WorldWideScience

Sample records for delivering timely water

  1. Time Outdoors May Deliver Better Sleep

    Science.gov (United States)

    ... fullstory_163389.html Time Outdoors May Deliver Better Sleep Camping and exposure to natural light helps prime ... Spending time in the outdoors may improve your sleep, a small study suggests. Researchers found that a ...

  2. A water-renewal system that accurately delivers small volumes of water to exposure chambers

    Science.gov (United States)

    Zumwalt, D. C.; Dwyer, F.J.; Greer, I.E.; Ingersoll, C.G.

    1994-01-01

    This paper describes a system that can accurately deliver small volumes of water (50 ml per cycle) to eight 300-ml beakers. The system is inexpensive <$100), easy to build (<8 h), and easy to calibrate (<15 min), and accurately delivers small volumes of water (<5% variability).

  3. Delivering innovation and choice in water supply in Kenya's informal settlements

    OpenAIRE

    O'Regan, Jack

    2012-01-01

    Improved access to water and sanitation in the worlds slums were among the key targets in the Millennium Development Goals. In Kenya, water is generally accessed in slum areas by filling 20l jerrycans at standposts and water kiosks and carrying back to households, with residents paying up to nine times more than utility bulk water prices and spending large parts of their day collecting water. The aim of this research was to assess consumers’ response and reaction to a series of water deliv...

  4. Global cancer surgery: delivering safe, affordable, and timely cancer surgery.

    Science.gov (United States)

    Sullivan, Richard; Alatise, Olusegun Isaac; Anderson, Benjamin O; Audisio, Riccardo; Autier, Philippe; Aggarwal, Ajay; Balch, Charles; Brennan, Murray F; Dare, Anna; D'Cruz, Anil; Eggermont, Alexander M M; Fleming, Kenneth; Gueye, Serigne Magueye; Hagander, Lars; Herrera, Cristian A; Holmer, Hampus; Ilbawi, André M; Jarnheimer, Anton; Ji, Jia-Fu; Kingham, T Peter; Liberman, Jonathan; Leather, Andrew J M; Meara, John G; Mukhopadhyay, Swagoto; Murthy, Shilpa S; Omar, Sherif; Parham, Groesbeck P; Pramesh, C S; Riviello, Robert; Rodin, Danielle; Santini, Luiz; Shrikhande, Shailesh V; Shrime, Mark; Thomas, Robert; Tsunoda, Audrey T; van de Velde, Cornelis; Veronesi, Umberto; Vijaykumar, Dehannathparambil Kottarathil; Watters, David; Wang, Shan; Wu, Yi-Long; Zeiton, Moez; Purushotham, Arnie

    2015-09-01

    Surgery is essential for global cancer care in all resource settings. Of the 15.2 million new cases of cancer in 2015, over 80% of cases will need surgery, some several times. By 2030, we estimate that annually 45 million surgical procedures will be needed worldwide. Yet, less than 25% of patients with cancer worldwide actually get safe, affordable, or timely surgery. This Commission on global cancer surgery, building on Global Surgery 2030, has examined the state of global cancer surgery through an analysis of the burden of surgical disease and breadth of cancer surgery, economics and financing, factors for strengthening surgical systems for cancer with multiple-country studies, the research agenda, and the political factors that frame policy making in this area. We found wide equity and economic gaps in global cancer surgery. Many patients throughout the world do not have access to cancer surgery, and the failure to train more cancer surgeons and strengthen systems could result in as much as US $6.2 trillion in lost cumulative gross domestic product by 2030. Many of the key adjunct treatment modalities for cancer surgery--e.g., pathology and imaging--are also inadequate. Our analysis identified substantial issues, but also highlights solutions and innovations. Issues of access, a paucity of investment in public surgical systems, low investment in research, and training and education gaps are remarkably widespread. Solutions include better regulated public systems, international partnerships, super-centralisation of surgical services, novel surgical clinical trials, and new approaches to improve quality and scale up cancer surgical systems through education and training. Our key messages are directed at many global stakeholders, but the central message is that to deliver safe, affordable, and timely cancer surgery to all, surgery must be at the heart of global and national cancer control planning.

  5. Supporting Quality Timely PhD Completions: Delivering Research Outcomes

    Science.gov (United States)

    Gasson, Susan

    2015-01-01

    The case study used a three-phase organising process to explain how design and implementation of an accessible and interactive electronic thesis submission form streamlined quality assurance of theses and their timely dissemination via an online thesis repository. The quality of the theses submitted is assured by key academics in their final sign…

  6. Cities as Water Supply Catchments to deliver microclimate benefits

    Science.gov (United States)

    Beringer, J.; Tapper, N. J.; Coutts, A.; Loughnan, M.

    2010-12-01

    Urban development extensively modifies the natural hydrology, biodiversity, carbon balance, air quality and climate of the local and regional environment mainly due to increased impervious surface area (roads, pavements, roofs, etc.). Impervious surface are a legacy of urban infrastructure planning based on a ‘drained city’ to minimise flood risk. The result is a modification of the microclimate around buildings and on a city scale results in the Urban Heat Island (UHI) effect where the urban areas are much hotter than the surrounding rural areas. Such heating comes on top of 20th century human induced climate change, namely decreased rainfall and higher temperatures. Drought conditions have triggered water restrictions in many Australian cities that have dramatically reduced ‘irrigation’ in urban areas. Ironically the drying influence from climate change has now been compounded by the drying influence of water restrictions and the efficient removal of stormwater resulting in desert like climates during summer. This will be further exacerbated by the projected increases in hot days, extreme hot days, heat waves, etc. In turn this excessive heating will compromise the health and liveability of urban dwellers. Stormwater is a potential critical resource that could be used to keep water in the landscape to irrigate urban areas to improve urban micro-climates, sustain vegetation and provide other multiple benefits to create more liveable and resilient urban environments. In Australia's major cities, stormwater harvesting has the potential to provide a low cost, low energy, fit-for-purpose source of water to help secure city supplies. Stormwater reuse not only provides a potential mitigation tool for the UHI and global climate change but has multiple benefits to provide resilience such as 1) Improved human thermal comfort to reduce heat related stress and mortality, 2) Healthy and productive vegetation and increased carbon sequestration, 3) Decreased stormwater

  7. Non-Dam Alternatives for Delivering Water Services at Least Cost and Risk

    Directory of Open Access Journals (Sweden)

    Michael P. Totten

    2010-06-01

    We present evidence that a value-adding and risk-minimising water planning process can be achieved by shifting from the conventional focus on supply expansion to one that concentrates on efficiently delivering services at and near the point of use. The State of California has two decades of experience with this approach, demonstrating that market-based policy and regulatory innovations can unleash efficiency gains resulting in more utility water services and energy services delivered with less supply expansion at lower costs, while minimising climate-change risk, pollution and the social cost that accompany large infrastructural projects. Efficiency in delivered water services could be accomplished with investments in the range of US$10-25 billion annually, while obviating the need for spending hundreds of billions of dollars on more expensive hydropower and related infrastructural expansion projects. The shift to a regulatory system that encompasses cost-effective end-use efficiency improvements in delivering water and energy services could eliminate the need for an estimated half of all proposed dams globally, thus allowing for the maintenance of other ecosystem service benefits and offer the best hopes of meeting basic human needs for water at a more achievable level of investment.

  8. The Husky Byte Program: Delivering Nutrition Education One Sound Byte at a Time

    Science.gov (United States)

    Pierce, Michelle B.; Hudson, Kerrian A.; Lora, Karina R.; Havens, Erin K.; Ferris, Ann M.

    2011-01-01

    The Husky Byte program uses interactive displays to deliver quick sound bytes of nutrition information to adults in frequented community settings. This innovative program considers time constraints, adult learning theory, diverse learning styles, and is easily accessible to adults. Both process and impact evaluations have demonstrated positive…

  9. The Husky Byte Program: Delivering Nutrition Education One Sound Byte at a Time

    Science.gov (United States)

    Pierce, Michelle B.; Hudson, Kerrian A.; Lora, Karina R.; Havens, Erin K.; Ferris, Ann M.

    2011-01-01

    The Husky Byte program uses interactive displays to deliver quick sound bytes of nutrition information to adults in frequented community settings. This innovative program considers time constraints, adult learning theory, diverse learning styles, and is easily accessible to adults. Both process and impact evaluations have demonstrated positive…

  10. Continuous online monitoring of ionic dialysance allows modification of delivered hemodialysis treatment time.

    Science.gov (United States)

    Chesterton, Lindsay J; Priestman, William S; Lambie, Stewart H; Fielding, Catherine A; Taal, Maarten W; Fluck, Richard J; McIntyre, Christopher W

    2006-10-01

    Considerable intrinsic intrapatient variability influences the actual delivery of Kt/V. The aim of this study is to examine the feasibility of using continuous online assessment of ionic dialysance measurements (Kt/V(ID)) to allow dialysis sessions to be altered on an individual basis. Ten well-established chronic hemodialysis (HD) patients without significant residual renal function were studied (mean age 65+/-4.3 [38-81] years, mean length of time on dialysis 66+/-18 [14-189] months). These patients had all been receiving thrice-weekly 4-hr dialysis using Integra dialysis monitors. Dialysis monitors were equipped with Diascan modules permitting measurement of Kt/V(ID). Predicted treatment time required to achieve a Kt/V(ID) > or = 1.1 (equivalent to a urea-based method of 1.2) was calculated from the delivered Kt/V(ID) at 60 and 120 min. Treatment time was reprogrammed at 2 hr (ensuring all planned ultrafiltration would be accommodated into the new modified session duration). Owing to practical issues, and to avoid excessively short dialysis times, these changes were censored at no more than+/-10% of the usual 240-min treatment time (210-265 min). Data were collected from a total of 50 dialysis sessions. Almost all sessions (47/50) required modification of the standard treatment time: 13/50 sessions were lengthened and 34/50 shortened (mean length of session 232.2+/-2.5 [210-265] min). A Kt/V(ID) of > or = 1.1 was achieved in 39/50 sessions. The difference in mean urea-based Kt/V poststudy (1.3+/-0.05 [1.1-1.6]) and mean achieved Kt/V(ID) (1.16+/-0.02 [0.7-1.37]) was significant (p = 0.002). The use of individualized variable dialysis treatment time using online ionic dialysance measurements of Kt/V(ID) appears both practicable and effective at ensuring consistently delivered adequate dialysis.

  11. A robotic system for delivering novel real-time, movement dependent perturbations.

    Science.gov (United States)

    Potocanac, Zrinka; Goljat, Rok; Babic, Jan

    2017-09-01

    Perturbations are often used to study movement control and balance, especially in the context of falling. Most often, discrete perturbations defined prior to the experiment are used to mimic external disturbances to balance. However, the largest proportion of falls is due to self-generated errors in weight shifting. Inspired by self-generated weight shifting errors, we created a novel, continuous mediolateral perturbation proportional to subjects' mediolateral center of mass movement with minimal delays. This perturbation was delivered by a robotic platform controlled by a real time Matlab Simulink model using kinematic data from a marker positioned at subjects' L5 as input. Fifteen healthy young adults stood as still as possible atop the robotic platform with their eyes closed. We evaluated the performance of the perturbation in terms of accuracy and delay relative to the input signal by using cross-correlations. The perturbations were accurate (r=-0.984), with delays of 154 ms. Such systematic perturbation significantly affected mediolateral sway, increasing its range (from 5.56±3.72 to 9.58 ±4.83 mm, p=0.01), SD (from 1.08±0.74 to 1.72±0.74 mm, p = 0.02), and mean power frequency (from 0.08±0.05 to 0.25±0.17 Hz, p<0.01). These perturbation characteristics enable inducing systematic, movement-dependent perturbations and open the door for future studies investigating self-generated movement errors. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Possible effects of delivering methionine to laying hens in drinking water

    Directory of Open Access Journals (Sweden)

    Sahin Cadirci

    2012-07-01

    Full Text Available Two experiments were conducted to study the effects of water-soluble DL-methionine supplied through water on the performance of laying hens. Two diet formulations were used in both experiments. For diet 1, nutrient specifications were set to meet or exceed requirements, whereas diet 2 was essentially diet 1 without supplemental methionine. Birds were divided into four groups of equal number. In experiment I, group 1 received diet 1 and normal water. Group 2, 3 and 4 received diet 2 and methionine treated water (0.050% for group 2; 0.075% for group 3; 0.100% for group 4. In experiment II, group 1 received diet 1 and normal water. Groups 2, 3 and 4 received diet 2 and methionine treated water (0.025% for group 2; 0.050% for group 3; 0.075% for group 4. In both experiments there were significant differences in egg weight and methionine intake between the groups, whereas no significant differences were observed in feed intake, water intake, egg production and feed conversation ratio. In the case of egg mass, significant differences between the treatment groups were found in experiment II but not in experiment I. The results suggest that the source of methionine does not influence its metabolic effect. Thus, it seems that methionine from the water is as good as when supplied wholly from the feed.

  13. Delivering 10 Gb/s optical data with picosecond timing uncertainty over 75 km distance

    CERN Document Server

    Sotiropoulos, N; Nuijts, R; de Waardt, H; Koelemeij, J C J

    2014-01-01

    We report a method to determine propagation delays of optical 10 Gb/s data traveling through a 75 km long amplified fiber link with an uncertainty of 4 ps. The one-way propagation delay is determined by two-way exchange and cross correlation of short (< 1 ms) bursts of 10 Gb/s data, with a single-shot time resolution better than 2.5 ps. We thus achieve a novel optical communications link suited for both long-haul high-capacity data transfer and time transfer with picosecond-range uncertainty. This opens up the perspective of synchronized optical telecommunication networks allowing picosecond-range time distribution and millimeter-range positioning.

  14. Effecting Factors Delivered Financial Reporting Time Lines at Manufacturing Company Groups Listed IDX

    Directory of Open Access Journals (Sweden)

    Sunaryo

    2012-10-01

    Full Text Available The primary objective of this research is to learn the effect among ROA, Leverage, Company Size, and Outsider Ownership with time lines, either partially or simultaneously. Secondary data were collected by purposive sampling of manufacturing company groups listed on IDX and the preceding scientific research journals, using logistic regression to test the hypothesis simultaneously. The results of this research describe that ROA and Leverage do not significant effect to time lines, but company size and outsider ownership have significant effect to time lines. It is recommended that the topic of this research can be continued with merchandising company groups, or service company groups either general or special, like: hotels, insurances, bankings; or, with new independence variables added

  15. EFFECTING FACTORS DELIVERED FINANCIAL REPORTING TIME LINES AT MANUFACTURING COMPANY GROUPS LISTED IDX

    Directory of Open Access Journals (Sweden)

    Sunaryo Sunaryo

    2012-11-01

    Full Text Available The primary objective of this research is to learn the effect among ROA, Leverage, Company Size, and Outsider Ownership with time lines, either partially or simultaneously. Secondary data were collected by purposive sampling of manufacturing company groups listed on IDX and the preceding scientific research journals, using logistic regression to test the hypothesis simultaneously. The results of this research describe that ROA and Leverage do not significant effect to time lines, but company size and outsider ownership have significant effect to time lines. It is recommended that the topic of this research can be continued with merchandising company groups, or service company groups either general or special, like: hotels, insurances, bankings; or, with new independence variables added. 

  16. Smartphone mobile application delivering personalized, real-time sun protection advice: a randomized clinical trial.

    Science.gov (United States)

    Buller, David B; Berwick, Marianne; Lantz, Kathy; Buller, Mary Klein; Shane, James; Kane, Ilima; Liu, Xia

    2015-05-01

    Mobile smartphones are rapidly emerging as an effective means of communicating with many Americans. Using mobile applications (apps), they can access remote databases, track time and location, and integrate user input to provide tailored health information. A smartphone mobile app providing personalized, real-time sun protection advice was evaluated in a randomized clinical trial. The trial was conducted in 2012 and had a randomized pretest-posttest controlled design with a 10-week follow-up. Data were collected from a nationwide population-based survey panel. A sample of 604 non-Hispanic and Hispanic adults from the Knowledge Panel 18 years or older who owned an Android smartphone were enrolled. The mobile app provided advice on sun protection (ie, protection practices and risk of sunburn) and alerts (to apply or reapply sunscreen and get out of the sun), hourly UV Index, and vitamin D production based on the forecast UV Index, the phone's time and location, and user input. Percentage of days using sun protection and time spent outdoors (days and minutes) in the midday sun and number of sunburns in the past 3 months were collected. Individuals in the treatment group reported more shade use (mean days staying in the shade, 41.0% vs 33.7%; P = .03) but less sunscreen use (mean days, 28.6% vs 34.5%; P = .048) than controls. There was no significant difference in number of sunburns in the past 3 months (mean, 0.60 in the treatment group vs 0.62 for controls; P = .87). Those who used the mobile app reported spending less time in the sun (mean days keeping time in the sun to a minimum, 60.4% for app users vs 49.3% for nonusers; P = .04) and using all protection behaviors combined more (mean days, 39.4% vs 33.8%; P = .04). The mobile app improved some sun protection. Use of the mobile app was lower than expected but associated with increased sun protection. Providing personalized advice when and where people are in the sun may help reduce sun exposure.

  17. Delivering sustainable urban water management: a review of the hurdles we face.

    Science.gov (United States)

    Brown, R R; Farrelly, M A

    2009-01-01

    Sustainable urban water management (SUWM) requires an integrated, adaptive, coordinated and participatory approach. Current urban water policies are beginning to reflect this understanding yet the rhetoric is often not translated to implementation. Despite the 'new' philosophy, urban water management remains a complex and fragmented area relying on traditional, technical, linear management approaches. Despite widespread acknowledgement of the barriers to change, there has been little systematic review of what constitutes the scope of such barriers and how these should be addressed to advance SUWM. To better understand why implementation fails to occur beyond ad hoc project interventions, an extensive literature review of observed and studied barriers was conducted. Drawing on local, national and international literature from the field of integrated urban water management and other similar fields, 53 studies were assessed, resulting in a typology of 12 barrier types. The analysis revealed the barriers are largely socio-institutional rather than technical, reflecting issues related to community, resources, responsibility, knowledge, vision, commitment and coordination. Furthermore, the meta-analysis demonstrated a paucity of targeted strategies for overcoming the stated institutional barriers. Evaluation of the typology in relation to capacity building suggests that these systemic issues require a sophisticated programme of change that focuses on fostering social capital, inter-sectoral professional development, and inter-organisational coordination.

  18. Using tablet-based technology to deliver time-efficient ototoxicity monitoring.

    Science.gov (United States)

    Brungart, Douglas; Schurman, Jaclyn; Konrad-Martin, Dawn; Watts, Kelly; Buckey, Jay; Clavier, Odile; Jacobs, Peter G; Gordon, Samuel; Dille, Marilyn F

    2017-09-12

    The goal of this article is to highlight mobile technology that is not yet standard of care but could be considered for use in an ototoxicity monitoring programme (OMP) as an adjunct to traditional audiometric testing. Current guidelines for ototoxicity monitoring include extensive test protocols performed by an audiologist in an audiometric booth. This approach is comprehensive, but it may be taxing for patients suffering from life-threatening illnesses and cost prohibitive if it requires serial clinical appointments. With the use of mobile technology, testing outside of the confines of the audiometric booth may be possible, which could create more efficient and less burdensome OMPs. A non-systematic review of new OMP technology was performed. Experts were canvassed regarding the impact of new technology on OMPs. OMP devices and technologies that are commercially available and discussed in the literature. The benefits and limitations of portable, tablet-based technology that can be deployed for efficient ototoxicity monitoring are discussed. New mobile technology has the potential to influence the development and implementation of OMPs and lower barriers to patient access by providing time efficient, portable and self-administered testing options for use in the clinic and in the patient's home.

  19. Transport of Oil-in-Water Emulsions Designed to Deliver Reactive Iron Particles in Porous Media

    Science.gov (United States)

    Crocker, J. J.; Berge, N. D.; Ramsburg, C. A.

    2007-05-01

    Treatment of subsurface regions contaminated with DNAPL is a significant challenge to environmental restoration. The focus of remediation has recently shifted from technologies that recover the contamination to technologies that destroy the contamination in situ. One method of in situ contaminant destruction employs nano- or submicron-size particles of reactive iron metal. Application of iron-based destruction technologies is currently limited by poor delivery of the reactive particles (i.e., lack of contact between the iron particles and the DNAPL). Encapsulation of the reactive particles within an oil-in-water emulsion is a novel approach that may facilitate delivery. The goal of this project was to investigate the transport behavior of emulsions (Tallow oil, Tween 80, and Span 80) within porous media. One-dimensional column experiments were conducted to evaluate pore-clogging when emulsions containing encapsulated reactive particles were passed through two homogeneous sands with an order of magnitude difference in intrinsic permeability. In these experiments, passing an emulsion through the sand column (4.8 cm i.d.) at a constant flow rate (0.86 mL/min) increased the hydraulic gradient by a factor of approximately three. The hydraulic gradient in each experiment was observed to stabilize after one pore volume of emulsion. Subsequent flushing with water recovered the initial hydraulic gradient. Together, these observations indicate that conductivity reductions during emulsion flushing were the result of viscosity and not the result of extensive pore-clogging. Analysis of effluent samples confirmed that there was minimal retention of the emulsion within the sand column. Results from these experiments suggest that emulsion encapsulation may be an effective means for transporting reactive iron particles within the subsurface environment.

  20. Tackling agricultural diffuse pollution: What might uptake of farmer-preferred measures deliver for emissions to water and air?

    Science.gov (United States)

    Collins, A L; Zhang, Y S; Winter, M; Inman, A; Jones, J I; Johnes, P J; Cleasby, W; Vrain, E; Lovett, A; Noble, L

    2016-03-15

    Mitigation of agricultural diffuse pollution poses a significant policy challenge across Europe and particularly in the UK. Existing combined regulatory and voluntary approaches applied in the UK continue to fail to deliver the necessary environmental outcomes for a variety of reasons including failure to achieve high adoption rates. It is therefore logical to identify specific on-farm mitigation measures towards which farmers express positive attitudes for higher future uptake rates. Accordingly, a farmer attitudinal survey was undertaken during phase one of the Demonstration Test Catchment programme in England to understand those measures towards which surveyed farmers are most receptive to increasing implementation in the future. A total of 29 on-farm measures were shortlisted by this baseline farm survey. This shortlist comprised many low cost or cost-neutral measures suggesting that costs continue to represent a principal selection criterion for many farmers. The 29 measures were mapped onto relevant major farm types and input, assuming 95% uptake, to a national scale multi-pollutant modelling framework to predict the technically feasible impact on annual agricultural emissions to water and air, relative to business as usual. Simulated median emission reductions, relative to current practise, for water management catchments across England and Wales, were estimated to be in the order sediment (20%)>ammonia (16%)>total phosphorus (15%) ≫ nitrate/methane (11%)>nitrous oxide (7%). The corresponding median annual total cost of the modelled scenario to farmers was £3 ha(-1)yr(-1), with a corresponding range of -£84 ha(-1)yr(-1) (i.e. a net saving) to £33 ha(-1)yr(-1). The results suggest that those mitigation measures which surveyed farmers are most inclined to implement in the future would improve the environmental performance of agriculture in England and Wales at minimum to low cost per hectare.

  1. Real-time water quality monitoring and providing water quality ...

    Science.gov (United States)

    EPA and the U.S. Geological Survey (USGS) have initiated the “Village Blue” research project to provide real-time water quality monitoring data to the Baltimore community and increase public awareness about local water quality in Baltimore Harbor and the Chesapeake Bay. The Village Blue demonstration project complements work that a number of state and local organizations are doing to make Baltimore Harbor “swimmable and fishable” 2 by 2020. Village Blue is designed to build upon EPA’s “Village Green” project which provides real-time air quality information to communities in six locations across the country. The presentation, “Real-time water quality monitoring and providing water quality information to the Baltimore Community”, summarizes the Village Blue real-time water quality monitoring project being developed for the Baltimore Harbor.

  2. 戴姆勒时间%A Time for Daimler-We Deliver. Today and In the Future

    Institute of Scientific and Technical Information of China (English)

    于占波

    2016-01-01

    Daimler presented a significant highlight at IAA 2016 by promoting its themes “We Deliver. Today and In the Future”, which had not only brought a bright imaginary and enlighten blue-map of future to audiences, but also provided a solution to the current challenge of transport and logistics industry in the world.

  3. Systems Analyze Water Quality in Real Time

    Science.gov (United States)

    2010-01-01

    A water analyzer developed under Small Business Innovation Research (SBIR) contracts with Kennedy Space Center now monitors treatment processes at water and wastewater facilities around the world. Originally designed to provide real-time detection of nutrient levels in hydroponic solutions for growing plants in space, the ChemScan analyzer, produced by ASA Analytics Inc., of Waukesha, Wisconsin, utilizes spectrometry and chemometric algorithms to automatically analyze multiple parameters in the water treatment process with little need for maintenance, calibration, or operator intervention. The company has experienced a compound annual growth rate of 40 percent over its 15-year history as a direct result of the technology's success.

  4. MODELING IN THE PROCESSES OF CHOICE OF THE COMPANY DELIVERING BOTTLED WATER BY THE CONSUMERS ON THE BACKGROUND OF REFLEXIVE MANAGEMENT

    Directory of Open Access Journals (Sweden)

    V. Skitsko

    2014-06-01

    Full Text Available In this work the problem of high quality drinking water provision is described and analyzed. It is shown that a person may obtain such water by various ways one of which is bottled water delivery by specialized companies. The existence of numerous players on drinking water market stipulates the occurrence of the number of problems – in particular, the choice of the delivering water company by the consumer and fight of such companies for the consumer. The work proposes to apply a reflexive approach in order to influence the choice of the consumer, which allows the company to make him take the "right" decision. For solving the problem the classical and fuzzy model of reflexive management are described.

  5. Stand & Deliver

    Science.gov (United States)

    Villano, Matt

    2006-01-01

    October is national Cyber Security Awareness Month, and for the world of higher education, that means it is time to take a look at defense systems and plan for the future. Clearly, more planning is needed now than ever before. According to the majority of IT market research firms, phishing and identity theft have leapfrogged spam and spyware as…

  6. Possible effects of delivering methionine to broilers in drinking water at constant low and high environmental temperatures

    Directory of Open Access Journals (Sweden)

    Sahin Cadirci

    2014-02-01

    Full Text Available An experiment was conducted to study the effects of water-soluble DL-methionine supplied through water and feed on the performance and carcass yield of broilers housed at two constant temperatures from 21 to 42 days of age. Birds were housed in two rooms (240 birds per room with temperatures set at 21±2 and 30±2oC, respectively. Birds were divided into five groups of equal number within each room and fed five different diets (G1-G5. A low-methionine basal diet without supplemental methionine was fed to group 1 (G1. The basal diet was fortified with 0.025% or 0.050% methionine, either in feed (G2 and G3, respectively, or in a water solution (G4 and G5, respectively. Mortality was not significantly altered by any dietary treatment. Neither feed nor water intake was affected adversely by DLmethionine inclusion in drinking water. Housing at high temperature showed deleterious effect on birds’ weight gain. Additional methionine intake both in feed and water was associated with significantly heavier body weight, weight gain and feed conversion ratio, than the basal diet at low and high environmental temperature. Carcass yields, as a percentage of live body weight, were not affected by dietary treatment. The results indicate that, under the experimental conditions, DLmethionine provided in drinking water can be effectively assimilated by broilers, at least from 21 to 42 days of age.

  7. Possible effects of delivering methionine to broilers in drinking water at constant low and high environmental temperatures

    OpenAIRE

    Sahin Cadirci; Seyrani Koncagul

    2014-01-01

    An experiment was conducted to study the effects of water-soluble DL-methionine supplied through water and feed on the performance and carcass yield of broilers housed at two constant temperatures from 21 to 42 days of age. Birds were housed in two rooms (240 birds per room) with temperatures set at 21±2 and 30±2oC, respectively. Birds were divided into five groups of equal number within each room and fed five different diets (G1-G5). A low-methionine basal diet without supplemental methionin...

  8. Effects of Fixed-Time Reinforcement Delivered by Teachers for Reducing Problem Behavior in Special Education Classrooms

    Science.gov (United States)

    Tomlin, Michelle; Reed, Phil

    2012-01-01

    The effects of fixed-time (FT) reinforcement schedules on the disruptive behavior of 4 students in special education classrooms were studied. Attention provided on FT schedules in the context of a multiple-baseline design across participants substantially decreased all students' challenging behavior. Disruptive behavior was maintained at levels…

  9. On the time required to freeze water

    Science.gov (United States)

    Espinosa, J. R.; Navarro, C.; Sanz, E.; Valeriani, C.; Vega, C.

    2016-12-01

    By using the seeding technique the nucleation rate for the formation of ice at room pressure will be estimated for the TIP4P/ICE model using longer runs and a smaller grid of temperatures than in the previous work. The growth rate of ice will be determined for TIP4P/ICE and for the mW model of water. Although TIP4P/ICE and mW have a similar melting point and melting enthalpy, they differ significantly in the dynamics of freezing. The nucleation rate of mW is lower than that of TIP4P/ICE due to its higher interfacial free energy. Experimental results for the nucleation rate of ice are between the predictions of these two models when obtained from the seeding technique, although closer to the predictions of TIP4P/ICE. The growth rate of ice for the mW model is four orders of magnitude larger than for TIP4P/ICE. Avrami's expression is used to estimate the crystallization time from the values of the nucleation and growth rates. For mW the minimum in the crystallization time is found at approximately 85 K below the melting point and its value is of about a few ns, in agreement with the results obtained from brute force simulations by Moore and Molinero. For the TIP4P/ICE the minimum is found at about 55 K below the melting point, but its value is about ten microseconds. This value is compatible with the minimum cooling rate required to avoid the formation of ice and obtaining a glass phase. The crossover from the nucleation controlled crystallization to the growth controlled crystallization will be discussed for systems of finite size. This crossover could explain the apparent discrepancy between the values of J obtained by different experimental groups for temperatures below 230 K and should be considered as an alternative hypothesis to the two previously suggested: internal pressure and/or surface freezing effects. A maximum in the compressibility was found for the TIP4P/ICE model in supercooled water. The relaxation time is much smaller than the crystallization time

  10. Real time water chemistry monitoring and diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Gaudreau, T.M.; Choi, S.S. [EPRIsolutions, Palo Alto, CA (United States)

    2002-07-01

    EPRI has produced a real time water chemistry monitoring and diagnostic system. This system is called SMART ChemWorks and is based on the EPRI ChemWorks codes. System models, chemistry parameter relationships and diagnostic approaches from these codes are integrated with real time data collection, an intelligence engine and Internet technologies to allow for automated analysis of system chemistry. Significant data management capabilities are also included which allow the user to evaluate data and create automated reporting. Additional features have been added to the system in recent years including tracking and evaluation of primary chemistry as well as the calculation and tracking of primary to secondary leakage in PWRs. This system performs virtual sensing, identifies normal and upset conditions, and evaluates the consistency of on-line monitor and grab sample readings. The system also makes use of virtual fingerprinting to identify the cause of any chemistry upsets. This technology employs plant-specific data and models to determine the chemical state of the steam cycle. (authors)

  11. Lag time in water quality response to best management practices: a review.

    Science.gov (United States)

    Meals, Donald W; Dressing, Steven A; Davenport, Thomas E

    2010-01-01

    Nonpoint source (NPS) watershed projects often fail to meet expectations for water quality improvement because of lag time, the time elapsed between adoption of management changes and the detection of measurable improvement in water quality in the target water body. Even when management changes are well-designed and fully implemented, water quality monitoring efforts may not show definitive results if the monitoring period, program design, and sampling frequency are not sufficient to address the lag between treatment and response. The main components of lag time include the time required for an installed practice to produce an effect, the time required for the effect to be delivered to the water resource, the time required for the water body to respond to the effect, and the effectiveness of the monitoring program to measure the response. The objectives of this review are to explore the characteristics of lag time components, to present examples of lag times reported from a variety of systems, and to recommend ways for managers to cope with the lag between treatment and response. Important processes influencing lag time include hydrology, vegetation growth, transport rate and path, hydraulic residence time, pollutant sorption properties, and ecosystem linkages. The magnitude of lag time is highly site and pollutant specific, but may range from months to years for relatively short-lived contaminants such as indicator bacteria, years to decades for excessive P levels in agricultural soils, and decades or more for sediment accumulated in river systems. Groundwater travel time is also an important contributor to lag time and may introduce a lag of decades between changes in agricultural practices and improvement in water quality. Approaches to deal with the inevitable lag between implementation of management practices and water quality response lie in appropriately characterizing the watershed, considering lag time in selection, siting, and monitoring of management

  12. Water as “Time-Substance”

    NARCIS (Netherlands)

    Clark, Julian; Gurung, Praju; Chapagain, Prem Sagar; Regmi, Santosh; Bhusal, Jagat K.; Karpouzoglou, Timothy; Mao, Feng; Dewulf, Art

    2017-01-01

    This article develops a novel theoretical framework to explain how water's situatedness relates to its political agency. Recent posthuman scholarship emphasizes these qualities but, surprisingly, no sustained analysis has been undertaken of this interrelation. Here we do so by theorizing water as

  13. Origin and residence time of water in the Lima Aquifer

    CERN Document Server

    Montoya, Modesto

    2014-01-01

    The 8 million inhabitants of the coast Lima City are supplied with water from Rimac and Chillons rivers and water wells in the Lima aquifer. Historics of Rimac River flow and static level of water level in wells are correlated in order to calculate residence time of water since the aquifer is recharged by Rimac River until water reaches a well located 12 km farther, in Miraflores district near sea. Relative abundances of 2H and 18O are used to identify origins of waters from those wells. 3H and 14C contents, respectively, are used to estimate ages of waters.

  14. Periodic email prompts to re-use an internet-delivered computer-tailored lifestyle program: influence of prompt content and timing.

    Science.gov (United States)

    Schneider, Francine; de Vries, Hein; Candel, Math; van de Kar, Angelique; van Osch, Liesbeth

    2013-01-31

    Adherence to Internet-delivered lifestyle interventions using multiple tailoring is suboptimal. Therefore, it is essential to invest in proactive strategies, such as periodic email prompts, to boost re-use of the intervention. This study investigated the influence of content and timing of a single email prompt on re-use of an Internet-delivered computer-tailored (CT) lifestyle program. A sample of municipality employees was invited to participate in the program. All participants who decided to use the program received an email prompting them to revisit the program. A 2×3 (content × timing) design was used to test manipulations of prompt content and timing. Depending on the study group participants were randomly assigned to, they received either a prompt containing standard content (an invitation to revisit the program), or standard content plus a preview of new content placed on the program website. Participants received this prompt after 2, 4, or 6 weeks. In addition to these 6 experimental conditions, a control condition was included consisting of participants who did not receive an additional email prompt. Clicks on the uniform resource locator (URL) provided in the prompt and log-ins to the CT program were objectively monitored. Logistic regression analyses were conducted to determine whether prompt content and/or prompt timing predicted clicking on the URL and logging in to the CT program. Of all program users (N=240), 206 participants received a subsequent email prompting them to revisit the program. A total of 53 participants (25.7%) who received a prompt reacted to this prompt by clicking on the URL, and 25 participants (12.1%) actually logged in to the program. There was a main effect of prompt timing; participants receiving an email prompt 2 weeks after their first visit clicked on the URL significantly more often compared with participants that received the prompt after 4 weeks (odds ratio [OR] 3.069, 95% CI 1.392-6.765, P=.005) and after 6 weeks (OR 4

  15. Real-time analysis of water movement in plant sample

    Energy Technology Data Exchange (ETDEWEB)

    Yokota, Harumi; Furukawa, Jun; Tanoi, Keitaro [Graduate School, Tokyo Univ. (Japan)

    2000-07-01

    To know the effect of drought stress on two cultivars of cowpea, drought tolerant (DT) and drought sensitive (DS), and to estimate vanadium treatment on plant activity, we performed real time{sup 18}F labeled water uptake measurement by PETIS. Fluoride-18 was produced by bombarding a cubic ice target with 50 MeV protons using TIARA AVF cyclotron. Then {sup 18}F labeled water was applied to investigate water movement in a cowpea plant. Real time water uptake manner could be monitored by PETIS. After the analysis by PETIS, we also measured the distribution of {sup 18}F in a whole plant by BAS. When a cowpea plant was treated with drought stress, there was a difference in water uptake manner between DT and DS cultivar. When a cowpea plant was treated with V for 20 hours before the water uptake experiment, the total amount of {sup 18}F labeled water absorption was found to be drastically decreased. (author)

  16. Comparison of the replication and transmissibility of an infectious laryngotracheitis virus vaccine delivered via eye-drop or drinking-water.

    Science.gov (United States)

    Coppo, Mauricio J C; Devlin, Joanne M; Noormohammadi, Amir H

    2012-01-01

    Live attenuated vaccines have been extensively used to control infectious laryngotracheitis (ILT). Most vaccines are registered/recommended for use via eye-drop although vaccination via drinking-water is commonly used in the field. Drinking-water vaccination has been associated with non-uniform protection. Bird-to-bird passage of chick-embryo-origin (CEO) ILT vaccines has been shown to result in reversion to virulence. The purpose of the present study was to examine the replication and transmission of a commercial CEO infectious laryngotracheitis virus (ILTV) vaccine strain following drinking-water or eye-drop inoculation. Two groups of 10 specific-pathogen-free chickens were each vaccinated with Serva ILTV vaccine strain either via eye-drop or drinking-water. Groups of four or five unvaccinated birds were placed in contact with vaccinated birds at regular intervals. Tracheal swabs were collected every 4 days from vaccinated and in-contact birds to assess viral replication and transmission using quantitative polymerase chain reaction. Compared with eye-drop-vaccinated birds, drinking-water-vaccinated birds showed delayed viral replication but had detectable viral DNA for a longer period of time. Transmission to chickens exposed by contact on day 0 of the experiments was similar in both groups. Birds exposed to ILTV by contact with eye-drop vaccinated birds on days 4, 8, 12 and 16 of the experiment had detectable ILTV for up to 8 days post exposure. ILTV was not detected in chickens that were exposed by contact with drinking-water vaccinated birds on day 12 of the experiment or later. Results from this study provide valuable practical information for the use of ILT vaccine.

  17. Mean Residence Time and Emergency Drinking Water Supply.

    Science.gov (United States)

    Kralik, Martin; Humer, Franko

    2013-04-01

    Immediately after securing an endangered population, the first priority of aid workers following a disaster is the distribution of drinking water. Such emergency situations are reported from many parts of the world following regional chemical or nuclear pollution accidents, floods, droughts, rain-induced landslides, tsunami, and other extreme events. It is often difficult to organise a replacement water supply when regular water systems with short residence times are polluted, infiltrated or even flooded by natural or man-made disasters. They are either unusable or their restoration may take months or even years. Groundwater resources, proven safe and protected by the geological environment, with long residence times and the necessary infrastructure for their exploitation, would provide populations with timeous replacement of vulnerable water supply systems and make rescue activities more rapid and effective. Such resources have to be identified and investigated, as a substitute for affected drinking water supplies thereby eliminating or reducing the impact of their failure following catastrophic events. Even in many areas such water resources with long residence times in years or decades are difficult to find it should be known which water supply facilities in the region are matching these requirements to allow in emergency situation the transport of water in tankers to the affected regions to prevent epidemics, importing large quantities of bottled water. One should know the residence time of the water supply to have sufficient time to plan and install new safe water supply facilities. Development of such policy and strategy for human security - both long term and short term - is therefore needed to decrease the vulnerability of populations threatened by extreme events and water supplies with short residence times. Generally: The longer the residence time of groundwater in the aquifer, the lower its vulnerability. The most common and economic methods to estimate

  18. Safe access to safe water in low income countries: water fetching in current times.

    Science.gov (United States)

    Sorenson, Susan B; Morssink, Christiaan; Campos, Paola Abril

    2011-05-01

    A substantial portion of the world's population does not have ready access to safe water. Moreover, obtaining water may involve great expense of time and energy for those who have no water sources in or near home. From an historical perspective, with the invention of piped water, fetching water has only recently become largely irrelevant in many locales. In addition, in most instances, wells and clean surface water were so close by that fetching was not considered a problem. However, population growth, weather fluctuations and social upheavals have made the daily chore of carrying water highly problematic and a public health problem of great magnitude for many, especially women, in the poor regions and classes of the world. In this paper, we consider gender differences in water carrying and summarize data about water access and carrying from 44 countries that participated in the Multiple Indicator Cluster Survey (MICS) program. Women and children are the most common water carriers, and they spend considerable time (many trips take more than an hour) supplying water to their households. Time is but one measure of the cost of fetching water; caloric expenditures, particularly during droughts, and other measures that affect health and quality of life must be considered. The full costs of fetching water must be considered when measuring progress toward two Millennium Development Goals--increasing access to safe drinking water and seeking an end to poverty.

  19. The residence time of water in the atmosphere revisited

    Science.gov (United States)

    van der Ent, Ruud J.; Tuinenburg, Obbe A.

    2017-02-01

    This paper revisits the knowledge on the residence time of water in the atmosphere. Based on state-of-the-art data of the hydrological cycle we derive a global average residence time of 8.9 ± 0.4 days (uncertainty given as 1 standard deviation). We use two different atmospheric moisture tracking models (WAM-2layers and 3D-T) to obtain atmospheric residence time characteristics in time and space. The tracking models estimate the global average residence time to be around 8.5 days based on ERA-Interim data. We conclude that the statement of a recent study that the global average residence time of water in the atmosphere is 4-5 days, is not correct. We derive spatial maps of residence time, attributed to evaporation and precipitation, and age of atmospheric water, showing that there are different ways of looking at temporal characteristics of atmospheric water. Longer evaporation residence times often indicate larger distances towards areas of high precipitation. From our analysis we find that the residence time over the ocean is about 2 days less than over land. It can be seen that in winter, the age of atmospheric moisture tends to be much lower than in summer. In the Northern Hemisphere, due to the contrast in ocean-to-land temperature and associated evaporation rates, the age of atmospheric moisture increases following atmospheric moisture flow inland in winter, and decreases in summer. Looking at the probability density functions of atmospheric residence time for precipitation and evaporation, we find long-tailed distributions with the median around 5 days. Overall, our research confirms the 8-10-day traditional estimate for the global mean residence time of atmospheric water, and our research contributes to a more complete view of the characteristics of the turnover of water in the atmosphere in time and space.

  20. Delivering SKA Science

    CERN Document Server

    Quinn, Peter; Bird, Ian; Dodson, Richard; Szalay, Alex; Wicenec, Andreas

    2015-01-01

    The SKA will be capable of producing a stream of science data products that are Exa-scale in terms of their storage and processing requirements. This Google-scale enterprise is attracting considerable international interest and excitement from within the industrial and academic communities. In this chapter we examine the data flow, storage and processing requirements of a number of key SKA survey science projects to be executed on the baseline SKA1 configuration. Based on a set of conservative assumptions about trends for HPC and storage costs, and the data flow process within the SKA Observatory, it is apparent that survey projects of the scale proposed will potentially drive construction and operations costs beyond the current anticipated SKA1 budget. This implies a sharing of the resources and costs to deliver SKA science between the community and what is contained within the SKA Observatory. A similar situation was apparent to the designers of the LHC more than 10 years ago. We propose that it is time for...

  1. Remote-Sensing and Automated Water Resources Tracking: Near Real-Time Decision Support for Water Managers Facing Drought and Flood

    Science.gov (United States)

    Reiter, M. E.; Elliott, N.; Veloz, S.; Love, F.; Moody, D.; Hickey, C.; Fitzgibbon, M.; Reynolds, M.; Esralew, R.

    2016-12-01

    Innovative approaches for tracking the Earth's natural resources, especially water which is essential for all living things, are essential during a time of rapid environmental change. The Central Valley is a nexus for water resources in California, draining the Sacramento and San Joaquin River watersheds. The distribution of water throughout California and the Central Valley, while dynamic, is highly managed through an extensive regional network of canals, levees, and pumps. Water allocation and delivery is determined through a complex set of rules based on water contracts, historic priority, and other California water policies. Furthermore, urban centers, agriculture, and the environment throughout the state are already competing for water, particularly during drought. Competition for water is likely to intensify as California is projected to experience continued increases in demand due to population growth and more arid growing conditions, while also having reduced or modified water supply due to climate change. As a result, it is difficult to understand or predict how water will be used to fulfill wildlife and wetland conservation needs. A better understanding of the spatial distribution of water in near real-time can facilitate adaptation of water resource management to changing conditions on the landscape, both over the near- and long-term. The Landsat satellite mission delivers imagery every 16-days from nearly every place on the earth at a high spatial resolution. We have integrated remote sensing of satellite data, classification modeling, bioinformatics, optimization, and ecological analyses to develop an automated near real-time water resources tracking and decision-support system for the Central Valley of California. Our innovative system has applications for coordinated water management in the Central Valley to support people, places, and wildlife and is being used to understand the factors that drive variation in the distribution and abundance of water

  2. Field kites: Crop-water production functions and the timing of water application for supplementary irrigation

    Science.gov (United States)

    Smilovic, M.; Gleeson, T.; Adamowski, J. F.

    2015-12-01

    Agricultural production is directly related to water management and water supply. The temporal distribution of water use throughout the growing season can significantly influence crop yield, and the facility to manage both the timing and amount of irrigation water may result in higher yields. The crop-water production function quantitatively evaluates the relationship between seasonal water use and crop yield. Previous efforts have attempted to describe and formalize the crop-water production function as a single-variable function of seasonal water use. However, these representations do not account for the effects of temporal distribution of water use and trivialize the associated variability in yields by assuming an optimized or arbitrary temporal distribution of soil moisture. This over-simplification renders the function inappropriate for recommendations related to irrigation scheduling, water management, economically optimal irrigation, water and agricultural productivity, and assessing the role of full and supplementary irrigation. We propose field kites, a novel representation of the crop-water production function that explicitly acknowledges crop yield variability as a function of both seasonal water use and associated temporal distributions of water use. Field kites are a tool that explicitly considers the farmers' capacity to manage their water resources, to more appropriately evaluate the optimal depth of irrigation water under water-limiting conditions. The field kite for winter wheat is presented both generally and cultivar- and climate-specific for Western Canada. The field kites are constructed using AquaCrop and previously validated cultivar-specific variables. Field kites provide the tools for water authorities and policy makers to evaluate agricultural production as it relates to farm water management, and to determine appropriate policies related to developing and supporting the necessary irrigation infrastructure to increase water productivity.

  3. Terrestrial Waters and Sea Level Variations on Interannual Time Scale

    Science.gov (United States)

    Llovel, W.; Becker, M.; Cazenave, A.; Jevrejeva, S.; Alkama, R.; Decharme, B.; Douville, H.; Ablain, M.; Beckley, B.

    2011-01-01

    On decadal to multi-decadal time scales, thermal expansion of sea waters and land ice loss are the main contributors to sea level variations. However, modification of the terrestrial water cycle due to climate variability and direct anthropogenic forcing may also affect sea level. For the past decades, variations in land water storage and corresponding effects on sea level cannot be directly estimated from observations because these are almost non-existent at global continental scale. However, global hydrological models developed for atmospheric and climatic studies can be used for estimating total water storage. For the recent years (since mid-2002), terrestrial water storage change can be directly estimated from observations of the GRACE space gravimetry mission. In this study, we analyse the interannual variability of total land water storage, and investigate its contribution to mean sea level variability at interannual time scale. We consider three different periods that, each, depend on data availability: (1) GRACE era (2003-2009), (2) 1993-2003 and (3) 1955-1995. For the GRACE era (period 1), change in land water storage is estimated using different GRACE products over the 33 largest river basins worldwide. For periods 2 and 3, we use outputs from the ISBA-TRIP (Interactions between Soil, Biosphere, and Atmosphere-Total Runoff Integrating Pathways) global hydrological model. For each time span, we compare change in land water storage (expressed in sea level equivalent) to observed mean sea level, either from satellite altimetry (periods 1 and 2) or tide gauge records (period 3). For each data set and each time span, a trend has been removed as we focus on the interannual variability. We show that whatever the period considered, interannual variability of the mean sea level is essentially explained by interannual fluctuations in land water storage, with the largest contributions arising from tropical river basins.

  4. Near real-time qualitative monitoring of lake water chlorophyll globally using GoogleEarth Engine

    Science.gov (United States)

    Zlinszky, András; Supan, Peter; Koma, Zsófia

    2017-04-01

    Monitoring ocean chlorophyll and suspended sediment has been made possible using optical satellite imaging, and has contributed immensely to our understanding of the Earth and its climate. However, lake water quality monitoring has limitations due to the optical complexity of shallow, sediment- and organic matter-laden waters. Meanwhile, timely and detailed information on basic lake water quality parameters would be essential for sustainable management of inland waters. Satellite-based remote sensing can deliver area-covering, high resolution maps of basic lake water quality parameters, but scientific application of these datasets for lake monitoring has been hindered by limitations to calibration and accuracy evaluation, and therefore access to such data has been the privilege of scientific users. Nevertheless, since for many inland waters satellite imaging is the only source of monitoring data, we believe it is urgent to make map products of chlorophyll and suspended sediment concentrations available to a wide range of users. Even if absolute accuracy can not be validated, patterns, processes and qualitative information delivered by such datasets in near-real time can act as an early warning system, raise awareness to water quality processes and serve education, in addition to complementing local monitoring activities. By making these datasets openly available on the internet through an easy to use framework, dialogue between stakeholders, management and governance authorities can be facilitated. We use GoogleEarthEngine to access and process archive and current satellite data. GoogleEarth Engine is a development and visualization framework that provides access to satellite datasets and processing capacity for analysis at the Petabyte scale. Based on earlier investigations, we chose the fluorescence line height index to represent water chlorophyll concentration. This index relies on the chlorophyll fluorescence peak at 680 nm, and has been tested for open ocean

  5. TC-2 Satellite Delivered

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    On April 18, 2005, TC-2, the second satellite of Double Star Program (DSP), which was jointly developed by CNSA and ESA, was approved to be delivered to the user after the on-board test and trial operation. The satellite is working well and the performance can meet the user's need. The satellite has collected large amount of valuable scientific data

  6. Adaptivity in space and time for shallow water equations

    Science.gov (United States)

    Morandi Cecchi, M.; Marcuzzi, F.

    1999-09-01

    In this paper, adaptive algorithms for time and space discretizations are added to an existing solution method previously applied to the Venice Lagoon Tidal Circulation problem. An analysis of the interactions between space and time discretizations adaptation algorithms is presented. In particular, it turns out that both error estimations in space and time must be present for maintaining the adaptation efficiency. Several advantages, for adaptivity and for time decoupling of the equations, offered by the operator-splitting adopted for shallow water equations solution are presented. Copyright

  7. Smart sensors for real-time water quality monitoring

    CERN Document Server

    Mason, Alex

    2013-01-01

    Sensors are being utilised to increasing degrees in all forms of industry.  Researchers and industrial practitioners in all fields seek to obtain a better understanding of appropriate processes so as to improve quality of service and efficiency.  The quality of water is no exception, and the water industry is faced with a wide array of water quality issues being present world-wide.  Thus, the need for sensors to tackle this diverse subject is paramount.  The aim of this book is to combine, for the first time, international expertise in the area of water quality monitoring using smart sensors and systems in order that a better understanding of the challenges faced and solutions posed may be available to all in a single text.

  8. Space and Time Coherence of Acoustic Field in Shallow Water

    Institute of Scientific and Technical Information of China (English)

    GUO Liang-Hao; GONG Zai-Xiao; Wu Li-Xin

    2001-01-01

    New experimental measurements of signal coherence in shallow water are presented. For signals with Iow fre quencies of about 500 Hz in iso-velocity shallow water with a silt-sand bottom and a water depth of about 45 tn, the vertical coherence has no distinct depth dependence at ranges of 18.5, 55.5 and 92.5 kin, but it has obvious range dependence. The horizontal coherence lengths are all greater than 40 wavelengths, and the time coherence lengths are all greater than 510s at these ranges. These experimental results show that a low-frequency acoustic field has strong spatial coherence and temporal stability in iso-velocity shallow water.

  9. Real-time water quality monitoring and providing water quality information to the Baltimore Community

    Science.gov (United States)

    EPA and the U.S. Geological Survey (USGS) have initiated the “Village Blue” research project to provide real-time water quality monitoring data to the Baltimore community and increase public awareness about local water quality in Baltimore Harbor and the Chesapeake Ba...

  10. Water residence times and nutrient budgets across an urbanizing gradient (Croton water supply area, NY)

    Science.gov (United States)

    Vitvar, T.; Burns, D. A.; Duncan, J. M.; Hassett, J. M.; Mitchell, M. J.

    2002-05-01

    Water residence times and nutrient budgets in 3 small watersheds in the Croton water supply area, NY, were examined. The watersheds (less than 1km 2) have different level of urbanization (natural, semi-developed and fully developed), different mechanisms of runoff generation (quick flow on roads and slow flow through subsurface) and different watershed landscape characteristics (wet zones, hillslopes) . Measurements of the comprehensive chemical suite incl. components of nitrogen budget in the throughfall, stream water, soil water and groundwater in the saturated zone were performed bi-weekly over a period up to 2 years. Mean water residence times of the stream water were estimated using Oxygen-18 and Helium-3/Tritium isotopes. There are significant differences in the chemical composition and decrease of nitrification intensity and of mean streamwater residence time along the increasing watershed development. Within each watershed, longer water residence times (up to over 2 years) were estimated in the wetland zones without direct communication with streams in comparison to hillslope areas (up to over 1 year). The results can be used in watershed management and planning of the further urbanization of this water supply area.

  11. Simulations of Time Reversing Arrays in Shallow Ocean Waters

    Science.gov (United States)

    2016-06-07

    using a customized version of RAM that allows us to recover the amplitude and phase of the computed field. We have also developed Monte-Carlo...Simulations of Time Reversing Arrays in Shallow Ocean Waters David R. Dowling Department of Mechanical Engineering and Applied Mechanics University...1-0628 http://www.personal.engin.umich.edu/~drd LONG-TERM GOAL The long term goals of this project are: i) to predict and understand time reversing

  12. Short time dynamics of water coalescence on a flat water pool

    CERN Document Server

    Lim, Su Jin; Fezzaa, Kamel; Weon, Byung Mook

    2016-01-01

    Coalescence is an important hydrodynamic event that frequently takes place in nature as well as in industry. Here we provide an experimental study on short time dynamics of water coalescence, particularly when a water droplet comes in contact with a flat water surface, by utilizing high-resolution high-penetration ultrafast X-ray microscopy. Our results demonstrate a possibility that an extreme curvature difference between a drop and a flat surface can significantly modify the hydrodynamics of water coalescence, which is unexpected in the existing theory. We suggest a plausible explanation for why coalescence can be modified by an extreme curvature difference.

  13. Time Irreversibility from Time Series for Analyzing Oil-in-Water Flow Transition

    Directory of Open Access Journals (Sweden)

    Du Meng

    2016-01-01

    Full Text Available We first experimentally collect conductance fluctuation signals of oil-in-water two-phase flow in a vertical pipe. Then we detect the flow pattern asymmetry character from the collected signals with multidimensional time irreversibility and multiscale time irreversibility index. Moreover, we propose a novel criterion, that is, AMSI (average of multiscale time irreversibility, to quantitatively investigate the oil-in-water two-phase flow pattern dynamics. The results show that AMSI is sensitive to the flow pattern evolution that can be used to predict the flow pattern transition and bubble coalescence.

  14. Near real time water resources data for river basin management

    Science.gov (United States)

    Paulson, R. W. (Principal Investigator)

    1973-01-01

    The author has identified the following significant results. Twenty Data Collection Platforms (DCP) are being field installed on USGS water resources stations in the Delaware River Basin. DCP's have been successfully installed and are operating well on five stream gaging stations, three observation wells, and one water quality monitor in the basin. DCP's have been installed at nine additional water quality monitors, and work is progressing on interfacing the platforms to the monitors. ERTS-related water resources data from the platforms are being provided in near real time, by the Goddard Space Flight Center to the Pennsylvania district, Water Resources Division, U.S. Geological Survey. On a daily basis, the data are computer processed by the Survey and provided to the Delaware River Basin Commission. Each daily summary contains data that were relayed during 4 or 5 of the 15 orbits made by ERTS-1 during the previous day. Water resources parameters relays by the platforms include dissolved oxygen concentrations, temperature, pH, specific conductance, well level, and stream gage height, which is used to compute stream flow for the daily summary.

  15. Time variable bottom water outflow in the Northwestern Weddell Sea

    Science.gov (United States)

    Kanzow, Torsten; Rohardt, Gerd

    2015-04-01

    The Antarctic Bottom Water (AABW) has shown widespread warming in recent decades, with implications for sea level rise and global heat uptake. Anomalously warm AABW has recently been reported to have reached the Brazil basin in the South Atlantic, while the warming further south partly seems to have come to a halt. The Weddell Sea represents the primary source of Antarctic Bottom Water (AABW) formation in the Southern Ocean. More than 60% of the AABW are supplied by Weddell Sea Deep Water, of which Weddell Sea Bottom Water (WSBW) is the main source. WSBW descends down the continental slope along the western margin of the Weddell Sea as a northward flowing plume, thereby entraining warmer ambient waters. The plume has been observed using moored current meters and temperature sensors between 1989 and 1998 and between 2005 and 2012 near the tip of the Antarctic Peninsula, complemented by repeated cross-slope CTD sections along the mooring array. In this study we extend the WSBW volume transport and temperature time series of Fahrbach et al. (2001) originally covering the 1989-1998 interval by the more recent period. We will report on both seasonal to inter-annual variability and possible longer-term trends in both volume transport and temperature of WSBW. The results will be discussed in the context of changes in the source areas of WSBW, such as the breakup of parts of the Larsen Ice Shelf on the eastern Arctic Peninsula, possibly fueling the formation dense water on the shelf.

  16. Relations between information, time, and value of water

    Science.gov (United States)

    Weijs, S. V.; Galindo, L. C.

    2015-12-01

    This research uses with stochastic dynamic programming (SDP) as a tool to reveal economic information about managed water resources. An application to the operation of an example hydropower reservoir is presented. SDP explicitly balances the marginal value of water for immediate use and its expected opportunity cost of not having more water available for future use. The result of an SDP analysis is a steady state policy, which gives the optimal decision as a function of the state. A commonly applied form gives the optimal release as a function of the month, current reservoir level and current inflow to the reservoir. The steady state policy can be complemented with a real-time management strategy, that can depend on more real-time information. An information-theoretical perspective is given on how this information influences the value of water, and how to deal with that influence in hydropower reservoir optimization. This results in some conjectures about how the information gain from real-time operation could affect the optimal long term policy. Another issue is the sharing of increased benefits that result from this information gain in a multi-objective setting. It is argued that this should be accounted for in negotiations about an operation policy.

  17. Clinical Effect of Autonomous Uterine Cavity Water Sac Compression for Hemorrhea and Hemabate in Treatment of Postpartum Hemorrhage Deliv-ering by Vagina%自制宫腔水囊压迫止血联合欣母沛治疗阴道分娩产后出血的临床疗效

    Institute of Scientific and Technical Information of China (English)

    卢丹

    2016-01-01

    Objective To observe the clinical curative effect of autonomous uterine cavity water sac compression for hemor-rhea and hemabate in treatment of postpartum hemorrhage caused by uterine inertia delivering by vagina. Methods 132 cases of patients with postpartum hemorrhage caused by uterine inertia delivering by vagina treated from January 2011 to December 2014 were given clinical experimental observation and randomly divided into two groups, the experimental group were treated with autonomous uterine cavity water sac compression for hemorrhea and hemabate, the control group were treated with simple hemabate, and the delivery outcomes were compared between the two groups. Results The incidence rates of complications in the experimental group and the control group were respectively 6.1% and 12.1%, and the inci-dence rates of laparotomy hemostasis in the experimental group and the control group were respectively 1.5% and 7.6%, P<0.05. Conclusion The clinical effect of autonomous uterine cavity water sac compression for hemorrhea and hemabate in treatment of postpartum hemorrhage caused by uterine inertia delivering by vagina is better, and it can effectively stop bleeding and is worth promotion.%目的:探讨自制宫腔水囊压迫止血联合欣母沛治疗阴道分娩宫缩乏力性产后出血的临床疗效。方法整群选取2011年1月—2014年12月该院收治的132例阴道分娩宫缩乏力性产后出血患者进行临床实验观察,随机分为实验组与对照组,实验组使用自制宫腔水囊压迫止血联合欣母沛治疗,对照组使用单药欣母沛治疗,比较两组患者分娩结局。结果两组患者的并发症发生率为6.1%和12.1%,开腹手术止血为1.5%和7.6%(P<0.05)。结论使用自制宫腔水囊压迫止血联合欣母沛治疗阴道分娩宫缩乏力性产后出血具有较好的临床效果,能够有效止血,值得推广。

  18. Defining and delivering appropriate technology for sustainable access to safe drinking water in un- and under-serviced rural South Africa

    CSIR Research Space (South Africa)

    Maposa, Sibonginkosi

    2012-05-01

    Full Text Available This paper presents the experiences and lessons from the Accelerating Sustainable Water Services Delivery (ASWSD) initiative that is currently being implemented in South Africa. The initiative is being spearheaded by the Department of Science...

  19. Water Residence Times and Runoff Sources Across an Urbanizing Gradient (Croton Water Supply Area, New York)

    Science.gov (United States)

    Vitvar, T.; Burns, D. A.; Duncan, J. M.; Hassett, J. M.; McDonnell, J. J.

    2002-12-01

    Water residence times and nutrient budgets were measured in 3 small watersheds in the Croton water supply area, NY. The watersheds (less than 1km 2) have different levels of urbanization (natural, semi-developed and fully developed), different mechanisms of runoff generation (quick flow on impervious surfaces and slow flow through the subsurface) and different watershed landscape characteristics (wet zones, hillslopes). Throughfall, stream water, soil water and groundwater in the saturated zone were sampled bi-weekly during a period of up to 2 years and analyzed for major chemical constituents, oxygen-18 content, and nitrogen species. Mean residence times of the stream water of about 30 weeks were estimated using Oxygen-18 and Helium-3/Tritium isotopes for all 3 watersheds. There was no significant difference in mean residence times among the three study watersheds, despite their different levels of urbanization. However, residence times from a few weeks up to ca 2 years vary within the watersheds, depending on the local runoff sources and their geographical conditions (riparian and hillslope topography, aquifer type). The runoff sources were quantified for selected streamwater and groundwater sampling sites using the end member mixing analysis technique (EMMA). The mixing analysis shows the impact of the runoff sources on runoff generation in the selected watersheds, i.e. it shows how big is the impact of urbanization on the runoff generation and how big is the natural control. These results may be useful in watershed management and planning of further urbanization in the Croton water supply area.

  20. A Provenance Model for Real-Time Water Information Systems

    Science.gov (United States)

    Liu, Q.; Bai, Q.; Zednik, S.; Taylor, P.; Fox, P. A.; Taylor, K.; Kloppers, C.; Peters, C.; Terhorst, A.; West, P.; Compton, M.; Shu, Y.; Provenance Management Team

    2010-12-01

    Generating hydrological data products, such as flow forecasts, involves complex interactions among instruments, data simulation models, computational facilities and data providers. Correct interpretation of the data produced at various stages requires good understanding of how data was generated or processed. Provenance describes the lineage of a data product. Making provenance information accessible to hydrologists and decision makers not only helps to determine the data’s value, accuracy and authorship, but also enables users to determine the trustworthiness of the data product. In the water domain, WaterML2 [1] is an emerging standard which describes an information model and format for the publication of water observations data in XML. The W3C semantic sensor network incubator group (SSN-XG) [3] is producing ontologies for the description of sensor configurations. By integrating domain knowledge of this kind into the provenance information model, the integrated information model will enable water domain researchers and water resource managers to better analyse how observations and derived data products were generated. We first introduce the Proof Mark Language (PML2) [2], WaterML2 and the SSN-XG sensor ontology as the proposed provenance representation formalism. Then we describe some initial implementations how these standards could be integrated to represent the lineage of water information products. Finally we will highlight how the provenance model for a distributed real-time water information system assists the interpretation of the data product and establishing trust. Reference [1] Taylor, P., Walker, G., Valentine, D., Cox, Simon: WaterML2.0: Harmonising standards for water observation data. Geophysical Research Abstracts. Vol. 12. [2] da Silva, P.P., McGuinness, D.L., Fikes, R.: A proof markup language for semantic web services. Inf. Syst. 31(4) (2006), 381-395. [3] W3C Semantic Sensor Network Incubator Group http://www.w3.org/2005/Incubator

  1. Time evolution of dimethyl carbinol in water vortex rings

    Science.gov (United States)

    Omocea, Ioana-Laura; Damian, Iulia-Rodica; Simionescu, Štefan-Mugur; Bǎlan, Corneliu; Mihǎilescu, Mona

    2015-02-01

    The paper is concerned with the experimental study of the time evolution of a single laminar vortex ring generated at the interface between water and dimethyl carbinol. The experiments were performed by the submerged injection with a constant rate of dimethyl carbinol (isopropyl alcohol) in a water tank. The dynamics of the vortex formation was recorded at 1000 fps with a Photron Fastcam SA1 camera, equipped with a microscopic Edmund Optics objective. A symmetrical buoyant vortex ring with an elongated topology was observed at the interface between the two immiscible liquids. The analyses of the time dependence of the vortex rings disclosed three regions for the evolution of the interface: one dominated by inertia force, a transition region and a third region, dominated by buoyancy force.

  2. Time Resolved Broadband Terahertz Relaxation Dynamics of Electron in Water

    DEFF Research Database (Denmark)

    Wang, Tianwu; Iwaszczuk, Krzysztof; Cooke, David G.;

    We investigated the transient response of the solvated electron in water ejected by photodetachment from potassium ferrocyanide using time resolved terahertz spectroscopy (TSTS). Ultrabroadband THz transients are generated and detected by a two-color femtosecond-induced air plasma and air biased...... coherent detection, respectively. We find that the measured frequency dependent conductivity can be well described by a Drude-Smith model, supplemented by a Lorentz model oscillating near 5 THz....

  3. Time of death of victims found in cold water environment.

    Science.gov (United States)

    Karhunen, Pekka J; Goebeler, Sirkka; Winberg, Olli; Tuominen, Markku

    2008-04-01

    Limited data is available on the application of post-mortem temperature methods to non-standard conditions, especially in problematic real life cases in which the body of the victim is found in cold water environment. Here we present our experience on two cases with known post-mortem times. A 14-year-old girl (rectal temperature 15.5 degrees C) was found assaulted and drowned after a rainy cold night (+5 degrees C) in wet clothing (four layers) at the bottom of a shallow ditch, lying in non-flowing water. The post-mortem time turned out to be 15-16 h. Four days later, at the same time in the morning, after a cold (+/- 0 degrees C) night, a young man (rectal temperature 10.8 degrees C) was found drowned in a shallow cold drain (+4 degrees C) wearing similar clothing (four layers) and being exposed to almost similar environmental and weather conditions, except of flow (7.7 l/s or 0.3 m/s) in the drain. The post-mortem time was deduced to be 10-12 h. We tested the applicability of five practical methods to estimate time of death. Henssge's temperature-time of death nomogram method with correction factors was the most versatile and gave also most accurate results, although there is limited data on choosing of correction factors. In the first case, the right correction factor was close to 1.0 (recommended 1.1-1.2), suggesting that wet clothing acted like dry clothing in slowing down body cooling. In the second case, the right correction factor was between 0.3 and 0.5, similar to the recommended 0.35 for naked bodies in flowing water.

  4. Time scale interactions and the coevolution of humans and water

    Science.gov (United States)

    Sivapalan, Murugesu; Blöschl, Günter

    2015-09-01

    We present a coevolutionary view of hydrologic systems, revolving around feedbacks between environmental and social processes operating across different time scales. This brings to the fore an emphasis on emergent phenomena in changing water systems, such as the levee effect, adaptation to change, system lock-in, and system collapse due to resource depletion. Changing human values play a key role in the emergence of these phenomena and should therefore be considered as internal to the system. Guidance is provided for the framing and modeling of these phenomena to test alternative hypotheses about how they arose. A plurality of coevolutionary models, from stylized to comprehensive system-of-system models, may assist strategic water management for long time scales through facilitating stakeholder participation, exploring the possibility space of alternative futures, and helping to synthesize the observed dynamics in a wide range of case studies. Future research opportunities lie in exploring emergent phenomena arising from time scale interactions through historical, comparative, and process studies of human-water feedbacks.

