WorldWideScience

Sample records for delayed optical feedback

  1. All-optical noninvasive delayed feedback control of semiconductor lasers

    CERN Document Server

    Schikora, Sylvia

    2013-01-01

    The stabilization of unstable states hidden in the dynamics of a system, in particular the control of chaos, has received much attention in the last years. Sylvia Schikora for the first time applies a well-known control method called delayed feedback control entirely in the all-optical domain. A multisection semiconductor laser receives optical feedback from an external Fabry-Perot interferometer. The control signal is a phase-tunable superposition of the laser signal and provokes the laser to operate in an otherwise unstable periodic state with a period equal to the time delay. The control is noninvasive, because the reflected signal tends to zero when the target state is reached.   The work has been awarded the Carl-Ramsauer-Prize 2012.   Contents ·         All-Optical Control Setup ·         Stable States with Resonant Fabry-Perot Feedback ·         Control of an Unstable Stationary State and of Unstable Selfpulsations ·         Controlling Chaos ·         Con...

  2. Delay signatures in the chaotic intensity output of a quantum dot laser with optical feedback

    Indian Academy of Sciences (India)

    VARGHESE BEJOY; JOHN MANU P; NANDAKUMARAN V M

    2016-05-01

    Delay identification from the chaotic intensity output of a quantum dot laser with optical feedback is done using numerical and information theoretic techniques. Four quantifiers, namely autocorrelation function, delayed mutual information, permutation entropy and permutation statistical complexity, are employed in delay estimation. A detailed comparison of these quantifiers with different feedback rates and delay is undertaken. Permutation entropy and permutation statistical complexity are calculated with different dimensions of symbolic reconstruction to obtain the best results.

  3. Two-dimensional dissipative rogue waves due to time-delayed feedback in cavity nonlinear optics

    Science.gov (United States)

    Tlidi, Mustapha; Panajotov, Krassimir

    2017-01-01

    We demonstrate a way to generate two-dimensional rogue waves in two types of broad area nonlinear optical systems subject to time-delayed feedback: in the generic Lugiato-Lefever model and in the model of a broad-area surface-emitting laser with saturable absorber. The delayed feedback is found to induce a spontaneous formation of rogue waves. In the absence of delayed feedback, spatial pulses are stationary. The rogue waves are exited and controlled by the delay feedback. We characterize their formation by computing the probability distribution of the pulse height. The long-tailed statistical contribution, which is often considered as a signature of the presence of rogue waves, appears for sufficiently strong feedback. The generality of our analysis suggests that the feedback induced instability leading to the spontaneous formation of two-dimensional rogue waves is a universal phenomenon.

  4. Bubbling effect in the electro-optic delayed feedback oscillator coupled network

    Science.gov (United States)

    Liu, Lingfeng; Lin, Jun; Miao, Suoxia

    2017-03-01

    Synchronization in the optical systems coupled network always suffers from bubbling events. In this paper, we numerically investigate the statistical properties of the synchronization characteristics and bubbling effects in the electro-optic delayed feedback oscillator coupled network with different coupling strength, delay time and gain coefficient. Furthermore, we compare our results with the synchronization properties of semiconductor laser (SL) coupled network, which indicates that the electro-optic delayed feedback oscillator can be better to suppress the bubbling effects in the synchronization of coupled network under the same conditions.

  5. Noise-Induced Phase Locking and Frequency Mixing in an Optical Bistable System with Delayed Feedback

    Science.gov (United States)

    Misono, Masatoshi; Miyakawa, Kenji

    2011-11-01

    The interplay between stochastic resonance (SR) and coherence resonance (CR) is experimentally studied in an optical bistable system with a time-delayed feedback loop. We demonstrate that the phase of the noise-induced motion is locked to that of the periodic input when the ratio of their frequencies is a simple rational number. We also demonstrate that the interplay between SR and CR generates frequency-mixed modes, and that the efficiency of frequency mixing is enhanced by the optimum noise.

  6. Bifurcation analysis of a semiconductor laser with saturable absorber and delayed optical feedback

    CERN Document Server

    Terrien, Soizic; Broderick, Neil G R

    2016-01-01

    Semiconductor lasers exhibit a wealth of dynamics, from emission of a constant beam of light, to periodic oscillations and excitability. Self-pulsing regimes, where the laser periodically releases a short pulse of light, are particularly interesting for many applications, from material science to telecommunications. Self-pulsing regimes need to produce pulses very regularly and, as such, they are also known to be particularly sensitive to perturbations, such as noise or light injection. We investigate the effect of delayed optical feedback on the dynamics of a self-pulsing semiconductor laser with saturable absorber (SLSA). More precisely, we consider the Yamada model with delay -- a system of three delay-differential equations (DDEs) for two slow and one fast variable -- which has been shown to reproduce accurately self-pulsing features as observed in SLSA experimentally. This model is also of broader interest because it is quite closely related to mathematical models of other self-pulsing systems, such as e...

  7. Fast photonic information processing using semiconductor lasers with delayed optical feedback: role of phase dynamics.

    Science.gov (United States)

    Nguimdo, Romain Modeste; Verschaffelt, Guy; Danckaert, Jan; Van der Sande, Guy

    2014-04-01

    Semiconductor lasers subject to delayed optical feedback have recently shown great potential in solving computationally hard tasks. By optically implementing a neuro-inspired computational scheme, called reservoir computing, based on the transient response to optical data injection, high processing speeds have been demonstrated. While previous efforts have focused on signal bandwidths limited by the semiconductor laser's relaxation oscillation frequency, we demonstrate numerically that the much faster phase response makes significantly higher processing speeds attainable. Moreover, this also leads to shorter external cavity lengths facilitating future on-chip implementations. We numerically benchmark our system on a chaotic time-series prediction task considering two different feedback configurations. The results show that a prediction error below 4% can be obtained when the data is processed at 0.25 GSamples/s. In addition, our insight into the phase dynamics of optical injection in a semiconductor laser also provides a clear understanding of the system performance at different pump current levels, even below solitary laser threshold. Considering spontaneous emission noise and noise in the readout layer, we obtain good prediction performance at fast processing speeds for realistic values of the noise strength.

  8. Time-Delay Signature of Chaotic Vertical-Cavity Surface-Emitting Lasers with Polarization-Rotated Optical Feedback

    Institute of Scientific and Technical Information of China (English)

    XIANG Shui-Ying; PAN Wei; YAN Lian-Shan; LUO Bin; ZOU Xi-Hua; JIANG Ning; WEN Kun-Hua

    2011-01-01

    To quantitatively evaluate the time-delay (TD) signatures of chaotic signals generated by vertical-cavity surface-emitting lasers (VCSELs) with polarization-rotated optical feedback (PROF), we propose four cases of resolution coefficients R based on correlation functions. The resolution coefficient characteristics for the x-polarization (XP) mode, y-polarization (YP) mode and the total output are considered. The dependences of R on the feedback strength and feedback delay are discussed and compared carefully. The two-dimensional maps of R show that the TD signatures for the single polarization mode (I.e., XP or YP mode) are much more difficult to retrieve than those for the total output in the entire parameter space. Thus, by using single polarization mode as a chaotic carrier, the TD signatures are extremely difficult to be identified, which contributes a lot in the security-enhanced VCSELs-based chaotic optical communication systems.

  9. Semiconductor ring lasers with delayed optical feedback: low-frequency fluctuations

    Science.gov (United States)

    Van der Sande, Guy; Mashal, Lilia; Nguimdo, Romain Modeste; Cornelles-Soriano, Miguel C.; Danckaert, Jan; Verschaffelt, Guy

    2014-05-01

    Semiconductor lasers subject to external feedback are known to exhibit a wide variety of dynamical regimes desired for some applications such as chaos cryptography, random bit generation, and reservoir computing. Low-frequency fluctuations is one of the most frequently encountered regimes. It is characterized by a fast drop in laser intensity followed by a gradual recovery. The duration of this recovery process is irregular and of the order of hundred nanoseconds. The average time between dropouts is much larger than the laser system characteristic time-scales. Semiconductor ring lasers are currently the focus of a rapidly thriving research activity due to their unique feature of directional bistability. They can be employed in systems for all-optical switching, gating, wavelength-conversion functions, and all-optical memories. Semiconductor ring lasers do not require cleaved facets or gratings for optical feedback and are thus particularly suited for monolithic integration. We experimentally and numerically address the issue of low-frequency fluctuations considering a semiconductor ring laser in a feedback configuration where only one directional mode is re-injected into the same directional mode, a so-called single self-feedback. We have observed that the system is very sensitive to the feedback strength and the injection current. In particular, the power dropouts are more regular when the pump current is increased and become less frequent when the feedback strength is increased. In addition, we find two different recovery processes after the power dropouts of the low-frequency fluctuations. The recovery can either occur via pulses or in a stepwise manner. Since low-frequency fluctuations are not specific to semiconductor ring lasers, we expect these recovery processes to appear also in VCSELs and edge-emitting lasers under similar feedback conditions. The numerical simulations also capture these different behaviors, where the representation in the phase space of

  10. Time-delay signatures in multi-transverse mode VCSELs subject to double-cavity polarization-rotated optical feedback

    Science.gov (United States)

    Lin, Hong; Khurram, Aliza; Hong, Yanhua

    2016-10-01

    Time delay (TD) signatures are studied experimentally in orthogonal polarizations and in individual transverse modes respectively in a VCSEL operating with three transverse modes. Different types of concealment of the TD signatures are observed when the polarization of feedback is rotated through large angles. Effects of feedback strength and external cavity length on the TD signatures are investigated. Weak feedback leads to better concealment of the TD signatures in the dominant polarization. When the round-trip time difference between the two external cavities is close to a half of the relaxation oscillation period, the TD signatures are minimized.

  11. Effects of quantum noise on the nonlinear dynamics of a semiconductor laser subject to two spectrally filtered, time-delayed optical feedbacks

    Science.gov (United States)

    Suelzer, Joseph S.; Prasad, Awadhesh; Ghosh, Rupamanjari; Vemuri, Gautam

    2016-07-01

    We report on a theoretical and computational investigation of the complex dynamics that arise in a semiconductor laser that is subject to two external, time-delayed, filtered optical feedbacks with special attention to the effect of quantum noise. In particular, we focus on the dynamics of the instantaneous optical frequency (wavelength) and its behavior for a wide range of feedback strengths and filter parameters. In the case of two intermediate filter bandwidths, the most significant results are that in the presence of noise, the feedback strengths required for the onset of chaos in a period doubling route are higher than in the absence of noise. We find that the inclusion of noise changes the dominant frequency of the wavelength oscillations, and that certain attractors do not survive in the presence of noise for a range of filter parameters. The results are interpreted by use of a combination of phase portraits, rf spectra, and first return maps.

  12. Experimental demonstration of change of dynamical properties of a passively mode-locked semiconductor laser subject to dual optical feedback by dual full delay-range tuning.

    Science.gov (United States)

    Nikiforov, O; Jaurigue, L; Drzewietzki, L; Lüdge, K; Breuer, S

    2016-06-27

    In this contribution we experimentally demonstrate the change and improvement of dynamical properties of a passively mode-locked semiconductor laser subject to optical feedback from two external cavities by coupling the feedback pulses back into the gain segment. Hereby, we tune the full delay-phase of the pulse-to-pulse period of both external cavities separately and demonstrate the change of the repetition rate, timing jitter, multi-pulse formation and side-band suppression for the first time for such a dual feedback configuration. In addition, we thereby confirm modeling predictions by achieving both a good qualitative and quantitative agreement of experimental and simulated results. Our findings suggest a path towards the realization of side-band free all-optical photonic oscillators based on mode-locked lasers.

  13. ON FEEDBACK CONTROL OF DELAYED CHAOTIC SYSTEM

    Institute of Scientific and Technical Information of China (English)

    李丽香; 彭海朋; 卢辉斌; 关新平

    2001-01-01

    In this paper two different types of feedback control technique are discussed: the standard feedback control and the time-delay feedback control which have been successfully used in many control systems. In order to understand to what extent the two different types of control technique are useful in delayed chaotic systems, some analytic stabilization conditions for chaos control from the two types of control technique are derived based on Lyapunov stabilization arguments. Similarly, we discuss the tracking problem by applying the time-delay feedback control. Finally, numerical examples are provided.

  14. Anharmonic resonances with recursive delay feedback

    Energy Technology Data Exchange (ETDEWEB)

    Goldobin, Denis S., E-mail: Denis.Goldobin@gmail.com [Department of Mathematics, University of Leicester, Leicester LE1 7RH (United Kingdom); Institute of Continuous Media Mechanics, UB RAS, Perm 614013 (Russian Federation)

    2011-09-12

    We consider application of time-delayed feedback with infinite recursion for control of anharmonic (nonlinear) oscillators subject to noise. In contrast to the case of a single delay feedback, recursive delay feedback exhibits resonances between feedback and nonlinear harmonics, leading to a resonantly strong or weak oscillation coherence even for a small anharmonicity. Remarkably, these small-anharmonicity induced resonances can be stronger than the harmonic ones. Analytical results are confirmed numerically for van der Pol and van der Pol-Duffing oscillators. -- Highlights: → We construct general theory of noisy limit-cycle oscillators with linear feedback. → We focus on coherence and 'reliability' of oscillators. → For recursive delay feedback control the theory shows importance of anharmonicity. → Anharmonic resonances are studied both numerically and analytically.

  15. Feedback Control of Chaos in Delay Maps

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    In this paper, we discuss feedback control of a class of delay chaotic maps. Our aim is to drive the chaoticmaps to its initially unstable fixed points by using linear and nonlinear state feedback control. The control is achievedby using small, bounded perturbations. Some numerical simulations are given to demonstrate the effectiveness of theproposed control method.

  16. Delayed feedback control in quantum transport.

    Science.gov (United States)

    Emary, Clive

    2013-09-28

    Feedback control in quantum transport has been predicted to give rise to several interesting effects, among them quantum state stabilization and the realization of a mesoscopic Maxwell's daemon. These results were derived under the assumption that control operations on the system are affected instantaneously after the measurement of electronic jumps through it. In this contribution, I describe how to include a delay between detection and control operation in the master equation theory of feedback-controlled quantum transport. I investigate the consequences of delay for the state stabilization and Maxwell's daemon schemes. Furthermore, I describe how delay can be used as a tool to probe coherent oscillations of electrons within a transport system and how this formalism can be used to model finite detector bandwidth.

  17. Acousto-optic laser optical feedback imaging

    CERN Document Server

    Jacquin, Olivier; Lacot, Eric; Hugon, Olivier; De Chatellus, Hugues Guillet; François, Ramaz

    2012-01-01

    We present a photon noise and diffraction limited imaging method combining the imaging laser and ultrasonic waves. The laser optical feedback imaging (LOFI) technique is an ultrasensitive imaging method for imaging objects through or embedded within a scattering medium. However, LOFI performances are dramatically limited by parasitic optical feedback occurring in the experimental setup. In this work, we have tagged the ballistic photons by an acousto-optic effect in order to filter the parasitic feedback effect and to reach the theoretical and ultimate sensitivity of the LOFI technique. We present the principle and the experimental setup of the acousto-optic laser optical feedback imaging (AO-LOFI) technique, and we demonstrate the suppression of the parasitic feedback.

  18. Delayed feedback on tax audits affects compliance and fairness perceptions

    NARCIS (Netherlands)

    Kogler, C.; Mittone, Luigi; Kirchler, Erich

    2016-01-01

    In the present study we explore the conflicting finding that delayed feedback on tax audits apparently results in higher tax compliance, although delaying feedback is associated with lower perceptions of procedural fairness. In a repeated rounds design the timing of feedback (delayed vs. immediate)

  19. Semiconductor laser with filtered optical feedback: bridge between conventional feedback and optical injection.

    NARCIS (Netherlands)

    Hek, G.M.; Rottschäfer, V.

    2005-01-01

    We study a model for a semiconductor laser subject to filtered optical feedback, i.e. a system of delay differential equations (DDEs). In this model, the filter is characterized by a mean frequency Omega(m) and a filter width A. In the limit of a narrow filter (lambda -> 0), the laser equations redu

  20. Semiconductor laser with filtered optical feedback: from optical injection to conventional feedback.

    NARCIS (Netherlands)

    Hek, G.M.; Rottschäfer, V.

    2007-01-01

    Abstract We study a model for a semiconductor laser subject to filtered optical feedback, that is a system of delay differential equations (DDEs). In this model the filter is characterised by a mean frequency Ωm and a filter width λ. In the limit of a narrow filter (λ → 0) the laser equations reduce

  1. Semiconductor laser with filtered optical feedback: bridge between conventional feedback and optical injection.

    NARCIS (Netherlands)

    Hek, G.M.; Rottschäfer, V.

    2005-01-01

    We study a model for a semiconductor laser subject to filtered optical feedback, i.e. a system of delay differential equations (DDEs). In this model, the filter is characterized by a mean frequency Omega(m) and a filter width A. In the limit of a narrow filter (lambda -> 0), the laser equations

  2. Nonlinear dynamics of neural delayed feedback

    Energy Technology Data Exchange (ETDEWEB)

    Longtin, A.

    1990-01-01

    Neural delayed feedback is a property shared by many circuits in the central and peripheral nervous systems. The evolution of the neural activity in these circuits depends on their present state as well as on their past states, due to finite propagation time of neural activity along the feedback loop. These systems are often seen to undergo a change from a quiescent state characterized by low level fluctuations to an oscillatory state. We discuss the problem of analyzing this transition using techniques from nonlinear dynamics and stochastic processes. Our main goal is to characterize the nonlinearities which enable autonomous oscillations to occur and to uncover the properties of the noise sources these circuits interact with. The concepts are illustrated on the human pupil light reflex (PLR) which has been studied both theoretically and experimentally using this approach. 5 refs., 3 figs.

  3. LHC One-turn Delay Feedback Commissioning

    CERN Document Server

    Mastoridis, T; Molendijk, J

    2012-01-01

    The LHC One-Turn delay FeedBack (OTFB) is an FPGA based feedback system part of the LHC cavity controller, which produces gain only around the revolution frequency (frev = 11.245 kHz) harmonics. As such, it helps reduce the transient beam loading and effective cavity impedance. Consequently, it increases the stability margin for Longitudinal Coupled Bunch Instabilities driven by the cavity impedance at the fundamental and allows reliable operation at higher beam currents. The OTFB was commissioned on all sixteen cavities in mid-October 2011 and has been used in operation since. The commissioning procedure and algorithms for setting-up are presented. The resulting improvements in transient beam loading, beam stability, and required klystron power are analyzed. The commissioning of the OTFB reduced the cavity voltage phase modulation from approximately six degrees peak-to-peak to below one degree at 400 MHz with nominal bunch intensity of 1.1e11 protons.

  4. Magnetic bearing optical delay line

    NARCIS (Netherlands)

    Dool, T.C. van den; Kamphues, F.G.; Fouss, B.; Henrioulle, K.; Hogenhuis, H.

    2004-01-01

    TNO TPD, in close cooperation with Micromega-Dynamics and Dutch Space, has developed an advanced Optical Delay Line (ODL) for use in PRIMA, GENIE and other ground based interferometers. The delay line design is modular and flexible, which makes scaling for other applications a relatively easy task.

  5. H∞ State Feedback Delay-dependent Control for Discrete Systems with Multi-time-delay

    Institute of Scientific and Technical Information of China (English)

    Bai-Da Qu

    2005-01-01

    In this paper,H∞ state feedback control with delay information for discrete systems with multi-time-delay is discussed. Making use of linear matrix inequality (LMI) approach, a time-delay-dependent criterion for a discrete system with multi-time-delay to satisfy H∞ performance indices is induced, and then a strategy for H∞ state feedback control with delay values for plant with multi-time-delay is obtained. By solving corresponding LMI, a delay-dependent state feedback controller satisfying H∞ performance indices is designed. Finally, a simulation example demonstrates the validity of the proposed approach.

  6. Experimental demonstration of coherent feedback control on optical field squeezing

    CERN Document Server

    Iida, Sanae; Yonezawa, Hidehiro; Yamamoto, Naoki; Furusawa, Akira

    2011-01-01

    Coherent feedback is a non-measurement based, hence a back-action free, method of control for quantum systems. A typical application of this control scheme is squeezing enhancement, a purely non-classical effect in quantum optics. In this paper we report its first experimental demonstration that well agrees with the theory taking into account time delays and losses in the coherent feedback loop. The results clarify both the benefit and the limitation of coherent feedback control in a practical situation.

  7. Time-delay feedback control in a delayed dynamical chaos system and its applications

    Institute of Scientific and Technical Information of China (English)

    Ye Zhi-Yong; Yang Guang; Deng Cun-Bing

    2011-01-01

    The feedback control of a delayed dynamical system, which also includes various chaotic systems with time delays, is investigated. On the basis of stability analysis of a nonautonomons system with delays, some simple yet less conservative criteria are obtained for feedback control in a delayed dynamical system. Finally, the theoretical result is applied to a typical class of chaotic Lorenz system and Chua circuit with delays. Numerical simulations are also given to verify the theoretical results.

  8. Delayed feedback model of axonal length sensing.

    Science.gov (United States)

    Karamched, Bhargav R; Bressloff, Paul C

    2015-05-05

    A fundamental question in cell biology is how the sizes of cells and organelles are regulated at various stages of development. Size homeostasis is particularly challenging for neurons, whose axons can extend from hundreds of microns to meters (in humans). Recently, a molecular-motor-based mechanism for axonal length sensing has been proposed, in which axonal length is encoded by the frequency of an oscillating retrograde signal. In this article, we develop a mathematical model of this length-sensing mechanism in which advection-diffusion equations for bidirectional motor transport are coupled to a chemical signaling network. We show that chemical oscillations emerge due to delayed negative feedback via a Hopf bifurcation, resulting in a frequency that is a monotonically decreasing function of axonal length. Knockdown of either kinesin or dynein causes an increase in the oscillation frequency, suggesting that the length-sensing mechanism would produce longer axons, which is consistent with experimental findings. One major prediction of the model is that fluctuations in the transport of molecular motors lead to a reduction in the reliability of the frequency-encoding mechanism for long axons. Copyright © 2015 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  9. Optical feedback structures and methods of making

    Science.gov (United States)

    Snee, Preston T; Chan, Yin Thai; Nocera, Daniel G; Bawendi, Moungi G

    2014-11-18

    An optical resonator can include an optical feedback structure disposed on a substrate, and a composite including a matrix including a chromophore. The composite disposed on the substrate and in optical communication with the optical feedback structure. The chromophore can be a semiconductor nanocrystal. The resonator can provide laser emission when excited.

  10. Time-delay identification for vibration systems with multiple feedback

    Science.gov (United States)

    Sun, Yi-Qiang; Jin, Meng-Shi; Song, Han-Wen; Xu, Jian

    2016-12-01

    An approach for time-delay identification is proposed in multiple-degree-of-freedom (MDOF) linear systems with multiple feedback. The applicability of the approach is discussed in detail. Based on the characteristics of frequency domain in feedback controlled system with multiple time-delays, this paper proposes a time-delay identification approach, which is based on the pseudo impedance function of reference point. Treating feedback time-delays as the "frequencies" of the oscillation curve, the time-delays can be obtained from the "frequencies" of the curve. Numerical simulation is conducted to validate the proposed approach. The application scope of the approach is discussed with regard to different forms of feedback.

  11. Time-delay identification for vibration systems with multiple feedback

    Institute of Scientific and Technical Information of China (English)

    Yi-Qiang Sun; Meng-Shi Jin; Han-Wen Song; Jian Xu

    2016-01-01

    An approach for time-delay identification is pro-posed in multiple-degree-of-freedom (MDOF) linear sys-tems with multiple feedback. The applicability of the approach is discussed in detail. Based on the characteris-tics of frequency domain in feedback controlled system with multiple time-delays, this paper proposes a time-delay iden-tification approach, which is based on the pseudo impedance function of reference point. Treating feedback time-delays as the“frequencies”of the oscillation curve, the time-delays can be obtained from the“frequencies”of the curve. Numerical simulation is conducted to validate the proposed approach. The application scope of the approach is discussed with regard to different forms of feedback.

  12. Advanced optical delay line demonstrator

    NARCIS (Netherlands)

    Dool, T.C. van den; Kamphues, F.G.; Fouss, B.; Henrioulle, K.; Hogenhuis, H.

    2004-01-01

    TNO TPD, in cooperation with Micromega-Dynamics and Dutch Space, has designed an advanced Optical Delay Line (ODL) for use in future ground based and space interferometry missions. The work is performed under NIVR contract in preparation for GENIE and DARWIN. Using the ESO PRIMA DDL requirements as

  13. Variable-delay feedback control of unstable steady states in retarded time-delayed systems

    CERN Document Server

    Gjurchinovski, Aleksandar; 10.1103/PhysRevE.81.016209

    2010-01-01

    We study the stability of unstable steady states in scalar retarded time-delayed systems subjected to a variable-delay feedback control. The important aspect of such a control problem is that time-delayed systems are already infinite-dimensional before the delayed feedback control is turned on. When the frequency of the modulation is large compared to the system's dynamics, the analytic approach consists of relating the stability properties of the resulting variable-delay system with those of an analogous distributed delay system. Otherwise, the stability domains are obtained by a numerical integration of the linearized variable-delay system. The analysis shows that the control domains are significantly larger than those in the usual time-delayed feedback control, and that the complexity of the domain structure depends on the form and the frequency of the delay modulation.

  14. Dynamical behaviour of Liu system with time delayed feedback

    Institute of Scientific and Technical Information of China (English)

    Qian Qin; Wang Lin; Ni Qiao

    2008-01-01

    This paper investigates the dynamical behaviour of the Liu system with time delayed feedback.Two typical situations are considered and the effect of time-delay parameter on the dynamics of the system is discussed.It is shown that the Liu system with time delayed feedback may exhibit interesting and extremely rich dynamical behaviour.The evolution of the dynamics is shown to be complex with varying time-delay parameter.Moreover,the strange attractor like 'wormhole' is detected via numerical simulations.

  15. Stabilizing unstable steady states using multiple delay feedback control.

    Science.gov (United States)

    Ahlborn, Alexander; Parlitz, Ulrich

    2004-12-31

    Feedback control with different and independent delay times is introduced and shown to be an efficient method for stabilizing fixed points (equilibria) of dynamical systems. In comparison to other delay based chaos control methods multiple delay feedback control is superior for controlling steady states and works also for relatively large delay times (sometimes unavoidable in experiments due to system dead times). To demonstrate this approach for stabilizing unstable fixed points we present numerical simulations of Chua's circuit and a successful experimental application for stabilizing a chaotic frequency doubled Nd-doped yttrium aluminum garnet laser.

  16. Effects of Feedback Timing on Second Language Vocabulary Learning: Does Delaying Feedback Increase Learning?

    Science.gov (United States)

    Nakata, Tatsuya

    2015-01-01

    Feedback, or information given to learners regarding their performance, is found to facilitate second language (L2) learning. Research also suggests that the timing of feedback (whether it is provided immediately or after a delay) may affect learning. The purpose of the present study was to identify the optimal feedback timing for L2 vocabulary…

  17. The Effects of Delay of Feedback on a Delayed Concept Formation Transfer Task.

    Science.gov (United States)

    Schroth, Marvin L.

    1992-01-01

    Delay and completeness of verbal information feedback were investigated within a transfer of learning paradigm involving concept formation. An experiment with 192 undergraduates indicates that, although delay of feedback (up to 30 seconds) slows speed of learning on the initial task, it has positive effects on the transfer task. (SLD)

  18. Delayed excitatory and inhibitory feedback shape neural information transmission

    Science.gov (United States)

    Chacron, Maurice J.; Longtin, André; Maler, Leonard

    2017-01-01

    Feedback circuitry with conduction and synaptic delays is ubiquitous in the nervous system. Yet the effects of delayed feedback on sensory processing of natural signals are poorly understood. This study explores the consequences of delayed excitatory and inhibitory feedback inputs on the processing of sensory information. We show, through numerical simulations and theory, that excitatory and inhibitory feedback can alter the firing frequency response of stochastic neurons in opposite ways by creating dynamical resonances, which in turn lead to information resonances (i.e., increased information transfer for specific ranges of input frequencies). The resonances are created at the expense of decreased information transfer in other frequency ranges. Using linear response theory for stochastically firing neurons, we explain how feedback signals shape the neural transfer function for a single neuron as a function of network size. We also find that balanced excitatory and inhibitory feedback can further enhance information tuning while maintaining a constant mean firing rate. Finally, we apply this theory to in vivo experimental data from weakly electric fish in which the feedback loop can be opened. We show that it qualitatively predicts the observed effects of inhibitory feedback. Our study of feedback excitation and inhibition reveals a possible mechanism by which optimal processing may be achieved over selected frequency ranges. PMID:16383655

  19. Time-Delay Systems with Band-Limited Feedback

    Science.gov (United States)

    2005-08-01

    used as generators of chaos in applications such as communication, chaos control , and ranging. As an example, such devices are studied as a signal...tions [Lukin, 1997; Myneni, 2001]. Furthermore, time delayed feedback is used in the chaos control scheme known as time-delay autosynchronization

  20. Feedback delays eliminate auditory-motor learning in speech production.

    Science.gov (United States)

    Max, Ludo; Maffett, Derek G

    2015-03-30

    Neurologically healthy individuals use sensory feedback to alter future movements by updating internal models of the effector system and environment. For example, when visual feedback about limb movements or auditory feedback about speech movements is experimentally perturbed, the planning of subsequent movements is adjusted - i.e., sensorimotor adaptation occurs. A separate line of studies has demonstrated that experimentally delaying the sensory consequences of limb movements causes the sensory input to be attributed to external sources rather than to one's own actions. Yet similar feedback delays have remarkably little effect on visuo-motor adaptation (although the rate of learning varies, the amount of adaptation is only moderately affected with delays of 100-200ms, and adaptation still occurs even with a delay as long as 5000ms). Thus, limb motor learning remains largely intact even in conditions where error assignment favors external factors. Here, we show a fundamentally different result for sensorimotor control of speech articulation: auditory-motor adaptation to formant-shifted feedback is completely eliminated with delays of 100ms or more. Thus, for speech motor learning, real-time auditory feedback is critical. This novel finding informs theoretical models of human motor control in general and speech motor control in particular, and it has direct implications for the application of motor learning principles in the habilitation and rehabilitation of individuals with various sensorimotor speech disorders. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  1. Truncated predictor feedback for time-delay systems

    CERN Document Server

    Zhou, Bin

    2014-01-01

    This book provides a systematic approach to the design of predictor based controllers for (time-varying) linear systems with either (time-varying) input or state delays. Differently from those traditional predictor based controllers, which are infinite-dimensional static feedback laws and may cause difficulties in their practical implementation, this book develops a truncated predictor feedback (TPF) which involves only finite dimensional static state feedback. Features and topics: A novel approach referred to as truncated predictor feedback for the stabilization of (time-varying) time-delay systems in both the continuous-time setting and the discrete-time setting is built systematically Semi-global and global stabilization problems of linear time-delay systems subject to either magnitude saturation or energy constraints are solved in a systematic manner Both stabilization of a single system and consensus of a group of systems (multi-agent systems) are treated in a unified manner by applying the truncated pre...

  2. Bandwidth enhancement and time-delay signature suppression of chaotic signal from an optical feedback semiconductor laser by using cross phase modulation in a highly nonlinear fiber loop mirror

    Science.gov (United States)

    Wang, Liang-Yan; Zhong, Zhu-Qiong; Wu, Zheng-Mao; Lu, Dong; Chen, Xi; Chen, Jun; Xia, Guang-Qiong

    2016-11-01

    Based on a nonlinear fiber loop mirror (NOLM) composed of a fiber coupler (FC) and a highly nonlinear fiber (HNLF), a scheme is proposed to simultaneously realize the bandwidth enhancement and the time-delay signature (TDS) suppression of a chaotic signal generated from an external cavity optical feedback semiconductor laser. The simulation results show that, after passing through the NOLM, the bandwidth of chaotic signal can be efficiently enhanced and the TDS can be well suppressed under suitable operation parameters. Furthermore, the influences of the power-splitting ratio of the FC, the averaged power of the chaotic signal entering into the FC and the length of the HNLF on the chaotic bandwidth and TDS are analyzed, and the optimized parameters are determined.

  3. Conversion of linear time-invariant time-delay feedback systems into delay-differential equations with commensurate delays

    Science.gov (United States)

    Yamazaki, Tatsuya; Hagiwara, Tomomichi

    2014-08-01

    A new stability analysis method of time-delay systems (TDSs) called the monodromy operator approach has been studied under the assumption that a TDS is represented as a time-delay feedback system consisting of a finite-dimensional linear time-invariant (LTI) system and a pure delay. For applying this approach to TDSs described by delay-differential equations (DDEs), the problem of converting DDEs into representation as time-delay feedback systems has been studied. With regard to such a problem, it was shown that, under discontinuous initial functions, it is natural to define the solutions of DDEs in two different ways, and the above conversion problem was solved for each of these two definitions. More precisely, the solution of a DDE was represented as either the state of the finite-dimensional part of a time-delay feedback system or a part of the output of another time-delay feedback system, depending on which definition of the DDE solution one is talking about. Motivated by the importance in establishing a thorough relationship between time-delay feedback systems and DDEs, this paper discusses the opposite problem of converting time-delay feedback systems into representation as DDEs, including the discussions about the conversion of the initial conditions. We show that the state of (the finite-dimensional part of) a time-delay feedback system can be represented as the solution of a DDE in the sense of one of the two definitions, while its 'essential' output can be represented as that of another DDE in the sense of the other type of definition. Rigorously speaking, however, it is also shown that the latter representation is possible regardless of the initial conditions, while some initial condition could prevent the conversion into the former representation. This study hence establishes that the representation of TDSs as time-delay feedback systems possesses higher ability than that with DDEs, as description methods for LTI TDSs with commensurate delays.

  4. Delay-dependent state feedback robust stabilization for uncertain singular time-delay systems

    Institute of Scientific and Technical Information of China (English)

    Gao Huanli; Xu Bugong

    2008-01-01

    The problem of robust stabilization for uncertain singular time-delay systems is studied.First,a new delay-dependent asymptotic stability criteria for normal singular time-delay systems is given,which is less conservative.Using this result,the problem of state feedback robust stabilization for uncertain singular time-delay systems is discussed.Finally,two examples are given to illustrate the effectiveness of the results.

  5. Delayed feedback control of time-delayed chaotic systems: Analytical approach at Hopf bifurcation

    Energy Technology Data Exchange (ETDEWEB)

    Vasegh, Nastaran [Faculty of Electrical Engineering, K.N. Toosi University of Technology, PO Box 16315-1355, Tehran (Iran, Islamic Republic of)], E-mail: vasegh@eetd.kntu.ac.ir; Sedigh, Ali Khaki [Faculty of Electrical Engineering, K.N. Toosi University of Technology, PO Box 16315-1355, Tehran (Iran, Islamic Republic of)

    2008-07-28

    This Letter is concerned with bifurcation and chaos control in scalar delayed differential equations with delay parameter {tau}. By linear stability analysis, the conditions under which a sequence of Hopf bifurcation occurs at the equilibrium points are obtained. The delayed feedback controller is used to stabilize unstable periodic orbits. To find the controller delay, it is chosen such that the Hopf bifurcation remains unchanged. Also, the controller feedback gain is determined such that the corresponding unstable periodic orbit becomes stable. Numerical simulations are used to verify the analytical results.

  6. Swing Damping for Helicopter Slung Load Systems using Delayed Feedback

    DEFF Research Database (Denmark)

    Bisgaard, Morten; la Cour-Harbo, Anders; Bendtsen, Jan Dimon

    2009-01-01

    of swing. The design of the delayed feedback controller is presented as an optimization problem which gives the possibility of an automated design process. Simulations and flight test verifications of the control system on two different autonomous helicopters are presented and it is shown how a significant......This paper presents the design and verification of a swing reducing controller for helicopter slung load systems using intentional delayed feedback. It is intended for augmenting a trajectory tracking helicopter controller and thereby improving the slung load handing capabilities for autonomous...... helicopters. The delayed feedback controller is added to actively reduce oscillations of the slung load by improving the damping of the slung load pendulum modes. Furthermore, it is intended for integration with a feedforward control scheme based on input shaping for concurrent avoidance and dampening...

  7. Predictor feedback for delay systems implementations and approximations

    CERN Document Server

    Karafyllis, Iasson

    2017-01-01

    This monograph bridges the gap between the nonlinear predictor as a concept and as a practical tool, presenting a complete theory of the application of predictor feedback to time-invariant, uncertain systems with constant input delays and/or measurement delays. It supplies several methods for generating the necessary real-time solutions to the systems’ nonlinear differential equations, which the authors refer to as approximate predictors. Predictor feedback for linear time-invariant (LTI) systems is presented in Part I to provide a solid foundation on the necessary concepts, as LTI systems pose fewer technical difficulties than nonlinear systems. Part II extends all of the concepts to nonlinear time-invariant systems. Finally, Part III explores extensions of predictor feedback to systems described by integral delay equations and to discrete-time systems. The book’s core is the design of control and observer algorithms with which global stabilization, guaranteed in the previous literature with idealized (b...

  8. Control of spatially patterned synchrony with multisite delayed feedback

    OpenAIRE

    Hauptmann, C.; Omelchenko, O.; Popovych, O. V.; Maistrenko, Y.; Tass, P.A.

    2007-01-01

    We present an analytical study describing a method for the control of spatiotemporal patterns of synchrony in networks of coupled oscillators. Delayed feedback applied through a small number of electrodes effectively induces spatiotemporal dynamics at minimal stimulation intensities. Different arrangements of the delays cause different spatial patterns of synchrony, comparable to central pattern generators (CPGs), i.e., interacting clusters of oscillatory neurons producing patterned output, e...

  9. Nonlinear dynamics of a microelectromechanical oscillator with delayed feedback

    NARCIS (Netherlands)

    Van Leeuwen, R.; Karabacak, D.M.; Van der Zant, H.S.J.; Venstra, W.J.

    2013-01-01

    We study the dynamics of a nonlinear electromechanical oscillator with delayed feedback. Compared to their linear counterparts, we find that the dynamics is dramatically different. The well-known Barkhausen stability criterion ceases to exist, and two modes of operation emerge: one characterized by

  10. Controlling Beam Halo-Chaos via Time-Delayed Feedback

    Institute of Scientific and Technical Information of China (English)

    FANG Jin-Qing; WENG Jia-Qiang; ZHU Lun-Wu; LUO Xiao-Shu

    2004-01-01

    The study of controlling high-current proton beam halo-chaos has become a key concerned issue for many important applications. In this paper, time-delayed feedback control method is proposed for beam halo-chaos. Particle in cell simulation results show that the method is very effective and has some advantages for high-current beam experiments and engineering.

  11. Limit-cycle oscillators subject to a delayed feedback

    NARCIS (Netherlands)

    Erneux, T.; Grasman, J.

    2008-01-01

    The coexistence of two stable limit cycles exhibiting different periods is examined for a nonlinear oscillator subject to a delayed feedback. For the case of a weakly nonlinear oscillator, we discuss the validity of a previously determined phase equation. For the case of a strongly nonlinear oscilla

  12. Controlling a time-delay system using multiple delay feedback control

    Institute of Scientific and Technical Information of China (English)

    Qi Wei; Zhang Yan; Wang Ying-Hai

    2007-01-01

    In this paper multiple delay feedback control (MDFC) with different and independent delay times is shown to be an efficient method for stabilizing fixed points in finite-dimensional dynamical systems. Whether MDFC can be applied to infinite-dimensional systems has been an open question. In this paper we find that for infinite-dimensional systems modelled by delay differential equations, MDFC works well for stabilizing (unstable) steady states in long-, moderate-and short-time delay regions, in particular for the hyperchaotic case.

  13. Adaptive modification of the delayed feedback control algorithm with a continuously varying time delay

    Energy Technology Data Exchange (ETDEWEB)

    Pyragas, V. [Semiconductor Physics Institute, Center for Physical Sciences and Technology, A. Gostauto 11, LT-01108 Vilnius (Lithuania); Pyragas, K. [Semiconductor Physics Institute, Center for Physical Sciences and Technology, A. Gostauto 11, LT-01108 Vilnius (Lithuania)

    2011-10-24

    We propose a simple adaptive delayed feedback control algorithm for stabilization of unstable periodic orbits with unknown periods. The state dependent time delay is varied continuously towards the period of controlled orbit according to a gradient-descent method realized through three simple ordinary differential equations. We demonstrate the efficiency of the algorithm with the Roessler and Mackey-Glass chaotic systems. The stability of the controlled orbits is proven by computation of the Lyapunov exponents of linearized equations. -- Highlights: → A simple adaptive modification of the delayed feedback control algorithm is proposed. → It enables the control of unstable periodic orbits with unknown periods. → The delay time is varied continuously according to a gradient descend method. → The algorithm is embodied by three simple ordinary differential equations. → The validity of the algorithm is proven by computation of the Lyapunov exponents.

  14. Logistic map with a delayed feedback: Stability of a discrete time-delay control of chaos.

    Science.gov (United States)

    Buchner, T; Zebrowski, J J

    2001-01-01

    The logistic map with a delayed feedback is studied as a generic model. The stability of the model and its bifurcation scheme is analyzed as a function of the feedback amplitude and of the delay. Stability analysis is performed semianalytically. A relation between the delay and the periodicity of the orbit, which explains why some terms used in chaos control are ineffective, was found. The consequences for chaos control are discussed. The structure of bifurcations is found to depend strongly on the parity and on the length of the delay. Boundary crisis, the tangent, the Neimark, as well as the period-doubling bifurcations occur in this system. The effective dimension of the model is also discussed.

  15. Chaos control in delayed chaotic systems via sliding mode based delayed feedback

    Energy Technology Data Exchange (ETDEWEB)

    Vasegh, Nastaran [Faculty of Electrical Engineering, K.N. Toosi University of Technology, Seyed Khandan Bridge, Shariati St. 16314, P.O. Box 16315-1355, Tehran (Iran, Islamic Republic of)], E-mail: vasegh@eetd.kntu.ac.ir; Sedigh, Ali Khaki [Faculty of Electrical Engineering, K.N. Toosi University of Technology, Seyed Khandan Bridge, Shariati St. 16314, P.O. Box 16315-1355, Tehran (Iran, Islamic Republic of)

    2009-04-15

    This paper investigates chaos control for scalar delayed chaotic systems using sliding mode control strategy. Sliding surface design is based on delayed feedback controller. It is shown that the proposed controller can achieve stability for an arbitrary unstable fixed point (UPF) or unstable periodic orbit (UPO) with arbitrary period. The chaotic system used in this study to illustrate the theoretical concepts is the well known Mackey-Glass model. Simulation results show the effectiveness of the designed nonlinear sliding mode controller.

  16. Autonomous learning by simple dynamical systems with delayed feedback.

    Science.gov (United States)

    Kaluza, Pablo; Mikhailov, Alexander S

    2014-09-01

    A general scheme for the construction of dynamical systems able to learn generation of the desired kinds of dynamics through adjustment of their internal structure is proposed. The scheme involves intrinsic time-delayed feedback to steer the dynamics towards the target performance. As an example, a system of coupled phase oscillators, which can, by changing the weights of connections between its elements, evolve to a dynamical state with the prescribed (low or high) synchronization level, is considered and investigated.

  17. A survey on delayed feedback control of chaos

    Institute of Scientific and Technical Information of China (English)

    Yuping TIAN; Jiandong ZHU; Guanrong CHEN

    2005-01-01

    This paper introduces the basic idea and provides the mathematical formulation of the delayed feedback control (DFC) methodology, which has been widely used in chaos control. Stability analysis including the well-known odd number limitation of the DFC is reviewed. Some new developments in characterizing the limitation of the DFC are presented. Various modified DFC methods, which are developed in order to overcome the odd number limitation, are also described. Finally, some open problems in this research field are discussed.

  18. Dynamical output feedback stabilization for neutral systems with mixed delays

    Institute of Scientific and Technical Information of China (English)

    Wei QIAN; Guo-jiang SHEN; You-xian SUN

    2008-01-01

    This paper is concerned with the issue of stabilization for the linear neutral systems with mixed delays.The attention is focused on the design of output feedback controllers which guarantee the asymptotical stability of the closed-loop systems.Based on the model transformation of neutral type,the Lyapunov-Krasovskii functional method is employed to establish the delay-dependent stability criterion.Then,through the controller parameterization and some matrix transformation techniques,the desired parameters are determined under the delay-dependent design condition in terms of linear matrix inequalities (LMIs),and the desired controller is explicitly formulated.A numerical example is given to illustrate the effectiveness of the proposed method.

  19. Relation between delayed feedback and delay-coupled systems and its application to chaotic lasers

    Energy Technology Data Exchange (ETDEWEB)

    Soriano, Miguel C., E-mail: miguel@ifisc.uib-csic.es; Flunkert, Valentin; Fischer, Ingo [Instituto de Física Interdisciplinar y Sistemas Complejos, IFISC (CSIC-UIB), Campus Universitat Illes Balears, E-07122 Palma de Mallorca (Spain)

    2013-12-15

    We present a systematic approach to identify the similarities and differences between a chaotic system with delayed feedback and two mutually delay-coupled systems. We consider the general case in which the coupled systems are either unsynchronized or in a generally synchronized state, in contrast to the mostly studied case of identical synchronization. We construct a new time-series for each of the two coupling schemes, respectively, and present analytic evidence and numerical confirmation that these two constructed time-series are statistically equivalent. From the construction, it then follows that the distribution of time-series segments that are small compared to the overall delay in the system is independent of the value of the delay and of the coupling scheme. By focusing on numerical simulations of delay-coupled chaotic lasers, we present a practical example of our findings.

  20. On X-Channels with Feedback and Delayed CSI

    CERN Document Server

    Tandon, Ravi; Poor, H Vincent; Shamai, Shlomo

    2012-01-01

    The sum degrees of freedom (DoF) of the two-user MIMO X-channel is characterized in the presence of output feedback and delayed channel state information (CSI). The number of antennas at each transmitters is assumed to be M and the number of antennas at each of the receivers is assumed to be N. It is shown that the sum DoF of the two-user MIMO X-channel is the same as the sum DoF of a two-user MIMO broadcast channel with 2M transmit antennas, and N antennas at each receiver. Hence, for this symmetric antenna configuration, there is no performance loss in the sum degrees of freedom due to the distributed nature of the transmitters. This result highlights the usefulness of feedback and delayed CSI for the MIMO X-channel. The K-user X-channel with single antenna at each transmitter and each receiver is also studied. In this network, each transmitter has a message intended for each receiver. For this network, it is shown that the sum DoF with partial output feedback alone is at least 2K/(K+1). This lower bound is...

  1. Investigation of a delayed feedback controller of MEMS resonators

    KAUST Repository

    Masri, Karim M.

    2013-08-04

    Controlling mechanical systems is an important branch of mechanical engineering. Several techniques have been used to control Microelectromechanical systems (MEMS) resonators. In this paper, we study the effect of a delayed feedback controller on stabilizing MEMS resonators. A delayed feedback velocity controller is implemented through modifying the parallel plate electrostatic force used to excite the resonator into motion. A nonlinear single degree of freedom model is used to simulate the resonator response. Long time integration is used first. Then, a finite deference technique to capture periodic motion combined with the Floquet theory is used to capture the stable and unstable periodic responses. We show that applying a suitable positive gain can stabilize the MEMS resonator near or inside the instability dynamic pull in band. We also study the stability of the resonator by tracking its basins of attraction while sweeping the controller gain and the frequency of excitations. For positive delayed gains, we notice significant enhancement in the safe area of the basins of attraction. Copyright © 2013 by ASME.

  2. Influence of Feedback Levels on Polarized Optical Feedback Characteristics in Zeeman-Birefringence Dual Frequency Lasers

    Institute of Scientific and Technical Information of China (English)

    MAO Wei; ZHANG Shu-Lian; ZHOU Lu-Fei; LIU Xiao-Yan; WANG Ming-Ming

    2007-01-01

    The influence of Feedback levels on the intensity and polarization properties of polarized optical feedback in a Zeeman-birefringence dual frequency laser is systematically investigated. By changing the feedback power ratio, different feedback levels are obtained. Three distinct regimes of polarized optical feedback effects are found and defined as regimes Ⅰ, Ⅱand Ⅲ. The feedback level boundaries among the regimes are acquired experimentally. The theoretical analysis is presented to be in good agreement with the experimental results.

  3. Hopf Bifurcation of a Positive Feedback Delay Differential Equation

    Institute of Scientific and Technical Information of China (English)

    陈玉明; 黄立宏

    2003-01-01

    Under some minor technical hypotheses, for each T larger than a certain Ts > 0, Krisztin, Walther and Wu showed the existence of a periodic orbit for the positive feedback delay differential equation x(t) =-Tμx(t) +Tf(x(t - 1)), where T and μ are positive constants and f : R→ R satisfies f(0) = 0 and f′ > 0 。Combining this with a unique result of Krisztin and Walther, we know that this periodic orbit is the one branched out from 0 through Hopf bifurcation. Using the normal form theory for delay differential equations, we show the same result underthe condition that f ∈ C3(R,R) is such that f″(0) = 0 and f″′(0) < 0, which is weaker than those of Krisztin and Walther。

  4. Time-delayed quantum coherent Pyragas feedback control of photon squeezing in a degenerate parametric oscillator

    Science.gov (United States)

    Kraft, Manuel; Hein, Sven M.; Lehnert, Judith; Schöll, Eckehard; Hughes, Stephen; Knorr, Andreas

    2016-08-01

    Quantum coherent feedback control is a measurement-free control method fully preserving quantum coherence. In this paper we show how time-delayed quantum coherent feedback can be used to control the degree of squeezing in the output field of a cavity containing a degenerate parametric oscillator. We focus on the specific situation of Pyragas-type feedback control where time-delayed signals are fed back directly into the quantum system. Our results show how time-delayed feedback can enhance or decrease the degree of squeezing as a function of time delay and feedback strength.

  5. Duration reproduction with sensory feedback delay: Differential involvement of perception and action time

    Directory of Open Access Journals (Sweden)

    Stephanie eGanzenmüller

    2012-10-01

    Full Text Available Previous research has shown that voluntary action can attract subsequent, delayed feedback events towards the action, and adaptation to the sensorimotor delay can even reverse motor-sensory temporal-order judgments. However, whether and how sensorimotor delay affects duration reproduction is still unclear. To investigate this, we injected an onset- or offset-delay to the sensory feedback signal from a duration reproduction task. We compared duration reproductions within (visual, auditory modality and across audiovisual modalities with feedback signal onset- and offset-delay manipulations. We found that the reproduced duration was lengthened in both visual and auditory feedback signal onset-delay conditions. The lengthening effect was evident immediately, on the first trial with the onset delay. However, when the onset of the feedback signal was prior to the action, the lengthening effect was diminished. In contrast, a shortening effect was found with feedback signal offset-delay, though the effect was weaker and manifested only in the auditory offset-delay condition. These findings indicate that participants tend to mix the onset of action and the feedback signal more when the feedback is delayed, and they heavily rely on motor-stop signals for the duration reproduction. Furthermore, auditory duration was overestimated compared to visual duration in crossmodal feedback conditions, and the overestimation of auditory duration (or the underestimation of visual duration was independent of the delay manipulation.

  6. Role of Delay of Feedback on Subsequent Pattern Recognition Transfer Tasks.

    Science.gov (United States)

    Schroth, Marvin L.; Lund, Elissa

    1993-01-01

    Two experiments with 100 undergraduates investigated effects of delay of feedback on immediate and delayed transfer tasks involving different pattern recognition strategies. Delay of feedback resulted in greater retention of the concepts underlying construction of the different patterns in all transfer tasks. Results support the Kulhavy-Anderson…

  7. Optical feedback-induced light modulation for fiber-based laser ablation.

    Science.gov (United States)

    Kang, Hyun Wook

    2014-11-01

    Optical fibers have been used as a minimally invasive tool in various medical fields. However, due to excessive heat accumulation, the distal end of a fiber often suffers from severe melting or devitrification, leading to the eventual fiber failure during laser treatment. In order to minimize thermal damage at the fiber tip, an optical feedback sensor was developed and tested ex vivo. Porcine kidney tissue was used to evaluate the feasibility of optical feedback in terms of signal activation, ablation performance, and light transmission. Testing various signal thresholds demonstrated that 3 V was relatively appropriate to trigger the feedback sensor and to prevent the fiber deterioration during kidney tissue ablation. Based upon the development of temporal signal signatures, full contact mode rapidly activated the optical feedback sensor possibly due to heat accumulation. Modulated light delivery induced by optical feedback diminished ablation efficiency by 30% in comparison with no feedback case. However, long-term transmission results validated that laser ablation assisted with optical feedback was able to almost consistently sustain light delivery to the tissue as well as ablation efficiency. Therefore, an optical feedback sensor can be a feasible tool to protect optical fiber tips by minimizing debris contamination and delaying thermal damage process and to ensure more efficient and safer laser-induced tissue ablation.

  8. Stability analysis in a car-following model with reaction-time delay and delayed feedback control

    Science.gov (United States)

    Jin, Yanfei; Xu, Meng

    2016-10-01

    The delayed feedback control in terms of both headway and velocity differences has been proposed to guarantee the stability of a car-following model including the reaction-time delay of drivers. Using Laplace transformation and transfer function, the stable condition is derived and appropriate choices of time delay and feedback gains are designed to stabilize traffic flow. Meanwhile, an upper bound on explicit time delay is determined with respect to the response of desired acceleration. To ensure the string stability, the explicit time delay cannot over its upper bound. Numerical simulations indicate that the proposed control method can restraint traffic congestion and improve control performance.

  9. On the Permanence of a Nonautonomous Nicholson's Blowflies Model with Feedback Control and Delay

    Institute of Scientific and Technical Information of China (English)

    LAI Wei-ying

    2011-01-01

    A nonautonomous Nicholson's Blowflies model with feedback control and delay is investigated in this paper.We show that for this system,feedback control variable has no influence on the persistent property of the system.

  10. The Permanence in a Single Species Nonautonomous System with Delays and Feedback Control

    OpenAIRE

    2010-01-01

    We consider a single species nonautonomous system with delays and feedback control. A general criterion on the permanence for all positive solutions is established. The results show that the feedback control does not influence the permanence of species.

  11. Experimental study of delayed positive feedback control for a flexible beam

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    Recently, some researches indicate that positive feedback can benefit the control if appropriate time delay is intentionally introduced into control system. However, most work is theoretical one but few are experimental. This paper presents theoretical and experimental studies of delayed positive feedback control technique using a flexible beam as research object. The positive feedback weighting coefficient is designed by using the optimal control method. The available time delay is determined by analyzing ...

  12. Delayed-feedback chimera states: Forced multiclusters and stochastic resonance

    Science.gov (United States)

    Semenov, V.; Zakharova, A.; Maistrenko, Y.; Schöll, E.

