynamic therapy (PDT), where a quick release of photosensitizers in tumors is preferred. Herein, it is demonstrated that protein-based nanospheres, prepared by the electrostatic assembly of proteins and polypeptides with intermolecular disulfide cross-linking and surface polyethylene glycol coupling, can be used as versatile tumor-responsive drug delivery vehicles for effective PDT. These nanospheres are capable of encapsulation of various photosensitizers including Chlorin e6 (Ce6), protoporphyrin IX, and verteporfin. The Chlorin e6-encapsulated nanospheres (Ce6-Ns) are responsive to changes in pH, redox potential, and proteinase concentration, resulting in multitriggered rapid release of Ce6 in an environment mimicking tumor tissues. In vivo fluorescence imaging results indicate that Ce6-Ns selectively accumulate near tumors and the quick release of Ce6 from Ce6-Ns can be triggered by tumors. In tumors the fluorescence of released Ce6 from Ce6-Ns is observed at 0.5 h postinjection, while in normal tissues the fluorescence appeared at 12 h postinjection. Tumor ablation is demonstrated by in vivo PDT using Ce6-Ns and the biocompatibility of Ce6-Ns is evident from the histopathology imaging, confirming the enhanced in vivo PDT efficacy and the biocompatibility of the assembled drug delivery vehicles. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Translationally controlled tumor protein supplemented chitosan modified glass ionomer cement promotes osteoblast proliferation and function

    International Nuclear Information System (INIS)

    Sangsuwan, Jiraporn; Wanichpakorn, Supreya; Kedjarune-Leggat, Ureporn

    2015-01-01

    The objective of this study was to evaluate the effect of translationally controlled tumor protein (TCTP) supplemented in a novel glass ionomer cement (BIO-GIC) on normal human osteoblasts (NHost cells). BIO-GIC was a glass ionomer cement (GIC) modified by adding chitosan and albumin to promote the release of TCTP. NHost cells were seeded on specimens of GIC, GIC + TCTP, BIO-GIC and BIO-GIC + TCTP. Cell proliferation was determined by BrdU assay. It was found that BIO-GIC + TCTP had significantly higher proliferation of cells than other specimens. Bone morphogenetic protein-2 (BMP-2) and osteopontin (OPN) gene expressions assessed by quantitative real time PCR and alkaline phosphatase (ALP) activity were used to determine cell differentiation. Bone cell function was investigated by calcium deposition using alizarin assay. Both BMP-2 and OPN gene expressions of cells cultured on specimens with added TCTP increased gradually up-regulation after day 1 and reached the highest on day 3 then down-regulation on day 7. The ALP activity of cells cultured on BIO-GIC + TCTP for 7 days and calcium content after 14 days were significantly higher than other groups. BIO-GIC + TCTP can promote osteoblast cells proliferation, differentiation and function. - Highlights: • Developed a new GIC by supplementing TCTP in BIO-GIC (GIC with chitosan and albumin) • BIO-GIC + TCTP released a higher amount of TCTP than GIC + TCTP. • BIO-GIC + TCTP promoted cell proliferation higher than other specimens and control. • BIO-GIC + TCTP promoted osteoblasts differentiation and function

  7. Translationally controlled tumor protein supplemented chitosan modified glass ionomer cement promotes osteoblast proliferation and function

    Energy Technology Data Exchange (ETDEWEB)

    Sangsuwan, Jiraporn [Department of Molecular Biology and Bioinformatics, Center for Genomics and Bioinformatics Research, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90112 (Thailand); Department of Oral Biology and Occlusion, Faculty of Dentistry, Prince of Songkla University, Hat Yai, Songkhla 90112 (Thailand); Wanichpakorn, Supreya; Kedjarune-Leggat, Ureporn [Department of Oral Biology and Occlusion, Faculty of Dentistry, Prince of Songkla University, Hat Yai, Songkhla 90112 (Thailand)

    2015-09-01

    The objective of this study was to evaluate the effect of translationally controlled tumor protein (TCTP) supplemented in a novel glass ionomer cement (BIO-GIC) on normal human osteoblasts (NHost cells). BIO-GIC was a glass ionomer cement (GIC) modified by adding chitosan and albumin to promote the release of TCTP. NHost cells were seeded on specimens of GIC, GIC + TCTP, BIO-GIC and BIO-GIC + TCTP. Cell proliferation was determined by BrdU assay. It was found that BIO-GIC + TCTP had significantly higher proliferation of cells than other specimens. Bone morphogenetic protein-2 (BMP-2) and osteopontin (OPN) gene expressions assessed by quantitative real time PCR and alkaline phosphatase (ALP) activity were used to determine cell differentiation. Bone cell function was investigated by calcium deposition using alizarin assay. Both BMP-2 and OPN gene expressions of cells cultured on specimens with added TCTP increased gradually up-regulation after day 1 and reached the highest on day 3 then down-regulation on day 7. The ALP activity of cells cultured on BIO-GIC + TCTP for 7 days and calcium content after 14 days were significantly higher than other groups. BIO-GIC + TCTP can promote osteoblast cells proliferation, differentiation and function. - Highlights: • Developed a new GIC by supplementing TCTP in BIO-GIC (GIC with chitosan and albumin) • BIO-GIC + TCTP released a higher amount of TCTP than GIC + TCTP. • BIO-GIC + TCTP promoted cell proliferation higher than other specimens and control. • BIO-GIC + TCTP promoted osteoblasts differentiation and function.

  8. Fasudil and DETA NONOate, Loaded in a Peptide-Modified Liposomal Carrier, Slow PAH Progression upon Pulmonary Delivery.

    Science.gov (United States)

    Rashid, Jahidur; Nahar, Kamrun; Raut, Snehal; Keshavarz, Ali; Ahsan, Fakhrul

    2018-05-07

    We investigated the feasibility of a combination therapy comprising fasudil, a Rho-kinase inhibitor, and DETA NONOate (diethylenetriamine NONOate, DN), a long-acting nitric oxide donor, both loaded in liposomes modified with a homing peptide, CAR (CARSKNKDC), in the treatment of pulmonary arterial hypertension (PAH). We first prepared and characterized unmodified and CAR-modified liposomes of fasudil and DN. Using individual drugs alone or a mixture of fasudil and DN as controls, we studied the efficacy of the two liposomal preparations in reducing mean pulmonary arterial pressure (mPAP) in monocrotaline (MCT) and SUGEN-hypoxia-induced PAH rats. We also conducted morphometric studies (degree of muscularization, arterial medial wall thickness, and collagen deposition) after treating the PAH rats with test and control formulations. When the rats were treated acutely and chronically, the reduction in mPAP was more pronounced in the liposomal formulation-treated rats than in plain drug-treated rats. CAR-modified liposomes were more selective in reducing mPAP than unmodified liposomes of the drugs. Both drugs, formulated in CAR-modified liposomes, reduced the degree of muscularization, medial arterial wall thickness, and collagen deposition more than the combination of plain drugs did. As seen with the in vivo data, CAR-modified liposomes of fasudil or DN increased the levels of the vasodilatory signaling molecule, cGMP, in the smooth muscle cells of PAH-afflicted human pulmonary arteries. Overall, fasudil and DN, formulated in liposomes, could be used as a combination therapy for a better management of PAH.

  9. Middle east respiratory syndrome coronavirus spike protein delivered by modified vaccinia virus ankara efficiently induces virus-neutralizing antibodies

    NARCIS (Netherlands)

    F. Song (Fei); R. Fux (Robert); L.B.V. Provacia (Lisette); A. Volz (Asisa); M. Eickmann; S. Becker (Stephan); A.D.M.E. Osterhaus (Albert); B.L. Haagmans (Bart); G. Suttera (Gerd)

    2013-01-01

    textabstractMiddle East respiratory syndrome coronavirus (MERS-CoV) has recently emerged as a causative agent of severe respiratory disease in humans. Here, we constructed recombinant modified vaccinia virus Ankara (MVA) expressing full-length MERS-CoV spike (S) protein (MVA-MERS-S). The genetic

  10. Preparation of C-terminally modified chemokines by expressed protein ligation.

    Science.gov (United States)

    Baumann, Lars; Steinhagen, Max; Beck-Sickinger, Annette G

    2013-01-01

    In order to link structural features on a molecular level to the function of chemokines, site-specific modification strategies are strongly required. These can be used to incorporate fluorescent dyes and/or physical probes to allow investigations in a wide range of biological and physical techniques, e.g., nuclear magnetic resonance (NMR) spectroscopy, fluorescence microscopy, fluorescence resonance energy transfer (FRET), or fluorescence correlation spectroscopy (FCS). Only a limited number of functional groups within the 20 canonical amino acids allow ligation strategies that can be helpful to introduce novel functionalities, which in turn expand the scope of chemoselective and orthogonal reactivity of (semi)synthetic chemokines. In the present chapter we mainly focus on the fabulous history of native chemical ligation (NCL) and provide a general protocol for the preparation of C-terminally modified SDF-1α including tips and tricks for practical work. We believe that this protocol can be easily adapted to other chemokines and many proteins in general.

  11. Branched-chain Amino Acid Biosensing Using Fluorescent Modified Engineered Leucine/Isoleucine/Valine Binding Protein

    Directory of Open Access Journals (Sweden)

    Koji Sode

    2007-06-01

    Full Text Available A novel fluorescence sensing system for branched-chain amino acids (BCAAswas developed based on engineered leucine/isoleucine/valine-binding proteins (LIVBPsconjugated with environmentally sensitive fluorescence probes. LIVBP was cloned fromEscherichia coli and Gln149Cys, Gly227Cys, and Gln254Cys mutants were generated bygenetic engineering. The mutant LIVBPs were then modified with environmentallysensitive fluorophores. Based on the fluorescence intensity change observed upon thebinding of the ligands, the MIANS-conjugated Gln149Cys mutant (Gln149Cys-M showedthe highest and most sensitive response. The BCAAs Leu, Ile, and Val can each bemonitored at the sub-micromolar level using Gln149Cys-M. Measurements were alsocarried out on a mixture of BCAFAs and revealed that Gln149Cys-M-based measurementis not significantly affected by the change in the molar ratio of Leu, Ile and Val in thesample. Its high sensitivity and group-specific molecular recognition ability make the newsensing system ideally suited for the measurement of BCAAs and the determination of theFischer ratio, an indicator of hepatic disease involving metabolic dysfunction.

  12. Modifying the properties of whey protein isolate edible film by incorporating palm oil and glycerol

    Directory of Open Access Journals (Sweden)

    Vachiraya Liaotrakoon

    2018-02-01

    Full Text Available This study aimed to improve the properties of whey protein isolate (WPI films by incorporating palm oil (6, 7, and 8% w/w and glycerol (40, 50 and 60% w/w. The lightness of the films increased as glycerol levels increased, but the redness increased with the increased amount of oil content. Increasing the amounts of palm oil and glycerol improved flexibility (P<0.05, but reduced the strength of the film (P<0.05. Films with higher levels of palm oil and lower amounts of glycerol were less permeable to water vapor and oxygen, but more thermally stable. The size of particles and air bubbles in the films reduced with increased palm oil content, regardless of glycerol level. Among all formulae, the film prepared with 8% palm oil and 40% glycerol showed the best overall results. Modifying WPI films with palm oil and glycerol offers a simple technique for producing packaging with better environmental barrier properties.

  13. Targeted delivery of chemically modified anti-miR-221 to hepatocellular carcinoma with negatively charged liposomes

    Directory of Open Access Journals (Sweden)

    Zhang W

    2015-07-01

    Full Text Available Wendian Zhang,1 Fangqi Peng,1 Taotao Zhou,1 Yifei Huang,2 Li Zhang,3 Peng Ye,4 Miao Lu,1 Guang Yang,5 Yongkang Gai,1 Tan Yang,1 Xiang Ma,1 Guangya Xiang1 1School of Pharmacy, Tongji Medical College, 2Department of Pharmacy, 3Department of Ultrasound, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 4Department of Pharmacy, Wuhan University, Renmin Hospital, 5School of Medicine, Jianghan University, Wuhan, People’s Republic of China Abstract: Hepatocellular carcinoma (HCC is one of the leading causes of cancer-related death. Gene therapy was established as a new strategy for treating HCC. To explore the potential delivery system to support the gene therapy of HCC, negatively charged liposomal delivery system was used to deliver miR-221 antisense oligonucleotide (anti-miR-221 to the transferrin (Tf receptor over expressed HepG2 cells. The liposome exhibited a mean particle size of 122.5 nm, zeta potential of -15.74 mV, anti-miR-221 encapsulation efficiency of 70%, and excellent colloidal stability at 4°C. Anti-miR-221-encapsulated Tf-targeted liposome demonstrated a 15-fold higher delivery efficiency compared to nontargeted liposome in HepG2 cells in vitro. Anti-miR-221 Tf-targeted liposome effectively delivered anti-miR-221 to HepG2 cells, upregulated miR-221 target genes PTEN, P27kip1, and TIMP3, and exhibited greater silencing efficiency over nontargeted anti-miR-221 liposome. After intravenous injection into HepG2 tumor-bearing xenografted mice with Cy3-labeled anti-miR-221 Tf-targeted liposome, Cy3-anti-miR-221 was successfully delivered to the tumor site and increased the expressions of PTEN, P27kip1, and TIMP3. Our results demonstrate that the Tf-targeted negatively charged liposome could be a potential therapeutic modality in the gene therapy of human HCC. Keywords: transferrin, gene, HCC, target delivery system, anionic liposome 

  14. Enteral delivery of proteins stimulates protein synthesis in human duodenal mucosa in the fed state through a mammalian target of rapamycin-independent pathway.

    Science.gov (United States)

    Coëffier, Moïse; Claeyssens, Sophie; Bôle-Feysot, Christine; Guérin, Charlène; Maurer, Brigitte; Lecleire, Stéphane; Lavoinne, Alain; Donnadieu, Nathalie; Cailleux, Anne-Françoise; Déchelotte, Pierre

    2013-02-01

    Glutamine modulates duodenal protein metabolism in fasted healthy humans, but its effects in a fed state remain unknown. We aimed to assess the effects of either glutamine or an isonitrogenous protein mixture on duodenal protein metabolism in humans in the fed state. Twenty-four healthy volunteers were randomly included in 2 groups. Each volunteer was studied on 2 occasions in a random order and received, during 5 h, either an enteral infusion of maltodextrins alone (0.25 g · kg⁻¹ · h⁻¹; both groups) that mimicked a carbohydrate fed state or maltodextrins with glutamine (group 1) or an isonitrogenous (22.4 mg N · kg⁻¹ · h⁻¹) protein powder (group 2). Simultaneously, a continuous intravenous infusion of ¹³C-leucine and ²H₅-phenylalanine (both 9 μmol · kg⁻¹ · h⁻¹) was performed. Endoscopic duodenal biopsies were taken. Leucine and phenylalanine enrichments were assessed by using gas chromatography-mass spectrometry in duodenal proteins and the intracellular free amino acids pool to calculate the mucosal fractional synthesis rate (FSR). Proteasome proteolytic activities and phosphokinase expression were assessed by using specific fluorogenic substrates and macroarrays, respectively. The FSR and proteasome activity were not different after the glutamine supply compared with after maltodextrins alone. In contrast, the FSR increased (1.7-fold increase; P protein-powder delivery without modification of total proteasome activity. The protein powder increased insulinemia, PI3 kinase, and erk phosphorylation but did not affect the mammalian target of rapamycin (mTOR) pathway and mitogen-activated protein kinase signal-integrating kinase 1 phosphorylation. A trend for an increase of eukaryotic translation initiation factor 4E phosphorylation was observed (P = 0.07). In the carbohydrate fed state, enteral proteins but not glutamine increased duodenal protein synthesis through an mTOR independent pathway in humans.

  15. Synthesis, characterization and in vitro evaluation of magnetic nanoparticles modified with PCL-PEG-PCL for controlled delivery of 5FU.

    Science.gov (United States)

    Asadi, Nahideh; Annabi, Nasim; Mostafavi, Ebrahim; Anzabi, Maryam; Khalilov, Rovshan; Saghfi, Siamak; Mehrizadeh, Masoud; Akbarzadeh, Abolfazl

    2018-02-22

    Magnetic nanoparticles have properties that cause to apply them in cancer therapy and vehicles for the delivery of drugs such as 5FU, especially when they are modified with biocompatible copolymers. The aim of this study is to modify superparamagnetic iron oxide nanoparticles (SPIONPs) with PCL-PEG-PCL copolymers and then utilization of these nanoparticles for encapsulation of anticancer drug 5FU. The ring-opening polymerization (ROP) was used for the synthesis of PCL-PEG-PCL copolymer by ε-caprolactone (PCL) and polyethylene glycol (PEG2000). We used the double emulsion method (water/oil/water) to prepare 5FU-encapsulated Fe 3 O 4 magnetic nanoparticles modified with PCL-PEG-PCL copolymer. Chemical structure and magnetic properties of 5FU-loaded magnetic-polymer nanoparticles were investigated systematically by employing FT-IR, XRD, VSM and SEM techniques. In vitro release profile of 5FU-loaded NPs was also determined. The results showed that the encapsulation efficiency value for nanoparticles were 90%. Moreover, the release of 5FU is significantly higher at pH 5.8 compared to pH 7.4. Therefore, these nanoparticles have sustained release and can apply for cancer therapy.

  16. Intranasal delivery of a protein subunit vaccine using a Tobacco Mosaic Virus platform protects against pneumonic plague.

    Science.gov (United States)

    Arnaboldi, Paul M; Sambir, Mariya; D'Arco, Christina; Peters, Lauren A; Seegers, Jos F M L; Mayer, Lloyd; McCormick, Alison A; Dattwyler, Raymond J

    2016-11-11

    Yersinia pestis, one of history's deadliest pathogens, has killed millions over the course of human history. It has attributes that make it an ideal choice to produce mass casualties and is a prime candidate for use as a biological weapon. When aerosolized, Y. pestis causes pneumonic plague, a pneumonia that is 100% lethal if not promptly treated with effective antibiotics. Currently, there is no FDA approved plague vaccine. The current lead vaccine candidate, a parenterally administered protein subunit vaccine comprised of the Y. pestis virulence factors, F1 and LcrV, demonstrated variable levels of protection in primate pneumonic plague models. As the most likely mode of exposure in biological attack with Y. pestis is by aerosol, this raises a question of whether this parenteral vaccine will adequately protect humans against pneumonic plague. In the present study we evaluated two distinct mucosal delivery platforms for the intranasal (IN) administration of LcrV and F1 vaccine proteins, a live bacterial vector, Lactobacillus plantarum, and a Tobacco Mosaic Virus (TMV) based delivery platform. IN administration of L. plantarum expressing LcrV, or TMV-conjugated to LcrV and F1 (TMV-LcrV+TMV-F1) resulted in the similar induction of high titers of IgG antibodies and evidence of proinflammatory cytokine secretion. However, only the TMV-conjugate delivery platform protected against subsequent lethal challenge with Y. pestis. TMV-LcrV+TMV-F1 co-vaccinated mice had no discernable morbidity and no mortality, while mice vaccinated with L. plantarum expressing LcrV or rLcrV+rF1 without TMV succumbed to infection or were only partially protected. Thus, TMV is a suitable mucosal delivery platform for an F1-LcrV subunit vaccine that induces complete protection against pneumonic infection with a lethal dose of Y. pestis in mice. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Physical Stability of Octenyl Succinate-Modified Polysaccharides and Whey Proteins for Potential Use as Bioactive Carriers in Food Systems.