  5. An industrial heating plant that delivers water at high temperatures and incorporates a mechanical compressor for beer vapor. Blockheizkraftwerk mit hohen Nutz-Wassertemperaturen und mechanischer Bruedenverdichtungsanlage

    Energy Technology Data Exchange (ETDEWEB)

    Klemm, W. (Stuttgarter Hofbraeu AG, Stuttgart (Germany)); Grosshans, D. (Technische Werke der Stadt Stuttgart AG (Germany))

    1992-03-01

    A new approach to energy utilization at the Stuttgarter Hofbraeu AG brewery is highlighted. Fired by natural gas, the power plant comprises a hot water reservoir and a compressor for beer vapor. Its special features at the high (140deg C) temperature of circulating water and efficient fuel consumption. Initial performance data for the plant, which was placed in service at the end of 1990, are now available. In June, 1991 the city of Stuttgart conferred its first environmental award on the plant. (orig.).

  6. Real-Time Water Quality Management in the Grassland Water District

    Energy Technology Data Exchange (ETDEWEB)

    Quinn, Nigel W.T.; Hanna, W. Mark; Hanlon, Jeremy S.; Burns, Josphine R.; Taylor, Christophe M.; Marciochi, Don; Lower, Scott; Woodruff, Veronica; Wright, Diane; Poole, Tim

    2004-12-10

    The purpose of the research project was to advance the concept of real-time water quality management in the San Joaquin Basin by developing an application to drainage of seasonal wetlands in the Grassland Water District. Real-time water quality management is defined as the coordination of reservoir releases, return flows and river diversions to improve water quality conditions in the San Joaquin River and ensure compliance with State water quality objectives. Real-time water quality management is achieved through information exchange and cooperation between shakeholders who contribute or withdraw flow and salt load to or from the San Joaquin River. This project complements a larger scale project that was undertaken by members of the Water Quality Subcommittee of the San Joaquin River Management Program (SJRMP) and which produced forecasts of flow, salt load and San Joaquin River assimilative capacity between 1999 and 2003. These forecasts can help those entities exporting salt load to the River to develop salt load targets as a mechanism for improving compliance with salinity objectives. The mass balance model developed by this project is the decision support tool that helps to establish these salt load targets. A second important outcome of this project was the development and application of a methodology for assessing potential impacts of real-time wetland salinity management. Drawdown schedules are typically tied to weather conditions and are optimized in traditional practices to maximize food sources for over-wintering wildfowl as well as providing a biological control (through germination temperature) of undesirable weeds that compete with the more proteinaceous moist soil plants such as swamp timothy, watergrass and smartweed. This methodology combines high resolution remote sensing, ground-truthing vegetation surveys using established survey protocols and soil salinity mapping using rapid, automated electromagnetic sensor technology. This survey methodology

  7. 1000th magnet delivered!

    CERN Multimedia

    2006-01-01

    On Monday 20 February members of the AT Department marked the delivery of the 1000th superconducting dipole magnet to CERN. Only 232 more of the dipole magnets are needed for the LHC. The 35-tonne-dipoles are 15 meters long and are being manufactured by three companies: Babcock Noell Nuclear in Germany (which completed its contract in November 2005), Ansaldo Superconduttori in Italy and Alstom-Jeumont in France. 'The production is proceeding well and we expect to be complete in October as foreseen,' said Lucio Rossi, Head of the Magnets and Superconductors Group (AT-MAS). In total, 1650 main magnets are needed for the LHC, of which 1300 have already been delivered.

  8. 1000th magnet delivered!

    CERN Multimedia

    2006-01-01

    On Monday 20 February members of the AT Department marked the delivery of the 1000th superconducting dipole magnet to CERN. Only 232 more of the dipole magnets are needed for the LHC. The 35 tonne-dipoles are 15 meters long and are being manufactured by three companies: Babcock Noell Nuclear in Germany (which finished its contract in November 2005), Ansaldo Superconduttori in Italy and Alstom-Jeumont in France. "The production is proceeding well and we expect to be complete in October as previously foreseen," said Lucio Rossi, Head of the Magnets and Superconductors Group (AT-MAS). In total, 1650 main magnets are needed for the LHC, of which 1300 have been delivered.

  9. Organic carbon decomposition rates controlled by water retention time across inland waters

    Science.gov (United States)

    Catalán, Núria; Marcé, Rafael; Kothawala, Dolly N.; Tranvik, Lars. J.

    2016-07-01

    The loss of organic carbon during passage through the continuum of inland waters from soils to the sea is a critical component of the global carbon cycle. Yet, the amount of organic carbon mineralized and released to the atmosphere during its transport remains an open question, hampered by the absence of a common predictor of organic carbon decay rates. Here we analyse a compilation of existing field and laboratory measurements of organic carbon decay rates and water residence times across a wide range of aquatic ecosystems and climates. We find a negative relationship between the rate of organic carbon decay and water retention time across systems, entailing a decrease in organic carbon reactivity along the continuum of inland waters. We find that the half-life of organic carbon is short in inland waters (2.5 +/- 4.7 yr) compared to terrestrial soils and marine ecosystems, highlighting that freshwaters are hotspots of organic carbon degradation. Finally, we evaluate the response of organic carbon decay rates to projected changes in runoff. We calculate that regions projected to become drier or wetter as the global climate warms will experience changes in organic carbon decay rates of up to about 10%, which illustrates the influence of hydrological variability on the inland waters carbon cycle.

  10. A geospatial time-aware web interface to deliver information about air pollution and exposure in a big city and its surroundings

    Science.gov (United States)

    Bogliolo, M. P.; Contino, G.

    2014-11-01

    A GIS-based web-mapping system is presented, aimed at providing specialists, stakeholders and population with a simple, while scientifically rigorous, way to obtain information about people exposure to air pollution in the city of Rome (Italy). It combines a geo-spatial visualization with easy access to time dimension and to quantitative information. The study is part of the EXPAH (Population Exposure to PAHs) LIFE+ EC Project, which goal is to identify and quantify children and elderly people exposure to PM2.5-bound Polycyclic Aromatic Hydrocarbons (PAHs) in the atmosphere of Rome, and to assess the impact on human health. The core of the system is a GIS, which database contains data and results of the project research activity. They include daily indoor and outdoor ground measurements and daily maps from simulation modeling of atmospheric PAHs and PM2.5 concentration for the period June 2011-May 2012, and daily and average exposure maps. Datasets have been published as time-enabled standard OGC Web Map Services (WMS). A set of web mapping applications query the web services to produce a set of interactive and time-aware thematic maps. Finding effective ways to communicate risk for human health, and environmental determinants for it, is a topical and challenging task: the web mapping system presented is a prototype of a possible model to disseminate scientific results on these items, providing a sight into impacts of air pollution on people living and working in a big city, and shipping information about the overall exposure, its spatial pattern and levels at specific locations.

  11. Submersible Spectrofluorometer for Real-Time Sensing of Water Quality

    Science.gov (United States)

    Puiu, Adriana; Fiorani, Luca; Menicucci, Ivano; Pistilli, Marco; Lai, Antonia

    2015-01-01

    In this work, we present a newly developed submersible spectrofluorometer (patent pending) applied to real-time sensing of water quality, suitable for monitoring some important indicators of the ecological status of natural waters such as chlorophyll-a, oil and protein-like material. For the optomechanical realization of the apparatus, a novel conceptual design has been adopted in order to avoid filters and pumps while maintaining a high signal-to-noise ratio. The elimination of filters and pumps has the advantage of greater system simplicity and especially of avoiding the risk of sample degradation. The use of light-emitting diodes as an excitation source instead of Xe lamps or laser diodes helped save on size, weight, power consumption and costs. For sensor calibration we performed measurements on water samples with added chlorophyll prepared in the laboratory. The sensor functionality was tested during field campaigns conducted at Albano Lake in Latium Region of Italy as well as in the Herzliya Harbor, a few kilometers North East of Tel Aviv in Israel. The obtained results are reported in the paper. The sensitivity achieved for chlorophyll-a detection was found to be at least 0.2 µg/L. PMID:26094628

  12. Submersible Spectrofluorometer for Real-Time Sensing of Water Quality

    Directory of Open Access Journals (Sweden)

    Adriana Puiu

    2015-06-01

    Full Text Available In this work, we present a newly developed submersible spectrofluorometer (patent pending applied to real-time sensing of water quality, suitable for monitoring some important indicators of the ecological status of natural waters such as chlorophyll-a, oil and protein-like material. For the optomechanical realization of the apparatus, a novel conceptual design has been adopted in order to avoid filters and pumps while maintaining a high signal-to-noise ratio. The elimination of filters and pumps has the advantage of greater system simplicity and especially of avoiding the risk of sample degradation. The use of light-emitting diodes as an excitation source instead of Xe lamps or laser diodes helped save on size, weight, power consumption and costs. For sensor calibration we performed measurements on water samples with added chlorophyll prepared in the laboratory. The sensor functionality was tested during field campaigns conducted at Albano Lake in Latium Region of Italy as well as in the Herzliya Harbor, a few kilometers North East of Tel Aviv in Israel. The obtained results are reported in the paper. The sensitivity achieved for chlorophyll-a detection was found to be at least 0.2 µg/L.

  13. How effective are slurry storage, cover or catch crops, woodland creation, controlled trafficking or break-up of compacted layers, and buffer strips as on-farm mitigation measures for delivering an improved water environment?

    Directory of Open Access Journals (Sweden)

    Randall Nicola P

    2012-10-01

    Full Text Available Abstract Background Agriculture has intensified over the last 50 years resulting in increased usage of fertilizers and agrochemicals, changes in cropping practices, land drainage and increased stocking rates. In Europe, this has resulted in declines in the quality of soils and waters due to increased run off and water pollution. Fifty percent of nitrates in European rivers are derived from agricultural sources in the UK this value is as high as 70%, where agriculture also contributes to approximately 28% of phosphates and 76% of sediments recorded in rivers. Catchments dominated by agricultural land use have increased levels of pesticides and bacterial pathogens. European member states have a policy commitment to tackle water pollution through the Water Framework Directive. An analysis of the effectiveness of water pollution mitigation measures should enable decision makers and delivery agencies to better facilitate catchment planning. The aim of this systematic review is to assess the effectiveness of slurry storage, cover/catch crops, woodland creation, controlled trafficking/break-up of compacted layers and buffer strips, as on farm mitigation measures, for delivering an improved water environment. Methods The systematic review will consist of a searchable systematic map database for all the named interventions. Where possible, quantitative analysis will be used to assess the effectiveness of interventions. Electronic databases, the internet, and organisational websites will be searched, and stakeholders will be contacted for studies that investigate the impact of the on-farm mitigation measures on water quality. All studies found will be assessed for suitability for inclusion in the next stage. Inclusion criteria will be based on subject, intervention, comparator and outcome. The details of included studies will be incorporated into the systematic map database, and studies scored for effectiveness of intervention and study design. Where

  14. Airborne ocean water lidar (OWL) real time processor (RTP)

    Science.gov (United States)

    Hryszko, M.

    1995-03-01

    The Hyperflo Real Time Processor (RTP) was developed by Pacific-Sierra Research Corporation as a part of the Naval Air Warfare Center's Ocean Water Lidar (OWL) system. The RTP was used for real time support of open ocean field tests at Barbers Point, Hawaii, in March 1993 (EMERALD I field test), and Jacksonville, Florida, in July 1994 (EMERALD I field test). This report describes the system configuration, and accomplishments associated with the preparation and execution of these exercises. This document is intended to supplement the overall test reports and provide insight into the development and use of the PTP. A secondary objective is to provide basic information on the capabilities, versatility and expandability of the Hyperflo RTP for possible future projects. It is assumed herein that the reader has knowledge of the OWL system, field test operations, general lidar processing methods, and basic computer architecture.

  15. In situ detection of aromatic compounds with biosensor Pseudomonas putida cells preserved and delivered to soil in water-soluble gelatin capsules.

    Science.gov (United States)

    de las Heras, Aitor; de Lorenzo, Víctor

    2011-05-01

    While many types of bacteria have been engineered to produce an optical output in response to given analytes in a culture, their use for extensive, in situ monitoring of distinct chemical species in soil is hampered by a dearth of practicable spreading schemes. In this work, we report and validate a comprehensive system for the long-term preservation of Pseudomonas putida cells genetically designed for biosensing benzene, toluene, ethylbenzene, and xylenes (BTEX) in soil, along with a procedure to formulate, spread, and vigorously activate such bacteria at the desired site and occasion. To this end, various known lyoprotectants were tested for promoting the long-term maintenance of biosensor cells with quite variable outcomes. While a formulation of inositol and maltodextrines was optimal for preservation of freeze-dried BTEX-sensing bacteria, adsorption of P. putida cells to corncob powder (an abundant residue of the corn industry) endowed the resulting material with a lasting viability at ambient conditions. In any case, the thereby preserved bacterial biomass acquired physical and mechanical properties adequate for formulating the biosensor agent in water-soluble but otherwise hard dry gelatine capsules with a long shelf life. When such capsules were spread in a soil microcosm and subsequently liquefied with water or high humidity, the released microorganisms formed spots that gave an intense luminiscent signal upon exposure to effectors of the sensor circuit implanted in the chromosome of the P. putida strain. We argue that the procedures described here can facilitate implementation of wide-area biological detection strategies for revealing the location of toxic or perilous chemicals.

  16. Synchronous Oscillations Intrinsic to Water: Applications to Cellular Time Keeping and Water Treatment

    Directory of Open Access Journals (Sweden)

    D. James Morré

    2015-05-01

    Full Text Available A homodimeric, growth-related and time-keeping hydroquinone oxidase (ENOX1 of the eukaryotic cell surface capable of oxidizing intracellular NADH exhibits properties of the ultradian driver of the biological 24 h circadian clock by exhibiting a complex 2 + 3 set of oscillations of copper salts and appear to derive from periodic variations in the ratio of ortho and para nuclear spins of the paired hydrogen atoms of the elongated octahedral structure of the ENOX1 protein bound copper II hexahydrates. A corollary of these observations is that the ortho/para oscillations must occur in a highly synchronized matter. Our findings suggest that water molecules communicate with each other via very low frequency electromagnetic fields and that these fields also appear to be generated by the energetics of the synchronous ortho to para interconversions of the nuclear spin pairs of the water hydrogens. Further evidence for energy absorbed and emitted by water and correlated with ortho/para oscillations of ortho/para spin pairs of water hydrogens is indicated from the auto-oscillations in water luminescence. The emissions oscillate with period lengths of 18.8 min that agree with our previously found period of oscillation of about 18 min for pure water, reflective of ortho to para spin isomers based on measurements of redox potential. The period length of pure water (increased by about 25% in D2O and varies depending on the dominant cation present (copper salts in solution are unique in that the period length is exactly 24 min. Synchrony is maintained through generation of and response to LFEMF generated by the ortho-para spin pairs. Changes in redox potential sufficient to catalyze NADH oxidation were used to monitor synchronous water oscillations that appear to extend indefinitely over great distances in contiguous bodies of either still or flowing water. Adjacent out-of-phase water samples contained in thin plastic cuvettes auto-synchronize in a matter of

  17. Real-time Web GIS to monitor marine water quality using wave glider

    Science.gov (United States)

    Maneesa Amiruddin, Siti

    2016-06-01

    In the past decade, Malaysia has experienced unprecedented economic development and associated socioeconomic changes. As environmentalists anticipate these changes could have negative impacts on the marine and coastal environment, a comprehensive, continuous and long term marine water quality monitoring programme needs to be strengthened to reflect the government's aggressive mind-set of enhancing its authority in protection, preservation, management and enrichment of vast resources of the ocean. Wave Glider, an autonomous, unmanned marine vehicle provides continuous ocean monitoring at all times and is durable in any weather condition. Geographic Information System (GIS) technology is ideally suited as a tool for the presentation of data derived from continuous monitoring of locations, and used to support and deliver information to environmental managers and the public. Combined with GeoEvent Processor, an extension from ArcGIS for Server, it extends the Web GIS capabilities in providing real-time data from the monitoring activities. Therefore, there is a growing need of Web GIS for easy and fast dissemination, sharing, displaying and processing of spatial information which in turn helps in decision making for various natural resources based applications.

  18. Time-resolved spectral analysis of Radachlorin luminescence in water

    Science.gov (United States)

    Belik, V. P.; Gadzhiev, I. M.; Semenova, I. V.; Vasyutinskii, O. S.

    2017-05-01

    We report results of spectral- and time-resolved study of Radachlorin photosensitizer luminescence in water in the spectral range of 950-1350nm and for determination of the photosensitizer triplet state and the singlet oxygen lifetimes responsible for singlet oxygen generation and degradation. At any wavelength within the explored spectral range the luminescence decay contained two major contributions: a fast decay at the ns time scale and a slow evolution at the μs time scale. The fast decay was attributed to electric dipole fluorescence transitions in photosensitizer molecules and the slow evolution to intercombination phosphorescence transitions in singlet oxygen and photosensitizer molecules. Relatively high-amplitude ns peak observed at all wavelengths suggests that singlet oxygen monitoring with spectral isolation methods alone, without additional temporal resolution can be controversial. In the applied experimental conditions the total phosphorescence signal at any wavelength contained a contribution from the photosensitizer triplet state decay, while at 1274nm the singlet oxygen phosphorescence dominated. The results obtained can be used for optimization of the methods of singlet oxygen monitoring and imaging.

  19. Water age, exposure time, and local flushing time in semi-enclosed, tidal basins with negligible freshwater inflow

    Science.gov (United States)

    Viero, Daniele Pietro; Defina, Andrea

    2016-04-01

    Within the framework of tidally flushed, semi-enclosed basins with negligible freshwater inflow, and under steady periodic flow conditions, three frequently used local transport time scales to quantify the efficiency of water renewal, namely water age, exposure time, and local flushing time are studied and compared to each other. In these environments, water renewal is strongly controlled by diffusion, and it is significantly affected by the return flow (i.e., the fraction of effluent water that returns into the basin on each flood tide). The definition of water age is here modified to account for the return flow, in analogy with exposure time and local flushing time. We consider approximate time scales, whose accuracy is analyzed, in order to overcome problems related to the size of the computational domain and to reduce the computational effort. A new approximate procedure is introduced to estimate water age, which is based on the water aging rate. Also, the concept of local flushing time as a relevant time scale is introduced. Under steady periodic conditions, we demonstrate that the local flushing time quantitatively corresponds to water age, and well approximates exposure time when the flow is dominated by diffusion. Since the effort required to compute water age and exposure time is greater than that required to compute the local flushing time, the present results can also have a practical interest in the assessment of water renewal efficiency of semi-enclosed water basins. The results of a modeling study, in which the lagoon of Venice is used as a benchmark, confirm the substantial quantitative equivalence between these three transport time scales in highly diffusive environments.

  20. Enabling Real-time Water Decision Support Services Using Model as a Service

    Science.gov (United States)

    Zhao, T.; Minsker, B. S.; Lee, J. S.; Salas, F. R.; Maidment, D. R.; David, C. H.

    2014-12-01

    Through application of computational methods and an integrated information system, data and river modeling services can help researchers and decision makers more rapidly understand river conditions under alternative scenarios. To enable this capability, workflows (i.e., analysis and model steps) are created and published as Web services delivered through an internet browser, including model inputs, a published workflow service, and visualized outputs. The RAPID model, which is a river routing model developed at University of Texas Austin for parallel computation of river discharge, has been implemented as a workflow and published as a Web application. This allows non-technical users to remotely execute the model and visualize results as a service through a simple Web interface. The model service and Web application has been prototyped in the San Antonio and Guadalupe River Basin in Texas, with input from university and agency partners. In the future, optimization model workflows will be developed to link with the RAPID model workflow to provide real-time water allocation decision support services.

  1. Modelling water quality in drinking water distribution networks from real-time direction data

    Directory of Open Access Journals (Sweden)

    S. Nazarovs

    2012-03-01

    Full Text Available Modelling of contamination spread and location of contamination source in a water distribution network is an important task. The paper considers applicability of real-time flow direction data based model for contaminant transport for a distribution network of a city. Simulations of several contamination scenarios are made to evaluate necessary number of flow direction sensors. It is found that for a model, containing major pipes of Riga distribution system, sensor number decrease from 927 to 207 results in average 20% increase of simulated contaminated length of pipes. Simulation data suggest that optimal number of sensors for Riga model is around 200.

  2. Water use and time analysis in ablution from taps

    Science.gov (United States)

    Zaied, Roubi A.

    2017-09-01

    There is a lack of water resources and an extreme use of potable water in our Arab region. Ablution from taps was studied since it is a repeated daily activity that consumes more water. Five different tap types are investigated for water consumption fashions including traditional mixing tap and automatic tap. Analyzing 100 experimental observations revealed that 22.7-28.8 % of ablution water is used for washing of feet and the largest water waste occurs during washing of face portions. Moreover, 30-47 % amount of water consumed in ablution from taps is wasted which can be saved if tap releases water only at moments of need. The push-type tap is being spread recently especially in airports. If it is intended for use in ablution facilities, batch duration and volume must be tuned. When each batch is 0.25 L of water and lasts for 3 s, 3 L are sufficient for one complete ablution in average which means considerable saving. A cost-benefit model is proposed for using different tap types and an economic feasibility study is performed on a case study. This analysis can help us to design better ablution systems.

  3. Real time wave measurements and wave hindcasting in deep waters

    Digital Repository Service at National Institute of Oceanography (India)

    Anand, N.M.; Mandal, S.; SanilKumar, V.; Nayak, B.U.

    Deep water waves off Karwar (lat. 14~'45.1'N, long. 73~'34.8'E) at 75 m water depth pertaining to peak monsoon period have been measured using a Datawell waverider buoy. Measured wave data show that the significant wave height (Hs) predominantly...

  4. Buffering growth variations against water deficits through timely carbon usage.

    Science.gov (United States)

    Pantin, Florent; Fanciullino, Anne-Laure; Massonnet, Catherine; Dauzat, Myriam; Simonneau, Thierry; Muller, Bertrand

    2013-01-01

    Water stresses reduce plant growth but there is no consensus on whether carbon metabolism has any role in this reduction. Sugar starvation resulting from stomatal closure is often proposed as a cause of growth impairment under long-term or severe water deficits. However, growth decreases faster than photosynthesis in response to drought, leading to increased carbohydrate stores under short-term or moderate water deficits. Here, we addressed the question of the role of carbon availability on growth under moderate water deficits using two different systems. Firstly, we monitored the day/night pattern of leaf growth in Arabidopsis plants. We show that a moderate soil water deficit promotes leaf growth at night in mutants severely disrupted in their nighttime carbohydrate availability. This suggests that soil water deficit promotes carbon satiation. Secondly, we monitored the sub-hourly growth variations of clementine fruits in response to daily, natural fluctuations in air water deficit, and at contrasting source-sink balances obtained by defoliation. We show that high carbohydrate levels prevent excessive, hydraulic shrinkage of the fruit during days with high evaporative demand, most probably through osmotic adjustment. Together, our results contribute to the view that growing organs under moderate soil or air water deficit are not carbon starved, but use soluble carbohydrate in excess to partly release a hydromechanical limitation of growth.

  5. Buffering growth variation against water deficits through timely carbon usage

    Directory of Open Access Journals (Sweden)

    Florent ePantin

    2013-11-01

    Full Text Available Water stresses reduce plant growth but there is no consensus on whether carbon metabolism has any role in this reduction. Sugar starvation resulting from stomatal closure is often proposed as a cause of growth impairment under long-term or severe water deficits. However, growth decreases faster than photosynthesis in response to drought, leading to increased carbohydrate stores under short-term or moderate water deficits. Here, we addressed the question of the role of carbon availability on growth under moderate water deficits using two different systems. Firstly, we monitored the day/night pattern of leaf growth in Arabidopsis plants. We show that a moderate soil water deficit promotes leaf growth at night in mutants severely disrupted in their nighttime carbohydrate availability. This suggests that soil water deficit promotes carbon satiation. Secondly, we monitored the sub-hourly growth fluctuations of clementine fruits in response to daily, natural fluctuation in air water deficit, and at contrasting source-sink balance obtained by defoliation. We show that high carbohydrate levels obtained under favourable source-sink balance prevent excessive, hydraulic shrinkage of the fruit during days with high evaporative demand, most probably by modulating osmotic adjustment. Together, our results contribute to the view that growing organs under moderate soil or air water deficit are not carbon starved, but use soluble carbohydrate in excess to partly release a hydromechanical limitation of growth.

  6. The dental water jet: a product ahead of its time.

    Science.gov (United States)

    Ciancio, Sebastian G

    2009-03-01

    The dental water jet was invented by Dr. Gerald Moyer, a dentist, and John Mattingly, an engineer, in Ft. Collins, Colorado, in the late 1950s. The dental water jet, also known as an oral irrigator, was introduced to the dental profession in Texas during the 1962 Dallas Dental Convention. Numerous studies measuring the irrigator's efficacy in different cohorts have been published in peer-reviewed journals. The results of those studies are discussed in this article. The bulk of research has been conducted on one product (Waterpik dental water jet, Water Pik, Inc, Fort Collins, CO). This article is designed to provide dental professionals with the evidence essential to making an informed decision on the oral health benefits and expected outcomes of the dental water jet.

  7. Water safety: one of the primary objectives of our time

    Directory of Open Access Journals (Sweden)

    Carlo Collivignarelli

    2017-01-01

    Full Text Available This article discusses the benefits of an innovative approach to the problem of water security introduced by WHO in 2004, through the establishment of the Water Safety Plan (WSP. It was recently included in Commission Directive (EU 2015/1787 - October 6, 2015 - the implementation of which is expected in the EU countries by 27 October 2017. The WSP is the most effective means of consistently ensuring the safety of a drinking water supply. The method is based on the use of a comprehensive risk assessment and risk management approach that involves all steps in water supply from catchment to consumer. The knowledge acquired by some experiences of WSP application, both in Italy and in countries with limited resources, is proving the effectiveness of the model as the best way to manage drinking water systems and protect public health.

  8. Diastolic timed Vibro-Percussion at 50 Hz delivered across a chest wall sized meat barrier enhances clot dissolution and remotely administered Streptokinase effectiveness in an in-vitro model of acute coronary thrombosis

    Directory of Open Access Journals (Sweden)

    Hoffmann Andrew

    2012-11-01

    Full Text Available Abstract Background Low Frequency Vibro-Percussion (LFVP assists clearance of thrombi in catheter systems and when applied to the heart and timed to diastole is known to enhance coronary flow. However LFVP on a clotted coronary like vessel given engagement over a chest wall sized barrier (to resemble non-invasive heart attack therapy requires study. Methods One hour old clots (n=16 were dispensed within a flexible segment of Soft-Flo catheter (4 mm lumen, weighted, interfaced with Heparinized Saline (HS, secured atop a curved dampening base, and photographed. A ~4 cm meat slab was placed over the segment and randomized to receive intermittent LFVP (engaged, - disengaged at 1 second intervals, or no LFVP for 20 minutes. HS was pulsed (~120/80 mmHg, with the diastolic phase coordinated to match LFVP delivery. The segment was then re-photographed and aspirated of fluid to determine post clot weight. The trial was then repeated with 0.5 mls of Streptokinase (15,000 IU/100 microlitre delivered ~ 2 cm upstream from the clot. Results LFVP - HS only samples (vs. controls showed; a development of clot length fluid channels absent in the control group (p Conclusion Diastolic timed LFVP (50 Hz engaged across a chest wall sized barrier enhances clot disruptive effects to an underlying coronary like system.

  9. Time to revisit arsenic regulations: comparing drinking water and rice

    National Research Council Canada - National Science Library

    Sauvé, Sébastien

    2014-01-01

    .... Standard risk assessment paradigms show that arsenic regulations for drinking water should target a maximum concentration of nearly zero to prevent excessive lung and bladder cancer risks (among others...

  10. PARETO-IMPROVING WATER MANAGEMENT OVER SPACE AND TIME

    OpenAIRE

    Pitafi, Basharat A.K.; Roumasset, James A.

    2004-01-01

    Proposals for marginal cost water pricing have often been found to be politically infeasible because current users will have to pay a higher price even though future users will be better off. We show how efficiency pricing can be rendered Pareto-improving, and thus politically feasible, by compensating the users suffering a loss due to higher prices. We also provide a method for determining efficient spatial and inter-temporal water management for a system with consumption at significantly di...

  11. Time to revisit arsenic regulations: comparing drinking water and rice

    Science.gov (United States)

    2014-01-01

    Background Current arsenic regulations focus on drinking water without due consideration for dietary uptake and thus seem incoherent with respect to the risks arising from rice consumption. Existing arsenic guidelines are a cost-benefit compromise and, as such, they should be periodically re-evaluated. Discussion Literature data was used to compare arsenic exposure from rice consumption relative to exposure arising from drinking water. Standard risk assessment paradigms show that arsenic regulations for drinking water should target a maximum concentration of nearly zero to prevent excessive lung and bladder cancer risks (among others). A feasibility threshold of 3 μg As l-1 was determined, but a cost-benefit analysis concluded that it would be too expensive to target a threshold below 10 μg As l-1. Data from the literature was used to compare exposure to arsenic from rice and rice product consumption relative to drinking water consumption. The exposure to arsenic from rice consumption can easily be equivalent to or greater than drinking water exposure that already exceeds standard risks and is based on feasibility and cost-benefit compromises. It must also be emphasized that many may disagree with the implications for their own health given the abnormally high cancer odds expected at the cost-benefit arsenic threshold. Summary Tighter drinking water quality criteria should be implemented to properly protect people from excessive cancer risks. Food safety regulations must be put in place to prevent higher concentrations of arsenic in various drinks than those allowed in drinking water. Arsenic concentrations in rice should be regulated so as to roughly equate the risks and exposure levels observed from drinking water. PMID:24884827

  12. Water demand management in times of drought: What matters for water conservation

    Science.gov (United States)

    Maggioni, Elena

    2015-01-01

    Southern California is subject to long droughts and short wet spells. Its water agencies have put in place voluntary, mandatory, and market-based conservation strategies since the 1980s. By analyzing water agencies' data between 2006 and 2010, this research studies whether rebates for water efficient fixtures, water rates, or water ordinances have been effective, and tests whether structural characteristics of water agencies have affected the policy outcome. It finds that mandates to curb outdoor water uses are correlated with reductions in residential per capita water usage, while water rates and subsidies for water saving devices are not. It also confirms that size is a significant policy implementation factor. In a policy perspective, the transition from a water supply to a water demand management-oriented strategy appears guided by mandates and by contextual factors such as the economic cycle and the weather that occur outside the water governance system. Three factors could improve the conservation effort: using prices as a conservation tool, not only as a cost recovering instrument; investing in water efficient tools only when they provide significant water savings; supporting smaller agencies in order to give them opportunities to implement conservation strategies more effectively or to help them consolidate.

  13. How to monitor and adjust in real time the total water consumption and water use efficiency: Earned value method

    Science.gov (United States)

    Du, Zhong; Dong, Zengchuan; Wu, Huixiu; Yang, Lin

    2017-03-01

    The evaluation indexes of total water consumption and water use efficiency have the characteristics of post feedback. In this paper we introduce the basic concept and specific theory of Earned value method (EVM) from project management, and reconstruct parameters in the method to adapt to water resources monitoring. The case of Dandong was studied, by analyzing the industry and irrigation water utilization. Although the total water consumption of two aspects reaches standards, the industrial added value and water use efficiency of irrigation are not up to standard. The results show that PV can be used as a baseline for real-time monitoring and adjustment, and the advantage of the EVM is that it can be an organic unity of water consumption and efficiency, so we can analyze comprehensively water utilization process.

  14. Miniaturized video-microscopy system for near real-time water quality biomonitoring using microfluidic chip-based devices

    Science.gov (United States)

    Huang, Yushi; Nigam, Abhimanyu; Campana, Olivia; Nugegoda, Dayanthi; Wlodkowic, Donald

    2016-12-01

    Biomonitoring studies apply biological responses of sensitive biomonitor organisms to rapidly detect adverse environmental changes such as presence of physic-chemical stressors and toxins. Behavioral responses such as changes in swimming patterns of small aquatic invertebrates are emerging as sensitive endpoints to monitor aquatic pollution. Although behavioral responses do not deliver information on an exact type or the intensity of toxicants present in water samples, they could provide orders of magnitude higher sensitivity than lethal endpoints such as mortality. Despite the advantages of behavioral biotests performed on sentinel organisms, their wider application in real-time and near realtime biomonitoring of water quality is limited by the lack of dedicated and automated video-microscopy systems. Current behavioral analysis systems rely mostly on static test conditions and manual procedures that are time-consuming and labor intensive. Tracking and precise quantification of locomotory activities of multiple small aquatic organisms requires high-resolution optical data recording. This is often problematic due to small size of fast moving animals and limitations of culture vessels that are not specially designed for video data recording. In this work, we capitalized on recent advances in miniaturized CMOS cameras, high resolution optics and biomicrofluidic technologies to develop near real-time water quality sensing using locomotory activities of small marine invertebrates. We present proof-of-concept integration of high-resolution time-resolved video recording system and high-throughput miniaturized perfusion biomicrofluidic platform for optical tracking of nauplii of marine crustacean Artemia franciscana. Preliminary data demonstrate that Artemia sp. exhibits rapid alterations of swimming patterns in response to toxicant exposure. The combination of video-microscopy and biomicrofluidic platform facilitated straightforward recording of fast moving objects. We

  15. Time dependent FTIR spectra of mineral waters after contact with air

    CERN Document Server

    Kondyurin, Alexey

    2010-01-01

    FTIR spectra of mineral waters of Slavyanovskaya, Aqua Montana, Bad Harzburger and Christinen with time from first contact of water with open air were analysed. The kinetic of spectral changes of Slavyanovskaya mineral water in the regions of stretch, deformation and intermolecular vibrations was measured. The spectral changes do not correlate with chemical contamination of mineral water and degassing process. The observed spectral changes could be due to different structure of mineral water in liquid state, which is destroyed after air contact. The observed spectral behaviour of Slavyanovskaya is correlated with the catalytic activity of mineral water, which was saved without contact with air. The characteristic time of spectral dependence (669 seconds) is close to the characteristic time of catalytic activity loss (600 seconds) of mineral water at air contact. The spectra results support the medical studies that show the activity of mineral water near spring, and the loosing activity of water after long tim...

  16. Neutron Time-of-Flight Quantification of Water Desorption Isotherms of Montmorillonite

    DEFF Research Database (Denmark)

    Gates, Will P.; Bordallo, Heloisa N.; Aldridge, Laurence P.

    2012-01-01

    enabled us to differentiate at least two water motions during dehydration of Ca- and Na-SAz-1 (initially equilibrated at RH = 55%) by using a "controlled water loss" time-of-flight procedure. This work confirms that (a) interlayer and cationic water in dioctahedral smectites are characterized by slower......The multiple energy states of water held by surfaces of a clay mineral can be effectively probed with time-of-flight and fixed elastic window neutron scattering. We used these techniques to quantitatively differentiate water types, including rotational and translational diffusions, in Ca- and Na...... motions than interparticle water, (b) interlayer cations influenced the dynamics of water loss, probably through its affect on clay fabric, and (c) interparticle water behaves more like bulk water. At 55% RH the Ca montmorillonite held more interparticle water, but on dehydration under controlled...

  17. EXPERIMENTAL INVESTIGATIONS OF REAL TIME SECONDARY CO-INJECTION OF WATER – DIETHYL ETHER SOLUTION IN DI-DIESEL ENGINE FUELLED WITH PALM KERNEL METHYL ESTER

    Directory of Open Access Journals (Sweden)

    Y. V. V. SATYANARAYANAMURTHY

    2012-12-01

    Full Text Available In this investigation tests were conducted on single cylinder diesel engine fuelled with neat diesel and biodiesel palm kernel methyl ester as a base line fuel with secondary injection of Water-DEE solution through the inlet manifold. A real time control systems consists of electronic unit pump that delivers 5% to 25% vol. Water-DEE solution through injector tip mounted nearer to the inlet manifold under a pressure of 3 kgf/cm2. NOx emissions reduced to a level of 500 ppm with simultaneous reduction of soot especially for PKME. However for 15% vol. of Water-DEE injection the HC emissions are closely tallying with that of neat diesel. A global overview of the results has shown that the 15% Water-DEE solution is the optimal blend based on performance and emission characteristics.

  18. Assessment of susceptibility to pollution in littoral waters using the concept of recovery time.

    Science.gov (United States)

    Gómez, Aina G; Juanes, José A; Ondiviela, Bárbara; Revilla, José A

    2014-04-15

    Susceptibility to pollution can be related to the flushing capacity of aquatic systems. Transport time scales constitute a useful tool for representing the water exchange and transport processes. A new transport time scale, recovery time, and a methodology to estimate it by means of numerical models is hereby developed. Recovery time, calculated in Gijon, Santander and Tarragona harbours, is significantly related to physical, chemical and biological water quality indicators. Susceptibility, assessed through recovery time values, provides spatial patterns of expected flushing capacity, being sensitive to physical and hydrodynamic characteristics. The developed method is appropriate to estimate recovery time and assess susceptibility against pollution in littoral waters having great potential to be applied to different disciplines. Recovery time could be used in littoral waters as a surrogate of water quality indicators, to establish efficient monitoring programs, to define and characterize modified water bodies or to improve the design of marine infrastructures.

  19. Water Residence Times and Their Relation to Soil and Aquifer Properties and Degree of Urbanization (Croton Water Supply Area, NY)

    Science.gov (United States)

    Vitvar, T.; Burns, D.; Kendall, C.; McDonnell, J.

    2002-05-01

    Water residence times were determined in 3 small watersheds in the Croton water supply area, NY. The watersheds (less than 1 km2 drainage area) have different amounts of urbanization (natural, semi-developed and fully developed), different mechanisms of runoff generation (quick flow on roads and slow flow through subsurface) and different watershed landscape characteristics (wetlands, hillslopes) . Measurements of the Oxygen-18 content of throughfall, stream water, soil water and groundwater in the saturated zone were performed bi-weekly over a period of 2 years. Mean water residence times of the stream water, soil water and groundwater were estimated using Oxygen-18 and Helium-3/Tritium isotopes. There are small but significant differences in the isotopic content of waters in each watershed, along with soil and aquifer properties as a function of the level of urbanization. Longer groundwater residence times (up to more than 2 years) were estimated in wetland zones without direct communication with streams in comparison to hillslope areas (up to more than 1 year). In highly urbanized areas, mixing of natural runoff generation processes with urbanization effects such as the influence of septic plumes results in a complex spectrum of residence times in soil waters and groundwaters. We illustrate the possibilities of using stable isotope measurements to describe small-scale complex runoff generation processes in watersheds.

  20. Time integration of the shallow water equations in spherical geometry

    NARCIS (Netherlands)

    D. Lanser; J.G. Blom (Joke); J.G. Verwer (Jan)

    2000-01-01

    textabstractThe shallow water equations in spherical geometry provide a prototype for developing and testing numerical algorithms for atmospheric circulation models. In a previous paper we have studied a spatial discretization of these equations based on an Osher-type finite-volume method on stereog

  1. BIOSENSOR TECHNOLOGY EVALUATIONS FOR REAL-TIME/SOURCE WATER PROTECTION

    Science.gov (United States)

    Recent advances in electronics and computer technology have made great strides in the field of remote sensing and biomonitoring. The quality of drinking water sources has come under closer scrutiny in recent years. Issues ranging from ecological to public health and national se...

  2. Time integration of the shallow water equations in spherical geometry

    NARCIS (Netherlands)

    Lanser, D.; Blom, J.G.; Verwer, J.G.

    2000-01-01

    The shallow water equations in spherical geometry provide a prototype for developing and testing numerical algorithms for atmospheric circulation models. In a previous paper we have studied a spatial discretization of these equations based on an Osher-type finite-volume method on stereographic and l

  3. Drinking Water Temperature Modelling in Domestic Systems

    NARCIS (Netherlands)

    Moerman, A.; Blokker, M.; Vreeburg, J.; Van der Hoek, J.P.

    2014-01-01

    Domestic water supply systems are the final stage of the transport process to deliver potable water to the customers’ tap. Under the influence of temperature, residence time and pipe materials the drinking water quality can change while the water passes the domestic drinking water system. According

  4. Water quality indexing for predicting variation of water quality over time

    African Journals Online (AJOL)

    PPoonoosamy

    water, and expressing them to non-technical people may not always be easy. Water quality ... Trend analysis: The WQI method is widely used in the rehabilitation of ..... Comparison chart River Cere: Minimum Operator & NSF. 0. 10. 20. 30. 40.

  5. CoWS: Continuous Water Sampler for CRDS-based, real-time measurements of water isotopes

    Science.gov (United States)

    Carter, J.; Huang, K.; Dennis, K. J.

    2014-12-01

    Stable isotopes of water (δ18O and δD) are unique tracers for studying hydrological and associated processes. High spatial and temporal resolution measurements of water isotopes are necessary to follow the dynamics in rapidly changing systems and to map out the spatial heterogeneity of water circulation and mixing. Here we present results of the first commercially available Continuous Water Sampler Module (CoWS) that can be coupled to a Picarro L2130-i Cavity Ring-Down Spectrometer (CRDS) for real-time measurements of water isotopes. The CoWS is a compact and fully automated system with its core method modified from that of Munksgaard et al. (2011). Liquid water is continuously pumped into an extraction chamber, where water vapor diffuses through a micro-poruous polytetrafluoroethylene (ePTFE) membrane. The vapor is then carried by a dry carrier gas to the L2130-i for high precision measurements of δ18O and δD. The inlet water, carrier gas, and surface of the ePTFE membrane are actively temperature controlled to maintain a stable amount of fractionation of water isotopes across the membrane, which minimizes measurement drift. We have tested the CoWS-CRDS system with various inlet water types (tap water, deionized water, and seawater), and under operational conditions with variable ambient water and air temperatures. CoWS-CRDS has high precision (water isotope measurements, with short response time (automated sampling among up to four water sources with user defined sampling durations. Additionally, we will present isotopic measurements with high-temporal resolution of an estuarine system where tidal changes affected the isotopic composition of the estuary.

  6. Forecasting surface water flooding hazard and impact in real-time

    Science.gov (United States)

    Cole, Steven J.; Moore, Robert J.; Wells, Steven C.

    2016-04-01

    Across the world, there is increasing demand for more robust and timely forecast and alert information on Surface Water Flooding (SWF). Within a UK context, the government Pitt Review into the Summer 2007 floods provided recommendations and impetus to improve the understanding of SWF risk for both off-line design and real-time forecasting and warning. Ongoing development and trial of an end-to-end real-time SWF system is being progressed through the recently formed Natural Hazards Partnership (NHP) with delivery to the Flood Forecasting Centre (FFC) providing coverage over England & Wales. The NHP is a unique forum that aims to deliver coordinated assessments, research and advice on natural hazards for governments and resilience communities across the UK. Within the NHP, a real-time Hazard Impact Model (HIM) framework has been developed that includes SWF as one of three hazards chosen for initial trialling. The trial SWF HIM system uses dynamic gridded surface-runoff estimates from the Grid-to-Grid (G2G) hydrological model to estimate the SWF hazard. National datasets on population, infrastructure, property and transport are available to assess impact severity for a given rarity of SWF hazard. Whilst the SWF hazard footprint is calculated in real-time using 1, 3 and 6 hour accumulations of G2G surface runoff on a 1 km grid, it has been possible to associate these with the effective rainfall design profiles (at 250m resolution) used as input to a detailed flood inundation model (JFlow+) run offline to produce hazard information resolved to 2m resolution. This information is contained in the updated Flood Map for Surface Water (uFMfSW) held by the Environment Agency. The national impact datasets can then be used with the uFMfSW SWF hazard dataset to assess impacts at this scale and severity levels of potential impact assigned at 1km and for aggregated county areas in real-time. The impact component is being led by the Health and Safety Laboratory (HSL) within the NHP

  7. Delivering Online Examinations: A Case Study

    Directory of Open Access Journals (Sweden)

    John MESSING

    2004-07-01

    Full Text Available Delivering Online Examinations: A Case Study Jason HOWARTH John MESSING Irfan ALTAS Charles Sturt University Wagga Wagga-AUSTRALIA ABSTRACT This paper represents a brief case study of delivering online examinations to a worldwide audience. These examinations are delivered in partnership with a commercial online testing company as part of the Industry Master’s degree at Charles Sturt University (CSU. The Industry Master’s degree is an academic program for students currently employed in the IT industry. Using Internet Based Testing (IBT, these students are examined in test centres throughout the world. This offers many benefits. For example, students have the freedom of sitting exams at any time during a designated interval. Computer-based testing also provides instructors with valuable feedback through test statistics and student comments. In this paper, we document CSU’s use of the IBT system, including how tests are built and delivered, and how both human and statistical feedback is used to evaluate and enhance the testing process.

  8. Estimating groundwater evapotranspiration by a subtropical pine plantation using diurnal water table fluctuations: Implications from night-time water use

    Science.gov (United States)

    Fan, Junliang; Ostergaard, Kasper T.; Guyot, Adrien; Fujiwara, Stephen; Lockington, David A.

    2016-11-01

    Exotic pine plantations have replaced large areas of the native forests for timber production in the subtropical coastal Australia. To evaluate potential impacts of changes in vegetation on local groundwater discharge, we estimated groundwater evapotranspiration (ETg) by the pine plantation using diurnal water table fluctuations for the dry season of 2012 from August 1st to December 31st. The modified White method was used to estimate the ETg, considering the night-time water use by pine trees (Tn). Depth-dependent specific yields were also determined both experimentally and numerically for estimation of ETg. Night-time water use by pine trees was comprehensively investigated using a combination of groundwater level, sap flow, tree growth, specific yield, soil matric potential and climatic variables measurements. Results reveal a constant average transpiration flux of 0.02 mm h-1 at the plot scale from 23:00 to 05:00 during the study period, which verified the presence of night-time water use. The total ETg for the period investigated was 259.0 mm with an accumulated Tn of 64.5 mm, resulting in an error of 25% on accumulated evapotranspiration from the groundwater if night-time water use was neglected. The results indicate that the development of commercial pine plantations may result in groundwater losses in these areas. It is also recommended that any future application of diurnal water table fluctuation based methods investigate the validity of the zero night-time water use assumption prior to use.

  9. Interactive Online Real-time Groundwater Model for Irrigation Water Allocation in the Heihe Mid-reaches, China

    Science.gov (United States)

    Pedrazzini, G.; Kinzelbach, W.

    2016-12-01

    In the Heihe Basin and many other semi-arid regions in the world the ongoing introduction of smart meter IC-card systems on farmers' pumping wells will soon allow monitoring and control of abstractions with the goal of preventing further depletion of the resource. In this regard, a major interest of policy makers concerns the development of new and the improvement of existing legislation on pricing schemes and groundwater/surface water quotas. Predictive knowledge on the development of groundwater levels for different allocation schemes or climatic change scenarios is required to support decision-makers in this task. In the past groundwater models have been a static component of investigations and their results delivered in the form of reports. We set up and integrated a groundwater model into a user-friendly web-based environment, allowing direct and easy access to the novice user. Through operating sliders the user can select an irrigation district, change irrigation patterns such as partitioning of surface- and groundwater, size of irrigation area, irrigation efficiency, as well as a number of climate related parameters. Reactive handles allow to display the results in real-time. The implemented software is all license free. The tool is currently being introduced to irrigation district managers in the project area. Findings will be available after some practical experience to be expected in a given time. The accessibility via a web-interface is a novelty in the context of groundwater models. It allows delivering a product accessible from everywhere and from any device. The maintenance and if necessary updating of model or software can occur remotely. Feedback mechanisms between reality and prediction will be introduced and the model periodically updated through data assimilation as new data becomes available. This will render the model a dynamic tool steadily available and evolving over time.

  10. Drainage-water travel times as a key factor for surface water contamination

    OpenAIRE

    Groenendijk, P.; Eertwegh, van den, A.J.M.

    2004-01-01

    The importance of the unsaturated zone as an inextricable part of the hydrologic cycle has long been recognized. The root zone and the unsaturated sub-surface domain are chemically and biologically the most active zones. The interrelationships between soil, subsoil and surface waters make it unrealistic to treat the saturated and unsaturated zones and the discharge to surface waters separately. Point models describe vertical water flow in the saturated zone and possibly lateral flow by defini...

  11. Near real-time estimation of water vapour in the troposphere using ground GNSS and the meteorological data

    Directory of Open Access Journals (Sweden)

    J. Bosy

    2012-09-01

    Full Text Available The near real-time (NRT high resolution water vapour distribution models can be constructed based on GNSS observations delivered from Ground Base Augmentation Systems (GBAS and ground meteorological data. Since 2008 in the territory of Poland, a GBAS system called ASG-EUPOS (Active Geodetic Network has been operating. This paper addresses the problems concerning construction of the NRT model of water vapour distribution in the troposphere near Poland. The first section presents all available GNSS and ground meteorological stations in the area of Poland and neighbouring countries. In this section, data feeding scheme is discussed, together with timeline and time resolution. The high consistency between measured and interpolated temperature value is shown, whereas some discrepancy in the pressure is observed. In the second section, the NRT GNSS data processing strategy of ASG-EUPOS network is discussed. Preliminary results show fine alignment of the obtained Zenith Troposphere Delays (ZTDs with reference data from European Permanent Network (EPN processing center. The validation of NRT troposphere products against daily solution shows 15 mm standard deviation of obtained ZTD differences. The last section presents the first results of 2-D water vapour distribution above the GNSS network and application of the tomographic model to 3-D distribution of water vapour in the atmosphere. The GNSS tomography model, working on the simulated data from numerical forecast model, shows high consistency with the reference data (by means of standard deviation 4 mm km−1 or 4 ppm, however, noise analysis shows high solution sensitivity to errors in observations. The discrepancy for real data preliminary solution (measured as a mean standard deviation between reference NWP data and tomography data was on the level of 9 mm km−1 (or 9 ppm in terms of wet refractivity.

  12. TIME TO CHANGE: the foreseeable future for water planning

    NARCIS (Netherlands)

    Segrave, A.J.

    2014-01-01

    The decisions people make, and the actions they take, depend on how they conceptualize and experience time. This fundamental and influential factor is seldom acknowledged, little understood, and rarely considered explicitly in planning; be that for the material systems or the knowledge systems in th

  13. Stochastic modeling of Lake Van water level time series with jumps and multiple trends

    Directory of Open Access Journals (Sweden)

    H. Aksoy

    2013-06-01

    Full Text Available In the 1990s, water level in the closed-basin Lake Van located in the Eastern Anatolia, Turkey, has risen up about 2 m. Analysis of the hydrometeorological data shows that change in the water level is related to the water budget of the lake. In this study, stochastic models are proposed for simulating monthly water level data. Two models considering mono- and multiple-trend time series are developed. The models are derived after removal of trend and periodicity in the dataset. Trend observed in the lake water level time series is fitted by mono- and multiple-trend lines. In the so-called mono-trend model, the time series is treated as a whole under the hypothesis that the lake water level has an increasing trend. In the second model (so-called multiple-trend, the time series is divided into a number of segments to each a linear trend can be fitted separately. Application on the lake water level data shows that four segments, each fitted with a trend line, are meaningful. Both the mono- and multiple-trend models are used for simulation of synthetic lake water level time series under the hypothesis that the observed mono- and multiple-trend structure of the lake water level persist during the simulation period. The multiple-trend model is found better for planning the future infrastructural projects in surrounding areas of the lake as it generates higher maxima for the simulated lake water level.

  14. Minimal-time bioremediation of natural water resources

    CERN Document Server

    Gajardo, Pedro; Rapaport, Alain; Harmand, Jérôme

    2010-01-01

    We study minimal time strategies for the treatment of pollution of large volumes, such as lakes or natural reservoirs, with the help of an autonomous bioreactor. The control consists in feeding the bioreactor from the resource, the clean output returning to the resource with the same flow rate. We first characterize the optimal policies among constant and feedback controls, under the assumption of a uniform concentration in the resource. In a second part, we study the influence of an inhomogeneity in the resource, considering two measurements points. With the help of the Maximum Principle, we show that the optimal control law is non-monotonic and terminates with a constant phase, contrary to the homogeneous case for which the optimal flow rate is decreasing with time. This study allows the decision makers to identify situations for which the benefit of using non-constant flow rates is significant.

  15. Minimal-time bioremediation of natural water resources

    OpenAIRE

    Gajardo, Pedro; Harmand, Jerome; Ramirez Cabrera , H; Rapaport, Alain

    2011-01-01

    International audience; We study minimal time strategies for the treatment of pollution of large volumes, such as lakes or natural reservoirs, with the help of an autonomous bioreactor. The control consists in feeding the bioreactor from the resource, the clean output returning to the resource with the same flow rate. We first characterize the optimal policies among constant and feedback controls, under the assumption of a uniform concentration in the resource. In a second part, we study the ...

  16. Carbonation of low heat portland cement paste procured in water for different time

    Institute of Scientific and Technical Information of China (English)

    Deping Chen; Etsuo Sakai; Masaki Daimon; Yoko Ohba

    2007-01-01

    The carbonation technique was applied to accelerate the hydration of low heat portland cement (LHC). Before carbonation, the demoulded pastes were precured in water for 0, 2, 7, and 21 d, respectively. The results show that procuring time in water strongly influences the carbonation process. The phenolphthalein test indicates that the paste precured in water for a shorter time is more quickly carbonated than that for a longer time. The content of calcium hydroxide increases with increasing the procuring time in water, whereas, the amount of absorbed carbon dioxide changes contrarily. Scanning electron microscope (SEM) observation shows that portlandite always fills up big air bubbles in the paste during precuring in water, and the mercury intrusion porosimetry (MIP) results show that there are less large capillary pores in the paste precured in water for a longer time. It is found that the paste without precuring in water has more carbon dioxide absorption during curing in carbon dioxide atmosphere, and its total pore volume decreases remarkably with an increase in the carbonation time than that precured in water. X-ray diffraction (XRD) and Brunauer-Emmett-Teller (BET) surface area analyses indicate that the carbonate products are vaterite and calcite; CxSHy,, formed from carbonation has low BET surface area in comparison with that of C-S-H formed from curing in water.

  17. Dielectric relaxation time and structure of bound water in biological materials

    Energy Technology Data Exchange (ETDEWEB)

    Mashimo, S.; Kuwabara, S.; Yagihara, S.; Higasi, K.

    1987-12-03

    The dielectric behavior of living tissues and a number of biological materials was examined by new equipment of the time domain reflectometry method in a wide frequency range of 10/sup 7/-10/sup 10/ Hz. The authors found two peaks of Debye absorption around 100 MHz and 20 GHz for all the materials. The low-frequency absorption is probably due to bound water while the high-frequency absorption to free water. From the observed relaxation times of bound water a hypothesis is ventured on the structure of bound water and its relaxation mechanism.

  18. Drainage-water travel times as a key factor for surface water contamination

    NARCIS (Netherlands)

    Groenendijk, P.; Eertwegh, van den G.A.P.H.

    2004-01-01

    The importance of the unsaturated zone as an inextricable part of the hydrologic cycle has long been recognized. The root zone and the unsaturated sub-surface domain are chemically and biologically the most active zones. The interrelationships between soil, subsoil and surface waters make it unreali

  19. Continuous-flow water sampler for real-time isotopic water measurements

    Science.gov (United States)

    Carter, J.; Dennis, K.

    2013-12-01

    Measuring the stable isotopes of liquid water (δ18O and δD) is a tool familiar to many Earth scientists, but most current techniques require discrete sampling. For example, isotope ratio mass spectrometry requires the collection of aliquots of water that are then converted to CO2, CO or H2 for analysis. Similarly, laser-based techniques, such as Cavity Ring-Down Spectroscopy (CRDS) convert discrete samples (typically environmental conditions, which if not actively control, lead to sustainable experimental noise and drift. Consequently, our continuous-flow water sample employs active control for all pertinent parameters, significantly increasing its stability and usability. We will present data from controlled laboratory experiments demonstrating sample-to-sample precision and long-term stability. We will also show experimental data that highlights the instrumental sample-to-sample memory, which we have decreased significantly from previous implementations of this technology. Additionally, we will present field results from the Sacramento River, CA. Dansgaard, W. (1964) 'Stable isotopes in precipitation', Tellus, 16(4), p. 436-468. Munksgaard, N.C., Wurster, C.M., Bass, A., Zagorskis, I., and Bird, M.I. (2012) 'First continuous shipboard d18O and dD measurements in seawater by diffusion sampling--cavity ring-down spectrometry', Environmental Chemistry Letters, 10, p.301-307. Munksgaard, N.C., Wurster, C.M., and Bird, M.I., (2011), 'Continuous analysis of δ18O and δD values of water by diffusion sampling cavity ring-down spectrometry: a novel sampling device for unattended field monitoring of precipitation, ground and surface waters', Rapid Communications in Mass Spectrometry, 25, p. 3706-3712.

  20. Water Stress on U.S. Power Production at Decadal Time Horizons

    Energy Technology Data Exchange (ETDEWEB)

    Ganguly, Auroop R. [Northeastern Univ., Boston, MA (United States). Sustainability and Data Sciences Lab.. Civil and Environmental Engineering Dept.; Ganguli, Poulomi [Northeastern Univ., Boston, MA (United States). Sustainability and Data Sciences Lab.; Kumar, Devashish [Northeastern Univ., Boston, MA (United States). Sustainability and Data Sciences Lab.

    2014-09-01

    change and population growth scenarios, anywhere between 4.5 and 9 quads of delivered electricity (from existing plants) would be generated in counties that are at risk of water scarcity and/or unacceptably high stream temperatures.

  1. A novel water quality data analysis framework based on time-series data mining.

    Science.gov (United States)

    Deng, Weihui; Wang, Guoyin

    2017-07-01

    The rapid development of time-series data mining provides an emerging method for water resource management research. In this paper, based on the time-series data mining methodology, we propose a novel and general analysis framework for water quality time-series data. It consists of two parts: implementation components and common tasks of time-series data mining in water quality data. In the first part, we propose to granulate the time series into several two-dimensional normal clouds and calculate the similarities in the granulated level. On the basis of the similarity matrix, the similarity search, anomaly detection, and pattern discovery tasks in the water quality time-series instance dataset can be easily implemented in the second part. We present a case study of this analysis framework on weekly Dissolve Oxygen time-series data collected from five monitoring stations on the upper reaches of Yangtze River, China. It discovered the relationship of water quality in the mainstream and tributary as well as the main changing patterns of DO. The experimental results show that the proposed analysis framework is a feasible and efficient method to mine the hidden and valuable knowledge from water quality historical time-series data. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Real-time monitoring and operational control of drinking-water systems

    CERN Document Server

    Ocampo-Martínez, Carlos; Pérez, Ramon; Cembrano, Gabriela; Quevedo, Joseba; Escobet, Teresa

    2017-01-01

    This book presents a set of approaches for the real-time monitoring and control of drinking-water networks based on advanced information and communication technologies. It shows the reader how to achieve significant improvements in efficiency in terms of water use, energy consumption, water loss minimization, and water quality guarantees. The methods and approaches presented are illustrated and have been applied using real-life pilot demonstrations based on the drinking-water network in Barcelona, Spain. The proposed approaches and tools cover: • decision-making support for real-time optimal control of water transport networks, explaining how stochastic model predictive control algorithms that take explicit account of uncertainties associated with energy prices and real demand allow the main flow and pressure actuators—pumping stations and pressure regulation valves—and intermediate storage tanks to be operated to meet demand using the most sustainable types of source and with minimum electricity costs;...

  3. Inferring changes in water cycle dynamics of intensively managed landscapes via the theory of time-variant travel time distributions

    Science.gov (United States)

    Danesh-Yazdi, Mohammad; Foufoula-Georgiou, Efi; Karwan, Diana L.; Botter, Gianluca

    2016-10-01

    Climatic trends and anthropogenic changes in land cover and land use are impacting the hydrology and water quality of streams at the field, watershed, and regional scales in complex ways. In poorly drained agricultural landscapes, subsurface drainage systems have been successful in increasing crop productivity by removing excess soil moisture. However, their hydroecological consequences are still debated in view of the observed increased concentrations of nitrate, phosphorus, and pesticides in many streams, as well as altered runoff volumes and timing. In this study, we employ the recently developed theory of time-variant travel time distributions within the StorAge Selection function framework to quantify changes in water cycle dynamics resulting from the combined climate and land use changes. Our results from analysis of a subbasin in the Minnesota River Basin indicate a significant decrease in the mean travel time of water in the shallow subsurface layer during the growing season under current conditions compared to the pre-1970s conditions. We also find highly damped year-to-year fluctuations in the mean travel time, which we attribute to the "homogenization" of the hydrologic response due to artificial drainage. The dependence of the mean travel time on the spatial heterogeneity of some soil characteristics as well as on the basin scale is further explored via numerical experiments. Simulations indicate that the mean travel time is independent of scale for spatial scales larger than approximately 200 km2, suggesting that hydrologic data from larger basins may be used to infer the average of smaller-scale-driven changes in water cycle dynamics.

  4. Age and residence time of terrestrial source water in the northwest Atlantic shelf seas

    Science.gov (United States)

    He, R.; Todd, A. C.

    2016-02-01

    Coastal river mouths and bays are the junctions where terrestrial-source water meets and mixes with water from the open ocean. Once the riverine water reaches the coastal ocean, its eventual fate is largely unknown and difficult to trace. Rivers that flow into the ocean may contain high levels of nutrients and organic matter, so understanding the fate of terrestrial source water is important for a variety of biogeochemical processes that occur in the shelf seas. The fate of this terrestrial source water may be described in terms of its mean age (the time since it reached the ocean) and its residence time (the time it remains on the continental shelf). Using a high-resolution ocean model, we apply the constituent-oriented age and residence time (CART) theory to a large region encompassing the northwest Atlantic shelf seas to calculate the mean age of terrestrial source water and its residence time. For this application, 196 river mouths are used as sources of terrestrial water from South America to Nova Scotia. We investigate the spatial and seasonal variability of the water's mean age and compute the residence time within four different shelf regions: the Carribean Sea, the Gulf of Mexico, the South Atlantic Bight, and the Mid-Atlantic Bight/Gulf of Maine. From the estimates of mean age and residence time, we describe the impact of the coastal circulation on the eventual fate of terrestrial waters, and provide conjecture on how varying transport time scales may affect the general biogeochemical processes in the coastal ocean.

  5. Stochastic modeling of Lake Van water level time series with jumps and multiple trends

    Directory of Open Access Journals (Sweden)

    H. Aksoy

    2013-02-01

    Full Text Available In 1990s, water level in the closed-basin Lake Van located in the Eastern Anatolia, Turkey has risen up about 2 m. Analysis of the hydrometeorological shows that change in the water level is related to the water budget of the lake. In this study, a stochastic model is generated using the measured monthly water level data of the lake. The model is derived after removal of trend and periodicity in the data set. Trend observed in the lake water level time series is fitted by mono- and multiple-trend lines. For the multiple-trend, the time series is first divided into homogeneous segments by means of SEGMENTER, segmentation software. Four segments are found meaningful practically each fitted with a trend line. Two models considering mono- and multiple-trend time series are developed. The multiple-trend model is found better for planning future development in surrounding areas of the lake.

  6. Microbial biogeography of drinking water: patterns in phylogenetic diversity across space and time.

    Science.gov (United States)

    Roeselers, Guus; Coolen, Jordy; van der Wielen, Paul W J J; Jaspers, Marco C; Atsma, Adrie; de Graaf, Bendert; Schuren, Frank

    2015-07-01

    In this study, we collected water from different locations in 32 drinking water distribution networks in the Netherlands and analysed the spatial and temporal variation in microbial community composition by high-throughput sequencing of 16S rRNA gene amplicons. We observed that microbial community compositions of raw source and processed water were very different for each distribution network sampled. In each network, major differences in community compositions were observed between raw and processed water, although community structures of processed water did not differ substantially from end-point tap water. End-point water samples within the same distribution network revealed very similar community structures. Network-specific communities were shown to be surprisingly stable in time. Biofilm communities sampled from domestic water metres varied distinctly between households and showed no resemblance to planktonic communities within the same distribution networks. Our findings demonstrate that high-throughput sequencing provides a powerful and sensitive tool to probe microbial community composition in drinking water distribution systems. Furthermore, this approach can be used to quantitatively compare the microbial communities to match end-point water samples to specific distribution networks. Insight in the ecology of drinking water distribution systems will facilitate the development of effective control strategies that will ensure safe and high-quality drinking water.

  7. Estimating pumping time and ground-water withdrawals using energy-consumption data. Water-Resources Investigation

    Energy Technology Data Exchange (ETDEWEB)

    Hurr, R.T.; Litke, D.W.

    1989-01-01

    Evaluation of the hydrology of an aquifer requires knowledge about the volume of ground water in storage and also about the volume of ground-water withdrawals. Totalizer flow meters may be installed at pumping plants to measure withdrawals; however, it generally is impractical to equip all wells in an area with meters. A viable alternative is the use of rate-time methods to estimate withdrawals. The relation between power demand and pumping rate at a pumping plant can be described through the use of the power-consumption coefficient. Where equipment and hydrologic conditions are stable, this coefficient can be applied to total energy consumption at a site to estimate total ground-water withdrawals. Random sampling of power-consumption coefficients can be used to estimate area-wide ground-water withdrawals.

  8. Residence time of water discharging from the Hanging Gardens of Zion Park

    Science.gov (United States)

    Kimball, B.A.; Christensen, P.K.

    1996-01-01

    The Hanging Gardens are a unique feature of Zion National Park. Knowledge of the source and residence time of water discharging from the Hanging Gardens is necessary to help preserve these features. Ground-water chemical and isotopic data distinguish the discharge from seeps and springs into two groups, one of low and one of high conductivity. Water with low conductivity likely originates as recharge near the steps and springs, and it only interacts with the Navajo Sandstone. High conductivity water, on the other hand, originates as recharge on the tops of plateaus to the east, where it interacts with marine rocks of the Carmel Formation. Carbon dating of these ground waters indicates that the low conductivity water is essentially modern recharge, while the high conductivity water was recharged 1,000 to 4,000 years ago.The Hanging Gardens are a unique feature of Zion National Park. Knowledge of the source and residence time of water discharging from the Hanging Gardens is necessary to help preserve these features. Ground-water chemical and isotopic data distinguish the discharge from seeps and springs into two groups, one of low and one of high conductivity. Water with low conductivity likely originates as recharge near the seeps and springs, and it only interacts with the Navajo Sandstone. High conductivity water, on the other hand, originates as recharge on the tops of plateaus to the cast, where it interacts with marine rocks of the Carmel Formation. Carbon dating of these ground waters indicates that the low conductivity water is essentially modern recharge, while the high conductivity water was recharged 1,000 to 4,000 years ago.

  9. 40 CFR 23.7 - Timing of Administrator's action under Safe Drinking Water Act.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 1 2010-07-01 2010-07-01 false Timing of Administrator's action under Safe Drinking Water Act. 23.7 Section 23.7 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Drinking Water Act. Unless the Administrator otherwise explicitly provides in a particular...

  10. Evaluation of Select Sensors for Real-Time Monitoring of Escherichia coli in Water Distribution Systems▿

    OpenAIRE

    Miles, Syreeta L.; Sinclair, Ryan G.; Riley, Mark R; Pepper, Ian L

    2011-01-01

    This study evaluated real-time sensing of Escherichia coli as a microbial contaminant in water distribution systems. Most sensors responded to increased E. coli concentrations, showing that select sensors can detect microbial water quality changes and be utilized as part of a contaminant warning system.

  11. Estimation of real-time N load in surface water using dynamic data driven application system

    Science.gov (United States)

    Y. Ouyang; S.M. Luo; L.H. Cui; Q. Wang; J.E. Zhang

    2011-01-01

    Agricultural, industrial, and urban activities are the major sources for eutrophication of surface water ecosystems. Currently, determination of nutrients in surface water is primarily accomplished by manually collecting samples for laboratory analysis, which requires at least 24 h. In other words, little to no effort has been devoted to monitoring real-time variations...

  12. Effect of water hardness on cardiovascular mortality: an ecological time series approach.

    Science.gov (United States)

    Lake, I R; Swift, L; Catling, L A; Abubakar, I; Sabel, C E; Hunter, P R

    2010-12-01

    Numerous studies have suggested an inverse relationship between drinking water hardness and cardiovascular disease. However, the weight of evidence is insufficient for the WHO to implement a health-based guideline for water hardness. This study followed WHO recommendations to assess the feasibility of using ecological time series data from areas exposed to step changes in water hardness to investigate this issue. Monthly time series of cardiovascular mortality data, subdivided by age and sex, were systematically collected from areas reported to have undergone step changes in water hardness, calcium and magnesium in England and Wales between 1981 and 2005. Time series methods were used to investigate the effect of water hardness changes on mortality. No evidence was found of an association between step changes in drinking water hardness or drinking water calcium and cardiovascular mortality. The lack of areas with large populations and a reasonable change in magnesium levels precludes a definitive conclusion about the impact of this cation. We use our results on the variability of the series to consider the data requirements (size of population, time of water hardness change) for such a study to have sufficient power. Only data from areas with large populations (>500,000) are likely to be able to detect a change of the size suggested by previous studies (rate ratio of 1.06). Ecological time series studies of populations exposed to changes in drinking water hardness may not be able to provide conclusive evidence on the links between water hardness and cardiovascular mortality unless very large populations are studied. Investigations of individuals may be more informative.