    2016-07-01

    A nonlinear oscillator model with negative time-delayed feedback is studied numerically under external deterministic and stochastic forcing. It is found that in the unforced system complex partial synchronization patterns like chimera states as well as salt-and-pepper-like solitary states arise on the route from regular dynamics to spatio-temporal chaos. The control of the dynamics by external periodic forcing is demonstrated by numerical simulations. It is shown that one-cluster and multi-cluster chimeras can be achieved by adjusting the external forcing frequency to appropriate resonance conditions. If a stochastic component is superimposed to the deterministic external forcing, chimera states can be induced in a way similar to stochastic resonance, they appear, therefore, in regimes where they do not exist without noise.

  13. Coherence versus reliability of stochastic oscillators with delayed feedback.

    Science.gov (United States)

    Goldobin, Denis S

    2008-12-01

    For noisy self-sustained oscillators, both reliability, the stability of a response to a noisy driving, and coherence, understood in the sense of constancy of oscillation frequency, are important characteristics. Although both characteristics and techniques for controlling them have received great attention from researchers, owing to their importance for neurons, lasers, clocks, electric generators, etc., these characteristics were previously considered separately. In this paper, a strong quantitative relation between coherence and reliability is revealed for a limit cycle oscillator subject to a weak noisy driving and a linear delayed feedback, a convection control tool. The analytical findings are verified and enriched with a numerical simulation for the Van der Pol-Duffing oscillator.

  14. Studies on effects of feedback delay on the convergence performance of adaptive time-domain equalizers for fiber dispersive channels

    Science.gov (United States)

    Guo, Qun; Xu, Bo; Qiu, Kun

    2016-04-01

    Adaptive time-domain equalizer (TDE) is an important module for digital optical coherent receivers. From an implementation perspective, we analyze and compare in detail the effects of error signal feedback delay on the convergence performance of TDE using either least-mean square (LMS) or constant modulus algorithm (CMA). For this purpose, a simplified theoretical model is proposed based on which iterative equations on the mean value and the variance of the tap coefficient are derived with or without error signal feedback delay for both LMS- and CMA-based methods for the first time. The analytical results show that decreased step size has to be used for TDE to converge and a slower convergence speed cannot be avoided as the feedback delay increases. Compared with the data-aided LMS-based method, the CMA-based method has a slower convergence speed and larger variation after convergence. Similar results are confirmed using numerical simulations for fiber dispersive channels. As the step size increases, a feedback delay of 20 clock cycles might cause the TDE to diverge. Compared with the CMA-based method, the LMS-based method has a higher tolerance on the feedback delay and allows a larger step size for a faster convergence speed.

  15. Output regulation problem for discrete-time linear time-delay systems by output feedback control

    Institute of Scientific and Technical Information of China (English)

    Yamin YAN; Jie HUANG

    2016-01-01

    In this paper, we study the output regulation problem of discrete linear time-delay systems by output feedback control. We have established some results parallel to those for the output regulation problem of continuous linear time-delay systems.

  16. Delayed feedback control of unstable steady states in fractional-order chaotic systems

    CERN Document Server

    Gjurchinovski, Aleksandar; Urumov, Viktor

    2010-01-01

    We study the possibility to stabilize unstable steady states in chaotic fractional-order dynamical systems by the time-delayed feedback method with both constant and time-varying delays. By performing a linear stability analysis in the constant delay case, we establish the parameter ranges for successful stabilization of unstable equilibria in the plane parametrizad by the feedback gain and the time delay. An insight into the control mechanism is gained by analyzing the characteristic equation of the controlled system, showing that the control scheme fails to control unstable equilibria having an odd number of positive real eigenvalues. It is shown numerically that delayed feedback control with a variable time-delay significantly enlarges the stability region of the steady states in comparison to the classical time-delayed feedback scheme with a constant delay.

  17. The effect of process delay on dynamical behaviors in a self-feedback nonlinear oscillator

    Science.gov (United States)

    Yao, Chenggui; Ma, Jun; Li, Chuan; He, Zhiwei

    2016-10-01

    The delayed feedback loops play a crucial role in the stability of dynamical systems. The effect of process delay in feedback is studied numerically and theoretically in the delayed feedback nonlinear systems including the neural model, periodic system and chaotic oscillator. The process delay is of key importance in determining the evolution of systems, and the rich dynamical phenomena are observed. By introducing a process delay, we find that it can induce bursting electric activities in the neural model. We demonstrate that this novel regime of amplitude death also exists in the parameter space of feedback strength and process delay for the periodic system and chaotic oscillator. Our results extend the effect of process delay in the paper of Zou et al.(2013) where the process delay can eliminate the amplitude death of the coupled nonlinear systems.

  18. Synthesis for robust synchronization of chaotic systems under output feedback control with multiple random delays

    Energy Technology Data Exchange (ETDEWEB)

    Wen Guilin [Key Laboratory of Advanced Technology for Vehicle Body Design and Manufactory, M.O.E, College of Mechanical and Automotive Engineering, Hunan University, Changsha, Hunan 410082 (China); Wang Qingguo [Department of Electrical and Computer Engineering, National University of Singapore, 10 Kent Ridge Crescent, Singapore 119260 (Singapore)]. E-mail: elewqg@nus.edu.sg; Lin Chong [Department of Electrical and Computer Engineering, National University of Singapore, 10 Kent Ridge Crescent, Singapore 119260 (Singapore); Han Xu [Key Laboratory of Advanced Technology for Vehicle Body Design and Manufactory, M.O.E, College of Mechanical and Automotive Engineering, Hunan University, Changsha, Hunan 410082 (China); Li Guangyao [Key Laboratory of Advanced Technology for Vehicle Body Design and Manufactory, M.O.E, College of Mechanical and Automotive Engineering, Hunan University, Changsha, Hunan 410082 (China)

    2006-09-15

    Synchronization under output feedback control with multiple random time delays is studied, using the paradigm in nonlinear physics-Chua's circuit. Compared with other synchronization control methods, output feedback control with multiple random delay is superior for a realistic synchronization application to secure communications. Sufficient condition for global stability of delay-dependent synchronization is established based on the LMI technique. Numerical simulations fully support the analytical approach, in spite of the random delays.

  19. Dynamical behaviors in time-delay systems with delayed feedback and digitized coupling

    Science.gov (United States)

    Mitra, Chiranjit; Ambika, G.; Banerjee, Soumitro

    2014-12-01

    We consider a network of delay dynamical systems connected in a ring via unidirectional positive feedback with constant delay in coupling. For the specific case of Mackey-Glass systems on the ring topology, we capture the phenomena of amplitude death, isochronous synchronization and phase-flip bifurcation as the relevant parameters are tuned. Using linear stability analysis and master stability function approach, we predict the region of amplitude death and synchronized states respectively in the parameter space and study the nature of transitions between the different states. For a large number of systems in the same dynamical configuration, we observe splay states, mixed splay states and phase locked clusters. We extend the study to the case of digitized coupling and observe that these emergent states still persist. However, the sampling and quantization reduce the regions of amplitude death and induce phase-flip bifurcation.

  20. Timing matters: the impact of immediate and delayed feedback on artificial language learning.

    Science.gov (United States)

    Opitz, Bertram; Ferdinand, Nicola K; Mecklinger, Axel

    2011-01-01

    In the present experiment, we used event-related potentials (ERP) to investigate the role of immediate and delayed feedback in an artificial grammar learning (AGL) task. Two groups of participants were engaged in classifying non-word strings according to an underlying rule system, not known to the participants. Visual feedback was provided after each classification either immediately or with a short delay of 1 s. Both groups were able to learn the artificial grammar system as indicated by an increase in classification performance. However, the gain in performance was significantly larger for the group receiving immediate feedback as compared to the group receiving delayed feedback. Learning was accompanied by an increase in P300 activity in the ERP for delayed as compared to immediate feedback. Irrespective of feedback delay, both groups exhibited learning related decreases in the feedback-related positivity (FRP) elicited by positive feedback only. The feedback-related negativity (FRN), however, remained constant over the course of learning. These results suggest, first, that delayed feedback is less effective for AGL as task requirements are very demanding, and second, that the FRP elicited by positive prediction errors decreases with learning while the FRN to negative prediction errors is elicited in an all-or-none fashion by negative feedback throughout the entire experiment.

  1. Timing matters: The impact of immediate and delayed feedback on artificial language learning

    Directory of Open Access Journals (Sweden)

    Bertram Opitz

    2011-02-01

    Full Text Available In the present experiment, we used event-related potentials (ERP to investigate the role of immediate and delayed feedback in an artificial grammar learning task. Two groups of participants were engaged in classifying non-word strings according to an underlying rule system, not known to the participants. Visual feedback was provided after each classification either immediately or with a short delay of one second. Both groups were able to learn the artificial grammar system as indicated by an increase in classification performance. However, the gain in performance was significantly larger for the group receiving immediate feedback as compared to the group receiving delayed feedback. Learning was accompanied by an increase in P300 activity in the ERP for delayed as compared to immediate feedback. Irrespective of feedback delay, both groups exhibited learning related decreases in the feedback-related positivity (FRP elicited by positive feedback only. The feedback-related negativity (FRN, however, remained constant over the course of learning. These results suggest, first, that delayed feedback is less effective for artificial grammar learning as task requirements are very demanding, and second, that the FRP elicited by positive prediction errors decreases with learning while the FRN to negative prediction errors is elicited in an all-or-none fashion by negative feedback throughout the entire experiment.

  2. Chaos and Its Impulsive Control in Chua's Oscillator via Time-Delay Feedback

    Institute of Scientific and Technical Information of China (English)

    Yong-Bin Yu; Hong-Bin Zhang; Zhu-Sheng Kang; Xiao-Feng Liao; Jue-Bang Yu

    2008-01-01

    A novel framework for chaos and its impul sive control in Chua's oscillator via time-delay feedback is presented. The exponential stability of impulsive control Chua's oscillator via time-delay feedback is considered, and some novel conditions are obtained. Then a novel impulsive controller design procedure is proposed. Simulation experiments are provided to demonstrate the feasibility and effectiveness of our method finally.

  3. Robust optical delay lines via topological protection

    CERN Document Server

    Hafezi, Mohammad; Lukin, Mikhail; Taylor, Jacob

    2011-01-01

    Phenomena associated with topological properties of physical systems are naturally robust against perturbations. This robustness is exemplified by quantized conductance and edge state transport in the quantum Hall and quantum spin Hall effects. Here we show how exploiting topological properties of optical systems can be used to implement robust photonic devices. We demonstrate how quantum spin Hall Hamiltonians can be created with linear optical elements using a network of coupled resonator optical waveguides (CROW) in two dimensions. We find that key features of quantum Hall systems, including the characteristic Hofstadter butterfly and robust edge state transport, can be obtained in such systems. As a specific application, we show that the topological protection can be used to dramatically improve the performance of optical delay lines and to overcome limitations related to disorder in photonic technologies.

  4. Delayed feedback during sensorimotor learning selectively disrupts adaptation but not strategy use.

    Science.gov (United States)

    Brudner, Samuel N; Kethidi, Nikhit; Graeupner, Damaris; Ivry, Richard B; Taylor, Jordan A

    2016-03-01

    In sensorimotor adaptation tasks, feedback delays can cause significant reductions in the rate of learning. This constraint is puzzling given that many skilled behaviors have inherently long delays (e.g., hitting a golf ball). One difference in these task domains is that adaptation is primarily driven by error-based feedback, whereas skilled performance may also rely to a large extent on outcome-based feedback. This difference suggests that error- and outcome-based feedback may engage different learning processes, and these processes may be associated with different temporal constraints. We tested this hypothesis in a visuomotor adaptation task. Error feedback was indicated by the terminal position of a cursor, while outcome feedback was indicated by points. In separate groups of participants, the two feedback signals were presented immediately at the end of the movement, after a delay, or with just the error feedback delayed. Participants learned to counter the rotation in a similar manner regardless of feedback delay. However, the aftereffect, an indicator of implicit motor adaptation, was attenuated with delayed error feedback, consistent with the hypothesis that a different learning process supports performance under delay. We tested this by employing a task that dissociates the contribution of explicit strategies and implicit adaptation. We find that explicit aiming strategies contribute to the majority of the learning curve, regardless of delay; however, implicit learning, measured over the course of learning and by aftereffects, was significantly attenuated with delayed error-based feedback. These experiments offer new insight into the temporal constraints associated with different motor learning processes.

  5. On a new time-delayed feedback control of chaotic systems

    Energy Technology Data Exchange (ETDEWEB)

    Tian Lixin [Nonlinear Scientific Research Center, Faculty of Science, Jiangsu University, Zhenjiang, Jiangsu, 212013 (China)], E-mail: tianlx@ujs.edu.cn; Xu Jun; Sun Mei; Li Xiuming [Nonlinear Scientific Research Center, Faculty of Science, Jiangsu University, Zhenjiang, Jiangsu, 212013 (China)

    2009-01-30

    In this paper, using the idea of the successive dislocation feedback method, a new time-delayed feedback control method called the successive dislocation time-delayed feedback control (SDTDFC) is designed. Firstly, the idea of SDTDFC is introduced. Then some analytic sufficient conditions of the chaos control from the SDTDFC approach are derived for stabilization. Finally, some established results are further clarified via a case study of the Lorenz system with the numerical simulations.

  6. The dynamics of second-order equations with delayed feedback and a large coefficient of delayed control

    Science.gov (United States)

    Kashchenko, Sergey A.

    2016-12-01

    The dynamics of second-order equations with nonlinear delayed feedback and a large coefficient of a delayed equation is investigated using asymptotic methods. Based on special methods of quasi-normal forms, a new construction is elaborated for obtaining the main terms of asymptotic expansions of asymptotic residual solutions. It is shown that the dynamical properties of the above equations are determined mostly by the behavior of the solutions of some special families of parabolic boundary value problems. A comparative analysis of the dynamics of equations with the delayed feedback of three types is carried out.

  7. Effects of unwanted feedback on synchronized chaotic optical communications.

    Science.gov (United States)

    Li, Xiaofeng; Pan, Wei; Luo, Bin; Ma, Dong

    2006-04-10

    The effects of unwanted external optical feedback on synchronized chaotic optical communication systems are studied numerically. We consider an open-loop configuration consisting of a transmitter laser with double external optical feedbacks and a receiver laser with optical injection from the transmitter laser. First, including the effects of unwanted optical feedback, the synchronization performances of both the complete synchronization and the generalized synchronization are examined. Then the encoding and decoding performances of the generalized synchronization and the effects of the introduced feedback are investigated, respectively. Finally, we study the control of the unwanted feedback on the dynamics of the transmitter laser and briefly discuss the system security when the transmitter laser is driven to operate in a steady state or periodic oscillation state by the additional feedback.

  8. Theory and numerics of vibrational resonance in Duffing oscillators with time-delayed feedback.

    Science.gov (United States)

    Jeevarathinam, C; Rajasekar, S; Sanjuán, M A F

    2011-06-01

    The influence of linear time-delayed feedback on vibrational resonance is investigated in underdamped and overdamped Duffing oscillators with double-well and single-well potentials driven by both low frequency and high frequency periodic forces. This task is performed through both theoretical approach and numerical simulation. Theoretically determined values of the amplitude of the high frequency force and the delay time at which resonance occurs are in very good agreement with the numerical simulation. A major consequence of time-delayed feedback is that it gives rise to a periodic or quasiperiodic pattern of vibrational resonance profile with respect to the time-delayed parameter. An appropriate time delay is shown to induce a resonance in an overdamped single-well system which is otherwise not possible. For a range of values of the time-delayed parameters, the response amplitude is found to be larger than in delay-time feedback-free systems.

  9. Fundamental and Subharmonic Resonances of Harmonically Oscillation with Time Delay State Feedback

    Directory of Open Access Journals (Sweden)

    A.F. EL-Bassiouny

    2006-01-01

    Full Text Available Time delays occur in many physical systems. In particular, when automatic control is used with structural or mechanical systems, there exists a delay between measurement of the system state and corrective action. The concept of an equivalent damping related to the delay feedback is proposed and the appropriate choice of the feedback gains and the time delay is discussed from the viewpoint of vibration control. We investigate the fundamental resonance and subharmonic resonance of order one-half of a harmonically oscillation under state feedback control with a time delay. By using the multiple scale perturbation technique, the first order approximation of the resonances are derived and the effect of time delay on the resonances is investigated. The fixed points correspond to a periodic motion for the starting system and we show the external excitation-response and frequency-response curves. We analyze the effect of time delay and the other different parameters on these oscillations.

  10. Response of harmonically and stochastically excited strongly nonlinear oscillators with delayed feedback bang-bang control

    Institute of Scientific and Technical Information of China (English)

    Chang-shui FENG; Wei-qiu ZHU

    2009-01-01

    We studied the response of harmonically and stochastically excited strongly nonlinear oscillators with delayed feedback bang-bang control using the stochastic averaging method. First, the time-delayed feedback bang-bang control force is expressed approximately in terms of the system state variables without time delay. Then the averaged Ito stochastic differential equations for the system are derived using the stochastic averaging method. Finally, the response of the system is obtained by solving the Fokker-Plank-Kolmogorov (FPK) equation associated with the averaged Ito equations. A Duffing oscillator with time-delayed feedback bang-bang control under combined harmonic and white noise excitations is taken as an example to illus-trate the proposed method. The analytical results are confirmed by digital simulation. We found that the time delay in feedback bang-bang control will deteriorate the control effectiveness and cause bifurcation of stochastic jump of Duffing oscillator.

  11. Effect of External Optical Feedback for Nano-laser Structures

    DEFF Research Database (Denmark)

    Taghizadeh, Alireza; Mørk, Jesper; Chung, Il-Sug

    2013-01-01

    We theoretically investigated the effect of optical feedback on a photonic crystal nanolaser, comparing with conventional in-plane and vertical-cavity lasers.......We theoretically investigated the effect of optical feedback on a photonic crystal nanolaser, comparing with conventional in-plane and vertical-cavity lasers....

  12. Autaptic self-feedback-induced synchronization transitions in Newman-Watts neuronal network with time delays

    Science.gov (United States)

    Wang, Qi; Gong, Yubing; Wu, Yanan

    2015-04-01

    Autapse is a special synapse that connects a neuron to itself. In this work, we numerically study the effect of chemical autapse on the synchronization of Newman-Watts Hodgkin-Huxley neuron network with time delays. It is found that the neurons exhibit synchronization transitions as autaptic self-feedback delay is varied, and the phenomenon enhances when autaptic self-feedback strength increases. Moreover, this phenomenon becomes strongest when network time delay or coupling strength is optimal. It is also found that the synchronization transitions by network time delay can be enhanced by autaptic activity and become strongest when autaptic delay is optimal. These results show that autaptic delayed self-feedback activity can intermittently enhance and reduce the synchronization of the neuronal network and hence plays an important role in regulating the synchronization of the neurons. These findings could find potential implications for the information processing and transmission in neural systems.

  13. Complexity in electro-optic delay dynamics: modelling, design and applications.

    Science.gov (United States)

    Larger, Laurent

    2013-09-28

    Nonlinear delay dynamics have found during the last 30 years a particularly prolific exploration area in the field of photonic systems. Besides the popular external cavity laser diode set-ups, we focus in this article on another experimental realization involving electro-optic (EO) feedback loops, with delay. This approach has strongly evolved with the important technological progress made on broadband photonic and optoelectronic devices dedicated to high-speed optical telecommunications. The complex dynamical systems performed by nonlinear delayed EO feedback loop architectures were designed and explored within a huge range of operating parameters. Thanks to the availability of high-performance photonic devices, these EO delay dynamics led also to many successful, efficient and diverse applications, beyond the many fundamental questions raised from the observation of experimental behaviours. Their chaotic motion allowed for a physical layer encryption method to secure optical data, with a demonstrated capability to operate at the typical speed of modern optical telecommunications. Microwave limit cycles generated in similar EO delay oscillators showed significantly improved spectral purity thanks to the use of a very long fibre delay line. Last but not least, a novel brain inspired computational principle has been recently implemented physically in photonics for the first time, again on the basis of an EO delay dynamical system. In this latter emerging application, the computed result is obtained by a proper 'read-out' of the complex nonlinear transients emerging from a fixed point, the transient being issued by the injection of the information signal to be processed.

  14. High frequency optoelectronic oscillators based on the optical feedback of semiconductor mode-locked laser diodes.

    Science.gov (United States)

    Haji, Mohsin; Hou, Lianping; Kelly, Anthony E; Akbar, Jehan; Marsh, John H; Arnold, John M; Ironside, Charles N

    2012-01-30

    Optical self seeding feedback techniques can be used to improve the noise characteristics of passively mode-locked laser diodes. External cavities such as fiber optic cables can increase the memory of the phase and subsequently improve the timing jitter. In this work, an improved optical feedback architecture is proposed using an optical fiber loop delay as a cavity extension of the mode-locked laser. We investigate the effect of the noise reduction as a function of the loop length and feedback power. The well known composite cavity technique is also implemented for suppressing supermode noise artifacts presented due to harmonic mode locking effects. Using this method, we achieve a record low radio frequency linewidth of 192 Hz for any high frequency (>1 GHz) passively mode-locked laser to date (to the best of the authors' knowledge), making it promising for the development of high frequency optoelectronic oscillators.

  15. Theoretical modeling of the dynamics of a semiconductor laser subject to double-reflector optical feedback

    Science.gov (United States)

    Bakry, A.; Abdulrhmann, S.; Ahmed, M.

    2016-06-01

    We theoretically model the dynamics of semiconductor lasers subject to the double-reflector feedback. The proposed model is a new modification of the time-delay rate equations of semiconductor lasers under the optical feedback to account for this type of the double-reflector feedback. We examine the influence of adding the second reflector to dynamical states induced by the single-reflector feedback: periodic oscillations, period doubling, and chaos. Regimes of both short and long external cavities are considered. The present analyses are done using the bifurcation diagram, temporal trajectory, phase portrait, and fast Fourier transform of the laser intensity. We show that adding the second reflector attracts the periodic and perioddoubling oscillations, and chaos induced by the first reflector to a route-to-continuous-wave operation. During this operation, the periodic-oscillation frequency increases with strengthening the optical feedback. We show that the chaos induced by the double-reflector feedback is more irregular than that induced by the single-reflector feedback. The power spectrum of this chaos state does not reflect information on the geometry of the optical system, which then has potential for use in chaotic (secure) optical data encryption.

  16. Theoretical modeling of the dynamics of a semiconductor laser subject to double-reflector optical feedback

    Energy Technology Data Exchange (ETDEWEB)

    Bakry, A. [King Abdulaziz University, 80203, Department of Physics, Faculty of Science (Saudi Arabia); Abdulrhmann, S. [Jazan University, 114, Department of Physics, Faculty of Sciences (Saudi Arabia); Ahmed, M., E-mail: mostafa.farghal@mu.edu.eg [King Abdulaziz University, 80203, Department of Physics, Faculty of Science (Saudi Arabia)

    2016-06-15

    We theoretically model the dynamics of semiconductor lasers subject to the double-reflector feedback. The proposed model is a new modification of the time-delay rate equations of semiconductor lasers under the optical feedback to account for this type of the double-reflector feedback. We examine the influence of adding the second reflector to dynamical states induced by the single-reflector feedback: periodic oscillations, period doubling, and chaos. Regimes of both short and long external cavities are considered. The present analyses are done using the bifurcation diagram, temporal trajectory, phase portrait, and fast Fourier transform of the laser intensity. We show that adding the second reflector attracts the periodic and perioddoubling oscillations, and chaos induced by the first reflector to a route-to-continuous-wave operation. During this operation, the periodic-oscillation frequency increases with strengthening the optical feedback. We show that the chaos induced by the double-reflector feedback is more irregular than that induced by the single-reflector feedback. The power spectrum of this chaos state does not reflect information on the geometry of the optical system, which then has potential for use in chaotic (secure) optical data encryption.

  17. A new switching parameter varying optoelectronic delayed feedback model with computer simulation

    Science.gov (United States)

    Liu, Lingfeng; Miao, Suoxia; Cheng, Mengfan; Gao, Xiaojing

    2016-02-01

    In this paper, a new switching parameter varying optoelectronic delayed feedback model is proposed and analyzed by computer simulation. This model is switching between two parameter varying optoelectronic delayed feedback models based on chaotic pseudorandom sequences. Complexity performance results show that this model has a high complexity compared to the original model. Furthermore, this model can conceal the time delay effectively against the auto-correlation function, delayed mutual information and permutation information analysis methods, and can extent the key space, which greatly improve its security.

  18. Acousto-optic collinear filter with optoelectronic feedback

    Science.gov (United States)

    Mantsevich, S. N.; Balakshy, V. I.; Kuznetsov, Yu. I.

    2017-04-01

    A spectral optoelectronic system combining a collinear acousto-optic cell fabricated of calcium molybdate single crystal and a positive electronic feedback is proposed first and examined theoretically and experimentally. The feedback signal is formed at the cell output due to the optical heterodyning effect with the use of an unconventional regime of cell operation. It is shown that the feedback enables controlling spectral characteristics of the acousto-optic cell, resulting in enhancing the spectral resolution and the accuracy of optical wavelength determination. In the experiment, maximal filter passband narrowing was as great as 37 times.

  19. Determination of Optimal Control Strength of Delayed Feedback Control Using Time Series

    Institute of Scientific and Technical Information of China (English)

    YIN Hua-Wei; LU Wei-Ping; WANG Peng-Ye

    2004-01-01

    @@ We study controlling chaos using time-delayed feedback control based on chaotic time series without prior knowl edge of dynamical systems, and determine the optimal control parameters for stabilizing unstable periodic orbits with maximal stability.

  20. Hopf bifurcation control for a class of delay differential systems with discrete-time delayed feedback controller

    Science.gov (United States)

    Su, Huan; Mao, Xuerong; Li, Wenxue

    2016-11-01

    This paper is concerned with the asymptotical stabilization for a class of unstable delay differential equations. Continuous-time delayed feedback controller (C-TDFC) and discrete-time delayed feedback controller (D-TDFC) are presented and studied, respectively. To our best knowledge, applying Hopf bifurcation theory to delay differential equations with D-TDFC is original and meaningful. The difficulty brought by the introduction of sampling period has been overcome. An effective control range which ensures the asymptotical stability of equilibrium for the system with C-TDFC is obtained. Sequently, another effective control range for the system with D-TDFC is gotten, which approximates the one of C-TDFCS provided that the sampling period is sufficiently small. Meanwhile, efforts are paid to estimate a bound on sampling period. Finally, the theoretical results are applied to a physiological system to illustrate the effectiveness of the two control ranges.

  1. Optical True Time Delay for Phased Array Antennas Composed of 2×2 Optical MEMS Switches and Fiber Delay Lines

    Institute of Scientific and Technical Information of China (English)

    Back-Song; Lee; Jong-Dug; Shin; Boo-Gyoun; Kim

    2003-01-01

    We proposed an optical true time delay (TTD) for phased array antennas (PAAs) composed of 2×2 optical MEMS switches, single-mode fiber delay lines, and a fixed wavelength laser diode. A 3-bit TTD for 10 GHz PAAs was implemented with a time delay error less than ± 0.2 ps.

  2. Anticipation in the synchronization of chaotic semiconductor lasers with optical feedback.

    Science.gov (United States)

    Masoller, C

    2001-03-26

    The synchronization of chaotic semiconductor lasers with optical feedback is studied numerically in a one-way coupling configuration, in which a small amount of the intensity of one laser (master laser) is injected coherently into the other (slave laser). A regime of anticipated synchronization is found, in which the intensity of the slave laser is synchronized to the future chaotic intensity of the master laser. Anticipation is robust to small noise and parameter mismatches, but in this case the synchronization is not complete. It is also shown that anticipated synchronization occurs in coupled time-delay systems, when the coupling has a delay that is less than the delay of the systems.

  3. Reliability of high power laser diodes with external optical feedback

    Science.gov (United States)

    Bonsendorf, Dennis; Schneider, Stephan; Meinschien, Jens; Tomm, Jens W.

    2016-03-01

    Direct diode laser systems gain importance in the fields of material processing and solid-state laser pumping. With increased output power, also the influence of strong optical feedback has to be considered. Uncontrolled optical feedback is known for its spectral and power fluctuation effects, as well as potential emitter damage. We found that even intended feedback by use of volume Bragg gratings (VBG) for spectral stabilization may result in emitter lifetime reduction. To provide stable and reliable laser systems design, guidelines and maximum feedback ratings have to be found. We present a model to estimate the optical feedback power coupled back into the laser diode waveguide. It includes several origins of optical feedback and wide range of optical elements. The failure thresholds of InGaAs and AlGaAs bars have been determined not only at standard operation mode but at various working points. The influence of several feedback levels to laser diode lifetime is investigated up to 4000h. The analysis of the semiconductor itself leads to a better understanding of the degradation process by defect spread. Facet microscopy, LBIC- and electroluminescence measurements deliver detailed information about semiconductor defects before and after aging tests. Laser diode protection systems can monitor optical feedback. With this improved understanding, the emergency shutdown threshold can be set low enough to ensure laser diode reliability but also high enough to provide better machine usability avoiding false alarms.

  4. Firing statistics of inhibitory neuron with delayed feedback. I. Output ISI probability density.

    Science.gov (United States)

    Vidybida, A K; Kravchuk, K G

    2013-06-01

    Activity of inhibitory neuron with delayed feedback is considered in the framework of point stochastic processes. The neuron receives excitatory input impulses from a Poisson stream, and inhibitory impulses from the feedback line with a delay. We investigate here, how does the presence of inhibitory feedback affect the output firing statistics. Using binding neuron (BN) as a model, we derive analytically the exact expressions for the output interspike intervals (ISI) probability density, mean output ISI and coefficient of variation as functions of model's parameters for the case of threshold 2. Using the leaky integrate-and-fire (LIF) model, as well as the BN model with higher thresholds, these statistical quantities are found numerically. In contrast to the previously studied situation of no feedback, the ISI probability densities found here both for BN and LIF neuron become bimodal and have discontinuity of jump type. Nevertheless, the presence of inhibitory delayed feedback was not found to affect substantially the output ISI coefficient of variation. The ISI coefficient of variation found ranges between 0.5 and 1. It is concluded that introduction of delayed inhibitory feedback can radically change neuronal output firing statistics. This statistics is as well distinct from what was found previously (Vidybida and Kravchuk, 2009) by a similar method for excitatory neuron with delayed feedback.

  5. ON THE PERSISTENT PROPERTY OF A DELAYED NON-AUTONOMOUS SCHOENER MODEL WITH FEEDBACK CONTROL

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    We study a delayed non-autonomous Schoener model with feedback control, which was proposed by Qiming Liu, Rui Xu and Pinghua Yang [8]. By applying a differential inequality and some analysis technique, we show that under some suitable assumptions, the feedback control variable has no influence on the persistent property of the system. Our result improves the existing ones.

  6. PERMANENCE OF A DISCRETE SINGLE SPECIES SYSTEM WITH DELAYS AND FEEDBACK CONTROL

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    In this paper,a discrete single species system with time delays and feedback control is considered.Sufficient conditions which guarantee the permanence of all positive solutions to this discrete system are obtained.The results show that the feedback control is harmless for the permanence of the species.

  7. Permanence of a Single Species System with Distributed Time Delay and Feedback Control

    Directory of Open Access Journals (Sweden)

    Yali Shen

    2012-01-01

    Full Text Available We study the permanence of a classofsingle species system with distributed time delay and feedback controls. General criteria on permanence are established in this paper. A very important fact is found in our results; that is, the feedback control is harmless to the permanence of species.

  8. Optical feedback characteristics in a dual-frequency laser during laser cavity tuning

    Institute of Scientific and Technical Information of China (English)

    Liu Gang; Zhang Shu-Lian; Li Yan; Zhu Jun

    2005-01-01

    The optical feedback characteristics in a Zeeman-birefringence dual-frequency laser are studied during the laser cavity tuning in three different kinds of optical feedback conditions: (i) only //-light is fed back; (ii) only (┴)-light is fed back; (iii) both lights are fed back. A compact displacement sensor is designed using the experimental result that there is a nearly 90 degrees phase delay between the two lights' cosine optical feedback signals when both lights are fed back into the laser cavity. The priority order that the two lights' intensity curves appear can be used for direction discrimination. The resolution of the displacement sensor is at least 79 nm, and the sensor can discriminate the target's moving direction easily.

  9. Experimental research on dual polarized laser optical feedback microscope

    Institute of Scientific and Technical Information of China (English)

    MAO Wei; ZHANG Shu-lian; TAN Yi-dong

    2005-01-01

    The principle of laser optical feedback microscope was presented and demonstrated. Three methods to advance the vertical resolution of laser optical feedback microscope were experimentally studied. The first one is to detect the two polarized lights' intensities separately with a Wollaston prism instead of to detect the whole light's intensity. The second is that both of the two orthogonally polarized lights of a birefringent dual frequency laser are fed back. The third one is that only one of the orthogonally polarized lights is fed back. The experimental results show that the modes competition between orthogonally polarized lights can be used to improve the vertical resolution of laser optical feedback microscope effectively.

  10. Robust H∞ Stabilization of Uncertain Linear Time-Delay System with Delayed/Undelayed State Feedback Controllers

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    This paper focuses on the H∞ controller design for linear systems with time-varying delays and norm bounded parameter perturbetions in the system state and control/disturbance. On the existence of delayed/undelayed full state feedback controllers, we present a sufficient condition and give a design method in the form of Riccati equation. The controller can not only stabilize the time-delay system, but also make the H∞ norm of the closed-loop system be less than a given bound. This result practically generalizes the related results in current literature.

  11. Single photon delayed feedback: a way to stabilize intrinsic quantum cavity electrodynamics.

    Science.gov (United States)

    Carmele, Alexander; Kabuss, Julia; Schulze, Franz; Reitzenstein, Stephan; Knorr, Andreas

    2013-01-01

    We propose a scheme to control cavity quantum electrodynamics in the single photon limit by delayed feedback. In our approach a single emitter-cavity system, operating in the weak coupling limit, can be driven into the strong coupling-type regime by an external mirror: The external loop produces Rabi oscillations directly connected to the electron-photon coupling strength. As an expansion of typical cavity quantum electrodynamics, we treat the quantum correlation of external and internal light modes dynamically and demonstrate a possible way to implement a fully quantum mechanical time-delayed feedback. Our theoretical approach proposes a way to experimentally feedback control quantum correlations in the single photon limit.

  12. Adaptive NN backstepping output-feedback control for stochastic nonlinear strict-feedback systems with time-varying delays.

    Science.gov (United States)

    Chen, Weisheng; Jiao, Licheng; Li, Jing; Li, Ruihong

    2010-06-01

    For the first time, this paper addresses the problem of adaptive output-feedback control for a class of uncertain stochastic nonlinear strict-feedback systems with time-varying delays using neural networks (NNs). The circle criterion is applied to designing a nonlinear observer, and no linear growth condition is imposed on nonlinear functions depending on system states. Under the assumption that time-varying delays exist in the system output, only an NN is employed to compensate for all unknown nonlinear terms depending on the delayed output, and thus, the proposed control algorithm is more simple even than the existing NN backstepping control schemes for uncertain systems described by ordinary differential equations. Three examples are given to demonstrate the effectiveness of the control scheme proposed in this paper.

  13. Parallel processing using an optical delay-based reservoir computer

    Science.gov (United States)

    Van der Sande, Guy; Nguimdo, Romain Modeste; Verschaffelt, Guy

    2016-04-01

    Delay systems subject to delayed optical feedback have recently shown great potential in solving computationally hard tasks. By implementing a neuro-inspired computational scheme relying on the transient response to optical data injection, high processing speeds have been demonstrated. However, reservoir computing systems based on delay dynamics discussed in the literature are designed by coupling many different stand-alone components which lead to bulky, lack of long-term stability, non-monolithic systems. Here we numerically investigate the possibility of implementing reservoir computing schemes based on semiconductor ring lasers. Semiconductor ring lasers are semiconductor lasers where the laser cavity consists of a ring-shaped waveguide. SRLs are highly integrable and scalable, making them ideal candidates for key components in photonic integrated circuits. SRLs can generate light in two counterpropagating directions between which bistability has been demonstrated. We demonstrate that two independent machine learning tasks , even with different nature of inputs with different input data signals can be simultaneously computed using a single photonic nonlinear node relying on the parallelism offered by photonics. We illustrate the performance on simultaneous chaotic time series prediction and a classification of the Nonlinear Channel Equalization. We take advantage of different directional modes to process individual tasks. Each directional mode processes one individual task to mitigate possible crosstalk between the tasks. Our results indicate that prediction/classification with errors comparable to the state-of-the-art performance can be obtained even with noise despite the two tasks being computed simultaneously. We also find that a good performance is obtained for both tasks for a broad range of the parameters. The results are discussed in detail in [Nguimdo et al., IEEE Trans. Neural Netw. Learn. Syst. 26, pp. 3301-3307, 2015

  14. Dynamic behavior of time-delayed acceleration feedback controller for active vibration control of flexible structures

    Science.gov (United States)

    An, Fang; Chen, Wei-dong; Shao, Min-qiang

    2014-09-01

    This paper addresses the design problem of the controller with time-delayed acceleration feedback. On the basis of the reduction method and output state-derivative feedback, a time-delayed acceleration feedback controller is proposed. Stability boundaries of the closed-loop system are determined by using Hurwitz stability criteria. Due to the introduction of time delay into the controller with acceleration feedback, the proposed controller has the feature of not only changing the mass property but also altering the damping property of the controlled system in the sense of equivalent structural modification. With this feature, the closed-loop system has a greater logarithmic decrement than the uncontrolled one, and in turn, the control behavior can be improved. In this connection, the time delay in the acceleration feedback control is a positive factor when satisfying some given conditions and it could be actively utilized. On the ground of the analysis, the developed controller is implemented on a cantilever beam for different controller gain-delay combinations, and the control performance is evaluated with the comparison to that of pure acceleration feedback controller. Simulation and experimental results verify the ability of the controller to attenuate the vibration resulting from the dominant mode.

  15. Information thermodynamics for a multi-feedback process with time delay

    Science.gov (United States)

    Kwon, Chulan; Um, Jaegon; Park, Hyunggyu

    2017-01-01

    We investigate a measurement-feedback process of repeated operations with time delay. During a finite-time interval, measurement on the system is performed and the feedback protocol derived from the measurement outcome is applied with time delay. This protocol is maintained into the next interval until a new protocol from the next measurement is applied. Unlike a feedback process without delay, both memories associated with previous and present measurement outcomes are involved in the system dynamics, which naturally brings forth a joint system described by a system state and two memory states. The thermodynamic second law provides a lower bound for heat flow into a thermal reservoir by the (3-state) Shannon entropy change of the joint system. However, as the feedback protocol depends on memory states sequentially, we can deduce a tighter bound for heat flow by integrating out irrelevant memory states during dynamics. As a simple example, we consider the so-called cold damping feedback process where the velocity of a particle is measured and a dissipative feedback protocol is applied to decelerate the particle. We confirm that the heat flow is well above the tightest bound. We also examine the long-time limit of this feedback process, which turns out to exhibit an interesting instability transition as well as heating by controlling parameters such as measurement errors, time interval, protocol strength, and time delay length. We discuss the underlying mechanism for instability and heating, which might be unavoidable in reality.

  16. Compensation for time-delayed feedback bang-bang control of quasi-integrable Hamiltonian systems

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    The stochastic averaging method for quasi-integrable Hamiltonian systems with time-delayed feedback bang-bang control is first introduced. Then, two time delay compensation methods, namely the method of changing control force amplitude (CFA) and the method of changing control delay time (CDT), are proposed. The conditions applicable to each compensation method are discussed. Finally, an example is worked out in detail to illustrate the application and effectiveness of the proposed methods and the two compensation methods in combination.

  17. Time-Delayed Feedback Control in a Single-Mode Laser System

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The effects of time-delayed feedback control in a single-mode laser system is investigated. Using the small time delay approximation, the analytic expression of the stationary probability distribution function of the laser field is obtaincd. The mean, normalized variance and skewness of the steady-state laser intensity are calculated. It is found that the time-delayed feedback control can suppress the intensity fluctuation of the laser system. The numerical simulations are in good agreement with the approximate analytic results.

  18. Learning monopolies with delayed feedback on price expectations

    Science.gov (United States)

    Matsumoto, Akio; Szidarovszky, Ferenc

    2015-11-01

    We call the intercept of the price function with the vertical axis the maximum price and the slope of the price function the marginal price. In this paper it is assumed that a monopolistic firm has full information about the marginal price and its own cost function but is uncertain on the maximum price. However, by repeated interaction with the market, the obtained price observations give a basis for an adaptive learning process of the maximum price. It is also assumed that the price observations have fixed delays, so the learning process can be described by a delayed differential equation. In the cases of one or two delays, the asymptotic behavior of the resulting dynamic process is examined, stability conditions are derived. Three main results are demonstrated in the two delay learning processes. First, it is possible to stabilize the equilibrium which is unstable in the one delay model. Second, complex dynamics involving chaos, which is impossible in the one delay model, can emerge. Third, alternations of stability and instability (i.e., stability switches) occur repeatedly.

  19. Active vibration control for nonlinear vehicle suspension with actuator delay via I/O feedback linearization

    Science.gov (United States)

    Lei, Jing; Jiang, Zuo; Li, Ya-Li; Li, Wu-Xin

    2014-10-01

    The problem of nonlinear vibration control for active vehicle suspension systems with actuator delay is considered. Through feedback linearization, the open-loop nonlinearity is eliminated by the feedback nonlinear term. Based on the finite spectrum assignment, the quarter-car suspension system with actuator delay is converted into an equivalent delay-free one. The nonlinear control includes a linear feedback term, a feedforward compensator, and a control memory term, which can be derived from a Riccati equation and a Sylvester equation, so that the effects produced by the road disturbances and the actuator delay are compensated, respectively. A predictor is designed to implement the predictive state in the designed control. Moreover, a reduced-order observer is constructed to solve its physical unrealisability problem. The stability proofs for the zero dynamics and the closed-loop system are provided. Numerical simulations illustrate the effectiveness and the simplicity of the designed control.

  20. Effects of time-delayed feedback on the properties of self-sustained oscillators

    Science.gov (United States)

    Risau-Gusman, S.

    2016-10-01

    Most self-sustained oscillations in biological systems and in technical applications are based on a feedback loop, and it is usually important to know how they will react when an external oscillatory force is applied. Here we investigate the effects that the introduction of a time delay in the feedback can have in the entrainment properties of self-sustained oscillators. To do this, we derive analytic expressions for the periodic trajectories and their asymptotic stability, for a generic external oscillatory force. This allows us to show that, for large quality factors, the resonance frequency does not depend on the feedback delay. When the external force is harmonic, it is shown that the largest entrainment range does not correspond to the time delay that gives the maximal response of the unforced oscillator. In fact, that delay gives the shortest entrainment range.

  1. H{sup {infinity}} State Feedback Control for Generalized Continuous/Discrete Time Delay System

    Energy Technology Data Exchange (ETDEWEB)

    Kim, J.H.; Lee, S.K.; Park, H.B. [Kyungpook National University, Taegu (Korea, Republic of); Jeung, E.T. [Changwon National University, Changwon (Korea, Republic of)

    1998-04-01

    In this paper, we consider the problem of designing H{sup {infinity}} state feedback controller for the generalized time delay systems with delayed states and control inputs in continuous and discrete time cases, respectively. The generalized time delay system problems are solved on the basis of LMI(linear matrix inequality) technique considering time delays. The sufficient condition for the existence of controller and H{sup {infinity}} state feedback controller design methods are presented. Also, using some changes of variables and Schur complements, the obtained sufficient condition can be rewritten as a LMI form in terms of transformed variables. The proposed controller design method can be extended into the problem of robust H{sup {infinity}} state feedback controller design method easily. (author). 15 refs.

  2. Improved optical packet switching structure with recirculation buffer and feedback tunable wavelength converter

    Institute of Scientific and Technical Information of China (English)

    Cheng Wu; Shilin Xiao

    2009-01-01

    The performance of an optical switching network is mainly determined by its core node structure.An improved optical packet switching(OPS)node structure based on recirculation optical fiber delay line(FDL)and feedback tunable wavelength converter(TWC),and a specific scheduling algorithm for the node structure are presented.This switching structure supports both point-to-point and point-to-multi-points broadcasting transmission with superior capacity expansion performance.Its superiority in packet loss probability is proved by simulation.

  3. Optimization of time-delayed feedback control of seismically excited building structures

    Institute of Scientific and Technical Information of China (English)

    Xue-ping LI; Wei-qiu ZHU; Zu-guang YING

    2008-01-01

    An optimization method for time-delayed feedback control of partially observable linear building structures subjected to seismic excitation is proposed. A time-delayed control problem of partially observable linear building structure under horizontal ground acceleration excitation is formulated and converted into that of completely observable linear structure by using separation principle. The time-delayed control forces are approximately expressed in terms of control forces without time delay. The control system is then governed by Ito stochastic differential equations for the conditional means of system states and then transformed into those for the conditional means of modal energies by using the stochastic averaging method for quasi-Hamiltonian systems. The control law is assumed to be modal velocity feedback control with time delay and the unknown control gains are determined by the modal performance indices. A three-storey building structure is taken as example to illustrate the proposal method and the numerical results are confirmed by using Monte Carlo simulation.

  4. Impact of time delays on oscillatory dynamics of interlinked positive and negative feedback loops

    Science.gov (United States)

    Huang, Bo; Tian, Xinyu; Liu, Feng; Wang, Wei

    2016-11-01

    Interlinking a positive feedback loop (PFL) with a negative feedback loop (NFL) constitutes a typical motif in genetic networks, performing various functions in cell signaling. How time delay in feedback regulation affects the dynamics of such systems still remains unclear. Here, we investigate three systems of interlinked PFL and NFL with time delays: a synthetic genetic oscillator, a three-node circuit, and a simplified single-node model. The stability of steady states and the routes to oscillation in the single-node model are analyzed in detail. The amplitude and period of oscillations vary with a pointwise periodicity over a range of time delay. Larger-amplitude oscillations can be induced when the PFL has an appropriately long delay, in comparison with the PFL with no delay or short delay; this conclusion holds true for all the three systems. We unravel the underlying mechanism for the above effects via analytical derivation under a limiting condition. We also develop a stochastic algorithm for simulating a single reaction with two delays and show that robust oscillations can be maintained by the PFL with a properly long delay in the single-node system. This work presents an effective method for constructing robust large-amplitude oscillators and interprets why similar circuit architectures are engaged in timekeeping systems such as circadian clocks.

  5. The role of time delay in adaptive cellular negative feedback systems.

    Science.gov (United States)

    Lapytsko, Anastasiya; Schaber, Jörg

    2016-06-07

    Adaptation in cellular systems is often mediated by negative feedbacks, which usually come with certain time delays causing several characteristic response patterns including an overdamped response, damped or sustained oscillations. Here, we analyse generic two-dimensional delay differential equations with delayed negative feedback describing the dynamics of biochemical adaptive signal-response networks. We derive explicit thresholds and boundaries showing how time delay determines characteristic response patterns of these networks. Applying our theoretical analyses to concrete data we show that adaptation to osmotic stress in yeast is optimal in the sense of minimizing adaptation time without causing oscillatory behaviour, i.e., a critically damped response. In addition, our framework demonstrates that a slight increase of time delay in the NF-κB system might induce a switch from damped to sustained oscillatory behaviour. Thus, we demonstrate how delay differential equations can be used to explicitly study the delay in biochemical negative feedback systems. Our analysis also provides insight into how time delay may tune biological signal-response patterns and control the systems behaviour.

  6. Stability of Nonlinear Systems with Unknown Time-varying Feedback Delay

    Science.gov (United States)

    Chunodkar, Apurva A.; Akella, Maruthi R.

    2013-12-01

    This paper considers the problem of stabilizing a class of nonlinear systems with unknown bounded delayed feedback wherein the time-varying delay is 1) piecewise constant 2) continuous with a bounded rate. We also consider application of these results to the stabilization of rigid-body attitude dynamics. In the first case, the time-delay in feedback is modeled specifically as a switch among an arbitrarily large set of unknown constant values with a known strict upper bound. The feedback is a linear function of the delayed states. In the case of linear systems with switched delay feedback, a new sufficiency condition for average dwell time result is presented using a complete type Lyapunov-Krasovskii (L-K) functional approach. Further, the corresponding switched system with nonlinear perturbations is proven to be exponentially stable inside a well characterized region of attraction for an appropriately chosen average dwell time. In the second case, the concept of the complete type L-K functional is extended to a class of nonlinear time-delay systems with unknown time-varying time-delay. This extension ensures stability robustness to time-delay in the control design for all values of time-delay less than the known upper bound. Model-transformation is used in order to partition the nonlinear system into a nominal linear part that is exponentially stable with a bounded perturbation. We obtain sufficient conditions which ensure exponential stability inside a region of attraction estimate. A constructive method to evaluate the sufficient conditions is presented together with comparison with the corresponding constant and piecewise constant delay. Numerical simulations are performed to illustrate the theoretical results of this paper.

  7. Stability and Performance of First-Order Linear Time-Delay Feedback Systems: An Eigenvalue Approach

    Directory of Open Access Journals (Sweden)

    Shu-An He

    2011-01-01

    Full Text Available Linear time-delay systems with transcendental characteristic equations have infinitely many eigenvalues which are generally hard to compute completely. However, the spectrum of first-order linear time-delay systems can be analyzed with the Lambert function. This paper studies the stability and state feedback stabilization of first-order linear time-delay system in detail via the Lambert function. The main issues concerned are the rightmost eigenvalue locations, stability robustness with respect to delay time, and the response performance of the closed-loop system. Examples and simulations are presented to illustrate the analysis results.

  8. Electro-optic delay oscillator with nonlocal nonlinearity: Optical phase dynamics, chaos, and synchronization.

    Science.gov (United States)

    Lavrov, Roman; Peil, Michael; Jacquot, Maxime; Larger, Laurent; Udaltsov, Vladimir; Dudley, John

    2009-08-01

    We demonstrate experimentally how nonlinear optical phase dynamics can be generated with an electro-optic delay oscillator. The presented architecture consists of a linear phase modulator, followed by a delay line, and a differential phase-shift keying demodulator (DPSK-d). The latter represents the nonlinear element of the oscillator effecting a nonlinear transformation. This nonlinearity is considered as nonlocal in time since it is ruled by an intrinsic differential delay, which is significantly greater than the typical phase variations. To study the effect of this specific nonlinearity, we characterize the dynamics in terms of the dependence of the relevant feedback gain parameter. Our results reveal the occurrence of regular GHz oscillations (approximately half of the DPSK-d free spectral range), as well as a pronounced broadband phase-chaotic dynamics. Beyond this, the observed dynamical phenomena offer potential for applications in the field of microwave photonics and, in particular, for the realization of novel chaos communication systems. High quality and broadband phase-chaos synchronization is also reported with an emitter-receiver pair of the setup.

  9. Strong optical feedback in birefringent dual frequency laser

    Institute of Scientific and Technical Information of China (English)

    Mao Wei; Zhang Shu-Lian

    2006-01-01

    Strong optical feedback in a birefringent dual frequency He-Ne laser with a high reflectivity feedback mirror has been investigated for the first time. The output characteristics of two orthogonally polarized modes are demonstrated in two different optical feedback cases: one is for both modes being fed back and the other is for only one of the modes being fed back. Strong mode competition can be observed between the two modes with strong optical feedback. And when one mode's intensity is near its maximum, the other mode is nearly extinguished. When both modes are fed back into the laser cavity, the mode competition is stronger than when only one mode is fed back. The difference in initial intensity between the two orthogonally polarized modes plays an important role in the mode competition, which has been experimentally and theoretically demonstrated.

  10. Waiting for feedback helps if you want to know the answer: the role of curiosity in the delay-of-feedback benefit.

    Science.gov (United States)

    Mullaney, Kellie M; Carpenter, Shana K; Grotenhuis, Courtney; Burianek, Steven

    2014-11-01

    When participants answer a test question and then receive feedback of the correct answer, studies have shown that the feedback is more effective when it is delayed by several seconds rather than provided immediately (e.g., Brackbill & Kappy, Journal of Comparative and Physiological Psychology, 55, 14-18, 1962; Schroth, Contemporary Educational Psychology, 17, 78-82, 1992). Despite several demonstrations of this delay-of-feedback benefit, a theoretical explanation for this finding has not yet been developed. The present study tested the hypothesis that brief delays of feedback are beneficial because they encourage anticipation of the upcoming feedback. In Experiment 1, participants answered obscure trivia questions, and before receiving the answer, they rated their curiosity to know the answer. The answer was then provided either immediately or after a 4-s delay. A later final test over the same questions revealed a significant delay-of-feedback benefit, but only for items that had been rated high in curiosity. Experiment 2 replicated this same effect and showed that the delay-of-feedback benefit only occurs when feedback is provided after a variable, unpredictable time duration (either 2, 4, or 8 s) rather than after a constant duration (always 4 s). These findings demonstrate that the delay-of-feedback effect appears to be greatest under conditions in which participants are curious to know the answer and when the answer is provided after an unpredictable time interval.

  11. Winner-take-all selection in a neural system with delayed feedback

    CERN Document Server

    Brandt, Sebastian F

    2007-01-01

    We consider the effects of temporal delay in a neural feedback system with excitation and inhibition. The topology of our model system reflects the anatomy of the avian isthmic circuitry, a feedback structure found in all classes of vertebrates. We show that the system is capable of performing a `winner-take-all' selection rule for certain combinations of excitatory and inhibitory feedback. In particular, we show that when the time delays are sufficiently large a system with local inhibition and global excitation can function as a `winner-take-all' network and exhibit oscillatory dynamics. We demonstrate how the origin of the oscillations can be attributed to the finite delays through a linear stability analysis.

  12. Inducing or suppressing chaos in a double-well Duffing oscillator by time delay feedback

    Energy Technology Data Exchange (ETDEWEB)

    Sun Zhongkui [Department of Applied Mathematics, Northwestern Polytechnic University, Xi' an 710072 (China)] e-mail: sunzk205@mail.nwpu.edu.cn; Xu Wei [Department of Applied Mathematics, Northwestern Polytechnic University, Xi' an 710072 (China)] e-mail: weixu@nwpu.edu.cn; Yang Xiaoli [Department of Applied Mathematics, Northwestern Polytechnic University, Xi' an 710072 (China); Department of Mathematics, Shaan' xi Normal University, Xi' an 710062 (China); Fang Tong [Department of Applied Mechanics, Northwestern Polytechnic University, Xi' an 710072 (China)

    2006-02-01

    The chaotic behavior of a double-well Duffing oscillator with both delayed displacement and velocity feedbacks under a harmonic excitation is investigated. By means of the Melnikov technique, necessary condition for onset of chaos resulting from homoclinic bifurcation is derived analytically. The analytical results reveal that for negative feedback the presence of time delay lowers the threshold and enlarges the possible chaotic domain in parameter space; while for positive feedback the presence of time delay enhances the threshold and reduces the possible chaotic domain in parameter space, which are further verified numerically through Poincare maps of the original system. Furthermore, the effect of the control gain parameters on the chaotic motion of the original system is studied in detail.

