WorldWideScience

Sample records for deletion mutants identified

  1. Parallel analysis of tagged deletion mutants efficiently identifies genes involved in endoplasmic reticulum biogenesis.

    Science.gov (United States)

    Wright, Robin; Parrish, Mark L; Cadera, Emily; Larson, Lynnelle; Matson, Clinton K; Garrett-Engele, Philip; Armour, Chris; Lum, Pek Yee; Shoemaker, Daniel D

    2003-07-30

    Increased levels of HMG-CoA reductase induce cell type- and isozyme-specific proliferation of the endoplasmic reticulum. In yeast, the ER proliferations induced by Hmg1p consist of nuclear-associated stacks of smooth ER membranes known as karmellae. To identify genes required for karmellae assembly, we compared the composition of populations of homozygous diploid S. cerevisiae deletion mutants following 20 generations of growth with and without karmellae. Using an initial population of 1,557 deletion mutants, 120 potential mutants were identified as a result of three independent experiments. Each experiment produced a largely non-overlapping set of potential mutants, suggesting that differences in specific growth conditions could be used to maximize the comprehensiveness of similar parallel analysis screens. Only two genes, UBC7 and YAL011W, were identified in all three experiments. Subsequent analysis of individual mutant strains confirmed that each experiment was identifying valid mutations, based on the mutant's sensitivity to elevated HMG-CoA reductase and inability to assemble normal karmellae. The largest class of HMG-CoA reductase-sensitive mutations was a subset of genes that are involved in chromatin structure and transcriptional regulation, suggesting that karmellae assembly requires changes in transcription or that the presence of karmellae may interfere with normal transcriptional regulation.

  2. Analysis of pools of targeted Salmonella deletion mutants identifies novel genes affecting fitness during competitive infection in mice.

    Directory of Open Access Journals (Sweden)

    Carlos A Santiviago

    2009-07-01

    Full Text Available Pools of mutants of minimal complexity but maximal coverage of genes of interest facilitate screening for genes under selection in a particular environment. We constructed individual deletion mutants in 1,023 Salmonella enterica serovar Typhimurium genes, including almost all genes found in Salmonella but not in related genera. All mutations were confirmed simultaneously using a novel amplification strategy to produce labeled RNA from a T7 RNA polymerase promoter, introduced during the construction of each mutant, followed by hybridization of this labeled RNA to a Typhimurium genome tiling array. To demonstrate the ability to identify fitness phenotypes using our pool of mutants, the pool was subjected to selection by intraperitoneal injection into BALB/c mice and subsequent recovery from spleens. Changes in the representation of each mutant were monitored using T7 transcripts hybridized to a novel inexpensive minimal microarray. Among the top 120 statistically significant spleen colonization phenotypes, more than 40 were mutations in genes with no previously known role in this model. Fifteen phenotypes were tested using individual mutants in competitive assays of intraperitoneal infection in mice and eleven were confirmed, including the first two examples of attenuation for sRNA mutants in Salmonella. We refer to the method as Array-based analysis of cistrons under selection (ABACUS.

  3. Analysis of pools of targeted Salmonella deletion mutants identifies novel genes affecting fitness during competitive infection in mice.

    Directory of Open Access Journals (Sweden)

    Carlos A Santiviago

    2009-07-01

    Full Text Available Pools of mutants of minimal complexity but maximal coverage of genes of interest facilitate screening for genes under selection in a particular environment. We constructed individual deletion mutants in 1,023 Salmonella enterica serovar Typhimurium genes, including almost all genes found in Salmonella but not in related genera. All mutations were confirmed simultaneously using a novel amplification strategy to produce labeled RNA from a T7 RNA polymerase promoter, introduced during the construction of each mutant, followed by hybridization of this labeled RNA to a Typhimurium genome tiling array. To demonstrate the ability to identify fitness phenotypes using our pool of mutants, the pool was subjected to selection by intraperitoneal injection into BALB/c mice and subsequent recovery from spleens. Changes in the representation of each mutant were monitored using T7 transcripts hybridized to a novel inexpensive minimal microarray. Among the top 120 statistically significant spleen colonization phenotypes, more than 40 were mutations in genes with no previously known role in this model. Fifteen phenotypes were tested using individual mutants in competitive assays of intraperitoneal infection in mice and eleven were confirmed, including the first two examples of attenuation for sRNA mutants in Salmonella. We refer to the method as Array-based analysis of cistrons under selection (ABACUS.

  4. A genome-wide deletion mutant screen identifies pathways affected by nickel sulfate in Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Dai Wei

    2009-11-01

    Full Text Available Abstract Background The understanding of the biological function, regulation, and cellular interactions of the yeast genome and proteome, along with the high conservation in gene function found between yeast genes and their human homologues, has allowed for Saccharomyces cerevisiae to be used as a model organism to deduce biological processes in human cells. Here, we have completed a systematic screen of the entire set of 4,733 haploid S. cerevisiae gene deletion strains (the entire set of nonessential genes for this organism to identify gene products that modulate cellular toxicity to nickel sulfate (NiSO4. Results We have identified 149 genes whose gene deletion causes sensitivity to NiSO4 and 119 genes whose gene deletion confers resistance. Pathways analysis with proteins whose absence renders cells sensitive and resistant to nickel identified a wide range of cellular processes engaged in the toxicity of S. cerevisiae to NiSO4. Functional categories overrepresented with proteins whose absence renders cells sensitive to NiSO4 include homeostasis of protons, cation transport, transport ATPases, endocytosis, siderophore-iron transport, homeostasis of metal ions, and the diphthamide biosynthesis pathway. Functional categories overrepresented with proteins whose absence renders cells resistant to nickel include functioning and transport of the vacuole and lysosome, protein targeting, sorting, and translocation, intra-Golgi transport, regulation of C-compound and carbohydrate metabolism, transcriptional repression, and chromosome segregation/division. Interactome analysis mapped seven nickel toxicity modulating and ten nickel-resistance networks. Additionally, we studied the degree of sensitivity or resistance of the 111 nickel-sensitive and 72 -resistant strains whose gene deletion product has a similar protein in human cells. Conclusion We have undertaken a whole genome approach in order to further understand the mechanism(s regulating the cell

  5. Whole genome HBV deletion profiles and the accumulation of preS deletion mutant during antiviral treatment

    Directory of Open Access Journals (Sweden)

    Zhang Dake

    2012-12-01

    Full Text Available Abstract Background Hepatitis B virus (HBV, because of its error-prone viral polymerase, has a high mutation rate leading to widespread substitutions, deletions, and insertions in the HBV genome. Deletions may significantly change viral biological features complicating the progression of liver diseases. However, the clinical conditions correlating to the accumulation of deleted mutants remain unclear. In this study, we explored HBV deletion patterns and their association with disease status and antiviral treatment by performing whole genome sequencing on samples from 51 hepatitis B patients and by monitoring changes in deletion variants during treatment. Clone sequencing was used to analyze preS regions in another cohort of 52 patients. Results Among the core, preS, and basic core promoter (BCP deletion hotspots, we identified preS to have the highest frequency and the most complex deletion pattern using whole genome sequencing. Further clone sequencing analysis on preS identified 70 deletions which were classified into 4 types, the most common being preS2. Also, in contrast to the core and BCP regions, most preS deletions were in-frame. Most deletions interrupted viral surface epitopes, and are possibly involved in evading immuno-surveillance. Among various clinical factors examined, logistic regression showed that antiviral medication affected the accumulation of deletion mutants (OR = 6.81, 95% CI = 1.296 ~ 35.817, P = 0.023. In chronic carriers of the virus, and individuals with chronic hepatitis, the deletion rate was significantly higher in the antiviral treatment group (Fisher exact test, P = 0.007. Particularly, preS2 deletions were associated with the usage of nucleos(tide analog therapy (Fisher exact test, P = 0.023. Dynamic increases in preS1 or preS2 deletions were also observed in quasispecies from samples taken from patients before and after three months of ADV therapy. In vitro experiments demonstrated that

  6. The mitochondrial genome of the fission yeast Schizosaccharomyces pombe : 5. Characterization of mitochondrial deletion mutants.

    Science.gov (United States)

    Ahne, F; Merlos-Lange, A M; Lang, B F; Wolf, K

    1984-09-01

    The three mutator strains ana (r)-8, ana (r)-14, and diu (r)-301 were shown to produce respiratory deficient mutants at different rates. The frequency of respiratory deficient mutants in a culture could be increased by adding ethidium bromide. According to their cytochrome spectra and enzymatic activities they form three classes, namely mutants defective in cytochrome oxidase, in cytochrome b, and in both cytochromes. By restriction enzyme analysis of mitochondrial DNA from about 100 mutants, 22 deletion mutants were identified. The deletions, ranging from 50 to 1,500 base pairs were physically mapped. Deletions were localized in the genes coding for subunit 1 of cytochrome oxidase with its two introns, within the cytochrome b gene and its intron, and within the genes for subunits 2 and 3 of cytochrome oxidase. In several cases, where the physical mapping yielded ambiguous results, pairwise genetic crosses ruled out an overlap between two neighbouring deletions.Using these mitochondrial deletion mutants as tester strains, it was shown that only tetrad analysis and chemical haploidization, but not mitotic segregation analysis, allows a decision between chromosomal and mitochondrial inheritance of respiratory deficiency in Schizosaccharomyces pombe.

  7. Functional profiling in Streptococcus mutans: construction and examination of a genomic collection of gene deletion mutants.

    Science.gov (United States)

    Quivey, R G; Grayhack, E J; Faustoferri, R C; Hubbard, C J; Baldeck, J D; Wolf, A S; MacGilvray, M E; Rosalen, P L; Scott-Anne, K; Santiago, B; Gopal, S; Payne, J; Marquis, R E

    2015-12-01

    A collection of tagged deletion mutant strains was created in Streptococcus mutans UA159 to facilitate investigation of the aciduric capability of this oral pathogen. Gene-specific barcoded deletions were attempted in 1432 open reading frames (representing 73% of the genome), and resulted in the isolation of 1112 strains (56% coverage) carrying deletions in distinct non-essential genes. As S. mutans virulence is predicated upon the ability of the organism to survive an acidic pH environment, form biofilms on tooth surfaces, and out-compete other oral microflora, we assayed individual mutant strains for the relative fitness of the deletion strain, compared with the parent strain, under acidic and oxidative stress conditions, as well as for their ability to form biofilms in glucose- or sucrose-containing medium. Our studies revealed a total of 51 deletion strains with defects in both aciduricity and biofilm formation. We have also identified 49 strains whose gene deletion confers sensitivity to oxidative damage and deficiencies in biofilm formation. We demonstrate the ability to examine competitive fitness of mutant organisms using the barcode tags incorporated into each deletion strain to examine the representation of a particular strain in a population. Co-cultures of deletion strains were grown either in vitro in a chemostat to steady-state values of pH 7 and pH 5 or in vivo in an animal model for oral infection. Taken together, these data represent a mechanism for assessing the virulence capacity of this pathogenic microorganism and a resource for identifying future targets for drug intervention to promote healthy oral microflora.

  8. Catalytic properties of ADAM12 and its domain deletion mutants

    DEFF Research Database (Denmark)

    Jacobsen, Jonas; Visse, Robert; Sørensen, Hans Peter

    2008-01-01

    Human ADAM12 (a disintegrin and metalloproteinase) is a multidomain zinc metalloproteinase expressed at high levels during development and in human tumors. ADAM12 exists as two splice variants: a classical type 1 membrane-anchored form (ADAM12-L) and a secreted splice variant (ADAM12-S) consisting...... of pro, catalytic, disintegrin, cysteine-rich, and EGF domains. Here we present a novel activity of recombinant ADAM12-S and its domain deletion mutants on S-carboxymethylated transferrin (Cm-Tf). Cleavage of Cm-Tf occurred at multiple sites, and N-terminal sequencing showed that the enzyme exhibits...... restricted specificity but a consensus sequence could not be defined as its subsite requirements are promiscuous. Kinetic analysis revealed that the noncatalytic C-terminal domains are important regulators of Cm-Tf activity and that ADAM12-PC consisting of the pro domain and catalytic domain is the most...

  9. X-ray survival characteristics and genetic analysis for nine saccharomyces deletion mutants that show altered radiation sensitivity

    Energy Technology Data Exchange (ETDEWEB)

    Game, John C.; Williamson, Marsha S.; Baccari, Clelia

    2004-01-07

    The availability of a genome-wide set of Saccharomyces deletion mutants provides a chance to identify all the yeast genes involved in DNA repair. Using X-rays, we are screening these mutants to identify additional genes that show increased sensitivity to the lethal effects of ionizing radiation. For each mutant identified as sensitive, we are confirming that the sensitivity phenotype co-segregates with the deletion allele and are obtaining multipoint survival-versus-dose assays in at least two haploid and one homozygous diploid strains. We present data for deletion mutants involving the genes DOT1, MDM20, NAT3, SPT7, SPT20, GCN5, HFI1, DCC1 and VID21/EAF1, and discuss their potential roles in repair. Eight of these genes have a clear radiation-sensitive phenotype when deleted, but the ninth, GCN5, has at most a borderline phenotype. None of the deletions confer substantial sensitivity to ultra-violet radiation, although one or two may confer marginal sensitivity. The DOT1 gene is of interest because its only known function is to methylate one lysine residue in the core of the histone H3 protein. We find that histone H3 mutants (supplied by K. Struhl) in which this residue is replaced by other amino-acids are also X-ray sensitive, seeming to confirm that methylation of the lysine-79 residue is required for effective repair of radiation damage.

  10. 44 CFR 5.27 - Deletion of identifying details.

    Science.gov (United States)

    2010-10-01

    ... 44 Emergency Management and Assistance 1 2010-10-01 2010-10-01 false Deletion of identifying details. 5.27 Section 5.27 Emergency Management and Assistance FEDERAL EMERGENCY MANAGEMENT AGENCY..., FEMA may delete identifying details when making available or publishing an opinion, statement of...

  11. Polypeptone induces dramatic cell lysis in ura4 deletion mutants of fission yeast.

    Directory of Open Access Journals (Sweden)

    Yuzy Matsuo

    Full Text Available Polypeptone is widely excluded from Schizosaccharomyces pombe growth medium. However, the reasons why polypeptone should be avoided have not been documented. Polypeptone dramatically induced cell lysis in the ura4 deletion mutant when cells approached the stationary growth phase, and this phenotype was suppressed by supplementation of uracil. To determine the specificity of this cell lysis phenotype, we created deletion mutants of other genes involved in de novo biosynthesis of uridine monophosphate (ura1, ura2, ura3, and ura5. Cell lysis was not observed in these gene deletion mutants. In addition, concomitant disruption of ura1, ura2, ura3, or ura5 in the ura4 deletion mutant suppressed cell lysis, indicating that cell lysis induced by polypeptone is specific to the ura4 deletion mutant. Furthermore, cell lysis was also suppressed when the gene involved in coenzyme Q biosynthesis was deleted. This is likely because Ura3 requires coenzyme Q for its activity. The ura4 deletion mutant was sensitive to zymolyase, which mainly degrades (1,3-beta-D glucan, when grown in the presence of polypeptone, and cell lysis was suppressed by the osmotic stabiliser, sorbitol. Finally, the induction of cell lysis in the ura4 deletion mutant was due to the accumulation of orotidine-5-monophosphate. Cell wall integrity was dramatically impaired in the ura4 deletion mutant when grown in the presence of polypeptone. Because ura4 is widely used as a selection marker in S. pombe, caution needs to be taken when evaluating phenotypes of ura4 mutants.

  12. Emergence of porcine reproductive and respiratory syndrome virus deletion mutants: Correlation with the porcine antibody response to a hypervariable site in the ORF 3 structural glycoprotein

    DEFF Research Database (Denmark)

    Oleksiewicz, M.B.; Bøtner, Anette; Toft, P.

    2000-01-01

    reading frames, the same PRRSV genetic locus codes for the ORF 3 "RKASLSTS" sequence, and a previously described ORF 4 epitope (Meulenherg, J. J. M., Van Nieuwstadt, A. P,, Van Essen-Zandbergen, A., and Langeveld, J. P. M., 1997, J. Virol. 71, 6061-6067). Sequence analysis identified naturally occurring...... deletion mutants at this ORF 3/4 site. Phylogenetic analysis showed the presence of a highly accurate ORF 3 molecular clock, according to which deletion mutants and nondeleted viruses evolved at differing speeds. Furthermore, deletion mutants and nondeleted viruses evolved as separate lineages...

  13. 42 CFR 401.118 - Deletion of identifying details.

    Science.gov (United States)

    2010-10-01

    ... Deletion of identifying details. When CMS publishes or otherwise makes available an opinion or order, statement of policy, or other record which relates to a private party or parties, the name or names or...

  14. Functional dissection of regulatory models using gene expression data of deletion mutants.

    Directory of Open Access Journals (Sweden)

    Jin'e Li

    Full Text Available Genome-wide gene expression profiles accumulate at an alarming rate, how to integrate these expression profiles generated by different laboratories to reverse engineer the cellular regulatory network has been a major challenge. To automatically infer gene regulatory pathways from genome-wide mRNA expression profiles before and after genetic perturbations, we introduced a new Bayesian network algorithm: Deletion Mutant Bayesian Network (DM_BN. We applied DM_BN to the expression profiles of 544 yeast single or double deletion mutants of transcription factors, chromatin remodeling machinery components, protein kinases and phosphatases in S. cerevisiae. The network inferred by this method identified causal regulatory and non-causal concurrent interactions among these regulators (genetically perturbed genes that are strongly supported by the experimental evidence, and generated many new testable hypotheses. Compared to networks reconstructed by routine similarity measures or by alternative Bayesian network algorithms, the network inferred by DM_BN excels in both precision and recall. To facilitate its application in other systems, we packaged the algorithm into a user-friendly analysis tool that can be downloaded at http://www.picb.ac.cn/hanlab/DM_BN.html.

  15. A rice mutant displaying a heterochronically elongated internode carries a 100 kb deletion

    Institute of Scientific and Technical Information of China (English)

    Mika Hayashi-Tsugane; Masahiko Maekawa; Qian Qian; Hirokazu Kobayashi; Shigeru Iida; Kazuo Tsugane

    2011-01-01

    We have isolated a recessive rice mutant,designated as indeterminate growth(ing),which displays creeping and apparent heterochronic phenotypes in the vegetative period with lanky and winding culms.Rough mapping and subsequent molecular characterization revealed that the ing mutant carries a large deletion,which corresponds to a 103 kb region in the Nipponbare genome,containing nine annotated genes on chromosome 3.Of these annotated genes,the SLRI gene encoding a DELLA protein is the only one that is well characterized in its function,and its null mutation,which is caused by a single base deletion in the middle of the intronless SLR1 gene,confers a slender phenotype that bears close resemblance to the ing mutant phenotype.The primary cause of the ing mutant phenotype is the deletion of the SLR1 gene,and the ing mutant appears to be the first characterized mutant having the entire SLRI sequence deleted.Our results also suggest that the deleted region of 103 kb does not contain an indispensable gene,whose dysfunction must result in a lethal phenotype.

  16. Antibodies with higher bactericidal activity induced by a Neisseria gonorrhoeae Rmp deletion mutant strain.

    Directory of Open Access Journals (Sweden)

    Guocai Li

    Full Text Available Neisseria gonorrhoeae (N. gonorrhoeae outer membrane protein reduction modifiable protein (Rmp has strong immunogenicity. However, anti-Rmp antibodies block rather than preserve the antibacterial effects of protective antibodies, which hampers the development of vaccines for gonococcal infections. We herein constructed an Rmp deletion mutant strain of N. gonorrhoeae by gene homologous recombination. The 261-460 nucleotide residues of Rmp gene amplified from N. gonorrhoeae WHO-A strain were replaced with a kanamycin-resistant Kan gene amplified from pET-28a. The resultant hybridized DNA was transformed into N. gonorrhoeae WHO-A strain. PCR was used to screen the colonies in which wild-type Rmp gene was replaced with a mutant gene fragment. Western blotting revealed that the Rmp deletion mutant strain did not express Rmp protein. Rmp deletion did not alter the morphological and Gram staining properties of the mutant strain that grew slightly more slowly than the wild-type one. Rmp gene mutated stably throughout 25 generations of passage. Antibody-mediated complement-dependent cytotoxicity assay indicated that the antibodies induced by the mutant strain had evidently higher bactericidal activities than those induced by the wild-type strain. Further modification of the Rmp deletion mutant strain is still required in the development of novel live attenuated vaccines for gonorrhea by Opa genes deletion or screening of phenotypic variant strains that do not express Opa proteins.

  17. Antibodies with higher bactericidal activity induced by a Neisseria gonorrhoeae Rmp deletion mutant strain.

    Science.gov (United States)

    Li, Guocai; Xie, Rushan; Zhu, Xiaoping; Mao, Yanli; Liu, Shuangxi; Jiao, Hongmei; Yan, Hua; Xiong, Kun; Ji, Mingchun

    2014-01-01

    Neisseria gonorrhoeae (N. gonorrhoeae) outer membrane protein reduction modifiable protein (Rmp) has strong immunogenicity. However, anti-Rmp antibodies block rather than preserve the antibacterial effects of protective antibodies, which hampers the development of vaccines for gonococcal infections. We herein constructed an Rmp deletion mutant strain of N. gonorrhoeae by gene homologous recombination. The 261-460 nucleotide residues of Rmp gene amplified from N. gonorrhoeae WHO-A strain were replaced with a kanamycin-resistant Kan gene amplified from pET-28a. The resultant hybridized DNA was transformed into N. gonorrhoeae WHO-A strain. PCR was used to screen the colonies in which wild-type Rmp gene was replaced with a mutant gene fragment. Western blotting revealed that the Rmp deletion mutant strain did not express Rmp protein. Rmp deletion did not alter the morphological and Gram staining properties of the mutant strain that grew slightly more slowly than the wild-type one. Rmp gene mutated stably throughout 25 generations of passage. Antibody-mediated complement-dependent cytotoxicity assay indicated that the antibodies induced by the mutant strain had evidently higher bactericidal activities than those induced by the wild-type strain. Further modification of the Rmp deletion mutant strain is still required in the development of novel live attenuated vaccines for gonorrhea by Opa genes deletion or screening of phenotypic variant strains that do not express Opa proteins.

  18. Deletion and interallelic complementation analysis of Steel mutant mice

    Energy Technology Data Exchange (ETDEWEB)

    Bedell, M.A.; Cleveland, L.S.; Copeland, N.G. [NCI-Frederick Cancer Research and Development Center, MD (United States)] [and others

    1996-03-01

    Mutations at the Steel (Sl) locus produce pleiotropic effects on viability as well as hematopoiesis, pigmentation and fertility. Several homozygous viable Sl alleles have previously have been shown to contain either structural alterations in mast cell growth factor (Mgf) or regulatory mutations that affect expression of the Mgf gene. More severe Sl alleles cause lethality to homozygous embryos and all lethal Sl alleles examined to date contain deletions that remove the entire Mgf coding region. As the timing of the lethality varies from early to late in gestation, it is possible that some deletions may affect other closely linked genes in addition to Mgf. We have analyzed the extent of deleted sequences in seven homozygous lethal Sl alleles. The results of this analysis suggests that late gestation lethality represents the Sl null phenotype and that peri-implantation lethality results from the deletion of at least one essential gene that maps proximal to Sl. We have also examined gene dosage effects of Sl comparing the phenotypes of mice homozygous and hemizygous for each of four viable Sl alleles. Lastly, we show that certain combinations of the viable Sl alleles exhibit interallelic complementation. Possible mechanisms by which such complementation could occur are discussed. 39 refs., 3 figs., 3 tabs.

  19. Selection of Mycoplasma hominis PG21 deletion mutants by cultivation in the presence of monoclonal antibody 552

    DEFF Research Database (Denmark)

    Jensen, L T; Ladefoged, S; Birkelund, S;

    1995-01-01

    characterized. The mutants showed deletions of a various number of repeats. The deletions were accompanied by a decrease in size of the proteins. With increasing size of deletions, agglutination and growth inhibition by MAb 552 became less pronounced. Spontaneous aggregation of the mutant M. hominis cells...

  20. Cloning and characterization of a novel deletion mutant of heterogeneous nuclear ribonucleoprotein M4 from human dendritic cells

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    To identify differentially expressed genes from antigen-stimulated human dendritic cells (DC), subtractive cloning was adopted and more than ten novel genes differentially expressed were cloned. One is a deletion mutant of heterogeneous nuclear ribonucleoprotein (hnRNP) M4 in which the residues from 159 to 197 of hnRNP M4 have been absent. The deletion mutant was shown to be co-expressed with hnRNP M4 in cell lines. The mutant was expressed in antigen-stimulated DC but not in normal DC. Northern blot analysis revealed the presence of a major hnRNP M4 deletion mutant Mrna transcript of 2.4 kilobase with the highest levels in peripheral lymphocytes, lung, liver and spleen. It was also expressed in bone marrow-derived stromal cells (BMSC), BMSC treated with several cytokines but not in BMSC treated with TNF-a. The results revealed a new member of hnRNP family and suggested that hnRNP would participate in antigen process and presentation.

  1. Cloning and characterization of a novel deletion mutant of heterogeneous nuclear ribonucleoprotein M4 from human dendritic cells

    Institute of Scientific and Technical Information of China (English)

    黄欣; 赵忠良; 袁正隆; 张明徽; 朱学军; 陈国友; 曹雪涛

    2000-01-01

    To identify differentially expressed genes from antigen-stimulated human dendritic cells (DC), subtractive cloning was adopted and more than ten novel genes differentially expressed were cloned. One is a deletion mutant of heterogeneous nuclear ribonucleoprotein (hnRNP) M4 in which the residues from 159 to 197 of hnRNP M4 have been absent. The deletion mutant was shown to- be co-expressed with hnRNP M4 in cell lines. The mutant was expressed in antigen-stimulated DC but not in normal DC. Northern blot analysis revealed the presence of a major hnRNP M4 deletion mutant mRNA transcript of 2.4 kilobase with the highest levels in peripheral lymphocytes, lung, liver and spleen. It was also expressed in bone marrow-derived stromal cells (BMSC), BMSC treated with several cytokines but not in BMSC treated with TNF-a. The results revealed a new member of hnRNP family and suggested that hnRNP would participate in antigen process and presentation.

  2. Cloning and characterization of a novel deletion mutant of heterogeneous nuclear ribonucleoprotein M4 from human dendritic cells

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    To identify differentially expressed genes from antigen-stimulated human dendritic cells (DC), subtractive cloning was adopted and more than ten novel genes differentially expressed were cloned. One is a deletion mutant of heterogeneous nuclear ribonucleoprotein (hnRNP) M4 in which the residues from 159 to 197 of hnRNP M4 have been absent. The deletion mutant was shown to be co-expressed with hnRNP M4 in cell lines. The mutant was expressed in antigen-stimulated DC but not in normal DC. Northern blot analysis revealed the presence of a major hnRNP M4 deletion mutant mRNA transcript of 2.4 kilobase with the highest levels in peripheral lymphocytes, lung, liver and spleen. It was also expressed in bone marrow-derived stromal cells (BMSC), BMSC treated with several cytokines but not in BMSC treated with TNF-a. The results revealed a new member of hnRNP family and suggested that hnRNP would participate in antigen process and presentation.

  3. Directed construction and analysis of a Sinorhizobium meliloti pSymA deletion mutant library.

    Science.gov (United States)

    Yurgel, Svetlana N; Mortimer, Michael W; Rice, Jennifer T; Humann, Jodi L; Kahn, Michael L

    2013-03-01

    Resources from the Sinorhizobium meliloti Rm1021 open reading frame (ORF) plasmid libraries were used in a medium-throughput method to construct a set of 50 overlapping deletion mutants covering all of the Rm1021 pSymA megaplasmid except the replicon region. Each resulting pSymA derivative carried a defined deletion of approximately 25 ORFs. Various phenotypes, including cytochrome c respiration activity, the ability of the mutants to grow on various carbon and nitrogen sources, and the symbiotic effectiveness of the mutants with alfalfa, were analyzed. This approach allowed us to systematically evaluate the potential impact of regions of Rm1021 pSymA for their free-living and symbiotic phenotypes.

  4. Neurobehavioral Mutants Identified in an ENU Mutagenesis Project

    Energy Technology Data Exchange (ETDEWEB)

    Cook, Melloni N. [University of Memphis; Dunning, Jonathan P [University of Memphis; Wiley, Ronald G [Vanderbilt University and Veterans Administration, Nashville, TN; Chesler, Elissa J [ORNL; Johnson, Dabney K [ORNL; Goldowitz, Daniel [University of Tennessee Health Science Center, Memphis

    2007-01-01

    We report on a behavioral screening test battery that successfully identified several neurobehavioral mutants among a large-scale ENU-mutagenized mouse population. Large numbers of ENU mutagenized mice were screened for abnormalities in central nervous system function based on abnormal performance in a series of behavior tasks. We developed and employed a high-throughput screen of behavioral tasks to detect behavioral outliers. Twelve mutant pedigrees, representing a broad range of behavioral phenotypes, have been identified. Specifically, we have identified two open field mutants (one displaying hyper-locomotion, the other hypo-locomotion), four tail suspension mutants (all displaying increased immobility), one nociception mutant (displaying abnormal responsiveness to thermal pain), two prepulse inhibition mutants (displaying poor inhibition of the startle response), one anxiety-related mutant (displaying decreased anxiety in the light/dark test), and one learning and memory mutant (displaying reduced response to the conditioned stimulus) These findings highlight the utility of a set of behavioral tasks used in a high throughput screen to identify neurobehavioral mutants. Further analysis (i.e., behavioral and genetic mapping studies) of mutants is in progress with the ultimate goal of identification of novel genes and mouse models relevant to human disorders as well as the identification of novel therapeutic targets.

  5. Deletion mutants of region E1 a of AD12 E1 plasmids: Effect on oncogenic transformation

    NARCIS (Netherlands)

    Bos, J.L.; Jochemsen, A.G.; Bernards, R.A.; Schrier, P.I.; Ormondt, H. van; Eb, A.J. van der

    1983-01-01

    Plasmids containing the El region of Ad12 DNA can transform certain rodent cells into oncogenic cells. To study the role of the Ela subregion in the process of oncogenic transformation, Ad12 region El mutants carrying deletions in the Ela region were constructed. Deletion mutants pR7 and pR8 affect

  6. Emergence of porcine reproductive and respiratory syndrome virus deletion mutants: Correlation with the porcine antibody response to a hypervariable site in the ORF 3 structural glycoprotein

    DEFF Research Database (Denmark)

    Oleksiewicz, M.B.; Bøtner, Anette; Toft, P.;

    2000-01-01

    By using porcine immune sera to select a library of phage-displayed random peptides. we identified an antigenic sequence (RKASLSTS) in the C-terminus of the ORF 3 structural glycoprotein of European-type porcine reproductive and respiratory syndrome virus (PRRSV). Through the use of overlapping....... These distinctions suggested that deletion mutants were a hitherto unrecognized subtype of European-type PRRSV. Currently, deletion mutants appear to be outcompeting nondeleted viruses in the field, highlighting the importance of the porcine antibody response against the minor structural glycoproteins of European...

  7. [Repression of the enzyme inducible syntheses in Escherichia coli K12 mutant with a deleted ptsH gene].

    Science.gov (United States)

    Gershanovich, V N; Il'ina, T S; Rusina, O Iu; Iurovitskaia, N V; Bol'shakova, T N

    1977-01-01

    The genome of lambda phage with thermosensitive repressor was integrated into the pts region of the E. coli chromosome. Such a lysogenic culture behaves as a pts mutant at 30 degrees. Heating of cells of this strain leads to the induction of lambda prophage and formation of deletions in the pts region. A mutant with a deletion covering ptsH gene was isolated after prophage induction. The deletion nature of pts mutation was confirmed in genetic and biochemical experiments. It was shown that the deletion is small and does not involve ptsI and lig genes. The isolated deltaptsH mutant possesses all characteristics of pts mutants: pleiotropic impairment of transport and utilization of a number of carbohydrates, repression of the enzyme inducible synthesis and resistance to catabolite repression with glucose. These data (together with earlier ones) allow us to conclude that the phosphorylated form of HPr is involved (in direct of indirect manner/ in activation of DNA transcription.

  8. Physiology of deletion mutants in the anaerobic β-myrcene degradation pathway in Castellaniella defragrans

    Directory of Open Access Journals (Sweden)

    Lüddeke Frauke

    2012-09-01

    Full Text Available Abstract Background Monoterpenes present a large and versatile group of unsaturated hydrocarbons of plant origin with widespread use in the fragrance as well as food industry. The anaerobic β-myrcene degradation pathway in Castellaniella defragrans strain 65Phen differs from well known aerobic, monooxygenase-containing pathways. The initial enzyme linalool dehydratase-isomerase ldi/LDI catalyzes the hydration of β-myrcene to (S-(+-linalool and its isomerization to geraniol. A high-affinity geraniol dehydrogenase geoA/GeDH and a geranial dehydrogenase geoB/GaDH contribute to the formation of geranic acid. A genetic system was for the first time applied for the betaproteobacterium to prove in vivo the relevance of the linalool dehydratase-isomerase and the geraniol dehydrogenase. In-frame deletion cassettes were introduced by conjugation and two homologous recombination events. Results Polar effects were absent in the in-frame deletion mutants C. defragrans Δldi and C. defragrans ΔgeoA. The physiological characterization of the strains demonstrated a requirement of the linalool dehydratase-isomerase for growth on acyclic monoterpenes, but not on cyclic monoterpenes. The deletion of geoA resulted in a phenotype with hampered growth rate on monoterpenes as sole carbon and energy source as well as reduced biomass yields. Enzyme assays revealed the presence of a second geraniol dehydrogenase. The deletion mutants were in trans complemented with the broad-host range expression vector pBBR1MCS-4ldi and pBBR1MCS-2geoA, restoring in both cases the wild type phenotype. Conclusions In-frame deletion mutants of genes in the anaerobic β-myrcene degradation revealed novel insights in the in vivo function. The deletion of a high-affinity geraniol dehydrogenase hampered, but did not preclude growth on monoterpenes. A second geraniol dehydrogenase activity was present that contributes to the β-myrcene degradation pathway. Growth on cyclic monoterpenes

  9. Construction and characterization of partially ntrC-deleted mutants in Alcaligenes faecalis

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    To study the effect of ntrC gene product on the expression and regulation of other important nitrogen-fixing genes in Alcaligenes faecalis, partially ntrC-deleted mutants of A. faecalis have been generated. To start with, the ntrC gene of A. faecalis was cloned into a suicide plasmid pSUP202 to create a recombinant plasmid pSUM1. The ntrC gene in pSUM1 was then replaced by a lacZ-Kmr fragment resulted in the generation of a plasmid pSUM2. The lacZ fragment in pSUM2 was further removed and a plasmid pSUM3 produced. As a second step, the plasmid pSUM2 or pSUM3 was introduced into the wild type of A. faecalis A1501 by conjugation and two partially ntrC-deleted mutants A15CM1 (ntrC∷lacZ) and A15CM2 (ntrC-) were obtained. To understand the regulatory effect of the NtrC on the expression of nifH and nifA, a nifH-lacZ gene or a nifA-lacZ gene was introduced into the ntrC- mutant by conjugation. The results indicated that: (ⅰ) although the ntrC- mutant was nif + , its nitrogen fixation activity was only 20% that of the wild type; (ⅱ) the ntrC- mutant failed to grow on the medium containing nitrate as a sole nitrogen source; (ⅲ) the regulation of ntrC gene expression did not require its own product; (ⅳ) the expression of nifH in A . faecalis was positively regulated by the ntrC. Deletion of the ntrC resulted in the reduction of nifH expression or even totally inactivated nitrogen fixation; (ⅴ) there was no obvious influence on the expression of nifA in A. faecalis if the ntrC gene was deleted.

  10. Characterization of a spontaneous nonmagnetic mutant of Magnetospirillum gryphiswaldense reveals a large deletion comprising a putative magnetosome island.

    Science.gov (United States)

    Schübbe, Sabrina; Kube, Michael; Scheffel, André; Wawer, Cathrin; Heyen, Udo; Meyerdierks, Anke; Madkour, Mohamed H; Mayer, Frank; Reinhardt, Richard; Schüler, Dirk

    2003-10-01

    Frequent spontaneous loss of the magnetic phenotype was observed in stationary-phase cultures of the magnetotactic bacterium Magnetospirillum gryphiswaldense MSR-1. A nonmagnetic mutant, designated strain MSR-1B, was isolated and characterized. The mutant lacked any structures resembling magnetosome crystals as well as internal membrane vesicles. The growth of strain MSR-1B was impaired under all growth conditions tested, and the uptake and accumulation of iron were drastically reduced under iron-replete conditions. A large chromosomal deletion of approximately 80 kb was identified in strain MSR-1B, which comprised both the entire mamAB and mamDC clusters as well as further putative operons encoding a number of magnetosome-associated proteins. A bacterial artificial chromosome clone partially covering the deleted region was isolated from the genomic library of wild-type M. gryphiswaldense. Sequence analysis of this fragment revealed that all previously identified mam genes were closely linked with genes encoding other magnetosome-associated proteins within less than 35 kb. In addition, this region was remarkably rich in insertion elements and harbored a considerable number of unknown gene families which appeared to be specific for magnetotactic bacteria. Overall, these findings suggest the existence of a putative large magnetosome island in M. gryphiswaldense and other magnetotactic bacteria.

  11. The ARABIDOPSIS accession Pna-10 is a naturally occurring sng1 deletion mutant.

    Science.gov (United States)

    Li, Xu; Bergelson, Joy; Chapple, Clint

    2010-01-01

    Sinapoylmalate is the major sinapate ester found in leaves of Arabidopsis thaliana, where it plays an important role in UV-B protection. Metabolic profiling of rosette leaves from 96 Arabidopsis accessions revealed that the Pna-10 accession accumulates sinapoylglucose instead of sinapoylmalate. This unique leaf sinapate ester profile is similar to that of the previously characterized sinapoylglucose accumulator1 (sng1) mutants. SNG1 encodes sinapoylglucose:malate sinapoyltransferase (SMT), a serine carboxypeptidase-like (SCPL) enzyme that catalyzes the conversion of sinapoylglucose to sinapoylmalate. In the reference Columbia genome, the SNG1 gene is located in a cluster of five SCPL genes on Chromosome II. PCR and sequencing analysis of the same genomic region in the Pna-10 accession revealed a 13-kb deletion that eliminates the SNG1 gene (At2g22990) and the gene encoding sinapoylglucose:anthocyanin sinapoyltransferase (SAT) (At2g23000). In addition to its sinapoylmalate-deficient phenotype, and consistent with the loss of SAT, Pna-10 is unable to accumulate sinapoylated anthocyanins. Interestingly, the Pna-17 accession, collected from the same location as Pna-10, has no such deletion. Further analysis of 135 lines collected from the same location as Pna-10 and Pna-17 revealed that four more lines contain the deletion found in Pna-10 accession, suggesting that either the deletion found in Pna-10 is a recent event that has not yet been eliminated through selection or that sinapoylmalate is dispensable for the growth of Arabidopsis under field conditions.

  12. A genome-wide screen for Schizosaccharomyces pombe deletion mutants that affect telomere length

    Institute of Scientific and Technical Information of China (English)

    Ning-Ning Liu; Tian Xu Han; Li-Lin Du; Jin-Qiu Zhou

    2010-01-01

    @@ Dear Editor, Both the fission yeast Schizosaccharomyces pombe and the budding yeast Saccharomyces cerevisiae are popular model organisms, and studies using these models have provided many informative clues for solving fundamental biological questions [1], such as DNA replication,cell cycle regulation and gene transcription. Since the completion of genome sequencing of these fungi [2, 3],systematic genetic modification, e.g. gene deletion, has become possible, and genome-wide phenotypic screening for gene function has been widely carried out. For example, Askree et al. and Gatbonton et al. examined the telomere-length change in about 4 800 non-essential gene deletion mutants of S. cerevisiae, and found that about 250 genes are involved in telomere-length regulation.

  13. Phenotype profiling of single gene deletion mutants of E. coli using Biolog technology.

    Science.gov (United States)

    Tohsato, Yukako; Mori, Hirotada

    2008-01-01

    Phenotype MicroArray (PM) technology is high-throughput phenotyping system and is directly applicable to assay the effects of genetic changes in cells. In this study, we performed comprehensive PM analysis using single gene deletion mutants of central metabolic pathway and related genes. To elucidate the structure of central metabolic networks in Escherichia coli K-12, we focused 288 different PM conditions of carbon and nitrogen sources and performed bioinformatic analysis. For data processing, we employed noise reduction procedures. The distance between each of the mutants was defined by Manhattan distance and agglomerative Ward's hierarchical method was applied for clustering analysis. As a result, five clusters were revealed which represented to activate or repress cellular respiratory activities. Furthermore, the results might suggest that Glyceraldehyde-3P plays a key role as a molecular switch of central metabolic network.

  14. Changes in photosynthesis and pigmentation in an agp deletion mutant of the cyanobacterium Synechocystis sp.

    Science.gov (United States)

    Miao, Xiaoling; Wu, Qingyu; Wu, Guifang; Zhao, Nanming

    2003-03-01

    The agp gene encoding ADP-glucose pyrophosphorylase is involved in cyanobacterial glycogen synthesis. By in vitro DNA recombination technology, agp deletion mutant (agp-) of cyanobacterium Synechocystis sp. PCC 6803 was constructed. This mutation led to a complete absence of glycogen biosynthesis. As compared with WT (wild type), a 60% decrease in ratio of the c-phycocyanine/chlorophyll a and no significant change in the carotenoid/chlorophyll a were observed in agp- cells. The agp- mutant had 38% less photosynthetic capacity when grown in light over 600 micromol m(-2) s(-1). Under lower light intensity, the final biomass of the mutant strain was only 1.1 times of that of the WT strain under mixotrophic condition after 6 d culture. Under higher light intensity, however, the final biomass of the WT strain under mixotrophic conditions was 3 times that of the mutant strain after 6 d culture and 1.5 times under photoautotrophic conditions. The results indicate that there is a minimum requirement for glycogen synthesis for normal growth and development in cyanobacteria.

  15. Selection of Mycoplasma hominis PG21 deletion mutants by cultivation in the presence of monoclonal antibody 552

    DEFF Research Database (Denmark)

    Jensen, Lise Torp; Ladefoged, Søren; Birkelund, Svend

    1995-01-01

    Three mutants of Mycoplasma hominis PG21 were isolated and shown to contain alterations in the size of a repeat-containing gene encoding a surface-localized 135-kDa antigen designated Lmp1. The mutants were isolated by cultivating M. hominis for a 3-month period in the presence of Lmp1-specific...... characterized. The mutants showed deletions of a various number of repeats. The deletions were accompanied by a decrease in size of the proteins. With increasing size of deletions, agglutination and growth inhibition by MAb 552 became less pronounced. Spontaneous aggregation of the mutant M. hominis cells...... in culture medium was, however, increased, indicating that the repeated elements may be of importance for repulsion of the cells....

  16. Correlation between transcript profiles and fitness of deletion mutants in anaerobic chemostat cultures of Saccharomyces cerevisiae

    Science.gov (United States)

    Tai, Siew Leng; Snoek, Ishtar; Luttik, Marijke A. H.; Almering, Marinka J. H.; Walsh, Michael C.; Pronk, Jack T.; Daran, Jean-Marc

    2007-01-01

    The applicability of transcriptomics for functional genome analysis rests on the assumption that global information on gene function can be inferred from transcriptional regulation patterns. This study investigated whether Saccharomyces cerevisiae genes that show a consistently higher transcript level under anaerobic than aerobic conditions do indeed contribute to fitness in the absence of oxygen. Tagged deletion mutants were constructed in 27 S. cerevisiae genes that showed a strong and consistent transcriptional upregulation under anaerobic conditions, irrespective of the nature of the growth-limiting nutrient (glucose, ammonia, sulfate or phosphate). Competitive anaerobic chemostat cultivation showed that only five out of the 27 mutants (eug1Δ, izh2Δ, plb2Δ, ylr413wΔ and yor012wΔ) conferred a significant disadvantage relative to a tagged reference strain. The implications of this study are that: (i) transcriptome analysis has a very limited predictive value for the contribution of individual genes to fitness under specific environmental conditions, and (ii) competitive chemostat cultivation of tagged deletion strains offers an efficient approach to select relevant leads for functional analysis studies. PMID:17322208

  17. Transcriptome Analysis of a Ustilago maydis ust1 Deletion Mutant Uncovers Involvement of Laccase and Polyketide Synthase Genes in Spore Development.

    Science.gov (United States)

    Islamovic, Emir; García-Pedrajas, María D; Chacko, Nadia; Andrews, David L; Covert, Sarah F; Gold, Scott E

    2015-01-01

    Ustilago maydis, causal agent of corn smut disease, is a dimorphic fungus alternating between a saprobic budding haploid and an obligate pathogenic filamentous dikaryon. Maize responds to U. maydis colonization by producing tumorous structures, and only within these does the fungus sporulate, producing melanized sexual teliospores. Previously we identified Ust1, an APSES (Asm1p, Phd1p, Sok2p, Efg1p, and StuAp) transcription factor, whose deletion led to filamentous haploid growth and the production of highly pigmented teliospore-like structures in culture. In this study, we analyzed the transcriptome of a ust1 deletion mutant and functionally characterized two highly upregulated genes with potential roles in melanin biosynthesis: um05361, encoding a putative laccase (lac1), and um06414, encoding a polyketide synthase (pks1). The Δlac1 mutant strains showed dramatically reduced virulence on maize seedlings and fewer, less-pigmented teliospores in adult plants. The Δpks1 mutant was unaffected in seedling virulence but adult plant tumors generated hyaline, nonmelanized teliospores. Thus, whereas pks1 appeared to be restricted to the synthesis of melanin, lac1 showed a broader role in virulence. In conclusion, the ust1 deletion mutant provided an in vitro model for sporulation in U. maydis, and functional analysis supports the efficacy of this in vitro mutant analysis for identification of genes involved in in planta teliosporogenesis.

  18. The einkorn wheat (Triticum monococcum) mutant, maintained vegetative phase, is caused by a deletion in the VRN1 gene.

    Science.gov (United States)

    Shitsukawa, Naoki; Ikari, Chihiro; Shimada, Sanae; Kitagawa, Satoshi; Sakamoto, Koichi; Saito, Hiroyuki; Ryuto, Hiromichi; Fukunishi, Nobuhisa; Abe, Tomoko; Takumi, Shigeo; Nasuda, Shuhei; Murai, Koji

    2007-04-01

    The einkorn wheat (Triticum monococcum) mutant, maintained vegetative phase (mvp), was induced by nitrogen ion-beam treatment and was identified by its inability to transit from the vegetative to reproductive phase. In our previous study, we showed that WAP1 (wheat APETALA1) is a key gene in the regulatory pathway that controls phase transition from vegetative to reproductive growth in common wheat. WAP1 is an ortholog of the VRN1 gene that is responsible for vernalization insensitivity in einkorn wheat. The mvp mutation resulted from deletion of the VRN1 coding and promoter regions, demonstrating that WAP1/VRN1 is an indispensable gene for phase transition in wheat. Expression analysis of flowering-related genes in mvp plants indicated that wheat GIGANTIA (GI), CONSTANS (CO) and SUPRESSOR OF OVEREXPRESSION OF CONSTANS 1 (SOC1) genes either act upstream of or in a different pathway to WAP1/VRN1.

  19. Method for identifying mutagenic agents which induce large, multilocus deletions in DNA

    Energy Technology Data Exchange (ETDEWEB)

    Bradley, W.E.C.; Belouchi, A.; Dewyse, P.

    1993-07-13

    A method of identifying a mutagenic agent is described which includes a large, multilocus deletions in DNA in mammalian cells comprising: (i) exposing a class III heterozygous CHO cell line to a potential mutagenic agent under investigation, and allowing any mutation of the cell line to proceed, said cell line being characterized in that a restriction fragment length variation exists in on mutation it becomes resistant to 2,6-diaminopurine and in that the DNA sequence adjacent to the two alleles of the APRT gene such that the DNA sequence adjacent to one of the two alleles can be digested with the enzyme BclI but the DNA sequence variation adjacent to the other of the two alleles cannot be digested with BclI, (ii) isolating induced mutations of the cell line deficient in APRT function, (iii) isolating DNA from the induced mutants, (iv) digesting the isolated DNA with BclI enzyme to produce digested fragments including a 19 kb fragment and any 2 kb fragment, which fragments hybridize with the labeled probe derived from DNA fragment PDI, (v) separating any digested fragments, (vi) transferring the separated fragments of (v) to a solid support, (vii) hybridizing the supported separated fragments with a labeled probe derived from the clone DNA fragment PD 1, (viii) determining fragments having undergone loss of the 2 kb band identified by the probe, as an identification of parent mutants in which the loss occurred, and (ix) evaluating the mutating ability of the potential mutagenic agent.

  20. Generation of stable mutants and targeted gene deletion strains in Cryptococcus neoformans through electroporation.

    Science.gov (United States)

    Lin, Xiaorong; Chacko, Nadia; Wang, Linqi; Pavuluri, Yashwant

    2015-04-01

    Cryptococcus neoformans is the etiologic agent of cryptococcal meningitis that causes more than half a million deaths worldwide each year. This capsulated basidiomycetous yeast also serves as a model for micropathogenic studies. The ability to make stable mutants, either via ectopic integration or homologous recombination, has been accomplished using biolistic transformation. This technical advance has greatly facilitated the research on the basic biology and pathogenic mechanisms of this pathogen in the past two decades. However, biolistic transformation is costly, and its reproducibility varies widely. Here we found that stable ectopic integration or targeted gene deletion via homologous replacement could be accomplished through electroporative transformation. The stability of the transformants obtained through electroporation and the frequency of homologous replacement is highly dependent on the selective marker. A frequency of homologous recombination among the stable transformants obtained by electroporation is comparable to those obtained by biolistic transformation (∼10%) when dominant drug selection markers are used, which is much higher than what has been previously reported for electroporation when auxotrophic markers were used (0.001% to 0.1%). Furthermore, disruption of the KU80 gene or generation of gene deletion constructs using the split marker strategy, two approaches known to increase homologous replacement among transformants obtained through biolistic transformation, also increase the frequency of homologous replacement among transformants obtained through electroporation. Therefore, electroporation provides a low cost alternative for mutagenesis in Cryptococcus.

  1. Huntington's disease and mitochondrial DNA deletions: event or regular mechanism for mutant huntingtin protein and CAG repeats expansion?!

    Science.gov (United States)

    Banoei, Mohammad Mehdi; Houshmand, Massoud; Panahi, Mehdi Shafa Shariat; Shariati, Parvin; Rostami, Maryam; Manshadi, Masoumeh Dehghan; Majidizadeh, Tayebeh

    2007-11-01

    The mitochondrial DNA (mtDNA) may play an essential role in the pathogenesis of the respiratory chain complex activities in neurodegenerative disorders such as Huntington's disease (HD). Research studies were conducted to determine the possible levels of mitochondrial defect (deletion) in HD patients and consideration of interaction between the expanded Huntingtin gene as a nuclear gene and mitochondria as a cytoplasmic organelle. To determine mtDNA damage, we investigated deletions based in four areas of mitochondrial DNA, in a group of 60 Iranian patients clinically diagnosed with HD and 70 healthy controls. A total of 41 patients out of 60 had CAG expansion (group A). About 19 patients did not show expansion but had the clinical symptoms of HD (group B). MtDNA deletions were classified into four groups according to size; 9 kb, 7.5 kb, 7 kb, and 5 kb. We found one of the four-mtDNA deletions in at least 90% of samples. Multiple deletions have also been observed in 63% of HD patients. None of the normal control (group C) showed mtDNA deletions. The sizes or locations of the deletions did not show a clear correlation with expanded CAG repeat and age in our samples. The study presented evidence that HD patients had higher frequencies of mtDNA deletions in lymphocytes in comparison to the controls. It is thus proposed that CAG repeats instability and mutant Htt are causative factor in mtDNA damage.

  2. Identifying and calling insertions, deletions, and single-base mutations efficiently from sequence data

    Science.gov (United States)

    Whole genome sequencing studies can directly identify causative mutations for subsequent use in genomic evaluations, but sequence variant identification is a lengthy and sometimes inaccurate process. The speed and accuracy of identifying small insertions and deletions of sequence, collectively terme...

  3. Poliovirus temperature-sensitive mutant containing a single nucleotide deletion in the 5'-noncoding region of the viral RNA.

    Science.gov (United States)

    Racaniello, V R; Meriam, C

    1986-12-01

    The effect on viral replication of deleting nucleotide 10 of the poliovirus RNA genome was determined. This deletion, which removes a base pair from a predicted hairpin structure in the viral RNA, was introduced into full-length cDNA. Virus recovered after transfection of HeLa cells with the mutated cDNA contained the expected deletion and was temperature sensitive for plaque formation. Analysis of viral replication by one-step growth experiments indicated that mutant virus production at the nonpermissive temperature was at least 100 times less than that of wild type virus, and release of virus from mutant-infected cells was delayed. The synthesis of positive- and negative-strand viral RNA in mutant virus-infected cells was temperature sensitive. Virus-specific protein synthesis in mutant virus-infected cells was not temperature sensitive but occurred at a slower rate than that of wild type virus at permissive and nonpermissive temperatures. Replication of the mutant virus was sensitive to actinomycin D, in contrast to the wild type parent virus, which was resistant to the drug. Mutant virus stocks contained a small percentage of ts+ viruses that were able to form plaques at the nonpermissive temperature. Nucleotide sequence analysis of genomic RNA from these ts+ viruses revealed a single base change at position 34 from a G to U. In the positive RNA strand, the effect of this mutation is to restore to the hairpin structure the single base pair whose formation was prevented by the original deletion. The ts+ pseudorevertants replicated to similar titers as wild type virus at 33 and 38.5 degrees and were partially sensitive to actinomycin D.

  4. Deletion of Osr2 Partially Rescues Tooth Development in Runx2 Mutant Mice

    Science.gov (United States)

    Kwon, H.J.E.; Park, E.K.; Jia, S.; Liu, H.; Lan, Y.

    2015-01-01

    Tooth organogenesis depends on genetically programmed sequential and reciprocal inductive interactions between the dental epithelium and neural crest–derived mesenchyme. Previous studies showed that the Msx1 and Runx2 transcription factors are required for activation of odontogenic signals, including Bmp4 and Fgf3, in the early tooth mesenchyme to drive tooth morphogenesis through the bud-to-cap transition and that Runx2 acts downstream of Msx1 to activate Fgf3 expression. Recent studies identified Osr2 as a repressor of tooth development and showed that inactivation of Osr2 rescued molar tooth morphogenesis in the Msx1-/- mutant mice as well as in mice with neural crest–specific inactivation of Bmp4. Here we show that Runx2 expression is expanded in the tooth bud mesenchyme in Osr2-/- mutant mouse embryos and is partially restored in the tooth mesenchyme in Msx1-/-Osr2-/- mutants in comparison with Msx1-/- and wild-type embryos. Whereas mandibular molar development arrested at the bud stage and maxillary molar development arrested at the bud-to-cap transition in Runx2-/- mutant mice, both mandibular and maxillary molar tooth germs progressed to the early bell stage, with rescued expression of Msx1 and Bmp4 in the dental papilla as well as expression of Bmp4, p21, and Shh in the primary enamel knot in the Osr2-/-Runx2-/- compound mutants. In contrast to the Msx1-/-Osr2-/- compound mutants, which exhibit nearly normal first molar morphogenesis, the Osr2-/-Runx2-/- compound mutant embryos failed to activate the expression of Fgf3 and Fgf10 in the dental papilla and exhibited significant deficit in cell proliferation in both the dental epithelium and mesenchyme in comparison with the control embryos. These data indicate that Runx2 synergizes with Msx1 to drive tooth morphogenesis through the bud-to-cap transition and that Runx2 controls continued tooth growth and morphogenesis beyond the cap stage through activation of Fgf3 and Fgf10 expression in the dental

  5. Deletion of Osr2 Partially Rescues Tooth Development in Runx2 Mutant Mice.

    Science.gov (United States)

    Kwon, H J E; Park, E K; Jia, S; Liu, H; Lan, Y; Jiang, R

    2015-08-01

    Tooth organogenesis depends on genetically programmed sequential and reciprocal inductive interactions between the dental epithelium and neural crest-derived mesenchyme. Previous studies showed that the Msx1 and Runx2 transcription factors are required for activation of odontogenic signals, including Bmp4 and Fgf3, in the early tooth mesenchyme to drive tooth morphogenesis through the bud-to-cap transition and that Runx2 acts downstream of Msx1 to activate Fgf3 expression. Recent studies identified Osr2 as a repressor of tooth development and showed that inactivation of Osr2 rescued molar tooth morphogenesis in the Msx1(-/-) mutant mice as well as in mice with neural crest-specific inactivation of Bmp4. Here we show that Runx2 expression is expanded in the tooth bud mesenchyme in Osr2(-/-) mutant mouse embryos and is partially restored in the tooth mesenchyme in Msx1(-/-)Osr2(-/-) mutants in comparison with Msx1(-/-) and wild-type embryos. Whereas mandibular molar development arrested at the bud stage and maxillary molar development arrested at the bud-to-cap transition in Runx2(-/-) mutant mice, both mandibular and maxillary molar tooth germs progressed to the early bell stage, with rescued expression of Msx1 and Bmp4 in the dental papilla as well as expression of Bmp4, p21, and Shh in the primary enamel knot in the Osr2(-/-)Runx2(-/-) compound mutants. In contrast to the Msx1(-/-)Osr2(-/-) compound mutants, which exhibit nearly normal first molar morphogenesis, the Osr2(-/-)Runx2(-/-) compound mutant embryos failed to activate the expression of Fgf3 and Fgf10 in the dental papilla and exhibited significant deficit in cell proliferation in both the dental epithelium and mesenchyme in comparison with the control embryos. These data indicate that Runx2 synergizes with Msx1 to drive tooth morphogenesis through the bud-to-cap transition and that Runx2 controls continued tooth growth and morphogenesis beyond the cap stage through activation of Fgf3 and Fgf10 expression

  6. Transcriptomic profile of aguR deletion mutant of Lactococcus lactis subsp. cremoris CECT 8666

    Directory of Open Access Journals (Sweden)

    Beatriz del Rio

    2015-12-01

    Full Text Available Lactococcus lactis subsp. cremoris CECT 8666 (formerly GE2-14 is a dairy strain that catabolizes agmatine (a decarboxylated derivative of arginine into the biogenic amine putrescine by the agmatine deiminase (AGDI pathway [1]. The AGDI cluster of L. lactis is composed by five genes aguR, aguB, aguD, aguA and aguC. The last four genes are responsible for the deamination of agmatine to putrescine and are co-transcribed as a single policistronic mRNA forming the catabolic operon aguBDAC [1]. aguR encodes a transmembrane protein that functions as a one-component signal transduction system that senses the agmatine concentration of the medium and accordingly regulates the transcription of aguBDAC [2], which is also transcriptionally regulated by carbon catabolic repression (CCR via glucose, but not by other sugars such as lactose and galactose [1,3]. Here we report the transcriptional profiling of the aguR gene deletion mutant (L. lactis subsp. cremoris CECT 8666 ∆aguR [2] compared to the wild type strain, both grown in M17 medium with galactose as carbon source and supplemented with agmatine. The transcriptional profiling data of AguR-regulated genes were deposited in the Gene Expression Omnibus (GEO database under accession no. GSE59514.

  7. Transcriptome profiling of TDC cluster deletion mutant of Enterococcus faecalis V583

    Directory of Open Access Journals (Sweden)

    Marta Perez

    2016-09-01

    Full Text Available The species Enterococcus faecalis is able to catabolise the amino acid tyrosine into the biogenic amine tyramine by the tyrosine decarboxilase (TDC pathway Ladero et al. (2012 [1]. The TDC cluster comprises four genes: tyrS, an aminoacyl-tRNA synthetase-like gene; tdcA, which encodes the tyrosine decarboxylase; tyrP, a tyrosine/tyramine exchanger gene and nhaC-2, which encodes an Na+/H+ antiporter and whose role in the tyramine biosynthesis remains unknown [2]. In E. faecalis V583 the last three genes are co-transcribed as a single polycistronic mRNA forming the catabolic operon, while tyrS is transcribed independently of the catabolic genes as a monocistronic mRNA [2]. The catabolic operon is transcriptionally induced by tyrosine and acidic pH. On the opposite, the tyrS expression is repressed by tyrosine concentrations [2]. In this work we report the transcriptional profiling of the TDC cluster deletion mutant (E. faecalis V583 ΔTDC [2] compared to the wild-type strain, both grown in M17 medium supplemented with tyrosine. The transcriptional profile data of TDC cluster-regulated genes were deposited in the Gene Expression Omnibus (GEO database under accession no. GSE77864.

  8. Transcriptomic profile of aguR deletion mutant of Lactococcus lactis subsp. cremoris CECT 8666.

    Science.gov (United States)

    Del Rio, Beatriz; Linares, Daniel M; Redruello, Begoña; Martin, Maria Cruz; Fernandez, Maria; de Jong, Anne; Kuipers, Oscar P; Ladero, Victor; Alvarez, Miguel A

    2015-12-01

    Lactococcus lactis subsp. cremoris CECT 8666 (formerly GE2-14) is a dairy strain that catabolizes agmatine (a decarboxylated derivative of arginine) into the biogenic amine putrescine by the agmatine deiminase (AGDI) pathway [1]. The AGDI cluster of L. lactis is composed by five genes aguR, aguB, aguD, aguA and aguC. The last four genes are responsible for the deamination of agmatine to putrescine and are co-transcribed as a single policistronic mRNA forming the catabolic operon aguBDAC[1]. aguR encodes a transmembrane protein that functions as a one-component signal transduction system that senses the agmatine concentration of the medium and accordingly regulates the transcription of aguBDAC[2], which is also transcriptionally regulated by carbon catabolic repression (CCR) via glucose, but not by other sugars such as lactose and galactose [1], [3]. Here we report the transcriptional profiling of the aguR gene deletion mutant (L. lactis subsp. cremoris CECT 8666 ∆aguR) [2] compared to the wild type strain, both grown in M17 medium with galactose as carbon source and supplemented with agmatine. The transcriptional profiling data of AguR-regulated genes were deposited in the Gene Expression Omnibus (GEO) database under accession no. GSE59514.

  9. Transcriptome profiling of TDC cluster deletion mutant of Enterococcus faecalis V583.

    Science.gov (United States)

    Perez, Marta; Ladero, Victor; Del Rio, Beatriz; Redruello, Begoña; de Jong, Anne; Kuipers, Oscar P; Kok, Jan; Martin, M Cruz; Fernandez, Maria; Alvarez, Miguel A

    2016-09-01

    The species Enterococcus faecalis is able to catabolise the amino acid tyrosine into the biogenic amine tyramine by the tyrosine decarboxilase (TDC) pathway Ladero et al. (2012) [1]. The TDC cluster comprises four genes: tyrS, an aminoacyl-tRNA synthetase-like gene; tdcA, which encodes the tyrosine decarboxylase; tyrP, a tyrosine/tyramine exchanger gene and nhaC-2, which encodes an Na(+)/H(+) antiporter and whose role in the tyramine biosynthesis remains unknown [2]. In E. faecalis V583 the last three genes are co-transcribed as a single polycistronic mRNA forming the catabolic operon, while tyrS is transcribed independently of the catabolic genes as a monocistronic mRNA [2]. The catabolic operon is transcriptionally induced by tyrosine and acidic pH. On the opposite, the tyrS expression is repressed by tyrosine concentrations [2]. In this work we report the transcriptional profiling of the TDC cluster deletion mutant (E. faecalis V583 ΔTDC) [2] compared to the wild-type strain, both grown in M17 medium supplemented with tyrosine. The transcriptional profile data of TDC cluster-regulated genes were deposited in the Gene Expression Omnibus (GEO) database under accession no. GSE77864.

  10. A Yeast Mutant Deleted of GPH1 Bears Defects in Lipid Metabolism.

    Directory of Open Access Journals (Sweden)

    Martina Gsell

    Full Text Available In a previous study we demonstrated up-regulation of the yeast GPH1 gene under conditions of phosphatidylethanolamine (PE depletion caused by deletion of the mitochondrial (M phosphatidylserine decarboxylase 1 (PSD1 (Gsell et al., 2013, PLoS One. 8(10:e77380. doi: 10.1371/journal.pone.0077380. Gph1p has originally been identified as a glycogen phosphorylase catalyzing degradation of glycogen to glucose in the stationary growth phase of the yeast. Here we show that deletion of this gene also causes decreased levels of phosphatidylcholine (PC, triacylglycerols and steryl esters. Depletion of the two non-polar lipids in a Δgph1 strain leads to lack of lipid droplets, and decrease of the PC level results in instability of the plasma membrane. In vivo labeling experiments revealed that formation of PC via both pathways of biosynthesis, the cytidine diphosphate (CDP-choline and the methylation route, is negatively affected by a Δgph1 mutation, although expression of genes involved is not down regulated. Altogether, Gph1p besides its function as a glycogen mobilizing enzyme appears to play a regulatory role in yeast lipid metabolism.

  11. Phenotype MicroArray Analysis of Escherichia coli K-12 Mutants with Deletions of All Two-Component Systems

    Science.gov (United States)

    Zhou, Lu; Lei, Xiang-He; Bochner, Barry R.; Wanner, Barry L.

    2003-01-01

    Two-component systems are the most common mechanism of transmembrane signal transduction in bacteria. A typical system consists of a histidine kinase and a partner response regulator. The histidine kinase senses an environmental signal, which it transmits to its partner response regulator via a series of autophosphorylation, phosphotransfer, and dephosphorylation reactions. Much work has been done on particular systems, including several systems with regulatory roles in cellular physiology, communication, development, and, in the case of bacterial pathogens, the expression of genes important for virulence. We used two methods to investigate two-component regulatory systems in Escherichia coli K-12. First, we systematically constructed mutants with deletions of all two-component systems by using a now-standard technique of gene disruption (K. A. Datsenko and B. L. Wanner, Proc. Natl. Acad. Sci. USA 97:6640-6645, 2000). We then analyzed these deletion mutants with a new technology called Phenotype MicroArrays, which permits assays of nearly 2,000 growth phenotypes simultaneously. In this study we tested 100 mutants, including mutants with individual deletions of all two-component systems and several related genes, including creBC-regulated genes (cbrA and cbrBC), phoBR-regulated genes (phoA, phoH, phnCDEFGHIJKLMNOP, psiE, and ugpBAECQ), csgD, luxS, and rpoS. The results of this battery of nearly 200,000 tests provided a wealth of new information concerning many of these systems. Of 37 different two-component mutants, 22 showed altered phenotypes. Many phenotypes were expected, and several new phenotypes were also revealed. The results are discussed in terms of the biological roles and other information concerning these systems, including DNA microarray data for a large number of the same mutants. Other mutational effects are also discussed. PMID:12897016

  12. Effects of Chlorophyll Availability on Fluorescence Components of Photosystems in the ORF469-Deletion Mutant of Cyanobacterium

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    PCR-amplified ORF469 fragment from Synechocystis sp.PCC 6803 was cloned into pUC118 and a construct was made in which part of ORF469 was deleted and replaced by erythromycin resistance cassette.Transformation of wild type strain of Synechocystis sp.PCC 6803 with this construct yielded a mutant in which ORF469 was deleted.In the resulting mutant, the light-independent pathway of chlorophyll biosynthesis was inactivated and availability of chlorophyll was fully dependent on light.When propagated the mutant in dark, the chlorophyll was non-detectable and protochlorophyllide with 645 nm fluorescence emission peak was accumulated.Meanwhile, the fluorescence emission peaks (excited at 435 nm) of thylakoids at 685 nm, 695 nm and 725 nm, which represented relative chlorophyll-binding proteins, disappeared.Upon return of dark-grown ORF469 mutant to the light, greening occurred and chlorophyll was synthesized to assembly fluorescence emission components in photosystems.Newly synthesized chlorophyll combined the fluorescence component of 685 nm at first, then 725 nm and 695 nm at last, which indicates a pecking order for biogenesis of chlorophyll-binding proteins when availability of chlorophyll is limited.The mutant lacking ORF469 in Synechocystis sp.PCC 6803 was suggested as an excellent cyanobacterial system for studies on the interactions between chlorophyll and chlorophyll-binding proteins in photosystems.

  13. Trapping of normal EB1 ligands in aggresomes formed by an EB1 deletion mutant

    Directory of Open Access Journals (Sweden)

    Askham Jon M

    2005-04-01

    Full Text Available Abstract Background EB1 is a microtubule tip-associated protein that interacts with the APC tumour suppressor protein and the p150glued subunit of dynactin. We previously reported that an EB1 deletion mutant that retains both of these interactions but does not directly associate with microtubules (EB1-ΔN2-GFP spontaneously formed perinuclear aggregates when expressed in COS-7 cells. Results In the present study live imaging indicated that EB1-ΔN2-GFP aggregates underwent dynamic microtubule-dependent changes in morphology and appeared to be internally cohesive. EB1-ΔN2-GFP aggregates were phase-dense structures that displayed microtubule-dependent accumulation around the centrosome, were immunoreactive for both the 20s subunit of the proteasome and ubiquitin, and induced the collapse of the vimentin cytoskeleton. Fractionation studies revealed that a proportion of EB1-ΔN2-GFP was detergent-insoluble and ubiquitylated, indicating that EB1-ΔN2-GFP aggregates are aggresomes. Immunostaining also revealed that APC and p150glued were present in EB1-ΔN2-GFP aggregates, whereas EB3 was not. Furthermore, evidence for p150glued degradation was found in the insoluble fraction of EB1-ΔN2-GFP transfected cultures. Conclusion Our data indicate that aggresomes can be internally cohesive and may not represent a simple "aggregate of aggregates" assembled around the centrosome. Our observations also indicate that a partially misfolded protein may retain the ability to interact with its normal physiological ligands, leading to their co-assembly into aggresomes. This supports the idea that the trapping and degradation of co-aggregated proteins might contribute to human pathologies characterised by aggresome formation.

  14. Using Fluorescence in situ Hybridization to Identify DMD/BMD Deletion Carriers

    Institute of Scientific and Technical Information of China (English)

    Ren-li WANG; Yan-ping XIAO; Xiu-rong JIANG

    2003-01-01

    Objective To identify the deletions in Duchenne/Becker muscular dystrophy (DMD/BMD) by using fluorescence in situ hybridization (FISH) Methods The exon-specific cosmid DNA probes (representing 18 exons) were used to perform one-color FISH on metaphase and interphase preparations. The peripheral blood samples from 9 normal people (4 males and 5 females) and 5 females from independent deletion DMD/BMD families, as well as 2 amniotic fluid specimens and 2 chorionic villus samples (CVS) from normal pregnant females were analyzed.Results 72%~100% of peripheral blood lymphocyte metaphases or interphases, 60%~70% of amniocyte interphases, and 95~99% of chorionic villus cell interphases showed expected signals. One suspected female was identified as deletion carriers and two were excluded.Conclusion FISH in combination with other available techniques allows efficient screening of DMD/BMD deletion carriers, which also lay the ground work for prenatal diagnosis for potential fetal carriers.

  15. Sleeping Beauty transposon mutagenesis identifies genes that cooperate with mutant Smad4 in gastric cancer development.

    Science.gov (United States)

    Takeda, Haruna; Rust, Alistair G; Ward, Jerrold M; Yew, Christopher Chin Kuan; Jenkins, Nancy A; Copeland, Neal G

    2016-04-05

    Mutations in SMAD4 predispose to the development of gastrointestinal cancer, which is the third leading cause of cancer-related deaths. To identify genes driving gastric cancer (GC) development, we performed a Sleeping Beauty (SB) transposon mutagenesis screen in the stomach of Smad4(+/-) mutant mice. This screen identified 59 candidate GC trunk drivers and a much larger number of candidate GC progression genes. Strikingly, 22 SB-identified trunk drivers are known or candidate cancer genes, whereas four SB-identified trunk drivers, including PTEN, SMAD4, RNF43, and NF1, are known human GC trunk drivers. Similar to human GC, pathway analyses identified WNT, TGF-β, and PI3K-PTEN signaling, ubiquitin-mediated proteolysis, adherens junctions, and RNA degradation in addition to genes involved in chromatin modification and organization as highly deregulated pathways in GC. Comparative oncogenomic filtering of the complete list of SB-identified genes showed that they are highly enriched for genes mutated in human GC and identified many candidate human GC genes. Finally, by comparing our complete list of SB-identified genes against the list of mutated genes identified in five large-scale human GC sequencing studies, we identified LDL receptor-related protein 1B (LRP1B) as a previously unidentified human candidate GC tumor suppressor gene. In LRP1B, 129 mutations were found in 462 human GC samples sequenced, and LRP1B is one of the top 10 most deleted genes identified in a panel of 3,312 human cancers. SB mutagenesis has, thus, helped to catalog the cooperative molecular mechanisms driving SMAD4-induced GC growth and discover genes with potential clinical importance in human GC.

  16. Analysis of a naturally-occurring deletion mutant of Spodoptera frugiperda multiple nucleopolyhedrovirus reveals sf58 as a new per os infectivity factor of lepidopteran-infecting baculoviruses.

    Science.gov (United States)

    Simón, Oihane; Palma, Leopoldo; Williams, Trevor; López-Ferber, Miguel; Caballero, Primitivo

    2012-01-01

    The Nicaraguan population of Spodoptera frugiperda multiple nucleopolyhedrovirus, SfMNPV-NIC, is structured as a mixture of nine genotypes (A-I). Occlusion bodies (OBs) of SfMNPV-C, -D and -G pure genotypes are incapable of oral transmission; a phenotype which in SfMNPV-C and -D is due to the absence of pif1 and pif2 genes. The complete sequence of the SfMNPV-G genome was determined to identify possible factors involved in this phenotype. Deletions of 4860 bp (22,366-27,225) and 60 bp (119,759-119,818) were observed in SfMNPV-G genome compared with that of the predominant complete genotype SfMNPV-B (132,954 bp). However no genes homologous to previously described per os infectivity factors were located within the deleted sequences. Significant differences were detected in the nucleotide sequence in sf58 gene (unknown function) that produced changes in the amino acid sequence and the predicted secondary structure of the corresponding protein. This gene is conserved only in lepidopteran baculoviruses (alpha- and betabaculoviruses). To determine the role of sf58 in peroral infectivity a deletion mutant was constructed using bacmid technology. OBs of the deletion mutant (Sf58null) were not orally infectious for S. frugiperda larvae, whereas Sf58null rescue virus OBs recovered oral infectivity. Sf58null DNA and occlusion derived virions (ODVs) were as infective as SfMNPV bacmid DNA and ODVs in intrahemocelically infected larvae or cell culture, indicating that defects in ODV or OB morphogenesis were not involved in the loss of peroral infectivity. Addition of optical brightener or the presence of the orally infectious SfMNPV-B OBs in mixtures with SfMNPV-G OBs did not recover Sf58null OB infectivity. According to these results sf58 is a new per os infectivity factor present only in lepidopteran baculoviruses.

  17. Construction of deletion mutants in the phosphotransferase transport system and adenosine triphosphate-binding cassette transporters in Listeria monocytogenes and analysis of their growth under different stress conditions

    Directory of Open Access Journals (Sweden)

    Marina Ceruso

    2013-10-01

    Full Text Available Functional genomics approaches enable us to investigate the biochemical, cellular, and physiological properties of each gene product and are nowadays applied to enhance food safety by understanding microbial stress responses in food and host-pathogen interactions. Listeria monocytogenes is a food-borne pathogen that causes listeriosis and is difficult to eliminate this pathogen since it can survive under multiple stress conditions such as low pH and low temperature. Detailed studies are needed to determine its mode of action and to understand the mechanisms that protect the pathogen when it is subjected to stress. In this study, deletion mutants of phosphotransferase transport system genes (PTS and adenosine triphosphate(ATP-binding cassette transporters (ABC of Listeria monocytogenes F2365 were created using molecular techniques. These mutants and the wild-type were tested under different stress conditions, such as in solutions with different NaCl concentration, pH value and for nisin resistance. Results demonstrate that the behaviour of these deletion mutants is different from the wild type. In particular, deleted genes may be involved in L. monocytogenes resistance to nisin and to acid and salt concentrations. Functional genomics research on L. monocytogenes allows a better understanding of the genes related to stress responses and this knowledge may help in intervention strategies to control this food-borne pathogen. Furthermore, specific gene markers can be used to identify and subtype L. monocytogenes. Thus, future development of this study will focus on additional functional analyses of important stress response-related genes, as well as on methods for rapid and sensitive detection of L. monocytogenes such as using DNA microarrays.

  18. Construction and characterization of ack deleted mutant of Clostridium tyrobutyricum for enhanced butyric acid and hydrogen production.

    Science.gov (United States)

    Liu, Xiaoguang; Zhu, Ying; Yang, Shang-Tian

    2006-01-01

    Clostridium tyrobutyricum produces butyrate, acetate, H(2), and CO(2) as its main fermentation products from glucose and xylose. To improve butyric acid and hydrogen production, integrational mutagenesis was used to create a metabolically engineered mutant with inactivated ack gene, encoding acetate kinase (AK) associated with the acetate formation pathway. A non-replicative plasmid containing the acetate kinase gene (ack) fragment was constructed and introduced into C. tyrobutyricum by electroporation. Integration of the plasmid into the homologous region on the chromosome should inactivate the target ack gene and produce ack-deleted mutant, PAK-Em. Enzyme activity assays showed that the AK activity in PAK-Em decreased by approximately 50%; meanwhile, phosphotransacetylase (PTA) and hydrogenase activities each increased by approximately 40%. The sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) results showed that the expression of protein with approximately 32 kDa molecular mass was reduced significantly in the mutant. Compared to the wild type, the mutant grew more slowly at pH 6.0 and 37 degrees C, with a lower specific growth rate of 0.14 h(-1) (vs 0.21 h(-1) for the wild type), likely due to the partially impaired PTA-AK pathway. However, the mutant produced 23.5% more butyrate (0.42 vs 0.34 g/g glucose) at a higher final concentration of 41.7 g/L (vs 19.98 g/L) as a result of its higher butyrate tolerance as indicated in the growth kinetics study using various intial concentrations of butyrate in the media. The mutant also produced 50% more hydrogen (0.024 g/g) from glucose than the wild type. Immobilized-cell fermentation of PAK-Em in a fibrous-bed bioreactor (FBB) further increased the final butyric acid concentration (50.1 g/L) and the butyrate yield (0.45 g/g glucose). Furthermore, in the FBB fermentation at pH 5.0 with xylose as the substrate, only butyric acid was produced by the mutant, whereas the wild type produced large amounts

  19. Comparative studies of genome-wide maps of nucleosomes between deletion mutants of elp3 and hos2 genes of Saccharomyces cerevisiae.

    Directory of Open Access Journals (Sweden)

    Takashi Matsumoto

    Full Text Available In order to elucidate the influence of histone acetylation upon nucleosomal DNA length and nucleosome position, we compared nucleosome maps of the following three yeast strains; strain BY4741 (control, the elp3 (one of histone acetyltransferase genes deletion mutant, and the hos2 (one of histone deactylase genes deletion mutant of Saccharomyces cerevisiae. We sequenced mononucleosomal DNA fragments after treatment with micrococcal nuclease. After mapping the DNA fragments to the genome, we identified the nucleosome positions. We showed that the distributions of the nucleosomal DNA lengths of the control and the hos2 disruptant were similar. On the other hand, the distribution of the nucleosomal DNA lengths of the elp3 disruptant shifted toward shorter than that of the control. It strongly suggests that inhibition of Elp3-induced histone acetylation causes the nucleosomal DNA length reduction. Next, we compared the profiles of nucleosome mapping numbers in gene promoter regions between the control and the disruptant. We detected 24 genes with low conservation level of nucleosome positions in promoters between the control and the elp3 disruptant as well as between the control and the hos2 disruptant. It indicates that both Elp3-induced acetylation and Hos2-induced deacetylation influence the nucleosome positions in the promoters of those 24 genes. Interestingly, in 19 of the 24 genes, the profiles of nucleosome mapping numbers were similar between the two disruptants.

  20. RDNA cloning vector pVE1, deletion and hybrid mutants and recombinant derivatives thereof products and processes

    Energy Technology Data Exchange (ETDEWEB)

    MacNeil, T.; Gibbons, P.H.

    1987-10-27

    This patent describes novel plasmid pVE1, deletion mutants thereof, recombinant derivatives thereof, which is the same as the genome or nucleic acid of such plasmids and derivatives of such genome, which are useful as recombinant DNA cloning vectors into host organisms, such as bacteria, for example, Streptomyces avermitilis. Portions of such plasmid genome are additionally useful as adjuncts in recombinant DNA cloning procedures, for examples: 1. to permit the maintenance of cloned DNA in the host, either in an integrated state or as an autonomous element; 2. to serve as promoters for increasing expression of endogenous or foreign genes wherein the promoters are ligated to such genes or otherwise serve as promoters; and 3. to serve as regulatory elements for achieving control over endogenous and foreign gene expression. As cloning vectors, pVE1 its deletion mutants, and other derivatives serve for the amplification and transfer of DNA sequences (genes) coding for useful functions. Such modified cloning vectors are introduced into the recipient organism by conjugation or transformation; wherein the hybrid DNA functions in an integrated mode and/or in plasmid mode.