  13. Space time development of the onset of a shallow-water vortex

    Science.gov (United States)

    Lin, J.-C.; Ozgoren, M.; Rockwell, D.

    2003-06-01

    An impulsively started jet in shallow water gives rise to vortices having a characteristic diameter larger than the water depth. A technique of high-image-density particle image velocimetry allows characterization of the space time development of the instantaneous flow patterns along planes representing the quasi-two-dimensional and three-dimensional vortex structure. The quasi-two-dimensional patterns exhibit different categories of vortex development and interaction, depending upon the depth of the shallow water layer. Despite these distinctions, the variations of normalized vortex position, diameter, and circulation, as well as peak vorticity within the vortex, are very similar for sufficiently small water depth.

  14. Real-time, continuous water-quality monitoring in Indiana and Kentucky

    Science.gov (United States)

    Shoda, Megan E.; Lathrop, Timothy R.; Risch, Martin R.

    2015-01-01

    Water-quality “super” gages (also known as “sentry” gages) provide real-time, continuous measurements of the physical and chemical characteristics of stream water at or near selected U.S. Geological Survey (USGS) streamgages in Indiana and Kentucky. A super gage includes streamflow and water-quality instrumentation and representative stream sample collection for laboratory analysis. USGS scientists can use statistical surrogate models to relate instrument values to analyzed chemical concentrations at a super gage. Real-time, continuous and laboratory-analyzed concentration and load data are publicly accessible on USGS Web pages.

  15. Time and moisture effects on total and bioavailable copper in soil water extracts

    DEFF Research Database (Denmark)

    Tom-Petersen, Andreas; Hansen, H.C.B.; Nybroe, O.

    2004-01-01

    between total metal content and metal toxicity calls for integrated chemical and biological analysis. The aim of this work was to determine time- and moisture-dependent changes in total water-extractable Cu as well as bioavailable Cu in soil water extracts. Measurements of total water-extractable copper...... to increase with time. The moisture content of the soil was important for Cu retention. Dry soil had higher [Cu](tot) concentrations than humid soil, but the [Cu](bio) to [Cu](tot) ratio was lower in the dry soil. Alternating drying and wetting did not lead to a more rapid Cu retention than observed under...

  16. Real time monitoring of water distribution in an operando fuel cell during transient states

    Science.gov (United States)

    Martinez, N.; Peng, Z.; Morin, A.; Porcar, L.; Gebel, G.; Lyonnard, S.

    2017-10-01

    The water distribution of an operating proton exchange membrane fuel cell (PEMFC) was monitored in real time by using Small Angle Neutron Scattering (SANS). The formation of liquid water was obtained simultaneously with the evolution of the water content inside the membrane. Measurements were performed when changing current with a time resolution of 10 s, providing insights on the kinetics of water management prior to the stationary phase. We confirmed that water distribution is strongly heterogeneous at the scale at of the whole Membrane Electrode Assembly. As already reported, at the local scale there is no straightforward link between the amounts of water present inside and outside the membrane. However, we show that the temporal evolutions of these two parameters are strongly correlated. In particular, the local membrane water content is nearly instantaneously correlated to the total liquid water content, whether it is located at the anode or cathode side. These results can help in optimizing 3D stationary diphasic models used to predict PEMFC water distribution.

  17. Mini Tensiometer-Time Domain Reflectometry Coil Probe for Measuring Soil Water Retention Properties

    DEFF Research Database (Denmark)

    Subedi, Shaphal; Kawamoto, Ken; Karunarathna, Anurudda Kumara

    2013-01-01

    Time domain reflectometry (TDR) is used widely for measuring soil-water content. New TDR coil probe technology facilitates the development of small, nondestructive probes for simultaneous measurement of soil-water content (θ) and soil-water potential (ψ). In this study we developed mini tensiometer......-time domain reflectometry (T-TDR) coil probes, 6-mm wide and 32-mm long. The coil probes were calibrated against a conventional three-rod probe and were used for measuring θ for a aggregated volcanic ash soil (VAS) and a uniform sand. A commonly-used dielectric mixing model did not accurately describe...... between measured soil-water retention curves (ψ > –100 cm H2O) by the new T-TDR coil probes and independent measurements by the hanging water column method....

  18. Time-Domain Nuclear Magnetic Resonance Investigation of Water Dynamics in Different Ginger Cultivars.

    Science.gov (United States)

    Huang, Chongyang; Zhou, Qi; Gao, Shan; Bao, Qingjia; Chen, Fang; Liu, Chaoyang

    2016-01-20

    Different ginger cultivars may contain different nutritional and medicinal values. In this study, a time-domain nuclear magnetic resonance method was employed to study water dynamics in different ginger cultivars. Significant differences in transverse relaxation time T2 values assigned to the distribution of water in different parts of the plant were observed between Henan ginger and four other ginger cultivars. Ion concentration and metabolic analysis showed similar differences in Mn ion concentrations and organic solutes among the different ginger cultivars, respectively. On the basis of Pearson's correlation analysis, many organic solutes and 6-gingerol, the main active substance of ginger, exhibited significant correlations with water distribution as determined by NMR T2 relaxation, suggesting that the organic solute differences may impact water distribution. Our work demonstrates that low-field NMR relaxometry provides useful information about water dynamics in different ginger cultivars as affected by the presence of different organic solutes.

  19. Space-Time Water-Filling for Composite MIMO Fading Channels

    Directory of Open Access Journals (Sweden)

    2006-01-01

    Full Text Available We analyze the ergodic capacity and channel outage probability for a composite MIMO channel model, which includes both fast fading and shadowing effects. The ergodic capacity and exact channel outage probability with space-time water-filling can be evaluated through numerical integrations, which can be further simplified by using approximated empirical eigenvalue and maximal eigenvalue distribution of MIMO fading channels. We also compare the performance of space-time water-filling with spatial water-filling. For MIMO channels with small shadowing effects, spatial water-filling performs very close to space-time water-filling in terms of ergodic capacity. For MIMO channels with large shadowing effects, however, space-time water-filling achieves significantly higher capacity per antenna than spatial water-filling at low to moderate SNR regimes, but with a much higher channel outage probability. We show that the analytical capacity and outage probability results agree very well with those obtained from Monte Carlo simulations.

  20. Testing time for deep water[Deep water test facility in Rotterdam, NL

    Energy Technology Data Exchange (ETDEWEB)

    Snieckus, Darius

    2000-06-01

    A new deep water test facility in Rotterdam in the Netherlands is described. The construction is a basin measuring 45m by 36m and some 10.5m deep: it can accommodate large scale model tests at depths equivalent to 1000m by using a hydraulic 'moveable' floor buoyed by syntactic foam. For simulation of depths of 3000m it opens its 'deep pit' - a well 5m diameter and 20m deep. The facility can also simulate the winds, waves and currents met offshore in places such as the Shetlands, West Africa and the Gulf of Mexico. The article includes pictures and diagrams of the facility.

  1. Concepts and Applications of Water Transport Time Scales for Coastal Inlet Systems

    Science.gov (United States)

    2010-08-01

    the assumptions made. It measures the average time required to flush a system. Based on the concept of a continuous stirred tank reactor ( CSTR ), an...steady state. Flushing time calculated by Equations (1) or (2), or by the CSTR solution in Equation (4) tends to underestimate the time that a water...considering only tidal flushing without the return flow factor, the flushing time is 61.4 hr (2.6 days). They also applied the CSTR tracer method

  2. Modeling and Forecasting of Water Demand in Isfahan Using Underlying Trend Concept and Time Series

    Directory of Open Access Journals (Sweden)

    H. Sadeghi

    2016-02-01

    Full Text Available Introduction: Accurate water demand modeling for the city is very important for forecasting and policies adoption related to water resources management. Thus, for future requirements of water estimation, forecasting and modeling, it is important to utilize models with little errors. Water has a special place among the basic human needs, because it not hampers human life. The importance of the issue of water management in the extraction and consumption, it is necessary as a basic need. Municipal water applications is include a variety of water demand for domestic, public, industrial and commercial. Predicting the impact of urban water demand in better planning of water resources in arid and semiarid regions are faced with water restrictions. Materials and Methods: One of the most important factors affecting the changing technological advances in production and demand functions, we must pay special attention to the layout pattern. Technology development is concerned not only technically, but also other aspects such as personal, non-economic factors (population, geographical and social factors can be analyzed. Model examined in this study, a regression model is composed of a series of structural components over time allows changed invisible accidentally. Explanatory variables technology (both crystalline and amorphous in a model according to which the material is said to be better, but because of the lack of measured variables over time can not be entered in the template. Model examined in this study, a regression model is composed of a series of structural component invisible accidentally changed over time allows. In this study, structural time series (STSM and ARMA time series models have been used to model and estimate the water demand in Isfahan. Moreover, in order to find the efficient procedure, both models have been compared to each other. The desired data in this research include water consumption in Isfahan, water price and the monthly pay

  3. Water

    Science.gov (United States)

    Leopold, Luna Bergere; Baldwin, Helene L.

    1962-01-01

    What do you use water for?If someone asked you this question you would probably think right away of water for drinking. Then you would think of water for bathing, brushing teeth, flushing the toilet. Your list would get longer as you thought of water for cooking, washing the dishes, running the garbage grinder. Water for lawn watering, for play pools, for swimming pools, for washing the car and the dog. Water for washing machines and for air conditioning. You can hardly do without water for fun and pleasure—water for swimming, boating, fishing, water-skiing, and skin diving. In school or the public library, you need water to wash your hands, or to have a drink. If your home or school bursts into flames, quantities of water are needed to put it out.In fact, life to Americans is unthinkable without large supplies of fresh, clean water. If you give the matter a little thought, you will realize that people in many countries, even in our own, may suffer from disease and dirt simply because their homes are not equipped with running water. Imagine your own town if for some reason - an explosion, perhaps - water service were cut off for a week or several weeks. You would have to drive or walk to a neighboring town and bring water back in pails. Certainly if people had to carry water themselves they might not be inclined to bathe very often; washing clothes would be a real chore.Nothing can live without water. The earth is covered by water over three-fourths of its surface - water as a liquid in rivers, lakes and oceans, and water as ice and snow on the tops of high mountains and in the polar regions. Only one-quarter of our bodies is bone and muscle; the other three-fourths is made of water. We need water to live, and so do plants and animals. People and animals can live a long time without food, but without water they die in a few days. Without water, everything would die, and the world would turn into a huge desert.

  4. Spectral scaling of hydrochemical responses - decomposition of water quality time series

    Science.gov (United States)

    Riml, Joakim; Wörman, Anders

    2016-04-01

    Knowledge of the different processes affecting the biogeochemical cycling of compounds transported with water, such as nutrients, contaminants and different forms of organically and inorganically bound carbon, is fundamental for understanding and assessing the water quality of any given surface water systems. However, these governing processes are often difficult to quantify, partly due to the complex dynamics of the governing physical and biogeochemical mechanisms, which span over a wide range of temporal and spatial scales. Here we present a recently developed analytical technique that separates the spectrum of time scales in a physically based transport model by relating the fluctuations in the forcing boundary conditions (i.e. the load function) to the water quality response. By transforming the transport problem from the time domain into the frequency domain, closed-form solutions were obtained and used to derive compound specific formal expressions of the power spectral response for different hydrological systems including both a single stream reach and a network of interconnected transport pathways. The frequency dependent response, defined as the spectral scaling function, was subsequently used to evaluate concentration time series of water quality parameters on different spatial scales. This spectral decomposition attributes the water quality response in specific intervals of frequencies to governing processes and provides an opportunity to investigate/quantify the competing processes affecting the different compounds important for the water quality response.

  5. Acoustic and optical methods to infer water transparency at Time Series Station Spiekeroog, Wadden Sea

    Science.gov (United States)

    Schulz, Anne-Christin; Badewien, Thomas H.; Garaba, Shungudzemwoyo P.; Zielinski, Oliver

    2016-11-01

    Water transparency is a primary indicator of optical water quality that is driven by suspended particulate and dissolved material. A data set from the operational Time Series Station Spiekeroog located at a tidal inlet of the Wadden Sea was used to perform (i) an inter-comparison of observations related to water transparency, (ii) correlation tests among these measured parameters, and (iii) to explore the utility of both acoustic and optical tools in monitoring water transparency. An Acoustic Doppler Current Profiler was used to derive the backscatter signal in the water column. Optical observations were collected using above-water hyperspectral radiometers and a submerged turbidity metre. Bio-fouling on the turbidity sensors optical windows resulted in measurement drift and abnormal values during quality control steps. We observed significant correlations between turbidity collected by the submerged metre and that derived from above-water radiometer observations. Turbidity from these sensors was also associated with the backscatter signal derived from the acoustic measurements. These findings suggest that both optical and acoustic measurements can be reasonable proxies of water transparency with the potential to mitigate gaps and increase data quality in long-time observation of marine environments.

  6. Variation in allocation of time, water and energy in Hoopoe Larks from the Arabian Desert

    NARCIS (Netherlands)

    Tieleman, BI; Williams, JB; Visser, GH

    2003-01-01

    1. Patterns of resource allocation in different times of the year can provide insights into the effects of simultaneous environmental constraints on reproduction and survival of desert birds. Field metabolic rate (FMR), water influx rate (WIR) and patterns of time allocation of Hoopoe Larks (Alaemon

  7. Space-time discontinuous Galerkin discretization of rotating shallow water equations

    NARCIS (Netherlands)

    Ambati, V.R.; Bokhove, Onno

    2007-01-01

    A space–time discontinuous Galerkin (DG) discretization is presented for the (rotating) shallow water equations over varying topography. We formulate the space–time DG finite element discretization in an efficient and conservative discretization. The HLLC flux is used as numerical flux through the

  8. Space-time discontinuous Galerkin discretization of rotating shallow water equations on moving grids

    NARCIS (Netherlands)

    Ambati, V.R.; Bokhove, Onno

    2006-01-01

    A space-time discontinuous Galerkin (DG) discretization is presented for the (rotating) shallow water equations over varying topography. We formulate the space-time DG finite element discretization in an efficient and conservative discretization. The HLLC flux is used as numerical flux through the

  9. Time adaptivity in the diffusive wave approximation to the shallow water equations

    KAUST Repository

    Collier, Nathaniel Oren

    2013-05-01

    We discuss the use of time adaptivity applied to the one dimensional diffusive wave approximation to the shallow water equations. A simple and computationally economical error estimator is discussed which enables time-step size adaptivity. This robust adaptive time discretization corrects the initial time step size to achieve a user specified bound on the discretization error and allows time step size variations of several orders of magnitude. In particular, the one dimensional results presented in this work feature a change of four orders of magnitudes for the time step over the entire simulation. © 2011 Elsevier B.V.

  10. Determination of the delivered hemodialysis dose using standard methods and on-line clearance monitoring

    Directory of Open Access Journals (Sweden)

    Vlatković Vlastimir

    2006-01-01

    Full Text Available Background/aim: Delivered dialysis dose has a cumulative effect and significant influence upon the adequacy of dialysis, quality of life and development of co-morbidity at patients on dialysis. Thus, a great attention is given to the optimization of dialysis treatment. On-line Clearance Monitoring (OCM allows a precise and continuous measurement of the delivered dialysis dose. Kt/V index (K = dialyzer clearance of urea; t = dialysis time; V = patient's total body water, measured in real time is used as a unit for expressing the dialysis dose. The aim of this research was to perform a comparative assessment of the delivered dialysis dose by the application of the standard measurement methods and a module for continuous clearance monitoring. Methods. The study encompassed 105 patients who had been on the chronic hemodialysis program for more than three months, three times a week. By random choice, one treatment per each controlled patient was taken. All the treatments understood bicarbonate dialysis. The delivered dialysis dose was determined by the calculation of mathematical models: Urea Reduction Ratio (URR singlepool index Kt/V (spKt/V and by the application of OCM. Results. Urea Reduction Ratio was the most sensitive parameter for the assessment and, at the same time, it was in the strongest correlation with the other two, spKt/V indexes and OCM. The values pointed out an adequate dialysis dose. The URR values were significantly higher in women than in men, p < 0.05. The other applied model for the delivered dialysis dose measurement was Kt/V index. The obtained values showed that the dialysis dose was adequate, and that, according to this parameter, the women had significantly better dialysis, then the men p < 0.05. According to the OCM, the average value was slightly lower than the adequate one. The women had a satisfactory dialysis according to this index as well, while the delivered dialysis dose was insufficient in men. The difference

  11. Transit times of water particles in the vadose zone across catchment states and catchments functional units

    Science.gov (United States)

    Sprenger, Matthias; Weiler, Markus

    2014-05-01

    Understanding the water movement in the vadose zone and its associated transport of solutes are of major interest to reduce nutrient leaching, pollution transport or other risks to water quality. Soil physical models are widely used to asses such transport processes, while the site specific parameterization of these models remains challenging. Inverse modeling is a common method to adjust the soil physical parameters in a way that the observed water movement or soil water dynamics are reproduced by the simulation. We have shown that the pore water stable isotope concentration can serve as an additional fitting target to simulate the solute transport and water balance in the unsaturated zone. In the presented study, the Mualem- van Genuchten parameters for the Richards equation and diffusivity parameter for the convection-dispersion equation have been parameterized using the inverse model approach with Hydrus-1D for 46 experimental sites of different land use, topography, pedology and geology in the Attert basin in Luxembourg. With the best parameter set we simulated the transport of a conservative solute that was introduced via a pulse input at different points in time. Thus, the transit times in the upper 2 m of the soil for different catchment states could be inferred for each location. It has been shown that the time a particle needs to pass the -2 m depth plane highly varies from the systems state and the systems forcing during and after infiltration of that particle. Differences in transit times among the study sites within the Attert basin were investigated with regards to its governing factors to test the concept of functional units. The study shows the potential of pore water stable isotope concentration for residence times and transport analyses in the unsaturated zone leading to a better understanding of the time variable subsurface processes across the catchment.

  12. Time-delayed transition of normal-to-abnormal glow in pin-to-water discharge

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, S.-Y.; Byeon, Y.-S.; Yoo, S.; Hong, E. J.; Kim, S. B.; Yoo, S. J.; Ryu, S., E-mail: smryu@nfri.re.kr [Plasma Technology Research Center of National Fusion Research Institute, 37, Dongjangsan-ro, Gunsan-si, Jeollabuk-do, Gunsan 54004 (Korea, Republic of)

    2016-08-15

    Time-delayed transition of normal-to-abnormal glow was investigated in discharge between spoke-like pins and ultrapure water by applying AC-driven power at a frequency of 14.3 kHz at atmospheric pressure. The normal-to-abnormal transition can be recognized from the slope changes of current density, gas temperature, electrode temperature, and OH density. The slope changes took place in tens of minutes rather than just after discharge, in other words, the transition was delayed. The time-delay of the transition was caused by the interaction between the plasma and water. The plasma affected water properties, and then the water affected plasma properties.

  13. Research on Forecasting Water Requirement of Well Irrigation Rice by Time Series Analysis Method

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The paper builds up the forecasting model of air temperature according to the data (1994~1998) of Fu Jin area.At the same time,the writer inquires into the relation of water requirement of well irrigation rice (ET) and average air temperature (T).Furthermore,the rice irrigation water requirement (ET) of Fu Jin area has been forecast in 1999.Thus,we can apply the model in irrigation management.

  14. Field Soil Water Retention of the Prototype Hanford Barrier and Its Variability with Space and Time

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Z. F.

    2015-08-14

    Engineered surface barriers are used to isolate underlying contaminants from water, plants, animals, and humans. To understand the flow processes within a barrier and the barrier’s ability to store and release water, the field hydraulic properties of the barrier need to be known. In situ measurement of soil hydraulic properties and their variation over time is challenging because most measurement methods are destructive. A multiyear test of the Prototype Hanford Barrier (PHB) has yielded in situ soil water content and pressure data for a nine-year period. The upper 2 m layer of the PHB is a silt loam. Within this layer, water content and water pressure were monitored at multiple depths at 12 water balance stations using a neutron probe and heat dissipation units. Valid monitoring data from 1995 to 2003 for 4 depths at 12 monitoring stations were used to determine the field water retention of the silt loam layer. The data covered a wide range of wetness, from near saturation to the permanent wilt point, and each retention curve contained 51 to 96 data points. The data were described well with the commonly used van Genuchten water retention model. It was found that the spatial variation of the saturated and residual water content and the pore size distribution parameter were relatively small, while that of the van Genuchten alpha was relatively large. The effects of spatial variability of the retention properties appeared to be larger than the combined effects of added 15% w/w pea gravel and plant roots on the properties. Neither of the primary hydrological processes nor time had a detectible effect on the water retention of the silt loam barrier.

  15. Introduction of Drought Monitoring and Forecasting System based on Real-time Water Information Using ICT

    Science.gov (United States)

    Lee, Y., II; Kim, H. S.; Chun, G.

    2016-12-01

    There were severe damages such as restriction on water supply caused by continuous drought from 2014 to 2015 in South Korea. Through this drought event, government of South Korea decided to establish National Drought Information Analysis Center in K-water(Korea Water Resources Corporation) and introduce a national drought monitoring and early warning system to mitigate those damages. Drought index such as SPI(Standard Precipitation Index), PDSI(Palmer Drought Severity Index) and SMI(Soil Moisture Index) etc. have been developed and are widely used to provide drought information in many countries. However, drought indexes are not appropriate for drought monitoring and early warning in civilized countries with high population density such as South Korea because it could not consider complicated water supply network. For the national drought monitoring and forecasting of South Korea, `Drought Information Analysis System' (D.I.A.S) which is based on the real time data(storage, flowrate, waterlevel etc.) was developed. Based on its advanced methodology, `DIAS' is changing the paradigm of drought monitoring and early warning systems. Because `D.I.A.S' contains the information of water supply network from water sources to the people across the nation and provides drought information considering the real-time hydrological conditions of each and every water source. For instance, in case the water level of a specific dam declines to predetermined level of caution, `D.I.A.S' will notify people who uses the dam as a source of residential or industrial water. It is expected to provide credible drought monitoring and forecasting information with a strong relationship between drought information and the feelings of people rely on water users by `D.I.A.S'.

  16. Study of distribution and characteristics of the time average of pressure of a water cushion pool

    Science.gov (United States)

    Guo, Y. H.; Fu, J. F.

    2016-08-01

    When a dam discharges flood water, the plunging flow with greater kinetic energy, will scour the riverbed, resulting in erosion damage. In order to improve the anti-erosion capacity of a riverbed, the cushion pool created. This paper is based on turbulent jet theoryto deduce the semi-empirical formula of the time average of pressure in the impinging portion of the cushion pool. Additionally, MATLAB numerical is used to conduct a simulation analysis according to turbulent jet energy and watercushion depth when water floods into the water cushion pool, to determine the regularities of distribution and related characteristics.

  17. [Rapid detection of rotavirus in water samples using immunomagnetic separation combined with real time PCR].

    Science.gov (United States)

    Yang, Wan; He, Miao; Li, Dan; Shi, Han-Chang; Liu, Li

    2009-05-15

    A quantitative and rapid detection method for rotavirus in water samples was developed, by using immunomagnetic separation combined with reverse transcription and real time polymerase chain reaction (IMS-RT-real time PCR). Magnetic beads coated with antibodies directed against group A rotavirus were used to capture and purify the virus in water samples. The experimental results showed that IMS was optimized when 1 mL samples were supplemented with 10 microL of immunomagnetic beads, 2.5 microL of Tween 20 and incubated for 2 h. The IMS method was employed in the detection of rotavirus in seeded virus eluant such as 3% beef extract successfully and thus manifested its compatibility with established virus concentration methods. The IMS-RT-real time PCR method could yield quantitative results within about 5 h with a detection limit at 1 x 10(4) copies/mL (equivalent to 3-4 PFU/mL). The method exhibited a high level correlation (R2 = 0.9816) with cell culture assay, indicating that it could perform as well as cell culture assay does in infection tests. And the method functioned satisfactorily in seeded concentrate of secondary waste water treatment plant effluent, reclaimed water, surface water and tap water.

  18. The influence of microwave curing time and water glass kind on the properties of molding sands

    Directory of Open Access Journals (Sweden)

    K. Granat

    2007-12-01

    Full Text Available This work presents results of research on the influence of microwave heating time on the process of hardening of water glass molding sands. Essential influence of this drying process on basic properties such as: compression, bending and tensile strength as well as permeability and wear resistance, has been found. It has been proved, that all the investigated sorts of sodium water glass could be used as binding material of molding sands intended for curing with the microwave process heating. It has been found, while analyzing the results of property studies of microwave heated molding sands with 2.5% addition of water glass, that all available on the market kinds of this binding agent (including the most frequently used in foundry 145 and 149 kinds after microwave heating guarantee very good compression, bending and tensile strength as well as permeability and wear resistance. Moreover, it has been determined that the optimal curing time of molding sands containing various kinds of water glass is 240 seconds. After this time, all basic properties of molding sands are stable. The use of microwave curing of water glass molding sands results in a significant decrease of hardening process time, full stabilization of molding sands as well as much lower energy consumption.

  19. Forest conservation delivers highly variable coral reef conservation outcomes.

    Science.gov (United States)

    Klein, Carissa J; Jupiter, Stacy D; Selig, Elizabeth R; Watts, Matthew E; Halpern, Benjamin S; Kamal, Muhammad; Roelfsema, Chris; Possingham, Hugh P

    2012-06-01

    Coral reefs are threatened by human activities on both the land (e.g., deforestation) and the sea (e.g., overfishing). Most conservation planning for coral reefs focuses on removing threats in the sea, neglecting management actions on the land. A more integrated approach to coral reef conservation, inclusive of land-sea connections, requires an understanding of how and where terrestrial conservation actions influence reefs. We address this by developing a land-sea planning approach to inform fine-scale spatial management decisions and test it in Fiji. Our aim is to determine where the protection of forest can deliver the greatest return on investment for coral reef ecosystems. To assess the benefits of conservation to coral reefs, we estimate their relative condition as influenced by watershed-based pollution and fishing. We calculate the cost-effectiveness of protecting forest and find that investments deliver rapidly diminishing returns for improvements to relative reef condition. For example, protecting 2% of forest in one area is almost 500 times more beneficial than protecting 2% in another area, making prioritization essential. For the scenarios evaluated, relative coral reef condition could be improved by 8-58% if all remnant forest in Fiji were protected rather than deforested. Finally, we determine the priority of each coral reef for implementing a marine protected area when all remnant forest is protected for conservation. The general results will support decisions made by the Fiji Protected Area Committee as they establish a national protected area network that aims to protect 20% of the land and 30% of the inshore waters by 2020. Although challenges remain, we can inform conservation decisions around the globe by tackling the complex issues relevant to integrated land-sea planning.

  20. The mean residence time of river water in the Canada Basin

    Institute of Scientific and Technical Information of China (English)

    CHEN Min; XING Na; HUANG YiPu; QIU YuSheng

    2008-01-01

    Seawater was collected from the western Arctic Ocean for measurements of 18O, 226Ra and 228Ra. The fractions of river runoff and sea ice melt-water in water samples were estimated by using δ18O-S-PO* tracer system. The mean residence time of river water in the Canada Basin was calculated based on the relationship between 228Ra/226Ra)A.R. and the fractions of river runoff in the shelf and deep ocean. Our results showed that the river runoff fractions in the Canada Basin were significantly higher than those in the shelf regions, suggesting that the Canada Basin is a major storage region for Arctic river water. 228Ra activity concentrations in the Chukchi shelf and the Beaufort shelf ranged from 0.16 to 1.22 Bq/m3,lower than those reported for shelves in the low and middle latitudes, indicating the effect of sea ice melt-water. A good positive linear relationship was observed between 228Ra/226Ra)A.R. and the fraction of river runoff for shelf waters, while the 228Ra/226Ra)A.R in the Canada Basin was located below this regressive line. The low 228Ra/226Ra)A.R. in the Canada Basin was ascribed to 228Ra decay during shelf wa-ters transporting to the deep ocean. The residence time of 5.0-11.0 a was estimated for the river water in the Canada Basin, which determined the time response of surface freshening in the North Atlantic to the river runoff into the Arctic Ocean.

  1. Use of isotopic data to estimate water residence times of the Finger Lakes, New York

    Science.gov (United States)

    Michel, Robert L.; Kraemer, Thomas F.

    1995-01-01

    Water retention times in the Finger Lakes, a group of 11 lakes in central New York with similar hydrologic and climatic characteristics, were estimated by use of a tritium-balance model. During July 1991, samples were collected from the 11 lakes and selected tributary streams and were analyzed for tritium, deuterium, and oxygen-18. Additional samples from some of the sites were collected in 1990, 1992 and 1993. Tritium concentration in lake water ranged from 24.6 Tritium Units (TU) (Otisco Lake) to 43.2 TU (Seneca Lake).The parameters in the model used to obtain water retention time (WRT) included relative humidity, evaporation rate, tritium concentrations of inflowing water and lake water, and WRT of the lake. A historical record of tritium concentrations in precipitation and runoff was obtained from rainfall data at Ottawa, Canada, analyses of local wines produced during 1977–1991, and streamflow samples collected in 1990–1991. The model was simulated in yearly steps for 1953–1991, and the WRT was varied to reproduce tritium concentrations measured in each lake in 1991. Water retention times obtained from model simulations ranged from 1 year for Otisco Lake to 12 years for Seneca Lake, and with the exception of Seneca Lake and Skaneateles Lake, were in agreement with earlier estimates obtained from runoff estimates and chloride balances. The sensitivity of the model to parameter changes was tested to determine possible reasons for the differences calculated for WRT's for Seneca Lake and Skaneateles Lake. The shorter WRT obtained from tritium data for Lake Seneca (12 years as compared to 18 years) can be explained by a yearly addition of less than 3% by lake volume of ground water to the lake, the exact percentage depending on tritium concentration in the ground water.

  2. A real-time control framework for urban water reservoirs operation

    Science.gov (United States)

    Galelli, S.; Goedbloed, A.; Schwanenberg, D.

    2012-04-01

    Drinking water demand in urban areas is growing parallel to the worldwide urban population, and it is acquiring an increasing part of the total water consumption. Since the delivery of sufficient water volumes in urban areas represents a difficult logistic and economical problem, different metropolitan areas are evaluating the opportunity of constructing relatively small reservoirs within urban areas. Singapore, for example, is developing the so-called 'Four National Taps Strategies', which detects the maximization of water yields from local, urban catchments as one of the most important water sources. However, the peculiar location of these reservoirs can provide a certain advantage from the logistical point of view, but it can pose serious difficulties in their daily management. Urban catchments are indeed characterized by large impervious areas: this results in a change of the hydrological cycle, with decreased infiltration and groundwater recharge, and increased patterns of surface and river discharges, with higher peak flows, volumes and concentration time. Moreover, the high concentrations of nutrients and sediments characterizing urban discharges can cause further water quality problems. In this critical hydrological context, the effective operation of urban water reservoirs must rely on real-time control techniques, which can exploit hydro-meteorological information available in real-time from hydrological and nowcasting models. This work proposes a novel framework for the real-time control of combined water quality and quantity objectives in urban reservoirs. The core of this framework is a non-linear Model Predictive Control (MPC) scheme, which employs the current state of the system, the future discharges furnished by a predictive model and a further model describing the internal dynamics of the controlled sub-system to determine an optimal control sequence over a finite prediction horizon. The main advantage of this scheme stands in its reduced

  3. Soil water storage, mixing dynamics and resulting travel times through the critical zone in northern latitudes

    Science.gov (United States)

    Sprenger, Matthias; Tetzlaff, Doerthe; Weiler, Markus; Soulsby, Chris

    2017-04-01

    Water partitioning in the unsaturated zone into groundwater recharge, plant transpiration, and evaporation is fundamental for estimating storages and travel times. How water is mixed and routed through the soil is of broad interest to understand plant available water, contamination transport and weathering rates in the critical zone. Earlier work has shown how seasonal changes in hydroclimate influence the time variant character of travel times. A strong seasonality characterizes the northern latitudes which are particularly sensitive to climate and land use changes. It is crucial to understand how variation and change in hydroclimate and vegetation phenology impact time variant storage dynamics and flow path partitioning in the unsaturated zone. To better understand the influence of these ecohydrological processes on travel times of evaporative, transpiration and recharge fluxes in northern latitudes, we characterized soil physical properties, hydrometric conditions and soil water isotopic composition in the upper soil profile in two different land scape units in the long term experimental catchment, Bruntland Burn in the Scottish Highlands. Our two sampling locations are characterized by podzol soils with high organic matter content but they differ with regard to their vegetation cover with either Scots Pine (Pinus sylvestris) or heather (Calluna sp. and Erica Sp). To assess storage and mixing dynamics in the vadose zone, we parameterized a numerical 1-D flow model using the soil textural information along with soil moisture and soil water stable isotopes (δ2H and δ18O). The water flow and transport were simulated based on the Richards and the advection dispersion equation. Differences between water flows of mobile and tightly bound soil waters and the mixing between the two pore spaces were considered. Isotopic fractionation due to evaporation from soil and interception storage was taken into account, while plant water uptake did not alter the isotopic

  4. Drug absorption efficiency in Caenorhbditis elegans delivered by different methods.

    Directory of Open Access Journals (Sweden)

    Shan-Qing Zheng

    Full Text Available BACKGROUND: Caenorhbditis elegans has being vigorously used as a model organism in many research fields and often accompanied by administrating with various drugs. The methods of delivering drugs to worms are varied from one study to another, which make difficult in comparing results between studies. METHODOLOGY/PRINCIPAL FINDINGS: We evaluated the drug absorption efficiency in C. elegans using five frequently used methods with resveratrol with low aqueous solubility and water-soluble 5-Fluoro-2'-deoxyuridine (FUDR as positive compounds. The drugs were either applied to the LB medium with bacteria OP50, before spreading onto Nematode Growth Medium (NGM plates (LB medium method, or to the NGM with live (NGM live method or dead bacteria (NGM dead method, or spotting the drug solution to the surface of plates directly (spot dead method, or growing the worms in liquid medium (liquid growing method. The concentration of resveratrol and FUDR increased gradually within C. elegans and reached the highest during 12 hours to one day and then decreased slowly. At the same time point, the higher the drug concentration, the higher the metabolism rate. The drug concentrations in worms fed with dead bacteria were higher than with live bacteria at the same time point. Consistently, the drug concentration in medium with live bacteria decreased much faster than in medium with dead bacteria, reach to about half of the original concentration within 12 hours. CONCLUSION: Resveratrol with low aqueous solubility and water-soluble FUDR have the same absorption and metabolism pattern. The drug metabolism rate in worms was both dosage and time dependent. NGM dead method and liquid growing method achieved the best absorption efficiency in worms. The drug concentration within worms was comparable with that in mice, providing a bridge for dose translation from worms to mammals.

  5. Near Real-Time Monitoring of Global Evapotranspiration and its Application to Water Resource Management

    Science.gov (United States)

    Halverson, G. H.; Fisher, J.; Jewell, L. A.; Moore, G.; Verma, M.; McDonald, T.; Kim, S.; Muniz, A.

    2016-12-01

    Water scarcity and its impact on agriculture is a pressing world concern. At the heart of this crisis is the balance of water exchange between the land and the atmosphere. The ability to monitor evapotranspiration provides a solution by enabling sustainable irrigation practices. The Priestley-Taylor Jet Propulsion Laboratory model of evapotranspiration has been implemented to meet this need as a daily MODIS product with 1 to 5 km resolution. An automated data pipeline for this model implementation provides daily data with global coverage and near real-time latency using the Geospatial Data Abstraction Library. An interactive map providing on-demand statistical analysis enables water resource managers to monitor rates of water loss. To demonstrate the application of remotely-sensed evapotranspiration to water resource management, a partnership has been arranged with the New Mexico Office of the State Engineer (NMOSE). The online water research management tool was developed to meet the specifications of NMOSE using the Leaflet, GeoServer, and Django frameworks. NMOSE will utilize this tool to monitor drought and fire risk and manage irrigation. Through this test-case, it is hoped that real-time, user-friendly remote sensing tools will be adopted globally to make resource management decisions informed by the NASA Earth Observation System.

  6. Water and Energy Services in Times of War _ The Political Crisis of Yemen, 2011 - 2016

    Science.gov (United States)

    Aklan, Musaed; de Fraiture, Charlotte; Hayde, Laszlo

    2017-04-01

    The current war in Yemen affects the lives of Yemenis, their properties, and basic needs. It has damaged many parts of fuel, electricity, water and sanitation systems. This paper investigates how this war has affected the main sources of energy and water, their availability and prices. Beside literature review and different documents collected from different related governmental sectors, a rapid assessment through field interviews was conducted to collect the primary data. The prices of petroleum products keep unstable and have increased by more than 10 times of pre-crisis costs. The water has become three to four times more expensive. The majority of families relied on the public electricity grids before the war was unleashed. At present, the public electricity and water systems serve less than 20% of urban and rural families. Solar energy has become the first energy source, whereas generators are considered to be the second main power supply. Additionally, rainwater started to be collected as a secondary water source. Many people are willing to continue using this new sources. The study verifies the importance renewable resources transition to achieve secure sustainable water and energy management. Not only in Yemen but also this lessons can be applied to other similar conditions countries in the Middle East, where Decision makers and researchers should give more attention.

  7. Expansion dynamics of supercritical water probed by picosecond time-resolved photoelectron spectroscopy.

    Science.gov (United States)

    Gladytz, Thomas; Abel, Bernd; Siefermann, Katrin R

    2015-02-21

    Vibrational excitation of liquid water with femtosecond laser pulses can create extreme states of water. Yet, the dynamics directly after initial sub-picosecond delocalization of molecular vibrations remain largely unclear. We study the ultrafast expansion dynamics of an accordingly prepared supercritical water phase with a picosecond time resolution. Our experimental setup combines vacuum-compatible liquid micro-jet technology and a table top High Harmonic light source driven by a femtosecond laser system. An ultrashort laser pulse centered at a wavelength of 2900 nm excites the OH-stretch vibration of water molecules in the liquid. The deposited energy corresponds to a supercritical phase with a temperature of about 1000 K and a pressure of more than 1 GPa. We use a time-delayed extreme ultraviolet pulse centered at 38.6 eV, and obtained via High Harmonic generation (HHG), to record valence band photoelectron spectra of the expanding water sample. The series of photoelectron spectra is analyzed with noise-corrected target transform fitting (cTTF), a specifically developed multivariate method. Together with a simple fluid dynamics simulation, the following picture emerges: when a supercritical phase of water expands into vacuum, temperature and density of the first few nanometers of the expanding phase drop below the critical values within a few picoseconds. This results in a supersaturated phase, in which condensation seeds form and grow from small clusters to large clusters on a 100 picosecond timescale.

  8. Characterizing and classifying water-based lubricants using direct analysis in real time(®)-time of flight mass spectrometry.

    Science.gov (United States)

    Maric, Mark; Bridge, Candice

    2016-09-01

    Lubricant analysis is a relatively recent addition to the examination protocol in sexual assault cases by the forensic science community. Currently, lubricants cannot be unequivocally identified, although their presence can be determined based on the detection of a few chemical components, i.e. polydimethylsiloxane, polyethylene glycol, glycerol or nonoxynol-9. Confirmation of their presence typically requires that an authentic reference sample be submitted and compared to the unknown sample to determine if they potentially came from the same source. In this study, 33 individual personal water-based lubricants were characterized by direct analysis in real time-time of flight mass spectroscopy (DART-TOFMS). The resultant mass spectral data were evaluated using well-established multivariate statistical techniques, such as principal component and linear discriminant analysis. Statistical analysis revealed six different groupings within the data that could be correlated to sub-categories of water-based lubricants that contain additives in the form of anesthetics, sensation enhancers and flavorings. This variability in the personal lubricant sources can be utilized to aid in identifying the specific type of lubricant when only a questioned sample is available.

  9. Using Landsat image time series to study a small water body in Northern Spain.

    Science.gov (United States)

    Chao Rodríguez, Y; el Anjoumi, A; Domínguez Gómez, J A; Rodríguez Pérez, D; Rico, E

    2014-06-01

    Ramsar Convention and EU Water Framework Directive are two international agreements focused on the conservation and achievement of good ecological and chemical status of wetlands. Wetlands are important ecosystems holding many plant and animal communities. Their environmental status can be characterised by the quality of their water bodies. Water quality can be assessed from biophysical parameters (such as Chlorophyll-a concentration ([Chla]), water surface temperature and transparency) in the deeper or lacustrine zone, or from bioindicators (as submerged aquatic vegetation) in the shallow or palustrine zone. This paper proves the use of Landsat time series to measure the evolution of water quality parameters and the environmental dynamics of a small water body (6.57 ha) in a Ramsar wetland (Arreo Lake in the North of Spain). Our results show that Landsat TM images can be used to describe periodic behaviours such as the water surface temperature or the phenologic state of the submerged vegetation (through normalized difference vegetation index, NDVI) and thus detect anomalous events. We also show how [Chla] and transparency can be measured in the lacustrine zone using Landsat TM images and an algorithm adjusted for mesotrophic Spanish lakes, and the resulting values vary in time in accordance with field measurements (although these were not synchronous with the images). The availability of this algorithm also highlights anomalies in the field data series that are found to be related with the concentration of suspended matter. All this potential of Landsat imagery to monitor small water bodies in wetlands can be used for hindcasting of past evolution of these wetlands (dating back to 1970s) and will be also useful in the future thanks to the Landsat continuity mission and the Operational Land Imager.

  10. Time-lapse monitoring of soil water content using electromagnetic conductivity imaging

    Science.gov (United States)

    The volumetric soil water content (VWC) is fundamental to agriculture. Unfortunately, the universally accepted thermogravimetric method is labour intensive and time-consuming to use for field-scale monitoring. Electromagnetic (EM) induction instruments have proven to be useful in mapping the spatio-...

  11. An Improved Time Domain Procedure For Separating Incident And Reflected Water Waves

    DEFF Research Database (Denmark)

    Burcharth, Hans Falk; Matsumoto, A.; Tayasu, M.;

    2002-01-01

    Impulse responses of digital filters for use in separating incident and reflected water waves in a time domain are improved by using a nonlinear least square formulation. The applicability and limitations of the method are discussed. Trial computations using a set of analytical examples with know...

  12. REAL-TIME PCR METHOD TO DETECT ENTEROCOCCUS FAECALIS IN WATER

    Science.gov (United States)

    A 16S rDNA real-time PCR method was developed to detect Enterococcus faecalis in water samples. The dynamic range for cell detection spanned five logs and the detection limit was determined to be 6 cfu/reaction. The assay was capable of detecting E. faecalis cells added to biof...

  13. The time variation in infrared water-vapour bands in Mira variables

    NARCIS (Netherlands)

    Matsuura, M; Yamamura, [No Value; Cami, J; Onaka, T; Murakami, H; Yamamura, I.

    2002-01-01

    The time variation in the water-vapour bands in oxygen-rich Mira variables has been investigated using multi-epoch ISO/SWS spectra of four Mira variables in the 2.5-4.0 mum region. All four stars show H2O bands in absorption around minimum in the visual light curve. At maximum, H2O emission features

  14. Time-of-Flight Measurement of the Speed of Sound in Water

    Science.gov (United States)

    Ganci, Salvatore

    2016-01-01

    A simple setup is designed to investigate a "time-of-flight" measurement of the speed of sound in water. This experiment only requires low cost components and is also very simple to understand by students. It could be easily used as a demonstration experiment.

  15. Multiscale Modeling of Human-Water Interactions: The Role of Time-Scales

    Science.gov (United States)

    Bloeschl, G.; Sivapalan, M.

    2015-12-01

    Much of the interest in hydrological modeling in the past decades revolved around resolving spatial variability. With the rapid changes brought about by human impacts on the hydrologic cycle, there is now an increasing need to refocus on time dependency. We present a co-evolutionary view of hydrologic systems, in which every part of the system including human systems, co-evolve, albeit at different rates. The resulting coupled human-nature system is framed as a dynamical system, characterized by interactions of fast and slow time scales and feedbacks between environmental and social processes. This gives rise to emergent phenomena such as the levee effect, adaptation to change and system collapse due to resource depletion. Changing human values play a key role in the emergence of these phenomena and should therefore be considered as internal to the system in a dynamic way. The co-evolutionary approach differs from the traditional view of water resource systems analysis as it allows for path dependence, multiple equilibria, lock-in situations and emergent phenomena. The approach may assist strategic water management for long time scales through facilitating stakeholder participation, exploring the possibility space of alternative futures, and helping to synthesise the observed dynamics of different case studies. Future research opportunities include the study of how changes in human values are connected to human-water interactions, historical analyses of trajectories of system co-evolution in individual places and comparative analyses of contrasting human-water systems in different climate and socio-economic settings. Reference Sivapalan, M. and G. Blöschl (2015) Time Scale Interactions and the Co-evolution of Humans and Water. Water Resour. Res., 51, in press.

  16. Understanding Flow Pathways, Mixing and Transit Times for Water Quality Modelling

    Science.gov (United States)

    Dunn, S. M.; Bacon, J. R.; Soulsby, C.; Tetzlaff, D.

    2007-12-01

    Water quality modelling requires representation of the physical processes controlling the movement of solutes and particulates at an appropriate level of detail to address the objective of the model simulations. To understand and develop mitigation strategies for diffuse pollution at catchment scales, it is necessary for models to be able to represent the sources and age of water reaching rivers at different times. Experimental and modelling studies undertaken on several catchments in the north east of Scotland have used natural hydrochemical and isotopic tracers as a means of obtaining spatially integrated information about mixing processes. Methods for obtaining and integrating appropriate data are considered together with the implications of neglecting it. The tracer data have been incorporated in a conceptual hydrological model to study the sensitivity of the modelled tracer response to factors that may not affect runoff simulations but do affect mixing and transit times of the water. Results from the studies have shown how model structural and parameter uncertainties can lead to errors in the representation of: the flow pathways of water; the degree to which these flow pathways have mixed and the length of time for which water has been stored within the soil / groundwater system. It has been found to be difficult to eliminate structural uncertainty regarding the mechanisms of mixing, and parameter uncertainty regarding the role of groundwater. Simulations of nitrate pollution, resulting from the application of agricultural fertilisers, have been undertaken to demonstrate the sensitivity of water quality simulations to the potential errors in physical transport mechanisms, inherent in models that fail to account correctly for flow pathways, mixing and transit times.

  17. Measurement of the Time Dependence of Neutron Slowing-Down and Therma in Heavy Water

    Energy Technology Data Exchange (ETDEWEB)

    Moeller, E.

    1966-03-15

    The behaviour of neutrons during their slowing-down and thermalization in heavy water has been followed on the time scale by measurements of the time-dependent rate of reaction between the flux and the three spectrum indicators indium, cadmium and gadolinium. The space dependence of the reaction rate curves has also been studied. The time-dependent density at 1.46 eV is well reproduced by a function, given by von Dardel, and a time for the maximum density of 7.1 {+-} 0.3 {mu}s has been obtained for this energy in deuterium gas in agreement with the theoretical value of 7.2 {mu}s. The spatial variation of this time is in accord with the calculations by Claesson. The slowing- down time to 0.2 eV has been found to be 16.3 {+-}2.4 {mu}s. The approach to the equilibrium spectrum takes place with a time constant of 33 {+-}4 {mu}s, and the equilibrium has been established after about 200 {mu}s. Comparison of the measured curves for cadmium and gadolinium with multigroup calculations of the time-dependent flux and reaction rate show the superiority of the scattering models for heavy water of Butler and of Brown and St. John over the mass 2 gas model. The experiment has been supplemented with Monte Carlo calculations of the slowing down time.

  18. Real-time water and wastewater quality monitoring using LED-based fluorescence spectroscopy

    Science.gov (United States)

    Bridgeman, John; Zakharova, Yulia

    2016-04-01

    In recent years there have been a number of attempts to design and introduce into water management tools that are capable of measuring organic and microbial matter in real time and in situ. This is important, as the delivery of safe water to customers, and the discharge of good quality effluent to rivers are primary concerns to water undertakers. A novel, LED-based portable fluorimeter 'Duo Fluor' has been designed and constructed at the University of Birmingham to monitor the quality of (waste)water continuously and in real time, and its performance has been assessed in a range of environments. To be of use across a range of environments, special attention must be paid to two crucially important characteristics of such instruments, i.e. their sensitivity and robustness. Thus, the objectives of this study were: 1. To compare the performance (in terms of their sensitivity and robustness) of the Duo Fluor and two other commercial fluorescence devices in laboratory conditions. 2. To assess the performance of the Duo Fluor in situ, in real time at a 450,000PE WwTW. Initially, the impact of quinine sulphate (QS), a highly fluorescent alkaloid with high quantum fluorescence yield, on peak T fluorescence in environmental waters was examined for the Duo Fluor and two commercially available, chamber-based fluorimeters, (F1) and (F2). The instruments' responses to three scenarios were assessed: 1. Deionised water (DW) spiked with QS (from 0.05 to 0.4 mg/L); 2. Environmental water (pond water, PW) spiked with QS (from 0.05 to 0.4 mg/L); 3. Different water samples from various environmental source. The results show that the facility to amend gain settings and the suitable choice of gain are crucial to obtaining reliable data on both peaks T and C in a wide range of water types. The Duo Fluor offers both of these advantages whilst commercially available instruments currently do not. The Duo Fluor was subsequently fixed at the final effluent (FE) discharge point of a WwTW and FE

  19. Active and Passive Remote Sensing Data Time Series for Flood Detection and Surface Water Mapping

    Science.gov (United States)

    Bioresita, Filsa; Puissant, Anne; Stumpf, André; Malet, Jean-Philippe

    2017-04-01

    As a consequence of environmental changes surface waters are undergoing changes in time and space. A better knowledge of the spatial and temporal distribution of surface waters resources becomes essential to support sustainable policies and development activities. Especially because surface waters, are not only a vital sweet water resource, but can also pose hazards to human settlements and infrastructures through flooding. Floods are a highly frequent disaster in the world and can caused huge material losses. Detecting and mapping their spatial distribution is fundamental to ascertain damages and for relief efforts. Spaceborne Synthetic Aperture Radar (SAR) is an effective way to monitor surface waters bodies over large areas since it provides excellent temporal coverage and, all-weather day-and-night imaging capabilities. However, emergent vegetation, trees, wind or flow turbulence can increase radar back-scatter returns and pose problems for the delineation of inundated areas. In such areas, passive remote sensing data can be used to identify vegetated areas and support the interpretation of SAR data. The availability of new Earth Observation products, for example Sentinel-1 (active) and Sentinel-2 (passive) imageries, with both high spatial and temporal resolution, have the potential to facilitate flood detection and monitoring of surface waters changes which are very dynamic in space and time. In this context, the research consists of two parts. In the first part, the objective is to propose generic and reproducible methodologies for the analysis of Sentinel-1 time series data for floods detection and surface waters mapping. The processing chain comprises a series of pre-processing steps and the statistical modeling of the pixel value distribution to produce probabilistic maps for the presence of surface waters. Images pre-processing for all Sentinel-1 images comprise the reduction SAR effect like orbit errors, speckle noise, and geometric effects. A modified

  20. PLIO: a generic tool for real-time operational predictive optimal control of water networks.

    Science.gov (United States)

    Cembrano, G; Quevedo, J; Puig, V; Pérez, R; Figueras, J; Verdejo, J M; Escaler, I; Ramón, G; Barnet, G; Rodríguez, P; Casas, M

    2011-01-01

    This paper presents a generic tool, named PLIO, that allows to implement the real-time operational control of water networks. Control strategies are generated using predictive optimal control techniques. This tool allows the flow management in a large water supply and distribution system including reservoirs, open-flow channels for water transport, water treatment plants, pressurized water pipe networks, tanks, flow/pressure control elements and a telemetry/telecontrol system. Predictive optimal control is used to generate flow control strategies from the sources to the consumer areas to meet future demands with appropriate pressure levels, optimizing operational goals such as network safety volumes and flow control stability. PLIO allows to build the network model graphically and then to automatically generate the model equations used by the predictive optimal controller. Additionally, PLIO can work off-line (in simulation) and on-line (in real-time mode). The case study of Santiago-Chile is presented to exemplify the control results obtained using PLIO off-line (in simulation).

  1. Terahertz time domain spectroscopy allows contactless monitoring of grapevine water status

    Directory of Open Access Journals (Sweden)

    Luis Gonzaga Santesteban

    2015-06-01

    Full Text Available Agriculture is the sector with the greatest water consumption, since food production is frequently based on crop irrigation. Proper irrigation management requires reliable information on plant water status, but all the plant-based methods to determine it suffer from several inconveniences, mainly caused by the necessity of destructive sampling or of alteration of the plant organ due to contact installation. The aim of this work is to test if THz time domain reflectance measurements made on the grapevine trunk allows contactless monitoring of plant status. The experiments were performed on a potted 14-years old plant, using a general purpose THz emitter receiver head.Trunk THz time-domain reflection signal proved to be very sensitive to changes in plant water availability, as its pattern follows the trend of soil water content and trunk growth variations. Therefore, it could be used to contactless monitor plant water status. Apart from that, THz reflection signal was observed to respond to light conditions which, according to a specifically designed girdling experiment, was caused by changes in the phloem. This latter results opens a promising field of research for contactless monitoring of phloem activity.

  2. Multi-scale field investigation of water flow pathways and residence times in mountainous catchments

    Science.gov (United States)

    Lyon, S. W.; Troch, P. A.; Desilets, S. E.

    2006-12-01

    The "sky islands" of Arizona and New Mexico in the southwestern United States form a unique complex of about 27 mountain ranges whose ecosystems support many perennial and ephemeral streams in an arid climate. Among these sky islands are the Santa Catalina Mountains near Tucson, AZ, with a peak elevation of 9157 ft at Mt. Lemmon. Sabino Canyon Creek is the main stream which runs on the south face of the mountain range. It usually flows from July through April with an average daily flow of approximately 0.28 m3/s (10 cfs). However, flash floods are common both during summer as a result of intense monsoon rains and during spring because of rapid snowmelt. During these events, flow increases rapidally, reaching peak flows up to 480 m3/s (16,000 cfs, July 2006). Characterizing water flow pathways and residence times in these complex catchments is important for improving flash flood warning systems, estimating mountain front recharge, managing forest and wild fires, and understanding ecosystem functions. In the summer of 2006, we set up an extensive hydrometrical and hydro-chemical monitoring network in Sabino Canyon Creek, comprising 40 tipping bucket rain gauges (two of which were equipped to automatically collect rainwater samples), 5 automatic surface water level stations (three of which were equipped with auto samplers), and 8 manual soil lysimeters. In addition, several rain and stream water grab samples were collected manually during intensive rain events. Water samples are analyzed for major ions and liquid water isotopic concentration (2H and 18O) in rain, soil, ground and surface water. The data allows for a detailed reconstruction of water flow pathways and residence times at 3 different catchment scales (2 km2, 8 km2, and 91 km2) during the recorded flow events, including the highest monsoon rainfall-runoff event ever recorded in these mountains.

  3. Estimating time and spatial distribution of snow water equivalent in the Hakusan area

    Science.gov (United States)

    Tanaka, K.; Matsui, Y.; Touge, Y.

    2015-12-01

    In the Sousei program, on-going Japanese research program for risk information on climate change, assessing the impact of climate change on water resources is attempted using the integrated water resources model which consists of land surface model, irrigation model, river routing model, reservoir operation model, and crop growth model. Due to climate change, reduction of snowfall amount, reduction of snow cover and change in snowmelt timing, change in river discharge are of increasing concern. So, the evaluation of snow water amount is crucial for assessing the impact of climate change on water resources in Japan. To validate the snow simulation of the land surface model, time and spatial distribution of the snow water equivalent was estimated using the observed surface meteorological data and RAP (Radar Analysis Precipitation) data. Target area is Hakusan. Hakusan means 'white mountain' in Japanese. Water balance of the Tedori River Dam catchment was checked with daily inflow data. Analyzed runoff was generally well for the period from 2010 to 2012. From the result for 2010-2011 winter, maximum snow water equivalent in the headwater area of the Tedori River dam reached more than 2000mm in early April. On the other hand, due to the underestimation of RAP data, analyzed runoff was under estimated from 2006 to 2009. This underestimation is probably not from the lack of land surface model, but from the quality of input precipitation data. In the original RAP, only the rain gauge data of JMA (Japan Meteorological Agency) were used in the analysis. Recently, other rain gauge data of MLIT (Ministry of Land, Infrastructure, Transport and Tourism) and local government have been added in the analysis. So, the quality of the RAP data especially in the mountain region has been greatly improved. "Reanalysis" of the RAP precipitation is strongly recommended using all the available off-line rain gauges information. High quality precipitation data will contribute to validate

  4. Leveraging the Power of Smartphones: Real Time Monitoring of Water Points

    Directory of Open Access Journals (Sweden)

    Ally S. Nyamawe

    2014-07-01

    Full Text Available In recent years, the world has become more sophisticated. Different aspects of today’s life has been digitized, this include; business, education, health, communication and numerous community services. With the existing extended coverage of cellular networks, most services are constantly deployed to be accessed via mobile phones, as they are also the most pervasive pocket carried devices. Though, both regular and smartphone can be used to convey the basics of mobile based services such as mobile banking, calling and text messaging, smartphone goes extra mile. While regular phones are still the better choice for some, smartphones are tremendously taking over the cellphone market. Smartphones are powered by the vast amount of mobile apps available today which offer unprecedented features and functionalities and as well more advanced internet connectivity. To ensure reliable, sufficient and safe water supply to public, the installed water points need to be well monitored. Quality and quantity parameters of water produced from the water points are constantly tracked to determine if they are within the acceptable range. In case of acute condition, the identified parameters need to be instantly communicated to the District Water Engineer (DWE for prompt intervention. In this paper we explore the popularity and advantages of smartphones and present a proposed prototype that exploit the power of smartphones in real time monitoring of water points.

  5. Travel-time tomography in shallow water: experimental demonstration at an ultrasonic scale.

    Science.gov (United States)

    Roux, Philippe; Iturbe, Ion; Nicolas, Barbara; Virieux, Jean; Mars, Jérôme I

    2011-09-01

    Acoustic tomography in a shallow ultrasonic waveguide is demonstrated at the laboratory scale between two source-receiver arrays. At a 1/1,000 scale, the waveguide represents a 1.1-km-long, 52-m-deep ocean acoustic channel in the kilohertz frequency range. Two coplanar arrays record the transfer matrix in the time domain of the waveguide between each pair of source-receiver transducers. A time-domain, double-beamforming algorithm is simultaneously performed on the source and receiver arrays that projects the multi-reflected acoustic echoes into an equivalent set of eigenrays, which are characterized by their travel times and their launch and arrival angles. Travel-time differences are measured for each eigenray every 0.1 s when a thermal plume is generated at a given location in the waveguide. Travel-time tomography inversion is then performed using two forward models based either on ray theory or on the diffraction-based sensitivity kernel. The spatially resolved range and depth inversion data confirm the feasibility of acoustic tomography in shallow water. Comparisons are made between inversion results at 1 and 3 MHz with the inversion procedure using ray theory or the finite-frequency approach. The influence of surface fluctuations at the air-water interface is shown and discussed in the framework of shallow-water ocean tomography.

  6. Parameter-less remote real-time control for the adjustment of pressure in water distribution systems

    CSIR Research Space (South Africa)

    Page, Philip R

    2017-09-01

    Full Text Available Reducing pressure in a water distribution system leads to a decrease in water leakage, decreased cracks in pipes, and consumption decreases. Pressure management includes an advanced type called remote real-time control. Here pressure control valves...

  7. Residence times in shallow waters help explain regional differences in Wadden Sea eutrophication

    Science.gov (United States)

    Schwichtenberg, Fabian; Callies, Ulrich; van Beusekom, Justus E. E.

    2016-11-01

    Regional variations in eutrophication levels of tidal basins in the Wadden Sea can be caused by external factors, like organic matter import, and internal factors like the morphology and hydrodynamics of the receiving tidal basin. For instance, benthic nutrients from remineralized organic matter may be more concentrated in shallow basins or diluted in basins with high exchange rates. In addition, the location of a monitoring station may determine which basin-specific water masses are actually observed. In the present paper a hydrodynamic intertidal imprint (IMP) is estimated for ten stations in various tidal basins of the Wadden Sea. The fraction of time water masses spent in intertidal areas prior to observation is calculated by linking the Lagrangian transport module PELETS to already existing hourly reconstructions of currents between 1959 and 2003. Irrespective of water depth, additional calculations of mean residence times (MRT) in the Wadden Sea indicate whether, in the case of low IMP values, water masses originate from coastal areas or tidal channels. Results show distinct regional differences, with highest values in the eastern part of the Dutch sector of the southern Wadden Sea (IMP=77%, MRT=99%) and lowest values in the German/Danish sector of the northern Wadden Sea (IMP=1.1%, MRT=21%). The IMP correlates positively with observed nutrient levels (R2=0.83). Evidently, this residence time-based intertidal signal is pivotal in explaining regional variations in eutrophication levels revealed by long-term comparative data from different monitoring stations.

  8. [Effects of irrigation time on the growth and water- and fertilizer use efficiencies of winter wheat].

    Science.gov (United States)

    Dang, Jian-You; Pei, Xue-Xia; Wang, Jiao-Ai; Zhang, Jing; Cao, Yong; Zhang, Ding-Yi

    2012-10-01

    A field experiment was conducted to study the effects of irrigation time before wintering (November 10th, November 25th, and December 10th) and in spring (March 5th, re-greening stage; and April 5th, jointing stage) on the growth, dry matter translocation, water use efficiency (WUE), and fertilizer use efficiency (FUE) of winter wheat after returning corn straw into soil. The irrigation time before wintering mainly affected the wheat population size before wintering and at jointing stage, whereas the irrigation time in spring mainly affected the spike number, grain yield, dry matter translocation, WUE, and FUE. The effects of irrigation time before wintering to the yield formation of winter wheat were closely related to the irrigation time in spring. When the irrigation time in spring was at re-greening stage, the earlier the irrigation time before wintering, the larger the spike number and the higher the grain yield; when the irrigation time in spring was at jointing stage, the delay of the irrigation time before wintering made the spike number and grain yield decreased after an initial increase, the kernel number per plant increased, while the 1000-kernel mass was less affected. The WUE, nutrition uptake, and FUE all decreased with the delay of the irrigation time before wintering, but increased with the delay of the irrigation time in spring. Therefore, under the conditions of returning corn straw into soil and sowing when the soil had enough moisture, to properly advance the irrigation time before wintering could make the soil more compacted, promote the tillering and increase the population size before winter, and in combining the increased irrigation at jointing stage, could control the invalid tillering in early spring, increase the spiking rate, obtain stable kernel mass, and thus, increase the WUE and FUE, realizing water-saving and high efficiency for winter wheat cultivation.

  9. State-wide space-time water table mapping: cautionary tales, tribulations and resolution

    Science.gov (United States)

    Peterson, T. J.; Cheng, X.; Carrara, E.; Western, A. W.; Costelloe, J. F.; Frost, A. J.; McAuley, C. V.

    2015-12-01

    Historically, insufficient quantitative value has been derived from state groundwater monitoring networks. Water level data are occasionally used for calibrating local scale groundwater models and for graphical analysis, but very rarely are they used to identify regional groundwater processes and quantify changes in groundwater dynamics over time. Potentiometric maps have occasionally been derived to assist understanding of regional processes but generally they are derived for one point in time, often simply using an average water level over a year or season. Consequently, dynamics of regional groundwater over time has been compromised. Kriging with external drift (KED) has been a widely adopted approach for regional scale potentiometric mapping in recent years. However, it has a number of unacknowledged fundamental weaknesses - specifically, excessive noise in the head, sensitivity to observation errors and questionable estimation in upland regions and in coastal regions dominated by radial flow. These weaknesses are illustrated and then a multivariate localised colocated cokriging approach is proposed that locally reduces the excessive noise from KED and incorporates the coast line and streams into the estimation. Combined with the temporal interpolation of groundwater head (Peterson & Western, 2014), the approach allows regional scale mapping for a single point in time. To illustrate the approach, the monthly water table level was mapped across Victoria, Australia, from 1985 to 2014. Using the maps, the location and the nature/magnitude of major changes in groundwater dynamics were identified and the surface-groundwater connectivity of major rivers was estimated over time. While geological knowledge can be incorporated, this approach allows data-driven insights to be derived from groundwater monitoring networks without the usual assumptions required for numerical groundwater modeling. Peterson, T. J., and A. W. Western (2014), Nonlinear time-series modeling of

  10. Application of isotopes to estimate water ages in variable time scales in surface and groundwaters

    Science.gov (United States)

    Kralik, Martin

    2014-05-01

    Water-Isotopes (2H, 3H, 18O) are ideal tracers not only to determine the origin of waters in precipitation, surface water (river + lakes) as well as in groundwater close to the surface and in deep groundwater but also the mean residence time (MRT) in many applied projects as drinking water supply, hydroelectric power plants, road tunnels etc. . Their application has a long history, but must be always evaluated by a feasible hydrogeological concept and/or other isotope and geochemical tracers. In Alpine areas the retention of precipitation in form of snow and ice in the winter half year is indicated by the lowest 18O-values. The snow melt of the highest part of the recharge area is marked by the lowest 18O-values in the river water, but may not coincide with the maximum flow. Time-series of precipitation station in the mountain and on river station indicate the arrival of the peak snow-melt water in the river and in Low-land areas 4-7 month later. Tritium series indicate that MRTs of several Austrian rivers are in the range of 4 - 6 years. The seasonal input variation of in 18O in precipitation and/or river waters can be used to calculate by lumped parameter models MRT of groundwater at a certain well and compare it with lysimeter measurements and transient model simulations. The MRT of the dispersion model is in good agreement with the estimated time calculated by the numerical transport model and the vertical lysimeter measurements. The MRT of spring water was studied by several methods (3H/3He, SF6 and 85Kr) and a long time series of 3H-measurements. The gas tracers are in good agreement in the range of 6-10 year whereas the 3H-series model (dispersion model) indicate ages in the range of 18-23 years. The hydrogeological concept indicate that the precipitation infiltrates in a mountainous karst area, but the transfer into the porous aquifer in the Vienna Basin occurs either through rivers draining away in the basin or through the lateral transport from the karst

  11. Remote real-time monitoring soil water potential system based on GSM

    Institute of Scientific and Technical Information of China (English)

    Yongming Zhao; Xin Lu; Haijiang Wang

    2008-01-01

    Aiming at the limitation of traditional measuring soil water potential, the paper presents an information system based GSM to real-time monitor data coming from multiple data sources. The monitoring system, which consisted of monitoring center, GSM transmission channel and data detection terminal, was given. The detection terminal included the measuring station and TS-2 negative pressure meter, which was applied to measure soil water potential. Nowadays the system has been successfully applied to drip irrigation in the cotton field on farm in Xinjiang region. The system provides a feasible technology frame-work for collecting and processing wide geographical distribution data in farmland.

  12. Exploring the History of Time in an Integrated System: the Ramifications for Water

    Science.gov (United States)

    Green, M. B.; Adams, L. E.; Allen, T. L.; Arrigo, J. S.; Bain, D. J.; Bray, E. N.; Duncan, J. M.; Hermans, C. M.; Pastore, C.; Schlosser, C. A.; Vorosmarty, C. J.; Witherell, B. B.; Wollheim, W. M.; Wreschnig, A. J.

    2009-12-01

    Characteristic time scales are useful and simple descriptors of geophysical and socio-economic system dynamics. Focusing on the integrative nature of the hydrologic cycle, new insights into system couplings can be gained by compiling characteristic time scales of important processes driving these systems. There are many examples of changing characteristic time scales. Human life expectancy has increased over the recent history of medical advancement. The transport time of goods has decreased with the progression from horse to rail to car to plane. The transport time of information changed with the progression from letter to telegraph to telephone to networked computing. Soil residence time (pedogenesis to estuary deposition) has been influenced by changing agricultural technology, urbanization, and forest practices. Surface water residence times have varied as beaver dams have disappeared and been replaced with modern reservoirs, flood control works, and channelization. These dynamics raise the question of how these types of time scales interact with each other to form integrated Earth system dynamics? Here we explore the coupling of geophysical and socio-economic systems in the northeast United States over the 1600 to 2010 period by examining characteristic time scales. This visualization of many time scales serves as an exploratory analysis, producing new hypotheses about how the integrated system dynamics have evolved over the last 400 years. Specifically, exponential population growth and the evolving strategies to maintain that population appears as fundamental to many of the time scales.