    Science.gov (United States)

    Puerta-Gomez, Alex F; Castell-Perez, M Elena

    2015-06-01

    The high cost and potential toxicity of biodegradable polymers like poly(lactic-co-glycolic)acid (PLGA) has increased the interest in natural and modified biopolymers as bioactive carriers. This study characterized the physical stability (water sorption and state transition behavior) of selected starch and proteins: octenyl succinate-modified depolymerized waxy corn starch (DWxCn), waxy rice starch (DWxRc), phytoglycogen, whey protein concentrate (80%, WPC), whey protein isolate (WPI), and α-lactalbumin (α-L) to determine their potential as carriers of bioactive compounds under different environmental conditions. After enzyme modification and particle size characterization, glass transition temperature and moisture isotherms were used to characterize the systems. DWxCn and DWxRc had increased water sorption compared to native starch. The level of octenyl succinate anhydrate (OSA) modification (3% and 7%) did not reduce the water sorption of the DWxCn and phytoglycogen samples. The Guggenheim-Andersen-de Boer model indicated that native waxy corn had significantly (P whey proteins had higher glass transition temperature (Tg) values. On the other hand, depolymerized waxy starches at 7%-OSA modification had a "melted" appearance when exposed to environments with high relative humidity (above 70%) after 10 days at 23 °C. The use of depolymerized and OSA-modified polysaccharides blended with proteins created more stable blends of biopolymers. Hence, this biopolymer would be suitable for materials exposed to high humidity environments in food applications. © 2015 Institute of Food Technologists®

  18. Optimized Mitochondrial Targeting of Proteins Encoded by Modified mRNAs Rescues Cells Harboring Mutations in mtATP6

    Directory of Open Access Journals (Sweden)

    Randall Marcelo Chin

    2018-03-01

    Full Text Available Summary: Mitochondrial disease may be caused by mutations in the protein-coding genes of the mitochondrial genome. A promising strategy for treating such diseases is allotopic expression—the translation of wild-type copies of these proteins in the cytosol, with subsequent translocation into the mitochondria, resulting in rescue of mitochondrial function. In this paper, we develop an automated, quantitative, and unbiased screening platform to evaluate protein localization and mitochondrial morphology. This platform was used to compare 31 mitochondrial targeting sequences and 15 3′ UTRs in their ability to localize up to 9 allotopically expressed proteins to the mitochondria and their subsequent impact on mitochondrial morphology. Taking these two factors together, we synthesized chemically modified mRNAs that encode for an optimized allotopic expression construct for mtATP6. These mRNAs were able to functionally rescue a cell line harboring the 8993T > G point mutation in the mtATP6 gene. : Allotopic expression of proteins normally encoded by mtDNA is a promising therapy for mitochondrial disease. Chin et al. use an unbiased and high-content imaging-based screening platform to optimize allotopic expression. Modified mRNAs encoding for the optimized allotopic expression constructs rescued the respiration and growth of mtATP6-deficient cells. Keywords: mitochondria, mitochondrial disease, mRNA, modified mRNA, ATP6, allotopic expression, rare disease, gene therapy, screening, high content imaging

  19. Effect of tween 80 on nanoparticle preparation of modified chitosan for targeted delivery of combination doxorubicin and curcumin analogue

    Science.gov (United States)

    Sukmawati, Anita; Utami, Wahyu; Yuliani, Ratna; Da'i, Muhammad; Nafarin, Akhmad

    2018-02-01

    Delivery of anticancer is facing several problems including unspecific delivery of active substance to the targeted cell. The conjugation between chitosan and folate (chitosan-FA) was used for nanoparticle preparation containing combination of doxorubicin (DOX) and curcumin analogue, 2,5-bis-(4-hydroxi,3,5-dimethyl)-benzylidincylopentanone, as active substances. The purpose of this research is investigating formulation aspect for chitosan-FA nanoparticle by addition various tween 80 to achieve desired nano-size particle. The ionic gelation method was used for nanoparticle preparation using 0.05% w/v chitosan-FA with addition of 0.1 and 0.5% v/v of tween 80. The result showed that the high concentration of tween 80 during nanoparticle preparation lead to formation of smaller size particle. The 111.8 ±4.11 nm particle size was revealed by addition of 0.5% v/v tween 80 during chitosan-FA nanoparticle preparation loaded with active substances.

  20. Lactoferrin-modified rotigotine nanoparticles for enhanced nose-to-brain delivery: LESA-MS/MS-based drug biodistribution, pharmacodynamics, and neuroprotective effects

    Directory of Open Access Journals (Sweden)

    Yan X

    2018-01-01

    Full Text Available Xiuju Yan,1,* Lixiao Xu,1,* Chenchen Bi,1 Dongyu Duan,1 Liuxiang Chu,1 Xin Yu,1 Zimei Wu,1 Aiping Wang,1,2 Kaoxiang Sun1,2 1School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University, Ministry of Education, Yantai University, Yantai, Shandong Province, 2State Key Laboratory of Long-Acting and Targeting Drug Delivery System, Shandong Luye Pharmaceutical Co., Ltd, Yantai, Shandong Province, People’s Republic of China *These authors contributed equally to this work Introduction: Efficient delivery of rotigotine into the brain is crucial for obtaining maximum therapeutic efficacy for Parkinson’s disease (PD. Therefore, in the present study, we prepared lactoferrin-modified rotigotine nanoparticles (Lf-R-NPs and studied their biodistribution, pharmacodynamics, and neuroprotective effects following nose-to-brain delivery in the rat 6-hydroxydopamine model of PD.Materials and methods: The biodistribution of rotigotine nanoparticles (R-NPs and Lf-R-NPs after intranasal administration was assessed by liquid extraction surface analysis coupled with tandem mass spectrometry. Contralateral rotations were quantified to evaluate pharmacodynamics. Tyrosine hydroxylase and dopamine transporter immunohistochemistry were performed to compare the neuroprotective effects of levodopa, R-NPs, and Lf-R-NPs.Results: Liquid extraction surface analysis coupled with tandem mass spectrometry analysis, used to examine rotigotine biodistribution, showed that Lf-R-NPs more efficiently supplied rotigotine to the brain (with a greater sustained amount of the drug delivered to this organ, and with more effective targeting to the striatum than R-NPs. The pharmacodynamic study revealed a significant difference (P<0.05 in contralateral rotations between rats treated with Lf-R-NPs and those treated with R-NPs. Furthermore, Lf

  1. Temporal Changes of Protein Composition in Breast Milk of Chinese Urban Mothers and Impact of Caesarean Section Delivery

    Directory of Open Access Journals (Sweden)

    Michael Affolter

    2016-08-01

    Full Text Available Human breast milk (BM protein composition may be impacted by lactation stage or factors related to geographical location. The present study aimed at assessing the temporal changes of BM major proteins over lactation stages and the impact of mode of delivery on immune factors, in a large cohort of urban mothers in China. 450 BM samples, collected in three Chinese cities, covering 8 months of lactation were analyzed for α-lactalbumin, lactoferrin, serum albumin, total caseins, immunoglobulins (IgA, IgM and IgG and transforming growth factor (TGF β1 and β2 content by microfluidic chip- or ELISA-based quantitative methods. Concentrations and changes over lactation were aligned with previous reports. α-lactalbumin, lactoferrin, IgA, IgM and TGF-β1 contents followed similar variations characterized by highest concentrations in early lactation that rapidly decreased before remaining stable up to end of lactation. TGF-β2 content displayed same early dynamics before increasing again. Total caseins followed a different pattern, showing initial increase before decreasing back to starting values. Serum albumin and IgG levels appeared stable throughout lactation. In conclusion, BM content in major proteins of urban mothers in China was comparable with previous studies carried out in other parts of the world and C-section delivery had only very limited impact on BM immune factors.

  2. Maternal and Cord Blood Levels of Serum Amyloid A, C-Reactive Protein, Tumor Necrosis Factor-α, Interleukin -1β, and Interleukin-8 During and After Delivery

    Directory of Open Access Journals (Sweden)

    Luciane Marzzullo Cicarelli

    2005-01-01

    after delivery and try to correlate these proteins with tumor necrosis factor-α, interleukin -1β, and interleukin-8. Acute-phase proteins and cytokines were measured by ELISA in 24 healthy pregnant women undergoing vaginal delivery or Cesarean section. Cord blood samples in addition to maternal blood were collected. SAA and CRP reached the maximum maternal serum levels 24 hours after delivery, while cytokines remained constant over time. SAA and CRP were significantly higher in maternal serum than in newborn's (P<.001 at the moment of delivery. SAA and CRP, regardless of the type of delivery, reproduce the common pattern observed in most inflammatory conditions. Proinflammatory cytokine serum levels do not mirror the increase in SAA and CRP levels.

  3. Integration of carboxyl modified magnetic particles and aqueous two-phase extraction for selective separation of proteins.

    Science.gov (United States)

    Gai, Qingqing; Qu, Feng; Zhang, Tao; Zhang, Yukui

    2011-07-15

    Both of the magnetic particle adsorption and aqueous two-phase extraction (ATPE) were simple, fast and low-cost method for protein separation. Selective proteins adsorption by carboxyl modified magnetic particles was investigated according to protein isoelectric point, solution pH and ionic strength. Aqueous two-phase system of PEG/sulphate exhibited selective separation and extraction for proteins before and after magnetic adsorption. The two combination ways, magnetic adsorption followed by ATPE and ATPE followed by magnetic adsorption, for the separation of proteins mixture of lysozyme, bovine serum albumin, trypsin, cytochrome C and myloglobin were discussed and compared. The way of magnetic adsorption followed by ATPE was also applied to human serum separation. Copyright © 2011 Elsevier B.V. All rights reserved.

  4. Nanoparticles for cytosolic delivery of important biomolecular drugs such as DNA, RNA, peptides, and proteins

    Czech Academy of Sciences Publication Activity Database

    Sedlák, M.; Koňák, Čestmír; Dybal, Jiří

    2010-01-01

    Roč. 1, č. 2010 (2010), s. 87-90 ISSN 2210-2892 Institutional research plan: CEZ:AV0Z40500505 Keywords : cytosolic delivery * nanoparticle carriers * poly(ethylacrylic acid) Subject RIV: CD - Macromolecular Chemistry http://benthamopen.com/ABSTRACT/TOPROCJ-1-87

  5. Arginine-Glycine-Aspartic Acid-Modified Lipid-Polymer Hybrid Nanoparticles for Docetaxel Delivery in Glioblastoma Multiforme.

    Science.gov (United States)

    Shi, Kairong; Zhou, Jin; Zhang, Qianyu; Gao, Huile; Liu, Yayuan; Zong, Taili; He, Qin

    2015-03-01

    Hybrid nanoparticles consisting of lipids and the biodegradable polymer, poly (D,L-lactide-co-glycolide) (PLGA), were developed for the targeted delivery of the anticancer drug, docetaxel. Transmission electron microscopic observations confirmed the presence of a lipid coating over the polymeric core. Using coumarin-6 as a fluorescent probe, the uptake efficacy of RGD conjugated lipid coated nanoparticles (RGD-L-P) by C6 cells was increased significantly, compared with that of lipid-polymer hybrid nanoparticles (L-P; 2.5-fold higher) or PLGA-nanoparticles (PLGA-P; 1.76-fold higher). The superior tumor spheroid penetration of RGD-L-P indicated that RGD-L-P could target effectively and specifically to C6 cells overexpressing integrin α(v)β3. The anti-proliferative activity of docetaxel-loaded RGD-L-P against C6 cells was increased 2.69- and 4.13-fold compared with L-P and PLGA-P, respectively. Regarding biodistribution, the strongest brain-localized fluorescence signals were detected in glioblastoma multiforme (GBM)-bearing rats treated with 1,10-Dioctadecyl-3,3,30,30-tetramethylindotricarb-ocyanine iodide (DiR)-loaded RGD-L-P, compared to rats treated with DiR-loaded L-P or PLGA-P. The median survival time of GBM-bearing rats treated with docetaxel-loaded RGD-L-P was 57 days, a fold increase of 1.43, 1.78, 3.35, and 3.56 compared with animals given L-P (P PLGA-P (P < 0.05), Taxotere (P < 0.01) and saline (P < 0.01), respectively. Collectively, these results support RGD-L-P as a promising drug delivery system for the specific targeting and the treatment of GBM.

  6. Modified Chitosan Nanoparticle by Radiation Synthesis: An Approach to Drug Delivery and Bio-Based Additive for Biomedical Applications

    International Nuclear Information System (INIS)

    Pasanphan, W.; Rimdusit, P.; Rattanawongwiboon, T.; Choofong, S.

    2010-01-01

    Self-assembly chitosan nanoparticle (CsNP) has been synthesized via radiolytic methodology using gamma irradiation. The systematic condition in preparation was studied. Chitosan nanoparticle was modified using hydrophobic core of deoxycholic acid (DC) and stearyl methacrylate (SMA) and the hydrophilic shell of polyethylene glycol monomethacrylate (PEG). The hydrophobic/hydrophilic CsNP was prepared for drug carrier molecule. The SMA-CsNP was also conjugated with pyperidine, hindered amine light stabilizer function, to achieve a bio-based additive for biomedical plastic. (author)

  7. Modified Chitosan Nanoparticle by Radiation Synthesis: An Approach to Drug Delivery and Bio-Based Additive for Biomedical Applications

    Energy Technology Data Exchange (ETDEWEB)

    Pasanphan, W.; Rimdusit, P.; Rattanawongwiboon, T.; Choofong, S., E-mail: sciwvm@ku.ac.th, E-mail: pwanvimol@yahoo.com [Kasetsart University, Faculty of Science, Department of Applied Radiation and Isotopes, 50 Phahonyothin Road, Chatuchak, Bangkok 1090 (Thailand)

    2010-07-01

    Self-assembly chitosan nanoparticle (CsNP) has been synthesized via radiolytic methodology using gamma irradiation. The systematic condition in preparation was studied. Chitosan nanoparticle was modified using hydrophobic core of deoxycholic acid (DC) and stearyl methacrylate (SMA) and the hydrophilic shell of polyethylene glycol monomethacrylate (PEG). The hydrophobic/hydrophilic CsNP was prepared for drug carrier molecule. The SMA-CsNP was also conjugated with pyperidine, hindered amine light stabilizer function, to achieve a bio-based additive for biomedical plastic. (author)

  8. Evaluation of a combined drug-delivery system for proteins assembled with polymeric nanoparticles and porous microspheres; characterization and protein integrity studies.

    Science.gov (United States)

    Alcalá-Alcalá, Sergio; Benítez-Cardoza, Claudia G; Lima-Muñoz, Enrique J; Piñón-Segundo, Elizabeth; Quintanar-Guerrero, David

    2015-07-15

    This work presents an evaluation of the adsorption/infiltration process in relation to the loading of a model protein, α-amylase, into an assembled biodegradable polymeric system, free of organic solvents and made up of poly(D,L-lactide-co-glycolide) acid (PLGA). Systems were assembled in a friendly aqueous medium by adsorbing and infiltrating polymeric nanoparticles into porous microspheres. These assembled systems are able to load therapeutic amounts of the drug through adsorption of the protein onto the large surface area characteristic of polymeric nanoparticles. The subsequent infiltration of nanoparticles adsorbed with the protein into porous microspheres enabled the controlled release of the protein as a function of the amount of infiltrated nanoparticles, since the surface area available on the porous structure is saturated at different levels, thus modifying the protein release rate. Findings were confirmed by both the BET technique (N2 isotherms) and in vitro release studies. During the adsorption process, the pH of the medium plays an important role by creating an environment that favors adsorption between the surfaces of the micro- and nano-structures and the protein. Finally, assays of α-amylase activity using 2-chloro-4-nitrophenyl-α-D-maltotrioside (CNP-G3) as the substrate and the circular dichroism technique confirmed that when this new approach was used no conformational changes were observed in the protein after release. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Surfactant protein A (SP-A) inhibits agglomeration and macrophage uptake of toxic amine modified nanoparticles.

    Science.gov (United States)

    McKenzie, Zofi; Kendall, Michaela; Mackay, Rose-Marie; Whitwell, Harry; Elgy, Christine; Ding, Ping; Mahajan, Sumeet; Morgan, Cliff; Griffiths, Mark; Clark, Howard; Madsen, Jens

    2015-01-01

    The lung provides the main route for nanomaterial exposure. Surfactant protein A (SP-A) is an important respiratory innate immune molecule with the ability to bind or opsonise pathogens to enhance phagocytic removal from the airways. We hypothesised that SP-A, like surfactant protein D, may interact with inhaled nanoparticulates, and that this interaction will be affected by nanoparticle (NP) surface characteristics. In this study, we characterise the interaction of SP-A with unmodified (U-PS) and amine-modified (A-PS) polystyrene particles of varying size and zeta potential using dynamic light scatter analysis. SP-A associated with both 100 nm U-PS and A-PS in a calcium-independent manner. SP-A induced significant calcium-dependent agglomeration of 100 nm U-PS NPs but resulted in calcium-independent inhibition of A-PS self agglomeration. SP-A enhanced uptake of 100 nm U-PS into macrophage-like RAW264.7 cells in a dose-dependent manner but in contrast inhibited A-PS uptake. Reduced association of A-PS particles in RAW264.7 cells following pre-incubation of SP-A was also observed with coherent anti-Stokes Raman spectroscopy. Consistent with these findings, alveolar macrophages (AMs) from SP-A(-/-) mice were more efficient at uptake of 100 nm A-PS compared with wild type C57Bl/6 macrophages. No difference in uptake was observed with 500 nm U-PS or A-PS particles. Pre-incubation with SP-A resulted in a significant decrease in uptake of 100 nm A-PS in macrophages isolated from both groups of mice. In contrast, increased uptake by AMs of U-PS was observed after pre-incubation with SP-A. Thus we have demonstrated that SP-A promotes uptake of non-toxic U-PS particles but inhibits the clearance of potentially toxic A-PS particles by blocking uptake into macrophages.

  10. Analysis of potential protein-modifying variants in 9000 endometriosis patients and 150000 controls of European ancestry

    DEFF Research Database (Denmark)

    Sapkota, Yadav; Vivo, Immaculata De; Steinthorsdottir, Valgerdur

    2017-01-01

    -modifying variants in endometriosis using exome-array genotyping in 7164 cases and 21005 controls, and a replication set of 1840 cases and 129016 controls of European ancestry. Results in the discovery sample identified significant evidence for association with coding variants in single-variant (rs1801232-CUBN...... sufficient power, our results did not identify any protein-modifying variants (MAF > 0.01) with moderate or large effect sizes in endometriosis, although these variants may exist in non-European populations or in high-risk families. The results suggest continued discovery efforts should focus on genotyping...

  11. TaBoo SeArch Algorithm with a Modified Inverse Histogram for Reproducing Biologically Relevant Rare Events of Proteins.

    Science.gov (United States)

    Harada, Ryuhei; Takano, Yu; Shigeta, Yasuteru

    2016-05-10

    The TaBoo SeArch (TBSA) algorithm [ Harada et al. J. Comput. Chem. 2015 , 36 , 763 - 772 and Harada et al. Chem. Phys. Lett. 2015 , 630 , 68 - 75 ] was recently proposed as an enhanced conformational sampling method for reproducing biologically relevant rare events of a given protein. In TBSA, an inverse histogram of the original distribution, mapped onto a set of reaction coordinates, is constructed from trajectories obtained by multiple short-time molecular dynamics (MD) simulations. Rarely occurring states of a given protein are statistically selected as new initial states based on the inverse histogram, and resampling is performed by restarting the MD simulations from the new initial states to promote the conformational transition. In this process, the definition of the inverse histogram, which characterizes the rarely occurring states, is crucial for the efficiency of TBSA. In this study, we propose a simple modification of the inverse histogram to further accelerate the convergence of TBSA. As demonstrations of the modified TBSA, we applied it to (a) hydrogen bonding rearrangements of Met-enkephalin, (b) large-amplitude domain motions of Glutamine-Binding Protein, and (c) folding processes of the B domain of Staphylococcus aureus Protein A. All demonstrations numerically proved that the modified TBSA reproduced these biologically relevant rare events with nanosecond-order simulation times, although a set of microsecond-order, canonical MD simulations failed to reproduce the rare events, indicating the high efficiency of the modified TBSA.

  12. Si-modified BHA bioceramics as a drug delivery system: Effect of modification method on structure and Rifampicin release

    Directory of Open Access Journals (Sweden)

    Olena Sych

    2015-09-01

    Full Text Available The work is devoted to the investigation of two different methods for introduction of silicon into ceramics, based on biogenic hydroxyapatite (BHA, on the structure and properties. Thus, porous samples of Si-modified BHA-based ceramics containing 2 or 5 wt.% Si were prepared by using two different precursors, i.e. polymethylsiloxane polyhydrate and fine silica (Aerosil® 200 powder. After the modification with silicon a marked change in the structure of material was observed. The use of Aerosil® 200 permits preparation of a more uniform structure as compared to that obtained by using polymethylsiloxane polyhydrate. However, the latter promotes an increase in both the porosity of samples (from 43 to 62.3% and their solubility in saline (from 0.18 to 1.20 wt.%/day as compared to the results obtained after the modification with Aerosil® 200, where maximal porosity and solubility were 48.5% and 0.23 wt.%/day, respectively. At the same time, the modification of hydroxyapatite ceramics with silicon using silica makes it possible to prolong release of a drug (e.g. Rifampicin out of sample pores for the first 24 h as compared to the ceramics modified with polymethylsiloxane polyhydrate.

  13. Modifying a standard method allows simultaneous extraction of RNA and protein, enabling detection of enzymes in the rat retina with low expressions and protein levels.