  1. Construction and characterization of pta gene-deleted mutant of Clostridium tyrobutyricum for enhanced butyric acid fermentation.

    Science.gov (United States)

    Zhu, Ying; Liu, Xiaoguang; Yang, Shang-Tian

    2005-04-20

    Clostridium tyrobutyricum ATCC 25755 is an acidogenic bacterium, producing butyrate and acetate as its main fermentation products. In order to decrease acetate and increase butyrate production, integrational mutagenesis was used to disrupt the gene associated with the acetate formation pathway in C. tyrobutyricum. A nonreplicative integrational plasmid containing the phosphotransacetylase gene (pta) fragment cloned from C. tyrobutyricum by using degenerate primers and an erythromycin resistance cassette were constructed and introduced into C. tyrobutyricum by electroporation. Integration of the plasmid into the homologous region on the chromosome inactivated the target pta gene and produced the pta-deleted mutant (PTA-Em), which was confirmed by Southern hybridization. SDS-PAGE and two-dimensional protein electrophoresis results indicated that protein expression was changed in the mutant. Enzyme activity assays using the cell lysate showed that the activities of PTA and acetate kinase (AK) in the mutant were reduced by more than 60% for PTA and 80% for AK. The mutant grew more slowly in batch fermentation with glucose as the substrate but produced 15% more butyrate and 14% less acetate as compared to the wild-type strain. Its butyrate productivity was approximately 2-fold higher than the wild-type strain. Moreover, the mutant showed much higher tolerance to butyrate inhibition, and the final butyrate concentration was improved by 68%. However, inactivation of pta gene did not completely eliminate acetate production in the fermentation, suggesting the existence of other enzymes (or pathways) also leading to acetate formation. This is the first-reported genetic engineering study demonstrating the feasibility of using a gene-inactivation technique to manipulate the acetic acid formation pathway in C. tyrobutyricum in order to improve butyric acid production from glucose.

  2. Analysis of a large cluster of nonessential genes deleted from a vaccinia virus terminal transposition mutant.

    Science.gov (United States)

    Kotwal, G J; Moss, B

    1988-12-01

    The principal objectives of this study were to analyze the structure and coding potential of a long segment of DNA missing from a previously isolated (B. Moss, E. Winters, and J. A. Cooper (1981) J. Virol. 40, 387-395) attenuated variant of vaccinia virus strain WR and to examine the precise changes in the genome accompanying the deletion. The sequences of a 14.5-kbp region located at the left end of the standard vaccinia virus genome, extending from within the inverted terminal repetition (ITR) of the HindIII C fragment to the end of the HindIII N fragment, and of a 3-kbp segment from a corresponding region of the variant genome were determined. A comparison of these sequences revealed that the variant contained a deletion of 12 kbp and an insertion of 2.1 kbp. The origin of the inserted DNA was traced to the HindIII B region by using oligonucleotide probes indicating that a transposition of unique DNA located adjacent to the right ITR had occurred. Structural analysis indicated no extensive homologies, nucleotide substitutions, additions, or deletions at the boundaries of the transposed DNA. Examination of the right end of the variant genome indicated that a copy of the transposed DNA was still present and, therefore, the length of the ITR had been increased by 2.1 kbp. The variant genome could have formed by a mechanism that resulted in the replacement of a 22-kbp left-terminal fragment with a 12-kbp right-terminal fragment. The DNA missing from the variant and contained within the standard vaccinia virus WR genome contains 17 contiguous open reading frames (ORFs), all of which are directed leftward and apparently not required for replication in cultured cells. One deleted ORF has a 60% sequence similarity to another gene encoding a 42,000-Da protein present within the ITR suggesting that duplications have previously occurred during the evolution of vaccinia virus. Another deleted ORF has a 39% sequence similarity to a complement 4b binding protein. The

  3. Expression of brown-midrib in a spontaneous sorghum mutant is linked to a 5'-UTR deletion in lignin biosynthesis gene SbCAD2.

    Science.gov (United States)

    Li, Huang; Huang, Yinghua

    2017-09-15

    Brown midrib (bmr) mutants in sorghum (Sorghum bicolor (L.) Moench) and several other C4 grasses are associated with reduced lignin concentration, altered lignin composition and improved cell wall digestibility, which are desirable properties in biomass development for the emerging lignocellulosic biofuel industry. Studying bmr mutants has considerably expanded our understanding of the molecular basis underlying lignin biosynthesis and perturbation in grasses. In this study, we performed quantitative trait locus (QTL) analysis, identified and cloned a novel cinnamyl alcohol dehydrogenase allele (SbCAD2) that has an 8-bp deletion in its 5'-untranslated region (UTR), conferring the spontaneous brown midrib trait and lignin reduction in the sorghum germplasm line PI 595743. Complementation test and gene expression analysis revealed that this non-coding region alteration is associated with the significantly reduced expression of the SbCAD2 in PI 595743 throughout its growth stages. Moreover, a promoter-GUS fusion study with transgenic Arabidopsis thaliana plants found that SbCAD2 promoter is functionally conserved, driving a specific expression pattern in lignifying vascular tissues. Taken together, our results revealed the genetic basis of bmr occurrence in this spontaneous sorghum mutant and suggested the regulatory region of the SbCAD2 can be a target site for optimizing lignin modification in sorghum and other bioenergy crops.

  4. A Haemophilus ducreyi CpxR deletion mutant is virulent in human volunteers.

    Science.gov (United States)

    Labandeira-Rey, Maria; Dodd, Dana; Fortney, Kate R; Zwickl, Beth; Katz, Barry P; Janowicz, Diane M; Spinola, Stanley M; Hansen, Eric J

    2011-06-15

    Haemophilus ducreyi 35000HP contains a homolog of the CpxRA 2-component signal transduction system, which controls the cell envelope stress response system in other gram-negative bacteria and regulates some important H. ducreyi virulence factors. A H. ducreyi cpxR mutant was compared with its parent for virulence in the human challenge model of experimental chancroid. The pustule formation rate in 5 volunteers was 33% (95% confidence interval [CI], 1.3%-65.3%) at 15 parent sites and 40% (95% CI, 18.1%-61.9%) at 15 mutant sites (P = .35). Thus, the cpxR mutant was not attenuated for virulence. Inactivation of the H. ducreyi cpxR gene did not reduce the ability of this mutant to express certain proven virulence factors, including the DsrA serum resistance protein and the LspA2 protein, which inhibits phagocytosis. These results expand our understanding of the involvement of the CpxRA system in regulating virulence expression in H. ducreyi.

  5. Pathogenicity and protective activity in pregnant goats of a Brucella melitensis Deltaomp25 deletion mutant.

    Science.gov (United States)

    Edmonds, M D; Cloeckaert, A; Hagius, S D; Samartino, L E; Fulton, W T; Walker, J V; Enright, F M; Booth, N J; Elzer, P H

    2002-06-01

    The Brucella melitensis mutant BM 25, which lacks the major 25 kDa outer membrane protein Omp25, has previously been found to be attenuated in the murine brucellosis model. In the present study, the capacity of the Deltaomp25 mutant to colonise and cause abortions in the caprine host was evaluated. The vaccine potential of BM 25 was also investigated in goats. Inoculation of nine pregnant goats in late gestation with the B. melitensis mutant resulted in 0/9 abortions, while the virulent parental strain, B. melitensis 16M, induced 6/6 dams to abort (Pgoats for two weeks post-infection. Owing to the ability of BM 25 to colonise both non-pregnant and pregnant adults without inducing abortions, a vaccine efficacy study was performed. Vaccination of goats prior to breeding with either BM 25 or the current caprine vaccine B. melitensis strain Rev. 1 resulted in 100 per cent protection against abortion following challenge in late gestation with virulent strain 16M (Pmelitensis Deltaomp25 mutant, BM 25, may be a safe and efficacious alternative to strain Rev. 1 when dealing with goat herds of mixed age and pregnancy status.

  6. Characterization of a cold-active lipase from Psychrobacter cryohalolentis K5(T) and its deletion mutants.

    Science.gov (United States)

    Novototskaya-Vlasova, K A; Petrovskaya, L E; Rivkina, E M; Dolgikh, D A; Kirpichnikov, M P

    2013-04-01

    A gene coding for cold-active lipase from the psychrotrophic Gram-negative bacterium Psychrobacter cryohalolentis K5(T) isolated from a Siberian cryopeg has been cloned and expressed in Escherichia coli. The recombinant protein Lip1Pc with a 6× histidine tag at its C-terminus was purified by nickel affinity chromatography. With p-nitrophenyl dodecanoate (C12) as a substrate, the purified recombinant protein displayed maximum lipolytic activity at 25°C and pH 8.0. Increasing the temperature above 40°C and addition of various metal ions and organic solvents inhibited the enzymatic activity of Lip1Pc. Most nonionic detergents, such as Triton X-100 and Tween 20, slightly increased the lipase activity, while SDS completely inhibited it. To investigate the functional significance of the Lip1Pc N-terminal domain, we constructed five deletion mutants of this protein. The ND1 and ND2 mutants displayed specific activity reduced by 30-35%, while other truncated proteins were completely inactive. Both mutants demonstrated increased activity towards p-nitrophenyl decanoate (C10) and impaired utilization of C16 substrate. Although optimum reaction temperature of ND2 lowered to 20°C, it displayed enhanced stability by 44% after incubation at 40°C. The results prove that the N-terminal domain of Lip1Pc has a fundamental impact on the activity and stability of the protein.

  7. Construction of brewing-wine Aspergillus oryzae pyrG- mutant by pyrG gene deletion and its application in homology transformation.

    Science.gov (United States)

    Du, Yu; Xie, Guizhen; Yang, Chunfa; Fang, Baishan; Chen, Hongwen

    2014-06-01

    pyrG(-) host cells are indispensable for pyrG(-) based transformation system. Isolations of pyrG(-) host cells by random mutations are limited by time-consuming, unclear genetic background and potential interferences of homogenous recombination. The purpose of this study was to construct brewing-wine Aspergillus oryzae pyrG(-) mutant by site-directed mutation of pyrG gene deletion which would be used as a host for further transformation. pMD-pyrGAB, a vector carrying pyrG deletion cassette, was used to construct pyrG(-) mutant of A. oryzae. Three stable pyrG deletion mutants of A. oryzae were isolated by resistant to 5-fluoroorotic acid and confirmed by polymerase chain reaction analysis, indicating that pyrG was completely excised. The ΔpyrG mutants were applied as pyrG(-) host cells to disrupt xdh gene encoding xylitol dehydrogenase, which involves in xylitol production of A. oryzae. The xdh disruption mutants were efficiently constructed by transforming a pMD-pyrG-xdh disruption plasmid carrying pyrG, and the produced xylitol concentration of the Δxdh mutant was three times as much as that of the ΔpyrG recipient. Site-directed pyrG gene deletion is thus an effective way for the isolation of pyrG(-) host cells, and the established host-vector system could be applied in further functional genomics analysis and molecular breeding of A. oryzae.

  8. Transcriptome analysis of acetic-acid-treated yeast cells identifies a large set of genes whose overexpression or deletion enhances acetic acid tolerance.

    Science.gov (United States)

    Lee, Yeji; Nasution, Olviyani; Choi, Eunyong; Choi, In-Geol; Kim, Wankee; Choi, Wonja

    2015-08-01

    Acetic acid inhibits the metabolic activities of Saccharomyces cerevisiae. Therefore, a better understanding of how S. cerevisiae cells acquire the tolerance to acetic acid is of importance to develop robust yeast strains to be used in industry. To do this, we examined the transcriptional changes that occur at 12 h post-exposure to acetic acid, revealing that 56 and 58 genes were upregulated and downregulated, respectively. Functional categorization of them revealed that 22 protein synthesis genes and 14 stress response genes constituted the largest portion of the upregulated and downregulated genes, respectively. To evaluate the association of the regulated genes with acetic acid tolerance, 3 upregulated genes (DBP2, ASC1, and GND1) were selected among 34 non-protein synthesis genes, and 54 viable mutants individually deleted for the downregulated genes were retrieved from the non-essential haploid deletion library. Strains overexpressing ASC1 and GND1 displayed enhanced tolerance to acetic acid, whereas a strain overexpressing DBP2 was sensitive. Fifty of 54 deletion mutants displayed enhanced acetic acid tolerance. Three chosen deletion mutants (hsps82Δ, ato2Δ, and ssa3Δ) were also tolerant to benzoic acid but not propionic and sorbic acids. Moreover, all those five (two overexpressing and three deleted) strains were more efficient in proton efflux and lower in membrane permeability and internal hydrogen peroxide content than controls. Individually or in combination, those physiological changes are likely to contribute at least in part to enhanced acetic acid tolerance. Overall, information of our transcriptional profile was very useful to identify molecular factors associated with acetic acid tolerance.

  9. Functional Importance of Deletion Mutant Genotypes in an Insect Nucleopolyhedrovirus Population

    Science.gov (United States)

    Simón, Oihane; Williams, Trevor; López-Ferber, Miguel; Caballero, Primitivo

    2005-01-01

    A Nicaraguan isolate of a nucleopolyhedrovirus (SfNIC) that attacks the fall armyworm, Spodoptera frugiperda, survives as a mixture of nine genotypes (SfNIC A to I) that all present genomic deletions, except variant B (complete genotype). Sequencing of cloned restriction fragments revealed that genotypic variants lack between 5 and 16 of the open reading frames present in a contiguous sequence of 18 kb of the SfNIC genome. The absence of oral infectivity of SfNIC-C and -D variants is related to the deletion of the pif and/or pif-2 gene, while that of SfNIC-G remains unexplained. The presence of open reading frame 10, homolog of Se030, also appeared to influence pathogenicity in certain variants. Previous studies demonstrated a significant positive interaction between genotypes B and C. We compared the median lethal concentration of single genotypes (A, B, C, D, and F) and co-occluded genotype mixtures (B+A, B+D, B+F, A+C, and F+C in a 3:1 ratio). Mixtures B+A and B+D showed increased pathogenicity, although only B+D restored the activity of the mixture to that of the natural population. Mixtures of two deletion variants (A+C and F+C) did not show interactions in pathogenicity. We conclude that minority genotypes have an important influence on the overall pathogenicity of the population. These results clearly demonstrate the value of retaining genotypic diversity in virus-based bioinsecticides. PMID:16085811

  10. Deletion of luxS further attenuates the virulence of the avian pathogenic Escherichia coli aroA mutant.

    Science.gov (United States)

    Han, Xiangan; Bai, Hao; Tu, Jian; Yang, Lijun; Xu, Da; Wang, Shaohui; Qi, Kezong; Fan, Guobo; Zhang, Yuxi; Zuo, Jiakun; Tian, Mingxing; Ding, Chan; Yu, Shengqing

    2015-11-01

    In this study, an aroA-deletion avian pathogenic Escherichia coli (APEC) mutant (strain DE17ΔaroA) and aroA and luxS double deletion APEC mutant (strain DE17ΔluxSΔaroA) were constructed from the APEC DE17 strain. The results showed that as compared to DE17ΔaroA, the virulence of DE17ΔluxSΔaroA was further attenuated by 200- and 31.7-fold, respectively, in ducklings based on the 50% lethal dose. The adherence and invasion abilities of DE17ΔluxSΔaroA and DE17ΔaroA were reduced by 36.5%/42.5% and 25.8%/29.3%, respectively, as compared to the wild-type strain DE17 (p < 0.05 and 0.01, respectively). Furthermore, in vivo studies showed that the bacterial loads of DE17ΔluxSΔaroA were reduced by 8400- and 11,333-fold in the spleen and blood of infected birds, respectively, while those of DE17ΔaroA were reduced by 743- and 1000-fold, respectively, as compared to the wild-type strain DE17. Histopathological analysis showed both that the mutants were associated with reduced pathological changes in the liver, spleen, and kidney of ducklings, and changes in DE17ΔluxSΔaroA-infected ducklings were reduced to a greater degree than those infected with DE17ΔaroA. Real-time polymerase chain reaction analysis further demonstrated that the mRNA levels of virulence-related genes (i.e., tsh, ompA, vat, iucD, pfs, fyuA, and fimC) were significantly decreased in DE17ΔaroA, especially in DE17ΔluxSΔaroA, as compared to DE17 (p < 0.05). In addition, the deletion of aroA or the double deletion of aroA and luxS reduced bacterial motility. To evaluate the potential use of DE17ΔluxSΔaroA as a vaccine candidate, 50 7-day-old ducklings were divided randomly into five groups of ten each for the experiment. The results showed that the ducklings immunized with inactivated DE17, DE17ΔluxS, DE17ΔaroA, and DE17ΔluxSΔaroA were 70.0%, 70.0%, 70.0, and 80.0% protected, respectively, after challenge with strain APEC DE17. The results of this study suggest that the double deletion of

  11. Evaluation of novel Brucella melitensis unmarked deletion mutants for safety and efficacy in the goat model of brucellosis.

    Science.gov (United States)

    Kahl-McDonagh, Melissa M; Elzer, Philip H; Hagius, Sue D; Walker, Joel V; Perry, Quinesha L; Seabury, Christopher M; den Hartigh, Andreas B; Tsolis, Renee M; Adams, L Garry; Davis, Donald S; Ficht, Thomas A

    2006-06-12

    Pregnant goats were employed to assess unmarked deletion mutant vaccine candidates BMDeltaasp24, BMDeltacydBA, and BMDeltavirB2, as the target host species naturally infected with Brucella melitensis. Goats were assessed for the degree of pathology associated with the vaccine strains as well as the protective immunity afforded by each strain against abortion and infection after challenge with wild-type Brucella melitensis 16M. Both BMDeltaasp24 and BMDeltavirB2 were considered safe vaccine candidates in the pregnant goat model because they did not cause abortion or colonize fetal tissues. BMDeltaasp24 was isolated from the maternal tissues only, indicating a slower rate of clearance of the vaccine strain than for BMDeltavirB2, which was not isolated from any maternal or fetal tissues. Both strains were protective against abortion and against infection in the majority of pregnant goats, although BMDeltaasp24 was more efficacious than BMDeltavirB2 against challenge infection.

  12. Residual virulence and immunogenicity of CGV26 and CGV2631 B. melitensis Rev. 1 deletion mutant strains in sheep after subcutaneous or conjunctival vaccination.

    Science.gov (United States)

    Guilloteau, Laurence A; Laroucau, Karine; Olivier, Michel; Grillo, Maria Jesus; Marin, Clara M; Verger, Jean-Michel; Blasco, Jose-Maria

    2006-04-24

    The CGV26 and CGV2631 strains are novel engineered Brucella melitensis Rev.1 mutant strains deleted for the bp26 gene or for both bp26 and omp31 genes, respectively, coding for proteins of diagnostic significance. The residual virulence and immunogenicity of both mutants were compared to the parental Rev.1 strain in sheep after subcutaneous or conjunctival vaccination. The deletion of the bp26 gene or both bp26 and omp31 genes had no significant effect on the intracellular survival of the Rev.1 strain in ovine macrophage cultures. The kinetics of infection induced by both mutants in sheep was similar to the Rev.1 strain, and inoculation by the subcutaneous route produced wider and more generalized infections than the conjunctival route. All strains were cleared from lymph nodes and organs within 3 months after inoculation. The CGV26 and CGV2631 mutants induced both specific systemic antibody response and lymphoproliferation in sheep. The kinetics of the responses induced by the mutants was quite similar to that of the parental Rev.1 strain, except for the intensity of the lymphoproliferative response, which was attenuated for the CGV2631 mutant. In conclusion, the residual virulence of both CGV26 and CGV2631 mutants in sheep was similar to that of the parental Rev.1 vaccine strain. These mutants induced also significant specific antibody and cell-mediated immunity in sheep and are suitable to be evaluated as potential vaccine candidates against B. melitensis and B. ovis infections in sheep.

  13. Suppressors of spindle checkpoint defect (such) mutants identify new mdf-1/MAD1 interactors in Caenorhabditis elegans.

    Science.gov (United States)

    Tarailo, Maja; Kitagawa, Risa; Rose, Ann M

    2007-04-01

    The spindle assembly checkpoint (SAC) governs the timing of metaphase-to-anaphase transition and is essential for genome stability. The Caenorhabditis elegans mutant strain gk2 carries a deletion within the mdf-1/MAD1 gene that results in death of the homozygous strain after two or three generations. Here we describe 11 suppressors of the mdf-1(gk2) lethality, 10 identified in an ethyl methanesulfonate (EMS) mutagenesis screen and 1 isolated using the dog-1(gk10) (deletions of guanine-rich DNA) mutator strain. Using time-lapse imaging of early embryonic cells and germline mitotic division, we demonstrate that there are two classes of suppressors. Eight suppressors compensate for the loss of the checkpoint by delaying mitotic progression, which coincides with securin (IFY-1/Pds1) accumulation; three suppressors have normal IFY-1/Pds1 levels and normal anaphase onset. Furthermore, in the class of suppressors with delayed mitotic progression, we have identified four alleles of known suppressors emb-30/APC4 and fzy-1/CDC20, which are components of the anaphase-promoting complex/cyclosome (APC/C). In addition, we have identified another APC/C component capable of bypassing the checkpoint requirement that has not previously been described in C. elegans. The such-1/APC5-like mutation, h1960, significantly delays anaphase onset both in germline and in early embryonic cells.

  14. A glycoprotein E deletion mutant of bovine herpesvirus 1 infects the same limited number of tissues in calves as wild-type virus, but for a shorter period

    NARCIS (Netherlands)

    Engelenburg, van F.A.C.; Kaashoek, M.J.; Oirschot, van J.T.; Rijsewijk, F.A.M.

    1995-01-01

    To gain insight into the role of glycoprotein E of bovine herpesvirus 1 (BHV-1), we compared the distribution of wild-type (wt) BHV-1 with that of a gE deletion mutant (gE-) in calves after intranasal inoculation. The wt-infected calves had severe clinical signs, but the gE--infected calves were vir

  15. Transcriptional Responses of the Bdtf1-Deletion Mutant to the Phytoalexin Brassinin in the Necrotrophic Fungus Alternaria brassicicola

    Directory of Open Access Journals (Sweden)

    Yangrae Cho

    2014-07-01

    Full Text Available Brassica species produce the antifungal indolyl compounds brassinin and its derivatives, during microbial infection. The fungal pathogen Alternaria brassicicola detoxifies brassinin and possibly its derivatives. This ability is an important property for the successful infection of brassicaceous plants. Previously, we identified a transcription factor, Bdtf1, essential for the detoxification of brassinin and full virulence. To discover genes that encode putative brassinin-digesting enzymes, we compared gene expression profiles between a mutant strain of the transcription factor and wild-type A. brassicicola under two different experimental conditions. A total of 170 and 388 genes were expressed at higher levels in the mutants than the wild type during the infection of host plants and saprophytic growth in the presence of brassinin, respectively. In contrast, 93 and 560 genes were expressed, respectively, at lower levels in the mutant than the wild type under the two conditions. Fifteen of these genes were expressed at lower levels in the mutant than in the wild type under both conditions. These genes were assumed to be important for the detoxification of brassinin and included Bdtf1 and 10 putative enzymes. This list of genes provides a resource for the discovery of enzyme-coding genes important in the chemical modification of brassinin.

  16. Identifying relationships among genomic disease regions: predicting genes at pathogenic SNP associations and rare deletions.

    Directory of Open Access Journals (Sweden)

    Soumya Raychaudhuri

    2009-06-01

    Full Text Available Translating a set of disease regions into insight about pathogenic mechanisms requires not only the ability to identify the key disease genes within them, but also the biological relationships among those key genes. Here we describe a statistical method, Gene Relationships Among Implicated Loci (GRAIL, that takes a list of disease regions and automatically assesses the degree of relatedness of implicated genes using 250,000 PubMed abstracts. We first evaluated GRAIL by assessing its ability to identify subsets of highly related genes in common pathways from validated lipid and height SNP associations from recent genome-wide studies. We then tested GRAIL, by assessing its ability to separate true disease regions from many false positive disease regions in two separate practical applications in human genetics. First, we took 74 nominally associated Crohn's disease SNPs and applied GRAIL to identify a subset of 13 SNPs with highly related genes. Of these, ten convincingly validated in follow-up genotyping; genotyping results for the remaining three were inconclusive. Next, we applied GRAIL to 165 rare deletion events seen in schizophrenia cases (less than one-third of which are contributing to disease risk. We demonstrate that GRAIL is able to identify a subset of 16 deletions containing highly related genes; many of these genes are expressed in the central nervous system and play a role in neuronal synapses. GRAIL offers a statistically robust approach to identifying functionally related genes from across multiple disease regions--that likely represent key disease pathways. An online version of this method is available for public use (http://www.broad.mit.edu/mpg/grail/.

  17. PARK2 deletions occur frequently in sporadic colorectal cancer and accelerate adenoma development in Apc mutant mice.

    Science.gov (United States)

    Poulogiannis, George; McIntyre, Rebecca E; Dimitriadi, Maria; Apps, John R; Wilson, Catherine H; Ichimura, Koichi; Luo, Feijun; Cantley, Lewis C; Wyllie, Andrew H; Adams, David J; Arends, Mark J

    2010-08-24

    In 100 primary colorectal carcinomas, we demonstrate by array comparative genomic hybridization (aCGH) that 33% show DNA copy number (DCN) loss involving PARK2, the gene encoding PARKIN, the E3 ubiquitin ligase whose deficiency is responsible for a form of autosomal recessive juvenile parkinsonism. PARK2 is located on chromosome 6 (at 6q25-27), a chromosome with one of the lowest overall frequencies of DNA copy number alterations recorded in colorectal cancers. The PARK2 deletions are mostly focal (31% approximately 0.5 Mb on average), heterozygous, and show maximum incidence in exons 3 and 4. As PARK2 lies within FRA6E, a large common fragile site, it has been argued that the observed DCN losses in PARK2 in cancer may represent merely the result of enforced replication of locally vulnerable DNA. However, we show that deficiency in expression of PARK2 is significantly associated with adenomatous polyposis coli (APC) deficiency in human colorectal cancer. Evidence of some PARK2 mutations and promoter hypermethylation is described. PARK2 overexpression inhibits cell proliferation in vitro. Moreover, interbreeding of Park2 heterozygous knockout mice with Apc(Min) mice resulted in a dramatic acceleration of intestinal adenoma development and increased polyp multiplicity. We conclude that PARK2 is a tumor suppressor gene whose haploinsufficiency cooperates with mutant APC in colorectal carcinogenesis.

  18. Analysis of Two Complementary Single-Gene Deletion Mutant Libraries of Salmonella Typhimurium in Intraperitoneal Infection of BALB/c Mice

    Science.gov (United States)

    Silva-Valenzuela, Cecilia A.; Molina-Quiroz, Roberto C.; Desai, Prerak; Valenzuela, Camila; Porwollik, Steffen; Zhao, Ming; Hoffman, Robert M.; Andrews-Polymenis, Helene; Contreras, Inés; Santiviago, Carlos A.; McClelland, Michael

    2016-01-01

    Two pools of individual single gene deletion (SGD) mutants of S. Typhimurium 14028s encompassing deletions of 3,923 annotated non-essential ORFs and sRNAs were screened by intraperitoneal (IP) injection in BALB/c mice followed by recovery from spleen and liver 2 days post infection. The relative abundance of each mutant was measured by microarray hybridization. The two mutant libraries differed in the orientation of the antibiotic resistance cassettes (either sense-oriented KanR, SGD-K, or antisense-oriented CamR, SGD-C). Consistent systemic colonization defects were observed in both libraries and both organs for hundreds of mutants of genes previously reported to be important after IP injection in this animal model, and for about 100 new candidate genes required for systemic colonization. Four mutants with a range of apparent fitness defects were confirmed using competitive infections with the wild-type parental strain: ΔSTM0286, ΔSTM0551, ΔSTM2363, and ΔSTM3356. Two mutants, ΔSTM0286 and ΔSTM2363, were then complemented in trans with a plasmid encoding an intact copy of the corresponding wild-type gene, and regained the ability to fully colonize BALB/c mice systemically. These results suggest the presence of many more undiscovered Salmonella genes with phenotypes in IP infection of BALB/c mice, and validate the libraries for application to other systems. PMID:26779130

  19. Wing defects in Drosophila xenicid mutant clones are caused by C-terminal deletion of additional sex combs (Asx.

    Directory of Open Access Journals (Sweden)

    Kara Bischoff

    Full Text Available BACKGROUND: The coordinated action of genes that control patterning, cell fate determination, cell size, and cell adhesion is required for proper wing formation in Drosophila. Defects in any of these basic processes can lead to wing aberrations, including blisters. The xenicid mutation was originally identified in a screen designed to uncover regulators of adhesion between wing surfaces [1]. PRINCIPAL FINDINGS: Here, we demonstrate that expression of the betaPS integrin or the patterning protein Engrailed are not affected in developing wing imaginal discs in xenicid mutants. Instead, expression of the homeotic protein Ultrabithorax (Ubx is strongly increased in xenicid mutant cells. CONCLUSION: Our results suggest that upregulation of Ubx transforms cells from a wing blade fate to a haltere fate, and that the presence of haltere cells within the wing blade is the primary defect leading to the adult wing phenotypes observed.

  20. Isolation and analysis of two Escherichia coli K-12 ilv attenuator deletion mutants with high-level constitutive expression of an ilv-lac fusion operon.

    OpenAIRE

    Bennett, D. C.; Umbarger, H E

    1984-01-01

    A lysogenizing lambda phage, lambda dilv-lac11, was constructed to carry an ilvD-lac operon fusion. Expression from the phage of the ilvE and lacZ genes is controlled by an intact ilv control region also carried by this phage. Two spontaneous mutants of lambda dilv-lac11 that have high-level constitutive expression of the ilv-lac fusion operon were isolated by growth on a beta-chloroalanine selective medium. The mutants were shown by nucleotide sequence determination to contain large deletion...

  1. Integrative Genomic Analysis of Cholangiocarcinoma Identifies Distinct IDH-Mutant Molecular Profiles

    DEFF Research Database (Denmark)

    Farshidfar, Farshad; Zheng, Siyuan; Gingras, Marie-Claude

    2017-01-01

    intrahepatic CCA cases and propose a molecular classification scheme. We identified an IDH mutant-enriched subtype with distinct molecular features including low expression of chromatin modifiers, elevated expression of mitochondrial genes, and increased mitochondrial DNA copy number. Leveraging the multi...

  2. The Immature Fiber Mutant Phenotype of Cotton (Gossypium hirsutum Is Linked to a 22-bp Frame-Shift Deletion in a Mitochondria Targeted Pentatricopeptide Repeat Gene

    Directory of Open Access Journals (Sweden)

    Gregory N. Thyssen

    2016-06-01

    Full Text Available Cotton seed trichomes are the most important source of natural fibers globally. The major fiber thickness properties influence the price of the raw material, and the quality of the finished product. The recessive immature fiber (im gene reduces the degree of fiber cell wall thickening by a process that was previously shown to involve mitochondrial function in allotetraploid Gossypium hirsutum. Here, we present the fine genetic mapping of the im locus, gene expression analysis of annotated proteins near the locus, and association analysis of the linked markers. Mapping-by-sequencing identified a 22-bp deletion in a pentatricopeptide repeat (PPR gene that is completely linked to the immature fiber phenotype in 2837 F2 plants, and is absent from all 163 cultivated varieties tested, although other closely linked marker polymorphisms are prevalent in the diversity panel. This frame-shift mutation results in a transcript with two long open reading frames: one containing the N-terminal transit peptide that targets mitochondria, the other containing only the RNA-binding PPR domains, suggesting that a functional PPR protein cannot be targeted to mitochondria in the im mutant. Taken together, these results suggest that PPR gene Gh_A03G0489 is involved in the cotton fiber wall thickening process, and is a promising candidate gene at the im locus. Our findings expand our understanding of the molecular mechanisms that modulate cotton fiber fineness and maturity, and may facilitate the development of cotton varieties with superior fiber attributes.

  3. Construction and characterization of a glycoprotein E deletion mutant of bovine herpesvirus type 1.2 strain isolated in Brazil

    NARCIS (Netherlands)

    Franco, A.C.; Rijsewijk, F.A.M.; Flores, E.F.; Weiblen, R.; Roehe, P.M.

    2002-01-01

    This paper describes the construction and characterization of a Brazilian strain of bovine herpesvirus type 1.2a (BoHV-1.2a) with a deletion of the glycoprotein E (gE) gene. The deletion was introduced by co-transfection of a deletion fragment containing the 5´and 3´gE flanking regions and genomic D

  4. Large-scale RNA interference screening in mammalian cells identifies novel regulators of mutant huntingtin aggregation.

    Directory of Open Access Journals (Sweden)

    Tomoyuki Yamanaka

    Full Text Available In polyglutamine (polyQ diseases including Huntington's disease (HD, mutant proteins containing expanded polyQ stretch form aggregates in neurons. Genetic or RNAi screenings in yeast, C. elegans or Drosophila have identified multiple genes modifying polyQ aggregation, a few of which are confirmed effective in mammals. However, the overall molecular mechanism underlying polyQ protein aggregation in mammalian cells still remains obscure. We here perform RNAi screening in mouse neuro2a cells to identify mammalian modifiers for aggregation of mutant huntingtin, a causative protein of HD. By systematic cell transfection and automated cell image analysis, we screen ∼ 12000 shRNA clones and identify 111 shRNAs that either suppress or enhance mutant huntingtin aggregation, without altering its gene expression. Classification of the shRNA-targets suggests that genes with various cellular functions such as gene transcription and protein phosphorylation are involved in modifying the aggregation. Subsequent analysis suggests that, in addition to the aggregation-modifiers sensitive to proteasome inhibition, some of them, such as a transcription factor Tcf20, and kinases Csnk1d and Pik3c2a, are insensitive to it. As for Tcf20, which contains polyQ stretches at N-terminus, its binding to mutant huntingtin aggregates is observed in neuro2a cells and in HD model mouse neurons. Notably, except Pik3c2a, the rest of the modifiers identified here are novel. Thus, our first large-scale RNAi screening in mammalian system identifies previously undescribed genetic players that regulate mutant huntingtin aggregation by several, possibly mammalian-specific mechanisms.

  5. Complete androgen insensitivity syndrome due to a new frameshift deletion in exon 4 of the androgen receptor gene: Functional analysis of the mutant receptor

    OpenAIRE

    Lobaccaro, J.M.; Lumbroso, S.; Poujol, Nicolas; Georget, V.; Brinkmann, Albert; Malpuech, Georges; Sultan, C.

    1995-01-01

    textabstractWe studied the androgen receptor gene in a large kindred with complete androgen insensitivity syndrome and negative receptor-binding activity, single-strand conformation polymorphism (SSCP) analysis and sequencing identified a 13 base pair deletion within exon 4. This was responsible for a predictive frameshift in the open reading frame and introduction of a premature stop codon at position 783 instead of 919. The deletion was reproduced in androgen receptor wildtype cDNA and tran...

  6. Identification of genes involved in the toxic response of Saccharomyces cerevisiae against iron and copper overload by parallel analysis of deletion mutants.

    Science.gov (United States)

    Jo, William J; Loguinov, Alex; Chang, Michelle; Wintz, Henri; Nislow, Corey; Arkin, Adam P; Giaever, Guri; Vulpe, Chris D

    2008-01-01

    Iron and copper are essential nutrients for life as they are required for the function of many proteins but can be toxic if present in excess. Accumulation of these metals in the human body as a consequence of overload disorders and/or high environmental exposures has detrimental effects on health. The budding yeast Saccharomyces cerevisiae is an accepted cellular model for iron and copper metabolism in humans primarily because of the high degree of conservation between pathways and proteins involved. Here we report a systematic screen using yeast deletion mutants to identify genes involved in the toxic response to growth-inhibitory concentrations of iron and copper sulfate. We aimed to understand the cellular responses to toxic concentrations of these two metals by analyzing the different subnetworks and biological processes significantly enriched with these genes. Our results indicate the presence of two different detoxification pathways for iron and copper that converge toward the vacuole. The product of several of the identified genes in these pathways form molecular complexes that are conserved in mammals and include the retromer, endosomal sorting complex required for transport (ESCRT) and AP-3 complexes, suggesting that the mechanisms involved can be extrapolated to humans. Our data also suggest a disruption in ion homeostasis and, in particular, of iron after copper exposure. Moreover, the identification of treatment-specific genes associated with biological processes such as DNA double-strand break repair for iron and tryptophan biosynthesis for copper suggests differences in the mechanisms by which these two metals are toxic at high concentrations.

  7. 替代失活法构建变形链球菌LuxS基因缺陷株%Construction of Streptococcus mutans LuxS gene deletion mutants by long flanking homology polymerase chain reaction

    Institute of Scientific and Technical Information of China (English)

    李月恒; 陈惠珍; 周智; 陈娇; 李锐; 尹一兵; 张雪梅

    2011-01-01

    目的 LuxS基因是变形链球菌生物膜早期形成过程中的关键基因,构建该基因的缺陷菌.方法 采用长臂同源多聚酶链反应(LFH-PCR)方法构建含红霉素耐药基因片段的LuxS基因上、下游同源序列的连接片段,转化到变形链球菌中,在红霉素的平板上筛选缺陷菌株,并采用PCR鉴定.结果 对变形链球菌LuxS基因缺陷菌株进行PCR和DNA序列测定分析证实构建成功.结论 成功构建出变形链球菌LuxS基因的缺陷菌株,为后期针对变形链球菌LuxS基因的相关研究奠定基础.%Objective To construct LuxS deletion mutant of Streptococcus mutans and get the capsule deficient strain. Method Long flanking homology polymerase chain reaction(LFH-PCR) was introduced to generate a gene disruption construct consisting of Emr cassette with long flanking homology regions to the target gene. The electroporation competence of Streptococcus mutans was then transformed with this PCR product. Then the positive transformants were counted on selective agar containing erythromycin and identified by PCR. Result Identification by PCR and sequencing confirmed the validity of the LuxS deletion mutant of Streptococcus mutans. Conclusion The successful construction of the LuxS deletion mutant can be used in further functional genome research.

  8. Isolation of Toxoplasma gondii development mutants identifies a potential proteophosphogylcan that enhances cyst wall formation.

    Science.gov (United States)

    Craver, Mary Patricia J; Rooney, Peggy J; Knoll, Laura J

    2010-02-01

    Within warm-blooded animals, Toxoplasma gondii switches from an actively replicating form called a tachyzoite into a slow growing encysted form called a bradyzoite. To uncover the genes involved in bradyzoite development, we screened over 8000 T. gondii insertional mutants by immunofluorescence microscopy. We identified nine bradyzoite development mutants that were defective in both cyst wall formation and expression of a bradyzoite specific heat shock protein. One of these mutants, named 42F5, contained an insertion into the predicted gene TGME49_097520. The disrupted protein is serine/proline-rich with homology to proteophosphoglycans from Leishmania. T. gondii proteophosphoglycan (GU182879) expressed from the native promoter was undetectable in tachyzoites, but bradyzoites show punctate spots within the parasite and staining around the parasitophorous vacuole. Complementation of the 42F5 mutant with GU182879 expressed from either the alpha-tubulin or native promoter restores cyst wall formation. Overall, GU182879 is upregulated in bradyzoites and enhances cyst wall component expression and assembly.

  9. Histone Deacetylase 3 Inhibition Overcomes BIM Deletion Polymorphism-Mediated Osimertinib Resistance in EGFR-Mutant Lung Cancer.

    Science.gov (United States)

    Tanimoto, Azusa; Takeuchi, Shinji; Arai, Sachiko; Fukuda, Koji; Yamada, Tadaaki; Roca, Xavier; Ong, S Tiong; Yano, Seiji

    2016-12-16

    Purpose: The BIM deletion polymorphism is associated with apoptosis resistance to EGFR tyrosine kinase inhibitors (EGFR-TKI), such as gefitinib and erlotinib, in non-small cell lung cancer (NSCLC) harboring EGFR mutations. Here, we investigated whether the BIM deletion polymorphism contributes to resistance against osimertinib, a third-generation EGFR-TKI. In addition, we determined the efficacy of a histone deacetylase (HDAC) inhibitor, vorinostat, against this form of resistance and elucidated the underlying mechanism.Experimental Design: We used EGFR-mutated NSCLC cell lines, which were either heterozygous or homozygous for the BIM deletion polymorphism, to evaluate the effect of osimertinib in vitro and in vivo Protein expression was examined by Western blotting. Alternative splicing of BIM mRNA was analyzed by RT-PCR.Results:EGFR-mutated NSCLC cell lines with the BIM deletion polymorphism exhibited apoptosis resistance to osimertinib in a polymorphism dosage-dependent manner, and this resistance was overcome by combined use with vorinostat. Experiments with homozygous BIM deletion-positive cells revealed that vorinostat affected the alternative splicing of BIM mRNA in the deletion allele, increased the expression of active BIM protein, and thereby induced apoptosis in osimertinib-treated cells. These effects were mediated predominantly by HDAC3 inhibition. In xenograft models, combined use of vorinostat with osimertinib could regress tumors in EGFR-mutated NSCLC cells homozygous for the BIM deletion polymorphism. Moreover, this combination could induce apoptosis even when tumor cells acquired EGFR-T790M mutations.Conclusions: These findings indicate the importance of developing HDAC3-selective inhibitors, and their combined use with osimertinib, for treating EGFR-mutated lung cancers carrying the BIM deletion polymorphism. Clin Cancer Res; 1-11. ©2016 AACR.

  10. Structure of recombinant capsids formed by the beta-annulus deletion mutant -- rCP (Delta48-59) of Sesbania mosaic virus.

    Science.gov (United States)

    Pappachan, Anju; Subashchandrabose, Chinnathambi; Satheshkumar, P S; Savithri, H S; Murthy, M R N

    2008-05-25

    A unique feature of several T=3 icosahedral viruses is the presence of a structure called the beta-annulus formed by extensive hydrogen bonding between protein subunits related by icosahedral three-fold axis of symmetry. This unique structure has been suggested as a molecular switch that determines the T=3 capsid assembly. In order to examine the importance of the beta-annulus, a deletion mutant of Sesbania mosaic virus coat protein in which residues 48-59 involved in the formation of the beta-annulus were deleted retaining the rest of the residues in the amino terminal segment (rCP (Delta48-59)) was constructed. When expressed in Escherichia coli, the mutant protein assembled into virus like particles of sizes close to that of the wild type virus particles. The purified capsids were crystallized and their three dimensional structure was determined at 3.6 A resolution by X-ray crystallography. The mutant capsid structure closely resembled that of the native virus particles. However, surprisingly, the structure revealed that the assembly of the particles has proceeded without the formation of the beta-annulus. Therefore, the beta-annulus is not essential for T=3 capsid assembly as speculated earlier and may be formed as a consequence of the particle assembly. This is the first structural demonstration that the virus particle morphology with and without the beta-annulus could be closely similar.

  11. Gene dosage analysis identifies large deletions of the FECH gene in 10% of families with erythropoietic protoporphyria.

    Science.gov (United States)

    Whatley, Sharon D; Mason, Nicola G; Holme, S Alexander; Anstey, Alex V; Elder, George H; Badminton, Michael N

    2007-12-01

    Erythropoietic protoporphyria (EPP) is an inherited cutaneous porphyria characterized by partial deficiency of ferrochelatase (FECH), accumulation of protoporphyrin IX in erythrocytes, skin, and liver, and acute photosensitivity. Genetic counseling in EPP requires identification of FECH mutations, but current sequencing-based procedures fail to detect mutations in about one in six families. We have used gene dosage analysis by quantitative PCR to identify large deletions of the FECH gene in 19 (58%) of 33 unrelated UK patients with EPP in whom mutations could not be detected by sequencing. Seven deletions were identified, six of which were previously unreported. Breakpoints were identified for six deletions (c.1-7887-IVS1+2425insTTCA; c.1-9629-IVS1+2437; IVS2-1987-IVS4+352del; c.768-IVS7+244del; IVS7+2784-IVS9+108del; IVS6+2350-TGA+95del). Five breakpoints were in intronic repeat sequences (AluSc, AluSq, AluSx, L1MC4). The remaining deletion (Del Ex3-4) is likely to be a large insertion-deletion. Combining quantitative PCR with routine sequencing increased the sensitivity of mutation detection in 189 unrelated UK patients with EPP from 83% (95% CI: 76-87%) to 93% (CI: 88-96%) (P=0.003). Our findings show that large deletions of the FECH gene are an important cause of EPP. Gene dosage analysis should be incorporated into routine procedures for mutation detection in EPP.

  12. A suitable streptomycin-resistant mutant for constructing unmarked in-frame gene deletions using rpsL as a counter-selection marker.

    Directory of Open Access Journals (Sweden)

    Yu-Kuo Tsai

    Full Text Available The streptomycin counter-selection system is a useful tool for constructing unmarked in-frame gene deletions, which is a fundamental approach to study bacteria and their pathogenicity at the molecular level. A prerequisite for this system is acquiring a streptomycin-resistant strain due to rpsL mutations, which encodes the ribosomal protein S12. However, in this study no streptomycin resistance was found to be caused by rpsL mutations in all 127 clinical strains of Klebsiella pneumoniae isolated from liver abscess patients. By screening 107 spontaneous mutants of streptomycin resistance from a clinical strain of K. pneumoniae, nucleotide substitution or insertion located within the rpsL was detected in each of these strains. Thirteen different mutants with varied S12 proteins were obtained, including nine streptomycin-dependent mutants. The virulence of all four streptomycin-resistant mutants was further evaluated. Compared with the parental strain, the K42N, K42T and K87R mutants showed a reduction in growth rate, and the K42N and K42T mutants became susceptible to normal human serum. In the mice LD50 (the bacterial dose that caused 50% death assay, the K42N and K42T mutants were ∼ 1,000-fold less lethal (∼ 2 × 10(5 CFU and the K87R mutant was ∼ 50-fold less lethal (∼ 1 × 10(4 CFU than the parental strain (∼ 2 × 10(2 CFU. A K42R mutant showed non-observable effects on the above assays, while this mutant exhibited a small cost (P < 0.01 in an in vitro growth competition experiment. In summary, most of the K. pneumoniae strains with streptomycin resistance caused by rpsL mutations are less virulent than their parental strain in the absence of streptomycin. The K42R mutant showed similar pathogenicity to its parental strain and should be one of the best choices when using rpsL as a counter-selection marker.

  13. Deletion of twenty seven nucleotides within exon 11 of the band 3 gene identified in ovalocytosis in Lombok Island, Indonesia.

    Science.gov (United States)

    Alimsardjono, H; Mukono, I S; Dachlan, Y P; Matsuo, M

    1997-03-01

    This study reports the molecular characterization of ovalocytosis in Lombok Island, Indonesia. The analysis of genomic DNA by polymerase chain reaction shows that all 21 ovalocytotic individuals have two amplified products of different size from a region encompassing exon 11 of the band 3 gene. The sequence of the larger product matched perfectly with that of normal individuals. In the sequence of the smaller product, 27 nucleotides within exon 11 were deleted. The heterozygous presence of the deletion identified in other parts of Southeast Asia was confirmed in patients with ovalocytosis in an isolated island of eastern Indonesia.

  14. IDH mutant and 1p/19q co-deleted oligodendrogliomas: tumor grade stratification using diffusion-, susceptibility-, and perfusion-weighted MRI

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Yu; Xing, Zhen; She, Dejun; Yang, Xiefeng; Zheng, Yingyan; Xiao, Zebin; Cao, Dairong [First Affiliated Hospital of Fujian Medical University, Department of Radiology, Fuzhou, Fujian (China); Wang, Xingfu [First Affiliated Hospital of Fujian Medical University, Department of Pathology, Fuzhou (China)

    2017-06-15

    Currently, isocitrate dehydrogenase (IDH) mutation and 1p/19q co-deletion are proven diagnostic biomarkers for both grade II and III oligodendrogliomas (ODs). Non-invasive diffusion-weighted imaging (DWI), susceptibility-weighted imaging (SWI), and dynamic susceptibility contrast perfusion-weighted imaging (DSC-PWI) are widely used to provide physiological information (cellularity, hemorrhage, calcifications, and angiogenesis) of neoplastic histology and tumor grade. However, it is unclear whether DWI, SWI, and DSC-PWI are able to stratify grades of IDH-mutant and 1p/19q co-deleted ODs. We retrospectively reviewed the conventional MRI (cMRI), DWI, SWI, and DSC-PWI obtained on 33 patients with IDH-mutated and 1p/19q co-deleted ODs. Features of cMRI, normalized ADC (nADC), intratumoral susceptibility signals (ITSSs), normalized maxim CBV (nCBV), and normalized maximum CBF (nCBF) were compared between low-grade ODs (LGOs) and high-grade ODs (HGOs). Receiver operating characteristic curve and logistic regression were applied to determine diagnostic performances. HGOs tended to present with prominent edema and enhancement. nADC, ITSSs, nCBV, and nCBF were significantly different between groups (all P < 0.05). The combination of SWI and DSC-PWI for grading resulted in sensitivity and specificity of 100.00 and 93.33%, respectively. IDH-mutant and 1p/19q co-deleted ODs can be stratified by grades using cMRI and advanced magnetic resonance imaging techniques including DWI, SWI, and DSC-PWI. Combined ITSSs with nCBV appear to be a promising option for grading molecularly defined ODs in clinical practice. (orig.)

  15. Spontaneous asj-2J mutant mouse as a model for generalized arterial calcification of infancy: a large deletion/insertion mutation in the Enpp1 gene.

    Directory of Open Access Journals (Sweden)

    Qiaoli Li

    Full Text Available Generalized arterial calcification of infancy (GACI, an autosomal recessive disorder caused by mutations in the ENPP1 gene, manifests with extensive mineralization of the cardiovascular system. The affected individuals in most cases die within the first year of life, and there is currently no effective treatment for this disorder. In this study, we characterized a spontaneous mutant mouse, asj-2J, as a model for GACI. These mice were identified as part of a phenotypic deviant search in a large-scale production colony of BALB/cJ mice at The Jackson Laboratory. They demonstrated a characteristic gait due to stiffening of the joints, with phenotypic similarity to a previously characterized asj ("ages with stiffened joints" mouse, caused by a missense mutation in the Enpp1 gene. Complementation testing indicated that asj-2J and asj were allelic. PCR-based mutation detection strategy revealed in asj-2J mice a large, 40,035 bp, deletion spanning from intron 1 to the 3'-untranslated region of the Enpp1 gene, coupled with a 74 bp insertion. This was accompanied with a significant reduction in the plasma PPi concentration and reduced PPi/Pi ratio. As a consequence, extensive aberrant mineralization affecting the arterial vasculature, a number of internal organs, and the dermal sheath of vibrissae, a progressive biomarker of the ectopic mineralization process, was demonstrated by a combination of micro computed tomography, histopathology with calcium-specific stains, and direct chemical assay of calcium. Comparison of the asj and asj-2J mice demonstrated that the latter ones, particularly when placed on an acceleration diet high in phosphate and low in magnesium, had more extensive mineralization. Thus, the asj-2J mouse serves as a novel model for GACI, a currently intractable disorder.

  16. Integrative Genomic Analysis of Cholangiocarcinoma Identifies Distinct IDH-Mutant Molecular Profiles

    Directory of Open Access Journals (Sweden)

    Farshad Farshidfar

    2017-03-01

    Full Text Available Cholangiocarcinoma (CCA is an aggressive malignancy of the bile ducts, with poor prognosis and limited treatment options. Here, we describe the integrated analysis of somatic mutations, RNA expression, copy number, and DNA methylation by The Cancer Genome Atlas of a set of predominantly intrahepatic CCA cases and propose a molecular classification scheme. We identified an IDH mutant-enriched subtype with distinct molecular features including low expression of chromatin modifiers, elevated expression of mitochondrial genes, and increased mitochondrial DNA copy number. Leveraging the multi-platform data, we observed that ARID1A exhibited DNA hypermethylation and decreased expression in the IDH mutant subtype. More broadly, we found that IDH mutations are associated with an expanded histological spectrum of liver tumors with molecular features that stratify with CCA. Our studies reveal insights into the molecular pathogenesis and heterogeneity of cholangiocarcinoma and provide classification information of potential therapeutic significance.

  17. [Comparative proteomics analysis of extracellular proteins from Listeria monocytogenes and its isogenic prfA deletion mutant].

    Science.gov (United States)

    Yin, Yuelan; Bai, Chunguang; Wang, Guoliang; Jia, Yanyan; Qu, Jin; Fu, Hong; Gao, Yunfei; Jiao, Xin'an

    2013-04-04

    Positive regulatory factor A (PrfA) protein plays a key role in the pathogenicity of Listeria monocytogenes by regulating the expression of virulence genes. We studied the regulation functions of PrfA and its role in Listeria monocytogenes (Lm) virulence. Extracellular proteins were obtained from the supernatants of parental strain LM4 and mutant strain LM4deltaprfA cultured in minimal medium. We used two-dimensional gel electrophoresis and matrix associated laser dissociation/ionization time of flight mass spectrometry (MALDI- TOF-MS) to analyze the differences of secreted proteins between LM4 and LM4deltaprfA. The electrophoresis results show that 31 different spots, 19 spots corresponding 12 proteins were identified by MALDI- TOF-MS. Some virulence related proteins were verified, such as InlC, ActA and LLO. Some new proteins that are regulated by PrfA include D-alanyl-D-alanine carboxypeptidase, dipeptide Glycine and Trytophan (GW) repeat-containing surface protein, transcriptional regulator and some hypothetical proteins with unknown functions. Real-time quantitative PCR was conducted to verify the proteomics results. The mRNA expression level of hly, actA and inlC gene was significantly reduced, and that of D-alanyl-D-alanine carboxypeptidase and GW repeat-containing surface protein's synthesis also had a reduction in LM4deltaprfA strain. PrfA plays key roles on the regulation of genes in LIPI- I and LIPI- II.

  18. Compromised Structure and Function of HDAC8 Mutants Identified in Cornelia de Lange Syndrome Spectrum Disorders

    Science.gov (United States)

    2015-01-01

    Cornelia de Lange Syndrome (CdLS) is a multiple congenital anomaly disorder resulting from mutations in genes that encode the core components of the cohesin complex, SMC1A, SMC3, and RAD21, or two of its regulatory proteins, NIPBL and HDAC8. HDAC8 is the human SMC3 lysine deacetylase required for cohesin recycling in the cell cycle. To date, 16 different missense mutations in HDAC8 have recently been identified in children diagnosed with CdLS. To understand the molecular effects of these mutations in causing CdLS and overlapping phenotypes, we have fully characterized the structure and function of five HDAC8 mutants: C153F, A188T, I243N, T311M, and H334R. X-ray crystal structures reveal that each mutation causes local structural changes that compromise catalysis and/or thermostability. For example, the C153F mutation triggers conformational changes that block acetate product release channels, resulting in only 2% residual catalytic activity. In contrast, the H334R mutation causes structural changes in a polypeptide loop distant from the active site and results in 91% residual activity, but the thermostability of this mutant is significantly compromised. Strikingly, the catalytic activity of these mutants can be partially or fully rescued in vitro by the HDAC8 activator N-(phenylcarbamothioyl)benzamide. These results suggest that HDAC8 activators might be useful leads in the search for new therapeutic strategies in managing CdLS. PMID:25075551

  19. Attenuated Actinobacillus pleuropneumoniae double-deletion mutant S-8∆clpP/apxIIC confers protection against homologous or heterologous strain challenge.

    Science.gov (United States)

    Xie, Fang; Li, Gang; Zhou, Long; Zhang, Yanhe; Cui, Ning; Liu, Siguo; Wang, Chunlai

    2017-01-06

    Actinobacillus pleuropneumoniae is the etiological agent of porcine pleuropneumonia, which leads to large economic losses to the swine industry worldwide. In this study, S-8△clpP△apxIIC, a double-deletion mutant of A. pleuropneumoniae was constructed, and its safety and protective efficacy were evaluated in pigs. The S-8△clpP△apxIIC mutant exhibited attenuated virulence in a murine (BALB/c) model, and caused no detrimental effects on pigs even at a dose of up to 1.0 × 10(9) CFU. Furthermore, the S-8△clpP△apxIIC mutant was able to induce a strong immune response in pigs, which included high levels of IgG1 and IgG2, stimulated gamma interferon (IFN-γ), interleukin 12 (IL-12), and interleukin 4 (IL-4) production, and conferred effective protection against the lethal challenge with A. pleuropneumoniae serovars 7 or 5a. The pigs in the S-8△clpP△apxIIC immunized groups have no lesions and reduced bacterial loads in the lung tissue after challenge. The data obtained in this study suggest that the S-8△clpP△apxIIC mutant can serve as a highly immunogenic and potential live attenuated vaccine candidate against A. pleuropneumoniae infection.

  20. Complete androgen insensitivity syndrome due to a new frameshift deletion in exon 4 of the androgen receptor gene: Functional analysis of the mutant receptor

    NARCIS (Netherlands)

    J.M. Lobaccaro; S. Lumbroso; N. Poujol (Nicolas); V. Georget; A.O. Brinkmann (Albert); G. Malpuech (Georges); C. Sultan

    1995-01-01

    textabstractWe studied the androgen receptor gene in a large kindred with complete androgen insensitivity syndrome and negative receptor-binding activity, single-strand conformation polymorphism (SSCP) analysis and sequencing identified a 13 base pair deletion within exon 4. This was responsible for

  1. Effects of deletion of mutant huntingtin in steroidogenic factor 1 neurons on the psychiatric and metabolic phenotype in the BACHD mouse model of Huntington disease.

    Directory of Open Access Journals (Sweden)

    Barbara Baldo

    Full Text Available Psychiatric and metabolic features appear several years before motor disturbances in the neurodegenerative Huntington's disease (HD, caused by an expanded CAG repeat in the huntingtin (HTT gene. Although the mechanisms leading to these aspects are unknown, dysfunction in the hypothalamus, a brain region controlling emotion and metabolism, has been suggested. A direct link between the expression of the disease causing protein, huntingtin (HTT, in the hypothalamus and the development of metabolic and psychiatric-like features have been shown in the BACHD mouse model of HD. However, precisely which circuitry in the hypothalamus is critical for these features is not known. We hypothesized that expression of mutant HTT in the ventromedial hypothalamus, an area involved in the regulation of metabolism and emotion would be important for the development of these non-motor aspects. Therefore, we inactivated mutant HTT in a specific neuronal population of the ventromedial hypothalamus expressing the transcription factor steroidogenic factor 1 (SF1 in the BACHD mouse using cross-breeding based on a Cre-loxP system. Effects on anxiety-like behavior were assessed using the elevated plus maze and novelty-induced suppressed feeding test. Depressive-like behavior was assessed using the Porsolt forced swim test. Effects on the metabolic phenotype were analyzed using measurements of body weight and body fat, as well as serum insulin and leptin levels. Interestingly, the inactivation of mutant HTT in SF1-expressing neurons exerted a partial positive effect on the depressive-like behavior in female BACHD mice at 4 months of age. In this cohort of mice, no anxiety-like behavior was detected. The deletion of mutant HTT in SF1 neurons did not have any effect on the development of metabolic features in BACHD mice. Taken together, our results indicate that mutant HTT regulates metabolic networks by affecting hypothalamic circuitries that do not involve the SF1 neurons

  2. Transposon mutagenesis identifies genes that cooperate with mutant Pten in breast cancer progression

    Science.gov (United States)

    Rangel, Roberto; Lee, Song-Choon; Hon-Kim Ban, Kenneth; Guzman-Rojas, Liliana; Mann, Michael B.; Newberg, Justin Y.; McNoe, Leslie A.; Selvanesan, Luxmanan; Ward, Jerrold M.; Rust, Alistair G.; Chin, Kuan-Yew; Black, Michael A.; Jenkins, Nancy A.; Copeland, Neal G.

    2016-01-01

    Triple-negative breast cancer (TNBC) has the worst prognosis of any breast cancer subtype. To better understand the genetic forces driving TNBC, we performed a transposon mutagenesis screen in a phosphatase and tensin homolog (Pten) mutant mice and identified 12 candidate trunk drivers and a much larger number of progression genes. Validation studies identified eight TNBC tumor suppressor genes, including the GATA-like transcriptional repressor TRPS1. Down-regulation of TRPS1 in TNBC cells promoted epithelial-to-mesenchymal transition (EMT) by deregulating multiple EMT pathway genes, in addition to increasing the expression of SERPINE1 and SERPINB2 and the subsequent migration, invasion, and metastasis of tumor cells. Transposon mutagenesis has thus provided a better understanding of the genetic forces driving TNBC and discovered genes with potential clinical importance in TNBC. PMID:27849608

  3. Bivalent vaccination against pneumonic pasteurellosis in domestic sheep and goats with modified-live in-frame lktA deletion mutants of Mannheimia haemolytica.

    Science.gov (United States)

    Briggs, Robert E; Hauglund, Melissa J; Maheswaran, Samuel K; Tatum, Fred M

    2013-11-01

    A temperature-sensitive shuttle vector, pBB80C, was utilized to generate in-frame deletion mutants of the leukotoxin structural gene (lktA) of Mannheimia haemolytica serotypes 1, 2, 5, 6, 7, 8, 9, and 12. Culture supernatants from the mutants contained a truncated protein with an approximate molecular weight of 66 kDa which was reactive to anti-leukotoxin monoclonal antibody. No protein reactive to anti-LktA monoclonal antibody was detected at the molecular weight 100-105 kDa of native LktA. Sheep and goats vaccinated intramuscularly with a mixture of serotypes 5 and 6 mutants were resistant to virulent challenge with a mixture of the wild-type parent strains. These vaccinates responded serologically to both vaccine serotypes and exhibited markedly-reduced lung lesion volume and pulmonary infectious load compared to control animals. Control animals yielded a mixture of serotypes from lung lobes, but the proportion even within an individual animal varied widely from 95% serotype 5-95% serotype 6. Cultures recovered from liver were homogeneous, but two animals yielded serotype 5 and the other two yielded serotype 6 in pure culture. Published by Elsevier Ltd.

  4. X-ray survival characteristics and genetic analysis for nineSaccharomyces deletion mutants that affect radiation sensitivity

    Energy Technology Data Exchange (ETDEWEB)

    Game, John C.; Williamson, Marsha S.; Baccari, Clelia

    2006-07-21

    We examine ionizing radiation (IR) sensitivity and epistasisrelationships of several Saccharomyces mutants affectingpost-translational modifications of histones H2B and H3. Mutantsbre1delta, lge1delta, and rtf1delta, defective in histone H2B lysine 123ubiquitination, show IR sensitivity equivalent to that of the dot1deltamutant that we reported on earlier, consistent with published findingsthat Dot1p requires H2B K123 ubiquitination to fully methylate histone H3K79. This implicates progressive K79 methylation rather thanmono-methylation in IR resistance. The set2delta mutant, defective in H3K36 methylation, shows mild IR sensitivity whereas mutants that abolishH3 K4 methylation resemble wild type. The dot1delta, bre1delta, andlge1delta mutants show epistasis for IR sensitivity. The paf1deltamutant, also reportedly defective in H2B K123 ubiquitination, confers nosensitivity. The rad6delta, rad51null, rad50delta, and rad9deltamutations are epistatic to bre1? and dot1delta, but rad18delta andrad5delta show additivity with bre1delta, dot1delta, and each other. Thebre1delta rad18delta double mutant resembles rad6delta in sensitivity;thus the role of Rad6p in ubiquitinating H2B accounts for its extrasensitivity compared to rad18delta. We conclude that IR resistanceconferred by BRE1 and DOT1 is mediated through homologous recombinationalrepair, not postreplication repair, and confirm findings of a G1checkpoint role for the RAD6/BRE1/DOT1 pathway.

  5. Exome-first approach identified a novel gloss deletion associated with Lowe syndrome.

    Science.gov (United States)

    Watanabe, Miki; Nakagawa, Ryuji; Kohmoto, Tomohiro; Naruto, Takuya; Suga, Ken-Ichi; Goji, Aya; Horikawa, Hideaki; Masuda, Kiyoshi; Kagami, Shoji; Imoto, Issei

    2016-01-01

    Lowe syndrome (LS) is an X-linked disorder affecting the eyes, nervous system and kidneys, typically caused by missense or nonsense/frameshift OCRL mutations. We report a 6-month-old male clinically suspected to have LS, but without the Fanconi-type renal dysfunction. Using a targeted-exome sequencing-first approach, LS was diagnosed by the identification of a deletion involving 1.7 Mb at Xq25-q26.1, encompassing the entire OCRL gene and neighboring loci.

  6. Genetic Screening Identifies Cyanogenesis-Deficient Mutants of Lotus japonicus and Reveals Enzymatic Specificity in Hydroxynitrile Glucoside Metabolism

    DEFF Research Database (Denmark)

    Takos, A.; Lai, D.; Mikkelsen, L.;

    2010-01-01

    content. L. japonicus produces two cyanogenic glucosides: linamarin (derived from Val) and lotaustralin (derived from Ile). Their biosynthesis may involve the same set of enzymes for both amino acid precursors. However, in one class of mutants, accumulation of lotaustralin and linamarin was uncoupled....... We developed a high-throughput screening method and used it to identify cyanogenesis deficient (cyd) mutants in the model legume Lotus japonicus. Mutants in both biosynthesis and catabolism of cyanogenic glucosides were isolated and classified following metabolic profiling of cyanogenic glucoside....... Catabolic mutants could be placed in two complementation groups, one of which, cyd2, encoded the beta-glucosidase BGD2. Despite the identification of nine independent cyd2 alleles, no mutants involving the gene encoding a closely related beta-glucosidase, BGD4, were identified. This indicated that BGD4...

  7. Cloning and functional analysis of the sequences flanking mini-Tn5 in the magnetosomes deleted mutant NM4 of Magnetospirillum gryphiswaldense MSR-1

    Institute of Scientific and Technical Information of China (English)

    LI; Feng; LI; Ying; JIANG; Wei; WANG; Zhenfang; LI; Jilun

    2005-01-01

    A magnetosome deleted mutant NM4 of Magnetospirillum gryphiswaldense MSR-1 was generated by mini-Tn5 transposon mutagenesis, and a 5045-bp fragment flanking mini-Tn5 in NM4 was cloned by Anchored PCR. Sequencing analysis showed that this fragment involved six putative open reading frames (ORFs); the mini-Tn5 was inserted into ORF4. Functional complementary test indicated that the 5045-bp fragment was required for biosynthesis of magnetosomes in M. gryphiswaldense MSR-1. The protein encoded by ORF4 had 25% of identity with the chemotaxis protein CheYIII of Caulobacter crescentus CB15, and the protein encoded by ORF4 contained a conserved signal receiver domain that can receive the signal from the sensor partner of the bacterial two-component systems. It was suggested that the protein encoded by ORF4 may take part in the signal transduction relating to biosynthesis of magnetosomes.

  8. Escherichia coli deletion mutants illuminate trade-offs between growth rate and flux through a foreign anabolic pathway.

    Science.gov (United States)

    Falls, Kelly C; Williams, Aimee L; Bryksin, Anton V; Matsumura, Ichiro

    2014-01-01

    Metabolic engineers strive to improve the production yields of microbial fermentations, sometimes by mutating the genomes of production strains. Some mutations are detrimental to the health of the organism, so a quantitative and mechanistic understanding of the trade-offs could inform better designs. We employed the bacterial luciferase operon (luxABCDE), which uses ubiquitous energetic cofactors (NADPH, ATP, FMNH2, acetyl-CoA) from the host cell, as a proxy for a novel anabolic pathway. The strains in the Escherichia coli Keio collection, each of which contains a single deletion of a non-essential gene, represent mutational choices that an engineer might make to optimize fermentation yields. The Keio strains and the parental BW25113 strain were transformed with a luxABCDE expression vector. Each transformant was propagated in defined M9 medium at 37 °C for 48 hours; the cell density (optical density at 600 nanometers, OD600) and luminescence were measured every 30 minutes. The trade-offs were visualized by plotting the maximum growth rate and luminescence/OD600 of each transformant across a "production possibility frontier". Our results show that some loss-of-function mutations enhance growth in vitro or light production, but that improvement in one trait generally comes at the expense of the other.

  9. Arabidopsis onset of leaf death mutants identify a regulatory pathway controlling leaf senescence

    NARCIS (Netherlands)

    Jing, Hai-Chun; Sturre, Marcel J.G.; Hille, Jacques; Dijkwel, Paul P.

    2002-01-01

    The onset of leaf senescence is controlled by leaf age and ethylene can promote leaf senescence within a specific age window. We exploited the interaction between leaf age and ethylene and isolated mutants with altered leaf senescence that are named as onset of leaf death (old) mutants. Early leaf

  10. Large genetic screens for gynogenesis and androgenesis haploid inducers in Arabidopsis thaliana failed to identify mutants

    Directory of Open Access Journals (Sweden)

    Virginie ePortemer

    2015-03-01

    Full Text Available Gynogenesis is a process in which the embryo genome originates exclusively from female origin, following embryogenesis stimulation by a male gamete. In contrast, androgenesis is the development of embryos that contain only the male nuclear genetic background. Both phenomena are of great interest in plant breeding as haploidisation is an efficient tool to reduce the length of breeding schemes to create varieties. Although few inducer lines have been described, the genetic control of these phenomena is poorly understood. We developed genetic screens to identify mutations that would induce gynogenesis or androgenesis in Arabidopsis thaliana. The ability of mutant pollen to induce either gynogenesis or androgenesis was tested by crossing mutagenized plants as males. Seedlings from these crosses were screened with recessive phenotypic markers, one genetically controlled by the female genome and another by the male genome. Positive and negative controls confirmed the unambiguous detection of both gynogenesis and androgenesis events. This strategy was applied to 1,666 EMS-mutagenised lines and 47 distant Arabidopsis strains. While an internal control suggested that the mutagenesis reached saturation, no gynogenesis or androgenesis inducer was found. However, spontaneous gynogenesis was observed at a frequency of 1/10,800. Altogether, these results suggest that no simple EMS-induced mutation in the male genome is able to induce gynogenesis or androgenesis in Arabidopsis.

  11. Transcriptome profiling identifies genes and pathways deregulated upon floxuridine treatment in colorectal cancer cells harboring GOF mutant p53

    Directory of Open Access Journals (Sweden)

    Arindam Datta

    2016-06-01

    Full Text Available Mutation in TP53 is a common genetic alteration in human cancers. Certain tumor associated p53 missense mutants acquire gain-of-function (GOF properties and confer oncogenic phenotypes including enhanced chemoresistance. The colorectal cancers (CRC harboring mutant p53 are generally aggressive in nature and difficult to treat. To identify a potential gene expression signature of GOF mutant p53-driven acquired chemoresistance in CRC, we performed transcriptome profiling of floxuridine (FUdR treated SW480 cells expressing mutant p53R273H (GEO#: GSE77533. We obtained several genes differentially regulated between FUdR treated and untreated cells. Further, functional characterization and pathway analysis revealed significant enrichment of crucial biological processes and pathways upon FUdR treatment in SW480 cells. Our data suggest that in response to chemotherapeutics treatment, cancer cells with GOF mutant p53 can modulate key cellular pathways to withstand the cytotoxic effect of the drugs. The genes and pathways identified in the present study can be further validated and targeted for better chemotherapy response in colorectal cancer patients harboring mutant p53.

  12. Partial deletion of stem-loop 2 in the 3' untranslated region of foot-and-mouth disease virus identifies a region that is dispensable for virus replication.

    Science.gov (United States)

    Biswal, Jitendra K; Subramaniam, Saravanan; Ranjan, Rajeev; Pattnaik, Bramhadev

    2016-08-01

    The 3' untranslated region (3' UTR) of the foot-and-mouth disease virus (FMDV) genome plays an essential role in virus replication, but the properties of the 3' UTR are not completely defined. In order to determine the role of different regions of the 3' UTR in FMDV replication, we conducted site-directed mutagenesis of the 3' UTR of FMDV serotype O IND R2/1975 using a cDNA clone. Through independent serial deletions in various regions of the 3' UTR, we demonstrated that deletion of nucleotides between the stem-loop (SL) structures and in the beginning and the end regions of the SL2 structure could be lethal for FMDV replication. However, a block deletion of 20 nucleotides (nt 60 to 79) in the middle of SL2 did not affect the viability of FMDV in cultured cells. Characterisation of the deletion mutant virus (O(R2/1975-Δ3'UTR 60-79)) revealed no significant difference in growth kinetics or RNA replication ability compared to the parental virus. However, the mutant virus produced slightly larger plaques when compared to the parental virus. This is the first description of a dispensable 20-nucleotide region in SL2 of the FMDV 3' UTR.

  13. 耐甲氧西林表皮葡萄球菌 psm-mec 缺失突变株的构建%Construction of mutant strains of methicillin resistant Staphylococcus epidermidis with psm-mec gene deletion

    Institute of Scientific and Technical Information of China (English)

    杨永长; 胡洪华; 陈亮; 刘华; 喻华; 黄文芳

    2015-01-01

    Objective To construct mutant strains of methicillin resistant Staphylococcus epidermi-dis (MRSE) with psm-mec gene deletion and to investigate the function of psm-mec gene.Methods The drug sensitivity test and DNA sequence analysis were performed to screen out the tetracycline and chloram -phenicol sensitive clinical strains of MRSE , whose upstream and downstream sequences of psm-mec gene were identical to those of the Staphylococcus epidermidis reference strain RP62A.The recombinant plasmid pBT2-Δpsm-mec was constructed by using the fusion PCR and a temperature sensitive shuttle plasmid .After being identified , the plasmid was transformed into the Staphylococcus aureus RN4220 strain by electropora-tion, and then transformed into the selected clinical isolates of MRSE .The mutant strains of MRSE with psm-mec deletion were screened out and identified after homologous recombination .The differences in biofilm formation between the mutant and wild-type strains were analyzed for further elucidation the relationships be-tween the psm-mec gene and biofilm formation in MRSE strains .Results Three clinical MRSE isolates for the construction of mutant strains with psm-mec gene deletion were screened out and identified by using drug sensitivity test and sequence alignment analysis .The mutants constructed via homogenous recombination were screened out and identified .Compared with the corresponding wild-type strains, the three mutants with psm-mec gene deletion showed significantly decreased ability of biofilm formation , demonstrating that the psm-mec genes strains induced the biofilm formation of MRSE .Conclusion The Δpsm-mec mutant strains were successfully constructed .The psm-mec gene played an important role in the biofilm formation of Staphy-lococcus epidermdis.%目的:构建耐甲氧西林表皮葡萄球菌( MRSE)的psm-mec缺失突变株,并对psm-mec的功能进行初步研究。方法运用药敏试验、DNA序列分析技术筛选psm-mec上下游序

  14. Large-scale screening of a targeted Enterococcus faecalis mutant library identifies envelope fitness factors.

    Directory of Open Access Journals (Sweden)

    Lionel Rigottier-Gois

    Full Text Available Spread of antibiotic resistance among bacteria responsible for nosocomial and community-acquired infections urges for novel therapeutic or prophylactic targets and for innovative pathogen-specific antibacterial compounds. Major challenges are posed by opportunistic pathogens belonging to the low GC% gram-positive bacteria. Among those, Enterococcus faecalis is a leading cause of hospital-acquired infections associated with life-threatening issues and increased hospital costs. To better understand the molecular properties of enterococci that may be required for virulence, and that may explain the emergence of these bacteria in nosocomial infections, we performed the first large-scale functional analysis of E. faecalis V583, the first vancomycin-resistant isolate from a human bloodstream infection. E. faecalis V583 is within the high-risk clonal complex 2 group, which comprises mostly isolates derived from hospital infections worldwide. We conducted broad-range screenings of candidate genes likely involved in host adaptation (e.g., colonization and/or virulence. For this purpose, a library was constructed of targeted insertion mutations in 177 genes encoding putative surface or stress-response factors. Individual mutants were subsequently tested for their i resistance to oxidative stress, ii antibiotic resistance, iii resistance to opsonophagocytosis, iv adherence to the human colon carcinoma Caco-2 epithelial cells and v virulence in a surrogate insect model. Our results identified a number of factors that are involved in the interaction between enterococci and their host environments. Their predicted functions highlight the importance of cell envelope glycopolymers in E. faecalis host adaptation. This study provides a valuable genetic database for understanding the steps leading E. faecalis to opportunistic virulence.

  15. A population of deletion mutants and an integrated mapping and Exome-seq pipeline for gene discovery in maize

    Science.gov (United States)

    To better understand maize endosperm filling and maturation, we developed a novel functional genomics platform that combined Bulked Segregant RNA and Exome sequencing (BSREx-seq) to map causative mutations and identify candidate genes within mapping intervals. Using gamma-irradiation of B73 maize to...

  16. The capacity of Listeria monocytogenes mutants with in-frame deletions in putative ATP-binding cassette transporters to form biofilms and comparison with the wild type

    Directory of Open Access Journals (Sweden)

    Marina Ceruso

    2014-02-01

    Full Text Available Listeria monocytogenes (Lm is a food-borne pathogen responsible for human listeriosis, an invasive infection with high mortality rates. Lm has developed efficient strategies for survival under stress conditions such as starvation and wide variations in temperature, pH, and osmolarity. Therefore, Lm can survive in food under multiple stress conditions. Detailed studies to determine the mode of action of this pathogen for survival under stress conditions are important to control Lm in food. It has been shown that genes encoding for ATP-binding cassette (ABC transporters are induced in Lm in food, in particular under stress conditions. Previous studies showed that these genes are involved in sensitivity to nisin, acids, and salt. The aim of this study was to determine the involvement of some ABC transporters in biofilm formation. Therefore, deletion mutants of ABC transporter genes (LMOf2365_1875 and LMOf2365_1877 were created in Lm F2365, and then were compared to the wild type for their capacity to form biofilms. Lm strain F2365 was chosen as reference since the genome is fully sequenced and furthermore this strain is particularly involved in food-borne outbreaks of listeriosis. Our results showed that DLMOf2365_1875 had an increased capacity to form biofilms compared to the wild type, indicating that LMOf2365_1875 negatively regulates biofilm formation. A deeper knowledge on the ability to form biofilms in these mutants may help in the development of intervention strategies to control Lm in food and in the environment.

  17. The Capacity of Listeria Monocytogenes Mutants with In-Frame Deletions in Putative ATP-Binding Cassette Transporters to form Biofilms and Comparison with the Wild Type

    Science.gov (United States)

    Ceruso, Marina; Fratamico, Pina; Chirollo, Claudia; Taglialatela, Rosanna; Cortesi, Maria Luisa

    2014-01-01

    Listeria monocytogenes (Lm) is a food-borne pathogen responsible for human listeriosis, an invasive infection with high mortality rates. Lm has developed efficient strategies for survival under stress conditions such as starvation and wide variations in temperature, pH, and osmolarity. Therefore, Lm can survive in food under multiple stress conditions. Detailed studies to determine the mode of action of this pathogen for survival under stress conditions are important to control Lm in food. It has been shown that genes encoding for ATP-binding cassette (ABC) transporters are induced in Lm in food, in particular under stress conditions. Previous studies showed that these genes are involved in sensitivity to nisin, acids, and salt. The aim of this study was to determine the involvement of some ABC transporters in biofilm formation. Therefore, deletion mutants of ABC transporter genes (LMOf2365_1875 and LMOf2365_1877) were created in Lm F2365, and then were compared to the wild type for their capacity to form biofilms. Lm strain F2365 was chosen as reference since the genome is fully sequenced and furthermore this strain is particularly involved in food-borne outbreaks of listeriosis. Our results showed that ΔLMOf2365_1875 had an increased capacity to form biofilms compared to the wild type, indicating that LMOf2365_1875 negatively regulates biofilm formation. A deeper knowledge on the ability to form biofilms in these mutants may help in the development of intervention strategies to control Lm in food and in the environment. PMID:27800311

  18. ATRX loss refines the classification of anaplastic gliomas and identifies a subgroup of IDH mutant astrocytic tumors with better prognosis.