  13. Using continuous underway isotope measurements to map water residence time in hydrodynamically complex tidal environments

    Science.gov (United States)

    Downing, Bryan D.; Bergamaschi, Brian; Kendall, Carol; Kraus, Tamara; Dennis, Kate J.; Carter, Jeffery A.; von Dessonneck, Travis

    2016-01-01

    Stable isotopes present in water (δ2H, δ18O) have been used extensively to evaluate hydrological processes on the basis of parameters such as evaporation, precipitation, mixing, and residence time. In estuarine aquatic habitats, residence time (τ) is a major driver of biogeochemical processes, affecting trophic subsidies and conditions in fish-spawning habitats. But τ is highly variable in estuaries, owing to constant changes in river inflows, tides, wind, and water height, all of which combine to affect τ in unpredictable ways. It recently became feasible to measure δ2H and δ18O continuously, at a high sampling frequency (1 Hz), using diffusion sample introduction into a cavity ring-down spectrometer. To better understand the relationship of τ to biogeochemical processes in a dynamic estuarine system, we continuously measured δ2H and δ18O, nitrate and water quality parameters, on board a small, high-speed boat (5 to >10 m s–1) fitted with a hull-mounted underwater intake. We then calculated τ as is classically done using the isotopic signals of evaporation. The result was high-resolution (∼10 m) maps of residence time, nitrate, and other parameters that showed strong spatial gradients corresponding to geomorphic attributes of the different channels in the area. The mean measured value of τ was 30.5 d, with a range of 0–50 d. We used the measured spatial gradients in both τ and nitrate to calculate whole-ecosystem uptake rates, and the values ranged from 0.006 to 0.039 d–1. The capability to measure residence time over single tidal cycles in estuaries will be useful for evaluating and further understanding drivers of phytoplankton abundance, resolving differences attributable to mixing and water sources, explicitly calculating biogeochemical rates, and exploring the complex linkages among time-dependent biogeochemical processes in hydrodynamically complex environments such as estuaries.

  14. Real-time retrieval of precipitable water vapor from GPS precise point positioning

    Science.gov (United States)

    Yuan, Yubin; Zhang, Kefei; Rohm, Witold; Choy, Suelynn; Norman, Robert; Wang, Chuan-Sheng

    2014-08-01

    Sensing of precipitable water vapor (PWV) using the Global Positioning System (GPS) has been intensively investigated in the past 2 decades. However, it still remains a challenging task at a high temporal resolution and in the real-time mode. In this study the accuracy of real-time zenith total delay (ZTD) and PWV using the GPS precise point positioning (PPP) technique is investigated. GPS observations in a 1 month period from 20 globally distributed stations are selected for testing. The derived real-time ZTDs at most stations agree well with the tropospheric products from the International Global Navigation Satellite Systems Service, and the root-mean-square errors (RMSEs) are conditions. This implies that the real-time GPS PPP technique can be complementary to current atmospheric sounding systems, especially for nowcasting of extreme weather due to its real-time, all-day, and all-weather capabilities and high temporal resolutions.

  15. Quantification of resilience to water scarcity, a dynamic measure in time and space

    Science.gov (United States)

    Simonovic, S. P.; Arunkumar, R.

    2016-05-01

    There are practical links between water resources management, climate change adaptation and sustainable development leading to reduction of water scarcity risk and re-enforcing resilience as a new development paradigm. Water scarcity, due to the global change (population growth, land use change and climate change), is of serious concern since it can cause loss of human lives and serious damage to the economy of a region. Unfortunately, in many regions of the world, water scarcity is, and will be unavoidable in the near future. As the scarcity is increasing, at the same time it erodes resilience, therefore global change has a magnifying effect on water scarcity risk. In the past, standard water resources management planning considered arrangements for prevention, mitigation, preparedness and recovery, as well as response. However, over the last ten years substantial progress has been made in establishing the role of resilience in sustainable development. Dynamic resilience is considered as a novel measure that provides for better understanding of temporal and spatial dynamics of water scarcity. In this context, a water scarcity is seen as a disturbance in a complex physical-socio-economic system. Resilience is commonly used as a measure to assess the ability of a system to respond and recover from a failure. However, the time independent static resilience without consideration of variability in space does not provide sufficient insight into system's ability to respond and recover from the failure state and was mostly used as a damage avoidance measure. This paper provides an original systems framework for quantification of resilience. The framework is based on the definition of resilience as the ability of physical and socio-economic systems to absorb disturbance while still being able to continue functioning. The disturbance depends on spatial and temporal perspectives and direct interaction between impacts of disturbance (social, health, economic, and other) and

  16. Delivering enhanced testosterone replacement therapy through nanochannels.

    Science.gov (United States)

    Ferrati, Silvia; Nicolov, Eugenia; Bansal, Shyam; Zabre, Erika; Geninatti, Thomas; Ziemys, Arturas; Hudson, Lee; Ferrari, Mauro; Goodall, Randal; Khera, Mohit; Palapattu, Ganesh; Grattoni, Alessandro

    2015-02-18

    Primary or secondary hypogonadism results in a range of signs and symptoms that compromise quality of life and requires life-long testosterone replacement therapy. In this study, an implantable nanochannel system is investigated as an alternative delivery strategy for the long-term sustained and constant release of testosterone. In vitro release tests are performed using a dissolution set up, with testosterone and testosterone:2-hydroxypropyl-β-cyclodextrin (TES:HPCD) 1:1 and 1:2 molar ratio complexes release from the implantable nanochannel system and quantify by HPLC. 1:2 TES:HPCD complex stably achieve 10-15 times higher testosterone solubility with 25-30 times higher in vitro release. Bioactivity of delivered testosterone is verified by LNCaP/LUC cell luminescence. In vivo evaluation of testosterone, luteinizing hormone (LH), and follicle stimulating hormone (FSH) levels by liquid chromatography mass spectrometry (LC/MS) and multiplex assay is performed in castrated Sprague-Dawley rats over 30 d. Animals are treated with the nanochannel implants or degradable testosterone pellets. The 1:2 TES:HPCD nanochannel implant exhibits sustained and clinically relevant in vivo release kinetics and attains physiologically stable plasma levels of testosterone, LH, and FSH. In conclusion, it is demonstrated that by providing long-term steady release 1:2 TES:HPCD nanochannel implants may represent a major breakthrough for the treatment of male hypogonadism.

  17. Forget about data, deliver results

    Science.gov (United States)

    Walter, Roland

    2015-12-01

    High-energy astrophysics space missions have pioneered and demonstrated the power of legacy data sets for generating new discoveries, especially when analysed in ways original researchers could not have anticipated. The only way to ensure that the data of present observatories can be effectively used in the future is to allow users to perform on-the-fly data analysis to produce straightforwardly scientific results for any sky position, time and energy intervals without requiring mission specific software or detailed instrumental knowledge. Providing a straightforward interface to complex data and data analysis makes the data and the process of generating science results available to the public and higher education and promotes the visibility of the investment in science to the society. This is a fundamental step to transmit the values of science and to evolve towards a knowledge society.

  18. Protein-functionalized magnetic iron oxide nanoparticles: time efficient potential-water treatment

    Energy Technology Data Exchange (ETDEWEB)

    Okoli, Chuka [Royal Institute of Technology (KTH), Environmental Microbiology (Sweden); Boutonnet, Magali; Jaeras, Sven [Royal Institute of Technology (KTH), Chemical Technology (Sweden); Rajarao-Kuttuva, Gunaratna, E-mail: gkr@kth.se [Royal Institute of Technology (KTH), Environmental Microbiology (Sweden)

    2012-10-15

    Recent advances in nanoscience suggest that the existing issues involving water quality could be resolved or greatly improved using nanomaterials, especially magnetic iron oxide nanoparticles. Magnetic nanoparticles have been synthesized for the development and use, in association with natural coagulant protein for water treatment. The nanoparticles size, morphology, structure, and magnetic properties were characterized by transmission electron microscope, X-ray diffraction, and superconducting quantum interference device magnetometry. Purified Moringa oleifera protein was attached onto microemulsions-prepared magnetic iron oxide nanoparticles (ME-MION) to form stable protein-functionalized magnetic nanoparticles (PMO+ME-MION). The turbidity removal efficiency in both synthetic and surface water samples were investigated and compared with the commonly used synthetic coagulant (alum) as well as PMO. More than 90 % turbidity could be removed from the surface waters within 12 min by magnetic separation of PMO+ME-MION; whereas gravimetrically, 70 % removal in high and low turbid waters can be achieved within 60 min. In contrast, alum requires 180 min to reduce the turbidity of low turbid water sample. These data support the advantage of separation with external magnetic field (magnetophoresis) over gravitational force. Time kinetics studies show a significant enhancement in ME-MION efficiency after binding with PMO implying the availability of large surface of the ME-MION. The coagulated particles (impurities) can be removed from PMO+ME-MION by washing with mild detergent or cleaning solution. To our knowledge, this is the first report on surface water turbidity removal using protein-functionalized magnetic nanoparticle.

  19. Protein-functionalized magnetic iron oxide nanoparticles: time efficient potential-water treatment

    Science.gov (United States)

    Okoli, Chuka; Boutonnet, Magali; Järås, Sven; Rajarao-Kuttuva, Gunaratna

    2012-10-01

    Recent advances in nanoscience suggest that the existing issues involving water quality could be resolved or greatly improved using nanomaterials, especially magnetic iron oxide nanoparticles. Magnetic nanoparticles have been synthesized for the development and use, in association with natural coagulant protein for water treatment. The nanoparticles size, morphology, structure, and magnetic properties were characterized by transmission electron microscope, X-ray diffraction, and superconducting quantum interference device magnetometry. Purified Moringa oleifera protein was attached onto microemulsions-prepared magnetic iron oxide nanoparticles (ME-MION) to form stable protein-functionalized magnetic nanoparticles (PMO+ME-MION). The turbidity removal efficiency in both synthetic and surface water samples were investigated and compared with the commonly used synthetic coagulant (alum) as well as PMO. More than 90 % turbidity could be removed from the surface waters within 12 min by magnetic separation of PMO+ME-MION; whereas gravimetrically, 70 % removal in high and low turbid waters can be achieved within 60 min. In contrast, alum requires 180 min to reduce the turbidity of low turbid water sample. These data support the advantage of separation with external magnetic field (magnetophoresis) over gravitational force. Time kinetics studies show a significant enhancement in ME-MION efficiency after binding with PMO implying the availability of large surface of the ME-MION. The coagulated particles (impurities) can be removed from PMO+ME-MION by washing with mild detergent or cleaning solution. To our knowledge, this is the first report on surface water turbidity removal using protein-functionalized magnetic nanoparticle.

  20. Fluid flow pattern and water residence time in waste stabilisation ponds.

    Science.gov (United States)

    Badrot-Nico, F; Guinot, V; Brissaud, F

    2009-01-01

    As treatment processes are kinetic-dependent, a consistent description of water residence times is essential to the prediction of waste stabilization ponds performance. A physically-based 3D transient CFD model simulating the water velocity, temperature and concentration fields as a function of all influent meteorological factors--wind speed and direction, solar radiation, air temperature and relative humidity--was used to identify the relationships between the meteorological conditions and the hydrodynamic patterns and water residence times distributions in a polishing pond. The required meteorological data were recorded on site and water temperatures recorded at 10 sampling sites for 141 days. Stratification events appear on very calm days for wind speeds lower than 3 m s(-1) and on sunny days for wind speeds lower than 5 m s(-1). De-stratification is related to two mixing processes: nightly convection cells and global mixing patterns. Numerical tracer experiments show that the results of the flow patterns can be evaluated using the dispersed flow regime approximation and, for wind speeds exceeding 6 m s(-1), the completely stirred tank reactor assumption.

  1. Water quality management using statistical analysis and time-series prediction model

    Science.gov (United States)

    Parmar, Kulwinder Singh; Bhardwaj, Rashmi

    2014-12-01

    This paper deals with water quality management using statistical analysis and time-series prediction model. The monthly variation of water quality standards has been used to compare statistical mean, median, mode, standard deviation, kurtosis, skewness, coefficient of variation at Yamuna River. Model validated using R-squared, root mean square error, mean absolute percentage error, maximum absolute percentage error, mean absolute error, maximum absolute error, normalized Bayesian information criterion, Ljung-Box analysis, predicted value and confidence limits. Using auto regressive integrated moving average model, future water quality parameters values have been estimated. It is observed that predictive model is useful at 95 % confidence limits and curve is platykurtic for potential of hydrogen (pH), free ammonia, total Kjeldahl nitrogen, dissolved oxygen, water temperature (WT); leptokurtic for chemical oxygen demand, biochemical oxygen demand. Also, it is observed that predicted series is close to the original series which provides a perfect fit. All parameters except pH and WT cross the prescribed limits of the World Health Organization /United States Environmental Protection Agency, and thus water is not fit for drinking, agriculture and industrial use.

  2. Application of RANS Simulations for Contact Time Predictions in Turbulent Reactor Tanks for Water Purification Process

    Science.gov (United States)

    Nickles, Cassandra; Goodman, Matthew; Saez, Jose; Issakhanian, Emin

    2016-11-01

    California's current drought has renewed public interest in recycled water from Water Reclamation Plants (WRPs). It is critical that the recycled water meets public health standards. This project consists of simulating the transport of an instantaneous conservative tracer through the WRP chlorine contact tanks. Local recycled water regulations stipulate a minimum 90-minute modal contact time during disinfection at peak dry weather design flow. In-situ testing is extremely difficult given flowrate dependence on real world sewage line supply and recycled water demand. Given as-built drawings and operation parameters, the chlorine contact tanks are modeled to simulate extreme situations, which may not meet regulatory standards. The turbulent flow solutions are used as the basis to model the transport of a turbulently diffusing conservative tracer added instantaneously to the inlet of the reactors. This tracer simulates the transport through advection and dispersion of chlorine in the WRPs. Previous work validated the models against experimental data. The current work shows the predictive value of the simulations.

  3. Changes in setting time of alginate impression material with different water temperature

    Directory of Open Access Journals (Sweden)

    Decky J. Indrani

    2013-03-01

    Full Text Available Background: Previous studies showed that setting process of alginates can be influenced by temperature. Purpose: To determine the changes in setting time due to differences in water temperature and to determine the correlation between water temperature and the setting time. Methods: Seven groups of dough alginate were prepared by mixing alginate powder and water, each using a temperature between 13° C–28° C with a interval of 2.5° C. A sample mold (Θ = 30 mm, t = 16 mm was placed on a flat plate and filled with doug alginate. Immediately the flat end of a polished acrylic rod was placed in contact with the surface of dough alginate. Setting time of alginat was measured from the starting of the mix to the time when the alginate does not adhere to the end of the rod. Setting time alginate data were analyzed using one way ANOVA, LSD and Pearson. Results: Setting time of alginate with water temperature between 13° C–28° C were 87 to 119.4 seconds and were significantly different (p < 0.01. The setting time between group were also significantly different (p<0.01. There was an inverse correlation between water temperature and the setting time (r = -0.968. Conclusion: Water temperature between 13° C–28°C with a difference of 2.5° C produced significant differences in alginate setting time; the lower the water temperature being used the longer the setting time was produced.Latar belakang: Penelitian-penelitian sebelumnya menunjukkan bahwa proses pengerasan alginat dapat dipengaruhi oleh suhu. Tujuan: Mengetahui perubahan waktu pengerasan alginat akibat perbedaan suhu air serta mengetahui hubungan antara suhu air dan waktu pengerasan. Metode: Tujuh kelompok adonan alginat yang dipersiapkan dengan mencampur bubuk alginat dan air, masingmasing menggunakan suhu antara 13°C–28° C dengan interval 2,5° C. Pengukuran waktu pengerasan alginat dilakukan sesuai dengan spesifikasi ADA no.18. Sebuah cetakan sampel terbuat dari pralon berbentuk

  4. Time resolved laser-induced breakdown spectroscopy for calcium concentration detection in water

    Institute of Scientific and Technical Information of China (English)

    WU Jiang-lai; LU Yuan; Li Ying; CHENG Kai; GUO Jin-jia; ZHENG Rong-er

    2011-01-01

    @@ The laser induced breakdown spectroscopy (LIBS) is an element analysis technique with the advantages of real time detection, simultaneous multi-element identification, and in-situ and stand-off capacities.To evaluate its potential of ocean applications, in this paper, the time resolved laser-induced breakdown spectroscopy for calcium concentration detection in water is investigated.With the optimum experimental parameters, the plasma emission lifetime is determined to be about 500 ns with 532 nm laser excitation, and 1000 ns with 1064 nm laser excitation.The lowest detection concentration of 50ppm is achieved for calcium detection in CaC12 water solution using the 532 nm LIBS.Even better detection sensitivity is achieved using the 1064 nm LIBS, and the resulted lowest detection concentration of calcium is 25 ppm.The results suggest that it is feasible to develop LIBS as an on-line sensor for metal element monitoring in the sea.

  5. Dielectric Properties of Water in Butter and Water-AOT-Heptane Systems Measured using Terahertz Time-Domain Spectroscopy

    DEFF Research Database (Denmark)

    Møller, Uffe; Folkenberg, Jacob Riis; Jepsen, Peter Uhd

    2010-01-01

    We investigate the dielectric properties of water confined in nanometer-sized inverse micelles in mixtures of water, AOT, and heptane. We show that the dielectric properties of the confined water are dependent on the water pool size and different from those of bulk water. We also discuss the diel...... the dielectric properties of different vegetable oils, lard, and butter, and use these properties to deduce the dielectric properties of water in butter, which are shown to deviate significantly from the dielectric properties of bulk water....

  6. A time-resolved resonance Raman study of chlorine dioxide photochemistry in water and acetonitrile

    Energy Technology Data Exchange (ETDEWEB)

    Hayes, S.C.; Philpott, M.P.; Mayer, S.G.; Reid, P.J. [Univ. of Washington, Seattle, WA (United States). Dept. of Chemistry

    1999-07-15

    The photochemistry of chlorine dioxide (OClO) has attracted much interest due to its participation in the atmospheric chlorine reservoir as well as its potential role in stratospheric ozone depletion. Since the environmental impact of OClO arises from its ability to produce atomic chlorine, understanding this phase-dependent reactivity is essential if models capable of predicting the environmental impact of OClO in both homogeneous and heterogeneous settings are to be obtained. The photochemistry of chlorine dioxide (OClO) in water and acetonitrile is investigated using time-resolved resonance Raman spectroscopy. Stokes and anti-Stokes spectra are measured as a function of time following photoexcitation using degenerate pump and probe wavelengths of 390 nm. For aqueous OClO, the time-dependent Stokes intensities are found to be consistent with the re-formation of ground-state OClO by subpicosecond geminate recombination of the primary ClO and O photofragments. This represents the first unequivocal demonstration of primary-photoproduct geminate recombination in the condensed-phase photochemistry of OClO. Anti-Stokes intensity corresponding to the OClO symmetric stretch is observed demonstrating that, following geminate recombination, excess vibrational energy is deposited along this coordinate. Analysis of the anti-Stokes decay kinetics demonstrates that, in water, intermolecular vibrational relaxation occurs with a time constant of {approximately}9 ps. For OClO dissolved in acetonitrile, the Stokes scattering intensities are consistent with a significant reduction in the geminate-recombination quantum yield relative to water. Comparison of the OClO anti-Stokes decay kinetics in acetonitrile and water demonstrates that the rate of intermolecular vibrational relaxation is {approximately}4 times smaller in acetonitrile. Finally, in both solvents the appearance of symmetric-stretch anti-Stokes intensity is significantly delayed relative to geminate recombination. This

  7. Experiences and recommendations in deploying a real-time, water quality monitoring system

    Science.gov (United States)

    O'Flynn, B.; Regan, F.; Lawlor, A.; Wallace, J.; Torres, J.; O'Mathuna, C.

    2010-12-01

    Monitoring of water quality at a river basin level to meet the requirements of the Water Framework Directive (WFD) using conventional sampling and laboratory-based techniques poses a significant financial burden. Wireless sensing systems offer the potential to reduce these costs considerably, as well as provide more useful, continuous monitoring capabilities by giving an accurate idea of the changing environmental and water quality in real time. It is unlikely that the traditional spot/grab sampling will provide a reasonable estimate of the true maximum and/or mean concentration for a particular physicochemical variable in a water body with marked temporal variability. When persistent fluctuations occur, it is likely only to be detected through continuous measurements, which have the capability of detecting sporadic peaks of concentration. Thus, in situ sensors capable of continuous sampling of parameters required under the WFD would therefore provide more up-to-date information, cut monitoring costs and provide better coverage representing long-term trends in fluctuations of pollutant concentrations. DEPLOY is a technology demonstration project, which began planning and station selection and design in August 2008 aiming to show how state-of-the-art technology could be implemented for cost-effective, continuous and real-time monitoring of a river catchment. The DEPLOY project is seen as an important building block in the realization of a wide area autonomous network of sensors capable of monitoring the spatial and temporal distribution of important water quality and environmental target parameters. The demonstration sites chosen are based in the River Lee, which flows through Ireland's second largest city, Cork, and were designed to include monitoring stations in five zones considered typical of significant river systems--these monitor water quality parameters such as pH, temperature, depth, conductivity, turbidity and dissolved oxygen. Over one million data points

  8. Pumping time required to obtain tube well water samples with aquifer characteristic radon concentrations

    Energy Technology Data Exchange (ETDEWEB)

    Ricardo, Carla Pereira; Oliveira, Arno Heeren de, E-mail: heeren@nuclear.ufmg.br [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Escola de Engenharia. Dept. de Engenharia Nuclear; Rocha, Zildete; Palmieri, Helena E.L.; Linhares, Maria G.M.; Menezes, Maria Angela B.C., E-mail: rochaz@cdtn.br, E-mail: help@cdtn.br, E-mail: mgml@cdtn.br, E-mail: menezes@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2011-07-01

    Radon is an inert noble gas, which comes from the natural radioactive decay of uranium and thorium in soil, rock and water. Radon isotopes emanated from radium-bearing grains of a rock or soil are released into the pore space. Radon that reaches the pore space is partitioned between the gaseous and aqueous phases. Thus, the groundwater presents a radon signature from the rock that is characteristic of the aquifer. The characteristic radon concentration of an aquifer, which is mainly related to the emanation, is also influenced by the degree of subsurface degassing, especially in the vicinity of a tube well, where the radon concentration is strongly reduced. Looking for the required pumping time to take a tube well water sample that presents the characteristic radon concentration of the aquifer, an experiment was conducted in an 80 m deep tube well. In this experiment, after twenty-four hours without extraction, water samples were collected periodically, about ten minutes intervals, during two hours of pumping time. The radon concentrations of the samples were determined by using the RAD7 Electronic Radon Detector from Durridge Company, a solid state alpha spectrometric detector. It was realized that the necessary time to reach the maximum radon concentration, that means the characteristic radon concentration of the aquifer, is about sixty minutes. (author)

  9. Interference structure of shallow water reverberation in time-frequency distribution

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The striations of the reverberation spectrum in the time-frequency distribution were observed in a shallow water acoustic experiment in 2002. A model following the coherent reverberation model developed in 2002 is presented to explain the observed striations. To examine the consistency between the measured data and numerical predictions, we have used a method based on Radon transform for determining the slope of the striations to the measured reverberation data and numerical predictions. The results indicate that the previously developed coherent reverberation model can predict the interference structure of the reverberation intensity in the time-frequency distribution.

  10. Space-time modeling of water table depth using a regionalized time series model and the Kalman filter

    NARCIS (Netherlands)

    Bierkens, M.F.P.; Knotters, M.; Hoogland, T.

    2001-01-01

    Water authorities in the Netherlands are not only responsible for managing surface water, but also for managing the groundwater reserves. Particularly the water table depth is an important variable, determining agricultural production and the potential for nature development. Knowledge of the spatio

  11. Time-domain simulation for water wave radiation by floating structures (Part A)

    Institute of Scientific and Technical Information of China (English)

    XU Gang; DUAN Wen-yang

    2008-01-01

    Direct time-domain simulation of floating structures has advantages: it can calculate wave pressure fields and forces directly;and it is useful for coupled analysis of floating structures with a mooring system. A time-domain boundary integral equation method is presented to simulate three-dimensional water wave radiation problems. A stable form of the integration free-surface boundary condition (IFBC) is used to update velocity potentials on the free surface. A multi-transmitting formula (MTF) method with an artificial speed is introduced to the artificial radiation boundary (ARB). The method was applied to simulate a semi-spherical liquefied natural gas (LNG) carrier and a semi-submersible undergoing specified harmonic motion. Numerical parameters such as the form of the ARB,and the time and space discretization related to this method are discussed. It was found that a good agreement can be obtained when artificial speed is between 0.6 and 1.6 times the phase velocity of water waves in the MTF method. A simulation can be done for a long period of time by this method without problems of instability,and the method is also accurate and computationally efficient.

  12. Characterization and calibration of a novel detection system for real time monitoring of radioactive contamination in water processed at water treatment facilities.

    Science.gov (United States)

    Carconi, P; De Felice, P; Fazio, A; Petrucci, A; Lunardon, M; Moretto, S; Stevanato, L; Cester, D; Pastore, P

    2017-08-01

    Characterization and calibration measurements were carried out at the National Institute of Ionizing Radiation Metrology of ENEA on the TAp WAter RAdioactivity (TAWARA) Real Time Monitor system recently developed for real time monitoring of radioactive contamination in water processed at water treatment facilities. Reference radiations and radionuclides were chosen in order to reflect energy ranges and radiation types of the major water radioactive contaminants possibly arising from environmental, industrial or terroristic origin. The following instrument parameters were tested: sensitivity, selectivity, background, short/long term stability, linearity with respect to activity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Measurement of vascular water transport in human subjects using time-resolved pulsed arterial spin labelling.

    Science.gov (United States)

    Bibic, Adnan; Knutsson, Linda; Schmidt, Anders; Henningsson, Erik; Månsson, Sven; Abul-Kasim, Kasim; Åkeson, Jonas; Gunther, Matthias; Ståhlberg, Freddy; Wirestam, Ronnie

    2015-08-01

    Most approaches to arterial spin labelling (ASL) data analysis aim to provide a quantitative measure of the cerebral blood flow (CBF). This study, however, focuses on the measurement of the transfer time of blood water through the capillaries to the parenchyma (referred to as the capillary transfer time, CTT) as an alternative parameter to characterise the haemodynamics of the system. The method employed is based on a non-compartmental model, and no measurements need to be added to a common time-resolved ASL experiment. Brownian motion of labelled spins in a potential was described by a one-dimensional general Langevin equation as the starting point, and as a Fokker-Planck differential equation for the averaged distribution of labelled spins at the end point, which takes into account the effects of flow and dispersion of labelled water by the pseudorandom nature of the microvasculature and the transcapillary permeability. Multi-inversion time (multi-TI) ASL data were acquired in 14 healthy subjects on two occasions in a test-retest design, using a pulsed ASL sequence and three-dimensional gradient and spin echo (3D-GRASE) readout. Based on an error analysis to predict the size of a region of interest (ROI) required to obtain reasonably precise parameter estimates, data were analysed in two relatively large ROIs, i.e. the occipital lobe (OC) and the insular cortex (IC). The average values of CTT in OC were 260 ± 60 ms in the first experiment and 270 ± 60 ms in the second experiment. The corresponding IC values were 460 ± 130 ms and 420 ± 139 ms, respectively. Information related to the water transfer time may be important for diagnostics and follow-up of cerebral conditions or diseases characterised by a disrupted blood-brain barrier or disturbed capillary blood flow.

  14. Scintigraphic determination of small intestinal transit time of water in man

    Energy Technology Data Exchange (ETDEWEB)

    Prokop, E.K.; Caride, V.J.; Marano, A.R.; McCallum, R.

    1984-01-01

    A method utilizing a lactulose solution to measure small intestinal transit time (SITT) has been previously reported. Lactulose is a non-absorbable sugar and is known to increase SITT. In order to determine the extent to which lactulose accelerates SITT, a group of 4 normal male volunteers were studied after the ingestion of 150cc of water to which 100 uCi of 111-In was added. To provide adequate caloric intake, as occurs physiologically, the water was drunk while ingesting a solid meal. The subject was then placed supine under a 15 inch gamma camera. Data were collected and stored in a computer at one frame every 3 minute for 240 minutes. If activity was not present in the cecal region by this time, the subject was allowed to move about for 15 minutes and then repositioned under the gamma camera. Data were first viewed in a movie format. Regions of interest were selected over the cecum and ascending colon. The time of first appearance of radioactivity in the region of the cecum was taken as the SITT. Each subject was studied on three separate occasions. The mean (+- SEM) SITT for each of the separate studies was 248 +- 58 min., 240 +- 47 min. and 232 +- 54 min. respectively (pless than or equal toNS). Two previously studied groups of normal volunteers had a mean SITT of approximately 80 minutes. Water appears to have a significantly slower SITT when ingested with a solid meal when compared to lactulose. Clinically, the potential to use water as a test for SITT would not seem to be as attractive or practical as using lactulose as the test substance.

  15. Quantifying Water Level Change Through Time in the North American Great Lakes

    Science.gov (United States)

    Tebbens, S. F.; Smigelski, J. R.; Barton, C. C.

    2011-12-01

    Anthropogenic and natural fluctuations including precipitation, runoff, snowmelt, water retention time, evaporation, and outflow all contribute to changes in water levels recorded in the North American Great Lakes. Changes in water levels and tides have been used as an index for physical parameters such as temperature, density, and circulation (Keeling and Whorf, 1997; Denny and Paine, 1998). In this study, NOAA verified hourly water level data ranging from 20 to 30 years in duration for five stations in Lake Michigan and four stations in Lake Superior were analyzed. Power Spectral Density calculated from a Fourier transform of the time series were found to exhibit power law scaling. The power-scaling exponent (β) was determined by fitting a power function to a log-log plot of frequency (f) or period (1/f) versus power in the frequency domain. Four distinct regions of scaling are observed with inflection points at approximately 1 day, 5 days, and 30 - 60 days. For time scales of less than one day, the power-scaling exponent (β) ranges from 0.1 to 0.5, indicating a white noise. From 1 day to 5 - 7 days, β ranges from 1.5 to 2.6, indicating moderate to strong persistence which we propose is due to frontal movements of weather systems. On timescales between 5 days and 30 - 60 days, β ranges from 0.1 to 0.4, again indicating a white noise which we propose is due to monthly and seasonal weather variations within the Great Lakes System. Beyond 30 - 60 days, all stations exhibit persistence, with β-values between 1.6 and 2.7.

  16. Urban poverty: delivering babies in the slum.

    Science.gov (United States)

    Lloyd, M

    1998-01-01

    Government of India statistics indicate that about 3 million of New Delhi's 11 million people live in slums, while another 3 million people, most fleeing rural poverty, are expected to migrate to the capital by 2000. ASHA Community Health and Development Society is a nongovernmental organization currently working in 23 of India's slums, serving a population of about 150,000 people. The group has pioneered the use of community-based networks in New Delhi to improve health in the poorest communities. While ASHA has a small, full-time staff, most of the daily health care work is conducted by slum volunteers. Ekta Vihar is a slum community of 1800 residents. Community members' primary source of health care are Vimla Rana and Sobha, two illiterate women who reside in the community and are part of a team of community health workers trained by ASHA. Rana and Sobha deliver almost all of the babies born annually in the slum and care for community members when they become ill.

  17. Travel Times of Water Derived from Three Naturally Occurring Cosmogenic Radioactive Isotopes

    Science.gov (United States)

    Visser, Ate; Thaw, Melissa; Deinhart, Amanda; Bibby, Richard; Esser, Brad

    2017-04-01

    Hydrological travel times are studied on scales that span six orders of magnitude, from daily event water in stream flow to pre-Holocene groundwater in wells. Groundwater vulnerability to contamination, groundwater surface water interactions and catchment response are often focused on "modern" water that recharged after the introduction of anthropogenic tritium in precipitation in 1953. Shorter residence times are expected in smaller catchments, resulting in immediate vulnerability to contamination. We studied a small (4.6 km2) alpine (1660-2117 m) catchment in a Mediterranean climate (8 ˚ C, 1200 mm/yr) in the California Sierra Nevada to assess subsurface storage and investigate the response to the recent California drought. We analyzed a combination of three cosmogenic radioactive isotopes with half-lives varying from 87 days (sulfur-35), 2.6 years (sodium-22) to 12.3 years (tritium) in precipitation and stream samples. Tritium samples (1 L) are analyzed by noble gas mass spectrometry after helium-3 accumulation. Samples for sulfur-35 and sodium-22 are collected by processing 20-1000 L of water through an anion and cation exchange column in-situ. Sulfur-35 is analyzed by liquid scintillation counting after chemical purification and precipitation. Sodium-22 is analyzed by gamma counting after eluting the cations into a 4L Marinelli beaker. Monthly collected precipitation samples show variability of deposition rate for tritium and sulfur-35. Sodium-22 levels in cumulative yearly precipitation samples are consistent with recent studies in the US and Japan. The observed variability of deposition rates complicates direct estimation of stream water age fractions. The level and variability of tritium in monthly stream samples indicate a mean residence time on the order of 10 years and only small contributions of younger water during high flow conditions. Estimates of subsurface storage are in agreement with estimates from geophysical studies. Detections of sodium-22

  18. Real time monitoring of urban surface water quality using a submersible, tryptophan-like fluorescence sensor

    Science.gov (United States)

    Khamis, Kieran; Bradley, Chris; Hannah, David; Stevens, Rob

    2014-05-01

    Due to the recent development of field-deployable optical sensor technology, continuous quantification and characterization of surface water dissolved organic matter (DOM) is possible now. Tryptophan-like (T1) fluorescence has the potential to be a particularly useful indicator of human influence on water quality as T1 peaks are associated with the input of labial organic carbon (e.g. sewage or farm waste) and its microbial breakdown. Hence, real-time recording of T1 fluorescence could be particular useful for monitoring waste water infrastructure, treatment efficiency and the identification of contamination events at higher temporal resolution than available hitherto. However, an understanding of sensor measurement repeatability/transferability and interaction with environmental parameters (e.g. turbidity) is required. Here, to address this practical knowledge gap, we present results from a rigorous test of a commercially available submersible tryptophan fluorometer (λex 285, λem 350). Sensor performance was first examined in the laboratory by incrementally increasing turbidity under controlled conditions. Further to this the sensor was integrated into a multi-parameter sonde and field tests were undertaken involving: (i) a spatial sampling campaign across a range of surface water sites in the West Midlands, UK; and (ii) collection of high resolution (sub-hourly) samples from an urban stream (Bournbrook, Birmingham, U.K). To determine the ability of the sensor to capture spatiotemporal dynamics of urban waters DOM was characterized for each site or discrete time step using Excitation Emission Matrix spectroscopy and PARAFAC. In both field and laboratory settings fluorescence intensity was attenuated at high turbidity due to suspended particles increasing absorption and light scattering. For the spatial survey, instrument readings were compared to those obtained by a laboratory grade fluorometer (Varian Cary Eclipse) and a strong, linear relationship was apparent

  19. Packaged FBG sensors for real-time stress monitoring on deep-water riser

    Science.gov (United States)

    Xu, Jian; Yang, Dexing; Jiang, Yajun; Wang, Meirong; Zhai, Huailun; Bai, Yang

    2014-11-01

    The safety of under-water risers in drilling platform is of great significance. A packaged fiber Bragg grating (FBG) sensor for real-time stress monitoring is designed for the applications on oil drilling risers under 3000 meters deep water. A copper tube which is the main component of the sensor has a small hole along its axes and a groove at its each end. The bare FBG is passed through the small hole and fixed to its ends by epoxy resin. Then the copper tube is packaged by filling the groove with structural adhesive. In order to avoid that the outer water-pressure is applied on the epoxy resin through the structural adhesive, a gap between the two types of glues is left. The relationships between the stress of the riser and the tension, pressure, temperature of the single sensor are discussed, respectively. The measured tension sensitivity is 136.75 pm/KN while the minimum R-square value is 0.99997. The experimental results also show that there is a good linear response between water-pressure and the Bragg wavelength from 0 to 30MPa, and the sensor can even survive under the pressure more than 30MPa. In addition, the Bragg wavelength shifts linearly with the increasing temperature from 0 to 40°C. So, the pressure and temperature can be easily compensated if another sensor without tension is used.

  20. Estimation of the Adriatic sea water turnover time using fallout 90Sr as a radioactive tracer

    CERN Document Server

    Franic, Z

    2004-01-01

    Systematic, long term measurements, starting in 1963, of 90Sr activity concentrations in sea water have been performed at four locations (cities of Rovinj, Rijeka, Split and Dubrovnik) along the Croatian coast of the Adriatic sea. In addition, fallout samples were collected in the city of Zadar. 90Sr activity concentrations are in good correlation with the fallout activity, the coefficient of correlation being 0.72. After the nuclear moratorium on atmospheric nuclear bomb tests in 1960s, 90Sr activity concentrations in sea water exponentially dropped from 14.8 +/- 2.4 Bq/m3 in 1963 to 2.0 +/- 0.3 Bq/m3 in 2003. In the same period, the total annual 90Sr land surface deposit in Zadar fell by three orders of magnitude, from 713.3 Bq/m2 in 1963 to 0.4 Bq/m2 in 2003. Using strontium sea water and fallout data, a mathematical model was developed to describe the rate of change of 90Sr activity concentrations in the Adriatic sea water and estimate its mean residence time in the Adriatic. By fitting the experimental d...

  1. Real-time assessments of water quality: expanding nowcasting throughout the Great Lakes

    Science.gov (United States)

    ,

    2013-01-01

    Nowcasts are systems that inform the public of current bacterial water-quality conditions at beaches on the basis of predictive models. During 2010–12, the U.S. Geological Survey (USGS) worked with 23 local and State agencies to improve existing operational beach nowcast systems at 4 beaches and expand the use of predictive models in nowcasts at an additional 45 beaches throughout the Great Lakes. The predictive models were specific to each beach, and the best model for each beach was based on a unique combination of environmental and water-quality explanatory variables. The variables used most often in models to predict Escherichia coli (E. coli) concentrations or the probability of exceeding a State recreational water-quality standard included turbidity, day of the year, wave height, wind direction and speed, antecedent rainfall for various time periods, and change in lake level over 24 hours. During validation of 42 beach models during 2012, the models performed better than the current method to assess recreational water quality (previous day's E. coli concentration). The USGS will continue to work with local agencies to improve nowcast predictions, enable technology transfer of predictive model development procedures, and implement more operational systems during 2013 and beyond.

  2. Water monitoring: automated and real time identification and classification of algae using digital microscopy.

    Science.gov (United States)

    Coltelli, Primo; Barsanti, Laura; Evangelista, Valtere; Frassanito, Anna Maria; Gualtieri, Paolo

    2014-11-01

    Microalgae are unicellular photoautotrophs that grow in any habitat from fresh and saline water bodies, to hot springs and ice. Microalgae can be used as indicators to monitor water ecosystem conditions. These organisms react quickly and predictably to a broad range of environmental stressors, thus providing early signals of a changing environment. When grown extensively, microalgae may produce harmful effects on marine or freshwater ecology and fishery resources. Rapid and accurate recognition and classification of microalgae is one of the most important issues in water resource management. In this paper, a methodology for automatic and real time identification and enumeration of microalgae by means of image analysis is presented. The methodology is based on segmentation, shape feature extraction, pigment signature determination and neural network grouping; it attained 98.6% accuracy from a set of 53,869 images of 23 different microalgae representing the major algal phyla. In our opinion this methodology partly overcomes the lack of automated identification systems and is on the forefront of developing a computer-based image processing technique to automatically detect, recognize, identify and enumerate microalgae genera and species from all the divisions. This methodology could be useful for an appropriate and effective water resource management.

  3. Delivering HPC Systems to 132 Dock

    Energy Technology Data Exchange (ETDEWEB)

    Kettering, Brett Michael [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-03-23

    The intention of this document is to provide the subcontractor with information to enable trucks delivering HPC (High Performance Computing) systems to the 03-0132, computer rooms with the information they need to do so successfully.

  4. The design and performance of a prototype water Cherenkov optical time-projection chamber

    CERN Document Server

    Oberla, E

    2015-01-01

    A first experimental test of tracking relativistic charged particles by `drifting' Cherenkov photons in a water-based optical time-projection chamber (OTPC) has been performed at the Fermilab Test Beam Facility. The prototype OTPC detector consists of a 77~cm long, 28~cm diameter, 40~kg cylindrical water mass instrumented with a combination of commercial $5.1\\times5.1$~cm$^2$ micro-channel plate photo-multipliers (MCP-PMT) and $6.7\\times6.7$~cm$^2$ mirrors. Five MCP-PMTs are installed in two columns along the OTPC cylinder in a small-angle stereo configuration. A mirror is mounted opposite each MCP-PMT on the far side of the detector cylinder, effectively doubling the photo-detection efficiency and providing a time-resolved image of the Cherenkov light on the opposing wall. Each MCP-PMT is coupled to an anode readout consisting of thirty 50 Ohm microstrips. A 180-channel data acquisition system digitizes the MCP-PMT signals on one end of the microstrips using the PSEC4 waveform sampling-and-digitizing chip op...

  5. Variational space-time (dis)continuous Galerkin method for nonlinear free surface water waves

    Science.gov (United States)

    Gagarina, E.; Ambati, V. R.; van der Vegt, J. J. W.; Bokhove, O.

    2014-10-01

    A new variational finite element method is developed for nonlinear free surface gravity water waves using the potential flow approximation. This method also handles waves generated by a wave maker. Its formulation stems from Miles' variational principle for water waves together with a finite element discretization that is continuous in space and discontinuous in time. One novel feature of this variational finite element approach is that the free surface evolution is variationally dependent on the mesh deformation vis-à-vis the mesh deformation being geometrically dependent on free surface evolution. Another key feature is the use of a variational (dis)continuous Galerkin finite element discretization in time. Moreover, in the absence of a wave maker, it is shown to be equivalent to the second order symplectic Störmer-Verlet time stepping scheme for the free-surface degrees of freedom. These key features add to the stability of the numerical method. Finally, the resulting numerical scheme is verified against nonlinear analytical solutions with long time simulations and validated against experimental measurements of driven wave solutions in a wave basin of the Maritime Research Institute Netherlands.

  6. Effects of holding time and measurement error on culturing Legionella in environmental water samples.

    Science.gov (United States)

    Flanders, W Dana; Kirkland, Kimberly H; Shelton, Brian G

    2014-10-01

    Outbreaks of Legionnaires' disease require environmental testing of water samples from potentially implicated building water systems to identify the source of exposure. A previous study reports a large impact on Legionella sample results due to shipping and delays in sample processing. Specifically, this same study, without accounting for measurement error, reports more than half of shipped samples tested had Legionella levels that arbitrarily changed up or down by one or more logs, and the authors attribute this result to shipping time. Accordingly, we conducted a study to determine the effects of sample holding/shipping time on Legionella sample results while taking into account measurement error, which has previously not been addressed. We analyzed 159 samples, each split into 16 aliquots, of which one-half (8) were processed promptly after collection. The remaining half (8) were processed the following day to assess impact of holding/shipping time. A total of 2544 samples were analyzed including replicates. After accounting for inherent measurement error, we found that the effect of holding time on observed Legionella counts was small and should have no practical impact on interpretation of results. Holding samples increased the root mean squared error by only about 3-8%. Notably, for only one of 159 samples, did the average of the 8 replicate counts change by 1 log. Thus, our findings do not support the hypothesis of frequent, significant (≥= 1 log10 unit) Legionella colony count changes due to holding.

  7. Prospective randomized trial to compare the outcome and tolerability of delivering the same total dose of radiation in 61/2 weeks versus 51/2 weeks time in head and neck cancers

    Directory of Open Access Journals (Sweden)

    Manoj Gupta

    2015-01-01

    Full Text Available Background: Concurrent chemoradiation is currently considered to be the standard of care in the treatment of head and neck cancer. In developing countries like ours, a good number of patients cannot tolerate chemoradiation because of the poor general condition and financial constraints. Those patients are treated with radiation alone. The optimum radiotherapy (RT schedule for best local control and acceptable toxicity is not yet clear. We aimed to find out whether shortening of treatment time using six instead of five RT fractions per week improves the locoregional control in squamous cell carcinoma of head and neck. Materials and Methods: We conducted a prospective randomized study for a period of 2 years from September 2007 to August 2009 in 109 untreated patients of squamous cell carcinoma of head and neck with histologically confirmed diagnosis and no evidence of distant metastasis. Study group (55 patients received accelerated RT with 6 fractions per week (66 Gy/33#/51/2 weeks. Control group (54 patients received conventional RT with 5 fractions per week (66 Gy/33#/61/2 weeks. Tumor control, survival, acute and late toxicities were assessed. Results: At a median follow-up of 43 months, 29 patients (52.7% in the 6 fractions group and 24 patients (44.4% in the 5 fractions group were disease-free (P = 0.852. The benefit of shortening was higher for advanced disease control though it was not statistically significant. Grade 3 and 4 skin toxicity was significantly higher in the accelerated RT (70.9% arm as compared to conventional (35.1% arm (P = 0.04. Grade 3 mucositis was significantly higher in the accelerated RT arm (32.7% vs. 16.6%; P = 0.041. Those acute toxicities were managed conservatively. There was no difference in late toxicities between the two arms. Conclusion: Use of 6 fractions per week instead of 5 fractions per week is feasible, tolerable, and results in a better outcome in the patients of head and neck cancers.

  8. Water

    Science.gov (United States)

    ... www.girlshealth.gov/ Home Nutrition Nutrition basics Water Water Did you know that water makes up more ... to drink more water Other drinks How much water do you need? top Water is very important, ...

  9. Combined Effects of Numerical Method Type and Time Step on Water Stressed Actual Crop ET

    Directory of Open Access Journals (Sweden)

    B. Ghahraman

    2016-02-01

    Full Text Available Introduction: Actual crop evapotranspiration (Eta is important in hydrologic modeling and irrigation water management issues. Actual ET depends on an estimation of a water stress index and average soil water at crop root zone, and so depends on a chosen numerical method and adapted time step. During periods with no rainfall and/or irrigation, actual ET can be computed analytically or by using different numerical methods. Overal, there are many factors that influence actual evapotranspiration. These factors are crop potential evapotranspiration, available root zone water content, time step, crop sensitivity, and soil. In this paper different numerical methods are compared for different soil textures and different crops sensitivities. Materials and Methods: During a specific time step with no rainfall or irrigation, change in soil water content would be equal to evapotranspiration, ET. In this approach, however, deep percolation is generally ignored due to deep water table and negligible unsaturated hydraulic conductivity below rooting depth. This differential equation may be solved analytically or numerically considering different algorithms. We adapted four different numerical methods, as explicit, implicit, and modified Euler, midpoint method, and 3-rd order Heun method to approximate the differential equation. Three general soil types of sand, silt, and clay, and three different crop types of sensitive, moderate, and resistant under Nishaboor plain were used. Standard soil fraction depletion (corresponding to ETc=5 mm.d-1, pstd, below which crop faces water stress is adopted for crop sensitivity. Three values for pstd were considered in this study to cover the common crops in the area, including winter wheat and barley, cotton, alfalfa, sugar beet, saffron, among the others. Based on this parameter, three classes for crop sensitivity was considered, sensitive crops with pstd=0.2, moderate crops with pstd=0.5, and resistive crops with pstd=0

  10. Using water stable isotopes to assess evaporation and water residence time of lakes in EPA’s National Lakes Assessment.

    Science.gov (United States)

    Stable isotopes of water (18O and 2H) can be very useful in large-scale monitoring programs because water samples are easy to collect and water isotopes integrate information about basic hydrological processes such as evaporation as a percentage of inflow (E/I), w...

  11. Time-domain CFD computation and analysis of acoustic attenuation performance of water-filled silencers

    Institute of Scientific and Technical Information of China (English)

    刘晨; 季振林; 程垠钟; 刘胜兰

    2016-01-01

    The multi-dimensional time-domain computational fluid dynamics (CFD) approach is extended to calculate the acoustic attenuation performance of water-filled piping silencers. Transmission loss predictions from the time-domain CFD approach and the frequency-domain finite element method (FEM) agree well with each other for the dual expansion chamber silencer, straight-through and cross-flow perforated tube silencers without flow. Then, the time-domain CFD approach is used to investigate the effect of flow on the acoustic attenuation characteristics of perforated tube silencers. The numerical predictions demonstrate that the mean flow increases the transmission loss, especially at higher frequencies, and shifts the transmission loss curve to lower frequencies.

  12. Shallow-water acoustic tomography from angle measurements instead of travel-time measurements.

    Science.gov (United States)

    Aulanier, Florian; Nicolas, Barbara; Mars, Jérôme I; Roux, Philippe; Brossier, Romain

    2013-10-01

    For shallow-water waveguides and mid-frequency broadband acoustic signals, ocean acoustic tomography (OAT) is based on the multi-path aspect of wave propagation. Using arrays in emission and reception and advanced array processing, every acoustic arrival can be isolated and matched to an eigenray that is defined not only by its travel time but also by its launch and reception angles. Classically, OAT uses travel-time variations to retrieve sound-speed perturbations; this assumes very accurate source-to-receiver clock synchronization. This letter uses numerical simulations to demonstrate that launch-and-reception-angle tomography gives similar results to travel-time tomography without the same requirement for high-precision synchronization.

  13. On shallow water waves in a medium with time-dependent

    Directory of Open Access Journals (Sweden)

    Hamdy I. Abdel-Gawad

    2015-07-01

    Full Text Available In this paper, we studied the progression of shallow water waves relevant to the variable coefficient Korteweg–de Vries (vcKdV equation. We investigated two kinds of cases: when the dispersion and nonlinearity coefficients are proportional, and when they are not linearly dependent. In the first case, it was shown that the progressive waves have some geometric structures as in the case of KdV equation with constant coefficients but the waves travel with time dependent speed. In the second case, the wave structure is maintained when the nonlinearity balances the dispersion. Otherwise, water waves collapse. The objectives of the study are to find a wide class of exact solutions by using the extended unified method and to present a new algorithm for treating the coupled nonlinear PDE’s.

  14. Real-time microwave sensor system for detection of polluting substances in pure water

    Science.gov (United States)

    Neves, A. L.; Georget, E.; Cochinaire, N.; Sabouroux, P.

    2017-08-01

    In the present work, a real-time coaxial sensor for detecting foreign substances in aqueous solutions was developed and tested. This tool, based on a coaxial propagation line for determining the electromagnetic parameters of materials, was updated into a liquid permittivity monitoring sensor of continuous flow. A few solutions of different nature were tested, and while adding a liquid or electrolyte substance, named "pollutant," variations in the base solution were documented. Ethanol and water mixtures were used as reference, while the ability of the system to detect emulsions (such as oil in water solutions) was also evaluated. The system shows great potential for the quantification and qualification of liquid mixtures, having a threshold of reduced volume/volume fractions of foreign substances or pollutants, a property which is shown to be extremely useful in an analogue of high glycaemia (diabetes disease)—thus, opening the possibilities of monitoring biological liquids.

  15. Soil water retention measurements using a combined tensiometer-coiled time domain reflectometry probe

    DEFF Research Database (Denmark)

    Vaz, C.M.P.; Hopmans, J.W.; Macedo, A.

    2002-01-01

    The objective of the presented study was to develop a single probe that can be used to determine soil water retention curves in both laboratory and field conditions, by including a coiled time domain reflectometry (TDR) probe around the porous cup of a standard tensiometer. The combined tensiometer......-coiled TDR probe was constructed by wrapping two copper wires (0.8 mm diam. and 35.5 cm long) along a 5-cm long porous cup of a standard tensiometer. The dielectric constant of five different soils (Oso Flaco [coarse-loamy, mixed Typic Cryorthod-fine-loamy, mixed, mesic Ustollic Haplargid], Ottawa sand [F-50......-silica sand], Columbia [Coarse-loamy, mixed, superactive, nonacid, thermic Oxyaquic Xerofluvents], Lincoln sandy loam (sandy, mixed, thermic Typic Ustifluvents), and a washed sand - SR130) was measured with the combined tensiometer-coiled TDR probe (coil) as a function of the soil water content (0...

  16. Computational issues in complex water-energy optimization problems: Time scales, parameterizations, objectives and algorithms

    Science.gov (United States)

    Efstratiadis, Andreas; Tsoukalas, Ioannis; Kossieris, Panayiotis; Karavokiros, George; Christofides, Antonis; Siskos, Alexandros; Mamassis, Nikos; Koutsoyiannis, Demetris

    2015-04-01

    Modelling of large-scale hybrid renewable energy systems (HRES) is a challenging task, for which several open computational issues exist. HRES comprise typical components of hydrosystems (reservoirs, boreholes, conveyance networks, hydropower stations, pumps, water demand nodes, etc.), which are dynamically linked with renewables (e.g., wind turbines, solar parks) and energy demand nodes. In such systems, apart from the well-known shortcomings of water resources modelling (nonlinear dynamics, unknown future inflows, large number of variables and constraints, conflicting criteria, etc.), additional complexities and uncertainties arise due to the introduction of energy components and associated fluxes. A major difficulty is the need for coupling two different temporal scales, given that in hydrosystem modeling, monthly simulation steps are typically adopted, yet for a faithful representation of the energy balance (i.e. energy production vs. demand) a much finer resolution (e.g. hourly) is required. Another drawback is the increase of control variables, constraints and objectives, due to the simultaneous modelling of the two parallel fluxes (i.e. water and energy) and their interactions. Finally, since the driving hydrometeorological processes of the integrated system are inherently uncertain, it is often essential to use synthetically generated input time series of large length, in order to assess the system performance in terms of reliability and risk, with satisfactory accuracy. To address these issues, we propose an effective and efficient modeling framework, key objectives of which are: (a) the substantial reduction of control variables, through parsimonious yet consistent parameterizations; (b) the substantial decrease of computational burden of simulation, by linearizing the combined water and energy allocation problem of each individual time step, and solve each local sub-problem through very fast linear network programming algorithms, and (c) the substantial

  17. Time lapse inversion of 2D ERT data for monitoring river water infiltration

    Science.gov (United States)

    Wallin, E. L.; Johnson, T. C.; Greenwood, W. J.

    2011-12-01

    Uranium transport in the 300 area is driven by both the chemical and physical effects of stage fluctuations in the Columbia River and resulting river water, ground water interaction. Because river water is less conductive than groundwater, it serves as a natural tracer that can be imaged using surface ERT. We've monitored 4 lines for 4 months over the high stage spring runoff interval to identify preferred flowpaths for river water intrusion. The four lines overlay former waste disposal sites including the processing ponds and sanitary leach trenches. We have used this ERT data set to investigate two methods of time lapse inversion, sequential and all-at-once. Each technique is a model difference approach as opposed to a data difference inversion approach. Both use a regularized inversion with model constraints that regularize spatially and temporally. For the sequential inversion, the starting and reference models are taken from the previous inversion. Both starting and reference models are taken from the first inversion for the all-at-once method. In either case an inversion is triggered if data misfit from the starting model exceeds the chi-squared convergence criteria. It was found that starting with a relatively smooth model provided better visualization of temporal conductivity changes when inverting all data sets with the same initial model, while an initial model exhibiting smaller data misfit may be used successfully as the starting point for sequential inversion. Inland conductivity changes within model cells were found to be highly correlated with river stage, and when paired with the characterization model, provide evidence of waste trenches, the processing pond, as well as the existence of a paleo-channel incised into the Ringold Formation and dipping structures on the Hanford-Ringold contact that provide preferred pathways for river water intrusion.

  18. Micro- and nano- second time scale, high power electrical wire explosions in water.

    Science.gov (United States)

    Grinenko, Alon; Efimov, Sergey; Sayapin, Arkadii; Fedotov, Alexander; Gurovich, Viktor; Krasik, Yakov

    2006-10-01

    Experimental and magneto-hydro-dynamic simulation results of micro- and nanosecond time scale underwater electrical Al, Cu and W wires explosions are presented. A capacitor bank with stored energy up to 6 kJ (discharge current up to 80 kA with 2.5 μs quarter period) was used in microsecond time scale experiments and water forming line generator with current amplitude up to 100 kA and pulse duration of 100 ns were used in nanosecond time scale experiments. Extremely high energy deposition of up to 60 times the atomization enthalpy was registered in nanosecond time scale explosions. A discharge channel evolution and surface temperature were analyzed by streak shadow imaging and using fast photo-diode with a set of interference filters, respectively. Microsecond time scale electrical explosion of cylindrical wire array showed extremely high pressure of converging shock waves at the axis, up to 0.2 MBar. A 1D and 2D magneto-hydro-dynamic simulation demonstrated good agreement with such experimental parameters as discharge channel current, voltage, radius, and temperature.

  19. A Stepwise Time Series Regression Procedure for Water Demand Model Identification

    Science.gov (United States)

    Miaou, Shaw-Pin

    1990-09-01

    Annual time series water demand has traditionally been studied through multiple linear regression analysis. Four associated model specification problems have long been recognized: (1) the length of the available time series data is relatively short, (2) a large set of candidate explanatory or "input" variables needs to be considered, (3) input variables can be highly correlated with each other (multicollinearity problem), and (4) model error series are often highly autocorrelated or even nonstationary. A step wise time series regression identification procedure is proposed to alleviate these problems. The proposed procedure adopts the sequential input variable selection concept of stepwise regression and the "three-step" time series model building strategy of Box and Jenkins. Autocorrelated model error is assumed to follow an autoregressive integrated moving average (ARIMA) process. The stepwise selection procedure begins with a univariate time series demand model with no input variables. Subsequently, input variables are selected and inserted into the equation one at a time until the last entered variable is found to be statistically insignificant. The order of insertion is determined by a statistical measure called between-variable partial correlation. This correlation measure is free from the contamination of serial autocorrelation. Three data sets from previous studies are employed to illustrate the proposed procedure. The results are then compared with those from their original studies.

  20. Effect of bath water temperature and immersion time on bend angle during cartilage thermoforming

    Science.gov (United States)

    Wright, Ryan; Protsenko, Dmitry E.; Diaz, Sergio H.; Ho, K.-H. K.; Wong, Brian J. F.

    2003-06-01

    Much interest has been placed on the permanent reshaping of cartilage for facial reconstructive surgery using lasers. An alternate way to reshape cartilage is to heat the tissue in a water bath while maintaining the specimen in mechanical deformation. The objective of this study was to measure the circular bend angle of a cartilage specimen produced by varying the temperature and immersion time in a water bath. Rectangular cartilage specimens (18 x 4 x 1.5 mm) were bent in a semicircular jig (diameter 11 mm) and then immersed in a saline bath at temperatures between 50 - 80°C. The immersion times were 5, 20, 80, 160 and 320 seconds at each temperature. The distance between the ends of each specimen was measured before reshaping and at 15 minutes and 24 hours after immersion in order to calculate the resulting bend angle. The largest bend angle occurred in the specimen immersed in saline at 74°C for 320 seconds, illustrating a definite thermal influence on the physical shape of the cartilage sample. The critical immersion times and bath temperatures where definite shape change occurred were determined.

  1. RECENT DEVELOPMENTS IN HYDROWEB DATABASE Water level time series on lakes and reservoirs (Invited)

    Science.gov (United States)

    Cretaux, J.; Arsen, A.; Calmant, S.

    2013-12-01

    We present the current state of the Hydroweb database as well as developments in progress. It provides offline water level time series on rivers, reservoirs and lakes based on altimetry data from several satellites (Topex/Poseidon, ERS, Jason-1&2, GFO and ENVISAT). The major developments in Hydroweb concerns the development of an operational data centre with automatic acquisition and processing of IGDR data for updating time series in near real time (both for lakes & rivers) and also use of additional remote sensing data, like satellite imagery allowing the calculation of lake's surfaces. A lake data centre is under development at the Legos in coordination with Hydrolare Project leaded by SHI (State Hydrological Institute of the Russian Academy of Science). It will provide the level-surface-volume variations of about 230 lakes and reservoirs, calculated through combination of various satellite images (Modis, Asar, Landsat, Cbers) and radar altimetry (Topex / Poseidon, Jason-1 & 2, GFO, Envisat, ERS2, AltiKa). The final objective is to propose a data centre fully based on remote sensing technique and controlled by in situ infrastructure for the Global Terrestrial Network for Lakes (GTN-L) under the supervision of WMO and GCOS. In a longer perspective, the Hydroweb database will integrate data from future missions (Jason-3, Jason-CS, Sentinel-3A/B) and finally will serve for the design of the SWOT mission. The products of hydroweb will be used as input data for simulation of the SWOT products (water height and surface variations of lakes and rivers). In the future, the SWOT mission will allow to monitor on a sub-monthly basis the worldwide lakes and reservoirs bigger than 250 * 250 m and Hydroweb will host water level and extent products from this

  2. Monitoring groundwater-surface water interaction using time-series and time-frequency analysis of transient three-dimensional electrical resistivity changes

    Science.gov (United States)

    Johnson, Timothy C.; Slater, Lee D.; Ntarlagiannis, Dimitris; Day-Lewis, Frederick D.; Elwaseif, Mehrez

    2012-01-01

    Time-lapse resistivity imaging is increasingly used to monitor hydrologic processes. Compared to conventional hydrologic measurements, surface time-lapse resistivity provides superior spatial coverage in two or three dimensions, potentially high-resolution information in time, and information in the absence of wells. However, interpretation of time-lapse electrical tomograms is complicated by the ever-increasing size and complexity of long-term, three-dimensional (3-D) time series conductivity data sets. Here we use 3-D surface time-lapse electrical imaging to monitor subsurface electrical conductivity variations associated with stage-driven groundwater-surface water interactions along a stretch of the Columbia River adjacent to the Hanford 300 near Richland, Washington, USA. We reduce the resulting 3-D conductivity time series using both time-series and time-frequency analyses to isolate a paleochannel causing enhanced groundwater-surface water interactions. Correlation analysis on the time-lapse imaging results concisely represents enhanced groundwater-surface water interactions within the paleochannel, and provides information concerning groundwater flow velocities. Time-frequency analysis using the Stockwell (S) transform provides additional information by identifying the stage periodicities driving groundwater-surface water interactions due to upstream dam operations, and identifying segments in time-frequency space when these interactions are most active. These results provide new insight into the distribution and timing of river water intrusion into the Hanford 300 Area, which has a governing influence on the behavior of a uranium plume left over from historical nuclear fuel processing operations.

  3. Fast Evaluation of Time-Domain Green Function for Finite Water Depth

    Institute of Scientific and Technical Information of China (English)

    滕斌; 韩凌; 勾莹

    2003-01-01

    For computation of large amplitude motions of ships fastened to a dock, a fast evaluation scheme is implemented for computation of the time-domain Green function for finite water depth. Based on accurate evaluation of the Green function directly, a fast approximation method for the Green function is developed by use of Chebyshev polynomials. Examinations are carried out of the accuracy of the Green function and its derivatives from the scheme. It is shown that when an appropriate number of polynomial terms are used, very accurate approximation can be obtained.

  4. Calibrating a Salt Water Intrusion Model with Time-Domain Electromagnetic Data

    DEFF Research Database (Denmark)

    Herckenrath, Daan; Odlum, Nick; Nenna, Vanessa

    2013-01-01

    Salt water intrusion models are commonly used to support groundwater resource management in coastal aquifers. Concentration data used for model calibration are often sparse and limited in spatial extent. With airborne and ground-based electromagnetic surveys, electrical resistivity models can...... are transformed to an electrical resistivity model, after which a geophysical forward response is calculated and compared with the measured geophysical data. This approach was applied for a field site in Santa Cruz County, California, where a time-domain electromagnetic (TDEM) dataset was collected...

  5. Time resolved study of hydroxyl radical oxidation of oleic acid at the air-water interface

    Science.gov (United States)

    Zhang, Xinxing; Barraza, Kevin M.; Upton, Kathleen T.; Beauchamp, J. L.

    2017-09-01

    The ubiquity of oleic acid (OA) renders it a poster child for laboratory investigations of environmental oxidation chemistry. In the current study, mechanistic details of the oxidation of OA by hydroxyl radicals at the air-water interface are investigated using field-induced droplet ionization mass spectrometry (FIDI-MS). Products from OH oxidation of both unsaturated and saturated carbon atoms are identified, and mechanisms for both types of oxidation processes are proposed. Uptake of oxygen in the interfacial layer increases linearly with time, consistent with Langmuir-Hinshelwood reaction kinetics. These results provide fundamental knowledge relating to OH initiated degradation of fatty acids in atmospheric aerosols.

  6. A Novel Experimental Technique to Monitor the Time-Dependent Water and Ions Uptake when Shale Interacts with Aqueous Solutions

    Science.gov (United States)

    AL-Bazali, Talal

    2013-09-01

    The time-dependent water and ions uptake when shale interacts with aqueous solutions is quantified using a combination of immersion and gravimetric techniques. Results show that when shale interacts with salt solutions, water uptake into shale goes through three distinct stages; water movement out of shale (due to chemical osmosis), water movement into shale (due to diffusion osmosis) and stationary state (equilibrium stage). This work shows that chemical osmosis dominates water movement in early times while diffusion osmosis takes over later. In addition, it is shown that the amount of water movement due to chemical osmosis depends on the chemical potential gradient while the amount of water movement due to diffusion osmosis is highly related to the ionic concentration imbalance. In addition, the amount of ions uptake into shale at equilibrium is shown to depend on the type and concentration of salt solution. Furthermore, this work shows that potassium ion has a strengthening effect on shale while sodium and calcium ions have a weakening effect on shale. Results also show that the shale's compressive strength alteration is greatly influenced by the type and concentration of the salt solution. Furthermore, the shale's compressive strength alteration is shown to be time dependent and correlates very well with the time-dependent flux of water and ions. Finally, it is shown that chemical osmosis and diffusion osmosis take place simultaneously when shale interacts with water-based muds. The overall impact on shale stability is governed by the net water flow resulting from chemical osmosis and diffusion osmosis.

  7. Fiber Optics Deliver Real-Time Structural Monitoring

    Science.gov (United States)

    2013-01-01

    To alter the shape of aircraft wings during flight, researchers at Dryden Flight Research Center worked on a fiber optic sensor system with Austin-based 4DSP LLC. The company has since commercialized a new fiber optic system for monitoring applications in health and medicine, oil and gas, and transportation, increasing company revenues by 60 percent.

  8. Bayesian Maximum Entropy space/time estimation of surface water chloride in Maryland using river distances.

    Science.gov (United States)

    Jat, Prahlad; Serre, Marc L

    2016-12-01

    Widespread contamination of surface water chloride is an emerging environmental concern. Consequently accurate and cost-effective methods are needed to estimate chloride along all river miles of potentially contaminated watersheds. Here we introduce a Bayesian Maximum Entropy (BME) space/time geostatistical estimation framework that uses river distances, and we compare it with Euclidean BME to estimate surface water chloride from 2005 to 2014 in the Gunpowder-Patapsco, Severn, and Patuxent subbasins in Maryland. River BME improves the cross-validation R(2) by 23.67% over Euclidean BME, and river BME maps are significantly different than Euclidean BME maps, indicating that it is important to use river BME maps to assess water quality impairment. The river BME maps of chloride concentration show wide contamination throughout Baltimore and Columbia-Ellicott cities, the disappearance of a clean buffer separating these two large urban areas, and the emergence of multiple localized pockets of contamination in surrounding areas. The number of impaired river miles increased by 0.55% per year in 2005-2009 and by 1.23% per year in 2011-2014, corresponding to a marked acceleration of the rate of impairment. Our results support the need for control measures and increased monitoring of unassessed river miles.

  9. Changes in Hydrological time series - A challenge for water management in the

    Science.gov (United States)

    Kasei, R.; Diekkrüger, B.

    2009-04-01

    Runoff could be a quick response of river basins to climate change. Drought events in some selected sub-catchments of the Volta basin in West Africa were analyzed to detect if any, the effects of climate variations on runoff regimes especially during low flows in the last decades. Statistically, significant changes have been realized in the last centaury (Oguntunde et al, 2006). As the hydrological conditions in the Volta have not been favourable in the last decade, it has become necessary that attention is given to water management strategies as problems may arise if this situation continues or shifts into more water stress conditions predicted by the climate model ensemble used by IPCC (2007) for the region. If there is a general concession that hydrological conditions across the world is changing, then concepts on water management need to fit the changing situations. The growing number of reservoirs in the basin would need improved and flexible methods of reservoir operations. One concept based on the application of fuzzy sets for estimation of adjusted real-time reservoir operation is presented.

  10. Influence of water activity, temperature and time on mycotoxins production on barley rootlets.

    Science.gov (United States)

    Ribeiro, J M M; Cavaglieri, L R; Fraga, M E; Direito, G M; Dalcero, A M; Rosa, C A R

    2006-02-01

    The objective of this study was to determine the ochratoxin (OT) and aflatoxin (AF) production by three strains of Aspergillus spp. under different water activities, temperature and incubation time on barley rootlets (BR). Aspergillus ochraceus and Aspergillus flavus were able to produce mycotoxins on BR. Aspergillus ochraceus produced ochratoxin A (OTA) at 0.80 water activity (a(w)), at 25 and 30 degrees C as optimal environmental conditions. The OTA production varies at different incubation days depending on a(w). Aflatoxin B(1) (AFB1) accumulation was obtained at 25 degrees C, at 0.80 and 0.95 a(w), after 14 and 21 incubation days respectively. Temperature was a critical factor influencing OTA and AFB(1) production. This study demonstrates that BR support OTA and AFB(1) production at relatively low water activity (0.80 a(w)) and high temperatures (25-30 degrees C). The study of ecophysiological parameters and their interactions would determine the prevailing environmental factors, which enhance the mycotoxin production on BR used as animal feed.