    Science.gov (United States)

    Agardh, Elisabet; Gustavsson, Carin; Hagert, Per; Nilsson, Marie; Agardh, Carl-David

    2006-02-01

    The aim of the study was to evaluate messenger RNA and protein expression in limited amounts of tissue with low protein content. The Chomczynski method was used for simultaneous extraction of RNA, and protein was modified in the protein isolation step. Template mass and cycling time for the complementary DNA synthesis step of real-time reverse transcription-polymerase chain reaction (RT-PCR) for analysis of catalase, copper/zinc superoxide dismutase, manganese superoxide dismutase, the catalytic subunit of glutamylcysteine ligase, glutathione peroxidase 1, and the endogenous control cyclophilin B (CypB) were optimized before PCR. Polymerase chain reaction accuracy and efficacy were demonstrated by calculating the regression (R2) values of the separate amplification curves. Appropriate antibodies, blocking buffers, and running conditions were established for Western blot, and protein detection and multiplex assays with CypB were performed for each target. During the extraction procedure, the protein phase was dissolved in a modified washing buffer containing 0.1% sodium dodecyl sulfate, followed by ultrafiltration. Enzyme expression on real-time RT-PCR was accomplished with high reliability and reproducibility (R2, 0.990-0.999), and all enzymes except for glutathione peroxidase 1 were detectable in individual retinas on Western blot. Western blot multiplexing with CypB was possible for all targets. In conclusion, connecting gene expression directly to protein levels in the individual rat retina was possible by simultaneous extraction of RNA and protein. Real-time RT-PCR and Western blot allowed accurate detection of retinal protein expressions and levels.

  14. Delivery of Therapeutic Proteins Using Electrospun Fibers-Recent Developments and Current Challenges.

    Science.gov (United States)

    Seif, Salem; Planz, Viktoria; Windbergs, Maike

    2017-10-01

    Proteins play a vital role within the human body by regulating various functions and even serving as structural constituent of many body parts. In this context, protein-based therapeutics have attracted a lot of attention in the last few decades as potential treatment of different diseases. Due to the steadily increasing interest in protein-based therapeutics, different dosage forms were investigated for delivering such complex macromolecules to the human body. Here, electrospun fibers hold a great potential for embedding proteins without structural damage and for controlled release of the protein for therapeutic applications. This review provides a comprehensive overview of the current state of protein-based carrier systems using electrospun fibers, with special emphasis on discussing their potential and key challenges in developing such therapeutic strategies, along with a prospective view of anticipated future directions. © 2017 Deutsche Pharmazeutische Gesellschaft.

  15. Hyaluronan microgel as a potential carrier for protein sustained delivery by tailoring the crosslink network

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Chunhong [Department of Materials Science and Engineering, College of Science and Engineering, Jinan University, Guangzhou 510632 (China); Zhao, Jianhao, E-mail: jhzhao@jnu.edu.cn [Department of Materials Science and Engineering, College of Science and Engineering, Jinan University, Guangzhou 510632 (China); Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Guangzhou 510632 (China); Tu, Mei; Zeng, Rong; Rong, Jianhua [Department of Materials Science and Engineering, College of Science and Engineering, Jinan University, Guangzhou 510632 (China); Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Guangzhou 510632 (China)

    2014-03-01

    Hyaluronan (HA) microgels with different crosslink network, i.e. HGPs-1, HGPs-1.5, HGPs-3, HGPs-6 and HGPs-15, were synthesized using divinyl sulfone (DVS) as the crosslinker in an inverse microemulsion system for controlling the sustained delivery of bovine serum albumin (BSA). With increasing the crosslinker content, the average particle size slightly increased from 1.9 ± 0.3 μm to 3.6 ± 0.5 μm by dynamic laser scattering analysis. However, the crosslinker content had no significant effect on the morphology of HA microgels by scanning and transmission electron microscopes. Fourier transform infrared spectroscopy and elemental analysis proved more sulfur participated in the crosslink reaction when raising the crosslinker amount. The water swelling test confirmed the increasing crosslink density with the crosslinker content by calculating the average molecular weight between two crosslink points to be 8.25 ± 2.51 × 10{sup 5}, 1.26 ± 0.43 × 10{sup 5}, 0.96 ± 0.09 × 10{sup 5}, 0.64 ± 0.03 × 10{sup 5}, and 0.11 ± 0.01 × 10{sup 5} respectively. The degradation of HA microgels by hyaluronidase slowed down by enhancing the crosslink density, only about 5% of HGPs-15 was degraded as opposed to over 90% for HGPs-1. BSA loading had no obvious influence on the surface morphology of HA microgels but seemed to induce their aggregation. The increase of crosslink density decreased the BSA loading capacity but facilitated its long-term sustained delivery. When the molar ratio of DVS to repeating unit of HA reached 3 or higher, similar delivery profiles were obtained. Among all these HA microgels, HGPs-3 was the optimal carrier for BSA sustained delivery in this system because it possessed both high BSA loading capacity and long-term delivery profile simultaneously. - Highlights: • HA microgels with different crosslink densities were prepared. • The crosslinker content had little effect on the morphology and size of HA microgels. • The crosslink density

  16. Cell-penetrating DNA-binding protein as a safe and efficient naked DNA delivery carrier in vitro and in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Eun-Sung; Yang, Seung-Woo [Department of Biotechnology, Yonsei University, Seoul 120-749 (Korea, Republic of); Hong, Dong-Ki; Kim, Woo-Taek [Department of Biology, Yonsei University, Seoul 120-749 (Korea, Republic of); Kim, Ho-Guen [Department of Pathology, Yonsei Medical School, Seoul 120-752 (Korea, Republic of); Lee, Sang-Kyou, E-mail: sjrlee@yonsei.ac.kr [Department of Biotechnology, Yonsei University, Seoul 120-749 (Korea, Republic of)

    2010-01-29

    Non-viral gene delivery is a safe and suitable alternative to viral vector-mediated delivery to overcome the immunogenicity and tumorigenesis associated with viral vectors. Using the novel, human-origin Hph-1 protein transduction domain that can facilitate the transduction of protein into cells, we developed a new strategy to deliver naked DNA in vitro and in vivo. The new DNA delivery system contains Hph-1-GAL4 DNA-binding domain (DBD) fusion protein and enhanced green fluorescent protein (EGFP) reporter plasmid that includes the five repeats of GAL4 upstream activating sequence (UAS). Hph-1-GAL4-DBD protein formed complex with plasmid DNA through the specific interaction between GAL4-DBD and UAS, and delivered into the cells via the Hph-1-PTD. The pEGFP DNA was successfully delivered by the Hph-1-GAL4 system, and the EGFP was effectively expressed in mammalian cells such as HeLa and Jurkat, as well as in Bright Yellow-2 (BY-2) plant cells. When 10 {mu}g of pEGFP DNA was intranasally administered to mice using Hph-1-GAL4 protein, a high level of EGFP expression was detected throughout the lung tissue for 7 days. These results suggest that an Hph-1-PTD-mediated DNA delivery strategy may be an useful non-viral DNA delivery system for gene therapy and DNA vaccines.

  17. Cell-penetrating DNA-binding protein as a safe and efficient naked DNA delivery carrier in vitro and in vivo

    International Nuclear Information System (INIS)

    Kim, Eun-Sung; Yang, Seung-Woo; Hong, Dong-Ki; Kim, Woo-Taek; Kim, Ho-Guen; Lee, Sang-Kyou

    2010-01-01

    Non-viral gene delivery is a safe and suitable alternative to viral vector-mediated delivery to overcome the immunogenicity and tumorigenesis associated with viral vectors. Using the novel, human-origin Hph-1 protein transduction domain that can facilitate the transduction of protein into cells, we developed a new strategy to deliver naked DNA in vitro and in vivo. The new DNA delivery system contains Hph-1-GAL4 DNA-binding domain (DBD) fusion protein and enhanced green fluorescent protein (EGFP) reporter plasmid that includes the five repeats of GAL4 upstream activating sequence (UAS). Hph-1-GAL4-DBD protein formed complex with plasmid DNA through the specific interaction between GAL4-DBD and UAS, and delivered into the cells via the Hph-1-PTD. The pEGFP DNA was successfully delivered by the Hph-1-GAL4 system, and the EGFP was effectively expressed in mammalian cells such as HeLa and Jurkat, as well as in Bright Yellow-2 (BY-2) plant cells. When 10 μg of pEGFP DNA was intranasally administered to mice using Hph-1-GAL4 protein, a high level of EGFP expression was detected throughout the lung tissue for 7 days. These results suggest that an Hph-1-PTD-mediated DNA delivery strategy may be an useful non-viral DNA delivery system for gene therapy and DNA vaccines.

  18. Translation of Angiotensin-Converting Enzyme 2 upon Liver- and Lung-Targeted Delivery of Optimized Chemically Modified mRNA

    Directory of Open Access Journals (Sweden)

    Eva Schrom

    2017-06-01

    Full Text Available Changes in lifestyle and environmental conditions give rise to an increasing prevalence of liver and lung fibrosis, and both have a poor prognosis. Promising results have been reported for recombinant angiotensin-converting enzyme 2 (ACE2 protein administration in experimental liver and lung fibrosis. However, the full potential of ACE2 may be achieved by localized translation of a membrane-anchored form. For this purpose, we advanced the latest RNA technology for liver- and lung-targeted ACE2 translation. We demonstrated in vitro that transfection with ACE2 chemically modified messenger RNA (cmRNA leads to robust translation of fully matured, membrane-anchored ACE2 protein. In a second step, we designed eight modified ACE2 cmRNA sequences and identified a lead sequence for in vivo application. Finally, formulation of this ACE2 cmRNA in tailor-made lipidoid nanoparticles and in lipid nanoparticles led to liver- and lung-targeted translation of significant amounts of ACE2 protein, respectively. In summary, we provide evidence that RNA transcript therapy (RTT is a promising approach for ACE2-based treatment of liver and lung fibrosis to be tested in fibrotic disease models.

  19. Protein-Modified-Paramagnetic-Particles as a Tool for Detection of Silver(I) Ions

    Science.gov (United States)

    Kizek, R.; Krizkova, S.; Adam, V.; Huska, D.; Hubalek, J.; Trnkova, L.

    2009-04-01

    incorporated mixed with carbon paste were stable. Even after 14 days we did not determine change in the peak height higher than 5 %. Further linkage of MT with polyclonal chicken antibodies incorporated in carbon paste electrode was determined by SWV. Two signals were observed in voltammograms, cysMT corresponding to -SH moieties of MT and Wa corresponding to tryptophan residues of chicken antibodies. We optimized time of interaction (300 s) and concentration of MT (125 µg/ml) to suggest silver(I) ions biosensor. Biosensor (MT-antibody-modified CPE) prepared under the optimized conditions was utilized for silver(I) ions detection. The detection limit (3 S/N) for silver(I) ions were estimated as 100 nM. The proposed biosensor was tested by detection of silver(I) ions spiked in various water samples (from very pure distilled water to rainwater). Recoveries varied from 74 to 104 %. MT, low molecular mass proteins rich cysteine, play important role in the processes of heavy metals ions metabolism. Due to their unique physico-chemical properties they are able to bind heavy metals with high affinity. We used this feature to suggest simple biosensor based on immobilization of MT on the surface of carbon paste electrode via chicken antibodies against MT. The suggested biosensor was further successfully employed to detect silver(I) ions. The main advantage of the biosensor is that it can be easily miniaturized, whereas carbon nanostructures with immobilized MT should be used as working electrodes. Acknowledgements Financial support from INCHEMBIOL MSMT 0021622412 and GA CR 526/07/0674 is highly acknowledged.

  20. Coordination conjugates of therapeutic proteins with drug carriers: A new approach for versatile advanced drug delivery

    Czech Academy of Sciences Publication Activity Database

    Kejík, Z.; Bříza, T.; Králová, Jarmila; Poučková, P.; Kral, A.; Martásek, P.; Král, V.

    2011-01-01

    Roč. 21, č. 18 (2011), s. 5514-5520 ISSN 0960-894X R&D Projects: GA ČR GA203/09/1311 Grant - others:MPO(CZ) FR-TI3/521; AV ČR(CZ) KAN200100801 Program:FR; KA Institutional research plan: CEZ:AV0Z50520514 Keywords : combined cancer therapy * photodynamic therapy * targeted drug delivery Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.554, year: 2011

  1. Discovery and in Vivo Evaluation of Novel RGD-Modified Lipid-Polymer Hybrid Nanoparticles for Targeted Drug Delivery

    Directory of Open Access Journals (Sweden)

    Yinbo Zhao

    2014-09-01

    Full Text Available In the current study, the lipid-shell and polymer-core hybrid nanoparticles (lpNPs modified by Arg–Gly–Asp(RGD peptide, loaded with curcumin (Cur, were developed by emulsification-solvent volatilization method. The RGD-modified hybrid nanoparticles (RGD–lpNPs could overcome the poor water solubility of Cur to meet the requirement of intravenous administration and tumor active targeting. The obtained optimal RGD-lpNPs, composed of PLGA (poly(lactic-co-glycolic acid–mPEG (methoxyl poly(ethylene- glycol, RGD–polyethylene glycol (PEG–cholesterol (Chol copolymers and lipids, had good entrapment efficiency, submicron size and negatively neutral surface charge. The core-shell structure of RGD–lpNPs was verified by TEM. Cytotoxicity analysis demonstrated that the RGD–lpNPs encapsulated Cur retained potent anti-tumor effects. Flow cytometry analysis revealed the cellular uptake of Cur encapsulated in the RGD–lpNPs was increased for human umbilical vein endothelial cells (HUVEC. Furthermore, Cur loaded RGD–lpNPs were more effective in inhibiting tumor growth in a subcutaneous B16 melanoma tumor model. The results of immunofluorescent and immunohistochemical studies by Cur loaded RGD–lpNPs therapies indicated that more apoptotic cells, fewer microvessels, and fewer proliferation-positive cells were observed. In conclusion, RGD–lpNPs encapsulating Cur were developed with enhanced anti-tumor activity in melanoma, and Cur loaded RGD–lpNPs represent an excellent tumor targeted formulation of Cur which might be an attractive candidate for cancer therapy.

  2. Discovery and in vivo evaluation of novel RGD-modified lipid-polymer hybrid nanoparticles for targeted drug delivery.

    Science.gov (United States)

    Zhao, Yinbo; Lin, Dayong; Wu, Fengbo; Guo, Li; He, Gu; Ouyang, Liang; Song, Xiangrong; Huang, Wei; Li, Xiang

    2014-09-29

    In the current study, the lipid-shell and polymer-core hybrid nanoparticles (lpNPs) modified by Arg-Gly-Asp(RGD) peptide, loaded with curcumin (Cur), were developed by emulsification-solvent volatilization method. The RGD-modified hybrid nanoparticles (RGD-lpNPs) could overcome the poor water solubility of Cur to meet the requirement of intravenous administration and tumor active targeting. The obtained optimal RGD-lpNPs, composed of PLGA (poly(lactic-co-glycolic acid))-mPEG (methoxyl poly(ethylene- glycol)), RGD-polyethylene glycol (PEG)-cholesterol (Chol) copolymers and lipids, had good entrapment efficiency, submicron size and negatively neutral surface charge. The core-shell structure of RGD-lpNPs was verified by TEM. Cytotoxicity analysis demonstrated that the RGD-lpNPs encapsulated Cur retained potent anti-tumor effects. Flow cytometry analysis revealed the cellular uptake of Cur encapsulated in the RGD-lpNPs was increased for human umbilical vein endothelial cells (HUVEC). Furthermore, Cur loaded RGD-lpNPs were more effective in inhibiting tumor growth in a subcutaneous B16 melanoma tumor model. The results of immunofluorescent and immunohistochemical studies by Cur loaded RGD-lpNPs therapies indicated that more apoptotic cells, fewer microvessels, and fewer proliferation-positive cells were observed. In conclusion, RGD-lpNPs encapsulating Cur were developed with enhanced anti-tumor activity in melanoma, and Cur loaded RGD-lpNPs represent an excellent tumor targeted formulation of Cur which might be an attractive candidate for cancer therapy.

  3. The effect of a home delivery meal service of energy- and protein-rich meals on quality of life in malnourished outpatients suffering from lung cancer

    DEFF Research Database (Denmark)

    Leedo, Eva; Gade, Josephine; Granov, Sabrina

    2017-01-01

    Undernutrition is prevalent in cancer patients and associated with increased incidence of complications and mortality. We investigated the effects of a home delivery meal service, providing a selection of energy-dense, protein-rich meals, on quality of life (QoL) in malnourished lung cancer....... Intervention exerted a significant positive effect on performance score after 12 wk (P = 0.047). Increased energy and protein intakes were strongly associated with improved QoL, functional score, hand grip strength, symptom and performance scores. Food delivery service with energy- and protein-rich main meals...

  4. Self-reinforcement and protein sustained delivery of hyaluronan hydrogel by tailoring a dually cross-linked network

    International Nuclear Information System (INIS)

    Luo, Chunhong; Xu, Guoguang; Wang, Xinghui; Tu, Mei; Zeng, Rong; Rong, Jianhua; Zhao, Jianhao

    2015-01-01

    A series of self-reinforcing hyaluronan hydrogels were developed to improve mechanical properties and protein sustained delivery thanks to a dually cross-linked network. Hyaluronan gel particles (HGPs, 1–5 μm in diameter) with different cross-linking densities, i.e. HGPs-1.5, HGPs-3 and HGPs-15, were prepared in an inverse emulsion system and used as the reinforcing phase after glycidyl methacrylation, while glycidyl methacrylated hyaluronan with a substitution degree of 45.2% was synthesized as the matrix phase. These two phases were cross-linked under ultraviolet irradiation to form self-reinforcing hyaluronan hydrogels (srHAs) that showed typical cross-linked structure of HGPs connecting the matrix phase by cross-section observation. In comparison to hyaluronan bulk gels and their blends with HGPs, srHAs distinctly enhanced the mechanical properties and BSA long-term sustained delivery, especially srHA-1.5 showed the highest compressive modulus of 220 ± 15 kPa and the slowest BSA delivery (67% release at 14 d). The 3T3 fibroblast cell culture showed that all the srHAs had no cytotoxicity. - Highlights: • New self-reinforcing HA hydrogels with a dually cross-linked network were developed. • Self-reinforcing HA hydrogels greatly enhanced the mechanical properties. • Self-reinforcing HA hydrogels prolonged the sustained delivery of BSA. • The self-reinforcing mechanism and BSA diffusion mechanism were discussed. • Self-reinforcing HA hydrogels had no cytotoxicity to 3T3 fibroblast cells

  5. Intranuclear Delivery of a Novel Antibody-Derived Radiosensitizer Targeting the DNA-Dependent Protein Kinase Catalytic Subunit

    Energy Technology Data Exchange (ETDEWEB)

    Xiong Hairong [Institute of Molecular Medicine and Genetics, Georgia Health Sciences University, Augusta, GA (Georgia); State Key Laboratory of Virology, Institute of Medical Virology, Wuhan University School of Medicine, Wuhan (China); Lee, Robert J. [Division of Pharmaceutics, College of Pharmacy, Ohio State University, Columbus, OH (United States); Haura, Eric B. [Thoracic Oncology and Experimental Therapeutics Programs, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL (United States); Edwards, John G. [Apeliotus Technologies, Inc., Atlanta, GA (United States); Dynan, William S. [Institute of Molecular Medicine and Genetics, Georgia Health Sciences University, Augusta, GA (Georgia); Li Shuyi, E-mail: sli@georgiahealth.edu [Institute of Molecular Medicine and Genetics, Georgia Health Sciences University, Augusta, GA (Georgia); Apeliotus Technologies, Inc., Atlanta, GA (United States)

    2012-07-01

    Purpose: To inhibit DNA double-strand break repair in tumor cells by delivery of a single-chain antibody variable region fragment (ScFv 18-2) to the cell nucleus. ScFv 18-2 binds to a regulatory region of the DNA-dependent protein kinase (DNA-PK), an essential enzyme in the nonhomologous end-joining pathway, and inhibits DNA end-joining in a cell-free system and when microinjected into single cells. Development as a radiosensitizer has been limited by the lack of a method for intranuclear delivery to target cells. We investigated a delivery method based on folate receptor-mediated endocytosis. Methods and Materials: A recombinant ScFv 18-2 derivative was conjugated to folate via a scissile disulfide linker. Folate-ScFv 18-2 was characterized for its ability to be internalized by tumor cells and to influence the behavior of ionizing radiation-induced repair foci. Radiosensitization was measured in a clonogenic survival assay. Survival curves were fitted to a linear-quadratic model, and between-group differences were evaluated by an F test. Sensitization ratios were determined based on mean inhibitory dose. Results: Human KB and NCI-H292 lung cancer cells treated with folate-conjugated ScFv 18-2 showed significant radiosensitization (p < 0.001). Sensitization enhancement ratios were 1.92 {+-} 0.42 for KB cells and 1.63 {+-} 0.13 for NCI-H292 cells. Studies suggest that treatment inhibits repair of radiation-induced DSBs, as evidenced by the persistence of {gamma}-H2AX-stained foci and by inhibition of staining with anti-DNA-PKcs phosphoserine 2056. Conclusions: Folate-mediated endocytosis is an effective method for intranuclear delivery of an antibody-derived DNA repair inhibitor.