    Science.gov (United States)

    Wiestler, Benedikt; Capper, David; Holland-Letz, Tim; Korshunov, Andrey; von Deimling, Andreas; Pfister, Stefan Michael; Platten, Michael; Weller, Michael; Wick, Wolfgang

    2013-09-01

    Mutation/loss of alpha-thalassemia/mental retardation syndrome X-linked (ATRX) expression has been described in anaplastic gliomas. The present study explored the role of ATRX status in the molecular classification of anaplastic gliomas and its impact on survival in the biomarker cohort of the NOA-04 anaplastic glioma trial. Patients (n = 133) of the NOA-04 trial were analyzed for ATRX expression using immunohistochemistry. ATRX status was correlated with age, histology, isocitrate dehydrogenase (IDH), 1p/19q, alternative lengthening of telomeres (ALT) and O6-methylguanine-DNA methyltransferase (MGMT) status, and the trial efficacy endpoints. Loss of ATRX expression was detected in 45 % of anaplastic astrocytomas (AA), 27 % of anaplastic oligoastrocytomas (AOA) and 10 % of anaplastic oligodendrogliomas (AO). It was mostly restricted to IDH mutant tumors and almost mutually exclusive with 1p/19q co-deletion. The ALT phenotype was significantly correlated with ATRX loss. ATRX and 1p/19q status were used to re-classify AOA: AOA harboring ATRX loss shared a similar clinical course with AA, whereas AOA carrying 1p/19q co-deletion shared a similar course with AO. Accordingly, in a Cox regression model including ATRX and 1p/19q status, histology was no longer significantly associated with time to treatment failure. Survival analysis showed a marked separation of IDH mutant astrocytic tumors into two groups based on ATRX status: tumors with ATRX loss had a significantly better prognosis (median time to treatment failure 55.6 vs. 31.8 months, p = 0.0168, log rank test). ATRX status helps better define the clinically and morphologically mixed group of AOA, since ATRX loss is a hallmark of astrocytic tumors. Furthermore, ATRX loss defines a subgroup of astrocytic tumors with a favorable prognosis.

  19. Whole Genome Pathway Analysis Identifies an Association of Cadmium Response Gene Loss with Copy Number Variation in Mutant p53 Bearing Uterine Endometrial Carcinomas.

    Directory of Open Access Journals (Sweden)

    Joe Ryan Delaney

    Full Text Available Massive chromosomal aberrations are a signature of advanced cancer, although the factors promoting the pervasive incidence of these copy number alterations (CNAs are poorly understood. Gatekeeper mutations, such as p53, contribute to aneuploidy, yet p53 mutant tumors do not always display CNAs. Uterine Corpus Endometrial Carcinoma (UCEC offers a unique system to begin to evaluate why some cancers acquire high CNAs while others evolve another route to oncogenesis, since about half of p53 mutant UCEC tumors have a relatively flat CNA landscape and half have 20-90% of their genome altered in copy number.We extracted copy number information from 68 UCEC genomes mutant in p53 by the GISTIC2 algorithm. GO term pathway analysis, via GOrilla, was used to identify suppressed pathways. Genes within these pathways were mapped for focal or wide distribution. Deletion hotspots were evaluated for temporal incidence.Multiple pathways contributed to the development of pervasive CNAs, including developmental, metabolic, immunological, cell adhesion and cadmium response pathways. Surprisingly, cadmium response pathway genes are predicted as the earliest loss events within these tumors: in particular, the metallothionein genes involved in heavy metal sequestration. Loss of cadmium response genes were associated with copy number changes and poorer prognosis, contrasting with 'copy number flat' tumors which instead exhibited substantive mutation.Metallothioneins are lost early in the development of high CNA endometrial cancer, providing a potential mechanism and biological rationale for increased incidence of endometrial cancer with cadmium exposure. Developmental and metabolic pathways are altered later in tumor progression.

  20. [Ferric iron absorption in deltar p f F xoo, a gene deletion mutant of Xanthomonas oryzae pv. oryzae, assayed using atomic absorption spectrophotometry].

    Science.gov (United States)

    Sun, Lei; Wu, Mao-Sen; He, Chen-Yang

    2010-04-01

    The ferric iron absorption is one of the most important limiting factors of bacterial growth of Xanthomonas oryzae pv. oryzae. It has been previously speculated that r p f F xoo might be involved in the ferric iron metabolism of the pathogen. In the present study, deltar p f F xoo, a gene deletion mutant, was generated from the wild-type strain PXO99A of Xoo through the homologous recombination, and Fe content was assayed using flame atomic absorption in PXO99A and deltar p f F xoo. The results indicated that the recovery was 99.7% and the relative standard deviation was 1.89 under optimized AAS operating conditions. The increase in Fe absorption in PXO99A and deltar p f F xoo was observed with the increasing time. However, the ferric content of deltar p f F xoo was significantly lower than that of PXO99A (P < 0.05). It is suggested that r p f F xoo is involved in iron metabolism in Xanthomonas oryzae pv. oryzae.

  1. Safety and protective efficacy of a spiC and crp deletion mutant of Salmonella gallinarum as a live attenuated vaccine for fowl typhoid.

    Science.gov (United States)

    Cheng, Zhao; Yin, Junlei; Kang, Xilong; Geng, Shizhong; Hu, Maozhi; Pan, Zhiming; Jiao, Xinan

    2016-08-01

    With an aim to develop a safe, immunogenic fowl typhoid (FT) vaccine, the safety and efficacy of 1009ΔspiCΔcrp, a spiC and crp deletion mutant of Salmonella gallinarum, were evaluated in chickens. Three-day-old chickens were intramuscularly immunized with 1009ΔspiCΔcrp (1×10(7)CFU) and boosted 7days later (at 10-days old) with the same dose and via the same route (vaccinated group). The vaccinated group showed no clinical symptoms and no differences in body weight compared to the unvaccinated control group. 1009ΔspiCΔcrp bacteria colonized and persisted in the liver and spleen of vaccinated chickens for >14days, and significant specific humoral and cellular immune responses were induced. Vaccinated chickens were challenged with S. gallinarum strain SG9 at 21days post-immunization (24-day-old chickens), and efficient protection was observed based on the mortality and clinical symptoms, as compared to those in the control group. These results demonstrate that 1009ΔspiCΔcrp can be used as a live attenuated vaccine.

  2. Cloning and functional analysis of the sequences flanking mini-Tn5 in the magnetosome-deleted mutant NM21 of Magnetospirillum gryphiswaldense MSR-1

    Institute of Scientific and Technical Information of China (English)

    LI Feng; LI Ying; JIANG Wei; WANG ZhenFang; LI JiLun

    2009-01-01

    A magnetosome-deleted mutant NM21 of MagnetospMIlum gryphiswaldense MSR-1 was generated by mini-Tn5 lacZ2 transposon mutagenesis, and a 3073-bp fragment flanking mini-Tn5 lacZ2 in NM21 was cloned by Anchored PCR. Sequencing analysis showed that this fragment involved three putative ORFs; the mini-Tn5 lacZ2 was inserted into ORF1. Functional complementary test indicated that the 3073-bp fragment was required for biosynthesis of magnetosomes in M. gryphiswaldense MSR-1. The majority of proteins, which bad homology with the protein encoded by ORF1, were the cation transporter. Transmembrane domain analysis showed that the protein encoded by ORF1 contained four trans-membrane domains. It may be a transmembrane protein. The protein encoded by ORF1 contained two putative conserved domains: COG0053 and PRK09509. The MMT1 and FieF, containing conserved domains COG0053 and PRK09509 too, were Fe2+ transporter (cation diffusion facilitator superfamily). It was suggested that the protein encoded by ORF1 might take part in the magnetosomes biosynthesis as Fe2+ transporter.

  3. Bacterial Genome Editing with CRISPR-Cas9: Deletion, Integration, Single Nucleotide Modification, and Desirable "Clean" Mutant Selection in Clostridium beijerinckii as an Example.

    Science.gov (United States)

    Wang, Yi; Zhang, Zhong-Tian; Seo, Seung-Oh; Lynn, Patrick; Lu, Ting; Jin, Yong-Su; Blaschek, Hans P

    2016-07-15

    CRISPR-Cas9 has been demonstrated as a transformative genome engineering tool for many eukaryotic organisms; however, its utilization in bacteria remains limited and ineffective. Here we explored Streptococcus pyogenes CRISPR-Cas9 for genome editing in Clostridium beijerinckii (industrially significant but notorious for being difficult to metabolically engineer) as a representative attempt to explore CRISPR-Cas9 for genome editing in microorganisms that previously lacked sufficient genetic tools. By combining inducible expression of Cas9 and plasmid-borne editing templates, we successfully achieved gene deletion and integration with high efficiency in single steps. We further achieved single nucleotide modification by applying innovative two-step approaches, which do not rely on availability of Protospacer Adjacent Motif sequences. Severe vector integration events were observed during the genome engineering process, which is likely difficult to avoid but has never been reported by other researchers for the bacterial genome engineering based on homologous recombination with plasmid-borne editing templates. We then further successfully employed CRISPR-Cas9 as an efficient tool for selecting desirable "clean" mutants in this study. The approaches we developed are broadly applicable and will open the way for precise genome editing in diverse microorganisms.

  4. Fine mapping of the 1p36 deletion syndrome identifies mutation of PRDM16 as a cause of cardiomyopathy

    DEFF Research Database (Denmark)

    Arndt, Anne-Karin; Schafer, Sebastian; Drenckhahn, Jorg-Detlef

    2013-01-01

    Deletion 1p36 syndrome is recognized as the most common terminal deletion syndrome. Here, we describe the loss of a gene within the deletion that is responsible for the cardiomyopathy associated with monosomy 1p36, and we confirm its role in nonsyndromic left ventricular noncompaction cardiomyopa...... of cardiomyocytes and also revealed evidence of impaired cardiomyocyte proliferative capacity. In conclusion, mutation of PRDM16 causes the cardiomyopathy in 1p36 deletion syndrome as well as a proportion of nonsyndromic LVNC and DCM....

  5. Construction of fbpA-deletion Mutant of Listeria Monocytogenes%单核细胞增生性李斯特菌fbpa基因敲除菌株的构建

    Institute of Scientific and Technical Information of China (English)

    李胜军; 阎雪晶; 王舰

    2013-01-01

    Objective To construct an fbpA-deletion mutant of Listeria monocytogenes. Methods The fbpA gene and its upstream, downstream genes of Listeria monocytogenes were cloned into plasmid pCR Ⅱ. The upstream and downstream fragments were ligated into the pAULA using restriction enzyme as pAULA-ΔfbpA. To achieve allelic exchange, pAULA-ΔfbpA was introduced into Listeria monocytogenes by electroporation. The mutant was confirmed by PCR and Western blot. Results The fbpA gene was not detected in genome of fbpA-deletion mutant of Listeria monocytogenes,and FbpA was not expressed in fbpA-deletion mutant of Listeria monocytogenes. Conclusion The fbpA-deletion mutant of Listeria monocytogenes was constructed successfully.%目的 构建单核细胞增生性李斯特菌fbpa基因敲除菌株.方法 克隆fbpa及其上、下游基因,构建其载体质粒;通过酶切反应将上、下游基因分别重组到载体质粒中,形成同源重组质粒;同源重组质粒电转入细菌内,进行同源重组;采用PCR、Western blot鉴定敲除菌株.结果 单核细胞增生性李斯特菌fbpa基因敲除菌株基因组DNA无fbpa基因片段,且无FbpA蛋白表达.结论 成功构建单核细胞增生性李斯特菌fbpa基因敲除菌株.

  6. A genetic screen in zebrafish identifies the mutants vps18, nf2 and foie gras as models of liver disease.

    Science.gov (United States)

    Sadler, Kirsten C; Amsterdam, Adam; Soroka, Carol; Boyer, James; Hopkins, Nancy

    2005-08-01

    Hepatomegaly is a sign of many liver disorders. To identify zebrafish mutants to serve as models for hepatic pathologies, we screened for hepatomegaly at day 5 of embryogenesis in 297 zebrafish lines bearing mutations in genes that are essential for embryonic development. Seven mutants were identified, and three have phenotypes resembling different liver diseases. Mutation of the class C vacuolar protein sorting gene vps18 results in hepatomegaly associated with large, vesicle-filled hepatocytes, which we attribute to the failure of endosomal-lysosomal trafficking. Additionally, these mutants develop defects in the bile canaliculi and have marked biliary paucity, suggesting that vps18 also functions to traffic vesicles to the hepatocyte apical membrane and may play a role in the development of the intrahepatic biliary tree. Similar findings have been reported for individuals with arthrogryposis-renal dysfunction-cholestasis (ARC) syndrome, which is due to mutation of another class C vps gene. A second mutant, resulting from disruption of the tumor suppressor gene nf2, develops extrahepatic choledochal cysts in the common bile duct, suggesting that this gene regulates division of biliary cells during development and that nf2 may play a role in the hyperplastic tendencies observed in biliary cells in individuals with choledochal cysts. The third mutant is in the novel gene foie gras, which develops large, lipid-filled hepatocytes, resembling those in individuals with fatty liver disease. These mutants illustrate the utility of zebrafish as a model for studying liver development and disease, and provide valuable tools for investigating the molecular pathogenesis of congenital biliary disorders and fatty liver disease.

  7. Characterization of 11p14-p12 deletion in WAGR syndrome by array CGH for identifying genes contributing to mental retardation and autism.

    Science.gov (United States)

    Xu, S; Han, J C; Morales, A; Menzie, C M; Williams, K; Fan, Y-S

    2008-01-01

    WAGR (Wilms tumor, Aniridia, Genitourinary malformations and mental Retardation) syndrome is a rare genomic disorder caused by deletion of the 11p14-p12 chromosome region. The majority of WAGR patients have mental retardation and behavioral problems, and more than 20% of the patients also have features of autism. While the Wilms tumor/genitourinary anomalies and aniridia are caused by deletion of WT1 and PAX6 respectively, the genomic cause of mental retardation and autism in WAGR syndrome remains unknown. Using oligonucleotide arrays, we have characterized the 11p14-p12 deletions in 31 patients and identified all the genes involved in each deletion. The deletions had sizes ranging from 4.9 to 23 Mb that encompass 18-62 genes (40 on average). In addition to WT1 and PAX6, all the patients had deletion of PRRG4 (transmembrane gamma-carboxyglutamic acid protein 4). The majority of them had deletion of BDNF (brain-derived neurotrophic factor) and SLC1A2 [solute carrier family 1 (glial high affinity glutamate transporter) member 2]. Deletion of BDNF and SLC1A2 occurred in patients with autism more frequently than in those without autism. Literature review on the functions of the genes suggests that haploinsufficiency of SLC1A2, PRRG4, and BDNF may contribute to mental retardation and behavioral problems. In particular, BDNF may modulate the risk of autism in WAGR patients as suggested by its link with Rett syndrome as a target of MECP2. We observed that all the de novo deletions occurred in the chromosome 11 inherited from the father in the families genotyped, implying a predisposition for de novo mutations occurring in spermatogenesis and possible involvement of imprinting in cognitive impairment in WAGR patients. Copyright 2008 S. Karger AG, Basel.

  8. Whole exome sequencing combined with linkage analysis identifies a novel 3 bp deletion in NR5A1.

    Science.gov (United States)

    Eggers, Stefanie; Smith, Katherine R; Bahlo, Melanie; Looijenga, Leendert H J; Drop, Stenvert L S; Juniarto, Zulfa A; Harley, Vincent R; Koopman, Peter; Faradz, Sultana M H; Sinclair, Andrew H

    2015-04-01

    Disorders of sex development (DSDs) encompass a broad spectrum of conditions affecting the development of the gonads and genitalia. The underlying causes for DSDs include gain or loss of function variants in genes responsible for gonad development or steroidogenesis. Most patients with DSD have an unknown genetic etiology and cannot be given an accurate diagnosis. We used whole exome capture and massively parallel sequencing to analyse a large family with 46,XY DSD and 46,XX premature ovarian insufficiency. In addition, we used a recently developed method for linkage analysis using genotypes extracted from the MPS data. This approach identified a unique linkage peak on chromosome 9 and a novel, 3 bp, in-frame deletion in exon six of NR5A1 (steroidogenic factor-1 or SF1) in all affected individuals. We confirmed that the variant disrupts the SF1 protein and its ability to bind and regulate downstream genes. NR5A1 has key roles at multiple points in gonad development and steroidogenic pathways. The variant described here affects the function of SF1 in early testis development and later ovarian function, ultimately leading to the 46,XY DSD and 46,XX premature ovarian insufficiency phenotypes, respectively. This study shows that even at low coverage, whole exome sequencing, when combined with linkage analysis, can be a powerful tool to identify rapidly the disease-causing variant in large pedigrees.

  9. Molecular Characterization of eutF Mutants of Salmonella typhimurium LT2 Identifies eutF Lesions as Partial-Loss-of-Function tonB Alleles

    Science.gov (United States)

    Thomas, Michael G.; O’Toole, George A.; Escalante-Semerena, Jorge C.

    1999-01-01

    The eutF locus of Salmonella typhimurium LT2 was identified as a locus necessary for the utilization of ethanolamine as a sole carbon source. Initial models suggested that EutF was involved in either ethanolamine transport or was a transcriptional regulator of an ethanolamine transporter. Phenotypic characterization of eutF mutants suggested EutF was somehow involved in 1,2-propanediol, propionate, and succinate utilization. Here we provide evidence that two alleles defining the eutF locus, Δ903 and eutF1115, are partial-loss-of-function tonB alleles. Both mutations were complemented by plasmids containing a wild-type allele of the Escherichia coli tonB gene. Immunoblot analysis using TonB monoclonal antibodies detected a TonB fusion protein in strains carrying eutF alleles. Molecular analysis of the Δ903 allele identified a deletion that resulted in the fusion of the 3′ end of tonB with the 3′ end of trpA. In-frame translation of the tonB-trpA fusion resulted in the final 9 amino acids of TonB being replaced by a 45-amino-acid addition. We isolated a derivative of a strain carrying allele Δ903 that regained the ability to grow on ethanolamine as a carbon and energy source. The molecular characterization of the mutation that corrected the Eut− phenotype caused by allele Δ903 showed that the new mutation was a deletion of two nucleotides at the tonB-trpA fusion site. This deletion resulted in a frameshift that replaced the 45-amino-acid addition with a 5-amino-acid addition. This change resulted in a TonB protein with sufficient activity to restore growth on ethanolamine and eut operon expression to nearly wild-type levels. It was concluded that the observed EutF phenotypes were due to the partial loss of TonB function, which is proposed to result in reduced cobalamin and ferric siderophore transport in an aerobic environment; thus, the eutF locus does not exist. PMID:9882647

  10. ALIX Rescues Budding of a Double PTAP/PPEY L-Domain Deletion Mutant of Ebola VP40: A Role for ALIX in Ebola Virus Egress.

    Science.gov (United States)

    Han, Ziying; Madara, Jonathan J; Liu, Yuliang; Liu, Wenbo; Ruthel, Gordon; Freedman, Bruce D; Harty, Ronald N

    2015-10-01

    Ebola (EBOV) is an enveloped, negative-sense RNA virus belonging to the family Filoviridae that causes hemorrhagic fever syndromes with high-mortality rates. To date, there are no licensed vaccines or therapeutics to control EBOV infection and prevent transmission. Consequently, the need to better understand the mechanisms that regulate virus transmission is critical to developing countermeasures. The EBOV VP40 matrix protein plays a central role in late stages of virion assembly and egress, and independent expression of VP40 leads to the production of virus-like particles (VLPs) by a mechanism that accurately mimics budding of live virus. VP40 late (L) budding domains mediate efficient virus-cell separation by recruiting host ESCRT and ESCRT-associated proteins to complete the membrane fission process. L-domains consist of core consensus amino acid motifs including PPxY, P(T/S)AP, and YPx(n)L/I, and EBOV VP40 contains overlapping PPxY and PTAP motifs whose interactions with Nedd4 and Tsg101, respectively, have been characterized extensively. Here, we present data demonstrating for the first time that EBOV VP40 possesses a third L-domain YPx(n)L/I consensus motif that interacts with the ESCRT-III protein Alix. We show that the YPx(n)L/I motif mapping to amino acids 18-26 of EBOV VP40 interacts with the Alix Bro1-V fragment, and that siRNA knockdown of endogenous Alix expression inhibits EBOV VP40 VLP egress. Furthermore, overexpression of Alix Bro1-V rescues VLP production of the budding deficient EBOV VP40 double PTAP/PPEY L-domain deletion mutant to wild-type levels. Together, these findings demonstrate that EBOV VP40 recruits host Alix via a YPx(n)L/I motif that can function as an alternative L-domain to promote virus egress.

  11. A de novo interstitial deletion of 8p11.2 including ANK1 identified in a patient with spherocytosis, psychomotor developmental delay, and distinctive facial features.

    Science.gov (United States)

    Miya, Kazushi; Shimojima, Keiko; Sugawara, Midori; Shimada, Shino; Tsuri, Hiroyuki; Harai-Tanaka, Tomomi; Nakaoka, Sachiko; Kanegane, Hirokazu; Miyawaki, Toshio; Yamamoto, Toshiyuki

    2012-09-10

    The contiguous gene syndrome involving 8p11.2 is recognized as a combined phenotype of both Kallmann syndrome and hereditary spherocytosis, because the genes responsible for these 2 clinical entities, the fibroblast growth factor receptor 1 (FGFR1) and ankyrin 1 (ANK1) genes, respectively, are located in this region within a distance of 3.2Mb. We identified a 3.7Mb deletion of 8p11.2 in a 19-month-old female patient with hereditary spherocytosis. The identified deletion included ANK1, but not FGFR1, which is consistent with the absence of any phenotype or laboratory findings of Kallmann syndrome. Compared with the previous studies, the deletion identified in this study was located on the proximal end of 8p, indicating a pure interstitial deletion of 8p11.21. This patient exhibited mild developmental delay and distinctive facial findings in addition to hereditary spherocytosis. Thus, some of the genes included in the deleted region would be related to these symptoms.

  12. A PCR-based forward genetics screening, using expression domain-specific markers, identifies mutants in endosperm transfer cell development

    Directory of Open Access Journals (Sweden)

    Luis Miguel Muñiz

    2014-04-01

    Full Text Available Mutant collections are an invaluable source of material on which forward genetic approaches allow the identification of genes affecting a wide variety of biological processes. However, some particular developmental stages and morphological structures may resist analysis due to their physical inaccessibility or to deleterious effects associated to their modification. Furthermore, lethal mutations acting early in development may escape detection. We have approached the characterisation of 101 maize seed mutants, selected from a collection of 27500 visually screened Mu-insertion lines, using a molecular marker approach based on a set of genes previously ascribed to different tissue compartments within the early developing kernel. A streamlined combination of qRT-PCR assays has allowed us to preliminary pinpoint the affected compartment, establish developmental comparisons to WT siblings and select mutant lines with alterations in the different compartments. Furthermore, clusters of markers co-affected by the underlying mutation were identified. We have analysed more extensively a set of lines presenting significant variation in transfer cell-associated expression markers, and have performed morphological observations, and immunolocalization experiments to confirm the results, validating this approach as an efficient mutant description tool.

  13. Integrated multi-omics analysis of oligodendroglial tumours identifies three subgroups of 1p/19q co-deleted gliomas

    OpenAIRE

    Kamoun, Aurélie; Idbaih, Ahmed; Dehais, Caroline; Elarouci, Nabila; Carpentier, Catherine; Letouzé, Eric; Colin, Carole; Mokhtari, Karima; Jouvet, Anne; Uro-Coste, Emmanuelle; Martin-Duverneuil, Nadine; Sanson, Marc; Delattre, Jean-Yves; Figarella-Branger, Dominique; de Reyniès, Aurélien

    2016-01-01

    POLA Network; International audience; Oligodendroglial tumours (OT) are a heterogeneous group of gliomas. Three molecular subgroups are currently distinguished on the basis of the IDH mutation and 1p/19q co-deletion. Here we present an integrated analysis of the transcriptome, genome and methylome of 156 OT. Not only does our multi-omics classification match the current classification but also reveals three subgroups within 1p/19q co-deleted tumours, associated with specific expression patter...

  14. Knockout mutants as a tool to identify the subunit composition of Arabidopsis glutamine synthetase isoforms.

    Science.gov (United States)

    Dragićević, Milan; Todorović, Slađana; Bogdanović, Milica; Filipović, Biljana; Mišić, Danijela; Simonović, Ana

    2014-06-01

    Glutamine synthetase (GS) is a key enzyme in nitrogen assimilation, which catalyzes the formation of glutamine from ammonia and glutamate. Plant GS isoforms are multimeric enzymes, recently shown to be decamers. The Arabidopsis genome encodes five cytosolic (GS1) proteins labeled as GLN1;1 through GLN1;5 and one chloroplastic (GS2) isoform, GLN2;0. However, as many as 11 GS activity bands were resolved from different Arabidopsis tissues by Native PAGE and activity staining. Western analysis showed that all 11 isoforms are composed exclusively of 40 kDa GS1 subunits. Of five GS1 genes, only GLN1;1, GLN1;2 and GLN1;3 transcripts accumulated to significant levels in vegetative tissues, indicating that only subunits encoded by these three genes produce the 11-band zymogram. Even though the GS2 gene also had significant expression, the corresponding activity was not detected, probably due to inactivation. To resolve the subunit composition of 11 active GS1 isoforms, homozygous knockout mutants deficient in the expression of different GS1 genes were selected from the progeny of T-DNA insertional SALK and SAIL lines. Comparison of GS isoenzyme patterns of the selected GS1 knockout mutants indicated that all of the detected isoforms consist of varying proportions of GLN1;1, GLN1;2 and GLN1;3 subunits, and that GLN1;1 and GLN1;3, as well as GLN1;2 and GLN1;3 and possibly GLN1;1 and GLN1;2 proteins combine in all proportions to form active homo- and heterodecamers.

  15. Construction and characterization of a bovine herpesvirus 5 mutant with a deletion of the gI, gE and US9 genes Construção e caracterização de um mutante herpesvírus bovino 5 com uma deleção nos genes gI, gE e US9

    Directory of Open Access Journals (Sweden)

    Ana Cláudia Franco

    2007-12-01

    Full Text Available Bovine herpesvirus 5 (BoHV-5 is a important cause of viral encephalitis in cattle in South America. Within the framework of developing a differential vaccine against BoHV-5, a deletion mutant was constructed based on a Brazilian BoHV-5 isolate. The target of the deletions were genes that code proteins implicated in the neurovirulence of BoHV-5, the glycoprotein I (gI, glycoprotein E (gE and membrane protein US9. To construct the deletion mutant of BoHV-5, the flanking regions of all three genes were cloned in a prokaryotic plasmid. This deletion fragment was co-transfected with the viral DNA into bovine cells. Identification of deletion mutants was performed by immunostaining with an anti-gE monoclonal antibody. One of the gE negative viral populations found was purified, amplified and further examined by restriction endonuclesase analysis of its genomic DNA. The plaque sizes and penetration kinetics of the deletion mutant and wild type viruses were compared. The plaque sizes of the deletion mutant were significantly smaller than those of the parental strain (p O herpesvírus bovino 5 (BoHV-5 é uma causa importante de encefalite viral em bovinos na América do Sul. Buscando o desenvolvimento de uma vacina diferencial contra o BoHV-5, um mutante deletado foi construído com base em um isolado brasileiro deste vírus. O alvo das deleções foram genes que codificam proteínas implicadas na neurovirulência do BoHV-5, a glicoproteína I (gI, a glicoproteína E (gE e a proteína de membrana US9. Para construir o mutante deletado de BoHV-5, as regiões flanqueadoras dos três genes foram clonadas em um plasmídeo procarioto. Este fragmento de deleção foi co-transfectado com o DNA viral em células de bovinos. A identificação dos mutantes deletados foi feita por meio da técnica de imunoperoxidase com um anticorpo monoclonal anti-gE. Uma das populacões virais gE negativas encontradas foi purificada, amplificada e seu genoma foi examinado por an

  16. Deletion of Cg-emb in corynebacterianeae leads to a novel truncated cell wall arabinogalactan, whereas inactivation of Cg-ubiA results in an arabinan-deficient mutant with a cell wall galactan core.

    Science.gov (United States)

    Alderwick, Luke J; Radmacher, Eva; Seidel, Mathias; Gande, Roland; Hitchen, Paul G; Morris, Howard R; Dell, Anne; Sahm, Hermann; Eggeling, Lothar; Besra, Gurdyal S

    2005-09-16

    The cell wall of Mycobacterium tuberculosis has a complex ultrastructure that consists of mycolic acids connected to peptidoglycan via arabinogalactan (AG) and abbreviated as the mAGP complex. The mAGP complex is crucial for the survival and pathogenicity of M. tuberculosis and is the target of several anti-tubercular agents. Apart from sharing a similar mAGP and the availability of the complete genome sequence, Corynebacterium glutamicum has proven useful in the study of orthologous M. tuberculosis genes essential for viability. Here we examined the effects of particular genes involved in AG polymerization by gene deletion in C. glutamicum. The anti-tuberculosis drug ethambutol is thought to target a set of arabinofuranosyltransferases (Emb) that are involved in arabinan polymerization. Deletion of emb in C. glutamicum results in a slow growing mutant with profound morphological changes. Chemical analysis revealed a dramatic reduction of arabinose resulting in a novel truncated AG structure possessing only terminal arabinofuranoside (t-Araf) residues with a corresponding loss of cell wall bound mycolic acids. Treatment of wild-type C. glutamicum with ethambutol and subsequent cell wall analyses resulted in an identical phenotype comparable to the C. glutamicum emb deletion mutant. Additionally, disruption of ubiA in C. glutamicum, the first enzyme involved in the biosynthesis of the sugar donor decaprenol phosphoarabinose (DPA), resulted in a complete loss of cell wall arabinan. Herein, we establish for the first time, (i) that in contrast to M. tuberculosis embA and embB mutants, deletion of C. glutamicum emb leads to a highly truncated AG possessing t-Araf residues, (ii) the exact site of attachment of arabinan chains in AG, and (iii) DPA is the only Araf sugar donor in AG biosynthesis suggesting the presence of a novel enzyme responsible for "priming" the galactan domain for further elaboration by Emb, resulting in the final maturation of the native AG

  17. Signature MicroRNA expression patterns identified in humans with 22q11.2 deletion/DiGeorge syndrome.

    Science.gov (United States)

    de la Morena, M Teresa; Eitson, Jennifer L; Dozmorov, Igor M; Belkaya, Serkan; Hoover, Ashley R; Anguiano, Esperanza; Pascual, M Virginia; van Oers, Nicolai S C

    2013-04-01

    Patients with 22q11.2 deletion syndrome have heterogeneous clinical presentations including immunodeficiency, cardiac anomalies, and hypocalcemia. The syndrome arises from hemizygous deletions of up to 3Mb on chromosome 22q11.2, a region that contains 60 genes and 4 microRNAs. MicroRNAs are important post-transcriptional regulators of gene expression, with mutations in several microRNAs causal to specific human diseases. We characterized the microRNA expression patterns in the peripheral blood of patients with 22q11.2 deletion syndrome (n=31) compared to normal controls (n=22). Eighteen microRNAs had a statistically significant differential expression (p<0.05), with miR-185 expressed at 0.4× normal levels. The 22q11.2 deletion syndrome cohort exhibited microRNA expression hyper-variability and group dysregulation. Selected microRNAs distinguished patients with cardiac anomalies, hypocalcemia, and/or low circulating T cell counts. In summary, microRNA profiling of chromosome 22q11.2 deletion syndrome/DiGeorge patients revealed a signature microRNA expression pattern distinct from normal controls with clinical relevance.

  18. High Throughput Sequencing Identifies Misregulated Genes in the Drosophila Polypyrimidine Tract-Binding Protein (hephaestus) Mutant Defective in Spermatogenesis.

    Science.gov (United States)

    Sridharan, Vinod; Heimiller, Joseph; Robida, Mark D; Singh, Ravinder

    2016-01-01

    The Drosophila polypyrimidine tract-binding protein (dmPTB or hephaestus) plays an important role during spermatogenesis. The heph2 mutation in this gene results in a specific defect in spermatogenesis, causing aberrant spermatid individualization and male sterility. However, the array of molecular defects in the mutant remains uncharacterized. Using an unbiased high throughput sequencing approach, we have identified transcripts that are misregulated in this mutant. Aberrant transcripts show altered expression levels, exon skipping, and alternative 5' ends. We independently verified these findings by reverse-transcription and polymerase chain reaction (RT-PCR) analysis. Our analysis shows misregulation of transcripts that have been connected to spermatogenesis, including components of the actomyosin cytoskeletal apparatus. We show, for example, that the Myosin light chain 1 (Mlc1) transcript is aberrantly spliced. Furthermore, bioinformatics analysis reveals that Mlc1 contains a high affinity binding site(s) for dmPTB and that the site is conserved in many Drosophila species. We discuss that Mlc1 and other components of the actomyosin cytoskeletal apparatus offer important molecular links between the loss of dmPTB function and the observed developmental defect in spermatogenesis. This study provides the first comprehensive list of genes misregulated in vivo in the heph2 mutant in Drosophila and offers insight into the role of dmPTB during spermatogenesis.

  19. Construction of sufC gene deleted mutant in salmonella enterica serovar typhi%伤寒沙门菌sufC基因缺陷变异株的制备

    Institute of Scientific and Technical Information of China (English)

    李美芬; 朱超望

    2011-01-01

    目的 为深入研究sufC基因在伤寒沙门菌中的功能作用,制备sufC基因缺陷变异株.方法 根据GeneBank公布的伤寒沙门菌sufC基因序列,设计sufC缺失用PCR特异性引物,制备缺失sufC基因的同源性核苷酸片段,连接自杀质粒后导入伤寒沙门菌野生株,诱导同源重组,重组菌经PCR观察及序列分析鉴定,将完全重组稳定的相应菌株作为伤寒沙门菌sufC基因缺陷变异株,并经测序分析加以确定.结果 PCR及序列分析证实,缺陷变异株的sufC基因缺失495个碱基.结论 伤寒沙门菌sufC基因缺陷株构建成功,为进一步研究其在伤寒沙门菌中的功能作用奠定了基础.%Objective For investigating the funcation of sufC gene, the deletion mutant of the sufC gene was constructed in Salmonella enterica serovar Typhi (S. Typhi). Methods According to sufC gene sequence from the Gene Bank, designed sufC deletions using PCR specific primer. Constructed deletions of the sufC gene homology in nucleotide fragment, and connected the suicide plasmid. The suicide plasmid including sufC gene homology in nucleotide fragment which was transferred into S. Typhi wild strains. It was induction of homologous recombination. The recombination was valided by PCR and sequencing analysis. The completely stable recombinant strains were sufC gene defective mutant of S. Typhi. Results PCR and sequencing analysis confirmed that the sufC gene mutant was deleted 495 bp. Conclusions The sufC gene deleted mutant of S. Enterica serovar Typhi was generated successfully which was a foundation to study the function of the sufC gene in S. Enterica serovar Typhi.

  20. Partial protoporphyrinogen oxidase (PPOX gene deletions, due to different Alu-mediated mechanisms, identified by MLPA analysis in patients with variegate porphyria

    Directory of Open Access Journals (Sweden)

    Barbaro Michela

    2013-01-01

    Full Text Available Abstract Variegate porphyria (VP is an autosomal dominantly inherited hepatic porphyria. The genetic defect in the PPOX gene leads to a partial defect of protoporphyrinogen oxidase, the penultimate enzyme of heme biosynthesis. Affected individuals can develop cutaneous symptoms in sun-exposed areas of the skin and/or neuropsychiatric acute attacks. The identification of the genetic defect in VP families is of crucial importance to detect the carrier status which allows counseling to prevent potentially life threatening neurovisceral attacks, usually triggered by factors such as certain drugs, alcohol or fasting. In a total of 31 Swedish VP families sequence analysis had identified a genetic defect in 26. In the remaining five families an extended genetic investigation was necessary. After the development of a synthetic probe set, MLPA analysis to screen for single exon deletions/duplications was performed. We describe here, for the first time, two partial deletions within the PPOX gene detected by MLPA analysis. One deletion affects exon 5 and 6 (c.339-197_616+320del1099 and has been identified in four families, most probably after a founder effect. The other extends from exon 5 to exon 9 (c.339-350_987+229del2609 and was found in one family. We show that both deletions are mediated by Alu repeats. Our findings emphasize the usefulness of MLPA analysis as a complement to PPOX gene sequencing analysis for comprehensive genetic diagnostics in patients with VP.

  1. Further characterization of a highly attenuated Yersinia pestis CO92 mutant deleted for the genes encoding Braun lipoprotein and plasminogen activator protease in murine alveolar and primary human macrophages.

    Science.gov (United States)

    van Lier, Christina J; Tiner, Bethany L; Chauhan, Sadhana; Motin, Vladimir L; Fitts, Eric C; Huante, Matthew B; Endsley, Janice J; Ponnusamy, Duraisamy; Sha, Jian; Chopra, Ashok K

    2015-03-01

    We recently characterized the Δlpp Δpla double in-frame deletion mutant of Yersinia pestis CO92 molecularly, biologically, and immunologically. While Braun lipoprotein (Lpp) activates toll-like receptor-2 to initiate an inflammatory cascade, plasminogen activator (Pla) protease facilitates bacterial dissemination in the host. The Δlpp Δpla double mutant was highly attenuated in evoking bubonic and pneumonic plague, was rapidly cleared from mouse organs, and generated humoral and cell-mediated immune responses to provide subsequent protection to mice against a lethal challenge dose of wild-type (WT) CO92. Here, we further characterized the Δlpp Δpla double mutant in two murine macrophage cell lines as well as in primary human monocyte-derived macrophages to gauge its potential as a live-attenuated vaccine candidate. We first demonstrated that the Δpla single and the Δlpp Δpla double mutant were unable to survive efficiently in murine and human macrophages, unlike WT CO92. We observed that the levels of Pla and its associated protease activity were not affected in the Δlpp single mutant, and, likewise, deletion of the pla gene from WT CO92 did not alter Lpp levels. Further, our study revealed that both Lpp and Pla contributed to the intracellular survival of WT CO92 via different mechanisms. Importantly, the ability of the Δlpp Δpla double mutant to be phagocytized by macrophages, to stimulate production of tumor necrosis factor-α and interleukin-6, and to activate the nitric oxide killing pathways of the host cells remained unaltered when compared to the WT CO92-infected macrophages. Finally, macrophages infected with either the WT CO92 or the Δlpp Δpla double mutant were equally efficient in their uptake of zymosan particles as determined by flow cytometric analysis. Overall, our data indicated that although the Δlpp Δpla double mutant of Y. pestis CO92 was highly attenuated, it retained the ability to elicit innate and subsequent acquired immune

  2. Recurrent distal 7q11.23 deletion including HIP1 and YWHAG identified in patients with intellectual disabilities, epilepsy, and neurobehavioral problems.

    Science.gov (United States)

    Ramocki, Melissa B; Bartnik, Magdalena; Szafranski, Przemyslaw; Kołodziejska, Katarzyna E; Xia, Zhilian; Bravo, Jaclyn; Miller, G Steve; Rodriguez, Diana L; Williams, Charles A; Bader, Patricia I; Szczepanik, Elżbieta; Mazurczak, Tomasz; Antczak-Marach, Dorota; Coldwell, James G; Akman, Cigdem I; McAlmon, Karen; Cohen, Melinda P; McGrath, James; Roeder, Elizabeth; Mueller, Jennifer; Kang, Sung-Hae L; Bacino, Carlos A; Patel, Ankita; Bocian, Ewa; Shaw, Chad A; Cheung, Sau Wai; Mazurczak, Tadeusz; Stankiewicz, Paweł

    2010-12-10

    We report 26 individuals from ten unrelated families who exhibit variable expression and/or incomplete penetrance of epilepsy, learning difficulties, intellectual disabilities, and/or neurobehavioral abnormalities as a result of a heterozygous microdeletion distally adjacent to the Williams-Beuren syndrome region on chromosome 7q11.23. In six families with a common recurrent ∼1.2 Mb deletion that includes the Huntingtin-interacting protein 1 (HIP1) and tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein gamma (YWHAG) genes and that is flanked by large complex low-copy repeats, we identified sites for nonallelic homologous recombination in two patients. There were no cases of this ∼1.2 Mb distal 7q11.23 deletion copy number variant identified in over 20,000 control samples surveyed. Three individuals with smaller, nonrecurrent deletions (∼180-500 kb) that include HIP1 but not YWHAG suggest that deletion of HIP1 is sufficient to cause neurological disease. Mice with targeted mutation in the Hip1 gene (Hip1⁻(/)⁻) develop a neurological phenotype characterized by failure to thrive, tremor, and gait ataxia. Overall, our data characterize a neurodevelopmental and epilepsy syndrome that is likely caused by recurrent and nonrecurrent deletions, including HIP1. These data do not exclude the possibility that YWHAG loss of function is also sufficient to cause neurological phenotypes. Based on the current knowledge of Hip1 protein function and its proposed role in AMPA and NMDA ionotropic glutamate receptor trafficking, we believe that HIP1 haploinsufficiency in humans will be amenable to rational drug design for improved seizure control and cognitive and behavioral function.

  3. IκBα缺失突变体真核表达载体的构建、表达及其生物活性检测%Construction and Expression of Deletion Mutant of IκBα and Its Bioactivity

    Institute of Scientific and Technical Information of China (English)

    黄思超; 杜军; 邱胜红; 徐俊; 傅刘鹏; 马锦珊; 蔡绍晖

    2009-01-01

    旨在构建缺失N端前36个氨基酸的IκBα突变体真核表达载体,并对其表达及生物学活性进行检测.从人源子宫颈癌细胞HeLa中提取总RNA,利用RT-PCR的方法获得IκBα缺失突变体的cDNA,将其克隆至真核表达载体pcDNA3.1/myc-His A中,构建重组载体pcDNA3.1-IκBαΔN.通过PCR方法、NcoⅠ酶切以及核酸测序分析对其进行鉴定;采用Western Blot检测IκBα缺失突变体蛋白在HeLa细胞中的表达.将pcDNA3.1-IκBαΔN和pNF-κB-Luc共转染 HeLa细胞,经TNF-α诱导后,利用萤光素酶报告系统来检测重组载体对NF-αB的抑制活性.结果表明,经PCR方法、NcoⅠ酶切鉴定及核酸测序分析后,证实成功构建了重组载体pcDNA3.1-IκBαΔN;IκBα缺失突变体蛋白在HeLa细胞中高效表达,并对NF-κB有显著的抑制活性(P<0.01).因此,真核表达载体pcDNA3.1-IκBαΔN构建成功,为一步研究NF-κB信号传导通路及其相关疾病提供有效的分子工具.%It was to construct a eukaryotic expression vector of IκBα mutant deleted N-terminal aminos from 1 to 36, and to i-dentify its expression and bioactivity. Total RNA was extracted from human cervical cancer HeLa cells, and cDNA of IκBα deletion mutant was obtained by RT-PCR method. The mutant gene was cloned into the eukaryotic expression plasm id pcDNA3. 1/ myc-His (A) to construct the recombinant vector pcDNA3. 1-IκBα△N. PCR method,Nco I digestion and DNA sequencing analysis were -employed to identify the recombinant vector. The expression of IκBα deletion mutant was detected by Western Blot. HeLa cells were co-transfected with pcDNA3. 1-IκBα△N and pNF-κB-Luc. Then,after the induction of TNF-α,its inhibitory effect on NF-κB was tested by Luciferase Assay System. Result indicated that the recombinant vector pcDNA3. 1 -IκBα△N was confirmed by PCR method, Nco I digestion and DNA sequencing analysis. The IκBα△N gene was expressed in HeLa cells and the deletion mutant protein

  4. A novel high-throughput in vivo molecular screen for shade avoidance mutants identifies a novel phyA mutation.

    Science.gov (United States)

    Wang, Xuewen; Roig-Villanova, Irma; Khan, Safina; Shanahan, Hugh; Quail, Peter H; Martinez-Garcia, Jaime F; Devlin, Paul F

    2011-05-01

    The shade avoidance syndrome (SAS) allows plants to anticipate and avoid shading by neighbouring plants by initiating an elongation growth response. The phytochrome photoreceptors are able to detect a reduction in the red:far red ratio in incident light, the result of selective absorption of red and blue wavelengths by proximal vegetation. A shade-responsive luciferase reporter line (PHYB::LUC) was used to carry out a high-throughput screen to identify novel SAS mutants. The dracula 1 (dra1) mutant, that showed no avoidance of shade for the PHYB::LUC response, was the result of a mutation in the PHYA gene. Like previously characterized phyA mutants, dra1 showed a long hypocotyl in far red light and an enhanced hypocotyl elongation response to shade. However, dra1 additionally showed a long hypocotyl in red light. Since phyB levels are relatively unaffected in dra1, this gain-of-function red light phenotype strongly suggests a disruption of phyB signalling. The dra1 mutation, G773E within the phyA PAS2 domain, occurs at a residue absolutely conserved among phyA sequences. The equivalent residue in phyB is absolutely conserved as a threonine. PAS domains are structurally conserved domains involved in molecular interaction. Structural modelling of the dra1 mutation within the phyA PAS2 domain shows some similarity with the structure of the phyB PAS2 domain, suggesting that the interference with phyB signalling may be the result of non-functional mimicry. Hence, it was hypothesized that this PAS2 residue forms a key distinction between the phyA and phyB phytochrome species.

  5. The single N-glycan deletion mutant of soluble ErbB3 protein attenuates heregulin β1-induced tumor progression by blocking of the HIF-1 and Nrf2 pathway

    Energy Technology Data Exchange (ETDEWEB)

    Takamiya, Rina, E-mail: rinataka0429@gmail.com; Takahashi, Motoko; Uehara, Yasuaki; Ariki, Shigeru; Hashimoto, Jiro; Hasegawa, Yoshihiro; Kuroki, Yoshio

    2014-11-21

    Highlights: • The sErbB3 N418Q mutant blocks heregulin β1 induced nuclear accumulation of HIF-1α. • The sErbB3 N418Q mutant attenuates cancer cell migration induced by heregulin β1. • The sErbB3 N418Q mutant blocks heregulin β1 induced nuclear accumulation of Nrf2. • The sErbB3 N418Q mutant may be a potential therapeutic application for tumor. - Abstract: It has been well documented that activation of the ErbB3–PI3K–Akt pathway is implicated in tumor survival and progression. We previously demonstrated that the single N-glycan deletion mutant of soluble ErbB3 protein (sErbB3 N418Q) attenuates heregulin β1-induced ErbB3 signaling. The active PI3K–Akt pathway augments the nuclear accumulation of hypoxia inducible factor (HIF)-1α, which activates the transcription of many target genes and drives cancer progression. In this study, we focused on the effects of sErbB3 N418Q mutant on nuclear accumulation of HIF-1α. Pretreatment with the sErbB3 N418Q mutant suppressed heregulin β1-induced HIF-1α activation in MCF7 cells. Similar results were also obtained in other breast cancer cell lines, T47D and BT474. Interestingly, these suppressive effects were not observed with the sErbB3 wild type. In addition, pretreatment with the sErbB3 N418Q mutant suppressed the cell migration of MCF7 cells induced by heregulin β1. Furthermore, incubation with heregulin β1 also induced the nuclear accumulation of Nrf2, and this effect was also reduced by the sErbB3 N418Q mutant, but not the sErbB3 wild type. These findings indicated that the sErbB3 N418Q mutant suppressed malignant formation of cancer cells by blocking of the HIF-1α and Nrf2 pathways.

  6. Quantitative analysis of bristle number in Drosophila mutants identifies genes involved in neural development

    Science.gov (United States)

    Norga, Koenraad K.; Gurganus, Marjorie C.; Dilda, Christy L.; Yamamoto, Akihiko; Lyman, Richard F.; Patel, Prajal H.; Rubin, Gerald M.; Hoskins, Roger A.; Mackay, Trudy F.; Bellen, Hugo J.

    2003-01-01

    BACKGROUND: The identification of the function of all genes that contribute to specific biological processes and complex traits is one of the major challenges in the postgenomic era. One approach is to employ forward genetic screens in genetically tractable model organisms. In Drosophila melanogaster, P element-mediated insertional mutagenesis is a versatile tool for the dissection of molecular pathways, and there is an ongoing effort to tag every gene with a P element insertion. However, the vast majority of P element insertion lines are viable and fertile as homozygotes and do not exhibit obvious phenotypic defects, perhaps because of the tendency for P elements to insert 5' of transcription units. Quantitative genetic analysis of subtle effects of P element mutations that have been induced in an isogenic background may be a highly efficient method for functional genome annotation. RESULTS: Here, we have tested the efficacy of this strategy by assessing the extent to which screening for quantitative effects of P elements on sensory bristle number can identify genes affecting neural development. We find that such quantitative screens uncover an unusually large number of genes that are known to function in neural development, as well as genes with yet uncharacterized effects on neural development, and novel loci. CONCLUSIONS: Our findings establish the use of quantitative trait analysis for functional genome annotation through forward genetics. Similar analyses of quantitative effects of P element insertions will facilitate our understanding of the genes affecting many other complex traits in Drosophila.

  7. BIOGENESIS OF THYLAKOID MEMBRANES WITH RECONSTRUCTION OF CHLOROPHYLL-PROTEIN COMPLEXES IN DELETION-MUTANT OF ORF469 IN BLUE-GREEN ALGA

    Institute of Scientific and Technical Information of China (English)

    WuQingyu; WangRuiyong; XuHong; WireVermaas

    1997-01-01

    The transformable blue green alga is used productively for mutation and deletion studies to provide functional information regarding photosynthetic reaction center complexes. We wish to take the application of transformable blue-green algal systems one step further ,and set out the

  8. Utilization of an unstable plasmid and the I-SceI endonuclease to generate routine markerless deletion mutants in Francisella tularensis

    Science.gov (United States)

    Horzempa, Joseph; Shanks, Robert M.Q.; Brown, Matthew J.; Russo, Brian C.; O’Dee, Dawn M.; Nau, Gerard J.

    2011-01-01

    We engineered an efficient system to make Francisella tularensis deletion mutations using an unstable, poorly maintained plasmid to enhance the likelihood of homologous recombination. For counterselection, we adapted a strategy using I-SceI, which causes a double-stranded break in the integrated suicide vector, forcing a second recombination to mediate allelic replacement. PMID:19879904

  9. ReacKnock: identifying reaction deletion strategies for microbial strain optimization based on genome-scale metabolic network.

    Directory of Open Access Journals (Sweden)

    Zixiang Xu

    Full Text Available Gene knockout has been used as a common strategy to improve microbial strains for producing chemicals. Several algorithms are available to predict the target reactions to be deleted. Most of them apply mixed integer bi-level linear programming (MIBLP based on metabolic networks, and use duality theory to transform bi-level optimization problem of large-scale MIBLP to single-level programming. However, the validity of the transformation was not proved. Solution of MIBLP depends on the structure of inner problem. If the inner problem is continuous, Karush-Kuhn-Tucker (KKT method can be used to reformulate the MIBLP to a single-level one. We adopt KKT technique in our algorithm ReacKnock to attack the intractable problem of the solution of MIBLP, demonstrated with the genome-scale metabolic network model of E. coli for producing various chemicals such as succinate, ethanol, threonine and etc. Compared to the previous methods, our algorithm is fast, stable and reliable to find the optimal solutions for all the chemical products tested, and able to provide all the alternative deletion strategies which lead to the same industrial objective.

  10. A large-scale survey of the novel 15q24 microdeletion syndrome in autism spectrum disorders identifies an atypical deletion that narrows the critical region

    Directory of Open Access Journals (Sweden)

    McInnes L

    2010-03-01

    Full Text Available Abstract Background The 15q24 microdeletion syndrome has been recently described as a recurrent, submicroscopic genomic imbalance found in individuals with intellectual disability, typical facial appearance, hypotonia, and digital and genital abnormalities. Gene dosage abnormalities, including copy number variations (CNVs, have been identified in a significant fraction of individuals with autism spectrum disorders (ASDs. In this study we surveyed two ASD cohorts for 15q24 abnormalities to assess the frequency of genomic imbalances in this interval. Methods We screened 173 unrelated subjects with ASD from the Central Valley of Costa Rica and 1336 subjects with ASD from 785 independent families registered with the Autism Genetic Resource Exchange (AGRE for CNVs across 15q24 using oligonucleotide arrays. Rearrangements were confirmed by array comparative genomic hybridization and quantitative PCR. Results Among the patients from Costa Rica, an atypical de novo deletion of 3.06 Mb in 15q23-q24.1 was detected in a boy with autism sharing many features with the other 13 subjects with the 15q24 microdeletion syndrome described to date. He exhibited intellectual disability, constant smiling, characteristic facial features (high anterior hairline, broad medial eyebrows, epicanthal folds, hypertelorism, full lower lip and protuberant, posteriorly rotated ears, single palmar crease, toe syndactyly and congenital nystagmus. The deletion breakpoints are atypical and lie outside previously characterized low copy repeats (69,838-72,897 Mb. Genotyping data revealed that the deletion had occurred in the paternal chromosome. Among the AGRE families, no large 15q24 deletions were observed. Conclusions From the current and previous studies, deletions in the 15q24 region represent rare causes of ASDs with an estimated frequency of 0.1 to 0.2% in individuals ascertained for ASDs, although the proportion might be higher in sporadic cases. These rates compare with a

  11. TBX1 mutation identified by exome sequencing in a Japanese family with 22q11.2 deletion syndrome-like craniofacial features and hypocalcemia.

    Directory of Open Access Journals (Sweden)

    Tsutomu Ogata

    Full Text Available BACKGROUND: Although TBX1 mutations have been identified in patients with 22q11.2 deletion syndrome (22q11.2DS-like phenotypes including characteristic craniofacial features, cardiovascular anomalies, hypoparathyroidism, and thymic hypoplasia, the frequency of TBX1 mutations remains rare in deletion-negative patients. Thus, it would be reasonable to perform a comprehensive genetic analysis in deletion-negative patients with 22q11.2DS-like phenotypes. METHODOLOGY/PRINCIPAL FINDINGS: We studied three subjects with craniofacial features and hypocalcemia (group 1, two subjects with craniofacial features alone (group 2, and three subjects with normal phenotype within a single Japanese family. Fluorescence in situ hybridization analysis excluded chromosome 22q11.2 deletion, and genomewide array comparative genomic hybridization analysis revealed no copy number change specific to group 1 or groups 1+2. However, exome sequencing identified a heterozygous TBX1 frameshift mutation (c.1253delA, p.Y418fsX459 specific to groups 1+2, as well as six missense variants and two in-frame microdeletions specific to groups 1+2 and two missense variants specific to group 1. The TBX1 mutation resided at exon 9C and was predicted to produce a non-functional truncated protein missing the nuclear localization signal and most of the transactivation domain. CONCLUSIONS/SIGNIFICANCE: Clinical features in groups 1+2 are well explained by the TBX1 mutation, while the clinical effects of the remaining variants are largely unknown. Thus, the results exemplify the usefulness of exome sequencing in the identification of disease-causing mutations in familial disorders. Furthermore, the results, in conjunction with the previous data, imply that TBX1 isoform C is the biologically essential variant and that TBX1 mutations are associated with a wide phenotypic spectrum, including most of 22q11.2DS phenotypes.

  12. A zebrafish screen for craniofacial mutants identifies wdr68 as a highly conserved gene required for endothelin-1 expression

    Directory of Open Access Journals (Sweden)

    Amsterdam Adam

    2006-06-01

    Full Text Available Abstract Background Craniofacial birth defects result from defects in cranial neural crest (NC patterning and morphogenesis. The vertebrate craniofacial skeleton is derived from cranial NC cells and the patterning of these cells occurs within the pharyngeal arches. Substantial efforts have led to the identification of several genes required for craniofacial skeletal development such as the endothelin-1 (edn1 signaling pathway that is required for lower jaw formation. However, many essential genes required for craniofacial development remain to be identified. Results Through screening a collection of insertional zebrafish mutants containing approximately 25% of the genes essential for embryonic development, we present the identification of 15 essential genes that are required for craniofacial development. We identified 3 genes required for hyomandibular development. We also identified zebrafish models for Campomelic Dysplasia and Ehlers-Danlos syndrome. To further demonstrate the utility of this method, we include a characterization of the wdr68 gene. We show that wdr68 acts upstream of the edn1 pathway and is also required for formation of the upper jaw equivalent, the palatoquadrate. We also present evidence that the level of wdr68 activity required for edn1 pathway function differs between the 1st and 2nd arches. Wdr68 interacts with two minibrain-related kinases, Dyrk1a and Dyrk1b, required for embryonic growth and myotube differentiation, respectively. We show that a GFP-Wdr68 fusion protein localizes to the nucleus with Dyrk1a in contrast to an engineered loss of function mutation Wdr68-T284F that no longer accumulated in the cell nucleus and failed to rescue wdr68 mutant animals. Wdr68 homologs appear to exist in all eukaryotic genomes. Notably, we found that the Drosophila wdr68 homolog CG14614 could substitute for the vertebrate wdr68 gene even though insects lack the NC cell lineage. Conclusion This work represents a systematic

  13. Global Systems-Level Analysis of Hfq and SmpB Deletion Mutants in Salmonella: Implications for Virulence and Global Protein Translation

    Energy Technology Data Exchange (ETDEWEB)

    Ansong, Charles; Yoon, Hyunjin; Porwollik, Steffen; Mottaz-Brewer, Heather; Petritis, Brianne O.; Jaitly, Navdeep; Adkins, Joshua N.; Mcclelland, Michael; Heffron, Fred; Smith, Richard D.

    2009-03-11

    In recent years the profound importance of sRNA-mediated translational/post-transcriptional regulation has been increasingly appreciated. However, the global role played by translational regulation in control of gene expression has never been elucidated in any organism for the simple reason that global proteomics methods required to accurately characterize post-transcriptional processes and the knowledge of translational control mechanisms have only become available within the last few years. The proteins Hfq and SmpB are essential for the biological activity of a range of regulatory sRNAs and thus provide a means to identify potential targets of sRNA regulation. We performed a sample-matched global proteomics and transcriptional analysis to examine the role of Hfq and SmpB in global protein translation and virulence using the Salmonella typhimurium model system. Samples were analyzed from bacteria grown under four different conditions; two laboratory conditions and two that are thought to mimic the intracellular environment. We show that mutants of hfq and smpB directly or indirectly modulate at least 20% and 4% of all Salmonella proteins, respectively, with limited correlation between transcription and protein expression. This is the first report suggesting that SmpB could be a general translational regulator. The broad spectrum of proteins modulated by Hfq was also surprising including central metabolism, LPS biosynthesis, two-component regulatory systems, quorum sensing, SP1-TTSS, oxidative stress, fatty acid metabolism, nucleoside and nucleotide metabolism, envelope stress, aminoacyl-tRNA synthetases, amino acid biosynthesis, peptide transport, and motility.. The extent of global regulation of translation by Hfq is unexpected, with profound effects in all stages of Salmonella’s life cycle. Our results represent the first global systems-level analysis of translational regulation; the elucidated potential targets of sRNA regulation from our analysis will

  14. Genome-wide mutant fitness profiling identifies nutritional requirements for optimal growth of Yersinia pestis in deep tissue.

    Science.gov (United States)

    Palace, Samantha G; Proulx, Megan K; Lu, Shan; Baker, Richard E; Goguen, Jon D

    2014-08-19

    Rapid growth in deep tissue is essential to the high virulence of Yersinia pestis, causative agent of plague. To better understand the mechanisms underlying this unusual ability, we used transposon mutagenesis and high-throughput sequencing (Tn-seq) to systematically probe the Y. pestis genome for elements contributing to fitness during infection. More than a million independent insertion mutants representing nearly 200,000 unique genotypes were generated in fully virulent Y. pestis. Each mutant in the library was assayed for its ability to proliferate in vitro on rich medium and in mice following intravenous injection. Virtually all genes previously established to contribute to virulence following intravenous infection showed significant fitness defects, with the exception of genes for yersiniabactin biosynthesis, which were masked by strong intercellular complementation effects. We also identified more than 30 genes with roles in nutrient acquisition and metabolism as experiencing strong selection during infection. Many of these genes had not previously been implicated in Y. pestis virulence. We further examined the fitness defects of strains carrying mutations in two such genes-encoding a branched-chain amino acid importer (brnQ) and a glucose importer (ptsG)-both in vivo and in a novel defined synthetic growth medium with nutrient concentrations matching those in serum. Our findings suggest that diverse nutrient limitations in deep tissue play a more important role in controlling bacterial infection than has heretofore been appreciated. Because much is known about Y. pestis pathogenesis, this study also serves as a test case that assesses the ability of Tn-seq to detect virulence genes. Our understanding of the functions required by bacteria to grow in deep tissues is limited, in part because most growth studies of pathogenic bacteria are conducted on laboratory media that do not reflect conditions prevailing in infected animal tissues. Improving our

  15. A Mutant with Expression Deletion of Gene Sec-1 in a 1RS.1BL Line and Its Effect on Production Quality of Wheat.

    Directory of Open Access Journals (Sweden)

    Zhi Li

    Full Text Available The chromosome arm 1RS of rye (Secale cereal L. has been used worldwide as a source of genes for agronomic and resistant improvement. However, the 1RS arm in wheat has end-use quality defects that are partially attributable to the presence of ω-secalins, which are encoded by genes at the Sec-1 locus. Various attempts in removing the Sec-1 genes from the 1RS.1BL translocation chromosome have been made. In the present study, two new primary 1RS.1BL translocation lines, T917-26 and T917-15, were developed from a cross between wheat variety "A42912" and Chinese local rye "Weining." The lines T917-15 and T917-26 carried a pair of intact and homogeneous 1RS.1BL chromosomes. The line T917-26 also harbored an expression deletion of some genes at the Sec-1 locus, which originated from a mutation that occurred simultaneously with wheat-rye chromosome translocations. These results suggest that the accompanying mutations of the evolutionarily significant translocations are remarkable resources for plant improvement. Comparison of translocation lines with its wheat parent showed improvements in the end-use quality parameters, which included protein content (PC, water absorption (WA, sodium dodecyl sulfate sedimentation (SDSS, wet gluten (WG, dry gluten (DG and dough stickiness (DS, whereas significant reduction in gluten index (GI and stability time (ST were observed. These findings indicate that 1RS in wheat has produced a higher amount of protein, although these comprised worse compositions. However, in the T917-26 line that harbored an expression deletion mutation in the Sec-1 genes, the quality parameters were markedly improved relative to its sister line, T917-15, especially for GI and DS (P < 0.05. These results indicated that expression deletion of Sec-1 genes significantly improves the end-use quality of wheat cultivars harboring the 1RS.1BL translocation. Strategies to remove the Sec-1 genes from the 1RS.1BL translocation in wheat improvement are

  16. A novel 3-base pair deletion of the CRYAA gene identified in a large Chinese pedigree featuring autosomal dominant congenital perinuclear cataract.

    Science.gov (United States)

    Kong, X D; Liu, N; Shi, H R; Dong, J M; Zhao, Z H; Liu, J; Li-Ling, J; Yang, Y X

    2015-01-23

    Congenital cataract is caused by reduced transparency of the lens resulting from metabolic disorders during the fetal period. The disease shows great heterogeneity both clinically and genetically. We identified a 4-generation ethnic Han Chinese family affected by autosomal dominant congenital perinuclear cataract. The patients underwent full clinical and ophthalmologic examinations to rule out any concomitant disorders. Blood samples were collected and genomic DNA was extracted. Potential mutations in the candidate gene alpha A crystallin (CRYAA) were screened. Prenatal diagnosis was then provided for a fetus of the affected proband by chorionic villus sampling. In all patients, DNA sequencing of the CRYAA gene revealed a novel 3-bp deletion mutation in exon 3 (c.246_248delCGC), which led to deletion of codon 117 encoding arginine (p.117delR) in the peptide chain. The same mutation was not found among unaffected and healthy individuals. Bioinformatic analysis revealed that although the c.246_248delCGC is an 'in-frame' mutation, removal of arginine resulted in a significant change in the protein structure. The fetus did not possess this mutation and was confirmed to be healthy at 1-year follow-up. A novel disease-causing mutation, c.246_248delCGC (p.117delR), of the CRYAA gene has been identified in a Chinese family with autosomal-type perinuclear congenital cataracts. This is also the first report of prenatal diagnosis of this type of congenital cataract.

  17. Widely Used Herpes Simplex Virus 1 ICP0 Deletion Mutant Strain dl1403 and Its Derivative Viruses Do Not Express Glycoprotein C Due to a Secondary Mutation in the gC Gene.

    Directory of Open Access Journals (Sweden)

    Cristina W Cunha

    Full Text Available Herpes simplex virus 1 (HSV-1 ICP0 is a multi-functional phosphoprotein expressed with immediate early kinetics. An ICP0 deletion mutant, HSV-1 dl1403, has been widely used to study the roles of ICP0 in the HSV-1 replication cycle including gene expression, latency, entry and assembly. We show that HSV-1 dl1403 virions lack detectable levels of envelope protein gC, and that gC is not synthesized in infected cells. Sequencing of the gC gene from HSV-1 dl1403 revealed a single amino acid deletion that results in a frameshift mutation. The HSV-1 dl1403 gC gene is predicted to encode a polypeptide consisting of the original 62 N-terminal amino acids of the gC protein followed by 112 irrelevant, non-gC residues. The mutation was also present in a rescuant virus and in two dl1403-derived viruses, D8 and FXE, but absent from the parental 17+, suggesting that the mutation was introduced during the construction of the dl1403 virus, and not as a result of passage in culture.

  18. Biological characteristics of rpoS gene deleted mutant in Salmonella typhi%伤寒沙门菌rpoS基因缺陷变异株的生物学特性研究

    Institute of Scientific and Technical Information of China (English)

    杜鸿; 周慧琴; 朱雪明

    2010-01-01

    Objective To investigate the biological characteristics of rpoS gene deleted mutation in Salmonella typhi under different stress conditions,so as to explore the target gene for the prevention and treament of Salmonella typhi infection.Methods rpoS gene deleted mutant of Salmonella typhi was prepared by homologious recombination.rpoS mutant and parental strains were incubated under iso-osmia and various stress conditions:acid stress(pH 4.2),high osmolarity stress(NaCl 300 mmol/L),bile stress (1.5 mmol/L sodiumdeoxycbolate)and oxidative stress(1 mmol/L H2O2).The growth curves were compared between mutant and parental strains under different incubation conditions(t test).Results rpoS gene deleted mutant of Salmonella typhi Was successfully generated.Compared with the parental strain,the survival ability of rpoS mutant was significantly compromised under the acid stress,high osmolarity stress and oxidative stress(t values at4 h were 12.864,3.594 and 12.979;t values at 14 h were6.497,3.039 and 10.440,P<0.05 or<0.01).Conclusion rpoS is important for Salmonella typhi to overcome the acid,high osmolarity and oxidative stresses,and it may be a target gene for the prevention and treatment of Salmonella typhi infection.%目的 研究rpoS基因在应激环境下的生物学作用,为临床预防和治疗伤寒沙门菌感染提供可能的靶基因.方法 利用原核生物基因同源重组技术制备伤寒沙门菌rpoS基因缺陷变异株.绘制生长曲线,对比rpoS基因缺陷变异株与野生株在等渗条件和酸应激(pH 4.2)、高渗应激(NaCl 300 mmoL/L)、胆汁应激(脱氧胆酸钠终浓度为1.5 mmoL/L)及氧应激(1 mmol/L H2O2)条件下的生长能力,采用t检验进行统计学分析.结果 成功制备伤寒沙门菌rpoS基因缺陷变异株.与野生株相比,rpoS基因缺陷变异株在酸应激、高渗应激和氧应激条件下的生存能力明显降低(4 h时的t值分别为12.864、3.594和12.979,14 h时的t值分别为6.497、3.039和10.440,P

  19. NADPH-dependent reductive biotransformation with Escherichia coli and its pfkA deletion mutant: influence on global gene expression and role of oxygen supply.

    Science.gov (United States)

    Siedler, Solvej; Bringer, Stephanie; Polen, Tino; Bott, Michael

    2014-10-01

    An Escherichia coli ΔpfkA mutant lacking the major phosphofructokinase possesses a partially cyclized pentose phosphate pathway leading to an increased NADPH per glucose ratio. This effect decreases the amount of glucose required for NADPH regeneration in reductive biotransformations, such as the conversion of methyl acetoacetate (MAA) to (R)-methyl 3-hydroxybutyrate (MHB) by an alcohol dehydrogenase from Lactobacillus brevis. Here, global transcriptional analyses were performed to study regulatory responses during reductive biotransformation. DNA microarray analysis revealed amongst other things increased expression of soxS, supporting previous results indicating that a high NADPH demand contributes to the activation of SoxR, the transcriptional activator of soxS. Furthermore, several target genes of the ArcAB two-component system showed a lower mRNA level in the reference strain than in the ΔpfkA mutant, pointing to an increased QH2 /Q ratio in the reference strain. This prompted us to analyze yields and productivities of MAA reduction to MHB under different oxygen regimes in a bioreactor. Under anaerobic conditions, the specific MHB production rates of both strains were comparable (7.4 ± 0.2 mmolMHB  h(-1)  gcdw (-1) ) and lower than under conditions of 15% dissolved oxygen, where those of the reference strain (12.8 mmol h(-1)  gcdw (-1) ) and of the ΔpfkA mutant (11.0 mmol h(-1)  gcdw (-1) ) were 73% and 49% higher. While the oxygen transfer rate (OTR) of the reference strain increased after the addition of MAA, presumably due to the oxidation of the acetate accumulated before MAA addition, the OTR of the ΔpfkA strain strongly decreased, indicating a very low respiration rate despite sufficient oxygen supply. The latter effect can likely be attributed to a restricted conversion of NADPH into NADH via the soluble transhydrogenase SthA, as the enzyme is outcompeted in the presence of MAA by the recombinant NADPH-dependent alcohol

  20. LuxS基因缺失的变形链球菌突变株的构建及鉴定%Construction and identification of a LuxS-deleted mutant strain of S.mutans

    Institute of Scientific and Technical Information of China (English)

    于丹妮; 韩福胜; 韩玉植; 陈杰

    2008-01-01

    目的 通过同源重组法构建LuxS基因缺失的变形链球菌(Streptococcus mutans)突变株.方法 运用基因同源重组方法将红霉素抗性基因(Eymr)连接到PCR扩增LuxS基因两端区域产生的2个基因片段之间,并共同插入到pUCl9载体的多克隆位点中,构建出带红霉素抗性标志的缺失突变载体pUCluxKO.将突变载体转化到含完整LuxS基因的突变受体变形链球菌标准株中,红霉素筛选出LuxS基因缺失的变形链球菌突变株,并经PCR、生物荧光检测及DNA测序鉴定.结果 构建的突变载体经限制性内切核酸酶酶切分析显示,产生的条带与设计结果完全一致.PCR方法扩增突变株LuxS和Eymr基因显示,LuxS基因已被完整敲除掉,经生物荧光检测,突变株不能诱导哈氏弧菌(Vibrio harveyi)BBl70的生物发光,说明不能产生信号分子AI-2(autoinducer-2).DNA测序证实筛选得到了LuxS基因缺失的变形链球菌突变株.连续传代培养后证实,变形链球菌LuxS基因突变株具有良好的稳定性.结论 成功构建出LuxS基因缺失的变形链球菌突变株,为研究LuxS基因对变形链球菌致龋毒力的影响奠定了基础.%Objective To knock out the entire LuxS gene of Streptococcus mutans UA159 strain via homologous recombination and construct a LuxS-deleted mutant strain of S.mutans.Methods The erythromycin resistance gene(Eymr)was inserted between the two DNA fragments located in the upper and downstream of LuxS gene that had been amplified by PCR.Then the two DNA fragments along with the inserted Eymr were engineered into pUCl9 plasmid to construct the recombination plasmid pUCluxKO.Electrotransformation of S. mutans cells with pUCluxKO-mutant resulted in the isolation of erythromycin resistant S.mutans,transformants,which was then subjected to polymerase chain reaction,Vibrio harveyi BBl70 luminescence bioassay and sequencing analysis.Results Restriction endonuclease analysis showed that pUCluxKOmutant vector

  1. 无标记的变异链球菌的clpP基因缺陷株的构建%Construction of the markless clpP-deletion mutant of Streptococcus mutans

    Institute of Scientific and Technical Information of China (English)

    彭诚; 于丹妮; 张文娟; 韩育植; 任志明

    2010-01-01

    目的 构建无标记的clpP基因缺陷的变异链球菌(简称变链菌)突变株.方法 设计引物PCR扩增大观霉素(Sp)抗性基因,使loxP位点位于Sp抗性基因的两侧,构建出大观霉素抗性基因盒(loxP-Sp-loxP).将clpP基因克隆到pGEM-T-Easy TA载体后,双酶切以去除clpP基因的部分序列,并连入loxP-Sp-loxP,得到clpP基因缺陷的同源重组载体pIB△clpP-Sp.将该载体线性化并电转变链菌标准株,大观霉素筛选得到clpP基因缺陷株.再以温敏质粒pCrePA电转缺陷株,Cre重组酶表达并删除选择标记基因,继而在限制性温度下培养以消除pCrePA,获得无标记的clpP基因缺陷株,并进行PCR及DNA测序鉴定.结果 PCR及DNA测序结果表明clpP基因内部分序列已被删除,且无Sp抗性基因,该部位只留有一个34 bp的loxP位点.结论 在变链菌中成功构建出无标记的clpP基因缺陷株,为进一步研究clpP基因的功能及其在变链菌致龋过程中的作用奠定了基础.%Objective To construct markless gene deletion mutant at the clpP loci on the chromosome of Streptococcus mutans(S.mutans).Methods ASp resistance gene was amplified by PCR,to construct the Sp resistance cassette where the Sp resistance gene was flanked with two loxP site.After the clpP gene was cloned into the pGEM-T-Easy TA cloning vector,it was digested and linked with the Sp resistance cassette,yielding homologous recombination vector pIB △ clpP-Sp.The vector was linearized and used for the transformation of S.mutans UA159,with transformants selected on TPY plates containing Sp.The selected strain was transformed with the thermosensitive plasmid pCrePA to excise the Sp resistance gene.The pCre-PA was then easily eliminated at nonpermissive temperature,resulting in a markless mutant strain carrying a deletion at the clpP loci,which was verified by PCR and DNA sequencing.Results The result of the PCR analysis and DNA sequencing indicated that a part of the clpP gene was deleted

  2. Deletions in the fifth alpha helix of HIV-1 matrix block virus release

    Energy Technology Data Exchange (ETDEWEB)

    Sanford, Bridget; Li, Yan; Maly, Connor J.; Madson, Christian J. [Department of Medical Microbiology and Immunology, Creighton University, 2500 California Plaza, Omaha, NE 68178 (United States); Chen, Han [Center for Biotechnology, University of Nebraska-Lincoln, Lincoln, NE (United States); Zhou, You [Center for Biotechnology, University of Nebraska-Lincoln, Lincoln, NE (United States); Nebraska Center for Virology, Lincoln, NE (United States); Belshan, Michael, E-mail: michaelbelshan@creighton.edu [Department of Medical Microbiology and Immunology, Creighton University, 2500 California Plaza, Omaha, NE 68178 (United States); Nebraska Center for Virology, Lincoln, NE (United States)

    2014-11-15

    The matrix (MA) protein of HIV-1 is the N-terminal component of the Gag structural protein and is critical for the early and late stages of viral replication. MA contains five α-helices (α1–α5). Deletions in the N-terminus of α5 as small as three amino acids impaired virus release. Electron microscopy of one deletion mutant (MA∆96-120) showed that its particles were tethered to the surface of cells by membranous stalks. Immunoblots indicated all mutants were processed completely, but mutants with large deletions had alternative processing intermediates. Consistent with the EM data, MA∆96-120 retained membrane association and multimerization capability. Co-expression of this mutant inhibited wild type particle release. Alanine scanning mutation in this region did not affect virus release, although the progeny virions were poorly infectious. Combined, these data demonstrate that structural ablation of the α5 of MA inhibits virus release. - Highlights: • Deletions were identified in the C-terminus of matrix that block virus release. • These deletion mutants still multimerized and associated with membranes. • TEM showed the mutant particles were tethered to the cell surface. • Amino acid mutagenesis of the region did not affect release. • The data suggests that disruption of matrix structure blocks virus release.

  3. Development and exploitation of a novel mutant androgen receptor modelling strategy to identify new targets for advanced prostate cancer therapy.

    Science.gov (United States)

    O'Neill, Daniel; Jones, Dominic; Wade, Mark; Grey, James; Nakjang, Sirintra; Guo, Wenrui; Cork, David; Davies, Barry R; Wedge, Steve R; Robson, Craig N; Gaughan, Luke

    2015-09-22

    The persistence of androgen receptor (AR) signalling in castrate-resistant prostate cancer (CRPC) highlights the unmet clinical need for the development of more effective AR targeting therapies. A key mechanism of therapy-resistance is by selection of AR mutations that convert anti-androgens to agonists enabling the retention of androgenic signalling in CRPC. To improve our understanding of these receptors in advanced disease we developed a physiologically-relevant model to analyse the global functionality of AR mutants in CRPC. Using the bicalutamide-activated AR(W741L/C) mutation as proof of concept, we demonstrate that this mutant confers an androgenic-like signalling programme and growth promoting phenotype in the presence of bicalutamide. Transcriptomic profiling of AR(W741L) highlighted key genes markedly up-regulated by the mutant receptor, including TIPARP, RASD1 and SGK1. Importantly, SGK1 expression was found to be highly expressed in the KUCaP xenograft model and a CRPC patient biopsy sample both of which express the bicalutamide-activated receptor mutant. Using an SGK1 inhibitor, AR(W741L) transcriptional and growth promoting activity was reduced indicating that exploiting functional distinctions between receptor isoforms in our model may provide new and effective therapies for CRPC patients.

  4. Impaired long-term memory retention and working memory in sdy mutant mice with a deletion in Dtnbp1, a susceptibility gene for schizophrenia

    Directory of Open Access Journals (Sweden)

    Takao Keizo

    2008-10-01

    Full Text Available Abstract Background Schizophrenia is a complex genetic disorder caused by multiple genetic and environmental factors. The dystrobrevin-binding protein 1 (DTNBP1: dysbindin-1 gene is a major susceptibility gene for schizophrenia. Genetic variations in DTNBP1 are associated with cognitive functions, general cognitive ability and memory function, and clinical features of patients with schizophrenia including negative symptoms and cognitive decline. Since reduced expression of dysbindin-1 has been observed in postmortem brains of patients with schizophrenia, the sandy (sdy mouse, which has a deletion in the Dtnbp1 gene and expresses no dysbindin-1 protein, could be an animal model of schizophrenia. To address this issue, we have carried out a comprehensive behavioral analysis of the sdy mouse in this study. Results In a rotarod test, sdy mice did not exhibit motor learning whilst the wild type mice did. In a Barnes circular maze test both sdy mice and wild type mice learned to selectively locate the escape hole during the course of the training period and in the probe trial conducted 24 hours after last training. However, sdy mice did not locate the correct hole in the retention probe tests 7 days after the last training trial, whereas wild type mice did, indicating impaired long-term memory retention. A T-maze forced alternation task, a task of working memory, revealed no effect of training in sdy mice despite the obvious effect of training in wild type mice, suggesting a working memory deficit. Conclusion Sdy mouse showed impaired long-term memory retention and working memory. Since genetic variation in DTNBP1 is associated with both schizophrenia and memory function, and memory function is compromised in patients with schizophrenia, the sdy mouse may represent a useful animal model to investigate the mechanisms of memory dysfunction in the disorder.

  5. Functional analysis of a zebrafish myd88 mutant identifies key transcriptional components of the innate immune system

    Directory of Open Access Journals (Sweden)

    Michiel van der Vaart

    2013-05-01

    Toll-like receptors (TLRs are an important class of pattern recognition receptors (PRRs that recognize microbial and danger signals. Their downstream signaling upon ligand binding is vital for initiation of the innate immune response. In human and mammalian models, myeloid differentiation factor 88 (MYD88 is known for its central role as an adaptor molecule in interleukin 1 receptor (IL-1R and TLR signaling. The zebrafish is increasingly used as a complementary model system for disease research and drug screening. Here, we describe a zebrafish line with a truncated version of MyD88 as the first zebrafish mutant for a TLR signaling component. We show that this immune-compromised mutant has a lower survival rate under standard rearing conditions and is more susceptible to challenge with the acute bacterial pathogens Edwardsiella tarda and Salmonella typhimurium. Microarray and quantitative PCR analysis revealed that expression of genes for transcription factors central to innate immunity (including NF-ĸB and AP-1 and the pro-inflammatory cytokine Il1b, is dependent on MyD88 signaling during these bacterial infections. Nevertheless, expression of immune genes independent of MyD88 in the myd88 mutant line was sufficient to limit growth of an attenuated S. typhimurium strain. In the case of infection with the chronic bacterial pathogen Mycobacterium marinum, we show that MyD88 signaling has an important protective role during early pathogenesis. During mycobacterial infection, the myd88 mutant shows accelerated formation of granuloma-like aggregates and increased bacterial burden, with associated lower induction of genes central to innate immunity. This zebrafish myd88 mutant will be a valuable tool for further study of the role of IL1R and TLR signaling in the innate immunity processes underlying infectious diseases, inflammatory disorders and cancer.