  11. Influence of water logging time on the growth of candel seedlings

    Institute of Scientific and Technical Information of China (English)

    CHEN Luzhen; WANG Wenqing; LIN Peng

    2004-01-01

    Influence ofwaterlogging time on the growth ofKandeliacandel(L.) Druce seedlings grown for 70 d in the artificial-tidal tanks' simulated semidiumal tide under greenhouse is studied. Sand and soil act as the substrate and artificial sea-water with salinity of 15 is used in cultivation. Shorter waterlogging time (inundated for about 2 ~ 4 h) promotes thegrowth of K. candel seedlings, while longer time(inundated more than 8 h) or no waterlogging(0 h) inhibits theirgrowth. The number and length of aerating roots increase with the increase ofwaterlogging time. Under existing condi-tions, the optimalwaterlogging time for the growth of K. canoel seedlings is about 2 ~ 4 h in every tide cycle. Com-pared with other treatments, the 2 h sanded treatments obtain the highest biomass of seedlings, have the lowest massloss ofhypocotyl and broaden the photosynthetic area by increasing the area per leaf after 70-d cultivation. And the soiltreatments have the similar tendeney. However, waterlogging for 8 h in every tide cycle is critieal for normal develop-ment of seedlings. K. candel seedlings are highly tolerant to waterlogging and a proper waterlogging is beneficial to thegrowth ofK. candel seedlings.

  12. Real-time visualization of Karman vortex street in water flow field by using digital holography.

    Science.gov (United States)

    Sun, Weiwei; Zhao, Jianlin; Di, Jianglei; Wang, Qian; Wang, Le

    2009-10-26

    The Karman vortex street generated behind a circular cylinder in water flow field is displayed and analyzed in real time by means of digital holography. Using a modified Mach-Zehnder interferometer, a digital hologram of the flow field in still state and then a video of continuous digital holograms in flowing state are recorded at 14.6 frames per second by a CCD camera, respectively. A series of sequential phase maps of the flow field are numerically reconstructed from the holograms in different states above based on double-exposure holographic interferometry. By seriating these phase maps, the shape and evolution of Karman vortex street can be displayed in real time in the form of a movie. For comparison, numerical simulation of the Karman vortex street under the boundary conditions adopted in the experiment is also presented, and the consistent results indicate that the experimental observation of Karman vortex street by using digital holography is successful and feasible.

  13. Cardiorespiratory responses and reduced apneic time to cold-water face immersion after high intensity exercise.

    Science.gov (United States)

    Konstantinidou, Sylvia; Soultanakis, Helen

    2016-01-01

    Apnea after exercise may evoke a neurally mediated conflict that may affect apneic time and create a cardiovascular strain. The physiological responses, induced by apnea with face immersion in cold water (10 °C), after a 3-min exercise bout, at 85% of VO2max,were examined in 10 swimmers. A pre-selected 40-s apnea, completed after rest (AAR), could not be met after exercise (AAE), and was terminated with an agonal gasp reflex, and a reduction of apneic time, by 75%. Bradycardia was evident with immersion after both, 40-s of AAR and after AAE (Pexercise without apnea was not equally elevated. The activation of neurally opposing functions as those elicited by the diving reflex after high intensity exercise may create an autonomic conflict possibly related to oxygen-conserving reflexes stimulated by the trigeminal nerve, and those elicited by exercise.

  14. Biological half-time of tritiated water: comparison of hyperthyroid and hypothyroid patients

    Energy Technology Data Exchange (ETDEWEB)

    Eberstadt, P.; Fernandez, M.V.G.; Gonzalez, O.

    1986-01-01

    The half-time values of tritiated water were explored in eleven hyperthyroid patients and in two hypothyroid ones. For reasons of comparability the numbers are expressed in days per square meter (d/m/sup 2/) of body surface. Against the estimated 5.4d/m/sup 2/ in normal subjects, the hyperthyroids reflected 3.9+-0.66 and the two determinations of hypothyroids were 6.42 and 7.13, respectively. During the study neither diagnostic nor therapeutic procedures were ever postponed. The half-time values are not representative of extreme conditions in hyper- or hypothyroids, but are sufficiently clear to indicate well-defined differences from normal people. The total exposure to radiation for the exploratory procedure was minimal, estimated at less than 12 mrem for the normal standard man.

  15. Modeling the time-varying interaction between surface water and groundwater bodies

    Science.gov (United States)

    Gliege, Steffen; Steidl, Jörg; Lischeid, Gunnar; Merz, Christoph

    2016-04-01

    The countless kettle holes (small lakes) in the Late Pleistocene landscapes of Northern Europe have important ecological and hydrological functions. On the one hand they act as depressions in which water and solutes of mainly agriculturally used catchments accumulate. On the other hand they operate as biochemical reactors with respect to greenhouse gas emissions, carbon sequestration, and as major sinks for nutrients and contaminants. Even small kettle holes often are hydraulically connected to the uppermost groundwater system: Groundwater discharges into the kettle hole on one side, and the aquifer is recharged from the kettle hole water body on the other side. Thus kettle hole biogeochemical processes are both affected by groundwater and vice versa. Groundwater flow direction and velocity into and out of the kettle hole often is not stable over time. Groundwater flow direction might reverse at the downstream part, resulting in repeated recycling of groundwater and corresponding solute turnover within the kettle holes. A sound understanding of this intricate interplay is a necessary prerequisite for better understanding of the biogeochemistry of this terrestrial-aquatic interface. A numerical experiment was used to quantify the lateral solute exchange between a kettle hole and the surrounding groundwater. A vertical cross section through the real existing catchment of a kettle hole was chosen. Glacial till represents the lower boundary. The heterogeneity of the subsurface was reproduced by various parameterizations of the soil hydraulic properties as well as varying the thickness of the unconfined aquifer or the lateral boundary conditions. In total 24 different parameterizations were implemented in the modeling software HydroGeoSphere (HGS). HGS is suitable to calculate the fluid exchange between surface and subsurface simultaneously and in a physically based way. The simulation runs were done for the period from November 1994 to October 2014. All results were

  16. BUSINESS PROCESS RE-ENGINEERING: THE TECHNIQUE TO IMPROVE DELIVERING SPEED OF SERVICE INDUSTRY IN TANZANIA

    OpenAIRE

    Joseph Joseph Sungau; Philibert C. Ndunguru; Joseph Kimeme

    2013-01-01

    Problem statement: Delivering speed is very critical in today’s business environment. In most cases, service organizations and customers are sensitive to time spent at delivering or receiving a service. Therefore, service organizations must change in order to meet this challenge. Overtime, service organizations have worked hard to identify techniques that enhance service delivering speed for improved performance. Business process re-engineering is one of such techniques that improves busines...

  17. Noble gas residence times of saline waters within crystalline bedrock, Outokumpu Deep Drill Hole, Finland

    Science.gov (United States)

    Kietäväinen, Riikka; Ahonen, Lasse; Kukkonen, Ilmo T.; Niedermann, Samuel; Wiersberg, Thomas

    2014-11-01

    Noble gas residence times of saline groundwaters from the 2516 m deep Outokumpu Deep Drill Hole, located within the Precambrian crystalline bedrock of the Fennoscandian Shield in Finland, are presented. The accumulation of radiogenic (4He, 40Ar) and nucleogenic (21Ne) noble gas isotopes in situ together with the effects of diffusion are considered. Fluid samples were collected from depths between 180 and 2480 m below surface, allowing us to compare the modelled values with the measured concentrations along a vertical depth profile. The results show that while the concentrations in the upper part are likely affected by diffusion, there is no indication of diffusive loss at or below 500 m depth. Furthermore, no mantle derived gases were found unequivocally. Previous studies have shown that distinct vertical variation occurs both in geochemistry and microbial community structuring along the drill hole, indicating stagnant waters with no significant exchange of fluids between different fracture systems or with surface waters. Therefore in situ accumulation is the most plausible model for the determination of noble gas residence times. The results show that the saline groundwaters in Outokumpu are remarkably old, with most of the samples indicating residence times between ∼20 and 50 Ma. Although being first order approximations, the ages of the fluids clearly indicate that their formation must predate more recent events, such as Quaternary glaciations. Isolation within the crust since the Eocene-Miocene epochs has also direct implications to the deep biosphere found at Outokumpu. These ecosystems must have been isolated for a long time and thus very likely rely on energy and carbon sources such as H2 and CO2 from groundwater and adjacent bedrock rather than from the ground surface.

  18. Water Resources in Lake Tana Basin: Statistical Analysis of Hydrological and Meteorological Time Series

    Science.gov (United States)

    Tigabu, T. B.; Hörmann, G.; Fohrer, N.

    2015-12-01

    Nowadays, time series environmental flow analysis is becoming one of the most important tasks in ecohydrology in order to design process based system solutions. Thus, the purpose of this research paper was to understand temporal and spatial variability of stream flows, rainfall, and inflows and outflows to and from the Lake Tana basin. Autocorrelation and cross correlation tests were applied for the long years' daily stream flows and rainfall using R languages. These methods were used to see how the stream flow or rainfall data were serially correlated and rainfall, stream flow and lake level time series data were cross correlated with each other. Autocorrelation tests of daily rainfall were carried out for many rainfall stations and the outputs indicate that there are no spikes showing significant seasonal signals. The annual rainfall map was produced for the whole catchment based on long years' records at different stations inside the catchment using inverse distance weighted interpolation (IDW) method in the GIS environment. Based on this map there is high spatial variability of annual rainfall in the catchment. The average maximum, minimum and mean annual rainfall values are 1506.4, 798.7, and 1238.1 mm respectively. According to the cross correlation tests done for stream flow & rainfall, better correlations were observed after 15 to 30 days lag time due to late response of the catchment for runoff generation. The study also prevailed that the Lake Tana water level and Blue Nile discharge at Bahir Dar station have positive cross correlation with maximum value at time lag of zero. There is a dramatic drop in the lake level and stream flow volume at the same location since 2000 due to human induced local climate forcing. In general, this research indicates that there is high temporal and spatial variability in rainfall, Lake water level and stream flows.

  19. Social Media–Delivered Sexual Health Intervention

    Science.gov (United States)

    Bull, Sheana S.; Levine, Deborah; Black, Sandra R.; Schmiege, Sarah; Santelli, John

    2012-01-01

    Background Youth are using social media regularly and represent a group facing substantial risk for sexually transmitted infection (STI). Although there is evidence that the Internet can be used effectively in supporting healthy sexual behavior, this hasn't yet extended to social networking sites. Purpose To determine whether STI prevention messages delivered via Facebook are efficacious in preventing increases in sexual risk behavior at 2 and 6 months. Design Cluster RCT, October 2010–May 2011. Setting/participants Individuals (seeds) recruited in multiple settings (online, via newspaper ads and face-to-face) were asked to recruit three friends, who in turn recruited additional friends, extending three waves from the seed. Seeds and waves of friends were considered networks and exposed to either the intervention or control condition. Intervention Exposure to Just/Us, a Facebook page developed with youth input, or to control content on 18–24 News, a Facebook page with current events for 2 months. Main outcome measures Condom use at last sex and proportion of sex acts protected by condoms. Repeated measures of nested data were used to model main effects of exposure to Just/Us and time by treatment interaction. Results 1578 participants enrolled, with 14% Latino and 35% African-American; 75% of participants completed at least one study follow-up. Time by treatment effects were observed at 2 months for condom use (intervention 68% vs control 56%, p=0.04) and proportion of sex acts protected by condoms (intervention 63% vs control 57%, p=0.03) where intervention participation reduced the tendency for condom use to decrease over time. No effects were seen at 6 months. Conclusions Social networking sites may be venues for efficacious health education interventions. More work is needed to understand what elements of social media are compelling, how network membership influences effects, and whether linking social media to clinical and social services can be beneficial

  20. Real-time 4D ERT monitoring of river water intrusion into a former nuclear disposal site using a transient warping-mesh water table boundary (Invited)

    Science.gov (United States)

    Johnson, T.; Hammond, G. E.; Versteeg, R. J.; Zachara, J. M.

    2013-12-01

    The Hanford 300 Area, located adjacent to the Columbia River in south-central Washington, USA, is the site of former research and uranium fuel rod fabrication facilities. Waste disposal practices at site included discharging between 33 and 59 metric tons of uranium over a 40 year period into shallow infiltration galleries, resulting in persistent uranium contamination within the vadose and saturated zones. Uranium transport from the vadose zone to the saturated zone is intimately linked with water table fluctuations and river water intrusion driven by upstream dam operations. As river stage increases, the water table rises into the vadose zone and mobilizes contaminated pore water. At the same time, river water moves inland into the aquifer, and river water chemistry facilitates further mobilization by enabling uranium desorption from contaminated sediments. As river stage decreases, flow moves toward the river, ultimately discharging contaminated water at the river bed. River water specific conductance at the 300 Area varies around 0.018 S/m whereas groundwater specific conductance varies around 0.043 S/m. This contrast provides the opportunity to monitor groundwater/river water interaction by imaging changes in bulk conductivity within the saturated zone using time-lapse electrical resistivity tomography. Previous efforts have demonstrated this capability, but have also shown that disconnecting regularization constraints at the water table is critical for obtaining meaningful time-lapse images. Because the water table moves with time, the regularization constraints must also be transient to accommodate the water table boundary. This was previously accomplished with 2D time-lapse ERT imaging by using a finely discretized computational mesh within the water table interval, enabling a relatively smooth water table to be defined without modifying the mesh. However, in 3D this approach requires a computational mesh with an untenable number of elements. In order to

  1. Real-time Control of Combined Water Quantity & Quality in Open Channels

    NARCIS (Netherlands)

    Xu, M.

    2013-01-01

    Fresh water supply and flood protection are two central issues in water management. Society needs more and more fresh water and a safe water system to guarantee a better life. A more severe climate will result in more droughts and extreme storms. As a consequence, salt water intrusion will increase.

  2. Real-time Control of Combined Water Quantity & Quality in Open Channels

    NARCIS (Netherlands)

    Xu, M.

    2013-01-01

    Fresh water supply and flood protection are two central issues in water management. Society needs more and more fresh water and a safe water system to guarantee a better life. A more severe climate will result in more droughts and extreme storms. As a consequence, salt water intrusion will increase.

  3. Time-resolved Fast Neutron Radiography of Air-water Two-phase Flows

    Science.gov (United States)

    Zboray, Robert; Dangendorf, Volker; Mor, Ilan; Tittelmeier, Kai; Bromberger, Benjamin; Prasser, Horst-Michael

    Neutron imaging, in general, is a useful technique for visualizing low-Z materials (such as water or plastics) obscured by high-Z materials. However, when significant amounts of both materials are present and full-bodied samples have to be examined, cold and thermal neutrons rapidly reach their applicability limit as the samples become opaque. In such cases one can benefit from the high penetrating power of fast neutrons. In this work we demonstrate the feasibility of time-resolved, fast neutron radiography of generic air-water two-phase flows in a 1.5 cm thick flow channel with Aluminum walls and rectangular cross section. The experiments have been carried out at the high-intensity, white-beam facility of the Physikalisch-Technische Bundesanstalt, Germany. Exposure times down to 3.33 ms have been achieved at reasonable image quality and acceptable motion artifacts. Different two-phase flow regimes such as bubbly slug and churn flows have been examined. Two-phase flow parameters like the volumetric gas fraction, bubble size and bubble velocities have been measured.

  4. The waiting time of the ship on port entrance at required water level

    Directory of Open Access Journals (Sweden)

    Wiesław GALOR

    2008-01-01

    Full Text Available The safety of a ship which manoeuvres within a port area depends to a large extent on the underkeel clearance (UKC. Ports have been built to handle ships of specific maximum parameters. In many cases, however, the existing ports face the need to accept ships larger than those they were designed for. The construction of newharbours is limited by both natural conditions and exceedingly high estimated costs. The main restriction for handling larger ships is the depth of port basins, directly affecting the safety of the manoeuvring ship. The minimum underkeel clearance is most often specified by port regulations as a constant value. However, depending on the prevailingconditions, mainly water level, this required UKC value can be reduced. Thus, ships of larger draft will be allowed to enter. This article / paper present a method of UKC optimization with two restrictions: maximum permitted navigational risk and the time ofwaiting for sufficient water level. An example has been given in reference to ship’s waiting time probability for the port of Świnoujście.

  5. Insights into the water mean transit time in a high-elevation tropical ecosystem

    Science.gov (United States)

    Mosquera, Giovanny M.; Segura, Catalina; Vaché, Kellie B.; Windhorst, David; Breuer, Lutz; Crespo, Patricio

    2016-07-01

    This study focuses on the investigation of the mean transit time (MTT) of water and its spatial variability in a tropical high-elevation ecosystem (wet Andean páramo). The study site is the Zhurucay River Ecohydrological Observatory (7.53 km2) located in southern Ecuador. A lumped parameter model considering five transit time distribution (TTD) functions was used to estimate MTTs under steady-state conditions (i.e., baseflow MTT). We used a unique data set of the δ18O isotopic composition of rainfall and streamflow water samples collected for 3 years (May 2011 to May 2014) in a nested monitoring system of streams. Linear regression between MTT and landscape (soil and vegetation cover, geology, and topography) and hydrometric (runoff coefficient and specific discharge rates) variables was used to explore controls on MTT variability, as well as mean electrical conductivity (MEC) as a possible proxy for MTT. Results revealed that the exponential TTD function best describes the hydrology of the site, indicating a relatively simple transition from rainfall water to the streams through the organic horizon of the wet páramo soils. MTT of the streams is relatively short (0.15-0.73 years, 53-264 days). Regression analysis revealed a negative correlation between the catchment's average slope and MTT (R2 = 0.78, p < 0.05). MTT showed no significant correlation with hydrometric variables, whereas MEC increases with MTT (R2 = 0.89, p < 0.001). Overall, we conclude that (1) baseflow MTT confirms that the hydrology of the ecosystem is dominated by shallow subsurface flow; (2) the interplay between the high storage capacity of the wet páramo soils and the slope of the catchments provides the ecosystem with high regulation capacity; and (3) MEC is an efficient predictor of MTT variability in this system of catchments with relatively homogeneous geology.

  6. Delay Efficient Method for Delivering IPTV Services

    Directory of Open Access Journals (Sweden)

    Sangamesh

    2014-07-01

    Full Text Available Internet Protocol Television (IPTV is a system through which Internet television services are delivered using the architecture and networking methods of the Internet Protocol Suite over a packet-switched network infrastructure, e.g., the Internet and broadband Internet access networks, instead of being delivered through traditional radio frequency broadcast, satellite signal, and cable television (CATV formats. IPTV provides mainly three services: live TV, catch up TV, and video on demand (VoD.This paper focuses on delivering the live TV services by exploiting the virtualised cloud architecture of the IPTV and statistical multiplexing. The VoD tasks are prescheduled so that there will be less Instant Channel Change (ICC delay. We select a proper scheduling algorithm for rescheduling the VoD tasks. We then implement the scheduling algorithm for preshifting the VoD tasks.

  7. Storm water management in an urban catchment: effects of source control and real-time management of sewer systems on receiving water quality.

    Science.gov (United States)

    Frehmann, T; Nafo, I; Niemann, A; Geiger, W F

    2002-01-01

    For the examination of the effects of different storm water management strategies in an urban catchment area on receiving water quality, an integrated simulation of the sewer system, wastewater treatment plant and receiving water is carried out. In the sewer system real-time control measures are implemented. As examples of source control measures the reduction of wastewater and the reduction of the amount of impervious surfaces producing storm water discharges are examined. The surface runoff calculation and the simulation of the sewer system and the WWTP are based on a MATLAB/SIMULINK simulation environment. The impact of the measures on the receiving water is simulated using AQUASIM. It can be shown that the examined storm water management measures, especially the source control measures, can reduce the combined sewer overflow volume and the pollutant discharge load considerably. All examined measures also have positive effects on the receiving water quality. Moreover, the reduction of impervious surfaces avoids combined sewer overflow activities, and in consequence prevents pollutants from discharging into the receiving water after small rainfall events. However, the receiving water quality improvement may not be seen as important enough to avoid acute receiving water effects in general.

  8. Analysis of Time-Dependent Tritium Breeding Capability of Water Cooled Ceramic Breeder Blanket for CFETR

    Science.gov (United States)

    Gao, Fangfang; Zhang, Xiaokang; Pu, Yong; Zhu, Qingjun; Liu, Songlin

    2016-08-01

    Attaining tritium self-sufficiency is an important mission for the Chinese Fusion Engineering Testing Reactor (CFETR) operating on a Deuterium-Tritium (D-T) fuel cycle. It is necessary to study the tritium breeding ratio (TBR) and breeding tritium inventory variation with operation time so as to provide an accurate data for dynamic modeling and analysis of the tritium fuel cycle. A water cooled ceramic breeder (WCCB) blanket is one candidate of blanket concepts for the CFETR. Based on the detailed 3D neutronics model of CFETR with the WCCB blanket, the time-dependent TBR and tritium surplus were evaluated by a coupling calculation of the Monte Carlo N-Particle Transport Code (MCNP) and the fusion activation code FISPACT-2007. The results indicated that the TBR and tritium surplus of the WCCB blanket were a function of operation time and fusion power due to the Li consumption in breeder and material activation. In addition, by comparison with the results calculated by using the 3D neutronics model and employing the transfer factor constant from 1D to 3D, it is noted that 1D analysis leads to an over-estimation for the time-dependent tritium breeding capability when fusion power is larger than 1000 MW. supported by the National Magnetic Confinement Fusion Science Program of China (Nos. 2013GB108004, 2015GB108002, and 2014GB119000), and by National Natural Science Foundation of China (No. 11175207)

  9. An assessment of travel time for spills management - using HEC-RAS water quality analysis

    Energy Technology Data Exchange (ETDEWEB)

    Disley, Tom; Gharabaghi, Bahram; Perdikaris, John [University of Guelph, Guelph, (Canada); Singh, Amanjot; Dougherty, Jennifer [Credit Valley Conservation Authority, Mississauga, (Canada)

    2010-07-01

    In order to mitigate the detrimental effects that contaminants such as petrochemical and chemical spills may have on the environment it is critical to understand their transport. This paper presented an assessment of travel time for spills management using HEC-RAS water quality analysis on the Credit River Watershed. It is a 1000 km2 area of urban and rural landscapes drained by 90 km of the main Credit River. The study focused on the mixing characteristics of 5 stream reaches in the Credit River watershed. Dye tracing was done under three different flow conditions to obtain a longitudinal dispersion coefficient, which is a necessary parameter for predicting and modelling time concentration curves downstream of a spill. The longitudinal dispersion coefficient was input into the US Army Corp of Engineers, Hydrologic Engineering Centers River Analysis System (HEC RAS) to predict time concentration curves. The HEC RAS model produced average travel time close to those measured in the field after final calibration was completed.

  10. Modelling the water balance of a precise weighable lysimeter for short time scales

    Science.gov (United States)

    Fank, Johann; Klammler, Gernot; Rock, Gerhard

    2015-04-01

    Precise knowledge of the water fluxes between the atmosphere and the soil-plant system and the percolation to the groundwater system is of great importance for understanding and modeling water, solute and energy transfer in the atmosphere-plant-soil-groundwater system. Weighable lysimeters yield the most precise and realistic measures for the change of stored water volume (ΔS), Precipitation (P) which can be rain, irrigation, snow and dewfall and evapotranspiration (ET) as the sum of soil evaporation, evaporation of intercepted water and transpiration. They avoid systematic errors of standard gauges and class-A pans. Lysimeters with controlled suction at the lower boundary allow estimation of capillary rise (C) and leachate (L) on short time scales. Precise weighable large scale (surface >= 1 m2) monolithic lysimeters avoiding oasis effects allow to solve the water balance equation (P - ET - L + C ± ΔS = 0) for a 3D-section of a natural atmosphere-plant-soil-system for a certain time period. Precision and accuracy of the lysimeter measurements depend not only on the precision of the weighing device but also on external conditions, which cannot be controlled or turned off. To separate the noise in measured data sets from signals the adaptive window and adaptive threshold (AWAT) filter (Peters et al., 2014) is used. The data set for the years 2010 and 2011 from the HYDRO-lysimeter (surface = 1 m2, depth = 1 m) in Wagna, Austria (Klammler and Fank, 2014) with a resolution of 0,01 mm for the lysimeter scale and of 0,001 mm for the leachate tank scale is used to evaluate the water balance. The mass of the lysimeter and the mass of the leachate tank is measured every two seconds. The measurements are stored as one minute arithmetic means. Based on calculations in a calibration period from January to May 2010 with different widths of moving window the wmax - Parameter for the AWAT filter was set to 41 minutes. A time series for the system mass ('upper boundary') of the

  11. Geostatistical Characteristic of Space -Time Variation in Underground Water Selected Quality Parameters in Klodzko Water Intake Area (SW Part of Poland)

    Science.gov (United States)

    Namysłowska-Wilczyńska, Barbara

    2016-04-01

    This paper presents selected results of research connected with the development of a (3D) geostatistical hydrogeochemical model of the Klodzko Drainage Basin, dedicated to the spatial and time variation in the selected quality parameters of underground water in the Klodzko water intake area (SW part of Poland). The research covers the period 2011÷2012. Spatial analyses of the variation in various quality parameters, i.e, contents of: ammonium ion [gNH4+/m3], NO3- (nitrate ion) [gNO3/m3], PO4-3 (phosphate ion) [gPO4-3/m3], total organic carbon C (TOC) [gC/m3], pH redox potential and temperature C [degrees], were carried out on the basis of the chemical determinations of the quality parameters of underground water samples taken from the wells in the water intake area. Spatial and time variation in the quality parameters was analyzed on the basis of archival data (period 1977÷1999) for 22 (pump and siphon) wells with a depth ranging from 9.5 to 38.0 m b.g.l., later data obtained (November 2011) from tests of water taken from 14 existing wells. The wells were built in the years 1954÷1998. The water abstraction depth (difference between the terrain elevation and the dynamic water table level) is ranged from 276÷286 m a.s.l., with an average of 282.05 m a.s.l. Dynamic water table level is contained between 6.22 m÷16.44 m b.g.l., with a mean value of 9.64 m b.g.l. The latest data (January 2012) acquired from 3 new piezometers, with a depth of 9÷10m, which were made in other locations in the relevant area. Thematic databases, containing original data on coordinates X, Y (latitude, longitude) and Z (terrain elevation and time - years) and on regionalized variables, i.e. the underground water quality parameters in the Klodzko water intake area determined for different analytical configurations (22 wells, 14 wells, 14 wells + 3 piezometers), were created. Both archival data (acquired in the years 1977÷1999) and the latest data (collected in 2011÷2012) were analyzed

  12. Preliminary estimates of residence times and apparent ages of ground water in the Chesapeake Bay watershed, and water-quality data from a survey of springs

    Science.gov (United States)

    Focazio, Michael J.; Plummer, L. Neil; Bohlke, John K.; Busenberg, Eurybiades; Bachman, L. Joseph; Powars, David S.

    1998-01-01

    Knowledge of the residence times of the ground-water systems in Chesapeake Bay watershed helps resource managers anticipate potential delays between implementation of land-management practices and any improve-ments in river and estuary water quality. This report presents preliminary estimates of ground-water residence times and apparent ages of water in the shallow aquifers of the Chesapeake Bay watershed. A simple reservoir model, published data, and analyses of spring water were used to estimate residence times and apparent ages of ground-water discharge. Ranges of aquifer hydraulic characteristics throughout the Bay watershed were derived from published literature and were used to estimate ground-water residence times on the basis of a simple reservoir model. Simple combinations of rock type and physiographic province were used to delineate hydrogeomorphic regions (HGMR?s) for the study area. The HGMR?s are used to facilitate organization and display of the data and analyses. Illustrations depicting the relation of aquifer characteristics and associated residence times as a continuum for each HGMR were developed. In this way, the natural variation of aquifer characteristics can be seen graphically by use of data from selected representative studies. Water samples collected in September and November 1996, from 46 springs throughout the watershed were analyzed for chlorofluorocarbons (CFC?s) to estimate the apparent age of ground water. For comparison purposes, apparent ages of water from springs were calculated assuming piston flow. Additi-onal data are given to estimate apparent ages assuming an exponential distribution of ages in spring discharge. Additionally, results from previous studies of CFC-dating of ground water from other springs and wells in the watershed were compiled. The CFC data, and the data on major ions, nutrients, and nitrogen isotopes in the water collected from the 46 springs are included in this report. The apparent ages of water

  13. Lake Surface Water Temperature of European Lakes retrieved from AVHRR Data - Time Series and Quality Assessment

    Science.gov (United States)

    Wunderle, S.; Lieberherr, G.; Riffler, M.

    2016-12-01

    Data analysis of the recent years showed an increase of lake surface water temperature for many lakes around the world. But due to sparse in-situ measurements, which are often not well documented, only satellite data can provide the needed information of the last decades. The importance of lakes for climate research was also highlighted by the Global Climate Observing System (GCOS) defining lakes as Essential Climate Variables (ECVs). Within the frame of a research project funded by the Swiss National Science Foundation a procedure was developed to retrieve lake surface water temperature with high accuracy based on our archived AVHRR data at the University of Bern, Switzerland. The data archive starts in 1985 and is continuously filled with NOAA-/MetOp-AVHRR data received by our antenna resulting in a time series of more than 30 years (WMO definition of a climate period). The data set covering Europe is also used by other teams for climate related studies resulting in improved pre-processing to guarantee precise calibration and geocoding. The first part of our presentation will be dedicated to the quality of the LSWT retrieval comparing various in-situ measurements from lakes in Switzerland with varying sizes (150km2 - 9km2). The quality of the used split-window approach is sensitive to the derived split-window coefficients. The influence of water vapor, view angle, temporal and spatial validity and day vs. night data will be shown. In addition, some information will be presented about the influence of topography and climatic regions (e.g. Scandinavia vs. Greece) on the quality of the LSWT product. Based on these findings compiling time series for different lakes in Europe will be the focus of the second part of our presentation with details of the applied quality assessment to avoid erroneous signals. Hence, some information is given about hierarchical quality checks which are needed to guarantee a dataset without artefacts. Finally, some results of time series

  14. Real-time short-term forecast of water inflow into Bureyskaya reservoir

    Science.gov (United States)

    Motovilov, Yury

    2017-04-01

    During several recent years, a methodology for operational optimization in hydrosystems including forecasts of the hydrological situation has been developed on example of Burea reservoir. The forecasts accuracy improvement of the water inflow into the reservoir during planning of water and energy regime was one of the main goals for implemented research. Burea river is the second left largest Amur tributary after Zeya river with its 70.7 thousand square kilometers watershed and 723 km-long river course. A variety of natural conditions - from plains in the southern part to northern mountainous areas determine a significant spatio-temporal variability in runoff generation patterns and river regime. Bureyskaya hydropower plant (HPP) with watershed area 65.2 thousand square kilometers is a key station in the Russian Far Eastern energy system providing its reliable operation. With a spacious reservoir, Bureyskaya HPP makes a significant contribution to the protection of the Amur region from catastrophic floods. A physically-based distributed model of runoff generation based on the ECOMAG (ECOlogical Model for Applied Geophysics) hydrological modeling platform has been developed for the Burea River basin. The model describes processes of interception of rainfall/snowfall by the canopy, snow accumulation and melt, soil freezing and thawing, water infiltration into unfrozen and frozen soil, evapotranspiration, thermal and water regime of soil, overland, subsurface, ground and river flow. The governing model's equations are derived from integration of the basic hydro- and thermodynamics equations of water and heat vertical transfer in snowpack, frozen/unfrozen soil, horizontal water flow under and over catchment slopes, etc. The model setup for Bureya river basin included watershed and river network schematization with GIS module by DEM analysis, meteorological time-series preparation, model calibration and validation against historical observations. The results showed good

  15. Is International Accounting Education Delivering Pedagogical Value?

    Science.gov (United States)

    Patel, Chris; Millanta, Brian; Tweedie, Dale

    2016-01-01

    This paper examines whether universities are delivering pedagogical value to international accounting students commensurate with the costs of studying abroad. The paper uses survey and interview methods to explore the extent to which Chinese Learners (CLs) in an Australian postgraduate accounting subject have distinct learning needs. The paper…

  16. TC-1 Satellite of DSP Delivered

    Institute of Scientific and Technical Information of China (English)

    SunQing

    2004-01-01

    TC-1 satellite of Double Star Program (DSP), a near-earth equatorial satellite, was delivered to the representative of the end user, the Research Center for Space Science and Application under the Chinese Academy of Sciences (CAS) on April 12, 2004, which symbolized that TC-1 satellite was put into operation formally.

  17. Interactivity in an Electronically Delivered Marketing Course.

    Science.gov (United States)

    Larson, Paul D.

    2002-01-01

    In a marketing course delivered using Lotus Notes, 32 students were randomly assigned to large or small groups with heavy or light coaching. No differences in interactivity appeared related to group size or gender. More coaching increased the quantity, not quality, of interactivity. Quality seemed to decrease as quantity increased. (Contains 35…

  18. Is International Accounting Education Delivering Pedagogical Value?

    Science.gov (United States)

    Patel, Chris; Millanta, Brian; Tweedie, Dale

    2016-01-01

    This paper examines whether universities are delivering pedagogical value to international accounting students commensurate with the costs of studying abroad. The paper uses survey and interview methods to explore the extent to which Chinese Learners (CLs) in an Australian postgraduate accounting subject have distinct learning needs. The paper…

  19. Science Ⅲ marine research ship delivered

    Institute of Scientific and Technical Information of China (English)

    Gong Wei

    2006-01-01

    @@ On August 18, China's most advanced marine research ship Science Ⅲ was commissioned into operation at Qingdao and became an official member of China's marine research fleet. Designed and built by CSIC, the ship was delivered at Shanghai to the Institute of Oceanology, Chinese Academy of Sciences.

  20. Delivering best care in war and peace.

    Science.gov (United States)

    Moore, Alison

    2014-06-24

    Col Alan Finnegan, the fi rst Ministry of Defence professor of nursing, is driving forward research into preparing nurses for deployment and ensuring they deliver the best care possible in war and peace. Research topics range from the role of autonomous practitioners to the effects on soldiers of injuries to their genitalia.

  1. Bench Crater Meteorite: Hydrated Asteroidal Material Delivered to the Moon

    Science.gov (United States)

    Joy, K. H.; Messenger, S.; Zolensky, M. E.; Frank, D. R.; Kring, D. A.

    2013-01-01

    D/H measurements from the lunar regolith agglutinates [8] indicate mixing between a low D/H solar implanted component and additional higher D/H sources (e.g., meteoritic/ cometary/volcanic gases). We have determined the range and average D/H ratio of Bench Crater meteorite, which is the first direct D/H analysis of meteoritic material delivered to the lunar surface. This result provides an important ground truth for future investigations of lunar water resources by missions to the Moon.

  2. Using water chemistry time series to model dissolved inorganic carbon dynamics in the western Amazon basin

    Science.gov (United States)

    Vihermaa, Leena; Waldron, Susan; Newton, Jason

    2013-04-01

    Two small streams (New Colpita and Main Trail) and two rivers (Tambopata and La Torre), in the Tambopata National Reserve, Madre de Dios, Peru, were sampled for water chemistry (conductivity, pH and dissolved oxygen) and hydrology (stage height and flow velocity). In the small streams water chemistry and hydrology variables were logged at 15 minute intervals from Feb 2011 to November 2012. Water samples were collected from all four channels during field campaigns spanning different seasons and targeting the hydrological extremes. All the samples were analysed for dissolved inorganic carbon (DIC) concentration and δ13C (sample size ranging from 77 to 172 depending on the drainage system) and a smaller subset for dissolved organic carbon (DOC) and particulate organic carbon (POC) concentrations. Strong positive relationships were found between conductivity and both DIC concentration and δ13C in the New Colpita stream and the La Torre river. In Tambopata river the trends were less clear and in the Main Trail stream there was very little change in DIC and isotopic composition. The conductivity data was used to model continuous DIC time series for the New Colpita stream. The modelled DIC data agreed well with the measurements; the concordance correlation coefficients between predicted and measured data were 0.91 and 0.87 for mM-DIC and δ13C-DIC, respectively. The predictions of δ13C-DIC were improved when calendar month was included in the model, which indicates seasonal differences in the δ13C-DIC conductivity relationship. At present, continuous DIC sampling still requires expensive instrumentation. Therefore, modelling DIC from a proxy variable which can be monitored continuously with ease and at relatively low cost, such as conductivity, provides a powerful alternative method of DIC determination.

  3. Real-time monitoring of bacterial and organic pollution in a water stream by fluorescence depletion spectroscopy

    Science.gov (United States)

    Gaulier, Geoffrey; Staedler, Davide; Sousa, Gustavo; Bonacina, Luigi; Wolf, Jean-Pierre

    2017-02-01

    We demonstrate an approach for a real-time, consumable-free optical system operating on a liquid jet which can be easily derived from the water distribution infrastructure. We apply a pump-probe scheme based on the acquisition and nanosecond manipulation of UV-excited fluorescence to increase the selective identification of bacterial against organic pollutants in water.

  4. Evaporative enrichment and time lags between delta18O of leaf water and organic pools in a pine stand.

    Science.gov (United States)

    Barnard, Romain L; Salmon, Yann; Kodama, Naomi; Sörgel, Karin; Holst, Jutta; Rennenberg, Heinz; Gessler, Arthur; Buchmann, Nina

    2007-05-01

    Understanding ecosystem water fluxes has gained increasing attention, as climate scenarios predict a drier environment for many parts of the world. Evaporative enrichment of (18)O (Delta(18)O) of leaf water and subsequent enrichment of plant organic matter can be used to characterize environmental and physiological factors that control evaporation, based on a recently established mechanistic model. In a Pinus sylvestris forest, we measured the dynamics of oxygen isotopic composition (delta(18)O) every 6 h for 4 d in atmospheric water vapour, xylem sap, leaf water and water-soluble organic matter in current (N) and previous year (N-1) needles, phloem sap, together with leaf gas exchange for pooled N and N-1 needles, and relevant micrometeorological variables. Leaf water delta(18)O showed strong diel periodicity, while delta(18)O in atmospheric water vapour and in xylem sap showed little variation. The Delta(18)O was consistently lower for N than for N-1 needles, possibly related to phenological stage. Modelled leaf water Delta(18)O showed good agreement with measured values when applying a non-steady state evaporative enrichment model including a Péclet effect. We determined the time lags between delta(18)O signals from leaf water to water-soluble foliar organic matter and to phloem sap at different locations down the trunk, which clearly demonstrated the relevance of considering these time-lag effects for carbon transport, source-sink and carbon flux partitioning studies.

  5. Seasonal recharge and mean residence times of soil and epikarst water in a small karst catchment of southwest China.

    Science.gov (United States)

    Hu, Ke; Chen, Hongsong; Nie, Yunpeng; Wang, Kelin

    2015-05-11

    Soil and epikarst play an important role in the hydrological cycle in karst regions. This paper focuses on investigating the seasonal recharge and mean residence time (MRT) of soil water and epikarst water in a small karst catchment of southwest China. The deuterium contents in precipitation, creek, soil baseflow (direct recharge of the saturated soil water to the stream), epikarst spring, and soil waters were monitored weekly for two years, and MRT was calculated by an exponential model (EM) and a dispersion model (DM). The obvious seasonal variation of deuterium in rainfall was buffered in epikarst water, indicating sufficient water mixing. Soil baseflow contained less rainy-season rainwater than epikarst spring discharge, reflecting the retarded effect of soil thickness on rainwater recharge. MRTs of all water bodies were 41-71 weeks, and soils in the depression extended those of shallow groundwater. This demonstrated that the deep soil layer played an important role in karst hydrological processes in the study catchment. The creek was recharged mostly by rainfall through epikarst, indicating its crucial role in water circulation. These results showed epikarst had a strong water-holding capacity and also delayed water contact time with dolomite.

  6. Identifying The Effective Factors for Cost Overrun and Time Delay in Water Construction Projects

    Directory of Open Access Journals (Sweden)

    D. Mirzai Matin

    2016-08-01

    Full Text Available Water construction projects in Iran frequently face problems which cause cost overrun and time delay, the two most common issues in construction projects in general. The objective of this survey is to identify and quantify these problems and thus help in avoiding them. This survey represents a collection of the most significant problems found in the literature, classified into 11 groups according to their source. The questionnaire form used contains 84 questions which were answered by random engineers who work in water construction projects. The Relative Importance Weight (RIW method is used to weight the importance of each one of the 84 problems. The focus of this survey is on overall top ten issues which are: bureaucracy in bidding method, inflation, economical condition of the government, not enough information gathered and surveys done before design, monthly payment difficulties, material cost changes, law changes by the government, financial difficulties, mode of financing and payment for completed work and changes made by the owner. A section for each of these issues provides additional information about them. In the full text of this survey the same weighting method is used to classify the main groups, and the results show that issues related to the groups of government, owner and consultant has the most significant impact. The last part of this survey describes the point of view of the engineers who took part in this survey and the recommendations they made.

  7. On freely floating bodies trapping time-harmonic waves in water covered by brash ice

    CERN Document Server

    Kuznetsov, Nikolay

    2015-01-01

    A mechanical system consisting of water covered by brash ice and a body freely floating near equilibrium is considered. The water occupies a half-space into which an infinitely long surface-piercing cylinder is immersed, thus allowing us to study two-dimensional modes of the coupled motion which is assumed to be of small amplitude. The corresponding linear setting for time-harmonic oscillations reduces to a spectral problem whose parameter is the frequency. A constant that characterises the brash ice divides the set of frequencies into two subsets and the results obtained for each of these subsets are essentially different. For frequencies belonging to a finite interval adjacent to zero, the total energy of motion is finite and the equipartition of energy holds for the whole system. For every frequency from this interval, a family of motionless bodies trapping waves is constructed by virtue of the semi-inverse procedure. For sufficiently large frequencies outside of this interval, all solutions of finite ener...

  8. High-Speed Hopping: Time-Resolved Tomographic PIV Measurements of Water Flea Swimming

    Science.gov (United States)

    Murphy, D. W.; Webster, D. R.; Yen, J.

    2012-11-01

    Daphniids, also known as water fleas, are small, freshwater crustaceans that live in a low-to-intermediate Reynolds number regime. These plankters are equipped with a pair of branched, setae-bearing antennae that they beat to impulsively propel themselves, or ``hop,'' through the water. A typical hop carries the daphniid one body length forward and is followed by a period of sinking. We present time-resolved tomographic PIV measurements of swimming by Daphnia magna. The body kinematics and flow physics of the daphniid hop are quantified. It is shown that the flow generated by each stroking antenna resembles an asymmetric viscous vortex ring. It is proposed that the flow produced by the daphniid hop can be modeled as a double Stokeslet consisting of two impulsively applied point forces separated by the animal width. The flow physics are discussed in the context of other species operating in the same Reynolds number range of 10 to 100: sea butterfly swimming and flight by the smallest flying insects.

  9. Improvements in Inversion of Magnetic Resonance Exploration-Water Content, Decay Time, and Resistivity

    Institute of Scientific and Technical Information of China (English)

    Ugur Yaramanci; Mike Müller-Petke

    2009-01-01

    In this review article, we present recent developments and Improvements in magnetic resonance sounding (MRS), a newly established geophysical exploration method that provides unique information about hydrogeophysical properties due to its direct sensitivity to hydrogen protons and proton dynamics. Starting with the most sophisticated and complete MRS formulation, we give a detailed view on how to solve the equation, i.e., inverting exactly for all model parameters: water content, decay time, and resistivity. Giving a short review of general inversion schemes used in geophysics, the special properties of MRS inversion are evaluated and the development of MRS inversion over recent years is shown. We present the extension of MRS to magnetic resonance tomography (MRT), i.e., the extension to two-dimensional investigations and appropriate inversions. Finally, we address restrictions, limitations, and inconsistencies as well as future developments.

  10. Determination of Iron in Water Solution by Time-Resolved Femtosecond Laser-Induced Breakdown Spectroscopy

    Science.gov (United States)

    Sergey, S. Golik; Alexey, A. Ilyin; Michael, Yu. Babiy; Yulia, S. Biryukova; Vladimir, V. Lisitsa; Oleg, A. Bukin

    2015-11-01

    The influence of the energy of femtosecond laser pulses on the intensity of Fe I (371.99 nm) emission line and the continuous spectrum of the plasma generated on the surface of Fe3+ water solution by a Ti: sapphire laser radiation with pulse duration laser pulse energy. It is found that an increase of laser pulse energy insignificantly affects on LOD in the time-resolved LIBS and leads to a slight improvement of the limit of detection. supported by the Russian Science Foundation (agreement #14-50-00034) (measurements of limit of detection), Russian Foundation for Basic Research (NK 15-32-20878/15) obtained in the frame of “Organization of Scientific Research” in the Far Eastern Federal University supported by Ministry of Education and Science of Russian Federation

  11. Analysis of water application efficiency and emission uniformity of drip irrigation systems based on space-time analysis of soil moisture patterns in soils

    Science.gov (United States)

    Shabeeb, Ahmeed; Taha, Uday; dragonetti, giovanna; Lamaddalena, Nicola; Coppola, Antonio

    2016-04-01

    In order to evaluate how efficiently and uniformly drip irrigation systems can deliver water to emitters distributed around a field, we need some methods for measuring/calculating water application efficiency (WAE) and emission uniformity (EU). In general, the calculation of the WAE and of other efficiency indices requires the measurement of the water stored in the root zone. Measuring water storage in soils allows directly saying how much water a given location of the field retains having received a given amount of irrigation water. And yet, due to the difficulties of measuring water content variability under an irrigation system at field scale, it is quite common using EU as a proxy indicator of the irrigation performance. This implicitly means assuming that the uniformity of water application is immediately reflected in an uniformity of water stored in the root zone. In other words, that if a site receive more water it will store more water. Nevertheless, due to the heterogeneity of soil hydrological properties the same EU may correspond to very different distributions of water stored in the soil root zone. 1) In the case of isolated drippers, the storages measured in the soil root zone layer shortly after an irrigation event may be or not different from the water height applied at the surface depending on the vertical/horizontal development of the wetted bulbs. Specifically, in the case of dominant horizontal spreading the water storage is expected to reflect the distribution of water applied at the surface. To the contrary, in the case of relatively significant vertical spreading, deep percolation fluxes (fluxes leaving the root zone) may well induce water storages in the root zone significantly different from the water applied at the surface. 2) The drippers and laterals are close enough that the wetted bulbs below adjacent drippers may interact. In this case, lateral fluxes in the soil may well induce water storages in the root zone which may be

  12. Feasibility of using portable, noninvasive pipe flowmeters and time totalizers for determining water use

    Science.gov (United States)

    Arvin, D.V.

    1992-01-01

    The feasibilityty of using noninvasive flowmeters for determining water use was investigated by attempting, and at some sites repeating, instantaneous pipe-flow measurements at 45 water-withdrawal sites by use of four portable noninvasive pipe flowmeters. The flowmeters measure flow in pipes; this flow is related to water use. Because actual water use can differ from the total flow in the pipe, water use is not, in itself, measured by the flowmeters.

  13. Real-time surrogate analysis for potential oil and gas contamination of drinking water resources

    Science.gov (United States)

    Son, Ji-Hee; Carlson, Kenneth H.

    2015-09-01

    Public concerns related to the fast-growing shale oil and gas industry have increased during recent years. The major concern regarding shale gas production is the potential of fracturing fluids being injected into the well or produced fluids flowing out of the well to contaminate drinking water resources such as surface water and groundwater. Fracturing fluids contain high total dissolved solids (TDS); thus, changes in TDS concentrations in groundwater might indicate influences of fracturing fluids. An increase of methane concentrations in groundwater could also potentially be due to hydraulic fracturing activities. To understand the possible contamination of groundwater by fracturing activities, real-time groundwater monitoring is being implemented in the Denver-Julesburg basin of northeast Colorado. A strategy of monitoring of surrogate parameters was chosen instead of measuring potential contaminants directly, an approach that is not cost effective or operationally practical. Contaminant surrogates of TDS and dissolved methane were proposed in this study, and were tested for correlation and data distribution with laboratory experiments. Correlations between TDS and electrical conductivity (EC), and between methane contamination and oxidation-reduction potential (ORP) were strong at low concentrations of contaminants (1 mg/L TDS and 0.3 mg/L CH4). Dissolved oxygen (DO) was only an effective surrogate at higher methane concentrations (≥2.5 mg/L). The results indicated that EC and ORP are effective surrogates for detecting concentration changes of TDS and methane, respectively, and that a strategy of monitoring for easy to measure parameters can be effective detecting real-time, anomalous behavior relative to a predetermined baseline.

  14. The real-time determination of net water transport coefficient based on measurement of water content in the outlet gas in a polymer electrolyte fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    He, Guangli; Shibata, Kenji; Yamazaki, Yohtaro [Department of Innovative and Engineered Materials, Interdisciplinary Graduate School of Science and Engineering, Tokyo Institute of Technology (Japan); Abuliti, Abudula [North Japan New Energy Research Center, Hirosaki University, Aomori (Japan)

    2010-08-01

    A numerical approach is developed to determine the real-time Net Water Transport Coefficient (NWTC) based on the experimental water vapor pressure for the cathode and anode outlet obtained by the optical humidity sensors with Tunable Diode Laser Absorption Spectroscopy (TDLAS). The results show that there are sharp vibrations for NWTC in the process of start-up and shut-down. And the time needed for the water transport balance increases with the increase in the current. The balanced NWTC ranges from -0.2 to 0.2, and it increases with the increase in the operation current in the present research. In the view of flooding prevention, it is reasonable to humidify the anode inlet gas with the lower temperature than that of cathode side by decreasing the osmotic-drag water from anode to cathode. (author)

  15. Calibrating a salt water intrusion model with time-domain electromagnetic data.

    Science.gov (United States)

    Herckenrath, Daan; Odlum, Nick; Nenna, Vanessa; Knight, Rosemary; Auken, Esben; Bauer-Gottwein, Peter

    2013-01-01

    Salt water intrusion models are commonly used to support groundwater resource management in coastal aquifers. Concentration data used for model calibration are often sparse and limited in spatial extent. With airborne and ground-based electromagnetic surveys, electrical resistivity models can be obtained to provide high-resolution three-dimensional models of subsurface resistivity variations that can be related to geology and salt concentrations on a regional scale. Several previous studies have calibrated salt water intrusion models with geophysical data, but are typically limited to the use of the inverted electrical resistivity models without considering the measured geophysical data directly. This induces a number of errors related to inconsistent scales between the geophysical and hydrologic models and the applied regularization constraints in the geophysical inversion. To overcome these errors, we perform a coupled hydrogeophysical inversion (CHI) in which we use a salt water intrusion model to interpret the geophysical data and guide the geophysical inversion. We refer to this methodology as a Coupled Hydrogeophysical Inversion-State (CHI-S), in which simulated salt concentrations are transformed to an electrical resistivity model, after which a geophysical forward response is calculated and compared with the measured geophysical data. This approach was applied for a field site in Santa Cruz County, California, where a time-domain electromagnetic (TDEM) dataset was collected. For this location, a simple two-dimensional cross-sectional salt water intrusion model was developed, for which we estimated five uniform aquifer properties, incorporating the porosity that was also part of the employed petrophysical relationship. In addition, one geophysical parameter was estimated. The six parameters could be resolved well by fitting more than 300 apparent resistivities that were comprised by the TDEM dataset. Except for three sounding locations, all the TDEM data

  16. Evolution of stratospheric ozone and water vapour time series studied with satellite measurements

    Directory of Open Access Journals (Sweden)

    A. Jones

    2009-01-01

    Full Text Available The long term evolution of stratospheric ozone and water vapour has been investigated by extending satellite time series to April 2008. For ozone, we examine monthly average ozone values from various satellite data sets for nine latitude and altitude bins covering 60° S to 60° N and 20–45 km and covering the time period 1979–2008. Data are from the Stratospheric Aerosol and Gas Experiment (SAGE I+II, the HALogen Occultation Experiment (HALOE, the Solar BackscatterUltraViolet-2 (SBUV/2 instrument, the Sub-Millimetre Radiometer (SMR, the Optical Spectrograph InfraRed Imager System (OSIRIS, and the SCanning Imaging Absorption spectroMeter for Atmospheric CHartograpY (SCIAMACHY. Monthly ozone anomalies are calculated by utilising a linear regression model, which also models the solar, quasi-biennial oscillation (QBO, and seasonal cycle contributions. Individual instrument ozone anomalies are combined producing a weighted all instrument average. Assuming a turning point of 1997 and that the all instrument average is represented by good instrumental long term stability, the largest statistically significant ozone declines from 1979–1997 are seen at the mid-latitudes between 35 and 45 km, namely −7.7%/decade in the Northern Hemisphere and −7.8%/decade in the Southern Hemisphere. For the period 1997 to 2008 we find that the southern mid-latitudes between 35 and 45 km show the largest ozone recovery (+3.4%/decade compared to other global regions, although the estimated trend model error is of a similar magnitude (+2.1%/decade, at the 95% confidence level. An all instrument average is also constructed from water vapour anomalies during 1984–2008, using the SAGE II, HALOE, SMR, and the Microwave Limb Sounder (aura/MLS measurements. We report that the decrease in water vapour values after 2001 slows down around 2004 in the lower tropical stratosphere (20–25 km, and has even shown signs of increasing values in upper stratospheric mid

  17. Evolution of stratospheric ozone and water vapour time series studied with satellite measurements

    Directory of Open Access Journals (Sweden)

    A. Jones

    2009-08-01

    Full Text Available The long term evolution of stratospheric ozone and water vapour has been investigated by extending satellite time series to April 2008. For ozone, we examine monthly average ozone values from various satellite data sets for nine latitude and altitude bins covering 60° S to 60° N and 20–45 km and covering the time period of 1979–2008. Data are from the Stratospheric Aerosol and Gas Experiment (SAGE I+II, the HALogen Occultation Experiment (HALOE, the Solar BackscatterUltraViolet-2 (SBUV/2 instrument, the Sub-Millimetre Radiometer (SMR, the Optical Spectrograph InfraRed Imager System (OSIRIS, and the SCanning Imaging Absorption spectroMeter for Atmospheric CHartograpY (SCIAMACHY. Monthly ozone anomalies are calculated by utilising a linear regression model, which also models the solar, quasi-biennial oscillation (QBO, and seasonal cycle contributions. Individual instrument ozone anomalies are combined producing an all instrument average. Assuming a turning point of 1997 and that the all instrument average is represented by good instrumental long term stability, the largest statistically significant ozone declines (at two sigma from 1979–1997 are seen at the mid-latitudes between 35 and 45 km, namely −7.2%±0.9%/decade in the Northern Hemisphere and −7.1%±0.9%/in the Southern Hemisphere. Furthermore, for the period 1997 to 2008 we find that the same locations show the largest ozone recovery (+1.4% and +0.8%/decade respectively compared to other global regions, although the estimated trend model errors indicate that the trend estimates are not significantly different from a zero trend at the 2 sigma level. An all instrument average is also constructed from water vapour anomalies during 1991–2008, using the SAGE II, HALOE, SMR, and the Microwave Limb Sounder (Aura/MLS measurements. We report that the decrease in water vapour values after 2001 slows down around 2004–2005 in the lower tropical stratosphere (20–25 km and has even

  18. Optimizing a Drone Network to Deliver Automated External Defibrillators.

    Science.gov (United States)

    Boutilier, Justin J; Brooks, Steven C; Janmohamed, Alyf; Byers, Adam; Buick, Jason E; Zhan, Cathy; Schoellig, Angela P; Cheskes, Sheldon; Morrison, Laurie J; Chan, Timothy C Y

    2017-03-02

    Background -Public access defibrillation programs can improve survival after out-of-hospital cardiac arrest (OHCA), but automated external defibrillators (AEDs) are rarely available for bystander use at the scene. Drones are an emerging technology that can deliver an AED to the scene of an OHCA for bystander use. We hypothesize that a drone network designed with the aid of a mathematical model combining both optimization and queuing can reduce the time to AED arrival. Methods -We applied our model to 53,702 OHCAs that occurred in the eight regions of the Toronto Regional RescuNET between January 1st 2006 and December 31st 2014. Our primary analysis quantified the drone network size required to deliver an AED one, two, or three minutes faster than historical median 911 response times for each region independently. A secondary analysis quantified the reduction in drone resources required if RescuNET was treated as one large coordinated region. Results -The region-specific analysis determined that 81 bases and 100 drones would be required to deliver an AED ahead of median 911 response times by three minutes. In the most urban region, the 90th percentile of the AED arrival time was reduced by 6 minutes and 43 seconds relative to historical 911 response times in the region. In the most rural region, the 90th percentile was reduced by 10 minutes and 34 seconds. A single coordinated drone network across all regions required 39.5% fewer bases and 30.0% fewer drones to achieve similar AED delivery times. Conclusions -An optimized drone network designed with the aid of a novel mathematical model can substantially reduce the AED delivery time to an OHCA event.

  19. Combined risk assessment of nonstationary monthly water quality based on Markov chain and time-varying copula.

    Science.gov (United States)

    Shi, Wei; Xia, Jun

    2017-02-01

    Water quality risk management is a global hot research linkage with the sustainable water resource development. Ammonium nitrogen (NH3-N) and permanganate index (CODMn) as the focus indicators in Huai River Basin, are selected to reveal their joint transition laws based on Markov theory. The time-varying moments model with either time or land cover index as explanatory variables is applied to build the time-varying marginal distributions of water quality time series. Time-varying copula model, which takes the non-stationarity in the marginal distribution and/or the time variation in dependence structure between water quality series into consideration, is constructed to describe a bivariate frequency analysis for NH3-N and CODMn series at the same monitoring gauge. The larger first-order Markov joint transition probability indicates water quality state Class Vw, Class IV and Class III will occur easily in the water body of Bengbu Sluice. Both marginal distribution and copula models are nonstationary, and the explanatory variable time yields better performance than land cover index in describing the non-stationarities in the marginal distributions. In modelling the dependence structure changes, time-varying copula has a better fitting performance than the copula with the constant or the time-trend dependence parameter. The largest synchronous encounter risk probability of NH3-N and CODMn simultaneously reaching Class V is 50.61%, while the asynchronous encounter risk probability is largest when NH3-N and CODMn is inferior to class V and class IV water quality standards, respectively.

  20. Wide-ranging molecular mobilities of water in active pharmaceutical ingredient (API) hydrates as determined by NMR relaxation times.

    Science.gov (United States)

    Yoshioka, Sumie; Aso, Yukio; Osako, Tsutomu; Kawanishi, Toru

    2008-10-01

    In order to examine the possibility of determining the molecular mobility of hydration water in active pharmaceutical ingredient (API) hydrates by NMR relaxation measurement, spin-spin relaxation and spin-lattice relaxation were measured for the 11 API hydrates listed in the Japanese Pharmacopeia using pulsed (1)H-NMR. For hydration water that has relatively high mobility and shows Lorentzian decay, molecular mobility as determined by spin-spin relaxation time (T(2)) was correlated with ease of evaporation under both nonisothermal and isothermal conditions, as determined by DSC and water vapor sorption isotherm analysis, respectively. Thus, T(2) may be considered a useful parameter which indicates the molecular mobility of hydration water. In contrast, for hydration water that has low mobility and shows Gaussian decay, T(2) was found not to correlate with ease of evaporation under nonisothermal conditions, which suggests that in this case, the molecular mobility of hydration water was too low to be determined by T(2). A wide range of water mobilities was found among API hydrates, from low mobility that could not be evaluated by NMR relaxation time, such as that of the water molecules in pipemidic acid hydrate, to high mobility that could be evaluated by this method, such as that of the water molecules in ceftazidime hydrate. (c) 2008 Wiley-Liss, Inc. and the American Pharmacists Association

  1. Time dependent wettability of graphite upon ambient exposure: The role of water adsorption

    Science.gov (United States)

    Amadei, Carlo A.; Lai, Chia-Yun; Heskes, Daan; Chiesa, Matteo

    2014-08-01

    We report the temporal evolution of the wettability of highly ordered pyrolytic graphite (HOPG) exposed to environmental conditions. Macroscopic wettability is investigated by static and dynamic contact angles (SCA and DCA) obtaining values comparable to the ones presented in the literature. SCA increases from ˜68° to ˜90° during the first hour of exposure after cleaving, whereas DCA is characterized by longer-scale (24 h) time evolution. We interpret these results in light of Fourier transform infrared spectroscopy, which indicates that the evolution of the HOPG wettability is due to adsorption of molecules from the surrounding atmosphere. This hypothesis is further confirmed by nanoscopic observations obtained by atomic force microscope (AFM)-based force spectroscopy, which monitor the evolution of surface properties with a spatial resolution superior to macroscopic experiments. Moreover, we observe that the results of macro- and nanoscale measurements evolve in similar fashion with time and we propose a quantitative correlation between SCA and AFM measurements. Our results suggest that the cause of the transition in the wettability of HOPG is due to the adsorption of hydrocarbon contaminations and water molecules from the environment. This is corroborated by annealing the HOPG is vacuum conditions at 150°, allowing the desorption of molecules on the surface, and thus re-establishing the initial macro and nano surface properties. Our findings can be used in the interpretation of the wettability of more complicated systems derived from HOPG (i.e., graphene).

  2. Time-resolved Tomographic PIV Measurements of Water Flea Hopping: Body Size Comparison

    Science.gov (United States)

    Skipper, A. N.; Murphy, D. W.; Webster, D. R.; Yen, J.

    2014-11-01

    The flow field of the freshwater crustacean Daphnia magna is quantified with time-resolved tomographic PIV. In the current work, we compare body kinematics and flow disturbance between organisms of small (body length = 1.8 mm) versus medium (2.3 mm) versus large (2.65 mm) size. These plankters are equipped with a pair of antennae that are biramous such that the protopodite splits or branches into an exopodite and an endopodite. They beat the antennae pair synchronously to impulsively propel themselves, or `hop,' through the water. The stroke cycle of Daphnia magna is roughly 80 ms in duration and this period is evenly split between the power and recovery strokes. A typical hop carries the daphniid one body length forward and is followed by a period of sinking. Unlike copepod escape motion, no body vortex is observed in front of the animal. Rather, the flow induced by each antennae consists of a viscous vortex ring that demonstrates a slow decay. The time-record of velocity (peak of 40 mm/s for the medium specimen) and hop acceleration (1.8 m/s2 for the medium specimen) are compared, as well as the strength, size, and decay of the induced viscous vortex rings. The viscous vortex ring analysis will be presented in the context of a double Stokeslet model consisting of two impulsively applied point forces separated by the animal width.

  3. Time resolved measurements of particle lift off from the wall in a turbulent water channel flow

    Science.gov (United States)

    van Hout, Rene; Rabencov, Boris; Arca, Javier

    2011-11-01

    Time-Resolved Particle Image Velocimetry (TR-PIV) and digital holography measurements were carried out in a dilute particle-laden flow tracking both Polystyrene Spheres (PS, ~0.583 mm, d+ ~ 10) as well as resolving the instantaneous velocity field of the turbulent flow. Measurements were performed in a closed loop, transparent, square channel facility (50x50 mm2) at 127.5cm from the inlet with bulk water velocity 0.3 m/s (Reh = 7353) and friction velocity 0.0174 m/s. Data were captured at 1 kHz, corresponding to a time scale 5x smaller than the flow's viscous scale. Single view digital holographic cinematography was used to track the 3D PS motion inside the VOI (17x17x50 mm3) including the wall bottom. TR-PIV in a vertical plane (29.3x29.3 mm2) oriented along the channel's centerline imaged PS together with flow tracers. Discrimination was based on their size difference. Instantaneous sequences of PS plotted on the spatial velocity, vorticity and swirling strength maps showed the effect of turbulent flow structures and resulting particle movement. Results are presented for particles that lift off from the bottom wall as a result of complex interaction with ejection and sweep motions.

  4. Real-time observation of cation exchange kinetics and dynamics at the muscovite-water interface

    Science.gov (United States)

    Lee, Sang Soo; Fenter, Paul; Nagy, Kathryn L.; Sturchio, Neil C.

    2017-06-01

    Ion exchange at charged solid-liquid interfaces is central to a broad range of chemical and transport phenomena. Real-time observations of adsorption/desorption at the molecular-scale elucidate exchange reaction pathways. Here we report temporal variation in the distribution of Rb+ species at the muscovite (001)-water interface during exchange with Na+. Time-resolved resonant anomalous X-ray reflectivity measurements at 25 °C reveal that Rb+ desorption occurs over several tens of seconds during which thermodynamically stable inner-sphere Rb+ slowly transforms to a less stable outer-sphere Rb+. In contrast, Rb+ adsorption is about twice as fast, proceeding from Rb+ in the bulk solution to the stable inner-sphere species. The Arrhenius plot of the adsorption/desorption rate constants measured from 9 to 55 °C shows that the pre-exponential factor for desorption is significantly smaller than that for adsorption, indicating that this reduced attempt frequency of cation detachment largely explains the slow cation exchange processes at the interface.

  5. Economic Time Series Modeling to Determine the Feasibility of Incorporating Drinking Water Treatment in Water Quality Trading

    Science.gov (United States)

    The critical steps required to evaluating the feasiblity of establishing a water quality trading market in a testbed watershed is described. Focus is given toward describing the problem of thin markets as a specifi barrier to successful trading. Economic theory for considering an...

  6. IMPLICATION OF LAKE WATER RESIDENCE TIME ON THE CLASSIFICATION OF NORWEGIAN SURFACE WATER SITES INTO PROGRESSIVE STAGES OF NITROGEN SATURATION

    Science.gov (United States)

    Seasonal behaviour of NO3- in surface water is often used as an indicator on a catchment's ability to retain N from atmospheric deposition. In this paper, we classify 12 pristine sites (five streams and seven lakes) in southernmost Norway according to the N saturation stage conce...

  7. Economic Time Series Modeling to Determine the Feasibility of Incorporating Drinking Water Treatment in Water Quality Trading

    Science.gov (United States)

    The critical steps required to evaluating the feasiblity of establishing a water quality trading market in a testbed watershed is described. Focus is given toward describing the problem of thin markets as a specifi barrier to successful trading. Economic theory for considering an...

  8. TMS delivered for A-3 Test Stand

    Science.gov (United States)

    2010-01-01

    A state-of-the-art thrust measurement system for the A-3 Test Stand under construction at NASA's John C. Stennis Space Center was delivered March 17. Once completed, the A-3 stand (seen in background) will allow simulated high-altitude testing on the next generation of rocket engines for America's space program. Work on the stand began in 2007, with activation scheduled for 2012. The stand is the first major test structure to be built at Stennis since the 1960s. The recently delivered TMS was fabricated by Thrust Measurement Systems in Illinois. It is an advanced calibration system capable of measuring vertical and horizontal thrust loads with an accuracy within 0.15 percent at 225,000 pounds.

  9. A Method for In-Situ Measurement of Stem Water Content in Trees and Shrubs Using Time Domain Reflectometry

    Science.gov (United States)

    Clark, J.; Tape, K. D.; Young, J.

    2015-12-01

    Quantifying vegetation water content is a critical aspect of understanding plant physiology, particularly how plants cope with drought, and ecosystem water balance. Yet, we lack a method to continuously monitor plant water content, particularly on small plants. We developed a method to continuously monitor tree and shrub water content using time domain reflectometry (TDR), a measurement technique commonly used to assess soil moisture. TDR probes were fabricated and inserted into trees and shrubs. Automated measurements were made at 30 minute intervals over several months. Calibration was performed by drying cut sections of trees and shrubs in the lab while making paired TDR and weight measurements on those samples to calculate gravimetric water content. Gravimetric water content was converted to volumetric water content to create a calibration equations relating TDR measurements to water content in Betula neoalaskana, Picea mariana, Populus tremuloides, and Salix alaxensis. Our fabricated TDR probes and our calibration equations permit continuous, non-destructive, and accurate measurements of stem water content in live trees and shrubs. These data show diurnal and seasonal patterns of water content which can be incorporated into plant physiological and hydrological models.

  10. WATER-FILLING SPACE-TIME CODE IN CORRELATED FLAT RAYLEIGH FADING MISO CHANNELS

    Institute of Scientific and Technical Information of China (English)

    Cheng Jian; Chen Ming; Cheng Shixin

    2003-01-01

    In this paper, STC with water-filling transmit power distribution in MISO systemis proposed when the partial channel information feedback is possible, for example, at slow fadingscenario. The performances of the water-filling STC including water-filling STTC and water-filling STBC are analyzed. Performance comparison of the Ungerboeck's 2/3 trellis coded 8PSKmodulated 2-STBC and 2-STTCs with QPSK is given out in different channel correlation.