  13. Multi-objective optimal design of active vibration absorber with delayed feedback

    Science.gov (United States)

    Huan, Rong-Hua; Chen, Long-Xiang; Sun, Jian-Qiao

    2015-03-01

    In this paper, a multi-objective optimal design of delayed feedback control of an actively tuned vibration absorber for a stochastically excited linear structure is investigated. The simple cell mapping (SCM) method is used to obtain solutions of the multi-objective optimization problem (MOP). The continuous time approximation (CTA) method is applied to analyze the delayed system. Stability is imposed as a constraint for MOP. Three conflicting objective functions including the peak frequency response, vibration energy of primary structure and control effort are considered. The Pareto set and Pareto front for the optimal feedback control design are presented for two examples. Numerical results have found that the Pareto optimal solutions provide effective delayed feedback control design.

  14. Delay-dependent H-infinity control for continuous time-delay systems via state feedback

    Institute of Scientific and Technical Information of China (English)

    Xinchun JIA; Yibo GAO; Jingmei ZHANG; Nanning ZHENG

    2007-01-01

    The delay-dependent H-infinity analysis and H-infinity control problems for continuous time-delay systems are studied. By introducing an equality with some free weighting matrices, an improved criterion of delay-dependent stability with H-infinity performance for such systems is presented, and a criterion of existence and some design methods of delay-dependent H-infinity controller for such systems are proposed in term of a set of matrix inequalities, which is solved efficiently by an iterative algorithm. Further, the corresponding results for the delay-dependent robust H-infinity analysis and robust H-infinity control problems for continuous time-delay uncertain systems are given. Finally, two numerical examples are given to illustrate the efficiency of the proposed method by comparing with the other existing results.

  15. Effects of Concurrent and Delayed Visual Feedback on Motor Memory Consolidation.

    Science.gov (United States)

    Wang, Dangxiao; Li, Teng; Yang, Gaofeng; Zhang, Yuru

    2017-02-22

    In many domains, it's important to understand the ways in which humans learn and develop new motor skills effectively and efficiently. For example, in dental operations, the ability to apply a weak force with a required tolerance is a fundamental skill to ensure diagnostic and treatment outcome, but acquiring such a skill is a challenge for novices. In this paper, we focus on motor memory for producing normally applied force by a hand-held probe and we compare the effects of two feedback methods on motor memory consolidation. Fourteen participants were randomly assigned to two groups: a Concurrent Group and a Delayed Group. Participants in the Concurrent Group were trained to apply a target force with concurrent visual feedback, while those in the Delayed Group were trained with delayed visual feedback. The task included two phases: a Training/Testing Phase, and a Retention Phase. The results indicated that participants in the Delayed Group obtained more effective learning outcomes and better retention effects. These findings provide a new perspective to explore the relationship between feedback methods and the cognitive process of motor skill learning, and open a new way to train motor skill using more effective methods than the traditional concurrent feedback approaches.

  16. Chaotification of Quasi-zero Stiffness System Via Direct Time-delay Feedback

    Directory of Open Access Journals (Sweden)

    Shuyong Liu

    2013-03-01

    Full Text Available This paper presents a chaotification method based on direct time-delay feedback control for a quasi-zero-stiffness isolation system. An analytical function of time-delay feedback control is derived based on differential-geometry control theory. Furthermore, the feasibility and effectiveness of this method was verified by numerical simulations. Numerical simulations show that this method holds the favorable aspects including the advantage of using tiny control gain, the capability of chaotifying across a large range of parametric domain and the high feasibility of the control implement.

  17. Adaptive output feedback control of a class of uncertain nonlinear systems with unknown time delays

    Science.gov (United States)

    Guan, Wei

    2012-04-01

    This article studies the adaptive output feedback control problem of a class of uncertain nonlinear systems with unknown time delays. The systems considered are dominated by a triangular system without zero dynamics satisfying linear growth in the unmeasurable states. The novelty of this article is that a universal-type adaptive output feedback controller is presented to time-delay systems, which can globally regulate all the states of the uncertain systems without knowing the growth rate. An illustrative example is provided to show the applicability of the developed control strategy.

  18. Global adaptive output feedback control for a class of nonlinear time-delay systems.

    Science.gov (United States)

    Zhai, Jun-yong; Zha, Wen-ting

    2014-01-01

    This paper addresses the problem of global output feedback control for a class of nonlinear time-delay systems. The nonlinearities are dominated by a triangular form satisfying linear growth condition in the unmeasurable states with an unknown growth rate. With a change of coordinates, a linear-like controller is constructed, which avoids the repeated derivatives of the nonlinearities depending on the observer states and the dynamic gain in backstepping approach and therefore, simplifies the design procedure. Using the idea of universal control, we explicitly construct a universal-type adaptive output feedback controller which globally regulates all the states of the nonlinear time-delay systems.

  19. Dynamic Output Feedback Control for Nonlinear Networked Control Systems with Random Packet Dropout and Random Delay

    Directory of Open Access Journals (Sweden)

    Shuiqing Yu

    2013-01-01

    Full Text Available This paper investigates the dynamic output feedback control for nonlinear networked control systems with both random packet dropout and random delay. Random packet dropout and random delay are modeled as two independent random variables. An observer-based dynamic output feedback controller is designed based upon the Lyapunov theory. The quantitative relationship of the dropout rate, transition probability matrix, and nonlinear level is derived by solving a set of linear matrix inequalities. Finally, an example is presented to illustrate the effectiveness of the proposed method.

  20. Emergence of resonant mode-locking via delayed feedback in quantum dot semiconductor lasers.

    Science.gov (United States)

    Tykalewicz, B; Goulding, D; Hegarty, S P; Huyet, G; Erneux, T; Kelleher, B; Viktorov, E A

    2016-02-22

    With conventional semiconductor lasers undergoing external optical feedback, a chaotic output is typically observed even for moderate levels of the feedback strength. In this paper we examine single mode quantum dot lasers under strong optical feedback conditions and show that an entirely new dynamical regime is found consisting of spontaneous mode-locking via a resonance between the relaxation oscillation frequency and the external cavity repetition rate. Experimental observations are supported by detailed numerical simulations of rate equations appropriate for this laser type. The phenomenon constitutes an entirely new mode-locking mechanism in semiconductor lasers.

  1. Adaptive output feedback control for nonlinear time-delay systems using neural network

    Institute of Scientific and Technical Information of China (English)

    Weisheng CHEN; Junmin LI

    2006-01-01

    This paper extends the adaptive neural network (NN) control approaches to a class of unknown output feedback nonlinear time-delay systems. An adaptive output feedback NN tracking controller is designed by backstepping technique. NNs are used to approximate unknown functions dependent on time delay. Delay-dependent filters are introduced for state estimation. The domination method is used to deal with the smooth time-delay basis functions. The adaptive bounding technique is employed to estimate the upper bound of the NN approximation errors. Based on LyapunovKrasovskii functional, the semi-global uniform ultimate boundedness of all the signals in the closed-loop system is proved.The feasibility is investigated by two illustrative simulation examples.

  2. State Feedback Consensus for Multi-Agent System with Multiple Time-Delays

    Directory of Open Access Journals (Sweden)

    Jia Wei

    2013-09-01

    Full Text Available In this paper, we study the multi-agent system to achieve a faster consensus with multiple time-delays under a directed asymmetric information exchange topology. We first assume that an agent processes its own state information with self-delay and receives state information from its neighbors with communication delays. Based on state proportion derivative feedback, the improved consensus protocol can accelerate the system to achieve a consensus. A sufficient condition for reaching consensus is then derived based on the Nyquist stability criterion and frequency domain analysis. In addition, a specific form of consensus equilibrium is obtained which is influenced by the initial states of agents, time-delays and state feedback intensity. Finally, simulations are presented to verify the validity of the theoretical results.

  3. Adaptive lag synchronization of uncertain dynamical systems with time delays via simple transmission lag feedback

    Institute of Scientific and Technical Information of China (English)

    Gu Wei-Dong; Sun Zhi-Yong; Wu Xiao-Ming; Yu Chang-Bin

    2013-01-01

    In this paper we present an adaptive scheme to achieve lag synchronization for uncertain dynamical systems with time delays and unknown parameters.In contrast to the nonlinear feedback scheme reported in the previous literature,the proposed controller is a linear one which only involves simple feedback information from the drive system with signal propagation lags.Besides,the unknown parameters can also be identified via the proposed updating laws in spite of the existence of model delays and transmission lags,as long as the linear independence condition between the related function elements is satisfied.Two examples,i.e.,the Mackey-Glass model with single delay and the Lorenz system with multiple delays,are employed to show the effectiveness of this approach.Some robustness issues are also discussed,which shows that the proposed scheme is quite robust in switching and noisy environment.

  4. HOPF BIFURCATION OF AN OSCILLATOR WITH QUADRATIC AND CUBIC NONLINEARITIES AND WITH DELAYED VELOCITY FEEDBACK

    Institute of Scientific and Technical Information of China (English)

    WANG Huailei; WANG Zaihua; HU Haiyan

    2004-01-01

    This paper studies the local dynamics of an SDOF system with quadratic and cubic stiffness terms, and with linear delayed velocity feedback. The analysis indicates that for a sufficiently large velocity feedback gain, the equilibrium of the system may undergo a number of stability switches with an increase of time delay, and then becomes unstable forever. At each critical value of time delay for which the system changes its stability, a generic Hopf bifurcation occurs and a periodic motion emerges in a one-sided neighbourhood of the critical time delay. The method of Fredholm alternative is applied to determine the bifurcating periodic motions and their stability. It stresses on the effect of the system parameters on the stable regions and the amplitudes of the bifurcating periodic solutions.

  5. Decentralized Output-Feedback Stabilization of Linear Time-invariant Interconnected Systems with Delays

    Energy Technology Data Exchange (ETDEWEB)

    Shim, D.S. [Chung-Ang University, Seoul (Korea, Republic of)

    1998-04-01

    We study the decentralized stabilization problem of linear time-invariant large-scale interconnected systems with delays without any system structure. We obtain sufficient stability conditions for interconnected systems which are equivalent to disturbance attenuation of some scaled system. A decentralized output-feedback controller is obtained using standard H{infinity} control theory. The obtained controller is delay-independent. We also obtain an observer for the interconnected system. (author). 9 refs.

  6. A matrix transformation approach to H∞ control via static output feedback for input delay systems

    OpenAIRE

    Du, B; Shu, Z; Lam, J.

    2009-01-01

    This paper addresses the static output feedback (SOF) H∞ control for continuous-time linear systems with an unknown input delay from a novel perspective. New equivalent characterizations on the stability and H∞ performance of the closed-loop system are established in terms of nonlinear matrix inequalities with free parametrization matrices. These delay-dependent characterizations possess a special monotonic structure, which leads to linearized iterative computation. The effectiveness and meri...

  7. Observer design and output feedback stabilization for linear singular time-delay systems with unknown inputs

    Institute of Scientific and Technical Information of China (English)

    Peng CUI; Chenghui ZHANG

    2008-01-01

    The design of a functional observer and reduced-order observer with internal delay for linear singular timedelay systems with unknown inputs is discussed.The sufficient conditions of the existence of observers,which are normal linear time-delay systems,and the corresponding design steps are presented via linear matrix inequality(LMI).Moreover,the observer-based feedback stabilizing controller is obtained.Three examples are given to show the effectiveness of the proposed methods.

  8. Incomplete state feedback for time delay systems: observer applications in multidelay compensation

    Energy Technology Data Exchange (ETDEWEB)

    Ogunnaike, B.A.; Ray, W.H.

    1984-09-01

    This paper demonstrates how a recently developed observer for time delay systems may be used to estimate needed state variables for implementation of multivariable time delay compensation. The general results are illustrated by an example of a multireactor plant in which only one reactor concentration can be measured. The observer worked well in simulation for both multivariable PID control and multidelay compensated PID control and allowed both schemes to function with estimated state variables in the feedback loop. 16 references, 5 figures.

  9. Recovery of systems with a linear filter and nonlinear delay feedback in periodic regimes.

    Science.gov (United States)

    Ponomarenko, V I; Prokhorov, M D

    2008-12-01

    We propose a set of methods for the estimation of the parameters of time-delay systems with a linear filter and nonlinear delay feedback performing periodic oscillations. The methods are based on an analysis of the system response to regular external perturbations and are valid only for systems whose dynamics can be perturbed. The efficiency of the methods is illustrated using both numerical and experimental data.

  10. Coherent feedback control of multipartite quantum entanglement for optical fields

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Zhihui; Jia, Xiaojun; Xie, Changde; Peng, Kunchi [State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Opto-Electronics, Shanxi University, Taiyuan, 030006 (China)

    2011-12-15

    Coherent feedback control (CFC) of multipartite optical entangled states produced by a nondegenerate optical parametric amplifier is theoretically studied. The features of the quantum correlations of amplitude and phase quadratures among more than two entangled optical modes can be controlled by tuning the transmissivity of the optical beam splitter in the CFC loop. The physical conditions to enhance continuous variable multipartite entanglement of optical fields utilizing the CFC loop are obtained. The numeric calculations based on feasible physical parameters of realistic systems provide direct references for the design of experimental devices.

  11. Stabilizing fixed points of time-delay systems close to the Hopf bifurcation using a dynamic delayed feedback control method

    Energy Technology Data Exchange (ETDEWEB)

    Rezaie, B; Motlagh, M R Jahed; Analoui, M [Iran University of Science and Technology, Narmak, Tehran (Iran, Islamic Republic of); Khorsandi, S [Amirkabir University of Technology, Hafez St., Tehran (Iran, Islamic Republic of)], E-mail: brezaie@iust.ac.ir

    2009-10-02

    This paper deals with the problem of Hopf bifurcation control for a class of nonlinear time-delay systems. A dynamic delayed feedback control method is utilized for stabilizing unstable fixed points near Hopf bifurcation. Using a linear stability analysis, we show that under certain conditions of the control parameters, and without changing the operating point of the system, the onset of Hopf bifurcation is delayed. Meanwhile, by applying the center manifold theorem and the normal form theory, we obtain formulas for determining the direction of the Hopf bifurcation and the stability of bifurcating periodic solutions of the closed loop system. Numerical simulations are given to justify the validity of the analytical results for the system controlled by the proposed method.

  12. Comprehensive research on self phase modulation based optical delay systems

    Institute of Scientific and Technical Information of China (English)

    Yang Ai-Ying; Sun Yu-Nan

    2010-01-01

    This paper comprehensively investigates the properties of self phase modulation based optical delay systems consisting of dispersion compensation fibre and highly nonlinear fibres.It researches into the impacts of power level launched into highly nonlinear fibres,conversion wavelength,dispersion slope,modulation format and optical filter bandwidth on the overall performance of optical delay systems.The results reveal that,if the power launched into highly nonlinear fibres is fixed,the time delay generally varies linearly with the conversion wavelength,but jumps intermittently at some conversion wavelengths.However,the time delay varies semi-periodically with the power launched into highly nonlinear fibres.The dispersion slope of highly nonlinear fibres has significant influence on the time delay,especially for the negative dispersion slope.The time delay differs with modulation formats due to the different combined interaction of nonlinearity and dispersion in fibres.The bandwidth of the optical filters also greatly affects the time delay because it determines the bandwidth of the passed signal in the self phase modulation based time delay systems.The output signal quality of the overall time delay systems depends on the conversion wavelength and input power level.The optimisation of the power level and conversion wavelength to provide the best output signal quality is made at the end of this paper.

  13. Directed Current Induced by an Symmetrically ac Force Coexisting with a Time-Delayed Feedback

    Institute of Scientific and Technical Information of China (English)

    易述婷; 宋晖; 欧志娥; 艾保全; 熊建文

    2012-01-01

    We study the transport of overdamped Brownian particles in a symmetricaJly periodic potential in the presence of an asymmetrically ac driving force and a time-delayed feedback. It is found that for low frequencies, the average velocity can be negative by changing the driving amplitude, for high frequencies, there exists an optimized driving amplitude at which the average velocity takes its maximum value. Additionally, there is a threshold value of driving amplitude below which no directed transport can be obtained for high frequencies. For the large value of the delay time, the average velocity is independent of the delay time.

  14. Globally Asymptotic Stability of Stochastic Nonlinear Systems with Time-Varying Delays via Output Feedback Control

    Directory of Open Access Journals (Sweden)

    Mingzhu Song

    2016-01-01

    Full Text Available We address the problem of globally asymptotic stability for a class of stochastic nonlinear systems with time-varying delays. By the backstepping method and Lyapunov theory, we design a linear output feedback controller recursively based on the observable linearization for a class of stochastic nonlinear systems with time-varying delays to guarantee that the closed-loop system is globally asymptotically stable in probability. In particular, we extend the deterministic nonlinear system to stochastic nonlinear systems with time-varying delays. Finally, an example and its simulations are given to illustrate the theoretical results.

  15. The Impact of Immediate and Delayed Corrective Feedback on Iranian EFL Learners’ Willingness to Communicate

    Directory of Open Access Journals (Sweden)

    Mahtab Zadkhast

    2017-09-01

    Full Text Available The present study investigated the impact of immediate and delayed corrective feedback on Iranian EFL learners’ willingness to communicate. To attain the purpose of the study, 45 females intermediate students that were roughly selected according to their previous grades and their assigned  level in language school were chosen to participate in this study. Then they were divided to three equal groups: Experimental group 1(immediate feedback, Experimental group 2 (delayed feedback and control group. In the first session, WTC questionnaire (MacIntyre ,2001 modified by Pourya Baghaei and Ali Dourakhshan was administered to all groups as pretests. In group 1 the students’ errors were corrected by the teacher immediately after committing but in the second group, the students’ errors were written by the teacher and her comments were given to them when they finished their tasks. For the control group, the routine procedure of New Headway intermediate was followed. After about 12 sessions WTC was repeated as posttests. The findings revealed that immediate and delayed corrective feedback have a significant effect on EFL students’ level of WTC. The results, also demonstrated that experimental group 1 (immediate feedback outweighed the other two groups in relation to their WTC. The findings have implication for pedagogy as well as further research.

  16. The response of nonlinear controlled system under an external excitation via time delay state feedback

    Directory of Open Access Journals (Sweden)

    A.M. Elnaggar

    2016-01-01

    Full Text Available An analysis of primary, superharmonic of order five, and subharmonic of order one-three resonances for non-linear s.d.o.f. system with two distinct time-delays under an external excitation is investigated. The method of multiple scales is used to determine two first order ordinary differential equations which describe the modulation of the amplitudes and the phases. Steady-state solutions and their stabilities in each resonance are studied. Numerical results are obtained by using the Software of Mathematica, which presented in a group of figures. The effect of the feedback gains and time-delays on the non-linear response of the system is discussed and it is found that: an appropriate feedback can enhance the control performance. A suitable choice of the feedback gains and time-delays can enlarge the critical force amplitude, and reduce the peak amplitude of the response (or peak amplitude of the free oscillation term for the case of primary resonance (superharmonic resonance. Furthermore, a proper feedback can eliminate saddle-node bifurcation, thereby eliminating jump and hysteresis phenomena taking place in the corresponding uncontrolled system. For subharmonic resonance, an adequate feedback can reduce the regions of subharmonic resonance response.

  17. Non-Markovian spiking statistics of a neuron with delayed feedback in presence of refractoriness.

    Science.gov (United States)

    Kravchuk, Kseniia; Vidybida, Alexander

    2014-02-01

    Spiking statistics of a self-inhibitory neuron is considered. The neuron receives excitatory input from a Poisson stream and inhibitory impulses through a feedback line with a delay. After triggering, the neuron is in the refractory state for a positive period of time. Recently, [35,6], it was proven for a neuron with delayed feedback and without the refractory state, that the output stream of interspike intervals (ISI) cannot be represented as a Markov process. The refractory state presence, in a sense limits the memory range in the spiking process, which might restore Markov property to the ISI stream. Here we check such a possibility. For this purpose, we calculate the conditional probability density P (tn+1 l tn,...,t1,t0), and prove exactly that it does not reduce to P (tn+1 l tn,...,t1) for any n ⋝0. That means, that activity of the system with refractory state as well cannot be represented as a Markov process of any order. We conclude that it is namely the delayed feedback presence which results in non-Markovian statistics of neuronal firing. As delayed feedback lines are common for any realistic neural network, the non-Markovian statistics of the network activity should be taken into account in processing of experimental data.

  18. Theoretical feasibility of suppressing offensive sports chants by means of delayed feedback of sound

    NARCIS (Netherlands)

    Wijngaarden, S.J. van; Balken, J.A. van

    2007-01-01

    A novel approach for disrupting offensive chants at sporting events is proposed, based on attacking synchronization between individuals. Since timing is crucial for coordination between chanters, disruption of timing is expected to be effective against undesired chants. Delayed auditory feedback is

  19. PERMANENCE AND GLOBAL STABILITY OF A FEEDBACK CONTROL SYSTEM WITH DELAYS

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    This paper considers a feedback control systems of differential equations with delays. By applying the differential inequality theorem, sufficient conditions for the permanence of the system are obtained. Also, by constructing a suitable Lyapunov functional, a criterion for the global stability of the model is obtained.

  20. Individual Variability in Delayed Auditory Feedback Effects on Speech Fluency and Rate in Normally Fluent Adults

    Science.gov (United States)

    Chon, HeeCheong; Kraft, Shelly Jo; Zhang, Jingfei; Loucks, Torrey; Ambrose, Nicoline G.

    2013-01-01

    Purpose: Delayed auditory feedback (DAF) is known to induce stuttering-like disfluencies (SLDs) and cause speech rate reductions in normally fluent adults, but the reason for speech disruptions is not fully known, and individual variation has not been well characterized. Studying individual variation in susceptibility to DAF may identify factors…

  1. Positive Periodic Solutions of Cooperative Systems with Delays and Feedback Controls

    Directory of Open Access Journals (Sweden)

    Tursuneli Niyaz

    2013-01-01

    Full Text Available This paper studies a class of periodic n species cooperative Lotka-Volterra systems with continuous time delays and feedback controls. Based on the continuation theorem of the coincidence degree theory developed by Gaines and Mawhin, some new sufficient conditions on the existence of positive periodic solutions are established.

  2. Delay Reduction for Instantly Decodable Network Coding in Persistent Channels With Feedback Imperfections

    KAUST Repository

    Douik, Ahmed S.

    2015-11-05

    This paper considers the multicast decoding delay reduction problem for generalized instantly decodable network coding (G-IDNC) over persistent erasure channels with feedback imperfections. The feedback scenario discussed is the most general situation in which the sender does not always receive acknowledgments from the receivers after each transmission and the feedback communications are subject to loss. The decoding delay increment expressions are derived and employed to express the decoding delay reduction problem as a maximum weight clique problem in the G-IDNC graph. This paper provides a theoretical analysis of the expected decoding delay increase at each time instant. Problem formulations in simpler channel and feedback models are shown to be special cases of the proposed generalized formulation. Since finding the optimal solution to the problem is known to be NP-hard, a suboptimal greedy algorithm is designed and compared with blind approaches proposed in the literature. Through extensive simulations, the proposed algorithm is shown to outperform the blind methods in all situations and to achieve significant improvement, particularly for high time-correlated channels.

  3. Adaptation to delayed auditory feedback induces the temporal recalibration effect in both speech perception and production.

    Science.gov (United States)

    Yamamoto, Kosuke; Kawabata, Hideaki

    2014-12-01

    We ordinarily speak fluently, even though our perceptions of our own voices are disrupted by various environmental acoustic properties. The underlying mechanism of speech is supposed to monitor the temporal relationship between speech production and the perception of auditory feedback, as suggested by a reduction in speech fluency when the speaker is exposed to delayed auditory feedback (DAF). While many studies have reported that DAF influences speech motor processing, its relationship to the temporal tuning effect on multimodal integration, or temporal recalibration, remains unclear. We investigated whether the temporal aspects of both speech perception and production change due to adaptation to the delay between the motor sensation and the auditory feedback. This is a well-used method of inducing temporal recalibration. Participants continually read texts with specific DAF times in order to adapt to the delay. Then, they judged the simultaneity between the motor sensation and the vocal feedback. We measured the rates of speech with which participants read the texts in both the exposure and re-exposure phases. We found that exposure to DAF changed both the rate of speech and the simultaneity judgment, that is, participants' speech gained fluency. Although we also found that a delay of 200 ms appeared to be most effective in decreasing the rates of speech and shifting the distribution on the simultaneity judgment, there was no correlation between these measurements. These findings suggest that both speech motor production and multimodal perception are adaptive to temporal lag but are processed in distinct ways.

  4. OLED lightings with optical feedback for luminance difference compensation

    Science.gov (United States)

    Shin, D. K.; Park, J. W.

    2013-12-01

    We have employed an optical feedback circuit in an organic light-emitting diode (OLED) lighting system to ensure uniform light output across large-area OLED lighting tiles. In a lighting system with several large-area OLED lighting tiles involved, the panel aging (luminance decrease) may appear differently in each, resulting in a falling-off in lighting quality. To tackle this, light output from each OLED tile is monitored by the optical feedback circuit that consists of a photodetector, I-V converter, 10-bit analogue-digital converter (ADC), and comparator. A photodetector mounted on a glass side generates a feedback signal (current) by detecting side-emitting OLED light. To monitor bottom-emitting output light by detecting side-emitting OLED light, a mapping table between the ADC value and the luminance of bottom emission has been established. If the ADC value is lower or higher than the reference one corresponding to the target luminance of OLED tiles, a micro controller unit adjusts the pulse width modulation used for the control of the power supplied to OLED tiles in such a way that the ADC value obtained from optical feedback is the same as the reference one. As a result, the target luminance of each individual OLED tile is kept unchanged. With the optical feedback circuit included in the lighting system, we have observed less than 2% difference in relative intensity of neighboring OLED tiles.

  5. A birefringent cavity He-Ne laser and optical feedback

    Institute of Scientific and Technical Information of China (English)

    Liu Gang; Zhang Shu-Lian; Li Yan; Zhu Jun

    2004-01-01

    Strong modes competition makes only one of o-light and e-light oscillate in a birefringent dual-frequency laser when the angle between the crystalline axis and the laser beam is nearly zero. When the oscillated mode is in a different part of the gain curve, the detected intensity curves of o-light and e-light are quite different in the existence of optical feedback. The curves are divided into five cases. Three cases of the experimental results can be used for direction discrimination. The polarization characteristics of the birefringent cavity He-Ne laser are also discussed without optical feedback.

  6. Sensitivity of quantum-dot semiconductor lasers to optical feedback.

    Science.gov (United States)

    O'Brien, D; Hegarty, S P; Huyet, G; Uskov, A V

    2004-05-15

    The sensitivity of quantum-dot semiconductor lasers to optical feedback is analyzed with a Lang-Kobayashi approach applied to a standard quantum-dot laser model. The carriers are injected into a quantum well and are captured by, or escape from, the quantum dots through either carrier-carrier or phonon-carrier interaction. Because of Pauli blocking, the capture rate into the dots depends on the carrier occupancy level in the dots. Here we show that different carrier capture dynamics lead to a strong modification of the damping of the relaxation oscillations. Regions of increased damping display reduced sensitivity to optical feedback even for a relatively large alpha factor.

  7. Return-map for semiconductor lasers with optical feedback

    DEFF Research Database (Denmark)

    Mørk, Jesper; Tromborg, Bjarne; Sabbatier, H.;

    1999-01-01

    It is well known that a semiconductor laser exposed to moderate optical feedback and biased near threshold exhibits the phenomenon of low-frequency intensity fluctuations (LFF). While this behavior can be numerically simulated using the so-called Lang-Kobayshi model, the interpretation of the phe......It is well known that a semiconductor laser exposed to moderate optical feedback and biased near threshold exhibits the phenomenon of low-frequency intensity fluctuations (LFF). While this behavior can be numerically simulated using the so-called Lang-Kobayshi model, the interpretation...

  8. Delay-induced transport in a rocking ratchet under feedback control.

    Science.gov (United States)

    Loos, Sarah A M; Gernert, Robert; Klapp, Sabine H L

    2014-05-01

    Based on the Fokker-Planck equation we investigate the transport of an overdamped colloidal particle in a static, asymmetric periodic potential supplemented by a time-dependent, delayed feedback force, F(fc). For a given time t, F(fc) depends on the status of the system at a previous time t-τ(D), with τ(D) being a delay time, specifically on the delayed mean particle displacement (relative to some "switching position"). For nonzero delay times F(fc)(t) develops nearly regular oscillations, generating a net current in the system. Depending on the switching position, this current is nearly as large or even larger than that in a conventional open-loop rocking ratchet. We also investigate thermodynamic properties of the delayed nonequilibrium system and we suggest an underlying Langevin equation which reproduces the Fokker-Planck results.

  9. Analytical determination of the bifurcation thresholds in stochastic differential equations with delayed feedback.

    Science.gov (United States)

    Gaudreault, Mathieu; Drolet, François; Viñals, Jorge

    2010-11-01

    Analytical expressions for pitchfork and Hopf bifurcation thresholds are given for a nonlinear stochastic differential delay equation with feedback. Our results assume that the delay time τ is small compared to other characteristic time scales, not a significant limitation close to the bifurcation line. A pitchfork bifurcation line is found, the location of which depends on the conditional average , where x(t) is the dynamical variable. This conditional probability incorporates the combined effect of fluctuation correlations and delayed feedback. We also find a Hopf bifurcation line which is obtained by a multiple scale expansion around the oscillatory solution near threshold. We solve the Fokker-Planck equation associated with the slowly varying amplitudes and use it to determine the threshold location. In both cases, the predicted bifurcation lines are in excellent agreement with a direct numerical integration of the governing equations. Contrary to the known case involving no delayed feedback, we show that the stochastic bifurcation lines are shifted relative to the deterministic limit and hence that the interaction between fluctuation correlations and delay affect the stability of the solutions of the model equation studied.

  10. Stability and Hopf bifurcation of a nonlinear electromechanical coupling system with time delay feedback

    Science.gov (United States)

    Liu, Shuang; Zhao, Shuang-Shuang; Wang, Zhao-Long; Li, Hai-Bin

    2015-01-01

    The stability and the Hopf bifurcation of a nonlinear electromechanical coupling system with time delay feedback are studied. By considering the energy in the air-gap field of the AC motor, the dynamical equation of the electromechanical coupling transmission system is deduced and a time delay feedback is introduced to control the dynamic behaviors of the system. The characteristic roots and the stable regions of time delay are determined by the direct method, and the relationship between the feedback gain and the length summation of stable regions is analyzed. Choosing the time delay as a bifurcation parameter, we find that the Hopf bifurcation occurs when the time delay passes through a critical value. A formula for determining the direction of the Hopf bifurcation and the stability of the bifurcating periodic solutions is given by using the normal form method and the center manifold theorem. Numerical simulations are also performed, which confirm the analytical results. Project supported by the National Natural Science Foundation of China (Grant No. 61104040), the Natural Science Foundation of Hebei Province, China (Grant No. E2012203090), and the University Innovation Team of Hebei Province Leading Talent Cultivation Project, China (Grant No. LJRC013).

  11. Traffic Scheduling in WDM Passive Optical Network with Delay Guarantee

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    WDM passive optical network becomes more favorable as the required bandwidth increases, but currently few media access control algorithms adapted to WDM access network. This paper presented a new scheduling algorithm for bandwidth sharing in WDM passive optical networks, which provides per-flow delay guarantee and supports variable-length packets scheduling. Through theoretical analysis and simulation, the end-to-end delay bound and throughput fairness of the algorithm was demonstrated.

  12. Overt vs. covert speed cameras in combination with delayed vs. immediate feedback to the offender.

    Science.gov (United States)

    Marciano, Hadas; Setter, Pe'erly; Norman, Joel

    2015-06-01

    Speeding is a major problem in road safety because it increases both the probability of accidents and the severity of injuries if an accident occurs. Speed cameras are one of the most common speed enforcement tools. Most of the speed cameras around the world are overt, but there is evidence that this can cause a "kangaroo effect" in driving patterns. One suggested alternative to prevent this kangaroo effect is the use of covert cameras. Another issue relevant to the effect of enforcement countermeasures on speeding is the timing of the fine. There is general agreement on the importance of the immediacy of the punishment, however, in the context of speed limit enforcement, implementing such immediate punishment is difficult. An immediate feedback that mediates the delay between the speed violation and getting a ticket is one possible solution. This study examines combinations of concealment and the timing of the fine in operating speed cameras in order to evaluate the most effective one in terms of enforcing speed limits. Using a driving simulator, the driving performance of the following four experimental groups was tested: (1) overt cameras with delayed feedback, (2) overt cameras with immediate feedback, (3) covert cameras with delayed feedback, and (4) covert cameras with immediate feedback. Each of the 58 participants drove in the same scenario on three different days. The results showed that both median speed and speed variance were higher with overt than with covert cameras. Moreover, implementing a covert camera system along with immediate feedback was more conducive to drivers maintaining steady speeds at the permitted levels from the very beginning. Finally, both 'overt cameras' groups exhibit a kangaroo effect throughout the entire experiment. It can be concluded that an implementation strategy consisting of covert speed cameras combined with immediate feedback to the offender is potentially an optimal way to motivate drivers to maintain speeds at the

  13. A scheme to expand the delay-bandwidth product in the resonator-based delay lines by optical OFDM technique

    DEFF Research Database (Denmark)

    Zhu, Jiangbo; Tao, Li; Zhang, Ziran

    2013-01-01

    We propose a novel scheme to expand the inherent limit in the product of the optical delay and the transmission bandwidth in resonator-based delay lines, with the optical orthogonal frequency division multiplexing (OOFDM) technique. The optical group delay properties of a single ring resonator we...

  14. Variable-time-delay optical coherent transient signal processing.

    Science.gov (United States)

    Merkel, K D; Babbitt, W R; Anderson, K E; Wagner, K H

    1999-10-15

    A technique is proposed and experimentally demonstrated that achieves simultaneous optical pattern waveform storage and programmable time delay for continuous real-time signal processing by use of optical coherent transient technology. We achieve variable-time-delay and broadband signal processing by frequency shifting of two chirped programming pulses, the chirp rate of one being twice that of the other, without using brief reference pulses and without changing the timing of the programming sequence. We demonstrate the technique experimentally in Tm(3+): YAG at 5 K for 40-MHz chirps by performing temporal signal convolution with true-time delays that vary over a 250-ns range.

  15. Plenoptic microscope based on laser optical feedback imaging (LOFI)

    CERN Document Server

    Glastre, W; Jacquin, O; de Chatellus, H Guillet; Lacot, E

    2015-01-01

    We present an overview of the performances of a plenoptic microscope which combines the high sensitivity of a laser optical feedback imaging setup , the high resolution of optical synthetic aperture and a shot noise limited signal to noise ratio by using acoustic photon tagging. By using an adapted phase filtering, this microscope allows phase drift correction and numerical aberration compensation (defocusing, coma, astigmatism ...). This new kind of microscope seems to be well adapted to make deep imaging through scattering and heterogeneous media.

  16. Imaging of acoustic fields using optical feedback interferometry.

    Science.gov (United States)

    Bertling, Karl; Perchoux, Julien; Taimre, Thomas; Malkin, Robert; Robert, Daniel; Rakić, Aleksandar D; Bosch, Thierry

    2014-12-01

    This study introduces optical feedback interferometry as a simple and effective technique for the two-dimensional visualisation of acoustic fields. We present imaging results for several pressure distributions including those for progressive waves, standing waves, as well as the diffraction and interference patterns of the acoustic waves. The proposed solution has the distinct advantage of extreme optical simplicity and robustness thus opening the way to a low cost acoustic field imaging system based on mass produced laser diodes.

  17. Modeling and Output Feedback Control of Networked Control Systems with Both Time Delays; and Packet Dropouts

    Directory of Open Access Journals (Sweden)

    Li Qiu

    2013-01-01

    Full Text Available This paper is concerned with the problem of modeling and output feedback controller design for a class of discrete-time networked control systems (NCSs with time delays and packet dropouts. A Markovian jumping method is proposed to deal with random time delays and packet dropouts. Different from the previous studies on the issue, the characteristics of networked communication delays and packet dropouts can be truly reflected by the unified model; namely, both sensor-to-controller (S-C and controller-to-actuator (C-A time delays, and packet dropouts are modeled and their history behavior is described by multiple Markov chains. The resulting closed-loop system is described by a new Markovian jump linear system (MJLS with Markov delays model. Based on Lyapunov stability theory and linear matrix inequality (LMI method, sufficient conditions of the stochastic stability and output feedback controller design method for NCSs with random time delays and packet dropouts are presented. A numerical example is given to illustrate the effectiveness of the proposed method.

  18. Temporal recalibration in vocalization induced by adaptation of delayed auditory feedback.

    Directory of Open Access Journals (Sweden)

    Kosuke Yamamoto

    Full Text Available BACKGROUND: We ordinarily perceive our voice sound as occurring simultaneously with vocal production, but the sense of simultaneity in vocalization can be easily interrupted by delayed auditory feedback (DAF. DAF causes normal people to have difficulty speaking fluently but helps people with stuttering to improve speech fluency. However, the underlying temporal mechanism for integrating the motor production of voice and the auditory perception of vocal sound remains unclear. In this study, we investigated the temporal tuning mechanism integrating vocal sensory and voice sounds under DAF with an adaptation technique. METHODS AND FINDINGS: Participants produced a single voice sound repeatedly with specific delay times of DAF (0, 66, 133 ms during three minutes to induce 'Lag Adaptation'. They then judged the simultaneity between motor sensation and vocal sound given feedback. We found that lag adaptation induced a shift in simultaneity responses toward the adapted auditory delays. This indicates that the temporal tuning mechanism in vocalization can be temporally recalibrated after prolonged exposure to delayed vocal sounds. Furthermore, we found that the temporal recalibration in vocalization can be affected by averaging delay times in the adaptation phase. CONCLUSIONS: These findings suggest vocalization is finely tuned by the temporal recalibration mechanism, which acutely monitors the integration of temporal delays between motor sensation and vocal sound.

  19. Delay reduction in lossy intermittent feedback for generalized instantly decodable network coding

    KAUST Repository

    Douik, Ahmed S.

    2013-10-01

    In this paper, we study the effect of lossy intermittent feedback loss events on the multicast decoding delay performance of generalized instantly decodable network coding. These feedback loss events create uncertainty at the sender about the reception statues of different receivers and thus uncertainty to accurately determine subsequent instantly decodable coded packets. To solve this problem, we first identify the different possibilities of uncertain packets at the sender and their probabilities. We then derive the expression of the mean decoding delay. We formulate the Generalized Instantly Decodable Network Coding (G-IDNC) minimum decoding delay problem as a maximum weight clique problem. Since finding the optimal solution is NP-hard, we design a variant of the algorithm employed in [1]. Our algorithm is compared to the two blind graph update proposed in [2] through extensive simulations. Results show that our algorithm outperforms the blind approaches in all the situations and achieves a tolerable degradation, against the perfect feedback, for large feedback loss period. © 2013 IEEE.

  20. Multicore optical fibre and fibre-optic delay line based on it

    Science.gov (United States)

    Egorova, O. N.; Astapovich, M. S.; Belkin, M. E.; Semjonov, S. L.

    2016-12-01

    The first switchable fibre-optic delay line based on a 1300-{\\text{m}}-long multicore optical fibre has been fabricated and investigated. We have obtained signal delay times of up to 45 \\unicode{956}{\\text{s}} at 6.43-\\unicode{956}{\\text{s}} intervals. Sequential signal propagation through the cores of the multicore optical fibre makes it possible to reduce the fibre length necessary for obtaining a predetermined delay time, which is important for reducing the weight and dimensions of devices based on the use of fibre-optic delay lines.

  1. Theory of oscillatory firing induced by spatially correlated noise and delayed inhibitory feedback

    Science.gov (United States)

    Lindner, Benjamin; Doiron, Brent; Longtin, André

    2005-12-01

    A network of leaky integrate-and-fire neurons with global inhibitory feedback and under the influence of spatially correlated noise is studied. We calculate the spectral statistics of the network (power spectrum of the population activity, cross spectrum between spike trains of different neurons) as well as of a single neuron (power spectrum of spike train, cross spectrum between external noise and spike train) within the network. As shown by comparison with numerical simulations, our theory works well for arbitrary network size if the feedback is weak and the amount of external noise does not exceed that of the internal noise. By means of our analytical results we discuss the quality of the correlation-induced oscillation in a large network as a function of the transmission delay and the internal noise intensity. It is shown that the strongest oscillation is obtained in a system with zero internal noise and adiabatically long delay (i.e., the delay period is longer than any other time scale in the system). For a neuron with a strong intrinsic frequency, the oscillation becomes strongly anharmonic in the case of a long delay time. We also discuss briefly the kind of synchrony introduced by the feedback-induced oscillation.

  2. Controlling chaos in a nonlinear pendulum using an extended time-delayed feedback control method

    Energy Technology Data Exchange (ETDEWEB)

    Souza de Paula, Aline [COPPE - Department of Mechanical Engineering, Universidade Federal do Rio de Janeiro, P.O. Box 68503, 21.941-972 Rio de Janeiro, RJ (Brazil)], E-mail: alinesp@ufrj.br; Savi, Marcelo Amorim [COPPE - Department of Mechanical Engineering, Universidade Federal do Rio de Janeiro, P.O. Box 68503, 21.941-972 Rio de Janeiro, RJ (Brazil)], E-mail: savi@mecanica.ufrj.br

    2009-12-15

    Chaos control is employed for the stabilization of unstable periodic orbits (UPOs) embedded in chaotic attractors. The extended time-delayed feedback control uses a continuous feedback loop incorporating information from previous states of the system in order to stabilize unstable orbits. This article deals with the chaos control of a nonlinear pendulum employing the extended time-delayed feedback control method. The control law leads to delay-differential equations (DDEs) that contain derivatives that depend on the solution of previous time instants. A fourth-order Runge-Kutta method with linear interpolation on the delayed variables is employed for numerical simulations of the DDEs and its initial function is estimated by a Taylor series expansion. During the learning stage, the UPOs are identified by the close-return method and control parameters are chosen for each desired UPO by defining situations where the largest Lyapunov exponent becomes negative. Analyses of a nonlinear pendulum are carried out by considering signals that are generated by numerical integration of the mathematical model using experimentally identified parameters. Results show the capability of the control procedure to stabilize UPOs of the dynamical system, highlighting some difficulties to achieve the stabilization of the desired orbit.

  3. Comments on multiple oscillatory solutions in systems with time-delay feedback

    Directory of Open Access Journals (Sweden)

    Michael Stich

    2015-11-01

    Full Text Available A complex Ginzburg-Landau equation subjected to local and global time-delay feedback terms is considered. In particular, multiple oscillatory solutions and their properties are studied. We present novel results regarding the disappearance of limit cycle solutions, derive analytical criteria for frequency degeneration, amplitude degeneration, and frequency extrema. Furthermore, we discuss the influence of the phase shift parameter and show analytically that the stabilization of the steady state and the decay of all oscillations (amplitude death cannot happen for global feedback only. Finally, we explain the onset of traveling wave patterns close to the regime of amplitude death.

  4. Dynamic Output Feedback Passive Control of Uncertain Switched Stochastic Systems with Time-Varying Delay

    Directory of Open Access Journals (Sweden)

    Huimei Jia

    2013-01-01

    Full Text Available This paper is concerned with the issues of passivity analysis and dynamic output feedback (DOF passive control for uncertain switched stochastic systems with time-varying delay via multiple storage functions (MSFs method. Firstly, based on the MSFs method, a sufficient condition for the existence of the passivity of the underlying system is established in terms of linear matrix inequalities (LMIs. Furthermore, the problem of dynamic output feedback passive control is investigated. Based on the obtained passivity condition, a sufficient condition for the existence of the desired switched passive controller is derived. Finally, a numerical example is presented to show the effectiveness of the proposed method.

  5. Memory State Feedback RMPC for Multiple Time-Delayed Uncertain Linear Systems with Input Constraints

    Directory of Open Access Journals (Sweden)

    Wei-Wei Qin

    2014-01-01

    Full Text Available This paper focuses on the problem of asymptotic stabilization for a class of discrete-time multiple time-delayed uncertain linear systems with input constraints. Then, based on the predictive control principle of receding horizon optimization, a delayed state dependent quadratic function is considered for incorporating MPC problem formulation. By developing a memory state feedback controller, the information of the delayed plant states can be taken into full consideration. The MPC problem is formulated to minimize the upper bound of infinite horizon cost that satisfies the sufficient conditions. Then, based on the Lyapunov-Krasovskii function, a delay-dependent sufficient condition in terms of linear matrix inequality (LMI can be derived to design a robust MPC algorithm. Finally, the digital simulation results prove availability of the proposed method.

  6. The fragility of intergroup relations: divergent effects of delayed audiovisual feedback in intergroup and intragroup interaction.

    Science.gov (United States)

    Pearson, Adam R; West, Tessa V; Dovidio, John F; Powers, Stacie Renfro; Buck, Ross; Henning, Robert

    2008-12-01

    Intergroup interactions between racial or ethnic majority and minority groups are often stressful for members of both groups; however, the dynamic processes that promote or alleviate tension in intergroup interaction remain poorly understood. Here we identify a behavioral mechanism-response delay-that can uniquely contribute to anxiety and promote disengagement from intergroup contact. Minimally acquainted White, Black, and Latino participants engaged in intergroup or intragroup dyadic conversation either in real time or with a subtle temporal disruption (1-s delay) in audiovisual feedback. Whereas intergroup dyads reported greater anxiety and less interest in contact after engaging in delayed conversation than after engaging in real-time conversation, intragroup dyads reported less anxiety in the delay condition than they did after interacting in real time. These findings have theoretical and practical implications for understanding intergroup communication and social dynamics and for promoting positive intergroup contact.

  7. Global view of Hopf bifurcations of a van der Pol oscillator with delayed state feedback

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    This paper presents both analytical and numerical studies on the global view of Hopf bifurcations of a van der Pol oscillator with delayed state feedback.Based on a detailed analysis of the stability switches of the trivial equilibrium of the system,the stability charts are given in a parameter space consisting of the time delay and the feedback gains.The center manifold reduc-tion and the normal form method are used to study Hopf bifurcations with respect to the time delay.To gain an insight into the persistence of a Hopf bifurcation as the time delay varies farther away from its critical value,the method of multiple scales is used to obtain the global view of Hopf bifurcations with respect to the time delay.Both the analytical results of Hopf bifurca-tions and global view of those bifurcations are validated via a collocation scheme implemented on DDE-Biftool.The most important discovery in this paper is the well-structured global view of Hopf bifurcations for the system of concern,showing the generality of the persistence of Hopf bifurcations.

  8. Adaptation to Delayed Speech Feedback Induces Temporal Recalibration between Vocal Sensory and Auditory Modalities

    Directory of Open Access Journals (Sweden)

    Kosuke Yamamoto

    2011-10-01

    Full Text Available We ordinarily perceive our voice sound as occurring simultaneously with vocal production, but the sense of simultaneity in vocalization can be easily interrupted by delayed auditory feedback (DAF. DAF causes normal people to have difficulty speaking fluently but helps people with stuttering to improve speech fluency. However, the underlying temporal mechanism for integrating the motor production of voice and the auditory perception of vocal sound remains unclear. In this study, we investigated the temporal tuning mechanism integrating vocal sensory and voice sounds under DAF with an adaptation technique. Participants read some sentences with specific delay times of DAF (0, 30, 75, 120 ms during three minutes to induce ‘Lag Adaptation’. After the adaptation, they then judged the simultaneity between motor sensation and vocal sound given feedback in producing simple voice but not speech. We found that speech production with lag adaptation induced a shift in simultaneity responses toward the adapted auditory delays. This indicates that the temporal tuning mechanism in vocalization can be temporally recalibrated after prolonged exposure to delayed vocal sounds. These findings suggest vocalization is finely tuned by the temporal recalibration mechanism, which acutely monitors the integration of temporal delays between motor sensation and vocal sound.

  9. Bifurcation Analysis and Chaos Control in a Modified Finance System with Delayed Feedback

    Science.gov (United States)

    Yang, Jihua; Zhang, Erli; Liu, Mei

    2016-06-01

    We investigate the effect of delayed feedback on the finance system, which describes the time variation of the interest rate, for establishing the fiscal policy. By local stability analysis, we theoretically prove the existences of Hopf bifurcation and Hopf-zero bifurcation. By using the normal form method and center manifold theory, we determine the stability and direction of a bifurcating periodic solution. Finally, we give some numerical solutions, which indicate that when the delay passes through certain critical values, chaotic oscillation is converted into a stable equilibrium or periodic orbit.

  10. Stabilizability of linear quadratic state feedback for uncertain fuzzy time-delay systems.

    Science.gov (United States)

    Wang, Rong-Jyue; Lin, Wei-Wei; Wang, Wen-June

    2004-04-01

    This paper investigates the problem of designing a fuzzy state feedback controller to stabilize an uncertain fuzzy system with time-varying delay. Based on Lyapunov criterion and Razumikhin theorem, some sufficient conditions are derived under which the parallel-distributed fuzzy control can stabilize the whole uncertain fuzzy time-delay system asymptotically. By Schur complement, these sufficient conditions can be easily transformed into the problem of LMIs. Furthermore, the tolerable bound of the perturbation is also obtained. A practical example based on the continuous stirred tank reactor (CSTR) model is given to illustrate the control design and its effectiveness.

  11. Feedback control of time-delay systems with bounded control and state

    Directory of Open Access Journals (Sweden)

    M. Dambrine

    1995-01-01

    Full Text Available This paper is concerned with the problem of stabilizing linear time-delay systems under state and control linear constraints. For this, necessary and sufficient conditions for a given non-symmetrical polyhedral set to be positively invariant are obtained. Then existence conditions of linear state feedback control law respecting the constraints are established, and a procedure is given in order to calculate such a controller. The paper concerns memoryless controlled systems but the results can be applied to cases of delayed controlled systems. An example is given.

  12. Delayed resonator with acceleration feedback - Complete stability analysis by spectral methods and vibration absorber design

    Science.gov (United States)

    Vyhlídal, Tomáš; Olgac, Nejat; Kučera, Vladimír

    2014-12-01

    This paper deals with the problem of active vibration suppression using the concept of delayed resonator (DR) absorber with acceleration feedback. A complete dynamic analysis of DR and its coupling with a single degree of freedom mechanical system are performed. Due to the presence of a delay in the acceleration feedback, the dynamics of the resonator itself, as well as the dynamics of combined system are of ‘neutral' character. On this system, spectral methods are applied to perform a complete stability analysis. Particularly, the method of cluster treatment of characteristic roots is used to determine stability boundaries in the space of the resonator parameters. Based on this analysis, a methodology to select the resonator parameters is proposed in order to guarantee desirable suppression characteristics and to provide safe stability margins. An example case study is included to demonstrate these analytical results.

  13. Robust chaos synchronization based on adaptive fuzzy delayed feedback $\\mathcal{H}_{∞}$ control

    Indian Academy of Sciences (India)

    Choon Ki Ahn

    2012-03-01

    In this paper, we propose a new adaptive $\\mathcal_{∞}$ synchronization strategy, called an adaptive fuzzy delayed feedback $\\mathcal_{∞}$ synchronization (AFDFHS) strategy, for chaotic systems with uncertain parameters and external disturbances. Based on Lyapunov–Krasovskii theory, Takagi–Sugeno (T–S) fuzzy model and adaptive delayed feedback $\\mathcal_{∞}$ control scheme, the AFDFHS controller is presented such that the synchronization error system is asymptotically stable with a guaranteed $\\mathcal_{∞}$ performance. It is shown that the design of the AFDFHS controller with adaptive law can be achieved by solving a linear matrix inequality (LMI), which can be easily facilitated by using some standard numerical packages. An illustrative example is given to demonstrate the effectiveness of the proposed AFDFHS approach.

  14. Relation between the extended time-delayed feedback control algorithm and the method of harmonic oscillators.

    Science.gov (United States)

    Pyragas, Viktoras; Pyragas, Kestutis

    2015-08-01

    In a recent paper [Phys. Rev. E 91, 012920 (2015)] Olyaei and Wu have proposed a new chaos control method in which a target periodic orbit is approximated by a system of harmonic oscillators. We consider an application of such a controller to single-input single-output systems in the limit of an infinite number of oscillators. By evaluating the transfer function in this limit, we show that this controller transforms into the known extended time-delayed feedback controller. This finding gives rise to an approximate finite-dimensional theory of the extended time-delayed feedback control algorithm, which provides a simple method for estimating the leading Floquet exponents of controlled orbits. Numerical demonstrations are presented for the chaotic Rössler, Duffing, and Lorenz systems as well as the normal form of the Hopf bifurcation.

  15. Analysis of stability of a Power System by using Delay Static State Feedback

    Directory of Open Access Journals (Sweden)

    Sindy Paola Amaya

    2012-12-01

    Full Text Available This article presents the analysis of stability of a power system modeled as Infinite Bus Connected Generator with delay static state feedback. The model of the power system is described by nonlinear differential- algebraic equations. For controller design, we linealize the nonlinear differential-algebraic model around an operation point to obtain a lineal differential-algebraic model. As of this model obtains the Kronecker -Weierstrass model which designs the controller. To obtain the K gain of the controller outline inequalities matrix lineal (LMI's . Then it makes a study of the maximum delay that it supports in the state feedback. At the end of the article present the results and the conclusions.

  16. Global Practical Tracking by Output Feedback for Nonlinear Systems with Unknown Growth Rate and Time Delay

    Science.gov (United States)

    Yan, Xuehua

    2014-01-01

    This paper is the further investigation of work of Yan and Liu, 2011, and considers the global practical tracking problem by output feedback for a class of uncertain nonlinear systems with not only unmeasured states dependent growth but also time-varying time delay. Compared with the closely related works, the remarkableness of the paper is that the time-varying time delay and unmeasurable states are permitted in the system nonlinear growth. Motivated by the related tracking results and flexibly using the ideas and techniques of universal control and dead zone, an adaptive output-feedback tracking controller is explicitly designed with the help of a new Lyapunov-Krasovskii functional, to make the tracking error prescribed arbitrarily small after a finite time while keeping all the closed-loop signals bounded. A numerical example demonstrates the effectiveness of the results. PMID:25276859

  17. Pinning weighted complex networks with heterogeneous delays by a small number of feedback controllers

    Institute of Scientific and Technical Information of China (English)

    XIANG LinYing; LIU ZhongXin; CHEN ZengQiang; YUAN ZhuZhi

    2008-01-01

    Weighted complex dynamical networks with heterogeneous delays in both con-tinuous-time and discrete-time domains are controlled by applying local feedback injections to a small fraction of network nodes. Some generic stability criteria en-suring delay-independent stability are derived for such controlled networks in terms of linear matrix inequalities (LMIs), which guarantee that by placing a small number of feedback controllers on some nodes the whole network can be pinned to some desired homogenous states. In some particular cases, a single controller can achieve the control objective. It is found that stabilization of such pinned networks is completely determined by the dynamics of the individual uncoupled node, the overall coupling strength, the inner-coupling matrix, and the smallest eigenvalue of the coupling and control matrix. Numerical simulations of a weighted network composing of a 3-dimensional nonlinear system are finally given for illustration and verification.