  6. Growth, physicochemical properties, and morphogenesis of Chinese wild-type PRV Fa and its gene-deleted mutant strain PRV SA215

    Directory of Open Access Journals (Sweden)

    Tang Shanhu

    2011-06-01

    Full Text Available Abstract Background PRV Fa is common in China and causes most of the pseudorabies in the pig industry. A PRV SA215 strain with deleted gE, gI, and TK genes was constructed to develop a commercial attenuated live vaccine. However, the physicochemical properties, growth pattern, penetration kinetics, and morphogenesis of the PRV SA215 and its parental PRV Fa strain are unclear. Results A series of experiments were conducted to characterize both strains and provide more information. PRV Fa and PRV SA215 were found to have similar penetration patterns, with about 5 min half-time of penetration. The SA215 strain exhibited a slight delay in entry compared with PRV Fa. In the one-step growth test, the titers of the SA215 strain were first detected at 8 h, rapidly increased, and peaked at 12 h. A plateau was formed between 12-36 h of culturing. PRV SA215 showed delayed replication and approximately 10-30-fold lower titers during 0-16 h of culturing compared with the PRV-Fa strain. After 16 h, the PRV Fa titers dramatically decreased, whereas those of PRV SA215 were prolonged to 36 h and reached a titer value equal to that of PRV Fa and then decreased. Both strains were sensitive to both heat and acid-alkali treatments; however, PRV Fa was relatively more stable to heat treatment than PRV SA215. Both strains could propagate in the cultures with pH values from 5.0 to 9.0. Cultures with pH below 3.0 or above 11.0 were fatal to both strains. Both strains had considerable resistance to freeze-thawing treatments. Morphogenetic investigations showed that typical phases in the maturation pathway were observed in the PRV Fa-infected PK15 cells, whereas secondary envelopment was not observed in the PRV SA215 strain. Instead, capsid aggregations with concomitants of electrodense materials were observed. Conclusions These results suggest that PRV SA215 is a promising strain for vaccine development

  7. Mirror movement-like defects in startle behavior of zebrafish dcc mutants are caused by aberrant midline guidance of identified descending hindbrain neurons.

    Science.gov (United States)

    Jain, Roshan A; Bell, Hannah; Lim, Amy; Chien, Chi-Bin; Granato, Michael

    2014-02-19

    Mirror movements are involuntary movements on one side of the body that occur simultaneously with intentional movements on the contralateral side. Humans with heterozygous mutations in the axon guidance receptor DCC display such mirror movements, where unilateral stimulation results in inappropriate bilateral motor output. Currently, it is unclear whether mirror movements are caused by incomplete midline crossing and reduced commissural connectivity of DCC-dependent descending pathways or by aberrant ectopic ipsilateral axonal projections of normally commissural neurons. Here, we show that in response to unilateral tactile stimuli, zebrafish dcc mutant larvae perform involuntary turns on the inappropriate body side. We show that these mirror movement-like deficits are associated with axonal guidance defects of two identified groups of commissural reticulospinal hindbrain neurons. Moreover, we demonstrate that in dcc mutants, axons of these identified neurons frequently fail to cross the midline and instead project ipsilaterally. Whereas laser ablation of these neurons in wild-type animals does not affect turning movements, their ablation in dcc mutants restores turning movements. Thus, our results demonstrate that in dcc mutants, turns on the inappropriate side of the body are caused by aberrant ipsilateral axonal projections, and suggest that aberrant ipsilateral connectivity of a very small number of descending axons is sufficient to induce incorrect movement patterns.

  8. Analysis of colorectal cancers in British Bangladeshi identifies early onset, frequent mucinous histotype and a high prevalence of RBFOX1 deletion

    Directory of Open Access Journals (Sweden)

    Sengupta Neel

    2013-01-01

    Full Text Available Abstract Background Prevalence of colorectal cancer (CRC in the British Bangladeshi population (BAN is low compared to British Caucasians (CAU. Genetic background may influence mutations and disease features. Methods We characterized the clinicopathological features of BAN CRCs and interrogated their genomes using mutation profiling and high-density single nucleotide polymorphism (SNP arrays and compared findings to CAU CRCs. Results Age of onset of BAN CRC was significantly lower than for CAU patients (p=3.0 x 10-5 and this difference was not due to Lynch syndrome or the polyposis syndromes. KRAS mutations in BAN microsatellite stable (MSS CRCs were comparatively rare (5.4% compared to CAU MSS CRCs (25%; p=0.04, which correlates with the high percentage of mucinous histotype observed (31% in the BAN samples. No BRAF mutations was seen in our BAN MSS CRCs (CAU CRCs, 12%; p=0.08. Array data revealed similar patterns of gains (chromosome 7 and 8q, losses (8p, 17p and 18q and LOH (4q, 17p and 18q in BAN and CAU CRCs. A small deletion on chromosome 16p13.2 involving the alternative splicing factor RBFOX1 only was found in significantly more BAN (50% than CAU CRCs (15% cases (p=0.04. Focal deletions targeting the 5’ end of the gene were also identified. Novel RBFOX1 mutations were found in CRC cell lines and tumours; mRNA and protein expression was reduced in tumours. Conclusions KRAS mutations were rare in BAN MSS CRC and a mucinous histotype common. Loss of RBFOX1 may explain the anomalous splicing activity associated with CRC.

  9. P53 and MITF/Bcl-2 identified as key pathways in the acquired resistance of NRAS-mutant melanoma to MEK inhibition.

    Science.gov (United States)

    Najem, Ahmad; Krayem, Mohammad; Salès, François; Hussein, Nader; Badran, Bassam; Robert, Caroline; Awada, Ahmad; Journe, Fabrice; Ghanem, Ghanem E

    2017-09-01

    MEK inhibition to induce massive apoptosis in NRAS-mutant melanoma cells with wild-type or mutant p53. Hence, our data identify MITF/Bcl-2 as a key mechanism underlying resistance of NRAS-mutant melanoma cells to apoptosis by MEK inhibitors and paves the way for a promising drug combination that could prevent or reverse anti-MEK resistance in this group of patients. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Live Cell Analysis and Mathematical Modeling Identify Determinants of Attenuation of Dengue Virus 2'-O-Methylation Mutant.

    Directory of Open Access Journals (Sweden)

    Bianca Schmid

    2015-12-01

    Full Text Available Dengue virus (DENV is the most common mosquito-transmitted virus infecting ~390 million people worldwide. In spite of this high medical relevance, neither a vaccine nor antiviral therapy is currently available. DENV elicits a strong interferon (IFN response in infected cells, but at the same time actively counteracts IFN production and signaling. Although the kinetics of activation of this innate antiviral defense and the timing of viral counteraction critically determine the magnitude of infection and thus disease, quantitative and kinetic analyses are lacking and it remains poorly understood how DENV spreads in IFN-competent cell systems. To dissect the dynamics of replication versus antiviral defense at the single cell level, we generated a fully viable reporter DENV and host cells with authentic reporters for IFN-stimulated antiviral genes. We find that IFN controls DENV infection in a kinetically determined manner that at the single cell level is highly heterogeneous and stochastic. Even at high-dose, IFN does not fully protect all cells in the culture and, therefore, viral spread occurs even in the face of antiviral protection of naïve cells by IFN. By contrast, a vaccine candidate DENV mutant, which lacks 2'-O-methylation of viral RNA is profoundly attenuated in IFN-competent cells. Through mathematical modeling of time-resolved data and validation experiments we show that the primary determinant for attenuation is the accelerated kinetics of IFN production. This rapid induction triggered by mutant DENV precedes establishment of IFN-resistance in infected cells, thus causing a massive reduction of virus production rate. In contrast, accelerated protection of naïve cells by paracrine IFN action has negligible impact. In conclusion, these results show that attenuation of the 2'-O-methylation DENV mutant is primarily determined by kinetics of autocrine IFN action on infected cells.

  11. The live attenuated Actinobacillus pleuropneumoniae triple-deletion mutant ΔapxIC ΔapxIIC ΔapxIV-ORF1 strain, SLW05, Immunizes pigs against lethal challenge with Haemophilus parasuis.

    Science.gov (United States)

    Fu, Shulin; Ou, Jiwen; Zhang, Minmin; Xu, Juan; Liu, Huazhen; Liu, Jinlin; Yuan, Fangyan; Chen, Huanchun; Bei, Weicheng

    2013-02-01

    Haemophilus parasuis and Actinobacillus pleuropneumoniae both belong to the family Pasteurellaceae and are major respiratory pathogens that cause large economic losses in the pig industry worldwide. We previously constructed an attenuated A. pleuropneumoniae serovar 1 live vaccine prototype, SLW05 (ΔapxIC ΔapxIIC ΔapxIV-ORF1), which is able to produce nontoxic but immunogenic ApxIA, ApxIIA, and ApxIVA. This triple-deletion mutant strain was shown to elicit protective immunity against virulent A. pleuropneumoniae. In the present study, we investigated whether immunization with SLW05 could also protect against lethal challenge with virulent H. parasuis SH0165 (serovar 5) or MD0322 (serovar 4). The SLW05 strain was found to elicit a strong humoral antibody response in pigs and to confer significant protection against challenge with a lethal dose of H. parasuis SH0165 or MD0322. IgG subtype analysis revealed that SLW05 induces a bias toward a Th1-type immune response and stimulates interleukin 2 (IL-2) and gamma interferon (IFN-γ) production. Moreover, antisera from SLW05-vaccinated pigs efficiently inhibited both A. pleuropneumoniae and H. parasuis growth in a whole-blood assay. This is the first report that a live attenuated A. pleuropneumoniae vaccine with SLW05 can protect against lethal H. parasuis infection, which provides a novel approach for developing an attenuated H. parasuis vaccine.

  12. Construction and Identification of omp31-Deleted Mutant of Brucella Standard Strain 16M%布鲁氏菌16M△omp31基因缺失株的构建与鉴定

    Institute of Scientific and Technical Information of China (English)

    王慧; 张亚丽; 王远志; 陈创夫; 任晓丽

    2013-01-01

    To construct the omp31 deletion mutant of Brucella melitensis 16M,the upstream and downstream of the omp31 gene and SacB gene were amplified by PCR from Brucella melitensis 16M and Bacillus subtilis. After constructing omp31-SacB re-combinant fragment into plasmid 18-T simple vector, the suicide plasmid pGEM-7zf+-△omp31-SacB was further obtained and transformed into Brucella melitensis 16M by electroporation. The Aomp31 mutant strain was screened out by homologous recombination and its stability was detected by continuous bacteria culture. The results showed that Brucella melitensis 16M △omp31 mutant strain was successfully generated and reversion was not observed in 15 generations. This research lays a foundation of further study on the anti-apoptosis mechanism and construction of new types of vaccines of Brucella.%为了构建布鲁氏菌16M△omp31基因缺失株,采用PCR方法分别从亲本株16 M上扩增omp31基因的侧翼看序列及枯草芽孢杆菌SacB基因,并将所得片段与pMD18-T载体相连并测序,利用双酶切的方法分别将其连入自杀载体pGEM-7zf+,获得亚克隆pGEM-7zf+-△omp31-SacB.将所构建好的自杀载体通过电转化入布鲁氏菌16M感受态细胞中,经2次同源重组后筛选出16M△omp31基因缺失株,并对获得缺失株进行遗传稳定性检测.结果显示:成功获得布鲁氏菌16 M△omp31基因缺失株,该缺失株在15代内未发生回复性突变.本研究为今后研究布鲁氏菌抗凋亡机制奠定基础.

  13. Multiple Autoregulation of Nodulation (AON Signals Identified through Split Root Analysis of Medicago truncatula sunn and rdn1 Mutants

    Directory of Open Access Journals (Sweden)

    Tessema Kassaw

    2015-04-01

    Full Text Available Nodulation is energetically costly to the host: legumes balance the nitrogen demand with the energy expense by limiting the number of nodules through long-distance signaling. A split root system was used to investigate systemic autoregulation of nodulation (AON in Medicago truncatula and the role of the AON genes RDN1 and SUNN in the regulatory circuit. Developing nodule primordia did not trigger AON in plants carrying mutations in RDN1 and SUNN genes, while wild type plants had fully induced AON within three days. However, despite lacking an early suppression response, AON mutants suppressed nodulation when roots were inoculated 10 days or more apart, correlated with the maturation of nitrogen fixing nodules. In addition to correlation between nitrogen fixation and suppression of nodulation, suppression by extreme nutrient stress was also observed in all genotypes and may be a component of the observed response due to the conditions of the assay. These results suggest there is more than one systemic regulatory circuit controlling nodulation in M. truncatula. While both signals are present in wild type plants, the second signal can only be observed in plants lacking the early repression (AON mutants. RDN1 and SUNN are not essential for response to the later signal.

  14. Multiple Autoregulation of Nodulation (AON) Signals Identified through Split Root Analysis of Medicago truncatula sunn and rdn1 Mutants.

    Science.gov (United States)

    Kassaw, Tessema; Jr, William Bridges; Frugoli, Julia

    2015-04-27

    Nodulation is energetically costly to the host: legumes balance the nitrogen demand with the energy expense by limiting the number of nodules through long-distance signaling. A split root system was used to investigate systemic autoregulation of nodulation (AON) in Medicago truncatula and the role of the AON genes RDN1 and SUNN in the regulatory circuit. Developing nodule primordia did not trigger AON in plants carrying mutations in RDN1 and SUNN genes, while wild type plants had fully induced AON within three days. However, despite lacking an early suppression response, AON mutants suppressed nodulation when roots were inoculated 10 days or more apart, correlated with the maturation of nitrogen fixing nodules. In addition to correlation between nitrogen fixation and suppression of nodulation, suppression by extreme nutrient stress was also observed in all genotypes and may be a component of the observed response due to the conditions of the assay. These results suggest there is more than one systemic regulatory circuit controlling nodulation in M. truncatula. While both signals are present in wild type plants, the second signal can only be observed in plants lacking the early repression (AON mutants). RDN1 and SUNN are not essential for response to the later signal.

  15. Single site suppressors of a fission yeast temperature-sensitive mutant in cdc48 identified by whole genome sequencing.

    Directory of Open Access Journals (Sweden)

    Irina N Marinova

    Full Text Available The protein called p97 in mammals and Cdc48 in budding and fission yeast is a homo-hexameric, ring-shaped, ubiquitin-dependent ATPase complex involved in a range of cellular functions, including protein degradation, vesicle fusion, DNA repair, and cell division. The cdc48+ gene is essential for viability in fission yeast, and point mutations in the human orthologue have been linked to disease. To analyze the function of p97/Cdc48 further, we performed a screen for cold-sensitive suppressors of the temperature-sensitive cdc48-353 fission yeast strain. In total, 29 independent pseudo revertants that had lost the temperature-sensitive growth defect of the cdc48-353 strain were isolated. Of these, 28 had instead acquired a cold-sensitive phenotype. Since the suppressors were all spontaneous mutants, and not the result of mutagenesis induced by chemicals or UV irradiation, we reasoned that the genome sequences of the 29 independent cdc48-353 suppressors were most likely identical with the exception of the acquired suppressor mutations. This prompted us to test if a whole genome sequencing approach would allow us to map the mutations. Indeed genome sequencing unambiguously revealed that the cold-sensitive suppressors were all second site intragenic cdc48 mutants. Projecting these onto the Cdc48 structure revealed that while the original temperature-sensitive G338D mutation is positioned near the central pore in the hexameric ring, the suppressor mutations locate to subunit-subunit and inter-domain boundaries. This suggests that Cdc48-353 is structurally compromized at the restrictive temperature, but re-established in the suppressor mutants. The last suppressor was an extragenic frame shift mutation in the ufd1 gene, which encodes a known Cdc48 co-factor. In conclusion, we show, using a novel whole genome sequencing approach, that Cdc48-353 is structurally compromized at the restrictive temperature, but stabilized in the suppressors.

  16. A 4q35.2 subtelomeric deletion identified in a screen of patients with co-morbid psychiatric illness and mental retardation

    Directory of Open Access Journals (Sweden)

    Blackwood Douglas HR

    2004-08-01

    Full Text Available Abstract Background Cryptic structural abnormalities within the subtelomeric regions of chromosomes have been the focus of much recent research because of their discovery in a percentage of people with mental retardation (UK terminology: learning disability. These studies focused on subjects (largely children with various severities of intellectual impairment with or without additional physical clinical features such as dysmorphisms. However it is well established that prevalence of schizophrenia is around three times greater in those with mild mental retardation. The rates of bipolar disorder and major depressive disorder have also been reported as increased in people with mental retardation. We describe here a screen for telomeric abnormalities in a cohort of 69 patients in which mental retardation co-exists with severe psychiatric illness. Methods We have applied two techniques, subtelomeric fluorescence in situ hybridisation (FISH and multiplex amplifiable probe hybridisation (MAPH to detect abnormalities in the patient group. Results A subtelomeric deletion was discovered involving loss of 4q in a patient with co-morbid schizoaffective disorder and mental retardation. Conclusion The precise region of loss has been defined allowing us to identify genes that may contribute to the clinical phenotype through hemizygosity. Interestingly, the region of 4q loss exactly matches that linked to bipolar affective disorder in a large multiply affected Australian kindred.

  17. Deletion of a conserved regulatory element required for Hmx1 expression in craniofacial mesenchyme in the dumbo rat: a newly identified cause of congenital ear malformation

    Directory of Open Access Journals (Sweden)

    Lely A. Quina

    2012-11-01

    Hmx1 is a homeodomain transcription factor expressed in the developing eye, peripheral ganglia, and branchial arches of avian and mammalian embryos. Recent studies have identified a loss-of-function allele at the HMX1 locus as the causative mutation in the oculo-auricular syndrome (OAS in humans, characterized by ear and eye malformations. The mouse dumbo (dmbo mutation, with similar effects on ear and eye development, also results from a loss-of-function mutation in the Hmx1 gene. A recessive dmbo mutation causing ear malformation in rats has been mapped to the chromosomal region containing the Hmx1 gene, but the nature of the causative allele is unknown. Here we show that dumbo rats and mice exhibit similar neonatal ear and eye phenotypes. In midgestation embryos, dumbo rats show a specific loss of Hmx1 expression in neural-crest-derived craniofacial mesenchyme (CM, whereas Hmx1 is expressed normally in retinal progenitors, sensory ganglia and in CM, which is derived from mesoderm. High-throughput resequencing of 1 Mb of rat chromosome 14 from dmbo/dmbo rats, encompassing the Hmx1 locus, reveals numerous divergences from the rat genomic reference sequence, but no coding changes in Hmx1. Fine genetic mapping narrows the dmbo critical region to an interval of ∼410 kb immediately downstream of the Hmx1 transcription unit. Further sequence analysis of this region reveals a 5777-bp deletion located ∼80 kb downstream in dmbo/dmbo rats that is not apparent in 137 other rat strains. The dmbo deletion region contains a highly conserved domain of ∼500 bp, which is a candidate distal enhancer and which exhibits a similar relationship to Hmx genes in all vertebrate species for which data are available. We conclude that the rat dumbo phenotype is likely to result from loss of function of an ultraconserved enhancer specifically regulating Hmx1 expression in neural-crest-derived CM. Dysregulation of Hmx1 expression is thus a candidate mechanism for congenital ear

  18. Proteomic analysis of wild-type and mutant huntingtin-associated proteins in mouse brains identifies unique interactions and involvement in protein synthesis.

    Science.gov (United States)

    Culver, Brady P; Savas, Jeffrey N; Park, Sung K; Choi, Jeong H; Zheng, Shuqiu; Zeitlin, Scott O; Yates, John R; Tanese, Naoko

    2012-06-22

    Huntington disease is a neurodegenerative disorder caused by a CAG repeat amplification in the gene huntingtin (HTT) that is reflected by a polyglutamine expansion in the Htt protein. Nearly 20 years of research have uncovered roles for Htt in a wide range of cellular processes, and many of these discoveries stemmed from the identification of Htt-interacting proteins. However, no study has employed an impartial and comprehensive strategy to identify proteins that differentially associate with full-length wild-type and mutant Htt in brain tissue, the most relevant sample source to the disease condition. We analyzed Htt affinity-purified complexes from wild-type and HTT mutant juvenile mouse brain from two different biochemical fractions by tandem mass spectrometry. We compared variations in protein spectral counts relative to Htt to identify those proteins that are the most significantly contrasted between wild-type and mutant Htt purifications. Previously unreported Htt interactions with Myo5a, Prkra (PACT), Gnb2l1 (RACK1), Rps6, and Syt2 were confirmed by Western blot analysis. Gene Ontology analysis of these and other Htt-associated proteins revealed a statistically significant enrichment for proteins involved in translation among other categories. Furthermore, Htt co-sedimentation with polysomes in cytoplasmic mouse brain extracts is dependent upon the presence of intact ribosomes. Finally, wild-type or mutant Htt overexpression inhibits cap-dependent translation of a reporter mRNA in an in vitro system. Cumulatively, these data support a new role for Htt in translation and provide impetus for further study into the link between protein synthesis and Huntington disease pathogenesis.

  19. Targeted Genes Sequencing Identified a Novel 15 bp Deletion on GJA8 in a Chinese Family with Autosomal Dominant Congenital Cataracts

    Institute of Scientific and Technical Information of China (English)

    Han-Yi Min; Peng-Peng Qiao; Asan; Zhi-Hui Yan; Hui-Feng Jiang; Ya-Ping Zhu; Hui-Qian Du

    2016-01-01

    Background:Congenital cataract (CC) is the leading cause of visual impairment or blindness in children worldwide.Because of highly genetic and clinical heterogeneity,a molecular diagnosis of the lens disease remains a challenge.Methods:In this study,we tested a three-generation Chinese family with autosomal dominant CCs by targeted sequencing of 45 CC genes on next generation sequencing and evaluated the pathogenicity of the detected mutation by protein structure,pedigree validation,and molecular dynamics (MD) simulation.Results:A novel 15 bp deletion on GJA8 (c.426_440delGCTGGAGGGGACCCT or p.143_147delLEGTL) was detected in the family.The deletion,concemed with an in-frame deletion of 5 amino acid residues in a highly evolutionarily conserved region within the cytoplasmic loop domain of the gap junction channel protein connexin 50 (Cx50),was in full cosegregation with the cataract phenotypes in the family but not found in 1100 control exomes.MD simulation revealed that the introduction of the deletion destabilized the Cx50 gap junction channel,indicating the deletion as a dominant-negative mutation.Conclusions:The above results support the pathogenic role of the 15 bp deletion on GJA8 in the Chinese family and demonstrate targeted genes sequencing as a resolution to molecular diagnosis of CCs.

  20. Role of the RuvAB protein in avoiding spontaneous formation of deletion mutations in the Escherichia coli K-12 endogenous tonB gene.

    Science.gov (United States)

    Mashimo, Kazumi; Nagata, Yuki; Kawata, Masakado; Iwasaki, Hiroshi; Yamamoto, Kazuo

    2004-10-08

    The endogenous tonB gene of Escherichia coli was used as a target for spontaneous deletion mutations which were isolated from ruvAB-, recG-, and ruvC- cells. The rates of tonB mutation were essentially the same in ruv+, ruvAB-, recG-, and ruvC- cells. We analyzed tonB mutants by sequencing. In the ruv+, recG-, and ruvC- strains, the spectra were different from those obtained from the ruvAB- cells, where deletions dominated followed by IS insertions, base substitutions, and frameshifts, in that order. We then analyzed the tonB-trp large deletion, due to simultaneous mutations of the trp operon, and found that the frequency in ruvAB- was higher than those in ruv+, recG-, and ruvC- cells. To characterize deletion formation further, we analyzed all the tonB mutants from one colicin plate. Seven deletions were identified at five sites from the 45 tonB mutants of ruv+ cells and 24 deletions at 11 sites from the 43 tonB mutants of ruvAB- cells. Thus, the ruvAB- strain is a deletion mutator. We discuss the role of RuvAB in avoiding deletions. Copyright 2004 Elsevier Inc.

  1. Mutants of downy mildew resistance in Lactuca sativa (lettuce).

    Science.gov (United States)

    Okubara, P A; Anderson, P A; Ochoa, O E; Michelmore, R W

    1994-07-01

    As part of our investigation of disease resistance in lettuce, we generated mutants that have lost resistance to Bremia lactucae, the casual fungus of downy mildew. Using a rapid and reliable screen, we identified 16 distinct mutants of Latuca sativa that have lost activity of one of four different downy mildew resistance genes (Dm). In all mutants, only a single Dm specificity was affected. Genetic analysis indicated that the lesions segregated as single, recessive mutations at the Dm loci. Dm3 was inactivated in nine of the mutants. One of five Dm 1 mutants was selected from a population of untreated seeds and therefore carried a spontaneous mutation. All other Dm1, Dm3, Dm5/8 and Dm7 mutants were derived from gamma- or fast neutron-irradiated seed. In two separate Dm 1 mutants and in each of the eight Dm3 mutants analyzed, at least one closely linked molecular marker was absent. Also, high molecular weight genomic DNA fragments that hybridized to a tightly linked molecular marker in wild type were either missing entirely or were truncated in two of the Dm3 mutants, providing additional evidence that deletions had occurred in these mutants. Absence of mutations at loci epistatic to the Dm genes suggested that such loci were either members of multigene families, were critical for plant survival, or encoded components of duplicated pathways for resistance; alternatively, the genes determining downy mildew resistance might be limited to the Dm loci.

  2. A re-sequencing based assessment of genomic heterogeneity and fast neutron-induced deletions in a common bean cultivar

    Directory of Open Access Journals (Sweden)

    Jamie A. O'Rourke

    2013-06-01

    Full Text Available A small fast neutron mutant population has been established from Phaseolus vulgaris cv. Red Hawk. We leveraged the available P. vulgaris genome sequence and high throughput next generation DNA sequencing to examine the genomic structure of five Phaseolus vulgaris cv. Red Hawk fast neutron mutants with striking visual phenotypes. Analysis of these genomes identified three classes of structural variation; between cultivar variation, natural variation within the fast neutron mutant population, and fast neutron induced mutagenesis. Our analyses focused on the latter two classes. We identified 23 large deletions (>40 bp common to multiple individuals, illustrating residual heterogeneity and regions of structural variation within the common bean cv. Red Hawk. An additional 18 large deletions were identified in individual mutant plants. These deletions, ranging in size from 40 bp to 43,000 bp, are potentially the result of fast neutron mutagenesis. Six of the 18 deletions lie near or within gene coding regions, identifying potential candidate genes causing the mutant phenotype.

  3. Allelic imbalance and cytogenetic deletion of 1p in colorectal adenomas: a target region identified between DIS199 and DIS234

    DEFF Research Database (Denmark)

    Bomme, L; Heim, S; Bardi, G;

    1998-01-01

    centromere 1 signals were invariably found. In the cases hybridized with the 1p-telomeric probe, we found the same frequencies of telomeric and centromeric signals, in agreement with the interpretation that the deletions were interstitial. One of the 53 adenomas had genomic instability, seen as new alleles...

  4. 采用同源重组技术构建金黄色葡萄球菌sae基因缺失突变株%Construction of a Sae-Deleted Mutant of Staphylococcus aureus by Homologous Recombination

    Institute of Scientific and Technical Information of China (English)

    唐俊妮; 康铭松; 周锐; 史贤明; 陈焕春

    2012-01-01

    In this study, two pairs of primers were designed according to the upstream and downstream sequence of sae gene and used to amplify the homologous arms by PCR. Then the upstream and downsiream homologous arms were cloned into the shuttle vector pBT2 with the Em resistance gene fragment from the plasmid p646 inserted as a selection marker between the two sequences. The plasmid pBT2Asae was constructed. The homologous recombination vector was subsequently transformed into S. aureus RN4220 by electroporation, S. aureus KNΔsae deletion mutant was successfully selected by homologous recombination at 40 ℃ and confirmed by PCR. Subsequently, the sae gene expression level was also valuated by RT-PCR. This study provided the useful tool for further exploring the regulation mechanism of sae gene in S. aureus.%针对金黄色葡萄球菌sae基因前后两段序列设计两对引物,PCR扩增出sae基因上下游同源臂序列,克隆到穿梭载体pBT2中;两段序列之间用来自质粒p646的Em抗性基因片段连接,作为筛选标记,从而构建同源重组穿梭质粒pBT2△sae;将pBT2△sae电转化到金黄色葡萄球菌菌株RN4220中,40℃经过七轮培养,进行抗性培养基筛选和PCR验证,以及RT-PCR观察基因表达水平.获得一株金黄色葡萄球菌sae基因缺失突变株RN△sae,为进一步研究sae基因的调控机制等提供有用的实验材料.

  5. A genetic screen for leaf movement mutants identifies a potential role for AGAMOUS-LIKE 6 (AGL6) in circadian-clock control.

    Science.gov (United States)

    Yoo, Seung Kwan; Hong, Sung Myun; Lee, Jong Seob; Ahn, Ji Hoon

    2011-03-01

    The circadian clock in plants regulates many important physiological and biological processes, including leaf movement. We have used an imaging system to genetically screen Arabidopsis seedlings for altered leaf movement with the aim of identifying a circadian clock gene. A total of 285 genes were selected from publicly available microarrays that showed an expression pattern similar to those of the Arabidopsis core oscillator genes. We subsequently isolated 42 homozygous recessive mutants and analyzed their leaf movements. We also analyzed leaf movements of activation tagging mutants that showed altered flowering time. We found that agl6-1D plants, in which AGAMOUS-LIKE 6 (AGL6) was activated by the 35S enhancer, showed a shortened period of leaf movement as well as a high level of ZEITLUPE (ZTL) expression, reduced amplitude of LATE ELONGATED HYPOCOTYL (LHY) expression, and arrhythmic TIMING OF CAB EXPRESSION1 (TOC1)/CIRCADIAN CLOCK ASSOCIATED1 (CCA1) expression. A shortened period of leaf movement was also seen in 35S-AGL6-myc plants, although 35S-amiRAGL6 plants, transgenic plants overexpressing an artificial miRNA (amiR) targeting AGL6, showed unaltered leaf movement. The amplitude of CHLOROPHYLL A/B BINDING PROTEIN 2 (CAB2) expression, a circadian output gene, was also reduced in agl6-1D plants. Taken together, these results suggest that AGL6 plays a potential role in the regulation of the circadian clock by regulating ZTL mRNA level in Arabidopsis.

  6. Characterization of the Escherichia coli prsA1-encoded mutant phosphoribosylpyrophosphate synthetase identifies a divalent cation-nucleotide binding site

    DEFF Research Database (Denmark)

    Bower, Stanley G.; Harlow, Kenneth W.; Switzer, Robert L.

    1989-01-01

    : DLHAXQIQGFFDI/VPI/VD. There was little alteration in the Km for ribose 5-phosphate. The Km for ATP of the mutant enzyme was increased 27-fold when Mg2+ was the activating cation but only 5-fold when Mn2+ was used. Maximal velocities of the wild type and mutant enzymes were the same. The mutant enzyme has a 6...

  7. Archaeal signal transduction: impact of protein phosphatase deletions on cell size, motility, and energy metabolism in Sulfolobus acidocaldarius.

    Science.gov (United States)

    Reimann, Julia; Esser, Dominik; Orell, Alvaro; Amman, Fabian; Pham, Trong Khoa; Noirel, Josselin; Lindås, Ann-Christin; Bernander, Rolf; Wright, Phillip C; Siebers, Bettina; Albers, Sonja-Verena

    2013-12-01

    In this study, the in vitro and in vivo functions of the only two identified protein phosphatases, Saci-PTP and Saci-PP2A, in the crenarchaeal model organism Sulfolobus acidocaldarius were investigated. Biochemical characterization revealed that Saci-PTP is a dual-specific phosphatase (against pSer/pThr and pTyr), whereas Saci-PP2A exhibited specific pSer/pThr activity and inhibition by okadaic acid. Deletion of saci_pp2a resulted in pronounced alterations in growth, cell shape and cell size, which could be partially complemented. Transcriptome analysis of the three strains (Δsaci_ptp, Δsaci_pp2a and the MW001 parental strain) revealed 155 genes that were differentially expressed in the deletion mutants, and showed significant changes in expression of genes encoding the archaella (archaeal motility structure), components of the respiratory chain and transcriptional regulators. Phosphoproteome studies revealed 801 unique phosphoproteins in total, with an increase in identified phosphopeptides in the deletion mutants. Proteins from most functional categories were affected by phosphorylation, including components of the motility system, the respiratory chain, and regulatory proteins. In the saci_pp2a deletion mutant the up-regulation at the transcript level, as well as the observed phosphorylation pattern, resembled starvation stress responses. Hypermotility was also observed in the saci_pp2a deletion mutant. The results highlight the importance of protein phosphorylation in regulating essential cellular processes in the crenarchaeon S. acidocaldarius.

  8. Definition of a core module for the nuclear retrograde response to altered organellar gene expression identifies GLK overexpressors as gun mutants.

    Science.gov (United States)

    Leister, Dario; Kleine, Tatjana

    2016-07-01

    Retrograde signaling can be triggered by changes in organellar gene expression (OGE) induced by inhibitors such as lincomycin (LIN) or mutations that perturb OGE. Thus, an insufficiency of the organelle-targeted prolyl-tRNA synthetase PRORS1 in Arabidopsis thaliana activates retrograde signaling and reduces the expression of nuclear genes for photosynthetic proteins. Recently, we showed that mTERF6, a member of the so-called mitochondrial transcription termination factor (mTERF) family, is involved in the formation of chloroplast (cp) isoleucine-tRNA. To obtain further insights into its functions, co-expression analysis of MTERF6, PRORS1 and two other genes for organellar aminoacyl-tRNA synthetases was conducted. The results suggest a prominent role of mTERF6 in aminoacylation activity, light signaling and seed storage. Analysis of changes in whole-genome transcriptomes in the mterf6-1 mutant showed that levels of nuclear transcripts for cp OGE proteins were particularly affected. Comparison of the mterf6-1 transcriptome with that of prors1-2 showed that reduced aminoacylation of proline (prors1-2) and isoleucine (mterf6-1) tRNAs alters retrograde signaling in similar ways. Database analyses indicate that comparable gene expression changes are provoked by treatment with LIN, norflurazon or high light. A core OGE response module was defined by identifying genes that were differentially expressed under at least four of six conditions relevant to OGE signaling. Based on this module, overexpressors of the Golden2-like transcription factors GLK1 and GLK2 were identified as genomes uncoupled mutants.

  9. Construction and characterization of the cAMP receptor protein gene deletion mutant of Salmonella typhimurium SL1344 strain%鼠伤寒沙门菌SL1344株cAMP受体蛋白基因缺失株的构建及其生物学特性

    Institute of Scientific and Technical Information of China (English)

    廖成水; 程相朝; 赵战勤; 张春杰; 李银聚; 吴庭才; 郁川; 王晓利; 胡阿勇

    2011-01-01

    The cAMP receptor protein gene(crp) deletion mutant of Salmonella typhimurium SL1344 strain was constructed by the allelic exchange introduced by the transduction of suicide plasmid.In addition,the biological characteristics of the mutant were determined.Firstly,the upstream and downstream fragments of crp gene were amplified from SL1344 strain genome.The two fragments were successively cloned into the suicide pRE112 vector to construct the recombinant suicide vector pREΔcrp harboring the 321 bp-deleted crp fragment.The recombination suicide vector was conjugated with SL1344 and the unmarked crp deleted strain without resistance was selected by two-step method and crp deletion on the genome was determined by PCR.The serotype of the mutant was 1,4,5,12:i:1,2,identical to the parent SL1344.The mutant was stable with the recombinant Δcrp gene in vitro.However,the carbohydrate fermentation or utilization assays of the mutant were differed from the parent SL1344 strain,obviously.The growth velocity of the mutant was more slowly compared with SL1344.The chicken lethal test showed that the virulence of the SL1344 Δcrp mutant strain with LD50 of 7.40×109 CFU was 32 456 times lower than the parent SL1344 strain with LD50 of 2.28×105 CFU.These results showed that the SL1344 Δcrp mutant was constructed successfully.It is likely that this Δcrp mutant could be adapted to develop attenuated Salmonella vaccine.%通过自杀性质粒介导的细菌同源重组技术,构建鼠伤寒沙门菌SL1344株的crp基因缺失疫苗候选菌株,并对其生物学特性进行初步研究。首先构建含缺失321bp crp基因的重组自杀性质粒pREΔcrp,然后利用重组自杀性质粒介导的等位基因交换技术,两步法筛选SL1344的Δcrp缺失株,用PCR鉴定结果表明该缺失株构建成功。生物学特性研究发现,缺失株ΔcrpSL1344保留了亲本菌株SL1344的血清型1,4,5,12:i:1,2,且能够稳定遗传缺失321bp的crp

  10. Copy Number Variation Screen Identifies a Rare De Novo Deletion at Chromosome 15q13.1-13.3 in a Child with Language Impairment.

    Directory of Open Access Journals (Sweden)

    Kerry A Pettigrew

    Full Text Available A significant proportion of children (up to 7% in the UK present with pronounced language difficulties that cannot be explained by obvious causes like other neurological and medical conditions. A substantial genetic component is predicted to underlie such language problems. Copy number variants (CNVs have been implicated in neurodevelopmental and psychiatric conditions, such as autism and schizophrenia, but it is not fully established to what extent they might contribute to language disorders. We conducted a CNV screen in a longitudinal cohort of young children with language-related difficulties (n = 85, focusing on single events at candidate loci. We detected a de novo deletion on chromosome 15q13.1-13.3. The adjacent 15q11-13.1 locus is disrupted in Prader-Willi and Angelman syndromes, while disruptions across the breakpoints (BP1-BP6 have previously been implicated in different neurodevelopmental phenotypes including autism, intellectual disability (ID, seizures and developmental delay (DD. This is the first report of a deletion at BP3-BP5 being linked to a deficit confined to language impairment, in the absence of ID, expanding the range of phenotypes that implicate the chromosome 15q13 locus.

  11. The Yeast Deletion Collection: A Decade of Functional Genomics

    OpenAIRE

    Giaever, Guri; Nislow, Corey

    2014-01-01

    The yeast deletion collections comprise >21,000 mutant strains that carry precise start-to-stop deletions of ∼6000 open reading frames. This collection includes heterozygous and homozygous diploids, and haploids of both MAT a and MATα mating types. The yeast deletion collection, or yeast knockout (YKO) set, represents the first and only complete, systematically constructed deletion collection available for any organism. Conceived during the Saccharomyces cerevisiae sequencing project, work on...

  12. Enhancement of laccase activity through the construction and breakdown of a hydrogen bond at the type I copper center in Escherichia coli CueO and the deletion mutant Δα5-7 CueO.

    Science.gov (United States)

    Kataoka, Kunishige; Hirota, Shun; Maeda, Yasuo; Kogi, Hiroki; Shinohara, Naoya; Sekimoto, Madoka; Sakurai, Takeshi

    2011-02-01

    CueO is a multicopper oxidase involved in a copper efflux system of Escherichia coli and has high cuprous oxidase activity but little or no oxidizing activity toward various organic substances. However, its activity toward oxidization of organic substrates was found to be considerably increased by the removal of the methionine-rich helical segment that covers the substrate-binding site (Δα5-7 CueO) [Kataoka, K., et al. (2007) J. Mol. Biol. 373, 141]. In the study presented here, mutations at Pro444 to construct a second NH-S hydrogen bond between the backbone amide and coordinating Cys500 thiolate of the type I copper are shown to result in positive shifts in the redox potential of this copper center and enhanced oxidase activity in CueO. Analogous enhancement of the activity of Δα5-7 CueO has been identified only in the Pro444Gly mutant because Pro444 mutants limit the incorporation of copper ions into the trinuclear copper center. The activities of both CueO and Δα5-7 CueO were also enhanced by mutations to break down the hydrogen bond between the imidazole group of His443 that is coordinated to the type I copper and the β-carboxy group of Asp439 that is located in the outer sphere of the type I copper center. A synergetic effect of the positive shift in the redox potential of the type I copper center and the increase in enzyme activity has been achieved by the double mutation of Pro444 and Asp439 of CueO. Absorption, circular dichroism, and resonance Raman spectra indicate that the characteristics of the Cu(II)-S(Cys) bond were only minimally perturbed by mutations involving formation or disruption of a hydrogen bond from the coordinating groups to the type I copper. This study provides widely applicable strategies for tuning the activities of multicopper oxidases.

  13. Intragenic Deletions in ATP7B as an Unusual Molecular Genetics Mechanism of Wilson's Disease Pathogenesis.

    Science.gov (United States)

    Todorov, Theodor; Balakrishnan, Prahlad; Savov, Alexey; Socha, Piotr; Schmidt, Hartmut H J

    2016-01-01

    Wilson's disease (WD) is an autosomal recessive disorder caused by mutations in the ATP7B resulting in copper overload in the liver and brain. Direct sequencing is routinely used to confirm WD diagnosis; however, partial and whole gene deletions in the heterozygous state cannot be detected by exon amplification since the normal allele will mask its presence. The aim of the present work was to search for unusual mutational events in the unexplained WD cases and to provide insight into the mechanisms. Out of 1420 clinically and biochemically confirmed WD samples received between 2000 and 2014 for routine mutation analysis, we were unable to detect mutant alleles in 142 samples, after extensive sequencing analysis. We used selective amplification and MLPA to identify the partial gene deletions and identified three different partial gene deletions in seven different families. All three deletions were fully characterized at the DNA sequence level. We report the first hemizygous case with WD due to intragenic deletion in the ATP7B (c.3134_3556+689del). This novel deletion resulted from an excision event mediated by consensus sequences in an AluSq2 repeat element and could be traced to micro homologous end joining (MMEJ). Finally, we determined the prevalence of the three deletions in DNA samples from a multinational group of WD patients. Our results emphasize the need for searching mutant alleles beyond routine methods and highlight that large ATP7B deletions are rare, but account for a detectable proportion in some WD patients. Screening for gene aberrations will further improve mutation detection in patients with unidentified ATP7B mutations presenting with clinical manifestations of WD.

  14. Deletion of a gene cluster for [Ni-Fe] hydrogenase maturation in the anaerobic hyperthermophilic bacterium Caldicellulosiruptor bescii identifies its role in hydrogen metabolism.

    Science.gov (United States)

    Cha, Minseok; Chung, Daehwan; Westpheling, Janet

    2016-02-01

    The anaerobic, hyperthermophlic, cellulolytic bacterium Caldicellulosiruptor bescii grows optimally at ∼80 °C and effectively degrades plant biomass without conventional pretreatment. It utilizes a variety of carbohydrate carbon sources, including both C5 and C6 sugars, released from plant biomass and produces lactate, acetate, CO2, and H2 as primary fermentation products. The C. bescii genome encodes two hydrogenases, a bifurcating [Fe-Fe] hydrogenase and a [Ni-Fe] hydrogenase. The [Ni-Fe] hydrogenase is the most widely distributed in nature and is predicted to catalyze hydrogen production and to pump protons across the cellular membrane creating proton motive force. Hydrogenases are the key enzymes in hydrogen metabolism and their crystal structure reveals complexity in the organization of their prosthetic groups suggesting extensive maturation of the primary protein. Here, we report the deletion of a cluster of genes, hypABFCDE, required for maturation of the [Ni-Fe] hydrogenase. These proteins are specific for the hydrogenases they modify and are required for hydrogenase activity. The deletion strain grew more slowly than the wild type or the parent strain and produced slightly less hydrogen overall, but more hydrogen per mole of cellobiose. Acetate yield per mole of cellobiose was increased ∼67 % and ethanol yield per mole of cellobiose was decreased ∼39 %. These data suggest that the primary role of the [Ni-Fe] hydrogenase is to generate a proton gradient in the membrane driving ATP synthesis and is not the primary enzyme for hydrogen catalysis. In its absence, ATP is generated from increased acetate production resulting in more hydrogen produced per mole of cellobiose.

  15. Heterozygosity for an in-frame deletion causes glutaryl-CoA dehydrogenase deficiency in a patient detected by newborn screening: investigation of the effect of the mutant allele

    DEFF Research Database (Denmark)

    Bross, Peter; Frederiksen, Jane B; Bie, Anne S

    2012-01-01

    the proband were consistent with a mild biochemical GA-1 phenotype. Recombinant expression of the mutant variant in E. coli showed that the GCDH-(p.Gly185_Ser190del) protein displayed severely decreased assembly into tetramers and enzyme activity. To discover a potential dominant negative effect of the mutant...... with the hypothesis that heterozygosity for this mutation confers a dominant negative effect resulting in a GCDH enzyme activity that is significantly lower than the expected 50%....

  16. Characterization of an F1 Deletion Mutant of Yersinia pestis CO92, Pathogenic Role of F1 Antigen in Bubonic and Pneumonic Plague, and Evaluation of Sensitivity and Specificity of F1 Antigen Capture-Based Dipsticks▿

    Science.gov (United States)

    Sha, Jian; Endsley, Janice J.; Kirtley, Michelle L.; Foltz, Sheri M.; Huante, Matthew B.; Erova, Tatiana E.; Kozlova, Elena V.; Popov, Vsevolod L.; Yeager, Linsey A.; Zudina, Irina V.; Motin, Vladimir L.; Peterson, Johnny W.; DeBord, Kristin L.; Chopra, Ashok K.

    2011-01-01

    We evaluated two commercial F1 antigen capture-based immunochromatographic dipsticks, Yersinia Pestis (F1) Smart II and Plague BioThreat Alert test strips, in detecting plague bacilli by using whole-blood samples from mice experimentally infected with Yersinia pestis CO92. To assess the specificities of these dipsticks, an in-frame F1-deficient mutant of CO92 (Δcaf) was generated by homologous recombination and used as a negative control. Based on genetic, antigenic/immunologic, and electron microscopic analyses, the Δcaf mutant was devoid of a capsule. The growth rate of the Δcaf mutant generally was similar to that of the wild-type (WT) bacterium at both 26 and 37°C, although the mutant's growth dropped slightly during the late phase at 37°C. The Δcaf mutant was as virulent as WT CO92 in the pneumonic plague mouse model; however, it was attenuated in developing bubonic plague. Both dipsticks had similar sensitivities, requiring a minimum of 0.5 μg/ml of purified F1 antigen or 1 × 105 to 5 × 105 CFU/ml of WT CO92 for positive results, while the blood samples were negative for up to 1 × 108 CFU/ml of the Δcaf mutant. Our studies demonstrated the diagnostic potential of two plague dipsticks in detecting capsular-positive strains of Y. pestis in bubonic and pneumonic plague. PMID:21367990

  17. A PTS EII mutant library in Group A Streptococcus identifies a promiscuous man-family PTS transporter influencing SLS-mediated hemolysis.

    Science.gov (United States)

    Sundar, Ganesh S; Islam, Emrul; Gera, Kanika; Le Breton, Yoann; McIver, Kevin S

    2017-02-01

    The Group A Streptococcus (GAS, Streptococcus pyogenes) is a Gram-positive human pathogen that must adapt to unique host environments in order to survive. Links between sugar metabolism and virulence have been demonstrated in GAS, where mutants in the phosphoenolpyruvate-dependent phosphotransferase system (PTS) exhibited Streptolysin S (SLS)-mediated hemolysis during exponential growth. This early onset hemolysis correlated with an increased lesion size and severity in a murine soft tissue infection model when compared with parental M1T1 MGAS5005. To identify the PTS components responsible for this phenotype, we insertionally inactivated the 14 annotated PTS EIIC-encoding genes in the GAS MGAS5005 genome and subjected this library to metabolic and hemolysis assays to functionally characterize each EIIC. It was found that a few EIIs had a very limited influence on PTS sugar metabolism, whereas others were fairly promiscuous. The mannose-specific EII locus, encoded by manLMN, was expressed as a mannose-inducible operon that exhibited the most influence on PTS sugar metabolism, including mannose. Importantly, components of the mannose-specific EII also acted to prevent the early onset of SLS-mediated hemolysis. Interestingly, these roles were not identical in two different M1T1 GAS strains, highlighting the possible versatility of the PTS to adapt to strain-specific needs.

  18. Characterization of three lactic acid bacteria and their isogenic ldh deletion mutants shows optimization for Y(ATP) (cell mass produced per mole of ATP) at their physiological pHs

    NARCIS (Netherlands)

    Fiedler, T.; Bekker, M.; Jonsson, M.; Mehmeti, I.; Pritzschke, A.; Siemens, N.; Nes, I.; Hugenholtz, J.; Kreikemeyer, B.

    2011-01-01

    Several lactic acid bacteria use homolactic acid fermentation for generation of ATP. Here we studied the role of the lactate dehydrogenase enzyme on the general physiology of the three homolactic acid bacteria Lactococcus lactis, Enterococcus faecalis, and Streptococcus pyogenes. Of note, deletion o

  19. Characterization of three lactic acid bacteria and their isogenic ldh deletion mutants shows optimization for Y(ATP) (cell mass produced per mole of ATP) at their physiological pHs

    NARCIS (Netherlands)

    Fiedler, T.; Bekker, M.; Jonsson, M.; Mehmeti, I.; Pritzschke, A.; Siemens, N.; Nes, I.; Hugenholtz, J.; Kreikemeyer, B.

    2011-01-01

    Several lactic acid bacteria use homolactic acid fermentation for generation of ATP. Here we studied the role of the lactate dehydrogenase enzyme on the general physiology of the three homolactic acid bacteria Lactococcus lactis, Enterococcus faecalis, and Streptococcus pyogenes. Of note, deletion

  20. Phenotypic Screening of a Targeted Mutant Library Reveals Campylobacter jejuni Defenses against Oxidative Stress

    Science.gov (United States)

    Flint, Annika; Sun, Yi-Qian; Butcher, James; Stahl, Martin; Huang, Hongsheng

    2014-01-01

    During host colonization, Campylobacter jejuni is exposed to harmful reactive oxygen species (ROS) produced from the host immune system and from the gut microbiota. Consequently, identification and characterization of oxidative stress defenses are important for understanding how C. jejuni survives ROS stress during colonization of the gastrointestinal tract. Previous transcriptomic studies have defined the genes belonging to oxidant stimulons within C. jejuni. We have constructed isogenic deletion mutants of these identified genes to assess their role in oxidative stress survival. Phenotypic screening of 109 isogenic deletion mutants identified 22 genes which were either hypersensitive or hyposensitive to oxidants, demonstrating important roles for these genes in oxidant defense. The significance of these genes in host colonization was also assessed in an in vivo chick model of C. jejuni colonization. Overall, our findings identify an indirect role for motility in resistance to oxidative stress. We found that a nonmotile flagellum mutant, the ΔmotAB mutant, displayed increased sensitivity to oxidants. Restoration of sensitivity to superoxide in the ΔmotAB mutant was achieved by fumarate supplementation or tandem deletion of motAB with ccoQ, suggesting that disruption of the proton gradient across the inner membrane resulted in increased superoxide production in this strain. Furthermore, we have identified genes involved in cation transport and binding, detoxification, and energy metabolism that are also important factors in oxidant defense. This report describes the first isogenic deletion mutant library construction for screening of relevant oxidative stress defense genes within C. jejuni, thus providing a comprehensive analysis of the total set of oxidative stress defenses. PMID:24643543

  1. Comparative proteomic analysis of Salmonella enterica serovar Typhimurium ppGpp-deficient mutant to identify a novel virulence protein required for intracellular survival in macrophages

    Directory of Open Access Journals (Sweden)

    Kumagai Yoshinori

    2010-12-01

    Full Text Available Abstract Background The global ppGpp-mediated stringent response in pathogenic bacteria plays an important role in the pathogenesis of bacterial infections. In Salmonella enterica serovar Typhimurium (S. Typhimurium, several genes, including virulence genes, are regulated by ppGpp when bacteria are under the stringent response. To understand the control of virulence genes by ppGpp in S. Typhimurium, agarose 2-dimensional electrophoresis (2-DE combined with mass spectrometry was used and a comprehensive 2-DE reference map of amino acid-starved S. Typhimurium strain SH100, a derivative of ATCC 14028, was established. Results Of the 366 examined spots, 269 proteins were successfully identified. The comparative analysis of the wild-type and ppGpp0 mutant strains revealed 55 proteins, the expression patterns of which were affected by ppGpp. Using a mouse infection model, we further identified a novel virulence-associated factor, STM3169, from the ppGpp-regulated and Salmonella-specific proteins. In addition, Salmonella strains carrying mutations in the gene encoding STM3169 showed growth defects and impaired growth within macrophage-like RAW264.7 cells. Furthermore, we found that expression of stm3169 was controlled by ppGpp and SsrB, a response regulator of the two-component system located on Salmonella pathogenicity island 2. Conclusions A proteomic approach using a 2-DE reference map can prove a powerful tool for analyzing virulence factors and the regulatory network involved in Salmonella pathogenesis. Our results also provide evidence of a global response mediated by ppGpp in S. enterica.

  2. Deletion(20q) as the sole abnormality in plasma cell myeloma is not associated with plasma cells as identified by cIg FISH.

    Science.gov (United States)

    White, Joanne S; Zordan, Adrian; Batzios, Crisoula; Campbell, Lynda J

    2012-12-01

    Deletion of 20q is a common finding in myeloid disorders but it is also observed in plasma cell myeloma (PCM). As a del(20q) in a patient receiving treatment for myeloma may indicate therapy-related myelodysplastic syndrome (t-MDS), it is important to differentiate chromosome abnormalities associated with myeloma from those reflecting t-MDS. We performed fluorescence in situ hybridization (FISH) using a 20q12 probe (D20S108) in conjunction with cytoplasmic immunoglobulin (cIg) staining in 20 PCM cases with a del(20q) in order to confirm the cell type involved. Of the nine cases studied with a clone showing a del(20q) as the sole abnormality, 8 of 9 demonstrated loss of the D20S108 signals in non-plasma cells only and 5 of 9 had either a confirmed myeloid malignancy in addition to PCM or showed evidence of dysplastic changes in the marrow; however, of the 11 patients with a del(20q) within a complex PCM karyotype, 4 of 11 showed loss of the D20S108 signals in plasma cells only and 7 of 11 showed no significant loss in either plasma cells or non-plasma cells. Therefore, our results indicate that a del(20q) as the sole abnormality in PCM is present in non-plasma cells and, therefore, suggests the presence of an associated myeloid malignancy. Copyright © 2012 Elsevier Inc. All rights reserved.

  3. Large contiguous gene deletions in Sjögren-Larsson syndrome.

    Science.gov (United States)

    Engelstad, Holly; Carney, Gael; S'aulis, Dana; Rise, Janae; Sanger, Warren G; Rudd, M Katharine; Richard, Gabriele; Carr, Christopher W; Abdul-Rahman, Omar A; Rizzo, William B

    2011-11-01

    Sjögren-Larsson syndrome (SLS) is an autosomal recessive disorder characterized by ichthyosis, mental retardation, spasticity and mutations in the ALDH3A2 gene for fatty aldehyde dehydrogenase, an enzyme that catalyzes the oxidation of fatty aldehyde to fatty acid. More than 70 mutations have been identified in SLS patients, including small deletions or insertions, missense mutations, splicing defects and complex nucleotide changes. We now describe 2 SLS patients whose disease is caused by large contiguous gene deletions of the ALDH3A2 locus on 17p11.2. The deletions were defined using long distance inverse PCR and microarray-based comparative genomic hybridization. A 24-year-old SLS female was homozygous for a 352-kb deletion involving ALDH3A2 and 4 contiguous genes including ALDH3A1, which codes for the major soluble protein in cornea. Although lacking corneal disease, she showed severe symptoms of SLS with uncommon deterioration in oral motor function and loss of ambulation. The other 19-month-old female patient was a compound heterozygote for a 1.44-Mb contiguous gene deletion and a missense mutation (c.407C>T, P136L) in ALDH3A2. These studies suggest that large gene deletions may account for up to 5% of the mutant alleles in SLS. Geneticists should consider the possibility of compound heterozygosity for large deletions in patients with SLS and other inborn errors of metabolism, which has implications for carrier testing and prenatal diagnosis.

  4. Efficient high-resolution deletion discovery in Caenorhabditis elegans by array comparative genomic hybridization

    Science.gov (United States)

    Maydan, Jason S.; Flibotte, Stephane; Edgley, Mark L.; Lau, Joanne; Selzer, Rebecca R.; Richmond, Todd A.; Pofahl, Nathan J.; Thomas, James H.; Moerman, Donald G.

    2007-01-01

    We have developed array Comparative Genomic Hybridization for Caenorhabditis elegans as a means of screening for novel induced deletions in this organism. We designed three microarrays consisting of overlapping 50-mer probes to annotated exons and micro-RNAs, the first with probes to chromosomes X and II, the second with probes to chromosome II alone, and a third to the entire genome. These arrays were used to reliably detect both a large (50 kb) multigene deletion and a small (1 kb) single-gene deletion in homozygous and heterozygous samples. In one case, a deletion breakpoint was resolved to fewer than 50 bp. In an experiment designed to identify new mutations we used the X:II and II arrays to detect deletions associated with lethal mutants on chromosome II. One is an 8-kb deletion targeting the ast-1 gene on chromosome II and another is a 141-bp deletion in the gene C06A8.1. Others span large sections of the chromosome, up to >750 kb. As a further application of array Comparative Genomic Hybridization in C. elegans we used the whole-genome array to detect the extensive natural gene content variation (almost 2%) between the N2 Bristol strain and the strain CB4856, a strain isolated in Hawaii and JU258, a strain isolated in Madeira. PMID:17267812

  5. Construction and characterization of a glycoprotein E deletion mutant of bovine herpesvirus type 1.2 strain isolated in Brazil Construção e caracterização de uma amostra de BoHV-1.2 isolada no Brasil com uma deleção no gene da glicoproteína E

    Directory of Open Access Journals (Sweden)

    Ana C. Franco

    2002-09-01

    Full Text Available This paper describes the construction and characterization of a Brazilian strain of bovine herpesvirus type 1.2a (BoHV-1.2a with a deletion of the glycoprotein E (gE gene. The deletion was introduced by co-transfection of a deletion fragment containing the 5´and 3´gE flanking regions and genomic DNA of wild type BoHV-1 into bovine cells. Isolation of gE deletion mutant was performed by immunoperoxidase staining with an anti-gE monoclonal antibody. Viral clones were plaque purified and further examined by restriction endonuclesase digestion and Southern blot hybridization. This gE deletion mutant will be evaluated as a vaccinal virus, in order to determine its potential use for a differential vaccine.Este artigo descreve a construção e caracterização de uma amostra de um herpesvírus bovino tipo 1.2a (BoHV-1.2a que apresenta uma deleção na região genômica que codifica a glicoproteína E (gE. A deleção gênica foi induzida através da co-transfecção de um fragmento de deleção, contendo as regiões 5´e 3´flanqueadoras da gE, com o DNA viral intacto de uma amostra viral isolada de um animal que apresentava doença respiratória. O isolamento do vírus gE negativo (gE- foi realizado com auxílio da técnica de imunoperoxidase em que foi utilizado como anticorpo primário um anticorpo monoclonal anti-gE. O vírus gE- foi purificado e o DNA isolado desta amostra foi examinado através das técnicas de análise por enzimas de restrição e "Southern blot". Esta amostra gE- será avaliada como candidata para compor uma vacina diferencial contra a rinotraqueíte infecciosa dos bovinos.

  6. Construction of LuxS gene deletion of Streptococcus mutans and evaluation of the acid tolerance of the mutant%变异链球菌LuxS基因缺陷株的建立及其耐酸能力的研究

    Institute of Scientific and Technical Information of China (English)

    韩福胜; 韩玉植; 刘宇霞

    2010-01-01

    Objective To construct Streptococcus mutans UA159 mutants with deletion of LuxS gene related to quorum-sensing pathway and evaluate the aciduricity of the mutants. Methods Using S. mutans UA159 as materials, the PCR fragments of the upstream and downstream regions of LuxS and erythromycin resistance(Eymr) gene of PJT10 were cloned into plasmid PUC19. The resulting constructs were integrated into the chromosome of S. mutans. LuxS gene deletion mutant was then constructed in S. mutans by means of allelic exchange and selected for resistance to erythromycin. The aciduric ability of the mutant under different pH was measured and S. mutans UA159 was used as control. Results The LuxS-deleted status of S. mutans mutants were confirmed by various PCR and DNA sequencing. The results showed that Eymr gene take the place of LuxS gene, while the mutant can not induce bioluminescenece. The LuxS mutant strain displayed a decreased growth ability with the decreasing pH values compared to those of the wild-type strain UA159. Conclusion A LuxS-negative mutants of S. mutans is constructed. The LuxS quorum sensing system is involved in the regulation of aciduricity of S. mutans UA159.%目的 建立LuxS基因缺失的变异链球菌突变菌株,并对突变株的耐酸能力进行研究.方法 以变异链球菌UA159为材料,运用基因重组方法将红霉素抗性基因(Eymr)与LuxS基因上下游区域的2个基因片段按一定顺序重组到质粒载体PUC19的多克隆位点中,获得了具有红霉素抗性的重组质粒,将载体质粒转化到含完整LuxS基因的变异链球菌UA159中,利用红霉素抗性筛选出LuxS基因缺失的突变株.检测变异链球菌LuxS基因突变菌株在不同pH环境下生长情况,并以正常菌株为对照.结果 PCR基因扩增结果显示,突变株LuxS基因已被Eymr基因完全替换,不能再编码合成AI-2(autoinducer 2)信号分子,扩增产物经DNA测序证实筛选得到了LuxS基因缺失的突变株,并

  7. Characterization of an F1 deletion mutant of Yersinia pestis CO92, pathogenic role of F1 antigen in bubonic and pneumonic plague, and evaluation of sensitivity and specificity of F1 antigen capture-based dipsticks.

    Science.gov (United States)

    Sha, Jian; Endsley, Janice J; Kirtley, Michelle L; Foltz, Sheri M; Huante, Matthew B; Erova, Tatiana E; Kozlova, Elena V; Popov, Vsevolod L; Yeager, Linsey A; Zudina, Irina V; Motin, Vladimir L; Peterson, Johnny W; DeBord, Kristin L; Chopra, Ashok K

    2011-05-01

    We evaluated two commercial F1 antigen capture-based immunochromatographic dipsticks, Yersinia Pestis (F1) Smart II and Plague BioThreat Alert test strips, in detecting plague bacilli by using whole-blood samples from mice experimentally infected with Yersinia pestis CO92. To assess the specificities of these dipsticks, an in-frame F1-deficient mutant of CO92 (Δcaf) was generated by homologous recombination and used as a negative control. Based on genetic, antigenic/immunologic, and electron microscopic analyses, the Δcaf mutant was devoid of a capsule. The growth rate of the Δcaf mutant generally was similar to that of the wild-type (WT) bacterium at both 26 and 37 °C, although the mutant's growth dropped slightly during the late phase at 37 °C. The Δcaf mutant was as virulent as WT CO92 in the pneumonic plague mouse model; however, it was attenuated in developing bubonic plague. Both dipsticks had similar sensitivities, requiring a minimum of 0.5 μg/ml of purified F1 antigen or 1 × 10(5) to 5 × 10(5) CFU/ml of WT CO92 for positive results, while the blood samples were negative for up to 1 × 10(8) CFU/ml of the Δcaf mutant. Our studies demonstrated the diagnostic potential of two plague dipsticks in detecting capsular-positive strains of Y. pestis in bubonic and pneumonic plague.

  8. 鼠伤寒沙门菌spvB基因缺陷变异株的制备及其抗酸能力检测%Construction of a spvB Gene-deleted Mutant of Salmonella Enterica Serovar Typhi and Its Survival Ability in Acid Condition

    Institute of Scientific and Technical Information of China (English)

    吴春雪; 陈强; 李红; 余晓君; 朱春晖; 李岚; 何美娟; 刘晓艳

    2014-01-01

    Objective To investigate the function of spvB gene,a toxicity gene of Salmonella enterica serovar Typhi,by constructing the spvB gene-deleted mutant and examinimg its survival ability in acid condition.Methods According to the se-quences of spvB gene of Salmonella enterica serovar Typhi,specific primers were designed for PCR.The homologous DNA fragments with spvB gene deleted were constructed,which was cloned into the suicide plasmid pCVD442 and then transferred into the target cells of Salmonella enterica serovar Typhi.The recombination was visualized by PCR,and the complete recombi-nant strain was selected as the spvB gene-deleted mutant strain and confirmed by the corresponding sequencing analysis.Under the acid condition,the survival ability of the spvB mutant and parent was compared by using the growth curve.Results A dele-tion of 1 748 bp of the spvB gene was confirmed by PCR and sequencing analysis in spvB gene-deleted mutants.The number of live wild-type strains were significantly greater than that of spvB gene-deleted mutants under the acid condition for 1 and 2 h, and the difference was statistically significant(P<0.05).The survival rate of the wild-type strains was 85.6% and 74.9% at 1 and 2 h,significantly higher than that of the spvB gene-deleted mutants,which was 68.0% and 42.3%.Conclusion The spvB gene-deleted mutant of Salmonella enterica serovar Typhi was successfully generated and its survival ability was significantly compromised under the acid condition,which lays a foundation for studying the function of the spvB gene in Salmonella enteri-ca serovar Typhi.%目的:为深入研究鼠伤寒沙门菌毒力基因 spvB的功能,制备鼠伤寒沙门菌 spvB基因完全缺陷变异株,观察spvB基因缺陷株在体外酸性环境中的生存能力。方法根据鼠伤寒沙门菌spvB基因序列,设计PCR特异性引物,制备spvB基因缺陷性同源性核苷酸片段,导入自杀质粒 pCVD442后再导入鼠伤寒沙门菌野生

  9. Biological and virulence characteristics of the YqhC mutant of Salmonella.

    Science.gov (United States)

    Eakley, Nicholas M; Bochsler, Philip N; Gopal Reddy, P; Chopra, Ashok K; Fadl, Amin A

    2011-12-01

    Previous work by the present authors indicated a murein lipoprotein mutant of Salmonella shows a marked down-regulation in expression of yqhC. Because YqhC is a putative DNA-binding protein, it is likely involved in modulation of Salmonella genes. Deletion of yqhC renders Salmonella defective in invasion of intestinal epithelial cells, motility, and induction of cytotoxicity. In the present study, further attenuation in induction of inflammatory cytokines/chemokines and histopathological lesions was seen in mice infected with the yqhC mutant. On the other hand, deletion of yqhC did not significantly affect the LD(50) in mice or the ability of Salmonella to survive and replicate in vivo. To better understand how YqhC affects Salmonella virulence and to identify factors potentially modulated by YqhC, comparative transcriptome and proteome analysis of the yqhC mutant and the WT Salmonella was performed. Data from these experiments indicate that deletion of yqhC significantly alters the transcription of several genes associated with the SPI-1 encoded T3SS and flagellar regulons, correlating with the yqhC mutant phenotype. Overall, this study indicates that deletion of the yqhC gene causes a number of virulence-related defects in vitro, but has a modest effect in vivo, despite affecting induction of inflammatory cytokines and histopathology.

  10. KIT exon 11 deletion-inversions represent complex mutations in gastrointestinal stromal tumors.

    Science.gov (United States)

    Lasota, Jerzy; Miettinen, Markku

    2007-05-01

    Gastrointestinal stromal tumors (GISTs) are the most common mesenchymal tumors of the gastrointestinal tract. KIT expression and mutational KIT activation have been documented in a majority of GISTs. Most mutations have been found in KIT juxtamembrane domain encoded by exon 11. Recently, we have identified three, complex KIT exon 11 mutations previously unreported in GISTs. These mutations consisted of several nucleotide deletions accompanied by insertions of inverted complementary DNA strand sequences. All three mutations were found in the 5' part of KIT exon 11. At the protein level, these mutations lead to the same end result: in-frame loss and insertion of a number of amino acids and could be considered examples of deletion-insertion. Although proper description of these mutations at the genomic level is a complex task and requires an individual approach, the uniform name deletion-inversion is suggested for this type of mutation, based on the present study. The frequency of deletion-inversions among KIT exon 11 mutant GISTs was estimated to be <0.5%, based on evaluation of 700 KIT exon 11 mutants. Molecular events leading to formation of deletion-inversions remain elusive and should be studied further.

  11. Towards a Systems Approach in the Genetic Analysis of Archaea: Accelerating Mutant Construction and Phenotypic Analysis in Haloferax volcanii

    Directory of Open Access Journals (Sweden)

    Ian K. Blaby

    2010-01-01

    Full Text Available With the availability of a genome sequence and increasingly sophisticated genetic tools, Haloferax volcanii is becoming a model for both Archaea and halophiles. In order for H. volcanii to reach a status equivalent to Escherichia coli, Bacillus subtilis, or Saccharomyces cerevisiae, a gene knockout collection needs to be constructed in order to identify the archaeal essential gene set and enable systematic phenotype screens. A streamlined gene-deletion protocol adapted for potential automation was implemented and used to generate 22 H. volcanii deletion strains and identify several potentially essential genes. These gene deletion mutants, generated in this and previous studies, were then analyzed in a high-throughput fashion to measure growth rates in different media and temperature conditions. We conclude that these high-throughput methods are suitable for a rapid investigation of an H. volcanii mutant library and suggest that they should form the basis of a larger genome-wide experiment.

  12. High proportion of 22q13 deletions and SHANK3 mutations in Chinese patients with intellectual disability.

    Directory of Open Access Journals (Sweden)

    Xiaohong Gong

    Full Text Available Intellectual disability (ID is a heterogeneous disorder caused by chromosomal abnormalities, monogenic factors and environmental factors. 22q13 deletion syndrome is a genetic disorder characterized by severe ID. Although the frequency of 22q13 deletions in ID is unclear, it is believed to be largely underestimated. To address this issue, we used Affymetrix Human SNP 6.0 array to detect the 22q13 deletions in 234 Chinese unexplained ID patients and 103 controls. After the Quality Control (QC test of raw data, 22q13 deletions were found in four out of 230 cases (1.7%, while absent in parents of the cases and 101 controls. A review of genome-wide microarray studies in ID was performed and the frequency of 22q13 deletions from the literatures was 0.24%, much lower than our report. The overlapping region shared by all 4 cases encompasses the gene SHANK3. A heterozygous de novo nonsense mutation Y1015X of SHANK3 was identified in one ID patient. Cortical neurons were prepared from embryonic mice and were transfected with a control plasmid, shank3 wild-type (WT or mutant plasmids. Overexpression of the Y1015 mutant in neurons significantly affected neurite outgrowth compared with shank3 WT. These findings suggest that 22q13 deletions may be a more frequent cause for Chinese ID patients than previously thought, and the SHANK3 gene is involved in the neurite development.

  13. Detection of classical 17p11.2 deletions, an atypical deletion and RAI1 alterations in patients with features suggestive of Smith-Magenis syndrome.

    Science.gov (United States)

    Vieira, Gustavo H; Rodriguez, Jayson D; Carmona-Mora, Paulina; Cao, Lei; Gamba, Bruno F; Carvalho, Daniel R; de Rezende Duarte, Andréa; Santos, Suely R; de Souza, Deise H; DuPont, Barbara R; Walz, Katherina; Moretti-Ferreira, Danilo; Srivastava, Anand K

    2012-02-01

    Smith-Magenis syndrome (SMS) is a complex disorder whose clinical features include mild to severe intellectual disability with speech delay, growth failure, brachycephaly, flat midface, short broad hands, and behavioral problems. SMS is typically caused by a large deletion on 17p11.2 that encompasses multiple genes including the retinoic acid induced 1, RAI1, gene or a mutation in the RAI1 gene. Here we have evaluated 30 patients with suspected SMS and identified SMS-associated classical 17p11.2 deletions in six patients, an atypical deletion of ~139 kb that partially deletes the RAI1 gene in one patient, and RAI1 gene nonsynonymous alterations of unknown significance in two unrelated patients. The RAI1 mutant proteins showed no significant alterations in molecular weight, subcellular localization and transcriptional activity. Clinical features of patients with or without 17p11.2 deletions and mutations involving the RAI1 gene were compared to identify phenotypes that may be useful in diagnosing patients with SMS.

  14. Construction of a mutant strain of Streptococcus mutans with clpC-deletion to study the role of clpC ;gene in genetic competence%clpC 基因对变异链球菌感受态形成的影响

    Institute of Scientific and Technical Information of China (English)

    徐巧丽; 饶慧华; 马晓波; 黄朝阳; 郑港森; 张加勤; 宋秀宇

    2015-01-01

    目的:构建变异链球菌clpC缺陷突变株,检测该基因对变异链球菌感受态形成的影响。方法分别以变异链球菌UA159基因组和pIB107质粒为模板,PCR扩增clpC基因片段和卡那霉素基因盒(lox71-KMR-lox66);将clpC基因片段插入pMD-19T simple载体,经ClaⅠ/EcoRⅠ酶切、补平后连入卡那霉素基因盒,构建clpC缺陷突变同源重组载体pCKX2;SalⅠ线性化pCKX2并转化变异链球菌,卡那霉素筛选阳性菌落;质粒pCrePA转化阳性菌株,30℃培养剔除卡那霉素基因盒;37℃培养去除pCrePA,获得clpC缺陷突变株,PCR和测序鉴定;提取细菌总RNA并逆转录成cDNA,用RT-PCR法扩增clpC缺失序列的核苷酸片段并进行产物的电泳分析;pDL276分别转化变异链球菌和clpC缺陷突变株,观察感受态细胞形成变化。结果 PCR和测序结果证实成功构建同源重组载体pCKX2及变异链球菌clpC缺陷突变株;RT-PCR结果显示,△clpC缺失的核苷酸片段PCR产物电泳结果并无相应的条带出现;clpC缺陷突变株的感受态形成期延迟并延长维持期。结论 clpC基因具有负调控变异链球菌晚期感受态细胞形成的作用。%Objective To construct a mutant strain of Streptococcus mutans ( S.mutans ) with clpC-deletion and to investigate the role of clpC gene in genetic competence.Methods The fragment of clpC gene and the kanamycin resistant cassette flanked by two loxP sites were amplified by PCR.The purified fragment of clpC gene was cloned into pMD-19T simple vector to construct pCKX1.The pCKX1 vector was digested with ClaⅠ/EcoRⅠ, then blunted and introduced into lox71-KMR-lox66 to obtain pCKX2 vector via homologous recombination.The pCKX2 vector was linearized with SalⅠ and transformed into S.mutans UA159 strain.The positive strains constructed via homologous recombination were screened with kanamycin and transformed with the thermosensitive plasmid pCrePA.The KMR

  15. 炭疽芽孢杆菌A16R株lysA基因缺失突变株的构建%Construction of lysA deletion mutant of Bacillus anthracis vaccine strain A16R

    Institute of Scientific and Technical Information of China (English)

    高飞; 王东澍; 冯尔玲; 朱力; 王恒樑; 廖祥儒; 刘先凯

    2013-01-01

    Objective To construct the lysA site-deleted mutagenesis of Bacillus anthracis vaccine strain A16R in order to provide scientific reference for subsequent study on quantitative proteomics. Methods Using lysA Site-deleted mutagenesis as the target gene, software was used to design primers of upstream and downstream of lysA and antibiotic resistance genes. The recombinant plasmid was constructed by inserting three fragments into the vector and electroporated into competence A16R cells. Finally, A16R mutagenesis strain was screened and verified. Growth curves of the mutagenesis strain and wild strain were drawn, and physiological and biochemical characteristics were analyzed. Result and Conclusion lysA Site-deleted mutagenesis is obtained, contributing to quantitative proteomics research and establishing a good technical platform for functional genomics research of B. anthracis.%目的 构建炭疽芽孢杆菌(Bacillus anthracis)A16R株lysA基因缺失突变株,为后续的定量蛋白质组学研究奠定基础.方法 以炭疽杆菌活疫苗A16R株lysA基因为目的缺失基因,利用软件设计上下游同源臂以及抗性基因的引物,用同源重组酶将3个片段连入质粒中,构建重组质粒,并将重组质粒导入炭疽杆菌A16R感受态细胞中,筛选炭疽杆菌A16R株lysA基因缺失突变株,对其进行验证.最后绘制缺失突变株和野生株生长曲线并进行生理生化分析.结果 成功构建了重组质粒,经同源重组后获得lysA基因缺失突变株.鉴定表明目的基因已经丢失.结论 成功获得炭疽杆菌A16R株lysA基因缺失突变株,为定量蛋白质组学研究奠定了基础,也为炭疽杆菌重要基因功能的研究建立了良好的技术平台.

  16. Interleukin 1 (IL-1) type I receptors mediate activation of rat hypothalamus-pituitary-adrenal axis and interleukin 6 production as shown by receptor type selective deletion mutants of IL-1beta.

    Science.gov (United States)

    Van Dam, A M; Malinowsky, D; Lenczowski, M J; Bartfai, T; Tilders, F J

    1998-06-01

    The cytokine interleukin 1 (IL-1) plays an important role in the activation of the hypothalamus-pituary-adrenal (HPA)-axis and interleukin 6 (IL-6) production during infection or inflammation. Which of the interleukin-1 receptor types mediates these effects is not known. To investigate this issue a pharmacological approach was chosen by using recently developed IL-1 receptor type selective ligands. Rats were given one of various doses of recombinant human IL-1beta (rhIL-1beta; 1 and 10 microg/kg) and of several IL-1beta mutants (DeltaSND, DeltaQGE and DeltaI; 1, 10 and 100 microg/kg), that differ in their affinities for the IL-1 type I receptor but have similar affinities for the IL-1 type II receptor. One hour after intravenous administration of rhIL-1beta or IL-1beta mutants, plasma levels of ACTH, corticosterone (cort) and IL-6 were measured. Doses of 1 and 10 microg/kg rhIL-1beta markedly elevated plasma levels of ACTH, cort and IL-6. However, 10-100-fold higher doses of IL-1beta mutants DeltaSND and DeltaQGE and at least 100-fold higher doses of DeltaI have to be administered to increase plasma levels of ACTH, cort and IL-6. The potency differences correlate with their respective affinity for the type I receptor but not with that of the IL-1 type II receptor. It is concluded that IL-1beta induced ACTH, cort and IL-6 production is mediated by interleukin 1 type I receptors.

  17. Molecular dynamics simulations of Hsp40 J-domain mutants identifies disruption of the critical HPD-motif as the key factor for impaired curing in vivo of the yeast prion [URE3].

    Science.gov (United States)

    Xue, You-Lin; Wang, Hao; Riedy, Michael; Roberts, Brittany-Lee; Sun, Yuna; Song, Yong-Bo; Jones, Gary W; Masison, Daniel C; Song, Youtao

    2017-08-02

    Genetic screens using Saccharomyces cerevisiae have identified an array of Hsp40 (Ydj1p) J-domain mutants that are impaired in the ability to cure the yeast [URE3] prion through disrupting functional interactions with Hsp70. However, biochemical analysis of some of these Hsp40 J-domain mutants has so far failed to provide major insight into the specific functional changes in Hsp40-Hsp70 interactions. To explore the detailed structural and dynamic properties of the Hsp40 J-domain, 20 ns molecular dynamic simulations of 4 mutants (D9A, D36A, A30T, and F45S) and wild-type J-domain were performed, followed by Hsp70 docking simulations. Results demonstrated that although the Hsp70 interaction mechanism of the mutants may vary, the major structural change was targeted to the critical HPD motif of the J-domain. Our computational analysis fits well with previous yeast genetics studies regarding highlighting the importance of J-domain function in prion propagation. During the molecular dynamics simulations several important residues were identified and predicted to play an essential role in J-domain structure. Among these residues, Y26 and F45 were confirmed, using both in silico and in vivo methods, as being critical for Ydj1p function.

  18. A high-resolution InDel (insertion-deletion markers-anchored consensus genetic map identifies major QTLs governing pod number and seed yield in chickpea

    Directory of Open Access Journals (Sweden)

    Rishi Srivastava

    2016-09-01

    anchors, three major genomic regions harbouring each of pod number and seed yield robust QTLs (15-28% phenotypic variation explained were identified on chromosomes 2, 4 and 6. The integration of genetic and physical maps at these QTLs mapped on chromosomes scaled-down the long major QTL intervals into high-resolution short pod number and seed yield robust QTL physical intervals (0.89-2.94 Mb which were essentially got validated in multiple genetic backgrounds of two chickpea mapping populations.

  19. A High-Resolution InDel (Insertion–Deletion) Markers-Anchored Consensus Genetic Map Identifies Major QTLs Governing Pod Number and Seed Yield in Chickpea

    Science.gov (United States)

    Srivastava, Rishi; Singh, Mohar; Bajaj, Deepak; Parida, Swarup K.