  11. The role of accountable care organizations in delivering value.

    Science.gov (United States)

    O'Halloran, Kevin; Depalma, Andres; Joseph, Vilma; Cobelli, Neil; Sharan, Alok

    2012-12-01

    The goal of Accountable Care Organizations is to improve patient outcomes while maximizing the value of the services provided. This will be achieved through the use of performance and quality measures that facilitate efficient, cost-effective, evidence-based care. By creating a network connecting primary care physicians, specialists, rehabilitation facilities and hospitals, patient care should be maximized while at the same time delivering appropriate value for those services provided. The Medicare Shared Savings Program will financially reward ACOs that meet performance standards while at the same time lowering costs. The orthopaedic surgeon can only benefit by understanding how to participate in and negotiate the complexities of these organizations.

  12. Estimating subsurface water volumes and transit times in Hokkaido river catchments, Japan, using high-accuracy tritium analysis

    Science.gov (United States)

    Gusyev, Maksym; Yamazaki, Yusuke; Morgenstern, Uwe; Stewart, Mike; Kashiwaya, Kazuhisa; Hirai, Yasuyuki; Kuribayashi, Daisuke; Sawano, Hisaya

    2015-04-01

    The goal of this study is to estimate subsurface water transit times and volumes in headwater catchments of Hokkaido, Japan, using the New Zealand high-accuracy tritium analysis technique. Transit time provides insights into the subsurface water storage and therefore provides a robust and quick approach to quantifying the subsurface groundwater volume. Our method is based on tritium measurements in river water. Tritium is a component of meteoric water, decays with a half-life of 12.32 years, and is inert in the subsurface after the water enters the groundwater system. Therefore, tritium is ideally suited for characterization of the catchment's responses and can provide information on mean water transit times up to 200 years. Only in recent years has it become possible to use tritium for dating of stream and river water, due to the fading impact of the bomb-tritium from thermo-nuclear weapons testing, and due to improved measurement accuracy for the extremely low natural tritium concentrations. Transit time of the water discharge is one of the most crucial parameters for understanding the response of catchments and estimating subsurface water volume. While many tritium transit time studies have been conducted in New Zealand, only a limited number of tritium studies have been conducted in Japan. In addition, the meteorological, orographic and geological conditions of Hokkaido Island are similar to those in parts of New Zealand, allowing for comparison between these regions. In 2014, three field trips were conducted in Hokkaido in June, July and October to sample river water at river gauging stations operated by the Ministry of Land, Infrastructure, Transport and Tourism (MLIT). These stations have altitudes between 36 m and 860 m MSL and drainage areas between 45 and 377 km2. Each sampled point is located upstream of MLIT dams, with hourly measurements of precipitation and river water levels enabling us to distinguish between the snow melt and baseflow contributions

  13. Monitoring the Water Quality of Lake Koronia Using Long Time-Series of Multispectral Satellite Images

    Science.gov (United States)

    Perivolioti, Triantafyllia-Maria; Mouratidis, Antonios; Doxani, Georgia; Bobori, Dimitra

    2016-08-01

    In this study, a comprehensive 30-year (1984-2016) water quality parameter database for lake Koronia - one of the most important Ramsar wetlands of Greece - was compiled from Landsat imagery. The reliability of the data was evaluated by comparing water Quality Element (QE) values computed from Landsat data against in-situ data. Water quality algorithms developed from previous studies, specifically for the determination of Water Temperature, pH, Transparency/Secchi Disk Depth (SDD), Chlorophyll a and Conductivity, were applied to Landsat images. In addition, Water Depth, as well as the distribution of floating vegetation and cyanobacterial blooms were mapped. The performed comprehensive analysis posed certain questions, regarding the applicability of single empirical models across multi- temporal, multi-sensor datasets, towards the accurate prediction of key water quality indicators for shallow inland systems. This assessment demonstrates that satellite imagery can provide an accurate method for obtaining comprehensive spatial and temporal coverage of key water quality characteristics.

  14. Real-time PCR method for the detection and quantification of Acanthamoeba species in various types of water samples.

    Science.gov (United States)

    Kao, Po-Min; Tung, Min-Che; Hsu, Bing-Mu; Tsai, Hsien-Lung; She, Cheng-Yu; Shen, Shu-Min; Huang, Wen-Chien

    2013-03-01

    In this study, a quantitative real-time PCR was developed to detect and quantify Acanthamoeba spp. in various environmental water samples. The water samples were taken from watershed, water treatment plant, and three thermal spring recreation areas. The overall detection rate was 14.2 % (25/176) for Acanthamoeba spp. The percentages of samples containing Acanthamoeba spp. from river water, raw drinking water, and thermal spring water were 13 % (13/100), 25 % (7/28), and 10.4 % (5/48), respectively. Acanthamoeba spp. concentrations were determined according to SYBR Green quantitative real-time PCR. A plasmid-based standard curve was constructed to determine the Acanthamoeba concentration using dilution factors for achieving 1.36 × 10(9) gene copies per PCR for 18S rRNA gene in Acanthamoeba spp. The resulting concentrations varied by the type of water, in the range of 46-2.6 × 10(2) cells/l in positive raw drinking water, 2.7 × 10(2)-1.5 × 10(4) cells/l in river water, and 54-1.7 × 10(3) cells/l in thermal spring water. The presence of Acanthamoeba spp. in the raw drinking water samples was also found to have a significant difference with heterotrophic plate count. The presence of Acanthamoeba spp. in various aquatic environments may be a potential health hazard and must be further evaluated.

  15. The effect of microwave power and heating time pretreatment on biogas production from fresh and dried water hyacinth (Eichhornia crassipes)

    Science.gov (United States)

    Sumardiono, Siswo; Budiyono, Mardiani, Dini Tri

    2015-12-01

    The objective of this research was to study the effect of microwave pretreatment of fresh and dried water hyacinth on biogas production. The variations of microwave power levels are 240; 400; 560 and 800 W. The variations of microwave heating time are 5; 7 and 9 min. The unpretreated fresh and dried water hyacinth are used as control. The result of research showed that almost all pretreated water hyacinth produced biogas were higher compare tounpretreated water hyacinth. The maximum of biogas production from fresh and dried water hyacinthwere obtained at 560 W for 7 min and 400 W for 7 min of microwave pretreatment. In this condition, pretreated fresh and dried water hyacinth resulted biogas production of 75,12 and 53,06 mL/g TS, respectively. The unpretreated fresh and dried water hyacinth produced biogas of 37,56 and 33,56 mL/g TS, respectively. The microwave pretreatment of water hyacinth improved biogas production. Microwave pretreatment had a positive impact on anaerobic biodegradability of water hyacinth.

  16. AWWA's Program Delivers Points to Remember.

    Science.gov (United States)

    Water and Sewage Works, 1979

    1979-01-01

    Included are discussions surrounding organics in water that were presented at the water quality technology conference in 1978. Information is also provided on up-to-date water quality lab practices for disease control, heavy metal detection, and sodium monitoring. (CS)

  17. Foam on troubled water: Capillary induced finite-time arrest of sloshing waves

    Science.gov (United States)

    Viola, Francesco; Brun, P.-T.; Dollet, Benjamin; Gallaire, François

    2016-09-01

    Interfacial forces exceed gravitational forces on a scale small relative to the capillary length—two millimeters in the case of an air-water interface—and therefore dominate the physics of sub-millimetric systems. They are of paramount importance for various biological taxa and engineering processes where the motion of a liquid meniscus induces a viscous frictional force that exhibits a sublinear dependence in the meniscus velocity, i.e., a power law with an exponent smaller than one. Interested in the fundamental implications of this dependence, we use a liquid-foam sloshing system as a prototype to exacerbate the effect of sublinear friction on the macroscopic mechanics of multi-phase flows. In contrast to classical theory, we uncover the existence of a finite-time singularity in our system yielding the arrest of the fluid's oscillations. We propose a minimal theoretical framework to capture this effect, thereby amending the paradigmatic damped harmonic oscillator model. Our results suggest that, although often not considered at the macroscale, sublinear capillary forces govern the friction at liquid-solid and liquid-liquid interfaces.

  18. Water quality-based real time control of integrated urban drainage: a preliminary study from Copenhagen, Denmark

    DEFF Research Database (Denmark)

    Vezzaro, Luca; Lund Christensen, Margit; Thirsing, Carsten

    2013-01-01

    in the Lynetten catchment (Copenhagen, Denmark). Two different strategies were simulated, considering: (i) water quality at the wastewater treatment plant (WWTP) inlet and (ii) pollution discharge to the bathing areas. These strategies were included in the Dynamic Overflow Risk Assessment (DORA) RTC strategy......Global Real Time Control (RTC) of urban drainage systems is increasingly seen as cost-effective solution for responding to increasing performance demands. This study investigated the potential for including water-quality based RTC into the global control strategy which is under implementation...... period, no significant changes were observed. These preliminary results require further analysis by including detailed water quality measurements and simulations. Nevertheless, the potential for including water-quality RTC in global RTC schemes was unveiled, providing a further option to urban water...

  19. Discovering temporal patterns in water quality time series, focusing on floods with the LDA method

    Science.gov (United States)

    Hélène Aubert, Alice; Tavenard, Romain; Emonet, Rémi; Malinowski, Simon; Guyet, Thomas; Quiniou, René; Odobez, Jean-Marc; Gascuel-Odoux, Chantal

    2013-04-01

    Studying floods has been a major issue in hydrological research for years. It is often done in terms of water quantity but it is also of interest in terms of water quality. Stream chemistry is a mix of solutes. They originate from various sources in the catchment, reach the stream by various flow pathways and are transformed by biogeochemical reactions at different locations. Therefore, we hypothesized that reaction of the stream chemistry to a rainfall event is not unique but varies according to the season (1), and the global meteorological conditions of the year (2). Identifying a typology of temporal chemical patterns of reaction to a rainfall event is a way to better understand catchment processes at the flood time scale. To answer this issue, we applied a probabilistic model (Latent Dirichlet Allocation or LDA (3)) mining recurrent sequential patterns to a dataset of floods. The dataset is 12 years long and daily recorded. It gathers a broad range of parameters from which we selected rainfall, discharge, water table depth, temperature as well as nitrate, dissolved organic carbon, sulphate and chloride concentrations. It comes from a long-term hydrological observatory (AgrHys, western France) located at Kervidy-Naizin. A set of 472 floods was automatically extracted (4). From each flood, a document has been generated that is made of a set of "hydrological words". Each hydrological word corresponds to a measurement: it is a triplet made of the considered variable, the time at which the measurement is made (relative to the beginning of the flood), and its magnitude (that can be low, medium or high). The documents are used as input data to the LDA algorithm. LDA relies on spotting co-occurrences (as an alternative to the more traditional study of correlation) between words that appear within the flood documents. It has two nice properties that are its ability to easily deal with missing data and its additive property that allows a document to be seen as a mixture

  20. Water sorption-induced crystallization, structural relaxations and strength analysis of relaxation times in amorphous lactose/whey protein systems

    OpenAIRE

    Fan, Fanghui; Mou, Tian; Nurhadi, Bambang; Roos, Yrjö H.

    2016-01-01

    Water sorption-induced crystallization, α-relaxations and relaxation times of freeze-dried lactose/whey protein isolate (WPI) systems were studied using dynamic dewpoint isotherms (DDI) method and dielectric analysis (DEA), respectively. The fractional water sorption behavior of lactose/WPI mixtures shown at aw ≤ 0.44 and the critical aw for water sorption-related crystallization (aw(cr)) of lactose were strongly affected by protein content based on DDI data. DEA results showed that the α-rel...

  1. Delivering IT and eBusiness value

    CERN Document Server

    Willcocks, Leslie

    2001-01-01

    Delivering Business Value from IT' is focused on the evaluation issue in IT and how IT evaluation can proceed across the life-cycle of any IT investment and be linked positively to improving business performance. .Chapters 1,2 and 3 detail an approach to IT evaluation whilst chapters 4 and 5 build on these by showing two distinctive approaches to linking IT to business performance. The remaining three chapters deal with a range of evaluation issues emerging as important - specifically Internet evaluation, Y2K and beyond, EMU, quality outsourcing, infrastructure, role of benchmarking, and cost

  2. Determination of groundwater travel time in a karst aquifer by stable water isotopes, Tanour and Rasoun spring (Jordan)

    Science.gov (United States)

    Hamdan, Ibraheem; Wiegand, Bettina; Sauter, Martin; Ptak, Thomas

    2016-04-01

    Key words: karst aquifers, stable isotopes, water travel time, Jordan. Tanour and Rasoun karst springs are located about 75 kilometers northwest of the city of Amman in Jordan. The aquifer is composed of Upper Cretaceous limestone that exhibits a moderate to high degree of karstification. The two springs represent the main drinking water resources for the surrounding villages. The yearly water production is about 1,135,000 m3/yr for Tanour spring and 125,350 m3/yr for Rasoun spring (MWI 2015). Due to contamination from microbiological pollution (leakage of wastewater from septic tanks) or infiltration of wastewater from local olive presses, drinking water supply from the two springs is frequently interrupted. From November 2014 through March 2015, spring water samples were collected from Tanour and Rasoun spring for the analysis of stable hydrogen and oxygen isotopes to investigate spring response to precipitation and snowmelt events. Both Tanour and Rasoun spring show a fast response to precipitation and snowmelt events, implying short water travel times. Based on the variation of δ 18O and δ 2H in spring discharge, the average maximum water travel time is in the order of 8 days for Tanour spring and 6 days for Rasoun spring. Due to fast water travel times, Tanour and Rasoun spring can be considered as highly vulnerable to pollutants. δ 18O and δ 2H values of Tanour and Rasoun springs parallel other monitored parameter like water temperature, turbidity, electrical conductivity and spring discharge. In addition, a high turbidity peak was monitored in Tanour spring during a pollution event from olive mills wastewater (Hamdan et al., 2016; Hamdan, in prep.). The fast response in both Tanour and Rasoun springs to precipitation events requires monitoring potential sources of pollution within the catchment area. References: MWI (Ministry of Water and Irrigation) (2015) Monthly Production values for Tanour and Rasoun Springs for the time period between 1996 and 2014

  3. Aggregation effects on tritium-based mean transit times and young water fractions in spatially heterogeneous catchments and groundwater systems

    Directory of Open Access Journals (Sweden)

    M. K. Stewart

    2017-09-01

    Full Text Available Kirchner (2016a demonstrated that aggregation errors due to spatial heterogeneity, represented by two homogeneous subcatchments, could cause severe underestimation of the mean transit times (MTTs of water travelling through catchments when simple lumped parameter models were applied to interpret seasonal tracer cycle data. Here we examine the effects of such errors on the MTTs and young water fractions estimated using tritium concentrations in two-part hydrological systems. We find that MTTs derived from tritium concentrations in streamflow are just as susceptible to aggregation bias as those from seasonal tracer cycles. Likewise, groundwater wells or springs fed by two or more water sources with different MTTs will also have aggregation bias. However, the transit times over which the biases are manifested are different because the two methods are applicable over different time ranges, up to 5 years for seasonal tracer cycles and up to 200 years for tritium concentrations. Our virtual experiments with two water components show that the aggregation errors are larger when the MTT differences between the components are larger and the amounts of the components are each close to 50 % of the mixture. We also find that young water fractions derived from tritium (based on a young water threshold of 18 years are almost immune to aggregation errors as were those derived from seasonal tracer cycles with a threshold of about 2 months.

  4. Tunable Structures and Properties of Electrospun Regenerated Silk Fibroin Mats Annealed in Water Vapor at Different Times and Temperatures

    Directory of Open Access Journals (Sweden)

    Xiangyu Huang

    2014-01-01

    Full Text Available Regenerated silk fibroin (SF mats were fabricated using electrospinning technique, followed by mild water vapor annealing to effectively tune the structures and improve the mechanical properties of the mats at different annealing times and temperatures. The breaking strength and the breaking energy of the mats treated with water vapor at 65°C for 12 h reached 6.0 MPa and 171.7 J/kg, respectively. The conformational transition of the SF mats was significantly influenced by the treating temperature, while the influence of time was comparatively limited. The influence is consistent with the time-temperature equivalent principle and would be helpful for the preparation of water-vapor-annealed silk-based biomaterials for various applications.

  5. Recovery of DNA of Giardia intestinalis cysts from surface water concentrates measured with PCR and real time PCR

    Directory of Open Access Journals (Sweden)

    Adamska M.

    2011-11-01

    Full Text Available The most important restriction for the detection in water samples is the low concentration of Giardia intestinalis cysts, additional difficulty is the presence of PCR inhibitors. We have carried out trials in order to assess the sensitivity of semi-nested PCR and TaqMan real time PCR on the basis of DNA extracted from G. intestinalis cysts coming from spiked environmental and distilled water samples, filtrated with the use of Filta-Max® equipment (1623 Method. Removal of inhibitors was carried out with addition of BSA in different concentrations. During the filtration and concentration of water samples, losses of cysts have been recorded. Moreover, addition of BSA to the PCR and real time PCR mix increases the sensitivity of reaction. The optimal concentration of BSA for semi-nested PCR was 15 and 20 ng/μl, whereas for real time PCR 5 ng/μl.

  6. Towards a Fully Distributed Characterization of Water Residence and Transit Time by Coupled Hydrology-Transport Modeling

    Science.gov (United States)

    Remondi, F.; Fatichi, S.; Burlando, P.

    2015-12-01

    Water residence and transit time are crucial elements in flow pathways and catchment response characterization. The temporal distribution of catchment transit times has been generally studied and modelled with lumped parameter approaches. However, understanding the dominant controls in a more holistic manner requires attention to the spatially distributed catchment properties also in relation to their control on the basin response to different type of precipitation events. A tool that looks both at the time and space distribution of water residence and transport can be useful for predicting water and solute fluxes and ultimately for better understanding the dependence of catchment transit and residence times on geomorphological and climatic factors. To this purpose we couple a fully distributed, yet essential, process-based watershed model with a component to simulate solute transport. Key features of the developed tool include: (a) reduced complexity spatially-distributed hydrological model; (b) spatially-distributed water age and conservative tracer concentration; (c) possibility to explicitly compute transit time distributions for different precipitation events and locations. The presented framework is tested on the Plynlimon watershed (UK), where long-term records of hydrological variables are available. Among them, discharge and chloride concentration are used to investigate the model behavior. We present the integrated model concept, the underlying methodologies, the results from the case study application, as well as preliminary virtual experiments that allow exploring the full statistical space of travel and residence times.

  7. Does Water Temperature Affect the Timing and Duration of Remigial Moult in Sea Ducks? An Experimental Approach.

    Science.gov (United States)

    Viain, Anouck; Guillemette, Magella

    2016-01-01

    Aquatic birds have high cost of thermoregulation, especially during the moulting period, yet the effect of water temperature on the moulting strategy of aquatic birds has rarely been studied. Our general hypothesis is that energy savings associated with lower thermoregulation costs would be allocated to moulting processes. We predicted that aquatic birds moulting in warm water would have a higher level of body reserves, a faster growth rate of feathers, and an earlier remigial moult onset compared with birds moulting in cold water. We used the common eider (Somateria mollissima dresseri), a large sea duck, as the model species. Captive individuals were experimentally exposed to warm (18°C) and cold (8°C) water treatments during a three year period with individuals swapped between treatments. We found a similar feather growth rate for the two water temperature treatments and in contrast to our predictions, eiders exposed to warm water had a lower body mass and showed a delayed onset of remigial moult of approximately 7 days compared with those exposed to cold water. Our data indicate that body mass variations influence the timing of moult in unexpected ways and we suggest that it likely controls the occurrence of wing moult through a hormonal cascade. This study emphasizes the importance of improving our knowledge of the effects of water temperature on remigial moult of aquatic birds, to better assert the potential effects of global warming on their survival.

  8. Does Water Temperature Affect the Timing and Duration of Remigial Moult in Sea Ducks? An Experimental Approach.

    Directory of Open Access Journals (Sweden)

    Anouck Viain

    Full Text Available Aquatic birds have high cost of thermoregulation, especially during the moulting period, yet the effect of water temperature on the moulting strategy of aquatic birds has rarely been studied. Our general hypothesis is that energy savings associated with lower thermoregulation costs would be allocated to moulting processes. We predicted that aquatic birds moulting in warm water would have a higher level of body reserves, a faster growth rate of feathers, and an earlier remigial moult onset compared with birds moulting in cold water. We used the common eider (Somateria mollissima dresseri, a large sea duck, as the model species. Captive individuals were experimentally exposed to warm (18°C and cold (8°C water treatments during a three year period with individuals swapped between treatments. We found a similar feather growth rate for the two water temperature treatments and in contrast to our predictions, eiders exposed to warm water had a lower body mass and showed a delayed onset of remigial moult of approximately 7 days compared with those exposed to cold water. Our data indicate that body mass variations influence the timing of moult in unexpected ways and we suggest that it likely controls the occurrence of wing moult through a hormonal cascade. This study emphasizes the importance of improving our knowledge of the effects of water temperature on remigial moult of aquatic birds, to better assert the potential effects of global warming on their survival.

  9. Effect of Different Tumbling Marination Methods and Time on the Water Status and Protein Properties of Prepared Pork Chops

    Directory of Open Access Journals (Sweden)

    Tian Gao

    2015-07-01

    Full Text Available The combined effect of tumbling marination methods (vacuum continuous tumbling marination, CT; vacuum intermittent tumbling marination, IT and effective tumbling time (4, 6, 8, and 10 h on the water status and protein properties of prepared pork chops was investigated. Results showed that regardless of tumbling time, CT method significantly decreased the muscle fiber diameter (MD and significantly increased the total moisture content, product yield, salt soluble proteins (SSP solubility, immobilized water component (p<0.05 compared with IT method. With the effective tumbling time increased from 4 h to 10 h, the fat content and the MD were significantly decreased (p<0.05, whereas the SSP solubility of prepared pork chops increased firstly and then decreased. Besides, an interactive effect between CT method and effective tumbling time was also observed for the chemical composition and proportion of immobilized water (p<0.05. These results demonstrated that CT method of 8 h was the most beneficial for improving the muscle structure and water distribution status, increasing the water-binding capacity and accelerating the marinade efficiency of pork chops; and thus, it should be chosen as the most optimal treatment method for the processing production of prepared pork chops.

  10. Validating time series of a combined GPS and MERIS Integrated Water Vapor product

    NARCIS (Netherlands)

    Lindenbergh, R.; Van der Marel, H.; Keshin, M.; De Haan, S.

    2009-01-01

    Increased knowledge of atmospheric water vapor can improve weather predictions and is expected to reduce errors in products derived from GPS and (In)SAR data. At GPS ground stations Integrated Water Vapor (IWV) is estimated from the GPS signal delay with a high temporal resolution. The Envisat MERIS

  11. On the time varying horizontal water velocity of single, multiple, and random gravity wave trains

    NARCIS (Netherlands)

    Wells, D.R.

    1964-01-01

    In this dissertation some characteristics of the horizontal water velocity for single, multiple, and random gravity wave trains are studied. This work consists of two parts, an analogue study and hydraulic measurements. An important aspect in this work is to suggest the horizontal water velocity asy

  12. Validating time series of a combined GPS and MERIS Integrated Water Vapor product

    NARCIS (Netherlands)

    Lindenbergh, R.; Van der Marel, H.; Keshin, M.; De Haan, S.

    2009-01-01

    Increased knowledge of atmospheric water vapor can improve weather predictions and is expected to reduce errors in products derived from GPS and (In)SAR data. At GPS ground stations Integrated Water Vapor (IWV) is estimated from the GPS signal delay with a high temporal resolution. The Envisat MERIS

  13. Variational space–time (dis)continuous Galerkin method for nonlinear free surface water waves

    NARCIS (Netherlands)

    Gagarina, E.; Ambati, V.R.; Vegt, van der J.J.W.; Bokhove, O.

    2014-01-01

    A new variational finite element method is developed for nonlinear free surface gravity water waves using the potential flow approximation. This method also handles waves generated by a wave maker. Its formulation stems from Miles’ variational principle for water waves together with a finite element

  14. Long-Term Time Series of Remote Sensing Observations for Development of Regulatory Water Quality Standards

    Science.gov (United States)

    Blonski, Slawomir; Spiering, Bruce A.; Holekamp, Kara L.

    2010-01-01

    Water quality standards in the U.S. consist of: designated uses (the services that a water body provides; e.g., drinking water, aquatic life, harvestable species, recreation) . criteria that define the environmental conditions that must be maintained to support the uses For estuaries and coastal waters in the Gulf of Mexico, there are no numeric (quantitative) criteria to protect designated uses from effects of nutrients. This is largely due to the absence of adequate data that would quantitatively link biological conditions to nutrient concentrations. The Gulf of Mexico Alliance, an organization fostering collaboration between the Gulf States and U.S. Federal agencies, has identified the development of the numeric nutrient criteria as a major step leading to reduction in MODIS Products Figure 6. Map of the Mobile Bay with a yellow patch indicating the Bon Secour Bay area selected in this study for averaging water clarity parameters retrieved from MODIS datasets. nutrient inputs to coastal ecosystems. Nutrient enrichment in estuaries and coastal waters can be quantified based on response variables that measure phytoplankton biomass and water clarity. Long-term, spatially and temporally resolved measurements of chlorophyll a concentration, total concentration of suspended solids, and water clarity are needed to establish reference conditions and to quantify stressor-response relationships.

  15. DESIGNS MATTER: Delivering Information Sources for Tourism

    Directory of Open Access Journals (Sweden)

    Margie A. Nolasco

    2016-11-01

    Full Text Available Tourism has benefits not just for travelers, but also to the local economy. Since, Bicol Region has natural and cultural attractions; it is a potential travel destination in the country. Technology in delivering information sources played vital role for the success of the tourism industry in the Region. This allows travel enthusiasts to get more information about various tourist attractions. This paper analyzes the effectiveness of delivering information sources such as web advertisement and desktop publishing for tourist promotion in the Bicol Region. Specifically, it determined the status of tourism, and identified common forms of promotions for tourism development. The study adopted mixed method of research. This method was utilized to confirm and validate findings. Interviews and focus group discussions were used to gather data from the respondents of the selected Local Government Units, Department of Tourism, Travel Agencies and Hotel Agents in the Region. Based on the findings, of the total foreign visitors in the country, only 9.14% visited Bicol Region in 2014. That is why, domestic tourist showed high percentage against foreign visitors with 25.7%. Brochures with EZ maps as most commonly used desktop publishing materials and websites and social media for web advertisement. Thus, there is a need to reevaluate promotional activities by the DOT and other agencies. Adoption suggestive features for creative desktop publishing materials and web services should be considered to increase tourist visitors in the Region.

  16. Artificial Neural Networks and Support Vector Machines for Water Demand Time Series Forecasting

    CERN Document Server

    Msiza, Ishmael S; Nelwamondo, Fulufhelo Vincent

    2007-01-01

    Water plays a pivotal role in many physical processes, and most importantly in sustaining human life, animal life and plant life. Water supply entities therefore have the responsibility to supply clean and safe water at the rate required by the consumer. It is therefore necessary to implement mechanisms and systems that can be employed to predict both short-term and long-term water demands. The increasingly growing field of computational intelligence techniques has been proposed as an efficient tool in the modelling of dynamic phenomena. The primary objective of this paper is to compare the efficiency of two computational intelligence techniques in water demand forecasting. The techniques under comparison are the Artificial Neural Networks (ANNs) and the Support Vector Machines (SVMs). In this study it was observed that the ANNs perform better than the SVMs. This performance is measured against the generalisation ability of the two.

  17. The time variation in infrared water-vapour bands in Mira variables

    Science.gov (United States)

    Matsuura, M.; Yamamura, I.; Cami, J.; Onaka, T.; Murakami, H.

    2002-03-01

    The time variation in the water-vapour bands in oxygen-rich Mira variables has been investigated using multi-epoch ISO/SWS spectra of four Mira variables in the 2.5-4.0 mu m region. All four stars show H2O bands in absorption around minimum in the visual light curve. At maximum, H2O emission features appear in the ~ 3.5-4.0 mu m region, while the features at shorter wavelengths remain in absorption. These H2O bands in the 2.5-4.0 mu m region originate from the extended atmosphere. The analysis has been carried out with a disk shape, slab geometry model. The observed H2O bands are reproduced by two layers; a ``hot'' layer with an excitation temperature of 2000 K and a ``cool'' layer with an excitation temperature of 1000-1400 K. The column densities of the ``hot'' layer are 6*E20-3*E22 cm-2, and exceed 3*E21 cm-2 when the features are observed in emission. The radii of the ``hot'' layer (Rhot) are ~ 1 R* at visual minimum and 2 R* at maximum, where R* is a radius of background source of the model, in practical, the radius of a 3000 K black body. The ``cool'' layer has the column density (Ncool) of 7*E20-5*E22 cm-2, and is located at 2.5-4.0 R*. Ncool depends on the object rather than the variability phase. The time variation of Rhot/R* from 1 to 2 is attributed to the actual variation in the radius of the H2O layer, since the variation in Rhot far exceeds the variation in the ``continuum'' stellar radius. A high H_2O density shell occurs near the surface of the star around minimum, and moves out with the stellar pulsation. This shell gradually fades away after maximum, and a new high H2O density shell is formed in the inner region again at the next minimum. Due to large optical depth of H2O, the near-infrared variability is dominated by the H2O layer, and the L'-band flux correlates with the area of the H2O shell. The infrared molecular bands trace the structure of the extended atmosphere and impose appreciable effects on near-infrared light curve of Mira variables

  18. Importance of vegetation, topography and flow paths for water transit times of base flow in alpine headwater catchments

    Directory of Open Access Journals (Sweden)

    M. H. Mueller

    2013-04-01

    Full Text Available The mean transit time (MTT of water in a catchment gives information about storage, flow paths, sources of water and thus also about retention and release of solutes in a catchment. To our knowledge there are only a few catchment studies on the influence of vegetation cover changes on base flow MTTs. The main changes in vegetation cover in the Swiss Alps are massive shrub encroachment and forest expansion into formerly open habitats. Four small and relatively steep headwater catchments in the Swiss Alps (Ursern Valley were investigated to relate different vegetation cover to water transit times. Time series of water stable isotopes were used to calculate MTTs. The high temporal variation of the stable isotope signals in precipitation was strongly dampened in stream base flow samples. MTTs of the four catchments were 70 to 102 weeks. The strong dampening of the stable isotope input signal as well as stream water geochemistry points to deeper flow paths and mixing of waters of different ages at the catchments' outlets. MTTs were neither related to topographic indices nor vegetation cover. The major part of the quickly infiltrating precipitation likely percolates through fractured and partially karstified deeper rock zones, which increases the control of bedrock flow paths on MTT. Snow accumulation and the timing of its melt play an important role for stable isotope dynamics during spring and early summer. We conclude that, in mountainous headwater catchments with relatively shallow soil layers, the hydrogeological and geochemical patterns (i.e. geochemistry, porosity and hydraulic conductivity of rocks and snow dynamics influence storage, mixing and release of water in a stronger way than vegetation cover or topography do.

  19. Water Stress on U.S. Power Production at Decadal Time Horizons

    Science.gov (United States)

    Ganguli, P.; Kumar, D.; Yun, J.; Short, G.; Klausner, J.; Ganguly, A. R.

    2014-12-01

    Thermoelectric power production at risk, owing to current and projected water scarcity and rising stream temperatures, is assessed for the continental United States (US) at decadal scales. Regional water scarcity is driven by climate variability and change, as well as by multi-sector water demand. While a planning horizon of zero to about thirty years is occasionally prescribed by stakeholders, the challenges to risk assessment at these scales include the difficulty in delineating decadal climate trends from intrinsic natural or multiple model variability. Current generation global climate or earth system models are not credible at the spatial resolutions of power plants, especially for surface water quantity and stream temperatures, which further exacerbates the assessment challenge. Population changes, which are anyway difficult to project, cannot serve as adequate proxies for changes in the water demand across sectors. The hypothesis that robust assessments of power production at risks are possible, despite the uncertainties, has been examined as a proof of concept. An approach is presented for delineating water scarcity and temperature from climate models, observations and population storylines, as well as for assessing power production at risk by examining geospatial correlations of power plant locations within regions where the usable water supply for energy production happens to be scarcer and warmer. Acknowledgment: Funding provided by US DOE's ARPA-E through Award DE-AR0000374.

  20. Piloting a real-time surface water flood nowcasting system for enhancing operational resilience of emergency responders

    Science.gov (United States)

    Yu, Dapeng; Guan, Mingfu; Wilby, Robert; Bruce, Wright; Szegner, Mark

    2017-04-01

    Emergency services (such as Fire & Rescue, and Ambulance) can face the challenging tasks of having to respond to or operate under extreme and fast changing weather conditions, including surface water flooding. UK-wide, return period based surface water flood risk mapping undertaken by the Environment Agency provides useful information about areas at risks. Although these maps are useful for planning purposes for emergency responders, their utility to operational response during flood emergencies can be limited. A street-level, high resolution, real-time, surface water flood nowcasting system, has been piloted in the City of Leicester, UK to assess emergency response resilience to surface water flooding. Precipitation nowcasting over 7- and 48-hour horizons are obtained from the UK Met Office and used as inputs to the system. A hydro-inundation model is used to simulate urban surface water flood depths/areas at both the city and basin scale, with a 20 m and 3 m spatial resolution respectively, and a 15-minute temporal resolution, 7-hour and 48-hour in advance. Based on this, we evaluate both the direct and indirect impacts of potential surface water flood events on emergency responses, including: (i) identifying vulnerable populations (e.g. care homes and schools) at risk; and (ii) generating novel metrics of accessibility (e.g. travel time from service stations to vulnerable sites; spatial coverage with certain legislative timeframes) in real-time. In doing so, real-time information on potential risks and impacts of emerging flood incidents arising from intense rainfall can be communicated via a dedicated web-based platform to emergency responders thereby improving response times and operational resilience.

  1. Insights on Clusters Formation Mechanism by Time of Flight Mass Spectrometry. 2. The Case of Acetone-Water Clusters

    Science.gov (United States)

    Apicella, B.; Li, X.; Passaro, M.; Russo, C.

    2016-11-01

    This paper is the second of a series dealing with clusters formation mechanism. In part 1, water clusters with the addition of an electrophilic molecule such as ethanol were studied by Time Of Flight Mass Spectrometry (TOFMS). Mass distributions of molecular clusters of ethanol, water and ethanol-water mixed clusters, were obtained by means of two different ionization methods: Electron Ionization (EI) and picosecond laser Photo-Ionization (PI) at a wavelength of 355 nm. In part 2, the same experimental approach was employed to obtain mass spectra of clusters generated by acetone-water binary mixtures with a different composition. Strong dependence of the mass spectra of clusters with EI and PI on the acetone-water mixing ratio was observed. It was shown that the spectral pattern changes gradually and water-rich cluster signals become fainter while acetone-rich cluster signals become more intensive with increasing acetone concentrations from 0.3% to 40%. Owing to the hydrogen bond acceptor character of acetone, its self-association is discouraged with respect to ethanol. The autocorrelation function (AF) was used to analyze the variation of the water clusters composition with the increase of the acetone concentration in terms of fundamental periodicities. However, although acetone and ethanol present a very different hydrogen-bonding ability, similarly to ethanol-water system, in acetone-water system the formation of water-rich clusters and subsequent metastable fragmentation are the dominant process that determine the clusters distribution, irrespective of the ionization process, while the ionization process significantly affects the acetone-rich clusters distribution.

  2. Examining the role of carbonation and temperature on water swallowing performance: a swallowing reaction-time study.

    Science.gov (United States)

    Michou, Emilia; Mastan, Aliya; Ahmed, Saira; Mistry, Satish; Hamdy, Shaheen

    2012-11-01

    Various therapeutic approaches for dysphagia management are based on modifications of bolus properties to change swallowing biomechanics and increase swallowing safety. Limited evidence exists for the effects of carbonation and bolus temperature on swallowing behavior. Here, we investigated the effects of carbonation and temperature on swallowing behavior using a novel automated and complex swallowing reaction time task via pressure signal recordings in the hypopharynx. Healthy participants (n = 39, 27.7±5 years old) were randomized in two different experiments and asked to perform 10 normal-paced swallows, 10 fast-paced swallows, and 10 challenged swallows within a predetermined time-window of carbonated versus still water (experiment 1) and of cold (4 °C) versus hot (45 °C) versus room temperature (21 °C) water (experiment 2). Quantitative measurements of latencies and percentage of successful challenged swallows were collected and analyzed nonparametrically. An increase in successfully performed challenged swallowing task was observed with carbonated water versus still water (P = 0.021), whereas only cold water shortened the latencies of normally paced swallows compared with room (P = 0.001) and hot (P = 0.004) temperatures. Therefore, it appears that chemothermal stimulation with carbonation and cold are most effective at modulating water swallowing, which in part is likely to be driven by central swallowing afferent activity.

  3. Diverging sensitivity of soil water stress to changing snowmelt timing in the Western U.S.

    Science.gov (United States)

    Harpold, Adrian A.

    2016-06-01

    Altered snowpack regimes from regional warming threaten mountain ecosystems with greater water stress and increased likelihood of vegetation disturbance. The sensitivity of vegetation to changing snowpack conditions is strongly mediated by soil water storage, yet a framework to identify areas sensitive to changing snowpack regimes is lacking. In this study we ask two questions: (1) How will changing snowmelt alter the duration of soil water stress and length of the soil-mediated growing season (shortened to water stress and growing season, respectively)? and (2) What site characteristics increase the sensitivity of water stress and growing season duration to changes in snowmelt? We compiled soil moisture at 5, 20 and 50 cm depths from 62 SNOTEL sites with > 5 years of records and detailed soil properties. Soil water stress was estimated based on measured wilting point water content. The day of snow disappearance consistently explained the greatest variability in water stress across all site-years and within individual sites, while summer precipitation explained the most variability in growing season length. On average, a one day earlier snow disappearance resulted in 0.62 days greater water stress and 36 of 62 sites had significant relationships between snow disappearance and water stress. Despite earlier snow disappearance leading to greater water stress at nearly all sites, earlier snow disappearance led to both significant increases (4 of 62) and decreases (5 of 62) in growing season length. Satellite derived vegetation greenness confirmed site-dependent changes could both increase and reduce maximum annual vegetation greenness with earlier snow disappearance. A simple soil moisture model demonstrated the potential for diverging growing season length with earlier snow disappearance was more likely in areas with finer soil texture, greater rooting depth, greater potential evapotranspiration, and greater precipitation. More work is needed to understand the role of

  4. Time-dependent properties of liquid water isotopes adsorbed in carbon nanotubes

    Science.gov (United States)

    Martí, J.; Gordillo, M. C.

    2001-06-01

    Dynamics of liquid water and its isotopes when adsorbed inside carbon nanotubes of different radii is studied by means of molecular dynamics simulations. Water molecules have been modeled with a flexible simple point charged (SPC) potential while carbon forces were accounted for with Lennard-Jones-type potentials. Diffusive behavior and the librational, rotational, intra- and intermolecular motions of the constrained molecules have been investigated by means of the spectral densities computed from atomic velocity autocorrelation functions. The results show in all cases significant new vibrational bands and frequency shifts absent in bulk water.

  5. A shorter time step for eco-friendly reservoir operation does not always produce better water availability and ecosystem benefits

    Science.gov (United States)

    Yu, Chunxue; Yin, Xin'an; Yang, Zhifeng; Cai, Yanpeng; Sun, Tao

    2016-09-01

    The time step used in the operation of eco-friendly reservoirs has decreased from monthly to daily, and even sub-daily. The shorter time step is considered a better choice for satisfying downstream environmental requirements because it more closely resembles the natural flow regime. However, little consideration has been given to the influence of different time steps on the ability to simultaneously meet human and environmental flow requirements. To analyze this influence, we used an optimization model to explore the relationships among the time step, environmental flow (e-flow) requirements, and human water needs for a wide range of time steps and e-flow scenarios. We used the degree of hydrologic alteration to evaluate the regime's ability to satisfy the e-flow requirements of riverine ecosystems, and used water supply reliability to evaluate the ability to satisfy human needs. We then applied the model to a case study of China's Tanghe Reservoir. We found four efficient time steps (2, 3, 4, and 5 days), with a remarkably high water supply reliability (around 80%) and a low alteration of the flow regime (human needs under several e-flow scenarios. Our results show that adjusting the time step is a simple way to improve reservoir operation performance to balance human and e-flow needs.

  6. Predicting the Water Level Fluctuation in an Alpine Lake Using Physically Based, Artificial Neural Network, and Time Series Forecasting Models

    Directory of Open Access Journals (Sweden)

    Chih-Chieh Young

    2015-01-01

    Full Text Available Accurate prediction of water level fluctuation is important in lake management due to its significant impacts in various aspects. This study utilizes four model approaches to predict water levels in the Yuan-Yang Lake (YYL in Taiwan: a three-dimensional hydrodynamic model, an artificial neural network (ANN model (back propagation neural network, BPNN, a time series forecasting (autoregressive moving average with exogenous inputs, ARMAX model, and a combined hydrodynamic and ANN model. Particularly, the black-box ANN model and physically based hydrodynamic model are coupled to more accurately predict water level fluctuation. Hourly water level data (a total of 7296 observations was collected for model calibration (training and validation. Three statistical indicators (mean absolute error, root mean square error, and coefficient of correlation were adopted to evaluate model performances. Overall, the results demonstrate that the hydrodynamic model can satisfactorily predict hourly water level changes during the calibration stage but not for the validation stage. The ANN and ARMAX models better predict the water level than the hydrodynamic model does. Meanwhile, the results from an ANN model are superior to those by the ARMAX model in both training and validation phases. The novel proposed concept using a three-dimensional hydrodynamic model in conjunction with an ANN model has clearly shown the improved prediction accuracy for the water level fluctuation.

  7. Predictive Time Series Analysis Linking Bengal Cholera with Terrestrial Water Storage Measured from Gravity Recovery and Climate Experiment Sensors

    Science.gov (United States)

    Jutla, Antarpreet; Akanda, Ali; Unnikrishnan, Avinash; Huq, Anwar; Colwell, Rita

    2015-01-01

    Outbreaks of diarrheal diseases, including cholera, are related to floods and droughts in regions where water and sanitation infrastructure are inadequate or insufficient. However, availability of data on water scarcity and abundance in transnational basins, are a prerequisite for developing cholera forecasting systems. With more than a decade of terrestrial water storage (TWS) data from the Gravity Recovery and Climate Experiment, conditions favorable for predicting cholera occurrence may now be determined. We explored lead–lag relationships between TWS in the Ganges–Brahmaputra–Meghna basin and endemic cholera in Bangladesh. Since bimodal seasonal peaks in cholera in Bangladesh occur during spring and autumn seasons, two separate logistical models between TWS and disease time series (2002–2010) were developed. TWS representing water availability showed an asymmetrical, strong association with cholera prevalence in the spring (τ = −0.53; P < 0.001) and autumn (τ = 0.45; P < 0.001) up to 6 months in advance. One unit (centimeter of water) decrease in water availability in the basin increased odds of above normal cholera by 24% (confidence interval [CI] = 20–31%; P < 0.05) in the spring, while an increase in regional water by 1 unit, through floods, increased odds of above average cholera in the autumn by 29% (CI = 22–33%; P < 0.05). PMID:26526921

  8. Magnetic resonance imaging spatial and time study of lung water content in newborn lamb: methods and preliminary results.

    Science.gov (United States)

    Viard, Romain; Tourneux, Pierre; Storme, Laurent; Girard, Julie-Marie; Betrouni, Nacim; Rousseau, Jean

    2008-06-01

    To study the lung liquid clearance in vivo at the time of birth, magnetic resonance experiments were conducted on newborn lambs immediately after uterine incision deliverance. Images obtained with a fast spin echo magnetic resonance imaging sequence enable to quantify lung liquid each 5 minutes for 30 minutes, then each 10 minutes for 1.5 hours. After manually determining lung contours, pulmonary volume, pulmonary water, and spatial gradient of pulmonary water were studied. At 2 hours of life, the total pulmonary water content was still high and the liquid clearance was slower in the lower part of the lung. Air inflation increased the size of the distal airways and shifted liquid from the lung lumen towards the pulmonary interstitial tissue. The lung liquid washout was belated, and the passage to the aerial life was performed by progressive liberation of the superior pulmonary spaces, water flowing out by gravity toward the lower spaces.

  9. Water

    Science.gov (United States)

    ... Lead Poisoning Prevention Training Center (HHLPPTC) Training Tracks Water Language: English Español (Spanish) Recommend on Facebook Tweet Share Compartir For information about lead in water in Flint, MI, please visit http://www.phe. ...

  10. Real-time dynamic hydraulic model for potable water loss reduction

    CSIR Research Space (South Africa)

    Abu-Mahfouz, Adnan M

    2016-08-01

    Full Text Available service provision. Traditional approaches of solving water loss problems are not enough to make a significant improvement; for this, new approaches involving increased automation and monitoring are needed. Furthermore, the sensory and automation ICT...

  11. Appropriate maximum holding times for analysis of total suspended solids concentration in water samples taken from open-channel waterways.

    Science.gov (United States)

    Oudyn, Frederik W; Lyons, David J; Pringle, M J

    2012-01-01

    Many scientific laboratories follow, as standard practice, a relatively short maximum holding time (within 7 days) for the analysis of total suspended solids (TSS) in environmental water samples. In this study we have subsampled from bulk water samples stored at ∼4 °C in the dark, then analysed for TSS at time intervals up to 105 days after collection. The nonsignificant differences in TSS results observed over time demonstrates that storage at ∼4 °C in the dark is an effective method of preserving samples for TSS analysis, far past the 7-day standard practice. Extending the maximum holding time will ease the pressure on sample collectors and laboratory staff who until now have had to determine TSS within an impractically short period.

  12. People deliver eye care: managing human resources

    Directory of Open Access Journals (Sweden)

    Kayode Odusote

    2005-12-01

    Full Text Available People deliver health. Effective health care needs an efficient and motivated health workforce, which is the totality of individuals who directly or indirectly contribute to the promotion, protection and improvement of the health of the population.Community eye health is about providing eye health care to the people as close as possible to where they live and as much as possible at a price they can afford. It promotes people-centred care rather than the traditional disease-centred eye care services. In order to provide effective and efficient eye care services, we need an adequate number of well-qualified, well-motivated and equitably distributed eye health workers (EHWs.

  13. ISES Experience in Delivering Space Weather Services

    Science.gov (United States)

    Boteler, David

    The International Space Environment Service has over eighty years experience in providing space weather services to meet a wide variety of user needs. This started with broadcast on December 1, 2008 from the Eiffel Tower about radio conditions. The delivery of information about ionospheric effects on high frequency (HF) radio propagation continue to be a major concern in many parts of the world. The movement into space brought requirements for a new set of space weather services, ranging from radiation dangers to man in space, damage to satellites and effects on satellite communication and navigation systems. On the ground magnetic survey, power system and pipeline operators require information about magnetic disturbances that can affect their operations. In the past these services have been delivered by individual Regional Warning Centres. However, the needs of new trans-national users are stimulating the development of new collaborative international space weather services.

  14. Delivering Hubble Discoveries to the Classroom

    Science.gov (United States)

    Eisenhamer, B.; Villard, R.; Weaver, D.; Cordes, K.; Knisely, L.

    2013-04-01

    Today's classrooms are significantly influenced by current news events, delivered instantly into the classroom via the Internet. Educators are challenged daily to transform these events into student learning opportunities. In the case of space science, current news events may be the only chance for educators and students to explore the marvels of the Universe. Inspired by these circumstances, the education and news teams developed the Star Witness News science content reading series. These online news stories (also available in downloadable PDF format) mirror the content of Hubble press releases and are designed for upper elementary and middle school level readers to enjoy. Educators can use Star Witness News stories to reinforce students' reading skills while exposing students to the latest Hubble discoveries.

  15. Combining Technologies to Deliver Distance Education

    Directory of Open Access Journals (Sweden)

    Vicki Freeman

    1999-01-01

    Full Text Available In 1997 a Health Resources and Services Administration (HRSA grant was awarded to the Department of Clinical Laboratory Sciences (CLS at The University of Texas Medical Branch - Galveston (UTMB for support of the Laboratory Education and Advancement Project (LEAP. The project entailed three primary objectives, targeting laboratory practitioners in rural and medically underserved areas of Texas for delivering a bachelor's degree, laboratory-intensive course of study via distance education. Several delivery mechanisms were utilized and evaluated for their effectiveness and friendliness to both the faculty and students. The authors discuss and describe the mechanisms utilized for delivery of courses, the advantages and disadvantages encountered with each mechanism, and subjective evaluation of the effectiveness of the courses. Also discussed are the lessons learned and plans for future development.

  16. Empathic engineering: helping deliver dignity through design

    Science.gov (United States)

    Hosking, Ian; Cornish, Katie; Bradley, Mike; Clarkson, P. John

    2015-01-01

    Abstract Dignity is a key value within healthcare. Technology is also recognized as being a fundamental part of healthcare delivery, but also a potential cause of dehumanization of the patient. Therefore, understanding how medical devices can be designed to help deliver dignity is important. This paper explores the role of empathy tools as a way of engendering empathy in engineers and designers to enable them to design for dignity. A framework is proposed that makes the link between empathy tools and outcomes of feelings of dignity. It represents a broad systems view that provides a structure for reviewing the evidence for the efficacy of empathy tools and also how dignity can be systematically understood for particular medical devices. PMID:26453036

  17. Delivering advanced therapies: The big pharma approach.

    Science.gov (United States)

    Tarnowski, J; Krishna, D; Jespers, L; Ketkar, A; Haddock, R; Imrie, J; Kili, S

    2017-07-24

    After two decades of focused development and some recent clinical successes, cell and gene therapy (CGT) is emerging as a promising approach to personalized medicines. Genetically engineered cells as a medical modality are poised to stand alongside or in combination with small molecule and biopharmaceutical approaches to bring new therapies to patients globally. Big pharma can play a vital role in industrializing CGT by focusing on diseases with high un-met medical need and compelling genetic evidence. Pharma should invest in manufacturing and supply chain solutions that deliver reproducible, high quality therapies at a commercially viable cost. Due to the fast pace of innovation in this field proactive engagement with regulators is critical. It is also vital to understand the needs of patients all along the patient care pathway and to establish product pricing that is accepted by prescribers, payers, and patients.Gene Therapy accepted article preview online, 24 July 2017. doi:10.1038/gt.2017.65.

  18. Exploration of Nonlinear Modeling Techniques to Predict the Retention Time of Organic Pollutants in Natural Water and Wastewater

    Institute of Scientific and Technical Information of China (English)

    Zolfaghar Mehdizadeh; Hamid Reza Lotfizadeh; S. S. Mortazavi; Hadi Noorizadeh

    2012-01-01

    Water pollution affects plants and organisms living in these bodies of water; and, in almost all cases the effect is damaging not only to individual species and populations, but also to the natural biological communities. Genetic algorithm and kernel partial least square (GA-KPLS) and Levenberg- Marquardt artificial neural network (L-M ANN) techniques were used to investigate the correlation between retention time (tR) and descriptors for 150 organic contaminants in natural water and wastewater, which are obtained by gas chromatography coupled to high-resolution time-of-flight mass spectrometry (GC-TOF MS). The L-M ANN model gave a significantly better performance than the GA-KPLS model. This indicates that L-M ANN can be used as an alternative modeling toot for quantitative structure-retention relationship (QSRR) studies.

  19. Energy management in multi-municipal water supply systems. Identifying energy cost savings from readily available time-series electricity consumption and water production data

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, V.; Castanheira, L. [ENERGAIA, Energy Management Agency of Gaia (Portugal); Fleming, P. [Institute of Energy and Sustainable Development, De Montfort University, (United Kingdom); Gouveia, J. Borges [Department of Engineering and Industrial Management, Aveiro University (Portugal)

    2002-07-01

    This paper analyses data from 21 water pumping stations to identify electricity saving opportunities. The specific energy consumption of the different pumping stations are calculated. Using a combination of bivariate correlation analysis and CUSUM analysis, the water pumping related energy consumption and the non pumping of electricity consumption have been identified. This time-series energy analysis techniques provided much more information than the traditional energy consumption technique. Data is presented for one pumping station that identifies potential electricity savings through modifications to the current pumping regime. Bivariate analysis, followed by CUSUM technique can help improve the cost effectiveness of the energy audit by analysing the data for the pumping stations prior to the audit. Such an analysis can then help the energy auditor identify a major electricity saving opportunities in a shorter time and so make the whole approach more cost effective.

  20. Factors influencing water transit times in snowmelt-dominated, headwater catchments of the western U.S.

    Science.gov (United States)

    Clow, D. W.; Mast, A.

    2015-12-01

    In catchments, water transit times (TTs) refer to the elapsed time between entry of water at the ground surface and exit of water at the catchment outlet. Transit times are an important characteristic of catchments in that they reflect the time available for interaction between water, soil, and biota within the system. Thus, they exert a strong influence on hydrologic resilience to drought and climate change, and on the sensitivity of aquatic ecosystems to atmospheric pollutants. Transit times may vary spatially due to variations in basin characteristics, such as slope, size, and amount and type of soil and vegetation; however, the relative influence of these factors on TTs is poorly known. In this study, we estimate mean transit times (MTTs) for 11 snowmelt-dominated, headwater catchments in the western U.S. using the convolution integral approach, which relies on differences in the magnitude of seasonal variability in δ18O in precipitation and stream water to estimate MTTs. Seasonal variability in δ18O was calculated based on analyses of precipitation and stream water samples collected at weekly to monthly intervals. Results indicate that MTTs ranged from 0.6 to 2.1 years, and were positively influenced by percent of the catchment covered by forest (r2 = 0.56; p = 0.008), and negatively influenced by barren terrain (e.g., bedrock; r2 = 0.48; p = 0.019). MTTs showed a weak negative relation to mean basin slope (r2 = 0.31; p = 0.076) and no relation to basin size or elevation. These results illustrate the importance of soil as a key factor influencing MTTs, with basin slope acting as a secondary influence. Heavily forested basins tend to have deep, well-developed soils with substantial water storage capacity; these soils help maintain baseflow during drought conditions, providing hydrologic resilience to the system, and they are an important location for geochemical and biological processes that neutralize acidity and assimilate atmospherically deposited nitrogen

  1. Intranasal formulations: promising strategy to deliver vaccines.

    Science.gov (United States)

    Riese, Peggy; Sakthivel, Priya; Trittel, Stephanie; Guzmán, Carlos A

    2014-10-01

    The emergence of new diseases and the lack of efficient vaccines against numerous non-treatable pathogens require the development of novel vaccination strategies. To date, only a few mucosal vaccines have been approved for humans. This was in part due to i) the use of live attenuated vaccines, which are not suitable for certain groups of individuals, ii) safety concerns derived from implementation in humans of some mucosal vaccines, iii) the poor stability, absorption and immunogenicity of antigens delivered by the mucosal route and iv) the limited number of available technologies to overcome the bottlenecks associated with mucosal antigen delivery. Recent advances make feasible the development of efficacious mucosal vaccines with adequate safety profile. Thus, currently intranasal vaccines represent an attractive and valid alternative to conventional vaccines. The present review is focused on the potentials and limitations of market-approved intranasal vaccines and promising candidates undergoing clinical investigations. Furthermore, emerging strategies to overcome main bottlenecks including efficient breaching of the mucosal barrier and safety concerns by implementation of new adjuvants and delivery systems are discussed. The rational design of intranasal vaccines requires an in-depth understanding of the anatomic, physicochemical and barrier properties of the nasal mucosa, as well as the molecular mechanisms governing the activation of the local innate and adaptive immune system. This would provide the critical knowledge to establish effective approaches to deliver vaccine antigens across the mucosal barrier, supporting the stimulation of a long-lasting protective response at both mucosal and systemic levels. Current developments in the area of adjuvants, nanotechnologies and mucosal immunology, together with the identification of surface receptors that can be exploited for cell targeting and manipulating their physiological properties, will become instrumental

  2. Improved HF183 quantitative real-time PCR assay for characterization of human fecal pollution in ambient surface water samples

    Science.gov (United States)

    Real-time quantitative PCR assays that target the human-associated HF183 bacterial cluster have been found to be some of the top performing methods for the characterization of human fecal pollution in ambient surface waters. The United States Environmental Protection Agency is planning to conduct a ...

  3. Quantitative detection of the free-living amoeba Hartmannella vermiformis in surface water by using real-time PCR

    NARCIS (Netherlands)

    Kuiper, M.W.; Valster, R.M.; Wullings, B.A.; Boonstra, H.; Smidt, H.; Kooij, van der D.

    2006-01-01

    A real-time PCR-based method targeting the 18S rRNA gene was developed for the quantitative detection of Hartmannella vermiformis, a free-living amoeba which is a potential host for Legionella pneumophila in warm water systems and cooling towers. The detection specificity was validated using genomic

  4. Quantitative detection of the free-living amoeba Hartmannella vermiformis in surface water by using real-time PCR

    NARCIS (Netherlands)

    Kuiper, M.W.; Valster, R.M.; Wullings, B.A.; Boonstra, H.; Smidt, H.; Kooij, van der D.

    2006-01-01

    A real-time PCR-based method targeting the 18S rRNA gene was developed for the quantitative detection of Hartmannella vermiformis, a free-living amoeba which is a potential host for Legionella pneumophila in warm water systems and cooling towers. The detection specificity was validated using genomic

  5. Control-oriented modeling and real-time control for the ozone dosing process of drinking water treatment.

    Science.gov (United States)

    Wang, Dongsheng; Li, Shihua; Zhou, Xingpeng

    2013-03-01

    Ozonation is one of the most important steps during drinking water treatment. To improve the efficiency of ozonation and to stabilize the quality of the treated water, control-oriented modeling and a real-time control method for the ozone dosing process are developed in this study. Compared with existing ozonation models developed by bench-scale and pilot-scale batch experiments, the model reported herein is control-oriented and based on plant-scale batch experiments. A real-time control strategy for maintaining a constant ozone exposure is attempted to meet primary disinfection requirements. An internal model control scheme is proposed to maintain a constant ozone exposure by adjusting the ozone dosage. The proposed real-time control method can cope with changing water quality, water flow rate, and process operational conditions. Both simulations and experimental studies have been carried out and implemented for the ozone dosing process control system, and the results demonstrate the effectiveness and practicality of this real-time control method.

  6. Mass conservative three-dimensional water tracer distribution from MCMC inversion of time-lapse GPR data

    NARCIS (Netherlands)

    Lalov, E.; Linde, N.; Vrugt, J.A.

    2012-01-01

    Time-lapse geophysical measurements are widely used to monitor the movement of water and solutes through the subsurface. Yet commonly used deterministic least squares inversions typically suffer from relatively poor mass recovery, spread overestimation, and limited ability to appropriately estimate

  7. Dynamic neural networks for real-time water level predictions of sewerage systems-covering gauged and ungauged sites

    Directory of Open Access Journals (Sweden)

    Yen-Ming Chiang

    2010-07-01

    Full Text Available In this research, we propose recurrent neural networks (RNNs to build a relationship between rainfalls and water level patterns of an urban sewerage system based on historical torrential rain/storm events. The RNN allows signals to propagate in both forward and backward directions, which offers the network dynamic memories. Besides, the information at the current time-step with a feedback operation can yield a time-delay unit that provides internal input information at the next time-step to effectively deal with time-varying systems. The RNN is implemented at both gauged and ungauged sites for 5-, 10-, 15-, and 20-min-ahead water level predictions. The results show that the RNN is capable of learning the nonlinear sewerage system and producing satisfactory predictions at the gauged sites. Concerning the ungauged sites, there are no historical data of water level to support prediction. In order to overcome such problem, a set of synthetic data, generated from a storm water management model (SWMM under cautious verification process of applicability based on the data from nearby gauging stations, are introduced as the learning target to the training procedure of the RNN and moreover evaluating the performance of the RNN at the ungauged sites. The results demonstrate that the potential role of the SWMM coupled with nearby rainfall and water level information can be of great use in enhancing the capability of the RNN at the ungauged sites. Hence we can conclude that the RNN is an effective and suitable model for successfully predicting the water levels at both gauged and ungauged sites in urban sewerage systems.

  8. Multi variate regression model of the water level and production rate time series of the geothermal reservoir Waiwera (New Zealand)

    Science.gov (United States)

    Kühn, Michael; Schöne, Tim

    2017-04-01

    Water management tools are essential to ensure the conservation of natural resources. The geothermal hot water reservoir below the village of Waiwera, on the Northern Island of New Zealand is used commercially since 1863. The continuous production of 50 °C hot geothermal water, to supply hotels and spas, has a negative impact on the reservoir. Until the year 1969 from all wells drilled the warm water flow was artesian. Due to overproduction the water needs to be pumped up nowadays. Further, within the years 1975 to 1976 the warm water seeps on the beach of Waiwera ran dry. In order to protect the reservoir and the historical and tourist site in the early 1980s a water management plan was deployed. The "Auckland Council" established guidelines to enable a sustainable management of the resource [1]. The management plan demands that the water level in the official and appropriate observation well of the council is 0.5 m above sea level throughout the year in average. Almost four decades of data (since 1978 until today) are now available [2]. For a sustainable water management, it is necessary to be able to forecast the water level as a function of the production rates in the production wells. The best predictions are provided by a multivariate regression model of the water level and production rate time series, which takes into account the production rates of individual wells. It is based on the inversely proportional relationship between the independent variable (production rate) and the dependent variable (measured water level). In production scenarios, a maximum total production rate of approx. 1,100 m3 / day is determined in order to comply with the guidelines of the "Auckland Council". [1] Kühn M., Stöfen H. (2005) A reactive flow model of the geothermal reservoir Waiwera, New Zealand. Hydrogeology Journal 13, 606-626, doi: 10.1007/s10040-004-0377-6 [2] Kühn M., Altmannsberger C. (2016) Assessment of data driven and process based water management tools for

  9. Time to re-evaluate the guideline value for manganese in drinking water?

    Science.gov (United States)

    Ljung, Karin; Vahter, Marie

    2007-11-01

    We reviewed the scientific background for the current health-based World Health Organization (WHO) guideline value for manganese in drinking water. The initial starting point was the background document for the development of the WHO's guideline value for manganese in drinking water as well as other regulations and recommendations on manganese intake levels. Data referred to in these documents were traced back to the original research papers. In addition, we searched for scientific reports on manganese exposure and health effects. The current health-based guideline value for manganese in drinking water is based partly on debatable assumptions, where information from previous reports has been used without revisiting original scientific articles. Presently, preparation of common infant formulas with water containing manganese concentrations equivalent to the WHO guideline value will result in exceeding the maximum manganese concentration for infant formula. However, there are uncertainties about how this maximum value was derived. Concurrently, there is increasing evidence of negative neurologic effects in children from excessive manganese exposure. The increasing number of studies reporting associations between neurologic symptoms and manganese exposure in infants and children, in combination with the questionable scientific background data used in setting the manganese guideline value for drinking water, certainly warrant a re-evaluation of the guideline value. Further research is needed to understand the causal relationship between manganese exposure and children's health, and to enable an improved risk assessment.

  10. An Analysis of the Impact of Valve Closure Time on the Course of Water Hammer

    Science.gov (United States)

    Kodura, Apoloniusz

    2016-06-01

    The knowledge of transient flow in pressure pipelines is very important for the designing and describing of pressure networks. The water hammer is the most common example of transient flow in pressure pipelines. During this phenomenon, the transformation of kinetic energy into pressure energy causes significant changes in pressure, which can lead to serious problems in the management of pressure networks. The phenomenon is very complex, and a large number of different factors influence its course. In the case of a water hammer caused by valve closing, the characteristic of gate closure is one of the most important factors. However, this factor is rarely investigated. In this paper, the results of physical experiments with water hammer in steel and PE pipelines are described and analyzed. For each water hammer, characteristics of pressure change and valve closing were recorded. The measurements were compared with the results of calculations perfomed by common methods used by engineers - Michaud's equation and Wood and Jones's method. The comparison revealed very significant differences between the results of calculations and the results of experiments. In addition, it was shown that, the characteristic of butterfly valve closure has a significant influence on water hammer, which should be taken into account in analyzing this phenomenon. Comparison of the results of experiments with the results of calculations? may lead to new, improved calculation methods and to new methods to describe transient flow.

  11. Remote sensing in precision farming: real-time monitoring of water and fertilizer requirements of agricultural crops

    Science.gov (United States)

    Zilberman, Arkadi; Ben Asher, Jiftah; Kopeika, Norman S.

    2016-10-01

    The advancements in remote sensing in combination with sensor technology (both passive and active) enable growers to analyze an entire crop field as well as its local features. In particular, changes of actual evapo-transpiration (ET) as a function of water availability can be measured remotely with infrared radiometers. Detection of crop water stress and ET and combining it with the soil water flow model enable rational irrigation timing and application amounts. Nutrient deficiency, and in particular nitrogen deficiency, causes substantial crop losses. This deficiency needs to be identified immediately. A faster the detection and correction, a lesser the damage to the crop yield. In the present work, to retrieve ET a novel deterministic approach was used which is based on the remote sensing data. The algorithm can automatically provide timely valuable information on plant and soil water status, which can improve the management of irrigated crops. The solution is capable of bridging between Penman-Monteith ET model and Richards soil water flow model. This bridging can serve as a preliminary tool for expert irrigation system. To support decisions regarding fertilizers the greenness of plant canopies is assessed and quantified by using the spectral reflectance sensors and digital color imaging. Fertilization management can be provided on the basis of sampling and monitoring of crop nitrogen conditions using RS technique and translating measured N concentration in crop to kg/ha N application in the field.

  12. The aquatic real-time monitoring network; in-situ optical sensors for monitoring the nation's water quality

    Science.gov (United States)

    Pellerin, Brian A.; Bergamaschi, Brian A.; Murdoch, Peter S.; Downing, Bryan D.; Saraceno, John Franco; Aiken, George R.; Striegl, Robert G.

    2011-01-01

    Floods, hurricanes, and longer-term changes in climate and land use can have profound effects on water quality due to shifts in hydrologic flow paths, water residence time, precipitation patterns, connectivity between rivers and uplands, and many other factors. In order to understand and respond to changes in hydrology and water quality, resource managers and policy makers have a need for accurate and early indicators, as well as the ability to assess possible mechanisms and likely outcomes. In-situ optical sensors-those making continuous measurements of constituents by absorbance or fluorescence properties in the environment at timescales of minutes to years-have a long history in oceanography for developing highly resolved concentrations and fluxes, but are not commonly used in freshwater systems. The United States Geological Survey (USGS) has developed the Aquatic Real-Time Monitoring Network, with high-resolution optical data collection for organic carbon, nutrients, and sediment in large coastal rivers, along with continuous measurements of discharge, water temperature, and dissolved inorganic carbon. The collecting of continuous water-quality data in the Nation?s waterways has revealed temporal trends and spatial patterns in constituents that traditional sampling approaches fail to capture, and will serve a critical role in monitoring, assessment and decision-making in a rapidly changing landscape.

  13. The Response of Rice Root to Time Course Water Deficit Stress-Two Dimensional Electrophoresis Approach

    Directory of Open Access Journals (Sweden)

    Mahmood Toorchi

    2015-11-01

    Full Text Available Rice (Oryza sativa L. is the staple food of more than half of the population worldwide. Water deficit stress is one of the harsh limiting factors for successful production of crops. Rice during its growing period comes a cross different environmental hazards like drought stress. Recent advance in molecular physiology are promising for more progress in increasing rice yield by identification of novel candidate proteins for drought tolerance. To investigate the effect of water deficit on rice root protein expression pattern, an experiment was conducted in completely randomize design with four replications. With holding water for 24, 36 and 48 hours along with control constituted the experimental treatments. The experiment was conducted in growth chamber under controlled condition and root samples, after stress imposition, were harvested for two-dimensional electrophorese (2-DE. Proteome analysis of root tissue by 2-DE indicated that out of 135 protein spots diagnosed by Coomassie blue staining, 14 spots showed significant expression change under water deficit condition, seven of them at 1% and the other seven at 5% probability levels. Differentially changed proteins were taken into account for search in data bank using isoelectric point and molecular weight to identify the most probable responsive proteins. Up- regulation of ferredoxin oxidoreductase at first 24 hour after applying stress indicates the main role of this protein in reducing water deficit stress effects. On the other hand ribosomal proteins, GAP-3 and ATP synthase were down regulated under water deficit stress. Fructose 1,6-bisphosphate aldolase, glucose- 6-phosphate dehydrogenase and chitinase down regulated up to 36 h of stress imposition but, were later up- regulated by prolonging stress up to 48 h. It could be inferred the plant tries to decrease the effect of oxidative stress.