  18. Time-delayed feedback control optimization for quasi linear systems under random excitations

    Institute of Scientific and Technical Information of China (English)

    Xueping Li; Detain Wei; Weiqiu Zhu

    2009-01-01

    A strategy for time-delayed feedback control optimization of quasi linear systems with random excita-tion is proposed. First, the stochastic averaging method is used to reduce the dimension of the state space and to derive the stationary response of the system. Secondly, the control law is assumed to be velocity feedback control with time delay and the unknown control gains are determined by the performance indices. The response of the controlled system is predicted through solving the Fokker-Plank-Kolmogorov equation associated with the averaged It6 equation. Finally, numerical examples are used to illustrate the proposed con-trol method, and the numerical results are confirmed by Monte Carlo simulation.

  19. Relation between the extended time-delayed feedback control algorithm and the method of harmonic oscillators

    Science.gov (United States)

    Pyragas, Viktoras; Pyragas, Kestutis

    2015-08-01

    In a recent paper [Phys. Rev. E 91, 012920 (2015), 10.1103/PhysRevE.91.012920] Olyaei and Wu have proposed a new chaos control method in which a target periodic orbit is approximated by a system of harmonic oscillators. We consider an application of such a controller to single-input single-output systems in the limit of an infinite number of oscillators. By evaluating the transfer function in this limit, we show that this controller transforms into the known extended time-delayed feedback controller. This finding gives rise to an approximate finite-dimensional theory of the extended time-delayed feedback control algorithm, which provides a simple method for estimating the leading Floquet exponents of controlled orbits. Numerical demonstrations are presented for the chaotic Rössler, Duffing, and Lorenz systems as well as the normal form of the Hopf bifurcation.

  20. Optical Feedback Control and Electrical-Optical Costimulation of Peripheral Nerves.

    Science.gov (United States)

    Kapur, Sahil K; Richner, Thomas J; Brodnick, Sarah K; Williams, Justin C; Poore, Samuel O

    2016-09-01

    Optogenetics is an emerging technology that enables the expression of light-activated ion channels in mammalian cells. Neurons expressing light-activated ion channels can be depolarized using the appropriate wavelength of light. Optical stimulation of neurons could have important implications for further understanding and managing peripheral nerve deficits leading to paresis or paralysis. This study examines the utility of this technology in a feedback-controlled system and the advantages of coupling this technology with conventional electrical stimulation. The sciatic nerves of transgenic mice expressing blue light-activated ion channels (channelrhodopsin-2) were optically manipulated to generate electromyographic responses in the gastrocnemius muscle and to develop two potential applications of this technology: feedback-controlled optical stimulation using a proportional-integral controller, and simultaneous electrical-optical stimulation. The authors observed repeatable and predictable behavior of the optical controller in over 200 trials and a statistically significant decreased error when using optical feedback control as opposed to non-feedback controlled stimulation (n = 6 limbs). A second application of this technology was the amplification of electrically generated peripheral nerve signals using an optical source. Amplification of electrical activity was observed even when subthreshold electrical stimulation was used. Optical feedback control and optical amplification of subthreshold activity extend the versatility of optogenetics in peripheral nerve applications. Optical feedback control is a new application of an approach originally developed for functional electrical stimulation. Optical amplification of subthreshold electrical stimulation motivates future investigations into the optical amplification of endogenous subthreshold peripheral nerve activity (e.g., following spinal cord injury).

  1. Noise-induced attractor annihilation in the delayed feedback logistic map

    Energy Technology Data Exchange (ETDEWEB)

    Pisarchik, A.N., E-mail: apisarch@cio.mx [Centro de Investigaciones en Optica, Loma del Bosque 115, Leon, Guanajuato (Mexico); Centre for Biomedical Technology, Technical University of Madrid, Campus Montegancedo, 28223 Pozuelo de Alarcon, Madrid (Spain); Martínez-Zérega, B.E. [Centro Universitario de los Lagos, Universidad de Guadalajara, Enrique Diaz de Leon 1144, Paseos de la Montaña, Lagos de Moreno, Jalisco 47460 (Mexico)

    2013-12-06

    We study dynamics of the bistable logistic map with delayed feedback, under the influence of white Gaussian noise and periodic modulation applied to the variable. This system may serve as a model to describe population dynamics under finite resources in noisy environment with seasonal fluctuations. While a very small amount of noise has no effect on the global structure of the coexisting attractors in phase space, an intermediate noise totally eliminates one of the attractors. Slow periodic modulation enhances the attractor annihilation.

  2. Deterministic and stochastic control of chimera states in delayed feedback oscillator

    Energy Technology Data Exchange (ETDEWEB)

    Semenov, V. [Department of Physics, Saratov State University, Astrakhanskaya Str. 83, 410012 Saratov (Russian Federation); Zakharova, A.; Schöll, E. [Institut für Theoretische Physik, TU Berlin, Hardenbergstraße 36, 10623 Berlin (Germany); Maistrenko, Y. [Institute of Mathematics and Center for Medical and Biotechnical Research, NAS of Ukraine, Tereschenkivska Str. 3, 01601 Kyiv (Ukraine)

    2016-06-08

    Chimera states, characterized by the coexistence of regular and chaotic dynamics, are found in a nonlinear oscillator model with negative time-delayed feedback. The control of these chimera states by external periodic forcing is demonstrated by numerical simulations. Both deterministic and stochastic external periodic forcing are considered. It is shown that multi-cluster chimeras can be achieved by adjusting the external forcing frequency to appropriate resonance conditions. The constructive role of noise in the formation of a chimera states is shown.

  3. Fractal Erosion of the Safe Basin in a Helmholtz Oscillator and Its Control by Linear Delayed Velocity Feedback

    Institute of Scientific and Technical Information of China (English)

    SHANG Hui-Lin; WEN Yong-Peng

    2011-01-01

    Fractal erosion of the safe basin in a Helmholtz oscillator system is studied. A linear delayed velocity feedback is employed to suppress the fractal erosion. The necessary basin erosion condition of the delayed feedback controlled system is obtained. The evolution of the boundary and area of the safe basin over time delay is also presented. It follows that the delayed velocity feedback can be used as an effective strategy to control fractal erosion of a safe basin.%Fractal erosion of the safe basin in a Helmholtz oscillator system is studied.A linear delayed velocity feedback is employed to suppress the fractal erosion.The necessary basin erosion condition of the delayed feedback controlled system is obtained.The evolution of the boundary and area of the safe basin over time delay is also presented.It follows that the delayed velocity feedback can be used as an effective strategy to control fractal erosion of a safe basin.Since the safe basin was induced to explain the integrity of dynamical systems,studies on safe basins have attracted much attention.[1-6] Leigh and Armin calculated the survival probability of a ferry in random seas by estimating the erosion of the safe basin during the ship rolling motion by using Monte Carlo simulations.[1] Lenci and Rega induced the erosion of a safe basin to explain pull-in phenomenon in micro-electro mechanical systems.[2

  4. Adaptive Neural Control of MIMO Nonstrict-Feedback Nonlinear Systems With Time Delay.

    Science.gov (United States)

    Zhao, Xudong; Yang, Haijiao; Karimi, Hamid Reza; Zhu, Yanzheng

    2016-06-01

    In this paper, an adaptive neural output-feedback tracking controller is designed for a class of multiple-input and multiple-output nonstrict-feedback nonlinear systems with time delay. The system coefficient and uncertain functions of our considered systems are both unknown. By employing neural networks to approximate the unknown function entries, and constructing a new input-driven filter, a backstepping design method of tracking controller is developed for the systems under consideration. The proposed controller can guarantee that all the signals in the closed-loop systems are ultimately bounded, and the time-varying target signal can be tracked within a small error as well. The main contributions of this paper lie in that the systems under consideration are more general, and an effective design procedure of output-feedback controller is developed for the considered systems, which is more applicable in practice. Simulation results demonstrate the efficiency of the proposed algorithm.

  5. Chaos Generation and Synchronization Using Driven TWT amplifiers having delayed feedback

    Science.gov (United States)

    Larsen, P.; Booske, J. H.; Bhattacharjee, S.; Marchewka, C.; Sengele, S.; Koch, S.; Ryskin, N.; Titov, V.

    2004-11-01

    Development of high power sources of chaotic waveforms in the microwave frequency regime is important for communications, noise radar, and other applications. We have demonstrated that driven traveling wave tube (TWT) amplifiers with delayed feedback are excellent sources of chaotic radiation with numerous experimental advantages. The configuration involves a TWT oscillator (using an external feedback loop) which is driven by an external coherent generator. Two types of chaos have been observed in these experiments: a period doubling type and a "loss-of-synchronization" type of chaos. Characterizations have identified single frequency oscillation, self-modulation, and chaos within the parameter space defined by the drive power, drive frequency, and feedback attenuation level. Current investigations are examining synchronization between a pair of driven TWT oscillators.

  6. Bifurcation Control of an Electrostatically-Actuated MEMS Actuator with Time-Delay Feedback

    Directory of Open Access Journals (Sweden)

    Lei Li

    2016-10-01

    Full Text Available The parametric excitation system consisting of a flexible beam and shuttle mass widely exists in microelectromechanical systems (MEMS, which can exhibit rich nonlinear dynamic behaviors. This article aims to theoretically investigate the nonlinear jumping phenomena and bifurcation conditions of a class of electrostatically-driven MEMS actuators with a time-delay feedback controller. Considering the comb structure consisting of a flexible beam and shuttle mass, the partial differential governing equation is obtained with both the linear and cubic nonlinear parametric excitation. Then, the method of multiple scales is introduced to obtain a slow flow that is analyzed for stability and bifurcation. Results show that time-delay feedback can improve resonance frequency and stability of the system. What is more, through a detailed mathematical analysis, the discriminant of Hopf bifurcation is theoretically derived, and appropriate time-delay feedback force can make the branch from the Hopf bifurcation point stable under any driving voltage value. Meanwhile, through global bifurcation analysis and saddle node bifurcation analysis, theoretical expressions about the system parameter space and maximum amplitude of monostable vibration are deduced. It is found that the disappearance of the global bifurcation point means the emergence of monostable vibration. Finally, detailed numerical results confirm the analytical prediction.

  7. Pitchfork and Hopf bifurcation thresholds in stochastic equations with delayed feedback.

    Science.gov (United States)

    Gaudreault, Mathieu; Lépine, Françoise; Viñals, Jorge

    2009-12-01

    The bifurcation diagram of a model stochastic differential equation with delayed feedback is presented. We are motivated by recent research on stochastic effects in models of transcriptional gene regulation. We start from the normal form for a pitchfork bifurcation, and add multiplicative or parametric noise and linear delayed feedback. The latter is sufficient to originate a Hopf bifurcation in that region of parameters in which there is a sufficiently strong negative feedback. We find a sharp bifurcation in parameter space, and define the threshold as the point in which the stationary distribution function p(x) changes from a delta function at the trivial state x=0 to p(x) approximately x(alpha) at small x (with alpha=-1 exactly at threshold). We find that the bifurcation threshold is shifted by fluctuations relative to the deterministic limit by an amount that scales linearly with the noise intensity. Analytic calculations of the bifurcation threshold are also presented in the limit of small delay tau-->0 that compare quite favorably with the numerical solutions even for moderate values of tau .

  8. Principal resonance response of a stochastic elastic impact oscillator under nonlinear delayed state feedback

    Institute of Scientific and Technical Information of China (English)

    黄冬梅; 徐伟; 谢文贤; 韩群

    2015-01-01

    In this paper, the principal resonance response of a stochastically driven elastic impact (EI) system with time-delayed cubic velocity feedback is investigated. Firstly, based on the method of multiple scales, the steady-state response and its dynamic stability are analyzed in deterministic and stochastic cases, respectively. It is shown that for the case of the multi-valued response with the frequency island phenomenon, only the smallest amplitude of the steady-state response is stable under a certain time delay, which is different from the case of the traditional frequency response. Then, a design criterion is proposed to suppress the jump phenomenon, which is induced by the saddle-node bifurcation. The effects of the feedback parameters on the steady-state responses, as well as the size, shape, and location of stability regions are studied. Results show that the system responses and the stability boundaries are highly dependent on these parameters. Furthermore, with the purpose of suppressing the amplitude peak and governing the resonance stability, appropriate feedback gain and time delay are derived.

  9. Global stabilisation for a class of uncertain nonlinear time-delay systems by dynamic state and output feedback

    Science.gov (United States)

    Chai, Lin; Qian, Chunjiang

    2015-06-01

    This paper investigates the design problem of constructing the state and output feedback stabilisation controller for a class of uncertain nonlinear systems subject to time-delay. First, a dynamic linear state feedback control law with an adaptive strategy is developed to globally stabilise the uncertain nonlinear time-delay system under a lower-triangular higher-order growth condition. Then, one more challenging problem of the adaptive output feedback stabilisation is addressed, which can globally stabilise the time-delay system when the unmeasurable states linearly grow with rate functions consisting of higher-order output.

  10. Observer-based output feedback control of discrete-time linear systems with input and output delays

    Science.gov (United States)

    Zhou, Bin

    2014-11-01

    In this paper, we study observer-based output feedback control of discrete-time linear systems with both multiple input and output delays. By generalising our recently developed truncated predictor feedback approach for state feedback stabilisation of discrete-time time-delay systems to the design of observer-based output feedback, two types of observer-based output feedback controllers, one being memory and the other memoryless, are constructed. Both full-order and reduced-order observer-based controllers are established in both the memory and memoryless schemes. It is shown that the separation principle holds for the memory observer-based output feedback controllers, but does not hold for the memoryless ones. We further show that the proposed observer-based output feedback controllers solve both the l2 and l∞ semi-global stabilisation problems. A numerical example is given to illustrate the effectiveness of the proposed approaches.

  11. Optical Nyquist channel generation using a comb-based tunable optical tapped-delay-line.

    Science.gov (United States)

    Ziyadi, Morteza; Chitgarha, Mohammad Reza; Mohajerin-Ariaei, Amirhossein; Khaleghi, Salman; Almaiman, Ahmed; Cao, Yinwen; Willner, Moshe J; Tur, Moshe; Paraschis, Loukas; Langrock, Carsten; Fejer, Martin M; Touch, Joseph D; Willner, Alan E

    2014-12-01

    We demonstrate optical Nyquist channel generation based on a comb-based optical tapped-delay-line. The frequency lines of an optical frequency comb are used as the taps of the optical tapped-delay-line to perform a finite-impulse response (FIR) filter function. A single optical nonlinear element is utilized to multiplex the taps and form the Nyquist signal. The tunablity of the approach over the baud rate and modulation format is shown. Optical signal-to-noise ratio penalty of 2.8 dB is measured for the 11-tap Nyquist filtering of 32-Gbaud QPSK signal.

  12. Propagation delay of femtosecond pulses in an optical amplifier

    DEFF Research Database (Denmark)

    Poel, Mike van der; Mørk, Jesper; Hvam, Jørn Märcher

    The recent realization of tunable propagation delay of optical pulses in solid-state and semiconductor optical media1,2 has attracted great attention as such a functionality enables a whole new class of optical components in optical communications systems and signal processing3. The reported...... measurements as function of injected bias current. Good agreement is found with simple models of the real and imaginary parts of the active material's susceptibility. 1 M.S. Bigelow, N.N. Lepeshkin, and R. Boyd, Phys. Rev. Lett. 90, 113903-1—4 (2003) 2 P.-C. Ku et al., Opt. Lett. 19, 2291—2293 (2004) 3 C...

  13. Adaptive Output-feedback Regulation for Nonlinear Delayed Systems Using Neural Network

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    A novel adaptive neural network (NN) output-feedback regulation algorithm for a class of nonlinear time-varying time-delay systems is proposed. Both the designed observer and controller are independent of time delay. Different from the existing results,where the upper bounding functions of time-delay terms are assumed to be known, we only use an NN to compensate for all unknown upper bounding functions without that assumption. The proposed design method is proved to be able to guarantee semi-global uniform ultimate boundedness of all the signals in the closed system, and the system output is proved to converge to a small neighborhood of the origin. The simulation results verify the effectiveness of the control scheme.

  14. Effects of delay and noise in a negative feedback regulatory motif

    Science.gov (United States)

    Palassini, Matteo; Dies, Marta

    2009-03-01

    The small copy number of the molecules involved in gene regulation can induce nontrivial stochastic phenomena such as noise-induced oscillations. An often neglected aspect of regulation dynamics are the delays involved in transcription and translation. Delays introduce analytical and computational complications because the dynamics is non-Markovian. We study the interplay of noise and delays in a negative feedback model of the p53 core regulatory network. Recent experiments have found pronounced oscillations in the concentrations of proteins p53 and Mdm2 in individual cells subjected to DNA damage. Similar oscillations occur in the Hes-1 and NK-kB systems, and in circadian rhythms. Several mechanisms have been proposed to explain this oscillatory behaviour, such as deterministic limit cycles, with and without delay, or noise-induced excursions in excitable models. We consider a generic delayed Master Equation incorporating the activation of Mdm2 by p53 and the Mdm2-promoted degradation of p53. In the deterministic limit and for large delays, the model shows a Hopf bifurcation. Via exact stochastic simulations, we find strong noise-induced oscillations well outside the limit-cycle region. We propose that this may be a generic mechanism for oscillations in gene regulatory systems.

  15. Evaluating feedback time delay during perturbed and unperturbed balance in handstand.

    Science.gov (United States)

    Blenkinsop, Glen M; Pain, Matthew T G; Hiley, Michael J

    2016-08-01

    Feedback delays in balance are often assessed using muscle activity onset latencies in response to discrete perturbations. The purpose of the study was to calculate EMG latencies in perturbed handstand, and determine if delays are different to unperturbed handstand. Twelve national level gymnasts completed 12 perturbed and 10 unperturbed (five eyes open and five closed) handstands. Forearm EMG latencies during perturbed handstands were assessed against delay estimates calculated via: cross correlations of wrist torque and COM displacement, a proportional and derivative model of wrist torque and COM displacement and velocity (PD model), and a PD model incorporating a passive stiffness component (PS-PD model). Delays from the PD model (161±14ms) and PS-PD model (188±14ms) were in agreement with EMG latencies (165±14ms). Cross correlations of COM displacement and wrist torque provided unrealistically low estimates (5±9ms). Delays were significantly lower during perturbed (188±14ms) compared to unperturbed handstand (eyes open: 207±12ms; eyes closed: 220±19ms). Significant differences in delays and model parameters between perturbed and unperturbed handstand support the view that balance measures in perturbed testing should not be generalised to unperturbed balance.

  16. Incentives for Delay-Constrained Data Query and Feedback in Mobile Opportunistic Crowdsensing

    Directory of Open Access Journals (Sweden)

    Yang Liu

    2016-07-01

    Full Text Available In this paper, we propose effective data collection schemes that stimulate cooperation between selfish users in mobile opportunistic crowdsensing. A query issuer generates a query and requests replies within a given delay budget. When a data provider receives the query for the first time from an intermediate user, the former replies to it and authorizes the latter as the owner of the reply. Different data providers can reply to the same query. When a user that owns a reply meets the query issuer that generates the query, it requests the query issuer to pay credits. The query issuer pays credits and provides feedback to the data provider, which gives the reply. When a user that carries a feedback meets the data provider, the data provider pays credits to the user in order to adjust its claimed expertise. Queries, replies and feedbacks can be traded between mobile users. We propose an effective mechanism to define rewards for queries, replies and feedbacks. We formulate the bargain process as a two-person cooperative game, whose solution is found by using the Nash theorem. To improve the credit circulation, we design an online auction process, in which the wealthy user can buy replies and feedbacks from the starving one using credits. We have carried out extensive simulations based on real-world traces to evaluate the proposed schemes.

  17. Incentives for Delay-Constrained Data Query and Feedback in Mobile Opportunistic Crowdsensing

    Science.gov (United States)

    Liu, Yang; Li, Fan; Wang, Yu

    2016-01-01

    In this paper, we propose effective data collection schemes that stimulate cooperation between selfish users in mobile opportunistic crowdsensing. A query issuer generates a query and requests replies within a given delay budget. When a data provider receives the query for the first time from an intermediate user, the former replies to it and authorizes the latter as the owner of the reply. Different data providers can reply to the same query. When a user that owns a reply meets the query issuer that generates the query, it requests the query issuer to pay credits. The query issuer pays credits and provides feedback to the data provider, which gives the reply. When a user that carries a feedback meets the data provider, the data provider pays credits to the user in order to adjust its claimed expertise. Queries, replies and feedbacks can be traded between mobile users. We propose an effective mechanism to define rewards for queries, replies and feedbacks. We formulate the bargain process as a two-person cooperative game, whose solution is found by using the Nash theorem. To improve the credit circulation, we design an online auction process, in which the wealthy user can buy replies and feedbacks from the starving one using credits. We have carried out extensive simulations based on real-world traces to evaluate the proposed schemes. PMID:27455261

  18. Feedback control of optical beam spatial profiles using thermal lensing

    CERN Document Server

    Liu, Zhanwei; Arain, Muzammil A; Williams, Luke; Mueller, Guido; Tanner, David B; Reitze, David H

    2013-01-01

    A method for active control of the spatial profile of a laser beam using adaptive thermal lensing is described. A segmented electrical heater was used to generate thermal gradients across a transmissive optical element, resulting in a controllable thermal lens. The segmented heater also allows the generation of cylindrical lenses, and provides the capability to steer the beam in both horizontal and vertical planes. Using this device as an actuator, a feedback control loop was developed to stabilize the beam size and position.

  19. Optical feedback signal for ultrashort laser pulse ablation of tissue

    Energy Technology Data Exchange (ETDEWEB)

    Kim, B.-M.; Feit, M.D.; Rubenchik, A.M.; Mammini, B.M.; Da Silva, L.B.

    1997-07-01

    An optical feedback system for controlled precise tissue ablation is discussed. Our setup includes an ultrashort pulse laser (USPL), and a diagnostic system using analysis of either tissue fluorescence or plasma emission luminescence. Current research is focused on discriminating hard and soft tissues such as bone and spinal cord during surgery using either technique. Our experimental observations exhibit considerable spectroscopic contrast between hard and soft tissue, and both techniques offer promise for a practical diagnostic system.

  20. Feedback control in quantum optics: an overview of experimental breakthroughs and areas of application

    CERN Document Server

    Serafini, Alessio

    2012-01-01

    We present a broad summary of research involving the application of quantum feedback control techniques to optical set-ups, from the early enhancement of optical amplitude squeezing to the recent stabilisation of photon number states in a microwave cavity, dwelling mostly on the latest experimental advances. Feedback control of quantum optical continuous variables, quantum non-demolition memories, feedback cooling, quantum state control, adaptive quantum measurements and coherent feedback strategies will all be touched upon in our discussion.

  1. Feedback control in quantum optics: an overview of experimental breakthroughs and areas of application

    OpenAIRE

    Alessio Serafini

    2012-01-01

    We present a broad summary of research involving the application of quantum feedback control techniques to optical set-ups, from the early enhancement of optical amplitude squeezing to the recent stabilisation of photon number states in a microwave cavity, dwelling mostly on the latest experimental advances. Feedback control of quantum optical continuous variables, quantum non-demolition memories, feedback cooling, quantum state control, adaptive quantum measurements and coherent feedback str...

  2. Controlling traffic jams on a two-lane road using delayed-feedback signals

    Institute of Scientific and Technical Information of China (English)

    Liang ZHENG; Shi-quan ZHONG; Shou-feng MA

    2012-01-01

    This paper focuses mainly on the stability analysis of two-lane traffic flow with lateral friction,which may be caused by irregular driving behavior or poorly visible road markings,and also attempts to reveal the formation mechanism of traffic jams.Firstly,a two-lane optimal velocity (OV) model without control signals is proposed and its stability condition is obtained from the viewpoint of control theory.Then delayed-feedback control signals composed of distance headway information from both lanes are added to each vehicle and a vehicular control system is designed to suppress the traffic jams.Lane change behaviors are also incorporated into the two-lane OV model and the corresponding information about distance headway and feedback signals is revised.Finally,the results of numerical experiments are shown to verify that when the stability condition is not met,the position disturbances and resulting lane change behaviors do indeed deteriorate traffic performance and cause serious traffic jams.However,once the proper delayed-feedback control signals are implemented,the traffic jams can be suppressed efficiently.

  3. All-optical delay technique for supporting multiple antennas in a hybrid optical - wireless transmission system

    DEFF Research Database (Denmark)

    Prince, Kamau; Chiuchiarelli, A; Presi, M

    2008-01-01

    We introduce a novel continuously-variable optical delay technique to support beam-forming wireless communications systems using antenna arrays. We demonstrate delay with 64-QAM modulated signals at a rate of 15 Msymbol/sec with 2.5 GHz carrier frequency.......We introduce a novel continuously-variable optical delay technique to support beam-forming wireless communications systems using antenna arrays. We demonstrate delay with 64-QAM modulated signals at a rate of 15 Msymbol/sec with 2.5 GHz carrier frequency....

  4. Identification and characterization of systems with delayed feedback; 1, Theory and tools

    CERN Document Server

    Bünner, M J; Giaquinta, A; Hegger, R; Kantz, H; Meucci, R; Politi, A; Bünner, Martin J.; Ciofini, Marco; Giaquinta, Antonino; Hegger, Rainer; Kantz, Holger; Meucci, Riccardo; Politi, Antonio

    1999-01-01

    High-dimensional chaos displayed by multi-component systems with a single time-delayed feedback is shown to be accessible to time series analysis of a scalar variable only. The mapping of the original dynamics onto scalar time-delay systems defined on sufficiently high dimensional spaces is thoroughly discussed. The dimension of the ``embedding'' space turns out to be independent of the delay time and thus of the dimensionality of the attractor dynamics. As a consequence, the procedure described in the present paper turns out to be definitely advantageous with respect to the standard ``embedding'' technique in the case of high-dimensional chaos, when the latter is practically unapplicable. The mapping is not exact when delayed maps are used to reproduce the dynamics of time-continuous systems, but the errors can be kept under control. In this context, the approximation of delay-differential equations is discussed with reference to different classes of maps. Appropriate tools to estimate the a priori unknown d...

  5. Permanence of a Nicholson’s Blowflies Model with Feedback Control and Multiple Time-varying Delays

    Institute of Scientific and Technical Information of China (English)

    CHEN Xiao-ying; SHI Chun-ling

    2015-01-01

    This paper covers the dynamic behaviors for a class of Nicholson’s blowflies model with multiple time-varying delay and feedback control. By using the dierential inequality theory, a set of sucient conditions are obtained to ensure the permanence of the system. Our result shows that feedback control variables have no influence on the permanence of the system.

  6. Stimulus-locked responses of two phase oscillators coupled with delayed feedback

    Science.gov (United States)

    Krachkovskyi, Valerii; Popovych, Oleksandr V.; Tass, Peter A.

    2006-06-01

    For a system of two phase oscillators coupled with delayed self-feedback we study the impact of pulsatile stimulation administered to both oscillators. This system models the dynamics of two coupled phase-locked loops (PLLs) with a finite internal delay within each loop. The delayed self-feedback leads to a rich variety of dynamical regimes, ranging from phase-locked and periodically modulated synchronized states to chaotic phase synchronization and desynchronization. Remarkably, for large coupling strength the two PLLs are completely desynchronized. We study stimulus-locked responses emerging in the different dynamical regimes. Simple phase resets may be followed by a response clustering, which is intimately connected with long poststimulus resynchronization. Intriguingly, a maximal perturbation (i.e., maximal response clustering and maximal resynchronization time) occurs, if the system gets trapped at a stable manifold of an unstable saddle fixed point due to appropriately calibrated stimulus. Also, single stimuli with suitable parameters can shift the system from a stable synchronized state to a stable desynchronized state or vice versa. Our result show that appropriately calibrated single pulse stimuli may cause pronounced transient and/or long-lasting changes of the oscillators’ dynamics. Pulse stimulation may, hence, constitute an effective approach for the control of coupled oscillators, which might be relevant to both physical and medical applications.

  7. Adaptive Neural Control of Pure-Feedback Nonlinear Time-Delay Systems via Dynamic Surface Technique.

    Science.gov (United States)

    Min Wang; Xiaoping Liu; Peng Shi

    2011-12-01

    This paper is concerned with robust stabilization problem for a class of nonaffine pure-feedback systems with unknown time-delay functions and perturbed uncertainties. Novel continuous packaged functions are introduced in advance to remove unknown nonlinear terms deduced from perturbed uncertainties and unknown time-delay functions, which avoids the functions with control law to be approximated by radial basis function (RBF) neural networks. This technique combining implicit function and mean value theorems overcomes the difficulty in controlling the nonaffine pure-feedback systems. Dynamic surface control (DSC) is used to avoid "the explosion of complexity" in the backstepping design. Design difficulties from unknown time-delay functions are overcome using the function separation technique, the Lyapunov-Krasovskii functionals, and the desirable property of hyperbolic tangent functions. RBF neural networks are employed to approximate desired virtual controls and desired practical control. Under the proposed adaptive neural DSC, the number of adaptive parameters required is reduced significantly, and semiglobal uniform ultimate boundedness of all of the signals in the closed-loop system is guaranteed. Simulation studies are given to demonstrate the effectiveness of the proposed design scheme.

  8. Stimulus-locked responses of two phase oscillators coupled with delayed feedback.

    Science.gov (United States)

    Krachkovskyi, Valerii; Popovych, Oleksandr V; Tass, Peter A

    2006-06-01

    For a system of two phase oscillators coupled with delayed self-feedback we study the impact of pulsatile stimulation administered to both oscillators. This system models the dynamics of two coupled phase-locked loops (PLLs) with a finite internal delay within each loop. The delayed self-feedback leads to a rich variety of dynamical regimes, ranging from phase-locked and periodically modulated synchronized states to chaotic phase synchronization and desynchronization. Remarkably, for large coupling strength the two PLLs are completely desynchronized. We study stimulus-locked responses emerging in the different dynamical regimes. Simple phase resets may be followed by a response clustering, which is intimately connected with long poststimulus resynchronization. Intriguingly, a maximal perturbation (i.e., maximal response clustering and maximal resynchronization time) occurs, if the system gets trapped at a stable manifold of an unstable saddle fixed point due to appropriately calibrated stimulus. Also, single stimuli with suitable parameters can shift the system from a stable synchronized state to a stable desynchronized state or vice versa. Our result show that appropriately calibrated single pulse stimuli may cause pronounced transient and/or long-lasting changes of the oscillators' dynamics. Pulse stimulation may, hence, constitute an effective approach for the control of coupled oscillators, which might be relevant to both physical and medical applications.

  9. Adaptive Output Feedback Sliding Mode Control for Complex Interconnected Time-Delay Systems

    Directory of Open Access Journals (Sweden)

    Van Van Huynh

    2015-01-01

    Full Text Available We extend the decentralized output feedback sliding mode control (SMC scheme to stabilize a class of complex interconnected time-delay systems. First, sufficient conditions in terms of linear matrix inequalities are derived such that the equivalent reduced-order system in the sliding mode is asymptotically stable. Second, based on a new lemma, a decentralized adaptive sliding mode controller is designed to guarantee the finite time reachability of the system states by using output feedback only. The advantage of the proposed method is that two major assumptions, which are required in most existing SMC approaches, are both released. These assumptions are (1 disturbances are bounded by a known function of outputs and (2 the sliding matrix satisfies a matrix equation that guarantees the sliding mode. Finally, a numerical example is used to demonstrate the efficacy of the method.

  10. The Effects of Constant Time Delay and Instructive Feedback on the Acquisition of English and Spanish Sight Words

    Science.gov (United States)

    Appelman, Michelle; Vail, Cynthia O.; Lieberman-Betz, Rebecca G.

    2014-01-01

    The authors of this study evaluated the acquisition of instructive feedback information presented to four kindergarten children with mild delays taught in dyads using a constant time delay (CTD) procedure. They also assessed the learning of observational (dyadic partner) information within this instructional arrangement. A multiple probe design…

  11. Decentralized H∞ state feedback control for large-scale interconnected uncertain systems with multiple delays

    Institute of Scientific and Technical Information of China (English)

    陈宁; 桂卫华; 谢永芳

    2004-01-01

    Decentralized H∞ control was studied for a class of interconnected uncertain systems with multiple delays in the state and control and time varying but norm-bounded parametric uncertainties. A sufficient condition which makes the closed--loop system decentralized asymptotically stable with H∞ performance was derived based on Lyapunov stability theorem. This condition is expressed as the solvability problem of linear matrix inequalities. The method overcomes the limitations of the existing algebraic Riccati equation method. Finally, a numerical example was given to demonstrate the design procedure for the decentralized H∞ state feedback controller.

  12. Shape, smoothness and invariant stratification of an attracting set for delayed monotone positive feedback

    CERN Document Server

    Krisztin, Tibor; Wu, Jianhong

    1998-01-01

    This book contains recent results about the global dynamics defined by a class of delay differential equations which model basic feedback mechanisms and arise in a variety of applications such as neural networks. The authors describe in detail the geometric structure of a fundamental invariant set, which in special cases is the global attractor, and the asymptotic behavior of solution curves on it. The approach makes use of advanced tools which in recent years have been developed for the investigation of infinite-dimensional dynamical systems: local invariant manifolds and inclination lemmas f

  13. Adaptive neural control for a class of perturbed strict-feedback nonlinear time-delay systems.

    Science.gov (United States)

    Wang, Min; Chen, Bing; Shi, Peng

    2008-06-01

    This paper proposes a novel adaptive neural control scheme for a class of perturbed strict-feedback nonlinear time-delay systems with unknown virtual control coefficients. Based on the radial basis function neural network online approximation capability, an adaptive neural controller is presented by combining the backstepping approach and Lyapunov-Krasovskii functionals. The proposed controller guarantees the semiglobal boundedness of all the signals in the closed-loop system and contains minimal learning parameters. Finally, three simulation examples are given to demonstrate the effectiveness and applicability of the proposed scheme.

  14. Theoretical and experimental aspects of chaos control by time-delayed feedback.

    Science.gov (United States)

    Just, Wolfram; Benner, Hartmut; Reibold, Ekkehard

    2003-03-01

    We review recent developments for the control of chaos by time-delayed feedback methods. While such methods are easily applied even in quite complex experimental context the theoretical analysis yields infinite-dimensional differential-difference systems which are hard to tackle. The essential ideas for a general theoretical approach are sketched and the results are compared to electronic circuits and to high power ferromagnetic resonance experiments. Our results show that the control performance can be understood on the basis of experimentally accessible quantities without resort to any model for the internal dynamics.

  15. Delayed Feedback Control of Bao Chaotic System Based on Hopf Bifurcation Analysis

    Directory of Open Access Journals (Sweden)

    Farhad Khellat

    2014-11-01

    Full Text Available This paper is concerned with bifurcation and chaos control in a new chaotic system recently introduced by Bao et al [9]. First a condition that the system has a Hopf bifurcation is derived. Then by applying delayed feedback controller, the chaotic system is forced to have a stable periodic orbit extracting from chaotic attractor. This is done by making Hopf bifurcation value of the open loop and the closed loop systems identical. Also by suitable tuning of the controller parameters, unstable equilibrium points become stable. Numerical simulations verify the results.

  16. Self-Injection-Locked Magnetron as an Active Ring Resonator Side Coupled to a Waveguide With a Delayed Feedback Loop

    Science.gov (United States)

    Bliokh, Y. P.; Krasik, Y. E.; Felsteiner, J.

    2012-01-01

    The theoretical analysis and numerical simulations of the magnetron operation with a feedback loop were performed assuming that the delay of the electromagnetic wave propagating in the loop is constant whereas the phase of the complex feedback reflection coefficient is varied. Results of simulations showed that by a proper adjustment of values of the time delay and phase of reflection coefficient that determines phase matching between the waves in the resonator and feedback loop, one can increase the magnetron's output power significantly without any other additional measures.

  17. Self-injection-locked magnetron as an active ring resonator side coupled to a waveguide with a delayed feedback loop

    CERN Document Server

    Bliokh, Y P; Felsteiner, J

    2011-01-01

    The theoretical analysis and numerical simulations of the magnetron operation with a feedback loop were performed assuming that the delay of the electromagnetic wave propagating in the loop is constant whereas the phase of the complex feedback reflection coefficient is varied. Results of simulations showed that by a proper adjustment of values of the time delay and phase of reflection coefficient that determines phase matching between the waves in the resonator and feedback loop, one can increase the magnetron's output power significantly without any other additional measures.

  18. Decentralized adaptive fuzzy output feedback control of nonlinear interconnected systems with time-varying delay

    Science.gov (United States)

    Wang, Qin; Chen, Zuwen; Song, Aiguo

    2017-01-01

    A robust adaptive output-feedback control scheme based on K-filters is proposed for a class of nonlinear interconnected time-varying delay systems with immeasurable states. It is difficult to design the controller due to the existence of the immeasurable states and the time-delay couplings among interconnected subsystems. This difficulty is overcome by use of the fuzzy system, the K-filters and the appropriate Lyapunov-Krasovskii functional. Based on Lyapunov theory, the closed-loop control system is proved to be semi-global uniformly ultimately bounded (SGUUB), and the output tracking error converges to a neighborhood of zero. Simulation results demonstrate the effectiveness of the approach.

  19. Internet based gripper teleoperation with random time delay by using haptic feedback and SEMG

    Science.gov (United States)

    Xu, Xiaonong; Song, Aiguo; Zhang, Huatao; Ji, Peng

    2016-10-01

    Random time delay may cause instability in the internet based teleoperation system. Transparency and intuitiveness are also very important for operator to control the system to accurately perform the desired action, especially for the gripper teleoperation system. This paper presents a new grip force control method of gripper teleoperation system with haptic feedback. The system employs the SEMG signal as the control parameter in order to enhance the intuitive control experience for operator. In order to eliminate the impacts on the system stability caused by random time delay, a non-time based teleoperation method is applied to the control process. Besides, neural network and designed fuzzy logic controller is also utilized to improve this control method. The effectiveness of the proposed method is demonstrated by experiment results.

  20. Adaptive Fuzzy Control of Strict-Feedback Nonlinear Time-Delay Systems With Unmodeled Dynamics.

    Science.gov (United States)

    Yin, Shen; Shi, Peng; Yang, Hongyan

    2016-08-01

    In this paper, an approximated-based adaptive fuzzy control approach with only one adaptive parameter is presented for a class of single input single output strict-feedback nonlinear systems in order to deal with phenomena like nonlinear uncertainties, unmodeled dynamics, dynamic disturbances, and unknown time delays. Lyapunov-Krasovskii function approach is employed to compensate the unknown time delays in the design procedure. By combining the advances of the hyperbolic tangent function with adaptive fuzzy backstepping technique, the proposed controller guarantees the semi-globally uniformly ultimately boundedness of all the signals in the closed-loop system from the mean square point of view. Two simulation examples are finally provided to show the superior effectiveness of the proposed scheme.

  1. Stability of PID-Controlled Linear Time-Delay Feedback Systems

    CERN Document Server

    Martelli, Gianpasquale

    2008-01-01

    The stability of feedback systems consisting of linear time-delay plants and PID controllers has been investigated for many years by means of several methods, of which the Nyquist criterion, a generalization of the Hermite-Biehler Theorem, and the root location method are well known. The main purpose of these researches is to determine the range of controller parameters that allow stability. Explicit and complete expressions of the boundaries of these regions and computation procedures with a finite number of steps are now available only for first-order plants, provided with one time delay. In this note, the same results, based on Pontryagin's studies, are presented for arbitrary-order plants.

  2. Desynchronization in an ensemble of globally coupled chaotic bursting neuronal oscillators by dynamic delayed feedback control

    CERN Document Server

    Che, Yanqiu; Li, Ruixue; Li, Huiyan; Han, Chunxiao; Wang, Jiang; Wei, Xile

    2014-01-01

    In this paper, we propose a dynamic delayed feedback control approach for desynchronization of chaotic-bursting synchronous activities in an ensemble of globally coupled neuronal oscillators. We demonstrate that the difference signal between an ensemble's mean field and its time delayed state, filtered and fed back to the ensemble, can suppress the self-synchronization in the ensemble. These individual units are decoupled and stabilized at the desired desynchronized states while the stimulation signal reduces to the noise level. The effectiveness of the method is illustrated by examples of two different populations of globally coupled chaotic-bursting neurons. The proposed method has potential for mild, effective and demand-controlled therapy of neurological diseases characterized by pathological synchronization.

  3. Anticontrol of chaos in continuous-time systems via time-delay feedback.

    Science.gov (United States)

    Wang, Xiao Fan; Chen, Guanrong; Yu, Xinghuo

    2000-12-01

    In this paper, a systematic design approach based on time-delay feedback is developed for anticontrol of chaos in a continuous-time system. This anticontrol method can drive a finite-dimensional, continuous-time, autonomous system from nonchaotic to chaotic, and can also enhance the existing chaos of an originally chaotic system. Asymptotic analysis is used to establish an approximate relationship between a time-delay differential equation and a discrete map. Anticontrol of chaos is then accomplished based on this relationship and the differential-geometry control theory. Several examples are given to verify the effectiveness of the methodology and to illustrate the systematic design procedure. (c) 2000 American Institute of Physics.

  4. Correlation times in stochastic equations with delayed feedback and multiplicative noise.

    Science.gov (United States)

    Gaudreault, Mathieu; Berbert, Juliana Militão; Viñals, Jorge

    2011-01-01

    We obtain the characteristic correlation time associated with a model stochastic differential equation that includes the normal form of a pitchfork bifurcation and delayed feedback. In particular, the validity of the common assumption of statistical independence between the state at time t and that at t-τ, where τ is the delay time, is examined. We find that the correlation time diverges at the model's bifurcation line, thus signaling a sharp bifurcation threshold, and the failure of statistical independence near threshold. We determine the correlation time both by numerical integration of the governing equation, and analytically in the limit of small τ. The correlation time T diverges as T~a(-1), where a is the control parameter so that a=0 is the bifurcation threshold. The small-τ expansion correctly predicts the location of the bifurcation threshold, but there are systematic deviations in the magnitude of the correlation time.

  5. Robust H∞ control for uncertain systems with heterogeneous time-varying delays via static output feedback

    Institute of Scientific and Technical Information of China (English)

    Wang Jun-Wei; Zeng Cai-Bin

    2012-01-01

    This paper is concerned with the problem of robust H∞ control for a novel class of uncertain linear continuous-time systems with heterogeneous time-varying state/input delays and norm-bounded parameter uncertainties.The objective is to design a static output feedback controller such that the closed-loop system is asymptotically stable while satisfying a prescribed H∞ performance level for all admissible uncertainties.By constructing an appropriate Lyapunov-Krasvskii functional,a delay-dependent stability criterion of the closed-loop system is presented with the help of the Jensen integral inequality.From the derived criterion,the solutions to the problem are formulated in terms of linear matrix inequalities and hence are tractable numerically.A simulation example is given to illustrate the effectiveness of the proposed design method.

  6. Exponential synchronization of general chaotic delayed neural networks via hybrid feedback

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    This paper investigates the exponential synchronization problem of some chaotic delayed neural networks based on the proposed general neural network model, which is the interconnection of a linear delayed dynamic system and a bounded static nonlinear operator, and covers several well-known neural networks, such as Hopfield neural networks, cellular neural networks (CNNs), bidirectional associative memory (BAM) networks, recurrent multilayer perceptrons (RMLPs). By virtue of LyapunovKrasovskii stability theory and linear matrix inequality (LMI) technique, some exponential synchronization criteria are derived.Using the drive-response concept, hybrid feedback controllers are designed to synchronize two identical chaotic neural networks based on those synchronization criteria. Finally, detailed comparisons with existing results are made and numerical simulations are carried out to demonstrate the effectiveness of the established synchronization laws.

  7. Dynamics of semiconductor microring lasers subject to on-chip filtered optical feedback

    Science.gov (United States)

    Khoder, Mulham; Friart, Gaetan; Danckaert, Jan; Erneux, Thomas; Van der Sande, Guy; Verschaffelt, Guy

    2016-04-01

    Tunable laser diodes are needed in a range of applications including wavelength division multiplexing, optical instrument testing, optical sensing and tera hertz generation. In this work, we investigate the stability of lasers which use filtered optical feedback for wavelength tuning. We investigate experimentally the dynamics induced by this on-chip filtered optical feedback. In this study, we choose to use a compact device which combines a semiconductor ring laser with on-chip filtered optical feedback to achieve wavelength tunability. The filtered optical feedback is realized by employing two arrayed waveguide gratings to split/recombine light into different wavelength channels. Semiconductor optical amplifiers are placed in the feedback loop in order to control the feedback of each wavelength channel independently. Experimental observations show that the stability of the clockwise and counterclockwise propagation modes depends on the feedback strength. Experiments also show that for a specific range of the feedback strength, anti-phase oscillations in the intensity of the clockwise and counterclockwise propagating modes can be induced. These oscillations could not be seen in the same semiconductor ring laser without filtered optical feedback. We investigate how the frequency and the amplitude of these oscillations change under the effect of filtered optical feedback. We also discuss how these anti-phase oscillations can be suppressed by properly choosing the feedback strength.

  8. Memory delay and haptic feedback influence the dissociation of tactile cues for perception and action.

    Science.gov (United States)

    Davarpanah Jazi, Shirin; Hosang, Stephanie; Heath, Matthew

    2015-05-01

    The somatosensory processing model (SPM) asserts that dissociable cortical processing streams mediate tactile perceptions and actions via relative and absolute cues, respectively (Dijkerman and de Haan, 2007). Accordingly, we sought to determine whether the introduction of a memory delay and/or physically touching a target object (i.e., haptic feedback) differentially influences the cues supporting tactile perceptions and actions. Participants used their right hand to manually estimate (i.e., perceptual task) or grasp (i.e., action task) differently sized objects placed on the palm of their left limb in conditions wherein the target object was available for the duration of the response (i.e., closed-loop condition), or was removed prior to response cuing (i.e., memory-guided condition). As well, trials were performed in conditions wherein the physical object was available (i.e., haptic feedback) or unavailable (i.e., no haptic feedback) to touch. Notably, we computed just-noticeable-difference (JND) scores to determine whether the aforementioned tasks and conditions adhered to - or violated - the relative properties of Weber's law. JNDs for manual estimations adhered to Weber's law across each condition - a finding supporting the SPM's contention that an immutable and relative percept supports tactile perceptions. In turn, JNDs for grasping violated Weber's law only when haptic feedback was available. Such a finding indicates that haptic feedback supports the absolute calibration between a tactile defined object and the required motor output. What is more, our study highlights that multiple somatosensory cues (i.e., tactile and haptic) support goal-directed grasping.

  9. All-Optical Flip-Flop Based on an SOA/DFB-Laser Diode Optical Feedback Scheme

    DEFF Research Database (Denmark)

    D'Oosterlinck, W.; Buron, Jakob Due; Öhman, Filip;

    2007-01-01

    We report on the dynamic all-optical flip-flop (AOFF) operation of an optical feedback scheme consisting of a semiconductor optical amplifier (SOA) and a distributed feedback laser diode (DFB-LD), bidirectionally coupled to each other. The operation of the AOFF relies on the interplay between...

  10. Nonlinear resonance in Duffing oscillator with fixed and integrative time-delayed feedbacks

    Indian Academy of Sciences (India)

    V Ravichandran; V Chinnathambi; S Rajasekar

    2012-03-01

    We study the nonlinear resonance, one of the fundamental phenomena in nonlinear oscillators, in a damped and periodically-driven Duffing oscillator with two types of time-delayed feedbacks, namely, fixed and integrative. Particularly, we analyse the effect of the time-delay parameter and the strength of the time-delayed feedback. Applying the perturbation theory we obtain a nonlinear equation for the amplitude of the periodic response of the system. For a range of values of and , the response amplitude is found to be higher than that of the system in the absence of delayed feedback. The response amplitude is periodic on the parameter with period 2 / where is the angular frequency of the external periodic force. We show the occurrence of multiple branches of the response amplitude curve with and without hysteresis.

  11. Dynamic Behaviors of a Discrete Lotka-Volterra Competition System with Infinite Delays and Single Feedback Control

    Directory of Open Access Journals (Sweden)

    Liang Zhao

    2014-01-01

    Full Text Available A nonautonomous discrete two-species Lotka-Volterra competition system with infinite delays and single feedback control is considered in this paper. By applying the discrete comparison theorem, a set of sufficient conditions which guarantee the permanence of the system is obtained. Also, by constructing some suitable discrete Lyapunov functionals, some sufficient conditions for the global attractivity and extinction of the system are obtained. It is shown that if the the discrete Lotka-Volterra competitive system with infinite delays and without feedback control is permanent, then, by choosing some suitable feedback control variable, the permanent species will be driven to extinction. That is, the feedback control variable, which represents the biological control or some harvesting procedure, is the unstable factor of the system. Such a finding overturns the previous scholars’ recognition on feedback control variables.

  12. Absolute small-angle measurement based on optical feedback interferometry

    Institute of Scientific and Technical Information of China (English)

    Jingang Zhong; Xianhua Zhang; Zhixiang Ju

    2008-01-01

    We present a simple but effective method for small-angle measurement based on optical feedback inter-ferometry (or laser self-mixing interferometry). The absolute zero angle can be defined at the biggest fringe amplitude point, so this method can also achieve absolute angle measurement. In order to verify the method, we construct an angle measurement system. The Fourier-transform method is used to analysis the interference signal. Rotation angles are experimentally measured with a resolution of 10-6 rad and a measurement range of approximately from -0.0007 to +0.0007 rad.

  13. Pulse operation of semiconductor laser with nonlinear optical feedback

    Science.gov (United States)

    Guignard, Celine; Besnard, Pascal; Mihaescu, Adrian; MacDonald, K. F.; Pochon, Sebastien; Zheludev, Nikolay I.

    2004-09-01

    A semiconductor laser coupled to a gallium-made non linear mirror may exhibit pulse regime. In order to better understand this coupled cavity, stationary solutions and dynamics are described following the standard Lang and Kobayashi equations for a semiconductor laser submitted to nonlinear optical feedback. It is shown that the nonlinearity distorts the ellipse on which lied the stationary solutions, with a ``higher'' part corresponding to lower reflectivity and a ``lower'' part to higher reflectivity. Bifurcation diagrams and nonlinear analysis are presented while the conditions for pulsed operation are discussed.

  14. Limitations of synthetic aperture laser optical feedback imaging

    CERN Document Server

    Glastre, Wilfried; Hugon, Olivier; De Chatellus, Hugues Guillet; Lacot, Eric

    2012-01-01

    In this paper we present the origin and the effect of amplitude and phase noise on Laser Optical Feedback Imaging (LOFI) associated with Synthetic Aperture (SA) imaging system. Amplitude noise corresponds to photon noise and acts as an additive noise, it can be reduced by increasing the global measurement time. Phase noise can be divided in three families: random, sinusoidal and drift phase noise; we show that it acts as a multiplicative noise. We explain how we can reduce it by making oversampling or multiple measurements depending on its type. This work can easily be extended to all SA systems (Radar, Laser or Terahertz), especially when raw holograms are acquired point by point.

  15. Negative Avalanche Feedback Detectors for Photon-Counting Optical Communications

    Science.gov (United States)

    Farr, William H.

    2009-01-01

    Negative Avalanche Feedback photon counting detectors with near-infrared spectral sensitivity offer an alternative to conventional Geiger mode avalanche photodiode or phototube detectors for free space communications links at 1 and 1.55 microns. These devices demonstrate linear mode photon counting without requiring any external reset circuitry and may even be operated at room temperature. We have now characterized the detection efficiency, dark count rate, after-pulsing, and single photon jitter for three variants of this new detector class, as well as operated these uniquely simple to use devices in actual photon starved free space optical communications links.

  16. Negative Avalanche Feedback Detectors for Photon-Counting Optical Communications

    Science.gov (United States)

    Farr, William H.

    2009-01-01

    Negative Avalanche Feedback photon counting detectors with near-infrared spectral sensitivity offer an alternative to conventional Geiger mode avalanche photodiode or phototube detectors for free space communications links at 1 and 1.55 microns. These devices demonstrate linear mode photon counting without requiring any external reset circuitry and may even be operated at room temperature. We have now characterized the detection efficiency, dark count rate, after-pulsing, and single photon jitter for three variants of this new detector class, as well as operated these uniquely simple to use devices in actual photon starved free space optical communications links.

  17. Sideband locking of a single-section semiconductor distributed-feedback laser in an optical phase-lock loop.

    Science.gov (United States)

    Satyan, Naresh; Vasilyev, Arseny; Liang, Wei; Rakuljic, George; Yariv, Amnon

    2009-11-01

    The bandwidth and performance of optical phase-lock loops (OPLLs) using single-section semiconductor lasers (SCLs) are severely limited by the nonuniform frequency modulation response of the lasers. It is demonstrated that this restriction is eliminated by the sideband locking of a single-section distributed-feedback SCL to a master laser in a heterodyne OPLL, thus enabling a delay-limited loop bandwidth. The lineshape of the phase-locked SCL output is characterized using a delayed self-heterodyne measurement.

  18. RESPONSE OF PARAMETRICALLY EXCITED DUFFING-VAN DER POL OSCILLATOR WITH DELAYED FEEDBACK

    Institute of Scientific and Technical Information of China (English)

    LI Xin-ye; CHEN Yu-shu; WU Zhi-qiang; SONG Tao

    2006-01-01

    The dynamical behaviour of a parametrically excited Duffing-van der Pol oscillator under linear-plus-nonlinear state feedback control with a time delay is concerned.By means of the method of averaging together with truncation of Taylor expansions, two slow-flow equations on the amplitude and phase of response were derived for the case of principal parametric resonance. It is shown that the stability condition for the trivial solution is only associated with the linear terms in the original systems besides the amplitude and frequency of parametric excitation. And the trivial solution can be stabilized by appreciate choice of gains and time delay in feedback control. Different from the case of the trivial solution, the stability condition for nontrivial solutions is also associated with nonlinear terms besides linear terms in the original system. It is demonstrated that nontrivial steady state responses may lose their stability by saddle-node (SN) or Hopf bifurcation (HB) as parameters vary. The simulations, obtained by numerically integrating the original system, are in good agreement with the analytical results.