    2016-01-01

    genomic regions harboring each of pod number and seed yield robust QTLs (15–28% phenotypic variation explained) were identified on chromosomes 2, 4, and 6. The integration of genetic and physical maps at these QTLs mapped on chromosomes scaled-down the long major QTL intervals into high-resolution short pod number and seed yield robust QTL physical intervals (0.89–2.94 Mb) which were essentially got validated in multiple genetic backgrounds of two chickpea mapping populations. The genome-wide InDel markers including natural allelic variants and genomic loci/genes delineated at major six especially in one colocalized novel congruent robust pod number and seed yield robust QTLs mapped on a high-density consensus genetic map were found most promising in chickpea. These functionally relevant molecular tags can drive marker-assisted genetic enhancement to develop high-yielding cultivars with increased seed/pod number and yield in chickpea. PMID:27695461

  20. The Changed Rule of Infected Piglets by a Mutant of Porcine Reproductive and Respiratory Syndrome Virus with Nsp2 Gene Deletion%感染PRRSV Nsp2基因部分缺失变异株的仔猪抗体变化规律

    Institute of Scientific and Technical Information of China (English)

    张凤华; 卢晓艳; 徐红运; 赵琳; 刘玉松; 范旭; 夏平安; 崔保安

    2011-01-01

    为了解PRRSV Nsp2基因缺失变异株的致病性,采用2个Nsp2基因分别连续缺失3个和89个碱基的PRRSV变异株Hn-2(GenBank:FJ237419)和Hn-4(GenBank:FJ237421)的病毒液,人工滴鼻感染断奶仔猪,同时用Marc-145健康仔猪细胞培养液滴鼻作对照,在感染后0,7,14,24,32,41,50,60和70 d无菌采血,分离血清,用RTPCR方法检测病毒、用N-ELISA方法和免疫荧光抑制试验分别检测抗PRRSV N蛋白抗体和抗PRRSV中和抗体,比较分析不同时期病毒复制和抗体产生的变化规律.结果表明,仔猪感染Hn-2和Hn-4毒株后7~14 d均能检测到病毒,第7天能检测到抗PRRSV N蛋白抗体,并一直维持较高水平,第41和50天检测到较低水平的中和抗体,随后中和抗体效价逐渐升高.试验猪均未出现死亡,表明PRRSV Nsp2基因缺失变异株不一定导致感染猪的死亡.%In order to understand the pathogenicity of PRRSV about Nsp2 gene deletion mutant, The PRRS negative healthy piglets of 20 days-old were inoculated by intranasal with a Mutant of PRRSV Hn-2 ( GenBank; FJ237419)and Hn-4 (GenBank; FJ237421) strains respectively, which delete 3 base pairs and 89 base pairs in the Nsp2 gene respectively, while healthy piglets were used for control, the sera were separated aseptically on the 0,7, 14,24,32,41,50,60,70 d respectively, using RT-PCR to detect the virus, using ELISA method and hnmunofluo-rescence inhibition test for detection of anti-PRRSV N protein antibody and neutralizing antibodies, variation of the virus and antibody were comparied in different periods of time. The results showed that the PRRSV could be detected in 7 -14 d after infected with the Mutant Hn-2, and Hn-4 strain, anti-PRRSV N protein antibodies could be detected on the 7th day and has maintained a high level, respectively, the low level of neutralizing antibodies could be detected respectively on 41 d and 50 d, and the neutralization antibody increased gradually. The test pigs were not of death

  1. Deletion of ku homologs increases gene targeting frequency in Streptomyces avermitilis.

    Science.gov (United States)

    Zhang, Xiaojuan; Chen, Wei; Zhang, Yang; Jiang, Libin; Chen, Zhi; Wen, Ying; Li, Jilun

    2012-06-01

    Streptomyces avermitilis is an industrially important soil bacterium known for production of avermectins, which are antiparasitic agents useful in animal health care, agriculture, and treatment of human infections. ku genes play a key role in the non-homologous end-joining pathway for repair of DNA double strand breaks. We identified homologs of eukaryotic ku70 and ku80 genes, termed ku1 and ku2, in S. avermitilis. Mutants with deletion of ku1, ku2, and both genes were constructed and their phenotypic changes were characterized. Deletion of ku genes had no apparent adverse effects on growth, spore formation, or avermectin production. The ku mutants, in comparison to wild-type strain, were slightly more sensitive to the DNA-damaging agent ethyl methanesulfonate, but not to UV exposure or to bleomycin. Gene targeting frequencies by homologous recombination were higher in the ku mutants than in wild-type strain. We conclude that ku-deleted strains will be useful hosts for efficient gene targeting and will facilitate functional analysis of genes in S. avermitilis and other industrially important bacterial strains.

  2. 果蝇长时程记忆缺陷型突变体的鉴定%Identifying Furrowed Mutant in Drosophila with Long-term Memory Deficience

    Institute of Scientific and Technical Information of China (English)

    王世清; 孙侃; 帅祎春; 王连章; 钟毅

    2012-01-01

    长时程记忆作为依赖蛋白合成的记忆组分,对于了解高等认知活动的分子机制有着重要意义.与此同时,细胞粘连分子作为影响突触可塑性的重要因子在学习与记忆研究领域也日益得到重视.为探索作用于长时程记忆的细胞粘连分子,利用P因子在果蝇基因组随机插入制造突变体,并通过大规模行为筛选得到了一个可能的长时程记忆突变体RUO.测序结果表明,突变体RUO的P因子位于果蝇中selectin超家族对应的furrowed同源基因功能片段和未知功能的CG1806基因编码片段之间,且更靠近furrowed片段.RT-PCR结果和互补遗传学实验均表明,突变体RUO主要影响furrowed基因的表达.为了进一步确认furrowed基因与长时程记忆的相关性,引入已知的furrowed基因突变体fw1.结果表明,fw1同样具有长时程记忆缺陷,同时具备正常的学习能力.荧光共聚焦扫描成像显示,该基因特异性的表达在果蝇大脑两个对称的未知神经元中.此项工作不仅证明了furrowed基因在果蝇长时程记忆中的重要作用,而且在解剖学上揭示了果蝇神经系统中可能参与长时程记忆形成的新的神经元.%Long-term memory related protein synthesis is a significant aspect for understanding of advanced cognitive behavior. Exploration of the relationship between long-term memory and adhesion molecules helped to link synaptic plasticity change with behavior modification. To discover novel adhesion molecules participating memory formation, we screened for defective long-term memory mutants in Drosophila of P-element inserted stocks, and obtained one defective mutant RUO. DNA sequencing and RT-PCR showed that the P-element in RUO mutant only disrupted the expression of the protein furrowed, an adhesion molecule of selectin superfamily. Both RUO mutant and an existed furrow mutant fw1 were observed defective for long-term memory in behavior experiments, but with normal aversive

  3. A deletion in the gene encoding sphingomyelin phosphodiesterase 3 (Smpd3) results in osteogenesis and dentinogenesis imperfecta in the mouse.

    Science.gov (United States)

    Aubin, Isabelle; Adams, Carolyn P; Opsahl, Sibylle; Septier, Dominique; Bishop, Colin E; Auge, Nathalie; Salvayre, Robert; Negre-Salvayre, Anne; Goldberg, Michel; Guénet, Jean-Louis; Poirier, Christophe

    2005-08-01

    The mouse mutation fragilitas ossium (fro) leads to a syndrome of severe osteogenesis and dentinogenesis imperfecta with no detectable collagen defect. Positional cloning of the locus identified a deletion in the gene encoding neutral sphingomyelin phosphodiesterase 3 (Smpd3) that led to complete loss of enzymatic activity. Our knowledge of SMPD3 function is consistent with the pathology observed in mutant mice and provides new insight into human pathologies.

  4. Effect of epinephrine on biofilm formation of the qseC-deleted mutant of Escherichia coli on biomaterial%肾上腺素对生物材料表面大肠埃希氏菌qseC缺陷株生物被膜形成的影响

    Institute of Scientific and Technical Information of China (English)

    杨堃; 叶联华; 黄云超; 雷玉洁; 赵光强; 李光剑; 陈华梅

    2012-01-01

    目的 探讨肾上腺素( EPI)对生物材料表面大肠埃希氏菌 qseC 缺陷株生物被膜形成的影响.方法 以大肠杆菌MC1000、MC1000△qseC为实验菌株,对两菌株在不同培养基(LB或LBEPI)中的运动能力进行比较;同时分别将两菌株和PVC材料片在不同培养基(LB或LB+EPI)中培养,用激光共聚焦显微镜(CLSM)和扫描电镜(SEM)观察EPI对PVC表面细菌生物被膜形成的影响.结果 在LB培养基中,qseC缺陷株的细菌生物被膜形成能力较野生菌株明显减弱(P<0.05).MC1000菌株在LBEPI培养基中的运动力较之在LB培养基中明显增强(P<0.05),而qseC缺陷株的变化不明显.CLSM和SEM对PVC表面细菌生物被膜的检测结果表明,EPI增强MC1000菌株生物被膜形成能力,而对qseC缺陷株的影响不大.结论 肾上腺素促进大肠埃希氏菌在生物材料表面细菌生物被膜的形成,该作用由qseC介导.%Objective To study the effect of epinephrine on biofilm formation of the qseC-deleted mutant of Escherichia coli on biomaterial.Methods The strains used in this study are Escherichia coli MC1000 and MC1000AqseC.LB was used for all the experiments.To determine the effect of epinephrine on motility,halos were measured in LB medium at 37℃ in the presence of epinephrine(50 μmol/L).LB with epinephrine and without epinephrine were used,and then the experiment of bacterial biofilm formation on PVC material was taken.The relative amount of biofilm was estimated.The thickness of bacterial community and bacterial community quantity in the unit area on PVC materials were measured by confocal laser scanning microscope( CLSM),and the surface structure of biofilm formation was observed by scanning electron microscope(SEM).Results The mutant strain formed less biofilm than the wild-type strain in LB.The increment in motility of wild-type strain due to epinephrine addition was shown,but mutant strain is unaffected.Similarly,biofilm formation of the wild-type strain was

  5. Molecular and biochemical characterization of xrs mutants defective in Ku80.

    Science.gov (United States)

    Singleton, B K; Priestley, A; Steingrimsdottir, H; Gell, D; Blunt, T; Jackson, S P; Lehmann, A R; Jeggo, P A

    1997-01-01

    The gene product defective in radiosensitive CHO mutants belonging to ionizing radiation complementation group 5, which includes the extensively studied xrs mutants, has recently been identified as Ku80, a subunit of the Ku protein and a component of DNA-dependent protein kinase (DNA-PK). Several group 5 mutants, including xrs-5 and -6, lack double-stranded DNA end-binding and DNA-PK activities. In this study, we examined additional xrs mutants at the molecular and biochemical levels. All mutants examined have low or undetectable levels of Ku70 and Ku80 protein, end-binding, and DNA-PK activities. Only one mutant, xrs-6, has Ku80 transcript levels detectable by Northern hybridization, but Ku80 mRNA was detectable by reverse transcription-PCR in most other mutants. Two mutants, xrs-4 and -6, have altered Ku80 transcripts resulting from mutational changes in the genomic Ku80 sequence affecting RNA splicing, indicating that the defects in these mutants lie in the Ku80 gene rather than a gene controlling its expression. Neither of these two mutants has detectable wild-type Ku80 transcript. Since the mutation in both xrs-4 and xrs-6 cells results in severely truncated Ku80 protein, both are likely candidates to be null mutants. Azacytidine-induced revertants of xrs-4 and -6 carried both wild-type and mutant transcripts. The results with these revertants strongly support our model proposed earlier, that CHO-K1 cells carry a copy of the Ku80 gene (XRCC5) silenced by hypermethylation. Site-directed mutagenesis studies indicate that previously proposed ATP-binding and phosphorylation sites are not required for Ku80 activity, whereas N-terminal deletions of more than the first seven amino acids result in severe loss of activities. PMID:9032253

  6. MutMap-Gap: whole-genome resequencing of mutant F2 progeny bulk combined with de novo assembly of gap regions identifies the rice blast resistance gene Pii.

    Science.gov (United States)

    Takagi, Hiroki; Uemura, Aiko; Yaegashi, Hiroki; Tamiru, Muluneh; Abe, Akira; Mitsuoka, Chikako; Utsushi, Hiroe; Natsume, Satoshi; Kanzaki, Hiroyuki; Matsumura, Hideo; Saitoh, Hiromasa; Yoshida, Kentaro; Cano, Liliana M; Kamoun, Sophien; Terauchi, Ryohei

    2013-10-01

    Next-generation sequencing allows the identification of mutations responsible for mutant phenotypes by whole-genome resequencing and alignment to a reference genome. However, when the resequenced cultivar/line displays significant structural variation from the reference genome, mutations in the genome regions missing from the reference (gaps) cannot be identified by simple alignment. Here we report on a method called 'MutMap-Gap', which involves delineating a candidate region harboring a mutation of interest using the recently reported MutMap method, followed by de novo assembly, alignment, and identification of the mutation within genome gaps. We applied MutMap-Gap to isolate the blast resistant gene Pii from the rice cv Hitomebore using mutant lines that have lost Pii function. MutMap-Gap should prove useful for cloning genes that exhibit significant structural variations such as disease resistance genes of the nucleotide-binding site-leucine rich repeat (NBS-LRR) class.

  7. Molecular characterization of two high-palmitic-acid mutant loci induced by X-ray irradiation in soybean.

    Science.gov (United States)

    Anai, Toyoaki; Hoshino, Tomoki; Imai, Naoko; Takagi, Yutaka

    2012-01-01

    Palmitic acid is the most abundant (approx. 11% of total fatty acids) saturated fatty acid in conventional soybean seed oil. Increasing the saturated acid content of soybean oil improves its oxidative stability and plasticity. We have developed three soybean mutants with high palmitic acid content by X-ray irradiation. In this study, we successfully identified the mutated sites of two of these high-palmitic-acid mutants, J10 and M22. PCR-based mutant analysis revealed that J10 has a 206,203-bp-long deletion that includes the GmKASIIA gene and 16 other predicted genes, and M22 has a 26-bp-long deletion in the sixth intron of GmKASIIB. The small deletion in M22 causes mis-splicing of GmKASIIB transcripts, which should result in nonfunctional products. In addition, we designed co-dominant marker sets for these mutant alleles and confirmed the association of genotypes and palmitic acid contents in F(2) seeds of J10 X M22. This information will be useful in breeding programs to develop novel soybean cultivars with improved palmitic acid content. However, in the third mutant, KK7, we found no polymorphism in either GmKASIIA or GmKASIIB, which suggests that several unknown genes in addition to GmKASIIA and GmKASIIB may be involved in elevating the palmitic acid content of soybean seed oil.

  8. 1p36 deletion syndrome: an update

    Directory of Open Access Journals (Sweden)

    Jordan VK

    2015-08-01

    Full Text Available Valerie K Jordan,1 Hitisha P Zaveri,2 Daryl A Scott1,2 1Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, USA; 2Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA Abstract: Deletions of chromosome 1p36 affect approximately 1 in 5,000 newborns and are the most common terminal deletions in humans. Medical problems commonly caused by terminal deletions of 1p36 include developmental delay, intellectual disability, seizures, vision problems, hearing loss, short stature, distinctive facial features, brain anomalies, orofacial clefting, congenital heart defects, cardiomyopathy, and renal anomalies. Although 1p36 deletion syndrome is considered clinically recognizable, there is significant phenotypic variation among affected individuals. This variation is due, at least in part, to the genetic heterogeneity seen in 1p36 deletions which include terminal and interstitial deletions of varying lengths located throughout the 30 Mb of DNA that comprise chromosome 1p36. Array-based copy number variant analysis can easily identify genomic regions of 1p36 that are deleted in an affected individual. However, predicting the phenotype of an individual based solely on the location and extent of their 1p36 deletion remains a challenge since most of the genes that contribute to 1p36-related phenotypes have yet to be identified. In addition, haploinsufficiency of more than one gene may contribute to some phenotypes. In this article, we review recent successes in the effort to map and identify the genes and genomic regions that contribute to specific 1p36-related phenotypes. In particular, we highlight evidence implicating MMP23B, GABRD, SKI, PRDM16, KCNAB2, RERE, UBE4B, CASZ1, PDPN, SPEN, ECE1, HSPG2, and LUZP1 in various 1p36 deletion phenotypes. Keywords: chromosome 1p36, chromosome deletion, 1p36 deletion syndrome, monosomy 1p36

  9. Systematic deletion of homeobox genes in Podospora anserina uncovers their roles in shaping the fruiting body.

    Directory of Open Access Journals (Sweden)

    Evelyne Coppin

    Full Text Available Higher fungi, which comprise ascomycetes and basidiomycetes, play major roles in the biosphere. Their evolutionary success may be due to the extended dikaryotic stage of their life cycle, which is the basis for their scientific name: the Dikarya. Dikaryosis is maintained by similar structures, the clamp in basidiomycetes and the crozier in ascomycetes. Homeodomain transcription factors are required for clamp formation in all basidiomycetes studied. We identified all the homeobox genes in the filamentous ascomycete fungus Podospora anserina and constructed deletion mutants for each of these genes and for a number of gene combinations. Croziers developed normally in these mutants, including those with up to six deleted homeogenes. However, some mutants had defects in maturation of the fruiting body, an effect that could be rescued by providing wild-type maternal hyphae. Analysis of mutants deficient in multiple homeogenes revealed interactions between the genes, suggesting that they operate as a complex network. Similar to their role in animals and plants, homeodomain transcription factors in ascomycetes are involved in shaping multicellular structures.

  10. Systematic deletion of homeobox genes in Podospora anserina uncovers their roles in shaping the fruiting body.

    Science.gov (United States)

    Coppin, Evelyne; Berteaux-Lecellier, Véronique; Bidard, Frédérique; Brun, Sylvain; Ruprich-Robert, Gwenaël; Espagne, Eric; Aït-Benkhali, Jinane; Goarin, Anne; Nesseir, Audrey; Planamente, Sara; Debuchy, Robert; Silar, Philippe

    2012-01-01

    Higher fungi, which comprise ascomycetes and basidiomycetes, play major roles in the biosphere. Their evolutionary success may be due to the extended dikaryotic stage of their life cycle, which is the basis for their scientific name: the Dikarya. Dikaryosis is maintained by similar structures, the clamp in basidiomycetes and the crozier in ascomycetes. Homeodomain transcription factors are required for clamp formation in all basidiomycetes studied. We identified all the homeobox genes in the filamentous ascomycete fungus Podospora anserina and constructed deletion mutants for each of these genes and for a number of gene combinations. Croziers developed normally in these mutants, including those with up to six deleted homeogenes. However, some mutants had defects in maturation of the fruiting body, an effect that could be rescued by providing wild-type maternal hyphae. Analysis of mutants deficient in multiple homeogenes revealed interactions between the genes, suggesting that they operate as a complex network. Similar to their role in animals and plants, homeodomain transcription factors in ascomycetes are involved in shaping multicellular structures.

  11. Use of a Phosphorylation Site Mutant To Identify Distinct Modes of Gene Repression by the Control of Virulence Regulator (CovR) in Streptococcus pyogenes.

    Science.gov (United States)

    Horstmann, Nicola; Sahasrabhojane, Pranoti; Yao, Hui; Su, Xiaoping; Shelburne, Samuel A

    2017-09-15

    Control of the virulence regulator/sensor kinase (CovRS) two-component system (TCS) serves as a model for investigating the impact of signaling pathways on the pathogenesis of Gram-positive bacteria. However, the molecular mechanisms by which CovR, an OmpR/PhoB family response regulator, controls virulence gene expression are poorly defined, partly due to the labile nature of its aspartate phosphorylation site. To better understand the regulatory effect of phosphorylated CovR, we generated the phosphorylation site mutant strain 10870-CovR-D53E, which we predicted to have a constitutive CovR phosphorylation phenotype. Interestingly, this strain showed CovR activity only for a subset of the CovR regulon, which allowed for classification of CovR-influenced genes into D53E-regulated and D53E-nonregulated groups. Inspection of the promoter sequences of genes belonging to each group revealed distinct promoter architectures with respect to the location and number of putative CovR-binding sites. Electrophoretic mobility shift analysis demonstrated that recombinant CovR-D53E protein retains its ability to bind promoter DNA from both CovR-D53E-regulated and -nonregulated groups, implying that factors other than mere DNA binding are crucial for gene regulation. In fact, we found that CovR-D53E is incapable of dimerization, a process thought to be critical to OmpR/PhoB family regulator function. Thus, our global analysis of CovR-D53E indicates dimerization-dependent and dimerization-independent modes of CovR-mediated repression, thereby establishing distinct mechanisms by which this critical regulator coordinates virulence gene expression.IMPORTANCEStreptococcus pyogenes causes a wide variety of diseases, ranging from superficial skin and throat infections to life-threatening invasive infections. To establish these various disease manifestations, Streptococcus pyogenes requires tightly coordinated production of its virulence factor repertoire. Here, the response regulator Cov

  12. A broad phenotypic screen identifies novel phenotypes driven by a single mutant allele in Huntington's disease CAG knock-in mice.

    Directory of Open Access Journals (Sweden)

    Sabine M Hölter

    Full Text Available Huntington's disease (HD is an autosomal dominant neurodegenerative disorder caused by the expansion of a CAG trinucleotide repeat in the HTT gene encoding huntingtin. The disease has an insidious course, typically progressing over 10-15 years until death. Currently there is no effective disease-modifying therapy. To better understand the HD pathogenic process we have developed genetic HTT CAG knock-in mouse models that accurately recapitulate the HD mutation in man. Here, we describe results of a broad, standardized phenotypic screen in 10-46 week old heterozygous HdhQ111 knock-in mice, probing a wide range of physiological systems. The results of this screen revealed a number of behavioral abnormalities in HdhQ111/+ mice that include hypoactivity, decreased anxiety, motor learning and coordination deficits, and impaired olfactory discrimination. The screen also provided evidence supporting subtle cardiovascular, lung, and plasma metabolite alterations. Importantly, our results reveal that a single mutant HTT allele in the mouse is sufficient to elicit multiple phenotypic abnormalities, consistent with a dominant disease process in patients. These data provide a starting point for further investigation of several organ systems in HD, for the dissection of underlying pathogenic mechanisms and for the identification of reliable phenotypic endpoints for therapeutic testing.

  13. Functional screening of a cDNA library from the desiccation-tolerant plant Selaginella lepidophylla in yeast mutants identifies trehalose biosynthesis genes of plant and microbial origin.

    Science.gov (United States)

    Pampurova, Suzana; Verschooten, Katrien; Avonce, Nelson; Van Dijck, Patrick

    2014-11-01

    Trehalose is a non-reducing disaccharide that accumulates to large quantities in microbial cells, but in plants it is generally present in very low, barely-detectible levels. A notable exception is the desiccation-tolerant plant Selaginella lepidophylla, which accumulates very high levels of trehalose in both the hydrated and dehydrated state. As trehalose is known to protect membranes, proteins, and whole cells against dehydration stress, we have been interested in the characterization of the trehalose biosynthesis enzymes of S. lepidophylla; they could assist in engineering crop plants towards better stress tolerance. We previously isolated and characterized trehalose-6-phosphate synthases from Arabidopsis thaliana (desiccation sensitive) and S. lepidophylla (desiccation tolerant) and found that they had similar enzymatic characteristics. In this paper, we describe the isolation and characterization of trehalose-6-phosphate phosphatase from S. lepidophylla and show that its catalytic activities are also similar to those of its homolog in A. thaliana. Screening of an S. lepidophylla cDNA library using yeast trehalose biosynthesis mutants resulted in the isolation of a large number of trehalose biosynthesis genes that were of microbial rather than plant origin. Thus, we suggest that the high trehalose levels observed in S. lepidophylla are not the product of the plant but that of endophytes, which are known to be present in this plant. Additionally, the high trehalose levels in S. lepidophylla are unlikely to account for its desiccation tolerance, because its drought-stress-sensitive relative, S. moellendorffii, also accumulated high levels of trehalose.

  14. A broad phenotypic screen identifies novel phenotypes driven by a single mutant allele in Huntington's disease CAG knock-in mice.

    Science.gov (United States)

    Hölter, Sabine M; Stromberg, Mary; Kovalenko, Marina; Garrett, Lillian; Glasl, Lisa; Lopez, Edith; Guide, Jolene; Götz, Alexander; Hans, Wolfgang; Becker, Lore; Rathkolb, Birgit; Rozman, Jan; Schrewed, Anja; Klingenspor, Martin; Klopstock, Thomas; Schulz, Holger; Wolf, Eckhard; Wursta, Wolfgang; Gillis, Tammy; Wakimoto, Hiroko; Seidman, Jonathan; MacDonald, Marcy E; Cotman, Susan; Gailus-Durner, Valérie; Fuchs, Helmut; de Angelis, Martin Hrabě; Lee, Jong-Min; Wheeler, Vanessa C

    2013-01-01

    Huntington's disease (HD) is an autosomal dominant neurodegenerative disorder caused by the expansion of a CAG trinucleotide repeat in the HTT gene encoding huntingtin. The disease has an insidious course, typically progressing over 10-15 years until death. Currently there is no effective disease-modifying therapy. To better understand the HD pathogenic process we have developed genetic HTT CAG knock-in mouse models that accurately recapitulate the HD mutation in man. Here, we describe results of a broad, standardized phenotypic screen in 10-46 week old heterozygous HdhQ111 knock-in mice, probing a wide range of physiological systems. The results of this screen revealed a number of behavioral abnormalities in HdhQ111/+ mice that include hypoactivity, decreased anxiety, motor learning and coordination deficits, and impaired olfactory discrimination. The screen also provided evidence supporting subtle cardiovascular, lung, and plasma metabolite alterations. Importantly, our results reveal that a single mutant HTT allele in the mouse is sufficient to elicit multiple phenotypic abnormalities, consistent with a dominant disease process in patients. These data provide a starting point for further investigation of several organ systems in HD, for the dissection of underlying pathogenic mechanisms and for the identification of reliable phenotypic endpoints for therapeutic testing.

  15. New and efficient method using Saccharomyces cerevisiae mutants for identification of siderophores produced by microorganisms.

    Science.gov (United States)

    Park, Yong-Sung; Kim, Ji-Hyun; Chang, Hyo-Ihl; Kim, Seung-Wook; Paik, Hyun-Dong; Kang, Chang-Won; Kim, Tae-Hyoung; Sung, Ha-Chin; Yun, Cheol-Won

    2007-09-01

    The separation and identification of siderophores produced by microorganisms is a time-consuming and an expensive procedure. We have developed a new and efficient method to identify siderophores using well-established Saccharomyces cerevisiae deletion mutants. The Deltafet3,arn strains fail to sustain growth, even when specific siderophores are supplied, and mutants are siderophore-specific: Deltafet3,arn2 for triacetylfusarinine C (TAFC), Deltafet3,arn1,sit1 for ferrichrome (FC), and Deltafet3,sit1 for ferrioxamine B (FOB). The culture broth of Fusarium graminearum was separated by HPLC, and each peak was subjected to a plate assay using S. cerevisiae mutants. We have found that each peak contained specific siderophores produced by F. graminearum, and these coincided with reference siderophores. This method is quite novel because nobody tried this method to identify the siderophores. Furthermore, this method will save time and cost in the identification of siderophores produced by microorganisms.

  16. Analysis of mutant platelet-derived growth factor receptors expressed in PC12 cells identifies signals governing sodium channel induction during neuronal differentiation.

    Science.gov (United States)

    Fanger, G R; Vaillancourt, R R; Heasley, L E; Montmayeur, J P; Johnson, G L; Maue, R A

    1997-01-01

    The mechanisms governing neuronal differentiation, including the signals underlying the induction of voltage-dependent sodium (Na+) channel expression by neurotrophic factors, which occurs independent of Ras activity, are not well understood. Therefore, Na+ channel induction was analyzed in sublines of PC12 cells stably expressing platelet-derived growth factor (PDGF) beta receptors with mutations that eliminate activation of specific signalling molecules. Mutations eliminating activation of phosphatidylinositol 3-kinase (PI3K), phospholipase C gamma (PLC gamma), the GTPase-activating protein (GAP), and Syp phosphatase failed to diminish the induction of type II Na+ channel alpha-subunit mRNA and functional Na+ channel expression by PDGF, as determined by RNase protection assays and whole-cell patch clamp recording. However, mutation of juxtamembrane tyrosines that bind members of the Src family of kinases upon receptor activation inhibited the induction of functional Na+ channels while leaving the induction of type II alpha-subunit mRNA intact. Mutation of juxtamembrane tyrosines in combination with mutations eliminating activation of PI3K, PLC gamma, GAP, and Syp abolished the induction of type II alpha-subunit mRNA, suggesting that at least partially redundant signaling mechanisms mediate this induction. The differential effects of the receptor mutations on Na+ channel expression did not reflect global changes in receptor signaling capabilities, as in all of the mutant receptors analyzed, the induction of c-fos and transin mRNAs still occurred. The results reveal an important role for the Src family in the induction of Na+ channel expression and highlight the multiplicity and combinatorial nature of the signaling mechanisms governing neuronal differentiation.

  17. 布鲁菌Ⅳ型分泌系统效应蛋白 DK63-887基因缺失株的构建及鉴定%Construction and Identification of Ⅳ Secretion System Effector Protein DK63-887 Gene Deletion Mutant of Brucella

    Institute of Scientific and Technical Information of China (English)

    江雅丽; 陈创夫; 李志强; 李默; 李爽; 王震; 张欢; 张辉; 郭飞

    2016-01-01

    To construct the DK63-887 gene deletion mutant (16MΔDK63-887)of Brucella melitensis 16M (referred to as 16M),and explore the relationship between the gene and 16M-mediated autophagy,the methods of homologous recombination and replacement were applied,and the kanamycin gene was used to replace DK63-887 gene obtaining mutant 16MΔDK63-887.Under the same conditions of shaking culture, we observed growth of the parental strain 16M,vaccine strain M5-90,mutant 16MΔDK63-887,and then, each strain was placed in different environments,the survival rate of which was observed.Mouse macropha-ges were infected with parental and mutant strains,then we compared their ability of surviving in host cells and detected autophagy-related genes using RT-qPCR.The 16MΔDK63-887 mutant strain was successfully obtained.The mutants were genetically stable within 20 passages.Compared with the parental strain,the growing trends of mutant and parent strains were coincident in vitro ,but there were some differences in the concentration of bacteria.The mutants had decreased survival rate under the stress conditions.After 4h post-infection,the numbers of the mutant strains in host cells significantly decreased.ULK1 and beclin1 ex-pression levels of the mutants significantly reduced which were detected by RT-qPCR(P <0.01).The re-sults of this study showed that Brucella type Ⅳ secretion system effector proteins associated with 16M me-diated-cell autophagy,the research laid the foundation for the study on 16M intracellular parasitism mecha-nisms.%为了构建羊布鲁菌16M(简称16M)的 DK63-887基因缺失株(16MΔDK63-887),探讨该基因与16M 介导自噬的关系。利用同源重组和抗性替换的方法,以卡那基因替换 DK63-887基因,获得突变株16MΔDK63-887。将亲本株16M、疫苗株 M5-90、突变株16MΔDK63-887在相同条件下振荡培养,观察其生长趋势变化;将各菌株置于不同外界环境中,观察其生存率;将各菌株侵染小

  18. A Yersinia pestis tat mutant is attenuated in bubonic and small-aerosol pneumonic challenge models of infection but not as attenuated by intranasal challenge.

    Science.gov (United States)

    Bozue, Joel; Cote, Christopher K; Chance, Taylor; Kugelman, Jeffrey; Kern, Steven J; Kijek, Todd K; Jenkins, Amy; Mou, Sherry; Moody, Krishna; Fritz, David; Robinson, Camenzind G; Bell, Todd; Worsham, Patricia

    2014-01-01

    Bacterial proteins destined for the Tat pathway are folded before crossing the inner membrane and are typically identified by an N-terminal signal peptide containing a twin arginine motif. Translocation by the Tat pathway is dependent on the products of genes which encode proteins possessing the binding site of the signal peptide and mediating the actual translocation event. In the fully virulent CO92 strain of Yersinia pestis, the tatA gene was deleted. The mutant was assayed for loss of virulence through various in vitro and in vivo assays. Deletion of the tatA gene resulted in several consequences for the mutant as compared to wild-type. Cell morphology of the mutant bacteria was altered and demonstrated a more elongated form. In addition, while cultures of the mutant strain were able to produce a biofilm, we observed a loss of adhesion of the mutant biofilm structure compared to the biofilm produced by the wild-type strain. Immuno-electron microscopy revealed a partial disruption of the F1 antigen on the surface of the mutant. The virulence of the ΔtatA mutant was assessed in various murine models of plague. The mutant was severely attenuated in the bubonic model with full virulence restored by complementation with the native gene. After small-particle aerosol challenge in a pneumonic model of infection, the mutant was also shown to be attenuated. In contrast, when mice were challenged intranasally with the mutant, very little difference in the LD50 was observed between wild-type and mutant strains. However, an increased time-to-death and delay in bacterial dissemination was observed in mice infected with the ΔtatA mutant as compared to the parent strain. Collectively, these findings demonstrate an essential role for the Tat pathway in the virulence of Y. pestis in bubonic and small-aerosol pneumonic infection but less important role for intranasal challenge.

  19. A Yersinia pestis tat mutant is attenuated in bubonic and small-aerosol pneumonic challenge models of infection but not as attenuated by intranasal challenge.

    Directory of Open Access Journals (Sweden)

    Joel Bozue

    Full Text Available Bacterial proteins destined for the Tat pathway are folded before crossing the inner membrane and are typically identified by an N-terminal signal peptide containing a twin arginine motif. Translocation by the Tat pathway is dependent on the products of genes which encode proteins possessing the binding site of the signal peptide and mediating the actual translocation event. In the fully virulent CO92 strain of Yersinia pestis, the tatA gene was deleted. The mutant was assayed for loss of virulence through various in vitro and in vivo assays. Deletion of the tatA gene resulted in several consequences for the mutant as compared to wild-type. Cell morphology of the mutant bacteria was altered and demonstrated a more elongated form. In addition, while cultures of the mutant strain were able to produce a biofilm, we observed a loss of adhesion of the mutant biofilm structure compared to the biofilm produced by the wild-type strain. Immuno-electron microscopy revealed a partial disruption of the F1 antigen on the surface of the mutant. The virulence of the ΔtatA mutant was assessed in various murine models of plague. The mutant was severely attenuated in the bubonic model with full virulence restored by complementation with the native gene. After small-particle aerosol challenge in a pneumonic model of infection, the mutant was also shown to be attenuated. In contrast, when mice were challenged intranasally with the mutant, very little difference in the LD50 was observed between wild-type and mutant strains. However, an increased time-to-death and delay in bacterial dissemination was observed in mice infected with the ΔtatA mutant as compared to the parent strain. Collectively, these findings demonstrate an essential role for the Tat pathway in the virulence of Y. pestis in bubonic and small-aerosol pneumonic infection but less important role for intranasal challenge.

  20. Identification of Mutant Genes and Introgressed Tiger Salamander DNA in the Laboratory Axolotl, Ambystoma mexicanum.

    Science.gov (United States)

    Woodcock, M Ryan; Vaughn-Wolfe, Jennifer; Elias, Alexandra; Kump, D Kevin; Kendall, Katharina Denise; Timoshevskaya, Nataliya; Timoshevskiy, Vladimir; Perry, Dustin W; Smith, Jeramiah J; Spiewak, Jessica E; Parichy, David M; Voss, S Randal

    2017-12-01

    The molecular genetic toolkit of the Mexican axolotl, a classic model organism, has matured to the point where it is now possible to identify genes for mutant phenotypes. We used a positional cloning-candidate gene approach to identify molecular bases for two historic axolotl pigment phenotypes: white and albino. White (d/d) mutants have defects in pigment cell morphogenesis and differentiation, whereas albino (a/a) mutants lack melanin. We identified in white mutants a transcriptional defect in endothelin 3 (edn3), encoding a peptide factor that promotes pigment cell migration and differentiation in other vertebrates. Transgenic restoration of Edn3 expression rescued the homozygous white mutant phenotype. We mapped the albino locus to tyrosinase (tyr) and identified polymorphisms shared between the albino allele (tyr (a) ) and tyr alleles in a Minnesota population of tiger salamanders from which the albino trait was introgressed. tyr (a) has a 142 bp deletion and similar engineered alleles recapitulated the albino phenotype. Finally, we show that historical introgression of tyr (a) significantly altered genomic composition of the laboratory axolotl, yielding a distinct, hybrid strain of ambystomatid salamander. Our results demonstrate the feasibility of identifying genes for traits in the laboratory Mexican axolotl.

  1. Partial deletion 11q

    DEFF Research Database (Denmark)

    Hertz, Jens Michael; Tommerup, N; Sørensen, F B;

    1995-01-01

    We describe the cytogenetic findings and the dysmorphic features in a stillborn girl with a large de novo terminal deletion of the long arm of chromosome 11. The karyotype was 46,XX,del(11)(q21qter). By reviewing previous reports of deletion 11q, we found that cleft lip and palate are most...

  2. Schizophrenia and chromosomal deletions

    Energy Technology Data Exchange (ETDEWEB)

    Lindsay, E.A.; Baldini, A. [Baylor College of Medicine, Houston, TX (United States); Morris, M. A. [Univ. of Geneva School of Medicine, NY (United States)] [and others

    1995-06-01

    Recent genetic linkage analysis studies have suggested the presence of a schizophrenia locus on the chromosomal region 22q11-q13. Schizophrenia has also been frequently observed in patients affected with velo-cardio-facial syndrome (VCFS), a disorder frequently associated with deletions within 22q11.1. It has been hypothesized that psychosis in VCFS may be due to deletion of the catechol-o-methyl transferase gene. Prompted by these observations, we screened for 22q11 deletions in a population of 100 schizophrenics selected from the Maryland Epidemiological Sample. Our results show that there are schizophrenic patients carrying a deletion of 22q11.1 and a mild VCFS phenotype that might remain unrecognized. These findings should encourage a search for a schizophrenia-susceptibility gene within the deleted region and alert those in clinical practice to the possible presence of a mild VCFS phenotype associated with schizophrenia. 9 refs.

  3. Quantum deletion is possible

    CERN Document Server

    Elizalde, E

    2000-01-01

    A deleting operation is introduced which differs from the commonly used {\\it controlled-not} (C-not) conditional logical operation $-$to flip the (classical or quantum) state of the last copy in a chain in a deletion process. It is completely reversible, in the classical case, possessing a most natural cloning operation counterpart. We call this deleting procedure R-deletion since, in a way, it can be viewed as a `randomization' of the standard C-not operator. It is a nonlinear operation and has the remarkable property of avoiding in a simple manner the `impossibility of deletion of a quantum state' principle, put forward by Pati and Braunstein recently \\cite{pbn1}.

  4. Functional analysis of non-hotspot AKT1 mutants found in human breast cancers identifies novel driver mutations: implications for personalized medicine

    OpenAIRE

    Yi, Kyung H.; Axtmayer, Jossette; Gustin, John P.; Rajpurohit, Anandita; Lauring, Josh

    2012-01-01

    The phosphatidylinositol 3-kinase (PI3-kinase)-Akt-mTOR pathway is mutated at high frequency in human breast cancer, and this pathway is the focus of active drug discovery and clinical investigation. Trials of personalized cancer therapy seek to leverage knowledge of cancer gene mutations by using mutations to guide the choice of targeted therapies. At the same time, cancer genome sequencing studies are identifying low frequency variants of unknown significance in known cancer genes, as well ...

  5. Molecular cytogenetic characterization of canine histiocytic sarcoma: A spontaneous model for human histiocytic cancer identifies deletion of tumor suppressor genes and highlights influence of genetic background on tumor behavior

    Directory of Open Access Journals (Sweden)

    Abadie Jerome

    2011-05-01

    Full Text Available Abstract Background Histiocytic malignancies in both humans and dogs are rare and poorly understood. While canine histiocytic sarcoma (HS is uncommon in the general domestic dog population, there is a strikingly high incidence in a subset of breeds, suggesting heritable predisposition. Molecular cytogenetic profiling of canine HS in these breeds would serve to reveal recurrent DNA copy number aberrations (CNAs that are breed and/or tumor associated, as well as defining those shared with human HS. This process would identify evolutionarily conserved cytogenetic changes to highlight regions of particular importance to HS biology. Methods Using genome wide array comparative genomic hybridization we assessed CNAs in 104 spontaneously occurring HS from two breeds of dog exhibiting a particularly elevated incidence of this tumor, the Bernese Mountain Dog and Flat-Coated Retriever. Recurrent CNAs were evaluated further by multicolor fluorescence in situ hybridization and loss of heterozygosity analyses. Statistical analyses were performed to identify CNAs associated with tumor location and breed. Results Almost all recurrent CNAs identified in this study were shared between the two breeds, suggesting that they are associated more with the cancer phenotype than with breed. A subset of recurrent genomic imbalances suggested involvement of known cancer associated genes in HS pathogenesis, including deletions of the tumor suppressor genes CDKN2A/B, RB1 and PTEN. A small number of aberrations were unique to each breed, implying that they may contribute to the major differences in tumor location evident in these two breeds. The most highly recurrent canine CNAs revealed in this study are evolutionarily conserved with those reported in human histiocytic proliferations, suggesting that human and dog HS share a conserved pathogenesis. Conclusions The breed associated clinical features and DNA copy number aberrations exhibited by canine HS offer a valuable model

  6. Biallelic ATM alterations detected at diagnosis identify a subset of treatment-naïve chronic lymphocytic leukemia patients with reduced overall survival similar to patients with p53 deletion.

    Science.gov (United States)

    Lozano-Santos, Carol; García-Vela, José A; Pérez-Sanz, Nuria; Nova-Gurumeta, Sara; Fernandez-Cuevas, Belen; Gomez-Lozano, Natalia; Sánchez-Beato, Margarita; Sanchez-Godoy, Pedro; Bueno, José Luis; Garcia-Marco, José A

    2017-04-01

    The prognostic impact of biallelic ATM abnormalities (ATM mutation and concurrent 11q deletion) remains unknown. We studied ATM, BIRC3, SF3B1, and NOTCH1 genes in 118 treatment-naïve CLL patients at diagnosis. Patients with biallelic ATM alteration had a similar time to first treatment (TTFT) and shorter overall survival (OS) compared with patients with isolated 11q deletion and shorter TTFT and OS when compared to patients with wild-type ATM. Furthermore, biallelic ATM alteration (HR: 6.4; p ≤ 0.007) was significantly associated with an increased risk of death similar to p53 deletion (HR: 6.1; p ≤ 0.004), superior to 11q deletion alone (HR: 2.8; p ≤ 0.022) and independent of other significant parameters such as age, advanced clinical stage, and complex karyotype. Our results suggest the identification of ATM mutations in CLL patients with 11q deletion at diagnosis is clinically relevant and predicts disease progression, poor response to the treatment, and reduced OS independent of other molecular prognostic factors.

  7. Identification of a premature termination of DNA polymerization in vitro by Klenow fragment mutants

    Indian Academy of Sciences (India)

    Guojie Zhao; Hua Wei; Yifu Guan

    2013-06-01

    DNA polymerization products by Klenow fragment (KF) are blunt-ended. In the present study, we found that the Klenow fragment mutants with partial deletions of thumb subdomain were unable to extend primers to the 5′ terminal of templates, thus creating 5′ overhanging sticky ends 2 nt long. We termed this phenomenon as PmTP (premature termination of polymerization). The KF mutants produced homogenous sticky-ended products only under mild reaction conditions, whereas under vigorous reaction conditions, the sticky ends were prone to be blunt-ended. It was also identified that deletions of more than four residues of KF thumb subdomain could induce PmTP, and two-residue deletion of KF thumb subdomain only induced PmTP in a lower-concentration situation. Structure modelling analysis suggested that shortening or destruction of helix H1 at the tip of the thumb subdomain was crucial to PmTP, while the conserved residues in front of helix was less important. PmTP might be caused by the reduced DNA-binding affinity of the mutants. The sticky ends made by PmTP have potential applications in gene splicing and molecular cloning techniques.

  8. Splice, insertion-deletion and nonsense mutations that perturb the phenylalanine hydroxylase transcript cause phenylketonuria in India.

    Science.gov (United States)

    Bashyam, Murali D; Chaudhary, Ajay K; Kiran, Manjari; Nagarajaram, Hampapathalu A; Devi, Radha Rama; Ranganath, Prajnya; Dalal, Ashwin; Bashyam, Leena; Gupta, Neerja; Kabra, Madhulika; Muranjan, Mamta; Puri, Ratna D; Verma, Ishwar C; Nampoothiri, Sheela; Kadandale, Jayarama S

    2014-03-01

    Phenylketonuria (PKU) is an autosomal recessive metabolic disorder caused by mutational inactivation of the phenylalanine hydroxylase (PAH) gene. Missense mutations are the most common PAH mutation type detected in PKU patients worldwide. We performed PAH mutation analysis in 27 suspected Indian PKU families (including 7 from our previous study) followed by structure and function analysis of specific missense and splice/insertion-deletion/nonsense mutations, respectively. Of the 27 families, disease-causing mutations were detected in 25. A total of 20 different mutations were identified of which 7 "unique" mutations accounted for 13 of 25 mutation positive families. The unique mutations detected exclusively in Indian PKU patients included three recurrent mutations detected in three families each. The 20 mutations included only 5 missense mutations in addition to 5 splice, 4 each nonsense and insertion-deletion mutations, a silent variant in coding region and a 3'UTR mutation. One deletion and two nonsense mutations were characterized to confirm significant reduction in mutant transcript levels possibly through activation of nonsense mediated decay. All missense mutations affected conserved amino acid residues and sequence and structure analysis suggested significant perturbations in the enzyme activity of respective mutant proteins. This is probably the first report of identification of a significantly low proportion of missense PAH mutations from PKU families and together with the presence of a high proportion of splice, insertion-deletion, and nonsense mutations, points to a unique PAH mutation profile in Indian PKU patients.

  9. NFKBIA Deletion in Glioblastomas

    Science.gov (United States)

    Bredel, Markus; Scholtens, Denise M.; Yadav, Ajay K.; Alvarez, Angel A.; Renfrow, Jaclyn J.; Chandler, James P.; Yu, Irene L.Y.; Carro, Maria S.; Dai, Fangping; Tagge, Michael J.; Ferrarese, Roberto; Bredel, Claudia; Phillips, Heidi S.; Lukac, Paul J.; Robe, Pierre A.; Weyerbrock, Astrid; Vogel, Hannes; Dubner, Steven; Mobley, Bret; He, Xiaolin; Scheck, Adrienne C.; Sikic, Branimir I.; Aldape, Kenneth D.; Chakravarti, Arnab; Harsh, Griffith R.

    2013-01-01

    BACKGROUND Amplification and activating mutations of the epidermal growth factor receptor (EGFR) oncogene are molecular hallmarks of glioblastomas. We hypothesized that deletion of NFKBIA (encoding nuclear factor of κ-light polypeptide gene enhancer in B-cells inhibitor-α), an inhibitor of the EGFR-signaling pathway, promotes tumorigenesis in glioblastomas that do not have alterations of EGFR. METHODS We analyzed 790 human glioblastomas for deletions, mutations, or expression of NFKBIA and EGFR. We studied the tumor-suppressor activity of NFKBIA in tumor-cell culture. We compared the molecular results with the outcome of glioblastoma in 570 affected persons. RESULTS NFKBIA is often deleted but not mutated in glioblastomas; most deletions occur in nonclassical subtypes of the disease. Deletion of NFKBIA and amplification of EGFR show a pattern of mutual exclusivity. Restoration of the expression of NFKBIA attenuated the malignant phenotype and increased the vulnerability to chemotherapy of cells cultured from tumors with NFKBIA deletion; it also reduced the viability of cells with EGFR amplification but not of cells with normal gene dosages of both NFKBIA and EGFR. Deletion and low expression of NFKBIA were associated with unfavorable outcomes. Patients who had tumors with NFKBIA deletion had outcomes that were similar to those in patients with tumors harboring EGFR amplification. These outcomes were poor as compared with the outcomes in patients with tumors that had normal gene dosages of NFKBIA and EGFR. A two-gene model that was based on expression of NFKBIA and O6-methylguanine DNA methyltransferase was strongly associated with the clinical course of the disease. CONCLUSIONS Deletion of NFKBIA has an effect that is similar to the effect of EGFR amplification in the pathogenesis of glioblastoma and is associated with comparatively short survival. PMID:21175304

  10. Absence of mutation at the 5'-upstream promoter region of the TPM4 gene from cardiac mutant axolotl (Ambystoma mexicanum).

    Science.gov (United States)

    Denz, Christopher R; Zhang, Chi; Jia, Pingping; Du, Jianfeng; Huang, Xupei; Dube, Syamalima; Thomas, Anish; Poiesz, Bernard J; Dube, Dipak K

    2011-09-01

    Tropomyosins are a family of actin-binding proteins that show cell-specific diversity by a combination of multiple genes and alternative RNA splicing. Of the 4 different tropomyosin genes, TPM4 plays a pivotal role in myofibrillogenesis as well as cardiac contractility in amphibians. In this study, we amplified and sequenced the upstream regulatory region of the TPM4 gene from both normal and mutant axolotl hearts. To identify the cis-elements that are essential for the expression of the TPM4, we created various deletion mutants of the TPM4 promoter DNA, inserted the deleted segments into PGL3 vector, and performed promoter-reporter assay using luciferase as the reporter gene. Comparison of sequences of the promoter region of the TPM4 gene from normal and mutant axolotl revealed no mutations in the promoter sequence of the mutant TPM4 gene. CArG box elements that are generally involved in controlling the expression of several other muscle-specific gene promoters were not found in the upstream regulatory region of the TPM4 gene. In deletion experiments, loss of activity of the reporter gene was noted upon deletion which was then restored upon further deletion suggesting the presence of both positive and negative cis-elements in the upstream regulatory region of the TPM4 gene. We believe that this is the first axolotl promoter that has ever been cloned and studied with clear evidence that it functions in mammalian cell lines. Although striated muscle-specific cis-acting elements are absent from the promoter region of TPM4 gene, our results suggest the presence of positive and negative cis-elements in the promoter region, which in conjunction with positive and negative trans-elements may be involved in regulating the expression of TPM4 gene in a tissue-specific manner.

  11. A Functional Genetic Screen Identifies the Phosphoinositide 3-kinase Pathway as a Determinant of Resistance to Fibroblast Growth Factor Receptor Inhibitors in FGFR Mutant Urothelial Cell Carcinoma.

    Science.gov (United States)

    Wang, Liqin; Šuštić, Tonći; Leite de Oliveira, Rodrigo; Lieftink, Cor; Halonen, Pasi; van de Ven, Marieke; Beijersbergen, Roderick L; van den Heuvel, Michel M; Bernards, René; van der Heijden, Michiel S

    2017-01-17

    Activating mutations and translocations of the FGFR3 gene are commonly seen in urothelial cell carcinoma (UCC) of the bladder and urinary tract. Several fibroblast growth factor receptor (FGFR) inhibitors are currently in clinical development and response rates appear promising for advanced UCC. A common problem with targeted therapeutics is intrinsic or acquired resistance of the cancer cells. To find potential drug targets that can act synergistically with FGFR inhibition, we performed a synthetic lethality screen for the FGFR inhibitor AZD4547 using a short hairpin RNA library targeting the human kinome in the UCC cell line RT112 (FGFR3-TACC3 translocation). We identified multiple members of the phosphoinositide 3-kinase (PI3K) pathway and found that inhibition of PIK3CA acts synergistically with FGFR inhibitors. The PI3K inhibitor BKM120 acted synergistically with inhibition of FGFR in multiple UCC and lung cancer cell lines having FGFR mutations. Consistently, we observed an elevated PI3K-protein kinase B pathway activity resulting from epidermal growth factor receptor or Erb-B2 receptor tyrosine kinase 3 reactivation caused by FGFR inhibition as the underlying molecular mechanism of the synergy. Our data show that feedback pathways activated by FGFR inhibition converge on the PI3K pathway. These findings provide a strong rationale to test FGFR inhibitors in combination with PI3K inhibitors in cancers harboring genetic activation of FGFR genes.

  12. Photochemistry of PSII in CYP38 Arabidopsis thaliana Deletion Mutant

    Directory of Open Access Journals (Sweden)

    Hrvoje Lepeduš

    2009-01-01

    Full Text Available Chloroplast protein CYP38 is a cyclophilin-like peptidyl-prolyl cis-trans isomerase involved in photosystem II (PSII assembly. It also serves as a regulator of thylakoid protein phosphatase. In this work the efficiency of PSII in CYP38 deficient Arabidopsis thaliana M13 plants has been analyzed by measuring in vivo chlorophyll a (Chl a fluorescence transient (OJIP test. Significant differences in overall photosynthetic performance (PIABS, absorption (ABS/RC, trapping (TRo/RC, electron transport (ETo/RC, and dissipation (DIo/RC were observed between A. thaliana M13 and the wild type (WT plants. Increased Chl a and Chl b levels, as well as decreased Chl a/Chl b ratio were measured in M13 plants, indicating the adjustment of PSII antenna for increasing light absorption capability. Based on the obtained results, it can be concluded that the deficiency in CYP38 protein leads to impaired function of PSII due to the conversion of a certain fraction of active reaction centres to dissipative ones. This leads to a decrease in overall photosynthetic performance (PIABS in M13 plants. Such effect was due to lowering of TRo/DIo parameter, which was influenced mostly by significant increases in energy dissipation (DIo/RC and in trapping of electrons (TRo/RC per active reaction centre.

  13. Ku80-deleted cells are defective at base excision repair

    Energy Technology Data Exchange (ETDEWEB)

    Li, Han [The University of Texas Health Science Center at San Antonio, The Institute of Biotechnology, The Department of Molecular Medicine, 15355 Lambda Drive, San Antonio, TX 78245-3207 (United States); Tumor Suppression Group, Spanish National Cancer Research Centre (CNIO), Madrid 28029 (Spain); Marple, Teresa [The University of Texas Health Science Center at San Antonio, The Institute of Biotechnology, The Department of Molecular Medicine, 15355 Lambda Drive, San Antonio, TX 78245-3207 (United States); Hasty, Paul, E-mail: hastye@uthscsa.edu [The University of Texas Health Science Center at San Antonio, The Institute of Biotechnology, The Department of Molecular Medicine, 15355 Lambda Drive, San Antonio, TX 78245-3207 (United States); Tumor Suppression Group, Spanish National Cancer Research Centre (CNIO), Madrid 28029 (Spain)

    2013-05-15

    Graphical abstract: - Highlights: • Ku80-deleted cells are hypersensitive to ROS and alkylating agents. • Cells deleted for Ku80, but not Ku70 or Lig4, have reduced BER capacity. • OGG1 rescues hypersensitivity to H{sub 2}O{sub 2} and paraquat in Ku80-mutant cells. • Cells deleted for Ku80, but not Lig4, are defective at repairing AP sites. • Cells deleted for Ku80, but not Lig4 or Brca2 exon 27, exhibit increased PAR. - Abstract: Ku80 forms a heterodimer with Ku70, called Ku, that repairs DNA double-strand breaks (DSBs) via the nonhomologous end joining (NHEJ) pathway. As a consequence of deleting NHEJ, Ku80-mutant cells are hypersensitive to agents that cause DNA DSBs like ionizing radiation. Here we show that Ku80 deletion also decreased resistance to ROS and alkylating agents that typically cause base lesions and single-strand breaks (SSBs). This is unusual since base excision repair (BER), not NHEJ, typically repairs these types of lesions. However, we show that deletion of another NHEJ protein, DNA ligase IV (Lig4), did not cause hypersensitivity to these agents. In addition, the ROS and alkylating agents did not induce γ-H2AX foci that are diagnostic of DSBs. Furthermore, deletion of Ku80, but not Lig4 or Ku70, reduced BER capacity. Ku80 deletion also impaired BER at the initial lesion recognition/strand scission step; thus, involvement of a DSB is unlikely. Therefore, our data suggests that Ku80 deletion impairs BER via a mechanism that does not repair DSBs.

  14. Deletion of glucose oxidase changes the pattern of organic acid production in Aspergillus carbonarius.

    Science.gov (United States)

    Yang, Lei; Lübeck, Mette; Lübeck, Peter S

    2014-01-01

    Aspergillus carbonarius has potential as a cell factory for the production of different organic acids. At pH 5.5, A.carbonarius accumulates high amounts of gluconic acid when it grows on glucose based medium whereas at low pH, it produces citric acid. The conversion of glucose to gluconic acid is carried out by secretion of the enzyme, glucose oxidase. In this work, the gene encoding glucose oxidase was identified and deleted from A. carbonarius with the aim of changing the carbon flux towards other organic acids. The effect of genetic engineering was examined by testing glucose oxidase deficient (Δgox) mutants for the production of different organic acids in a defined production medium. The results obtained showed that the gluconic acid accumulation was completely inhibited and increased amounts of citric acid, oxalic acid and malic acid were observed in the Δgox mutants.

  15. Altered Actions of Memantine and NMDA-Induced Currents in a New Grid2-Deleted Mouse Line

    Directory of Open Access Journals (Sweden)

    Ayako Kumagai

    2014-12-01

    Full Text Available Memantine is a non-competitive antagonist of the N-methyl-D-aspartate (NMDA receptor, and is an approved drug for the treatment of moderate-to-severe Alzheimer’s disease. We identified a mouse strain with a naturally occurring mutation and an ataxic phenotype that presents with severe leg cramps. To investigate the phenotypes of these mutant mice, we screened several phenotype-modulating drugs and found that memantine (10 mg/kg disrupted the sense of balance in the mutants. Moreover, the mutant mice showed an attenuated optokinetic response (OKR and impaired OKR learning, which was also observed in wild-type mice treated with memantine. Microsatellite analyses indicated that the Grid2 gene-deletion is responsible for these phenotypes. Patch-clamp analysis showed a relatively small change in NMDA-dependent current in cultured granule cells from Grid2 gene-deleted mice, suggesting that GRID2 is important for correct NMDA receptor function. In general, NMDA receptors are activated after the activation of non-NMDA receptors, such as AMPA receptors, and AMPA receptor dysregulation also occurs in Grid2 mutant mice. Indeed, the AMPA treatment enhanced memantine susceptibility in wild-type mice, which was indicated by balance sense and OKR impairments. The present study explores a new role for GRID2 and highlights the adverse effects of memantine in different genetic backgrounds.

  16. FLCN intragenic deletions in Chinese familial primary spontaneous pneumothorax.

    Science.gov (United States)

    Ding, Yibing; Zhu, Chengchu; Zou, Wei; Ma, Dehua; Min, Haiyan; Chen, Baofu; Ye, Minhua; Pan, Yanqing; Cao, Lei; Wan, Yueming; Zhang, Wenwen; Meng, Lulu; Mei, Yuna; Yang, Chi; Chen, Shilin; Gao, Qian; Yi, Long

    2015-05-01

    Primary spontaneous pneumothorax (PSP) is a significant clinical problem, affecting tens of thousands patients annually. Germline mutations in the FLCN gene have been implicated in etiology of familial PSP (FPSP). Most of the currently identified FLCN mutations are small indels or point mutations that detected by Sanger sequencing. The aim of this study was to determine large FLCN deletions in PSP families that having no FLCN sequence-mutations. Multiplex ligation-dependent probe amplification (MLPA) assays and breakpoint analyses were used to detect and characterize the deletions. Three heterozygous FLCN intragenic deletions were identified in nine unrelated Chinese families including the exons 1-3 deletion in two families, the exons 9-14 deletion in five families and the exon 14 deletion in two families. All deletion breakpoints are located in Alu repeats. A 5.5 Mb disease haplotype shared in the five families with exons 9-14 deletion may date the appearance of this deletion back to approximately 16 generations ago. Evidences for founder effects of the other two deletions were also observed. This report documents the first identification of founder mutations in FLCN, as well as expands mutation spectrum of the gene. Our findings strengthen the view that MLPA analysis for intragenic deletions/duplications, as an important genetic testing complementary to DNA sequencing, should be used for clinical molecular diagnosis in FPSP.

  17. Small deletions in the potato leafroll virus readthrough protein affect particle morphology, aphid transmission, virus movement and accumulation.

    Science.gov (United States)

    Peter, Kari A; Liang, Delin; Palukaitis, Peter; Gray, Stewart M

    2008-08-01

    Potato leafroll virus (PLRV) capsid comprises 180 coat protein (CP) subunits, with some percentage containing a readthrough domain (RTD) extension located on the particle's surface. The RTD N terminus is highly conserved in luteovirids and this study sought to identify biologically active sites within this region of the PLRV RTD. Fourteen three-amino-acid-deletion mutants were generated from a cloned infectious PLRV cDNA and delivered to plants by Agrobacterium inoculations. All mutant viruses accumulated locally in infiltrated tissues and expressed the readthrough protein (RTP) containing the CP and RTD sequences in plant tissues; however, when purified, only three mutant viruses incorporated the RTP into the virion. None of the mutant viruses were aphid transmissible, but the viruses persisted in aphids for a period sufficient to allow for virus transmission. Several mutant viruses were examined further for systemic infection in four host species. All mutant viruses, regardless of RTP incorporation, moved systemically in each host, although they accumulated at different rates in systemically infected tissues. The biological properties of the RTP are sensitive to modifications in both the RTD conserved and variable regions.

  18. Restriction enzyme mapping of the DNA of Streptomyces bacteriophage B alpha and its deletion derivatives.

    Science.gov (United States)

    Ishihara, H; Nakano, M M; Ogawara, H

    1982-12-01

    Cleavage analysis of actinophage B alpha DNA was done with several restriction enzymes, and a restriction map of the DNA was determined. The DNA appeared to carry cohesive ends. Deletion mutants of actinophage B alpha were isolated by five cycles of treatment with 15 mM PPi. Both mutants had deletions of 2.5 of 1.8 megadaltons near one end of the genome, and one of them lost the single EcoRI cleavage site.

  19. Deletion analysis of the 5' untranslated leader sequence of tobacco mosaic virus RNA.

    OpenAIRE

    Takamatsu, N; Watanabe, Y.; Iwasaki, T.; Shiba, T.; Meshi, T; Okada, Y.

    1991-01-01

    To determine the sequences essential for viral multiplication in the 5' untranslated leader sequence of tobacco mosaic virus RNA, mutant TMV-L (a tomato strain) RNAs which carry several deletions in this 71-nucleotide sequence were constructed by an in vitro transcription system and their multiplication was analyzed by introducing mutant RNA into tobacco protoplasts by electroporation. Large deletions of the sequence from nucleotides 9 to 47 or 25 to 71 abolished viral multiplication; when ab...

  20. A Small Indel Mutant Mouse Model of Epidermolytic Palmoplantar Keratoderma and Its Application to Mutant-specific shRNA Therapy.

    Science.gov (United States)

    Lyu, Ya-Su; Shi, Pei-Liang; Chen, Xiao-Ling; Tang, Yue-Xiao; Wang, Yan-Fang; Liu, Rong-Rong; Luan, Xiao-Rui; Fang, Yu; Mei, Ru-Huan; Du, Zhen-Fang; Ke, Hai-Ping; Matro, Erik; Li, Ling-En; Lin, Zhao-Yu; Zhao, Jing; Gao, Xiang; Zhang, Xian-Ning

    2016-03-22

    Epidermolytic palmoplantar keratoderma (EPPK) is a relatively common autosomal-dominant skin disorder caused by mutations in the keratin 9 gene (KRT9), with few therapeutic options for the affected so far. Here, we report a knock-in transgenic mouse model that carried a small insertion-deletion (indel) mutant of Krt9, c.434delAinsGGCT (p.Tyr144delinsTrpLeu), corresponding to the human mutation KRT9/c.500delAinsGGCT (p.Tyr167delinsTrpLeu), which resulted in a human EPPK-like phenotype in the weight-stress areas of the fore- and hind-paws of both Krt9(+/mut) and Krt9(mut/mut) mice. The phenotype confirmed that EPPK is a dominant-negative condition, such that mice heterozygotic for the K9-mutant allele (Krt9(+/mut)) showed a clear EPPK-like phenotype. Then, we developed a mutant-specific short hairpin RNA (shRNA) therapy for EPPK mice. Mutant-specific shRNAs were systematically identified in vitro using a luciferase reporter gene assay and delivered into Krt9(+/mut) mice. shRNA-mediated knockdown of mutant protein resulted in almost normal morphology and functions of the skin, whereas the same shRNA had a negligible effect in wild-type K9 mice. Our results suggest that EPPK can be treated by gene therapy, and this has significant implications for future clinical application.

  1. The smt-0 mutation which abolishes mating-type switching in fission yeast is a deletion

    DEFF Research Database (Denmark)

    Styrkársdóttir, U; Egel, R; Nielsen, O

    1993-01-01

    Mating-type switching in the fission yeast, S. pombe, is initiated by a DNA double-strand break (DSB) between the mat1 cassette and the H1 homology box. The mat1-cis-acting mutant, smt-0, abolishes mating-type switching and is shown here to be a 263-bp deletion. This deletion starts in the middle...

  2. Mutant p53 protein localized in the cytoplasm inhibits autophagy.

    Science.gov (United States)

    Morselli, Eugenia; Tasdemir, Ezgi; Maiuri, Maria Chiara; Galluzzi, Lorenzo; Kepp, Oliver; Criollo, Alfredo; Vicencio, José Miguel; Soussi, Thierry; Kroemer, Guido

    2008-10-01

    The knockout, knockdown or chemical inhibition of p53 stimulates autophagy. Moreover, autophagy-inducing stimuli such as nutrient depletion, rapamycin or lithium cause the depletion of cytoplasmic p53, which in turn is required for the induction of autophagy. Here, we show that retransfection of p53(-/-) HCT 116 colon carcinoma cells with wild type p53 decreases autophagy down to baseline levels. Surprisingly, one third among a panel of 22 cancer-associated p53 single amino acid mutants also inhibited autophagy when transfected into p53(-/-) cells. Those variants of p53 that preferentially localize to the cytoplasm effectively repressed autophagy, whereas p53 mutants that display a prominently nuclear distribution failed to inhibit autophagy. The investigation of a series of deletion mutants revealed that removal of the DNA-binding domain from p53 fails to interfere with its role in the regulation of autophagy. Altogether, these results identify the cytoplasmic localization of p53 as the most important feature for p53-mediated autophagy inhibition. Moreover, the structural requirements for the two biological activities of extranuclear p53, namely induction of apoptosis and inhibition of autophagy, are manifestly different.

  3. TagSmart: analysis and visualization for yeast mutant fitness data measured by tag microarrays

    Directory of Open Access Journals (Sweden)

    Xie Dan

    2007-04-01

    Full Text Available Abstract Background A nearly complete collection of gene-deletion mutants (96% of annotated open reading frames of the yeast Saccharomyces cerevisiae has been systematically constructed. Tag microarrays are widely used to measure the fitness of each mutant in a mutant mixture. The tag array experiments can have a complex experimental design, such as time course measurements and drug treatment with multiple dosages. Results TagSmart is a web application for analysis and visualization of Saccharomyces cerevisiae mutant fitness data measured by tag microarrays. It implements a robust statistical approach to assess the concentration differences among S. cerevisiae mutant strains. It also provides an interactive environment for data analysis and visualization. TagSmart has the following advantages over previously described analysis procedures: 1 it is user-friendly software rather than merely a description of analytical procedure; 2 It can handle complicated experimental designs, such as multiple time points and treatment with multiple dosages; 3 it has higher sensitivity and specificity; 4 It allows users to mask out "bad" tags in the analysis. Two biological tests were performed to illustrate the performance of TagSmart. First, we generated titration mixtures of mutant strains, in which the relative concentration of each strain was controlled. We used tag microarrays to measure the numbers of tag copies in each titration mixture. The data was analyzed with TagSmart and the result showed high precision and recall. Second, TagSmart was applied to a dataset in which heterozygous deletion strain mixture pools were treated with a new drug, Cincreasin. TagSmart identified 53 mutant strains as sensitive to Cincreasin treatment. We individually tested each identified mutant, and found 52 out of the 53 predicted mutants were indeed sensitive to Cincreasin. Conclusion TagSmart is provided "as is" to analyze tag array data produced by Affymetrix and Agilent

  4. A de novo 1.58 Mb deletion, including MAP2K6 and mapping 1.28 Mb upstream to SOX9, identified in a patient with Pierre Robin sequence and osteopenia with multiple fractures.

    Science.gov (United States)

    Smyk, Marta; Roeder, Elizabeth; Cheung, Sau Wai; Szafranski, Przemyslaw; Stankiewicz, Paweł

    2015-08-01

    Defects of long-range regulatory elements of dosage-sensitive genes represent an under-recognized mechanism underlying genetic diseases. Haploinsufficiency of SOX9, the gene essential for development of testes and differentiation of chondrocytes, results in campomelic dysplasia, a skeletal malformation syndrome often associated with sex reversal. Chromosomal rearrangements with breakpoints mapping up to 1.6 Mb up- and downstream to SOX9, and disrupting its distant cis-regulatory elements, have been described in patients with milder forms of campomelic dysplasia, Pierre Robin sequence, and sex reversal. We present an ∼1.58 Mb deletion mapping ∼1.28 Mb upstream to SOX9 that encompasses its putative long-range cis-regulatory element(s) and MAP2K6 in a patient with Pierre Robin sequence and osteopenia with multiple fractures. Low bone mass panel testing using massively parallel sequencing of 23 nuclear genes, including COL1A1 and COL1A2 was negative. Based on the previous mouse model of Map2k6, suggesting that Sox9 is likely a downstream target of the p38 MAPK pathway, and our previous chromosome conformation capture-on-chip (4C) data showing potential interactions between SOX9 promoter and MAP2K6, we hypothesize that deletion of MAP2K6 might have affected SOX9 expression and contributed to our patient's phenotype.

  5. Connexin mutants and cataracts

    Directory of Open Access Journals (Sweden)

    Eric C Beyer

    2013-04-01

    Full Text Available The lens is a multicellular, but avascular tissue that must stay transparent to allow normal transmission of light and focusing of it on the retina. Damage to lens cells and/or proteins can cause cataracts, opacities that disrupt these processes. The normal survival of the lens is facilitated by an extensive network of gap junctions formed predominantly of connexin46 and connexin50. Mutations of the genes that encode these connexins (GJA3 and GJA8 have been identified and linked to inheritance of cataracts in human families and mouse lines. In vitro expression studies of several of these mutants have shown that they exhibit abnormalities that may lead to disease. Many of the mutants reduce or modify intercellular communication due to channel alterations (including loss of function or altered gating or due to impaired cellular trafficking which reduces the number of gap junction channels within the plasma membrane. However, the abnormalities detected in studies of other mutants suggest that they cause cataracts through other mechanisms including gain of hemichannel function (leading to cell injury and death and formation of cytoplasmic accumulations (that may act as light scattering particles. These observations and the anticipated results of ongoing studies should elucidate the mechanisms of cataract development due to mutations of lens connexins and abnormalities of other lens proteins. They may also contribute to our understanding of the mechanisms of disease due to connexin mutations in other tissues.

  6. Morphological characterization and molecular mapping of an irradiation-induced Speckled mutant in the silkworm, Bombyx mori.

    Science.gov (United States)

    Tan, D; Tong, X-L; Hu, H; Wu, S-Y; Li, C-L; Xiong, G; Xiang, Z-H; Dai, F-Y; Lu, C

    2016-04-01

    Speckled (Spc), an X-ray-induced lethal mutant of Bombyx mori, exhibits a mosaic dark-brown-spotted larval epidermis in both sexes and egg-laying problems only in females. Here, we report the morphological characterization and molecular mapping of the Spc mutant. Morphological investigations revealed that the epidermal ultrastructure of the small, dark-brown spots was more dense than that of the white regions in both Spc/+ mutants and wild type, and that the lethality of the Spc/Spc mutants occurred during early embryogenesis. Furthermore, the ovarioles and ovipositor were disconnected in approximately 85.5% of Spc/+ females, a further 2.5% had a connection between the ovarioles and ovipositor that was too narrow to lay eggs. The remaining females showed a normal connection similar to that of the wild type. We successfully narrowed down the location of the Spc mutation to a region on chromosome 4 that was ∼1041 kb long. Gene-prediction analysis identified 25 candidate genes in this region. Chromosome structure analysis indicated that a ∼305 kb deletion was included in the mapping region. Temporal and spatial reverse transcription PCR (RT-PCR) analysis showed that several genes in the mapped region are associated with the Spc mutant. Although the genes responsible for the Spc mutation were not definitively identified, our results further the current understanding of the complex mechanism underlying the multiple morphological defects in Spc mutants.

  7. Effect of co-substrate on production of poly-β- hydroxybutyrate (PHB and copolymer PHBV from newly identified mutant Rhodobacter sphaeroides U7 cultivated under aerobic-dark condition

    Directory of Open Access Journals (Sweden)

    Kemarajt Kemavongse

    2007-07-01

    Full Text Available Photosynthetic bacterial mutant strain U7 was identified using both classical and molecular (16S rDNA techniques to be Rhodobacter sphaeroides. The glutamate-acetate (GA medium containing sodium acetate and sodium glutamate as carbon and nitrogen sources was used for production of poly-β-hydroxybutyrate (PHB from R. sphaeroides U7 cultivated under aerobic-dark condition (200 rpm at 37oC. Effect of auxiliary carbon sources (propionate and valerate and concentrations (molar ratio of 40/0, 40/20, 40/40 and 40/80 on copolymer production were studied. Both combinations of acetate with valerate and acetate with propionate were found to induce the accumulation of poly-β-hydroxybutyrate-co-β-hydroxyvalerate (PHBV within the cell. Acetate with propionate in the molar ratio of 40/40 gave the highest poly-β-hydroxyalkanoates (PHA content (77.68%, followed by acetate with valerate at the same molar ratio (77.42%. Although their polymer contents were similar, the presence of 40 mM valerate gave more than 4 times higher hydroxyvalerate (HV fraction (84.77% than in the presence of 40 mM propionate (19.12% HV fraction.

  8. Candida albicans mutant construction and characterization of selected virulence determinants.

    Science.gov (United States)

    Motaung, T E; Albertyn, J; Pohl, C H; Köhler, Gerwald

    2015-08-01

    Candida albicans is a diploid, polymorphic yeast, associated with humans, where it mostly causes no harm. However, under certain conditions it can cause infections ranging from superficial to life threatening. This ability to become pathogenic is often linked to the immune status of the host as well as the expression of certain virulence factors by the yeast. Due to the importance of C. albicans as a pathogen, determination of the molecular mechanisms that allow this yeast to cause disease is important. These studies rely on the ability of researchers to create deletion mutants of specific genes in order to study their function. This article provides a critical review of the important techniques used to create deletion mutants in C. albicans and highlights how these deletion mutants can be used to determine the role of genes in the expression of virulence factors in vitro.

  9. Deletion (2)(q37)

    Energy Technology Data Exchange (ETDEWEB)

    Stratton, R.F.; Tolworthy, J.A.; Young, R.S. [South Texas Genetics Center, San Antonio, TX (United States)

    1994-06-01

    We report on a 5-month-old girl with widely spaced nipples, redundant nuchal skin, coarctation of the aorta, anal atresia with distal fistula, postnatal growth retardation, hypotonia, and sparse scalp hair. Initial clinical assessment suggested the diagnosis of Ullrich-Turner syndrome. Chromosome analysis showed a 46,XX,del(2)(q37) karyotype in peripheral lymphocytes. We compare her findings to those of other reported patients with terminal deletions of 2q. 8 refs., 2 figs., 1 tab.

  10. PHO13 deletion-induced transcriptional activation prevents sedoheptulose accumulation during xylose metabolism in engineered Saccharomyces cerevisiae.

    Science.gov (United States)

    Xu, Haiqing; Kim, Sooah; Sorek, Hagit; Lee, Youngsuk; Jeong, Deokyeol; Kim, Jungyeon; Oh, Eun Joong; Yun, Eun Ju; Wemmer, David E; Kim, Kyoung Heon; Kim, Soo Rin; Jin, Yong-Su

    2016-03-01

    The deletion of PHO13 (pho13Δ) in Saccharomyces cerevisiae, encoding a phosphatase enzyme of unknown specificity, results in the transcriptional activation of genes related to the pentose phosphate pathway (PPP) such as TAL1 encoding transaldolase. It has been also reported that the pho13Δ mutant of S. cerevisiae expressing a heterologous xylose pathway can metabolize xylose efficiently compared to its parental strain. However, the interaction between the pho13Δ-induced transcriptional changes and the phenotypes of xylose fermentation was not understood. Thus we investigated the global metabolic changes in response to pho13Δ when cells were exponentially growing on xylose. Among the 134 intracellular metabolites that we identified, the 98% reduction of sedoheptulose was found to be the most significant change in the pho13Δ mutant as compared to its parental strain. Because sedoheptulose-7-phosphate (S7P), a substrate of transaldolase, reduced significantly in the pho13Δ mutant as well, we hypothesized that limited transaldolase activity in the parental strain might cause dephosphorylation of S7P, leading to carbon loss and inefficient xylose metabolism. Mutants overexpressing TAL1 at different degrees were constructed, and their TAL1 expression levels and xylose consumption rates were positively correlated. Moreover, as TAL1 expression levels increased, intracellular sedoheptulose concentration dropped significantly. Therefore, we concluded that TAL1 upregulation, preventing the accumulation of sedoheptulose, is the most critical mechanism for the improved xylose metabolism by the pho13Δ mutant of engineered S. cerevisiae.

  11. Uniform deletion junctions of complete azoospermia factor region c deletion in infertile men in Taiwan

    Institute of Scientific and Technical Information of China (English)

    Chao-Chin Hsu; Pao-Lin Kuo; Louise Chuang; Ying-Hung Lin; Yen-Ni Teng; Yung-Ming Lin

    2006-01-01

    Aim: To determine the deletion junctions of infertile men in Taiwan with azoospermia factor region c (AZFc) deletions and to evaluate the genotype/phenotype correlation. Methods: Genomic DNAs from 460 infertile men were examined. Bacterial artificial chromosome clones were used to verify the accuracy of polymerase chain reaction.Deletion junctions of the AZFc region were determined by analysis of sequence-tagged sites and gene-specific markers.Results: Complete AZFc deletions, including BPY2, CDY1 and DAZ genes, were identified in 24 men. The proximal breakpoints were clustered between sY1197 and sY1192, and the distal breakpoints were clustered between sY1054and sY1125 in all but one of the 24 men. The testicular phenotypes of men with complete AZFc deletion varied from oligozoospermia, to hypospermatogenesis, to maturation arrest. Conclusion: We identified a group of infertile men with uniform deletion junctions of AZFc in the Taiwan population. Despite this homogeneous genetic defect in the AZFc region, no clear genotype/phenotype correlation could be demonstrated.

  12. Recurrence and Variability of Germline EPCAM Deletions in Lynch Syndrome

    NARCIS (Netherlands)

    Kuiper, Roland P.; Vissers, Lisenka E. L. M.; Venkatachalam, Ramprasath; Bodmer, Danielle; Hoenselaar, Eveline; Goossens, Monique; Haufe, Aline; Kamping, Eveline; Niessen, Renee C.; Hogervorst, Frans B. L.; Gille, Johan J. P.; Redeker, Bert; Tops, Carli M. J.; van Gijn, Marielle E.; van den Ouweland, Ans M. W.; Rahner, Nils; Steinke, Verena; Kahl, Philip; Holinski-Feder, Elke; Morak, Monika; Kloor, Matthias; Stemmler, Susanne; Betz, Beate; Hutter, Pierre; Bunyan, David J.; Syngal, Sapna; Culver, Julie O.; Graham, Tracy; Chan, Tsun L.; Nagtegaal, Iris D.; van Krieken, J. Han J. M.; Schackert, Hans K.; Hoogerbrugge, Nicoline; van Kessel, Ad Geurts; Ligtenberg, Marjolijn J. L.

    2011-01-01

    Recently, we identified 3' end deletions in the EPCAM gene as a novel cause of Lynch syndrome. These truncating EPCAM deletions cause allele-specific epigenetic silencing of the neighboring DNA mismatch repair gene MSH2 in tissues expressing EPCAM. Here we screened a cohort of unexplained Lynch-like

  13. Filler DNA is associated with spontaneous deletions in maize.

    OpenAIRE

    Wessler, S; Tarpley, A; Purugganan, M.; Spell, M; Okagaki, R.

    1990-01-01

    We have determined the structure of five spontaneous deletions within the maize waxy (Wx) gene. Of these, four were found in spontaneous wx mutants (wx-B, wx-B1, wx-B6, wx-C4) and include exon sequences; the fifth is restricted to an intron and represents a restriction fragment length polymorphism of a nonmutant allele (Wx-W23). The deletions, which range in size from 60 to 980 base pairs (bp), cluster in a G+C-rich region of approximately 1000 bp that is capable of forming stable secondary s...

  14. MASTR: A Technique for Mosaic Mutant Analysis with Spatial and Temporal Control of Recombination Using Conditional Floxed Alleles in Mice

    Directory of Open Access Journals (Sweden)

    Zhimin Lao

    2012-08-01

    Full Text Available Mosaic mutant analysis, the study of cellular defects in scattered mutant cells in a wild-type environment, is a powerful approach for identifying critical functions of genes and has been applied extensively to invertebrate model organisms. A highly versatile technique has been developed in mouse: MASTR (mosaic mutant analysis with spatial and temporal control of recombination, which utilizes the increasing number of floxed alleles and simultaneously combines conditional gene mutagenesis and cell marking for fate analysis. A targeted allele (R26MASTR was engineered; the allele expresses a GFPcre fusion protein following FLP-mediated recombination, which serves the dual function of deleting floxed alleles and marking mutant cells with GFP. Within 24 hr of tamoxifen administration to R26MASTR mice carrying an inducible FlpoER transgene and a floxed allele, nearly all GFP-expressing cells have a mutant allele. The fate of single cells lacking FGF8 or SHH signaling in the developing hindbrain was analyzed using MASTR, and it was revealed that there is only a short time window when neural progenitors require FGFR1 for viability and that granule cell precursors differentiate rapidly when SMO is lost. MASTR is a powerful tool that provides cell-type-specific (spatial and temporal marking of mosaic mutant cells and is broadly applicable to developmental, cancer, and adult stem cell studies.