  6. Self-reinforcement and protein sustained delivery of hyaluronan hydrogel by tailoring a dually cross-linked network

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Chunhong; Xu, Guoguang; Wang, Xinghui [Department of Materials Science and Engineering, College of Science and Engineering, Jinan University, Guangzhou 510632 (China); Tu, Mei; Zeng, Rong; Rong, Jianhua [Department of Materials Science and Engineering, College of Science and Engineering, Jinan University, Guangzhou 510632 (China); Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Guangzhou 510632 (China); Zhao, Jianhao, E-mail: jhzhao@jnu.edu.cn [Department of Materials Science and Engineering, College of Science and Engineering, Jinan University, Guangzhou 510632 (China); Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Guangzhou 510632 (China)

    2015-01-01

    A series of self-reinforcing hyaluronan hydrogels were developed to improve mechanical properties and protein sustained delivery thanks to a dually cross-linked network. Hyaluronan gel particles (HGPs, 1–5 μm in diameter) with different cross-linking densities, i.e. HGPs-1.5, HGPs-3 and HGPs-15, were prepared in an inverse emulsion system and used as the reinforcing phase after glycidyl methacrylation, while glycidyl methacrylated hyaluronan with a substitution degree of 45.2% was synthesized as the matrix phase. These two phases were cross-linked under ultraviolet irradiation to form self-reinforcing hyaluronan hydrogels (srHAs) that showed typical cross-linked structure of HGPs connecting the matrix phase by cross-section observation. In comparison to hyaluronan bulk gels and their blends with HGPs, srHAs distinctly enhanced the mechanical properties and BSA long-term sustained delivery, especially srHA-1.5 showed the highest compressive modulus of 220 ± 15 kPa and the slowest BSA delivery (67% release at 14 d). The 3T3 fibroblast cell culture showed that all the srHAs had no cytotoxicity. - Highlights: • New self-reinforcing HA hydrogels with a dually cross-linked network were developed. • Self-reinforcing HA hydrogels greatly enhanced the mechanical properties. • Self-reinforcing HA hydrogels prolonged the sustained delivery of BSA. • The self-reinforcing mechanism and BSA diffusion mechanism were discussed. • Self-reinforcing HA hydrogels had no cytotoxicity to 3T3 fibroblast cells.

  7. Toxicity assessment of modified Cry1Ac1 proteins and genetically ...

    African Journals Online (AJOL)

    Owner

    2015-06-10

    Jun 10, 2015 ... Key words: Modified Cry1Ac1, food safety assessment, toxicity, insect- resistant rice Agb0101. INTRODUCTION. Genetically modified (GM) crops are becoming an increasingly important feature of the agricultural land- scapes. In 2013, approximately 175 million hectares of. GM crops were planted by 18 ...

  8. Barriers to collaborative anesthetic care between anesthesiologists and nurses on the labour and delivery unit: a study using a modified Delphi technique.

    Science.gov (United States)

    Fung, Lillia Y; Downey, Kristi; Watts, Nancy; Carvalho, Jose C A

    2017-08-01

    The practice of obstetrical anesthesia relies on collaborative effort between anesthesiologists and nurses, but teamwork remains a challenge. We sought to identify a consensus on the perceived barriers to collaborative care between anesthesiologists and perinatal nurses in a Canadian tertiary labour and delivery (L&D) unit. A cross-sectional consensus-building study was conducted using a modified Delphi technique. We aimed to reach consensus on the barriers to collaborative care as well as to identify the reasons behind the issues and possible interventions. This technique involved conducting four parallel sequential rounds of questionnaires: Round 1 - posing open-ended questions to nurses and anesthesiologists; Round 2 - establishing an initial within-group consensus; Round 3 - conducting a cross-over round to determine the interprofessional consensus and the remaining anesthesia and nursing consensuses; Round 4 - ranking to identify the top three barriers identified by the three consensuses. Twenty-one anesthesiologists and 15 nurses were recruited. Themes of barriers to collaboration included issues on professionalism, availability, dissonance, team coordination, communication, organizational structure, educational gaps, and role clarity. The top two barriers from the interprofessional consensus were communication issues. Anesthesiologists and nurses at our tertiary L&D unit identified communication as a major barrier to collaborative care. This study also shows the feasibly of using the modified Delphi technique in L&D units seeking to improve collaborative care.

  9. Gene delivery of therapeutic polypeptides to brain capillary endothelial cells for protein secretion

    DEFF Research Database (Denmark)

    Larsen, Annette Burkhart; Thomsen, Louiza Bohn; Moos, Torben

    . Results: mRNA expression of proteins with neuroprotective potential in RBEC were enabled. Their expression patters were compared with those of RBE4 and HeLa cells using RT-qPCR analyzes. The evidence for protein synthesis and secretion was obtained by detection of FLAG-tagged to the C-terminal of any......Background: The potential for treatment of chronic disorders affecting the CNS is complicated by the inability of several drugs to cross the blood-brain barrier (BBB). None-viral gene therapy applied to brain capillary endothelial cells (BCECs) denotes a novel approach to overcome the restraints...... in this passage, as turning BCECs into recombinant protein factories by transfection could result in protein secretion into the brain. Aim: The aim of the present study was to investigate the possibility of transfection to primary rat brain capillary endothelial cells (RBEC) for recombinant protein synthesis...

  10. Protein adsorption resistance of PVP-modified polyurethane film prepared by surface-initiated atom transfer radical polymerization

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, Huihui; Qian, Bin; Zhang, Wei [Shanghai Key Laboratory of Functional Materials Chemistry and Research Center of Analysis and Test, East China University of Science and Technology, Shanghai 200237 (China); Lan, Minbo, E-mail: minbolan@ecust.edu.cn [Shanghai Key Laboratory of Functional Materials Chemistry and Research Center of Analysis and Test, East China University of Science and Technology, Shanghai 200237 (China); State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237 (China)

    2016-02-15

    Highlights: • Antifouling PVP brushes were successfully grafted on PU films by SI-ATRP. • The effect of polymerization time on surface property and topography was studied. • Hydrophilicity and protein fouling resistance of PVP–PU films were greatly promoted. • Competitive adsorption of three proteins on PVP–PU films was evaluated. - Abstract: An anti-fouling surface of polyurethane (PU) film grafted with Poly(N-vinylpyrrolidone) (PVP) was prepared through surface-initiated atom transfer radical polymerization (SI-ATRP). And the polymerization time was investigated to obtain PU films with PVP brushes of different lengths. The surface properties and protein adsorption of modified PU films were evaluated. The results showed that the hydrophilicity of PU–PVP films were improved with the increase of polymerization time, which was not positive correlation with the surface roughness due to the brush structure. Additionally, the protein resistance performance was promoted when prolonging the polymerization time. The best antifouling PU–PVP (6.0 h) film reduced the adsoption level of bovine serum albumin (BSA), lysozyme (LYS), and brovin serum fibrinogen (BFG) by 93.4%, 68.3%, 85.6%, respectively, compared to the unmodified PU film. The competitive adsorption of three proteins indicated that LYS preferentially adsorbed on the modified PU film, while BFG had the lowest adsorption selectivity. And the amount of BFG on PU–PVP (6.0 h) film reduced greatly to 0.08 μg/cm{sup 2}, which was almost one-tenth of its adsorption from the single-protein system. Presented results suggested that both hydrophilicity and surface roughness might be the important factors in all cases of protein adsorption, and the competitive or selective adsorption might be related to the size of the proteins, especially on the non-charged films.

  11. Protein adsorption resistance of PVP-modified polyurethane film prepared by surface-initiated atom transfer radical polymerization

    International Nuclear Information System (INIS)

    Yuan, Huihui; Qian, Bin; Zhang, Wei; Lan, Minbo

    2016-01-01

    Highlights: • Antifouling PVP brushes were successfully grafted on PU films by SI-ATRP. • The effect of polymerization time on surface property and topography was studied. • Hydrophilicity and protein fouling resistance of PVP–PU films were greatly promoted. • Competitive adsorption of three proteins on PVP–PU films was evaluated. - Abstract: An anti-fouling surface of polyurethane (PU) film grafted with Poly(N-vinylpyrrolidone) (PVP) was prepared through surface-initiated atom transfer radical polymerization (SI-ATRP). And the polymerization time was investigated to obtain PU films with PVP brushes of different lengths. The surface properties and protein adsorption of modified PU films were evaluated. The results showed that the hydrophilicity of PU–PVP films were improved with the increase of polymerization time, which was not positive correlation with the surface roughness due to the brush structure. Additionally, the protein resistance performance was promoted when prolonging the polymerization time. The best antifouling PU–PVP (6.0 h) film reduced the adsoption level of bovine serum albumin (BSA), lysozyme (LYS), and brovin serum fibrinogen (BFG) by 93.4%, 68.3%, 85.6%, respectively, compared to the unmodified PU film. The competitive adsorption of three proteins indicated that LYS preferentially adsorbed on the modified PU film, while BFG had the lowest adsorption selectivity. And the amount of BFG on PU–PVP (6.0 h) film reduced greatly to 0.08 μg/cm"2, which was almost one-tenth of its adsorption from the single-protein system. Presented results suggested that both hydrophilicity and surface roughness might be the important factors in all cases of protein adsorption, and the competitive or selective adsorption might be related to the size of the proteins, especially on the non-charged films.

  12. Colon luminal content and epithelial cell morphology are markedly modified in rats fed with a high-protein diet

    OpenAIRE

    Andriamihaja, Mireille; Davila-Gay, Anne-Marie; Eklou, Mamy; Petit, Nathalie; Delpal, Serge; Allek, Fadhila; Blais, Anne; Delteil, Corine; Tomé, Daniel; Blachier, Francois

    2010-01-01

    Andriamihaja M, Davila A, Eklou-Lawson M, Petit N, Delpal S, Allek F, Blais A, Delteil C, Tome D, Blachier F. Colon luminal content and epithelial cell morphology are markedly modified in rats fed with a high-protein diet. Am J Physiol Gastrointest Liver Physiol 299: G1030-G1037, 2010. First published August 5, 2010; doi: 10.1152/ajpgi.00149.2010.-Hyperproteic diets are used in human nutrition to obtain body weight reduction. Although increased protein ingestion results in an increased transf...

  13. Modified thermoresponsive Poloxamer 407 and chitosan sol-gels as potential sustained-release vaccine delivery systems.

    Science.gov (United States)

    Kojarunchitt, Thunjiradasiree; Baldursdottir, Stefania; Dong, Yao-Da; Boyd, Ben J; Rades, Thomas; Hook, Sarah

    2015-01-01

    Thermoresponsive, particle-loaded, Poloxamer 407 (P407)-Pluronic-R® (25R4) or chitosan-methyl cellulose (MC) formulations were developed as single-dose, sustained release vaccines. The sol-gels, loaded either with a particulate vaccine (cubosomes) or soluble antigen (ovalbumin) and adjuvants (Quil A and monophosphoryl lipid A), were free-flowing liquids at room temperature and formed stable gels at physiological temperatures. Rheological results showed that both systems meet the criteria of being thermoresponsive gels. The P407-25R4 sol-gels did not significantly sustain the release of antigen in vivo while the chitosan-MC sol-gels sustained the release of antigen up to at least 14 days after administration. The chitosan-MC sol-gels stimulated both cellular and humoral responses. The inclusion of cubosomes in the sol-gels did not provide a definitive beneficial effect. Further analysis of the formulations with small-angle X-ray scattering (SAXS) revealed that while cubosomes were stable in chitosan-MC gels they were not stable in P407-25R4 formulations. The reason for the mixed response to cubosome-loaded vehicles requires more investigation, however it appears that the cubosomes did not facilitate synchronous vaccine release and may in fact retard release, reducing efficacy in some cases. From these results, chitosan-MC sol-gels show potential as sustained release vaccine delivery systems, as compared to the P407-25R4 system that had a limited ability to sustain antigen release. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Co-delivery of siRNA and hypericin into cancer cells by hyaluronic acid modified PLGA-PEI nanoparticles.

    Science.gov (United States)

    Li, Yanan; Zhang, Junling; Wang, Buhai; Shen, Yan; Ouahab, Ammar

    2016-01-01

    Malignant tumors cause more death because of the resistance of the hypoxic cancer cell toward radiotherapy. Targeting for hypoxic cancer area and gene silencing to overcome the hypoxia are two kinds of important therapeutic strategies for treating tumors. In order to explore the combined effects of gene therapy and hypericin (Hy) on tumor cells, hypoxia-inducible factor 1 alpha (HIF-1α) small interfering ribonucleic acid (siRNA) was transfected into the hypoxic human nasopharyngeal carcinoma (CNE2) cells using Hy-encapsulated nanocomplexes (Hy-HPP NPs) as a carrier which would achieve dual targeting to the tumor necrosis area. NPs were prepared by emulsion-diffusion-evaporation method. Formulations were evaluated by conducting in vitro physicochemical studies, electrophoresis, in vivo study, and biochemical studies. Hy-loaded nanoparticles with a mean size of around 160 nm was able to enhance the accumulation in the tumors by enhanced permeability and retention effect. The electrophoresis confirmed the good stability of siRNA/Hy-HPP NPs in the presence of phosphate-buffered saline (pH 7.4), competitive heparin, and RNase. The results of transfection showed that the uptake of siRNA was significantly increased up to 50% in CNE2 cells. The level of the HIF-1α with Hy-encapsulated nanocomplexes was significantly reduced to 30% in the transfected CNE2 cells. In vivo studies, the carrier exhibited higher intensity at the tumor tissue cells and higher affinity toward the necrotic tumor tissue. Results demonstrated that Hy-HPP NPs could significantly enhance the tranfection efficiency of siRNA, suggesting Hy-encapsulated nanoparticle as an efficient gene carrier. The co-delivery of HIF-1α siRNA (siHIF-1α) and Hy could efficiently decrease the level of HIF-1α and increase the affinity toward necrotic tissues. Hence, this is a promising strategy for further application in radiotherapy.

  15. Development of Ocular Delivery System for Glaucoma Therapy Using Natural Hydrogel as Film Forming Agent and Release Modifier.

    Science.gov (United States)

    Kulkarni, Giriraj T; Sethi, Nitin; Awasthi, Rajendra; Pawar, Vivek Kumar; Pahuja, Vineet

    2016-01-01

    Glaucoma is characterized by increased intraocular pressure, which results in damage to the optic nerve. The existing therapy with conventional eye drops is inefficient due to nasolachrymal drainage, resulting in a reduced corneal residence of the drug. The objective was to develop controlled-release ocular films of timolol maleate using natural hydrogel from Tamarindus indica seeds as a sustaining and film-forming agent, to overcome the problems associated with eye drops. The hydrogel was isolated using hot aqueous extraction followed by precipitation with ethanol. Six batches of ocular films were prepared and evaluated for drug content, weight variation, thickness, diameter and in vitro release profile. The ideal batch of the films was subjected to stability, pharmacodynamic and ocular safety studies. The yield of the hydrogel was 58.29%. The thickness of the ocular films was in the range of 0.17 to 0.25 mm and the weight of the films was found to increase with the increase in polymer content. The drug release from the films was found to be controlled over a period of 8 h. The films were found to be stable and were able to reduce the intraocular pressure for 24 h in a more efficient manner than the eye drops. The films were found to be practically non-irritating to the eye. It can be concluded that the hydrogel from tamarind seeds can be used as a film-forming and release-controlling agent for the development of an ocular drug delivery system for the effective therapy of glaucoma.

  16. The Role of Histone Protein Modifications and Mutations in Histone Modifiers in Pediatric B-Cell Progenitor Acute Lymphoblastic Leukemia

    Science.gov (United States)

    Janczar, Szymon; Janczar, Karolina; Pastorczak, Agata; Harb, Hani; Paige, Adam J. W.; Zalewska-Szewczyk, Beata; Danilewicz, Marian; Mlynarski, Wojciech

    2017-01-01

    While cancer has been long recognized as a disease of the genome, the importance of epigenetic mechanisms in neoplasia was acknowledged more recently. The most active epigenetic marks are DNA methylation and histone protein modifications and they are involved in basic biological phenomena in every cell. Their role in tumorigenesis is stressed by recent unbiased large-scale studies providing evidence that several epigenetic modifiers are recurrently mutated or frequently dysregulated in multiple cancers. The interest in epigenetic marks is especially due to the fact that they are potentially reversible and thus druggable. In B-cell progenitor acute lymphoblastic leukemia (BCP-ALL) there is a relative paucity of reports on the role of histone protein modifications (acetylation, methylation, phosphorylation) as compared to acute myeloid leukemia, T-cell ALL, or other hematologic cancers, and in this setting chromatin modifications are relatively less well studied and reviewed than DNA methylation. In this paper, we discuss the biomarker associations and evidence for a driver role of dysregulated global and loci-specific histone marks, as well as mutations in epigenetic modifiers in BCP-ALL. Examples of chromatin modifiers recurrently mutated/disrupted in BCP-ALL and associated with disease outcomes include MLL1, CREBBP, NSD2, and SETD2. Altered histone marks and histone modifiers and readers may play a particular role in disease chemoresistance and relapse. We also suggest that epigenetic regulation of B-cell differentiation may have parallel roles in leukemogenesis. PMID:28054944

  17. RGD-modified liposomes enhance efficiency of aclacinomycin A delivery: evaluation of their effect in lung cancer

    Directory of Open Access Journals (Sweden)

    Feng C

    2015-08-01

    Full Text Available Chan Feng,1,* Xiaoyan Li,2,* Chunyan Dong,1 Xuemei Zhang,1 Xie Zhang,1 Yong Gao11Department of Oncology, Shanghai East Hospital, Tongji University, Shanghai, 2Shanghai Tenth People’s Hospital, Tongji University, Shanghai, People’s Republic of China*These authors contributed equally to this workAbstract: In this study, long-circulating Arg-Gly-Asp (RGD-modified aclacinomycin A (ACM liposomes were prepared by thin film hydration method. Their morphology, particle size, encapsulation efficiency, and in vitro release were investigated. The RGD-ACM liposomes was about 160 nm in size and had the visual appearance of a yellowish suspension. The zeta potential was -22.2 mV and the encapsulation efficiency was more than 93%. The drug-release behavior of the RGD-ACM liposomes showed a biphasic pattern, with an initial burst release and followed by sustained release at a constant rate. After being dissolved in phosphate-buffered saline (pH 7.4 and kept at 4°C for one month, the liposomes did not aggregate and still had the appearance of a milky white colloidal solution. In a pharmacokinetic study, rats treated with RGD-ACM liposomes showed slightly higher plasma concentrations than those treated with ACM liposomes. Maximum plasma concentrations of RGD-ACM liposomes and ACM liposomes were 4,532 and 3,425 ng/mL, respectively. RGD-ACM liposomes had a higher AUC0–∞ (1.54-fold, mean residence time (2.09-fold, and elimination half-life (1.2-fold when compared with ACM liposomes. In an in vivo study in mice, both types of liposomes inhibited growth of human lung adenocarcinoma (A549 cells and markedly decreased tumor size when compared with the control group. There were no obvious pathological tissue changes in any of the treatment groups. Our results indicate that RGD-modified ACM liposomes have a better antitumor effect in vivo than their unmodified counterparts.Keywords: RGD, aclacinomycin A, long-circulating liposomes, pharmacokinetic, tumor

  18. Xingnaojing mPEG2000-PLA modified microemulsion for transnasal delivery: pharmacokinetic and brain-targeting evaluation.

    Science.gov (United States)

    Wen, Ran; Zhang, Qing; Xu, Pan; Bai, Jie; Li, Pengyue; Du, Shouying; Lu, Yang

    2016-01-01

    Xingnaojing microemulsion (XNJ-M) administered intranasally is used for stroke treatment. In order to decrease the XNJ-M-induced mucosal irritation, XNJ-M modified by mPEG2000-PLA (XNJ-MM) were prepared in a previous work. The present work aimed to assess the impact of mPEG2000-PLA on pharmacokinetic features and brain-targeting ability of XNJ-M. The bioavailability and brain-target effects of borneol and geniposide in XNJ-M and XNJ-MM were compared in mice after intravenous (i.v.) and intranasal (i.n.) administrations. Gas chromatography, high-performance liquid chromatography, and ultra-performance liquid chromatography/tandem mass spectrometry methods were developed for the quantification of borneol and geniposide. Blood and brain samples were collected from mice at different time points after i.v. and i.n. treatments with borneol at 8.0 mg/kg, geniposide at 4.12 mg/kg. In addition, near-infrared fluorescence dye, 1,1'-dioctadecyl-3,3,3',3'-tetramethyl indotricarbocyanine iodide was loaded into microemulsions to evaluate the brain-targeting ability of XNJ-M and XNJ-MM by near-infrared fluorescence imaging in vivo and ex vivo. For XNJ-M and XNJ-MM, the relative brain targeted coefficients (Re) were 134.59% and 198.09% (borneol), 89.70% and 188.33% (geniposide), respectively. Besides, significant near-infrared fluorescent signal was detected in the brain after i.n. administration of microemulsions, compared with that of groups for i.v. administration. These findings indicated that mPEG2000-PLA modified microemulsion improved drug entry into blood and brain compared with normal microemulsion: the introduction of mPEG2000-PLA in microemulsion resulted in brain-targeting enhancement of both fat-soluble and water-soluble drugs. These findings provide a basis for the significance of mPEG2000-PLA addition in microemulsion, defining its effects on the drugs in microemulsion.