  14. Detection of Outliers and Imputing of Missing Values for Water Quality UV-VIS Absorbance Time Series

    Directory of Open Access Journals (Sweden)

    Leonardo Plazas-Nossa

    2017-01-01

    Full Text Available Context: The UV-Vis absorbance collection using online optical captors for water quality detection may yield outliers and/or missing values. Therefore, data pre-processing is a necessary pre-requisite to monitoring data processing. Thus, the aim of this study is to propose a method that detects and removes outliers as well as fills gaps in time series. Method: Outliers are detected using Winsorising procedure and the application of the Discrete Fourier Transform (DFT and the Inverse of Fast Fourier Transform (IFFT to complete the time series. Together, these tools were used to analyse a case study comprising three sites in Colombia ((i Bogotá D.C. Salitre-WWTP (Waste Water Treatment Plant, influent; (ii Bogotá D.C. Gibraltar Pumping Station (GPS; and, (iii Itagüí, San Fernando-WWTP, influent (Medellín metropolitan area analysed via UV-Vis (Ultraviolet and Visible spectra. Results: Outlier detection with the proposed method obtained promising results when window parameter values are small and self-similar, despite that the three time series exhibited different sizes and behaviours. The DFT allowed to process different length gaps having missing values. To assess the validity of the proposed method, continuous subsets (a section of the absorbance time series without outlier or missing values were removed from the original time series obtaining an average 12% error rate in the three testing time series. Conclusions: The application of the DFT and the IFFT, using the 10% most important harmonics of useful values, can be useful for its later use in different applications, specifically for time series of water quality and quantity in urban sewer systems. One potential application would be the analysis of dry weather interesting to rain events, a feat achieved by detecting values that correspond to unusual behaviour in a time series. Additionally, the result hints at the potential of the method in correcting other hydrologic time series.

  15. Multi-scale field investigation of water flow pathways and residence times in mountainous catchments during monsoon rainfall

    Science.gov (United States)

    Troch, P. A.; Lyon, S. W.; Desilets, S.

    2007-05-01

    The "sky islands" of Arizona and New Mexico in the southwestern United States form a unique complex of about 27 mountain ranges whose ecosystems support many perennial and ephemeral streams in an arid climate. Among these sky islands are the Santa Catalina Mountains near Tucson, AZ, with a peak elevation of 9157 ft at Mt. Lemmon. Sabino Canyon Creek is the main stream which runs on the south face of the mountain range. It usually flows from July through April with an average daily flow of approximately 0.28 m3/s (10 cfs). However, flash floods are common both during summer as a result of intense monsoon rains and during spring because of rapid snowmelt. During these events, flow increases drastically, reaching peak flows up to 480 m3/s (15,984 cfs, July 2006). Characterizing water flow pathways and residence times in these complex catchments is important for improving flash flood warning systems, estimating mountain front recharge, managing forest and wild fires, and understanding ecosystem functions. In the summer of 2006, we set up an extensive hydrometrical and hydro- chemical monitoring network in Sabino Canyon Creek, comprising 40 tipping bucket rain gauges (two of which were equipped to automatically collect rainwater samples), 5 automatic surface water level stations (three of which were equipped with auto samplers), and 8 manual soil lysimeters. In addition, several rain and stream water grab samples were collected manually during intensive rain events. Water samples are analyzed for major ions and liquid water isotopic concentration (2H and 18O) in rain, soil, ground and surface water. The data allows for a detailed reconstruction of water flow pathways and residence times at 3 different catchment scales (2 km2, 8 km2, and 91 km2) during the recorded flow events, including the highest monsoon rainfall-runoff event ever recorded in these mountains.

  16. Internet delivered diabetes self-management education: a review.

    Science.gov (United States)

    Pereira, Katherine; Phillips, Beth; Johnson, Constance; Vorderstrasse, Allison

    2015-01-01

    Diabetes self-management education is a cornerstone of successful diabetes management. Various methods have been used to reach the increasing numbers of patients with diabetes, including Internet-based education. The purpose of this article is to review various delivery methods of Internet diabetes education that have been evaluated, as well as their effectiveness in improving diabetes-related outcomes. Literature was identified in the Cumulative Index to Nursing and Allied Health Literature (CINAHL), PubMed, Medline, EBSCO, the Cochrane Library, and the Web of Science databases through searches using the following terms: "type 2 diabetes AND internet/web based AND education" and "type 2 diabetes AND diabetes self-management education (DSME) AND web-based/internet OR technology assisted education." The search was limited to English language articles published in the last 10 years. The search yielded 111 articles; of these, 14 met criteria for inclusion in this review. Nine studies were randomized controlled trials, and study lengths varied from 2 weeks to 24 months, for a total of 2,802 participants. DSME delivered via the Internet is effective at improving measures of glycemic control and diabetes knowledge compared with usual care. In addition, results demonstrate that improved eating habits and increased attendance at clinic appointments occur after the online DSME, although engagement and usage of Internet materials waned over time. Interventions that included an element of interaction with healthcare providers were seen as attractive to participants. Internet-delivered diabetes education has the added benefit of easier access for many individuals, and patients can self-pace themselves through materials. More research on the cost-benefits of Internet diabetes education and best methods to maintain patient engagement are needed, along with more studies assessing the long-term impact of Internet-delivered DSME.

  17. Continuous Time Series of Water Vapor Profiles from a Combination of Raman Lidar and Microwave Radiometer

    Directory of Open Access Journals (Sweden)

    Foth Andreas

    2016-01-01

    Full Text Available In this paper, we present a method to retrieve continuous water vapor profiles from a combination of a Raman lidar and a microwave radiometer. The integrated water vapor from the microwave radiometer is used to calibrate the Raman lidar operationally resulting in small biases compared to radiosondes. The height limitations for Raman lidars (cloud base and daylight contamination can be well compensated by the application of a two–step algorithm combining the Raman lidars mass mixing ratio and the microwave radiometers brightness temperatures.

  18. Long-time water level observations at the HDR-testsite Soultz-sous-Forets

    Energy Technology Data Exchange (ETDEWEB)

    Dornstaedter, J.; Heinemann-Glutsch, B.; Zaske, J. [GTC-Kappelmeyer GmbH, Karlsruhe (Germany)

    1997-12-01

    Pressure or water level measurements have been performed by GTC in different wells at the geothermal testsite Soultz-sous-Forets for six years now. The water lever variations are mainly influenced by earth tides, barometric pressure variations, hydraulic testing and stimulation. The small scale variations are influenced by tidal and barometric forcing functions, the large scale variations by hydraulic testing and stimulation. By analyzing such measurements it is possible to get important information about the hydrualic connections between the boreholes, as well as aquifer parameters. (orig./AKF)

  19. Design Environment for Novel Vertical Lift Vehicles: DELIVER

    Science.gov (United States)

    Theodore, Colin

    2016-01-01

    This is a 20 minute presentation discussing the DELIVER vision. DELIVER is part of the ARMD Transformative Aeronautics Concepts Program, particularly the Convergent Aeronautics Solutions Project. The presentation covers the DELIVER vision, transforming markets, conceptual design process, challenges addressed, technical content, and FY2016 key activities.

  20. The Influence of Time Scale on the Quantitative Study of Soil and Water Conservation Effect of Grassland

    Institute of Scientific and Technical Information of China (English)

    Xiaoxia; WU; Zhujun; GU

    2015-01-01

    Quantitative analysis of time scale effects is conducive to further understanding of vegetation water and soil conservation mechanism.Based on the observation data of the grass covered and bare soil( control) experimental plots located in Hetian Town,Changting County of Fujian Province from 2007 to 2010,the characteristics of 4 parameters( precipitation,vegetation,RE and SE) were analyzed at precipitation event,month,season,and annual scales,and then the linear regression models were established to describe the relationships between RE( SE)and its influencing factors of precipitation and vegetation. RE( SE) means the ratio of runoff depth( soil loss) of grass covered plot to that of the control plot. Results show that these 4 parameters presented different magnitude and variation on different time scales. RE and SE were relatively stable either within or among different time scales due to their ratios reducing the influence of other factors. The coupling of precipitation and vegetation led to better water conservation effect at lower RE( 0. 7) REs at precipitation event scale as well as at annual scale( R2> 0. 78). For the soil conservation effect,precipitation or / and vegetation was / were the dominated influence factor( s) at precipitation event and annual scales,and the grass LAI could basically describe the positive conservation effect( SE 0. 55),while the maximum 30 min intensity( I30) could describe the negative conservation effect more accurately( SE >1,R2> 0. 79). More uncertainties( R2≈0. 4) exist in the models of both RE and SE at two moderate time scales( month and season). Consequently,factors influencing water and soil conservation effect of grass present different variation and coupling characteristics on different time scales,indicating the importance of time scale at the study on water and soil conservation.

  1. Constraining the Time-Scale of Interaction of Sea Ice Sediments and Surface Sea Water in the Arctic Ocean Using Short-Lived Radionuclide Tracers

    Science.gov (United States)

    Baskaran, M.; Andersson, P. S.; Jweda, J.; Dahlqvist, R.; Ketterer, M. E.

    2007-12-01

    We measured the activities of short-lived radionuclides (Th-234, Be-7, Po-210, Pb-210, Cs-137, Th-234, Ra-226 and Ra-228) and concentrations of several elements (Be, Pb, Fe, Al, Co, Ni, Cu and Zn) on a suite of ice-rafted sediments (IRS) collected during BERINGIA-2005 in the Western Arctic Ocean. A suite of water samples were also collected and analyzed for particulate and dissolved Be-7, Po-210, Pb-210, Th-234, Ra-226 and Ra-228. The activities of Be-7 and Pb-210 in the IRS are 1-2 orders of magnitude higher than those reported in the source sediments. Presence of excess Th-234 in the IRS indicates that the removal of Th-234 from surface seawater took place on time scales comparable to the mean-life of Th-234. While the Po-210/Pb-210 activity ratios in the source sediments (1.0) and the atmospheric depositional input (~0.1) are known, varying ratios of 0.78 to 1.0 were found in the IRS. This ratio can be utilized to obtain the residence time of the IRS in sea ice. The activity of Ra-226 and Ra-228 in all the IRS is nearly constant (within a factor of 1.6) and are comparable to the benthic sediments in the source region. The activities of atmospherically-delivered radionuclides, Be-7 and Pb-210, in IRS varied by factors of ~4.5 and 9, respectively, and this variation is attributed to differences in the extent of interaction of surface water with IRS and differences in the mean-lives of these nuclides. While significant enrichment of Be-7 and Pb-210 has been found, there is no enrichment of stable Pb or Be. The Al-normalized enrichment factor for elements measured (Co, Ni, Cu, Zn, Pb and Be) indicate that there is no significant enrichment of these elements, with Al-normalized enrichment factors less than 1.3.

  2. Impact-based integrated real-time control for improvement of the Dommel River water quality

    NARCIS (Netherlands)

    Langeveld, J.; Benedetti, L.; Klein, de J.J.M.; Nopens, I.; Amerlinck, Y.; Nieuwenhuijzen, van A.F.; Flameling, T.; Zanten, van O.; Weijers, S.

    2013-01-01

    The KALLISTO project aims at finding cost-efficient sets of measures to meet the Water Framework Directive (WFD) derived goals for the river Dommel. Within the project, both acute and long term impacts of the urban wastewater system on the chemical and ecological quality of the river are studied

  3. Real-time discriminatory sensors for water contamination events :LDRD 52595 final report.

    Energy Technology Data Exchange (ETDEWEB)

    Borek, Theodore Thaddeus III (; ); Carrejo-Simpkins, Kimberly; Wheeler, David Roger; Adkins, Douglas Ray; Robinson, Alex Lockwood; Irwin, Adriane Nadine; Lewis, Patrick Raymond; Goodin, Andrew M.; Shelmidine, Gregory J.; Dirk, Shawn M.; Chambers, William Clayton; Mowry, Curtis Dale (1722 Micro-Total-Analytical Systems); Showalter, Steven Kedrick

    2005-10-01

    The gas-phase {mu}ChemLab{trademark} developed by Sandia can detect volatile organics and semi-volatiles organics via gas phase sampling . The goal of this three year Laboratory Directed Research and Development (LDRD) project was to adapt the components and concepts used by the {mu}ChemLab{trademark} system towards the analysis of water-borne chemicals of current concern. In essence, interfacing the gas-phase {mu}ChemLab{trademark} with water to bring the significant prior investment of Sandia and the advantages of microfabrication and portable analysis to a whole new world of important analytes. These include both chemical weapons agents and their hydrolysis products and disinfection by-products such as Trihalomethanes (THMs) and haloacetic acids (HAAs). THMs and HAAs are currently regulated by EPA due to health issues, yet water utilities do not have rapid on-site methods of detection that would allow them to adjust their processes quickly; protecting consumers, meeting water quality standards, and obeying regulations more easily and with greater confidence. This report documents the results, unique hardware and devices, and methods designed during the project toward the goal stated above. It also presents and discusses the portable field system to measure THMs developed in the course of this project.

  4. Ultrabroadband THz Time-Domain Spectroscopy of a Free-Flowing Water Film

    DEFF Research Database (Denmark)

    Wang, Tianwu; Pedersen, Pernille Klarskov; Jepsen, Peter Uhd

    2014-01-01

    deviation of the film thickness is less than 500 nm. The cross section of the water film is found to have a biconcave cylindrical lens shape. By transmitting through such a thin film, we perform the first ultrabroadband (0.2–30 THz) THz-TDS across the strongest absorbing part of the infrared spectrum...

  5. Effect of deboning time and cold storage on water-holding capacity of chicken breast meat

    Science.gov (United States)

    Water-holding capacity (WHC) is a very important qualitative characteristic of meat and directly affects the yield of further processed meat and consumer acceptance of bagged pre-packaged fresh meat. Boneless skinless chicken breast meat for further processing and consumer usage is commonly deboned...

  6. Local Adaptive Control of Solar Photovoltaics and Electric Water Heaters for Real-time Grid Support

    DEFF Research Database (Denmark)

    Bhattarai, Bishnu Prasad; Mendaza, Iker Diaz de Cerio; Bak-Jensen, Birgitte

    2016-01-01

    , such as electric vehicles, electric water heaters (EWHs) etc. An adaptive control using only local measurements for the EWHs and PVs is proposed in this study to alleviate OV as well as UV issues. The adaptive control is designed such that it monitors the voltage at the point of connection and adjusts active...

  7. Measured soil water evaporation as a function of the square root of time and reference ET

    Science.gov (United States)

    Sunflower (Helianthus annuus L.) is a drought-adapted crop with a short growing season that reduces irrigation requirements and makes it ideal for regions with limited irrigation water supplies. Our objectives were a) to evaluate the yield potential of sunflower under deficit irrigation and b) det...

  8. Water supply interruptions and suspected cholera incidence: a time-series regression in the Democratic Republic of the Congo.

    Science.gov (United States)

    Jeandron, Aurélie; Saidi, Jaime Mufitini; Kapama, Alois; Burhole, Manu; Birembano, Freddy; Vandevelde, Thierry; Gasparrini, Antonio; Armstrong, Ben; Cairncross, Sandy; Ensink, Jeroen H J

    2015-10-01

    The eastern provinces of the Democratic Republic of the Congo have been identified as endemic areas for cholera transmission, and despite continuous control efforts, they continue to experience regular cholera outbreaks that occasionally spread to the rest of the country. In a region where access to improved water sources is particularly poor, the question of which improvements in water access should be prioritized to address cholera transmission remains unresolved. This study aimed at investigating the temporal association between water supply interruptions and Cholera Treatment Centre (CTC) admissions in a medium-sized town. Time-series patterns of daily incidence of suspected cholera cases admitted to the Cholera Treatment Centre in Uvira in South Kivu Province between 2009 and 2014 were examined in relation to the daily variations in volume of water supplied by the town water treatment plant. Quasi-poisson regression and distributed lag nonlinear models up to 12 d were used, adjusting for daily precipitation rates, day of the week, and seasonal variations. A total of 5,745 patients over 5 y of age with acute watery diarrhoea symptoms were admitted to the CTC over the study period of 1,946 d. Following a day without tap water supply, the suspected cholera incidence rate increased on average by 155% over the next 12 d, corresponding to a rate ratio of 2.55 (95% CI: 1.54-4.24), compared to the incidence experienced after a day with optimal production (defined as the 95th percentile-4,794 m3). Suspected cholera cases attributable to a suboptimal tap water supply reached 23.2% of total admissions (95% CI 11.4%-33.2%). Although generally reporting less admissions to the CTC, neighbourhoods with a higher consumption of tap water were more affected by water supply interruptions, with a rate ratio of 3.71 (95% CI: 1.91-7.20) and an attributable fraction of cases of 31.4% (95% CI: 17.3%-42.5%). The analysis did not suggest any association between levels of residual

  9. Water supply interruptions and suspected cholera incidence: a time-series regression in the Democratic Republic of the Congo.

    Directory of Open Access Journals (Sweden)

    Aurélie Jeandron

    2015-10-01

    Full Text Available The eastern provinces of the Democratic Republic of the Congo have been identified as endemic areas for cholera transmission, and despite continuous control efforts, they continue to experience regular cholera outbreaks that occasionally spread to the rest of the country. In a region where access to improved water sources is particularly poor, the question of which improvements in water access should be prioritized to address cholera transmission remains unresolved. This study aimed at investigating the temporal association between water supply interruptions and Cholera Treatment Centre (CTC admissions in a medium-sized town.Time-series patterns of daily incidence of suspected cholera cases admitted to the Cholera Treatment Centre in Uvira in South Kivu Province between 2009 and 2014 were examined in relation to the daily variations in volume of water supplied by the town water treatment plant. Quasi-poisson regression and distributed lag nonlinear models up to 12 d were used, adjusting for daily precipitation rates, day of the week, and seasonal variations. A total of 5,745 patients over 5 y of age with acute watery diarrhoea symptoms were admitted to the CTC over the study period of 1,946 d. Following a day without tap water supply, the suspected cholera incidence rate increased on average by 155% over the next 12 d, corresponding to a rate ratio of 2.55 (95% CI: 1.54-4.24, compared to the incidence experienced after a day with optimal production (defined as the 95th percentile-4,794 m3. Suspected cholera cases attributable to a suboptimal tap water supply reached 23.2% of total admissions (95% CI 11.4%-33.2%. Although generally reporting less admissions to the CTC, neighbourhoods with a higher consumption of tap water were more affected by water supply interruptions, with a rate ratio of 3.71 (95% CI: 1.91-7.20 and an attributable fraction of cases of 31.4% (95% CI: 17.3%-42.5%. The analysis did not suggest any association between levels of

  10. Water Supply Interruptions and Suspected Cholera Incidence: A Time-Series Regression in the Democratic Republic of the Congo

    Science.gov (United States)

    Jeandron, Aurélie; Saidi, Jaime Mufitini; Kapama, Alois; Burhole, Manu; Birembano, Freddy; Vandevelde, Thierry; Gasparrini, Antonio; Armstrong, Ben; Cairncross, Sandy; Ensink, Jeroen H. J.

    2015-01-01

    Background The eastern provinces of the Democratic Republic of the Congo have been identified as endemic areas for cholera transmission, and despite continuous control efforts, they continue to experience regular cholera outbreaks that occasionally spread to the rest of the country. In a region where access to improved water sources is particularly poor, the question of which improvements in water access should be prioritized to address cholera transmission remains unresolved. This study aimed at investigating the temporal association between water supply interruptions and Cholera Treatment Centre (CTC) admissions in a medium-sized town. Methods and Findings Time-series patterns of daily incidence of suspected cholera cases admitted to the Cholera Treatment Centre in Uvira in South Kivu Province between 2009 and 2014 were examined in relation to the daily variations in volume of water supplied by the town water treatment plant. Quasi-poisson regression and distributed lag nonlinear models up to 12 d were used, adjusting for daily precipitation rates, day of the week, and seasonal variations. A total of 5,745 patients over 5 y of age with acute watery diarrhoea symptoms were admitted to the CTC over the study period of 1,946 d. Following a day without tap water supply, the suspected cholera incidence rate increased on average by 155% over the next 12 d, corresponding to a rate ratio of 2.55 (95% CI: 1.54–4.24), compared to the incidence experienced after a day with optimal production (defined as the 95th percentile—4,794 m3). Suspected cholera cases attributable to a suboptimal tap water supply reached 23.2% of total admissions (95% CI 11.4%–33.2%). Although generally reporting less admissions to the CTC, neighbourhoods with a higher consumption of tap water were more affected by water supply interruptions, with a rate ratio of 3.71 (95% CI: 1.91–7.20) and an attributable fraction of cases of 31.4% (95% CI: 17.3%–42.5%). The analysis did not suggest any

  11. WATER WARNINGS

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    As the country's water supply goes down the drain, conservation and wastewater recycling have become urgent tasks for China At a news briefing ahead of the World Water Congress and Exhibition in Beijing, scheduled to begin September 10, Acting Chairman of the Organizing Committee and Vice Minister of Construction Qiu Baoxing delivered a statement that cut to the heart of the problem:

  12. Where should noninvasive ventilation be delivered?

    Science.gov (United States)

    Hill, Nicholas S

    2009-01-01

    Noninvasive ventilation (NIV) has assumed an important role in the management of certain types of respiratory failure in acute-care hospitals. However, the optimal location for NIV has been a matter of debate. Some have argued that all patients begun on NIV in the acute-care setting should go to an intensive care unit (ICU), but this is impractical because ICU beds are often unavailable, and it may not be a sensible use of resources. Also, relatively few studies have examined the question of location for NIV. One problem is that various units' capabilities to deliver NIV differ substantially, even in the same hospital. Choosing the appropriate environment for NIV requires consideration of the patient's need for monitoring, the monitoring capabilities of the unit, including both technical and personnel resources (nursing and respiratory therapy), and the staff's skill and experience. In some hospitals NIV is begun most often in the emergency department, but is most often managed in an ICU. Step-down units are often good locations for NIV, but many institutions do not have step-down units. With ICU beds at a premium, many hospitals are forced to manage some NIV patients on general wards, which can be safely done with more stable patients if the ward is suitably monitored and experienced. When deciding where to locate the patient, clinicians must be familiar with the capabilities of the units in their facility and try to match the patient's need for monitoring and the unit's capabilities.

  13. Delivering new physics at impressive speed

    CERN Multimedia

    2010-01-01

    The speed with which the heavy ion run at the LHC is delivering new physics is impressive not only for the insights it is bringing to the early Universe, but also for the clear demonstration it gives of the value of competition and complementarity between the experiments.   ALICE was the first off the mark to publish papers from the ion run, as you’d expect from the LHC’s dedicated ion experiment, but results emerging from ATLAS and CMS are bringing new understanding in their own right. Each collaboration’s result plays to the strengths of its detector, and it is by taking all the results together that our knowledge advances. The creation, observation and understanding of the hot dense matter that would have existed in the early Universe, normally known as Quark Gluon Plasma (QGP), is complex science and one of the ion programme’s key goals. Many signals for QGP exist, and like pieces of a puzzle, we must assemble all of them to get the full picture. At th...

  14. Changes in nurse education: delivering the curriculum.

    Science.gov (United States)

    Carr, Graham

    2008-01-01

    The aim of this study is to examine changes in pre-registration nursing education through the personal accounts of nurse teachers. This paper is based on 37 in-depth interviews within a central London Healthcare Faculty. Each interview was subjected to a process of content analysis described by Miles and Huberman. The interviews took place between August 2003 and March 2004 and totalled 34.4 hours or 305,736 words. There were thirty female and seven male participants, who shared 1015 years of nursing experience, averaging at 27.4 years (min 7-max 42). These were supplemented by 552 years of teaching practice, the average being 15 years (min 0.5-max 29). This paper--delivering the nursing curriculum--identifies that the nature of nursing has changed as it has both expanded and contracted. Participants identified three major changes; the nature of nursing, selection of future nurses and the current impact that large cohorts have on our traditional model of person-centred education. The practice placements remain central to nursing education and it is the nursing role that should define the curriculum and the values of higher education should be supportive of this identity.

  15. Changes in catchment-scale water fluxes due to time-variant soil hydraulic properties in a subtropical agricultural watershed

    Science.gov (United States)

    Verrot, Lucile; Geris, Josie; Gao, Lei; Peng, Xinhua; Hallett, Paul

    2017-04-01

    In agricultural landscapes, temporal fluxes in hydraulic properties due to tillage, grazing, crop root growth and cycles of wetting and drying influenced by irrigation, could have large impacts at catchment scale. These effects are particularly evident in tropical climates where long periods of drought are followed by intense rainfall that greatly exceeds the infiltration capacity of the soil. This work explores the impact of the seasonal development of crops and the shifts in time between crop types on soil physical properties and the relative changes in the probability distribution of the water storage and fluxes dynamics. We focussed on an agricultural catchment in south east China where the climatic conditions include periods of droughts and heavy rainfall. Using coupled 1-dimension and semi-distributed catchment modelling combined with basic water balance data and both on-site and literature values for soil and crop properties, we investigated the impact of soil physical changes in the root-zone of the soil over different time scales ranging from daily to annual. Our results also showed that the resulting time-variant spatial patterns in soil water storage and flow had an impact on the integrated catchment runoff response at different times of the year.

  16. Flushing time as a descriptor for heavily modified water bodies classification and management: application to the Huelva Harbour.

    Science.gov (United States)

    Sámano, María Luisa; Bárcena, Javier F; García, Andrés; Gómez, Aina G; Álvarez, César; Revilla, José Antonio

    2012-09-30

    Since the flushing time is a physical descriptor used to distinguish between different types of heavily modified water bodies (HMWB), the establishment of a methodology for its calculation becomes important. In order to achieve this task, a methodological procedure involving the tide mean value and variable river flow values is proposed. The hydrodynamics were assessed using a two-dimensional model which integrates the depth-averaged mass and momentum equations in the time and space domains and includes a wet-dry point treatment method. The hydrodynamic model calibration and validation were performed on the basis of tidal gauge and velocity current measurements. A reasonable agreement with the field measurements of water elevation and velocity were achieved. On the other hand, a two-dimensional mathematical model, which solves the depth-averaged advection-diffusion equation, was properly calibrated and used to evaluate the behaviour of a conservative tracer within a water body. The transport model calibration was developed according to the field survey data carried out during late spring when the rivers flows are low. This study allowed the flushing time estimation under four scenarios showing that only the estuarine mouth presents a high renewal rate because the current velocities are higher. For heavy rain periods, a flushing time decrease was observed as river flows modify the circulation in the main channel. Neglecting the river forcing was found to be valid for the dry period.

  17. Understanding inelastically scattered neutrons from water on a time-of-flight small-angle neutron scattering (SANS) instrument

    CERN Document Server

    Doa, Changwoo; Stanley, Christopher; Gallmeier, Franz X; Doucet, Mathieu; Smith, Gregory S

    2013-01-01

    It is generally assumed by most of the small-angle neutron scattering (SANS) user community that a neutrons energy is unchanged during SANS measurements. Here, the scattering from water, specifically light water, was measured on the EQ-SANS instrument, a time-of-flight SANS instrument located at the Spallation Neutron Source of Oak Ridge National Laboratory. A significant inelastic process was observed in the TOF spectra of neutrons scattered from water. Analysis of the TOF spectra from the sample showed that the scattered neutrons have energies consistent with room-temperature thermal energies (~20 meV) regardless of the incident neutron energy. With the aid of Monte Carlo particle transport simulations, we conclude that the thermalization process within the sample results in faster neutrons that arrive at the detector earlier than expected based on the incident neutron energies. This thermalization process impacts the measured SANS intensities in a manner that will ultimately be sample- and temperature-depe...

  18. A continuous, real-time water quality monitoring system for the coral reef ecosystems of Nanwan Bay, Southern Taiwan.

    Science.gov (United States)

    Tew, Kwee Siong; Leu, Ming-Yih; Wang, Jih-Terng; Chang, Chia-Ming; Chen, Chung-Chi; Meng, Pei-Jie

    2014-08-30

    The coral reef ecosystems of Nanwan Bay, Southern Taiwan are undergoing degradation due to anthropogenic impacts, and as such have resulted in a decline in coral cover. As a first step in preventing the continual degradation of these coral reef environments, it is important to understand how changes in water quality affect these ecosystems on a fine-tuned timescale. To this end, a real-time water quality monitoring system was implemented in Nanwan Bay in 2010. We found that natural events, such as cold water intrusion due to upwelling, tended to elicit temporal shifts in coral spawning between 2010 and 2011. In addition, Degree Heating Weeks (DHWs), a commonly utilized predictor of coral bleaching, were 0.92 and 0.59 in summer 2010 and 2011, respectively. Though this quantity of DHW was below the presumed stress-inducing value for these reefs, a rise in DHWs in the future may stress the resident corals.

  19. Delivering the Goods for Genome Engineering and Editing.

    Science.gov (United States)

    Skipper, Kristian Alsbjerg; Mikkelsen, Jacob Giehm

    2015-08-01

    A basic understanding of genome evolution and the life and impact of microorganisms, like viruses and bacteria, has been fundamental in the quest for efficient genetic therapies. The expanding tool box for genetic engineering now contains transposases, recombinases, and nucleases, all created from naturally occurring genome-modifying proteins. Whereas conventional gene therapies have sought to establish sustained expression of therapeutic genes, genomic tools are needed only in a short time window and should be delivered to cells ideally in a balanced "hit-and-run" fashion. Current state-of-the-art delivery strategies are based on intracellular production of protein from transfected plasmid DNA or in vitro-transcribed RNA, or from transduced viral templates. Here, we discuss advantages and challenges of intracellular production strategies and describe emerging approaches based on the direct delivery of protein either by transfer of recombinant protein or by lentiviral protein transduction. With focus on adapting viruses for protein delivery, we describe the concept of "all-in-one" lentiviral particles engineered to codeliver effector proteins and donor sequences for DNA transposition or homologous recombination. With optimized delivery methods-based on transferring DNA, RNA, or protein-it is no longer far-fetched that researchers in the field will indeed deliver the goods for somatic gene therapies.

  20. Water

    CSIR Research Space (South Africa)

    Van Wyk, Llewellyn V

    2010-08-01

    Full Text Available Water scarcity is without a doubt on of the greatest threats to the human species and has all the potential to destabilise world peace. Falling water tables are a new phenomenon. Up until the development of steam and electric motors, deep groudwater...

  1. Quantitative Trait Loci Mapping of Maize Yield and Its Components Under Different Water Treatments at Flowering Time

    Institute of Scientific and Technical Information of China (English)

    Gui-He Lu; Yi-Rong Zhang; Jing-Rui Dai; Ji-Hua Tang; Jian-Bing Yan; Xi-Qing Ma; Jian-Sheng Li; Shao-Jiang Chen; Jian-Cang Ma; Zhan-Xian Liu; Li-Zhu E

    2006-01-01

    Drought or water stress is a serious agronomic problem resulting in maize (Zea mays L.) yield loss throughout the world. Breeding hybrids with drought tolerance is one important approach for solving this problem. However, lower efficiency and a longer period of breeding hybrids are disadvantages of traditional breeding programs. It is generally recognized that applying molecular marker techniques to traditional breeding programs could improve the efficiency of the breeding of drought-tolerant maize. To provide useful information for use in studies of maize drought tolerance,the mapping and tagging of quantitative trait loci (QTL) for yield and its components were performed in the present study on the basis of the principle of a mixed linear model. Two hundred and twenty-one recombinant inbred lines (RIL) of Yuyu 22 were grown under both well-watered and water-stressed conditions. In the former treatment group, plants were well irrigated, whereas those in the latter treatment group were stressed at flowering time.Ten plants of each genotype were grown in a row that was 3.00 m×0.67 m (length×width). The results show that a few of the QTL were the same (one additive QTL for ear length, two additive QTL and one pair of epistatic QTL for kernel number per row, one additive QTL for kernel weight per plant), whereas most of other QTL were different between the two different water treatment groups. It may be that genetic expression differs under the two different water conditions. Furthermore, differences in the additive and epistatic QTL among the traits under water-stressed conditions indicate that genetic expression also differs from trait to trait.Major and minor QTL were detected for the traits,except for kernel number per row, under water-stressed conditions. Thus, the genetic mechanism of drought tolerance in maize is complex because the additive and epistatic QTL exist at the same time and the major and minor QTL all contribute to phenotype under water

  2. Detection limits for real-time source water monitoring using indigenous freshwater microalgae

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez Jr, Miguel [ORNL; Greenbaum, Elias [ORNL

    2009-01-01

    This research identified toxin detection limits using the variable fluorescence of naturally occurring microalgae in source drinking water for five chemical toxins with different molecular structures and modes of toxicity. The five chemicals investigated were atrazine, Diuron, paraquat, methyl parathion, and potassium cyanide. Absolute threshold sensitivities of the algae for detection of the toxins in unmodified source drinking water were measured. Differential kinetics between the rate of action of the toxins and natural changes in algal physiology, such as diurnal photoinhibition, are significant enough that effects of the toxin can be detected and distinguished from the natural variance. This is true even for physiologically impaired algae where diminished photosynthetic capacity may arise from uncontrollable external factors such as nutrient starvation. Photoinhibition induced by high levels of solar radiation is a predictable and reversible phenomenon that can be dealt with using a period of dark adaption of 30 minutes or more.

  3. Transient Water Age Distributions in Environmental Flow Systems: The Time-Marching Laplace Transform Solution Technique

    CERN Document Server

    Cornaton, F J

    2011-01-01

    Environmental fluid circulations are very often characterized by analyzing the fate and behavior of natural and anthropogenic tracers. Among these tracers, age is taken as an ideal tracer which can yield interesting diagnoses, as for example the characterization of the mixing and renewal of water masses, of the fate and mixing of contaminants, or the calibration of hydro-dispersive parameters used by numerical models. Such diagnoses are of great interest in atmospheric and ocean circulation sciences, as well in surface and subsurface hydrology. The temporal evolution of groundwater age and its frequency distributions can display important changes as flow regimes vary due to natural change in climate and hydrologic conditions and/or human induced pressures on the resource to satisfy the water demand. Steady-state age frequency distributions can be modelled using standard numerical techniques, since the general balance equation describing age transport under steady-state flow conditions is exactly equivalent to...

  4. Temperature-time distribution and thermal stresses on the RTG fins and shell during water cooling

    Science.gov (United States)

    Turner, R. H.

    1983-01-01

    Radioisotope thermoelectric generator (RTG) packages designed for space missions generally do not require active cooling. However, the heat they generate cannot remain inside of the launch vehicle bay and requires active removal. Therefore, before the Shuttle bay door is closed, the RTG coolant tubes attached to the heat rejection fins must be filled with water, which will circulate and remove most of the heat from the cargo bay. There is concern that charging a system at initial temperature around 200 C with water at 24 C can cause unacceptable thermal stresses in the RTG shell and fins. A computer model is developed to estimate the transient temperature distribution resulting from such charging. The thermal stresses resulting from the temperature gradients do not exceed the elastic deformation limit for the material. Since the simplified mathematical model for thermal stresses tends to overestimate stresses, it is concluded that the RTG can be cooled by introducing water at 24 C to the initially hot fin coolant tubes while the RTG is in the Shuttle cargo bay.

  5. Temperature-time distribution and thermal stresses on the RTG fins and shell during water cooling

    Science.gov (United States)

    Turner, R. H.

    1983-01-01

    Radioisotope thermoelectric generator (RTG) packages designed for space missions generally do not require active cooling. However, the heat they generate cannot remain inside of the launch vehicle bay and requires active removal. Therefore, before the Shuttle bay door is closed, the RTG coolant tubes attached to the heat rejection fins must be filled with water, which will circulate and remove most of the heat from the cargo bay. There is concern that charging a system at initial temperature around 200 C with water at 24 C can cause unacceptable thermal stresses in the RTG shell and fins. A computer model is developed to estimate the transient temperature distribution resulting from such charging. The thermal stresses resulting from the temperature gradients do not exceed the elastic deformation limit for the material. Since the simplified mathematical model for thermal stresses tends to overestimate stresses, it is concluded that the RTG can be cooled by introducing water at 24 C to the initially hot fin coolant tubes while the RTG is in the Shuttle cargo bay.

  6. Quantitative detection of the free-living amoeba Hartmannella vermiformis in surface water by using real-time PCR.

    Science.gov (United States)

    Kuiper, Melanie W; Valster, Rinske M; Wullings, Bart A; Boonstra, Harry; Smidt, Hauke; van der Kooij, Dick

    2006-09-01

    A real-time PCR-based method targeting the 18S rRNA gene was developed for the quantitative detection of Hartmannella vermiformis, a free-living amoeba which is a potential host for Legionella pneumophila in warm water systems and cooling towers. The detection specificity was validated using genomic DNA of the closely related amoeba Hartmannella abertawensis as a negative control and sequence analysis of amplified products from environmental samples. Real-time PCR detection of serially diluted DNA extracted from H. vermiformis was linear for microscopic cell counts between 1.14 x 10(-1) and 1.14 x 10(4) cells per PCR. The genome of H. vermiformis harbors multiple copies of the 18S rRNA gene, and an average number (with standard error) of 1,330 +/- 127 copies per cell was derived from real-time PCR calibration curves for cell suspensions and plasmid DNA. No significant differences were observed between the 18S rRNA gene copy numbers for trophozoites and cysts of strain ATCC 50237 or between the copy numbers for this strain and strain KWR-1. The developed method was applied to water samples (200 ml) collected from a variety of lakes and rivers serving as sources for drinking water production in The Netherlands. Detectable populations were found in 21 of the 28 samples, with concentrations ranging from 5 to 75 cells/liter. A high degree of similarity (> or =98%) was observed between sequences of clones originating from the different surface waters and between these clones and the reference strains. Hence, H. vermiformis, which is highly similar to strains serving as hosts for L. pneumophila, is a common component of the microbial community in fresh surface water.

  7. A new method to identify water masses -- a network-based analysis of oceanographic point measurement time series

    CERN Document Server

    Greil, Florian

    2012-01-01

    This is a statistical analysis of the oceanographic time series measured across Fram Strait at a latitude of 78{\\deg}50'N. Fram Strait is the deepest passage between the Arctic Ocean and the North Atlantic. There are up to 16 mooring lines with instruments at different depths measuring water temperature and velocity. These variables vary on different time scales and the challenge is to distinguish different spatial flow regimes. For Fram Strait, a temperature criterion is traditionally applied to identify water-masses, i.e. water volumes of similar origin. Interpolation leads to a vertical latitudinal 2D cross-section from which a scalar - the hypothetical area of waters within a certain temperature interval - can be extracted. The scalar is combined with a similar interpolation of the velocities to approximate the volume flows through the gateway. This approach is not only numerically expensive but also incorporates many assumptions. The present study suggest a new network-based approach to discriminate betw...

  8. Elucidating low-frequency vibrational dynamics in calcite and water with time-resolved third-harmonic generation spectroscopy.

    Science.gov (United States)

    Wang, Liang; Liu, Weimin; Fang, Chong

    2015-07-14

    Low-frequency vibrations are foundational for material properties including thermal conductivity and chemical reactivity. To resolve the intrinsic molecular conformational dynamics in condensed phase, we implement time-resolved third-harmonic generation (TRTHG) spectroscopy to unravel collective skeletal motions in calcite, water, and aqueous salt solution in situ. The lifetime of three Raman-active modes in polycrystalline calcite at 155, 282 and 703 cm(-1) is found to be ca. 1.6 ps, 1.3 ps and 250 fs, respectively. The lifetime difference is due to crystallographic defects and anharmonic effects. By incorporating a home-built wire-guided liquid jet, we apply TRTHG to investigate pure water and ZnCl2 aqueous solution, revealing ultrafast dynamics of water intermolecular stretching and librational bands below 500 cm(-1) and a characteristic 280 cm(-1) vibrational mode in the ZnCl4(H2O)2(2-) complex. TRTHG proves to be a compact and versatile technique that directly uses the 800 nm fundamental laser pulse output to capture ultrafast low-frequency vibrational motion snapshots in condensed-phase materials including the omnipresent water, which provides the important time dimension to spectral characterization of molecular structure-function relationships.

  9. Water availability limits tree productivity, carbon stocks, and carbon residence time in mature forests across the western US

    Science.gov (United States)

    Berner, Logan T.; Law, Beverly E.; Hudiburg, Tara W.

    2017-01-01

    Water availability constrains the structure and function of terrestrial ecosystems and is projected to change in many parts of the world over the coming century. We quantified the response of tree net primary productivity (NPP), live biomass (BIO), and mean carbon residence time (CRT = BIO / NPP) to spatial variation in water availability in the western US. We used forest inventory measurements from 1953 mature stands (> 100 years) in Washington, Oregon, and California (WAORCA) along with satellite and climate data sets covering the western US. We summarized forest structure and function in both domains along a 400 cm yr-1 hydrologic gradient, quantified with a climate moisture index (CMI) based on the difference between precipitation and reference evapotranspiration summed over the water year (October-September) and then averaged annually from 1985 to 2014 (CMIwy). Median NPP, BIO, and CRT computed at 10 cm yr-1 intervals along the CMIwy gradient increased monotonically with increasing CMIwy across both WAORCA (rs = 0.93-0.96, p changes over the western US, though these data sets tended to plateau in the wettest areas, suggesting that additional efforts are needed to better quantify NPP and BIO from satellites in high-productivity, high-biomass forests. Our results illustrate that long-term average water availability is a key environmental constraint on tree productivity, carbon storage, and carbon residence time in mature forests across the western US, underscoring the need to assess potential ecosystem response to projected warming and drying over the coming century.

  10. Real-time ArcGIS and heterotrophic plate count based chloramine disinfectant control in water distribution system.

    Science.gov (United States)

    Bai, Xiaohui; Zhi, Xinghua; Zhu, Huifeng; Meng, Mingqun; Zhang, Mingde

    2015-01-01

    This study investigates the effect of chloramine residual on bacteria growth and regrowth and the relationship between heterotrophic plate counts (HPCs) and the concentration of chloramine residual in the Shanghai drinking water distribution system (DWDS). In this study, models to control HPCs in the water distribution system and consumer taps are also developed. Real-time ArcGIS was applied to show the distribution and changed results of the chloramine residual concentration in the pipe system by using these models. Residual regression analysis was used to get a reasonable range of the threshold values that allows the chloramine residual to efficiently inhibit bacteria growth in the Shanghai DWDS; the threshold values should be between 0.45 and 0.5 mg/L in pipe water and 0.2 and 0.25 mg/L in tap water. The low residual chloramine value (0.05 mg/L) of the Chinese drinking water quality standard may pose a potential health risk for microorganisms that should be improved. Disinfection by-products (DBPs) were detected, but no health risk was identified.

  11. Analysis of temperature time series to estimate direction and magnitude of water fluxes in near-surface sediments

    Science.gov (United States)

    Munz, Matthias; Oswald, Sascha E.; Schmidt, Christian

    2017-04-01

    The application of heat as a hydrological tracer has become a standard method for quantifying water fluxes between groundwater and surface water. Typically, time series of temperatures in the surface water and in the sediment are observed and are subsequently evaluated by a vertical 1D representation of heat transport by advection and dispersion. Several analytical solutions as well as their implementation into user-friendly software exist in order to estimate water fluxes from the observed temperatures. The underlying assumption of a stationary, one-dimensional vertical flow field is frequently violated in natural systems. Here subsurface water flow often has a significant horizontal component. We developed a methodology for identifying the geometry of the subsurface flow field based on the variations of diurnal temperature amplitudes with depths. For instance: Purely vertical heat transport is characterized by an exponential decline of temperature amplitudes with increasing depth. Pure horizontal flow would be indicated by a constant, depth independent vertical amplitude profile. The decline of temperature amplitudes with depths could be fitted by polynomials of different order whereby the best fit was defined by the highest Akaike Information Criterion. The stepwise model optimization and selection, evaluating the shape of vertical amplitude ratio profiles was used to determine the predominant subsurface flow field, which could be systematically categorized in purely vertical and horizontal (hyporheic, parafluvial) components. Analytical solutions to estimate water fluxes from the observed temperatures are restricted to specific boundary conditions such as a sinusoidal upper temperature boundary. In contrast numerical solutions offer higher flexibility and can handle temperature data which is characterized by irregular variations such as storm-event induced temperature changes and thus cannot readily be incorporated in analytical solutions. There are several

  12. Short-Term Forecasting of Urban Storm Water Runoff in Real-Time using Extrapolated Radar Rainfall Data

    DEFF Research Database (Denmark)

    Thorndahl, Søren Liedtke; Rasmussen, Michael R.

    2013-01-01

    Model based short-term forecasting of urban storm water runoff can be applied in realtime control of drainage systems in order to optimize system capacity during rain and minimize combined sewer overflows, improve wastewater treatment or activate alarms if local flooding is impending. A novel...... online system, which forecasts flows and water levels in real-time with inputs from extrapolated radar rainfall data, has been developed. The fully distributed urban drainage model includes auto-calibration using online in-sewer measurements which is seen to improve forecast skills significantly....... The radar rainfall extrapolation (nowcast) limits the lead time of the system to two hours. In this paper, the model set-up is tested on a small urban catchment for a period of 1.5 years. The 50 largest events are presented....

  13. Denver Developmental Screening Test in two-year old infants delivered by vacuum extraction

    Directory of Open Access Journals (Sweden)

    Meriah Sembiring

    2017-02-01

    Full Text Available The aim of this study was to determine the developmental retardation of infants of two years of age who were delivered by vacuum extraction. This cross-sectional study examined 44 infants delivered by vacuum extraction, comprising 25 males and 19 females who were born in Tembakau Deli and St. Elizabeth Hospitals, between August 1993 until February 1994. The examination included interview and physical examination in the patient's house. Chi-square statistics analysis was used with a significant level of 95% (1'=0.05. The results showed Ihat of the 44 infants delivered by vacuum extraction. 28 (32% had had were found with mild asphyxia, while 2 infants (5%. whose mothers work as private clerk and entrepreneur, had development retardation. We concluded that there was no significant difference in development between infants delivered by vacuum extraction and those who were born spontaneously. Developmental retardation was found in infants whose mothers lack time to communicate.

  14. Retrovirus-delivered siRNA

    Directory of Open Access Journals (Sweden)

    Devroe Eric

    2002-08-01

    Full Text Available Abstract Background The ability of transfected synthetic small interfering (si RNAs to suppress the expression of specific transcripts has proved a useful technique to probe gene function in mammalian cells. However, high production costs limit this technology's utility for many laboratories and experimental situations. Recently, several DNA-based plasmid vectors have been developed that direct transcription of small hairpin RNAs, which are processed into functional siRNAs by cellular enzymes. Although these vectors provide certain advantages over chemically synthesized siRNAs, numerous disadvantages remain including merely transient siRNA expression and low and variable transfection efficiency. Results To overcome several limitations of plasmid-based siRNA, a retroviral siRNA delivery system was developed based on commerically available vectors. As a pilot study, a vector was designed to target the human Nuclear Dbf2-Related (NDR kinase. Cells infected with the anti-NDR siRNA virus dramatically downregulate NDR expression, whereas control viruses have no effect on total NDR levels. To confirm and extend these findings, an additional virus was constructed to target a second gene, transcriptional coactivator p75. Conclusion The experiments presented here demonstrate that retroviruses are efficient vectors for delivery of siRNA into mammalian cells. Retrovirus-delivered siRNA provides significant advancement over previously available methods by providing efficient, uniform delivery and immediate selection of stable "knock-down" cells. This development should provide a method to rapidly assess gene function in established cell lines, primary cells, or animals.

  15. More Soil Delivered to Phoenix Lab

    Science.gov (United States)

    2008-01-01

    This image, taken by NASA's Phoenix Mars Lander's Surface Stereo Imager, documents the delivery of a soil sample from the 'Snow White' trench to the Wet Chemistry Laboratory. A small pile of soil is visible on the lower edge of the second cell from the top.This deck-mounted lab is part of Phoenix's Microscopy, Electrochemistry and Conductivity Analyzer (MECA). The delivery was made on Sept. 12, 2008, which was Sol 107 (the 107th Martian day) of the mission, which landed on May 25, 2008. The Wet Chemistry Laboratory mixes Martian soil with an aqueous solution from Earth as part of a process to identify soluble nutrients and other chemicals in the soil. Preliminary analysis of this soil confirms that it is alkaline, and composed of salts and other chemicals such as perchlorate, sodium, magnesium, chloride and potassium. This data validates prior results from that same location, said JPL's Michael Hecht, the lead scientist for MECA. In the coming days, the Phoenix team will also fill the final four of eight single-use ovens on another soil-analysis instrument, the Thermal and Evolved Gas Analyzer, or TEGA. The team's strategy is to deliver as many samples as possible before the power produced by Phoenix's solar panels declines due to the end of the Martian summer. The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  16. Time-domain electromagnetic soundings to characterize water quality within a freshwater/saline-water transition zone, Estancia Valley, New Mexico, July 2005 - A reconnaissance study

    Science.gov (United States)

    Shah, Sachin D.; Kress, Wade H.; Land, Lewis A.

    2007-01-01

    During July 2005, the U.S. Geological Survey, in cooperation with the New Mexico Bureau of Geology and Mineral Resources, conducted a reconnaissance study in the Estancia Valley in central New Mexico to characterize water quality using time-domain electromagnetic (TDEM) surface-geophysical soundings. TDEM sounding is one of a number of surface geophysical methods that provide a relatively quick and inexpensive means to characterize subsurface geologic and hydrogeologic properties. TDEM surface geophysical methods can be used to detect variations in the electrical resistivity of the subsurface, which in turn can be related to variations in the physical and chemical properties of soil, rock, and pore fluids.

  17. Radiocarbon in otoliths of yelloweye rockfish (Sebastes ruberrimus): a reference time series for the coastal waters of southeast Alaska

    Energy Technology Data Exchange (ETDEWEB)

    Kerr-Ferrey, L A; Andrews, A H; Frantz, B R; Coale, K H; Brown, T A; Cailliet, G M

    2003-10-14

    Atmospheric testing of thermonuclear devices during the 1950s and 1960s created a global radiocarbon ({sup 14}C) signal in the environment that has provided a useful tracer and chronological marker in oceanic systems and organisms. The bomb-generated {sup 14}C signal retained in fish otoliths can be used as a permanent, time-specific recorder of the 14C present in ambient seawater, making it a useful tool in age validation of fishes. The goal of this study was to determine {sup 14}C levels in otoliths of the age-validated yelloweye rockfish (Sebastes ruberrimus) to establish a reference time series for the coastal waters of southeast Alaska. Radiocarbon values from the first year's growth of 43 yelloweye rockfish otoliths were plotted against estimated birth year to produce a 14C time series for these waters spanning 1940 to 1990. The time series shows the initial rise of bomb 14C occurred in 1958 in coastal southeast Alaskan waters and {sup 14}C levels rose relatively rapidly to peak {Delta}{sup 14}C values (60-70%) between 1966 and 1971, with a subsequent declining trend through the end of the record in 1990 (-3.2%). In addition, the radiocarbon data, independent of the radiometric study, confirms the longevity of the yelloweye rockfish up to a minimum of 44 years and strongly supports higher age estimates. The yelloweye rockfish record provides a {sup 14}C chronology that will be useful for the interpretation of {sup 14}C accreted in biological samples from these waters and in future rockfish age validation studies.

  18. Vegetation response to upstream water yield in the Heihe river by time series analysis of MODIS data

    Directory of Open Access Journals (Sweden)

    L. Jia

    2010-07-01

    Full Text Available Liquid and solid precipitation is abundant in the high elevation, upper reach of the Heihe basin. The development of modern irrigation schemes in the middle reach of the basin is taking up an increasing share of fresh water resources, endangering the oasis and traditional irrigation systems in the lower reach. In this study, the response of vegetation in the Ejina Oasis in the lower reach of the Heihe River to the water yield of the upper catchment was analyzed by time series analysis of monthly observations of precipitation in the upper and lower catchment, river streamflow downstream of the modern irrigation schemes and satellite observations of vegetation index. Firstly, remote sensing data were used to monitor the vegetation dynamic for a long time period. Due to cloud-contamination, atmospheric influence and different solar angles, however, the quality and consistence of time series of remote sensing data is degraded. In this research we used a Fourier Transform method – the Harmonic Analysis of Time Series (HANTS algorithm – to reconstruct cloud-free NDVI time series data from the Terra-MODIS dataset. Anomalies in precipitation, streamflow, and vegetation index are detected by comparing each year with the average year. The relationship between the anomalies in vegetation growth, the local precipitation and upstream water yield were analyzed. The same approach is used to identify, remove and gap-filling cloud contaminated observations in the satellite data for each year in the dataset. The results showed that: the previous year total runoff had a significant relationship with the vegetation growth in Ejina Oasis and that anomalies in monthly runoff of the Heihe River influenced the phenology of vegetation in the entire oasis during drier years. The time of maximum green-up was uniform throughout the oasis during wetter years, but showed a clear S–N gradient (downstream during drier years.

  19. Spatiotemporal Dynamics of Surface Water Extent from Three Decades of Seasonally Continuous Landsat Time Series at Subcontinental Scale

    Science.gov (United States)

    Tulbure, M. G.; Broich, M.; Stehman, Stephen V.

    2016-06-01

    Surface water is a critical resource in semi-arid areas. The Murray-Darling Basin (MDB) of Australia, one of the largest semi-arid basins in the world is aiming to set a worldwide example of how to balance multiple interests (i.e. environment, agriculture and urban use), but has suffered significant water shrinkages during the Millennium Drought (1999-2009), followed by extensive flooding. Baseline information and systematic quantification of surface water (SW) extent and flooding dynamics in space and time are needed for managing SW resources across the basin but are currently lacking. To synoptically quantify changes in SW extent and flooding dynamics over MDB, we used seasonally continuous Landsat TM and ETM+ data (1986 - 2011) and generic machine learning algorithms. We further mapped flooded forest at a riparian forest site that experienced severe tree dieback due to changes in flooding regime. We used a stratified sampling design to assess the accuracy of the SW product across time. Accuracy assessment yielded an overall classification accuracy of 99.94%, with producer's and user's accuracy of SW of 85.4% and 97.3%, respectively. Overall accuracy was the same for Landsat 5 and 7 data but user's and producer's accuracy of water were higher for Landsat 7 than 5 data and stable over time. Our validated results document a rapid loss in SW bodies. The number, size, and total area of SW showed high seasonal variability with highest numbers in winter and lowest numbers in summer. SW extent per season per year showed high interannual and seasonal variability, with low seasonal variability during the Millennium Drought. Examples of current uses of the new dataset will be presented and include (1) assessing ecosystem response to flooding with implications for environmental water releases, one of the largest investment in environment in Australia; (2) quantifying drivers of SW dynamics (e.g. climate, human activity); (3) quantifying changes in SW dynamics and

  20. Characterization of surface and ground water δ18O seasonal variation and its use for estimating groundwater residence times

    Science.gov (United States)

    Reddy, Michael M.; Schuster, Paul; Kendall, Carol; Reddy, Micaela B.

    2006-01-01

    18O is an ideal tracer for characterizing hydrological processes because it can be reliably measured in several watershed hydrological compartments. Here, we present multiyear isotopic data, i.e. 18O variations (δ18O), for precipitation inputs, surface water and groundwater in the Shingobee River Headwaters Area (SRHA), a well-instrumented research catchment in north-central Minnesota. SRHA surface waters exhibit δ18O seasonal variations similar to those of groundwaters, and seasonal δ18O variations plotted versus time fit seasonal sine functions. These seasonal δ18O variations were interpreted to estimate surface water and groundwater mean residence times (MRTs) at sampling locations near topographically closed-basin lakes. MRT variations of about 1 to 16 years have been estimated over an area covering about 9 km2 from the basin boundary to the most downgradient well. Estimated MRT error (±0·3 to ±0·7 years) is small for short MRTs and is much larger (±10 years) for a well with an MRT (16 years) near the limit of the method. Groundwater transit time estimates based on Darcy's law, tritium content, and the seasonal δ18O amplitude approach appear to be consistent within the limits of each method. The results from this study suggest that use of the δ18O seasonal variation method to determine MRTs can help assess groundwater recharge areas in small headwaters catchments.

  1. Effect of Time Step Size and Turbulence Model on the Open Water Hydrodynamic Performance Prediction of Contra-Rotating Propellers

    Institute of Scientific and Technical Information of China (English)

    WANG Zhan-zhi; XIONG Ying

    2013-01-01

    A growing interest has been devoted to the contra-rotating propellers (CRPs) due to their high propulsive efficiency,torque balance,low fuel consumption,low cavitations,low noise performance and low hull vibration.Compared with the single-screw system,it is more difficult for the open water performance prediction because forward and aft propellers interact with each other and generate a more complicated flow field around the CRPs system.The current work focuses on the open water performance prediction of contra-rotating propellers by RANS and sliding mesh method considering the effect of computational time step size and turbulence model.The validation study has been performed on two sets of contra-rotating propellers developed by David W Taylor Naval Ship R & D center.Compared with the experimental data,it shows that RANS with sliding mesh method and SST k-ω turbulence model has a good precision in the open water performance prediction of contra-rotating propellers,and small time step size can improve the level of accuracy for CRPs with the same blade number of forward and aft propellers,while a relatively large time step size is a better choice for CRPs with different blade numbers.

  2. On the Use of the Water Hammer Equations with Time Dependent Friction during a Valve Closure, for Discharge Estimation

    Directory of Open Access Journals (Sweden)

    Georgiana Dunca

    2016-01-01

    Full Text Available The paper presents a new method for in site discharge estimation in pressured pipes. The method consists in using the water hammer equations solved with the method of characteristics with an unsteady friction factor model. The differential pressure head variation measured during a complete valve closure is used to derive the initial flow rate, similarly to the pressure-time (Gibson method. The method is validated with a numerical experiment, and tested with experimental laboratory measurements. The results show that the proposed method can reduce the discharge estimation error by 0.6% compared to the standard pressure-time (Gibson method for the flow rate investigation.

  3. Improving Water Quality in Construction Site Runoff: Optimal Mixing Time and Dose for Flocculating Suspended Sediment with Polyacrylamide

    Science.gov (United States)

    Zare, A. H.

    2015-12-01

    Sediment, a major water pollutant, can harm ecosystems and water resources. Sediment in construction site runoff can be controlled through flocculation using anionic, linear polyacrylamide (PAM), but there is little information on optimizing these applications. We conducted laboratory experiments to determine the optimal mixing times for varying concentrations of two types of polyacrylamide, APS 705 and FA 920, which are blends of polymers with a range of molecular weights that are anionic and neutral, respectively. These were selected from a variety of PAMs previously screened for flocculation potential. Soil from three active construction sites in the Piedmont region of North Carolina were used in the testing. A mixing speed of 300 revolutions per minute (RPM), the maximum available for the paddle mixer we used, was the most effective at reducing turbidity with PAM. Turbidity was reduced with increased mixing times up to a point, after which little additional benefit was evident. For all three soils tested, turbidity decreased as mixing time reached 1-2 minutes at polymer doses of 1, 5 and 10 mg L-1, with no substantial reduction with further mixing. At a polymer dose of 0.5 mg L-1, however, turbidity tended to increase beyond 5 minutes of mixing time, possibly because excessive shear forces destroyed sparsely linked floc. For both PAMs, 1 mg L-1 and a mixing time of 2-3 min appeared to be sufficient to achieve the most effective turbidity reduction.

  4. Local and Catchment-Scale Water Storage Changes in Northern Benin Deduced from Gravity Monitoring at Various Time-Scales

    Science.gov (United States)

    Hinderer, J.; Hector, B.; Séguis, L.; Descloitres, M.; Cohard, J.; Boy, J.; Calvo, M.; Rosat, S.; Riccardi, U.; Galle, S.

    2013-12-01

    Water storage changes (WSC) are investigated by the mean of gravity monitoring in Djougou, northern Benin, in the frame of the GHYRAF (Gravity and Hydrology in Africa) project. In this area, WSC are 1) part of the control system for evapotranspiration (ET) processes, a key variable of the West-African monsoon cycle and 2) the state variable for resource management, a critical issue in storage-poor hard rock basement contexts such as in northern Benin. We show the advantages of gravity monitoring for analyzing different processes in the water cycle involved at various time and space scales, using the main gravity sensors available today (FG5 absolute gravimeter, superconducting gravimeter -SG- and CG5 micro-gravimeter). The study area is also part of the long-term observing system AMMA-Catch, and thus under intense hydro-meteorological monitoring (rain, soil moisture, water table level, ET ...). Gravity-derived WSC are compared at all frequencies to hydrological data and to hydrological models calibrated on these data. Discrepancies are analyzed to discuss the pros and cons of each approach. Fast gravity changes (a few hours) are significant when rain events occur, and involve different contributions: rainfall itself, runoff, fast subsurface water redistribution, screening effect of the gravimeter building and local topography. We investigate these effects and present the statistical results of a set of rain events recorded with the SG installed in Djougou since July 2010. The intermediate time scale of gravity changes (a few days) is caused by ET and both vertical and horizontal water redistribution. The integrative nature of gravity measurements does not allow to separate these different contributions, and the screening from the shelter reduces our ability to retrieve ET values. Also, atmospheric corrections are critical at such frequencies, and deserve some specific attention. However, a quick analysis of gravity changes following rain events shows that the

  5. Water

    Directory of Open Access Journals (Sweden)

    E. Sanmuga Priya

    2017-05-01

    Full Text Available Phytoremediation through aquatic macrophytes treatment system (AMATS for the removal of pollutants and contaminants from various natural sources is a well established environmental protection technique. Water hyacinth (Eichhornia crassipes, a worst invasive aquatic weed has been utilised for various research activities over the last few decades. The biosorption capacity of the water hyacinth in minimising various contaminants present in the industrial wastewater is well studied. The present review quotes the literatures related to the biosorption capacity of the water hyacinth in reducing the concentration of dyestuffs, heavy metals and minimising certain other physiochemical parameters like TSS (total suspended solids, TDS (total dissolved solids, COD (chemical oxygen demand and BOD (biological oxygen demand in textile wastewater. Sorption kinetics through various models, factors influencing the biosorption capacity, and role of physical and chemical modifications in the water hyacinth are also discussed.

  6. Water Quality Time Series, Aggregate values, and Related Aggregate Risk Measures

    Data.gov (United States)

    U.S. Environmental Protection Agency — The excel file contains time series data of flow rates, concentrations of alachlor , atrazine, ammonia, total phosphorus, and total suspended solids observed in two...

  7. Analysis of iodinated contrast delivered during thermal ablation: is material trapped in the ablation zone?

    Science.gov (United States)

    Wu, Po-hung; Brace, Chris L.

    2016-08-01

    Intra-procedural contrast-enhanced CT (CECT) has been proposed to evaluate treatment efficacy of thermal ablation. We hypothesized that contrast material delivered concurrently with thermal ablation may become trapped in the ablation zone, and set out to determine whether such an effect would impact ablation visualization. CECT images were acquired during microwave ablation in normal porcine liver with: (A) normal blood perfusion and no iodinated contrast, (B) normal perfusion and iodinated contrast infusion or (C) no blood perfusion and residual iodinated contrast. Changes in CT attenuation were analyzed from before, during and after ablation to evaluate whether contrast was trapped inside of the ablation zone. Visualization was compared between groups using post-ablation contrast-to-noise ratio (CNR). Attenuation gradients were calculated at the ablation boundary and background to quantitate ablation conspicuity. In Group A, attenuation decreased during ablation due to thermal expansion of tissue water and water vaporization. The ablation zone was difficult to visualize (CNR  =  1.57  ±  0.73, boundary gradient  =  0.7  ±  0.4 HU mm-1), leading to ablation diameter underestimation compared to gross pathology. Group B ablations saw attenuation increase, suggesting that iodine was trapped inside the ablation zone. However, because the normally perfused liver increased even more, Group B ablations were more visible than Group A (CNR  =  2.04  ±  0.84, boundary gradient  =  6.3  ±  1.1 HU mm-1) and allowed accurate estimation of the ablation zone dimensions compared to gross pathology. Substantial water vaporization led to substantial attenuation changes in Group C, though the ablation zone boundary was not highly visible (boundary gradient  =  3.9  ±  1.1 HU mm-1). Our results demonstrate that despite iodinated contrast being trapped in the ablation zone, ablation visibility was

  8. A simple technique for continuous measurement of time-variable gas transfer in surface waters

    Science.gov (United States)

    Bohlke, Johnkarl F.; Harvey, Judson W.; Busenberg, Eurybiades; Tobias, Craig R.

    2009-01-01

    Mass balance models of dissolved gases in streams, lakes, and rivers serve as the basis for estimating wholeecosystem rates for various biogeochemical processes. Rates of gas exchange between water and the atmosphere are important and error-prone components of these models. Here we present a simple and efficient modification of the SF6 gas tracer approach that can be used concurrently while collecting other dissolved gas samples for dissolved gas mass balance studies in streams. It consists of continuously metering SF6-saturated water directly into the stream at a low rate of flow. This approach has advantages over pulse injection of aqueous solutions or bubbling large amounts of SF6 into the stream. By adding the SF6 as a saturated solution, we minimize the possibility that other dissolved gas measurements are affected by sparging and/or bubble injecta. Because the SF6 is added continuously we have a record of changing gas transfer velocity (GTV) that is contemporaneous with the sampling of other nonconservative ambient dissolved gases. Over a single diel period, a 30% variation in GTV was observed in a second-order stream (Sugar Creek, Indiana, USA). The changing GTV could be attributed in part to changes in temperature and windspeed that occurred on hourly to diel timescales.

  9. Rock bream iridovirus (RBIV) replication in rock bream (Oplegnathus fasciatus) exposed for different time periods to susceptible water temperatures.

    Science.gov (United States)

    Jung, Myung-Hwa; Nikapitiya, Chamilani; Vinay, Tharabenahalli-Nagaraju; Lee, Jehee; Jung, Sung-Ju

    2017-09-15

    Rock bream iridovirus (RBIV) is a member of the Megalocytivirus genus that causes severe mortality to rock bream. Water temperature is known to affect the immune system and susceptibility of fish to RBIV infection. In this study, we evaluated the time dependent virus replication pattern and time required to completely eliminate virus from the rock bream body against RBIV infection at different water temperature conditions. The rock bream was exposed to the virus and held at 7 (group A1), 4 (group A2) and 2 days (group A3) at 23 °C before the water temperature was reduced to 17 °C. A total of 28% mortality was observed 24-35 days post infection (dpi) in only the 7 day exposure group at 23 °C. In all 23 °C exposure groups, virus replication peaked at 20 to 22 dpi (10(6)-10(7)/μl). In recovery stages (30-100 dpi), the virus copy number was gradually reduced, from 10(6) to 10(1) with faster decreases in the shorter exposure period group at 23 °C. When the water temperature was increased in surviving fish from 17 to 26 °C at 70 dpi, they did not show any mortality or signs of disease and had low virus copy numbers (below 10(2)/μl). Thus, fish need at least 50 days from peaked RBIV levels (approximately 20-25 dpi) to inhibit the virus. This indicates that maintaining the fish at low water temperature (17 °C) for 70 days is sufficient to eradicate RBIV from fish body. Thus, RBIV could be eliminated slowly from the fish body and the virus may be completely eliminated under the threshold of causing mortality. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Crowdsourcing Water Quality Data

    OpenAIRE

    World Bank

    2016-01-01

    Using mobile phone technologies coupled with water quality testing, there is great opportunity to increase the awareness of water quality throughout rural and urban communities in developing countries. Whether the focus is on empowering citizens with information about the quality of water they use in daily life or providing scientific data to water managers to help them deliver safe water to the ...

  11. Rise time reduction of thermal actuators operated in air and water through optimized pre-shaped open-loop driving

    Science.gov (United States)

    Larsen, T.; Doll, J. C.; Loizeau, F.; Hosseini, N.; Peng, A. W.; Fantner, G. E.; Ricci, A. J.; Pruitt, B. L.

    2017-04-01

    Electrothermal actuators have many advantages compared to other actuators used in micro-electro-mechanical systems (MEMS). They are simple to design, easy to fabricate and provide large displacements at low voltages. Low voltages enable less stringent passivation requirements for operation in liquid. Despite these advantages, thermal actuation is typically limited to a few kHz bandwidth when using step inputs due to its intrinsic thermal time constant. However, the use of pre-shaped input signals offers a route for reducing the rise time of these actuators by orders of magnitude. We started with an electrothermally actuated cantilever having an initial 10-90% rise time of 85 μs in air and 234 μs in water for a standard open-loop step input. We experimentally characterized the linearity and frequency response of the cantilever when operated in air and water, allowing us to obtain transfer functions for the two cases. We used these transfer functions, along with functions describing desired reduced rise-time system responses, to numerically simulate the required input signals. Using these pre-shaped input signals, we improved the open-loop 10-90% rise time from 85 μs to 3 μs in air and from 234 μs to 5 μs in water, an improvement by a factor of 28 and 47, respectively. Using this simple control strategy for MEMS electrothermal actuators makes them an attractive alternative to other high speed micromechanical actuators such as piezoelectric stacks or electrostatic comb structures which are more complex to design, fabricate, or operate.