  15. Biosynthetic Pathway for the Epipolythiodioxopiperazine Acetylaranotin in Aspergillus terreus Revealed by Genome-based Deletion Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Chun-Jun; Yeh, Hsu-Hua; Chiang, Yi Ming; Sanchez, James F.; Chang, ShuLin; Bruno, Kenneth S.; Wang, Clay C.

    2013-04-15

    Abstract Epipolythiodioxopiperazines (ETPs) are a class of fungal secondary metabolites derived from cyclic peptides. Acetylaranotin belongs to one structural subgroup of ETPs characterized by the presence of a seven-membered dihydrooxepine ring. Defining the genes involved in acetylaranotin biosynthesis should provide a means to increase production of these compounds and facilitate the engineering of second-generation molecules. The filamentous fungus Aspergillus terreus produces acetylaranotin and related natural products. Using targeted gene deletions, we have identified a cluster of 9 genes including one nonribosomal peptide synthase gene, ataP, that is required for acetylaranotin biosynthesis. Chemical analysis of the wild type and mutant strains enabled us to isolate seventeen natural products that are either intermediates in the normal biosynthetic pathway or shunt products that are produced when the pathway is interrupted through mutation. Nine of the compounds identified in this study are novel natural products. Our data allow us to propose a complete biosynthetic pathway for acetylaranotin and related natural products.

  16. Genome-wide screening for genes whose deletions confer sensitivity to mutagenic purine base analogs in yeast

    Directory of Open Access Journals (Sweden)

    Kozmin Stanislav G

    2005-06-01

    Full Text Available Abstract Background N-hydroxylated base analogs, such as 6-hydroxylaminopurine (HAP and 2-amino-6-hydroxylaminopurine (AHA, are strong mutagens in various organisms due to their ambiguous base-pairing properties. The systems protecting cells from HAP and related noncanonical purines in Escherichia coli include specialized deoxyribonucleoside triphosphatase RdgB, DNA repair endonuclease V, and a molybdenum cofactor-dependent system. Fewer HAP-detoxification systems have been identified in yeast Saccharomyces cerevisiae and other eukaryotes. Cellular systems protecting from AHA are unknown. In the present study, we performed a genome-wide search for genes whose deletions confer sensitivity to HAP and AHA in yeast. Results We screened the library of yeast deletion mutants for sensitivity to the toxic and mutagenic action of HAP and AHA. We identified novel genes involved in the genetic control of base analogs sensitivity, including genes controlling purine metabolism, cytoskeleton organization, and amino acid metabolism. Conclusion We developed a method for screening the yeast deletion library for sensitivity to the mutagenic and toxic action of base analogs and identified 16 novel genes controlling pathways of protection from HAP. Three of them also protect from AHA.

  17. Construction and Verification of LuxS-negative Mutants of Streptococcus Mutans and the Effect of the Absence of LuxS Gene on the Acid Tolerance

    Institute of Scientific and Technical Information of China (English)

    YU Dan-ni; CHEN Jie; ZHANG Yao-chao; HAN Yu-zhi

    2009-01-01

    Objective: To knock out the entire Luxs gene of Streptococcus mutans(S.mutans) UA159 strain via homologous recombination and construct a Luxs-deleted mutant strain of S. Mutans. To study the difference between the acid resistance of S. Mutans Ingbritt C international standard strain and the acid resistance of LuxS mutant strain. Methods: Two DNA fragments locating in the upper and downstream of Luxs gene were amplified and a erythromycin resistance gene of PJT10 between them were engineered into PUC19 plasmid for constructing the recombination plasmid pUCluxKO. Electrotransformation of S.mutans cells with pUCluxKO-mutant resulted in isolation of erythromycin resistant S. Mutans transformants, which was identified by polymerase chain reaction, V.harveyi BB170 luminescence bioassay and sequencing analysis. Solutions of S. Mutans standard strain and LuxS mutant strain with same density were made and cultured at pH 3.5 to 7.0 BHI liquid for the same period.Terminal growth situation was compared.Firstly acidized in pH 5.5 BHI liquid,the two strains were cultured at pH 3.0 BHI liquid. The acid tolerance responses of the two strains were compared.Results:Restriction endonuclease analyses showed that pUCluxKO-mutant vector had been successfully recombined. The Luxs-deleted status of S.mutans mutants was confirmed by PCR with primers which were specific for the genes of Luxs and Erythromycin resistance. S.mutans mutant can not induce bioluminescence, indiating the mutant had been successfully recombined. After twenty generations of culture, the constructed Chinese S.mutans mutants were confirmed to be stable. Significant difference of aciduricity was observed between S.mutans standard strain and LuxS mutant strain.The acid resistance of standard strain was stronger than that of LuxS mutant strain.The two strains both displayed the capability of acid tolerance responses. Conclusion:The S.mutans gene allelic exchange plasmid is constructed correctively and a Luxs

  18. Hereditary hemorrhagic telangiectasia: two distinct ENG deletions in one family.

    Science.gov (United States)

    Wooderchak, W; Gedge, F; McDonald, M; Krautscheid, P; Wang, X; Malkiewicz, J; Bukjiok, C J; Lewis, T; Bayrak-Toydemir, P

    2010-11-01

    Hereditary hemorrhagic telangiectasia (HHT) is an autosomal dominant disorder characterized by aberrant vascular development. Mutations in endoglin (ENG) or activin A receptor type II-like 1 (ACVRL1) account for around 90% of HHT patients, 10% of those are large deletions or duplications. We report here the first observation of two distinct, large ENG deletions segregating in one pedigree. An ENG exon 4-7 deletion was observed in a patient with HHT. This deletion was identified in several affected family members. However, some affected family members had an ENG exon 3 deletion instead. These deletions were detected by multiplex ligation-dependent probe amplification and confirmed by mRNA sequencing and an oligo-CGH array. Linkage analysis revealed that one individual with the exon 3 deletion inherited the same chromosome from his mother who has the exon 4-7 deletion. This finding has important clinical implications because it shows that targeted family-specific mutation analysis for exon deletions could have led to the misdiagnosis of some affected family members. © 2010 John Wiley & Sons A/S.

  19. Deletions of the elastin gene in Williams Syndrome

    Energy Technology Data Exchange (ETDEWEB)

    Greenberg, F.; Nickerson, E.; McCaskill, C. [Baylor College of Medicine, Houston, TX (United States)] [and others

    1994-09-01

    To investigate deletions in the elastin gene in patients with Williams Syndrome (WS), we screened 37 patients and their parents for deletions in the elastin gene by both fluorescence in situ hybridization (FISH) using cosmid cELN272 containing the 5{prime} end of the elastin gene and by polymerase chain reaction (PCR) using a primer pair which amplifies intron 17 in the elastin gene, producing a polymorphic amplification product. Thirty-two patients have been investigated by both the FISH and PCR techniques, one patient was studied only by PCR, and 4 patients were studied only by FISH. Overall, 34 of 37 patients (92%) were deleted for the elastin gene. Using the PCR marker, 14 patients were informative and 12 were shown to be deleted [maternal (n=5) and paternal (n=7)]. Using cosmid cELN272, 33 of 36 patients demonstrated a deletion of chromosome 7q11.23. In one family, both the mother and daughter were deleted due to an apparently de novo deletion arising in the mother. Three patients were not deleted using the elastin cosmid; 2 of these patients have classic WS. Another non-deleted patient has the typical facial features and hypercalcemia but normal intelligence. These three patients will be important in delineating the critical region(s) responsible for the facial features, hypercalcemia, mental retardation and supravalvular aortic stenosis (SVAS). There was not an absolute correlation between deletions in elastin and SVAS, although these individuals may be at risk for other cardiovascular complications such as hypertention. Since the majority of WS patients are deleted for a portion of the elastin gene, most likely this marker will be an important diagnostic tool, although more patients will need to be studied. Those patients who are not deleted but clinically have WS will be missed using only this one marker. Expansion of the critical region to other loci and identification of additional markers will be essential for identifying all patients with WS.

  20. Truncating PREX2 mutations activate its GEF activity and alter gene expression regulation in NRAS-mutant melanoma

    KAUST Repository

    Lissanu Deribe, Yonathan

    2016-03-01

    PREX2 (phosphatidylinositol-3,4,5-triphosphate-dependent Rac-exchange factor 2) is a PTEN (phosphatase and tensin homolog deleted on chromosome 10) binding protein that is significantly mutated in cutaneous melanoma and pancreatic ductal adenocarcinoma. Here, genetic and biochemical analyses were conducted to elucidate the nature and mechanistic basis of PREX2 mutation in melanoma development. By generating an inducible transgenic mouse model we showed an oncogenic role for a truncating PREX2 mutation (PREX2E824*) in vivo in the context of mutant NRAS. Using integrative cross-species gene expression analysis, we identified deregulated cell cycle and cytoskeleton organization as significantly perturbed biological pathways in PREX2 mutant tumors. Mechanistically, truncation of PREX2 activated its Rac1 guanine nucleotide exchange factor activity, abolished binding to PTEN and activated the PI3K (phosphatidyl inositol 3 kinase)/Akt signaling pathway. We further showed that PREX2 truncating mutations or PTEN deletion induces down-regulation of the tumor suppressor and cell cycle regulator CDKN1C (also known as p57KIP2). This down-regulation occurs, at least partially, through DNA hypomethylation of a differentially methylated region in chromosome 11 that is a known regulatory region for expression of the CDKN1C gene. Together, these findings identify PREX2 as a mediator of NRAS-mutant melanoma development that acts through the PI3K/PTEN/Akt pathway to regulate gene expression of a cell cycle regulator.

  1. Diminished self-chaperoning activity of the DeltaF508 mutant of CFTR results in protein misfolding.

    Directory of Open Access Journals (Sweden)

    Adrian W R Serohijos

    2008-02-01

    Full Text Available The absence of a functional ATP Binding Cassette (ABC protein called the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR from apical membranes of epithelial cells is responsible for cystic fibrosis (CF. Over 90% of CF patients carry at least one mutant allele with deletion of phenylalanine at position 508 located in the N-terminal nucleotide binding domain (NBD1. Biochemical and cell biological studies show that the DeltaF508 mutant exhibits inefficient biosynthetic maturation and susceptibility to degradation probably due to misfolding of NBD1 and the resultant misassembly of other domains. However, little is known about the direct effect of the Phe508 deletion on the NBD1 folding, which is essential for rational design strategies of cystic fibrosis treatment. Here we show that the deletion of Phe508 alters the folding dynamics and kinetics of NBD1, thus possibly affecting the assembly of the complete CFTR. Using molecular dynamics simulations, we find that meta-stable intermediate states appearing on wild type and mutant folding pathways are populated differently and that their kinetic accessibilities are distinct. The structural basis of the increased misfolding propensity of the DeltaF508 NBD1 mutant is the perturbation of interactions in residue pairs Q493/P574 and F575/F578 found in loop S7-H6. As a proof-of-principle that the S7-H6 loop conformation can modulate the folding kinetics of NBD1, we virtually design rescue mutations in the identified critical interactions to force the S7-H6 loop into the wild type conformation. Two redesigned NBD1-DeltaF508 variants exhibited significantly higher folding probabilities than the original NBD1-DeltaF508, thereby partially rescuing folding ability of the NBD1-DeltaF508 mutant. We propose that these observed defects in folding kinetics of mutant NBD1 may also be modulated by structures separate from the 508 site. The identified structural determinants of increased misfolding propensity of

  2. DNA topoisomerase 2 mutant allele mildly delays the mitotic progression and activates the checkpoint protein kinase Chk1 in fission yeast Schizosaccharomyces pombe.

    Science.gov (United States)

    Yadav, Sudhanshu; Verma, Sumit Kumar; Ahmed, Shakil

    2011-08-01

    DNA topoisomerases are specialized nuclear enzymes that perform topological modifications on double-stranded DNA (dsDNA) and hence are essential for DNA metabolism such as replication, transcription, recombination, condensation and segregation. In a genetic screen, we identified a temperature-sensitive mutant allele of topoisomerase 2 that exhibits conditional synthetic lethality with a chk1 knockout strain. The mutant allele of topoisomerase 2 is defective in chromosome segregation at a non-permissive temperature and there was increase in chromosome segregation defects in the double mutant of top2-10 and chk1 delete at a non-permissive temperature. More importantly, topoisomearse 2 mutant cells mildly delay the mitotic progression at non-permissive temperature that is mediated by checkpoint protein kinase Chk1. Additionally, top2-10 mutant cells also activate the Chk1 at a non-permissive temperature and this activation of Chk1 takes place at the time of mitosis. Interestingly, top2-10 mutant cells retain their viability at a non-permissive temperature if the cells are not allowed to enter into mitosis. Taking together our results, we speculate that in the top2-10 mutant, the segregation of entangled chromatids during mitosis could result in delaying the mitotic progression through the activation of Chk1 kinase.

  3. Deletion of the mitochondrial superoxide dismutase sod-2 extends lifespan in Caenorhabditis elegans.

    Directory of Open Access Journals (Sweden)

    Jeremy M Van Raamsdonk

    2009-02-01

    Full Text Available The oxidative stress theory of aging postulates that aging results from the accumulation of molecular damage caused by reactive oxygen species (ROS generated during normal metabolism. Superoxide dismutases (SODs counteract this process by detoxifying superoxide. It has previously been shown that elimination of either cytoplasmic or mitochondrial SOD in yeast, flies, and mice results in decreased lifespan. In this experiment, we examine the effect of eliminating each of the five individual sod genes present in Caenorhabditis elegans. In contrast to what is observed in other model organisms, none of the sod deletion mutants shows decreased lifespan compared to wild-type worms, despite a clear increase in sensitivity to paraquat- and juglone-induced oxidative stress. In fact, even mutants lacking combinations of two or three sod genes survive at least as long as wild-type worms. Examination of gene expression in these mutants reveals mild compensatory up-regulation of other sod genes. Interestingly, we find that sod-2 mutants are long-lived despite a significant increase in oxidatively damaged proteins. Testing the effect of sod-2 deletion on known pathways of lifespan extension reveals a clear interaction with genes that affect mitochondrial function: sod-2 deletion markedly increases lifespan in clk-1 worms while clearly decreasing the lifespan of isp-1 worms. Combined with the mitochondrial localization of SOD-2 and the fact that sod-2 mutant worms exhibit phenotypes that are characteristic of long-lived mitochondrial mutants-including slow development, low brood size, and slow defecation-this suggests that deletion of sod-2 extends lifespan through a similar mechanism. This conclusion is supported by our demonstration of decreased oxygen consumption in sod-2 mutant worms. Overall, we show that increased oxidative stress caused by deletion of sod genes does not result in decreased lifespan in C. elegans and that deletion of sod-2 extends worm

  4. Deletion 22q13.3 syndrome

    Directory of Open Access Journals (Sweden)

    Phelan Mary C

    2008-05-01

    Full Text Available Abstract The deletion 22q13.3 syndrome (deletion 22q13 syndrome or Phelan-McDermid syndrome is a chromosome microdeletion syndrome characterized by neonatal hypotonia, global developmental delay, normal to accelerated growth, absent to severely delayed speech, and minor dysmorphic features. The deletion occurs with equal frequency in males and females and has been reported in mosaic and non-mosaic forms. Due to lack of clinical recognition and often insufficient laboratory testing, the syndrome is under-diagnosed and its true incidence remains unknown. Common physical traits include long eye lashes, large or unusual ears, relatively large hands, dysplastic toenails, full brow, dolicocephaly, full cheeks, bulbous nose, and pointed chin. Behavior is autistic-like with decreased perception of pain and habitual chewing or mouthing. The loss of 22q13.3 can result from simple deletion, translocation, ring chromosome formation and less common structural changes affecting the long arm of chromosome 22, specifically the region containing the SHANK3 gene. The diagnosis of deletion 22q13 syndrome should be considered in all cases of hypotonia of unknown etiology and in individuals with absent speech. Although the deletion can sometimes be detected by high resolution chromosome analysis, fluorescence in situ hybridization (FISH or array comparative genomic hybridization (CGH is recommended for confirmation. Differential diagnosis includes syndromes associated with hypotonia, developmental delay, speech delay and/or autistic-like affect (Prader-Willi, Angelman, Williams, Smith-Magenis, Fragile X, Sotos, FG, trichorhinophalangeal and velocardiofacial syndromes, autism spectrum disorders, cerebral palsy. Genetic counseling is recommended and parental laboratory studies should be considered to identify cryptic rearrangements and detect parental mosaicism. Prenatal diagnosis should be offered for future pregnancies in those families with inherited rearrangements

  5. The Neurospora crassa mutant NcΔEgt-1 identifies an ergothioneine biosynthetic gene and demonstrates that ergothioneine enhances conidial survival and protects against peroxide toxicity during conidial germination.

    Science.gov (United States)

    Bello, Marco H; Barrera-Perez, Viviana; Morin, Dexter; Epstein, Lynn

    2012-02-01

    Ergothioneine (EGT) is a histidine derivative with sulfur on the imidazole ring and a trimethylated amine; it is postulated to have an antioxidant function. Although EGT apparently is only produced by fungi and some prokaryotes, it is acquired by animals and plants from the environment, and is concentrated in animal tissues in cells with an EGT transporter. Monobromobimane derivatives of EGT allowed conclusive identification of EGT by LC/MS and the quantification of EGT in Colletotrichum graminicola and Neurospora crassa conidia and mycelia. EGT concentrations were significantly (α=0.05) higher in conidia than in mycelia, with approximately 17X and 5X more in C. graminicola and N. crassa, respectively. The first EGT biosynthetic gene in a fungus was identified by quantifying EGT in N. crassa wild type and knockouts in putative homologs of actinomycete EGT biosynthetic genes. NcΔEgt-1, a strain with a knockout in gene NCU04343, does not produce EGT, in contrast to the wild type. To determine the effects of EGT in vivo, we compared NcΔEgt-1 to the wild type. NcΔEgt-1 is not pleiotropically affected in rate of hyphal elongation in Vogel's medium either with or without ammonium nitrate and in the rate of germination of macroconidia on Vogel's medium. The superoxide-producer menadione had indistinguishable effects on conidial germination between the two strains. Cupric sulfate also had indistinguishable effects on conidial germination and on hyphal growth between the two strains. In contrast, germination of NcΔEgt-1 conidia was significantly more sensitive to tert-butyl hydroperoxide than the wild type; germination of 50% (GI(50)) of the NcΔEgt-1 conidia was prevented at 2.7 mM tert-butyl hydroperoxide whereas the GI(50) for the wild type was 4.7 mM tert-butyl hydroperoxide, or at a 1.7X greater concentration. In the presence of tert-butyl hydroperoxide and the fluorescent reactive oxygen species indicator 5-(and-6)-carboxy-2',7'-dichlorodihydrofluorescein

  6. Differential clinical effects of different mutation subtypes in CALR-mutant myeloproliferative neoplasms

    Science.gov (United States)

    Pietra, D; Rumi, E; Ferretti, V V; Buduo, C A Di; Milanesi, C; Cavalloni, C; Sant'Antonio, E; Abbonante, V; Moccia, F; Casetti, I C; Bellini, M; Renna, M C; Roncoroni, E; Fugazza, E; Astori, C; Boveri, E; Rosti, V; Barosi, G; Balduini, A; Cazzola, M

    2016-01-01

    A quarter of patients with essential thrombocythemia or primary myelofibrosis carry a driver mutation of CALR, the calreticulin gene. A 52-bp deletion (type 1) and a 5-bp insertion (type 2 mutation) are the most frequent variants. These indels might differentially impair the calcium binding activity of mutant calreticulin. We studied the relationship between mutation subtype and biological/clinical features of the disease. Thirty-two different types of CALR variants were identified in 311 patients. Based on their predicted effect on calreticulin C-terminal, mutations were classified as: (i) type 1-like (65%); (ii) type 2-like (32%); and (iii) other types (3%). Corresponding CALR mutants had significantly different estimated isoelectric points. Patients with type 1 mutation, but not those with type 2, showed abnormal cytosolic calcium signals in cultured megakaryocytes. Type 1-like mutations were mainly associated with a myelofibrosis phenotype and a significantly higher risk of myelofibrotic transformation in essential thrombocythemia. Type 2-like CALR mutations were preferentially associated with an essential thrombocythemia phenotype, low risk of thrombosis despite very-high platelet counts and indolent clinical course. Thus, mutation subtype contributes to determining clinical phenotype and outcomes in CALR-mutant myeloproliferative neoplasms. CALR variants that markedly impair the calcium binding activity of mutant calreticulin are mainly associated with a myelofibrosis phenotype. PMID:26449662

  7. Effects of crp deletion in Salmonella enterica serotype Gallinarum

    Directory of Open Access Journals (Sweden)

    Rubino Salvatore

    2007-05-01

    Full Text Available Abstract Background Salmonella enterica serotype Gallinarum (S. Gallinarum remains an important pathogen of poultry, especially in developing countries. There is a need to develop effective and safe vaccines. In the current study, the effect of crp deletion was investigated with respect to virulence and biochemical properties and the possible use of a deletion mutant as vaccine candidate was preliminarily tested. Methods Mutants were constructed in S. Gallinarum by P22 transduction from Salmonella Typhimurium (S. Typhimurium with deletion of the crp gene. The effect was characterized by measuring biochemical properties and by testing of invasion in a chicken loop model and by challenge of six-day-old chickens. Further, birds were immunized with the deleted strain and challenged with the wild type isolate. Results The crp deletions caused complete attenuation of S. Gallinarum. This was shown by ileal loop experiments not to be due to significantly reduced invasion. Strains with such deletions may have vaccine potential, since oral inoculatoin with S. Gallinarum Δcrp completely protected against challenge with the same dose of wild type S. Gallinarum ten days post immunization. Interestingly, the mutations did not cause the same biochemical and growth changes to the two biotypes of S. Gallinarum. All biochemical effects but not virulence could be complemented by providing an intact crp-gene from S. Typhimurium on the plasmid pSD110. Conclusion Transduction of a Tn10 disrupted crp gene from S. Typhimurium caused attenuation in S. Gallinarum and mutated strains are possible candidates for live vaccines against fowl typhoid.

  8. Partial USH2A deletions contribute to Usher syndrome in Denmark

    DEFF Research Database (Denmark)

    Dad, Shzeena; Rendtorff, Nanna Dahl; Kann, Erik

    2015-01-01

    deletions identified in USH2A. Our results suggest that USH2 is caused by USH2A exon deletions in a small fraction of the patients, whereas deletions or duplications in PCDH15 might be rare in Danish Usher patients.European Journal of Human Genetics advance online publication, 25 March 2015; doi:10.1038...

  9. Differential splicing of human androgen receptor pre-mRNA in X-linked reifenstein syndrome, because of a deletion involving a putative branch site

    Energy Technology Data Exchange (ETDEWEB)

    Ris-Stalpers, C.; Verleun-Mooijman, M.C.T.; Blaeij, T.J.P. de; Brinkmann, A.O.; Degenhart, H.J.; Trapman, J. (Erasmus Univ., Rotterdam (Netherlands))

    1994-04-01

    The analysis of the androgen receptor (AR) gene, mRNA, and protein in a subject with X-linked Reifenstein syndrome (partial androgen insensitivity) is reported. The presence of two mature AR transcripts in genital skin fibroblasts of the patient is established, and, by reverse transcriptase-PCR and RNase transcription analysis, the wild-type transcript and a transcript in which exon 3 sequences are absent without disruption of the translational reading frame are identified. Sequencing and hybridization analysis show a deletion of >6 kb in intron 2 of the human AR gene, starting 18 bp upstream of exon 3. The deletion includes the putative branch-point sequence (BPS) but not the acceptor splice site on the intron 2/exon 3 boundary. The deletion of the putative intron 2 BPS results in 90% inhibition of wild-type splicing. The mutant transcript encodes an AR protein lacking the second zinc finger of the DNA-binding domain. Western/immunoblotting analysis is used to show that the mutant AR protein is expressed in genital skin fibroblasts of the patient. The residual 10% wild-type transcript can be the result of the use of a cryptic BPS located 63 bp upstream of the intron 2/exon 3 boundary of the mutant AR gene. The mutated AR protein has no transcription-activating potential and does not influence the transactivating properties of the wild-type AR, as tested in cotransfection studies. It is concluded that the partial androgen-insensitivity syndrome of this patient is the consequence of the limited amount of wild-type AR protein expressed in androgen target cells, resulting from the deletion of the intron 2 putative BPS. 42 refs., 6 figs., 1 tab.

  10. Deletion and deletion/insertion mutations in the juxtamembrane domain of the FLT3 gene in adult acute myeloid leukemia

    Directory of Open Access Journals (Sweden)

    Kristin K. Deeb

    2014-01-01

    Full Text Available In contrast to FLT3 ITD mutations, in-frame deletions in the FLT3 gene have rarely been described in adult acute leukemia. We report two cases of AML with uncommon in-frame mutations in the juxtamembrane domain of the FLT3 gene: a 3-bp (c.1770_1774delCTACGinsGT; p.F590_V592delinsLF deletion/insertion and a 12-bp (c.1780_1791delTTCAGAGAATAT; p.F594_Y597del deletion. We verified by sequencing that the reading frame of the FLT3 gene was preserved and by cDNA analysis that the mRNA of the mutant allele was expressed in both cases. Given the recent development of FLT3 inhibitors, our findings may be of therapeutic value for AML patients harboring similar FLT3 mutations.

  11. Mutant chaperonin proteins: new tools for nanotechnology

    Energy Technology Data Exchange (ETDEWEB)

    Li, Y [SETI Institute, 515 N Whisman Road, Mountain View, CA 94043 (United States); Paavola, C D [NASA Ames Research Center, Bioengineering Branch, Mail Stop 239-15, Moffett Field, CA 94035 (United States); Kagawa, H [SETI Institute, 515 N Whisman Road, Mountain View, CA 94043 (United States); Chan, S L [SETI Institute, 515 N Whisman Road, Mountain View, CA 94043 (United States); Trent, J D [NASA Ames Research Center, Bioengineering Branch, Mail Stop 239-15, Moffett Field, CA 94035 (United States)

    2007-11-14

    Much effort has gone into finding peptides that bind potentially useful nanoparticles, but relatively little effort has focused on the scaffolds that organize these peptides into useful nanostructures. Chaperonins are protein complexes with 14-18 protein subunits that self-assemble into double-ring complexes and function as scaffolds for peptides or amino acids that bind metallic and semiconductor quantum dots. The utility of chaperonins as scaffolds depends on their structure and their ability to self-assemble into double-rings and higher-order structures, such as filaments and two-dimensional arrays. To better understand the structure of chaperonins, we constructed a model of a group II chaperonin and, based on this model, genetically constructed five mutant subunits with significant deletions. We expressed these mutants as recombinant proteins and observed by native polyacrylamide gel electrophoresis (PAGE) and transmission electron microscopy (TEM) that they all self-assembled into double rings. Our model predicted and TEM confirmed that these deletions did not significantly change the 17 nm diameter of the wild-type double rings, but decreased their height and opened their central cavities. Four of the five mutants formed higher-order structures: chains of rings, bundles of chains or filaments, and two-dimensional arrays, which we suggest can be useful nanostructures.

  12. RNA-Seq transcriptomic analysis with Bag2D software identifies key pathways enhancing lipid yield in a high lipid-producing mutant of the non-model green alga Dunaliella tertiolecta.

    Science.gov (United States)

    Yao, Lina; Tan, Tin Wee; Ng, Yi-Kai; Ban, Kenneth Hon Kim; Shen, Hui; Lin, Huixin; Lee, Yuan Kun

    2015-01-01

    For many years, increasing demands for fossil fuels have met with limited supply. As a potential substitute and renewable source of biofuel feedstock, microalgae have received significant attention. However, few of the current algal species produce high lipid yields to be commercially viable. To discover more high yielding strains, next-generation sequencing technology is used to elucidate lipid synthetic pathways and energy metabolism involved in lipid yield. When subjected to manipulation by genetic and metabolic engineering, enhancement of such pathways may further enhance lipid yield. In this study, transcriptome profiling of a random insertional mutant with enhanced lipid production generated from a non-model marine microalga Dunaliella tertiolecta is presented. D9 mutant has a lipid yield that is 2- to 4-fold higher than that of wild type. Using novel Bag2D-workflow scripts developed and reported here, the non-redundant transcripts from de novo assembly were annotated based on the best hits in five model microalgae, namely Chlamydomonas reinhardtii, Coccomyxa subellipsoidea C-169, Ostreococcus lucimarinus, Volvox carteri, Chlorella variabilis NC64A and a high plant species Arabidopsis thaliana. The assembled contigs (~181 Mb) includes 481,381 contigs, covering 10,185 genes. Pathway analysis showed that a pathway from inositol phosphate metabolism to fatty acid biosynthesis is the most significantly correlated with higher lipid yield in this mutant. Herein, we described a pipeline to analyze RNA-Seq data without pre-existing transcriptomic information. The draft transcriptome of D. tertiolecta was constructed and annotated, which offered useful information for characterizing high lipid-producing mutants. D. tertiolecta mutant was generated with an enhanced photosynthetic efficiency and lipid production. RNA-Seq data of the mutant and wild type were compared, providing biological insights into the expression patterns of contigs associated with energy

  13. Chemotyping of yeast mutants using robotics.

    Science.gov (United States)

    Rieger, K J; El-Alama, M; Stein, G; Bradshaw, C; Slonimski, P P; Maundrell, K

    1999-07-01

    By now, the EUROFAN programme for the functional analysis of genes from the yeast genome has attained its cruising speed. Indeed, several hundreds of yeast mutants with no phenotype as tested by growth on standard media and no significant sequence similarity to proteins of known function are available through the efforts of various laboratories. Based on the methodology initiated during the pilot project on yeast chromosome III (Yeast 13, 1547-1562, 1997) we adapted it to High Throughput Screening (HTS), using robotics. The first 100 different gene deletions from EUROSCARF, constructed in an FY1679 strain background, were run against a collection of about 300 inhibitors. Many of these inhibitors have not been reported until now to interfere in vivo with growth of Saccharomyces cerevisiae. In the present paper we provide a list of novel growth conditions and a compilation of 49 yeast deletants (from chromosomes II, IV, VII, X, XIV, XV) corresponding to 58% of the analysed genes, with at least one clear and stringent phenotype. The majority of these deletants are sensitive to one or two compounds (monotropic phenotype) while a distinct subclass of deletants displays a hyper-pleiotropic phenotype with sensitivities to a dozen or more compounds. Therefore, chemotyping of unknown genes with a large spectrum of drugs opens new vistas for a more in-depth functional analysis and a more precise definition of molecular targets.

  14. Understanding the mechanism of drug resistance due to a codon deletion in protoporphyrinogen oxidase through computational modeling.

    Science.gov (United States)

    Hao, Ge-Fei; Zhu, Xiao-Lei; Ji, Feng-Qin; Zhang, Li; Yang, Guang-Fu; Zhan, Chang-Guo

    2009-04-09

    Protoporphyrinogen oxidase (PPO; EC 1.3.3.4) is the last common enzyme for the enzymatic transformation of protoporphyrinogen-IX to protoporphyrin-IX, which is the key common intermediate leading to heme and chlorophyll. Hence, PPO has been identified as one of the most importance action targets for the treatment of some important diseases including cancer and variegated porphyria (VP). In the agricultural field, PPO inhibitors have been used as herbicides for many years. Recently, a unique drug resistance was found to be associated with a nonactive site residue (Gly210) deletion rather than substitution in A. tuberculatus PPO. In the present study, extensive computational simulations, including homology modeling, molecular dynamics (MD) simulations, and molecular mechanics-Poisson-Boltzmann surface area (MM-PBSA) calculations, have been carried out to uncover the detailed molecular mechanism of drug resistance associated with Gly210 deletion. Although Gly210 in the wild-type A. tuberculatus PPO has no direct interaction with the inhibitors, all the computational models and energetic results indicated that Gly210 deletion has great effects on the hydrogen-bonding network and the conformational change of the binding pocket. An interchain hydrogen bond between Gly210 with Ser424, playing an important role in stabilizing the local conformation of the wild-type enzyme, disappeared after Gly210 deletion. As a result, the mutant-type PPO has a lower affinity than the wild-type enzyme, which accounts for the molecular mechanism of drug resistance. The structural and mechanistic insights obtained from the present study provide a new starting point for future rational design of novel PPO inhibitors to overcome drug resistance associated with Gly210 deletion.

  15. Deletion of a KU80 homolog enhances homologous recombination in the thermotolerant yeast Kluyveromyces marxianus.

    Science.gov (United States)

    Choo, Jin Ho; Han, Changpyo; Kim, Jae-Young; Kang, Hyun Ah

    2014-10-01

    Targeted gene replacement in the thermotolerant yeast Kluyveromyces marxianus KCTC 17555 has been hampered by its propensity to non-homologous end joining (NHEJ). To enhance homologous recombination (HR) by blocking NHEJ, we identified and disrupted the K. marxianus KU80 gene. The ku80 deletion mutant strain (Kmku80∆) of K. marxianus KCTC 17555 did not show apparent growth defects under several conditions with the exception of exposure to tunicamycin. The targeted disruption of the three model genes, KmLEU2, KmPDC1, and KmPDC5, was increased by 13-70 % in Kmku80∆, although the efficiency was greatly affected by the length of the homologous flanking fragments. In contrast, the double HR frequency was 0-13.7 % in the wild-type strain even with flanking fragments 1 kb long. Therefore, Kmku80∆ promises to be a useful recipient strain for targeted gene manipulation.

  16. High-Throughput, Signature-Tagged Mutagenic Approach To Identify Novel Virulence Factors of Yersinia pestis CO92 in a Mouse Model of Infection

    Science.gov (United States)

    Ponnusamy, Duraisamy; Fitts, Eric C.; Erova, Tatiana E.; Kozlova, Elena V.; Kirtley, Michelle L.; Tiner, Bethany L.; Andersson, Jourdan A.

    2015-01-01

    The identification of new virulence factors in Yersinia pestis and understanding their molecular mechanisms during an infection process are necessary in designing a better vaccine or to formulate an appropriate therapeutic intervention. By using a high-throughput, signature-tagged mutagenic approach, we created 5,088 mutants of Y. pestis strain CO92 and screened them in a mouse model of pneumonic plague at a dose equivalent to 5 50% lethal doses (LD50) of wild-type (WT) CO92. From this screen, we obtained 118 clones showing impairment in disseminating to the spleen, based on hybridization of input versus output DNA from mutant pools with 53 unique signature tags. In the subsequent screen, 20/118 mutants exhibited attenuation at 8 LD50 when tested in a mouse model of bubonic plague, with infection by 10/20 of the aforementioned mutants resulting in 40% or higher survival rates at an infectious dose of 40 LD50. Upon sequencing, six of the attenuated mutants were found to carry interruptions in genes encoding hypothetical proteins or proteins with putative functions. Mutants with in-frame deletion mutations of two of the genes identified from the screen, namely, rbsA, which codes for a putative sugar transport system ATP-binding protein, and vasK, a component of the type VI secretion system, were also found to exhibit some attenuation at 11 or 12 LD50 in a mouse model of pneumonic plague. Likewise, among the remaining 18 signature-tagged mutants, 9 were also attenuated (40 to 100%) at 12 LD50 in a pneumonic plague mouse model. Previously, we found that deleting genes encoding Braun lipoprotein (Lpp) and acyltransferase (MsbB), the latter of which modifies lipopolysaccharide function, reduced the virulence of Y. pestis CO92 in mouse models of bubonic and pneumonic plague. Deletion of rbsA and vasK genes from either the Δlpp single or the Δlpp ΔmsbB double mutant augmented the attenuation to provide 90 to 100% survivability to mice in a pneumonic plague model at 20

  17. High-throughput, signature-tagged mutagenic approach to identify novel virulence factors of Yersinia pestis CO92 in a mouse model of infection.

    Science.gov (United States)

    Ponnusamy, Duraisamy; Fitts, Eric C; Sha, Jian; Erova, Tatiana E; Kozlova, Elena V; Kirtley, Michelle L; Tiner, Bethany L; Andersson, Jourdan A; Chopra, Ashok K

    2015-05-01

    The identification of new virulence factors in Yersinia pestis and understanding their molecular mechanisms during an infection process are necessary in designing a better vaccine or to formulate an appropriate therapeutic intervention. By using a high-throughput, signature-tagged mutagenic approach, we created 5,088 mutants of Y. pestis strain CO92 and screened them in a mouse model of pneumonic plague at a dose equivalent to 5 50% lethal doses (LD50) of wild-type (WT) CO92. From this screen, we obtained 118 clones showing impairment in disseminating to the spleen, based on hybridization of input versus output DNA from mutant pools with 53 unique signature tags. In the subsequent screen, 20/118 mutants exhibited attenuation at 8 LD50 when tested in a mouse model of bubonic plague, with infection by 10/20 of the aforementioned mutants resulting in 40% or higher survival rates at an infectious dose of 40 LD50. Upon sequencing, six of the attenuated mutants were found to carry interruptions in genes encoding hypothetical proteins or proteins with putative functions. Mutants with in-frame deletion mutations of two of the genes identified from the screen, namely, rbsA, which codes for a putative sugar transport system ATP-binding protein, and vasK, a component of the type VI secretion system, were also found to exhibit some attenuation at 11 or 12 LD50 in a mouse model of pneumonic plague. Likewise, among the remaining 18 signature-tagged mutants, 9 were also attenuated (40 to 100%) at 12 LD50 in a pneumonic plague mouse model. Previously, we found that deleting genes encoding Braun lipoprotein (Lpp) and acyltransferase (MsbB), the latter of which modifies lipopolysaccharide function, reduced the virulence of Y. pestis CO92 in mouse models of bubonic and pneumonic plague. Deletion of rbsA and vasK genes from either the Δlpp single or the Δlpp ΔmsbB double mutant augmented the attenuation to provide 90 to 100% survivability to mice in a pneumonic plague model at 20

  18. The yeast deletion collection: a decade of functional genomics.

    Science.gov (United States)

    Giaever, Guri; Nislow, Corey

    2014-06-01

    The yeast deletion collections comprise >21,000 mutant strains that carry precise start-to-stop deletions of ∼6000 open reading frames. This collection includes heterozygous and homozygous diploids, and haploids of both MAT A: and MATα mating types. The yeast deletion collection, or yeast knockout (YKO) set, represents the first and only complete, systematically constructed deletion collection available for any organism. Conceived during the Saccharomyces cerevisiae sequencing project, work on the project began in 1998 and was completed in 2002. The YKO strains have been used in numerous laboratories in >1000 genome-wide screens. This landmark genome project has inspired development of numerous genome-wide technologies in organisms from yeast to man. Notable spinoff technologies include synthetic genetic array and HIPHOP chemogenomics. In this retrospective, we briefly describe the yeast deletion project and some of its most noteworthy biological contributions and the impact that these collections have had on the yeast research community and on genomics in general. Copyright © 2014 by the Genetics Society of America.

  19. Construction of ply gene-deletion mutant of Streptococcus pneumoniae and research of its virulence change%肺炎链球菌ply基因缺陷菌株的构建及毒力变化的初步研究

    Institute of Scientific and Technical Information of China (English)

    李忱炜; 何於娟; 袁军; 王虹; 贺潇; 董杰; 崔瑾; 姜慧; 张雪梅; 胥文春

    2010-01-01

    目的 构建肺炎链球菌(Streptococcus pneumoniae,Sp)溶血素基因(pneumolysin,ply)缺陷菌株,并对其毒力作初步研究,为进一步探索宿主对溶血素的防御应答奠定基础.方法 采用长臂同源多聚酶链反应(LFH-PCR)技术将ply基因替换为红霉素耐药基因(erm)后同源重组于肺炎链球菌,在含红霉素的血平板上筛选出ply缺陷菌株.用PCR鉴定缺陷菌株,观察体外缺陷菌株生长情况,并在小鼠体内感染模型研究其毒力侵袭变化.结果 PCR结果显示ply基因完全被erm基因所替代,构建ply缺陷菌成功;单个菌落培养基生长情况表明ply基因缺陷并未对细菌的体外生长造成影响;但在小鼠鼻腔感染模型中,缺陷菌株入血时间(6 h)明显晚于野生菌株(2 h),且各时间点的菌量均显著低于野生菌株,两者比较差异有统计学意义(P<0.01);小鼠腹膜感染模型显示野生菌株半数致死时间为3 d,而缺陷菌株半数致死时间为18d,两者比较差异有统计学意义(P<0.01).结论 采用LFH-PCR技术作基因突变完全替代ply基因,方法简便快捷;ply的缺陷不影响细菌在体外的生长,但可显著降低细菌在宿主体内的毒力和侵袭.%Objective To lay the foundation for further exploration on parasitifer's defence reaction to pneumolysin through constructing ply gene-deletion strain of Streptococcus pneumoniae and researching on its virulence change. Methods A linker fragment with erm gene in middle and homologous upstream and downstream fragment of ply gene at both sides was prepared by long flanking homology-polymerase chain reaction(LFH-PCR). The linker fragment was transformed into Streptococcus pneumoniae. ply-deficient strain was then screened out from blood plate which contains erythromycin and identified by PCR. ply-deficient strain growth in vitro was observed and virulence change was observed through infecting mouse model. Results PCR results showed that ply gene was replaced

  20. The clinical characteristics and prognosis of IGH deletion in multiple myeloma.

    Science.gov (United States)

    He, Haiyan; Fu, Weijun; Jiang, Hua; Du, Juan; Zhou, Lili; Zhang, Chunyang; Xi, Hao; Li, Rong; Hou, Jian

    2015-05-01

    To analyze the frequency, clinical characteristics, and prognosis of IGH deletion in multiple myeloma (MM). A total of 310 consecutive patients with multiple myeloma were analyzed. Among them 251 patients were newly diagnosed and 59 patients were previously treated, fluorescence in situ hybridization (FISH) with IGH break apart probes were done for each case. Patterns of IGH deletion, response rate, overall survival, and progression free survival were analyzed. Several patterns of IGH deletion were identified, including monoallelic deletion of whole locus of IGH, monoallelic deletion of 3' IGH, monoallelic deletion of 5' IGH, biallelic deletion of 3' IGH deletion, and complicated deletions with various types. The incidence rate of IGH deletion was 22.7% (57/251) in newly diagnosed patients and 27.2% (16/59) in previously treated patients, no significant difference was found between the two groups (p=0.375). IGH deletion was associated with κ light chain M component (pmultiple myeloma, the incidence rate was higher in patients with 13q deletion and without t(4;14). Patients with IGH deletion had better ORR to PAD induction therapy, while it has no influence on the prognosis of multiple myeloma. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Characterization of a lymphoblastoid line deleted for lambda immunoglobulin genes

    Energy Technology Data Exchange (ETDEWEB)

    Hough, C.A., White, B.N., Holden, J.A. [Queen`s Univ., Ontario (Canada)

    1995-04-01

    While characterizing the cat eye syndrome (CES) supernumerary chromosome for the presence of {lambda} immunoglobulin gene region sequences, a lymphoblastoid cell line from one CES patient was identified in which there was selection of cells deleted from some IGLC and IGLV genes. Two distinct deletions, one on each chromosome 22, were identified, presumably arising from independent somatic recombination events occurring during B-lymphocyte differentiation. The extent of the deleted regions was determined using probes from the various IGLV subgroups and they each covered at least 82 kilobases. The precise definition of the deletions was not possible because of conservation of some restriction sites in the IGLV region. The cell line was used to map putative IGLV genes within the recombinant phage {lambda}V{lambda}135 to the distal part of the IGLV gene region. 35 refs., 4 figs.

  2. High Resolution Melt (HRM analysis is an efficient tool to genotype EMS mutants in complex crop genomes

    Directory of Open Access Journals (Sweden)

    Lochlainn Seosamh Ó

    2011-12-01

    Full Text Available Abstract Background Targeted Induced Loci Lesions IN Genomes (TILLING is increasingly being used to generate and identify mutations in target genes of crop genomes. TILLING populations of several thousand lines have been generated in a number of crop species including Brassica rapa. Genetic analysis of mutants identified by TILLING requires an efficient, high-throughput and cost effective genotyping method to track the mutations through numerous generations. High resolution melt (HRM analysis has been used in a number of systems to identify single nucleotide polymorphisms (SNPs and insertion/deletions (IN/DELs enabling the genotyping of different types of samples. HRM is ideally suited to high-throughput genotyping of multiple TILLING mutants in complex crop genomes. To date it has been used to identify mutants and genotype single mutations. The aim of this study was to determine if HRM can facilitate downstream analysis of multiple mutant lines identified by TILLING in order to characterise allelic series of EMS induced mutations in target genes across a number of generations in complex crop genomes. Results We demonstrate that HRM can be used to genotype allelic series of mutations in two genes, BraA.CAX1a and BraA.MET1.a in Brassica rapa. We analysed 12 mutations in BraA.CAX1.a and five in BraA.MET1.a over two generations including a back-cross to the wild-type. Using a commercially available HRM kit and the Lightscanner™ system we were able to detect mutations in heterozygous and homozygous states for both genes. Conclusions Using HRM genotyping on TILLING derived mutants, it is possible to generate an allelic series of mutations within multiple target genes rapidly. Lines suitable for phenotypic analysis can be isolated approximately 8-9 months (3 generations from receiving M3 seed of Brassica rapa from the RevGenUK TILLING service.

  3. 肠炎沙门氏菌鸡源株ompR基因缺失株的构建及生物学特性与亲本株的比较%Construction and characterization of an ompR gene deletion mutant from Salmonella enteritidis

    Institute of Scientific and Technical Information of China (English)

    董洪燕; 彭大新; 焦新安; 张小荣; 陈素娟; 卢艳; 耿士忠; 刘秀梵

    2011-01-01

    [目的]为了探讨ompR基因在肠炎沙门氏菌生物被膜形成及毒力中的作用.[方法]以肠炎沙门氏菌作为母本,运用自杀性载体pGMB151构建了ompR基因缺失株,结晶紫染色法和扫描电镜观察测定缺失株的生物被膜形成能力,细胞的吸附和侵入及小鼠攻毒试验测定缺失株的毒力.[结果]RT-PCR和蛋白表达证明了ompR基因缺失株构建成功;该缺失株不表达纤维素和菌毛,不形成生物被膜;上皮细胞吸附和侵入试验表明缺失株与野生株具有相同的吸附和侵入率;BALB/c鼠腹腔感染性试验表明,缺失株的半数致死量为10 667CFU,而野生株的半数致死量小于2 CFU.[结论]ompR基因既是肠炎沙门氏菌生物膜形成的调控基因,又是重要的毒力基因.%[Objective] To investigate the role of ompR gene from Salmonella enteritidis in biofilm formation and virulence. [Methods] We constructed an ompR mutant of Salmonella enteritidis by suicide plasmid pCMBlSl. Biofilm forming ability of the mutant was detected by crystal violet assay and scanning electron micrography. Virulence of the mutant was determined by assay of adherence to and invasion of epithelial cells, and mouse challenge experiments. [Results] The ompR mutant was confirmed by RT-PCR and the pattern of outer membrane protein. The mutant did not produce cellulose, curli, and biofilm, and showed similar adherence percentage to and invasion percentage of epithelial cells as wild type strain. In addition, intraperitoneal challenge of bacteria in BALB/c mice revealed that LD50 of the mutant strain was 106.67 CFU, while that of the wild type strain was less than 2 CFU. [ Conclusion] These data indicate that the ompR gene is involved in both biofilm formation and virulence in Salmonella enteritidis.

  4. Mitochondrial Myopathy with DNA Deletions

    OpenAIRE

    J Gordon Millichap

    1992-01-01

    Deletions of mitochondrial DNA (mtDNA) are reported in 19 of 56 patients with mitochondrial myopathy examined in the Department of Neurology and Neuromuscular Research Laboratory, Mayo Clinic, Rochester, MN.

  5. A deletion of one nucleotide results in functional deficiency of apolipoprotein CII (apo CII Toronto).

    OpenAIRE

    Cox, D W; Wills, D E; Quan, F; Ray, P N

    1988-01-01

    Apolipoprotein CII Toronto is a mutant non-functional apo CII resulting in apo CII deficiency. A portion of the mutant apo CII gene was cloned into lambda gt10 and subclones were sequenced. A deletion of one base was found in the codon for amino acid Thr68, resulting in alteration of six amino acids and premature termination of the protein at amino acid 74.

  6. Pancreas-specific deletion of mouse Gata4 and Gata6 causes pancreatic agenesis

    Science.gov (United States)

    Xuan, Shouhong; Borok, Matthew J.; Decker, Kimberly J.; Battle, Michele A.; Duncan, Stephen A.; Hale, Michael A.; Macdonald, Raymond J.; Sussel, Lori

    2012-01-01

    Pancreatic agenesis is a human disorder caused by defects in pancreas development. To date, only a few genes have been linked to pancreatic agenesis in humans, with mutations in pancreatic and duodenal homeobox 1 (PDX1) and pancreas-specific transcription factor 1a (PTF1A) reported in only 5 families with described cases. Recently, mutations in GATA6 have been identified in a large percentage of human cases, and a GATA4 mutant allele has been implicated in a single case. In the mouse, Gata4 and Gata6 are expressed in several endoderm-derived tissues, including the pancreas. To analyze the functions of GATA4 and/or GATA6 during mouse pancreatic development, we generated pancreas-specific deletions of Gata4 and Gata6. Surprisingly, loss of either Gata4 or Gata6 in the pancreas resulted in only mild pancreatic defects, which resolved postnatally. However, simultaneous deletion of both Gata4 and Gata6 in the pancreas caused severe pancreatic agenesis due to disruption of pancreatic progenitor cell proliferation, defects in branching morphogenesis, and a subsequent failure to induce the differentiation of progenitor cells expressing carboxypeptidase A1 (CPA1) and neurogenin 3 (NEUROG3). These studies address the conserved and nonconserved mechanisms underlying GATA4 and GATA6 function during pancreas development and provide a new mouse model to characterize the underlying developmental defects associated with pancreatic agenesis. PMID:23006325

  7. Chromosomal instability in Streptomyces avermitilis: major deletion in the central region and stable circularized chromosome

    Directory of Open Access Journals (Sweden)

    Wen Ying

    2010-07-01

    Full Text Available Abstract Background The chromosome of Streptomyces has been shown to be unstable, frequently undergoing gross chromosomal rearrangements. However, the mechanisms underlying this phenomenon remain unclear, with previous studies focused on two chromosomal ends as targets for rearrangements. Here we investigated chromosomal instability of Streptomyces avermitilis, an important producer of avermectins, and characterized four gross chromosomal rearrangement events, including a major deletion in the central region. The present findings provide a valuable contribution to the mechanistic study of genetic instability in Streptomyces. Results Thirty randomly-selected "bald" mutants derived from the wild-type strain all contained gross chromosomal rearrangements of various types. One of the bald mutants, SA1-8, had the same linear chromosomal structure as the high avermectin-producing mutant 76-9. Chromosomes of both strains displayed at least three independent chromosomal rearrangements, including chromosomal arm replacement to form new 88-kb terminal inverted repeats (TIRs, and two major deletions. One of the deletions eliminated the 36-kb central region of the chromosome, but surprisingly did not affect viability of the cells. The other deletion (74-kb was internal to the right chromosomal arm. The chromosome of another bald mutant, SA1-6, was circularized with deletions at both ends. No obvious homology was found in all fusion sequences. Generational stability analysis showed that the chromosomal structure of SA1-8 and SA1-6 was stable. Conclusions Various chromosomal rearrangements, including chromosomal arm replacement, interstitial deletions and chromosomal circularization, occurred in S. avermitilis by non-homologous recombination. The finding of an inner deletion involving in the central region of S. avermitilis chromosome suggests that the entire Streptomyces chromosome may be the target for rearrangements, which are not limited, as previously

  8. Insertion and deletion mutagenesis of the human cytomegalovirus genome

    Energy Technology Data Exchange (ETDEWEB)

    Spaete, R.R.; Mocarski, E.S.

    1987-10-01

    Studies on human cytomegalovirus (CMV) have been limited by a paucity of molecular genetic techniques available for manipulating the viral genome. The authors have developed methods for site-specific insertion and deletion mutagenesis of CMV utilizing a modified Escherichia coli lacZ gene as a genetic marker. The lacZ gene was placed under the control of the major ..beta.. gene regulatory signals and inserted into the viral genome by homologous recombination, disrupting one of two copies of this ..beta.. gene within the L-component repeats of CMV DNA. They observed high-level expression of ..beta..-galactosidase by the recombinant in a temporally authentic manner, with levels of this enzyme approaching 1% of total protein in infected cells. Thus, CMV is an efficient vector for high-level expression of foreign gene products in human cells. Using back selection of lacZ-deficient virus in the presence of the chromogenic substrate 5-bromo-4-chloro-3-indolyl ..beta..-D-galactoside, they generated random endpoint deletion mutants. Analysis of these mutant revealed that CMV DNA sequences flanking the insert had been removed, thereby establishing this approach as a means of determining whether sequences flanking a lacZ insertion are dispensable for viral growth. In an initial test of the methods, they have shown that 7800 base pairs of one copy of L-component repeat sequences can be deleted without affecting viral growth in human fibroblasts.

  9. Strategy of mutual compensation of green and red mutants of firefly luciferase identifies a mutation of the highly conservative residue E457 with a strong red shift of bioluminescence.

    Science.gov (United States)

    Koksharov, Mikhail I; Ugarova, Natalia N

    2013-11-01

    Bioluminescence spectra of firefly luciferases demonstrate highly pH-sensitive spectra changing the color from green to red light when pH is lowered from alkaline to acidic. This reflects a change of ratio of the green and red emitters in the bimodal spectra of bioluminescence. We show that the mutations strongly stabilizing green (Y35N) or red (H433Y) emission compensate each other leading to the WT color of firefly luciferase. We further used this compensating ability of Y35N to search for strong red-shifting mutations in the C-domain of firefly luciferase by random mutagenesis. The discovered mutation E457K substantially increased the contribution of the red emitter and caused a 12 nm red shift of the green emitter as well. E457 is highly conservative not only in beetle luciferases but also in a whole ANL superfamily of adenylating enzymes and forms a conservative structural hydrogen bond with V471. Our results suggest that the removal of this hydrogen bond only mildly affects luciferase properties and that most of the effect of E457K is caused by the introduction of positive charge. E457 forms a salt bridge with R534 in most ANL enzymes including pH-insensitive luciferases which is absent in pH-sensitive firefly luciferases. The mutant A534R shows that this salt bridge is not important for pH-sensitivity but considerably improves in vivo thermostability. Although E457 is located far from the oxyluciferin-binding site, the properties of the mutant E457K suggest that it affects color by influencing the AMP binding.

  10. Characterization of Deletions of the HBA and HBB Loci by Array Comparative Genomic Hybridization

    Science.gov (United States)

    Sabath, Daniel E.; Bender, Michael A.; Sankaran, Vijay G.; Vamos, Esther; Kentsis, Alex; Yi, Hye-Son; Greisman, Harvey A.

    2017-01-01

    Thalassemia is among the most common genetic diseases worldwide. α-Thalassemia is usually caused by deletion of one or more of the duplicated HBA genes on chromosome 16. In contrast, most β-thalassemia results from point mutations that decrease or eliminate expression of the HBB gene on chromosome 11. Deletions within the HBB locus result in thalassemia or hereditary persistence of fetal Hb. Although routine diagnostic testing cannot distinguish thalassemia deletions from point mutations, deletional hereditary persistence of fetal Hb is notable for having an elevated HbF level with a normal mean corpuscular volume. A small number of deletions accounts for most α-thalassemias; in contrast, there are no predominant HBB deletions causing β-thalassemia. To facilitate the identification and characterization of deletions of the HBA and HBB globin loci, we performed array-based comparative genomic hybridization using a custom oligonucleotide microarray. We accurately mapped the breakpoints of known and previously uncharacterized HBB deletions defining previously uncharacterized deletion breakpoints by PCR amplification and sequencing. The array also successfully identified the common HBA deletions --SEA and --FIL. In summary, comparative genomic hybridization can be used to characterize deletions of the HBA and HBB loci, allowing high-resolution characterization of novel deletions that are not readily detected by PCR-based methods. PMID:26612711

  11. Expression of a Mutant kcnj2 Gene Transcript in Zebrafish.

    Science.gov (United States)

    Leong, Ivone U S; Skinner, Jonathan R; Shelling, Andrew N; Love, Donald R

    2013-01-01

    Long QT 7 syndrome (LQT7, also known as Andersen-Tawil syndrome) is a rare autosomal-dominant disorder that causes cardiac arrhythmias, periodic paralysis, and dysmorphic features. Mutations in the human KCNJ2 gene, which encodes for the subunit of the potassium inwardly-rectifying channel (IK1), have been associated with the disorder. The majority of mutations are considered to be dominant-negative as mutant proteins interact to limit the function of wild type KCNJ2 proteins. Several LQT7 syndrome mouse models have been created that vary in the physiological similarity to the human disease. To complement the LQT7 mouse models, we investigated the usefulness of the zebrafish as an alternative model via a transient approach. Initial bioinformatic analysis identified the zebrafish orthologue of the human KCNJ2 gene, together with a spatial expression profile that was similar to that of human. The expression of a kcnj2-12 transcript carrying an in-frame deletion of critical amino acids identified in human studies resulted in embryos that exhibited defects in muscle development, thereby affecting movement, a decrease in jaw size, pupil-pupil distance, and signs of scoliosis. These defects correspond to some phenotypes expressed by human LQT7 patients.

  12. Deletion of degQ gene enhances outer membrane vesicle production of Shewanella oneidensis cells.

    Science.gov (United States)

    Ojima, Yoshihiro; Mohanadas, Thivagaran; Kitamura, Kosei; Nunogami, Shota; Yajima, Reiki; Taya, Masahito

    2017-04-01

    Shewanella oneidensis is a Gram-negative facultative anaerobe that can use a wide variety of terminal electron acceptors for anaerobic respiration. In this study, S. oneidensis degQ gene, encoding a putative periplasmic serine protease, was cloned and expressed. The activity of purified DegQ was inhibited by diisopropyl fluorophosphate, a typical serine protease-specific inhibitor, indicating that DegQ is a serine protease. In-frame deletion and subsequent complementation of the degQ were carried out to examine the effect of envelope stress on the production of outer membrane vesicles (OMVs). Analysis of periplasmic proteins from the resulting S. oneidensis strain showed that deletion of degQ induced protein accumulation and resulted in a significant decrease in protease activity within the periplasmic space. OMVs from the wild-type and mutant strains were purified and observed by transmission electron microscopy. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis of the OMVs showed a prominent band at ~37 kDa. Nanoliquid chromatography-tandem mass spectrometry analysis identified three outer membrane porins (SO3896, SO1821, and SO3545) as dominant components of the band, suggesting that these proteins could be used as indices for comparing OMV production by S. oneidensis strains. Quantitative evaluation showed that degQ-deficient cells had a fivefold increase in OMV production compared with wild-type cells. Thus, the increased OMV production following the deletion of DegQ in S. oneidensis may be responsible for the increase in envelope stress.

  13. Chromosome 11q13 deletion syndrome

    Science.gov (United States)

    Kim, Yu-Seon; Kim, Gun-Ha; Byeon, Jung Hye; Eun, So-Hee

    2016-01-01

    Chromosome 11q13 deletion syndrome has been previously reported as either otodental syndrome or oculo-oto-dental syndrome. The otodental syndrome is characterized by dental abnormalities and high-frequency sensorineural hearing loss, and by ocular coloboma in some cases. The underlying genetic defect causing otodental syndrome is a hemizygous microdeletion involving the FGF3 gene on chromosome 11q13.3. Recently, a new form of severe deafness, microtia (small ear) and small teeth, without the appearance of eye abnormalities, was also reported. In this report, we describe a 1-year-old girl presenting with ptosis of the left upper eyelid, right auricular deformity, high-arched palate, delayed dentition, simian line on the right hand, microcephaly, and developmental delay. In this patient, we identified a deletion in the chromosome 11q13.2-q13.3 (2.75 Mb) region by using an array-comparative genomic hybridization analysis. The deletion in chromosome 11q13 results in a syndrome characterized by variable clinical manifestations. Some of these manifestations involve craniofacial dysmorphology and require a functional workup for hearing, ophthalmic examinations, and long-term dental care. PMID:28018436

  14. Construction of a doramectin producer mutant from an avermectin-overproducing industrial strain of Streptomyces avermitilis.

    Science.gov (United States)

    Zhao, Xuejin; Wang, Yuanxin; Wang, Shiwei; Chen, Zhi; Wen, Ying; Song, Yuan

    2009-12-01

    The avermectin analogue doramectin (CHC-B1), which is produced in mutants that have an altered biosynthesis pathway of avermectin, is one of the most effective agricultural pesticides and antiparasitics. We report here the construction of a bkdF olmA double-deletion mutant lacking one of the branched-chain alpha-keto acid dehydrogenase encoding genes (bkdF) and the oligomycin PKS encoding gene cluster (olmA) in Streptomyces avermitilis 76-05. We then characterized the production of various antibiotics in cultures of the deletion mutant. In a fermentation medium supplemented with cyclohexanecarboxylic acid, this double mutant produced doramectin and its analogues but no oligomycin. The mutant proved to be genetically stable, without any antibiotic resistance markers inserted into its chromosome, and could potentially become an industrial doramectin-producing strain after further improvement.

  15. Conidiation color mutants of Aspergillus fumigatus are highly pathogenic to the heterologous insect host Galleria mellonella.

    Directory of Open Access Journals (Sweden)

    Jennifer C Jackson

    Full Text Available The greater wax moth Galleria mellonella has been widely used as a heterologous host for a number of fungal pathogens including Candida albicans and Cryptococcus neoformans. A positive correlation in pathogenicity of these yeasts in this insect model and animal models has been observed. However, very few studies have evaluated the possibility of applying this heterologous insect model to investigate virulence traits of the filamentous fungal pathogen Aspergillus fumigatus, the leading cause of invasive aspergillosis. Here, we have examined the impact of mutations in genes involved in melanin biosynthesis on the pathogenicity of A. fumigatus in the G. mellonella model. Melanization in A. fumigatus confers bluish-grey color to conidia and is a known virulence factor in mammal models. Surprisingly, conidial color mutants in B5233 background that have deletions in the defined six-gene cluster required for DHN-melanin biosynthesis caused enhanced insect mortality compared to the parent strain. To further examine and confirm the relationship between melanization defects and enhanced virulence in the wax moth model, we performed random insertional mutagenesis in the Af293 genetic background to isolate mutants producing altered conidia colors. Strains producing conidia of previously identified colors and of novel colors were isolated. Interestingly, these color mutants displayed a higher level of pathogenicity in the insect model compared to the wild type. Although some of the more virulent color mutants showed increased resistance to hydrogen peroxide, overall phenotypic characterizations including secondary metabolite production, metalloproteinase activity, and germination rate did not reveal a general mechanism accountable for the enhanced virulence of these color mutants observed in the insect model. Our observations indicate instead, that exacerbated immune response of the wax moth induced by increased exposure of PAMPs (pathogen

  16. Method of detecting genetic deletions identified with chromosomal abnormalities

    Energy Technology Data Exchange (ETDEWEB)

    Gray, Joe W; Pinkel, Daniel; Tkachuk, Douglas

    2013-11-26

    Methods and compositions for staining based upon nucleic acid sequence that employ nucleic acid probes are provided. Said methods produce staining patterns that can be tailored for specific cytogenetic analyzes. Said probes are appropriate for in situ hybridization and stain both interphase and metaphase chromosomal material with reliable signals. The nucleic acids probes are typically of a complexity greater tha 50 kb, the complexity depending upon the cytogenetic application. Methods and reagents are provided for the detection of genetic rearrangements. Probes and test kits are provided for use in detecting genetic rearrangements, particlularly for use in tumor cytogenetics, in the detection of disease related loci, specifically cancer, such as chronic myelogenous leukemia (CML) and for biological dosimetry. Methods and reagents are described for cytogenetic research, for the differentiation of cytogenetically similar ut genetically different diseases, and for many prognostic and diagnostic applications.

  17. Method of detecting genetic deletions identified with chromosomal abnormalities

    Science.gov (United States)

    Gray, Joe W; Pinkel, Daniel; Tkachuk, Douglas

    2013-11-26

    Methods and compositions for staining based upon nucleic acid sequence that employ nucleic acid probes are provided. Said methods produce staining patterns that can be tailored for specific cytogenetic analyzes. Said probes are appropriate for in situ hybridization and stain both interphase and metaphase chromosomal material with reliable signals. The nucleic acids probes are typically of a complexity greater tha 50 kb, the complexity depending upon the cytogenetic application. Methods and reagents are provided for the detection of genetic rearrangements. Probes and test kits are provided for use in detecting genetic rearrangements, particlularly for use in tumor cytogenetics, in the detection of disease related loci, specifically cancer, such as chronic myelogenous leukemia (CML) and for biological dosimetry. Methods and reagents are described for cytogenetic research, for the differentiation of cytogenetically similar ut genetically different diseases, and for many prognostic and diagnostic applications.

  18. Fine Mapping and Cloning of Leafy Head Mutant Gene pla1-5 in Rice

    Directory of Open Access Journals (Sweden)

    Gong-neng FENG

    2013-09-01

    Full Text Available We identified a leafy head mutant pla1-5 (plastochron 1-5 from the progeny of japonica rice cultivar Taipei 309 treated with 60Co-γ ray irradiation. The pla1-5 mutant has a dwarf phenotype and small leaves. Compared with its wild type, pla1-5 has more leaves and fewer tillers, and it fails to produce normal panicles at the maturity stage. Genetic analysis showed that the pla1-5 phenotype is controlled by a single recessive nuclear gene. Using the map-based cloning strategy, we narrowed down the location of the target gene to a 58-kb region between simple sequence repeat markers CHR1027 and CHR1030 on the long arm of chromosome 10. The target gene cosegregated with molecular markers CHR1028 and CHR1029. There were five predicted genes in the mapped region. The results from sequencing analysis revealed that there was one base deletion in the first exon of LOC_Os10g26340 encoding cytochrome P450 CYP78A11 in the pla1-5 mutant, which might result in a downstream frame shift and premature termination. These results suggest that the P450 CYP78A11 gene is the candidate gene of PLA1-5.

  19. Enhanced gene replacements in Ku80 disruption mutants of the dermatophyte, Trichophyton mentagrophytes.

    Science.gov (United States)

    Yamada, Tsuyoshi; Makimura, Koichi; Hisajima, Tatsuya; Ishihara, Yumiko; Umeda, Yoshiko; Abe, Shigeru

    2009-09-01

    The frequency of targeted gene disruption via homologous recombination is low in the clinically important dermatophyte, Trichophyton mentagrophytes. The Ku genes, Ku70 and Ku80, encode key components of the nonhomologous end-joining pathway involved in DNA double-strand break repair. Their deletion increases the homologous recombination frequency, facilitating targeted gene disruption. To improve the homologous recombination frequency in T. mentagrophytes, the Ku80 ortholog was inactivated. The nucleotide sequence of the Ku80 locus containing a 2788-bp ORF encoding a predicted product of 728 amino acids was identified, and designated as TmKu80. The predicted TmKu80 product showed a high degree of amino acid sequence similarity to known fungal Ku80 proteins. Ku80 disruption mutant strains of T. mentagrophytes were constructed by Agrobacterium tumefaciens-mediated genetic transformation. The average homologous recombination frequency was 73.3 +/- 25.2% for the areA/nit-2-like nitrogen regulatory gene (tnr) in Ku80(-) mutants, about 33-fold higher than that in wild-type controls. A high frequency (c. 67%) was also obtained for the Tri m4 gene encoding a putative serine protease. Ku80(-) mutant strains will be useful for large-scale reverse genetics studies of dermatophytes, including T. mentagrophytes, providing valuable information on the basic mechanisms of host invasion.

  20. Novel NCC mutants and functional analysis in a new cohort of patients with Gitelman syndrome.

    Science.gov (United States)

    Glaudemans, Bob; Yntema, Helger G; San-Cristobal, Pedro; Schoots, Jeroen; Pfundt, Rolph; Kamsteeg, Erik-J; Bindels, René J; Knoers, Nine V A M; Hoenderop, Joost G; Hoefsloot, Lies H

    2012-03-01

    Gitelman syndrome (GS) is an autosomal recessive disorder characterized by hypokalemic metabolic alkalosis in conjunction with significant hypomagnesemia and hypocalciuria. The GS phenotype is caused by mutations in the solute carrier family 12, member 3 (SLC12A3) gene that encodes the thiazide-sensitive NaCl cotransporter (NCC). We analyzed DNA samples of 163 patients with a clinical suspicion of GS by direct sequencing of all 26 exons of the SLC12A3 gene. In total, 114 different mutations were identified, 31 of which have not been reported before. These novel variants include 3 deletions, 18 missense, 6 splice site and 4 nonsense mutations. We selected seven missense mutations to investigate their effect on NCC activity and plasma membrane localization by using the Xenopus laevis oocyte expression system. The Thr392Ile mutant did not display transport activity (probably class 2 mutation), while the Asn442Ser and Gln1030Arg NCC mutants showed decreased plasma membrane localization and consequently function, likely due to impaired trafficking (class 3 mutation). Even though the NaCl uptake was hampered for NCC mutants Glu121Asp, Pro751Leu, Ser475Cys and Tyr489His, the transporters reached the plasma membrane (class 4 mutation), suggesting an effect on NCC regulation or ion affinity. The present study shows the identification of 38 novel mutations in the SLC12A3 gene and provides insight into the mechanisms that regulate NCC.

  1. Metabolic flux balance analysis and the in silico analysis of Escherichia coli K-12 gene deletions

    Directory of Open Access Journals (Sweden)

    Edwards Jeremy S

    2000-07-01

    Full Text Available Abstract Background Genome sequencing and bioinformatics are producing detailed lists of the molecular components contained in many prokaryotic organisms. From this 'parts catalogue' of a microbial cell, in silico representations of integrated metabolic functions can be constructed and analyzed using flux balance analysis (FBA. FBA is particularly well-suited to study metabolic networks based on genomic, biochemical, and strain specific information. Results Herein, we have utilized FBA to interpret and analyze the metabolic capabilities of Escherichia coli. We have computationally mapped the metabolic capabilities of E. coli using FBA and examined the optimal utilization of the E. coli metabolic pathways as a function of environmental variables. We have used an in silico analysis to identify seven gene products of central metabolism (glycolysis, pentose phosphate pathway, TCA cycle, electron transport system essential for aerobic growth of E. coli on glucose minimal media, and 15 gene products essential for anaerobic growth on glucose minimal media. The in silico tpi-, zwf, and pta- mutant strains were examined in more detail by mapping the capabilities of these in silico isogenic strains. Conclusions We found that computational models of E. coli metabolism based on physicochemical constraints can be used to interpret mutant behavior. These in silica results lead to a further understanding of the complex genotype-phenotype relation. Supplementary information: http://gcrg.ucsd.edu/supplementary_data/DeletionAnalysis/main.htm

  2. Defining the ligand specificity of the deleted in colorectal cancer (DCC) receptor.

    Science.gov (United States)

    Haddick, Patrick C G; Tom, Irene; Luis, Elizabeth; Quiñones, Gabriel; Wranik, Bernd J; Ramani, Sree R; Stephan, Jean-Philippe; Tessier-Lavigne, Marc; Gonzalez, Lino C

    2014-01-01

    The growth and guidance of many axons in the developing nervous system require Netrin-mediated activation of Deleted in Colorectal Cancer (DCC) and other still unknown signaling cues. Commissural axon guidance defects are more severe in DCC mutant mice than Netrin-1 mutant mice, suggesting additional DCC activating signals besides Netrin-1 are involved in proper axon growth. Here we report that interaction screens on extracellular protein microarrays representing over 1,000 proteins uniquely identified Cerebellin 4 (CBLN4), a member of the C1q-tumor necrosis factor (TNF) family, and Netrin-1 as extracellular DCC-binding partners. Immunofluorescence and radio-ligand binding studies demonstrate that Netrin-1 competes with CBLN4 binding at an overlapping site within the membrane-proximal fibronectin domains (FN) 4-6 of DCC and binds with ∼5-fold higher affinity. CBLN4 also binds to the DCC homolog, Neogenin-1 (NEO1), but with a lower affinity compared to DCC. CBLN4-null mice did not show a defect in commissural axons of the developing spinal cord but did display a transient increase in the number of wandering axons in the brachial plexus, consistent with a role in axon guidance. Overall, the data solidifies CBLN4 as a bona fide DCC ligand and strengthens its implication in axon guidance.

  3. Defining the ligand specificity of the deleted in colorectal cancer (DCC receptor.

    Directory of Open Access Journals (Sweden)

    Patrick C G Haddick

    Full Text Available The growth and guidance of many axons in the developing nervous system require Netrin-mediated activation of Deleted in Colorectal Cancer (DCC and other still unknown signaling cues. Commissural axon guidance defects are more severe in DCC mutant mice than Netrin-1 mutant mice, suggesting additional DCC activating signals besides Netrin-1 are involved in proper axon growth. Here we report that interaction screens on extracellular protein microarrays representing over 1,000 proteins uniquely identified Cerebellin 4 (CBLN4, a member of the C1q-tumor necrosis factor (TNF family, and Netrin-1 as extracellular DCC-binding partners. Immunofluorescence and radio-ligand binding studies demonstrate that Netrin-1 competes with CBLN4 binding at an overlapping site within the membrane-proximal fibronectin domains (FN 4-6 of DCC and binds with ∼5-fold higher affinity. CBLN4 also binds to the DCC homolog, Neogenin-1 (NEO1, but with a lower affinity compared to DCC. CBLN4-null mice did not show a defect in commissural axons of the developing spinal cord but did display a transient increase in the number of wandering axons in the brachial plexus, consistent with a role in axon guidance. Overall, the data solidifies CBLN4 as a bona fide DCC ligand and strengthens its implication in axon guidance.

  4. iTRAQ protein profile analysis of tomato green-ripe mutant reveals new aspects critical for fruit ripening.

    Science.gov (United States)

    Pan, Xiaoqi; Zhu, Benzhong; Zhu, Hongliang; Chen, Yuexi; Tian, Huiqin; Luo, Yunbo; Fu, Daqi

    2014-04-01

    Green-ripe (Gr) tomato carries a dominant mutation and yields a nonripening fruit phenotype. The mutation results from a 334 bp deletion in a gene of unknown function at the Gr locus. The putative influence of Gr gene-deletion mutation on biochemical changes underlying the nonripening phenotype remains largely unknown. Respiration of Gr fruit was found to be reduced at mature green and breaker stage of ripening, while the fruit softening was dramatically prolonged. We studied the proteome of Gr mutant fruit using high-throughput iTRAQ and high-resolution mass spectrometry and identified 43 proteins representing 43 individual genes as potential influence-targets of Gr mutated fruit. The identified proteins are involved in several ripening-related pathways including cell-wall metabolism, photosynthesis, oxidative phosphorylation, carbohydrate and fatty acid metabolism, protein synthesis, and processing. Affected protein levels are correlated with the corresponding gene transcript levels. The modulation in the accumulation levels of PI(U1)P, PGIP, and PG2 supported the delayed softening phenotype of the Gr fruit. Further investigation in GR gene-silencing fruit ascertained the doubtless modulation of these targets by the deletion mutation of GR gene.

  5. A genetic screen for replication initiation defective (rid mutants in Schizosaccharomyces pombe

    Directory of Open Access Journals (Sweden)

    Locovei Alexandra M

    2010-08-01

    Full Text Available Abstract In fission yeast the intra-S phase and DNA damage checkpoints are activated in response to inhibition of DNA replication or DNA damage, respectively. The intra-S phase checkpoint responds to stalled replication forks leading to the activation of the Cds1 kinase that both delays cell cycle progression and stabilizes DNA replication forks. The DNA damage checkpoint, that operates during the G2 phase of the cell cycle delays mitotic progression through activation of the checkpoint kinase, Chk1. Delay of the cell cycle is believed to be essential to allow time for either replication restart (in S phase or DNA damage repair (in G2. Previously, our laboratory showed that fission yeast cells deleted for the N-terminal half of DNA polymerase ε (Cdc20 are delayed in S phase, but surprisingly require Chk1 rather than Cds1 to maintain cell viability. Several additional DNA replication mutants were then tested for their dependency on Chk1 or Cds1 when grown under semi-permissive temperatures. We discovered that mutants defective in DNA replication initiation are sensitive only to loss of Chk1, whilst mutations that inhibit DNA replication elongation are sensitive to loss of both Cds1 and Chk1. To confirm that the Chk1-sensitive, Cds1-insensitive phenotype (rid phenotype is specific to mutants defective in DNA replication initiation, we completed a genetic screen for cell cycle mutants that require Chk1, but not Cds1 to maintain cell viability when grown at semi-permissive temperatures. Our screen identified two mutants, rid1-1 and rid2-1, that are defective in Orc1 and Mcm4, respectively. Both mutants show defects in DNA replication initiation consistent with our hypothesis that the rid phenotype is replication initiation specific. In the case of Mcm4, the mutation has been mapped to a highly conserved region of the protein that appears to be required for DNA replication initiation, but not elongation. Therefore, we conclude that the cellular

  6. Unmarked gene deletion and host-vector system for the hyperthermophilic crenarchaeon Sulfolobus islandicus

    DEFF Research Database (Denmark)

    Deng, Ling; Zhu, Haojun; Chen, Zhengjun

    2009-01-01

    , and unmarked lacS mutants were obtained by each method. A new alternative recombination mechanism, i.e., marker circularization and integration, was shown to operate in the latter method, which did not yield the designed deletion mutation. Subsequently, Sulfolobus-E. coli plasmid shuttle vectors were...

  7. Deletion of GEL2 encoding for a beta(1-3)glucanosyltransferase affects morphogenesis and virulence in Aspergillus fumigatus.

    Science.gov (United States)

    Mouyna, Isabelle; Morelle, Willy; Vai, Marina; Monod, Michel; Léchenne, Barbara; Fontaine, Thierry; Beauvais, Anne; Sarfati, Jacqueline; Prévost, Marie-Christine; Henry, Christine; Latgé, Jean-Paul

    2005-06-01

    The first fungal glycosylphosphatidylinositol anchored beta(1-3)glucanosyltranferase (Gel1p) has been described in Aspergillus fumigatus and its encoding gene GEL1 identified. Glycosylphosphatidylinositol-anchored glucanosyltransferases play an active role in the biosynthesis of the fungal cell wall. We characterize here GEL2, a homologue of GEL1. Both homologues share common characteristics: (i) GEL1 and GEL2 are constitutively expressed during over a range of growth conditions; (ii) Gel2p is also a putative GPI-anchored protein and shares the same beta(1-3)glucanosyltransferase activity as Gel1p and (iii) GEL2, like GEL1, is able to complement the Deltagas1 deletion in Saccharomyces cerevisiae confirming that Gelp and Gasp have the same enzymatic activity. However, disruption of GEL1 did not result in a phenotype whereas a Deltagel2 mutant and the double mutant Deltagel1Deltagel2 exhibit slower growth, abnormal conidiogenesis, and an altered cell wall composition. In addition, the Deltagel2 and the Deltagel1Deltagel2 mutant have reduced virulence in a murine model of invasive aspergillosis. These data suggest for the first time that beta(1-3)glucanosyltransferase activity is required for both morphogenesis and virulence in A. fumigatus.

  8. Deletion of genes involved in glutamate metabolism to improve poly-gamma-glutamic acid production in B. amyloliquefaciens LL3.

    Science.gov (United States)

    Zhang, Wei; He, Yulian; Gao, Weixia; Feng, Jun; Cao, Mingfeng; Yang, Chao; Song, Cunjiang; Wang, Shufang

    2015-02-01

    Here, we attempted to elevate poly-gamma-glutamic acid (γ-PGA) production by modifying genes involved in glutamate metabolism in Bacillus amyloliquefaciens LL3. Products of rocR, rocG and gudB facilitate the conversion from glutamate to 2-oxoglutarate in Bacillus subtillis. The gene odhA is responsible for the synthesis of a component of the 2-oxoglutarate dehydrogenase complex that catalyzes the oxidative decarboxylation of 2-oxoglutarate to succinyl coenzyme A. In-frame deletions of these four genes were performed. In shake flask experiments the gudB/rocG double mutant presented enhanced production of γ-PGA, a 38 % increase compared with wild type. When fermented in a 5-L fermenter with pH control, the γ-PGA yield of the rocR mutant was increased to 5.83 g/L from 4.55 g/L for shake flask experiments. The gudB/rocG double mutant produced 5.68 g/L γ-PGA compared with that of 4.03 g/L for the wild type, a 40 % increase. Those results indicated the possibility of improving γ-PGA production by modifying glutamate metabolism, and identified potential genetic targets to improve γ-PGA production.