  19. Resonances of a nonlinear SDOF system with time-delay in linear feedback control

    Energy Technology Data Exchange (ETDEWEB)

    El-Bassiouny, A F [Mathematics Department, Faculty of Science, Benha University, Benha 13518 (Egypt); El-kholy, S [Department of Mathematics, Faculty of Science, Menoufia University, Shebin El-kom (Egypt)], E-mail: atef_elbassiouny@yahoo.com

    2010-01-15

    The primary and subharmonic resonances of a nonlinear single-degree-of-freedom (SDOF) system under feedback control with a time delay have been studied by means of an asymptotic perturbation technique. Both external (forcing) and parametric excitations have been included. By means of the averaging method and multiple scales method, two slow-flow equations for the amplitude and phase of the primary and subharmonic resonances and all other parameters are obtained, respectively. The steady state solutions (fixed points) for the original system are investigated. The stability of the fixed points is examined by using the variational method. The effect of the feedback gains, time-delay, the coefficient of cubic term, the coefficients of external and parametric excitations on the steady state responses are investigated and the results are presented as plots of the steady state response amplitude versus the detuning parameter. The results obtained by the two methods are in excellent agreement. There exist saddle node bifurcations for the case of primary resonance and the solutions lose stability for the case of resonance subharmonic.

  20. Bifurcation analysis of a delay reaction-diffusion malware propagation model with feedback control

    Science.gov (United States)

    Zhu, Linhe; Zhao, Hongyong; Wang, Xiaoming

    2015-05-01

    With the rapid development of network information technology, information networks security has become a very critical issue in our work and daily life. This paper attempts to develop a delay reaction-diffusion model with a state feedback controller to describe the process of malware propagation in mobile wireless sensor networks (MWSNs). By analyzing the stability and Hopf bifurcation, we show that the state feedback method can successfully be used to control unstable steady states or periodic oscillations. Moreover, formulas for determining the properties of the bifurcating periodic oscillations are derived by applying the normal form method and center manifold theorem. Finally, we conduct extensive simulations on large-scale MWSNs to evaluate the proposed model. Numerical evidences show that the linear term of the controller is enough to delay the onset of the Hopf bifurcation and the properties of the bifurcation can be regulated to achieve some desirable behaviors by choosing the appropriate higher terms of the controller. Furthermore, we obtain that the spatial-temporal dynamic characteristics of malware propagation are closely related to the rate constant for nodes leaving the infective class for recovered class and the mobile behavior of nodes.

  1. Vibration Analysis of a Piecewise-Smooth System with Negative Stiffness under Delayed Feedback Control

    Directory of Open Access Journals (Sweden)

    Dongmei Huang

    2017-01-01

    Full Text Available The principal resonance of a delayed piecewise-smooth (DPWS system with negative stiffness under narrow-band random excitation is investigated in aspects of multiscale analysis, design methodology of the controller, and response properties. The amplitude-frequency response and steady-state moments together with the corresponding stability conditions of the controlled stochastic system are derived, in which the degradation case is also under consideration. Then, from the perspective of the equivalent damping, the comparisons of the response characteristics of the controlled system to the uncontrolled system, such as the phenomenon of frequency island, are fulfilled. Furthermore, sensitivity of the system response to feedback gain and time delay is studied and interesting dynamic properties are found. Meanwhile, the classification of the steady-state solution is also discussed. To control the maximum amplitude, the feedback parameters are determined by the frequency response together with stability boundaries which must be utilized to exclude the combinations of the unstable parameters. For the case with small noise intensity, mean-square responses present the similar characteristics to what is discussed in the deterministic case.

  2. Real-time optical signal processors employing optical feedback: amplitude and phase control.

    Science.gov (United States)

    Gallagher, N C

    1976-04-01

    The development of real-time coherent optical signal processors has increased the appeal of optical computing techniques in signal processing applications. A major limitation of these real-time systems is the. fact that the optical processing material is generally of a phase-only type. The result is that the spatial filters synthesized with these systems must be either phase-only filters or amplitude-only filters. The main concern of this paper is the application of optical feedback techniques to obtain simultaneous and independent amplitude and phase control of the light passing through the system. It is shown that optical feedback techniques may be employed with phase-only spatial filters to obtain this amplitude and phase control. The feedback system with phase-only filters is compared with other feedback systems that employ combinations of phase-only and amplitude-only filters; it is found that the phase-only system is substantially more flexible than the other two systems investigated.

  3. Propagation delay of femtosecond pulses in an optical amplifier

    DEFF Research Database (Denmark)

    Poel, Mike van der; Mørk, Jesper; Hvam, Jørn Märcher

    The recent realization of tunable propagation delay of optical pulses in solid-state and semiconductor optical media1,2 has attracted great attention as such a functionality enables a whole new class of optical components in optical communications systems and signal processing3. The reported...... results show a large reduction in group velocity but this was achieved at the cost of a small bandwidth (e.g. 37 Hz in the case of Bigelow et al.1) of the probe signal. In this paper, we report measurements of slowing down and speeding up of the propagation of 150 fs pulses, having a very large bandwidth....... In the first experiment, we prepare a narrow peak or dip in the SOA gain spectrum by injection of a strong pump pulse4. The resulting dispersion feature is then probed by a weak pulse. In the second experiment, we measure self-slowdown or advancement as pulse energy isincreased5. In both cases, we perform...

  4. Stochastic thermodynamics of Langevin systems under time-delayed feedback control: Second-law-like inequalities.

    Science.gov (United States)

    Rosinberg, M L; Munakata, T; Tarjus, G

    2015-04-01

    Response lags are generic to almost any physical system and often play a crucial role in the feedback loops present in artificial nanodevices and biological molecular machines. In this paper, we perform a comprehensive study of small stochastic systems governed by an underdamped Langevin equation and driven out of equilibrium by a time-delayed continuous feedback control. In their normal operating regime, these systems settle in a nonequilibrium steady state in which work is permanently extracted from the surrounding heat bath. By using the Fokker-Planck representation of the dynamics, we derive a set of second-law-like inequalities that provide bounds to the rate of extracted work. These inequalities involve additional contributions characterizing the reduction of entropy production due to the continuous measurement process. We also show that the non-Markovian nature of the dynamics requires a modification of the basic relation linking dissipation to the breaking of time-reversal symmetry at the level of trajectories. The modified relation includes a contribution arising from the acausal character of the reverse process. This, in turn, leads to another second-law-like inequality. We illustrate the general formalism with a detailed analytical and numerical study of a harmonic oscillator driven by a linear feedback, which describes actual experimental setups.

  5. Feedback-free optical cavity with self-resonating mechanism

    CERN Document Server

    Uesugi, Y; Honda, Y; Kosuge, A; Omori, T; Takahashi, T; Urakawa, J; Washio, M

    2015-01-01

    We demonstrated the operation of a high finesse optical cavity without utilizing an active feedback system to stabilize the resonance. The finesse of the cavity was measured to be $465,000 \\pm 3,000$, and the laser power stored in the cavity was $2.52 \\pm 0.13$ kW, which is about 187,000 times greater than the incident power to the cavity. The stored power was stabilized with a fluctuation of $1.7 \\%$, and we confirmed continuous cavity operation for more than two hours. This result relaxes the technical requirement of stabilizing of the optical resonant cavity and expands possibilities for various applications such as laser-Compton scattering.

  6. Characteristics of an Optical Delay Line for Radar Testing

    Science.gov (United States)

    2016-04-12

    electrical devices, or allow unauthorized detection. In addition, integrity of the signals can be preserved travelling through long FODLs in...optical delay line, a commercial product from Miteq. The radar system parameters investigated were: small signal gain, 1 dB gain compression point...wide radio frequency (RF) bandwidth, low signal loss, compact and light weight, and highly resistant to electromagnetic interference. Fiber-based

  7. Effect of optoelectronic feedback on the characteristics of acousto-optical collinear filtering

    Energy Technology Data Exchange (ETDEWEB)

    Balakshy, V I; Kuznetsov, Yu I; Mantsevich, S N [Department of Physics, M.V. Lomonosov Moscow State University (Russian Federation)

    2016-02-28

    The first results of the theoretical and experimental studies of an acousto-optical system with feedback based on a collinear cell made of a calcium molybdate crystal are presented. It is shown that the positive electronic feedback allows essential sharpening of the instrument function of the acousto-optical collinear filter, thus increasing the precision of measuring the optical radiation wavelength. (acoustooptics)

  8. Reconfigurable Optical Signal Processing Based on a Distributed Feedback Semiconductor Optical Amplifier.

    Science.gov (United States)

    Li, Ming; Deng, Ye; Tang, Jian; Sun, Shuqian; Yao, Jianping; Azaña, José; Zhu, Ninghua

    2016-01-27

    All-optical signal processing has been considered a solution to overcome the bandwidth and speed limitations imposed by conventional electronic-based systems. Over the last few years, an impressive range of all-optical signal processors have been proposed, but few of them come with reconfigurability, a feature highly needed for practical signal processing applications. Here we propose and experimentally demonstrate an analog optical signal processor based on a phase-shifted distributed feedback semiconductor optical amplifier (DFB-SOA) and an optical filter. The proposed analog optical signal processor can be reconfigured to perform signal processing functions including ordinary differential equation solving and temporal intensity differentiation. The reconfigurability is achieved by controlling the injection currents. Our demonstration provitdes a simple and effective solution for all-optical signal processing and computing.

  9. Reconfigurable Optical Signal Processing Based on a Distributed Feedback Semiconductor Optical Amplifier

    Science.gov (United States)

    Li, Ming; Deng, Ye; Tang, Jian; Sun, Shuqian; Yao, Jianping; Azaña, José; Zhu, Ninghua

    2016-01-01

    All-optical signal processing has been considered a solution to overcome the bandwidth and speed limitations imposed by conventional electronic-based systems. Over the last few years, an impressive range of all-optical signal processors have been proposed, but few of them come with reconfigurability, a feature highly needed for practical signal processing applications. Here we propose and experimentally demonstrate an analog optical signal processor based on a phase-shifted distributed feedback semiconductor optical amplifier (DFB-SOA) and an optical filter. The proposed analog optical signal processor can be reconfigured to perform signal processing functions including ordinary differential equation solving and temporal intensity differentiation. The reconfigurability is achieved by controlling the injection currents. Our demonstration provitdes a simple and effective solution for all-optical signal processing and computing.

  10. Response of the Duffing-Van der Pol Oscillator under Position Feedback Control with Two Time Delays

    Directory of Open Access Journals (Sweden)

    Xinye Li

    2011-01-01

    Full Text Available In this paper, the dynamics of Duffing-van der Pol oscillators under linear-plus-nonlinear position feedback control with two time delays is studied analytically and numerically. By the averaging method, together with truncation of Taylor expansions for those terms with time delay, the slow-flow equations are obtained from which the trivial and nontrivial solutions can be found. It is shown that the trivial solution can be stabilized by appropriate gain and time delay in linear feedback although it loses its stability via Hopf bifurcation and results in periodic solution for uncontrolled systems. And the stability of the trivial solution is independent of nonlinear feedback. Different from the case of the trivial solution, the stability of nontrivial solutions is also associated with nonlinear feedback besides linear feedback. Non-trivial solutions may lose their stability via saddle-node or Hopf bifurcation and the resulting response of the system may be quasi-periodic or chaotic. The feedback gains and time delays have great effects on the amplitude of the periodic solutions and their bifurcation control. The simulations, obtained by numerically integrating the original system, are in good agreement with the analytical results.

  11. Ultrafast all-optical NOR gate based on semiconductor optical amplifier and fiber delay interferometer

    Science.gov (United States)

    Xu, Jing; Zhang, Xinliang; Liu, Deming; Huang, Dexiu

    2006-10-01

    An ultrafast all-optical logic NOR gate based on a semiconductor optical amplifier (SOA) and a fiber delay interferometer (FDI) is presented. For high-speed input return-to-zero (RZ) signal, nonreturn-to-zero (NRZ) switching windows which satisfy Boolean NOR operation can be formed by properly choosing the delay time and the phase shift of FDI. 40Gb/s NOR operation has been demonstrated successfully with low control optical power. The factors that degrade the NOR operation have been discussed.

  12. Analysis of a dc bus system with a nonlinear constant power load and its delayed feedback control.

    Science.gov (United States)

    Konishi, Keiji; Sugitani, Yoshiki; Hara, Naoyuki

    2014-02-01

    This paper tackles a destabilizing problem of a direct-current (dc) bus system with constant power loads, which can be considered a fundamental problem of dc power grid networks. The present paper clarifies scenarios of the destabilization and applies the well-known delayed-feedback control to the stabilization of the destabilized bus system on the basis of nonlinear science. Further, we propose a systematic procedure for designing the delayed feedback controller. This controller can converge the bus voltage exactly on an unstable operating point without accurate information and can track it using tiny control energy even when a system parameter, such as the power consumption of the load, is slowly varied. These features demonstrate that delayed feedback control can be considered a strong candidate for solving the destabilizing problem.

  13. Guaranteed Cost Control for Exponential Synchronization of Cellular Neural Networks with Mixed Time-Varying Delays via Hybrid Feedback Control

    Directory of Open Access Journals (Sweden)

    T. Botmart

    2013-01-01

    Full Text Available The problem of guaranteed cost control for exponential synchronization of cellular neural networks with interval nondifferentiable and distributed time-varying delays via hybrid feedback control is considered. The interval time-varying delay function is not necessary to be differentiable. Based on the construction of improved Lyapunov-Krasovskii functionals is combined with Leibniz-Newton's formula and the technique of dealing with some integral terms. New delay-dependent sufficient conditions for the exponential synchronization of the error systems with memoryless hybrid feedback control are first established in terms of LMIs without introducing any free-weighting matrices. The optimal guaranteed cost control with linear error hybrid feedback is turned into the solvable problem of a set of LMIs. A numerical example is also given to illustrate the effectiveness of the proposed method.

  14. On asymptotic stabilisation of a chain of integrators with nonlinearity and an uncertain input delay by output feedback

    Science.gov (United States)

    Choi, Ho-Lim

    2014-12-01

    In this paper, we provide an output feedback solution over one given by Choi and Lim [Systems & Control Letters, 59(6), 374-379 (2010)] under more generalised system set-up. More specifically, we consider a stabilisation problem of a chain of integrators that has nonlinearity and an uncertain delay in the input by output feedback. The nonlinearity is classified into four types. Then, we propose a memoryless output feedback controller which contains a gain-scaling factor to adjust controller gains depending on the given nonlinearity type. Our stability analysis shows that the controlled system has unique stabilisation result associated with each type of nonlinearity. Our result provides a new aspect to the stabilisation problem of nonlinear time-delay systems and broadens the existing control results of time-delay systems. Two examples are given for illustration.

  15. Performance characteristics of positive and negative delayed feedback on chaotic dynamics of directly modulated InGaAsP semiconductor lasers

    Indian Academy of Sciences (India)

    Bindu M Krishna; Manu P John; V M Nandakumaran

    2008-12-01

    The chaotic dynamics of directly modulated semiconductor lasers with delayed optoelectronic feedback is studied numerically. The effects of positive and negative delayed optoelectronic feedback in producing chaotic outputs from such lasers with nonlinear gain reduction in its optimum value range is investigated using bifurcation diagrams. The results are confirmed by calculating the Lyapunov exponents. A negative delayed optoelectronic feedback configuration is found to be more effective in inducing chaotic dynamics to such systems with nonlinear gain reduction factor in the practical value range.

  16. Ultra-high-frequency piecewise-linear chaos using delayed feedback loops

    Science.gov (United States)

    Cohen, Seth D.; Rontani, Damien; Gauthier, Daniel J.

    2012-12-01

    We report on an ultra-high-frequency (>1 GHz), piecewise-linear chaotic system designed from low-cost, commercially available electronic components. The system is composed of two electronic time-delayed feedback loops: A primary analog loop with a variable gain that produces multi-mode oscillations centered around 2 GHz and a secondary loop that switches the variable gain between two different values by means of a digital-like signal. We demonstrate experimentally and numerically that such an approach allows for the simultaneous generation of analog and digital chaos, where the digital chaos can be used to partition the system's attractor, forming the foundation for a symbolic dynamics with potential applications in noise-resilient communications and radar.

  17. Noise-induced standing waves in oscillatory systems with time-delayed feedback

    CERN Document Server

    Stich, Michael

    2016-01-01

    In oscillatory reaction-diffusion systems, time-delay feedback can lead to the instability of uniform oscillations with respect to formation of standing waves. Here, we investigate how the presence of additive, Gaussian white noise can induce the appearance of standing waves. Combining analytical solutions of the model with spatio-temporal simulations, we find that noise can promote standing waves in regimes where the deterministic uniform oscillatory modes are stabilized. As the deterministic phase boundary is approached, the spatio-temporal correlations become stronger, such that even small noise can induce standing waves in this parameter regime. With larger noise strengths, standing waves could be induced at finite distances from the (deterministic) phase boundary. The overall dynamics is defined through the interplay of noisy forcing with the inherent reaction-diffusion dynamics.

  18. Chaotic millimeter wave generation in a helical-waveguide gyro-TWT with delayed feedback

    Science.gov (United States)

    Ginzburg, N. S.; Rozental, R. M.; Sergeev, A. S.; Zotova, I. V.; Tarakanov, V. P.

    2016-10-01

    We demonstrate the possibility of chaotic millimeter wave generation in broadband helical-waveguide gyrotron travelling wave tubes (gyro-TWTs) by introducing external delayed feedback. It is shown that for the realization of "developed" chaos the amplitude characteristic of the amplifier should have the maximum slope in the overdrive regime upon saturation. This can be achieved by proper choosing of cyclotron resonance detuning. According to the time-domain averaged model and 3D particle-in-cell simulations with the parameters of the experimentally realized 35 GHz gyro-TWT, the power of chaotic generation can achieve 50 kW for an electron mean efficiency of about 7% and a spectrum width of 3-4 GHz.

  19. Adaptive feedback synchronisation of complex dynamical network with discrete-time communications and delayed nodes

    Science.gov (United States)

    Wang, Tong; Ding, Yongsheng; Zhang, Lei; Hao, Kuangrong

    2016-08-01

    This paper considered the synchronisation of continuous complex dynamical networks with discrete-time communications and delayed nodes. The nodes in the dynamical networks act in the continuous manner, while the communications between nodes are discrete-time; that is, they communicate with others only at discrete time instants. The communication intervals in communication period can be uncertain and variable. By using a piecewise Lyapunov-Krasovskii function to govern the characteristics of the discrete communication instants, we investigate the adaptive feedback synchronisation and a criterion is derived to guarantee the existence of the desired controllers. The globally exponential synchronisation can be achieved by the controllers under the updating laws. Finally, two numerical examples including globally coupled network and nearest-neighbour coupled networks are presented to demonstrate the validity and effectiveness of the proposed control scheme.

  20. Power grid enhanced resilience using proportional and derivative control with delayed feedback

    Science.gov (United States)

    Dongmo, Eric Donald; Colet, Pere; Woafo, Paul

    2017-01-01

    This paper investigates the resilience of an elementary electricity system (machine-generator) under proportional and derivative (PD) control when subject to large perturbations. A particular attention is paid to small power grids, representative of power grid structure in some developing countries. The considered elementary electricity system consists of a consumer (machine), a power plant (generator) and a transmission line. Both Runge-Kutta and Newton methods are used to solve the dynamical equations and the characteristic equations for stability. It is found that the controller increases the resilience of the system. We also show that time delays associated to the feedback loop of the controller have a negative impact on the performance. It is also shown that the asymmetry due to energy demand of different consumers to power plant increases the stability of the system.

  1. Coupled map car-following model and its delayed-feedback control.

    Science.gov (United States)

    Konishi, K; Kokame, H; Hirata, K

    1999-10-01

    This paper proposes a coupled map car-following traffic model, which describes a dynamical behavior of a group of road vehicles running in a single lane without overtaking. This model consists of a lead vehicle and following vehicles, which have a piecewise linear optimal velocity function. When the lead-vehicle speed is varied, we can observe a traffic jam in the group of the vehicles. We derive a condition under which the traffic jam never occurs in our model. Furthermore, in order to suppress the traffic jam, for each vehicle we use a dynamic version of decentralized delayed-feedback control proposed in [Konishi, Hirai, and Kokame, Phys. Rev. E 58, 3055 (1998)], and provide a systematic procedure for designing the controller.

  2. Delay-feedback control strategy for reducing CO2 emission of traffic flow system

    Science.gov (United States)

    Zhang, Li-Dong; Zhu, Wen-Xing

    2015-06-01

    To study the signal control strategy for reducing traffic emission theoretically, we first presented a kind of discrete traffic flow model with relative speed term based on traditional coupled map car-following model. In the model, the relative speed difference between two successive running cars is incorporated into following vehicle's acceleration running equation. Then we analyzed its stability condition with discrete control system stability theory. Third, we designed a delay-feedback controller to suppress traffic jam and decrease traffic emission based on modern controller theory. Last, numerical simulations are made to support our theoretical results, including the comparison of models' stability analysis, the influence of model type and signal control on CO2 emissions. The results show that the temporal behavior of our model is superior to other models, and the traffic signal controller has good effect on traffic jam suppression and traffic CO2 emission, which fully supports the theoretical conclusions.

  3. Synchronous and stochastic oscillations in a nonautonomous transistor oscillator with delayed feedback

    Science.gov (United States)

    Kal'Ianov, E. V.

    1986-11-01

    The stimulation by an external signal of stochastic self-excited oscillations in a nonautonomous transistor oscillator with delayed feedback is investigated experimentally, with a focus on the case of parametric pumping, where the frequency of the external signal is close to the interval between the natural frequencies of the system. The experimental technique and apparatus are similar to those employed by Kal'ianov and Starkov (1985), and the results are presented graphically. Phenomena observed include both (1) enrichment of the oscillation spectrum by excitation of additional, asynchronously interacting modes until a transition to chaos occurs; and (2) parametric suppression of oscillations at certain modes, with phase locking of the mode oscillations and the establishment of synchronous oscillations (i.e., destochastization).

  4. Experimental investigation on nonlinear dynamics of 1550 nm VCSEL simultaneously subject to orthogonal optical injection and negative optoelectronic feedback

    Science.gov (United States)

    Deng, Tao; Xia, Guang-Qiong; Chen, Jian-Jun; Tang, Xi; Lin, Xiao-Dong; Yang, Xin; Huang, Shou-Wen; Wu, Zheng-Mao

    2017-04-01

    Nonlinear dynamic characteristics of a 1550 nm vertical-cavity surface-emitting laser (1550 nm VCSEL) simultaneously subject to orthogonal optical injection and negative optoelectronic feedback are experimentally investigated. The results show that, under suitable orthogonal optical injection the VCSEL can exhibit rich nonlinear dynamic behaviors such as stable state (S), period-one (P1), period-two (P2), chaos (CO), stable injection locking (SIL) and polarization switching (PS). After further introducing negative optoelectronic feedback with a certain feedback delay time, the dynamic distribution of the orthogonal optical injection 1550 nm VCSEL is significantly affected, and some new phenomena including three-frequency quasiperiodic (Q3) state can be observed. With the increase of optoelectronic feedback strength, the S and SIL regions typically are shrank, while the quasiperiodic (QP) and CO regions are enlarged.

  5. Control of chaos in an external-cavity multi-quantum-well laser subjected to dual-wedges and optical dual-feedback

    Institute of Scientific and Technical Information of China (English)

    YAN SenLin

    2009-01-01

    A multi-parameter chaos-control method used to control chaos in an external cavity multi-quantum-well (MQW) laser via the dual-wedges and external delayed optical dual-feedback is presented. The physical model of the laser dynamic is established under the conditions of the dual-wedges and dual-feedback light control. The frequency detuning and stable ranges of the control system are theoretically demon-strated. The optical-length of the feedback light may be adjusted by shifting horizontally or sliding the dual-wedges relatively in the external optical road, which will alter the delaying time and feedback in-tensity of the dual-feedback light. Accordingly, the multi-parameter chaos-control of the optical dual-feedback may be achieved physically. The numerical simulations approve that the chaotic laser may be controlled into a stable state, a single-periodic state and multi-periodic states, and the con-trolled periodic pulse power may be increased.

  6. All-Optical WDM Buffer System Realized by NOLM and Feedback Loop Structure

    Institute of Scientific and Technical Information of China (English)

    Seungwoo Yi; Kyeong-Mo Yoon; Yong-Gi Lee; Jinseob Eom

    2003-01-01

    We propose an all-optical WDM buffer for optical packet switching system, which consists of NOLM and feedback loop. The proposed structure provides more than 40 turn buffering and nice output of buffered data when selected by control signal.

  7. Firing statistics of inhibitory neuron with delayed feedback. II: Non-Markovian behavior.

    Science.gov (United States)

    Kravchuk, K G; Vidybida, A K

    2013-06-01

    The instantaneous state of a neural network consists of both the degree of excitation of each neuron the network is composed of and positions of impulses in communication lines between the neurons. In neurophysiological experiments, the neuronal firing moments are registered, but not the state of communication lines. But future spiking moments depend essentially on the past positions of impulses in the lines. This suggests, that the sequence of intervals between firing moments (inter-spike intervals, ISIs) in the network could be non-Markovian. In this paper, we address this question for a simplest possible neural "net", namely, a single inhibitory neuron with delayed feedback. The neuron receives excitatory input from the driving Poisson stream and inhibitory impulses from its own output through the feedback line. We obtain analytic expressions for conditional probability density P(tn+1|tn, …, t1, t0), which gives the probability to get an output ISI of duration tn+1 provided the previous (n+1) output ISIs had durations tn, …, t1, t0. It is proven exactly, that P(tn+1|tn, …, t1, t0) does not reduce to P(tn+1|tn, …, t1) for any n≥0. This means that the output ISIs stream cannot be represented as a Markov chain of any finite order.

  8. Broadcast Channels with Delayed Finite-Rate Feedback: Predict or Observe?

    CERN Document Server

    Xu, Jiaming; Jafar, Syed A

    2011-01-01

    Most multiuser precoding techniques require accurate transmitter channel state information (CSIT) to maintain orthogonality between the users. Such techniques have proven quite fragile in time-varying channels because the CSIT is inherently imperfect due to estimation and feedback delay, as well quantization noise. An alternative approach recently proposed by Maddah-Ali and Tse (MAT) allows for significant multiplexing gain in the multi-input single-output (MISO) broadcast channel (BC) even with transmit CSIT that is completely stale, i.e. uncorrelated with the current channel state. With $K$ users, their scheme claims to lose only a $\\log(K)$ factor relative to the full $K$ degrees of freedom (DoF) attainable in the MISO BC with perfect CSIT for large $K$. However, their result does not consider the cost of the feedback, which is potentially very large in high mobility (short channel coherence time). In this paper, we more closely examine the MAT scheme and compare its DoF gain to single user transmission (w...

  9. Delayed Feedback Control of 2D Roll-Cell by Pulsed Jets

    Science.gov (United States)

    Ogawara, Kakuji

    1998-11-01

    Experimental study and numerical experiments were conducted to examine applicability of Pyragas' delayed feedback(DFB) control theory for active control of fluid flow. Although many attempts of turbulence active control have been made, most of those experimental studies experience "out of control" state in the case of using larger feedback gain. In the present study, we assume this "out of control" state as Chaos, and apply chaos control theory to prevent the flow field from falling into "out of control" state. Experiments were carried out for low Reynolds number oil flow in a rectangle thin container, whose aspect ratio is 6:1:0.5. Two pulsed jets were used as actuator in order to keep the circulation of the flow in container constant. Fluid flow was observed using Particle Image Velocimetry (PIV) technology and the flow state was estimated by moving least square (MLS) method. As a result, we found that Pyragas control was effective to prevent chaos for active control fo fluid flow. Numerical simulations were also carried out by using the coupled map lattice(CML). CML is known as a simple model with the essential feature of spatio-temporal chaos. DFB control was applied for CML to examine possibility of active control of turbulence. Simulating results show that the present method can stabilize the whole system of CML.

  10. Delay limit of slow light in an optical fiber

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Yundong [National Key Laboratory of Tunable Laser Technology, Institute of Opto-electronics, Harbin Institute of Technology, Harbin 150080 (China)], E-mail: ydzhang@hit.edu.cn; Qiu Wei; Ye Jianbo; Wang Nan; Wang Jinfang; Tian He; Wang Hao; Yuan Ping [National Key Laboratory of Tunable Laser Technology, Institute of Opto-electronics, Harbin Institute of Technology, Harbin 150080 (China)

    2008-04-07

    We show that coherent population oscillations effect produces a very narrow spectral hole in the absorption spectrum. The large dispersion of the refractive index associated with this hole permits us to achieve a group velocity as low as 1496.25 m/s at room temperature in an erbium-doped fiber. When the input intensity is equal to the saturation intensity, the dispersion is optimal. The optimal dispersion corresponds to the maximum fractional delay. Therefore, the input intensity can be used as a control parameter to increase the fractional delay. Our theoretical results based on population oscillation agree very well with the experimental data. In addition, we confirm that the spectral hole experiences power broadening for optical fibers of different lengths.

  11. Ultra-precision turning of complex spiral optical delay line

    Science.gov (United States)

    Zhang, Xiaodong; Li, Po; Fang, Fengzhou; Wang, Qichang

    2011-11-01

    Optical delay line (ODL) implements the vertical or depth scanning of optical coherence tomography, which is the most important factor affecting the scanning resolution and speed. The spinning spiral mirror is found as an excellent optical delay device because of the high-speed and high-repetition-rate. However, it is one difficult task to machine the mirror due to the special shape and precision requirement. In this paper, the spiral mirror with titled parabolic generatrix is proposed, and the ultra-precision turning method is studied for its machining using the spiral mathematic model. Another type of ODL with the segmental shape is also introduced and machined to make rotation balance for the mass equalization when scanning. The efficiency improvement is considered in details, including the rough cutting with the 5- axis milling machine, the machining coordinates unification, and the selection of layer direction in turning. The onmachine measuring method based on stylus gauge is designed to analyze the shape deviation. The air bearing is used as the measuring staff and the laser interferometer sensor as the position sensor, whose repeatability accuracy is proved up to 10nm and the stable feature keeps well. With this method developed, the complex mirror with nanometric finish of 10.7nm in Ra and the form error within 1um are achieved.

  12. Amplitude Noise Reduction of Ion Lasers with Optical Feedback

    Science.gov (United States)

    Herring, Gregory C.

    2011-01-01

    A reduction in amplitude noise on the output of a multi-mode continuous-wave Ar-ion laser was previously demonstrated when a fraction of the output power was retroreflected back into the laser cavity. This result was reproduced in the present work and a Fabry-Perot etalon was used to monitor the longitudinal mode structure of the laser. A decrease in the number of operating longitudinal cavity modes was observed simultaneously with the introduction of the optical feedback and the onset of the amplitude noise reduction. The noise reduction is a result of a reduced number of lasing modes, resulting in less mode beating and amplitude fluctuations of the laser output power.

  13. Microcantilever Displacement Measurement Using a Mechanically Modulated Optical Feedback Interferometer

    Directory of Open Access Journals (Sweden)

    Francisco J. Azcona

    2016-06-01

    Full Text Available Microcantilever motion detection is a useful tool for the characterization of the physical, chemical and biological properties of materials. In the past, different approaches have been proposed and tested to enhance the behavior, size and simplicity of microcantilever motion detectors. In this paper, a new approach to measure microcantilever motion with nanometric resolution is presented. The proposed approach is based on the concept of mechanically-modulated optical feedback interferometry, a technique that has shown displacement measurement capabilities well within the nanometric scale and that, due to its size, compactness and low cost, may be a suitable choice for measuring nanometric motions in cantilever-like sensors. It will be shown that the sensor, in its current state of development, is capable of following a cantilever sinusoidal trajectory at different sets of frequencies ranging up to 200 Hz and peak to peak amplitudes up to λ / 2 with experimental resolutions in the λ / 100 range.

  14. Effect of feedback on delaying deterioration in quality of compressions during 2 minutes of continuous chest compressions

    DEFF Research Database (Denmark)

    Lyngeraa, Tobias S; Hjortrup, Peter Buhl; Wulff, Nille B

    2012-01-01

    delays deterioration of quality of compressions. METHODS: Participants attending a national one-day conference on cardiac arrest and CPR in Denmark were randomized to perform single-rescuer BLS with (n = 26) or without verbal and visual feedback (n = 28) on a manikin using a ZOLL AED plus. Data were...... was the proportion of delivered compressions within target rate compared over a 2-minute period within the groups and between the groups. Performance variables for 30-second intervals were analyzed and compared. RESULTS: 24 (92%) and 23 (82%) had CPR experience in the group with and without feedback respectively. 14...... (54%) were CPR instructors in the feedback group and 18 (64%) in the group without feedback. Data from 26 and 28 participants were analyzed respectively. Although median values for proportion of delivered compressions within target depth were higher in the feedback group (0-30s: 54.0%; 30-60s: 88...

  15. On utilizing delayed feedback for active-multimode vibration control of cantilever beams

    Science.gov (United States)

    Alhazza, Khaled A.; Nayfeh, Ali H.; Daqaq, Mohammed F.

    2009-01-01

    We present a single-input single-output multimode delayed-feedback control methodology to mitigate the free vibrations of a flexible cantilever beam. For the purpose of controller design and stability analysis, we consider a reduced-order model consisting of the first n vibration modes. The temporal variation of these modes is represented by a set of nonlinearly coupled ordinary-differential equations that capture the evolving dynamics of the beam. Considering a linearized version of these equations, we derive a set of analytical conditions that are solved numerically to assess the stability of the closed-loop system. To verify these conditions, we characterize the stability boundaries using the first two vibration modes and compare them to damping contours obtained by long-time integration of the full nonlinear equations of motion. Simulations show excellent agreement between both approaches. We analyze the effect of the size and location of the piezoelectric patch and the location of the sensor on the stability of the response. We show that the stability boundaries are highly dependent on these parameters. Finally, we implement the controller on a cantilever beam for different controller gain-delay combinations and assess the performance using time histories of the beam response. Numerical simulations clearly demonstrate the controller ability to mitigate vibrations emanating from multiple modes simultaneously.

  16. Controllable optical delay line using a Brillouin optical fiber ring laser

    Institute of Scientific and Technical Information of China (English)

    Yongkang Dong; Zhiwei Lü; Qiang Li; Wei Gao

    2006-01-01

    A controllable optical delay line using a Brillouin optical fiber ring laser is demonstrated and a large timedelay is obtained by cascading two optical fiber segments. In experiment, a single-mode Brillouin opticalfiber ring laser is used to provide Stokes wave as probe wave. We achieve a maximum tunable time delayof 61 ns using two cascading optical fiber segments, about 1.5 times of the input probe pulse width of 40ns. In the meantime, a considerable pulse broadening is observed, which agrees well with the theoreticalprediction based on linear theory.

  17. Long Optical Delay Lines Enhanced by Ring Configuration in Optical Fibres

    Institute of Scientific and Technical Information of China (English)

    DONG Yong-Kang; LU Zhi-Wei; LI Qiang; GAO Wei

    2007-01-01

    A long optically controlled delay line enhanced by ring configuration is demonstrated by using the group-velocity control of signal pulses based on stimulated Brillouin scattering. In experiment, two optical fibre ring cavities are used: one is used as the Brillouin laser, providing single-mode Stokes wave as probe wave; the other is used as the Brillouin amplifier, working as slow light medium. We achieve a maximum time delay of 215ns using the ring Brillouin amplifier, five times larger than the input probe pulse width of 40ns. In the meantime, a considerable pulse broadening is observed, which agrees well with the theoretical prediction based on linear theory.

  18. Simultaneous Computation of Two Independent Tasks Using Reservoir Computing Based on a Single Photonic Nonlinear Node With Optical Feedback.

    Science.gov (United States)

    Nguimdo, Romain Modeste; Verschaffelt, Guy; Danckaert, Jan; Van der Sande, Guy

    2015-12-01

    In this brief, we numerically demonstrate a photonic delay-based reservoir computing system, which processes, in parallel, two independent computational tasks even when the two tasks have unrelated input streams. Our approach is based on a single-longitudinal mode semiconductor ring laser (SRL) with optical feedback. The SRL emits in two directional optical modes. Each directional mode processes one individual task to mitigate possible crosstalk. We illustrate the feasibility of our scheme by analyzing the performance on two benchmark tasks: 1) chaotic time series prediction and 2) nonlinear channel equalization. We identify some feedback configurations for which the results for simultaneous prediction/classification indicate a good performance, but with slight degradation (as compared with the performance obtained for single task processing) due to nonlinear and linear interactions between the two directional modes of the laser. In these configurations, the system performs well on both tasks for a broad range of the parameters.

  19. Direct Tunneling Delay Time Measurement in an Optical Lattice.

    Science.gov (United States)

    Fortun, A; Cabrera-Gutiérrez, C; Condon, G; Michon, E; Billy, J; Guéry-Odelin, D

    2016-07-01

    We report on the measurement of the time required for a wave packet to tunnel through the potential barriers of an optical lattice. The experiment is carried out by loading adiabatically a Bose-Einstein condensate into a 1D optical lattice. A sudden displacement of the lattice by a few tens of nanometers excites the micromotion of the dipole mode. We then directly observe in momentum space the splitting of the wave packet at the turning points and measure the delay between the reflected and the tunneled packets for various initial displacements. Using this atomic beam splitter twice, we realize a chain of coherent micron-size Mach-Zehnder interferometers at the exit of which we get essentially a wave packet with a negative momentum, a result opposite to the prediction of classical physics.

  20. Optical feedback characteristics in a helium neon laser with a birefringent internal cavity

    Institute of Scientific and Technical Information of China (English)

    Mao Wei; Zhang Shu-Lian; Xu Ting; Wan Xin-Jun; Liu Gang

    2007-01-01

    The output characteristics of optical feedback in a helium-neon laser with a birefringent internal cavity are studied systematically in five different regions of the gain curve for the two orthogonally polarized modes. When the laser operates in the two end regions of the laser gain curve, one of the two orthogonally polarized modes will be a leading one in optical feedback. Strong mode competition can be observed. However, when the laser operates in the middle region of the laser gain curve, the two modes can oscillate equally with optical feedback. Besides the intensity of the two polarized lights, the total light intensity is also studied at the same time. M-shaped optical feedback curves are found. Particularly, when the average intensities of the two lights are comparable, the intensity modulation curve of the total light is doubled, which can be used to improve the resolution of an optical feedback system.

  1. Stability and Feedback Design of a Class of Time-Delay Systems with Discontinuity: Functional Differential Inclusion-Based Approach

    Science.gov (United States)

    Zhang, Jiangyan; Shen, Tielong

    To analyze and synthesize time-delay systems with discontinuity, the framework of differential inclusion in the sense of Filippov is extended to functional differential inclusion. Based on the extension, the concept of Filippov solution is introduced for the time-delay systems with discontinuity at first, and then it is shown that both the Lyapunov stability and the LaSalle invariance principle results can be extended to such kind of systems. Moreover, by using the proposed analysis tools, a stabilization feedback design approach is proposed for a class of nonlinear time-delay systems with discontinuity. Simulation results of numerical examples are given to demonstrate the proposed control approaches.

  2. The Effect of Online Gaming, Cognition and Feedback Type in Facilitating Delayed Achievement of Different Learning Objectives

    Science.gov (United States)

    Cameron, Brian; Dwyer, Francis

    2005-01-01

    Online and computer-based instructional gaming is becoming a viable instructional strategy at all levels of education. The purpose of this study was to examine the effect of (a) gaming, (b) gaming plus embedded questions, and (c) gaming plus questions plus feedback on delayed retention of different types of educational objectives for students…

  3. Attractivity in a Delayed Three-species Ratio-dependent Predator-prey System without Dominating Instantaneous Negative Feedback

    Institute of Scientific and Technical Information of China (English)

    Rui Xu; Lan-sun Chen; M.A.J. Chaplain

    2003-01-01

    A delayed three-species ratio-dependent predator-prey food-chain model without dominating instantaneous negative feedback is investigated. It is shown that the system is permanent under some appropriate conditions, and sufficient conditions are derived for the global attractivity of the positive equilibrium of the system.

  4. Stabilization of a semilinear wave equation with variable coefficients and a delay term in the boundary feedback

    Directory of Open Access Journals (Sweden)

    Jing Li

    2013-04-01

    Full Text Available We study the uniform stabilization of a semilinear wave equation with variable coefficients and a delay term in the boundary feedback. The Riemannian geometry method is applied to prove the exponential stability of the system by introducing an equivalent energy function.

  5. Note on the Persistent Property of a Discrete Lotka-Volterra Competitive System with Delays and Feedback Controls

    Directory of Open Access Journals (Sweden)

    Kong Xiangzeng

    2010-01-01

    Full Text Available A nonautonomous -species discrete Lotka-Volterra competitive system with delays and feedback controls is considered in this work. Sufficient conditions on the coefficients are given to guarantee that all the species are permanent. It is shown that these conditions are weaker than those of Liao et al. 2008.

  6. Decentralised adaptive output feedback stabilisation for stochastic time-delay systems via LaSalle-Yoshizawa-type theorem

    Science.gov (United States)

    Jiao, Ticao; Xu, Shengyuan; Lu, Junwei; Wei, Yunliang; Zou, Yun

    2016-01-01

    This paper deals with the decentralised output feedback stabilisation problem for a class of large-scale stochastic time-delay nonlinear systems. A general theorem is firstly given to guarantee the global existence and uniqueness of the solution for stochastic time-delay systems. In addition, a stochastic version of the well-known LaSalle-Yoshizawa theorem with time-varying delay is initially proposed for the controller design and stability analysis. Then, for a class of large-scale stochastic systems with time-varying delays, totally decentralised adaptive delay-dependent controllers are designed by using K-filter and backstepping approach. Via LaSalle-Yoshizawa-type theorem and constructing a general Lyapunov function, it is shown that all signals in the closed-loop system are bounded almost surely and the solution is almost surely asymptotically stable. Finally, a simulation example is given to illustrate the effectiveness of the results of this paper.

  7. General Purpose Digital Signal Processing VME-Module for 1-Turn Delay Feedback Systems of the CERN Accelerator Chain

    CERN Document Server

    Rossi, V

    2010-01-01

    In the framework of the LHC project and the modifications of the SPS as its injector, the concept has been developed of a global digital signal processing unit (DSPU) that implements in numerical form the architecture of low-level RF systems. Since 2002 a Digital Notch Filter with programmable delay for the SPS Transverse Damper has been fully operational with fixed target and LHC-type beams circulating in the SPS. The approach, using an FPGA as core for the low-level system, is very flexible and allows the upgrade of the signal processing by modification of the original firmware. The development for the LHC 1-Turn delay Feedback has benefited from the same methodology and similar technology. The achieved performances of the LHC 1-Turn delay Feedback are compared with project requirements. The project flow for the recent LHC 1-T Feedback allows synergy with several other applications. The CERN PS Transverse Damper DSPU, with automatic delay compensation adapting the loop delay to the time of flight of the par...

  8. Exponential synchronization of discontinuous neural networks with time-varying mixed delays via state feedback and impulsive control.

    Science.gov (United States)

    Yang, Xinsong; Cao, Jinde; Ho, Daniel W C

    2015-04-01

    This paper investigates drive-response synchronization for a class of neural networks with time-varying discrete and distributed delays (mixed delays) as well as discontinuous activations. Strict mathematical proof shows the global existence of Filippov solutions to neural networks with discontinuous activation functions and the mixed delays. State feedback controller and impulsive controller are designed respectively to guarantee global exponential synchronization of the neural networks. By using Lyapunov function and new analysis techniques, several new synchronization criteria are obtained. Moreover, lower bound on the convergence rate is explicitly estimated when state feedback controller is utilized. Results of this paper are new and some existing ones are extended and improved. Finally, numerical simulations are given to verify the effectiveness of the theoretical results.

  9. Implementation and Tuning of an Optical Tweezers Force-Clamp Feedback System.

    Science.gov (United States)

    Bugiel, Michael; Jannasch, Anita; Schäffer, Erik

    2017-01-01

    Feedback systems can be used to control the value of a system variable. In optical tweezers, active feedback is often implemented to either keep the position or tension applied to a single biomolecule constant. Here, we describe the implementation of the latter: an optical force-clamp setup that can be used to study the motion of processive molecular motors under a constant load. We describe the basics of a software-implemented proportional-integral-derivative (PID) controller, how to tune it, and how to determine its optimal feedback rate. Limitations, possible feed-forward applications, and extensions into two- and three-dimensional optical force clamps are discussed. The feedback is ultimately limited by thermal fluctuations and the compliance of the involved molecules. To investigate a particular mechanical process, understanding the basics and limitations of the feedback system will be helpful for choosing the proper feedback hardware, for optimizing the system parameters, and for the design of the experiment.

  10. Spectral Shaping in Rapid Scanning Optical Delay Line of Optical Coherence Tomography

    Institute of Scientific and Technical Information of China (English)

    吴继刚; 薛平; 孙汕; 郭继华

    2003-01-01

    A small spatial optical filter is put into the rapid-scanning optical delay line (RSOD) to shape the spectrum of the reference beam in optical coherence tomography (OCT). The experimental results show that the 1ongitudinal resolution can be improved by a factor of 81% with this method, while at the same time, the signal-to-noise ratio of the OCT system is not much affected. This method can be used in OCT systems that use RSOD as the reference arm with a light source of superluminescent diodes, femtosecond lasers and crystal fibre as well.

  11. Adaptive fuzzy output-feedback controller design for nonlinear time-delay systems with unknown control direction.

    Science.gov (United States)

    Hua, Chang-Chun; Wang, Qing-Guo; Guan, Xin-Ping

    2009-04-01

    In this paper, the robust-control problem is investigated for a class of uncertain nonlinear time-delay systems via dynamic output-feedback approach. The considered system is in the strict-feedback form with unknown control direction. A full-order observer is constructed with the gains computed via linear matrix inequality at first. Then, with the bounds of uncertain functions known, we design the dynamic output-feedback controller such that the closed-loop system is asymptotically stable. Furthermore, when the bound functions of uncertainties are not available, the adaptive fuzzy-logic system is employed to approximate the uncertain function, and the corresponding output-feedback controller is designed. It is shown that the resulting closed-loop system is stable in the sense of semiglobal uniform ultimate boundedness. Finally, simulations are done to verify the feasibility and effectiveness of the obtained theoretical results.

  12. Microwave photonic true time delay based on cross gain modulation in semiconductor optical amplifiers

    DEFF Research Database (Denmark)

    Xue, Weiqi; Mørk, Jesper

    2010-01-01

    We experimentally demonstrate microwave time delays in a semiconductor optical amplifier by cross gain modulation. In the counter-propagation configuration, ~10.5ps tunable true time delay over a microwave bandwidth of several tens of GHz is obtained.......We experimentally demonstrate microwave time delays in a semiconductor optical amplifier by cross gain modulation. In the counter-propagation configuration, ~10.5ps tunable true time delay over a microwave bandwidth of several tens of GHz is obtained....

  13. Enhancing a slow and weak optomechanical nonlinearity with delayed quantum feedback to implement a CPHASE gate

    CERN Document Server

    Wang, Zhaoyou

    2016-01-01

    We show that the effective optical nonlinearity of a cavity optomechanical system can be used to implement quantum gates between propagating photons. By using quantum feedback, we can enhance a slow and small optical nonlinearity to generate a large nonlinear phase shift between two spatially separated temporal modes of a propagating electromagnetic field. This allows us to implement a CPHASE gate between the two modes. After presenting a semiclassical derivation of the operation of the gate, we verify the result by a full simulation of the state of the quantum field in the waveguide coupled to a cavity. To efficiently solve the Schr\\"odinger equation of the full system, we develop a matrix product state approach that keeps track of the entangled full quantum state of the coupled system. These simulations verify the operation of the gate in the weak coupling regime where the semiclassical approximation is valid. In addition, we observe a major reduction in gate fidelity as we approach the vacuum strong coupli...

  14. Error-resilient low-delay H.264/802.11 transmission via cross-layer coding with feedback channel

    Science.gov (United States)

    Chiew, Tuan-Kiang; Hill, Paul; Ferre, Pierre; Agrafiotis, Dimitris; Chung-How, James T. H.; Nix, Andy; Bull, David R.

    2005-07-01

    We propose a method of providing error resilient H.264 video over 802.11 wireless channels by using a feedback mechanism which does not incur an additional delay typically found in ARQ-type feedback. Our system uses the TCP/IP and UDP/IP protocols, located between the medium access control (MAC) layer of 802.11, and the H.264 video application layer. The UDP protocol is used to transfer time sensitive video data without delay; however, packet losses introduce excessive artifacts which propagate to subsequent frames. Error resilience is achieved by a feedback mechanism-the decoder conveys the packet-loss information as small TCP packets to the video source as negative acknowledgements. By using multiple reference frames, slice-based coding and timely intra-refresh, the encoder makes use of this feedback information to perform subsequent temporal prediction without propagating the error to future frames. We take static measurements of the actual channel and use the packet loss and delay patterns to test our algorithms. Simulations show an improvement of 0.5~5 dB in PSNR over plain UDP-based video transmission. Our method improves the overall quality of service of interactive video transmission over wireless LAN; it can be used as a model for future media-aware wireless network protocol designs.

  15. Predictive wavefront control for adaptive optics with arbitrary control loop delays.

    Science.gov (United States)

    Poyneer, Lisa; Véran, Jean-Pierre

    2008-07-01

    We present a modification of the closed-loop state space model for adaptive optics control that allows delays that are a noninteger multiple of the system frame rate. We derive the new forms of the predictive Fourier control Kalman filters for arbitrary delays and show that they are linear combinations of the whole-frame delay terms. This structure of the controller is independent of the delay. System stability margins and residual error variance both transition gracefully between integer-frame delays.

  16. Time-Delay Interferometry with optical frequency comb

    CERN Document Server

    Tinto, Massimo

    2015-01-01

    Heterodyne laser phase measurements in a space-based gravitational wave interferometer are degraded by the phase fluctuations of the onboard clocks, resulting in unacceptable sensitivity performance levels of the interferometric data. In order to calibrate out the clock phase noises it has been previously suggested that additional inter-spacecraft phase measurements must be performed by modulating the laser beams. This technique, however, considerably increases system complexity and probability of subsystem failure. With the advent of self-referenced optical frequency combs, it is possible to generate the heterodyne microwave signal that is coherently referenced to the onboard laser. We show in this case that the microwave noise can be cancelled directly by applying modified second-generation Time-Delay Interferometric combinations to the heterodyne phase measurements. This approach avoids use of modulated laser beams as well as the need of additional ultra-stable oscillator clocks.

  17. Implementation of Nonlinear Control Laws for an Optical Delay Line

    Science.gov (United States)

    Hench, John J.; Lurie, Boris; Grogan, Robert; Johnson, Richard

    2000-01-01

    This paper discusses the implementation of a globally stable nonlinear controller algorithm for the Real-Time Interferometer Control System Testbed (RICST) brassboard optical delay line (ODL) developed for the Interferometry Technology Program at the Jet Propulsion Laboratory. The control methodology essentially employs loop shaping to implement linear control laws. while utilizing nonlinear elements as means of ameliorating the effects of actuator saturation in its coarse, main, and vernier stages. The linear controllers were implemented as high-order digital filters and were designed using Bode integral techniques to determine the loop shape. The nonlinear techniques encompass the areas of exact linearization, anti-windup control, nonlinear rate limiting and modal control. Details of the design procedure are given as well as data from the actual mechanism.

  18. Dynamic Analysis of a High-Static-Low-Dynamic-Stiffness Vibration Isolator with Time-Delayed Feedback Control

    Directory of Open Access Journals (Sweden)

    Yong Wang

    2015-01-01

    Full Text Available This paper proposes the time-delayed cubic velocity feedback control strategy to improve the isolation performance of High-Static-Low-Dynamic-Stiffness (HSLDS vibration isolator. Firstly, the primary resonance of the controlled HSLDS vibration isolator is obtained by using multiple scales method. The equivalent damping ratio and equivalent resonance frequency are defined to study the effects of feedback gain and time delay on the primary resonance. The jump phenomenon analysis of the controlled system without and with time delay is investigated by using Sylvester resultant method and optimization method, respectively. The stability analysis of the controlled system is also considered. Then, the 1/3 subharmonic resonance of the controlled system is studied by using multiple scales method. The effects of feedback gain and time delay on the 1/3 subharmonic resonance are also presented. Finally, force transmissibility is proposed to evaluate the performance of the controlled system and compared with an equivalent linear passive vibration isolator. The results show that the vibration amplitude of the controlled system around the resonance frequency region decreases and the isolation frequency band is larger compared to the equivalent one. A better isolation performance in the high frequency band can be achieved compared to the passive HSLDS vibration isolator.

  19. Effect of feedback on delaying deterioration in quality of compressions during 2 minutes of continuous chest compressions: a randomized manikin study investigating performance with and without feedback

    Directory of Open Access Journals (Sweden)

    Lyngeraa Tobias

    2012-02-01

    Full Text Available Abstract Background Good quality basic life support (BLS improves outcome following cardiac arrest. As BLS performance deteriorates over time we performed a parallel group, superiority study to investigate the effect of feedback on quality of chest compression with the hypothesis that feedback delays deterioration of quality of compressions. Methods Participants attending a national one-day conference on cardiac arrest and CPR in Denmark were randomized to perform single-rescuer BLS with (n = 26 or without verbal and visual feedback (n = 28 on a manikin using a ZOLL AED plus. Data were analyzed using Rescuenet Code Review. Blinding of participants was not possible, but allocation concealment was performed. Primary outcome was the proportion of delivered compressions within target depth compared over a 2-minute period within the groups and between the groups. Secondary outcome was the proportion of delivered compressions within target rate compared over a 2-minute period within the groups and between the groups. Performance variables for 30-second intervals were analyzed and compared. Results 24 (92% and 23 (82% had CPR experience in the group with and without feedback respectively. 14 (54% were CPR instructors in the feedback group and 18 (64% in the group without feedback. Data from 26 and 28 participants were analyzed respectively. Although median values for proportion of delivered compressions within target depth were higher in the feedback group (0-30 s: 54.0%; 30-60 s: 88.0%; 60-90 s: 72.6%; 90-120 s: 87.0%, no significant difference was found when compared to without feedback (0-30 s: 19.6%; 30-60 s: 33.1%; 60-90 s: 44.5%; 90-120 s: 32.7% and no significant deteriorations over time were found within the groups. In the feedback group a significant improvement was found in the proportion of delivered compressions below target depth when the subsequent intervals were compared to the first 30 seconds (0-30 s: 3.9%; 30-60 s: 0.0%; 60-90 s: 0

  20. Further results on global state feedback stabilization of high-order nonlinear systems with time-varying delays.

    Science.gov (United States)

    Gao, Fangzheng; Wu, Yuqiang

    2015-03-01

    This paper considers the problem of global stabilization by state feedback for a class of high-order nonlinear systems with time-varying delays. Comparing with the existing relevant literature, the systems under investigation allow more uncertainties, to which the existing control methods are inapplicable. By introducing sign function and necessarily modifying the method of adding a power integrator, a state feedback controller is successfully constructed to preserve the equilibrium at the origin and guarantee the global asymptotic stability of the resulting closed-loop system. Finally, two simulation examples are provided to illustrate the effectiveness of the proposed approach.