  19. Extracellular vesicles as a platform for membrane-associated therapeutic protein delivery.

    Science.gov (United States)

    Yang, Yoosoo; Hong, Yeonsun; Cho, Eunji; Kim, Gi Beom; Kim, In-San

    2018-01-01

    Membrane proteins are of great research interest, particularly because they are rich in targets for therapeutic application. The suitability of various membrane proteins as targets for therapeutic formulations, such as drugs or antibodies, has been studied in preclinical and clinical studies. For therapeutic application, however, a protein must be expressed and purified in as close to its native conformation as possible. This has proven difficult for membrane proteins, as their native conformation requires the association with an appropriate cellular membrane. One solution to this problem is to use extracellular vesicles as a display platform. Exosomes and microvesicles are membranous extracellular vesicles that are released from most cells. Their membranes may provide a favourable microenvironment for membrane proteins to take on their proper conformation, activity, and membrane distribution; moreover, membrane proteins can cluster into microdomains on the surface of extracellular vesicles following their biogenesis. In this review, we survey the state-of-the-art of extracellular vesicle (exosome and small-sized microvesicle)-based therapeutics, evaluate the current biological understanding of these formulations, and forecast the technical advances that will be needed to continue driving the development of membrane protein therapeutics.

  20. Cyclodextrin-Modified Porous Silicon Nanoparticles for Efficient Sustained Drug Delivery and Proliferation Inhibition of Breast Cancer Cells.

    Science.gov (United States)

    Correia, Alexandra; Shahbazi, Mohammad-Ali; Mäkilä, Ermei; Almeida, Sérgio; Salonen, Jarno; Hirvonen, Jouni; Santos, Hélder A

    2015-10-21

    Over the past decade, the potential of polymeric structures has been investigated to overcome many limitations related to nanosized drug carriers by modulating their toxicity, cellular interactions, stability, and drug-release kinetics. In this study, we have developed a successful nanocomposite consisting of undecylenic acid modified thermally hydrocarbonized porous silicon nanoparticles (UnTHCPSi NPs) loaded with an anticancer drug, sorafenib, and surface-conjugated with heptakis(6-amino-6-deoxy)-β-cyclodextrin (HABCD) to show the impact of the surface polymeric functionalization on the physical and biological properties of the drug-loaded nanoparticles. Cytocompatibility studies showed that the UnTHCPSi-HABCD NPs were not toxic to breast cancer cells. HABCD also enhanced the suspensibility and both the colloidal and plasma stabilities of the UnTHCPSi NPs. UnTHCPSi-HABCD NPs showed a significantly increased interaction with breast cancer cells compared to bare NPs and also sustained the drug release. Furthermore, the sorafenib-loaded UnTHCPSi-HABCD NPs efficiently inhibited cell proliferation of the breast cancer cells.

  1. Macrophages offer a paradigm switch for CNS delivery of therapeutic proteins.

    Science.gov (United States)

    Klyachko, Natalia L; Haney, Matthew J; Zhao, Yuling; Manickam, Devika S; Mahajan, Vivek; Suresh, Poornima; Hingtgen, Shawn D; Mosley, R Lee; Gendelman, Howard E; Kabanov, Alexander V; Batrakova, Elena V

    2014-07-01

    Active targeted transport of the nanoformulated redox enzyme, catalase, in macrophages attenuates oxidative stress and as such increases survival of dopaminergic neurons in animal models of Parkinson's disease. Optimization of the drug formulation is crucial for the successful delivery in living cells. We demonstrated earlier that packaging of catalase into a polyion complex micelle ('nanozyme') with a synthetic polyelectrolyte block copolymer protected the enzyme against degradation in macrophages and improved therapeutic outcomes. We now report the manufacture of nanozymes with superior structure and therapeutic indices. Synthesis, characterization and therapeutic efficacy of optimal cell-based nanoformulations are evaluated. A formulation design for drug carriers typically works to avoid entrapment in monocytes and macrophages focusing on small-sized nanoparticles with a polyethylene glycol corona (to provide a stealth effect). By contrast, the best nanozymes for delivery in macrophages reported in this study have a relatively large size (≈ 200 nm), which resulted in improved loading capacity and release from macrophages. Furthermore, the cross-linking of nanozymes with the excess of a nonbiodegradable linker ensured their low cytotoxicity, and efficient catalase protection in cell carriers. Finally, the 'alternatively activated' macrophage phenotype (M2) utilized in these studies did not promote further inflammation in the brain, resulting in a subtle but statistically significant effect on neuronal regeneration and repair in vivo. The optimized cross-linked nanozyme loaded into macrophages reduced neuroinflammatory responses and increased neuronal survival in mice. Importantly, the approach for nanoformulation design for cell-mediated delivery is different from the common requirements for injectable formulations.

  2. Macrophages offer a paradigm switch for CNS delivery of therapeutic proteins

    Science.gov (United States)

    Klyachko, Natalia L; Haney, Matthew J; Zhao, Yuling; Manickam, Devika S; Mahajan, Vivek; Suresh, Poornima; Hingtgen, Shawn D; Mosley, R Lee; Gendelman, Howard E; Kabanov, Alexander V; Batrakova, Elena V

    2013-01-01

    Aims Active targeted transport of the nanoformulated redox enzyme, catalase, in macrophages attenuates oxidative stress and as such increases survival of dopaminergic neurons in animal models of Parkinson’s disease. Optimization of the drug formulation is crucial for the successful delivery in living cells. We demonstrated earlier that packaging of catalase into a polyion complex micelle (‘nanozyme’) with a synthetic polyelectrolyte block copolymer protected the enzyme against degradation in macrophages and improved therapeutic outcomes. We now report the manufacture of nanozymes with superior structure and therapeutic indices. Methods Synthesis, characterization and therapeutic efficacy of optimal cell-based nanoformulations are evaluated. Results A formulation design for drug carriers typically works to avoid entrapment in monocytes and macrophages focusing on small-sized nanoparticles with a polyethylene glycol corona (to provide a stealth effect). By contrast, the best nanozymes for delivery in macrophages reported in this study have a relatively large size (~200 nm), which resulted in improved loading capacity and release from macrophages. Furthermore, the cross-linking of nanozymes with the excess of a nonbiodegradable linker ensured their low cytotoxicity, and efficient catalase protection in cell carriers. Finally, the ‘alternatively activated’ macrophage phenotype (M2) utilized in these studies did not promote further inflammation in the brain, resulting in a subtle but statistically significant effect on neuronal regeneration and repair in vivo. Conclusion The optimized cross-linked nanozyme loaded into macrophages reduced neuroinflammatory responses and increased neuronal survival in mice. Importantly, the approach for nanoformulation design for cell-mediated delivery is different from the common requirements for injectable formulations. PMID:24237263

  3. Ethylene glycol assisted preparation of Ti(4+)-modified polydopamine coated magnetic particles with rough surface for capture of phosphorylated proteins.

    Science.gov (United States)

    Ma, Xiangdong; Ding, Chun; Yao, Xin; Jia, Li

    2016-07-27

    The reversible protein phosphorylation is very important in regulating almost all aspects of cell life, while the enrichment of phosphorylated proteins still remains a technical challenge. In this work, polydopamine (PDA) modified magnetic particles with rough surface (rPDA@Fe3O4) were synthesized by introduction of ethylene glycol in aqueous solution. The PDA coating possessing a wealth of catechol hydroxyl groups could serve as an active medium to immobilize titanium ions through the metal-catechol chelation, which makes the fabrication of titanium ions modified rPDA@Fe3O4 particles (Ti(4+)-rPDA@Fe3O4) simple and very convenient. The spherical Ti(4+)-rPDA@Fe3O4 particles have a surface area of 37.7 m(2) g(-1) and superparamagnetism with a saturation magnetization value of 38.4 emu g(-1). The amount of Ti element in the particle was measured to be 3.93%. And the particles demonstrated good water dispersibility. The particles were used as adsorbents for capture of phosphorylated proteins and they demonstrated affinity and specificity for phosphorylated proteins due to the specific binding sites (Ti(4+)). Factors affecting the adsorption of phosphorylated proteins on Ti(4+)-rPDA@Fe3O4 particles were investigated. The adsorption capacity of Ti(4+)-rPDA@Fe3O4 particles for κ-casein was 1105.6 mg g(-1). Furthermore, the particles were successfully applied to isolate phosphorylated proteins in milk samples, which demonstrated that Ti(4+)-rPDA@Fe3O4 particles had potential application in selective separation of phosphorylated proteins. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Dose reduction of bone morphogenetic protein-2 for bone regeneration using a delivery system based on lyophilization with trehalose

    Directory of Open Access Journals (Sweden)

    Zhang X

    2018-01-01

    Full Text Available Xiaochen Zhang,1,* Quan Yu,2,* Yan-an Wang,1 Jun Zhao2 1Department of Oral and Maxillofacial-Head and Neck Oncology, 2Department of Orthodontics, College of Stomatology, Ninth People’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China *These authors contributed equally to this work Introduction: To induce sufficient new bone formation, high doses of bone morphogenetic protein-2 (BMP-2 are applied in regenerative medicine that often induce serious side effects. Therefore, improved treatment strategies are required. Here, we investigate whether the delivery of BMP-2 lyophilized in the presence of trehalose reduced the dose of BMP-2 required for bone regeneration. Materials and methods: A new growth factor delivery system was fabricated using BMP-2-loaded TiO2 nanotubes by lyophilization with trehalose (TiO2-Lyo-Tre-BMP-2. We measured BMP-2 release characteristics, bioactivity, and stability, and determined the effects on the osteogenic differentiation of bone marrow stromal cells in vitro. Additionally, we evaluated the ability of this formulation to regenerate new bone around implants in rat femur defects by micro-computed tomography (micro-CT, sequential fluorescent labelling, and histological analysis. Results: Compared with absorbed BMP-2-loaded TiO2 nanotubes (TiO2-BMP-2, TiO2-Lyo-Tre-BMP-2 exhibited sustained release, consistent bioactivity, and higher stability of BMP-2, and resulted in greater osteogenic differentiation of BMSCs. Eight weeks post-operation, TiO2-Lyo-Tre-BMP-2 nanotubes, with various dosages of BMP-2, regenerated larger amounts of new bone than TiO2-BMP-2 nanotubes. Conclusion: Our findings indicate that delivery of BMP-2 lyophilized with trehalose may be a promising method to reduce the dose of BMP-2 and avoid the associated side effects. Keywords: bone morphogenetic protein-2, dose reduction, delivery system, trehalose, lyophilization, TiO2 nanotubes, BMP-2, regenerative medicine, surface

  5. Delivery of phytochemical thymoquinone using molecular micelle modified poly(D, L lactide-co-glycolide) (PLGA) nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Ganea, Gabriela M; Warner, Isiah M [Department of Chemistry, Louisiana State University, 434 Choppin Hall, Baton Rouge, LA 70803 (United States); Fakayode, Sayo O [Department of Chemistry, Anderson Center Modular Unit 244-B, Winston-Salem State University, Winston Salem, NC 27110 (United States); Losso, Jack N [Food Science Department, Louisiana State University Agricultural Center, 111 Food Science Building, Baton Rouge, LA 70803 (United States); Van Nostrum, Cornelus F [Department of Pharmaceutics, Utrecht Institute of Pharmaceutical Sciences (UIPS), Utrecht University, Sorbonnelaan 16, 3508 TB Utrecht (Netherlands); Sabliov, Cristina M, E-mail: iwarner@lsu.edu [Biological and Agricultural Engineering Department, Louisiana State University Agricultural Center, 141 E B Doran Building, Baton Rouge, LA 70803 (United States)

    2010-07-16

    Continuous efforts have been made in the development of potent benzoquinone-based anticancer drugs aiming for improved water solubility and reduced adverse reactions. Thymoquinone is a liposoluble benzoquinone-based phytochemical that has been shown to have remarkable antioxidant and anticancer activities. In the study reported here, thymoquinone-loaded PLGA nanoparticles were synthesized and evaluated for physico-chemical, antioxidant and anticancer properties. The nanoparticles were synthesized by an emulsion solvent evaporation method using anionic molecular micelles as emulsifiers. The system was optimized for maximum entrapment efficiency using a Box-Behnken experimental design. Optimum conditions were found for 100 mg PLGA, 15 mg TQ and 0.5% w/v poly(sodium N-undecylenyl-glycinate) (poly-SUG). In addition, other structurally related molecular micelles such as poly(sodium N-heptenyl-glycinate) (poly-SHG), poly(sodium N-undecylenyl-leucinate) (poly-SUL), and poly(sodium N-undecylenyl-valinate) (poly-SUV) were also examined as emulsifiers. All investigated molecular micelles provided excellent emulsifier properties, leading to maximum optimized TQ entrapment efficiency, and monodispersed particle sizes below 200 nm. The release of TQ from molecular micelle modified nanoparticles was investigated by dialysis and reached lower levels than the free drug. The antioxidant activity of TQ-loaded nanoparticles, indicated by IC50 (mg ml{sup -1} TQ for 50% 2,2-diphenyl-1-picrylhydrazyl (DPPH) scavenging activity), was highest for poly-SUV emulsified nanoparticles (0.030 {+-} 0.002 mg ml{sup -1}) as compared to free TQ. In addition, it was observed that TQ-loaded nanoparticles emulsified with poly-SUV were more effective than free TQ against MDA-MB-231 cancer cell growth inhibition, presenting a cell viability of 16.0 {+-} 5.6% after 96 h.

  6. Fe3O4 nanoparticles modified by CD-containing star polymer for MRI and drug delivery.

    Science.gov (United States)

    Cha, Ruitao; Li, Juanjuan; Liu, Yang; Zhang, Yifan; Xie, Qian; Zhang, Mingming

    2017-10-01

    Fe 3 O 4 nanoparticles with ultrasmall sizes show good T 1 or T 1 +T 2 contrast abilities, and have attracted considerable interest in the field of magnetic resonance imaging (MRI) contrast agents. For effective biomedical applications, the colloidal stability and biocompatibility of the Fe 3 O 4 nanoparticles need to be improved without reducing MRI relaxivity. In this paper, star polymers were used as coating materials to modify Fe 3 O 4 nanoparticles in view of their dense molecular architecture with moderate flexibility. The star polymer was composed of a β-cyclodextrin (β-CD) core and poly(2-(dimethylamino) ethyl methacrylate) (PDMAEMA) arms. Meanwhile, reduced glutathione (GSH), as a model drug, was also associated with the star polymer. Thus, a new platform for simultaneous diagnosis and treatment was achieved. Compared to the Fe 3 O 4 nanoparticles coated with linear polymers, the Fe 3 O 4 nanoparticles coated with star polymers (Fe 3 O 4 @GCP) possessed higher GSH association capacity and better stability in serum-containing solution. GSH could be released from Fe 3 O 4 @GCP nanoparticles in response to pH value of the solution. Since the sulfhydryl group on GSH is able to combine free radicals, Fe 3 O 4 @GCP nanoparticles exhibited less cytotoxicity compared to the Fe 3 O 4 nanoparticles without including GSH. Furthermore, the nanoparticles could also serve as good T 1 MRI contrast agent, and the MRI relaxivity of Fe 3 O 4 @GCP nanoparticles did not decrease after coated with the star polymer. These results indicate that the precisely designed Fe 3 O 4 @GCP nanoparticles could be used as a versatile promising theranostic nano-platform. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Major membrane surface proteins of Mycoplasma hyopneumoniae selectively modified by covalently bound lipid

    International Nuclear Information System (INIS)

    Wise, K.S.; Kim, M.F.

    1987-01-01

    Surface protein antigens of Mycoplasma hyopneumoniae were identified by direct antibody-surface binding or by radioimmunoprecipitation of surface 125 I-labeled proteins with a series of monoclonal antibodies (MAbs). Radioimmunoprecipitation of TX-114-phase proteins from cells labeled with [ 35 S] methionine, 14 C-amino acids, or [ 3 H] palmitic acid showed that proteins p65, p50, and p44 were abundant and (with one other hydrophobic protein, p60) were selectively labeled with lipid. Alkaline hydroxylamine treatment of labeled proteins indicated linkage of lipids by amide or stable O-linked ester bonds. Proteins p65, p50, and p44 were highly immunogenic in the natural host as measured by immunoblots of TX-114-phase proteins with antisera from swine inoculated with whole organisms. These proteins were antigenically and structurally unrelated, since hyperimmune mouse antibodies to individual gel-purified proteins were monospecific and gave distinct proteolytic epitope maps. Intraspecies size variants of one surface antigen of M. hyopneumoniae were revealed by a MAb to p70 (defined in strain J, ATCC 25934), which recognized a large p73 component on strain VPP11 (ATCC 25617). In addition, MAb to internal, aqueous-phase protein p82 of strain J failed to bind an analogous antigen in strain VPP11

  8. Major membrane surface proteins of Mycoplasma hyopneumoniae selectively modified by covalently bound lipid

    Energy Technology Data Exchange (ETDEWEB)

    Wise K.S.; Kim, M.F.

    1987-12-01

    Surface protein antigens of Mycoplasma hyopneumoniae were identified by direct antibody-surface binding or by radioimmunoprecipitation of surface /sup 125/I-labeled proteins with a series of monoclonal antibodies (MAbs). Radioimmunoprecipitation of TX-114-phase proteins from cells labeled with (/sup 35/S) methionine, /sup 14/C-amino acids, or (/sup 3/H) palmitic acid showed that proteins p65, p50, and p44 were abundant and (with one other hydrophobic protein, p60) were selectively labeled with lipid. Alkaline hydroxylamine treatment of labeled proteins indicated linkage of lipids by amide or stable O-linked ester bonds. Proteins p65, p50, and p44 were highly immunogenic in the natural host as measured by immunoblots of TX-114-phase proteins with antisera from swine inoculated with whole organisms. These proteins were antigenically and structurally unrelated, since hyperimmune mouse antibodies to individual gel-purified proteins were monospecific and gave distinct proteolytic epitope maps. Intraspecies size variants of one surface antigen of M. hyopneumoniae were revealed by a MAb to p70 (defined in strain J, ATCC 25934), which recognized a large p73 component on strain VPP11 (ATCC 25617). In addition, MAb to internal, aqueous-phase protein p82 of strain J failed to bind an analogous antigen in strain VPP11.

  9. New biodegradable dextran-based hydrogels for protein delivery: Synthesis and characterization.

    Science.gov (United States)

    Pacelli, Settimio; Paolicelli, Patrizia; Casadei, Maria Antonietta

    2015-08-01

    A new derivative of dextran grafted with polyethylene glycol methacrylate through a carbonate bond (DEX-PEG-MA) has been synthesized and characterized. The photo-crosslinking reaction of DEX-PEG-MA allowed the obtainment of biodegradable networks tested for their mechanical and release properties. The new hydrogels were compared with those made of dextran methacrylate (DEX-MA), often employed as drug delivery systems of small molecules. The inclusion of PEG as a spacer created additional interactions among the polymeric chains improving the extreme fragility and lack of hardness typical of gels made of DEX-MA. Moreover, the different behavior in terms of swelling and degradability of the networks was able to affect the release of a model macromolecule over time, making DEX-PEG-MA matrices suitable candidates for the delivery of high molecular weight peptides. Interestingly, the combination of the two dextran derivatives showed intermediate ability to modulate the release of high molecular weight macromolecules. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Docetaxel (DTX)-loaded polydopamine-modified TPGS-PLA nanoparticles as a targeted drug delivery system for the treatment of liver cancer.