  9. Molecular genetic analyses of human NKG2C (KLRC2) gene deletion

    NARCIS (Netherlands)

    Miyashita, R; Tsuchiya, N; Hikami, K; Kuroki, K; Fukazawa, T; Bijl, M; Kallenberg, CGM; Hashimoto, H; Yabe, T; Tokunaga, K

    Human NKG2A, NKG2C and NKG2E genes are located on 12p13 in the NK gene complex. We recently identified deletion of NKG2C in a Japanese population. This study was performed to identify the breakpoint, and to examine the association of NKG2C deletion with susceptibility to rheumatoid arthritis and

  10. Molecular cytogenetic detection of chromosome 15 deletions in patients with Prader-Willi and Angelman syndromes

    Energy Technology Data Exchange (ETDEWEB)

    Chadwick, D.E.; Weksberg, R.; Shuman, C. [Hospital for Sick Children, Toronto (Canada)] [and others

    1994-09-01

    Prader-Willi syndrome (PWS) and Angelman syndrome (AS) are clinically distinct genetic disorders involving alterations of chromosome 15q11-q13. Approximately 75% of individuals with PWS and AS have deletions within 15q11-q13 by molecular analysis. We have evaluated fluorescence in situ hybridization (FISH) for the clinical laboratory detection of del(15)(q11q13) using the cosmid probes D15S11 and GABRB3 (ONCOR, Gaithersburg, NY). 4/4 PWS and 1/1 AS patients previously identified as having cytogenetic deletions were deleted for both probes. In a prospectively ascertained series of 54 patient samples referred to rule out either PWS or AS, 8 were deleted for D15S11 and GABRB3. In addition, an atypical deletion patient with PWS was also identified who was found to be deleted for GABRB3 but not D15S11. The SNRPN locus was also deleted in this patient. Only 4 of the 9 patient samples having molecular cytogenetic deletions were clearly deleted by high resolution banding (HRB) analysis. The microscopic and submicroscopic deletions have been confirmed by dinucleotide (CA) repeat analysis. Microsatellite polymorphism analysis was also used to demonstrate that five non-deletion patients in this series had biparental inheritance of chromosome 15, including region q11-q13. Deletions were not detected by either HRB, FISH or microsatellite polymorphism analysis in samples obtained from parents of the deletion patients. Methylation studies of chromosome 15q11-q13 are in progress for this series of PWS and AS families. FISH analysis of chromosome 15q11-q13 in patients with PWS and AS is a rapid, sensitive and reliable method for deletion detection.

  11. Mutant INS-Gene Induced Diabetes of Youth: Proinsulin Cysteine Residues Impose Dominant-Negative Inhibition on Wild-Type Proinsulin Transport

    OpenAIRE

    Ming Liu; Leena Haataja; Jordan Wright; Wickramasinghe, Nalinda P.; Qing-Xin Hua; Phillips, Nelson F.; Fabrizio Barbetti; Weiss, Michael A; Peter Arvan

    2010-01-01

    Recently, a syndrome of M utant I NS-gene-induced D iabetes of Y outh (MIDY , derived from one of 26 distinct mutations) has been identified as a cause of insulin-deficient diabetes, resulting from expression of a misfolded mutant proinsulin protein in the endoplasmic reticulum (ER) of insulin-producing pancreatic beta cells. Genetic deletion of one, two, or even three alleles encoding insulin in mice does not necessarily lead to diabetes. Yet MIDY patients are INS-gene heterozygotes; inherit...

  12. Structural and functional analysis of Escherichia coli ribosomes containing small deletions around position 1760 in the 23S ribosomal RNA.

    Science.gov (United States)

    Zweib, C; Dahlberg, A E

    1984-09-25

    Three different small deletions were produced at a single Pvu 2 restriction site in E. coli 23S rDNA of plasmid pKK 3535 using exonuclease Bal 31. The deletions were located around position 1760 in 23S rRNA and were characterized by DNA sequencing as well as by direct fingerprinting and S1-mapping of the rRNA. Two of the mutant plasmids, Pvu 2-32 and Pvu 2-33, greatly reduced the growth rate of transformed cells while the third mutant, Pvu 2-14 grew as fast as cells containing the wild-type plasmid pKK 3535. All three mutant 23S rRNAs were incorporated into 50S-like particles and were even found in 70S ribosomes and polysomes in vivo. The conformation of mutant 23S rRNA in 50S subunits was probed with a double-strand specific RNase from cobra venom. These analyses revealed changes in the accessibility of cleavage sites near the deletions around position 1760 and in the area around position 800 in all three mutant rRNAs. We suggest, that an altered conformation of the rRNAs at the site of the deletion is responsible for the slow growth of cells containing mutant plasmids Pvu 2-32 and Pvu 2-33.

  13. Exon Deletions of Parkin Gene in Patients with Parkinson Disease

    Institute of Scientific and Technical Information of China (English)

    王涛; 梁直厚; 孙圣刚; 曹学兵; 彭海; 刘红进; 童萼塘

    2004-01-01

    Summary: Mutations in the parkin gene have recently been identified in familial and isolated patients with early-onset Parkinson disease (PD) and that subregions between exon 2 and 4 of the parkin gene are hot spots of deletive mutations. To study the distribution of deletions in the parkin gene among variant subset patients with PD in China, and to explore the role of parkin gene in the pathogenesis of PD, 63 patients were divided into early onset and later onset groups. Exons 1-12 were amplified by PCR, templated by the genomic DNA of patients, and then the deletion distribution detected by agarose electrophoresis. Four patients were found to be carrier of exon deletions in 63 patients with PD. The location of the deletion was on exon 2 (1 case), exon 3 (2 cases) and exon 4 (1 case). All patients were belong to the group of early onset PD. The results showed that parkin gene deletion on exon 2, exon 3 and exon 4 found in Chinese population contributes partly to early onset PD.

  14. Fast detection of deletion breakpoints using quantitative PCR

    Directory of Open Access Journals (Sweden)

    Gulshara Abildinova

    2016-01-01

    Full Text Available Abstract The routine detection of large and medium copy number variants (CNVs is well established. Hemizygotic deletions or duplications in the large Duchenne muscular dystrophy DMD gene responsible for Duchenne and Becker muscular dystrophies are routinely identified using multiple ligation probe amplification and array-based comparative genomic hybridization. These methods only map deleted or duplicated exons, without providing the exact location of breakpoints. Commonly used methods for the detection of CNV breakpoints include long-range PCR and primer walking, their success being limited by the deletion size, GC content and presence of DNA repeats. Here, we present a strategy for detecting the breakpoints of medium and large CNVs regardless of their size. The hemizygous deletion of exons 45-50 in the DMD gene and the large autosomal heterozygous PARK2 deletion were used to demonstrate the workflow that relies on real-time quantitative PCR to narrow down the deletion region and Sanger sequencing for breakpoint confirmation. The strategy is fast, reliable and cost-efficient, making it amenable to widespread use in genetic laboratories.

  15. Characterization and Genetic Analysis of a Novel Rice Spotted-leaf Mutant HM47 with Broad-spectrum Resistance to Xanthomonas oryzae pv.oryzae(F)

    Institute of Scientific and Technical Information of China (English)

    Bao-Hua Feng; Yang Yang; Yong-Feng Shi; Hai-Chao Shen; Hui-Mei Wang; Qi-Na Huang; Xia Xu

    2013-01-01

    A stable inherited rice spotted-leaf mutant HM47 derived from an EMS-induced IR64 mutant bank was identified.The mutant expressed hypersensitive response (HR)-like symptoms throughout its whole life from the first leaf to the flag leaf,without pathogen invasion.Initiation of the lesions was induced by light under natural summer field conditions.Expression of pathogenesis-related genes including PAL,PO-C1,POX22.3 and PBZ1 was enhanced significantly in association with cell death and accumulation of H2O2 at and around the site of lesions in the mutant in contrast to that in the wild-type (WT).Disease reaction to Xanthomonas oryzae pv.oryzae from the Philippines and China showed that HM47 is a broad-spectrum disease-resistant mutant with enhanced resistance to multiple races of bacterial blight pathogens tested.An F2 progeny test showed that bacterial blight resistance to race HB-17 was cosegregated with the expression of lesions.Genetic analysis indicated that the spotted-leaf trait was controlled by a single recessive gene,tentatively named splHM47,flanked by two insertion/deletion markers in a region of approximately 74 kb on the long arm of chromosome 4.Ten open reading frames are predicted,and all of them are expressed proteins.Isolation and validation of the putative genes are currently underway.

  16. Deletion of Fifteen Open Reading Frames from Modified Vaccinia Virus Ankara Fails to Improve Immunogenicity.

    Directory of Open Access Journals (Sweden)

    Naif Khalaf Alharbi

    Full Text Available Modified vaccinia virus Ankara (MVA is a highly attenuated strain of vaccinia virus, which has been used as a recombinant vaccine vector in many vaccine development programmes. The loss of many immunosuppressive and host-range genes resulted in a safe and immunogenic vaccine vector. However it still retains some immunomodulatory genes that may reduce MVA immunogenicity. Earlier reports demonstrated that the deletion of the A41L, B15R, C6L, or C12L open reading frames (ORFs enhanced cellular immune responses in recombinant MVA (rMVA by up to 2-fold. However, previously, we showed that deletion of the C12L, A44L, A46R, B7R, or B15R ORFs from rMVA, using MVA-BAC recombineering technology, did not enhance rMVA immunogenicity at either peak or memory cellular immune responses. Here, we extend our previous study to examine the effect of deleting clusters of genes on rMVA cellular immunogenicity. Two clusters of fifteen genes were deleted in one rMVA mutant that encodes either the 85A antigen of Mycobacterium tuberculosis or an immunodominant H2-Kd-restricted murine malaria epitope (pb9. The deletion mutants were tested in prime only or prime and boost vaccination regimens. The responses showed no improved peak or memory CD8+ T cell frequencies. Our results suggest that the reported small increases in MVA deletion mutants could not be replicated with different antigens, or epitopes. Therefore, the gene deletion strategy may not be taken as a generic approach for improving the immunogenicity of MVA-based vaccines, and should be carefully assessed for every individual recombinant antigen.

  17. Multi-exon deletions of the FBN1 gene in Marfan syndrome

    Directory of Open Access Journals (Sweden)

    Schrijver Iris

    2001-10-01

    Full Text Available Abstract Background Mutations in the fibrillin -1 gene (FBN1 cause Marfan syndrome (MFS, an autosomal dominant multi-system connective tissue disorder. The 200 different mutations reported in the 235 kb, 65 exon-containing gene include only one family with a genomic multi-exon deletion. Methods We used long-range RT-PCR for mutation detection and long-range genomic PCR and DNA sequencing for identification of deletion breakpoints, allele-specific transcript analyses to determine stability of the mutant RNA, and pulse-chase studies to quantitate fibrillin synthesis and extracellular matrix deposition in cultured fibroblasts. Southern blots of genomic DNA were probed with three overlapping fragments covering the FBN1 coding exons Results Two novel multi-exon FBN1 deletions were discovered. Identical nucleotide pentamers were found at or near the intronic breakpoints. In a Case with classic MFS, an in-frame deletion of exons 42 and 43 removed the C-terminal 24 amino acids of the 5th LTBP (8-cysteine domain and the adjacent 25th calcium-binding EGF-like (6-cysteine domain. The mutant mRNA was stable, but fibrillin synthesis and matrix deposition were significantly reduced. A Case with severe childhood-onset MFS has a de novo deletion of exons 44–46 that removed three EGF-like domains. Fibrillin protein synthesis was normal, but matrix deposition was strikingly reduced. No genomic rearrangements were detected by Southern analysis of 18 unrelated MFS samples negative for FBN1 mutation screening. Conclusions Two novel deletion cases expand knowledge of mutational mechanisms and genotype/phenotype correlations of fibrillinopathies. Deletions or mutations affecting an LTBP domain may result in unstable mutant protein cleavage products that interfere with microfibril assembly.

  18. High Persister Mutants in Mycobacterium tuberculosis.

    Directory of Open Access Journals (Sweden)

    Heather L Torrey

    Full Text Available Mycobacterium tuberculosis forms drug-tolerant persister cells that are the probable cause of its recalcitrance to antibiotic therapy. While genetically identical to the rest of the population, persisters are dormant, which protects them from killing by bactericidal antibiotics. The mechanism of persister formation in M. tuberculosis is not well understood. In this study, we selected for high persister (hip mutants and characterized them by whole genome sequencing and transcriptome analysis. In parallel, we identified and characterized clinical isolates that naturally produce high levels of persisters. We compared the hip mutants obtained in vitro with clinical isolates to identify candidate persister genes. Genes involved in lipid biosynthesis, carbon metabolism, toxin-antitoxin systems, and transcriptional regulators were among those identified. We also found that clinical hip isolates exhibited greater ex vivo survival than the low persister isolates. Our data suggest that M. tuberculosis persister formation involves multiple pathways, and hip mutants may contribute to the recalcitrance of the infection.

  19. Construction and characterization of invasion protein B gene deleted mutant of Salmonella typhimurium SL1344 strain%鼠伤寒沙门菌SL1344株侵袭性蛋白B缺失株的构建及生物学特性

    Institute of Scientific and Technical Information of China (English)

    陈松彪; 陈桂华; 赵战勤; 李静; 郁川; 何雷; 张春杰; 程相朝; 李银聚; 颜云飞; 金修哲

    2015-01-01

    Objective:In order to develop a safer vaccine strain exploit Salmonella typhimurium vaccine strain .A ΔsipB mutant of Salmonella typhimurium SL 1344 strain was constructed.Methods: Firstly, the recombinant suicide plasmid containing the missing 585 bp sipB ( PREΔsipB ) was built by homologous recombination , and screenned by two-step method.Results: PCR and sequencing results showed that SL 1344ΔsipB was successfully constructed.It was no significant changes compared with SL 1344.But compared with the parent strains SL 1344 , the mutant strain had obvious change in its virulence , oral challenge of bacteria in mice revealed that LD50 of the mutant strain was 1.70 ×108 CFU,the toxicity reduced about 1.4%.The protection rate induced by the sipB mutant was 50%,and the serum antibody peaked 14 d post-immunization.Conclusion:The SL1344ΔsipB mutant was constructed suc-cessfully,and genetic stability ,significantly reduced virulence.The study provides a new approach for further study of the relationship between the gene and pathogenicity of Salmonella typhimurium.It is likely that the ΔsipB mutant could be adapted to develope attenuated Salmonella vaccine.%目的:为了研制更加安全的鼠伤寒沙门菌弱毒株,本研究构建了鼠伤寒沙门菌SL1344ΔsipB基因缺失突变株。方法:首先构建含缺失585 bp sipB基因的重组自杀性质粒PREΔsipB,利用重组自杀性质粒介导的等位基因交换技术,两步法筛选出SL1344的sipB缺失株。结果:PCR及测序结果表明SL1344ΔsipB构建成功。进一步生物学特性研究表明,缺失株SL1344ΔsipB保留了亲本菌株SL1344的血清型1,4,5,12:i:1,2,且能够稳定遗传缺失585 bp的sipB基因,生长速度没有发生明显改变;但是,与亲本株SL1344相比,其毒力发生明显改变,缺失株SL1344ΔsipB口服感染6周龄BALB/c小鼠的LD50为1.70×108 CFU,毒力较亲本株SL1344降低至1.4%,免疫

  20. Barcode Sequencing Screen Identifies SUB1 as a Regulator of Yeast Pheromone Inducible Genes

    Directory of Open Access Journals (Sweden)

    Anna Sliva

    2016-04-01

    Full Text Available The yeast pheromone response pathway serves as a valuable model of eukaryotic mitogen-activated protein kinase (MAPK pathways, and transcription of their downstream targets. Here, we describe application of a screening method combining two technologies: fluorescence-activated cell sorting (FACS, and barcode analysis by sequencing (Bar-Seq. Using this screening method, and pFUS1-GFP as a reporter for MAPK pathway activation, we readily identified mutants in known mating pathway components. In this study, we also include a comprehensive analysis of the FUS1 induction properties of known mating pathway mutants by flow cytometry, featuring single cell analysis of each mutant population. We also characterized a new source of false positives resulting from the design of this screen. Additionally, we identified a deletion mutant, sub1Δ, with increased basal expression of pFUS1-GFP. Here, in the first ChIP-Seq of Sub1, our data shows that Sub1 binds to the promoters of about half the genes in the genome (tripling the 991 loci previously reported, including the promoters of several pheromone-inducible genes, some of which show an increase upon pheromone induction. Here, we also present the first RNA-Seq of a sub1Δ mutant; the majority of genes have no change in RNA, but, of the small subset that do, most show decreased expression, consistent with biochemical studies implicating Sub1 as a positive transcriptional regulator. The RNA-Seq data also show that certain pheromone-inducible genes are induced less in the sub1Δ mutant relative to the wild type, supporting a role for Sub1 in regulation of mating pathway genes. The sub1Δ mutant has increased basal levels of a small subset of other genes besides FUS1, including IMD2 and FIG1, a gene encoding an integral membrane protein necessary for efficient mating.

  1. Zebrafish foxP2 zinc finger nuclease mutant has normal axon pathfinding.

    Directory of Open Access Journals (Sweden)

    Lingyan Xing

    Full Text Available foxP2, a forkhead-domain transcription factor, is critical for speech and language development in humans, but its role in the establishment of CNS connectivity is unclear. While in vitro studies have identified axon guidance molecules as targets of foxP2 regulation, and cell culture assays suggest a role for foxP2 in neurite outgrowth, in vivo studies have been lacking regarding a role for foxP2 in axon pathfinding. We used a modified zinc finger nuclease methodology to generate mutations in the zebrafish foxP2 gene. Using PCR-based high resolution melt curve analysis (HRMA of G0 founder animals, we screened and identified three mutants carrying nonsense mutations in the 2(nd coding exon: a 17 base-pair (bp deletion, an 8bp deletion, and a 4bp insertion. Sequence analysis of cDNA confirmed that these were frameshift mutations with predicted early protein truncations. Homozygous mutant fish were viable and fertile, with unchanged body morphology, and no apparent differences in CNS apoptosis, proliferation, or patterning at embryonic stages. There was a reduction in expression of the known foxP2 target gene cntnap2 that was rescued by injection of wild-type foxP2 transcript. When we examined axon pathfinding using a pan-axonal marker or transgenic lines, including a foxP2-neuron-specific enhancer, we did not observe any axon guidance errors. Our findings suggest that foxP2 is not necessary for axon pathfinding during development.

  2. Frequent intragenic deletion of the P gene in Tanzanian patients with Type II oculocutaneous albinism (OCA2)

    Energy Technology Data Exchange (ETDEWEB)

    Spritz, R.; Fukai, K.; Holmes, S.A. [Univ. of Wisconsin, Madison, WI (United States)] [and others

    1995-06-01

    Type II oculocutaneous albinism (OCA2) is an autosomal recessive disorder in which the biosynthesis of melanin pigment is reduced in the skin, hair, and eyes. OCA2, which results from mutations of the P gene, is the most frequent type of albinism in African and African-American patients. OCA2 is especially frequent in Tanzania, where it occurs with an incidence of {approximately}1/1,400. We have identified abnormalities of the P gene in each of 13 unrelated patients with OCA2 from Tanzania. One of these, a deletion of exon 7, is strongly predominant, accounting for {approximately}77% of mutant alleles in this group of patients. 20 refs., 2 figs.

  3. atp mutants of Escherichia coli fail to grow on succinate due to a transport deficiency

    DEFF Research Database (Denmark)

    Boogerd, Fred; Boe, Lars; Michelsen, Ole

    1998-01-01

    Escherichia coli atp mutants, which lack a functional Hf-ATPase complex, are capable of growth on glucose but not on succinate or other C-4-dicarboxylates (Suc(-) phenotype). Suc(+) revertants of an atp deletion strain were isolated which were capable of growth on succinate even though they lack......) was expressed in trans, the Suc(-) phenotype of the atp deletion strain reverted to Suc(+), which shows that the reason why the E. coli atp mutant is unable to grow aerobically on C-4-dicarboxylates is insufficient transport capacity for these substrates....

  4. atp mutants of Escherichia coli fail to grow on succinate due to a transport deficiency

    DEFF Research Database (Denmark)

    Boogerd, Fred; Boe, Lars; Michelsen, Ole

    1998-01-01

    Escherichia coli atp mutants, which lack a functional Hf-ATPase complex, are capable of growth on glucose but not on succinate or other C-4-dicarboxylates (Suc(-) phenotype). Suc(+) revertants of an atp deletion strain were isolated which were capable of growth on succinate even though they lack......) was expressed in trans, the Suc(-) phenotype of the atp deletion strain reverted to Suc(+), which shows that the reason why the E. coli atp mutant is unable to grow aerobically on C-4-dicarboxylates is insufficient transport capacity for these substrates....

  5. Acetic acid inhibits nutrient uptake in Saccharomyces cerevisiae: auxotrophy confounds the use of yeast deletion libraries for strain improvement.

    Science.gov (United States)

    Ding, Jun; Bierma, Jan; Smith, Mark R; Poliner, Eric; Wolfe, Carole; Hadduck, Alex N; Zara, Severino; Jirikovic, Mallori; van Zee, Kari; Penner, Michael H; Patton-Vogt, Jana; Bakalinsky, Alan T

    2013-08-01

    Acetic acid inhibition of yeast fermentation has a negative impact in several industrial processes. As an initial step in the construction of a Saccharomyces cerevisiae strain with increased tolerance for acetic acid, mutations conferring resistance were identified by screening a library of deletion mutants in a multiply auxotrophic genetic background. Of the 23 identified mutations, 11 were then introduced into a prototrophic laboratory strain for further evaluation. Because none of the 11 mutations was found to increase resistance in the prototrophic strain, potential interference by the auxotrophic mutations themselves was investigated. Mutants carrying single auxotrophic mutations were constructed and found to be more sensitive to growth inhibition by acetic acid than an otherwise isogenic prototrophic strain. At a concentration of 80 mM acetic acid at pH 4.8, the initial uptake of uracil, leucine, lysine, histidine, tryptophan, phosphate, and glucose was lower in the prototrophic strain than in a non-acetic acid-treated control. These findings are consistent with two mechanisms by which nutrient uptake may be inhibited. Intracellular adenosine triphosphate (ATP) levels were severely decreased upon acetic acid treatment, which likely slowed ATP-dependent proton symport, the major form of transport in yeast for nutrients other than glucose. In addition, the expression of genes encoding some nutrient transporters was repressed by acetic acid, including HXT1 and HXT3 that encode glucose transporters that operate by facilitated diffusion. These results illustrate how commonly used genetic markers in yeast deletion libraries complicate the effort to isolate strains with increased acetic acid resistance.

  6. A GFP-Tagged Gross Deletion on Chromosome 1 Causes Malignant Peripheral Nerve Sheath Tumors and Carcinomas in Zebrafish.

    Directory of Open Access Journals (Sweden)

    Matteo Astone

    Full Text Available Malignant peripheral nerve sheath tumors (MPNSTs are highly aggressive soft-tissue sarcomas, characterized by complex karyotypes. The molecular bases of such malignancy are poorly understood and efficient targeted molecular therapies are currently lacking. Here we describe a novel zebrafish model of MPNSTs, represented by the transgenic mutant line Tg(-8.5nkx2.2a:GFPia2. ia2 homozygous animals displayed embryonic lethality by 72 hpf, while the heterozygotes develop visible tumor masses with high frequency in adulthood. Histological and immunohistochemical examination revealed aggressive tumors with either mesenchymal or epithelial features. The former (54% of the cases arose either in the abdominal cavity, or as intrathecal/intraspinal lesions and is composed of cytokeratin-negative spindle cells with fascicular/storiform growth pattern consistent with zebrafish MPNSTs. The second histotype was composed by polygonal or elongated cells, immunohistochemically positive for the pan-cytokeratin AE1/AE3. The overall histologic and immunohistochemical features were consistent with a malignant epithelial neoplasm of possible gastrointestinal/pancreatic origin. With an integrated approach, based on microsatellite (VNTR and STS markers, we showed that ia2 insertion, in Tg(-8.5nkx2.2a:GFPia2 embryos, is associated with a deletion of 15.2 Mb in the telomeric portion of chromosome 1. Interestingly, among ia2 deleted genes we identified the presence of the 40S ribosomal protein S6 gene that may be one of the possible drivers for the MPNSTs in ia2 mutants. Thanks to the peculiar features of zebrafish as animal model of human cancer (cellular and genomic similarity, transparency and prolificacy and the GFP tag, the Tg(-8.5nkx2.2a:GFPia2 line provides a manageable tool to study in vivo with high frequency MPNST biology and genetics, and to identify, in concert with the existing zebrafish MPNST models, conserved relevant mechanisms in zebrafish and human cancer

  7. An Effective Strategy for Reliably Isolating Heritable and Cas9-Free Arabidopsis Mutants Generated by CRISPR/Cas9-Mediated Genome Editing.

    Science.gov (United States)

    Gao, Xiuhua; Chen, Jilin; Dai, Xinhua; Zhang, Da; Zhao, Yunde

    2016-07-01

    Mutations generated by CRISPR/Cas9 in Arabidopsis (Arabidopsis thaliana) are often somatic and are rarely heritable. Isolation of mutations in Cas9-free Arabidopsis plants can ensure the stable transmission of the identified mutations to next generations, but the process is laborious and inefficient. Here, we present a simple visual screen for Cas9-free T2 seeds, allowing us to quickly obtain Cas9-free Arabidopsis mutants in the T2 generation. To demonstrate this in principle, we targeted two sites in the AUXIN-BINDING PROTEIN1 (ABP1) gene, whose function as a membrane-associated auxin receptor has been challenged recently. We obtained many T1 plants with detectable mutations near the target sites, but only a small fraction of T1 plants yielded Cas9-free abp1 mutations in the T2 generation. Moreover, the mutations did not segregate in Mendelian fashion in the T2 generation. However, mutations identified in the Cas9-free T2 plants were stably transmitted to the T3 generation following Mendelian genetics. To further simplify the screening procedure, we simultaneously targeted two sites in ABP1 to generate large deletions, which can be easily identified by PCR. We successfully generated two abp1 alleles that contained 1,141- and 711-bp deletions in the ABP1 gene. All of the Cas9-free abp1 alleles we generated were stable and heritable. The method described here allows for effectively isolating Cas9-free heritable CRISPR mutants in Arabidopsis.

  8. 76 FR 9555 - Procurement List; Proposed Deletions

    Science.gov (United States)

    2011-02-18

    ... PEOPLE WHO ARE BLIND OR SEVERELY DISABLED Procurement List; Proposed Deletions AGENCY: Committee for Purchase From People Who Are Blind or Severely Disabled. ACTION: Proposed deletions from the Procurement...'Day Act (41 U.S.C. 46- 48c) in connection with the products proposed for deletion from the...

  9. Comparative Proteomic Analysis of Wild-Type and SAP Domain Mutant Foot-and-Mouth Disease Virus-Infected Porcine Cells Identifies the Ubiquitin-Activating Enzyme UBE1 Required for Virus Replication.

    Science.gov (United States)

    Zhu, Zixiang; Yang, Fan; Zhang, Keshan; Cao, Weijun; Jin, Ye; Wang, Guoqing; Mao, Ruoqing; Li, Dan; Guo, Jianhong; Liu, Xiangtao; Zheng, Haixue

    2015-10-02

    Leader protein (L(pro)) of foot-and-mouth disease virus (FMDV) manipulates the activities of several host proteins to promote viral replication and pathogenicity. L(pro) has a conserved protein domain SAP that is suggested to subvert interferon (IFN) production to block antiviral responses. However, apart from blocking IFN production, the roles of the SAP domain during FMDV infection in host cells remain unknown. Therefore, we identified host proteins associated with the SAP domain of L(pro) by a high-throughput quantitative proteomic approach [isobaric tags for relative and absolute quantitation (iTRAQ) in conjunction with liquid chromatography/electrospray ionization tandem mass spectrometry]. Comparison of the differentially regulated proteins in rA/FMDVΔmSAP- versus rA/FMDV-infected SK6 cells revealed 45 down-regulated and 32 up-regulated proteins that were mostly associated with metabolic, ribosome, spliceosome, and ubiquitin-proteasome pathways. The results also imply that the SAP domain has a function similar to SAF-A/B besides its potential protein inhibitor of activated signal transducer and activator of transcription (PIAS) function. One of the identified proteins UBE1 was further analyzed and displayed a novel role for the SAP domain of L(pro). Overexpression of UBE1 enhanced the replication of FMDV, and knockdown of UBE1 decreased FMDV replication. This shows that FMDV manipulates UBE1 for increased viral replication, and the SAP domain was involved in this process.

  10. Molecular characteristics of spontaneous deletions in the hyperthermophilic archaeon Sulfolobus acidocaldarius.

    Science.gov (United States)

    Grogan, Dennis W; Hansen, Josh E

    2003-02-01

    Prokaryotic genomes acquire and eliminate blocks of DNA sequence by lateral gene transfer and spontaneous deletion, respectively. The basic parameters of spontaneous deletion, which are expected to influence the course of genome evolution, have not been determined for any hyperthermophilic archaeon. We therefore screened a number of independent pyrimidine auxotrophs of Sulfolobus acidocaldarius for deletions and sequenced those detected. Deletions accounted for only 0.4% of spontaneous pyrE mutations, corresponding to a frequency of about 10(-8) per cell. Nucleotide sequence analysis of five independent deletions showed no significant association of the endpoints with short direct repeats, despite the fact that several such repeats occur within the pyrE gene and that duplication mutations in pyrE reverted at high frequencies. Endpoints of the spontaneous deletions did not coincide with short inverted repeats or potential stem-loop structures. No consensus sequence common to all the deletions could be identified, although two deletions showed the potential of being stabilized by octanucleotide sequences elsewhere in pyrE, and another pair of deletions shared an octanucleotide at their 3' ends. The unusually low frequency and low sequence dependence of spontaneous deletions in the S. acidocaldarius pyrE gene compared to other genetic systems could not be explained in terms of possible constraints imposed by the 5-fluoroorotate selection.

  11. Deletion analysis of oligomycin PKS genes (olmA) in Streptomyces avermitilis

    Institute of Scientific and Technical Information of China (English)

    ZHANG Xiaolin; CHEN Zhi; ZHAO Jinlei; SONG Yuan; WEN Ying; LI Jilun

    2004-01-01

    Gene deletion vector pXL05(pKC1139∷△olmA1 +△olmA4) was used to disrupt oligomycin PKS encoding genes (olmA) in Streptomyces avermitilis CZ8-73, the producer of anthelmintic avermectins B and the cell growth inhibitor oligomycin. olmA gene cluster in the chromosome was displaced by deletion allele on the plasmid via double crossover. Four of disruptants were confirmed by Southern blotting. Shaking flask experiments and HPLC analyses showed that the four mutants no longer produced the toxic oligomycin, but only made four components of avermectins B, which were avermectin B1a, B1b, B2a, B2b. The yields of avermectins B in these mutants were separately equal to those in CZ8-73. This revealed that olmA genes deletion did not affect the biosynthesis of avermectins. The deletion mutants were proved to be genetically stable, and thus might be promising strains in industrial production of avermectins B.

  12. Using of AFLP to evaluate gamma-irradiated amaranth mutants

    Directory of Open Access Journals (Sweden)

    Labajová Mária

    2013-01-01

    Full Text Available To determine which of several gamma-irradiated mutants of amaranth Ficha cultivar and K-433 hybrid are most genetically similar to their non-irradiated control genotypes, we performed amplified fragment length polymorphism (AFLP based analysis. A total of 40 selective primer combinations were used in reported analyses. First analyses of gamma-irradiated amaranth mutant lines were done used the AFLP. In the study, primers with the differentiation ability for all analysed mutant lines are reported. The very specific changes in the mutant lines´ non-coding regions based on AFLP length polymorphism were analysed. Mutant lines of the Ficha cultivar (C15, C26, C27, C82, C236 shared a genetic dissimilarity of 0,11 and their ISSR profiles are more similar to the Ficha than those of K-433 hybrid mutant lines. The K-433 mutant lines (D54, D279, D282 shared genetic dissimilarity of 0,534 but are more distinct to their control plant as a whole, as those of the Ficha mutant lines. Different AFLP fingerprints patters of the mutant lines when compared to the Ficha cultivar and K-433 hybrid AFLP profiles may be a consequence of the complex response of the intergenic space of mutant lines to the gamma-radiance. Although a genetic polymorphism was detected within accessions, the AFLP markers successfully identified all the accessions. The AFLP results are discussed by a combination of biochemical characteristics of mutant lines and their control genotypes.

  13. A mutant ('lab strain') of the hyperthermophilic archaeon Pyrococcus furiosus, lacking flagella, has unusual growth physiology.

    Science.gov (United States)

    Lewis, Derrick L; Notey, Jaspreet S; Chandrayan, Sanjeev K; Loder, Andrew J; Lipscomb, Gina L; Adams, Michael W W; Kelly, Robert M

    2015-03-01

    A mutant ('lab strain') of the hyperthermophilic archaeon Pyrococcus furiosus DSM3638 exhibited an extended exponential phase and atypical cell aggregation behavior. Genomic DNA from the mutant culture was sequenced and compared to wild-type (WT) DSM3638, revealing 145 genes with one or more insertions, deletions, or substitutions (12 silent, 33 amino acid substitutions, and 100 frame shifts). Approximately, half of the mutated genes were transposases or hypothetical proteins. The WT transcriptome revealed numerous changes in amino acid and pyrimidine biosynthesis pathways coincidental with growth phase transitions, unlike the mutant whose transcriptome reflected the observed prolonged exponential phase. Targeted gene deletions, based on frame-shifted ORFs in the mutant genome, in a genetically tractable strain of P. furiosus (COM1) could not generate the extended exponential phase behavior observed for the mutant. For example, a putative radical SAM family protein (PF2064) was the most highly up-regulated ORF (>25-fold) in the WT between exponential and stationary phase, although this ORF was unresponsive in the mutant; deletion of this gene in P. furiosus COM1 resulted in no apparent phenotype. On the other hand, frame-shifting mutations in the mutant genome negatively impacted transcription of a flagellar biosynthesis operon (PF0329-PF0338).Consequently, cells in the mutant culture lacked flagella and, unlike the WT, showed minimal evidence of exopolysaccharide-based cell aggregation in post-exponential phase. Electron microscopy of PF0331-PF0337 deletions in P. furiosus COM1 showed that absence of flagella impacted normal cell aggregation behavior and, furthermore, indicated that flagella play a key role, beyond motility, in the growth physiology of P. furiosus.

  14. Genetics Home Reference: 2q37 deletion syndrome

    Science.gov (United States)

    ... Genet. 2007 Nov 15;145C(4):357-71. Review. Citation on PubMed Galasso C, Lo-Castro A, Lalli C, Nardone AM, Gullotta F, Curatolo P. Deletion 2q37: an identifiable clinical syndrome with mental retardation and autism. J Child Neurol. 2008 Jul;23( ...

  15. Comparison of the Immunogenicities of HIV-1 Mutants Based on Structural Modification of env

    Institute of Scientific and Technical Information of China (English)

    Jian-hui NIE; Chun-tao ZHANG; Hui-hui CHONG; Xue-ling WU; Chu-yu LIU; Yu WU; Chen-yan ZHAO; Lin-qi ZHANG; You-Chun WANG

    2008-01-01

    Eleven env mutants were designed and generated by site-directed mutagenesis of the regions around Nab epitopes and deletions of variable regions in env.The immunogenicities of the generated mutants were evaluated using single-cycle infection neutralization assays with two pseudoviruses and IFN-γELISPOT.Overall,five mutants(dWt,M2,M5-2,M5-1 and dM7)induced highed neutralization activities for both pseudoviruses than plasmid Wt,while only two of the mutants(dWt and M5-2)showed significant differences(P<0.05).Two mutants(M2 and dM2)induced more Env-specific T cells than plasmid Wt.Statistically however,significance was only reached for mutant M2.Thus,properly modified HIV-1 Env may have the potential to induce potent cellular and humoral immune responses.

  16. Chlorambucil effectively induces deletion mutations in mouse germ cells.

    Science.gov (United States)

    Russell, L B; Hunsicker, P R; Cacheiro, N L; Bangham, J W; Russell, W L; Shelby, M D

    1989-01-01

    The chemotherapeutic agent chlorambucil was found to be more effective than x-rays or any chemical investigated to date in inducing high yields of mouse germ-line mutations that appear to be deletions or other structural changes. Induction of mutations involving seven specific loci was studied after exposures of various male germ-cell stages to chlorambucil at 10-25 mg/kg. A total of 60,750 offspring was scored. Mutation rates in spermatogonial stem cells were not significantly increased over control values; this negative result is not attributable to selective elimination of mutant cells. Mutations were, however, clearly induced in treated post-stem-cell stages, among which marked variations in mutational response were found. Maximum yield occurred after exposure of early spermatids, with approximately 1% of all offspring carrying a specific-locus mutation in the 10 mg/kg group. The stage-response pattern for chlorambucil differs from that of all other chemicals investigated to date in the specific-locus test. Thus far, all but one of the tested mutations induced by chlorambucil in post-stem-cell stages have been proved deletions or other structural changes by genetic, cytogenetic, and/or molecular criteria. Deletion mutations have recently been useful for molecular mapping and for structure-function correlations of genomic regions. For generating presumed large-lesion germ-line mutations at highest frequencies, chlorambucil may be the mutagen of choice. Images PMID:2726748

  17. Chlorambucil effectively induces deletion mutations in mouse germ cells

    Energy Technology Data Exchange (ETDEWEB)

    Russell, L.B.; Hunsicker, P.R.; Cacheiro, N.L.A.; Bangham, J.W.; Russell, W.L.; Shelby, M.D. (Oak Ridge National Laboratory, TN (USA))

    1989-05-01

    The chemotherapeutic agent chlorambucil was found to be more effective than x-rays or any chemical investigated to data in inducing high yields of mouse germ-line mutations that appear to be deletions or other structural changes. Induction of mutations involving seven specific loci was studied after exposures of various male germ-cell stages to chlorambucil at 10-25 mg/kg. A total of 60,750 offspring was scored. Mutation rates in spermatogonial stem cells were not significantly increased over control values; this negative result is not attributable to selective elimination of mutant cells. Mutations were, however, clearly induced in treated post-stem-cell stages, among which marked variations in mutational response were found. Maximum yield occurred after exposure of early spermatids, with {approx} 1% of all offspring carrying a specific-locus mutation in the 10 mg/kg group. The stage-response pattern for chlorambucil differs from that of all other chemicals investigated to date in the specific-locus test. Thus far, all but one of the tested mutations induced by chlorambucil in post-stem-cell stages have been proved deletions or other structural changes by genetic, cytogenetic, and/or molecular criteria. Deletion mutations have recently been useful for molecular mapping and for structure-function correlations of genomic regions. For generating presumed large-lesion germline mutations at highest frequencies, chlorambucil may be the mutagen of choice.

  18. Rare human diseases: 9p deletion syndrome

    Directory of Open Access Journals (Sweden)

    Galagan V.O.

    2014-09-01

    Full Text Available Objective of the study was to review the anamnesis, pheno - and genotype in patients with rare chromosome disorders such as 9p deletion syndrome. Genetic methods of investigation (clinical and genealogical, cytogenetic, FISH- method, paraclinical and instrumental methods of examination were used. Karyotyping was performed by the G-method of differential staining of chromosomes. Only three cases of pathology were diagnosed in the Medical Genetics Center over the last 10 years. By anamnesis data nobody in the probands’ families had bad habits, was exposed to occupational hazards, took part in the elimination of the Chernobyl accident or lived in contaminated areas. Clinical signs of diseases have not been identified in probands’ parents. All probands had trigonocephaly, bilateral epicanthal folds, ocular hypertelorism, downslanting palpebral fissures, long philtrum, flat face and nasal bridge, low set ears with malformed auricles. Two patients of three ones had exophthalmos, contracture of the second and third fingers, abnormal external genitalia. In all three cases there was monosomy of chromosome 9 of critical segment p 24. Normal karyotypes were seen in all parents, so there were three cases of new mutations of 9p deletion syndrome. Retardation of physical, psycho-spech, mental development in proband with or without congenital anomalies requires medical genetic counseling in a specialized institution. Cases of reproductive loss in anamnesis require cytogenetic investigation of fetal membranes and amniotic fluid.

  19. Fatty acid biosynthesis in novel ufa mutants of Neurospora crassa.

    Science.gov (United States)

    Goodrich-Tanrikulu, M; Stafford, A E; Lin, J T; Makapugay, M I; Fuller, G; McKeon, T A

    1994-10-01

    New mutants of Neurospora crassa having the ufa phenotype have been isolated. Two of these mutants, like previously identified ufa mutants, require an unsaturated fatty acid for growth and are almost completely blocked in the de novo synthesis of unsaturated fatty acids. The new mutations map to a different chromosomal location than previously characterized ufa mutations. This implies that at least one additional genetic locus controls the synthesis of unsaturated fatty acids in Neurospora.

  20. Molecular flexibility of Mycobacterium tuberculosis ribosome recycling factor and its functional consequences: An exploration involving mutants

    Indian Academy of Sciences (India)

    M Selvaraj; A Govindan; A Seshadri; B Dubey; U Varshney; M Vijayan

    2013-12-01

    Internal mobility of the two domain molecule of ribosome recycling factor (RRF) is known to be important for its action. Mycobacterium tuberculosis RRF does not complement E. coli for its deficiency of RRF (in the presence of E. coli EF-G alone). Crystal structure had revealed higher rigidity of the M. tuberculosis RRF due to the presence of additional salt bridges between domains. Two inter-domain salt bridges and one between the linker region and the domain containing C-terminal residues were disrupted by appropriate mutations. Except for a C-terminal deletion mutant, all mutants showed RRF activity in E. coli when M. tuberculosis EF-G was also co-expressed. The crystal structures of the point mutants, that of the C-terminal deletion mutant and that of the protein grown in the presence of a detergent, were determined. The increased mobility resulting from the disruption of the salt bridge involving the hinge region allows the appropriate mutant to weakly complement E. coli for its deficiency of RRF even in the absence of simultaneous expression of the mycobacterial EF-G. The loss of activity of the C-terminal deletion mutant appears to be partly due to the rigidification of the molecule consequent to changes in the hinge region.

  1. Nicotinamide ribosyl uptake mutants in Haemophilus influenzae.

    Science.gov (United States)

    Herbert, Mark; Sauer, Elizabeta; Smethurst, Graeme; Kraiss, Anita; Hilpert, Anna-Karina; Reidl, Joachim

    2003-09-01

    The gene for the nicotinamide riboside (NR) transporter (pnuC) was identified in Haemophilus influenzae. A pnuC mutant had only residual NR uptake and could survive in vitro with high concentrations of NR, but could not survive in vivo. PnuC may represent a target for the development of inhibitors for preventing H. influenzae disease.

  2. Repair of the 3' proximal and internal deletions of a satellite RNA associated with Cucumber mosaic virus is directed toward restoring structural integrity.

    Science.gov (United States)

    Kwon, Sun-Jung; Chaturvedi, Sonali; Rao, A L N

    2014-02-01

    The phenomenon of rapid turnover of 3' proximal nucleotides (nt) lost by the action of nuclease in RNA viruses is integral to replication. Here, a set of six deletions encompassing the 3' 23 nt region of a satellite RNA (satRNA) of Cucumber mosaic virus (CMV) strain Q (Q-sat), were engineered. Repair of the 3' end was not observed in the absence of CMV. However, co-expression with CMV in planta revealed that Q-sat mutants lacking the 3' 18 nt but not the 3' 23 nt are repaired and the progeny accumulation was inversely proportional to the extent of the deletion. Progeny of the 3'Δ3 mutant were repaired to wild type (wt) while those from the remaining four mutants were heterogeneous, exhibiting a wt secondary structure. Analysis of additional 3' internal deletions mutants revealed that progeny with a repaired sequence reminiscent of wt secondary structure were competent for replication and systemic spread.

  3. Isolation of cyanobacterial mutants exhibiting growth defects under microoxic conditions by transposon tagging mutagenesis of Synechocystis sp. PCC 6803.

    Science.gov (United States)

    Terauchi, Kazuki; Sobue, Riho; Furutani, Yuho; Aoki, Rina; Fujita, Yuichi

    2017-05-12

    Cyanobacteria are photosynthetic prokaryotes that perform oxygenic photosynthesis by extracting electrons from water, with the generation of oxygen as a byproduct. Cyanobacteria use oxygen not only for respiration to produce energy in the dark but also for biosynthesis of various metabolites, such as heme and chlorophyll. Oxygen levels dynamically fluctuate in the field environments, from hyperoxic at daytime to almost anaerobic at night. Thus, adaptation to anaerobiosis should be important for cyanobacteria to survive in low-oxygen and anaerobic environments. However, little is known about the molecular mechanisms of cyanobacterial anaerobiosis because cyanobacteria have been regarded as aerobic organisms. As a first step to elucidate cyanobacterial adaptation mechanisms to low-oxygen environments, we isolated five mutants, T-1-T-5, exhibiting growth defects under microoxic conditions. The mutants were obtained from a transposon-tagged mutant library of the cyanobacterium Synechocystis sp. PCC 6803, which was produced by in vitro transposon tagging of cyanobacterial genomic DNA. Southern blot analysis indicated that a kanamycin resistance gene was inserted in the genome as a single copy. We identified the chromosomal transposon-tagged locus in T-5. Two open reading frames (sll0577 and sll0578) were partially deleted by the insertion of the kanamycin resistance gene in T-5. A reverse transcription polymerase chain reaction suggested that these co-transcribed genes are constitutively expressed under both aerobic and microoxic conditions. Then, we isolated two mutants in which one of the two genes was individually disrupted. Only the mutants partially lacking an intact sll0578 gene showed growth defects under microoxic conditions, whereas it grew normally under aerobic conditions. sll0578 is annotated as purK encoding N(5)-carboxy-aminoimidazole ribonucleotide synthetase involved in purine metabolism. This result implies the unexpected physiological importance of Pur

  4. Frequency of heterozygous TET2 deletions in myeloproliferative neoplasms

    Directory of Open Access Journals (Sweden)

    Joseph Tripodi

    2010-09-01

    Full Text Available Joseph Tripodi1, Ronald Hoffman1, Vesna Najfeld2, Rona Weinberg31The Myeloproliferative Disorders Program, Tisch Cancer Institute, Department of Medicine and 2Department of Medicine and Pathology, Mount Sinai School of Medicine, 3The Myeloproliferative Disorders Program, Cellular Therapy Laboratory, The New York Blood Center, New York, NY, USAAbstract: The Philadelphia chromosome (Ph-negative myeloproliferative neoplasms (MPNs, including polycythemia vera, essential thrombocythemia, and primary myelofibrosis, are a group of clonal hematopoietic stem cell disorders with overlapping clinical and cytogenetic features and a variable tendency to evolve into acute leukemia. These diseases not only share overlapping chromosomal abnormalities but also a number of acquired somatic mutations. Recently, mutations in a putative tumor suppressor gene, ten-eleven translocation 2 (TET2 on chromosome 4q24 have been identified in 12% of patients with MPN. Additionally 4q24 chromosomal rearrangements in MPN, including TET2 deletions, have also been observed using conventional cytogenetics. The goal of this study was to investigate the frequency of genomic TET2 rearrangements in MPN using fluorescence in situ hybridization as a more sensitive method for screening and identifying genomic deletions. Among 146 MPN patients, we identified two patients (1.4% who showed a common 4q24 deletion, including TET2. Our observations also indicated that the frequency of TET2 deletion is increased in patients with an abnormal karyotype (5%.Keywords: TET2, myeloproliferative neoplasms, fluorescence in situ hybridization, cytogenetics

  5. Comparison of PCR-based mutation detection methods and application for identification of mouse Sult1a1 mutant embryonic stem cell clones using pooled templates.

    Science.gov (United States)

    Greber, Boris; Tandara, Helena; Lehrach, Hans; Himmelbauer, Heinz

    2005-05-01

    Reverse genetic approaches to generate mutants of model species are useful tools to assess functions of unknown genes. Recent work has demonstrated the feasibility of such strategies in several organisms, exploiting the power of chemical mutagenesis to disrupt genes randomly throughout the genome. To increase the throughput of gene-driven mutant identification, efficient mutation screening protocols are needed. Given the availability of sequence information for large numbers of unknown genes in many species, mutation detection protocols are preferably based on PCR. Using a set of defined mutations in the Hprt1 gene of mouse embryonic stem (ES) cells, we have systematically compared several PCR-based point mutation and deletion detection methods available for their ability to identify lesions in pooled samples, which is a major criterion for an efficient large-scale mutation screening assay. Results indicate that point mutations are most effectively identified by heteroduplex cleavage using CEL I endonuclease. Small deletions can most effectively be detected employing the recently described "poison" primer PCR technique. Further, we employed the CEL I assay followed by conventional agarose gel electrophoresis analysis for screening a library of chemically mutagenized ES cell clones. This resulted in the isolation of several clones harboring mutations in the mouse Sult1a1 locus, demonstrating the high-throughput compatibility of this approach using simple and inexpensive laboratory equipment.

  6. The effect of amino acid deletions and substitutions in the longest loop of GFP

    Directory of Open Access Journals (Sweden)

    Gaytán Paul

    2007-06-01

    Full Text Available Abstract Background The effect of single and multiple amino acid substitutions in the green fluorescent protein (GFP from Aequorea victoria has been extensively explored, yielding several proteins of diverse spectral properties. However, the role of amino acid deletions in this protein -as with most proteins- is still unknown, due to the technical difficulties involved in generating combinatorial in-phase amino acid deletions on a target region. Results In this study, the region I129-L142 of superglo GFP (sgGFP, corresponding to the longest loop of the protein and located far away from the central chromophore, was subjected to a random amino acid deletion approach, employing an in-house recently developed mutagenesis method termed Codon-Based Random Deletion (COBARDE. Only two mutants out of 16384 possible variant proteins retained fluorescence: sgGFP-Δ I129 and sgGFP-Δ D130. Interestingly, both mutants were thermosensitive and at 30°C sgGFP-Δ D130 was more fluorescent than the parent protein. In contrast with deletions, substitutions of single amino acids from residues F131 to L142 were well tolerated. The substitution analysis revealed a particular importance of residues F131, G135, I137, L138, H140 and L142 for the stability of the protein. Conclusion The behavior of GFP variants with both amino acid deletions and substitutions demonstrate that this loop is playing an important structural role in GFP folding. Some of the amino acids which tolerated any substitution but no deletion are simply acting as "spacers" to localize important residues in the protein structure.

  7. Polymyxin resistance of Pseudomonas aeruginosa phoQ mutants is dependent on additional two-component regulatory systems

    DEFF Research Database (Denmark)

    Gutu, Alina D; Sgambati, Nicole; Strasbourger, Pnina

    2013-01-01

    systems, ColRS and CprRS. Deletion of the colRS genes, individually or in tandem, abrogated the polymyxin resistance of a ΔphoQ mutant, as did individual or tandem deletion of cprRS. Individual deletion of colR or colS in a ΔphoQ mutant also suppressed 4-amino-L-arabinose addition to lipid A, consistent...... with the known role of this modification in polymyxin resistance. Surprisingly, tandem deletion of colRS or cprRS in the ΔphoQ mutant or individual deletion of cprR or cprS failed to suppress 4-amino-L-arabinose addition to lipid A, indicating that this modification alone is not sufficient for Pho......PQ-mediated polymyxin resistance in P. aeruginosa. Episomal expression of colRS or cprRS in tandem or of cprR individually complemented the Pm resistance phenotype in the ΔphoQ mutant, while episomal expression of colR, colS, or cprS individually did not. Highly polymyxin-resistant phoQ mutants of P. aeruginosa...

  8. Characteristics of invasion-reduced hilA gene mutant of Salmonella Enteritidis in vitro and in vivo.

    Science.gov (United States)

    Lv, Shuang; Si, Wei; Yu, Shenye; Li, Zhaoli; Wang, Xiumei; Chen, Liping; Zhang, Wanjiang; Liu, Siguo

    2015-08-01

    Salmonella enterica serovar Enteritidis (Salmonella Enteritidis) is a facultative intracellular pathogen that causes huge losses in poultry industry and also food poisoning in humans due to its being a food-borne pathogen. Functions of Invasion-related genes need to be explored, as invasion is a key step for Salmonella infection. In this study, a transposon mutant library of Salmonella Enteritidis isolate SM6 was constructed and screened for the invasion-related genes via incubation with Caco-2 cells. Three stably attenuated mutants were identified for significantly reduced invasion with insertions all in hilA (hyperinvasive locus A) gene. We constructed and evaluated the hilA deletion mutant in vivo and in vitro. SM6△hilA showed significantly reduced ability to invade Caco-2 cells and decreased pathogenicity in chicks. However, the bacterial load and pathological damage in the cecum were significantly higher than those in the SM6 in vivo. Present results provide new evidences for pathogenicity research on Salmonella Enteritidis.

  9. Cellular responses during morphological transformation in Azospirillum brasilense and Its flcA knockout mutant.

    Directory of Open Access Journals (Sweden)

    Xingsheng Hou

    Full Text Available FlcA is a response regulator controlling flocculation and the morphological transformation of Azospirillum cells from vegetative to cyst-like forms. To understand the cellular responses of Azospirillum to conditions that cause morphological transformation, proteins differentially expressed under flocculation conditions in A. brasilense Sp7 and its flcA knockout mutant were investigated. Comparison of 2-DE protein profiles of wild-type (Sp7 and a flcA deletion mutant (Sp7-flcAΔ revealed a total of 33 differentially expressed 2-DE gel spots, with 22 of these spots confidently separated to allow protein identification. Analysis of these spots by liquid chromatography-tandem mass spectrometry (LC-MS/MS and MASCOT database searching identified 48 proteins (≥10% emPAI in each spot. The functional characteristics of these proteins included carbon metabolism (beta-ketothiolase and citrate synthase, nitrogen metabolism (Glutamine synthetase and nitric oxide synthase, stress tolerance (superoxide dismutase, Alkyl hydroperoxidase and ATP-dependent Clp protease proteolytic subunit and morphological transformation (transducer coupling protein. The observed differences between Sp7 wild-type and flcA- strains enhance our understanding of the morphological transformation process and help to explain previous phenotypical observations. This work is a step forward in connecting the Azospirillum phenome and genome.

  10. Cellular responses during morphological transformation in Azospirillum brasilense and Its flcA knockout mutant.

    Science.gov (United States)

    Hou, Xingsheng; McMillan, Mary; Coumans, Joëlle V F; Poljak, Anne; Raftery, Mark J; Pereg, Lily

    2014-01-01

    FlcA is a response regulator controlling flocculation and the morphological transformation of Azospirillum cells from vegetative to cyst-like forms. To understand the cellular responses of Azospirillum to conditions that cause morphological transformation, proteins differentially expressed under flocculation conditions in A. brasilense Sp7 and its flcA knockout mutant were investigated. Comparison of 2-DE protein profiles of wild-type (Sp7) and a flcA deletion mutant (Sp7-flcAΔ) revealed a total of 33 differentially expressed 2-DE gel spots, with 22 of these spots confidently separated to allow protein identification. Analysis of these spots by liquid chromatography-tandem mass spectrometry (LC-MS/MS) and MASCOT database searching identified 48 proteins (≥10% emPAI in each spot). The functional characteristics of these proteins included carbon metabolism (beta-ketothiolase and citrate synthase), nitrogen metabolism (Glutamine synthetase and nitric oxide synthase), stress tolerance (superoxide dismutase, Alkyl hydroperoxidase and ATP-dependent Clp protease proteolytic subunit) and morphological transformation (transducer coupling protein). The observed differences between Sp7 wild-type and flcA- strains enhance our understanding of the morphological transformation process and help to explain previous phenotypical observations. This work is a step forward in connecting the Azospirillum phenome and genome.

  11. Phenotypic and molecular assessment of seven patients with 6p25 deletion syndrome: Relevance to ocular dysgenesis and hearing impairment

    Directory of Open Access Journals (Sweden)

    Ritch Robert

    2004-06-01

    Full Text Available Abstract Background Thirty-nine patients have been described with deletions involving chromosome 6p25. However, relatively few of these deletions have had molecular characterization. Common phenotypes of 6p25 deletion syndrome patients include hydrocephalus, hearing loss, and ocular, craniofacial, skeletal, cardiac, and renal malformations. Molecular characterization of deletions can identify genes that are responsible for these phenotypes. Methods We report the clinical phenotype of seven patients with terminal deletions of chromosome 6p25 and compare them to previously reported patients. Molecular characterization of the deletions was performed using polymorphic marker analysis to determine the extents of the deletions in these seven 6p25 deletion syndrome patients. Results Our results, and previous data, show that ocular dysgenesis and hearing impairment are the two most highly penetrant phenotypes of the 6p25 deletion syndrome. While deletion of the forkhead box C1 gene (FOXC1 probably underlies the ocular dysgenesis, no gene in this region is known to be involved in hearing impairment. Conclusions Ocular dysgenesis and hearing impairment are the two most common phenotypes of 6p25 deletion syndrome. We conclude that a locus for dominant hearing loss is present at 6p25 and that this locus is restricted to a region distal to D6S1617. Molecular characterization of more 6p25 deletion patients will aid in refinement of this locus and the identification of a gene involved in dominant hearing loss.

  12. Secretos de Mutantes

    OpenAIRE

    Marín, Martha; Muñoz, Germán; Serrano, Rafael

    2017-01-01

    Apartándose de enfoques que consideran las culturas juveniles como ‘desviaciones sociales', ‘tribus urbanas' o ‘nuevos movimientos políticos', Secretos de mutantes bucea en culturas juveniles urbanas como la Skinhead, el Punk, el Metal, el Hardcore, el Grunge y el Hip Hop, explorándolas desde un punto de vista inédito: su dimensión de creación, para percibir los cruciales y casi desconocidos procesos que sus miembros llevan a cabo en estos vastos universos de experimentación. Esta obra se nut...

  13. Forward genetic screen for auxin-deficient mutants by cytokinin.

    Science.gov (United States)

    Wu, Lei; Luo, Pan; Di, Dong-Wei; Wang, Li; Wang, Ming; Lu, Cheng-Kai; Wei, Shao-Dong; Zhang, Li; Zhang, Tian-Zi; Amakorová, Petra; Strnad, Miroslav; Novák, Ondřej; Guo, Guang-Qin

    2015-07-06

    Identification of mutants with impairments in auxin biosynthesis and dynamics by forward genetic screening is hindered by the complexity, redundancy and necessity of the pathways involved. Furthermore, although a few auxin-deficient mutants have been recently identified by screening for altered responses to shade, ethylene, N-1-naphthylphthalamic acid (NPA) or cytokinin (CK), there is still a lack of robust markers for systematically isolating such mutants. We hypothesized that a potentially suitable phenotypic marker is root curling induced by CK, as observed in the auxin biosynthesis mutant CK-induced root curling 1 / tryptophan aminotransferase of Arabidopsis 1 (ckrc1/taa1). Phenotypic observations, genetic analyses and biochemical complementation tests of Arabidopsis seedlings displaying the trait in large-scale genetic screens showed that it can facilitate isolation of mutants with perturbations in auxin biosynthesis, transport and signaling. However, unlike transport/signaling mutants, the curled (or wavy) root phenotypes of auxin-deficient mutants were significantly induced by CKs and could be rescued by exogenous auxins. Mutants allelic to several known auxin biosynthesis mutants were re-isolated, but several new classes of auxin-deficient mutants were also isolated. The findings show that CK-induced root curling provides an effective marker for discovering genes involved in auxin biosynthesis or homeostasis.

  14. High proportion of large genomic deletions and a genotype phenotype update in 80 unrelated families with juvenile polyposis syndrome

    DEFF Research Database (Denmark)

    Aretz, S; Stienen, D; Uhlhaas, S;

    2007-01-01

    suspected to have JPS. RESULTS: By direct sequencing of the two genes, point mutations were identified in 30 patients (46% of typical JPS). Using MLPA, large genomic deletions were found in 14% of all patients with typical JPS (six deletions in SMAD4 and three deletions in BMPR1A). Mutation analysis...... polyposis, gastric cancer, and HHT was identified, which should have implications for counselling and surveillance. Histopathological results in hamartomatous polyposis syndromes must be critically interpreted. Udgivelsesdato: 2007-Nov...

  15. Somatic deletions implicated in functional diversity of brain cells of individuals with schizophrenia and unaffected controls.

    Science.gov (United States)

    Kim, Junho; Shin, Jong-Yeon; Kim, Jong-Il; Seo, Jeong-Sun; Webster, Maree J; Lee, Doheon; Kim, Sanghyeon

    2014-01-22

    While somatic DNA copy number variations (CNVs) have been identified in multiple tissues from normal people, they have not been well studied in brain tissues from individuals with psychiatric disorders. With ultrahigh depth sequencing data, we developed an integrated pipeline for calling somatic deletions using data from multiple tissues of the same individual or a single tissue type taken from multiple individuals. Using the pipelines, we identified 106 somatic deletions in DNA from prefrontal cortex (PFC) and/or cerebellum of two normal controls subjects and/or three individuals with schizophrenia. We then validated somatic deletions in 18 genic and in 1 intergenic region. Somatic deletions in BOD1 and CBX3 were reconfirmed using DNA isolated from non-pyramidal neurons and from cells in white matter using laser capture microdissection (LCM). Our results suggest that somatic deletions may affect metabolic processes and brain development in a region specific manner.

  16. Deletion of lactate dehydrogenase in Enterobacter aerogenes to enhance 2,3-butanediol production.

    Science.gov (United States)

    Jung, Moo-Young; Ng, Chiam Yu; Song, Hyohak; Lee, Jinwon; Oh, Min-Kyu

    2012-07-01

    2,3-Butanediol is an important bio-based chemical product, because it can be converted into several C4 industrial chemicals. In this study, a lactate dehydrogenase-deleted mutant was constructed to improve 2,3-butanediol productivity in Enterobacter aerogenes. To delete the gene encoding lactate dehydrogenase, λ Red recombination method was successfully adapted for E. aerogenes. The resulting strain produced a very small amount of lactate and 16.7% more 2,3-butanediol than that of the wild-type strain in batch fermentation. The mutant and its parental strain were then cultured with six different carbon sources, and the mutant showed higher carbon source consumption and microbial growth rates in all media. The 2,3-butanediol titer reached 69.5 g/l in 54 h during fed-batch fermentation with the mutant,which was 27.4% higher than that with the parental strain.With further optimization of the medium and aeration conditions,118.05 g/l 2,3-butanediol was produced in 54 h during fed-batch fermentation with the mutant. This is by far the highest titer of 2,3-butanediol with E. aerogenes achieved by metabolic pathway engineering.

  17. Deletion of the Synechocystis sp. PCC 6803 kaiAB1C1 gene cluster causes impaired cell growth under light-dark conditions.

    Science.gov (United States)

    Dörrich, Anja K; Mitschke, Jan; Siadat, Olga; Wilde, Annegret

    2014-11-01

    In contrast to Synechococcus elongatus PCC 7942, few data exist on the timing mechanism of the widely used cyanobacterium Synechocystis sp. PCC 6803. The standard kaiAB1C1 operon present in this organism was shown to encode a functional KaiC protein that interacted with KaiA, similar to the S. elongatus PCC 7942 clock. Inactivation of this operon in Synechocystis sp. PCC 6803 resulted in a mutant with a strong growth defect when grown under light-dark cycles, which was even more pronounced when glucose was added to the growth medium. In addition, mutants showed a bleaching phenotype. No effects were detected in mutant cells grown under constant light. Microarray experiments performed with cells grown for 1 day under a light-dark cycle revealed many differentially regulated genes with known functions in the ΔkaiABC mutant in comparison with the WT. We identified the genes encoding the cyanobacterial phytochrome Cph1 and the light-repressed protein LrtA as well as several hypothetical ORFs with a complete inverse behaviour in the light cycle. These transcripts showed a stronger accumulation in the light but a weaker accumulation in the dark in ΔkaiABC cells in comparison with the WT. In general, we found a considerable overlap with microarray data obtained for hik31 and sigE mutants. These genes are known to be important regulators of cell metabolism in the dark. Strikingly, deletion of the ΔkaiABC operon led to a much stronger phenotype under light-dark cycles in Synechocystis sp. PCC 6803 than in Synechococcus sp. PCC 7942. © 2014 The Authors.

  18. Increased frequency of DNA deletions in pink-eyed unstable mice carrying a mutation in the Werner syndrome gene homologue.

    Science.gov (United States)

    Lebel, Michel

    2002-01-01

    Werner syndrome (WS) is a rare autosomal recessive disorder characterized by genomic instability and the premature onset of a number of age-related diseases, including cancers. Accumulating evidence indicates that the WS gene product is involved in resolving aberrant DNA structures that may arise during the process of DNA replication and/or transcription. To estimate the frequency of DNA deletions directly in the skin of mouse embryos, mice with a deletion of part of the murine WRN helicase domain were created. These mutant mice were then crossed to the pink-eyed unstable animals, which have a 70 kb internal duplication at the pink-eyed dilution (p) gene. This report indicates that the frequency of deletion of the duplicated sequence at the p locus is elevated in mice with a mutation in the WRN allele when compared with wild-type mice. In addition, the inhibitor of topoisomerase I camptothecin also increases the frequency of deletion at the p locus. This frequency is even more elevated in WRN mutant mice treated with camptothecin. In contrast, while the inhibition of poly(ADP-ribose) polymerase (PARP) activity by 3-aminobenzamide increases the frequency of DNA deletion, mutant WRN mice are not significantly more sensitive to the inhibition of PARP activity than wild-type animals.

  19. An RNA secondary structure bias for non-homologous reverse transcriptase-mediated deletions in vivo

    DEFF Research Database (Denmark)

    Duch, Mogens; Carrasco, Maria L; Jespersen, Thomas

    2004-01-01

    , deletion mutants with junction sites within the heterologous cassette may also be retrieved, in particular from vectors without flanking repeats. Such deletion mutants were here used to investigate determinants of reverse transcriptase-mediated non-homologous recombination. Based upon previous structural...... analysis the individual recombination sites within the IRES could be assigned to either base-paired or unpaired regions of RNA. This assignment showed a significant bias (P = 0.000082) towards recombination within unpaired regions of the IRES. We propose that the events observed in this in vivo system...... result from template switching during first-strand cDNA synthesis and that the choice of acceptor sites for non-homologous recombination are guided by non-paired regions. Our results may have implications for recombination events taking place within structured regions of retroviral RNA genomes...

  20. Deletion of PdMit1, a homolog of yeast Csg1, affects growth and Ca(2+) sensitivity of the fungus Penicillium digitatum, but does not alter virulence.

    Science.gov (United States)

    Zhu, Congyi; Wang, Weili; Wang, Mingshuang; Ruan, Ruoxin; Sun, Xuepeng; He, Meixian; Mao, Cungui; Li, Hongye

    2015-04-01

    GDP-mannose:inositol-phosphorylceramide (MIPC) and its derivatives are important for Ca(2+) sensitization of Saccharomyces cerevisiae and for the virulence of Candida albicans, but its role in the virulence of plant fungal pathogens remains unclear. In this study, we report the identification and functional characterization of PdMit1, the gene encoding MIPC synthase in Penicillium digitatum, one of the most important pathogens of postharvest citrus fruits. To understand the function of PdMit1, a PdMit1 deletion mutant was generated. Compared to its wild-type control, the PdMit1 deletion mutant exhibited slow radial growth, decreased conidia production and delayed conidial germination, suggesting that PdMit1 is important for the growth of mycelium, sporulation and conidial germination. The PdMit1 deletion mutant also showed hypersensitivity to Ca(2+). Treatment with 250 mmol/l Ca(2+) induced vacuole fusion in the wild-type strain, but not in the PdMit1 deletion mutant. Treatment with 250mmol/lCaCl2 upregulated three Ca(2+)-ATPase genes in the wild-type strain, and this was significantly inhibited in the PdMit1 deletion mutant. These results suggest that PdMit1 may have a role in regulating vacuole fusion and expression of Ca(2+)-ATPase genes by controlling biosynthesis of MIPC, and thereby imparts P. digitatum Ca(2+) tolerance. However, we found that PdMit1 is dispensable for virulence of P. digitatum.

  1. Biological and virulence characteristics of Salmonella enterica serovar Typhimurium following deletion of glucose-inhibited division (gidA) gene.

    Science.gov (United States)

    Shippy, Daniel C; Eakley, Nicholas M; Bochsler, Philip N; Chopra, Ashok K; Fadl, Amin A

    2011-06-01

    Salmonella enterica serovar Typhimurium is a frequent cause of enteric disease due to the consumption of contaminated food. Identification and characterization of bacterial factors involved in Salmonella pathogenesis would help develop effective strategies for controlling salmonellosis. To investigate the role of glucose-inhibited division gene (gidA) in Salmonella virulence, we constructed a Salmonella mutant strain in which gidA was deleted. Deletion of gidA rendered Salmonella deficient in the invasion of intestinal epithelial cells, bacterial motility, intracellular survival, and induction of cytotoxicity in host cells. Deletion of gidA rendered the organism to display a filamentous morphology compared to the normal rod-shaped nature of Salmonella. Furthermore, a significant attenuation in the induction of inflammatory cytokines and chemokines, histopathological lesions, and systemic infection was observed in mice infected with the gidA mutant. Most importantly, a significant increase in LD(50) was observed in mice infected with the gidA mutant, and mice immunized with the gidA mutant were able to survive a lethal dose of wild-type Salmonella. Additionally, deletion of gidA significantly altered the expression of several bacterial factors associated with pathogenesis as indicated by global transcriptional and proteomic profiling. Taken together, our data indicate GidA as a potential regulator of Salmonella virulence genes.

  2. Functional analysis of the PsbX protein by deletion of the corresponding gene in Synechocystis sp. PCC 6803.

    Science.gov (United States)

    Funk, C

    2000-12-01

    The psbX gene (sml0002) coding for a 4.1 kDa protein in Photosystem II of plants and cyanobacteria was deleted in both wild type and in a Photosystem I-less mutant of the cyanobacterium Synechocystis sp. PCC 6803. Polymerase chain reaction and sequencing analysis showed that the mutants had completely segregated. Deletion of the PsbX protein does not seem to influence growth rate, electron transport or water oxidation ability. Whereas a high light induction of the psbX mRNA could be observed in wild type, deletion of the gene did not lead to high light sensibility. Light saturation measurements and 77K fluorescence measurements indicated a minor disconnection of the antenna in the deletion mutant. Furthermore, fluorescence induction measurements as well as immuno-staining of the D1 protein showed that the amount of Photosystem II complexes in the mutants was reduced by 30%. Therefore, PsbX does not seem to be necessary for the Photosystem II electron transport, but directly or indirectly involved in the regulation of the amount of functionally active Photosystem II centres in Synechocystis sp. PCC 6803.

  3. A novel DNA deletion-ligation reaction catalyzed in vitro by a developmentally controlled activity from Tetrahymena cells.

    Science.gov (United States)

    Robinson, E K; Cohen, P D; Blackburn, E H

    1989-09-08

    Developmentally controlled genomic deletion-ligations occur during ciliate macronuclear differentiation. We have identified a novel activity in Tetrahymena cell-free extracts that efficiently catalyzes a specific set of intramolecular DNA deletion-ligation reactions. When synthetic DNA oligonucleotide substrates were used, all the deletion-ligation products resembled those formed in vivo in that they resulted from deletions between pairs of short direct repeats. The reaction is ATP-dependent, salt-sensitive, and strongly influenced by the oligonucleotide substrate sequence. The deletion-ligation activity has an apparent size of 200-500 kd, no nuclease-sensitive component, and is highly enriched in cells developing new macronuclei. The temperature inactivation profile of the activity parallels the temperature lethality profile specific for Tetrahymena cells developing new macronuclei. We suggest that this deletion-ligation activity carries out the genomic deletions in developing macronuclei in vivo.

  4. Congenital insensitivity to pain: novel SCN9A missense and in-frame deletion mutations.

    Science.gov (United States)

    Cox, James J; Sheynin, Jony; Shorer, Zamir; Reimann, Frank; Nicholas, Adeline K; Zubovic, Lorena; Baralle, Marco; Wraige, Elizabeth; Manor, Esther; Levy, Jacov; Woods, C Geoffery; Parvari, Ruti

    2010-09-01

    SCN9Aencodes the voltage-gated sodium channel Na(v)1.7, a protein highly expressed in pain-sensing neurons. Mutations in SCN9A cause three human pain disorders: bi-allelic loss of function mutations result in Channelopathy-associated Insensitivity to Pain (CIP), whereas activating mutations cause severe episodic pain in Paroxysmal Extreme Pain Disorder (PEPD) and Primary Erythermalgia (PE). To date, all mutations in SCN9A that cause a complete inability to experience pain are protein truncating and presumably lead to no protein being produced. Here, we describe the identification and functional characterization of two novel non-truncating mutations in families with CIP: a homozygously-inherited missense mutation found in a consanguineous Israeli Bedouin family (Na(v)1.7-R896Q) and a five amino acid in-frame deletion found in a sporadic compound heterozygote (Na(v)1.7-DeltaR1370-L1374). Both of these mutations map to the pore region of the Na(v)1.7 sodium channel. Using transient transfection of PC12 cells we found a significant reduction in membrane localization of the mutant protein compared to the wild type. Furthermore, voltage clamp experiments of mutant-transfected HEK293 cells show a complete loss of function of the sodium channel, consistent with the absence of pain phenotype. In summary, this study has identified critical amino acids needed for the normal subcellular localization and function of Na(v)1.7.

  5. Reverse genetic screen for loss-of-function mutations uncovers a frameshifting deletion in the melanophilin gene accountable for a distinctive coat color in Belgian Blue cattle.

    Science.gov (United States)

    Li, Wanbo; Sartelet, Arnaud; Tamma, Nico; Coppieters, Wouter; Georges, Michel; Charlier, Carole

    2016-02-01

    In the course of a reverse genetic screen in the Belgian Blue cattle breed, we uncovered a 10-bp deletion (c.87_96del) in the first coding exon of the melanophilin gene (MLPH), which introduces a premature stop codon (p.Glu32Aspfs*1) in the same exon, truncating 94% of the protein. Recessive damaging mutations in the MLPH gene are well known to cause skin, hair, coat or plumage color dilution phenotypes in numerous species, including human, mice, dog, cat, mink, rabbit, chicken and quail. Large-scale array genotyping undertaken to identify p.Glu32Aspfs*1 homozygous mutant animals revealed a mutation frequency of 5% in the breed and allowed for the identification of 10 homozygous mutants. As expression of a colored coat requires at least one wild-type allele at the co-dominant Roan locus encoded by the KIT ligand gene (KITLG), homozygous mutants for p.Ala227Asp corresponding with the missense mutation were excluded. The six remaining colored calves displayed a distinctive dilution phenotype as anticipated. This new coat color was named 'cool gray'. It is the first damaging mutation in the MLPH gene described in cattle and extends the already long list of species with diluted color due to recessive mutations in MLPH and broadens the color palette of gray in this breed.

  6. Examining the sex- and circadian dependency of a learning phenotype in mice with glycine transporter 1 deletion in two Pavlovian conditioning paradigms.

    Science.gov (United States)

    Dubroqua, Sylvain; Boison, Detlev; Feldon, Joram; Möhler, Hanns; Yee, Benjamin K

    2011-09-01

    Behavioural characterisation of transgenic mice has been instrumental in search of therapeutic targets for the modulation of cognitive function. However, little effort has been devoted to phenotypic characterisation across environmental conditions and genomic differences such as sex and strain, which is essential to translational research. The present study is an effort in this direction. It scrutinised the stability and robustness of the phenotype of enhanced Pavlovian conditioning reported in mice with forebrain neuronal deletion of glycine transporter 1 by evaluating the possible presence of sex and circadian dependency, and its consistency across aversive and appetitive conditioning paradigms. The Pavlovian phenotype was essentially unaffected by the time of testing between the two circadian phases, but it was modified by sex in both conditioning paradigms. We observed that the effect size of the phenotype was strongest in female mice tested during the dark phase in the aversive paradigm. Critically, the presence of the phenotype in female mutants was accompanied by an increase in resistance to extinction. Similarly, enhanced conditioned responding once again emerged solely in female mutants in the appetitive conditioning experiment, which was again associated with an increased resistance to extinction across days, but male mutants exhibited an opposite trend towards facilitation of extinction. The present study has thus added hitherto unknown qualifications and specifications of a previously reported memory enhancing phenotype in this mouse line by identifying the determinants of the magnitude and direction of the expressed phenotype. This in-depth comparative approach is of value to the interpretation of behavioural findings in general.

  7. Mutant INS-gene induced diabetes of youth: proinsulin cysteine residues impose dominant-negative inhibition on wild-type proinsulin transport.

    Directory of Open Access Journals (Sweden)

    Ming Liu

    Full Text Available Recently, a syndrome of Mutant INS-gene-induced Diabetes of Youth (MIDY, derived from one of 26 distinct mutations has been identified as a cause of insulin-deficient diabetes, resulting from expression of a misfolded mutant proinsulin protein in the endoplasmic reticulum (ER of insulin-producing pancreatic beta cells. Genetic deletion of one, two, or even three alleles encoding insulin in mice does not necessarily lead to diabetes. Yet MIDY patients are INS-gene heterozygotes; inheritance of even one MIDY allele, causes diabetes. Although a favored explanation for the onset of diabetes is that insurmountable ER stress and ER stress response from the mutant proinsulin causes a net loss of beta cells, in this report we present three surprising and interlinked discoveries. First, in the presence of MIDY mutants, an increased fraction of wild-type proinsulin becomes recruited into nonnative disulfide-linked protein complexes. Second, regardless of whether MIDY mutations result in the loss, or creation, of an extra unpaired cysteine within proinsulin, Cys residues in the mutant protein are nevertheless essential in causing intracellular entrapment of co-expressed wild-type proinsulin, blocking insulin production. Third, while each of the MIDY mutants induces ER stress and ER stress response; ER stress and ER stress response alone appear insufficient to account for blockade of wild-type proinsulin. While there is general agreement that ultimately, as diabetes progresses, a significant loss of beta cell mass occurs, the early events described herein precede cell death and loss of beta cell mass. We conclude that the molecular pathogenesis of MIDY is initiated by perturbation of the disulfide-coupled folding pathway of wild-type proinsulin.

  8. Molecular cloning with bifunctional plasmid vectors in Bacillus subtilis: isolation of a spontaneous mutant of Bacillus subtilis with enhanced transformability for Escherichia coli-propagated chimeric plasmid DNA.

    OpenAIRE

    Ostroff, G. R.; Pène, J. J.

    1983-01-01

    Hybrid plasmid DNA cloned in Escherichia coli undergoes deletions when returned to competent Bacillus subtilis, even in defined restriction and modification mutants of strain 168. We have isolated a mutant of B. subtilis MI112 which is stably transformed at high frequency by chimeric plasmid DNA propagated in E. coli.

  9. ECB deacylase mutants

    Science.gov (United States)

    Arnold, Frances H.; Shao, Zhixin; Zhao, Huimin; Giver, Lorraine J.

    2002-01-01

    A method for in vitro mutagenesis and recombination of polynucleotide sequences based on polymerase-catalyzed extension of primer oligonucleotides is disclosed. The method involves priming template polynucleotide(s) with random-sequences or defined-sequence primers to generate a pool of short DNA fragments with a low level of point mutations. The DNA fragments are subjected to denaturization followed by annealing and further enzyme-catalyzed DNA polymerization. This procedure is repeated a sufficient number of times to produce full-length genes which comprise mutants of the original template polynucleotides. These genes can be further amplified by the polymerase chain reaction and cloned into a vector for expression of the encoded proteins.

  10. Mechanical Genomics Identifies Diverse Modulators of Bacterial Cell Stiffness.

    Science.gov (United States)

    Auer, George K; Lee, Timothy K; Rajendram, Manohary; Cesar, Spencer; Miguel, Amanda; Huang, Kerwyn Casey; Weibel, Douglas B

    2016-06-22

    Bacteria must maintain mechanical integrity to withstand the large osmotic pressure differential across the cell membrane and wall. Although maintaining mechanical integrity is critical for proper cellular function, a fact exploited by prominent cell-wall-targeting antibiotics, the proteins that contribute to cellular mechanics remain unidentified. Here, we describe a high-throughput optical method for quantifying cell stiffness and apply this technique to a genome-wide collection of ∼4,000 Escherichia coli mutants. We identify genes with roles in diverse functional processes spanning cell-wall synthesis, energy production, and DNA replication and repair that significantly change cell stiffness when deleted. We observe that proteins with biochemically redundant roles in cell-wall synthesis exhibit different stiffness defects when deleted. Correlating our data with chemical screens reveals that reducing membrane potential generally increases cell stiffness. In total, our work demonstrates that bacterial cell stiffness is a property of both the cell wall and broader cell physiology and lays the groundwork for future systematic studies of mechanoregulation.

  11. Correctors of ΔF508 CFTR restore global conformational maturation without thermally stabilizing the mutant protein.

    Science.gov (United States)

    He, Lihua; Kota, Pradeep; Aleksandrov, Andrei A; Cui, Liying; Jensen, Tim; Dokholyan, Nikolay V; Riordan, John R

    2013-02-01

    Most cystic fibrosis is caused by the deletion of a single amino acid (F508) from CFTR and the resulting misfolding and destabilization of the protein. Compounds identified by high-throughput screening to improve ΔF508 CFTR maturation have already entered clinical trials, and it is important to understand their mechanisms of action to further improve their efficacy. Here, we showed that several of these compounds, including the investigational drug VX-809, caused a much greater increase (5- to 10-fold) in maturation at 27 than at 37°C (CFTR can be completely assembled and evade cellular quality control systems, while remaining thermodynamically unstable. He, L., Kota, P., Aleksandrov, A. A., Cui, L., Jensen, T., Dokholyan, N. V., Riordan, J. R. Correctors of ΔF508 CFTR restore global conformational maturation without thermally stabilizing the mutant protein.