  1. An all-optical time-delay relay based n a bacteriorhodopsin film

    Institute of Scientific and Technical Information of China (English)

    Chen Gui-Ying; Xu Xu-Xu; Zhang Chun-Ping; Qi Shen-Wen; Song Qi-Wang

    2008-01-01

    Using a special property of dynamic complementary-suppression-modulated transmission (DCSMT) in the bacteriorhodopsin (bR) film,we have demonstrated an all-optical time-delay relay.To extend our work,the relationship between the delay time of the all-optical time-delay relay and parameters of a bR film is numerically studied.We show how the delay time changes with the product of concentration and thickness (PCT) of a bR film.Furthermore,the shortest and longest delay times are given for the relay of 'switch off'.The saturable delay time and maximum delaytime of 'switch on' are also given.How the wavelengths (632.8,568,533 and 412 nm) and intensities of the illuminating light influence the delay time is also discussed.The simulation results are useful for optimizing the design of all-optical time-delay relays.

  2. Finite-time robust stabilization of uncertain delayed neural networks with discontinuous activations via delayed feedback control.

    Science.gov (United States)

    Wang, Leimin; Shen, Yi; Sheng, Yin

    2016-04-01

    This paper is concerned with the finite-time robust stabilization of delayed neural networks (DNNs) in the presence of discontinuous activations and parameter uncertainties. By using the nonsmooth analysis and control theory, a delayed controller is designed to realize the finite-time robust stabilization of DNNs with discontinuous activations and parameter uncertainties, and the upper bound of the settling time functional for stabilization is estimated. Finally, two examples are provided to demonstrate the effectiveness of the theoretical results.

  3. Multimode optical feedback dynamics of InAs/GaAs quantum-dot lasers emitting on different lasing states

    Science.gov (United States)

    Huang, H.; Arsenijević, D.; Schires, K.; Sadeev, T.; Bimberg, D.; Grillot, F.

    2016-12-01

    Quantum dot lasers are envisioned to be the next generation of optical transmitters used for short-reach communication links, owing to their low threshold current and high temperature operation. However, in a context of steady increase in both speed and reach, quantum dot lasers emitting on their upper energy levels have been recently of greater interest as they are touted for their faster modulation dynamics. This work aims at further evaluating the potential impact of such lasers in communication links by characterizing their long-delay optical feedback responses as well as the role of the lasing states on the multimode dynamics of InAs/GaAs quantum-dot Fabry-Perot devices sharing the same design. Results unveil that the excited-state laser shows a much larger sensitivity to optical feedback, with a more complex route to chaos, and a first destabilization point occurring at lower feedback strengths than for a comparable ground-state laser, which remains almost unaffected.

  4. Chaos synchronization in vertical-cavity surface-emitting laser based on rotated polarization-preserved optical feedback

    Science.gov (United States)

    Nazhan, Salam; Ghassemlooy, Zabih; Busawon, Krishna

    2016-01-01

    In this paper, the influence of the rotating polarization-preserved optical feedback on the chaos synchronization of a vertical-cavity surface-emitting laser (VCSEL) is investigated experimentally. Two VCSELs' polarization modes (XP) and (YP) are gradually rotated and re-injected back into the VCSEL. The anti-phase dynamics synchronization of the two polarization modes is evaluated using the cross-correlation function. For a fixed optical feedback, a clear relationship is found between the cross-correlation coefficient and the polarization angle θp. It is shown that high-quality anti-phase polarization-resolved chaos synchronization is achieved at higher values of θp. The maximum value of the cross-correlation coefficient achieved is -0.99 with a zero time delay over a wide range of θp beyond 65° with a poor synchronization dynamic at θp less than 65°. Furthermore, it is observed that the antiphase irregular oscillation of the XP and YP modes changes with θp. VCSEL under the rotating polarization optical feedback can be a good candidate as a chaotic synchronization source for a secure communication system.

  5. Chaos synchronization in vertical-cavity surface-emitting laser based on rotated polarization-preserved optical feedback

    Energy Technology Data Exchange (ETDEWEB)

    Nazhan, Salam; Ghassemlooy, Zabih; Busawon, Krishna [Optical Communications Research Group, NCRLab, Faculty of Engineering and Environment, Northumbria University, Newcastle upon Tyne (United Kingdom)

    2016-01-15

    In this paper, the influence of the rotating polarization-preserved optical feedback on the chaos synchronization of a vertical-cavity surface-emitting laser (VCSEL) is investigated experimentally. Two VCSELs' polarization modes (XP) and (YP) are gradually rotated and re-injected back into the VCSEL. The anti-phase dynamics synchronization of the two polarization modes is evaluated using the cross-correlation function. For a fixed optical feedback, a clear relationship is found between the cross-correlation coefficient and the polarization angle θ{sub p}. It is shown that high-quality anti-phase polarization-resolved chaos synchronization is achieved at higher values of θ{sub p}. The maximum value of the cross-correlation coefficient achieved is −0.99 with a zero time delay over a wide range of θ{sub p} beyond 65° with a poor synchronization dynamic at θ{sub p} less than 65°. Furthermore, it is observed that the antiphase irregular oscillation of the XP and YP modes changes with θ{sub p}. VCSEL under the rotating polarization optical feedback can be a good candidate as a chaotic synchronization source for a secure communication system.

  6. Control of Halo-Chaos in Beam Transport Network via Neural Network Adaptation with Time-Delayed Feedback

    Institute of Scientific and Technical Information of China (English)

    FANG Jin-Qing; LUO Xiao-Shu; HUANG Guo-Xian

    2006-01-01

    Subject of the halo-chaos control in beam transport networks (channels) has become a key concerned issue for many important applications of high-current proton beam since 1990'. In this paper, the magnetic field adaptive control based on the neuralnetwork with time-delayed feedback is proposed for suppressing beam halo-chaos in the beam transport network with periodic focusing channels. The envelope radius of high-current proton beam is controlled to reach the matched beam radius by suitably selecting the control structure and parameter of the neural network, adjusting the delayed-time and control coefficient of the neural network.

  7. Absolute frequency synthesis of pulsed coherent light waves through phase-modulation active optical feedback.

    Science.gov (United States)

    Shimizu, K; Horiguchi, T; Koyamada, Y

    1996-11-15

    A novel method for the broadband absolute frequency synthesis of pulsed coherent lightwaves is demonstrated. It is based on pulse recirculation around an active optical feedback ring containing a delay-line fiber, an external phase modulator, an acousto-optic frequency shifter (AOFS), and a high-finesse Fabry-Perot étalon. The modulation frequency F(M) and the frequency shift F(AO) that are due to AOFS are designed so that their sum or difference equals the free-spectral range of the étalon and F(AO) is set at larger than the half-width at full maximum of its resonant peaks. If one of the peak frequencies is tuned to the frequency of the initial pulse, the frequency of the recirculating pulse jumps to the next peak for each round trip. In the experiment the absolute frequency is synthesized over a frequency span of 700 GHz around the initial stabilized frequency of the master laser.

  8. Robust Output Feedback Control for Active Seat Suspension Systems with Actuator Time Delay Using µ-Synthesis Approach

    Directory of Open Access Journals (Sweden)

    Mohammad Gudarzi

    2013-10-01

    Full Text Available This study presents a robust output feedback optimal H&infin control synthesis for a class of uncertain seat suspension systems with actuator saturation and an uncertain actuator time delay. A vertical vibration model of human body is added in order to make the modeling of seat suspension systems more accurate. A dynamic controller is considered by using of two measurable states of the model, by real sensors, as output feedback. Moreover, uncertain actuator time delay is considered to guarantee robust performance of the closed-loop system. The controller is derived by using D-K iteration algorithm for constrained systems with norm-bounded uncertainties. The corresponding closed-loop system is asymptotically stable with a guaranteed H&infin performance. Finally, a design example is presented to show the performance and robustness of the developed theoretical results.

  9. Outage probability of dual-hop partial relay selection with feedback delay in the presence of interference

    KAUST Repository

    Al-Qahtani, Fawaz S.

    2011-09-01

    In this paper, we investigate the outage performance of a dual-hop relaying systems with partial relay selection and feedback delay. The analysis considers the case of Rayleigh fading channels when the relaying station as well as the destination undergo mutually independent interfering signals. Particularly, we derive the cumulative distribution function (c.d.f.) of a new type of random variable involving sum of multiple independent exponential random variables, based on which, we present closed-form expressions for the exact outage probability of a fixed amplify-and-forward (AF) and decode-and-forward (DF) relaying protocols. Numerical results are provided to illustrate the joint effect of the delayed feedback and co-channel interference on the outage probability. © 2011 IEEE.

  10. The Effect of Feedback Delay and Feedback Type on Perceptual Category Learning: The Limits of Multiple Systems

    Science.gov (United States)

    Dunn, John C.; Newell, Ben R.; Kalish, Michael L.

    2012-01-01

    Evidence that learning rule-based (RB) and information-integration (II) category structures can be dissociated across different experimental variables has been used to support the view that such learning is supported by multiple learning systems. Across 4 experiments, we examined the effects of 2 variables, the delay between response and feedback…

  11. Note on the Persistence of a Nonautonomous Lotka-Volterra Competitive System with Infinite Delay and Feedback Controls

    Directory of Open Access Journals (Sweden)

    Chunling Shi

    2014-01-01

    Full Text Available We study a nonautonomous Lotka-Volterra competitive system with infinite delay and feedback controls. We establish a series of criteria under which a part of n-species of the systems is driven to extinction while the remaining part of the species is persistent. Particularly, as a special case, a series of new sufficient conditions on the persistence for all species of system are obtained. Several examples together with their numerical simulations show the feasibility of our main results.

  12. Rolling bearing fault diagnosis based on time-delayed feedback monostable stochastic resonance and adaptive minimum entropy deconvolution

    Science.gov (United States)

    Li, Jimeng; Li, Ming; Zhang, Jinfeng

    2017-08-01

    Rolling bearings are the key components in the modern machinery, and tough operation environments often make them prone to failure. However, due to the influence of the transmission path and background noise, the useful feature information relevant to the bearing fault contained in the vibration signals is weak, which makes it difficult to identify the fault symptom of rolling bearings in time. Therefore, the paper proposes a novel weak signal detection method based on time-delayed feedback monostable stochastic resonance (TFMSR) system and adaptive minimum entropy deconvolution (MED) to realize the fault diagnosis of rolling bearings. The MED method is employed to preprocess the vibration signals, which can deconvolve the effect of transmission path and clarify the defect-induced impulses. And a modified power spectrum kurtosis (MPSK) index is constructed to realize the adaptive selection of filter length in the MED algorithm. By introducing the time-delayed feedback item in to an over-damped monostable system, the TFMSR method can effectively utilize the historical information of input signal to enhance the periodicity of SR output, which is beneficial to the detection of periodic signal. Furthermore, the influence of time delay and feedback intensity on the SR phenomenon is analyzed, and by selecting appropriate time delay, feedback intensity and re-scaling ratio with genetic algorithm, the SR can be produced to realize the resonance detection of weak signal. The combination of the adaptive MED (AMED) method and TFMSR method is conducive to extracting the feature information from strong background noise and realizing the fault diagnosis of rolling bearings. Finally, some experiments and engineering application are performed to evaluate the effectiveness of the proposed AMED-TFMSR method in comparison with a traditional bistable SR method.

  13. Frequency-domain criterion for the chaos synchronization of time-delay power systems under linear feedback control

    Indian Academy of Sciences (India)

    Qian Lin; Xiaofeng Wu; Yun Chen

    2015-12-01

    This paper studies the global synchronization of non-autonomous, time-delay, chaotic power systems via linear state-error feedback control. The frequency domain criterion and the LMI criterion are proposed and applied to design the coupling matrix. Some algebraic criteria via a single-variable linear coupling are derived and formulated in simple algebraic inequalities. The effectiveness of the new criteria is illustrated with numerical examples.

  14. Athermalization of resonant optical devices via thermo-mechanical feedback

    Science.gov (United States)

    Rakich, Peter; Nielson, Gregory N.; Lentine, Anthony L.

    2016-01-19

    A passively athermal photonic system including a photonic circuit having a substrate and an optical cavity defined on the substrate, and passive temperature-responsive provisions for inducing strain in the optical cavity of the photonic circuit to compensate for a thermo-optic effect resulting from a temperature change in the optical cavity of the photonic circuit. Also disclosed is a method of passively compensating for a temperature dependent thermo-optic effect resulting on an optical cavity of a photonic circuit including the step of passively inducing strain in the optical cavity as a function of a temperature change of the optical cavity thereby producing an elasto-optic effect in the optical cavity to compensate for the thermo-optic effect resulting on an optical cavity due to the temperature change.

  15. Optical feedback in dfb quantum cascade laser for mid-infrared cavity ring-down spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Terabayashi, Ryohei, E-mail: terabayashi.ryouhei@h.mbox.nagoya-u.ac.jp; Sonnenschein, Volker, E-mail: volker@nagoya-u.jp; Tomita, Hideki, E-mail: tomita@nagoya-u.jp; Hayashi, Noriyoshi, E-mail: hayashi.noriyoshi@h.mbox.nagoya-u.ac.jp; Kato, Shusuke, E-mail: katou.shuusuke@f.mbox.nagoya-u.ac.jp; Jin, Lei, E-mail: kin@nuee.nagoya-u.ac.jp; Yamanaka, Masahito, E-mail: yamanaka@nuee.nagoya-u.ac.jp; Nishizawa, Norihiko, E-mail: nishizawa@nuee.nagoya-u.ac.jp [Nagoya University, Department of Quantum Engineering, Graduate School of Engineering (Japan); Sato, Atsushi, E-mail: atsushi.sato@sekisui.com; Nozawa, Kohei, E-mail: kohei.nozawa@sekisui.com; Hashizume, Kenta, E-mail: kenta.hashizume@sekisui.com; Oh-hara, Toshinari, E-mail: toshinari.ohara@sekisui.com [Sekisui Medical Co., Ltd., Drug Development Solutions Center (Japan); Iguchi, Tetsuo, E-mail: t-iguchi@nucl.nagoya-u.ac.jp [Nagoya University, Department of Quantum Engineering, Graduate School of Engineering (Japan)

    2017-11-15

    A simple external optical feedback system has been applied to a distributed feedback quantum cascade laser (DFB QCL) for cavity ring-down spectroscopy (CRDS) and a clear effect of feedback was observed. A long external feedback path length of up to 4m can decrease the QCL linewidth to around 50kHz, which is of the order of the transmission linewidth of our high finesse ring-down cavity. The power spectral density of the transmission signal from high finesse cavity reveals that the noise at frequencies above 20kHz is reduced dramatically.

  16. Amplified feedback DFB laser for 40 Gb/s all-optical clock recovery

    Science.gov (United States)

    Chen, Cheng; Sun, Yu; Zhao, Lingjuan; Pan, Jiaoqing; Qiu, Jifang; Liang, Song; Wang, Wei; Lou, Caiyun

    2011-12-01

    A monolithic integrated amplified feedback semiconductor laser (AFL) was fabricated based on quantum well intermixing (QWI) technique. The AFL works as a self-pulsation laser. It consists of a gain-coupled multiple quantum well distribute feedback (DFB) laser diode (LD) section, a passive phase section and an amplified feedback section. The free-running repetition frequency of the AFL can be tuned from 32 GHz to 51 GHz via controlling the feedback strength. All-optical 40 Gb/s clock recovery was experimentally demonstrated using the AFL with a low timing jitter.

  17. A proposed fibre optic time domain optical coherence tomography system using a micro-photonic stationary optical delay line

    Science.gov (United States)

    Jansz, Paul Vernon; Wild, Graham; Hinckley, Steven

    2008-04-01

    Conventional time domain Optical Coherence Tomography (OCT) relies on a reference Optical Delay Line (ODL). These reference ODLs require the physical movement of a mirror to scan a given depth range. This movement results in instrument degradation. We propose a new optical fibre based time domain OCT system that makes use of a micro-photonic structure as a stationary ODL. The proposed system uses an in-fibre interferometer, either a Michelson or a Mach-Zhender. The reference ODL makes use of a collimator to expand the light from the optical fibre. This is them expanded in one dimension via planar optics, that is, a cylindrical lens based telescope, using a concave and convex lens. The expanded beam is them passed through a transmissive Spatial Light Modulator (SLM), specifically a liquid crystal light valve used as an optical switch. Light is then reflected back through the system off the micro-photonic structure. The micro-photonic structure is a one dimensional array of stagged mirror steps, called a Stepped Mirror Structure (SMS). The system enables the selection of discrete optical delay lengths. The proposed ODL is capable of depth hoping and multicasting. We discuss the fabrication of the SMS, which consists of eight steps, each approximately 150 μm high. A change in notch frequency using an in-fibre Mach Zhender interferometer was used to gauge the average step height. The results gave an average step height of 146 μm.

  18. Rotation Modes Stability Analysis and Phase Compensation for Magnetically Suspended Flywheel Systems with Cross Feedback Controller and Time Delay

    Directory of Open Access Journals (Sweden)

    Yuan Ren

    2016-01-01

    Full Text Available This paper analyzes the effects of time delay on the stability of the rotation modes for the magnetically suspended flywheel (MSFW with strong gyroscopic effects. A multi-input multioutput system is converted into a single-input single-output control system with complex coefficient by variable reconstruction, and the stability equivalence of the systems before and after variable reconstruction is proven. For the rotation modes, the stability limits and corresponding vibration frequencies are found as a function of nondimensional magnetic stiffness and damping and nondimensional parameters of rotor speed and time delay. Additionally, the relationship between cross feedback control system stability and time delay is investigated. And an effective phase compensation method based on cross-channel is further presented. Simulation and experimental results are presented to demonstrate the correctness of the stability analysis method and the superiority of the phase compensation strategy.

  19. Exponential Admissibility and Dynamic Output Feedback Control of Switched Singular Systems with Interval Time-Varying Delay

    Directory of Open Access Journals (Sweden)

    Jinxing Lin

    2010-01-01

    Full Text Available This paper is concerned with the problems of exponential admissibility and dynamic output feedback (DOF control for a class of continuous-time switched singular systems with interval time-varying delay. A full-order, dynamic, synchronously switched DOF controller is considered. First, by using the average dwell time approach, a delay-range-dependent exponential admissibility criterion for the unforced switched singular time-delay system is established in terms of linear matrix inequalities (LMIs. Then, based on this criterion, a sufficient condition on the existence of a desired DOF controller, which guarantees that the closed-loop system is regular, impulse free and exponentially stable, is proposed by employing the LMI technique. Finally, some illustrative examples are given to show the effectiveness of the proposed approach.

  20. Delayed, but not immediate, feedback after multiple-choice questions increases performance on a subsequent short-answer, but not multiple-choice, exam: evidence for the dual-process theory of memory.

    Science.gov (United States)

    Sinha, Neha; Glass, Arnold Lewis

    2015-01-01

    Three experiments, two performed in the laboratory and one embedded in a college psychology lecture course, investigated the effects of immediate versus delayed feedback following a multiple-choice exam on subsequent short answer and multiple-choice exams. Performance on the subsequent multiple-choice exam was not affected by the timing of the feedback on the prior exam; however, performance on the subsequent short answer exam was better following delayed than following immediate feedback. This was true regardless of the order in which immediate versus delayed feedback was given. Furthermore, delayed feedback only had a greater effect than immediate feedback on subsequent short answer performance following correct, confident responses on the prior exam. These results indicate that delayed feedback cues a student's prior response and increases subsequent recollection of that response. The practical implication is that delayed feedback is better than immediate feedback during academic testing.

  1. Non-fragile multi-objective static output feedback control of vehicle active suspension with time-delay

    Science.gov (United States)

    Kong, Yongsu; Zhao, Dingxuan; Yang, Bin; Han, Chenghao; Han, Kyongwon

    2014-07-01

    This paper presents an approach to design a delay-dependent non-fragile H∞/L2-L∞ static output feedback (SOF) controller for active suspension with input time-delay. The control problem of quarter-car active suspension with actuator time-delay is formulated to a H∞/L2-L∞ control problem. By employing a delay-dependent Lyapunov function, new existence conditions of delay-dependent non-fragile SOF H∞ controller and L2-L∞ controller are derived, respectively, in terms of the feasibility of bilinear matrix inequalities (BMIs). Then, a procedure based on linear matrix inequality optimisation and a hybrid algorithm of the particle swarm optimisation and differential evolution is used to solve an optimisation problem with BMI constraints. Design and simulation results of non-fragile H∞/L2-L∞ controller for active suspension show that the designed controller not only can achieve the optimal performance and stability of the closed-loop system in spite of the existence of the actuator time-delay, but also has significantly improved the non-fragility characteristics over controller perturbations.

  2. Current Developments on Optical Feedback Interferometry as an All-Optical Sensor for Biomedical Applications

    Directory of Open Access Journals (Sweden)

    Julien Perchoux

    2016-05-01

    Full Text Available Optical feedback interferometry (OFI sensors are experiencing a consistent increase in their applications to biosensing due to their contactless nature, low cost and compactness, features that fit very well with current biophotonics research and market trends. The present paper is a review of the work in progress at UPC-CD6 and LAAS-CNRS related to the application of OFI to different aspects of biosensing, both in vivo and ex vivo. This work is intended to present the variety of opportunities and potential applications related to OFI that are available in the field. The activities presented are divided into two main sensing strategies: The measurement of optical path changes and the monitoring of flows, which correspond to sensing strategies linked to the reconstruction of changes of amplitude from the interferometric signal, and to classical Doppler frequency measurements, respectively. For optical path change measurements, measurements of transient pulses, usual in biosensing, together with the measurement of large displacements applied to designing palliative care instrumentation for Parkinson disease are discussed. Regarding the Doppler-based approach, progress in flow-related signal processing and applications in real-time monitoring of non-steady flows, human blood flow monitoring and OFI pressure myograph sensing will be presented. In all cases, experimental setups are discussed and results presented, showing the versatility of the technique. The described applications show the wide capabilities in biosensing of the OFI sensor, showing it as an enabler of low-cost, all-optical, high accuracy biomedical applications.

  3. All-Optical flip-flop operation using a SOA and DFB laser diode optical feedback combination

    DEFF Research Database (Denmark)

    D'Oosterlinck, W.; Öhman, Filip; Buron, Jakob Due;

    2007-01-01

    We report on the switching of an all-optical flip-flop consisting of a semiconductor optical amplifier (SOA) and a distributed feedback laser diode (DFB), bidirectionally coupled to each other. Both simulation and experimental results are presented. Switching times as low as 50ps, minimal required...

  4. Tracking with asymptotic sliding mode and adaptive input delay effect compensation of nonlinearly perturbed delayed systems applied to traffic feedback control

    Science.gov (United States)

    Mirkin, Boris; Haddad, Jack; Shtessel, Yuri

    2016-09-01

    Asymptotical sliding mode-model reference adaptive control design for a class of systems with parametric uncertainty, unknown nonlinear perturbation and external disturbance, and with known input and state delays is proposed. To overcome the difficulty to directly predict the plant state under uncertainties, a control design is based on a developed decomposition procedure, where a 'generalised error' in conjunction with auxiliary linear dynamic blocks with adjustable gains is introduced and the sliding variable is formed on the basis of this error. The effect of such a decomposition is to pull the input delay out of first step of the design procedure. As a result, similarly to the classical Smith predictor, the adaptive control architecture based only on the lumped-delays, i.e. without conventional in such cases difficult-implemented distributed-delay blocks. Two new adaptive control schemes are proposed. A linearisation-based control design is constructed for feedback control of an urban traffic region model with uncertain dynamics. Simulation results demonstrate the effectiveness of the developed adaptive control method.

  5. Beam shaping in high-power broad-area quantum cascade lasers using optical feedback

    Science.gov (United States)

    Ferré, Simon; Jumpertz, Louise; Carras, Mathieu; Ferreira, Robson; Grillot, Frédéric

    2017-03-01

    Broad-area quantum cascade lasers with high output powers are highly desirable sources for various applications including infrared countermeasures. However, such structures suffer from strongly deteriorated beam quality due to multimode behavior, diffraction of light and self-focusing. Quantum cascade lasers presenting high performances in terms of power and heat-load dissipation are reported and their response to a nonlinear control based on optical feedback is studied. Applying optical feedback enables to efficiently tailor its near-field beam profile. The different cavity modes are sequentially excited by shifting the feedback mirror angle. Further control of the near-field profile is demonstrated using spatial filtering. The impact of an inhomogeneous gain as well as the influence of the cavity width are investigated. Compared to existing technologies, that are complex and costly, beam shaping with optical feedback is a more flexible solution to obtain high-quality mid-infrared sources.

  6. Two-dimensional optical feedback control of Euglena confined in closed-type microfluidic channels.

    Science.gov (United States)

    Ozasa, Kazunari; Lee, Jeesoo; Song, Simon; Hara, Masahiko; Maeda, Mizuo

    2011-06-07

    We examined two-dimensional (2D) optical feedback control of phototaxis flagellate Euglena cells confined in closed-type microfluidic channels (microaquariums), and demonstrated that the 2D optical feedback enables the control of the density and position of Euglena cells in microaquariums externally, flexibly, and dynamically. Using three types of feedback algorithms, the density of Euglena cells in a specified area can be controlled arbitrarily and dynamically, and more than 70% of the cells can be concentrated into a specified area. Separation of photo-sensitive/insensitive Euglena cells was also demonstrated. Moreover, Euglena-based neuro-computing has been achieved, where 16 imaginary neurons were defined as Euglena-activity levels in 16 individual areas in microaquariums. The study proves that 2D optical feedback control of photoreactive flagellate microbes is promising for microbial biology studies as well as applications such as microbe-based particle transportation in microfluidic channels or separation of photo-sensitive/insensitive microbes.

  7. Beam shaping in high-power broad-area quantum cascade lasers using optical feedback

    Science.gov (United States)

    Ferré, Simon; Jumpertz, Louise; Carras, Mathieu; Ferreira, Robson; Grillot, Frédéric

    2017-01-01

    Broad-area quantum cascade lasers with high output powers are highly desirable sources for various applications including infrared countermeasures. However, such structures suffer from strongly deteriorated beam quality due to multimode behavior, diffraction of light and self-focusing. Quantum cascade lasers presenting high performances in terms of power and heat-load dissipation are reported and their response to a nonlinear control based on optical feedback is studied. Applying optical feedback enables to efficiently tailor its near-field beam profile. The different cavity modes are sequentially excited by shifting the feedback mirror angle. Further control of the near-field profile is demonstrated using spatial filtering. The impact of an inhomogeneous gain as well as the influence of the cavity width are investigated. Compared to existing technologies, that are complex and costly, beam shaping with optical feedback is a more flexible solution to obtain high-quality mid-infrared sources. PMID:28287175

  8. Suppression of phase-induced intensity noise in fibre optic delay line signal processors using an optical phase modulation technique.

    Science.gov (United States)

    Chan, Erwin H W

    2010-10-11

    A technique that can suppress the dominant phase-induced intensity noise in fibre optic delay line signal processors is presented. It is based on phase modulation of the optical carrier to distribute the phase noise at the information band into a high frequency band which can be filtered out. This technique is suitable for suppressing the phase noise in various delay line structures and for integrating in the conventional fibre optic links. It can also suppress the coherent interference effect at the same time. A model for predicting the amount of phase noise reduction in various delay line structures using the optical phase modulation technique is presented for the first time and is experimentally verified. Experimental results demonstrate the technique can achieve a large phase noise reduction in various fibre optic delay line signal processors.

  9. Subwavelength grating enabled on-chip ultra-compact optical true time delay line

    OpenAIRE

    Junjia Wang; Reza Ashrafi; Rhys Adams; Ivan Glesk; Ivana Gasulla; José Capmany; Chen, Lawrence R.

    2016-01-01

    An optical true time delay line (OTTDL) is a basic photonic building block that enables many microwave photonic and optical processing operations. The conventional design for an integrated OTTDL that is based on spatial diversity uses a length-variable waveguide array to create the optical time delays, which can introduce complexities in the integrated circuit design. Here we report the first ever demonstration of an integrated index-variable OTTDL that exploits spatial diversity in an equal ...

  10. Feedback.

    Science.gov (United States)

    Richardson, Barbara K

    2004-12-01

    The emergency department provides a rich environment for diverse patient encounters, rapid clinical decision making, and opportunities to hone procedural skills. Well-prepared faculty can utilize this environment to teach residents and medical students and gain institutional recognition for their incomparable role and teamwork. Giving effective feedback is an essential skill for all teaching faculty. Feedback is ongoing appraisal of performance based on direct observation aimed at changing or sustaining a behavior. Tips from the literature and the author's experience are reviewed to provide formats for feedback, review of objectives, and elements of professionalism and how to deal with poorly performing students. Although the following examples pertain to medical student education, these techniques are applicable to the education of all adult learners, including residents and colleagues. Specific examples of redirection and reflection are offered, and pitfalls are reviewed. Suggestions for streamlining verbal and written feedback and obtaining feedback from others in a fast-paced environment are given. Ideas for further individual and group faculty development are presented.

  11. Lyapunov exponent of chaos generated by acousto-optic modulators with feedback

    Science.gov (United States)

    Ghosh, Anjan K.; Verma, Pramode

    2011-01-01

    Generation of chaos from acousto-optic modulators with an electronic feedback has been studied for several years. Such chaotic signals have an important application in providing secure encryption in free-space optical communication systems. Lyapunov exponent is an important parameter for analysis of chaos generated by a nonlinear system. The Lyapunov exponent of an acousto-optic system is determined and calculated in this paper to understand the dependence of the chaotic response on the system parameters such as bias, feedback gain, input intensity and initial condition exciting the cell. Analysis of chaos using Lyapunov exponent is consistent with bifurcation analysis and is useful in encrypting data signals.

  12. Anti-Swing Control of Gantry and Tower Cranes Using Fuzzy and Time-Delayed Feedback with Friction Compensation

    Directory of Open Access Journals (Sweden)

    H.M. Omar

    2005-01-01

    Full Text Available We designed a feedback controller to automate crane operations by controlling the load position and its swing. First, a PD tracking controller is designed to follow a prescribed trajectory. Then, another controller is added to the control loop to damp the load swing. The anti-swing controller is designed based on two techniques: a time-delayed feedback of the load swing angle and an anti-swing fuzzy logic controller (FLC. The rules of the FLC are generated by mapping the performance of the time-delayed feedback controller. The same mapping method used for generating the rules can be applied to mimic the performance of an expert operator. The control algorithms were designed for gantry cranes and then extended to tower cranes by considering the coupling between the translational and rotational motions. Experimental results show that the controller is effective in reducing load oscillations and transferring the load in a reasonable time. To experimentally validate the theory, we had to compensate for friction. To this end, we estimated the friction and then applied a control action to cancel it. The friction force was estimated by assuming a mathematical model and then estimating the model coefficients using an off-line identification technique, the method of least squares (LS.

  13. Deriving real delay time statistics from the complex delay time statistics in weakly disordered optical media

    OpenAIRE

    Pradhan, Prabhakar; Sahay, Peeyush; Almabadi, Huda M.

    2016-01-01

    Considering the complex reflection amplitude R=|R|exp(i{\\theta}) of a light wave, real delay time {\\tau}_r (i.e., sojourn or Wigner delay time), which is the energy derivative of the real phase ({\\tau}_r =d{\\theta}/cdk), and complex delay time {\\tau}_i , which is the energy derivative of the reflection coefficient ({\\tau}_i=d{\\theta}_i/cdk, |R|=r^1/2=exp(-{\\theta}_i)), have the same statistical form and a mirror image with a shift in time in weak disorder and short length regime. Real delay t...

  14. Compact optically-fed microwave true-time delay using liquid crystal photonic bandgap fiber device

    DEFF Research Database (Denmark)

    Wei, Lei; Xue, Weiqi; Chen, Yaohui

    2009-01-01

    Electrically tunable liquid crystal photonic bandgap fiber device based optically-fed microwave true-time delay is demonstrated. A maximum ~60° phase shift and an averaged ~7.2ps true time delay are obtained over the modulation frequency range 1GHz-19GHz.......Electrically tunable liquid crystal photonic bandgap fiber device based optically-fed microwave true-time delay is demonstrated. A maximum ~60° phase shift and an averaged ~7.2ps true time delay are obtained over the modulation frequency range 1GHz-19GHz....

  15. Compact optically-fed microwave true-time delay using liquid crystal photonic bandgap fiber device

    DEFF Research Database (Denmark)

    Wei, Lei; Xue, Weiqi; Chen, Yaohui;

    2009-01-01

    Electrically tunable liquid crystal photonic bandgap fiber device based optically-fed microwave true-time delay is demonstrated. A maximum ~60° phase shift and an averaged ~7.2ps true time delay are obtained over the modulation frequency range 1GHz-19GHz.......Electrically tunable liquid crystal photonic bandgap fiber device based optically-fed microwave true-time delay is demonstrated. A maximum ~60° phase shift and an averaged ~7.2ps true time delay are obtained over the modulation frequency range 1GHz-19GHz....

  16. Feedback Control Variables Have No Influence on the Permanence of a Discrete n-Species Schoener Competition System with Time Delays

    Directory of Open Access Journals (Sweden)

    Qianqian Su

    2010-01-01

    Full Text Available We consider a discrete n-species Schoener competition system with time delays and feedback controls. By using difference inequality theory, a set of conditions which guarantee the permanence of system is obtained. The results indicate that feedback control variables have no influence on the persistent property of the system. Numerical simulations show the feasibility of our results.

  17. Passive thermo-optic feedback for robust athermal photonic systems

    Science.gov (United States)

    Rakich, Peter T.; Watts, Michael R.; Nielson, Gregory N.

    2015-06-23

    Thermal control devices, photonic systems and methods of stabilizing a temperature of a photonic system are provided. A thermal control device thermally coupled to a substrate includes a waveguide for receiving light, an absorption element optically coupled to the waveguide for converting the received light to heat and an optical filter. The optical filter is optically coupled to the waveguide and thermally coupled to the absorption element. An operating point of the optical filter is tuned responsive to the heat from the absorption element. When the operating point is less than a predetermined temperature, the received light is passed to the absorption element via the optical filter. When the operating point is greater than or equal to the predetermined temperature, the received light is transmitted out of the thermal control device via the optical filter, without being passed to the absorption element.

  18. Constant Delivery Delay Protocol Sequences for the Collision Channel Without Feedback

    OpenAIRE

    Salaun, Lou; Shue Chen, Chung; Chen, Yi; Shing Wong, Wing

    2016-01-01

    International audience; We consider a collision channel model without feedback based on a time-slotted communication channel shared by K users. In this model, packets transmitted in the same time slot collide with each other and are unrecoverable. Each user accesses the channel according to an internal periodical pattern called protocol sequence. Due to the lack of feedback, users cannot synchronize their protocol sequences, leading to unavoidable collisions and varying throughput. Protocol s...

  19. Ultralow-frequency-noise stabilization of a laser by locking to an optical fiber-delay line.

    Science.gov (United States)

    Kéfélian, Fabien; Jiang, Haifeng; Lemonde, Pierre; Santarelli, Giorgio

    2009-04-01

    We report the frequency stabilization of an erbium-doped fiber distributed-feedback laser using an all-fiber-based Michelson interferometer of large arm imbalance. The interferometer uses a 1 km SMF-28 optical fiber spool and an acousto-optic modulator allowing heterodyne detection. The frequency-noise power spectral density is reduced by more than 40 dB for Fourier frequencies ranging from 1 Hz to 10 kHz, corresponding to a level well below 1 Hz2/Hz over the entire range; it reaches 10(-2) Hz2/Hz at 1 kHz. Between 40 Hz and 30 kHz, the frequency noise is shown to be comparable to the one obtained by Pound-Drever-Hall locking to a high-finesse Fabry-Perot cavity. Locking to a fiber delay line could consequently represent a reliable, simple, and compact alternative to cavity stabilization for short-term linewidth reduction.

  20. Reduced-order observer-based output feedback control of nonlinear time-delay systems with prescribed performance

    Science.gov (United States)

    Hua, Changchun; Zhang, Liuliu; Guan, Xinping

    2016-04-01

    This paper studies the problem of output feedback control for a class of nonlinear time-delay systems with prescribed performance. The system is in the form of triangular structure with unmodelled dynamics. First, we introduce a reduced-order observer to provide the estimate of the unmeasured states. Then, by setting a new condition with the performance function, we design the state transformation with prescribed performance control. By employing backstepping method, we construct the output feedback controller. It is proved that the resulting closed-loop system is asymptotically stable and both transient and steady-state performance of the output are preserved with the changing supply function idea. Finally, a simulation example is conducted to show the effectiveness of the main results.

  1. Non-fragile H∞ dynamic output feedback control for uncertain Takagi-Sugeno fuzzy systems with time-varying delay

    Science.gov (United States)

    Huang, Sheng-Juan; Yang, Guang-Hong

    2016-09-01

    This paper mainly focuses on the problem of non-fragile H∞ dynamic output feedback control for a class of uncertain Takagi-Sugeno fuzzy systems with time-varying state delay. Based on a new type of Lyapunov-Krasovskii functional without ignoring any subtle integral terms in the derivatives, a less conservative dynamic output feedback controller with additive gain variations is designed, which guarantees that the closed-loop fuzzy system is asymptotically stable and satisfies a prescribed H∞-performance level. Furthermore, the obtained parameter-dependent conditions are given in terms of solution to a set of linear matrix inequalities, which improve some existing relevant results. Finally, numerical examples are given to illustrate the effectiveness and merits of the proposed method.

  2. Delayed coupling to feedback inhibition during a critical period for the integration of adult-born granule cells.

    Science.gov (United States)

    Temprana, Silvio G; Mongiat, Lucas A; Yang, Sung M; Trinchero, Mariela F; Alvarez, Diego D; Kropff, Emilio; Giacomini, Damiana; Beltramone, Natalia; Lanuza, Guillermo M; Schinder, Alejandro F

    2015-01-07

    Developing granule cells (GCs) of the adult dentate gyrus undergo a critical period of enhanced activity and synaptic plasticity before becoming mature. The impact of developing GCs on the activity of preexisting dentate circuits remains unknown. Here we combine optogenetics, acute slice electrophysiology, and in vivo chemogenetics to activate GCs at different stages of maturation to study the recruitment of local target networks. We show that immature (4-week-old) GCs can efficiently drive distal CA3 targets but poorly activate proximal interneurons responsible for feedback inhibition (FBI). As new GCs transition toward maturity, they reliably recruit GABAergic feedback loops that restrict spiking of neighbor GCs, a mechanism that would promote sparse coding. Such inhibitory loop impinges only weakly in new cohorts of young GCs. A computational model reveals that the delayed coupling of new GCs to FBI could be crucial to achieve a fine-grain representation of novel inputs in the dentate gyrus.

  3. Stochastic thermodynamics of Langevin systems under time-delayed feedback control. II. Nonequilibrium steady-state fluctuations

    Science.gov (United States)

    Rosinberg, M. L.; Tarjus, G.; Munakata, T.

    2017-02-01

    This paper is the second in a series devoted to the study of Langevin systems subjected to a continuous time-delayed feedback control. The goal of our previous paper [Phys. Rev. E 91, 042114 (2015), 10.1103/PhysRevE.91.042114] was to derive second-law-like inequalities that provide bounds to the average extracted work. Here we study stochastic fluctuations of time-integrated observables such as the heat exchanged with the environment, the extracted work, or the (apparent) entropy production. We use a path-integral formalism and focus on the long-time behavior in the stationary cooling regime, stressing the role of rare events. This is illustrated by a detailed analytical and numerical study of a Langevin harmonic oscillator driven by a linear feedback.

  4. Asynchronous H∞ Dynamic Output Feedback Control of Switched Time-Delay Systems with Sensor Nonlinearity and Missing Measurements

    Directory of Open Access Journals (Sweden)

    Jiwei Wen

    2014-01-01

    Full Text Available The H∞ dynamic output feedback control problem for a class of discrete-time switched time-delay systems under asynchronous switching is investigated in this paper. Sensor nonlinearity and missing measurements are considered when collecting output knowledge of the system. Firstly, when there exists asynchronous switching between the switching modes and the candidate controllers, new results on the regional stability and l2 gain analysis for the underlying system are given by allowing the Lyapunov-like function (LLF to increase with a random probability. Then, a mean square stabilizing output feedback controller and a switching law subject to average dwell time (ADT are obtained with a given disturbance attenuation level. Moreover, the mean square domain of attraction could be estimated by a convex combination of a set of ellipsoids, the number of which depends on the number of switching modes. Finally, a numerical example is given to illustrate the effectiveness of the proposed method.

  5. The development of a cryogenic optical delay line for DARWIN

    NARCIS (Netherlands)

    Dool, T.C. van den; Kamphues, F.G.

    2005-01-01

    TNO, in cooperation with Micromega-Dynamics, SRON, Dutch Space and CSL, has designed a compact breadboard cryogenic delay line for use in future space interferometry missions. The work is performed under ESA contract in preparation for the DARWIN mission. The breadboard (BB) delay line is

  6. Quantum optical feedback control for creating strong correlations in many-body systems

    CERN Document Server

    Mazzucchi, Gabriel; Ivanov, Denis A; Mekhov, Igor B

    2016-01-01

    Light enables manipulating many-body states of matter, and atoms trapped in optical lattices is a prominent example. However, quantum properties of light are completely neglected in all quantum gas experiments. Extending methods of quantum optics to many-body physics will enable phenomena unobtainable in classical optical setups. We show how using the quantum optical feedback creates strong correlations in bosonic and fermionic systems. It balances two competing processes, originating from different fields: quantum backaction of weak optical measurement and many-body dynamics, resulting in stabilized density waves, antiferromagnetic and NOON states. Our approach is extendable to other systems promising for quantum technologies.

  7. Parametrically Excited Oscillations of Second-Order Functional Differential Equations and Application to Duffing Equations with Time Delay Feedback

    Directory of Open Access Journals (Sweden)

    Mervan Pašić

    2014-01-01

    Full Text Available We study oscillatory behaviour of a large class of second-order functional differential equations with three freedom real nonnegative parameters. According to a new oscillation criterion, we show that if at least one of these three parameters is large enough, then the main equation must be oscillatory. As an application, we study a class of Duffing type quasilinear equations with nonlinear time delayed feedback and their oscillations excited by the control gain parameter or amplitude of forcing term. Finally, some open questions and comments are given for the purpose of further study on this topic.

  8. Memory State-Feedback Stabilization for a Class of Time-Delay Systems with a Type of Adaptive Strategy

    Directory of Open Access Journals (Sweden)

    Lin Chai

    2013-01-01

    Full Text Available Stabilization of a class of systems with time delay is studied using adaptive control. With the help of the “error to error” technique and the separated “descriptor form” technique, the memory state-feedback controller is designed. The adaptive controller designed can guarantee asymptotical stability of the closed-loop system via a suitable Lyapunov-Krasovskii functional. Some sufficient conditions are derived for the stabilization together with the linear matrix inequality (LMI design approach. Finally, the effectiveness of the proposed control design methodology is demonstrated in numerical simulations.

  9. Finite-time H∞ control for a class of discrete-time switched time-delay systems with quantized feedback

    Science.gov (United States)

    Song, Haiyu; Yu, Li; Zhang, Dan; Zhang, Wen-An

    2012-12-01

    This paper is concerned with the finite-time quantized H∞ control problem for a class of discrete-time switched time-delay systems with time-varying exogenous disturbances. By using the sector bound approach and the average dwell time method, sufficient conditions are derived for the switched system to be finite-time bounded and ensure a prescribed H∞ disturbance attenuation level, and a mode-dependent quantized state feedback controller is designed by solving an optimization problem. Two illustrative examples are provided to demonstrate the effectiveness of the proposed theoretical results.

  10. A recursive delayed output-feedback control to stabilize chaotic systems using linear-in-parameter neural networks

    Science.gov (United States)

    Yadmellat, Peyman; Nikravesh, S. Kamaleddin Yadavar

    2011-01-01

    In this paper, a recursive delayed output-feedback control strategy is considered for stabilizing unstable periodic orbit of unknown nonlinear chaotic systems. An unknown nonlinearity is directly estimated by a linear-in-parameter neural network which is then used in an observer structure. An on-line modified back propagation algorithm with e-modification is used to update the weights of the network. The globally uniformly ultimately boundedness of overall closed-loop system response is analytically ensured using Razumikhin lemma. To verify the effectiveness of the proposed observer-based controller, a set of simulations is performed on a Rossler system in comparison with several previous methods.

  11. The Feedback Control Strategy of the Takagi-Sugeno Fuzzy Car-Following Model with Two Delays

    Directory of Open Access Journals (Sweden)

    Cong Zhai

    2016-01-01

    Full Text Available Considering the driver’s sensing the headway and velocity the different time-varying delays exist, respectively, and the sensitivity of drivers changes with headway and speed. Introducing the fuzzy control theory, a new fuzzy car-following model with two delays is presented, and the feedback control strategy of the new fuzzy car-following model is studied. Based on the Lyapunov function theory and linear matrix inequality (LMI approach, the sufficient condition that the existence of the fuzzy controller is given making the closed-loop system is asymptotic, stable; namely, traffic congestion phenomenon can effectively be suppressed, and the controller gain matrix can be obtained via solving linear matrix inequality. Finally, the simulation examples verify that the method which suppresses traffic congestion and reduces fuel consumption and exhaust emissions is effective.

  12. Decentralized Output Feedback Adaptive NN Tracking Control for Time-Delay Stochastic Nonlinear Systems With Prescribed Performance.

    Science.gov (United States)

    Hua, Changchun; Zhang, Liuliu; Guan, Xinping

    2015-11-01

    This paper studies the dynamic output feedback tracking control problem for stochastic interconnected time-delay systems with the prescribed performance. The subsystems are in the form of triangular structure. First, we design a reduced-order observer independent of time delay to estimate the unmeasured state variables online instead of the traditional full-order observer. Then, a new state transformation is proposed in consideration of the prescribed performance requirement. Using neural network to approximate the composite unknown nonlinear function, the corresponding decentralized output tracking controller is designed. It is strictly proved that the resulting closed-loop system is stable in probability in the sense of uniformly ultimately boundedness and that both transient-state and steady-state performances are preserved. Finally, a simulation example is given, and the result shows the effectiveness of the proposed control design method.

  13. Adaptive neural tracking control of a class of MIMO pure-feedback time-delay nonlinear systems with input saturation

    Science.gov (United States)

    Yang, Yang; Yue, Dong; Yuan, Deming

    2016-11-01

    Considering interconnections among subsystems, we propose an adaptive neural tracking control scheme for a class of multiple-input-multiple-output (MIMO) non-affine pure-feedback time-delay nonlinear systems with input saturation. Neural networks (NNs) are employed to approximate unknown functions in the design procedure, and the separation technology is introduced here to tackle the problem induced from unknown time-delay items. The adaptive neural tracking control scheme is constructed by combining Lyapunov-Krasovskii functionals, NNs, the auxiliary system, the implicit function theory and the mean value theorem along with the dynamic surface control technique. Also, it is proven that the strategy guarantees tracking errors converge to a small neighbourhood around the origin by appropriate choice of design parameters and all signals in the closed-loop system uniformly ultimately bounded. Numerical simulation results are presented to demonstrate the effectiveness of the proposed control strategy.

  14. Feedback control of Layerwise Laser Melting using optical sensors

    Science.gov (United States)

    Craeghs, Tom; Bechmann, Florian; Berumen, Sebastian; Kruth, Jean-Pierre

    Layerwise Laser Melting (LLM) is a layerwise production technique enabling the production of complex metallic parts. Thin powder layers are molten according to a predefined scan pattern by means of a laser source. Nowadays constant process parameters are used throughout the build, leading for some geometries to an overly thick feature size or overheating at downfacing surfaces. In this paper a monitoring and control system is presented which enables monitoring the melt pool continously at high speed throughout the building process. The signals from the sensors can be incorporated in a real-time control loop, in this way enabling feedback control of the process parameters. In this paper the experimental set-up will be first shown. Next the dynamic relation between the melt pool and the process parameters is identified. Finally the proof of concept for feedback control is demonstrated with experimental results.

  15. Bifurcation structure of cavity soliton dynamics in a vertical-cavity surface-emitting laser with a saturable absorber and time-delayed feedback

    Science.gov (United States)

    Schelte, Christian; Panajotov, Krassimir; Tlidi, Mustapha; Gurevich, Svetlana V.

    2017-08-01

    We consider a wide-aperture surface-emitting laser with a saturable absorber section subjected to time-delayed feedback. We adopt the mean-field approach assuming a single longitudinal mode operation of the solitary vertical-cavity surface-emitting laser (VCSEL). We investigate cavity soliton dynamics under the effect of time-delayed feedback in a self-imaging configuration where diffraction in the external cavity is negligible. Using bifurcation analysis, direct numerical simulations, and numerical path-continuation methods, we identify the possible bifurcations and map them in a plane of feedback parameters. We show that for both the homogeneous and localized stationary lasing solutions in one spatial dimension, the time-delayed feedback induces complex spatiotemporal dynamics, in particular a period doubling route to chaos, quasiperiodic oscillations, and multistability of the stationary solutions.

  16. Unified stabilizing controller synthesis approach for discrete-time intelligent systems with time delays by dynamic output feedback

    Institute of Scientific and Technical Information of China (English)

    LIU MeiQin

    2007-01-01

    A novel model, termed the standard neural network model (SNNM), is advanced to describe some delayed (or non-delayed) discrete-time intelligent systems composed of neural networks and Takagi and Sugeno (T-S) fuzzy models. The SNNM is composed of a discrete-time linear dynamic system and a bounded static nonlinear operator. Based on the global asymptotic stability analysis of the SNNMs, linear and nonlinear dynamic output feedback controllers are designed for the SNNMs to stabilize the closed-loop systems, respectively. The control design equations are shown to be a set of linear matrix inequalities (LMIs) which can be easily solved by various convex optimization algorithms to determine the control signals. Most neural-network-based (or fuzzy) discrete-time intelligent systems with time delays or without time delays can be transformed into the SNNMs for controller synthesis in a unified way. Three application examples show that the SNNMs not only make controller synthesis of neural-network-based (or fuzzy) discrete-time intelligent systems much easier, but also provide a new approach to the synthesis of the controllers for the other type of nonlinear systems.

  17. Dichoptic Metacontrast Masking Functions to Infer Transmission Delay in Optic Neuritis

    Science.gov (United States)

    Bruchmann, Maximilian; Korsukewitz, Catharina; Krämer, Julia; Wiendl, Heinz; Meuth, Sven G.

    2016-01-01

    Optic neuritis (ON) has detrimental effects on the transmission of neuronal signals generated at the earliest stages of visual information processing. The amount, as well as the speed of transmitted visual signals is impaired. Measurements of visual evoked potentials (VEP) are often implemented in clinical routine. However, the specificity of VEPs is limited because multiple cortical areas are involved in the generation of P1 potentials, including feedback signals from higher cortical areas. Here, we show that dichoptic metacontrast masking can be used to estimate the temporal delay caused by ON. A group of 15 patients with unilateral ON, nine of which had sufficient visual acuity and volunteered to participate, and a group of healthy control subjects (N = 8) were presented with flashes of gray disks to one eye and flashes of gray annuli to the corresponding retinal location of the other eye. By asking subjects to report the subjective visibility of the target (i.e. the disk) while varying the stimulus onset asynchrony (SOA) between disk and annulus, we obtained typical U-shaped masking functions. From these functions we inferred the critical SOAmax at which the mask (i.e. the annulus) optimally suppressed the visibility of the target. ON-associated transmission delay was estimated by comparing the SOAmax between conditions in which the disk had been presented to the affected and the mask to the other eye, and vice versa. SOAmax differed on average by 28 ms, suggesting a reduction in transmission speed in the affected eye. Compared to previously reported methods assessing perceptual consequences of altered neuronal transmission speed the presented method is more accurate as it is not limited by the observers’ ability to judge subtle variations in perceived synchrony. PMID:27711139

  18. Frequency unlimited optical delay lines based on slow and fast light in SOAs

    DEFF Research Database (Denmark)

    Berger, Perrine; Bourderionnet, Jérôme; Pu, Minhao

    2011-01-01

    We experimentally demonstrate that up-converted coherent population oscillations (CPO) in SOA open the possibility to conceive integrated optical tunable delay lines beyond the carrier lifetime limit, up to THz frequencies....

  19. Integrated High-Speed Digital Optical True-Time-Delay Modules for Synthetic Aperture Radars Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Crystal Research, Inc. proposes an integrated high-speed digital optical true-time-delay module for advanced synthetic aperture radars. The unique feature of this...

  20. Recurrent state-switching of a two-state quantum dot laser by optical feedback

    Science.gov (United States)

    Virte, Martin; Breuer, Stefan; Sciamanna, Marc; Panajotov, Krassimir

    2016-04-01

    In this contribution, we experimentally report recurrent switching between ground and excited state emission in a quantum dot laser controlled by optical feedback. We demonstrate that changing the phase of the optical feedback can efficiently induce switching between the two emission processes of the laser. Experimentally, by using an external mirror placed on a piezo-actuator, we were able to achieve incomplete switching between ground and excited state emission, i.e. without complete extinction of the modes. The switching takes place for variations of the external cavity length at the wavelength scale, i.e. around 1.2 um. Theoretically, we successfully link this switching behaviour with the evolution of the modal gain difference between the two modes induced by the variations of the optical feedback phase.

  1. The impact of external optical feedback on the degradation behavior of high-power diode lasers

    DEFF Research Database (Denmark)

    Hempel, Martin; Chi, Mingjun; Petersen, Paul Michael;

    2013-01-01

    The impact of external feedback on high-power diode laser degradation is studied. For this purpose early stages of gradual degradation are prepared by accelerated aging of 808-nm-emitting AlGaAs-based devices. While the quantum well that actually experiences the highest total optical load remains...... unaffected, severe impact is observed to the cladding layers and the waveguide. Consequently hardening of diode lasers for operation under external optical feedback must necessarily involve claddings and waveguide, into which the quantum well is embedded.......The impact of external feedback on high-power diode laser degradation is studied. For this purpose early stages of gradual degradation are prepared by accelerated aging of 808-nm-emitting AlGaAs-based devices. While the quantum well that actually experiences the highest total optical load remains...