    Science.gov (United States)

    Zhu, Dunwan; Tao, Wei; Zhang, Hongling; Liu, Gan; Wang, Teng; Zhang, Linhua; Zeng, Xiaowei; Mei, Lin

    2016-01-01

    Polydopamine-based surface modification is a simple way to functionalize polymeric nanoparticle (NP) surfaces with ligands and/or additional polymeric layers. In this work, we developed DTX-loaded formulations using polydopamine-modified NPs synthesized using D-α-tocopherol polyethylene glycol 1000 succinate-poly(lactide) (pD-TPGS-PLA/NPs). To target liver cancer cells, galactosamine was conjugated on the prepared NPs (Gal-pD-TPGS-PLA/NPs) to enhance the delivery of DTX via ligand-mediated endocytosis. The size and morphology of pD-TPGS-PLA/NPs and Gal-pD-TPGS-PLA/NPs changed obviously compared with TPGS-PLA/NPs. In vitro studies showed that TPGS-PLA/NPs, pD-TPGS-PLA/NPs and Gal-pD-TPGS-PLA/NPs had similar release profiles of DTX. Both confocal laser scanning microscopy and flow cytometric results showed that coumarin 6-loaded Gal-pD-TPGS-PLA/NPs had the highest cellular uptake efficiency in liver cancer cell line HepG2. Moreover, DTX-loaded Gal-pD-TPGS-PLA/NPs inhibited the growth of HepG2 cells more potently than TPGS-PLA/NPs, pD-TPGS-PLA/NPs, and a clinically available DTX formulation (Taxotere®). The in vivo biodistribution experiments show that the Gal-pD-TPGS-PLA/NPs are specifically targeted to the tumor. Furthermore, the in vivo anti-tumor effects study showed that injecting DTX-loaded Gal-pD-TPGS-PLA/NPs reduced the tumor size most significantly on hepatoma-bearing nude mice. These results suggest that Gal-pD-TPGS-PLA/NPs prepared in the study specifically interacted with the hepatocellular carcinoma cells through ligand-receptor recognition and they may be used as a potentially eligible drug delivery system targeting liver cancers. Polydopamine-based surface modification is a simple way to functionalize polymeric nanoparticle surfaces with ligands and/or additional polymeric layers. In this work, we developed docetaxel (DTX)-loaded formulations using polydopamine-modified NPs synthesized from D-α-tocopherol polyethylene glycol 1000 succinate

  11. Transfection of primary brain capillary endothelial cells for protein synthesis and secretion of recombinant erythropoietin: a strategy to enable protein delivery to the brain.

    Science.gov (United States)

    Burkhart, Annette; Andresen, Thomas Lars; Aigner, Achim; Thomsen, Louiza Bohn; Moos, Torben

    2017-07-01

    Treatment of chronic disorders affecting the central nervous system (CNS) is complicated by the inability of drugs to cross the blood-brain barrier (BBB). Non-viral gene therapy applied to brain capillary endothelial cells (BCECs) denotes a novel approach to overcome the restraints in this passage, as turning BCECs into recombinant protein factories by transfection could result in protein secretion further into the brain. The present study aims to investigate the possibility of transfecting primary rat brain endothelial cells (RBECs) for recombinant protein synthesis and secretion of the neuroprotective protein erythropoietin (EPO). We previously showed that 4% of RBECs with BBB properties can be transfected without disrupting the BBB integrity in vitro, but it can be questioned whether this is sufficient to enable protein secretion at therapeutic levels. The present study examined various transfection vectors, with regard to increasing the transfection efficiency without disrupting the BBB integrity. Lipofectamine 3000™ was the most potent vector compared to polyethylenimine (PEI) and Turbofect. When co-cultured with astrocytes, the genetically modified RBECs secreted recombinant EPO into the cell culture medium both luminally and abluminally, and despite lower levels of EPO reaching the abluminal chamber, the amount of recombinant EPO was sufficient to evolve a biological effect on astrocytes cultured at the abluminal side in terms of upregulated gene expression of brain-derived neurotropic factor (BDNF). In conclusion, non-viral gene therapy to RBECs leads to protein secretion and signifies a method for therapeutic proteins to target cells inside the CNS otherwise omitted due to the BBB.

  12. A modified strategy for sequence specific assignment of protein NMR spectra based on amino acid type selective experiments

    International Nuclear Information System (INIS)

    Schubert, Mario; Labudde, Dirk; Leitner, Dietmar; Oschkinat, Hartmut; Schmieder, Peter

    2005-01-01

    The determination of the three-dimensional structure of a protein or the study of protein-ligand interactions requires the assignment of all relevant nuclei as an initial step. This is nowadays almost exclusively performed using triple-resonance experiments. The conventional strategy utilizes one or more pairs of three dimensional spectra to obtain redundant information and thus reliable assignments. Here, a modified strategy for obtaining sequence specific assignments based on two dimensional amino acid type selective triple-resonance experiments is proposed. These experiments can be recorded with good resolution in a relatively short time. They provide very specific and redundant information, in particular on sequential connectivities, that drastically increases the ease and reliability of the assignment procedure, done either manually or in an automated fashion. The new strategy is demonstrated with the protein domain PB1 from yeast CDC24p

  13. Physicochemical and Antioxidant Properties of Buckwheat Protein Isolates with Different Polyphenolic Content Modified by Limited Hydrolysis with Trypsin

    Directory of Open Access Journals (Sweden)

    Xiao-Yan Wang

    2012-01-01

    Full Text Available Effects of limited hydrolysis with trypsin on the physicochemical and antioxidant properties of buckwheat protein isolates (BPIs obtained with untreated and 2-propanol-extracted meal have been investigated and compared. The dephenolization treatment significantly improved the hydrolysis of BPI, which resulted in the gradual decrease in total and protein-bound polyphenolic content, but an increase in the free polyphenolic content. The hydrolysis of globulins was much easier than that of the albumins. The removal of polyphenols improved the hydrolysis of the albumin fraction. The modified BPIs with high polyphenolic content exhibited much higher DPPH radical scavenging activity and reducing power, but poorer ferrous ion chelating ability than those with low polyphenolic content. These results suggest that the limited hydrolysis is suitable for modification of the properties of buckwheat proteins.

  14. Thermo-sensitive liposomes loaded with doxorubicin and lysine modified single-walled carbon nanotubes as tumor-targeting drug delivery system.

    Science.gov (United States)

    Zhu, Xiali; Xie, Yingxia; Zhang, Yingjie; Huang, Heqing; Huang, Shengnan; Hou, Lin; Zhang, Huijuan; Li, Zhi; Shi, Jinjin; Zhang, Zhenzhong

    2014-11-01

    This report focuses on the thermo-sensitive liposomes loaded with doxorubicin and lysine-modified single-walled carbon nanotube drug delivery system, which was designed to enhance the anti-tumor effect and reduce the side effects of doxorubicin. Doxorubicin-lysine/single-walled carbon nanotube-thermo-sensitive liposomes was prepared by reverse-phase evaporation method, the mean particle size was 232.0 ± 5.6 nm, and drug entrapment efficiency was 86.5 ± 3.7%. The drug release test showed that doxorubicin released more quickly at 42℃ than at 37℃. Compared with free doxorubicin, doxorubicin-lysine/single-walled carbon nanotube-thermo-sensitive liposomes could efficiently cross the cell membranes and afford higher anti-tumor efficacy on the human hepatic carcinoma cell line (SMMC-7721) cells in vitro. For in vivo experiments, the relative tumor volumes of the sarcomaia 180-bearing mice in thermo-sensitive liposomes group and doxorubicin group were significantly smaller than those of N.S. group. Meanwhile, the combination of near-infrared laser irradiation at 808 nm significantly enhanced the tumor growth inhibition both on SMMC-7721 cells and the sarcomaia 180-bearing mice. The quality of life such as body weight, mental state, food and water intake of sarcomaia 180 tumor-bearing mice treated with doxorubicin-lysine/single-walled carbon nanotube-thermo-sensitive liposomes were much higher than those treated with doxorubicin. In conclusion, doxorubicin-lysine/single-walled carbon nanotube-thermo-sensitive liposomes combined with near-infrared laser irradiation at 808 nm may potentially provide viable clinical strategies for targeting delivery of anti-cancer drugs. © The Author(s) 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  15. Dual-Ligand Modified Polymer-Lipid Hybrid Nanoparticles for Docetaxel Targeting Delivery to Her2/neu Overexpressed Human Breast Cancer Cells.

    Science.gov (United States)

    Yang, Zhe; Tang, Wenxin; Luo, Xingen; Zhang, Xiaofang; Zhang, Chao; Li, Hao; Gao, Di; Luo, Huiyan; Jiang, Qing; Liu, Jie

    2015-08-01

    In this study, a dual-ligand polymer-lipid hybrid nanoparticle drug delivery vehicle comprised of an anti-HER2/neu peptide (AHNP) mimic with a modified HIV-1 Tat (mTAT) was established for the targeted treatment of Her2/neu-overexpressing cells. The resultant dual-ligand hybrid nanoparticles (NPs) consisted of a poly(lactide-co-glycolide) core, a near 90% surface coverage of the lipid monolayer, and a 5.7 nm hydrated polyethylene glycol shell. Ligand density optimization study revealed that cellular uptake efficiency of the hybrid NPs could be manipulated by controlling the surface-ligand densities. Furthermore, the cell uptake kinetics and mechanism studies showed that the dual-ligand modifications of hybrid NPs altered the cellular uptake pathway from caveolae-mediated endocytosis (CvME) to the multiple endocytic pathways, which would significantly enhance the NP internalization. Upon the systemic investigation of the cellular uptake behavior of dual-ligand hybrid NPs, docetaxel (DTX), a hydrophobic anticancer drug, was successfully encapsulated into dual-ligand hybrid NPs with high drug loading for Her2/neu-overexpressing SK-BR-3 breast cancer cell treatment. The DTX-loaded dual-ligand hybrid NPs showed a decreased burst release and a more gradual sustained drug release property. Because of the synergistic effect of dual-ligand modification, DTX-loaded dual-ligand hybrid NPs exerted substantially better therapeutic potency against SK-BR-3 cancer cells than other NP formulations and free DTX drugs. These results demonstrate that the dual-ligand hybrid NPs could be a promising vehicle for targeted drug delivery to treat breast cancer.

  16. Gene delivery into primary brain capillary endothelial cells for protein secretion

    DEFF Research Database (Denmark)

    Larsen, Annette Burkhart; Thomsen, Louiza Bohn; Lichota, Jacek

    model was established by co-culturing primary BCECs together with primary astrocytes, both of which were isolated from rats. This was done in order to study the possibility of using gene transfection in an environment closer to the in-vivo BBB situation. The in-vitro BBB barrier model showed trans......-endothelial electrical resistance above 200 ohm*cm2, indicating that the BCECs formed a tight polar monolayer with functional tight junctions. This was confirmed by immunostaining for the thigh junction protein ZO-1. Rat BCECs were transfected with a red fluorescence protein Hc-RED for 24 hours. Positive transfection...

  17. Pepsin immobilized in dextran-modified fused-silica capillaries for on-line protein digestion and peptide mapping.

    Science.gov (United States)

    Stigter, E C A; de Jong, G J; van Bennekom, W P

    2008-07-07

    On-line digestion of proteins under acidic conditions was studied using micro-reactors consisting of dextran-modified fused-silica capillaries with covalently immobilized pepsin. The proteins used in this study differed in molecular weight, isoelectric point and sample composition. The injected protein samples were completely digested in 3 min and the digest was analyzed with micro-high performance liquid chromatography (HPLC) and tandem mass spectrometry (MS/MS). The different proteins present in the samples could be identified with a Mascot database search on the basis of auto-MS/MS data. It proved also to be possible to digest and analyze protein mixtures with a sequence coverage of 55% and 97% for the haemoglobin beta- and alpha-chain, respectively, and 35-55% for the various casein variants. Protease auto-digestion, sample carry-over and loss of signal due to adsorption of the injected proteins were not observed. The backpressure of the reactor is low which makes coupling to systems such as Surface Plasmon Resonance biosensors, which do not tolerate too high pressure, possible. The reactor was stable for at least 40 days when used continuously.

  18. Pepsin immobilized in dextran-modified fused-silica capillaries for on-line protein digestion and peptide mapping

    Energy Technology Data Exchange (ETDEWEB)

    Stigter, E.C.A. [Division of Biomedical Analysis, Department of Pharmaceutical Sciences, Faculty of Science, Utrecht University, Sorbonnelaan 16, 3584 CA Utrecht (Netherlands)], E-mail: e.c.a.stigter@uu.nl; Jong, G.J. de; Bennekom, W.P. van [Division of Biomedical Analysis, Department of Pharmaceutical Sciences, Faculty of Science, Utrecht University, Sorbonnelaan 16, 3584 CA Utrecht (Netherlands)

    2008-07-07

    On-line digestion of proteins under acidic conditions was studied using micro-reactors consisting of dextran-modified fused-silica capillaries with covalently immobilized pepsin. The proteins used in this study differed in molecular weight, isoelectric point and sample composition. The injected protein samples were completely digested in 3 min and the digest was analyzed with micro-high performance liquid chromatography (HPLC) and tandem mass spectrometry (MS/MS). The different proteins present in the samples could be identified with a Mascot database search on the basis of auto-MS/MS data. It proved also to be possible to digest and analyze protein mixtures with a sequence coverage of 55% and 97% for the haemoglobin {beta}- and {alpha}-chain, respectively, and 35-55% for the various casein variants. Protease auto-digestion, sample carry-over and loss of signal due to adsorption of the injected proteins were not observed. The backpressure of the reactor is low which makes coupling to systems such as Surface Plasmon Resonance biosensors, which do not tolerate too high pressure, possible. The reactor was stable for at least 40 days when used continuously.

  19. Protein-Based Multifunctional Nanocarriers for Imaging, Photothermal Therapy, and Anticancer Drug Delivery.

    Science.gov (United States)

    Pan, Uday Narayan; Khandelia, Rumi; Sanpui, Pallab; Das, Subhojit; Paul, Anumita; Chattopadhyay, Arun

    2017-06-14

    We report a simple approach for fabricating plasmonic and magneto-luminescent multifunctional nanocarriers (MFNCs) by assembling gold nanorods, iron oxide nanoparticles, and gold nanoclusters within BSA nanoparticles. The MFNCs showed self-tracking capability through single- and two-photon imaging, and the potential for magnetic targeting in vitro. Appreciable T 2 -relaxivity exhibited by the MFNCs indicated favorable conditions for magnetic resonance imaging. In addition to successful plasmonic-photothermal therapy of cancer cells (HeLa) in vitro, the MFNCs demonstrated efficient loading and delivery of doxorubicin to HeLa cells leading to significant cell death. The present MFNCs with their multimodal imaging and therapeutic capabilities could be eminent candidates for cancer theranostics.

  20. Polyelectrolyte Complex Nanoparticles from Chitosan and Acylated Rapeseed Cruciferin Protein for Curcumin Delivery.

    Science.gov (United States)

    Wang, Fengzhang; Yang, Yijie; Ju, Xingrong; Udenigwe, Chibuike C; He, Rong

    2018-03-21

    Curcumin is a polyphenol that exhibits several biological activities, but its low aqueous solubility results in low bioavailability. To improve curcumin bioavailability, this study has focused on developing a polyelectrolyte complexation method to form layer-by-layer assembled nanoparticles, for curcumin delivery, with positively charged chitosan (CS) and negatively charged acylated cruciferin (ACRU), a rapeseed globulin. Nanoparticles (NPs) were prepared from ACRU and CS (2:1) at pH 5.7. Three samples with weight of 5%, 10%, and 15% of curcumin, respectively, in ACRU/CS carrier were prepared. To verify the stability of the NPs, encapsulation efficiency and size of the 5% Cur-ACRU/CS NPs were determined at intervals of 5 days in a one month period. Fourier transform infrared spectroscopy (FTIR), X-ray diffraction, and differential scanning calorimetry confirmed the electrostatic interaction and hydrogen bond formation between the carrier and core. The result showed that hollow ACRU/CS nanocapsules (ACRU/CS NPs) and curcumin-loaded ACRU/CS nanoparticles (Cur-ACRU/CS NPs) were homogenized spherical with average sizes of 200-450 nm and zeta potential of +15 mV. Encapsulation and loading efficiencies were 72% and 5.4%, respectively. In vitro release study using simulated gastro (SGF) and intestinal fluids (SIF) showed controlled release of curcumin in 6 h of exposure. Additionally, the Cur-ACRU/CS NPs are nontoxic to cultured Caco-2 cells, and the permeability assay indicated that Cur-ACRU/CS NPs had improved permeability efficiency of free curcumin through the Caco-2 cell monolayer. The findings suggest that ACRU/CS NPs can be used for encapsulation and delivery of curcumin in functional foods.

  1. Zein-alginate based oral drug delivery systems: Protection and release of therapeutic proteins.

    Science.gov (United States)

    Lee, Sungmun; Kim, Yeu-Chun; Park, Ji-Ho

    2016-12-30

    Reactive oxygen species (ROS) play an important role in the development of inflammatory bowel diseases. Superoxide dismutase (SOD) has a great therapeutic potential by scavenging superoxide that is one of ROS; however, in vivo application is limited especially when it is orally administered. SOD is easily degraded in vivo by the harsh conditions of gastrointestinal tract. Here, we design a zein-alginate based oral drug delivery system that protects SOD from the harsh conditions of gastrointestinal tract and releases it in the environment of the small intestine. SOD is encapsulated in zein-alginate nanoparticles (ZAN) via a phase separation method. We demonstrate that ZAN protect SOD from the harsh conditions of the stomach or small intestine condition. ZAN (200:40) at the weight ratio of 200mg zein to 40mg of alginate releases SOD in a pH dependent manner, and it releases 90.8±1.2% of encapsulated SOD at pH 7.4 in 2h, while only 11.4±0.4% of SOD was released at pH 1.3. The encapsulation efficiency of SOD in ZAN (200:40) was 62.1±2.0%. SOD in ZAN (200:40) reduced the intracellular ROS level and it saved 88.9±7.5% of Caco-2 cells from the toxic superoxide in 4 hours. Based on the results, zein-alginate based oral drug delivery systems will have numerous applications to drugs that are easily degradable in the harsh conditions of gastrointestinal tract. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. A multi-domain protein for beta1 integrin-targeted DNA delivery.

    NARCIS (Netherlands)

    E. Fortunati (Elisabetta); E.M.E. Ehlert (Ehrich); N.D. van Loo; C. Wyman (Claire); J.A. Eble; F.G. Grosveld (Frank); B.J. Scholte (Bob)

    2000-01-01

    textabstractThe development of effective receptor-targeted nonviral vectors for use in vivo is complicated by a number of technical problems. One of these is the low efficiency of the conjugation procedures used to couple protein ligands to the DNA condensing carrier molecules. We have made and

  3. TAT-Mediated Delivery of Tousled Protein to Salivary Glands Protects Against Radiation-Induced Hypofunction

    Energy Technology Data Exchange (ETDEWEB)

    Sunavala-Dossabhoy, Gulshan, E-mail: gsunav@lsuhsc.edu [Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, LA (United States); Palaniyandi, Senthilnathan; Richardson, Charles; De Benedetti, Arrigo [Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, LA (United States); Schrott, Lisa [Department of Pharmacology, Toxicology, and Neuroscience, Louisiana State University Health Sciences Center, Shreveport, LA (United States); Caldito, Gloria [Department of Bioinformatics and Computational Biology, Louisiana State University Health Sciences Center, Shreveport, LA (United States)

    2012-09-01

    Purpose: Patients treated with radiotherapy for head-and-neck cancer invariably suffer its deleterious side effect, xerostomia. Salivary hypofunction ensuing from the irreversible destruction of glands is the most common and debilitating oral complication affecting patients undergoing regional radiotherapy. Given that the current management of xerostomia is palliative and ineffective, efforts are now directed toward preventive measures to preserve gland function. The human homolog of Tousled protein, TLK1B, facilitates chromatin remodeling at DNA repair sites and improves cell survival against ionizing radiation (IR). Therefore, we wanted to determine whether a direct transfer of TLK1B protein to rat salivary glands could protect against IR-induced salivary hypofunction. Methods: The cell-permeable TAT-TLK1B fusion protein was generated. Rat acinar cell line and rat salivary glands were pretreated with TAT peptide or TAT-TLK1B before IR. The acinar cell survival in vitro and salivary function in vivo were assessed after radiation. Results: We demonstrated that rat acinar cells transduced with TAT-TLK1B were more resistant to radiation (D{sub 0} = 4.13 {+-} 1.0 Gy; {alpha}/{beta} = 0 Gy) compared with cells transduced with the TAT peptide (D{sub 0} = 4.91 {+-} 1.0 Gy; {alpha}/{beta} = 20.2 Gy). Correspondingly, retroductal instillation of TAT-TLK1B in rat submandibular glands better preserved salivary flow after IR (89%) compared with animals pretreated with Opti-MEM or TAT peptide (31% and 39%, respectively; p < 0.01). Conclusions: The results demonstrate that a direct transfer of TLK1B protein to the salivary glands effectively attenuates radiation-mediated gland dysfunction. Prophylactic TLK1B-protein therapy could benefit patients undergoing radiotherapy for head-and-neck cancer.