  12. Assessing the use of 3H-3He dating to determine the subsurface transit time of cave drip waters.

    Science.gov (United States)

    Kluge, Tobias; Wieser, Martin; Aeschbach-Hertig, Werner

    2010-09-01

    (3)H-(3)He measurements constitute a well-established method for the determination of the residence time of young groundwater. However, this method has rarely been applied to karstified aquifers and in particular to drip water in caves, despite the importance of the information which may be obtained. Besides the determination of transfer times of climate signals from the atmosphere through the epikarst to speleothems as climate archives, (3)H-(3)He together with Ne, Ar, Kr, Xe data may also help to give new insights into the local hydrogeology, e.g. the possible existence of a perched aquifer above a cave. In order to check the applicability of (3)H-(3)He dating to cave drips, we collected drip water samples from three adjacent caves in northwestern Germany during several campaigns. The noble gas data were evaluated by inverse modelling to obtain recharge temperature and excess air, supporting the calculation of the tritiogenic (3)He and hence the (3)H-(3)He age. Although atmospheric noble gases were often found to be close to equilibrium with the cave atmosphere, several drip water samples yielded an elevated (3)He/(4)He ratio, providing evidence for the accumulation of (3)He from the decay of (3)H. No significant contribution of radiogenic (4)He was found, corresponding to the low residence times mostly in the range of one to three years. Despite complications during sampling, conditions of a perched aquifer could be confirmed by replicate samples at one drip site. Here, the excess air indicator ΔNe was about 10 %, comparable to typical values found in aquifers in mid-latitudes. The mean (3)H-(3)He age of 2.1 years at this site presumably refers to the residence time in the perched aquifer and is lower than the entire transit time of 3.4 years estimated from the tritium data.

  13. Time series evapotranspiration maps at a regional scale: A methodology, evaluation, and their use in water resources management

    Science.gov (United States)

    Gowda, P. H.

    2016-12-01

    Evapotranspiration (ET) is an important process in ecosystems' water budget and closely linked to its productivity. Therefore, regional scale daily time series ET maps developed at high and medium resolutions have large utility in studying the carbon-energy-water nexus and managing water resources. There are efforts to develop such datasets on a regional to global scale but often faced with the limitations of spatial-temporal resolution tradeoffs in satellite remote sensing technology. In this study, we developed frameworks for generating high and medium resolution daily ET maps from Landsat and MODIS (Moderate Resolution Imaging Spectroradiometer) data, respectively. For developing high resolution (30-m) daily time series ET maps with Landsat TM data, the series version of Two Source Energy Balance (TSEB) model was used to compute sensible and latent heat fluxes of soil and canopy separately. Landsat 5 (2000-2011) and Landsat 8 (2013-2014) imageries for row 28/35 and 27/36 covering central Oklahoma was used. MODIS data (2001-2014) covering Oklahoma and Texas Panhandle was used to develop medium resolution (250-m), time series daily ET maps with SEBS (Surface Energy Balance System) model. An extensive network of weather stations managed by Texas High Plains ET Network and Oklahoma Mesonet was used to generate spatially interpolated inputs of air temperature, relative humidity, wind speed, solar radiation, pressure, and reference ET. A linear interpolation sub-model was used to estimate the daily ET between the image acquisition days. Accuracy assessment of daily ET maps were done against eddy covariance data from two grassland sites at El Reno, OK. Statistical results indicated good performance by modeling frameworks developed for deriving time series ET maps. Results indicated that the proposed ET mapping framework is suitable for deriving daily time series ET maps at regional scale with Landsat and MODIS data.

  14. Electronic compensation technique to deliver a total body dose

    Science.gov (United States)

    Lakeman, Tara E.

    Purpose: Total body irradiation (TBI) uses large parallel-opposed radiation fields to suppress the patient's immune system and eradicate the residual cancer cells in preparation of recipient for bone marrow transplant. The manual placement of lead compensators has been conventionally used to compensate for the varying thickness throughout the body in large-field TBI. The goal of this study is to pursue utilizing the modern electronic compensation technique to more accurately and efficiently deliver dose to patients in need of TBI. Method: Treatment plans utilizing the electronic compensation to deliver a total body dose were created retrospectively for patients for whom CT data had been previously acquired. Each treatment plan includes two pair of parallel opposed fields. One pair of large fields is used to encompass the majority of the patient's anatomy. The other pair are very small open fields focused only on the thin bottom portion of the patient's anatomy, which requires much less radiation than the rest of the body to reach 100% of the prescribed dose. A desirable fluence pattern was manually painted within each of the larger fields for each patient to provide a more uniform distribution. Results: Dose-volume histograms (DVH) were calculated for evaluating the electronic compensation technique. In the electronically compensated plans, the maximum body doses calculated from the DVH were reduced from the conventionally-compensated plans by an average of 15%, indicating a more uniform dose. The mean body doses calculated from the electronically compensated DVH remained comparable to that of the conventionally-compensated plans, indicating an accurate delivery of the prescription dose using electronic compensation. All calculated monitor units were within clinically acceptable limits. Conclusion: Electronic compensation technique for TBI will not increase the beam on time beyond clinically acceptable limits while it can substantially reduce the compensator setup

  15. Rebamipide delivered by brushite cement enhances osteoblast and macrophage proliferation.

    Science.gov (United States)

    Pujari-Palmer, Michael; Pujari-Palmer, Shiuli; Engqvist, Håkan; Karlsson Ott, Marjam

    2015-01-01

    Many of the bioactive agents capable of stimulating osseous regeneration, such as bone morphogenetic protein-2 (BMP-2) or prostaglandin E2 (PGE2), are limited by rapid degradation, a short bioactive half-life at the target site in vivo, or are prohibitively expensive to obtain in large quantities. Rebamipide, an amino acid modified hydroxylquinoline, can alter the expression of key mediators of bone anabolism, cyclo-oxygenase 2 (COX-2), BMP-2 and vascular endothelial growth factor (VEGF), in diverse cell types such as mucosal and endothelial cells or chondrocytes. The present study investigates whether Rebamipide enhances proliferation and differentiation of osteoblasts when delivered from brushite cement. The reactive oxygen species (ROS) quenching ability of Rebampide was tested in macrophages as a measure of bioactivity following drug release incubation times, up to 14 days. Rebamipide release from brushite occurs via non-fickian diffusion, with a rapid linear release of 9.70% ± 0.37% of drug per day for the first 5 days, and an average of 0.5%-1% per day thereafter for 30 days. Rebamipide slows the initial and final cement setting time by up to 3 and 1 minute, respectively, but does not significantly reduce the mechanical strength below 4% (weight percentage). Pre-osteoblast proliferation increases by 24% upon exposure to 0.4 uM Rebamipide, and by up to 73% when Rebamipide is delivered via brushite cement. Low doses of Rebamipide do not adversely affect peak alkaline phosphatase activity in differentiating pre-osteoblasts. Rebamipide weakly stimulates proliferation in macrophages at low concentrations (118 ± 7.4% at 1 uM), and quenches ROS by 40-60%. This is the first investigation of Rebamipide in osteoblasts.

  16. Rebamipide delivered by brushite cement enhances osteoblast and macrophage proliferation.

    Directory of Open Access Journals (Sweden)

    Michael Pujari-Palmer

    Full Text Available Many of the bioactive agents capable of stimulating osseous regeneration, such as bone morphogenetic protein-2 (BMP-2 or prostaglandin E2 (PGE2, are limited by rapid degradation, a short bioactive half-life at the target site in vivo, or are prohibitively expensive to obtain in large quantities. Rebamipide, an amino acid modified hydroxylquinoline, can alter the expression of key mediators of bone anabolism, cyclo-oxygenase 2 (COX-2, BMP-2 and vascular endothelial growth factor (VEGF, in diverse cell types such as mucosal and endothelial cells or chondrocytes. The present study investigates whether Rebamipide enhances proliferation and differentiation of osteoblasts when delivered from brushite cement. The reactive oxygen species (ROS quenching ability of Rebampide was tested in macrophages as a measure of bioactivity following drug release incubation times, up to 14 days. Rebamipide release from brushite occurs via non-fickian diffusion, with a rapid linear release of 9.70% ± 0.37% of drug per day for the first 5 days, and an average of 0.5%-1% per day thereafter for 30 days. Rebamipide slows the initial and final cement setting time by up to 3 and 1 minute, respectively, but does not significantly reduce the mechanical strength below 4% (weight percentage. Pre-osteoblast proliferation increases by 24% upon exposure to 0.4 uM Rebamipide, and by up to 73% when Rebamipide is delivered via brushite cement. Low doses of Rebamipide do not adversely affect peak alkaline phosphatase activity in differentiating pre-osteoblasts. Rebamipide weakly stimulates proliferation in macrophages at low concentrations (118 ± 7.4% at 1 uM, and quenches ROS by 40-60%. This is the first investigation of Rebamipide in osteoblasts.

  17. Time, Temperature and Amount of Distilled Water Effects on the Purity and Yield of Bis(2-hydroxyethyl Terephthalate Purification System

    Directory of Open Access Journals (Sweden)

    H.W. Goh

    2015-07-01

    Full Text Available Polyethylene terephthalate (PET bottle is one of the common plastic wastes existed in the municipal solid waste in Malaysia. One alternative to solve the abundant of PET wastes is chemical recycling of the wastes to produce a value added product. This technology not only can decrease the PET wastes in landfill sites but also can produce many useful recycled PET products. Bis(2-hydroxyethyl terephthalate (BHET obtained from glycolysis reaction of PET waste was purified using crystallization process. The hot distilled water was added to glycolysis product followed by cooling and filtration to extract BHET in white solid form from the product. The effect of three operating conditions namely crystallization time, crystallization temperatures and amount of distilled water used to the yield of crystallization process were investigated. The purity of crystallization products were analyzed using HPLC and DSC. The optimum conditions of 3 hours crystallization time, 2 °C crystallization temperature and 5:1 mass ratio of distilled water used to glycolize solid gave the highest yield and purity of the crystallization process. © 2015 BCREC UNDIP. All rights reservedReceived: 12nd August 2014; Revised: 4th February 2015; Accepted: 5th February 2015How to Cite: Goh, H.W., Salmiaton, A., Abdullah, N., Idris, A. (2015. Time, Temperature and Amount of Distilled Water Effects on the Purity and Yield of Bis(2-hydroxyethyl Terephthalate Purification System. Bulletin of Chemical Reaction Engineering & Catalysis, 10 (2: 143-154. (doi:10.9767/bcrec.10.2.7195.143-154 Permalink/DOI: http://dx.doi.org/10.9767/bcrec.10.2.7195.143-154  

  18. EFFECT OF MAGNETIZATION OF WATER ON INDUCTION TIME AND GROWTH PERIOD OF NATURAL GAS HYDRATE

    Institute of Scientific and Technical Information of China (English)

    KUANG Li; FAN Shuanshi

    2003-01-01

    The effect of diluted solution's magnetization on induction time and growth period of natural gas hydrate (NGH) has been investigated in quiescent reaction system at pressure of 4. 5 MPa and temperature of 274 K with SDS as surfactant, by using volume fixed and pressure falling method. Experimental results show that magnetization will have effect on the induction time of NGH. After magnetization with magnetic field intensity of 0.33 T, the induction time of NGH has been reduced to 47 min (average) from 99 min (average) in which there is no magnetization. On the other hand, the induction time has been prolonged after magnetization of the diluted solution with magnetic field intensity of 0.05 T, 0. 11 T, 0.22 T, 0.44T. Especially with magnetic field intensity of 0.11 T, the induction time had even been prolonged to 431min (average). The effect of magnetization on the growth period of NGH has not been found at the experimental condition.

  19. A river water quality model for time varying BOD discharge concentration

    Directory of Open Access Journals (Sweden)

    Oppenheimer Seth F.

    1999-01-01

    Full Text Available We consider a model for biochemical oxygen demand (BOD in a semi-infinite river where the BOD is prescribed by a time varying function at the left endpoint. That is, we study the problem with a time varying boundary loading. We obtain the well-posedness for the model when the boundary loading is smooth in time. We also obtain various qualitative results such as ordering, positivity, and boundedness. Of greatest interest, we show that a periodic loading function admits a unique asymptotically attracting periodic solution. For non-smooth loading functions, we obtain weak solutions. Finally, for certain special cases, we show how to obtain explicit solutions in the form of infinite series.

  20. Assessing combined sewer overflows with long lead time for better surface water management.

    Science.gov (United States)

    Abdellatif, Mawada; Atherton, William; Alkhaddar, Rafid

    2014-01-01

    During high-intensity rainfall events, the capacity of combined sewer overflows (CSOs) can exceed resulting in discharge of untreated stormwater and wastewater directly into receiving rivers. These discharges can result in high concentrations of microbial pathogens, biochemical oxygen demand, suspended solids, and other pollutants in the receiving waters. The frequency and severity of the CSO discharge are strongly influenced by climatic factors governing the occurrence of urban stormwater runoff, particularly the amount and intensity of the rainfall. This study attempts to assess the impact of climate change (change in rainfall amount and frequency) on CSO under the high (A1FI) and low (B1) Special Report on Emissions Scenarios of the greenhouse concentration derived from three global circulation models in the north west of England at the end of the twenty-first century.

  1. Twelve Year of Water Resource Monitoring over the Yangtze Middle Reaches Exploiting Dragon Time Series and Field Measurements

    Science.gov (United States)

    Huber, Claire; Li, Jiren; Daillet, Sylviane; Chen, Xiaoling; Lai, Xijun; Cretaux, Jean Francois; Zhang, Wei; Uribe, Carlos; Stuber, Mathias; Huang, Shifeng; Averty, Stephane; Burnham, James; Yesou, Herve

    2013-01-01

    Within the framework of the DRAGON program, a relative long term surveillance, 12 years, of the Poyang and Dongting lakes, considered as key elements of the Yangtze watershed in terms of water resource, flood redaction and for biodiversity maintain has been realized. This was done combing altimetry, in situ measurements, SAR and optical MR and HR time series with a high revisiting frequency of 10 days. A first major output corresponds, particularly within the context of lost of Envisat and Sentinels’ data availability expected in 2014,corresponds to the potential’sanalysis of a large range of MR and HR optical and SAR data for water bodies monitoring in term of quality, potential and accuracy. Over the years, changes in the type of data used are very indicative of a share of the resource available, and also of technological improvement over the years. It can be noticed since 2008, that, the part of HR optical data, Beijing1, DEIMOS, HJ1 A-B has increased significantly. In regards to the two years gap in term of data resource before the availability of the first Sentinel data, some recommendations can be given to insure the monitoring of large water bodies. Thematically specking, major outputs is the characterization of the important inter annual, and intra annual variations in term of water height and water extent of both lakes, variations that are linked with rainfall variations at sub basins and Yangtze basin scales. This 12 years period is marked by general non linear tendencies of water resources decreasing even if two major flood events occurred in 2002 and 2010. Drought tendency and drought intensity has been precised. During winter 2011-2012, EO data analysis allowed given the real size of the water surface extent as 720 km2 when Medias were speaking about 200 km2; the driest winter for the latest decade being the 2003-2004 as shown by the time series comparison. These analysis also highlight the very fast change from extreme stage to another as in June

  2. Time-dependent water permeation behavior of concrete under constant hydraulic pressure

    Institute of Scientific and Technical Information of China (English)

    Fang Yonghao; Wang Zhongli; Zhou Yue

    2008-01-01

    In the present work, a concrete permeability testing setup was designed to study the behavior of hydraulic concrete subjected to constant hydraulic pressure. The results show that when concrete is subjected to high enough constant hydraulic pressure, it will be permeated, and after it reaches its maximum permeation rate, the permeability coefficient will gradually decrease towards a stable value. A time-dependent model of permeability coefficient for concrete subjected to hydraulic pressure is proposed. It is indicated that the decrease of the permeability coefficient with permeation time conforms well to the negative-exponential decrease model.

  3. Evaluation of a rapid, quantitative real-time PCR method for enumeration of pathogenic Candida cells in water

    Science.gov (United States)

    Brinkman, Nichole E.; Haugland, Richard A.; Wymer, Larry J.; Byappanahalli, Muruleedhara N.; Whitman, Richard L.; Vesper, Stephen J.

    2003-01-01

    Quantitative PCR (QPCR) technology, incorporating fluorigenic 5′ nuclease (TaqMan) chemistry, was utilized for the specific detection and quantification of six pathogenic species of Candida (C. albicans, C. tropicalis, C. krusei, C. parapsilosis, C. glabrata and C. lusitaniae) in water. Known numbers of target cells were added to distilled and tap water samples, filtered, and disrupted directly on the membranes for recovery of DNA for QPCR analysis. The assay's sensitivities were between one and three cells per filter. The accuracy of the cell estimates was between 50 and 200% of their true value (95% confidence level). In similar tests with surface water samples, the presence of PCR inhibitory compounds necessitated further purification and/or dilution of the DNA extracts, with resultant reductions in sensitivity but generally not in quantitative accuracy. Analyses of a series of freshwater samples collected from a recreational beach showed positive correlations between the QPCR results and colony counts of the corresponding target species. Positive correlations were also seen between the cell quantities of the target Candida species detected in these analyses and colony counts of Enterococcus organisms. With a combined sample processing and analysis time of less than 4 h, this method shows great promise as a tool for rapidly assessing potential exposures to waterborne pathogenic Candida species from drinking and recreational waters and may have applications in the detection of fecal pollution.

  4. Refined assessment of associations between drinking water residence time and emergency department visits for gastrointestinal illness in Metro Atlanta, Georgia.

    Science.gov (United States)

    Levy, Karen; Klein, Mitchel; Sarnat, Stefanie Ebelt; Panwhar, Samina; Huttinger, Alexandra; Tolbert, Paige; Moe, Christine

    2016-08-01

    Recent outbreak investigations suggest that a substantial proportion of waterborne disease outbreaks are attributable to water distribution system issues. In this analysis, we examine the relationship between modeled water residence time (WRT), a proxy for probability of microorganism intrusion into the distribution system, and emergency department visits for gastrointestinal (GI) illness for two water utilities in Metro Atlanta, USA during 1993-2004. We also examine the association between proximity to the nearest distribution system node, based on patients' residential address, and GI illness using logistic regression models. Comparing long (≥90th percentile) with intermediate WRTs (11th to 89th percentile), we observed a modestly increased risk for GI illness for Utility 1 (OR = 1.07, 95% CI: 1.02-1.13), which had substantially higher average WRT than Utility 2, for which we found no increased risk (OR = 0.98, 95% CI: 0.94-1.02). Examining finer, 12-hour increments of WRT, we found that exposures >48 h were associated with increased risk of GI illness, and exposures of >96 h had the strongest associations, although none of these associations was statistically significant. Our results suggest that utilities might consider reducing WRTs to water consumption.

  5. Predictive Time Series Analysis Linking Bengal Cholera with Terrestrial Water Storage Measured from Gravity Recovery and Climate Experiment Sensors.

    Science.gov (United States)

    Jutla, Antarpreet; Akanda, Ali; Unnikrishnan, Avinash; Huq, Anwar; Colwell, Rita

    2015-12-01

    Outbreaks of diarrheal diseases, including cholera, are related to floods and droughts in regions where water and sanitation infrastructure are inadequate or insufficient. However, availability of data on water scarcity and abundance in transnational basins, are a prerequisite for developing cholera forecasting systems. With more than a decade of terrestrial water storage (TWS) data from the Gravity Recovery and Climate Experiment, conditions favorable for predicting cholera occurrence may now be determined. We explored lead-lag relationships between TWS in the Ganges-Brahmaputra-Meghna basin and endemic cholera in Bangladesh. Since bimodal seasonal peaks in cholera in Bangladesh occur during spring and autumn seasons, two separate logistical models between TWS and disease time series (2002-2010) were developed. TWS representing water availability showed an asymmetrical, strong association with cholera prevalence in the spring (τ = -0.53; P cholera by 24% (confidence interval [CI] = 20-31%; P cholera in the autumn by 29% (CI = 22-33%; P < 0.05). © The American Society of Tropical Medicine and Hygiene.

  6. Analysis of psychoactive substances in water by information dependent acquisition on a hybrid quadrupole time-of-flight mass spectrometer.

    Science.gov (United States)

    Andrés-Costa, María Jesús; Andreu, Vicente; Picó, Yolanda

    2016-08-26

    Emerging drugs of abuse, belonging to many different chemical classes, are attracting users with promises of "legal" highs and easy access via internet. Prevalence of their consumption and abuse through wastewater-based epidemiology can only be realized if a suitable analytical screening procedure exists to detect and quantify them in water. Solid-phase extraction and ultra-high performance liquid chromatography quadrupole time-of-flight-mass spectrometry (UHPLC-QqTOF-MS/MS) was applied for rapid suspect screening as well as for the quantitative determination of 42 illicit drugs and metabolites in water. Using this platform, we were able to identify amphetamines, tryptamines, piperazines, pyrrolidinophenones, arylcyclohexylamines, cocainics, opioids and cannabinoids. Additionally, paracetamol, carbamazepine, ibersartan, valsartan, sulfamethoxazole, terbumeton, diuron, etc. (including degradation products as 3-hydroxy carbamazepine or deethylterbuthylazine) were detected. This method encompasses easy sample preparation and rapid identification of psychoactive drugs against a database that cover more than 2000 compounds that ionized in positive mode, and possibility to identify metabolites and degradation products as well as unknown compounds. The method for river water, influent and effluents samples was fully validated for the target psychoactive substances including assessment of matrix effects (-88-67.8%), recovery (42-115%), precision (psychoactive drugs biomarkers and other water contaminants is demonstrated.

  7. Microfossils, a Key to Unravel Cold-Water Carbonate Mound Evolution through Time: Evidence from the Eastern Alboran Sea.

    Directory of Open Access Journals (Sweden)

    Claudio Stalder

    Full Text Available Cold-water coral (CWC ecosystems occur worldwide and play a major role in the ocean's carbonate budget and atmospheric CO2 balance since the Danian (~65 m.y. ago. However their temporal and spatial evolution against climatic and oceanographic variability is still unclear. For the first time, we combine the main macrofaunal components of a sediment core from a CWC mound of the Melilla Mounds Field in the Eastern Alboran Sea with the associated microfauna and we highlight the importance of foraminifera and ostracods as indicators of CWC mound evolution in the paleorecord. Abundances of macrofauna along the core reveal alternating periods dominated by distinct CWC taxa (mostly Lophelia pertusa, Madrepora oculata that correspond to major shifts in foraminiferal and ostracod assemblages. The period dominated by M. oculata coincides with a period characterized by increased export of refractory organic matter to the seafloor and rather unstable oceanographic conditions at the benthic boundary layer with periodically decreased water energy and oxygenation, variable bottom water temperature/density and increased sediment flow. The microfaunal and geochemical data strongly suggest that M. oculata and in particular Dendrophylliidae show a higher tolerance to environmental changes than L. pertusa. Finally, we show evidence for sustained CWC growth during the Alleröd-Younger-Dryas in the Eastern Alboran Sea and that this period corresponds to stable benthic conditions with cold/dense and well oxygenated bottom waters, high fluxes of labile organic matter and relatively strong bottom currents.

  8. Contrasting residence times and fluxes of water and sulfate in two small forested watersheds in Virginia, USA.

    Science.gov (United States)

    Böhlke, John Karl; Michel, Robert L

    2009-07-01

    Watershed mass balances for solutes of atmospheric origin may be complicated by the residence times of water and solutes at various time scales. In two small forested headwater catchments in the Appalachian Mountains of Virginia, USA, mean annual export rates of SO(4)(=) differ by a factor of 2, and seasonal variations in SO(4)(=) concentrations in atmospheric deposition and stream water are out of phase. These features were investigated by comparing (3)H, (35)S, delta(34)S, delta(2)H, delta(18)O, delta(3)He, CFC-12, SF(6), and chemical analyses of open deposition, throughfall, stream water, and spring water. The concentrations of SO(4)(=) and radioactive (35)S were about twice as high in throughfall as in open deposition, but the weighted composite values of (35)S/S (11.1 and 12.1x10(-15)) and delta(34)S (+3.8 and +4.1 per thousand) were similar. In both streams (Shelter Run, Mill Run), (3)H concentrations and delta(34)S values during high flow were similar to those of modern deposition, delta(2)H and delta(18)O values exhibited damped seasonal variations, and (35)S/S ratios (0-3x10(-15)) were low throughout the year, indicating inter-seasonal to inter-annual storage and release of atmospheric SO(4)(=) in both watersheds. In the Mill Run watershed, (3)H concentrations in stream base flow (10-13 TU) were consistent with relatively young groundwater discharge, most delta(34)S values were approximately the same as the modern atmospheric deposition values, and the annual export rate of SO(4)(=) was equal to or slightly greater than the modern deposition rate. In the Shelter Run watershed, (3)H concentrations in stream base flow (1-3 TU) indicate that much of the discharging ground water had been deposited prior to the onset of atmospheric nuclear bomb testing in the 1950s, base flow delta(34)S values (+1.6 per thousand) were significantly lower than the modern deposition values, and the annual export rate of SO(4)(=) was less than the modern deposition rate

  9. Sustainable Agriculture Course Delivered Nationally via Satellite.

    Science.gov (United States)

    Salvador, R. J.; And Others

    1993-01-01

    Describes an instructional model for a sustainable agriculture telecourse offered nationally by Iowa State University. Includes preproduction activities; technology employed; budget; time requirements; course content; student postevaluation results. Provides information and suggestions for individuals and institutions considering production or…

  10. The Irminger Sea and the Iceland Sea time series measurements of sea water carbon and nutrient chemistry 1983–2008

    Directory of Open Access Journals (Sweden)

    J. Olafsson

    2010-03-01

    Full Text Available This paper describes the ways and means of assembling and quality controling the Irminger Sea and Iceland Sea time-series biogeochemical data which are included in the CARINA data set. The Irminger Sea and the Iceland Sea are hydrographically different regions where measurements of sea water carbon and nutrient chemistry were started in 1983. The sampling is seasonal, four times a year. The carbon chemistry is studied with measurements of the partial pressure of carbon dioxide in seawater, pCO2, and total dissolved inorganic carbon, TCO2. The carbon chemistry data are for surface waters only until 1991 when water column sampling was initiated. Other measured parameters are salinity, dissolved oxygen and the inorganic nutrients nitrate, phosphate and silicate. Because of the CARINA criteria for secondary quality control, depth >1500 m, the IRM-TS could not be included in the routine QC and the IS-TS only in a limited way. However, with the information provided here, the quality of the data can be assessed, e.g. on the basis of the results obtained with the use of reference materials.

  11. The Irminger Sea and the Iceland Sea time series measurements of sea water carbon and nutrient chemistry 1983–2006

    Directory of Open Access Journals (Sweden)

    J. Olafsson

    2009-10-01

    Full Text Available This paper describes the ways and means of assembling and quality controling the Irminger Sea and Iceland Sea time-series biogeochemical data which are included in the CARINA data set. The Irminger Sea and the Iceland Sea are hydrographically different regions where measurements of sea water carbon and nutrient chemistry were started in 1983. The sampling is seasonal, four times a year. The carbon chemistry is studied with measurements of the partial pressure of carbon dioxide in seawater, pCO2, and total dissolved inorganic carbon, TCO2. The carbon chemistry data are for surface waters only until 1994 when water column sampling was initiated. Other measured parameters are salinity, dissolved oxygen and the inorganic nutrients nitrate, phosphate and silicate. Because of the CARINA criteria for secondary quality control, depth >1500 m, the IRM-TS could not be included in the routine QC and the IS-TS only in a limited way. However, with the information provided here, the quality of the data can be assessed e.g. on the basis of the results obtained with the use of reference materials.

  12. Variability in delivered dose and respirable delivered dose from nebulizers: are current regulatory testing guidelines sufficient to produce meaningful information?

    Science.gov (United States)

    Hatley, Ross HM; Byrne, Sarah M

    2017-01-01

    Background To improve convenience to patients, there have been advances in the operation of nebulizers, resulting in fast treatment times and less drug lost to the environment. However, limited attention has been paid to the effects of these developments on the delivered dose (DD) and respirable delivered dose (RDD). Published pharmacopoeia and ISO testing guidelines for adult-use testing utilize a single breathing pattern, which may not be sufficient to enable effective comparisons between the devices. Materials and methods The DD of 5 mg of salbutamol sulfate into adult breathing patterns with inhalation:exhalation (I:E) ratios between 1:1 and 1:4 was determined. Droplet size was determined by laser diffraction and RDD calculated. Nine different nebulizer brands with different modes of operation (conventional, venturi, breath-enhanced, mesh, and breath-activated) were tested. Results Between the non-breath-activated nebulizers, a 2.5-fold difference in DD (~750–1,900 µg salbutamol) was found; with RDD, there was a more than fourfold difference (~210–980 µg). With increasing time spent on exhalation, there were progressive reductions in DD and RDD, with the RDD at an I:E ratio of 1:4 being as little as 40% of the dose with the 1:1 I:E ratio. The DD and RDD from the breath-activated mesh nebulizer were independent of the I:E ratio, and for the breath-activated jet nebulizer, there was less than 20% change in RDD between the I:E ratios of 1:1 and 1:4. Conclusion Comparing nebulizers using the I:E ratio recommended in the guidelines does not predict relative performance between the devices at other ratios. There was significant variance in DD or RDD between different brands of non-breath-activated nebulizer. In future, consideration should be given to revision of the test protocols included in the guidelines, to reflect more accurately the potential therapeutic dose that is delivered to a realistic spectrum of breathing patterns. PMID:28203110

  13. Time-frequency analysis of beach bacteria variations and its implication for recreational water quality modeling.

    Science.gov (United States)

    Ge, Zhongfu; Frick, Walter E

    2009-02-15

    This paper exploited the potential of the wavelet analysis in resolving beach bacteria concentration and candidate explanatory variables across multiple time scales with temporal information preserved. The wavelet transform of E. coli concentration and its explanatory variables observed at Huntington Beach, Ohio in 2006 exhibited well-defined patterns of different time scales, phases, and durations, which cannot be clearly shown in conventional time-domain analyses. If linear regression modeling is to be used for the ease of implementation and interpretation,the wavelet-transformed regression model reveals that low model residual can be realized through matching major patterns and their phase angles between E. coli concentration and its explanatory variables. The property of pattern matching for linear regression models can be adopted as a criterion for choosing useful predictors, while phase matching further explains why intuitively good variables such as wave height and onshore wind speed were excluded from the optimal models by model selection processes in Frick et al. (Environ. Sci. Technol. 2008, 42,4818-4824). The phase angles defined by the wavelet analysis in the time-frequency domain can help identify the physical processes and interactions occurring between bacteria concentration and its explanatory variables. It was deduced, for this particular case, that wind events resulted in elevated E. coli concentration, wave height, and turbidity at the beach with a periodicity of 7-8 days. Wind events also brought about increased beach bacteria concentrations through large-scale current circulations in the lake with a period of 21 days. The time length for linear regression models with statistical robustness can also be deduced from the periods of the major patterns in bacteria concentration and explanatory variables, which explains and supplements the modeling efforts performed in (1).

  14. DBP formation in hot and cold water across a simulated distribution system: effect of incubation time, heating time, pH, chlorine dose, and incubation temperature.

    Science.gov (United States)

    Liu, Boning; Reckhow, David A

    2013-10-15

    This paper demonstrates that disinfection byproducts (DBP) concentration profiles in heated water were quite different from the DBP concentrations in the cold tap water. Chloroform concentrations in the heated water remained constant or even decreased slightly with increasing distribution system water age. The amount of dichloroacetic acid (DCAA) was much higher in the heated water than in the cold water; however, the maximum levels in heated water with different distribution system water ages did not differ substantially. The levels of trichloroacetic acid (TCAA) in the heated water were similar to the TCAA levels in the tap water, and a slight reduction was observed after the tap water was heated for 24 h. Regardless of water age, significant reductions of nonregulated DBPs were observed after the tap water was heated for 24 h. For tap water with lower water ages, there were significant increases in dichloroacetonitrile (DCAN), chloropicrin (CP), and 1,1-dichloropropane (1,1-DCP) after a short period of heating. Heating of the tap water with low pH led to a more significant increase of chloroform and a more significant short-term increase of DCAN. High pH accelerated the loss of the nonregulated DBPs in the heated water. The results indicated that as the chlorine doses increased, levels of chloroform and DCAA in the heated water increased significantly. However, for TCAA, the thermally induced increase in concentration was only notable for the chlorinated water with very high chlorine dose. Finally, heating may lead to higher DBP concentrations in chlorinated water with lower distribution system temperatures.

  15. Preferential flow, connectivity and the principle of "minimum time to equilibrium": a new perspective on environmental water flow

    Science.gov (United States)

    Zehe, E.; Blume, T.; Bloeschl, G.

    2008-12-01

    Preferential/rapid flow and transport is known as one key process in soil hydrology for more than 20 years. It seems to be rather the rule, than the exception. It occurs in soils, in surface rills and river networks. If connective preferential are present at any scale, they crucially control water flow and solute transport. Why? Is there an underlying principle? If energy is conserved a system follows Fermat's principle of minimum action i.e. it follows the trajectory that minimise the integral of the total energy/ La Grangian over time. Hydrological systems are, however, non-conservative as surface and subsurface water flows dissipate energy. From thermodynamics it is well known that natural processes minimize the free energy of the system. For hydrological systems we suggest, therefore, that flow in a catchment arranges in such a way that time to a minimum of free energy becomes minimal for a given rainfall input (disturbance) and under given constraints. Free energy in a soil is determined by potential energy and capillary energy. The pore size distribution of the soil, soil structures, depth to groundwater and most important vegetation make up the constraints. The pore size distribution determines whether potential energy or capillarity dominates the free energy of the soil system. The first term is minimal when the pore space is completely de-saturated the latter becomes minimal at soil saturation. Hence, the soil determines a) the amount of excess (gravity) water that has to be exported from the soil to reach a minimum state of free energy and b) whether redistribution or groundwater recharge is more efficient to reach that equilibrium. On the other hand, the pore size distribution of the soil and the connectivity of preferential pathways (root channels, worm holes and cracks) determine flow velocities and the redistribution of water within the pore space. As water flow and ground water recharge are fast in sandy soils and capillary energy is of minor

  16. Iron, manganese, and lead at Hawaii Ocean Time-series station ALOHA: Temporal variability and an intermediate water hydrothermal plume

    Science.gov (United States)

    Boyle, Edward A.; Bergquist, Bridget A.; Kayser, Richard A.; Mahowald, Natalie

    2005-02-01

    Trace metal clean techniques were used to sample Hawaii Ocean Time-series (HOT) station ALOHA on seven occasions between November 1998 and October 2002. On three occasions, full water-column profile samples were obtained; on the other four occasions, surface and near-surface euphotic zone profiles were obtained. Together with three other published samplings, this site may have been monitored for "dissolved" (≤0.4 or ≤0.2 μm) Fe more frequently than any other open ocean site in the world. Low Fe concentrations (2500 m), the concentrations we observe (0.4-0.5 nmol kg -1) are significantly lower than some other deep North Pacific stations but are similar to values that have been reported for a station 350 miles to the northeast. We attribute these low deepwater values to transport of low-Fe Antarctic Bottom Water into the basin and a balance between Fe regeneration and scavenging in the deep water. Near-surface waters have higher Fe levels than observed in the lower euphotic zone. Significant temporal variability is seen in near-surface Fe concentrations (ranging from 0.2-0.7 nmol kg -1); we attribute these surface Fe fluctuations to variable dust deposition, biological uptake, and changes in the mixed layer depth. This variability could occur only if the surface layer Fe residence time is less than a few years, and based on that constraint, it appears that a higher percentage of the total Fe must be released from North Pacific aerosols compared to North Atlantic aerosols. Surprisingly, significant temporal variability and high particulate Fe concentrations are observed for intermediate waters (1000-1500 m). These features are seen in the depth interval where high δ 3He from the nearby Loihi Seamount hydrothermal fields has been observed; the total Fe/ 3He ratio implies that the hydrothermal vents are the source of the high and variable Fe. The vertical profile of Mn at ALOHA qualitatively resembles other North Pacific Mn profiles with surface and intermediate

  17. Fibre-tree network for water-surface ranging using an optical time-domain reflectometry technique

    Directory of Open Access Journals (Sweden)

    Yoshiaki Yamabayashi

    2014-10-01

    Full Text Available To monitor water level at long distance, a fibre-based time-domain reflectometry network is proposed. A collimator at each fibre end of a tree-type network retrieves 1.55 μm wavelength pulses that are reflected back from remote surfaces. Since this enables a power-supply-free sensor network with non-metal media, this system is expected to be less susceptible to lightning strikes and power cuts than conventional systems that use electrically powered sensors and metal cables. In the present Letter, a successful simultaneous monitoring experiment of two water levels in the laboratory, as well as a trial for detecting a disturbed surface by beam-expanding is reported.

  18. Global Distribution of Shallow Water on Mars: Neutron Mapping of Summer-Time Surface by HEND/Odyssey

    Science.gov (United States)

    Mitrofanov, I. G.; Litvak, M. L.; Kozyrev, A. S.; Sanin, A. B.; Tretyakov, V. I.; Boynton, W.; Hamara, D.; Shinohara, C.; Saunders, R. S.; Drake, D.

    2003-01-01

    Orbital mapping of induced neutrons and gamma-rays by Odyssey has recently successfully proven the applicability of nuclear methods for studying of the elementary composition of Martian upper-most subsurface. In particular, the suite of Gamma-Ray Spectrometer (GRS) has discovered the presence of large water-ice rich regions southward and northward on Mars. The data of neutron mapping of summer-time surface are presented below from the Russian High Energy Neutron Spectrometer (HEND), which is a part of GRS suite. These maps represent the content of water in the soil for summer season at Southern and Northern hemispheres, when the winter deposit of CO2 is absent on the surface. The seasonal evolution of CO2 coverage on Mars is the subject of the complementary paper.

  19. Real-Time Water Quality Monitoring and Habitat Assessment in theSan Luis National Wildlife Refuge

    Energy Technology Data Exchange (ETDEWEB)

    Quinn, Nigel W.T.; Hanlon, Jeremy S.; Burns, Josephine R.; Stromayer, Karl A.K.; Jordan, Brandon M.; Ennis, Mike J.; Woolington,Dennis W.

    2005-08-28

    The project report describes a two year experiment to control wetland drainage to the San Joaquin River of California from the San Luis National Wildlife Refuge using a decision support system for real-time water quality management. This system required the installation and operation of one inlet and three drainage flow and water quality monitoring stations which allowed a simple mass balance model to be developed of the seasonally managed wetlands in the study area. Remote sensing methods were developed to document long-term trends in wetland moist soil vegetation and soil salinity in response to management options such as delaying the initiation of seasonal wetland drainage. These environmental management tools provide wetland managers with some of the tools necessary to improve salinity conditions in the San Joaquin River and improve compliance with State mandated salinity objectives without inflicting long-term harm on the wild fowl habitat resource.

  20. Oral microflora in infants delivered vaginally and by caesarean section

    DEFF Research Database (Denmark)

    Nelun Barfod, Mette; Magnusson, Kerstin; Lexner, Michala Oron

    2011-01-01

    International Journal of Paediatric Dentistry 2011 Background. Early in life, vaginally delivered infants exhibit a different composition of the gut flora compared with infants delivered by caesarean section (C-section); however, it is unclear whether this also applies to the oral cavity. Aim....... To investigate and compare the oral microbial profile between infants delivered vaginally and by C-section. Design. This is a cross-sectional case-control study. Eighty-four infants delivered either vaginally (n = 42) or by C-section (n = 42) were randomly selected from the 2009 birth cohort at the County...

  1. Ecogeochemistry potential in deep time biodiversity illustrated using a modern deep-water case study.

    Science.gov (United States)

    Trueman, Clive N; Chung, Ming-Tsung; Shores, Diana

    2016-04-05

    The fossil record provides the only direct evidence of temporal trends in biodiversity over evolutionary timescales. Studies of biodiversity using the fossil record are, however, largely limited to discussions of taxonomic and/or morphological diversity. Behavioural and physiological traits that are likely to be under strong selection are largely obscured from the body fossil record. Similar problems exist in modern ecosystems where animals are difficult to access. In this review, we illustrate some of the common conceptual and methodological ground shared between those studying behavioural ecology in deep time and in inaccessible modern ecosystems. We discuss emerging ecogeochemical methods used to explore population connectivity and genetic drift, life-history traits and field metabolic rate and discuss some of the additional problems associated with applying these methods in deep time.

  2. A New Method for Near Real Time Precipitation Estimates Using a Derived Statistical Relationship between Precipitable Water Vapor and Precipitation

    Science.gov (United States)

    Roman, J.

    2015-12-01

    The IPCC 5th Assessment found that the predicted warming of 1oC would increase the risk of extreme events such as heat waves, droughts, and floods. Weather extremes, like floods, have shown the vulnerability and susceptibility society has to these extreme weather events, through impacts such as disruption of food production, water supply, health, and damage of infrastructure. This paper examines a new way of near-real time forecasting of precipitation. A 10-year statistical climatological relationship was derived between precipitable water vapor (PWV) and precipitation by using the NASA Atmospheric Infrared Sounder daily gridded PWV product and the NASA Tropical Rainfall Measuring Mission daily gridded precipitation total. Forecasting precipitation estimates in real time is dire for flood monitoring and disaster management. Near real time PWV observations from AIRS on Aqua are available through the Goddard Earth Sciences Data and Information Service Center. In addition, PWV observations are available through direct broadcast from the NASA Suomi-NPP ATMS/CrIS instrument, the operational follow on to AIRS. The derived climatological relationship can be applied to create precipitation estimates in near real time by utilizing the direct broadcasting capabilities currently available in the CONUS region. The application of this relationship will be characterized through case-studies by using near real-time NASA AIRS Science Team v6 PWV products and ground-based SuomiNet GPS to estimate the current precipitation potential; the max amount of precipitation that can occur based on the moisture availability. Furthermore, the potential contribution of using the direct broadcasting of the NUCAPS ATMS/CrIS PWV products will be demonstrated. The analysis will highlight the advantages of applying this relationship in near-real time for flash flood monitoring and risk management. Relevance to the NWS River Forecast Centers will be discussed.

  3. Are Financial Variables Inputs in Delivered Production Functions? Are Financial Variables Inputs in Delivered Production Functions?

    Directory of Open Access Journals (Sweden)

    Miguel Kiguel

    1995-03-01

    Full Text Available Fischer's classic (1974 paper develops conditions under which it is appropriate to use money as an input in a 'delivered' production function. In this paper, we extend Fischer's model I (the Baumol-Tobin inventory approach by incorporating credit into the analysis. Our investigation of the extended model brings out a very restrictive but necessary implicit assumption employed by Fischer to treat money as an input. Namely. that there exists a binding constraint on the use of money! A similar result holds for our more general model. Fischer's classic (1974 paper develops conditions under which it is appropriate to use money as an input in a 'delivered' production function. In this paper, we extend Fischer's model I (the Baumol-Tobin inventory approach by incorporating credit into the analysis. Our investigation of the extended model brings out a very restrictive but necessary implicit assumption employed by Fischer to treat money as an input. Namely. that there exists a binding constraint on the use of money! A similar result holds for our more general model.

  4. Navigating stormy waters in times of fiscal uncertainty: Mitigating the challenges.

    Science.gov (United States)

    Mitton, Craig; Smith, Neale; Hall, William; Donaldson, Cam; Dionne, Francois

    2015-09-01

    New approaches to resource allocation are providing healthcare managers with ways to meet budget pressures while maximizing benefit to patients and populations. But putting these approaches in place often involves significant organizational change to which some degree of resistance must be expected. The authors have seen seven common objections raised time and again. Here, we offer our best advice on how healthcare leaders can anticipate and respond proactively to these challenges. © 2015 The Canadian College of Health Leaders.

  5. The relative importance of water temperature and residence time in predicting cyanobacteria abundance in regulated rivers.

    Science.gov (United States)

    Cha, YoonKyung; Cho, Kyung Hwa; Lee, Hyuk; Kang, Taegu; Kim, Joon Ha

    2017-11-01

    Despite a growing awareness of the problems associated with cyanobacterial blooms in rivers, and particularly in regulated rivers, the drivers of bloom formation and abundance in rivers are not well understood. We developed a Bayesian hierarchical model to assess the relative importance of predictors of summer cyanobacteria abundance, and to test whether the relative importance of each predictor varies by site, using monitoring data from 16 sites in the four major rivers of South Korea. The results suggested that temperature and residence time, but not nutrient levels, are important predictors of summer cyanobacteria abundance in rivers. Although the two predictors were of similar significance across the sites, the residence time was marginally better in accounting for the variation in cyanobacteria abundance. The model with spatial hierarchy demonstrated that temperature played a consistently significant role at all sites, and showed no effect from site-specific factors. In contrast, the importance of residence time varied significantly from site to site. This variation was shown to depend on the trophic state, indicated by the chlorophyll-a and total phosphorus levels. Our results also suggested that the magnitude of weir inflow is a key factor determining the cyanobacteria abundance under baseline conditions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Real-time multi-step-ahead water level forecasting by recurrent neural networks for urban flood control

    Science.gov (United States)

    Chang, Fi-John; Chen, Pin-An; Lu, Ying-Ray; Huang, Eric; Chang, Kai-Yao

    2014-09-01

    Urban flood control is a crucial task, which commonly faces fast rising peak flows resulting from urbanization. To mitigate future flood damages, it is imperative to construct an on-line accurate model to forecast inundation levels during flood periods. The Yu-Cheng Pumping Station located in Taipei City of Taiwan is selected as the study area. Firstly, historical hydrologic data are fully explored by statistical techniques to identify the time span of rainfall affecting the rise of the water level in the floodwater storage pond (FSP) at the pumping station. Secondly, effective factors (rainfall stations) that significantly affect the FSP water level are extracted by the Gamma test (GT). Thirdly, one static artificial neural network (ANN) (backpropagation neural network-BPNN) and two dynamic ANNs (Elman neural network-Elman NN; nonlinear autoregressive network with exogenous inputs-NARX network) are used to construct multi-step-ahead FSP water level forecast models through two scenarios, in which scenario I adopts rainfall and FSP water level data as model inputs while scenario II adopts only rainfall data as model inputs. The results demonstrate that the GT can efficiently identify the effective rainfall stations as important inputs to the three ANNs; the recurrent connections from the output layer (NARX network) impose more effects on the output than those of the hidden layer (Elman NN) do; and the NARX network performs the best in real-time forecasting. The NARX network produces coefficients of efficiency within 0.9-0.7 (scenario I) and 0.7-0.5 (scenario II) in the testing stages for 10-60-min-ahead forecasts accordingly. This study suggests that the proposed NARX models can be valuable and beneficial to the government authority for urban flood control.

  7. Energy Servers Deliver Clean, Affordable Power

    Science.gov (United States)

    2010-01-01

    K.R. Sridhar developed a fuel cell device for Ames Research Center, that could use solar power to split water into oxygen for breathing and hydrogen for fuel on Mars. Sridhar saw the potential of the technology, when reversed, to create clean energy on Earth. He founded Bloom Energy, of Sunnyvale, California, to advance the technology. Today, the Bloom Energy Server is providing cost-effective, environmentally friendly energy to a host of companies such as eBay, Google, and The Coca-Cola Company. Bloom's NASA-derived Energy Servers generate energy that is about 67-percent cleaner than a typical coal-fired power plant when using fossil fuels and 100-percent cleaner with renewable fuels.

  8. Technical Note: Using wavelet analyses on water depth time series to detect glacial influence in high-mountain hydrosystems

    Directory of Open Access Journals (Sweden)

    S. Cauvy-Fraunié

    2013-04-01

    Full Text Available Worldwide, the rapid shrinking of glaciers in response to ongoing climate change is currently modifying the glacial meltwater contribution to hydrosystems in glacierized catchments. Assessing the contribution of glacier run-off to stream discharge is therefore of critical importance to evaluate potential impact of glacier retreat on water quality and aquatic biota. This task has challenged both glacier hydrologists and ecologists over the last 20 yr due to both structural and functional complexity of the glacier-stream system interface. Here we propose a new methodological approach based on wavelet analyses on water depth time series to determine the glacial influence in glacierized catchments. We performed water depth measurement using water pressure loggers over ten months in 15 stream sites in two glacier-fed catchments in the Ecuadorian Andes (> 4000 m. We determined the global wavelet spectrum of each time series and defined the Wavelet Glacier Signal (WGS as the ratio between the global wavelet power spectrum value at a 24 h-scale and its corresponding significance value. To test the relevance of the WGS we compared it with the percentage of the glacier cover in the catchments, a metric of glacier influence often used in the literature. We then tested whether one month data could be sufficient to reliably determine the glacial influence. As expected we found that the WGS of glacier-fed streams decreased downstream with the increasing of non-glacial tributaries. We also found that the WGS and the percentage of the glacier cover in the catchment were significantly positively correlated and that one month data was sufficient to identify and compare the glacial influence between two sites, provided that the water level time series were acquired over the same period. Furthermore, we found that our method permits to detect glacial signal in supposedly non-glacial sites, thereby evidencing glacial meltwater infiltrations. While we specifically

  9. Water, Nitrogen and Plant Density Affect the Response of Leaf Appearance of Direct Seeded Rice to Thermal Time

    Institute of Scientific and Technical Information of China (English)

    Maite MART(I)NEZ-EIXARCH; ZHU De-feng; Maria del Mar CATAL(A)-FORNER; Eva PLA-MAYOR; Nuria TOM(A)S-NAVARRO

    2013-01-01

    Field experiments were conducted in the Ebro Delta area (Spain),from 2007 to 2009 with two rice varieties:Gleva and Tebre.The experimental treatments included a series of seed rates,two different water management systems and two different nitrogen fertilization times.The number of leaves on the main stems and their emergence time were periodically tagged.The results indicated that the final leaf number on the main stems in the two rice varieties was quite stable over a three-year period despite of the differences in their respective growth cycles.Interaction between nitrogen fertilization and water management influenced the final leaf number on the main stems.Plant density also had a significant influence on the rate of leaf appearance by extending the phyllochron and postponing the onset of intraspecific competition after the emergence of the 7th leaf on the main stems.Final leaf number on the main stems was negatively related to plant density.A relationship between leaf appearance and thermal time was established with a strong nonlinear function.In direct-seeded rice,the length of the phyllochron increases exponentially in line with the advance of plant development.A general model,derived from 2-year experimental data,was developed and satisfactorily validated; it had a root mean square error of 0.3 leaf.An exponential model can be used to predict leaf emergence in direct-seeded rice.

  10. Water, Nitrogen and Plant Density Affect the Response of Leaf Appearance of Direct Seeded Rice to Thermal Time

    Directory of Open Access Journals (Sweden)

    Maite MARTÍNEZ-EIXARCH

    2013-01-01

    Full Text Available Field experiments were conducted in the Ebro Delta area (Spain, from 2007 to 2009 with two rice varieties: Gleva and Tebre. The experimental treatments included a series of seed rates, two different water management systems and two different nitrogen fertilization times. The number of leaves on the main stems and their emergence time were periodically tagged. The results indicated that the final leaf number on the main stems in the two rice varieties was quite stable over a three-year period despite of the differences in their respective growth cycles. Interaction between nitrogen fertilization and water management influenced the final leaf number on the main stems. Plant density also had a significant influence on the rate of leaf appearance by extending the phyllochron and postponing the onset of intraspecific competition after the emergence of the 7th leaf on the main stems. Final leaf number on the main stems was negatively related to plant density. A relationship between leaf appearance and thermal time was established with a strong nonlinear function. In direct-seeded rice, the length of the phyllochron increases exponentially in line with the advance of plant development. A general model, derived from 2-year experimental data, was developed and satisfactorily validated; it had a root mean square error of 0.3 leaf. An exponential model can be used to predict leaf emergence in direct-seeded rice.

  11. Real-time dynamic hydraulic model for water distribution networks: steady state modelling

    CSIR Research Space (South Africa)

    Osman, Mohammad S

    2016-09-01

    Full Text Available stream_source_info Osman2_2016.pdf.txt stream_content_type text/plain stream_size 17244 Content-Encoding UTF-8 stream_name Osman2_2016.pdf.txt Content-Type text/plain; charset=UTF-8 REAL-TIME DYNAMIC HYDRAULIC MODEL... of specially developed methods which have been published and hence are not further discussed. ∆PfP is the pressure loss due to pipe friction and determined from Darcy-Weisbach equation (5):  2000 ' 2 D LufPfP  (5) 'f is the friction factor L...

  12. Examining the Effects of Geomorphology on Hydrologic Transit Times Using Liquid Water Isotopes

    Science.gov (United States)

    Delgado, D.; Troch, P.; Lyon, S.; Desilets, S.; Guardiola, M.; Broxton, P.

    2007-12-01

    In recent years there has been resurgence in improving physically based and spatially distributed hydrological response models. However there continues to be many obstacles in accurately representing the basic processes governing rainfall runoff responses. Much of these inaccuracies can be attributed to such problems as a lack of understanding in runoff processes, unknown heterogeneity both at the surface and subsurface, variations in driving forces and the effects of geomorphology on the transformation of rainfall to stream flow. We hope to improve on such ambiguity is by examining the relationships between geomorphology and hydrology through the investigation of transit time distributions, which can be used as a fundamental descriptor of catchments" characteristics such as storage and flow pathways. By examining stable isotopic variability in precipitation, soil moisture and stream flow to determine transit times, we hope to better understand the effects of topographic land structures on the hydrologic response system. The first step in this process has been to fully instrument a series of hill slopes with similar structural and pedologic characteristics, located in the Marshall Gulch region of the Santa Catalina Mountains. Equipment including suction and non- suction lysimeters, tipping bucket rain gauges and automatic flow samplers with data loggers positioned to take stream flow and precipitation samples have been used to collect samples throughout the region. A description of preliminary results will be presented.

  13. Fibre-tree network for water-surface ranging using an optical time-domain reflectometry technique

    OpenAIRE

    Yoshiaki Yamabayashi; Tatsuya Yoshii; Masahiro Takanashi

    2014-01-01

    To monitor water level at long distance, a fibre-based time-domain reflectometry network is proposed. A collimator at each fibre end of a tree-type network retrieves 1.55 μm wavelength pulses that are reflected back from remote surfaces. Since this enables a power-supply-free sensor network with non-metal media, this system is expected to be less susceptible to lightning strikes and power cuts than conventional systems that use electrically powered sensors and metal cables. In the present Let...

  14. 基于时间序列法的北京市需水量预报%Water demand forecasting of Beijing using the Time Series Forecasting Method

    Institute of Scientific and Technical Information of China (English)

    ZHAI Yuanzheng; WANG Jinsheng; TENG Yanguo; ZUO Rui

    2012-01-01

    @@%It is essential to establish the water resources exploitation and utilization planning,which is mainly based on recognizing and forecasting the water consumed structure rationally and scientifically.During the past 30 years (1980-2009),mean annual precipitation and total water resource of Beijing have decreased by 6.89% and 31.37% compared with those perennial values,respectively,while total water consumption during the same period reached pinnacle historically.Accordingly,it is of great significance for the harmony between socio-economic development and environmental development.Based on analyzing total water consumption,agricultural,industrial,domestic and environmental water consumption,and evolution of water consumed structure,further driving forces of evolution of total water consumption and water consumed structure are revealed systematically.Prediction and discussion are achieved for evolution of total water consumption,water consumed structure,and supply-demand situation of water resource in the near future of Beijing using Time Series Forecasting Method.The purpose of the endeavor of this paper is to provide scientific basis for the harmonious development between socio-economy and water resources,for the establishment of rational strategic planning of water resources,and for the social sustainable development of Beijing with scientific bases.

  15. GPS Software Packages Deliver Positioning Solutions

    Science.gov (United States)

    2010-01-01

    "To determine a spacecraft s position, the Jet Propulsion Laboratory (JPL) developed an innovative software program called the GPS (global positioning system)-Inferred Positioning System and Orbit Analysis Simulation Software, abbreviated as GIPSY-OASIS, and also developed Real-Time GIPSY (RTG) for certain time-critical applications. First featured in Spinoff 1999, JPL has released hundreds of licenses for GIPSY and RTG, including to Longmont, Colorado-based DigitalGlobe. Using the technology, DigitalGlobe produces satellite imagery with highly precise latitude and longitude coordinates and then supplies it for uses within defense and intelligence, civil agencies, mapping and analysis, environmental monitoring, oil and gas exploration, infrastructure management, Internet portals, and navigation technology."

  16. Major water balance variables Estimation, soil moisture and evaporation time series, using X-band SAR moisture products

    Science.gov (United States)

    Gorrab, Azza; Simonneaux, Vincent; Zribi, Mehrez; Saadi, Sameh; Lili-Chabaane, Zohra

    2016-04-01

    During the last decades, the rain scarcity in front of long periods of drought especially in semi-arid regions, have a negative impact on the available water resources. In addition, a major part of the intercepted water is lost either by evaporation from the soil back to the atmosphere or by drainage, deep percolation and subsurface runoff. Therefore, knowledge and calculating the water fluxes within the soil-atmosphere system is a major issue for the improvement of water use efficiency. Many studies have been carried out to quantify these fluxes by developing various tools which estimate the soil water regime and may consequently the sustainable management of natural resources (Simmoneaux et al., 2008; Zhang et al., 2010; Sutanto et al., 2012 and Saadi et al., 2015). The amount of water stored in the soil is a crucial parameter that can be used as inputs to simulate surface evaporation fluxes and vertical water circulation as surface water capillarity movements and underground percolation. Great progress has been made in the recent decades aiming at developing soil moisture (SM) retrieval techniques by using Imaging Synthetic Aperture Radar (SAR) sensors. Several algorithms have been developed to retrieve SM from radar data (Zribi et al., 2011 Baghdadi et al., 2008 and Gorrab et al., 2015). The assimilation of SM SAR products into hydrological balance models is one exciting aspect that offers an opportunity to improve hydrologic model forecasts. In this context, the present study highlighted the capability of the high resolution TerraSAR-X SM products in reproducing real conditions of SM variations. We developed a soil hydrological model MHYSAN (Modelisation de Bilan HYdrique des Sols Agricoles Nus) over agricultural bare soil in Central Tunisia (North Africa). The MHYSAN tool computes surface evaporation and SM time series to simulate water balance in Central Tunisia. The accuracy of the MHYSAN tool was assessed at both regional scale (calibration based on ground

  17. The March, the Mass and Dancing Waters: Heterogenic memories in concentrates time and spaces

    Directory of Open Access Journals (Sweden)

    Eliana Lacombe

    2015-07-01

    Full Text Available In this paper, I present an ethnographic analysis about the protest-march for “March 24” on Córdoba city in 2013, on a new anniversary of last Estate strike in Argentina. That march coincided with the proclamation of Cardinal Bergoglio as Pope and with the Catholic feast of Palm Sunday. Which generated a particular confluence of celebrations and tensions. I propose some contributions to theoretical reflections about same ways of construction and circulation of collective memories link to recent past in Argentina. In particular, I account for some tension between rituals, spatiality, temporalities and memories making. I try to show how the march is a ritual that expresses and constructs a particular political community, with its homogeneity and heterogeneity, agreements and disputes. Furthermore, I try to argue about same “outside” of the march, tensions and indifference between different memories communities that converge on concentrates space and time without apparent continuity.

  18. Short-term versus long-term rainfall time series in the assessment of potable water savings by using rainwater in houses.

    Science.gov (United States)

    Ghisi, Enedir; Cardoso, Karla Albino; Rupp, Ricardo Forgiarini

    2012-06-15

    The main objective of this article is to assess the possibility of using short-term instead of long-term rainfall time series to evaluate the potential for potable water savings by using rainwater in houses. The analysis was performed considering rainfall data from 1960 to 1995 for the city of Santa Bárbara do Oeste, located in the state of São Paulo, southeastern Brazil. The influence of the rainfall time series, roof area, potable water demand and percentage rainwater demand on the potential for potable water savings was evaluated. The potential for potable water savings was estimated using computer simulations considering a set of long-term rainfall time series and different sets of short-term rainfall time series. The ideal rainwater tank capacity was also assessed for some cases. It was observed that the higher the percentage rainwater demand and the shorter the rainfall time series, the larger the difference between the potential for potable water savings and the greater the variation in the ideal rainwater tank size. The sets of short-term rainfall time series considered adequate for different scenarios ranged from 1 to 13 years depending on the roof area, percentage rainwater demand and potable water demand. The main finding of the research is that sets of short-term rainfall time series can be used to assess the potential for potable water savings by using rainwater, as the results obtained are similar to those obtained from the long-term rainfall time series.

  19. TIME-DEPENDENT PROPERTIES OF LIQUID WATER: A COMPARISON OF CAR-PARRINELLO AND BORN-OPPENHIEMER MOLECULAR DYNAMICS SIMULATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Kuo, I W; Mundy, C; McGrath, M; Siepmann, J I

    2005-12-29

    A series of 30 ps first principles molecular dynamics simulations in the microcanonical ensemble were carried out to investigate transport and vibrational properties of liquid water. To allow for sufficient sampling, the thermodynamic constraints were set to an elevated temperature of around 423 K and a density of 0.71 g/cm{sup 3} corresponding to the saturated liquid density for the Becke-Lee-Yang-Parr (BLYP) representation of water. Four simulations using the Car-Parrinello molecular dynamics (CPMD) technique with varying values of the fictitious electronic mass ({mu}) and two simulations using the Born-Oppenheimer molecular dynamics (BOMD) technique are analyzed to yield structural and dynamical information. At the selected state point, the simulations are found to exhibit non-glassy dynamics and yield consistent results for the liquid structure and the self-diffusion coefficient, although the statistical uncertainties in the latter quantity are quite large. Consequently, it can be said that the CPMD and BOMD methods produce equivalent results for these properties on the time scales reported here. However, it was found that the choice of {mu} affects the frequency spectrum of the intramolecular modes, shifting them slightly to regions of lower frequency. Using a value of {mu} = 400 a.u. results in a significant drift in the electronic kinetic energy of the system over the course of 30 ps and a downward drift in the ionic temperature. Therefore, for long trajectories at elevated temperatures, lower values of this parameter are recommended for CPMD simulations of water.

  20. Understanding inelastically scattered neutrons from water on a time-of-flight small-angle neutron scattering (SANS) instrument

    Energy Technology Data Exchange (ETDEWEB)

    Do, Changwoo, E-mail: doc1@ornl.gov [Biology and Soft Matter Division, Neutron Sciences Directorate, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Heller, William T.; Stanley, Christopher [Biology and Soft Matter Division, Neutron Sciences Directorate, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Gallmeier, Franz X. [Instrument and Source Design Division, Neutron Sciences Directorate, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Doucet, Mathieu [Neutron Data Analysis and Visualization Division, Neutron Sciences Directorate, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Smith, Gregory S. [Biology and Soft Matter Division, Neutron Sciences Directorate, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States)

    2014-02-11

    It is generally assumed by most of the small-angle neutron scattering (SANS) user community that a neutron's energy is unchanged during SANS measurements. Here, the scattering from water, specifically light water, was measured on the EQ-SANS instrument, a time-of-flight (TOF) SANS instrument located at the Spallation Neutron Source of Oak Ridge National Laboratory. A significant inelastic process was observed in the TOF spectra of neutrons scattered from water. Analysis of the TOF spectra from the sample showed that the scattered neutrons have energies consistent with room-temperature thermal energies (∼20 meV) regardless of the incident neutron's energy. With the aid of Monte Carlo particle transport simulations, we conclude that the thermalization process within the sample results in faster neutrons that arrive at the detector earlier than expected based on the incident neutron energies. This thermalization process impacts the measured SANS intensities in a manner that will ultimately be sample- and temperature-dependent, necessitating careful processing of the raw data into the SANS cross-section.

  1. The Use of Freshmen Seminar Programs to Deliver Personalized Feedback

    Science.gov (United States)

    Henslee, Amber M.; Correia, Christopher J.

    2009-01-01

    The current study tested the effectiveness of delivering personalized feedback to first-semester college freshmen in a group lecture format. Participants enrolled in semester-long courses were randomly assigned to receive either personalized feedback or general information about alcohol. Both lecture conditions were delivered during a standard…

  2. Delivering value to multiple stakeholders: 2013 and beyond.

    Science.gov (United States)

    Nugent, Michael E

    2012-12-01

    To deliver greater value, top payers and providers should: Measure the value they deliver to their business partners and customers, Create value through continuous performance improvement, Package and price value to optimize their margin, mission, and market share, Organize for value through new legal entities, employed medical groups, or both.

  3. 76 FR 35295 - Delivering an Efficient, Effective, and Accountable Government

    Science.gov (United States)

    2011-06-16

    ... June 16, 2011 Part III The President Executive Order 13576--Delivering an Efficient, Effective, and... 13576 of June 13, 2011 Delivering an Efficient, Effective, and Accountable Government By the authority... frequently analyzed ] and reviewed by agency leadership. Agencies shall update these metrics quarterly,...

  4. Decadal variations in atmospheric water vapor time series estimated using GNSS, ERA-Interim, and synoptic data

    Science.gov (United States)

    Alshawaf, Fadwa; Dick, Galina; Heise, Stefan; Balidakis, Kyriakos; Schmidt, Torsten; Wickert, Jens

    2017-04-01

    Ground-based GNSS (Global Navigation Satellite Systems) have efficiently been used since the 1990s as a meteorological observing system. Recently scientists used GNSS time series of precipitable water vapor (PWV) for climate research although they may not be sufficiently long. In this work, we compare the trend estimated from GNSS time series with that estimated from European Center for Medium-RangeWeather Forecasts Reanalysis (ERA-Interim) data and meteorological measurements.We aim at evaluating climate evolution in Central Europe by monitoring different atmospheric variables such as temperature and PWV. PWV time series were obtained by three methods: 1) estimated from ground-based GNSS observations using the method of precise point positioning, 2) inferred from ERA-Interim data, and 3) determined based on daily surface measurements of temperature and relative humidity. The other variables are available from surface meteorological stations or received from ERA-Interim. The PWV trend component estimated from GNSS data strongly correlates (>70%) with that estimated from the other data sets. The linear trend is estimated by straight line fitting over 30 years of seasonally-adjusted PWV time series obtained using the meteorological measurements. The results show a positive trend in the PWV time series with an increase of 0.2-0.7 mm/decade with a mean standard deviations of 0.016 mm/decade. In this paper, we present the results at three GNSS stations. The temporal increment of the PWV correlates with the temporal increase in the temperature levels.

  5. Effect of added water, sodium erythorbate and storage time on the functional properties of prerigor beef preblends in a model system.

    Science.gov (United States)

    Abu-Bakar, A; Reagan, J O; Carpenter, J A; Miller, M F

    1989-01-01

    Singular and combined effects of added water, sodium erythorbate and storage time on salt soluble protein extractability, bacteriological and chemical characteristics of preblended hot-boned beef were evaluated. Waterholding and gel forming capacities of preblended hot-boned beef containing either 0, 10 or 20% added water were determined. Significant interactions between added water level and storage time on microbial counts and between sodium erythorbate level and storage time on thiobarbituric acid values and residual nitrite levels were noted. The presence of sodium erythorbate resulted in a more (P 0·05) microbial counts. Salt-soluble protein extractability was not affected (P > 0·05) by added water, but more protein could be extracted with increasing storage time. A trend existed to suggest that the presence of added water in the meat preblends slightly improved the gel formation and waterholding capacities.

  6. Comparison of real-time PCR methods for the detection of Naegleria fowleri in surface water and sediment.

    Science.gov (United States)

    Streby, Ashleigh; Mull, Bonnie J; Levy, Karen; Hill, Vincent R

    2015-05-01

    Naegleria fowleri is a thermophilic free-living ameba found in freshwater environments worldwide. It is the cause of a rare but potentially fatal disease in humans known as primary amebic meningoencephalitis. Established N. fowleri detection methods rely on conventional culture techniques and morphological examination followed by molecular testing. Multiple alternative real-time PCR assays have been published for rapid detection of Naegleria spp. and N. fowleri. Foursuch assays were evaluated for the detection of N. fowleri from surface water and sediment. The assays were compared for thermodynamic stability, analytical sensitivity and specificity, detection limits, humic acid inhibition effects, and performance with seeded environmental matrices. Twenty-one ameba isolates were included in the DNA panel used for analytical sensitivity and specificity analyses. N. fowleri genotypes I and III were used for method performance testing. Two of the real-time PCR assays were determined to yield similar performance data for specificity and sensitivity for detecting N. fowleri in environmental matrices.

  7. Water Waves from General, Time-Dependent Surface Pressure Distribution in the Presence of a Shear Current

    CERN Document Server

    Li, Yan

    2015-01-01

    We obtain a general solution for the water waves resulting from a general, time-dependent surface pressure distribution, in the presence of a shear current of uniform vorticity beneath the surface, in three dimensions. Linearized governing equations and boundary conditions including the effects of gravity, a distributed external pressure disturbance, and constant finite depth, are solved analytically, and particular attention is paid to classic initial value problems: an initial pressure