  2. Feasibility of a feedback control of atomic self-organization in an optical cavity

    Energy Technology Data Exchange (ETDEWEB)

    Ivanov, D. A., E-mail: ivanov-den@yandex.ru; Ivanova, T. Yu. [St. Petersburg State University (Russian Federation)

    2015-08-15

    Many interesting nonlinear effects are based on the strong interaction of motional degrees of freedom of atoms with an optical cavity field. Among them is the spatial self-organization of atoms in a pattern where the atoms group in either odd or even sites of the cavity-induced optical potential. An experimental observation of this effect can be simplified by using, along with the original cavity-induced feedback, an additional electronic feedback based on the detection of light leaking the cavity and the control of the optical potential for the atoms. Following our previous study, we show that this approach is more efficient from the laser power perspective than the original scheme without the electronic feedback.

  3. Influence of optical feedback on laser frequency spectrum and threshold conditions

    DEFF Research Database (Denmark)

    Osmundsen, Jens Henrik; Gade, Niels

    1983-01-01

    The steady state behavior of the external cavity operated laser has been analyzed, taking into account multiple reflections. The effect of optical feedback is included in the phase- and gain-conditions by a factor which is shown to have a simple geometrical representation. From this representation...... it is easily seen how the laser frequency spectrum and the threshold gain depend on external parameters such as distance to the reflection point and the amount of optical feedback. Furthermore, by inserting a variable attenuator in the external cavity and measuring the threshold current versus transmittance we...... have simultaneously determined the photon lifetime and the absolute amount of optical feedback. For the laser considered we found the photon lifetimetau_{p} = 1.55ps....

  4. Stability result of the Timoshenko system with delay and boundary feedback

    KAUST Repository

    Said-Houari, Belkacem

    2012-01-06

    Our interest in this paper is to analyse the asymptotic behaviour of a Timoshenko beam system together with two boundary controls, with delay terms in the first and second equation. Assuming the weights of the delay are small enough, we show that the system is well-posed using the semigroup theory. Furthermore, we introduce a Lyapunov functional that gives the exponential decay of the total energy. © 2012 The author.

  5. The effect and design of time delay in feedback control for a nonlinear isolation system

    Science.gov (United States)

    Sun, Xiuting; Xu, Jian; Fu, Jiangsong

    2017-03-01

    The optimum value of time delay of active control used in a nonlinear isolation system for different types of external excitation is studied in this paper. Based on the mathematical model of the nonlinear isolator with time-delayed active control, the stability, response and displacement transmissibility of the system are analyzed to obtain the standards for appropriate values of time delay and control strengths. The effects of nonlinearity and time delay on the stability and vibration response are discussed in details. For impact excitation and random excitation, the optimal value of time delay is obtained based on the vibration dissipation time via eigenvalues analysis, while for harmonic excitation, the optimal values are determined based on multiple vibration properties including natural frequency, amplitude death region and effective isolation region by the Averaging Method. This paper establishes the relationship between the parameters and vibration properties of a nonlinear isolation system which provides the guidance for optimizing time-delayed active control for different types of excitation in engineering practices.

  6. The manufacturing, assembly and acceptance testing of the breadboard Cryogenic Optical Delay Line for DARWIN

    NARCIS (Netherlands)

    Dool, T.C. van den; Kamphues, F.G.; Gielesen, W.L.M.; Dorrepaal, M.; Doelman, N.J.; Loix, N.; Verschueren, J.P.; Kooijman, P.P.; Visser, M.; Velsink, G.; Fleury, K.

    2005-01-01

    TNO, in cooperation with Micromega-Dynamics, SRON, Dutch Space and CSL, has developed a compact breadboard cryogenic Optical Delay Line for use in future space interferometry missions. The work is performed under ESA contract in preparation for the DARWIN mission. The breadboard delay line is repres

  7. Controllable delay of ultrashort pulses in a quantum dot optical amplifier

    DEFF Research Database (Denmark)

    Poel, Mike van der; Mørk, Jesper; Hvam, Jørn Märcher

    2005-01-01

    Optical and electrical tuning of the propagation time of 170 fs pulses in a quantum dot semiconductor amplifier at room temperature is demonstrated. Both pulse slowdown and advancement is possible and we achieve fractional delays (delay divided with pulse duration) of up to 40%. The results...

  8. Delay-aware adaptive sleep mechanism for green wireless-optical broadband access networks

    Science.gov (United States)

    Wang, Ruyan; Liang, Alei; Wu, Dapeng; Wu, Dalei

    2017-07-01

    Wireless-Optical Broadband Access Network (WOBAN) is capacity-high, reliable, flexible, and ubiquitous, as it takes full advantage of the merits from both optical communication and wireless communication technologies. Similar to other access networks, the high energy consumption poses a great challenge for building up WOBANs. To shot this problem, we can make some load-light Optical Network Units (ONUs) sleep to reduce the energy consumption. Such operation, however, causes the increased packet delay. Jointly considering the energy consumption and transmission delay, we propose a delay-aware adaptive sleep mechanism. Specifically, we develop a new analytical method to evaluate the transmission delay and queuing delay over the optical part, instead of adopting M/M/1 queuing model. Meanwhile, we also analyze the access delay and queuing delay of the wireless part. Based on such developed delay models, we mathematically derive ONU's optimal sleep time. In addition, we provide numerous simulation results to show the effectiveness of the proposed mechanism.

  9. Frequency unlimited optical delay lines based on slow and fast light in SOAs

    DEFF Research Database (Denmark)

    Berger, Perrine; Bourderionnet, Jérôme; Pu, Minhao

    2011-01-01

    We experimentally demonstrate that up-converted coherent population oscillations (CPO) in SOA open the possibility to conceive integrated optical tunable delay lines beyond the carrier lifetime limit, up to THz frequencies.......We experimentally demonstrate that up-converted coherent population oscillations (CPO) in SOA open the possibility to conceive integrated optical tunable delay lines beyond the carrier lifetime limit, up to THz frequencies....

  10. Multi-Gigahertz True-Time-Delay with Optical Coherent Transients

    Science.gov (United States)

    Tian, Mingzhen; Reibel, Randy; Babbitt, Wm. Randall

    2001-03-01

    Operation of mutli-element phased array antenna systems with broadband (multi-gigahertz) signals without beam squint requires novel true time-delay devices. Optical coherent transient technology could provide thousands of delays in a compact volume by exploiting the space and frequency dimensions of inhomogeneously broadened absorbers. We have demonstrated broadband true-time-delay using optical coherent transient techniques in a Tm3+:YAG crystal at 4K, which offers delays up to a microsecond on signals having several tens of GHz bandwidth with sub-picosecond delay resolution. The desired delay was programmed in the crystal as a spatial-spectral grating by repeated application of two 30 picosecond pulses. The demonstrated bandwidth was over 3 GHz and the retrieved data showed good fidelity. Delay accuracy of 1 picosecond and delay resolution of 7 picoseconds (measurement limit) were achieved. The bandwidth achieved is 1000 times greater than previous demonstrations of optical coherent transient true-time-delay. We thank the Office of Naval Research and the University of Colorado for supporting this work.

  11. Resonances of a nonlinear single-degree-of-freedom system with time delay in linear feedback control

    Energy Technology Data Exchange (ETDEWEB)

    El-Bassiouny, Atef F. [Mathematics Dept., Benha Univ., Benha (Egypt); El-Kholy, Salah [Dept. of Mathematics, Menoufia Univ., Shebin El-kom (Egypt)

    2010-05-15

    The primary and subharmonic resonances of a nonlinear single-degree-of-freedom system under feedback control with a time delay are studied by means of an asymptotic perturbation technique. Both external (forcing) and parametric excitations are included. By means of the averaging method and multiple scales method, two slow-flow equations for the amplitude and phase of the primary and subharmonic resonances and all other parameters are obtained. The steady state (fixed points) corresponding to a periodic motion of the starting system is investigated and frequency-response curves are shown. The stability of the fixed points is examined using the variational method. The effect of the feedback gains, the time-delay, the coefficient of cubic term, and the coefficients of external and parametric excitations on the steady-state responses are investigated and the results are presented as plots of the steady-state response amplitude versus the detuning parameter. The results obtained by two methods are in excellent agreement. (orig.)

  12. Graphene-based fine-tunable optical delay line for optical beamforming in phased-array antennas.

    Science.gov (United States)

    Tatoli, Teresa; Conteduca, Donato; Dell'Olio, Francesco; Ciminelli, Caterina; Armenise, Mario N

    2016-06-01

    The design of an integrated graphene-based fine-tunable optical delay line on silicon nitride for optical beamforming in phased-array antennas is reported. A high value of the optical delay time (τg=920  ps) together with a compact footprint (4.15  mm2) and optical loss antennas. The delay line includes two graphene-based Mach-Zehnder interferometer switches and two vertically stacked microring resonators between which a graphene capacitor is placed. The tuning range is obtained by varying the value of the voltage applied to the graphene electrodes, which controls the optical path of the light propagation and therefore the delay time. The graphene provides a faster reconfigurable time and low values of energy dissipation. Such significant advantages, together with a negligible beam-squint effect, allow us to overcome the limitations of conventional RF beamformers. A highly efficient fine-tunable optical delay line for the beamsteering of 20 radiating elements up to ±20° in the azimuth direction of a tile in a phased-array antenna of an X-band synthetic aperture radar has been designed.

  13. Robust Output Feedback Control for Uncertain Discrete Systems with Time Delays%不确定时滞离散系统的鲁棒输出反馈控制

    Institute of Scientific and Technical Information of China (English)

    刘碧玉; 桂卫华

    2005-01-01

    Based on design of an observer, the issue of dynamic output feedback control is studied for uncertain discrete systems with delays. A comparison theorem is given for nonlinear uncertain discrete systems with multiple time delays. Based on the comparison theorem with some inequalities,some delay-independent sufficient conditions for the robust stabilization of the systems are presented by means of output feedback.

  14. High-speed switching of biphoton delays through electro-optic pump frequency modulation

    Directory of Open Access Journals (Sweden)

    Ogaga D. Odele

    2017-01-01

    Full Text Available The realization of high-speed tunable delay control has received significant attention in the scene of classical photonics. In quantum optics, however, such rapid delay control systems for entangled photons have remained undeveloped. Here for the first time, we demonstrate rapid (2.5 MHz modulation of signal-idler arrival times through electro-optic pump frequency modulation. Our technique applies the quantum phenomenon of nonlocal dispersion cancellation along with pump frequency tuning to control the relative delay between photon pairs. Chirped fiber Bragg gratings are employed to provide large amounts of dispersion which result in biphoton delays exceeding 30 ns. This rapid delay modulation scheme could be useful for on-demand single-photon distribution in addition to quantum versions of pulse position modulation.

  15. Optical delay of a signal through a dispersive invisibility cloak.

    Science.gov (United States)

    Zhang, Baile; Wu, Bae-Ian; Chen, Hongsheng

    2009-04-13

    We present a full-wave analysis method on the transmission of a Gaussian light pulse through a spherical invisibility cloak with causal dispersions. The spatial energy distribution of the Gaussian light pulse is distorted after the transmission. A volcano-shaped spatial time-delay distribution of the transmitted light pulse is demonstrated as a concrete example in our physical model. Both the time-delay and the energy transport depend on the polarization of light waves. This study helps to provide a complete picture of energy propagation through an invisibility cloak.

  16. Output-feedback adaptive neural control for stochastic nonlinear time-varying delay systems with unknown control directions.

    Science.gov (United States)

    Li, Tieshan; Li, Zifu; Wang, Dan; Chen, C L Philip

    2015-06-01

    This paper presents an adaptive output-feedback neural network (NN) control scheme for a class of stochastic nonlinear time-varying delay systems with unknown control directions. To make the controller design feasible, the unknown control coefficients are grouped together and the original system is transformed into a new system using a linear state transformation technique. Then, the Nussbaum function technique is incorporated into the backstepping recursive design technique to solve the problem of unknown control directions. Furthermore, under the assumption that the time-varying delays exist in the system output, only one NN is employed to compensate for all unknown nonlinear terms depending on the delayed output. Moreover, by estimating the maximum of NN parameters instead of the parameters themselves, the NN parameters to be estimated are greatly decreased and the online learning time is also dramatically decreased. It is shown that all the signals of the closed-loop system are bounded in probability. The effectiveness of the proposed scheme is demonstrated by the simulation results.

  17. Real-time wavefront-shaping through scattering media by all optical feedback

    CERN Document Server

    Nixon, Micha; Small, Eran; Bromberg, Yaron; Friesem, Asher A; Silberberg, Yaron; Davidson, Nir

    2013-01-01

    Focusing light through dynamically varying heterogeneous media is a sought-after goal with important applications ranging from free-space communication to nano-surgery. The underlying challenge is to control the optical wavefront with a large number of degrees-of-freedom (DOF) at timescales shorter than the medium dynamics. Recently, many advancements have been reported following the demonstration of focusing through turbid samples by wavefront-shaping, using spatial light modulators (SLMs) having >1000 DOF. Unfortunately, SLM-based wavefront-shaping requires feedback from a detector/camera and is limited to slowly-varying samples. Here, we demonstrate a novel approach for wavefront-shaping using all-optical feedback. We show that the complex wavefront required to focus through highly scattering samples, including thin biological tissues, can be generated at sub-microsecond timescales by the process of field self-organization inside a multimode laser cavity, without requiring electronic feedback or SLMs. This...

  18. Multichannel decision feedback equalizer for high track density in optical recording

    Science.gov (United States)

    Gopalaswamy, Srinivasan; Kumar, B. V. K.

    1996-08-01

    A possible approach to high track density in optical recording is to reduce the track widths and eliminate the spacing between consecutive tracks. Parallel readback of several tracks and combined equalization of the multitrack readback signals is a viable approach toward reducing the deteriorating effects of interference in such a high-track- density system. Multichannel readback using laser diode arrays has been reported in optical recording. An additional advantage of multitrack readback is a high data rate. A novel multichannel decision feedback equalizer to reduce interference both within and across the tracks using 2D feedback is presented. Simulation results shows good improvement in error-rate performance by using multichannel decision feedback equalization. By this readback method, tracks can be brought closer, thus increasing the areal density.

  19. Degradation Processes in High-Power Diode Lasers under External Optical Feedback

    DEFF Research Database (Denmark)

    Tomm, Jens. W.; Hempel, Martin; Petersen, Paul Michael;

    2013-01-01

    The effect of moderate external feedback on the gradual degradation of 808 nm emitting AlGaAs-based high-power broad-area diode lasers is analyzed. Eventually the quantum well that actually experiences the highest total optical load remains unaffected by the aging, while severe impact...

  20. Bistability and low-frequency fluctuations in semiconductor lasers with optical feedback: a theoretical analysis

    DEFF Research Database (Denmark)

    Mørk, Jesper; Tromborg, Bjarne; Christiansen, Peter Leth

    1988-01-01

    Near-threshold operation of a semiconductor laser exposed to moderate optical feedback may lead to low-frequency fluctuations. In the same region, a kink is observed in the light-current characteristic. Here it is demonstrated that these nonlinear phenomena are predicted by a noise driven multimode...

  1. Linewidth broadening in a distributed feedback laser integrated with a semiconductor optical amplifier

    DEFF Research Database (Denmark)

    Champagne, A.; Camel, J.; Maciejko, R.

    2002-01-01

    The problem of the linewidth degradation in systems using distributed-feedback lasers together with strained-layer multi-quantum-well semiconductor optical amplifiers (SOAs) is examined. A modified expression for the linewidth in the case of antireflection-coated SOA output facets is derived...

  2. Subwavelength grating enabled on-chip ultra-compact optical true time delay line.

    Science.gov (United States)

    Wang, Junjia; Ashrafi, Reza; Adams, Rhys; Glesk, Ivan; Gasulla, Ivana; Capmany, José; Chen, Lawrence R

    2016-07-26

    An optical true time delay line (OTTDL) is a basic photonic building block that enables many microwave photonic and optical processing operations. The conventional design for an integrated OTTDL that is based on spatial diversity uses a length-variable waveguide array to create the optical time delays, which can introduce complexities in the integrated circuit design. Here we report the first ever demonstration of an integrated index-variable OTTDL that exploits spatial diversity in an equal length waveguide array. The approach uses subwavelength grating waveguides in silicon-on-insulator (SOI), which enables the realization of OTTDLs having a simple geometry and that occupy a compact chip area. Moreover, compared to conventional wavelength-variable delay lines with a few THz operation bandwidth, our index-variable OTTDL has an extremely broad operation bandwidth practically exceeding several tens of THz, which supports operation for various input optical signals with broad ranges of central wavelength and bandwidth.

  3. Subwavelength grating enabled on-chip ultra-compact optical true time delay line

    Science.gov (United States)

    Wang, Junjia; Ashrafi, Reza; Adams, Rhys; Glesk, Ivan; Gasulla, Ivana; Capmany, José; Chen, Lawrence R.

    2016-01-01

    An optical true time delay line (OTTDL) is a basic photonic building block that enables many microwave photonic and optical processing operations. The conventional design for an integrated OTTDL that is based on spatial diversity uses a length-variable waveguide array to create the optical time delays, which can introduce complexities in the integrated circuit design. Here we report the first ever demonstration of an integrated index-variable OTTDL that exploits spatial diversity in an equal length waveguide array. The approach uses subwavelength grating waveguides in silicon-on-insulator (SOI), which enables the realization of OTTDLs having a simple geometry and that occupy a compact chip area. Moreover, compared to conventional wavelength-variable delay lines with a few THz operation bandwidth, our index-variable OTTDL has an extremely broad operation bandwidth practically exceeding several tens of THz, which supports operation for various input optical signals with broad ranges of central wavelength and bandwidth. PMID:27457024

  4. Estimating the Lyapunov spectrum of time delay feedback systems from scalar time series.

    Science.gov (United States)

    Hegger, R

    1999-08-01

    On the basis of a recently developed method for modeling time delay systems, we propose a procedure to estimate the spectrum of Lyapunov exponents from a scalar time series. It turns out that the spectrum is approximated very well and allows for good estimates of the Lyapunov dimension even if the sampling rate of the time series is so low that the infinite dimensional tangent space is spanned quite sparsely.

  5. Simulation of chaotic synchronization communication system based on incoherent optical feedback and injection

    Institute of Scientific and Technical Information of China (English)

    MA Jun-shan; GU Wen-hua

    2006-01-01

    In this paper,we numerically study chaotic synchronization communication system based on incoherent optical feedback and incoherent optical injection.The characteristics of the system,such as synchronization time,synchronization error,chaos shift keying encoding/decoding and modulation rate are analyzed.The results of simulation show that the system has good synchronization quality and good abilities of robust secure.The synchronization time is 1ns and the chaos shift keying encoding can reach a high rate of 1 Gbit/s.The system has a good ability of robust secure.It proves the feasibility of the optical secure communication.

  6. Optimizing the dynamics of a two-cell DC-DC buck converter by time delayed feedback control

    Science.gov (United States)

    Feki, M.; El Aroudi, A.; Robert, B. G. M.; Martínez-Salamero, L.

    2011-11-01

    A study of the dynamical behavior of a two-cell DC-DC buck converter under a digital time delayed feedback control (TDFC) is presented. Various numerical simulations and dynamical aspects of this system are illustrated in the time domain and in the parameter space. Without TDFC, the system may present many undesirable behaviors such as sub-harmonics and chaotic oscillations. TDFC is able to widen the stability range of the system. Optimum values of parameters giving rise to fast response while maintaining stable periodic behavior are given in closed form. However, it is detected that in a certain region of the parameter space, the stabilized periodic orbit may coexist with a chaotic attractor. Boundary between basins of attraction are obtained by means of numerical simulations.

  7. Noise amplification by chaotic dynamics in a delayed feedback laser system and its application to nondeterministic random bit generation.

    Science.gov (United States)

    Sunada, Satoshi; Harayama, Takahisa; Davis, Peter; Tsuzuki, Ken; Arai, Ken-Ichi; Yoshimura, Kazuyuki; Uchida, Atsushi

    2012-12-01

    We present an experimental method for directly observing the amplification of microscopic intrinsic noise in a high-dimensional chaotic laser system, a laser with delayed feedback. In the experiment, the chaotic laser system is repeatedly switched from a stable lasing state to a chaotic state, and the time evolution of an ensemble of chaotic states starting from the same initial state is measured. It is experimentally demonstrated that intrinsic noises amplified by the chaotic dynamics are transformed into macroscopic fluctuating signals, and the probability density of the output light intensity actually converges to a natural invariant probability density in a strongly chaotic regime. Moreover, with the experimental method, we discuss the application of the chaotic laser systems to physical random bit generators. It is experimentally shown that the convergence to the invariant density plays an important role in nondeterministic random bit generation, which could be desirable for future ultimate secure communication systems.

  8. Congestion phenomenon analysis and delayed-feedback control in a modified coupled map traffic flow model containing the velocity difference

    Science.gov (United States)

    Fang, Ya-Ling; Shi, Zhong-Ke; Cao, Jin-Liang

    2015-06-01

    Based on the coupled map car-following model which was presented by Konishi et al. (1999), a modified coupled map car-following model is proposed. Specifically, the velocity difference between two successive vehicles is included in the model. The stability condition is given for the change of the speed of the preceding vehicle on the base of the control theory. We derive a condition under which the traffic jam never occurs in our model. Furthermore, in order to suppress traffic jams, we use static and dynamic version of decentralized delayed-feedback control for each vehicle, respectively, and provide a systematic procedure for designing the controller. In addition, the controller of each vehicle does not include any other vehicle information in real traffic flows.

  9. Inner structure detection by optical tomography technology based on feedback of microchip Nd:YAG lasers.

    Science.gov (United States)

    Xu, Chunxin; Zhang, Shulian; Tan, Yidong; Zhao, Shijie

    2013-05-20

    We describe a new optical tomography technology based on feedback of microchip Nd:YAG lasers. In the case of feedback light frequency-shifted, light can be magnified by a fact of 10(6) in the Nd:YAG microchip lasers, which makes it possible to realize optical tomography with a greater depth than current optical tomography. The results of the measuring and imaging of kinds of samples are presented, which demonstrate the feasibility and potential of this approach in the inner structure detection. The system has a lateral resolution of ~1 μm, a vertical resolution of 15 μm and a longitudinal scanning range of over 10mm.

  10. Demonstration of all-optical phase noise suppression scheme using optical nonlinearity and conversion/dispersion delay.

    Science.gov (United States)

    Chitgarha, Mohammad Reza; Khaleghi, Salman; Ziyadi, Morteza; Mohajerin-Ariaei, Amirhossein; Almaiman, Ahmed; Daab, Wajih; Rogawski, Devora; Tur, Moshe; Touch, Joseph D; Langrock, Carsten; Fejer, Martin M; Willner, Alan E

    2014-05-15

    We propose and demonstrate an all-optical phase noise reduction scheme that uses optical nonlinear mixing and tunable optical delays to suppress the low-speed phase noise induced by laser linewidth. By utilizing the phase conjugate copy of the original signal and two narrow-linewidth optical pumps, the phase noise induced by laser linewidth can be reduced by a factor of ∼5 for a laser with 500-MHz phase noise bandwidth. The error-vector-magnitude can be improved from ∼30% to ∼14% for the same laser linewidth for 40-Gbit/s quadrature phase shift keying signal.

  11. [Measurement of Trace C2H6 Based on Optical-Feedback Cavity-Enhanced Absorption Spectroscopy].

    Science.gov (United States)

    Wan, Fu; Chen, Wei-gen; Gu, Zhao-liang; Zou, Jing-xin; DU, Ling-Ling; Qi, Wei; Zhou, Qu

    2015-10-01

    Ethane is one of major fault characteristic gases dissolved in power transformer, the detection of Ethane with high accuracy and sensitivity is the key of dissolved gas analysis. In this paper, based on optical feedback theory and cavity-enhanced absorption spectroscopy, combined with quantum cascade laser, a detection system for dissolved gas C2 H6 in transformer oil was built up. Based on the symmetry of the individual cavity modes, the phase matching of returning light in resonance with the cavity was achieved through LabVIEW codes. The optical feedback effect that the emitted light return to the laser cavity after a small delay time and lock to the resonance frequency of cavity, even and odd modes effect that the higher modes and lower modes structure will build up alternatively, and threshold current lowering effect of about 1.2 mA were studied and achieved. By cavity ring-down spectroscopy, the effective reflectivity of 99.978% and cavity finesse of 7 138.4 is obtained respectively. The frequency selectivity is 0.005 2 cm(-1). With an acquisition time of 1s, this optical system allows detection for the PQ3 band of C2 H6 with high accuracy of 95.72% ± 0.17% and detection limit of (1.97 ± 0.06) x 10(-3) μL x L(-1) at atmospheric pressure and temperature of 20 degrees C, which lays a foundation for fault diagnose from dissolved gas analysis.

  12. Integrated packaging of 2D MOEMS mirrors with optical position feedback

    Science.gov (United States)

    Baumgart, M.; Lenzhofer, M.; Kremer, M. P.; Tortschanoff, A.

    2015-02-01

    Many applications of MOEMS microscanners rely on accurate position feedback. For MOEMS devices which do not have intrinsic on-chip feedback, position information can be provided with optical methods, most simply by using a reflection from the backside of a MOEMS scanner. By measuring the intensity distribution of the reflected beam across a quadrant diode, one can precisely detect the mirror's deflection angles. Previously, we have presented a position sensing device, applicable to arbitrary trajectories, which is based on the measurement of the position of the reflected laser beam with a quadrant diode. In this work, we present a novel setup, which comprises the optical position feedback functionality integrated into the device package itself. The new device's System-in-Package (SiP) design is based on a flip-folded 2.5D PCB layout and fully assembled as small as 9.2×7×4 mm³ in total. The device consists of four layers, which supply the MOEMS mirror, a spacer to provide the required optical path length, the quadrant photo-diode and a laser diode to serve as the light source. In addition to describing the mechanical setup of the novel device, we will present first experimental results and optical simulation studies. Accurate position feedback is the basis for closed-loop control of the MOEMS devices, which is crucial for some applications as image projection for example. Position feedback and the possibility of closed-loop control will significantly improve the performance of these devices.

  13. Micromachined force-balance feedback accelerometer with optical displacement detection

    Science.gov (United States)

    Nielson, Gregory N.; Langlois, Eric; Baker, Michael; Okandan, Murat; Anderson, Robert

    2014-07-22

    An accelerometer includes a proof mass and a frame that are formed in a handle layer of a silicon-on-an-insulator (SOI). The proof mass is separated from the frame by a back-side trench that defines a boundary of the proof mass. The accelerometer also includes a reflector coupled to a top surface of the proof mass. An optical detector is located above the reflector at the device side. The accelerometer further includes at least one suspension spring. The suspension spring has a handle anchor that extends downwards from the device side to the handle layer to mechanically support upward and downward movement of the proof mass relative to a top surface of the proof mass.

  14. Tunable Optical Delay in Doppler-Broadened Cesium Vapor

    Science.gov (United States)

    2010-12-01

    1971; Bernabeu and Alvarez, 1980; Tornos and Amare, 1986), normally accomplished at low temperatures to reduce Cs-Cs collisions. Wall collisions and...algorithms for the voigt profile function. Computers in Physics 7 (6), 627–631. Tornos , J. and J. C. Amare (1986). Hyperfine relaxation of an optically pumped

  15. Integrating temporal difference methods and self-organizing neural networks for reinforcement learning with delayed evaluative feedback.

    Science.gov (United States)

    Tan, A H; Lu, N; Xiao, D

    2008-02-01

    This paper presents a neural architecture for learning category nodes encoding mappings across multimodal patterns involving sensory inputs, actions, and rewards. By integrating adaptive resonance theory (ART) and temporal difference (TD) methods, the proposed neural model, called TD fusion architecture for learning, cognition, and navigation (TD-FALCON), enables an autonomous agent to adapt and function in a dynamic environment with immediate as well as delayed evaluative feedback (reinforcement) signals. TD-FALCON learns the value functions of the state-action space estimated through on-policy and off-policy TD learning methods, specifically state-action-reward-state-action (SARSA) and Q-learning. The learned value functions are then used to determine the optimal actions based on an action selection policy. We have developed TD-FALCON systems using various TD learning strategies and compared their performance in terms of task completion, learning speed, as well as time and space efficiency. Experiments based on a minefield navigation task have shown that TD-FALCON systems are able to learn effectively with both immediate and delayed reinforcement and achieve a stable performance in a pace much faster than those of standard gradient-descent-based reinforcement learning systems.

  16. State-feedback ℋ∞ control for stochastic time-delay nonlinear systems with state and disturbance-dependent noise

    Science.gov (United States)

    Li, Huiping; Shi, Yang

    2012-10-01

    This article focuses on the state-feedback ℋ∞ control problem for the stochastic nonlinear systems with state and disturbance-dependent noise and time-varying state delays. Based on the maxmin optimisation approach, both the delay-independent and the delay-dependent Hamilton-Jacobi-inequalities (HJIs) are developed for synthesising the state-feedback ℋ∞ controller for a general type of stochastic nonlinear systems. It is shown that the resulting control system achieves stochastic stability in probability and the prescribed disturbance attenuation level. For a class of stochastic affine nonlinear systems, the delay-independent as well as delay-dependent matrix-valued inequalities are proposed; the resulting control system satisfies global asymptotic stability in the mean-square sense and the required disturbance attenuation level. By modelling the nonlinearities as uncertainties in corresponding stochastic time-delay systems, the sufficient conditions in terms of a linear matrix inequality (LMI) and a bilinear matrix inequality (BMI) are derived to facilitate the design of the state-feedback ℋ∞ controller. Finally, two numerical examples are provided to illustrate the effectiveness of the proposed methods.

  17. Delayed mirror visual feedback presented using a novel mirror therapy system enhances cortical activation in healthy adults.

    Science.gov (United States)

    Lee, Hsin-Min; Li, Ping-Chia; Fan, Shih-Chen

    2015-07-11

    Mirror visual feedback (MVF) generated in mirror therapy (MT) with a physical mirror promotes the recovery of hemiparetic limbs in patients with stroke, but is limited in that it cannot provide an asymmetric mode for bimanual coordination training. Here, we developed a novel MT system that can manipulate the MVF to resolve this issue. The aims of this pilot study were to examine the feasibility of delayed MVF on MT and to establish its effects on cortical activation in order to understand how it can be used for clinical applications in the future. Three conditions (no MVF, MVF, and 2-s delayed MVF) presented via our digital MT system were evaluated for their time-course effects on cortical activity by event-related desynchronization (ERD) of mu rhythm electroencephalography (EEG) during button presses in 18 healthy adults. Phasic ERD areas, defined as the areas of the relative ERD curve that were below the reference level and within -2-0 s (P0), 0-2 s (P1), and 2-4 s (P2) of the button press, were used. The overall (P0 to P2) and phasic ERD areas were higher when MVF was provided compared to when MVF was not provided for all EEG channels (C3, Cz, and C4). Phasic ERD areas in the P2 phase only increased during the delayed-MVF condition. Significant enhancement of cortical activation in the mirror neuron system and an increase in attention to the unseen limb may play major roles in the response to MVF during MT. In comparison to the no MVF condition, the higher phasic ERD areas that were observed during the P1 phase in the delayed-MVF condition indicate that the image of the still hand may have enhanced the cortical activation that occurred in response to the button press. This study is the first to achieve delayed MVF for upper-limb MT. Our approach confirms previous findings regarding the effects of MVF on cortical activation and contributes additional evidence supporting the use of this method in the future for upper-limb motor training in patients with stroke.

  18. UNITED STABILIZING SCHEME FOR EDGE DELAY IN OPTICAL BURST SWITCHED NETWORKS

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    A novel scheme, namely united stabilizing scheme for edge delay, is introduced in optical burst switched networks. In the scheme, the limits of burst length and assembly time are both set according to certain qualifications. For executing the scheme, the conception for unit input bit rate is introduced to improve universality, and the assembly algorithm with a buffer safety space under the self-similar traffic model at each ingress edge router is proposed. Then, the components of burst and packet delay are concluded, and the equations that limits of burst length and assembly time should satisfy to stabilize the burst edge delay under different buffer offered loads are educed. The simulation results show that united stabilizing scheme stabilizes both burst and packet edge delay to a great extent when buffer offered load changes from 0.1 to 1, and the edge delay of burst and packet are near the limit values under larger offered load, respectively.

  19. A novel scheme based on minimum delay at the edges for optical burst switching networks

    Institute of Scientific and Technical Information of China (English)

    Jinhui Yu(于金辉); Yijun Yang(杨毅军); Yuehua Chen(陈月华); Ge Fan(范戈)

    2003-01-01

    This paper proposes a novel scheme based on minimum delay at the edges (MDE) for optical burst switching(OBS) networks. This scheme is designed to overcome the long delay at the edge nodes of OBS networks.The MDE scheme features simultaneous burst assembly, channel scheduling, and pre-transmission of controlpacket. It also features estimated setup and explicit release (ESXR) signaling protocol. The MDE schemecan minimize the delay at the edge nodes for data packets, and improve the end-to-end latency performancefor OBS networks. In addition, comparing with the conventional scheme, the performances of the MDEscheme are analyzed in this paper.

  20. Oscillatory Gene Expression by the microRAN Mediating Delayed Negative Feedback Loop

    Institute of Scientific and Technical Information of China (English)

    ZHANG Feng-pan; LU Jin-rui; LIU Zhi-guang

    2013-01-01

    More and more experiments show that microRNAs can regulate gene expression by stimulating degradation of mRNA or repression of translation of mRNA.In this paper,we incorporate the microRNA into a previous mathematical model of gene expression through forming a microRNA-induced silencing complex(RISC).Our findings demonstrate the dynamical behavior of the constructed system.By Hopf theories,we derive the theoretical results of globally asymptotical stability and provide the sufficient conditions for the oscillation of the simple gene regulatory system,and by numerical simulation further demonstrate how the amplitudes against the change of delay in the gene regulatory network.

  1. Simulation of neurocomputing based on the photophobic reactions of Euglena with optical feedback stimulation.

    Science.gov (United States)

    Ozasa, Kazunari; Aono, Masashi; Maeda, Mizuo; Hara, Masahiko

    2010-05-01

    To explore possible forms of unconventional computers that have high capacities for adaptation and exploration, we propose a new approach to developing a biocomputer based on the photophobic reactions of microbes (Euglena gracilis), and perform the Monte-Carlo simulation of Euglena-based neural network computing, involving virtual optical feedback to the Euglena cells. The photophobic reactions of Euglena are obtained experimentally, and incorporated in the simulation, together with a feedback algorithm with a modified Hopfield-Tank model for solving a 4-city traveling salesman problem. The simulation shows high performances in terms of (1) reaching one of the best solutions of the problem, and (2) searching for a number of solutions via dynamic transition among the solutions. This dynamic transition is attributed to the fluctuation of state variables, global oscillation through feedback instability, and the one-by-one change of state variables.

  2. Measuring a Fiber-Optic Delay Line Using a Mode-Locked Laser

    Science.gov (United States)

    Tu, Meirong; McKee, Michael R.; Pak, Kyung S.; Yu, Nan

    2010-01-01

    The figure schematically depicts a laboratory setup for determining the optical length of a fiber-optic delay line at a precision greater than that obtainable by use of optical time-domain reflectometry or of mechanical measurement of length during the delay-line-winding process. In this setup, the delay line becomes part of the resonant optical cavity that governs the frequency of oscillation of a mode-locked laser. The length can then be determined from frequency-domain measurements, as described below. The laboratory setup is basically an all-fiber ring laser in which the delay line constitutes part of the ring. Another part of the ring - the laser gain medium - is an erbium-doped fiber amplifier pumped by a diode laser at a wavelength of 980 nm. The loop also includes an optical isolator, two polarization controllers, and a polarizing beam splitter. The optical isolator enforces unidirectional lasing. The polarization beam splitter allows light in only one polarization mode to pass through the ring; light in the orthogonal polarization mode is rejected from the ring and utilized as a diagnostic output, which is fed to an optical spectrum analyzer and a photodetector. The photodetector output is fed to a radio-frequency spectrum analyzer and an oscilloscope. The fiber ring laser can generate continuous-wave radiation in non-mode-locked operation or ultrashort optical pulses in mode-locked operation. The mode-locked operation exhibited by this ring is said to be passive in the sense that no electro-optical modulator or other active optical component is used to achieve it. Passive mode locking is achieved by exploiting optical nonlinearity of passive components in such a manner as to obtain ultra-short optical pulses. In this setup, the particular nonlinear optical property exploited to achieve passive mode locking is nonlinear polarization rotation. This or any ring laser can support oscillation in multiple modes as long as sufficient gain is present to overcome

  3. Impact on vibration error characteristics of FOG with feedback delay%反馈延迟对光纤陀螺振动误差特性的影响

    Institute of Scientific and Technical Information of China (English)

    潘雄; 张春生; 王夏霄; 王熙辰; 赵亚飞; 王定球

    2014-01-01

    Large disturbance is introduced into fiber optic gyroscope under vibration environment. And the error characteristics for FOG are severely affected with the ability of tracking disturbance as the existence of non-linear factors, which becomes more complicated as the result of the additional feedback delay. Therefore, it is important for solving vibration problem to analyze the feedback delay. Firstly, impacts on the closed-loop tracking ability and the stability against disturbance of FOG with different feedback delay were analyzed with the non-linear factors. Then, the non-linear element was considered based on the linear control model, and the outputs of FOG with different feedback delay were obtained and the tracking performance was analyzed by simulation as keeping the same stability margin. The simulation and final experiment show that the bias of FOG will be brought into a large offset under vibration with a poor tracking performance. Thus, it is important to solve the vibration problem of FOG by improving the closed-loop tracking ability with a small feedback delay.%振动环境导致光纤陀螺引入较大的扰动。由于非线性因素,陀螺跟踪扰动的能力严重影响着其误差特性,而反馈延迟的存在使得跟踪性能变得更加复杂。因此,分析反馈延迟对于解决陀螺振动问题极其重要。首先,分析了非线性因素作用时不同反馈延迟对陀螺闭环跟踪能力和扰动稳定性的影响;然后在线性控制模型的基础上加入陀螺非线性环节,保证稳定裕度不变,仿真分析了不同反馈延迟下陀螺的跟踪性能以及输出。仿真及实验结果表明,减小反馈延迟,提高系统的跟踪扰动能力,可以减小非线性误差,改善振动环境下陀螺的输出性能。

  4. Reconfigurable optical quadrature amplitude modulation converter/encoder using a tunable complex coefficient optical tapped delay line.

    Science.gov (United States)

    Khaleghi, Salman; Chitgarha, Mohammad Reza; Yilmaz, Omer F; Tur, Moshe; Haney, Michael W; Langrock, Carsten; Fejer, Martin M; Willner, Alan E

    2013-05-15

    We experimentally demonstrate a reconfigurable optical converter/encoder for quadrature amplitude modulated (QAM) signals. The system utilizes nonlinear wavelength multicasting, conversion-dispersion delays, and simultaneous nonlinear multiplexing and sampling. We show baud rate tunability (31 and 20 Gbaud) and reconfigurable conversions from lower-order QAM signals to higher-order QAM signals (e.g., 64-QAM).

  5. Nonlinear modification of the laser noise power spectrum induced by a frequency-shifted optical feedback

    CERN Document Server

    Lacot, Eric; Girardeau, Vadim; Hugon, Olivier; Jacquin, Olivier

    2016-01-01

    In this article, we study the non-linear coupling between the stationary (i.e. the beating modulation signal) and transient (i.e. the laser quantum noise) dynamics of a laser subjected to frequency shifted optical feedback. We show how the noise power spectrum and more specifically the relaxation oscillation frequency of the laser are modified under different optical feedback condition. Specifically we study the influence of (i) the amount of light returning to the laser cavity and (ii) the initial detuning between the frequency shift and intrinsic relaxation frequency. The present work shows how the relaxation frequency is related to the strength of the beating signal and the shape of the noise power spectrum gives an image of the Transfer Modulation Function (i.e. of the amplification gain) of the nonlinear-laser dynamics.The theoretical predictions, confirmed by numerical resolutions, are in good agreements with the experimental data.

  6. Feedback-induced Bistability of an Optically Levitated Nanoparticle: A Fokker-Planck Treatment

    CERN Document Server

    Ge, Wenchao; Bhattacharya, M

    2016-01-01

    Optically levitated nanoparticles have recently emerged as versatile platforms for investigating macroscopic quantum mechanics and enabling ultrasensitive metrology. In this article we theoretically consider two damping regimes of an optically levitated nanoparticle cooled by cavityless parametric feedback. Our treatment is based on a generalized Fokker-Planck equation derived from the quantum master equation presented recently and shown to agree very well with experiment [1]. For low damping, we find that the resulting Wigner function yields the single-peaked oscillator position distribution and recovers the appropriate energy distribution derived earlier using a classical theory and verified experimentally [2]. For high damping, in contrast, we predict a double-peaked position distribution, which we trace to an underlying bistability induced by feedback. Unlike in cavity-based optomechanics, stochastic processes play a major role in determining the bistable behavior. To support our conclusions, we present a...

  7. Low Delay Wyner-Ziv Coding Using Optical Flow

    DEFF Research Database (Denmark)

    Salmistraro, Matteo; Forchhammer, Søren

    2014-01-01

    Distributed Video Coding (DVC) is a video coding paradigm that exploits the source statistics at the decoder based on the availability of the Side Information (SI). The SI can be seen as a noisy version of the source, and the lower the noise the higher the RD performance of the decoder. The SI...... on preceding frames for the generation of the SI by means of Optical Flow (OF), which is also used in the refinement step of the SI for enhanced RD performance. Compared with a state-of-the-art extrapolation-based decoder the proposed solution achieves RD Bjontegaard gains up to 1.3 dB....

  8. Multimode distributed feedback laser emission in a dye-doped optically pumped polymer thin-film

    Science.gov (United States)

    Sobel, F.; Gindre, D.; Nunzi, J.-M.; Denis, C.; Dumarcher, V.; Fiorini-Debuisschert, C.; Kretsch, K. P.; Rocha, L.

    2004-11-01

    We report on particular features of thin film distributed feedback (DFB) lasers. Devices are optically pumped using a Lloyd-mirror interferometer. For a given DFB grating period, the number of lasing modes is film thickness dependent. Spectral content of the devices is analysed using planar waveguide theory. An excellent agreement between the theoretical transverse electric mode structure and the laser emission spectrum is found.

  9. Chaos synchronization in injection-locked semiconductor lasers with optical feedback

    Institute of Scientific and Technical Information of China (English)

    Liu Yu-Jin; Zhang Sheng-Hai; Qian Xing-Zhong

    2007-01-01

    Based on the rate equations, we have investigated three types of chaos synchronizations in injection-locked semiconductor lasers with optical feedback. Numerical simulation shows that the synchronization can be realized by the symmetric or asymmetric laser systems. Also, the influence of parameter mismatches on chaos synchronization is investigated, and the results imply that these two lasers can achieve good synchronization, with smaller tolerance of parameter mismatch existing.

  10. Passive intrinsic-linewidth narrowing of ultraviolet extended-cavity diode laser by weak optical feedback

    CERN Document Server

    Samutpraphoot, Polnop; Lin, Qian; Gangloff, Dorian; Bylinskii, Alexei; Braverman, Boris; Kawasaki, Akio; Raab, Christoph; Kaenders, Wilhelm; Vuletić, Vladan

    2014-01-01

    We present a simple method for narrowing the intrinsic Lorentzian linewidth of a commercial ultraviolet grating extended-cavity diode laser (TOPTICA DL Pro) using weak optical feedback from a long external cavity. We achieve a suppression in frequency noise spectral density of 20 dB measured at frequencies around 1 MHz, corresponding to the narrowing of the intrinsic Lorentzian linewidth from 200 kHz to 2 kHz. The system is suitable for experiments requiring a tunable ultraviolet laser with narrow linewidth and low high-frequency noise, such as precision spectroscopy, optical clocks, and quantum information science experiments.

  11. Sinusoidal phase-modulating fiber-optic interferometer fringe with a feedback control system.

    Science.gov (United States)

    Lv, Changrong; Duan, Fajie; Bo, En; Duan, Xiaojie; Feng, Fan; Fu, Xiao

    2014-09-20

    A displacement measurement system using a fiber-optic interferometer fringe projector with a feedback control system is presented and demonstrated. The system utilizes the integrating bucket method to detect the desired phase or the displacement and Fresnel reflection signal to realize measurement of the disturbance and feed it back to the modulated signal of the laser at the same time. The continuous signal truly reflects the error information, as the output light and reflected light share the same optical path. Practical experiments validate the feasibility of this method.

  12. Four distributed feedback laser array integrated with multimode-interference and semiconductor optical amplifier

    Institute of Scientific and Technical Information of China (English)

    Ma Li; Zhu Hong-Liang; Liang Song; Zhao Ling-Juan; Chen Ming-Hua

    2013-01-01

    Monolithic integration of four 1.55-μm-range InGaAsP/InP distributed feedback (DFB) lasers using varied ridge width with a 4 × 1-multimode-interference (MMI) optical combiner and a semiconductor optical amplifier (SOA) is demonstrated.The average output power and the threshold current are 1.8 mW and 35 mA,respectively,when the injection current of the SOA is 100 mA,with a side mode suppression ratio (SMSR) exceeding 40 dB.The four channels have a 1-nm average channel spacing and can operate separately or simultaneously.

  13. Real-time feedback based control of cardiac restitution using optical mapping.

    Science.gov (United States)

    Kulkarni, Kanchan; Tolkacheva, Elena G

    2015-01-01

    Cardiac restitution is the shortening of the action potential duration with an increase in the heart rate. A shorter action potential duration enables a longer diastolic interval which ensures that the heart gets adequate time to refill with blood. At higher rates however, restitution becomes steep and thus, can lead to unstable electrical activity (alternans) in the heart, leading to fatal cardiac rhythms. It has been proposed that maintaining a shallow slope of cardiac restitution could have potentially anti-arrhythmic effects. Previous studies involved the control of action potential duration (APD) or diastolic interval (DI) in isolated tissue samples based on the feedback from single microelectrode recordings. This limited the spatial resolution of the feedback system. Here, we aimed to develop a real time feedback control system that enabled the detection of APDs from various single pixels based on optical mapping recordings. Stimuli were applied after a predefined fixed DI after detection of an APD. We validated our algorithm using optical mapping movies from an ex-vivo rabbit heart. Thus, we provide an optical mapping based approach for the control of cardiac restitution and a potential means to validate its anti-arrhythmic effects.

  14. Optical true time delay based on contradirectional couplers with single sidewall-modulated Bragg gratings

    Science.gov (United States)

    Wang, Xu; Liao, Shasha; Dong, Jianji

    2016-11-01

    We propose and demonstrate optical true time delay using tapered SOI contradirectional couplers with single sidewallmodulated Bragg gratings. The contradirectional couplers consist of two tapered rib waveguides with different width, and the Bragg gratings are modulated in the inner sidewall of the wider one. The optical signal is launched from the wide waveguide and coupled to the narrow waveguide through the Bragg gratings structure. Along the direction of light propagation, the waveguide width varies linearly, so the reflection wavelength is different at different positions. Therefore, linear delay line can be realized within the grating passband using the present structure. In the simulation, grating period is 310nm and grating number is 2400, corresponding to the grating length of 744μm. Using 2.5D FDTD simulation, the current structure can realize optical group delay of 20ps within bandwidth of 18nm. The proposed device is fabricated on a 220nm SOI chip with Electron Beam Lithography (EBL) and Inductively Coupled Plasma (ICP) etching. In the experiment, continuous light is modulated by 10GHz radio-frequency signal and travel through the chip, which is finally detected by the oscilloscope. By adjusting the wavelength of input light, group delay of different wavelength are recorded by the oscilloscope. The experimental results show that group delay of 28ps is realized within the bandwidth of 20nm. In the end, the drift of the reflection spectrum and delay lines under different temperature are analyzed. The reflection spectrum drifts 0.1nm/°C and causes redshift of the corresponding delay line.

  15. THE DETERMINATION OF A CRITICAL VALUE FOR DYNAMIC STABILITY OF SEMICONDUCTOR LASER DIODE WITH EXTERNAL OPTICAL FEEDBACK

    Directory of Open Access Journals (Sweden)

    Remzi YILDIRIM

    1998-01-01

    Full Text Available In this study, dynamic stability analysis of semiconductor laser diodes with external optical feedback has been realized. In the analysis the frequency response of the transfer function of laser diode H jw( , the transfer m function of laser diode with external optical feedback TF jw( , and optical feedback transfer function m K jw( obtained from small signal equations has been m accomplished using Nyquist stability analysis in complex domain. The effect of optical feedback on the stability of the system has been introduced and to bring the laser diode to stable condition the working critical boundary range of dampig frequency and reflection power constant (R has been determined. In the study the reflection power has been taken as ( .

  16. Optical vortices discern attosecond time delay in electron emission from magnetic sublevels

    CERN Document Server

    Wätzel, Jonas

    2016-01-01

    Photoionization from energetically distinct electronic states may have a relative time delay of tens of attoseconds. Here we demonstrate that pulses of optical vortices allow measuring such attoseconds delays from magnetic sublevels, even from a spherically symmetric target. The di?erence in the time delay is substantial and exhibits a strong angular dependence. Furthermore, we find an atomic scale variation in the time delays depending on the target orbital position in the laser spot. The findings o?er thus a qualitatively new way for a spatio-temporal sensing of the magnetic states from which the photoelectrons originate, with a spatial resolution way below the di?raction limit of the vortex beam. Our conclusions follow from analytical considerations based on symmetry, complemented and confirmed with full numerical simulations of the quantum dynamics.

  17. High-repetition-rate optical delay line using a micromirror array and galvanometer mirror for a terahertz system.

    Science.gov (United States)

    Kitahara, Hideaki; Tani, Masahiko; Hangyo, Masanori

    2009-07-01

    We developed a high-repetition-rate optical delay line based on a micromirror array and galvanometer mirror for terahertz time-domain spectroscopy. The micromirror array is fabricated by using the x-ray lithographic technology. The measurement of terahertz time-domain waveforms with the new optical delay line is demonstrated successfully up to 25 Hz.

  18. Delay Time Measurement and Comparison of Protection Strategies with One-Link Failed Domestic Optical Fiber Networks in Taiwan

    Institute of Scientific and Technical Information of China (English)

    Shyh-Lin; Tsao; Lan-Chih; Yang

    2003-01-01

    In this paper, we study the protection strategies of domestic optical fiber networks in Taiwan. Delay time experiment of two one-link failed cases are also reported and compared. We can get best protection strategy and bypass the optical transmission signal at shortest delay time.

  19. Delays of optical bursts in simultaneous optical and X-ray observations of MXB 1636-53

    Science.gov (United States)

    Matsuoka, M.; Mitsuda, K.; Ohashi, T.; Inoue, H.; Koyama, K.; Makino, F.; Makishima, K.; Murakami, T.; Oda, M.; Ogawara, Y.

    1984-01-01

    Observations of simultaneous optical and X-ray bursts from 4U/MXB 1636-53 were made using the Hakucho burst monitor system and optical telescopes at the European Southern Observatory during 1979 and 1980. The six best cases among the 10 coinciding observations are analyzed in terms of a model in which the optical emission is the result of reprocessing of X-rays (through blackbody heating). From this analysis, the temperature (spatially averaged) and size of a reprocessor, and the smearing and delay of the optical bursts are obtained. For the maximum temperatures of the optical reprocessor, the values differ from burst to burst, ranging from about 3 x 10 to the 4th to about 10 to the 5th K. The present analysis suggests that the size of the reprocessor varies by a factor of a few. For the smearing of the optical bursts an upper limit of a few seconds is derived. The most important result of this analysis is that the delay times are not the same for all bursts. The possible constraints which these results put on a low-mass binary model of this burst source are discussed.

  20. 基于神经网络补偿的非线性时滞系统时滞正反馈控制%Time-delay Positive Feedback Control for Nonlinear Time-delay Systems with Neural Network Compensation

    Institute of Scientific and Technical Information of China (English)

    那靖; 任雪梅; 黄鸿

    2008-01-01

    A new adaptive time-delay positive feedback con-troller (ATPFC) is presented for a class of nonlinear time-delay systems. The proposed control scheme consists of a neural networks-based identification and a time-delay positive feedback controller. Two high-order neural networks (HONN) incorpo-rated with a special dynamic identification model are employed to identify the nonlinear system. Based on the identified model,local linearization compensation is used to deal with the un-known nonlinearity of the system. A time-delay-free inverse model of the linearized system and a desired reference model are utilized to constitute the feedback controller, which can lead the system output to track the trajectory of a reference model.Rigorous stability analysis for both the identification and the tracking error of the closcd-loop control system is provided by means of Lyapunov stability criterion. Simulation results are in-cluded to demonstrate the effectiveness of the proposed scheme.

  1. Noise analysis in photonic true time delay systems based on broadband optical source and dispersion components.

    Science.gov (United States)

    Xue, Xiaoxiao; Wen, He; Zheng, Xiaoping; Zhang, Hanyi; Guo, Yili; Zhou, Bingkun

    2009-02-01

    The noise in photonic true time delay systems based on broadband optical source and dispersion components is investigated. It is found that the beat noise induced by the optical source begins to dominate and grows far larger than other noise terms quickly, as long as the detected optical power is above some certain value P(thr). When the system dispersion is nonzero, the output carrier-to-noise ratio (CNR) will change periodically with the optical bandwidth due to the noise power increment and the dispersion induced radio frequency signal power degradation. The maximum CNR is the peak value of the first period. For a set of specified system conditions, the P(thr) is calculated to be -21 dBm, and the optimal optical bandwidth is 0.8 nm, at which the maximum CNR is 93.3 dB by considering the noise in a 1 Hz bandwidth. The results are verified experimentally.

  2. Ultra-compact optical true time delay device for wideband phased array radars.

    Energy Technology Data Exchange (ETDEWEB)

    Spahn, Olga Blum; Rabb, David J. (AFRL/RYJM, WPAFB, OH); Cowan, William D.; McCray, David L. (Ohio State University, Columbus, OH); Rowe, Delton, J. (Northrop Grumman Aerospace Systems, Redondo Beach, CA); Flannery, Martin R. (Northrop Grumman Aerospace Systems, Redondo Beach, CA); Yi, Allen Y. (Ohio State University, Columbus, OH); Ho, James G. (Northrop Grumman Aerospace Systems, Redondo Beach, CA); Anderson, Betty Lise (Ohio State University, Columbus, OH)

    2010-02-01

    An ultra-compact optical true time delay device is demonstrated that can support 112 antenna elements with better than six bits of delay in a volume 16-inch x 5-inch x 4-inch including the box and electronics. Free-space beams circulate in a White cell, overlapping in space to minimize volume. The 18 mirrors are slow-tool diamond turned on two substrates, one at each end, to streamline alignment. Pointing accuracy of better than 10 {micro}rad is achieved, with surface roughness {approx}45 nm rms. A MEMS tip-style mirror array selects among the paths for each beam independently, requiring {approx}100 {micro}s to switch the whole array. The micromirrors have 1.4{sup o} tip angle and three stable states (east, west, and flat). The input is a fiber-and-microlens array, whose output spots are re-imaged multiple times in the White cell, striking a different area of the single MEMS chip in each of 10 bounces. The output is converted to RF by an integrated InP wideband optical combiner detector array. Delays were accurate to within 4% (shortest delay) to 0.03% (longest mirror train). The fiber-to-detector insertion loss is 7.82 dB for the shortest delay path.