  4. l-Arginine grafted alginate hydrogel beads: A novel pH-sensitive system for specific protein delivery

    Directory of Open Access Journals (Sweden)

    Mohamed S. Mohy Eldin

    2015-05-01

    Full Text Available Novel pH-sensitive hydrogels based on l-arginine grafted alginate (Arg-g-Alg hydrogel beads were synthesized and utilized as a new carrier for protein delivery (BSA in specific pH media. l-arginine was grafted onto the polysaccharide backbone of virgin alginate via amine functions. Evidences of grafting of alginate were extracted from FT-IR and thermal analysis, while the morphological structure of Arg-g-Alg hydrogel beads was investigated by SEM photographs. Factors affecting on the grafting process e.g. l-arginine concentration, reaction time, reaction temperature, reaction pH, and crosslinking conditions, have been studied. Whereas, grafting efficiency of each factor was evaluated. Grafting of alginate has improved both thermal and morphological properties of Arg-g-Alg hydrogel beads. The swelling behavior of Arg-g-Alg beads was determined as a function of pH and compared with virgin calcium alginate beads. The cumulative in vitro release profiles of BSA loaded beads were studied at different pHs for simulating the physiological environments of the gastrointestinal tract. The amount of BSA released from neat alginate beads at pH 2 was almost 15% after 5 h, while the Arg-g-Alg beads at the same conditions were clearly higher than 45%, then it increased to 90% at pH 7.2. Accordingly, grafting of alginate has improved its release profile behavior particularly in acidic media. The preliminary results clearly suggested that the Arg-g-Alg hydrogel may be a potential candidate for polymeric carrier for oral delivery of protein or drugs.

  5. Protein resistance of surfaces modified with oligo(ethylene glycol) aryl diazonium derivatives.

    Science.gov (United States)

    Fairman, Callie; Ginges, Joshua Z; Lowe, Stuart B; Gooding, J Justin

    2013-07-22

    Anti-fouling surfaces are of great importance for reducing background interference in biosensor signals. Oligo(ethylene glycol) (OEG) moieties are commonly used to confer protein resistance on gold, silicon and carbon surfaces. Herein, we report the modification of surfaces using electrochemical deposition of OEG aryl diazonium salts. Using electrochemical and contact angle measurements, the ligand packing density is found to be loose, which supports the findings of the fluorescent protein labelling that aryl diazonium OEGs confer resistance to nonspecific adsorption of proteins albeit lower than alkane thiol-terminated OEGs. In addition to protein resistance, aryl diazonium attachment chemistry results in stable modification. In common with OEG species on gold electrodes, OEGs with distal hydroxyl moieties do confer superior protein resistance to those with a distal methoxy group. This is especially the case for longer derivatives where superior coiling of the OEG chains is possible. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Receptor Activity-modifying Protein-directed G Protein Signaling Specificity for the Calcitonin Gene-related Peptide Family of Receptors.

    Science.gov (United States)

    Weston, Cathryn; Winfield, Ian; Harris, Matthew; Hodgson, Rose; Shah, Archna; Dowell, Simon J; Mobarec, Juan Carlos; Woodlock, David A; Reynolds, Christopher A; Poyner, David R; Watkins, Harriet A; Ladds, Graham

    2016-10-14

    The calcitonin gene-related peptide (CGRP) family of G protein-coupled receptors (GPCRs) is formed through the association of the calcitonin receptor-like receptor (CLR) and one of three receptor activity-modifying proteins (RAMPs). Binding of one of the three peptide ligands, CGRP, adrenomedullin (AM), and intermedin/adrenomedullin 2 (AM2), is well known to result in a Gα s -mediated increase in cAMP. Here we used modified yeast strains that couple receptor activation to cell growth, via chimeric yeast/Gα subunits, and HEK-293 cells to characterize the effect of different RAMP and ligand combinations on this pathway. We not only demonstrate functional couplings to both Gα s and Gα q but also identify a Gα i component to CLR signaling in both yeast and HEK-293 cells, which is absent in HEK-293S cells. We show that the CGRP family of receptors displays both ligand- and RAMP-dependent signaling bias among the Gα s , Gα i , and Gα q/11 pathways. The results are discussed in the context of RAMP interactions probed through molecular modeling and molecular dynamics simulations of the RAMP-GPCR-G protein complexes. This study further highlights the importance of RAMPs to CLR pharmacology and to bias in general, as well as identifying the importance of choosing an appropriate model system for the study of GPCR pharmacology. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  7. Expression of PAT and NPT II proteins during the developmental stages of a genetically modified pepper developed in Korea.

    Science.gov (United States)

    Kim, Hyo Jin; Lee, Si Myung; Kim, Jae Kwang; Ryu, Tae Hun; Suh, Seok Cheol; Cho, Hyun Suk

    2010-10-27

    Estimation of the protein levels introduced in a biotechnology-derived product is conducted as part of an overall safety assessment. An enzyme-linked immunosorbent assay (ELISA) was used to analyze phosphinothricin acetyltransferase (PAT) and neomycin phosphotransferase II (NPT II) protein expression in a genetically modified (GM) pepper plant developed in Korea. PAT and NPT II expression levels, based on both dry weight and fresh weight, were variable among different plant generations and plant sections from isolated genetically modified organism (GMO) fields at four developmental stages. PAT expression was highest in leaves at anthesis (11.44 μg/gdw and 2.17 μg/gfw) and lowest in roots (0.12 μg/gdw and 0.01 μg/gfw). NPT II expression was also highest in leaves at anthesis (17.31 μg/gdw and 3.41 μg/gfw) and lowest in red pepper (0.65 μg/gdw and 0.12 μg/gfw). In pollen, PAT expression was 0.59-0.62 μg/gdw, while NPT II was not detected. Both PAT and NPT II showed a general pattern of decreased expression with progression of the growing season. As expected, PAT and NPT II protein expression was not detectable in control pepper plants.

  8. Biochemistry of plant class IV chitinases and fungal chitinase-modifying proteins

    Science.gov (United States)

    Plant class IV chitinases have 2 domains, a small (3 kDa) amino-terminal domain with homology to carbohydrate binding peptides, and a larger (25 kDa) catalytic domain. The biological function of these chitinases is not known. But it is known that some pathogenic fungi secrete chitinase modifying pro...

  9. Overexpression of the transcription factor Yap1 modifies intracellular redox conditions and enhances recombinant protein secretion

    Directory of Open Access Journals (Sweden)

    Marizela Delic

    2014-10-01

    Full Text Available Oxidative folding of secretory proteins in the endoplasmic reticulum (ER is a redox active process, which also impacts the redox conditions in the cytosol. As the transcription factor Yap1 is involved in the transcriptional response to oxidative stress, we investigate its role upon the production of secretory proteins, using the yeast Pichia pastoris as model, and report a novel important role of Yap1 during oxidative protein folding. Yap1 is needed for the detoxification of reactive oxygen species (ROS caused by increased oxidative protein folding. Constitutive co-overexpression of PpYAP1 leads to increased levels of secreted recombinant protein, while a lowered Yap1 function leads to accumulation of ROS and strong flocculation. Transcriptional analysis revealed that more than 150 genes were affected by overexpression of YAP1, in particular genes coding for antioxidant enzymes or involved in oxidation-reduction processes. By monitoring intracellular redox conditions within the cytosol and the ER using redox-sensitive roGFP1 variants, we could show that overexpression of YAP1 restores cellular redox conditions of protein-secreting P. pastoris by reoxidizing the cytosolic redox state to the levels of the wild type. These alterations are also reflected by increased levels of oxidized intracellular glutathione (GSSG in the YAP1 co-overexpressing strain. Taken together, these data indicate a strong impact of intracellular redox balance on the secretion of (recombinant proteins without affecting protein folding per se. Re-establishing suitable redox conditions by tuning the antioxidant capacity of the cell reduces metabolic load and cell stress caused by high oxidative protein folding load, thereby increasing the secretion capacity.

  10. Eudragit ® FS 30 D polymeric films containing chondroitin sulfate as candidates for use in coating seeking modified delivery of drugs

    Directory of Open Access Journals (Sweden)

    Camila Borges dos Reis

    Full Text Available ABSTRACT Polymeric films associating different concentrations of Eudragit(r FS 30 D (EFS and chondroitin sulfate (CS were produced by casting for the development of a new target-specific site material. Formed films kept a final polymer mass of 4% (w/v in the following proportions: EFS 100:00 CS (control, EFS 95:05 CS, EFS 90:10 CS and EFS 80:20 CS. They were analyzed for physical and chemical characteristics using Fourier transform infrared spectroscopy (FTIR, scanning electron microscopy (SEM and Raman spectroscopy. Furthermore, they were characterized by their water vapor permeability and degree of hydration at different conditions simulating the gastrointestinal tract. No chemical interactions were observed between CS and EFS, suggesting only a physical interaction between them in the different combinations tested. The results suggest that EFS and CS, when combined, may form films that are candidates for coating processes seeking a modified drug delivery, especially due to the synergism between pH dependency and specific biodegradability properties by the colonic microbiota. EFS 90:10 CS proved to be the most suitable for this purpose considering hydration and permeability characteristics of different associations analyzed.

  11. Controlled intra- and transdermal protein delivery using a minimally invasive Erbium:YAG fractional laser ablation technology.

    Science.gov (United States)

    Bachhav, Y G; Heinrich, A; Kalia, Y N

    2013-06-01

    The aim of the study was (i) to investigate the feasibility of using fractional laser ablation to create micropore arrays in order to deliver proteins into and across the skin and (ii) to demonstrate how transport rates could be controlled by variation of poration and formulation conditions. Four proteins with very different structures and properties were investigated - equine heart cytochrome c (Cyt c; 12.4 kDa), recombinant human growth hormone expressed in Escherichia coli (hGH; 22 kDa), urinary follicle stimulating hormone (FSH; 30 kDa) and FITC-labelled bovine serum albumin (FITC-BSA; 70 kDa). The transport experiments were performed using a scanning Er:YAG diode pumped laser (P.L.E.A.S.E.®; Precise Laser Epidermal System). The distribution of FITC-BSA in the micropores following P.L.E.A.S.E.® poration was visualised by using confocal laser scanning microscopy (CLSM). Porcine skin was used for the device parameter and CLSM studies; its validity as a model was confirmed by subsequent comparison with transport of Cyt c and FITC-BSA across P.L.E.A.S.E.® porated human skin. No protein transport (deposition or permeation) was observed across intact skin; however, P.L.E.A.S.E.® poration enabled total delivery after 24h of 48.2±8.9, 8.1±4.2, 0.2±0.1 and 273.3±30.6 μg/cm(2) for Cyt c, hGH, FSH and FITC-BSA, respectively, using 900 pores/135.9 cm(2). Calculation of permeability coefficients showed that there was no linear dependence of transport on molecular weight ((1.6±0.3), (0.1±0.05), (0.08±0.03) and (0.9±0.1)×10(-3) cm/h, for Cyt c, hGH, FSH and FITC-BSA, respectively); indeed, a U-shaped curve was observed. This suggested that molecular weight was not a sufficiently sensitive descriptor and that transport was more likely to be determined by the surface properties of the respective proteins since these would govern interactions with the local microenvironment. Increasing pore density (i.e. the number of micropores per unit area) had a statistically

  12. IN-MACA-MCC: Integrated Multiple Attractor Cellular Automata with Modified Clonal Classifier for Human Protein Coding and Promoter Prediction

    Directory of Open Access Journals (Sweden)

    Kiran Sree Pokkuluri

    2014-01-01

    Full Text Available Protein coding and promoter region predictions are very important challenges of bioinformatics (Attwood and Teresa, 2000. The identification of these regions plays a crucial role in understanding the genes. Many novel computational and mathematical methods are introduced as well as existing methods that are getting refined for predicting both of the regions separately; still there is a scope for improvement. We propose a classifier that is built with MACA (multiple attractor cellular automata and MCC (modified clonal classifier to predict both regions with a single classifier. The proposed classifier is trained and tested with Fickett and Tung (1992 datasets for protein coding region prediction for DNA sequences of lengths 54, 108, and 162. This classifier is trained and tested with MMCRI datasets for protein coding region prediction for DNA sequences of lengths 252 and 354. The proposed classifier is trained and tested with promoter sequences from DBTSS (Yamashita et al., 2006 dataset and nonpromoters from EID (Saxonov et al., 2000 and UTRdb (Pesole et al., 2002 datasets. The proposed model can predict both regions with an average accuracy of 90.5% for promoter and 89.6% for protein coding region predictions. The specificity and sensitivity values of promoter and protein coding region predictions are 0.89 and 0.92, respectively.

  13. Manganese modified CdTe/CdS quantum dots as an immunoassay biosensor for the detection of Golgi protein-73.

    Science.gov (United States)

    Liu, Wei; Zhang, Aixia; Xu, Guanhong; Wei, Fangdi; Yang, Jing; Hu, Qin

    2016-01-05

    In this paper, a new fluorescence bioassay for Golgi protein-73 (GP73), a promising marker for monitoring liver tumor, was developed by using anti-GP73 antibody (GP73 Ab) capped quantum dots (QDs) coupled with protein A/G agarose beads in an attempt to improve the analysis time, cost and operation. First, carboxylic-functionalized Mn modified CdTe/CdS QDs were synthesized and covalently conjugated with GP73 Ab, then protein A/G agarose beads were specifically combined with the QDs-conjugated Ab to form the QDs-Ab-beads conjugate, which could capture and separate GP73 from the sample through simple centrifugation. It was found that the fluorescence intensity of the above QDs-Ab-beads biosensor could be specifically quenched by GP73 added. A simple, rapid and specific quantitative method for GP73 protein was proposed using the as-prepared QDs-Ab-beads as a biosensor. Under the optimized conditions, the calibration curve of the proposed assay showed good linearity with a correlation coefficient of 0.9935 in the concentration range of 20-150 ng/mL of GP73 protein. The limit of detection (defined as 3σ/K) was 10 ng/mL. The method built exhibited a great potential in the clinic test of GP73. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Prevention of adverse events of interferon γ gene therapy by gene delivery of interferon γ-heparin-binding domain fusion protein in mice

    Directory of Open Access Journals (Sweden)

    Mitsuru Ando

    2014-01-01

    Full Text Available Sustained gene delivery of interferon (IFN γ can be an effective treatment, but our previous study showed high levels of IFNγ-induced adverse events, including the loss of body weight. These unwanted events could be reduced by target-specific delivery of IFNγ after in vivo gene transfer. To achieve this, we selected the heparin-binding domain (HBD of extracellular superoxide dismutase as a molecule to anchor IFNγ to the cell surface. We designed three IFNγ derivatives, IFNγ-HBD1, IFNγ-HBD2, and IFNγ-HBD3, each of which had 1, 2, or 3 HBDs, respectively. Each plasmid-encoding fusion proteins was delivered to the liver, a model target in this study, by hydrodynamic tail vein injection. The serum concentration of IFNγ-HBD2 and IFNγ-HBD3 after gene delivery was lower than that of IFNγ or IFNγ-HBD1. Gene delivery of IFNγ-HBD2, but not of IFNγ-HBD3, effectively increased the mRNA expression of IFNγ-inducible genes in the liver, suggesting liver-specific distribution of IFNγ-HBD2. Gene delivery of IFNγ-HBD2-suppressed tumor growth in the liver as efficiently as that of IFNγ with much less symptoms of adverse effects. These results indicate that the adverse events of IFNγ gene transfer can be prevented by gene delivery of IFNγ-HBD2, a fusion protein with high cell surface affinity.

  15. Characterization of Silk Fibroin Modified Surface: A Proteomic View of Cellular Response Proteins Induced by Biomaterials

    Directory of Open Access Journals (Sweden)

    Ming-Hui Yang

    2014-01-01

    Full Text Available The purpose of this study was to develop the pathway of silk fibroin (SF biopolymer surface induced cell membrane protein activation. Fibroblasts were used as an experimental model to evaluate the responses of cellular proteins induced by biopolymer material using a mass spectrometry-based profiling system. The surface was covered by multiwalled carbon nanotubes (CNTs and SF to increase the surface area, enhance the adhesion of biopolymer, and promote the rate of cell proliferation. The amount of adhered fibroblasts on CNTs/SF electrodes of quartz crystal microbalance (QCM greatly exceeded those on other surfaces. Moreover, analyzing differential protein expressions of adhered fibroblasts on the biopolymer surface by proteomic approaches indicated that CD44 may be a key protein. Through this study, utilization of mass spectrometry-based proteomics in evaluation of cell adhesion on biopolymer was proposed.

  16. Competitive Adsorption of Plasma Proteins on Polysaccharide-Modified Silicon Surfaces

    National Research Council Canada - National Science Library

    Ombelli, Michela; Costello, Lauren B; Meng, Qing C; Composto, Russell J; Eckmann, David M

    2005-01-01

    .... Competitive protein adsorption plays a key role in the hemocompatibility of the surface. The synthesis of nonfouling surfaces is therefore one of the major prerequisites for devices for biomedical applications...

  17. Analyzing modifiers of protein aggregation in C. elegans by native agarose gel electrophoresis

    NARCIS (Netherlands)

    Holmberg, Mats; Nollen, Ellen A A; Hatters, Danny M.; Hannan, Anthony J.

    2013-01-01

    The accumulation of specific aggregation-prone proteins during aging is thought to be involved in several diseases, most notably Alzheimer's and Parkinson's disease as well as polyglutamine expansion disorders such as Huntington's disease. Caenorhabditis elegans disease models with transgenic

  18. Modifier Genes for Mouse Phosphatidylinositol Transfer Protein alpha (vibrator) That Bypass Juvenile Lethality

    NARCIS (Netherlands)

    Concepcion, Dorothy; Johannes, Frank; Lo, Yuan Hung; Yao, Jay; Fong, Jerry; Hamilton, Bruce A.

    Phosphatidylinositol transfer proteins (PITPs) mediate lipid signaling and membrane trafficking in eukaryotic cells. Loss-of-function mutations of the gene encoding PITP alpha in mice result in a range of dosage-sensitive phenotypes, including neurological dysfunction, neurodegeneration, and

  19. Surface and protein analyses of normal human cell attachment on PIII-modified chitosan membranes

    International Nuclear Information System (INIS)

    Saranwong, N.; Inthanon, K.; Wongkham, W.; Wanichapichart, P.; Suwannakachorn, D.; Yu, L.D.

    2012-01-01

    Surface of chitosan membrane was modified with argon (Ar) and nitrogen (N) plasma immersion ion implantation (PIII) for human skin fibroblasts F1544 cell attachment. The modified surfaces were characterized by Fourier transform infrared spectroscopy (FTIR) and atomic force microscopy (AFM). Cell attachment patterns were evaluated by scanning electron microscopy (SEM). The enzyme-linked immunosorbent assay (ELISA) was used to quantify levels of focal adhesion kinase (FAK). The results showed that Ar PIII had an enhancement effect on the cell attachment while N-PIII had an inhibition effect. Filopodial analysis revealed more microfilament cytoplasmic spreading on the edge of cells attached on the Ar-treated membranes than N-treated membranes. Higher level FAK was found in Ar-treated membranes than that in N-treated membranes.

  20. Evaluation of Enzymatically Modified Soy Protein Isolate Film Forming Solution and Film at Different Manufacturing Conditions.

    Science.gov (United States)

    Mohammad Zadeh, Elham; O'Keefe, Sean F; Kim, Young-Teck; Cho, Jin-Hun

    2018-04-01

    The effects of transglutaminase on soy protein isolate (SPI) film forming solution and films were investigated by rheological behavior and physicochemical properties based on different manufacturing conditions (enzyme treatments, enzyme incubation times, and protein denaturation temperatures). Enzymatic crosslinking reaction and changes in molecular weight distribution were confirmed by viscosity measurement and SDS-PAGE, respectively, compared to 2 controls: the nonenzyme treated and the deactivated enzyme treated. Films treated with both the enzyme and the deactivated enzyme showed significant increase in tensile strength (TS), percent elongation (%E), and initial contact angle of films compared to the nonenzyme control film due to the bulk stabilizers in the commercial enzyme. Water absorption property, protein solubility, Fourier transform infrared (FTIR) and X-ray diffraction (XRD) spectroscopy revealed that enzyme treated SPI film matrix in the molecular structure level, resulted in the changes in physicochemical properties. Based on our observation, the enzymatic treatment at appropriate conditions is a practical and feasible way to control the physical properties of protein based biopolymeric film for many different scientific and industrial areas. Enzymes can make bridges selectively among different amino acids in the structure of protein matrix. Therefore, protein network is changed after enzyme treatment. The behavior of biopolymeric materials is dependent on the network structure to be suitable in different applications such as bioplastics applied in food and pharmaceutical products. In the current research, transglutaminase, as an enzyme, applied in soy protein matrix in different types of forms, activated and deactivated, and different preparation conditions to investigate its effects on different properties of the new bioplastic film. © 2018 Institute of Food Technologists®.