  12. Gene deletion strategy to examine the involvement of the two chondroitin lyases in Flavobacterium columnare virulence.

    Science.gov (United States)

    Li, Nan; Qin, Ting; Zhang, Xiao Lin; Huang, Bei; Liu, Zhi Xin; Xie, Hai Xia; Zhang, Jin; McBride, Mark J; Nie, Pin

    2015-11-01

    Flavobacterium columnare is an important bacterial pathogen of freshwater fish that causes high mortality of infected fish and heavy economic losses in aquaculture. The pathogenesis of this bacterium is poorly understood, in part due to the lack of efficient methods for genetic manipulation. In this study, a gene deletion strategy was developed and used to determine the relationship between the production of chondroitin lyases and virulence. The F. johnsoniae ompA promoter (PompA) was fused to sacB to construct a counterselectable marker for F. columnare. F. columnare carrying PompA-sacB failed to grow on media containing 10% sucrose. A suicide vector carrying PompA-sacB was constructed, and a gene deletion strategy was developed. Using this approach, the chondroitin lyase-encoding genes, cslA and cslB, were deleted. The ΔcslA and ΔcslB mutants were both partially deficient in digestion of chondroitin sulfate A, whereas a double mutant (ΔcslA ΔcslB) was completely deficient in chondroitin lyase activity. Cells of F. columnare wild-type strain G4 and of the chondroitin lyase-deficient ΔcslA ΔcslB mutant exhibited similar levels of virulence toward grass carp in single-strain infections. Coinfections, however, revealed a competitive advantage for the wild type over the chondroitin lyase mutant. The results indicate that chondroitin lyases are not essential virulence factors of F. columnare but may contribute to the ability of the pathogen to compete and cause disease in natural infections. The gene deletion method developed in this study may be employed to investigate the virulence factors of this bacterium and may have wide application in many other members of the phylum Bacteroidetes.

  13. Deletion of JJJ1 improves acetic acid tolerance and bioethanol fermentation performance of Saccharomyces cerevisiae strains.

    Science.gov (United States)

    Wu, Xuechang; Zhang, Lijie; Jin, Xinna; Fang, Yahong; Zhang, Ke; Qi, Lei; Zheng, Daoqiong

    2016-07-01

    To improve tolerance to acetic acid that is present in lignocellulosic hydrolysates and affects bioethanol production by Saccharomyces cerevisiae. Saccharomyces cerevisiae strains with improved tolerance to acetic acid were obtained through deletion of the JJJ1 gene. The lag phase of the JJJ1 deletion mutant BYΔJJJ1 was ~16 h shorter than that of the parent strain, BY4741, when the fermentation medium contained 4.5 g acetic acid/l. Additionally, the specific ethanol production rate of BYΔJJJ1 was increased (0.057 g/g h) compared to that of the parent strain (0.051 g/g h). Comparative transcription and physiological analyses revealed higher long chain fatty acid, trehalose, and catalase contents might be critical factors responsible for the acetic acid resistance of JJJ1 knockout strains. JJJ1 deletion improves acetic acid tolerance and ethanol fermentation performance of S. cerevisiae.

  14. Deciphering the intracellular metabolism of Listeria monocytogenes by mutant screening and modelling

    Directory of Open Access Journals (Sweden)

    Dandekar Thomas

    2010-10-01

    Full Text Available Abstract Background The human pathogen Listeria monocytogenes resides and proliferates within the cytoplasm of epithelial cells. While the virulence factors essentially contributing to this step of the infection cycle are well characterized, the set of listerial genes contributing to intracellular replication remains to be defined on a genome-wide level. Results A comprehensive library of L. monocytogenes strain EGD knockout mutants was constructed upon insertion-duplication mutagenesis, and 1491 mutants were tested for their phenotypes in rich medium and in a Caco-2 cell culture assay. Following sequencing of the plasmid insertion site, 141 different genes required for invasion of and replication in Caco-2 cells were identified. Ten in-frame deletion mutants were constructed that confirmed the data. The genes with known functions are mainly involved in cellular processes including transport, in the intermediary metabolism of sugars, nucleotides and lipids, and in information pathways such as regulatory functions. No function could be ascribed to 18 genes, and a counterpart of eight genes is missing in the apathogenic species L. innocua. Mice infection studies revealed the in vivo requirement of IspE (Lmo0190 involved in mevalonate synthesis, and of the novel ABC transporter Lmo0135-0137 associated with cysteine transport. Based on the data of this genome-scale screening, an extreme pathway and elementary mode analysis was applied that demonstrates the critical role of glycerol and purine metabolism, of fucose utilization, and of the synthesis of glutathione, aspartate semialdehyde, serine and branched chain amino acids during intracellular replication of L. monocytogenes. Conclusion The combination of a genetic screening and a modelling approach revealed that a series of transporters help L. monocytogenes to overcome a putative lack of nutrients within cells, and that a high metabolic flexibility contributes to the intracellular replication of

  15. Phenotypic characterization of glucose repression mutants of Saccharomyce cerevisiae usinge experiments with C-13-labelled glucose

    DEFF Research Database (Denmark)

    Vijayendran, Raghevendran; Gombert, A.K.; Christensen, B.

    2004-01-01

    glucose. Through GC-MS analysis of the C-13 incorporated into the amino acids of cellular proteins, it was possible to obtain quantitative information on the function of the central carbon metabolism in the different mutants. Traditionally, such labelling data have been used to quantify metabolic fluxes...... through the use of a suitable mathematical model, but here we show that the raw labelling data may also be used directly for phenotypic characterization of different mutant strains. Different glucose derepressed strains investigated employed are the disruption mutants reg1, hxk2, grr1, mig1 and mig1mig2...... and the reference strain CEN.PK113-7D. Principal components analysis of the summed fractional labelling data show that deleting the genes HXK2 and GRR1 results in similar phenotype at the fluxome level, with a partial alleviation of glucose repression on the respiratory metabolism. Furthermore, deletion...

  16. BRED: a simple and powerful tool for constructing mutant and recombinant bacteriophage genomes.

    Directory of Open Access Journals (Sweden)

    Laura J Marinelli

    Full Text Available Advances in DNA sequencing technology have facilitated the determination of hundreds of complete genome sequences both for bacteria and their bacteriophages. Some of these bacteria have well-developed and facile genetic systems for constructing mutants to determine gene function, and recombineering is a particularly effective tool. However, generally applicable methods for constructing defined mutants of bacteriophages are poorly developed, in part because of the inability to use selectable markers such as drug resistance genes during viral lytic growth. Here we describe a method for simple and effective directed mutagenesis of bacteriophage genomes using Bacteriophage Recombineering of Electroporated DNA (BRED, in which a highly efficient recombineering system is utilized directly on electroporated phage DNA; no selection is required and mutants can be readily detected by PCR. We describe the use of BRED to construct unmarked gene deletions, in-frame internal deletions, base substitutions, precise gene replacements, and the addition of gene tags.

  17. Characterization of hemizygous deletions in citrus using array-comparative genomic hybridization and microsynteny comparisons with the poplar genome.

    Science.gov (United States)

    Ríos, Gabino; Naranjo, Miguel A; Iglesias, Domingo J; Ruiz-Rivero, Omar; Geraud, Marion; Usach, Antonio; Talón, Manuel

    2008-08-09

    Many fruit-tree species, including relevant Citrus spp varieties exhibit a reproductive biology that impairs breeding and strongly constrains genetic improvements. In citrus, juvenility increases the generation time while sexual sterility, inbreeding depression and self-incompatibility prevent the production of homozygous cultivars. Genomic technology may provide citrus researchers with a new set of tools to address these various restrictions. In this work, we report a valuable genomics-based protocol for the structural analysis of deletion mutations on an heterozygous background. Two independent fast neutron mutants of self-incompatible clementine (Citrus clementina Hort. Ex Tan. cv. Clemenules) were the subject of the study. Both mutants, named 39B3 and 39E7, were expected to carry DNA deletions in hemizygous dosage. Array-based Comparative Genomic Hybridization (array-CGH) using a Citrus cDNA microarray allowed the identification of underrepresented genes in these two mutants. Subsequent comparison of citrus deleted genes with annotated plant genomes, especially poplar, made possible to predict the presence of a large deletion in 39B3 of about 700 kb and at least two deletions of approximately 100 and 500 kb in 39E7. The deletion in 39B3 was further characterized by PCR on available Citrus BACs, which helped us to build a partial physical map of the deletion. Among the deleted genes, ClpC-like gene coding for a putative subunit of a multifunctional chloroplastic protease involved in the regulation of chlorophyll b synthesis was directly related to the mutated phenotype since the mutant showed a reduced chlorophyll a/b ratio in green tissues. In this work, we report the use of array-CGH for the successful identification of genes included in a hemizygous deletion induced by fast neutron irradiation on Citrus clementina. The study of gene content and order into the 39B3 deletion also led to the unexpected conclusion that microsynteny and local gene colinearity in

  18. Characterization of hemizygous deletions in Citrus using array-Comparative Genomic Hybridization and microsynteny comparisons with the poplar genome

    Directory of Open Access Journals (Sweden)

    Usach Antonio

    2008-08-01

    Full Text Available Abstract Background Many fruit-tree species, including relevant Citrus spp varieties exhibit a reproductive biology that impairs breeding and strongly constrains genetic improvements. In citrus, juvenility increases the generation time while sexual sterility, inbreeding depression and self-incompatibility prevent the production of homozygous cultivars. Genomic technology may provide citrus researchers with a new set of tools to address these various restrictions. In this work, we report a valuable genomics-based protocol for the structural analysis of deletion mutations on an heterozygous background. Results Two independent fast neutron mutants of self-incompatible clementine (Citrus clementina Hort. Ex Tan. cv. Clemenules were the subject of the study. Both mutants, named 39B3 and 39E7, were expected to carry DNA deletions in hemizygous dosage. Array-based Comparative Genomic Hybridization (array-CGH using a Citrus cDNA microarray allowed the identification of underrepresented genes in these two mutants. Subsequent comparison of citrus deleted genes with annotated plant genomes, especially poplar, made possible to predict the presence of a large deletion in 39B3 of about 700 kb and at least two deletions of approximately 100 and 500 kb in 39E7. The deletion in 39B3 was further characterized by PCR on available Citrus BACs, which helped us to build a partial physical map of the deletion. Among the deleted genes, ClpC-like gene coding for a putative subunit of a multifunctional chloroplastic protease involved in the regulation of chlorophyll b synthesis was directly related to the mutated phenotype since the mutant showed a reduced chlorophyll a/b ratio in green tissues. Conclusion In this work, we report the use of array-CGH for the successful identification of genes included in a hemizygous deletion induced by fast neutron irradiation on Citrus clementina. The study of gene content and order into the 39B3 deletion also led to the unexpected

  19. Structures of Pseudomonas aeruginosa β-ketoacyl-(acyl-carrier-protein) synthase II (FabF) and a C164Q mutant provide templates for antibacterial drug discovery and identify a buried potassium ion and a ligand-binding site that is an artefact of the crystal form

    Energy Technology Data Exchange (ETDEWEB)

    Baum, Bernhard [Johannes Gutenberg-Universität, Staudinger Weg 5, 55128 Mainz (Germany); Lecker, Laura S. M.; Zoltner, Martin [University of Dundee, Dundee DD1 4EH, Scotland (United Kingdom); Jaenicke, Elmar [Johannes Gutenberg-Universität, Jakob Welder Weg 26, 55128 Mainz (Germany); Schnell, Robert [Karolinska Institutet, 17 177 Stockholm (Sweden); Hunter, William N., E-mail: w.n.hunter@dundee.ac.uk [University of Dundee, Dundee DD1 4EH, Scotland (United Kingdom); Brenk, Ruth, E-mail: w.n.hunter@dundee.ac.uk [Johannes Gutenberg-Universität, Staudinger Weg 5, 55128 Mainz (Germany)

    2015-07-28

    Three crystal structures of recombinant P. aeruginosa FabF are reported: the apoenzyme, an active-site mutant and a complex with a fragment of a natural product inhibitor. The characterization provides reagents and new information to support antibacterial drug discovery. Bacterial infections remain a serious health concern, in particular causing life-threatening infections of hospitalized and immunocompromised patients. The situation is exacerbated by the rise in antibacterial drug resistance, and new treatments are urgently sought. In this endeavour, accurate structures of molecular targets can support early-stage drug discovery. Here, crystal structures, in three distinct forms, of recombinant Pseudomonas aeruginosa β-ketoacyl-(acyl-carrier-protein) synthase II (FabF) are presented. This enzyme, which is involved in fatty-acid biosynthesis, has been validated by genetic and chemical means as an antibiotic target in Gram-positive bacteria and represents a potential target in Gram-negative bacteria. The structures of apo FabF, of a C164Q mutant in which the binding site is altered to resemble the substrate-bound state and of a complex with 3-(benzoylamino)-2-hydroxybenzoic acid are reported. This compound mimics aspects of a known natural product inhibitor, platensimycin, and surprisingly was observed binding outside the active site, interacting with a symmetry-related molecule. An unusual feature is a completely buried potassium-binding site that was identified in all three structures. Comparisons suggest that this may represent a conserved structural feature of FabF relevant to fold stability. The new structures provide templates for structure-based ligand design and, together with the protocols and reagents, may underpin a target-based drug-discovery project for urgently needed antibacterials.

  20. Bridging the Gene-Behavior Divide through Neuroimaging Deletion Syndromes: Velocardiofacial (22q11.2 Deletion) and Williams (7q11.23 Deletion) Syndromes

    Science.gov (United States)

    Eisenberg, Daniel Paul; Jabbi, Mbemba; Berman, Karen Faith

    2010-01-01

    Investigating the relationship between genes and the neural substrates of complex human behavior promises to provide essential insight into the pathophysiology of mental disorders. One approach to this inquiry is through neuroimaging of individuals with microdeletion syndromes that manifest in specific neuropsychiatric phenotypes. Both Velocardiofacial Syndrome (VCFS) and Williams Syndrome (WS) involve haploinsufficiency of a relatively small set of identified genes on the one hand and association with distinct, clinically-relevant behavioral and cognitive profiles on the other hand. In VCFS, there is a deletion in chromosomal region 22q11.2 and a resultant predilection toward psychosis, poor arithmetic proficiency, and low performance intelligence quotients. In WS, there is a deletion in chromosomal region 7q11.23 and a resultant predilection toward hypersociability, non-social anxiety, impaired visuospatial construction, and often intellectual impairment. Structural and functional neuroimaging studies have begun not only to map these well-defined genetic alterations to systems-level brain abnormalities, but also to identify relationships between neural phenotypes and particular genes within the critical deletion regions. Though neuroimaging of both VCFS and WS presents specific, formidable methodological challenges, including comparison subject selection and accounting for neuroanatomical and vascular anomalies in patients, and many questions remain, the literature to date on these syndromes, reviewed herein, constitutes a fruitful “bottom-up” approach to defining gene-brain relationships. PMID:20206275

  1. Impact of 22q deletion syndrome on speech outcomes following primary surgery for submucous cleft palate.

    Science.gov (United States)

    Bezuhly, Michael; Fischbach, Simone; Klaiman, Paula; Fisher, David M

    2012-03-01

    Patients with 22q deletion syndrome are at increased risk of submucous cleft palate and velopharyngeal insufficiency. The authors' aim is to evaluate speech outcomes following primary Furlow palatoplasty or pharyngeal flap for correction of velopharyngeal insufficiency in submucous cleft palate patients with and without 22q deletion syndrome. Records of submucous cleft palate patients who underwent primary surgery between 2001 and 2010 were reviewed. Data included 22q deletion syndrome diagnosis, age at surgery, procedure, preoperative nasopharyngoscopy and nasometry, speech outcomes, complications, and secondary surgery rates. Seventy-eight submucous cleft palate patients were identified. Twenty-three patients had 22q deletion syndrome. Fewer 22q deletion syndrome patients obtained normal resonance on perceptual assessment compared with nonsyndromic patients (74 percent versus 88 percent). A similar difference existed based on postoperative nasometric scores. Among 22q deletion syndrome patients, similar success rates were achieved with Furlow palatoplasty and pharyngeal flap. No difference in the proportion improved postoperatively was noted between 22q deletion syndrome and nonsyndromic groups. One complication was experienced per group. More revision operations were indicated in the 22q deletion syndrome group (17 percent) compared with the nonsyndromic group (4 percent). Median times to normal resonance for 22q deletion syndrome and nonsyndromic patients were 150 weeks and 34 weeks, respectively. Adjusting for multiple variables, 22q deletion syndrome patients were 3.6 times less likely to develop normal resonance. Careful selection of Furlow palatoplasty or pharyngeal flap for primary repair of submucous cleft palate is highly effective in 22q deletion syndrome patients and yields results approaching those of nonsyndromic patients. Therapeutic, III.

  2. Outcomes in patients with multiple myeloma with TP53 deletion after autologous hematopoietic stem cell transplant.

    Science.gov (United States)

    Gaballa, Sameh; Saliba, Rima M; Srour, Samer; Lu, Gary; Brammer, Jonathan E; Shah, Nina; Bashir, Qaiser; Patel, Krina; Bock, Fabian; Parmar, Simrit; Hosing, Chitra; Popat, Uday; Delgado, Ruby; Rondon, Gabriela; Shah, Jatin J; Manasanch, Elisabet E; Orlowski, Robert Z; Champlin, Richard; Qazilbash, Muzaffar H

    2016-10-01

    TP53 gene deletion is associated with poor outcomes in multiple myeloma (MM). We report the outcomes of patients with MM with and without TP53 deletion who underwent immunomodulatory drug (IMiD) and/or proteasome inhibitor (PI) induction followed by autologous hematopoietic stem cell transplant (auto-HCT). We identified 34 patients with MM and TP53 deletion who underwent IMiD and/or PI induction followed by auto-HCT at our institution during 2008-2014. We compared their outcomes with those of control patients (n = 111) with MM without TP53 deletion. Median age at auto-HCT was 59 years in the TP53-deletion group and 58 years in the control group (P = 0.4). Twenty-one patients (62%) with TP53 deletion and 69 controls (62%) achieved at least partial remission before auto-HCT (P = 0.97). Twenty-three patients (68%) with TP53 deletion and 47 controls (42%) had relapsed disease at auto-HCT (P = 0.01). Median progression-free survival was 8 months for patients with TP53 deletion and 28 months for controls (P TP53 deletion and 56 months for controls (P TP53 deletion (hazard ratio 3.4, 95% confidence interval 1.9-5.8, P TP53 deletion and relapsed disease at the time of auto-HCT are independent predictors of progression. Novel approaches should be evaluated in this high-risk population. Am. J. Hematol. 91:E442-E447, 2016. © 2016 Wiley Periodicals, Inc.

  3. Alu recombination-mediated structural deletions in the chimpanzee genome.

    Directory of Open Access Journals (Sweden)

    Kyudong Han

    2007-10-01

    Full Text Available With more than 1.2 million copies, Alu elements are one of the most important sources of structural variation in primate genomes. Here, we compare the chimpanzee and human genomes to determine the extent of Alu recombination-mediated deletion (ARMD in the chimpanzee genome since the divergence of the chimpanzee and human lineages ( approximately 6 million y ago. Combining computational data analysis and experimental verification, we have identified 663 chimpanzee lineage-specific deletions (involving a total of approximately 771 kb of genomic sequence attributable to this process. The ARMD events essentially counteract the genomic expansion caused by chimpanzee-specific Alu inserts. The RefSeq databases indicate that 13 exons in six genes, annotated as either demonstrably or putatively functional in the human genome, and 299 intronic regions have been deleted through ARMDs in the chimpanzee lineage. Therefore, our data suggest that this process may contribute to the genomic and phenotypic diversity between chimpanzees and humans. In addition, we found four independent ARMD events at orthologous loci in the gorilla or orangutan genomes. This suggests that human orthologs of loci at which ARMD events have already occurred in other nonhuman primate genomes may be "at-risk" motifs for future deletions, which may subsequently contribute to human lineage-specific genetic rearrangements and disorders.

  4. Somatic mutational analysis of FAK in breast cancer: A novel gain-of-function mutation due to deletion of exon 33

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Xu-Qian [Department of Clinical Laboratory, Ruijin Hospital, Shanghai JiaoTong University School of Medicine, Shanghai (China); Liu, Xiang-Fan [Faculty of Medical Laboratory Science, Shanghai JiaoTong University School of Medicine, Shanghai (China); Yao, Ling [Department of Biochemistry and Molecular Biology, Shanghai JiaoTong University School of Medicine, Shanghai (China); Chen, Chang-Qiang; Gu, Zhi-Dong [Department of Clinical Laboratory, Ruijin Hospital, Shanghai JiaoTong University School of Medicine, Shanghai (China); Ni, Pei-Hua [Faculty of Medical Laboratory Science, Shanghai JiaoTong University School of Medicine, Shanghai (China); Zheng, Xin-Min [Department of Biochemistry and Molecular Biology, Shanghai JiaoTong University School of Medicine, Shanghai (China); Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY (United States); Fan, Qi-Shi, E-mail: qishifan@126.com [Department of Clinical Laboratory, Ruijin Hospital, Shanghai JiaoTong University School of Medicine, Shanghai (China)

    2014-01-10

    Highlights: •A novel FAK splicing mutation identified in breast tumor. •FAK-Del33 mutation promotes cell migration and invasion. •FAK-Del33 mutation regulates FAK/Src signal pathway. -- Abstract: Focal adhesion kinase (FAK) regulates cell adhesion, migration, proliferation, and survival. We identified a novel splicing mutant, FAK-Del33 (exon 33 deletion, KF437463), in both breast and thyroid cancers through colony sequencing. Considering the low proportion of mutant transcripts in samples, this mutation was detected by TaqMan-MGB probes based qPCR. In total, three in 21 paired breast tissues were identified with the FAK-Del33 mutation, and no mutations were found in the corresponding normal tissues. When introduced into a breast cell line through lentivirus infection, FAK-Del33 regulated cell motility and migration based on a wound healing assay. We demonstrated that the expression of Tyr397 (main auto-phosphorylation of FAK) was strongly increased in FAK-Del33 overexpressed breast tumor cells compared to wild-type following FAK/Src RTK signaling activation. These results suggest a novel and unique role of the FAK-Del33 mutation in FAK/Src signaling in breast cancer with significant implications for metastatic potential.

  5. The chromosome 9q subtelomere deletion syndrome

    NARCIS (Netherlands)

    Stewart, D.R.; Kleefstra, T.

    2007-01-01

    The chromosome 9q subtelomere deletion syndrome (9qSTDS) is among the first and most common clinically recognizable syndromes to arise from widespread testing by fluorescent in situ hybridization (FISH) of subtelomere deletions. There are about 50 reported cases worldwide. Affected individuals invar

  6. Seven gene deletions in seven days

    DEFF Research Database (Denmark)

    Ingemann Jensen, Sheila; Lennen, Rebecca; Herrgard, Markus;

    2015-01-01

    enables growth at 37 °C, thereby facilitating removal of integrated antibiotic cassettes and deletion of additional genes in the same day. Phosphorothioated primers were demonstrated to enable simultaneous deletions during one round of electroporation. Utilizing these methods, we constructed strains...

  7. Union-Find with Constant Time Deletions

    DEFF Research Database (Denmark)

    Alstrup, Stephen; Thorup, Mikkel; Gørtz, Inge Li

    2014-01-01

    A union-find data structure maintains a collection of disjoint sets under the operations makeset, union, and find. Kaplan, Shafrir, and Tarjan [SODA 2002] designed data structures for an extension of the union-find problem in which items of the sets maintained may be deleted. The cost of a delete...

  8. Characterization of large deletions occurring during a single round of retrovirus vector replication: novel deletion mechanism involving errors in strand transfer.

    Science.gov (United States)

    Pulsinelli, G A; Temin, H M

    1991-09-01

    Retroviruses mutate at a high rate during replication. We used a spleen necrosis virus-based vector system and helper cell line to characterize mutations occurring during a single round of retrovirus replication. The vector used, JD216HyNeo, codes for two drug resistance genes, hygromycin resistance (hygro) and neomycin resistance (neo). The downstream neo gene is expressed only when a mutation alleviates a block to splicing which is located in the upstream hygro gene. The mutations allowing splicing were large deletions, ranging in size from about 500 to about 2,000 bp. Most of the mutant proviruses lacked the encapsidation sequence, as shown by our inability to rescue the mutant proviruses with wild-type reticuloendotheliosis virus strain A and confirmed by Southern blotting and direct DNA sequence analysis. We therefore concluded that most of the deletions arose during reverse transcription in the target cell, rather than during transcription in the host cell. The sequence data also indicated that the deletions occurred by at least three different mechanisms: (i) misalignment of the growing point; (ii) incorrect synthesis and termination in the primer-binding sequence during synthesis of the plus-strand strong-stop DNA; and (iii) incorrect synthesis and termination before the primer-binding sequence during synthesis of the plus-strand strong-stop DNA. The second mechanism also led to the incorporation of cellular sequences into the proviral genome, pointing to a potential novel mechanism by which retroviruses can acquire cellular genes.

  9. Spontaneous Nif- mutants of Rhodopseudomonas capsulata.

    OpenAIRE

    Wall, J D; Love, J.; Quinn, S P

    1984-01-01

    Revertible, spontaneous Nif- mutants of Rhodopseudomonas capsulata have been shown to accumulate in cultures growing photosynthetically with an amino acid as the nitrogen source such that H2 is maximally produced. The majority of such strains carry mutations which are clustered in a short region of the chromosome, probably representing one or two genes. Because this cluster includes temperature-sensitive mutations, it is also likely that it identifies the structural gene of a polypeptide. The...

  10. FOXL2 copy number changes in the molecular pathogenesis of BPES: unique cohort of 17 deletions.

    Science.gov (United States)

    D'haene, B; Nevado, J; Pugeat, M; Pierquin, G; Lowry, R B; Reardon, W; Delicado, A; García-Miñaur, S; Palomares, M; Courtens, W; Stefanova, M; Wallace, S; Watkins, W; Shelling, A N; Wieczorek, D; Veitia, R A; De Paepe, A; Lapunzina, P; De Baere, E

    2010-05-01

    Blepharophimosis Syndrome (BPES) is an autosomal dominant developmental disorder of the eyelids with or without ovarian dysfunction caused by FOXL2 mutations. Overall, FOXL2deletions represent 12% of all genetic defects in BPES. Here, we have identified and characterized 16 new and one known FOXL2 deletion combining multiplex ligation-dependent probe amplification (MLPA), custom-made quantitative PCR (qPCR) and/or microarray-based copy number screening. The deletion breakpoints could be localized for 13 out of 17 deletions. The deletion size is highly variable (29.8 kb - 11.5 Mb), indicating absence of a recombination hotspot. Although the heterogeneity of their size and breakpoints is not reflected in the uniform BPES phenotype, there is considerable phenotypic variability regarding associated clinical findings including psychomotor retardation (8/17), microcephaly (6/17), and subtle skeletal features (2/17). In addition, in all females in whom ovarian function could be assessed, FOXL2 deletions proved to be associated with variable degrees of ovarian dysfunction. In conclusion, we present the largest series of BPES patients with FOXL2 deletions and standardized phenotyping reported so far. Our genotype-phenotype data can be useful for providing a prognosis (i.e. occurrence of associated features) in newborns with BPES carrying a FOXL2 deletion.

  11. Detection of Homozygous Deletions and Mutations in the CDKN2A Gene in Hydatidiform Moles

    Institute of Scientific and Technical Information of China (English)

    Jing Wang; Shuying Wu; Ying Gu; Yan Zhu; Xiaowei Zhang

    2008-01-01

    OBJECTIVE To investigate homozygous deletions and mutations in the CDKN2A gene (p16INK4a and p14ARF gene) in hydatidiform moles.METHODS A total of 38 hydatidiform mole samples and 30 villi samples were examined for homozygous deletions in the CDKN2A gene by PCR and for mutations by DHPLC.RESULTS I) Among 38 hydatidiform mole samples,homozygous deletions in the p16INK4a exon 1 were identified in 5 cases (13.2%), while no homozygous deletions were found in the p16INK4a exon 1 of 30 early-pregnancy samples. The rates of those deletions in hydatidiform compared to early-pregnancy villi samples was statistically significant (P = 0.036). Ii) No homozygous deletions in the p14ARF exon 1 or p16INK4a exon 2 were found in any of the hydatidiform moles or early-preganancy samples, iii)In all hydatidiform moles and early-pregnancy villi samples, no mutations were detected by DHPLC.CONCLUSION We suggest there may be a close correlation between homozygous deletions in the CDKN2A gene and occurrence of hydatidiform moles variation in the CDKN2A gene is mainly caused by homozygous deletions, while mutations may be not a major cause.

  12. Molecular characterization of CTNS deletions in nephropathic cystinosis: development of a PCR-based detection assay.

    Science.gov (United States)

    Forestier, L; Jean, G; Attard, M; Cherqui, S; Lewis, C; van't Hoff, W; Broyer, M; Town, M; Antignac, C

    1999-08-01

    Nephropathic cystinosis is an autosomal recessive disorder that is characterized by accumulation of intralysosomal cystine and is caused by a defect in the transport of cystine across the lysosomal membrane. Using a positional cloning strategy, we recently cloned the causative gene, CTNS, and identified pathogenic mutations, including deletions, that span the cystinosis locus. Two types of deletions were detected-one of 9.5-16 kb, which was seen in a single family, and one of approximately 65 kb, which is the most frequent mutation found in the homozygous state in nearly one-third of cystinotic individuals. We present here characterization of the deletion breakpoints and demonstrate that, although both deletions occur in regions of repetitive sequences, they are the result of nonhomologous recombination. This type of mechanism suggests that the approximately 65-kb deletion is not a recurrent mutation, and our results confirm that it is identical in all patients. Haplotype analysis shows that this large deletion is due to a founder effect that occurred in a white individual and that probably arose in the middle of the first millenium. We also describe a rapid PCR-based assay that will accurately detect both homozygous and heterozygous deletions, and we use it to show that the approximately 65-kb deletion is present in either the homozygous or the heterozygous state in 76% of cystinotic patients of European origin.

  13. Accumulation of mitochondrial DNA deletions within dopaminergic neurons triggers neuroprotective mechanisms.

    Science.gov (United States)

    Perier, Celine; Bender, Andreas; García-Arumí, Elena; Melià, Ma Jesus; Bové, Jordi; Laub, Christoph; Klopstock, Thomas; Elstner, Matthias; Mounsey, Ross B; Teismann, Peter; Prolla, Tomas; Andreu, Antoni L; Vila, Miquel

    2013-08-01

    Acquired alterations in mitochondrial DNA are believed to play a pathogenic role in Parkinson's disease. In particular, accumulation of mitochondrial DNA deletions has been observed in substantia nigra pars compacta dopaminergic neurons from patients with Parkinson's disease and aged individuals. Also, mutations in mitochondrial DNA polymerase gamma result in multiple mitochondrial DNA deletions that can be associated with levodopa-responsive parkinsonism and severe substantia nigra pars compacta dopaminergic neurodegeneration. However, whether mitochondrial DNA deletions play a causative role in the demise of dopaminergic neurons remains unknown. Here we assessed the potential pathogenic effects of mitochondrial DNA deletions on the dopaminergic nigrostriatal system by using mutant mice possessing a proofreading-deficient form of mitochondrial DNA polymerase gamma (POLGD257A), which results in a time-dependent accumulation of mitochondrial DNA deletions in several tissues, including the brain. In these animals, we assessed the occurrence of mitochondrial DNA deletions within individual substantia nigra pars compacta dopaminergic neurons, by laser capture microdissection and quantitative real-time polymerase chain reaction, and determined the potential deleterious effects of such mitochondrial DNA alterations on mitochondrial function and dopaminergic neuronal integrity, by cytochrome c oxidase histochemistry and quantitative morphology. Nigral dopaminergic neurons from POLGD257A mice accumulate mitochondrial DNA deletions to a similar extent (∼40-60%) as patients with Parkinson's disease and aged individuals. Despite such high levels of mitochondrial DNA deletions, the majority of substantia nigra pars compacta dopaminergic neurons from these animals did not exhibit mitochondrial dysfunction or degeneration. Only a few individual substantia nigra pars compacta neurons appeared as cytochrome c oxidase-negative, which exhibited higher levels of mitochondrial DNA

  14. Deletion of the zupT gene for a zinc importer influences zinc pools in Cupriavidus metallidurans CH34.

    Science.gov (United States)

    Herzberg, M; Bauer, L; Nies, D H

    2014-03-01

    Cupriavidus metallidurans strain CH34 accomplishes a high level of transition metal resistance by a combination of rather unspecific transition metal import and controlled efflux of surplus metals. Using the plasmid-free mutant strain AE104 that possesses only a limited number of metal efflux systems, cellular metal pools were identified as counterparts of these transport reactions. At low zinc concentrations strain AE104 took up Zn(II) until the zinc content reached an optimum level of 70,000 Zn(II) per cell in the exponential phase of growth, whereas a ΔzupT mutant lacking the zinc importer ZupT contained only 20,000 Zn(II)/cell, possibly the minimum zinc content. Mutant and parent cells accumulated up to 125,000 Zn(II) per cell at high (100 μM) external zinc concentrations (optimum zinc content). When the mutant strain Δe4, which has all the known genes for zinc efflux systems deleted, was cultivated in the presence of zinc concentrations close to its upper tolerance level (10 μM), these cells contained 250,000 Zn(II) per cell, probably the maximum zinc content. Instead of zinc, 120,000 cobalt or cadmium ions could also fill-up parts of this zinc pool, showing that it is in fact an undefined pool of divalent transition metal cations bound with low substrate specificity. Even when the cells contained sufficient numbers of total zinc, the zinc importer ZupT was required for important cellular processes, indicating the presence of a pool of tightly bound zinc ions, which depends on ZupT for efficient replenishment. The absence of ZupT led to the formation of inclusion bodies, perturbed oxidative stress resistance and decreased efficiency in the synthesis of the zinc-dependent subunit RpoC of the RNA polymerase, leading to RpoC accumulation. Moreover, when a czc allele for a zinc-exporting transenvelope efflux system CzcCBA was constitutively expressed in a ΔzupT mutant, this led to the disappearance of the CzcA protein and the central subunit of the protein

  15. Altered murine tissue colonization by Borrelia burgdorferi following targeted deletion of linear plasmid 17-carried genes.

    Science.gov (United States)

    Casselli, Timothy; Tourand, Yvonne; Bankhead, Troy

    2012-05-01

    The causative agent of Lyme disease, Borrelia burgdorferi, possesses a segmented genome comprised of a single linear chromosome and upwards of 23 linear and circular plasmids. Much of what is known about plasmid-borne genes comes from studying laboratory clones that have spontaneously lost one or more plasmids during in vitro passage. Some plasmids, including the linear plasmid lp17, are never or rarely reported to be lost during routine culture; therefore, little is known about the requirement of these conserved plasmids for infectivity. In this study, the effects of deleting regions of lp17 were examined both in vitro and in vivo. A mutant strain lacking the genes bbd16 to bbd25 showed no deficiency in the ability to establish infection or disseminate to the bloodstream of mice; however, colonization of peripheral tissues was delayed. Despite the ability to colonize ear, heart, and joint tissues, this mutant exhibited a defect in bladder tissue colonization for up to 56 days postinfection. This phenotype was not observed in immunodeficient mice, suggesting that bladder colonization by the mutant strain was inhibited by an adaptive immune-based mechanism. Moreover, the mutant displayed increased expression of outer surface protein C in vitro, which was correlated with the absence of the gene bbd18. To our knowledge, this is the first report involving genetic manipulation of lp17 in an infectious clone of B. burgdorferi and reveals for the first time the effects of lp17 gene deletion during murine infection by the Lyme disease spirochete.

  16. dnaA suppressor (dasF) mutants of Escherichia coli are stable DNA replication (sdrA/rnh) mutants.

    Science.gov (United States)

    Torrey, T A; Atlung, T; Kogoma, T

    1984-01-01

    The possible allelic relationship between dasF (dnaA suppressor) and sdrA/rnh (stable DNA replication/RNase H) mutations was examined. dasF mutations could not only suppress various dnaA(ts) mutations, but also the insertional inactivation of the dnaA gene or deletion of the oriC sequence, as could sdrA mutations. dasF mutants were found to exhibit the stable DNA replication phenotype, and the sensitivity to rich media, of sdrA mutants. The dasF and sdrA mutations were mapped very closely between metD and proA on the E. coli genetic map. The mutations were recessive to the wild-type allele for all the above phenotypes. It was concluded that dasF is allelic to sdrA/mh.

  17. Conditional deletion of Jak2 reveals an essential role in hematopoiesis throughout mouse ontogeny: implications for Jak2 inhibition in humans.

    Directory of Open Access Journals (Sweden)

    Sung O Park

    Full Text Available Germline deletion of Jak2 in mice results in embryonic lethality at E12.5 due to impaired hematopoiesis. However, the role that Jak2 might play in late gestation and postnatal life is unknown. To understand this, we utilized a conditional knockout approach that allowed for the deletion of Jak2 at various stages of prenatal and postnatal life. Specifically, Jak2 was deleted beginning at either mid/late gestation (E12.5, at postnatal day 4 (PN4, or at ∼2 months of age. Deletion of Jak2 beginning at E12.5 resulted in embryonic death characterized by a lack of hematopoiesis. Deletion beginning at PN4 was also lethal due to a lack of erythropoiesis. Deletion of Jak2 in young adults was characterized by blood cytopenias, abnormal erythrocyte morphology, decreased marrow hematopoietic potential, and splenic atrophy. However, death was observed in only 20% of the mutants. Further analysis of these mice suggested that the increased survivability was due to an incomplete deletion of Jak2 and subsequent re-population of Jak2 expressing cells, as conditional deletion in mice having one floxed Jak2 allele and one null allele resulted in a more severe phenotype and subsequent death of all animals. We found that the deletion of Jak2 in the young adults had a differential effect on hematopoietic lineages; specifically, conditional Jak2 deletion in young adults severely impaired erythropoiesis and thrombopoiesis, modestly affected granulopoiesis and monocytopoiesis, and had no effect on lymphopoiesis. Interestingly, while the hematopoietic organs of these mutant animals were severely affected by the deletion of Jak2, we found that the hearts, kidneys, lungs, and brains of these same mice were histologically normal. From this, we conclude that Jak2 plays an essential and non-redundant role in hematopoiesis during both prenatal and postnatal life and this has direct implications regarding the inhibition of Jak2 in humans.

  18. In silico screening of 393 mutants facilitates enzyme engineering of amidase activity in CalB

    Directory of Open Access Journals (Sweden)

    Martin R. Hediger

    2013-08-01

    Full Text Available Our previously presented method for high throughput computational screening of mutant activity (Hediger et al., 2012 is benchmarked against experimentally measured amidase activity for 22 mutants of Candida antarctica lipase B (CalB. Using an appropriate cutoff criterion for the computed barriers, the qualitative activity of 15 out of 22 mutants is correctly predicted. The method identifies four of the six most active mutants with ≥3-fold wild type activity and seven out of the eight least active mutants with ≤0.5-fold wild type activity. The method is further used to screen all sterically possible (386 double-, triple- and quadruple-mutants constructed from the most active single mutants. Based on the benchmark test at least 20 new promising mutants are identified.

  19. A deletion common to two independently derived waxy mutations of maize.

    Science.gov (United States)

    Okagaki, R J; Neuffer, M G; Wessler, S R

    1991-06-01

    A mutation at the maize waxy locus, wx1240, was isolated following treatment of pollen with EMS and self-pollinating ears on M1 plants. This allele was cloned and found to contain a 30-bp deletion within the gene and additional lesions upstream of the transcription start site. Using fine structure genetic mapping, we determined that the deletion is responsible for the mutant phenotype. In addition, the position of wx1240 on the genetic map coincided with the previously determined positions of two other waxy mutations, the spontaneous wx-C, which is reference allele, and the putative ethyl methanesulfonate (EMS)-induced wx-BL2. Molecular analysis of these alleles revealed that both contain the same deletion as wx1240, and that the wx-BL2 allele is similar to wx-C and possibly resulted from wx-C contamination. The deleted sequence responsible for these mutations is flanked by a short, 4-bp, direct repeat. Similar structures are favored sites for spontaneous deletions in other organisms. The data suggests that EMS is capable of inducing structural alterations in plant genes in addition to the point mutations normally ascribed to EMS-induced mutations.

  20. [A Simple and Efficient Method of Inducing Targeted Deletions in the Drosophila Genome].

    Science.gov (United States)

    Kravchuk, O I; Mikhailov, V S; Savitsky, M Yu

    2015-11-01

    Deletion mutagenesis is one of the most efficient approaches to studying gene function. However, conventional methods of inducing targeted mutations in the drosophila genome are time- and labor-consuming. This work proposes a new, simple, and effective method of producing drosophila mutants with gene deletions. The method involves the insertion of I-Scel and I-CreI recognition sites and a fragment homologous to the target sequence into the chromosome region of interest by means of an attB-containing construct, the induction of double-strand DNA breaks by the appropriate meganuclease, and their repair by homologous recombination. The procedure results in a deletion extending from the attP-site to the target locus. A cassette was designed to enable single-step construct production for the deletion of any given genomic region. A set of markers facilitates the selection of recombination events. The efficacy of the proposed technique was confirmed by the induction of a 47-kb deletion containing the qtc gene.

  1. Characterization of Mycobacterium smegmatis sigF mutant and its regulon: overexpression of SigF antagonist (MSMEG_1803) in M. smegmatis mimics sigF mutant phenotype, loss of pigmentation, and sensitivity to oxidative stress.

    Science.gov (United States)

    Singh, Anirudh K; Dutta, Debashis; Singh, Vandana; Srivastava, Vishal; Biswas, Rajesh K; Singh, Bhupendra N

    2015-12-01

    In Mycobacterium smegmatis, sigF is widely expressed during different growth stages and plays role in adaptation to stationary phase and oxidative stress. Using a sigF deletion mutant of M. smegmatis mc(2) 155, we demonstrate that SigF is not essential for growth of bacterium. Deletion of sigF results in loss of carotenoid pigmentation which rendered increased susceptibility to H2 O2 induced oxidative stress in M. smegmatis. SigF modulates the cell surface architecture and lipid biosynthesis extending the repertoire of SigF function in this species. M. smegmatis SigF regulon included variety of genes expressed during exponential and stationary phases of growth and those responsible for oxidative stress, lipid biosynthesis, energy, and central intermediary metabolism. Furthermore, we report the identification of a SigF antagonist, an anti-sigma factor (RsbW), which upon overexpression in M. smegmatis wild type strain produced a phenotype similar to M. smegmatis mc(2) 155 ΔsigF strain. The SigF-anti-SigF interaction is duly validated using bacterial two-hybrid and pull down assays. In addition, anti-sigma factor antagonists, RsfA and RsfB were identified and their interactions with anti-sigma factor were experimentally validated. Identification of these proteins will help decode regulatory circuit of this alternate sigma factor.

  2. Establishment of markerless gene deletion tools in thermophilic Bacillus smithii and construction of multiple mutant strains

    NARCIS (Netherlands)

    Bosma, E.F.; Weijer, van de A.H.P.; Vlist, L.; Vos, de W.M.; Oost, van der J.; Kranenburg, van R.

    2015-01-01

    BACKGROUND: Microbial conversion of biomass to fuels or chemicals is an attractive alternative for fossil-based fuels and chemicals. Thermophilic microorganisms have several operational advantages as a production host over mesophilic organisms, such as low cooling costs, reduced contamination risks

  3. Dysfunctional p53 deletion mutants in cell lines derived from Hodgkin's lymphoma

    DEFF Research Database (Denmark)

    Feuerborn, Alexander; Moritz, Constanze; von Bonin, Frederike;

    2006-01-01

    Classical Hodgkin's lymphoma (cHL) is a distinct malignancy of the immune system. Despite the progress made in the understanding of the pathology of cHL, the transforming events remain to be elucidated. It has been proposed that mutations in the TP53 gene in biopsy material as well as cell lines ...... loss of exons 10 - 11 (L1236) or exons 8 - 11 (HDLM-2), respectively. These changes were found in otherwise rarely mutated regions of TP53. Cell lines L1236 and HDLM-2 harbour fusions with alu-repeats in their TP53 mRNA 3'-ends, resulting in the carboxyterminal truncation and loss...

  4. PRRSV strain VR-2332 Nsp2 deletion mutants attenuate clinical symptoms in swine

    Science.gov (United States)

    PRRSV nonstructural protein 2 (nsp2) contains a N-terminal cysteine proteinase (PL2) domain, a middle hypervariable region and C-terminal putative transmembrane domain. We initially investigated the proteolytic processing of nsp2 PL2 in infected MARC-145 cells. A c-myc epitope was inserted into a de...

  5. Interaction of mutants of tissue-type plasminogen activator with liver cells: Effect of domain deletions

    NARCIS (Netherlands)

    Kuiper, J.; Hof, A. van 't; Otter, M.; Biessen, E.A.L.; Rijken, D.C.; Berkel, T.J.C. van

    1996-01-01

    The fibrin-specific thrombolyticum tissue-type plasminogen activator (t-PA) has proven to be a potent drug in several clinical trials, but its clinical application is complicated by the rapid clearance of t-PA from the circulation. The rapid plasma clearance of t-PA results from the uptake of t-PA i

  6. Transcriptomic profile of aguR deletion mutant of Lactococcus lactis subsp. cremoris CECT 8666

    NARCIS (Netherlands)

    Del Rio, Beatriz; Linares, Daniel M; Redruello, Begoña; Martin, Maria Cruz; Fernandez, Maria; de Jong, Anne; Kuipers, Oscar P; Ladero, Victor; Alvarez, Miguel A

    2015-01-01

    Lactococcus lactis subsp. cremoris CECT 8666 (formerly GE2-14) is a dairy strain that catabolizes agmatine (a decarboxylated derivative of arginine) into the biogenic amine putrescine by the agmatine deiminase (AGDI) pathway [1]. The AGDI cluster of L. lactis is composed by five genes aguR, aguB, ag

  7. Deletion of 7q33-q35 in a Patient with Intellectual Disability and Dysmorphic Features: Further Characterization of 7q Interstitial Deletion Syndrome

    Directory of Open Access Journals (Sweden)

    Kristen Dilzell

    2015-01-01

    Full Text Available This case report concerns a 16-year-old girl with a 9.92 Mb, heterozygous interstitial chromosome deletion at 7q33-q35, identified using array comparative genomic hybridization. The patient has dysmorphic facial features, intellectual disability, recurrent infections, self-injurious behavior, obesity, and recent onset of hemihypertrophy. This patient has overlapping features with previously reported individuals who have similar deletions spanning the 7q32-q36 region. It has been difficult to describe an interstitial 7q deletion syndrome due to variations in the sizes and regions in the few patients reported in the literature. This case contributes to the further characterization of an interstitial distal 7q deletion syndrome.

  8. Deletion of 7q33-q35 in a Patient with Intellectual Disability and Dysmorphic Features: Further Characterization of 7q Interstitial Deletion Syndrome.

    Science.gov (United States)

    Dilzell, Kristen; Darcy, Diana; Sum, John; Wallerstein, Robert

    2015-01-01

    This case report concerns a 16-year-old girl with a 9.92 Mb, heterozygous interstitial chromosome deletion at 7q33-q35, identified using array comparative genomic hybridization. The patient has dysmorphic facial features, intellectual disability, recurrent infections, self-injurious behavior, obesity, and recent onset of hemihypertrophy. This patient has overlapping features with previously reported individuals who have similar deletions spanning the 7q32-q36 region. It has been difficult to describe an interstitial 7q deletion syndrome due to variations in the sizes and regions in the few patients reported in the literature. This case contributes to the further characterization of an interstitial distal 7q deletion syndrome.

  9. CMPD: cancer mutant proteome database.

    Science.gov (United States)

    Huang, Po-Jung; Lee, Chi-Ching; Tan, Bertrand Chin-Ming; Yeh, Yuan-Ming; Julie Chu, Lichieh; Chen, Ting-Wen; Chang, Kai-Ping; Lee, Cheng-Yang; Gan, Ruei-Chi; Liu, Hsuan; Tang, Petrus

    2015-01-01

    Whole-exome sequencing, which centres on the protein coding regions of disease/cancer associated genes, represents the most cost-effective method to-date for deciphering the association between genetic alterations and diseases. Large-scale whole exome/genome sequencing projects have been launched by various institutions, such as NCI, Broad Institute and TCGA, to provide a comprehensive catalogue of coding variants in diverse tissue samples and cell lines. Further functional and clinical interrogation of these sequence variations must rely on extensive cross-platforms integration of sequencing information and a proteome database that explicitly and comprehensively archives the corresponding mutated peptide sequences. While such data resource is a critical for the mass spectrometry-based proteomic analysis of exomic variants, no database is currently available for the collection of mutant protein sequences that correspond to recent large-scale genomic data. To address this issue and serve as bridge to integrate genomic and proteomics datasets, CMPD (http://cgbc.cgu.edu.tw/cmpd) collected over 2 millions genetic alterations, which not only facilitates the confirmation and examination of potential cancer biomarkers but also provides an invaluable resource for translational medicine research and opportunities to identify mutated proteins encoded by mutated genes.

  10. GAMPMS: Genetic algorithm managed peptide mutant screening.

    Science.gov (United States)

    Long, Thomas; McDougal, Owen M; Andersen, Tim

    2015-06-30

    The prominence of endogenous peptide ligands targeted to receptors makes peptides with the desired binding activity good molecular scaffolds for drug development. Minor modifications to a peptide's primary sequence can significantly alter its binding properties with a receptor, and screening collections of peptide mutants is a useful technique for probing the receptor-ligand binding domain. Unfortunately, the combinatorial growth of such collections can limit the number of mutations which can be explored using structure-based molecular docking techniques. Genetic algorithm managed peptide mutant screening (GAMPMS) uses a genetic algorithm to conduct a heuristic search of the peptide's mutation space for peptides with optimal binding activity, significantly reducing the computational requirements of the virtual screening. The GAMPMS procedure was implemented and used to explore the binding domain of the nicotinic acetylcholine receptor (nAChR) α3β2-isoform with a library of 64,000 α-conotoxin (α-CTx) MII peptide mutants. To assess GAMPMS's performance, it was compared with a virtual screening procedure that used AutoDock to predict the binding affinity of each of the α-CTx MII peptide mutants with the α3β2-nAChR. The GAMPMS implementation performed AutoDock simulations for as few as 1140 of the 64,000 α-CTx MII peptide mutants and could consistently identify a set of 10 peptides with an aggregated binding energy that was at least 98% of the aggregated binding energy of the 10 top peptides from the exhaustive AutoDock screening.

  11. Characterization of Gibberellin Receptor Mutants of Barley (Hordeum vulgare L.)

    Institute of Scientific and Technical Information of China (English)

    Peter M.Chandler; Carol A.Harding; Anthony R.Ashton; Mark D.Mulcair; Nicholas E.Dixon; Lewis N.Mander

    2008-01-01

    The sequence of Gidl (a gene for a gibberellin (GA) receptor from rice) was used to identify a putative orthoIogue from barley.This was expressed in E.coil,and produced a protein that was able to bind GA in vitro with both structural specificity and saturability.Its potential role in GA responses was investigated using barley mutants with reduced GA sensitivity (gsel mutants).Sixteen different gsel mutants each carried a unique nucleotide substitution in this sequence.In all but one case,these changes resulted in single amino acid substitutions,and,for the remaining mutant,a substitution in the 5' untranslated region of the mRNA is proposed to interfere with translation initiation.There was perfect linkage in segregating populations between new mutant alleles and the gsel phenotype,leading to the conclusion that the putative GID1 GA receptor sequence in barley corresponds to the Gsel locus.Determination of endogenous GA contents in one of the mutants revealed enhanced accumulation of bioactive GA1,and a deficit of C20 GA precursors.All of the gsel mutants had reduced sensitivity to exogenous GA3,and to AC94377 (a GA analogue) at concentrations that are normally 'saturating',but,at much higher concentrations,there was often a considerable response.The comparison between barley and rice mutants reveals interesting differences between these two cereal species in GA hormonal physiology.

  12. Altered Ultrasonic Vocalization and Impaired Learning and Memory in Angelman Syndrome Mouse Model with a Large Maternal Deletion from Ube3a to Gabrb3

    Science.gov (United States)

    Jiang, Yong-hui; Pan, Yanzhen; Zhu, Li; Landa, Luis; Yoo, Jong; Spencer, Corinne; Lorenzo, Isabel; Brilliant, Murray; Noebels, Jeffrey; Beaudet, Arthur L.

    2010-01-01

    Angelman syndrome (AS) is a neurobehavioral disorder associated with mental retardation, absence of language development, characteristic electroencephalography (EEG) abnormalities and epilepsy, happy disposition, movement or balance disorders, and autistic behaviors. The molecular defects underlying AS are heterogeneous, including large maternal deletions of chromosome 15q11–q13 (70%), paternal uniparental disomy (UPD) of chromosome 15 (5%), imprinting mutations (rare), and mutations in the E6-AP ubiquitin ligase gene UBE3A (15%). Although patients with UBE3A mutations have a wide spectrum of neurological phenotypes, their features are usually milder than AS patients with deletions of 15q11–q13. Using a chromosomal engineering strategy, we generated mutant mice with a 1.6-Mb chromosomal deletion from Ube3a to Gabrb3, which inactivated the Ube3a and Gabrb3 genes and deleted the Atp10a gene. Homozygous deletion mutant mice died in the perinatal period due to a cleft palate resulting from the null mutation in Gabrb3 gene. Mice with a maternal deletion (m−/p+) were viable and did not have any obvious developmental defects. Expression analysis of the maternal and paternal deletion mice confirmed that the Ube3a gene is maternally expressed in brain, and showed that the Atp10a and Gabrb3 genes are biallelically expressed in all brain sub-regions studied. Maternal (m−/p+), but not paternal (m+/p−), deletion mice had increased spontaneous seizure activity and abnormal EEG. Extensive behavioral analyses revealed significant impairment in motor function, learning and memory tasks, and anxiety-related measures assayed in the light-dark box in maternal deletion but not paternal deletion mice. Ultrasonic vocalization (USV) recording in newborns revealed that maternal deletion pups emitted significantly more USVs than wild-type littermates. The increased USV in maternal deletion mice suggests abnormal signaling behavior between mothers and pups that may reflect abnormal

  13. Altered ultrasonic vocalization and impaired learning and memory in Angelman syndrome mouse model with a large maternal deletion from Ube3a to Gabrb3.

    Directory of Open Access Journals (Sweden)

    Yong-Hui Jiang

    Full Text Available Angelman syndrome (AS is a neurobehavioral disorder associated with mental retardation, absence of language development, characteristic electroencephalography (EEG abnormalities and epilepsy, happy disposition, movement or balance disorders, and autistic behaviors. The molecular defects underlying AS are heterogeneous, including large maternal deletions of chromosome 15q11-q13 (70%, paternal uniparental disomy (UPD of chromosome 15 (5%, imprinting mutations (rare, and mutations in the E6-AP ubiquitin ligase gene UBE3A (15%. Although patients with UBE3A mutations have a wide spectrum of neurological phenotypes, their features are usually milder than AS patients with deletions of 15q11-q13. Using a chromosomal engineering strategy, we generated mutant mice with a 1.6-Mb chromosomal deletion from Ube3a to Gabrb3, which inactivated the Ube3a and Gabrb3 genes and deleted the Atp10a gene. Homozygous deletion mutant mice died in the perinatal period due to a cleft palate resulting from the null mutation in Gabrb3 gene. Mice with a maternal deletion (m-/p+ were viable and did not have any obvious developmental defects. Expression analysis of the maternal and paternal deletion mice confirmed that the Ube3a gene is maternally expressed in brain, and showed that the Atp10a and Gabrb3 genes are biallelically expressed in all brain sub-regions studied. Maternal (m-/p+, but not paternal (m+/p-, deletion mice had increased spontaneous seizure activity and abnormal EEG. Extensive behavioral analyses revealed significant impairment in motor function, learning and memory tasks, and anxiety-related measures assayed in the light-dark box in maternal deletion but not paternal deletion mice. Ultrasonic vocalization (USV recording in newborns revealed that maternal deletion pups emitted significantly more USVs than wild-type littermates. The increased USV in maternal deletion mice suggests abnormal signaling behavior between mothers and pups that may reflect abnormal

  14. Mitochondrial Genome Deletion for Detection of Prostate Cancer — EDRN Public Portal

    Science.gov (United States)

    The Prostate Core Mitomic Test™ is based upon a 3.4 kb mitochondrial genome deletion (3.4 mtdelta) that was identified through PCR analysis of frozen prostate cancer samples. In cancer research it has been found that deletions in mitochondrial DNA can correlate with cellular changes that indicate development of cancer. This deletion includes the terminal 22 bases of MT-ND4L, all of MT-ND4, 3 tRNAs (histidine, serine 2, and leucine 2), and all except the terminal 24 bases of MT-ND5.

  15. A comparison of direct infusion MS and GC-MS for metabolic footprinting of yeast mutants

    DEFF Research Database (Denmark)

    Mass, S.; Villas-Bôas, Silas Granato; Hansen, Michael Adsetts Edberg;

    2007-01-01

    Recent technical advances in mass spectrometry (MS) have propelled this technology to the forefront of methods employed in metabolome analysis. Here, we compare two distinct analytical approaches based on MS for their potential in revealing specific metabolic footprints of yeast single-deletion m......Recent technical advances in mass spectrometry (MS) have propelled this technology to the forefront of methods employed in metabolome analysis. Here, we compare two distinct analytical approaches based on MS for their potential in revealing specific metabolic footprints of yeast single......-deletion mutants. Filtered fermentation broth samples were analyzed by GC-MS and direct infusion ESI-MS. The potential of both methods in producing specific and, therefore, discriminant metabolite profiles was evaluated using samples from several yeast deletion mutants grown in batch-culture conditions....... Thus, the GC-MS method is good for classification of mutants with altered nitrogen regulation as it primarily measures amino acids, whereas this method cannot classify mutants involved in regulation of phospholipids metabolism as well as the direct infusion MS (DI-MS) method. From the analysis, we find...

  16. Effects of ion beam irradiation on size of mutant sector and genetic damage in Arabidopsis

    Energy Technology Data Exchange (ETDEWEB)

    Hase, Yoshihiro, E-mail: hase.yoshihiro@qst.go.jp [Takasaki Advanced Radiation Research Institute, National Institutes for Quantum and Radiological Science and Technology (QST), 1233 Watanuki, Takasaki, Gunma 370-1292 (Japan); Nozawa, Shigeki [Takasaki Advanced Radiation Research Institute, National Institutes for Quantum and Radiological Science and Technology (QST), 1233 Watanuki, Takasaki, Gunma 370-1292 (Japan); Narumi, Issay [Faculty of Life Sciences, Toyo University, 1-1-1 Izumino, Itakura, Gunma 374-0193 (Japan); Oono, Yutaka [Takasaki Advanced Radiation Research Institute, National Institutes for Quantum and Radiological Science and Technology (QST), 1233 Watanuki, Takasaki, Gunma 370-1292 (Japan)

    2017-01-15

    Size of mutant sector and genetic damage were evaluated in Arabidopsis to further our understanding of effective ion beam use in plant mutation breeding. Arabidopsis seeds, heterozygous for the GLABRA1 (GL1) gene (GL1/gl1-1), were irradiated with 15.8 MeV/u neon ions (mean linear energy transfer (LET): 352 keV/μm), 17.3 MeV/u carbon ions (113 keV/μm), or {sup 60}Co gamma rays. The frequency and size of glabrous sectors generated because of inactivation of the GL1 allele were examined. The frequency and overall size of large deletions were evaluated based on the loss of heterozygosity of DNA markers using DNA isolated from glabrous tissue. Irrespective of the radiation properties, plants with mutant sectors were obtained at similar frequencies at the same effective dosage necessary for survival reduction. Ion beams tended to induce larger mutant sectors than gamma rays. The frequency of large deletions (>several kbp) increased as the LET value increased, with chromosome regions larger than 100 kbp lost in most large deletions. The distorted segregation ratio of glabrous plants in the progenies of irradiated GL1/gl1-1 plants suggested frequent occurrence of chromosome rearrangement, especially those subjected to neon ions. Exposure to ion beams with moderate LET values (30–110 keV/μm) is thought effective for inducing mutant sectors without causing extensive genetic damage.

  17. Effects of ion beam irradiation on size of mutant sector and genetic damage in Arabidopsis

    Science.gov (United States)

    Hase, Yoshihiro; Nozawa, Shigeki; Narumi, Issay; Oono, Yutaka

    2017-01-01

    Size of mutant sector and genetic damage were evaluated in Arabidopsis to further our understanding of effective ion beam use in plant mutation breeding. Arabidopsis seeds, heterozygous for the GLABRA1 (GL1) gene (GL1/gl1-1), were irradiated with 15.8 MeV/u neon ions (mean linear energy transfer (LET): 352 keV/μm), 17.3 MeV/u carbon ions (113 keV/μm), or 60Co gamma rays. The frequency and size of glabrous sectors generated because of inactivation of the GL1 allele were examined. The frequency and overall size of large deletions were evaluated based on the loss of heterozygosity of DNA markers using DNA isolated from glabrous tissue. Irrespective of the radiation properties, plants with mutant sectors were obtained at similar frequencies at the same effective dosage necessary for survival reduction. Ion beams tended to induce larger mutant sectors than gamma rays. The frequency of large deletions (>several kbp) increased as the LET value increased, with chromosome regions larger than 100 kbp lost in most large deletions. The distorted segregation ratio of glabrous plants in the progenies of irradiated GL1/gl1-1 plants suggested frequent occurrence of chromosome rearrangement, especially those subjected to neon ions. Exposure to ion beams with moderate LET values (30-110 keV/μm) is thought effective for inducing mutant sectors without causing extensive genetic damage.

  18. Structural and dynamic changes associated with beneficial engineered single-amino-acid deletion mutations in enhanced green fluorescent protein

    Energy Technology Data Exchange (ETDEWEB)

    Arpino, James A. J. [Cardiff University, Park Place, Cardiff CF10 3AT Wales (United Kingdom); Rizkallah, Pierre J., E-mail: rizkallahp@cardiff.ac.uk [Cardiff University, Heath Park, Cardiff CF14 4XN Wales (United Kingdom); Jones, D. Dafydd, E-mail: rizkallahp@cardiff.ac.uk [Cardiff University, Park Place, Cardiff CF10 3AT Wales (United Kingdom)

    2014-08-01

    The beneficial engineered single-amino-acid deletion variants EGFP{sup D190Δ} and EGFP{sup A227Δ} have been studied. Single-amino-acid deletions are a common part of the natural evolutionary landscape but are rarely sampled during protein engineering owing to limited and prejudiced molecular understanding of mutations that shorten the protein backbone. Single-amino-acid deletion variants of enhanced green fluorescent protein (EGFP) have been identified by directed evolution with the beneficial effect of imparting increased cellular fluorescence. Biophysical characterization revealed that increased functional protein production and not changes to the fluorescence parameters was the mechanism that was likely to be responsible. The structure EGFP{sup D190Δ} containing a deletion within a loop revealed propagated changes only after the deleted residue. The structure of EGFP{sup A227Δ} revealed that a ‘flipping’ mechanism was used to adjust for residue deletion at the end of a β-strand, with amino acids C-terminal to the deletion site repositioning to take the place of the deleted amino acid. In both variants new networks of short-range and long-range interactions are generated while maintaining the integrity of the hydrophobic core. Both deletion variants also displayed significant local and long-range changes in dynamics, as evident by changes in B factors compared with EGFP. Rather than being detrimental, deletion mutations can introduce beneficial structural effects through altering core protein properties, folding and dynamics, as well as function.

  19. Deletion and substitution analysis of the Escherichia coli TonB Q160 region.

    Science.gov (United States)

    Vakharia-Rao, Hema; Kastead, Kyle A; Savenkova, Marina I; Bulathsinghala, Charles M; Postle, Kathleen

    2007-07-01

    The active transport of iron siderophores and vitamin B(12) across the outer membrane (OM) of Escherichia coli requires OM transporters and the potential energy of the cytoplasmic membrane (CM) proton gradient and CM proteins TonB, ExbB, and ExbD. A region at the amino terminus of the transporter, called the TonB box, directly interacts with TonB Q160 region residues. R158 and R166 in the TonB Q160 region were proposed to play important roles in cocrystal structures of the TonB carboxy terminus with OM transporters BtuB and FhuA. In contrast to predictions based on the crystal structures, none of the single, double, or triple alanyl substitutions at arginyl residues significantly decreased TonB activity. Even the quadruple R154A R158A R166A R171A mutant TonB still retained 30% of wild-type activity. Up to five residues centered on TonB Q160 could be deleted without inactivating TonB or preventing its association with the OM. TonB mutant proteins with nested deletions of 7, 9, or 11 residues centered on TonB Q160 were inactive and appeared never to have associated with the OM. Because the 7-residue-deletion mutant protein (TonBDelta7, lacking residues S157 to Y163) could still form disulfide-linked dimers when combined with W213C or F202C in the TonB carboxy terminus, the TonBDelta7 deletion did not prevent necessary energy-dependent conformational changes that occur in the CM. Thus, it appeared that initial contact with the OM is made through TonB residues S157 to Y163. It is hypothesized that the TonB Q160 region may be part of a large disordered region required to span the periplasm and contact an OM transporter.

  20. Significance of Coronavirus Mutants in Feces and Diseased Tissues of Cats Suffering from Feline Infectious Peritonitis

    Directory of Open Access Journals (Sweden)

    Niels C. Pedersen

    2009-08-01

    Full Text Available The internal FECV→FIPV mutation theory and three of its correlates were tested in four sibs/half-sib kittens, a healthy contact cat, and in four unrelated cats that died of FIP at geographically disparate regions. Coronavirus from feces and extraintestinal FIP lesions from the same cat were always >99% related in accessory and structural gene sequences. SNPs and deletions causing a truncation of the 3c gene product were found in almost all isolates from the diseased tissues of the eight cats suffering from FIP, whereas most, but not all fecal isolates from these same cats had intact 3c genes. Other accessory and structural genes appeared normal in both fecal and lesional viruses. Deliterious mutations in the 3c gene were unique to each cat, indicating that they did not originate in one cat and were subsequently passed horizontally to the others. Compartmentalization of the parental and mutant forms was not absolute; virus of lesional type was sometimes found in feces of affected cats and virus identical to fecal type was occasionally identified in diseased tissues. Although 3c gene mutants in this study were not horizontally transmitted, the parental fecal virus was readily transmitted by contact from a cat that died of FIP to its housemate. There was a high rate of mutability in all structural and accessory genes both within and between cats, leading to minor genetic variants. More than one variant could be identified in both diseased tissues and feces of the same cat. Laboratory cats inoculated with a mixture of two closely related variants from the same FIP cat developed disease from one or the other variant, but not both. Significant genetic drift existed between isolates from geographically distinct regions of the Western US.

  1. Characterisation of cuticular mutants in Arabidopsis thaliana

    OpenAIRE

    Faust, Andrea

    2006-01-01

    Plants are protected by the extracellular cuticle, which is made up of cutin, cutan and waxes. The cutin composition of a variety of plants has been known and models of the biosynthesis of cutin monomers exist but not many enzymes have been identified. It is generally accepted that a defect in the cuticle leads to an organ fusion phenotype. In the model plant A. thaliana many fusion mutants have been identified but the identification of genes involved have not lead to a complete picture of th...

  2. Esophageal atresia with tracheoesophageal fistula in a patient with 7q35-36.3 deletion including SHH gene.

    Science.gov (United States)

    Busa, Tiffany; Panait, Nicoleta; Chaumoitre, Kathia; Philip, Nicole; Missirian, Chantal

    2016-10-01

    Terminal 7q deletion is rarely reported in the literature. Holoprosencephaly and sacral dysgenesis are found in association with this deletion, due to haploinsufficiency of SHH and HLBX9 genes respectively. We report on a 2-year-old boy with 7q35-36.3 deletion encompassing SHH identified by oligonucleotide array comparative genomic hybridization. In addition to other frequent features, the patient presented with esophageal atresia and tracheoeosophageal fistula diagnosed at birth. This case, together with two others previously described, one presenting with esophageal atresia, the other with congenital esophageal stenosis, confirms the possible association between congenital esophageal malformations and 7q terminal deletion including SHH.

  3. Novel 31.2 kb α0 Deletion in a Palestinian Family with α-Thalassemia

    DEFF Research Database (Denmark)

    Brieghel, Christian; Birgens, Henrik; Frederiksen, Henrik

    2015-01-01

    A previously unknown α(0) deletion, designated - -(DANE), was found in three generations of a Danish family of Palestinian origin. Six patients were heterozygous and three patients had deletional Hb H (β4) disease with a compound heterozygosity for the common -α(3.7) (rightward) deletion. Multiplex...... ligation-dependent probe amplification (MLPA) supplemented by repeated polymerase chain reaction (PCR) amplification identified the 5' and 3' breakpoints in the α-globin gene cluster. This novel 31.2 kb deletion (NG_000006.1: g.8800_40007del31208) leads to the removal of the HBZ, HBA2 and HBA1 genes....

  4. Deletion of ameloblastin exon 6 is associated with amelogenesis imperfecta.

    Science.gov (United States)

    Poulter, James A; Murillo, Gina; Brookes, Steven J; Smith, Claire E L; Parry, David A; Silva, Sandra; Kirkham, Jennifer; Inglehearn, Chris F; Mighell, Alan J

    2014-10-15

    Amelogenesis imperfecta (AI) describes a heterogeneous group of inherited dental enamel defects reflecting failure of normal amelogenesis. Ameloblastin (AMBN) is the second most abundant enamel matrix protein expressed during amelogenesis. The pivotal role of AMBN in amelogenesis has been confirmed experimentally using mouse models. However, no AMBN mutations have been associated with human AI. Using autozygosity mapping and exome sequencing, we identified genomic deletion of AMBN exon 6 in a second cousin consanguineous family with three of the six children having hypoplastic AI. The genomic deletion corresponds to an in-frame deletion of 79 amino acids, shortening the protein from 447 to 368 residues. Exfoliated primary teeth (unmatched to genotype) were available from family members. The most severely affected had thin, aprismatic enamel (similar to that reported in mice homozygous for Ambn lacking exons 5 and 6). Other teeth exhibited thicker but largely aprismatic enamel. One tooth had apparently normal enamel. It has been suggested that AMBN may function in bone development. No clinically obvious bone or other co-segregating health problems were identified in the family investigated. This study confirms for the first time that AMBN mutations cause non-syndromic human AI and that mouse models with disrupted Ambn function are valid.

  5. Genetic analysis of the Rhizobium meliloti bacA gene: functional interchangeability with the Escherichia coli sbmA gene and phenotypes of mutants.

    Science.gov (United States)

    Ichige, A; Walker, G C

    1997-01-01

    The Rhizobium meliloti bacA gene encodes a function that is essential for bacterial differentiation into bacteroids within plant cells in the symbiosis between R. meliloti and alfalfa. An Escherichia coli homolog of BacA, SbmA, is implicated in the uptake of microcin B17, microcin J25 (formerly microcin 25), and bleomycin. When expressed in E. coli with the lacZ promoter, the R. meliloti bacA gene was found to suppress all the known defects of E. coli sbmA mutants, namely, increased resistance to microcin B17, microcin J25, and bleomycin, demonstrating the functional similarity between the two proteins. The R. meliloti bacA386::Tn(pho)A mutant, as well as a newly constructed bacA deletion mutant, was found to show increased resistance to bleomycin. However, it also showed increased resistance to certain aminoglycosides and increased sensitivity to ethanol and detergents, suggesting that the loss of bacA function causes some defect in membrane integrity. The E. coli sbmA gene suppressed all these bacA mutant phenotypes as well as the Fix- phenotype when placed under control of the bacA promoter. Taken together, these results strongly suggest that the BacA and SbmA proteins are functionally similar and thus provide support for our previous hypothesis that BacA may be required for uptake of some compound that plays an important role in bacteroid development. However, the additional phenotypes of bacA mutants identified in this study suggest the alternative possibility that BacA may be needed for membrane integrity, which is likely to be critically important during the early stages of bacterial differentiation within plant cells.

  6. A viable simian virus 40 variant with a deletion in the overlapping genes for virion proteins VP1, VP2 and VP3.

    Science.gov (United States)

    Norkin, L C; Piatak, M

    1982-12-01

    Nucleotide sequence analysis was used to determine the exact location of a deletion in the late region of the SP2 mutant of simian virus 40 (SV40), a viable small-plaque variant isolated from a persistent infection of rhesus monkey kidney cells. The results indicate that six base pairs are deleted from that part of the SV40 genome in which the coding regions for the three virion proteins, VP1, VP2 and VP3, overlap. This implies that all three virion proteins are affected by the deletion. This finding is discussed with respect to the viability of SP2.

  7. Germinal mosaicism in a sample of families with Duchenne/Becker muscular dystrophy with partial deletions in the DMD gene.

    Science.gov (United States)

    Bermúdez-López, Cesárea; García-de Teresa, Benilde; González-del Angel, Ariadna; Alcántara-Ortigoza, Miguel Angel

    2014-02-01

    Germinal mosaicism should be considered when estimating the recurrence risk in families with Duchenne/Becker muscular dystrophy (D/BMD). Germinal mosaicism, however, has not been assessed in Mexican families with deletions in the DMD gene. To determine the distribution of deletions in the two hot spots and the proportion of de novo and transmitted deletions, we analyzed 153 individuals with D/BMD and a DMD partial deletion and 322 of their maternal female relatives. Predilection for the distal hot spot was observed in 112 families (73%), while gene dosage analysis of female relatives of D/BMD patients identified germinal mosaicism deletions in at least 11.6% of the patients' families, thought to result from de novo mutations. Recurrence risk due to germinal mosaicism justifies carrier detection in maternal female relatives and prenatal diagnosis in mothers of individuals with apparently de novo DMD deletions.

  8. Pathogenicity and immunogenicity of recombinant Tiantan Vaccinia Virus with deleted C12L and A53R genes.

    Science.gov (United States)

    Dai, Kaifan; Liu, Ying; Liu, Mingjie; Xu, Jianqing; Huang, Wei; Huang, Xianggang; Liu, Lianxing; Wan, Yanmin; Hao, Yanling; Shao, Yiming

    2008-09-15

    Interest is increasing regarding replicating poxvirus as HIV vaccine vector. In China, the Tiantan Vaccinia Virus (TV) has been used most extensively in the battle of eradicating smallpox. Recently, TV was developing as vaccine vector to fight against infectious diseases such as human immunodeficiency virus (HIV). However, replicating vaccinia virus sometimes may pose serious post-vaccination complications, especially in immunosuppressed individuals. To develop a safer and more effective TV-based vector, we constructed C12L (vIL-18 binding protein) and A53R (vTNF receptor homolog) gene-deleted mutants which are based on parental TV and VTKgpe (TV expressing HIV gagpol and env gene), respectively. The pathogenicity and immunogenicity were also evaluated. Deleting these two immunomodulatory genes lessened the virulence of the parental virus in both mice and rabbit models. Notably, C12L deletion mutant attenuated the skin virulence of parental virus by as high as approximate 2 logs. Furthermore, VTKgpe with A53R and C12L gene deletion retains the high immunogenicity of the parental virus to elicit strong humoral and cellular responses to the HIV target genes despite the remarkable attenuation. These data suggest that deletion of the cytokine viroceptor gene is feasible to obtain a safer and replication-competent TV vector for vaccination and immunotherapy.

  9. Fusion genetic analysis of jasmonate-signalling mutants in Arabidopsis

    DEFF Research Database (Denmark)

    Jensen, Anders Bøgh; Raventos, D.; Mundy, John Williams

    2002-01-01

    Jasmonates induce plant-defence responses and act to regulate defence-related genes including positive feedback of the lipoxygenase 2 (LOX2) gene involved in jasmonate synthesis. To identify jasmonate-signalling mutants, we used a fusion genetic strategy in which the firefly luciferase (FLUC...... as two recessive mutants, designated joe1 and 2, that overexpress the reporter. Genetic analysis indicated that reporter overexpression in the joe mutants requires COI. joe1 responded to MeJA with increased anthocyanin accumulation, while joe2 responded with decreased root growth inhibition. In addition...

  10. Phenotypic comparison of samdc and spe mutants reveals complex relationships of polyamine metabolism in Ustilago maydis.

    Science.gov (United States)

    Valdés-Santiago, Laura; Cervantes-Chávez, José Antonio; Winkler, Robert; León-Ramírez, Claudia G; Ruiz-Herrera, José

    2012-03-01

    Synthesis of spermidine involves the action of two enzymes, spermidine synthase (Spe) and S-adenosylmethionine decarboxylase (Samdc). Previously we cloned and disrupted the gene encoding Spe as a first approach to unravel the biological function of spermidine in Ustilago maydis. With this background, the present study was designed to provide a better understanding of the role played by Samdc in the regulation of the synthesis of this polyamine. With this aim we proceeded to isolate and delete the gene encoding Samdc from U. maydis, and made a comparative analysis of the phenotypes of samdc and spe mutants. Both spe and samdc mutants behaved as spermidine auxotrophs, and were more sensitive than the wild-type strain to different stress conditions. However, the two mutants displayed significant differences: in contrast to spe mutants, samdc mutants were more sensitive to LiCl stress, high spermidine concentrations counteracted their dimorphic deficiency, and they were completely avirulent. It is suggested that these differences are possibly related to differences in exogenous spermidine uptake or the differential location of the respective enzymes in the cell. Alternatively, since samdc mutants accumulate higher levels of S-adenosylmethionine (SAM), whereas spe mutants accumulate decarboxylated SAM, the known opposite roles of these metabolites in the processes of methylation and differentiation offer an additional attractive hypothesis to explain the phenotypic differences of the two mutants, and provide insights into the additional roles of polyamine metabolism in the physiology of the cell.

  11. A Toxoplasma MORN1 null mutant undergoes repeated divisions but is defective in basal assembly, apicoplast division and cytokinesis.

    Directory of Open Access Journals (Sweden)

    Alexander Lorestani

    Full Text Available The membrane occupation and recognition nexus protein 1 (MORN1 is highly conserved among apicomplexan parasites and is associated with several structures that have a role in cell division. Here we dissected the role of MORN1 using the relatively simple budding process of Toxoplasma gondii as a model. Ablation of MORN1 in a conditional null mutant resulted in pronounced defects suggesting a central role for MORN1 in apicoplast segregation and in daughter cell budding. Lack of MORN1 resulted in double-headed parasites. These Janus-headed parasites form two complete apical complexes but fail to assemble a basal complex. Moreover, these parasites were capable of undergoing several more budding rounds resulting in the formation of up to 16-headed parasites conjoined at the basal end. Despite this segregation defect, the mother's cytoskeleton was completely disassembled in every budding round. Overall this argues that successful completion of the budding is not required for cell cycle progression. None of the known basal complex components, including a set of recently identified inner membrane complex (IMC proteins, localized correctly in these multi-headed parasites. These data suggest that MORN1 is essential for assembly of the basal complex, and that lack of the basal complex abolishes the contractile capacity assigned to the basal complex late in daughter formation. Consistent with this hypothesis we observe that MORN1 mutants fail to efficiently constrict and divide the apicoplast. We used the null background provided by the mutant to dissect the function of subdomains of the MORN1 protein. This demonstrated that deletion of a single MORN domain already prevented the function of MORN1 whereas a critical role for the short linker between MORN domains 6 and 7 was identified. In conclusion, MORN1 is required for basal complex assembly and loss of MORN1 results in defects in apicoplast division and daughter segregation.

  12. The Role of Dicentric Chromosome Formation and Secondary Centromere Deletion in the Evolution of Myeloid Malignancy

    OpenAIRE

    MacKinnon, Ruth N.; Campbell, Lynda J.

    2011-01-01

    Dicentric chromosomes have been identified as instigators of the genome instability associated with cancer, but this instability is often resolved by one of a number of different secondary events. These include centromere inactivation, inversion, and intercentromeric deletion. Deletion or excision of one of the centromeres may be a significant occurrence in myeloid malignancy and other malignancies but has not previously been widely recognized, and our reports are the first describing centrom...

  13. A New Intergenic α-Globin Deletion (α-αΔ125) Found in a Kabyle Population.

    Science.gov (United States)

    Singh, Amrathlal Rabbind; Lacan, Philippe; Cadet, Estelle; Bignet, Patricia; Dumesnil, Cécile; Vannier, Jean-Pierre; Joly, Philippe; Rochette, Jacques

    2016-01-01

    We have identified a deletion of 125 bp (α-α(Δ1