  1. Modified expression of several sperm proteins after chronic exposure to the antiandrogenic compound vinclozolin.

    Science.gov (United States)

    Auger, Jacques; Eustache, Florence; Maceiras, Paula; Broussard, Cédric; Chafey, Philippe; Lesaffre, Corinne; Vaiman, Daniel; Camoin, Luc; Auer, Jana

    2010-10-01

    Little is known about the molecular impact of in vivo exposure to endocrine disruptors (EDs) on sperm structures and functions. We recently reported that the lifelong exposure of rats to the antiandrogenic compound vinclozolin results in low epididymal weight, changes in sperm kinematic parameters, and immature sperm chromatin condensation, together with the impairment of several fertility end points. These results led us to focus specifically on possible molecular abnormalities in sperm. Sperm samples were recovered from the frozen epididymides of rats exposed during the previous study. The proteins present in the samples from six exposed and six control rats were analyzed in pairs, by two-dimensional fluorescence difference gel electrophoresis, to investigate possible exposure-induced changes to sperm protein profiles. Twelve proteins, from the 380 matched spots observed in at least five gels, were present in larger or smaller amounts after vinclozolin exposure. These proteins were identified by mass spectrometry, and several are known to play a crucial role in the sperm fertilizing ability, among which, two mitochondrial enzymes, malate dehydrogenase 2 and aldehyde dehydrogenase (both of which were present in smaller amounts after treatment) and A-kinase anchor protein 4 (larger amounts of precursor after treatment). Finally, Ingenuity Pathway Analysis revealed highly significant interactions between proteins over- and underexpressed after treatment. This is the first study to show an association between in vivo exposure to an ED and changes to the sperm protein profile. These modifications may be at least partly responsible for the reproductive abnormalities and impaired fertility recently reported in this rat model of vinclozolin exposure.

  2. Arabidopsis leucine-rich repeat extensin (LRX) proteins modify cell wall composition and influence plant growth.

    Science.gov (United States)

    Draeger, Christian; Ndinyanka Fabrice, Tohnyui; Gineau, Emilie; Mouille, Grégory; Kuhn, Benjamin M; Moller, Isabel; Abdou, Marie-Therese; Frey, Beat; Pauly, Markus; Bacic, Antony; Ringli, Christoph

    2015-06-24

    Leucine-rich repeat extensins (LRXs) are extracellular proteins consisting of an N-terminal leucine-rich repeat (LRR) domain and a C-terminal extensin domain containing the typical features of this class of structural hydroxyproline-rich glycoproteins (HRGPs). The LRR domain is likely to bind an interaction partner, whereas the extensin domain has an anchoring function to insolubilize the protein in the cell wall. Based on the analysis of the root hair-expressed LRX1 and LRX2 of Arabidopsis thaliana, LRX proteins are important for cell wall development. The importance of LRX proteins in non-root hair cells and on the structural changes induced by mutations in LRX genes remains elusive. The LRX gene family of Arabidopsis consists of eleven members, of which LRX3, LRX4, and LRX5 are expressed in aerial organs, such as leaves and stem. The importance of these LRX genes for plant development and particularly cell wall formation was investigated. Synergistic effects of mutations with gradually more severe growth retardation phenotypes in double and triple mutants suggest a similar function of the three genes. Analysis of cell wall composition revealed a number of changes to cell wall polysaccharides in the mutants. LRX3, LRX4, and LRX5, and most likely LRX proteins in general, are important for cell wall development. Due to the complexity of changes in cell wall structures in the lrx mutants, the exact function of LRX proteins remains to be determined. The increasingly strong growth-defect phenotypes in double and triple mutants suggests that the LRX proteins have similar functions and that they are important for proper plant development.

  3. A single microfluidic chip with dual surface properties for protein drug delivery.

    Science.gov (United States)

    Bokharaei, Mehrdad; Saatchi, Katayoun; Häfeli, Urs O

    2017-04-15

    Principles of double emulsion generation were incorporated in a glass microfluidic chip fabricated with two different surface properties in order to produce protein loaded polymer microspheres. The microspheres were produced by integrating two microfluidic flow focusing systems and a multi-step droplet splitting and mixing system into one chip. The chip consists of a hydrophobic and a hydrophilic section with two different heights, 12μm and 45μm, respectively. As a result, the protein is homogenously distributed throughout the polymer microsphere matrix, not just in its center (which has been studied before). In our work, the inner phase was bovine serum albumin (BSA) in phosphate buffered saline, the disperse phase was poly (lactic acid) in chloroform and the continuous phase was an aqueous solution of poly(vinyl alcohol). After solvent removal, BSA loaded microspheres with an encapsulation efficiency of up to 96% were obtained. Our results show the feasibility of producing microspheres loaded with a hydrophilic drug in a microfluidic system that integrates different microfluidic units into one chip. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Genetically modified anthrax lethal toxin safely delivers whole HIV protein antigens into the cytosol to induce T cell immunity

    Science.gov (United States)

    Lu, Yichen; Friedman, Rachel; Kushner, Nicholas; Doling, Amy; Thomas, Lawrence; Touzjian, Neal; Starnbach, Michael; Lieberman, Judy

    2000-07-01

    Bacillus anthrax lethal toxin can be engineered to deliver foreign proteins to the cytosol for antigen presentation to CD8 T cells. Vaccination with modified toxins carrying 8-9 amino acid peptide epitopes induces protective immunity in mice. To evaluate whether large protein antigens can be used with this system, recombinant constructs encoding several HIV antigens up to 500 amino acids were produced. These candidate HIV vaccines are safe in animals and induce CD8 T cells in mice. Constructs encoding gag p24 and nef stimulate gag-specific CD4 proliferation and a secondary cytotoxic T lymphocyte response in HIV-infected donor peripheral blood mononuclear cells in vitro. These results lay the foundation for future clinical vaccine studies.

  5. Coxsackievirus protein 2B modifies endoplasmic reticulum membrane and plasma membrane permeability and facilitates virus release.

    Science.gov (United States)

    van Kuppeveld, F J; Hoenderop, J G; Smeets, R L; Willems, P H; Dijkman, H B; Galama, J M; Melchers, W J

    1997-01-01

    Digital-imaging microscopy was performed to study the effect of Coxsackie B3 virus infection on the cytosolic free Ca2+ concentration and the Ca2+ content of the endoplasmic reticulum (ER). During the course of infection a gradual increase in the cytosolic free Ca2+ concentration was observed, due to the influx of extracellular Ca2+. The Ca2+ content of the ER decreased in time with kinetics inversely proportional to those of viral protein synthesis. Individual expression of protein 2B was sufficient to induce the influx of extracellular Ca2+ and to release Ca2+ from ER stores. Analysis of mutant 2B proteins showed that both a cationic amphipathic alpha-helix and a second hydrophobic domain in 2B were required for these activities. Consistent with a presumed ability of protein 2B to increase membrane permeability, viruses carrying a mutant 2B protein exhibited a defect in virus release. We propose that 2B gradually enhances membrane permeability, thereby disrupting the intracellular Ca2+ homeostasis and ultimately causing the membrane lesions that allow release of virus progeny. PMID:9218794

  6. An OGA-Resistant Probe Allows Specific Visualization and Accurate Identification of O-GlcNAc-Modified Proteins in Cells.

    Science.gov (United States)

    Li, Jing; Wang, Jiajia; Wen, Liuqing; Zhu, He; Li, Shanshan; Huang, Kenneth; Jiang, Kuan; Li, Xu; Ma, Cheng; Qu, Jingyao; Parameswaran, Aishwarya; Song, Jing; Zhao, Wei; Wang, Peng George

    2016-11-18

    O-linked β-N-acetyl-glucosamine (O-GlcNAc) is an essential and ubiquitous post-translational modification present in nucleic and cytoplasmic proteins of multicellular eukaryotes. The metabolic chemical probes such as GlcNAc or GalNAc analogues bearing ketone or azide handles, in conjunction with bioorthogonal reactions, provide a powerful approach for detecting and identifying this modification. However, these chemical probes either enter multiple glycosylation pathways or have low labeling efficiency. Therefore, selective and potent probes are needed to assess this modification. We report here the development of a novel probe, 1,3,6-tri-O-acetyl-2-azidoacetamido-2,4-dideoxy-d-glucopyranose (Ac 3 4dGlcNAz), that can be processed by the GalNAc salvage pathway and transferred by O-GlcNAc transferase (OGT) to O-GlcNAc proteins. Due to the absence of a hydroxyl group at C4, this probe is less incorporated into α/β 4-GlcNAc or GalNAc containing glycoconjugates. Furthermore, the O-4dGlcNAz modification was resistant to the hydrolysis of O-GlcNAcase (OGA), which greatly enhanced the efficiency of incorporation for O-GlcNAcylation. Combined with a click reaction, Ac 3 4dGlcNAz allowed the selective visualization of O-GlcNAc in cells and accurate identification of O-GlcNAc-modified proteins with LC-MS/MS. This probe represents a more potent and selective tool in tracking, capturing, and identifying O-GlcNAc-modified proteins in cells and cell lysates.

  7. Electrochemical immunosensors for the detection of survival motor neuron (SMN) protein using different carbon nanomaterials-modified electrodes.

    Science.gov (United States)

    Eissa, Shimaa; Alshehri, Nawal; Rahman, Anas M Abdel; Dasouki, Majed; Abu-Salah, Khalid M; Zourob, Mohammed

    2018-03-15

    Spinal muscular atrophy is an untreatable potentially fatal hereditary disorder caused by loss-of-function mutations in the survival motor neuron (SMN) 1 gene which encodes the SMN protein. Currently, definitive diagnosis relies on the demonstration of biallelic pathogenic variants in SMN1 gene. Therefore, there is an urgent unmet need to accurately quantify SMN protein levels for screening and therapeutic monitoring of symptomatic newborn and SMA patients, respectively. Here, we developed a voltammetric immunosensor for the sensitive detection of SMN protein based on covalently functionalized carbon nanofiber-modified screen printed electrodes. A comparative study of six different carbon nanomaterial-modified electrodes (carbon, graphene (G), graphene oxide (GO), single wall carbon nanotube (SWCNT), multi-wall carbon nanotube (MWCNT), and carbon nanofiber (CNF)) was performed. 4-carboxyphenyl layers were covalently grafted on the six electrodes by electroreduction of diazonium salt. Then, the terminal carboxylic moieties on the electrodes surfaces were utilized to immobilize the SMN antibody via EDC/NHS chemistry and to fabricate the immunosensors. The electrochemical characterization and analytical performance of the six immunosensors suggest that carbon nanofiber is a better electrode material for the SMN immunosensor. The voltammetric SMN carbon nanofiber-based immunosensor showed high sensitivity (detection limit of 0.75pg/ml) and selectivity against other proteins such as cystic fibrosis transmembrane conductance regulator (CFTR) and dystrophin (DMD). We suggest that this novel biosensor is superior to other developed assays for SMN detection in terms of lower cost, higher sensitivity, simplicity and capability of high throughput screening. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Efficacy, safety and anticancer activity of protein nanoparticle-based delivery of doxorubicin through intravenous administration in rats.

    Directory of Open Access Journals (Sweden)

    Kishore Golla

    Full Text Available Doxorubicin is a potent anticancer drug and a major limiting factor that hinders therapeutic use as its high levels of systemic circulation often associated with various off-target effects, particularly cardiotoxicity. The present study focuses on evaluation of the efficacy of doxorubicin when it is loaded into the protein nanoparticles and delivered intravenously in rats bearing Hepatocellular carcinoma (HCC. The proteins selected as carrier were Apotransferrin and Lactoferrin, since the receptors for these two proteins are known to be over expressed on cancer cells due to their iron transport capacity.Doxorubicin loaded apotransferrin (Apodoxonano and lactoferrin nanoparticles (Lactodoxonano were prepared by sol-oil chemistry. HCC in the rats was induced by 100 mg/l of diethylnitrosamine (DENA in drinking water for 8 weeks. Rats received 5 doses of 2 mg/kg drug equivalent nanoparticles through intravenous administration. Pharmacokinetics and toxicity of nanoformulations was evaluated in healthy rats and anticancer activity was studied in DENA treated rats. The anticancer activity was evaluated through counting of the liver nodules, H & E analysis and by estimating the expression levels of angiogenic and antitumor markers.In rats treated with nanoformulations, the numbers of liver nodules were found to be significantly reduced. They showed highest drug accumulation in liver (22.4 and 19.5 µg/g. Both nanoformulations showed higher localization compared to doxorubicin (Doxo when delivered in the absence of a carrier. Higher amounts of Doxo (195 µg/g were removed through kidney, while Apodoxonano and Lactodoxonano showed only a minimal amount of removal (<40 µg/g, suggesting the extended bioavailability of Doxo when delivered through nanoformulation. Safety analysis shows minimal cardiotoxicity due to lower drug accumulation in heart in the case of nanoformulation.Drug delivery through nanoformulations not only minimizes the cardiotoxicity of

  9. Modified procedure for rapid labelling of low concentrations of bioactive proteins with indium-111

    Energy Technology Data Exchange (ETDEWEB)

    Zoghbi, S S; Neumann, R D; Gottschalk, A

    1985-01-01

    The authors describe the conjugation of DTPA to 100-500 g of protein in concentrations of 0.6-1.0 mg mL utilizing the mixed anhydride method. Free DTPA is removed by minicolumn gel filtration and centrifugation with minimal protein dilution. Radiolabelling process can be monitored by instant thin layer chromatography. Any radiochemical impurity detected can be eliminated either by additional minicolumn filtration of further chelation with more conjugated protein. In citrate buffer at pH 6 with minicolumn gel chromatography the authors prepared In-DTPA-D3 (3.0 Ci g) monoclonal antibody and used it to image hepatocarcinoma in guinea pigs. 13 references, 5 figures, 2 tables.

  10. Self-assembled nanogel of hydrophobized dendritic dextrin for protein delivery.

    Science.gov (United States)

    Ozawa, Yayoi; Sawada, Shin-Ichi; Morimoto, Nobuyuki; Akiyoshi, Kazunari

    2009-07-07

    Highly branched cyclic dextrin derivatives (CH-CDex) that are partly substituted with cholesterol groups have been synthesized. The CH-CDex forms monodisperse and stable nanogels with a hydrodynamic radii of approximately 10 nm by the self-assembly of 4-6 CH-CDex macromolecules in water. The CH-CDex nanogels spontaneously trap 10-16 molecules of fluorescein isothiocyanate-labeled insulin (FITC-Ins). The complex shows high colloidal stability: no dissociation of trapped insulin is observed after at least 1 month in phosphate buffer (0.1 M, pH 8.0). In the presence of bovine serum albumin (BSA, 50 mg . mL(-1)), which is a model blood system, the FITC-Ins trapped in the nanogels is continuously released ( approximately 20% at 12 h) without burst release. The high-density nanogel structure derived from the highly branched CDex significantly affects the stability of the nanogel-protein complex.

  11. PDBe: towards reusable data delivery infrastructure at protein data bank in Europe

    Science.gov (United States)

    Alhroub, Younes; Anyango, Stephen; Armstrong, David R; Berrisford, John M; Clark, Alice R; Conroy, Matthew J; Dana, Jose M; Gupta, Deepti; Gutmanas, Aleksandras; Haslam, Pauline; Mak, Lora; Mukhopadhyay, Abhik; Nadzirin, Nurul; Paysan-Lafosse, Typhaine; Sehnal, David; Sen, Sanchayita; Smart, Oliver S; Varadi, Mihaly; Kleywegt, Gerard J

    2018-01-01

    Abstract The Protein Data Bank in Europe (PDBe, pdbe.org) is actively engaged in the deposition, annotation, remediation, enrichment and dissemination of macromolecular structure data. This paper describes new developments and improvements at PDBe addressing three challenging areas: data enrichment, data dissemination and functional reusability. New features of the PDBe Web site are discussed, including a context dependent menu providing links to raw experimental data and improved presentation of structures solved by hybrid methods. The paper also summarizes the features of the LiteMol suite, which is a set of services enabling fast and interactive 3D visualization of structures, with associated experimental maps, annotations and quality assessment information. We introduce a library of Web components which can be easily reused to port data and functionality available at PDBe to other services. We also introduce updates to the SIFTS resource which maps PDB data to other bioinformatics resources, and the PDBe REST API. PMID:29126160

  12. Nanomedicine delivery: does protein corona route to the target or off road?

    Science.gov (United States)

    Maiolo, Daniele; Del Pino, Pablo; Metrangolo, Pierangelo; Parak, Wolfgang J; Baldelli Bombelli, Francesca

    2015-01-01

    Nanomedicine aims to find novel solutions for urgent biomedical needs. Despite this, one of the most challenging hurdles that nanomedicine faces is to successfully target therapeutic nanoparticles to cells of interest in vivo. As for any biomaterials, once in vivo, nanoparticles can interact with plasma biomolecules, forming new entities for which the name protein coronas (PCs) have been coined. The PC can influence the in vivo biological fate of a nanoparticle. Thus for guaranteeing the desired function of an engineered nanomaterial in vivo, it is crucial to dissect its PC in terms of formation and evolution within the body. In this contribution we will review the 'good' and 'bad' sides of the PC, starting from the scientific aspects to the technological applications.

  13. N(epsilon)-carboxymethyllysine-modified proteins are unable to bind to RAGE and activate an inflammatory response.

    Science.gov (United States)

    Buetler, Timo M; Leclerc, Estelle; Baumeyer, Alexandra; Latado, Helia; Newell, John; Adolfsson, Oskar; Parisod, Véronique; Richoz, Janique; Maurer, Sarah; Foata, Francis; Piguet, Dominique; Junod, Sylviane; Heizmann, Claus W; Delatour, Thierry

    2008-03-01

    Advanced glycation endproducts (AGEs) containing carboxymethyllysine (CML) modifications are generally thought to be ligands of the receptor for AGEs, RAGEs. It has been argued that this results in the activation of pro-inflammatory pathways and diseases. However, it has not been shown conclusively that a CML-modified protein can interact directly with RAGE. Here, we have analyzed whether beta-lactoglobulin (bLG) or human serum albumin (HSA) modified chemically to contain only CML (10-40% lysine modification) can (i) interact with RAGE in vitro and (ii) interact with and activate RAGE in lung epithelial cells. Our results show that CML-modified bLG or HSA are unable to bind to RAGE in a cell-free assay system (Biacore). Furthermore, they are unable to activate pro-inflammatory signaling in the cellular system. Thus, CML probably does not form the necessary structure(s) to interact with RAGE and activate an inflammatory signaling cascade in RAGE-expressing cells.

  14. Re-partitioning of Cu and Zn isotopes by modified protein expression

    Directory of Open Access Journals (Sweden)

    Ragnarsdottir K Vala

    2008-10-01

    Full Text Available Abstract Cu and Zn have naturally occurring non radioactive isotopes, and their isotopic systematics in a biological context are poorly understood. In this study we used double focussing mass spectroscopy to determine the ratios for these isotopes for the first time in mouse brain. The Cu and Zn isotope ratios for four strains of wild-type mice showed no significant difference (δ65Cu -0.12 to -0.78 permil; δ66Zn -0.23 to -0.48 permil. We also looked at how altering the expression of a single copper binding protein, the prion protein (PrP, alters the isotope ratios. Both knockout and overexpression of PrP had no significant effect on the ratio of Cu isotopes. Mice brains expressing mutant PrP lacking the known metal binding domain have δ65Cu isotope values of on average 0.57 permil higher than wild-type mouse brains. This implies that loss of the copper binding domain of PrP increases the level of 65Cu in the brain. δ66Zn isotope values of the transgenic mouse brains are enriched for 66Zn to the wild-type mouse brains. Here we show for the first time that the expression of a single protein can alter the partitioning of metal isotopes in mouse brains. The results imply that the expression of the prion protein can alter cellular Cu isotope content.

  15. Mining the secretome of root-knot nematodes for cell wall modifying proteins

    NARCIS (Netherlands)

    Roze, E.H.A.

    2008-01-01

    The products of parasitism genes in nematodes must be secreted to reach their targets at the nematode-plant interface. These nematode secretory proteins are therefore recognised to play an important role in the nematode-plant interaction and as a result have been subject of intense study for years.

  16. Synthesis and characterization of cloisite-30B clay dispersed poly (acryl amide/sodium alginate)/AgNp hydrogel composites for the study of BSA protein drug delivery and antibacterial activity

    Science.gov (United States)

    Nanjunda Reddy, B. H.; Ranjan Rauta, Pradipta; Venkatalakshimi, V.; Sreenivasa, Swamy

    2018-02-01

    The aim of this research is to inspect the effect of Cloisite-30B (C30B) modified clay dispersed poly (acrylamide-co-Sodiumalginate)/AgNp hydrogel nanocomposites (PASA/C30B/Ag) for drug delivery and antibacterial activity. A novel hydrogel composite based sodium alginate (SA) and the inorganic modified clay with silver nano particle (C30B/AgNps)polymer hydrogel composites are synthesized via the graft copolymerization of acrylamide (AAm) in an aqueous medium with methylene bisacrylamide (MBA) as a crosslinking agent and ammonium per sulfate(APS) as an initiator. The UV/Visible spectroscopy of obtained composites is successfully studied, which confirms the occurrence of AgNps in the hydrogel composites. And the swelling capacity and bovine serum al