  3. Quantum Theory of Cavityless Feedback Cooling of An Optically Trapped Nanoparticle

    CERN Document Server

    Rodenburg, B; Vamivakas, A N; Bhattacharya, M

    2015-01-01

    We present a quantum theory of cavityless feedback cooling of an optically trapped harmonically oscillating subwavelength dielectric particle, a configuration recently realized in several experiments. Specifically, we derive a Markovian master equation that treats the mechanical as well as optical degrees of freedom quantum mechanically. Employing this equation, we solve for the nanoparticle phonon number dynamics exactly, and extract analytic expressions for the cooling timescale and the steady state phonon number. We present experimental data verifying the predictions of our model in the classical regime, and also demonstrate that quantum ground state preparation is within reach of ongoing experiments. Our work provides a quantitative framework for future theoretical modeling of the cavityless quantum optomechanics of optically trapped dielectric particles.

  4. A study of spatial phenomena in semiconductor lasers: Beam filamentation and optical feedback effects

    Science.gov (United States)

    Marciante, John Robert

    1997-10-01

    In an effort to improve the performance of high-power semiconductor lasers to meet the demands of applications, this thesis contains work studying the issues which limit their performance: beam filamentation and spatial feedback effects. Through computer simulations, we investigate the role of three nonlinear mechanisms which can lead to filamentation, and determine the stability boundaries of the material parameters for which the device will not exhibit filamentary tendencies. We use an analytic theory to verify these findings, and to predict the spatio- temporal nature of the filaments through an analytic expression for the gain, in which contributions of the various mechanisms can clearly be seen. We experimentally verify the spatio-temporal characteristics of the filaments, discover effects of the stripe width and transitions to chaos, and discuss how to compare the relative severity of filamentation among different devices. We propose a new method of controlling filamentation using below-bandgap semiconductor nonlinearities. With simulations, we determine under what conditions this imposed nonlinearity can counteract the carrier-induced self-focusing inside the active region. We fabricate a prototype device using new epitaxial layers containing the below-bandgap nonlinearities, and compare the performance of these new devices to a control set. In studying the spatial effects of optical feedback, we use Fresnel diffraction theory to derive an expression for the field that is reflected back into the laser. This result is applied to our computer model and used to explore the effects of feedback on narrow-stripe, broad- area, and tapered-stripe semiconductor lasers. Re- examining feedback in narrow-stripe devices through experiments and analytic theory, we investigate the coupling effects between the narrow waveguide and the feedback field, and the changes in the operating characteristics of the laser due to this coupling. We experimentally examine the beam

  5. Phase modulation parallel optical delay detector for microwave angle-of-arrival measurement with accuracy monitored

    CERN Document Server

    Cao, Z; Lu, R; Boom, H P A van den; Tangdiongga, E; Koonen, A M J

    2014-01-01

    A novel phase modulation parallel optical delay detector is proposed for microwave angle-of-arrival (AOA) measurement with accuracy monitored by using only one dual-electrode Mach-Zenhder modulator. A theoretical model is built up to analyze the proposed system including measurement accuracy monitoring. The spatial delay measurement is translated into the phase shift between two replicas of a microwave signal. Thanks to the accuracy monitoring, the phase shifts from 5{\\deg} to 165{\\deg} are measured with less than 3.1{\\deg} measurement error.

  6. Controlling Chaos in a Semiconductor Laser via Weak Optical Positive Feedback and Modulating Amplitude

    Institute of Scientific and Technical Information of China (English)

    YAN Sen-Lin

    2007-01-01

    Numerical analysis of weak optical positive feedback (OPF) controlling chaos is studied in a semiconductor laser.The physical model of controlling chaos produced via modulating the current of semiconductor laser is presented under the condition of OPF.We find the physical mechanism that the nonlinear gain coefficient and linewidth enhancement factor of the laser are affected by OPF so that the dynamical behaviour of the system can be efficiently controlled.Chaos is controlled into a single-periodic state,a dual-periodic state,a fri-periodic state,a quadr-periodic state,a pentaperiodic state,and the laser emitting powers are increased by OPF in simulations.Lastly,another chaos-control method with modulating the amplitude of the feedback light is presented and numerically simulated to control chaotic laser into multi-periodic states.

  7. Suppression of Classical and Quantum Radiation Pressure Noise via Electro-Optic Feedback

    CERN Document Server

    Buchler, B C; Shaddock, D A; Ralph, T C; McClelland, D E; Buchler, Ben C.; Gray, Malcolm B.; Shaddock, Daniel A.; Ralph, Timothy C.; Clelland, David E. Mc

    1998-01-01

    We present theoretical results that demonstrate a new technique to be used to improve the sensitivity of thermal noise measurements: intra-cavity intensity stabilisation. It is demonstrated that electro-optic feedback can be used to reduce intra-cavity intensity fluctuations, and the consequent radiation pressure fluctuations, by a factor of two below the quantum noise limit. We show that this is achievable in the presence of large classical intensity fluctuations on the incident laser beam. The benefits of this scheme are a consequence of the sub-Poissonian intensity statistics of the field inside a feedback loop, and the quantum non-demolition nature of radiation pressure noise as a readout system for the intra-cavity intensity fluctuations.

  8. Broadband true time delay for microwave signal processing, using slow light based on stimulated Brillouin scattering in optical fibers.

    Science.gov (United States)

    Chin, Sanghoon; Thévenaz, Luc; Sancho, Juan; Sales, Salvador; Capmany, José; Berger, Perrine; Bourderionnet, Jérôme; Dolfi, Daniel

    2010-10-11

    We experimentally demonstrate a novel technique to process broadband microwave signals, using all-optically tunable true time delay in optical fibers. The configuration to achieve true time delay basically consists of two main stages: photonic RF phase shifter and slow light, based on stimulated Brillouin scattering in fibers. Dispersion properties of fibers are controlled, separately at optical carrier frequency and in the vicinity of microwave signal bandwidth. This way time delay induced within the signal bandwidth can be manipulated to correctly act as true time delay with a proper phase compensation introduced to the optical carrier. We completely analyzed the generated true time delay as a promising solution to feed phased array antenna for radar systems and to develop dynamically reconfigurable microwave photonic filters.

  9. Decision feedback equalization with multichannel readback in high-density optical recording

    Science.gov (United States)

    Gopalaswamy, Srinivasan; Vijaya Kumar, Bhagavatula

    1995-12-01

    Multi-channel readback using array heads has been reported in optical recording. A method to reduce both interference along and across the tracks using multi-channel readback is presented. In this method, the non-linear multi-channel decision feedback equalization is used to remove both forms of interference. Simulation results show good improvement (in performance) by using the multi-channel equalization. By this readback method, tracks can be brought closer, thus increasing the areal density. Another advantage of this method is the high data rate possible.

  10. Ab initio quantum-enhanced optical phase estimation using real-time feedback control

    DEFF Research Database (Denmark)

    Berni, Adriano; Gehring, Tobias; Nielsen, Bo Melholt

    2015-01-01

    as demonstrated in a variety of different optical systems(3-8). Most of these accounts, however, deal with the measurement of a very small shift of an already known phase, which is in stark contrast to ab initio phase estimation where the initial phase is unknown(9-12). Here, we report on the realization...... of a quantum-enhanced and fully deterministic ab initio phase estimation protocol based on real-time feedback control. Using robust squeezed states of light combined with a real-time Bayesian adaptive estimation algorithm, we demonstrate deterministic phase estimation with a precision beyond the quantum shot...

  11. Characteristic analysis of the optical delay in frequency response of resonant cavity enhanced (RCE) photodetectors

    Institute of Scientific and Technical Information of China (English)

    Guo Jian-Chuan; Zuo Yu-Hua; Zhang Yun; Ding Wu-Chang; Cheng Bu-Wen; Yu Jin-Zhong; Wang Qi-Ming

    2009-01-01

    With consideration of the modulation frequency of the input lightwave itself, we present a new model to calculate the quantum efficiency of RCE p-i-n photodetectors (PD) by superimposition of multiple reflected lightwaves. For the first time, the optical delay, another important factor limiting the electrical bandwidth of RCE p-i-n PD excluding the transit time of the carriers and RCd response of the photodetector, is analyzed and discussed in detail. The optical delay dominates the bandwidth of RCE p-i-n PD when its active layer is thinner than several 10 nm. These three limiting factors must be considered exactly for design of ultra-high-speed RCE p-i-n PD.

  12. Optical Orthogonal Code Construction Using Rejected Delays Reuse for Increasing SubWavelength-Switching Capacity

    Science.gov (United States)

    Khattab, Tamer M. S.; Alnuweiri, Hussein M.

    2006-09-01

    Using a mathematical proof, the authors establish that in element-by-element greedy algorithms based on extended set representation of optical orthogonal codes (OOCs), smaller delay elements rejected during a construction step can be accepted in later steps. They design a novel algorithm that exploits this property and call it the rejected delays reuse (RDR) greedy algorithm. They show that employing the RDR method leads to code lengths that are shorter than those achieved for OOCs constructed using the classical greedy algorithm for the same code weight and the same number of simultaneous codes constraints. They then define a quantitative measure (factor) for OOCs efficiency based on its ability to expand subwavelength-switching capacity. They call this factor the expansion efficiency factor. They use this factor to show that reducing the code length, for the same code constraints, enhances the capacity of subwavelength optical code switched networks.

  13. Existence and global asymptotic stability of positive periodic solutions of a Lotka-Volterra type competition systems with delays and feedback controls

    Directory of Open Access Journals (Sweden)

    Anh Tuan Trinh

    2013-11-01

    Full Text Available The existence of positive periodic solutions of a periodic Lotka-Volterra type competition system with delays and feedback controls is studied by applying the continuation theorem of coincidence degree theory. By contracting a suitable Liapunov functional, a set of sufficient conditions for the global asymptotic stability of the positive periodic solution of the system is given. A counterexample is given to show that the result on the existence of positive periodic solution in [4] is incorrect.

  14. Compact tunable microwave filter using retroreflective acousto-optic filtering and delay controls.

    Science.gov (United States)

    Riza, Nabeel A; Ghauri, Farzan N

    2007-03-01

    Programmable broadband rf filters are demonstrated using a compact retroreflective optical design with an acousto-optic tunable filter and a chirped fiber Bragg grating. This design enables fast 34 micros domain analog-mode control of rf filter time delays and weights. Two proof-of-concept filters are demonstrated including a two-tap notch filter with >35 dB notch depth and a four-tap bandpass filter. Both filters have 2-8 GHz tunability and a 34 micros reset time.

  15. Localization and Imaging of Integrated Circuit Defect Using Simple Optical Feedback Detection

    Directory of Open Access Journals (Sweden)

    Vernon Julius Cemine

    2004-12-01

    Full Text Available High-contrast microscopy of semiconductor and metal edifices in integrated circuits is demonstrated by combining laser-scanning confocal reflectance microscopy, one-photon optical-beam-induced current (1P-OBIC imaging, and optical feedback detection via a commercially available semiconductor laser that also serves as the excitation source. The confocal microscope has a compact in-line arrangement with no external photodetector. Confocal and 1P-OBIC images are obtained simultaneously from the same focused beam that is scanned across the sample plane. Image pairs are processed to generate exclusive high-contrast distributions of the semiconductor, metal, and dielectric sites in a GaAs photodiode array sample. The method is then utilized to demonstrate defect localization and imaging in an integrated circuit.

  16. Collaborative Assembly Operation between Two Modular Robots Based on the Optical Position Feedback

    Directory of Open Access Journals (Sweden)

    Liying Su

    2009-01-01

    Full Text Available This paper studies the cooperation between two master-slave modular robots. A cooperative robot system is set up with two modular robots and a dynamic optical meter-Optotrak. With Optotrak, the positions of the end effectors are measured as the optical position feedback, which is used to adjust the robots' end positions. A tri-layered motion controller is designed for the two cooperative robots. The RMRC control method is adopted to adjust the master robot to the desired position. With the kinematics constraints of the two robots including position and pose, joint velocity, and acceleration constraints, the two robots can cooperate well. A bolt and nut assembly experiment is executed to verify the methods.

  17. Impact of Feedback Channel Delay over Joint User Scheduling Scheme and Separated Random User Scheduling Scheme in LTE-A System with Carrier Aggregation

    Directory of Open Access Journals (Sweden)

    Ahmed A. Ali

    2014-01-01

    Full Text Available In Long Term Evolution-Advanced (LTE-A, the signal quality in a wireless channel is estimated based on the channel quality measurements. The measurement results are used to select suitable modulation and coding scheme for each transmission, feedback, and processing delay, which can cause a mismatch between channel quality information (CQI and current channel state at the base station. However, prospect delays in the reception of such CQI may lead to a system performance degradation. This study analyzes the impact of CQI feedback delay on joint user scheduling (JUS scheme and separated random user scheduling (SRUS scheme in LTE-A system over carrier aggregation. The analysis will be compared with the system having delayed channel and perfect knowledge at different deployment scenario. We will study the throughput performance of both scheduling schemes with different deployment scenario, and then recommend the suitable deployment scenario to keep the desired QoS for a specific number of users. Results show that, in main beam directed at sector boundaries and diverse coverage, JUS scheme performs better than SRUS, which can justify the intensive use of user equipment power and extra control signaling overhead.

  18. The effect of force feedback delay on stiffness perception and grip force modulation during tool-mediated interaction with elastic force fields.

    Science.gov (United States)

    Leib, Raz; Karniel, Amir; Nisky, Ilana

    2015-05-01

    During interaction with objects, we form an internal representation of their mechanical properties. This representation is used for perception and for guiding actions, such as in precision grip, where grip force is modulated with the predicted load forces. In this study, we explored the relationship between grip force adjustment and perception of stiffness during interaction with linear elastic force fields. In a forced-choice paradigm, participants probed pairs of virtual force fields while grasping a force sensor that was attached to a haptic device. For each pair, they were asked which field had higher level of stiffness. In half of the pairs, the force feedback of one of the fields was delayed. Participants underestimated the stiffness of the delayed field relatively to the nondelayed, but their grip force characteristics were similar in both conditions. We analyzed the magnitude of the grip force and the lag between the grip force and the load force in the exploratory probing movements within each trial. Right before answering which force field had higher level of stiffness, both magnitude and lag were similar between delayed and nondelayed force fields. These results suggest that an accurate internal representation of environment stiffness and time delay was used for adjusting the grip force. However, this representation did not help in eliminating the bias in stiffness perception. We argue that during performance of a perceptual task that is based on proprioceptive feedback, separate neural mechanisms are responsible for perception and action-related computations in the brain.

  19. GRB 110530A: Peculiar Broad Bump and Delayed Plateau in Early Optical Afterglows

    Science.gov (United States)

    Zhong, Shu-Qing; Xin, Li-Ping; Liang, En-Wei; Wei, Jian-Yan; Urata, Yuji; Huang, Kui-Yun; Qiu, Yu-Lei; Deng, Can-Min; Wang, Yuan-Zhu; Deng, Jin-Song

    2016-11-01

    We report our very early optical observations of GRB 110530A and investigate its jet properties together with its X-ray afterglow data. A peculiar broad onset bump followed by a plateau is observed in its early R band afterglow light curve. The optical data in the other bands and the X-ray data are well consistent with the temporal feature of the R band light curve. Our joint spectral fits of the optical and X-ray data show that they are in the same regime, with a photon index of ∼1.70. The optical and X-ray afterglow light curves are well fitted with the standard external shock model by considering a delayed energy injection component. Based on our modeling results, we find that the radiative efficiency of the gamma-ray burst jet is ∼ 1 % and the magnetization parameter of the afterglow jet is \\lt 0.04 with a derived extremely low {ε }B (the ratio of shock energy to the magnetic field) of (1.64+/- 0.25)× {10}-6. These results indicate that the jet may be matter dominated. A discussion on delayed energy injection from the accretion of the late fall-back material of its pre-supernova star is also presented.

  20. GRB 110530A: Peculiar Broad Bump and Delayed Plateau in Early Optical Afterglows

    CERN Document Server

    Zhong, Shu-Qing; Liang, En-Wei; Wei, Jian-Yan; Urata, Yuji; Huang, Kui-Yun; Qiu, Yu-Lei; Deng, Can-Min; Wang, Yuan-Zhu; Deng, Jin-Song

    2016-01-01

    We report our very early optical observations of GRB 110530A and investigate its jet properties together with its X-ray afterglow data. A peculiar broad onset bump followed by a plateau is observed in its early R band afterglow lightcurve. The optical data in the other bands and the X-ray data are well consistent with the temporal feature of the R band lightcurve. Our joint spectral fits of the optical and X-ray data show that they are in the same regime, with a photon index of $\\sim 1.70$. The optical and X-ray afterglow lightcurves are well fitted with the standard external shock model by considering a delayed energy injection component. Based on our modeling results, we find that the radiative efficiency of the GRB jet is $\\sim 1\\%$ and the magnetization parameter of the afterglow jet is $<0.04$ with the derived extremely low $\\epsilon_B$ (the fraction of shock energy to magnetic field) of $(1.64\\pm 0.25)\\times 10^{-6}$. These results indicate that the jet may be matter dominated. Discussion on delayed ...

  1. Lightning Processes And Dynamics Of Large Scale Optical Emissions In Long Delayed Sprites

    Science.gov (United States)

    Li, J.; Cummer, S. A.; Lyons, W. A.; Nelson, T. E.; Hu, W.

    2006-12-01

    Simultaneous measurements of high altitude optical emissions and the magnetic field produced by sprite-associated lightning discharges enable a close examination of the link between low altitude lightning process and high altitude sprite process. In this work, we report results of the coordinated analysis of high speed (1000--10000 frames per second) sprite video and wideband (0.1 Hz to 30 kHz) magnetic field measurements made simultaneously at the Yucca Ridge Field Station and Duke University during the June through August 2005 campaign period. We investigate the relationship of lightning charge transfer characteristics and long delayed (>30 ms) sprites after the lightning return stroke. These long delayed sprites initiated after a total vertical charge moment change from a few thousand C km to more than ten thousand C km. Continuing currents provide about 50% to 90% of this total charge transfer depending on the sprite delayed time and amplitude of continuing current. Our data also show that intense continuing current bigger than a few kA plays an important role in sprites whose primary optical emissions last unusually long (>30 ms). On one observation night (4 July 2005), a large mesoscale convective system produced many sprites that were part of complex transient luminous event (TLE) sequences that included optical emission elements that appear well after any return stroke and initiate at apparently relatively low altitudes (~ 50 km). These low initiation altitude sprite events are typically associated with intense continuing currents and total charge moment changes of 4000 C km or more. With the estimated lightning source current moment waveform, we also employ a 2-D FDTD model to numerically simulate the electric field at different altitudes and compare it with the breakdown field. This reveals the initiation altitude of those long delayed sprites and the effect of electric field dependence of the electron mobility.

  2. Coherent Optical Memory with High Storage Efficiency and Large Fractional Delay

    CERN Document Server

    Chen, Yi-Hsin; Wang, I-Chung; Du, Shengwang; Chen, Yong-Fan; Chen, Ying-Cheng; Yu, Ite A

    2012-01-01

    A high-storage efficiency and long-live quantum memory for photons is an essential component in long-distance quantum communication and optical quantum computation. Here, we report a 78% storage efficiency of light pulses in a cold atomic medium based on the effect of electromagnetically induced transparency (EIT). At 50% storage efficiency, we obtain a fractional delay of 74, which is the best up-to-date record. The classical fidelity of the recalled pulse is better than 90% and nearly independent of the storage time, as confirmed by the direct measurement of phase evolution of the output light pulse with a beat-note interferometer. Such excellent phase coherence between the stored and recalled light pulses suggests that the current result can be readily applied to single photon wave packets. Our work significantly advances the technology of EIT-based optical memory and may find practical applications in long-distance quantum communication and optical quantum computation.

  3. Time-Domain Measurement of Optical True-Time Delay in Two-Dimensional Photonic Crystal Waveguides

    Institute of Scientific and Technical Information of China (English)

    ZHANG Geng-Yan; ZHOU Qiang; CUI Kai-Yu; ZHANG Wei; HUANG Yi-Dong

    2010-01-01

    @@ We report on the realization of optical true-time delay(TTD)by a two-dimensional photonic crystal waveguide(PCWG).Design and fabrication of the PCWG are investigated.The spectral dependence of the group delay is measured by detecting the phase shifts of a 10 GHz modulating signal,and a maximum delay of 25 ± 2.5 ps is obtained.

  4. Controllable all-optical stochastic logic gates and their delay storages based on the cascaded VCSELs with optical-injection

    Science.gov (United States)

    Zhong, Dongzhou; Luo, Wei; Xu, Geliang

    2016-09-01

    Using the dynamical properties of the polarization bistability that depends on the detuning of the injected light, we propose a novel approach to implement reliable all-optical stochastic logic gates in the cascaded vertical cavity surface emitting lasers (VCSELs) with optical-injection. Here, two logic inputs are encoded in the detuning of the injected light from a tunable CW laser. The logic outputs are decoded from the two orthogonal polarization lights emitted from the optically injected VCSELs. For the same logic inputs, under electro-optic modulation, we perform various digital signal processing (NOT, AND, NAND, XOR, XNOR, OR, NOR) in the all-optical domain by controlling the logic operation of the applied electric field. Also we explore their delay storages by using the mechanism of the generalized chaotic synchronization. To quantify the reliabilities of these logic gates, we further demonstrate their success probabilities. Project supported by the National Natural Science Foundation of China (Grant No. 61475120) and the Innovative Projects in Guangdong Colleges and Universities, China (Grant Nos. 2014KTSCX134 and 2015KTSCX146).

  5. Feedback effects in optical communication systems: characteristic curve for single-mode InGaAsP lasers.

    Science.gov (United States)

    Brivio, F; Reverdito, C; Sacchi, G; Chiaretti, G; Milani, M

    1992-08-20

    An experimental analysis of InGaAsP injection lasers shows an unexpected decrease of the differential quantum efficiency as a function of injected current when optical power is fed back into the active cavity of a diode inserted into a long transmission line. To investigate the response of laser diodes to optical feedback, we base our analysis on a microscopic model, resulting in a set of coupled equations that include the microscopic parameters that characterize the material and the device. This description takes into account the nonlinear dependence of the interband carrier lifetime on the level of optical feedback. Good agreement between the analytical description and experimental data is obtained for threshold current and differential quantum efficiency as functions of the feedback ratio.

  6. Optically fed microwave true-time delay based on a compact liquid-crystal hotonic-bandgap-fiber device

    DEFF Research Database (Denmark)

    Wei, Lei; Xue, Weiqi; Chen, Yaohui

    2009-01-01

    An electrically tunable liquid-crystal, photonic-bandgap-fiber-device-based, optically fed microwave true-time delay is demonstrated with the response time in the millisecond range. A maximum electrically controlled phase shift of around 70° at 15GHz and an averaged 12.9ps true time delay over...

  7. Optically fed microwave true-time delay based on a compact liquid-crystal hotonic-bandgap-fiber device

    DEFF Research Database (Denmark)

    Wei, Lei; Xue, Weiqi; Chen, Yaohui;

    2009-01-01

    An electrically tunable liquid-crystal, photonic-bandgap-fiber-device-based, optically fed microwave true-time delay is demonstrated with the response time in the millisecond range. A maximum electrically controlled phase shift of around 70° at 15GHz and an averaged 12.9ps true time delay over...

  8. An optical time delay for the double gravitational lens system FBQ 0951+2635

    CERN Document Server

    Jakobsson, P; Burud, I; Letawe, G; Lidman, C E; Courbin, F

    2005-01-01

    We present optical R-band light curves of the double gravitationally lensed quasar FBQ 0951+2635 from observations obtained at the Nordic Optical Telescope between March 1999 and June 2001. A time delay of 16 +/- 2 days (1 sigma) is determined from the light curves. New constraints on the lensing geometry are provided by the position and ellipticity of the lensing galaxy. For a (Omega_m, Omega_Lambda) = (0.3, 0.7) cosmology, the time delay yields a Hubble parameter of H_0 = 60^{+9}_{-7} (random, 1 sigma) +/- 2 (systematic) km/s/Mpc for a singular isothermal ellipsoid model and H_0 = 63^{+9}_{-7} (random, 1 sigma) +/- 1 (systematic) km/s/Mpc for a constant mass-to-light ratio model. In both models, the errors are mainly due to the time-delay uncertainties. Non-parametric models yield H_0 = 64^{+9}_{-7} (random, 1 sigma) +/- 14 (systematic) km/s/Mpc.

  9. Signature analysis of microwave signal generator with a fiber optic delay line in a feedback loop

    Science.gov (United States)

    Biryukov, Vladimir V.; Grachev, Vladimir A.; Kapustin, Sergey A.; Lukoyanova, Tatyana S.; Lobin, Sergey G.; Raevskii, Alexey S.

    2016-03-01

    The authors deal with advantages and disadvantages of optoelectronic microwave generators in comparison with "traditional" solid-state microwave signal generators. The article contains the experimental results of spectral characteristics of a single-stage optoelectronic microwave signal generator (frequency range from 15 up to 22 GHz).

  10. Delay Tracking of Spread-Spectrum Signals for Indoor Optical Ranging

    Directory of Open Access Journals (Sweden)

    David Salido-Monzú

    2014-12-01

    Full Text Available Delay tracking of spread-spectrum signals is widely used for ranging in radio frequency based navigation. Its use in non-coherent optical ranging, however, has not been extensively studied since optical channels are less subject to narrowband interference situations where these techniques become more useful. In this work, an early-late delay-locked loop adapted to indoor optical ranging is presented and analyzed. The specific constraints of free-space infrared channels in this context substantially differ from those typically considered in radio frequency applications. The tracking stage is part of an infrared differential range measuring system with application to mobile target indoor localization. Spread-spectrum signals are used in this context to provide accurate ranging while reducing the effect of multipath interferences. The performance of the stage regarding noise and dynamic errors is analyzed and validated, providing expressions that allow an adequate selection of the design parameters depending on the expected input signal characteristics. The behavior of the stage in a general multipath scenario is also addressed to estimate the multipath error bounds. The results, evaluated under realistic conditions corresponding to an 870 nm link with 25 MHz chip-rate, built with low-cost up-to-date devices, show that an overall error below 6% of a chip time can be achieved.

  11. Delay tracking of spread-spectrum signals for indoor optical ranging.

    Science.gov (United States)

    Salido-Monzú, David; Martín-Gorostiza, Ernesto; Lázaro-Galilea, José Luis; Martos-Naya, Eduardo; Wieser, Andreas

    2014-12-05

    Delay tracking of spread-spectrum signals is widely used for ranging in radio frequency based navigation. Its use in non-coherent optical ranging, however, has not been extensively studied since optical channels are less subject to narrowband interference situations where these techniques become more useful. In this work, an early-late delay-locked loop adapted to indoor optical ranging is presented and analyzed. The specific constraints of free-space infrared channels in this context substantially differ from those typically considered in radio frequency applications. The tracking stage is part of an infrared differential range measuring system with application to mobile target indoor localization. Spread-spectrum signals are used in this context to provide accurate ranging while reducing the effect of multipath interferences. The performance of the stage regarding noise and dynamic errors is analyzed and validated, providing expressions that allow an adequate selection of the design parameters depending on the expected input signal characteristics. The behavior of the stage in a general multipath scenario is also addressed to estimate the multipath error bounds. The results, evaluated under realistic conditions corresponding to an 870 nm link with 25 MHz chip-rate, built with low-cost up-to-date devices, show that an overall error below 6% of a chip time can be achieved.

  12. The Application of Predictor Feedback in Designing a Preview Controller for Discrete-Time Systems with Input Delay

    Directory of Open Access Journals (Sweden)

    Fucheng Liao

    2016-01-01

    Full Text Available This paper presents a method for designing a type one servomechanism for a discrete-time linear system with input delay subject to a previewable desired output and a nonmeasurable constant disturbance. The tracking problem of a delay system is transformed into a regulation problem of a delay-free system via constructing an augmented error system and a variable substitution. A controller is obtained with delay compensation and preview compensation based on preview control theory and the predictor method. When the state vector is not directly measurable, a full-dimensional observer is offered. The effectiveness of the design method is demonstrated by numerical simulations.

  13. SDN-Enabled Dynamic Feedback Control and Sensing in Agile Optical Networks

    Science.gov (United States)

    Lin, Likun

    monitoring sensors. In order to maintain signal quality while optimizing network resources, we find that it is essential to model and update estimates of the physical link impairments in real-time. In this thesis, we consider the key elements required to enable an agile optical network, with contributions as follows: • Control Framework: extended the SDN concept to include the optical transport network through extensions to the OpenFlow (OF) protocol. A unified SDN control plane is built to facilitate control and management capability across the electrical/packet-switched and optical/circuit-switched portions of the network seamlessly. The SDN control plane serves as a platform to abstract the resources of multilayer/multivendor networks. Through this platform, applications can dynamically request the network resources to meet their service requirements. • Use of In-situ Monitors: enabled real-time physical impairment sensing in the control plane using in-situ Optical Performance Monitoring (OPM) and bit error rate (BER) analyzers. OPM and BER values are used as quantitative indicators of the link status and are fed to the control plane through a high-speed data collection interface to form a closed-loop feedback system to enable adaptive resource allocation. • Predictive Network Model: used a network model embedded in the control layer to study the link status. The estimated results of network status is fed into the control decisions to precompute the network resources. The performance of the network model can be enhanced by the sensing results. • Real-Time Control Algorithms: investigated various dynamic resource allocation mechanisms supporting an agile optical network. Intelligent routing and wavelength switching for recovering from traffic impairments is achieved experimentally in the agile optical network within one second. A distance-adaptive spectrum allocation scheme to address transmission impairments caused by cascaded Wavelength Selective Switches (WSS

  14. State Feedback Stabilzation for a Class of Time-delay Nonlinear Systems%一类非线性时滞系统的状态反馈镇定

    Institute of Scientific and Technical Information of China (English)

    张宪福; 程兆林

    2005-01-01

    The problem of global stabilization by state feedback for a class of time-delay nonlinear system is considered. By constructing the appropriate Lyapunov-Krasovskii functionals (LKF) and using the backstepping design, a linear state feedback controller making the closed-loop system globally asymptotically stable is constructed.

  15. Optical Switching and Spatial Routing by a Delay-Controlled Optical Emitter

    Directory of Open Access Journals (Sweden)

    A. Ramírez

    2013-06-01

    Full Text Available Semiconductor Laser or Light Emitting Diodes, (LEDs as active elements of optical switches or spatial routing devices are widely used in integrated optical circuitry. Electro-optic, magneto-optic, mechanical or other methods are applied for that purpose. The present paper deals with a novel effect, which appears in the light field of a. c. driven luminescence emitters in Fabry-Perot structure under electrical excitation depending on time (a.c., characterized because the light band emitted on the side face of the device moves up and down due to the finite diffusion velocity of the injected excess minority carriers. The combination of such emitter with a portioned detector element, allows spatial routing between these two detector segments. Particular emphasis is laid on a theoretical treatment of light propagation inside the emitter bulk which finally allows the construction of the light field intensity on the side face of the Fabry-Perot body, necessary to prove the proposed effect.

  16. Compact optical true time delay beamformer for a 2D phased array antenna using tunable dispersive elements.

    Science.gov (United States)

    Ye, Xingwei; Zhang, Fangzheng; Pan, Shilong

    2016-09-01

    A hardware-compressive optical true time delay architecture for 2D beam steering in a planar phased array antenna is proposed using fiber-Bragg-grating-based tunable dispersive elements (TDEs). For an M×N array, the proposed system utilizes N TDEs and M wavelength-fixed optical carriers to control the time delays. Both azimuth and elevation beam steering are realized by programming the settings of the TDEs. An experiment is carried out to demonstrate the delay controlling in a 2×2 array, which is fed by a wideband pulsed signal. Radiation patterns calculated from the experimentally measured waveforms at the four antennas match well with the theoretical results.

  17. Frequency and time domain analysis of an external cavity laser with strong filtered optical feedback

    DEFF Research Database (Denmark)

    Detoma, Enrico; Tromborg, Bjarne; Montrosset, Ivo

    -signal analysis in the frequency domain allows a calculation of the range of operation without mode hopping around the grating reflectivity peak. This region should be as large as possible for proper operation of the tunable laser source. The analysis shows this stabilizing effect of mode coupling and gain......The stability properties of an external cavity laser with strong grating-filtered optical feedback to an anti-reflection coated facet are studied with a general frequency domain model. The model takes into account non-linear effects like four wave mixing and gain compression. A small...... copression in the lasing mode. An integral equation for the electrical field is derived from the frequency domain model and used for time domain simulations of large-signal behavior....

  18. Quantitative identification of dynamical transitions in a semiconductor laser with optical feedback

    Science.gov (United States)

    Quintero-Quiroz, C.; Tiana-Alsina, J.; Romà, J.; Torrent, M. C.; Masoller, C.

    2016-01-01

    Identifying transitions to complex dynamical regimes is a fundamental open problem with many practical applications. Semi- conductor lasers with optical feedback are excellent testbeds for studying such transitions, as they can generate a rich variety of output signals. Here we apply three analysis tools to quantify various aspects of the dynamical transitions that occur as the laser pump current increases. These tools allow to quantitatively detect the onset of two different regimes, low-frequency fluctuations and coherence collapse, and can be used for identifying the operating conditions that result in specific dynamical properties of the laser output. These tools can also be valuable for analyzing regime transitions in other complex systems. PMID:27857229

  19. Optical Feedback Interferometry for Velocity Measurement of Parallel Liquid-Liquid Flows in a Microchannel

    Directory of Open Access Journals (Sweden)

    Evelio E. Ramírez-Miquet

    2016-08-01

    Full Text Available Optical feedback interferometry (OFI is a compact sensing technique with recent implementation for flow measurements in microchannels. We propose implementing OFI for the analysis at the microscale of multiphase flows starting with the case of parallel flows of two immiscible fluids. The velocity profiles in each phase were measured and the interface location estimated for several operating conditions. To the authors knowledge, this sensing technique is applied here for the first time to multiphase flows. Theoretical profiles issued from a model based on the Couette viscous flow approximation reproduce fairly well the experimental results. The sensing system and the analysis presented here provide a new tool for studying more complex interactions between immiscible fluids (such as liquid droplets flowing in a microchannel.

  20. Compensation of focal plane image motion perturbations with optical correlator in feedback loop

    Science.gov (United States)

    Janschek, Klaus; Tchernykh, Valerij; Dyblenko, Serguei; Flandin, Gregory; Harnisch, Bernd

    2004-11-01

    The paper presents a concept of a smart pushbroom imaging system with compensation of attitude instability effects. The compensation is performed by active opto-mechatronic stabilization of the focal plane image motion in a closed loop system with visual feedback on base of an auxiliary matrix image sensor and an onboard optical correlator. In this way the effects of the attitude instability, vibrations and micro shocks can be neutralized, the image quality improved and the requirements to satellite attitude stability reduced. To prove the feasibility and to estimate the effectiveness of the image motion stabilization, a performance model of the smart imaging system has been developed and a simulation experiment has been carried out. The description of the performance model and the results of the simulation experiment are also given.

  1. Chaos synchronization based on a continuous chaos control method in semiconductor lasers with optical feedback.

    Science.gov (United States)

    Murakami, A; Ohtsubo, J

    2001-06-01

    Chaos synchronization using a continuous chaos control method was studied in two identical chaotic laser systems consisting of semiconductor lasers and optical feedback from an external mirror. Numerical calculations for rate equations indicate that the stability of chaos synchronization depends significantly on the external mirror position. We performed a linear stability analysis for the rate equations. Our results show that the stability of the synchronization is much influenced by the mode interaction between the relaxation oscillation frequency of the semiconductor laser and the external cavity frequency. Due to this interaction, an intensive mode competition between the two frequencies destroys the synchronization, but stable synchronization can be achieved when the mode competition is very weak.

  2. Design of a superluminal ring laser gyroscope using multilayer optical coatings with huge group delay.

    Science.gov (United States)

    Qu, Tianliang; Yang, Kaiyong; Han, Xiang; Wu, Suyong; Huang, Yun; Luo, Hui

    2014-01-01

    We propose and analyze a superluminal ring laser gyroscope (RLG) using multilayer optical coatings with huge group delay (GD). This GD assisted superluminal RLG can measure the absolute rotation with a giant sensitivity-enhancement factor of ~10(3); while, the broadband FWHM of the enhancement factor can reach 20 MHz. This superluminal RLG is based on a traditional RLG with minimal re-engineering, and beneficial for miniaturization according to theoretical calculation. The idea of using GD coatings as a fast-light medium will shed lights on the design and application of fast-light sensors.

  3. Effect of State Feedback Coupling and System Delays on the Transient Performance of Stand-Alone VSI with LC Output Filter

    DEFF Research Database (Denmark)

    Federico, de Bosio; de Sousa Ribeiro, Luiz Antonio; Freijedo Fernandez, Francisco Daniel

    2016-01-01

    provided. A proportional resonant voltage controller is designed according to Nyquist criterion taking into account application requirements. For this purpose, a mathematical expression based on root locus analysis is proposed to find the minimum value of the fundamental resonant gain. Experimental tests...... on the state feedback decoupling path in order to compensate for system delays. Practical implementation issues are discussed with reference to both the decoupling techniques. A design methodology for the voltage loop, that considers the closed loop transfer functions developed for the inner loop, is also...... performed in accordance to UPS standards verify the theoretical analysis....

  4. Measurements of the linewidth enhancement factor of mid-infrared quantum cascade lasers by different optical feedback techniques

    Directory of Open Access Journals (Sweden)

    L. Jumpertz

    2016-01-01

    Full Text Available Precise knowledge of the linewidth enhancement factor of a semiconductor laser under actual operating conditions is of prime importance since this parameter dictates various phenomena such as linewidth broadening or optical nonlinearities enhancement. The above-threshold linewidth enhancement factor of a mid-infrared quantum cascade laser structure operated at 10∘C is determined experimentally using two different methods based on optical feedback. Both Fabry-Perot and distributed feedback quantum cascade lasers based on the same active area design are studied, the former by following the wavelength shift as a function of the feedback strength and the latter by self-mixing interferometry. The results are consistent and unveil a clear pump current dependence of the linewidth enhancement factor, with values ranging from 0.8 to about 3.

  5. Measurements of the linewidth enhancement factor of mid-infrared quantum cascade lasers by different optical feedback techniques

    Energy Technology Data Exchange (ETDEWEB)

    Jumpertz, L., E-mail: louise.jumpertz@telecom-paristech.fr [Université Paris-Saclay, Télécom ParisTech, CNRS LTCI, 46 rue Barrault, F-75013 Paris (France); MirSense, 8 avenue de la Vauve, F-91120 Palaiseau (France); Michel, F.; Pawlus, R.; Elsässer, W. [Technische Universität Darmstadt, Schlossgartenstr. 7, D-64289 Darmstadt (Germany); Schires, K. [Université Paris-Saclay, Télécom ParisTech, CNRS LTCI, 46 rue Barrault, F-75013 Paris (France); Carras, M. [MirSense, 8 avenue de la Vauve, F-91120 Palaiseau (France); Grillot, F. [Université Paris-Saclay, Télécom ParisTech, CNRS LTCI, 46 rue Barrault, F-75013 Paris (France); also with Center for High Technology Materials, University of New-Mexico, 1313 Goddard SE, Albuquerque, NM (United States)

    2016-01-15

    Precise knowledge of the linewidth enhancement factor of a semiconductor laser under actual operating conditions is of prime importance since this parameter dictates various phenomena such as linewidth broadening or optical nonlinearities enhancement. The above-threshold linewidth enhancement factor of a mid-infrared quantum cascade laser structure operated at 10{sup ∘}C is determined experimentally using two different methods based on optical feedback. Both Fabry-Perot and distributed feedback quantum cascade lasers based on the same active area design are studied, the former by following the wavelength shift as a function of the feedback strength and the latter by self-mixing interferometry. The results are consistent and unveil a clear pump current dependence of the linewidth enhancement factor, with values ranging from 0.8 to about 3.

  6. Narrow-linewidth photonic microwave generation based on an optically injected 1550 nm VCSEL subject to optoelectronic feedback

    Science.gov (United States)

    Liang, Qing; Fan, Li; Yang, Ji-Yun; Wang, Zhen-Zhen; Wu, Zheng-Mao; Xia, Guang-Qiong

    2016-11-01

    High-quality photonic microwave generation is experimentally demonstrated based on the period-one (P1) dynamical state output from an optically injected 1550 nm vertical-cavity surface-emitting laser (1550 nm-VCSEL) subject to optoelectronic negative feedback. The experimental results show that, under suitable injection condition, the 1550 nm-VCSEL can generate a photonic microwave signal with single sideband optical spectrum structure, but the linewidth of the microwave signal is relatively wide (on the order of MHz). After further introducing optoelectronic negative feedback, the linewidth of the microwave signal can be narrowed two orders of magnitude to 105.7 kHz. Furthermore, for the case that the feedback strength is set at an optimized value, the frequency of the microwave signal can be tuned continuously within a certain range through simply adjusting the injection strength.

  7. 非相称多时奇异系统的有记忆状态反馈控制%Memory State Feedback Control for Singular Systems with Multiple Internal Incommensurate Constant Point Delays

    Institute of Scientific and Technical Information of China (English)

    蒋朝辉; 桂卫华; 谢永芳; 阳春华

    2009-01-01

    In this paper, the problem of delay-dependent stabilization for singular linear continuous-time systems with multiple internal incommensurate constant point delays (SLCS-MIID) is investigated. The condition when a singular system subject to point delays is regular independent of time delays is given and it can be easily tested with numerical or algebraic methods. Based on the Lyapunov-Krasovskii functional approach and the descriptor integral-inequality lemma, a sufficient condition for delay-dependent stability is obtained. The main idea is to design multiple memory state feedback control laws such that the resulting closed-loop system is regular independently of time delays, impulse free, and asymptotically stable via solving some strict linear matrix inequalities (LMIs) problem. An explicit expression for the desired memory state feedback control law is also given. Finally, a numerical example illustrates effectiveness and availability for the proposed method.

  8. 一个正反馈时滞微分方程的Hopf分支%Hopf Bifurcation of a Positive Feedback Delay Differential Equation

    Institute of Scientific and Technical Information of China (English)

    陈玉明; 黄立宏

    2003-01-01

    Under some minor technical hypotheses, for each τ larger than a certain τs > 0, Krisztin, Walther and Wu showed the existence of a periodic orbit for the positive feedback delay differential equation x(t) = -τμx(t) + τf(x(t - 1)), where τ and μ are positive constants and f: R → R satisfies f(0) = 0 and f′> 0.Combining this with a unique result of Krisztin and Walther, we know that this periodic orbit is the one branched out from 0 through Hopf bifurcation. Using the normal form theory for delay differential equations, we show the same result under the condition that f ∈ C3(R, R) is such that f"(0) = 0 and f′"(0) < 0, which is weaker than those of Krisztin and Walther.

  9. Finite-time H∞ control for discrete-time switched singular time-delay systems subject to actuator saturation via static output feedback

    Science.gov (United States)

    Ma, Yuechao; Fu, Lei

    2016-10-01

    This study employs the multiple Lyapunov-like function method and the average dwell-time concept of switching signal to investigate the finite-time H∞ static output-feedback (SOF) control problem for a class of discrete-time switched singular time-delay systems subject to actuator saturation. First, sufficient conditions are presented to guarantee the discrete-time switched singular time-delay system regular, causal and finite-time boundedness. Meanwhile, sufficient conditions are presented to ensure the H∞ disturbance attenuation level, and the design method of H∞ SOF controller is developed by solving matrix inequalities optimisation problem without any decompositions of system matrices and equivalent transformation. Finally, the effectiveness and merit of the theoretical results are shown through some numerical examples and several vivid illustrations.

  10. SHARP - III: First Use Of Adaptive Optics Imaging To Constrain Cosmology With Gravitational Lens Time Delays

    CERN Document Server

    Chen, Geoff C F; Wong, Kenneth C; Fassnacht, Christopher D; Chiueh, Tzihong; Halkola, Aleksi; Hu, I Shing; Auger, Matthew W; Koopmans, Leon V E; Lagattuta, David J; McKean, John P; Vegetti, Simona

    2016-01-01

    Accurate and precise measurements of the Hubble constant are critical for testing our current standard cosmological model and revealing possibly new physics. With Hubble Space Telescope (HST) imaging, each strong gravitational lens system with measured time delays can allow one to determine the Hubble constant with an uncertainty of $\\sim 7\\%$. Since HST will not last forever, we explore adaptive-optics (AO) imaging as an alternative that can provide higher angular resolution than HST imaging but has a less stable point spread function (PSF) due to atmospheric distortion. To make AO imaging useful for time-delay-lens cosmography, we develop a method to extract the unknown PSF directly from the imaging of strongly lensed quasars. In a blind test with two mock data sets created with different PSFs, we are able to recover the important cosmological parameters (time-delay distance, external shear, lens mass profile slope, and total Einstein radius). Our analysis of the Keck AO image of the strong lens system RXJ1...

  11. Low-loss impedance-matched optical metamaterials with zero-phase delay.

    Science.gov (United States)

    Yun, Seokho; Jiang, Zhi Hao; Xu, Qian; Liu, Zhiwen; Werner, Douglas H; Mayer, Theresa S

    2012-05-22

    Metamaterials have dramatically expanded the range of available optical properties, enabling an array of new devices such as superlenses, perfect absorbers, and ultrafast switches. Most research has focused on demonstrating negative- and high-index metamaterials at terahertz and optical wavelengths. However, far less emphasis has been placed on low-loss near-zero-index metamaterials that exhibit unique properties including quasi-infinite phase velocity and infinite wavelength. Here, we experimentally demonstrate a free-standing metallodielectric fishnet nanostructure that has polarization-insensitive, zero-index properties with nearly ideal transmission at 1.55 μm. This goal was achieved by optimizing the metamaterial geometry to allow both its effective permittivity and permeability to approach zero together, which simultaneously produces a zero index and matched impedance to free space. The ability to design and fabricate low-loss, near-zero-index optical metamaterials is essential for new devices such as beam collimators, zero-phase delay lines, and transformation optics lenses.

  12. Swept source/Fourier domain polarization sensitive optical coherence tomography with a passive polarization delay unit.

    Science.gov (United States)

    Baumann, Bernhard; Choi, WooJhon; Potsaid, Benjamin; Huang, David; Duker, Jay S; Fujimoto, James G

    2012-04-23

    Polarization sensitive optical coherence tomography (PS-OCT) is a functional imaging method that provides additional contrast using the light polarizing properties of a sample. This manuscript describes PS-OCT based on ultrahigh speed swept source / Fourier domain OCT operating at 1050 nm at 100 kHz axial scan rates using single mode fiber optics and a multiplexing approach. Unlike previously reported PS-OCT multiplexing schemes, the method uses a passive polarization delay unit and does not require active polarization modulating devices. This advance decreases system cost and avoids complex synchronization requirements. The polarization delay unit was implemented in the sample beam path in order to simultaneously illuminate the sample with two different polarization states. The orthogonal polarization components for the depth-multiplexed signals from the two input states were detected using dual balanced detection. PS-OCT images were computed using Jones calculus. 3D PS-OCT imaging was performed in the human and rat retina. In addition to standard OCT images, PS-OCT images were generated using contrast form birefringence and depolarization. Enhanced tissue discrimination as well as quantitative measurements of sample properties was demonstrated using the additional contrast and information contained in the PS-OCT images.

  13. 3D nondestructive testing system with an affordable multiple reference optical-delay-based optical coherence tomography.

    Science.gov (United States)

    Dsouza, Roshan; Subhash, Hrebesh M; Neuhaus, Kai; Hogan, Josh; Wilson, Carol; Leahy, Martin

    2015-06-20

    Optical coherence tomography (OCT) is emerging as a powerful noncontact imaging technique, allowing high-quality cross-sectional imaging of scattering specimens nondestructively. However, the complexity and cost of current embodiments of an OCT system limit its use in various nondestructive testing (NDT) applications at resource-limited settings. In this paper, we demonstrate the feasibility of a novel low-cost OCT system for a range of nondestructive testing (NDT) applications. The proposed imaging system is based on an enhanced time-domain OCT system with a low cost and small form factor reference arm optical delay, called multiple reference OCT (MR-OCT), which uses a miniature voice coil actuator and a partial mirror for extending the axial scan range. The proposed approach is potentially a low-cost, compact, and unique optical imaging modality for a range of NDT applications in a low-resource setting. Using this method, we demonstrated the capability of MR-OCT to perform cross-sectional and volumetric imaging at 1200 A-scans per second.

  14. Impact of unpredictability on chaos synchronization of vertical-cavity surface-emitting lasers with variable-polarization optical feedback.

    Science.gov (United States)

    Xiang, Shuiying; Pan, Wei; Yan, Lianshan; Luo, Bin; Zou, Xihua; Jiang, Ning; Yang, Lei

    2011-09-01

    The effects of unpredictability degree on the chaos synchronization properties of vertical-cavity surface-emitting lasers with variable-polarization optical feedback are investigated numerically. For variable-polarization optical injection, only low-unpredictability chaos can be well synchronized, while high-unpredictability chaos cannot be synchronized even with large injection strength. On the other hand, for the polarization-preserved optical injection, the synchronization quality is hardly affected by the unpredictability degree, and high-quality synchronization can be achieved for both low- and high-unpredictability chaos due to injection locking.

  15. Hear You Later Alligator: How delayed auditory feedback affects non-musically trained people’s strumming

    DEFF Research Database (Denmark)

    Larsen, Jeppe Veirum; Knoche, Hendrik

    2017-01-01

    of an actuated guitar to a metronome at 60bpm and 120bpm. The long DAF matched a subdivision of the overall tempo. We compared their performance using two different input devices with feedback before or on activation. While 250ms DAF hardly affected musically trained participants, non-musically trained...

  16. Stepped mirrored structures for generating true time delays in stationary optical delay line proof-of-principle experiments for application to optical coherence tomography

    Science.gov (United States)

    Jansz, Paul Vernon; Wild, Graham; Hinckley, Steven

    2008-01-01

    Conventional time domain Optical Coherence Tomography (OCT) relies on the detection of an interference pattern generated by the interference of backscattered light from the sample and a reference Optical Delay Line (ODL). By referencing the sample interference with the scan depth of the ODL, constructive interference indicates depth in the sample of a reflecting structure. Conventional ODLs used in time domain OCT require some physical movement of a mirror to scan a given depth range. This movement results in instrument degradation. Also in some situations it is necessary to have no moving parts. Stationary ODLs (SODLs) include dual Reflective Spatial Light Modulator (SLM) systems (Type I) and single Transmissive SLM with match-arrayed-waveguide systems (Type II). In this paper, the method of fabrication and characterisation of a number of Stepped Mirrored Structures (SMS) is presented. These structures are intended for later use in proof-of-principle experiments that demonstrate Type II SODL: a six step, 2 mm step depth macro-SMS, an eight step 150 um deep micro-SMS with glue between steps, and a six step 150 um deep micro-SMS with no glue between steps. These SMS are characterized in terms of their fabrication, step alignment and step height increment precision. The degree of alignment of each step was verified using half of a bulk Michelson interferometer. Step height was gauged using a pair of vernier callipers measuring each individual step. A change in notch frequency using an in-fibre Mach-Zhender interferometer was used to gauge the average step height and the result compared to the vernier calliper results. The best aligned SMS was the micro-SMS prepared by method B with no glue between steps. It demonstrated a 95% confidence interval variation of 1% in reflected intensity, with the least variation in intensity within steps. This SMS also had the least absolute variation in step height increment: less than 8 um. Though less variation would be ideal, for

  17. Quantum-enhanced metrology with the single-mode coherent states of an optical cavity inside a quantum feedback loop

    Science.gov (United States)

    Clark, Lewis A.; Stokes, Adam; Beige, Almut

    2016-08-01

    In this paper, we use the nonlinear generator of dynamics of the individual quantum trajectories of an optical cavity inside an instantaneous quantum feedback loop to measure the phase shift between two pathways of light with a precision above the standard quantum limit. The feedback laser provides a reference frame and constantly increases the dependence of the state of the resonator on the unknown phase. Since our quantum metrology scheme can be implemented with current technology and does not require highly efficient single photon detectors, it should be of practical interest until highly entangled many-photon states become more readily available.

  18. Large delay tunable slow-light based on high-gain stimulated-Brillouin-scattering amplification in optical fibers

    Institute of Scientific and Technical Information of China (English)

    XING Liang; ZHAN Li; XIA YuXing

    2009-01-01

    Tunable stimulated-Brillouin-scattering (SBS)-based slow-light in optical fibers has potential applications in optical buffering in the future all-optical router commutation systems.However,due to the low SBS threshold and relatively high realistic signal power,the gain in the usual SBS systems is limited at~30 dB.This paper presents a high-gain SBS scheme to realize large delay slow-light,which benefits from avoiding the depletion of the pump power in a short fiber as SBS media.The experiment demon strates that,up to 50 dB non-saturated gain has been observed in the single-stage 591.8 m fiber SBS amplification.The slow-light delay can be obtained 52 ns,and the fractional delay can exceed 1.

  19. Enhanced secure strategy for electro-optic chaotic systems with delayed dynamics by using fractional Fourier transformation.

    Science.gov (United States)

    Cheng, Mengfan; Deng, Lei; Li, Hao; Liu, Deming

    2014-03-10

    We propose a scheme whereby a time domain fractional Fourier transform (FRFT) is used to post process the optical chaotic carrier generated by an electro-optic oscillator. The time delay signature of the delay dynamics is successfully masked by the FRFT when some conditions are satisfied. Meanwhile the dimension space of the physical parameters is increased. Pseudo random binary sequence (PRBS) with low bit rate (hundreds of Mbps) is introduced to control the parameters of the FRFT. The chaotic optical carrier, FRFT parameters and the PRBS are covered by each other so that the eavesdropper has to search the whole key space to crack the system. The scheme allows enhancing the security of communication systems based on delay dynamics without modifying the chaotic source. In this way, the design of chaos based communication systems can be implemented in a modular manner.

  20. Adaptive Fuzzy Output-Feedback Method Applied to Fin Control for Time-Delay Ship Roll Stabilization

    Directory of Open Access Journals (Sweden)

    Rui Bai

    2014-01-01

    Full Text Available The ship roll stabilization by fin control system is considered in this paper. Assuming that angular velocity in roll cannot be measured, an adaptive fuzzy output-feedback control is investigated. The fuzzy logic system is used to approximate the uncertain term of the controlled system, and a fuzzy state observer is designed to estimate the unmeasured states. By utilizing the fuzzy state observer and combining the adaptive backstepping technique with adaptive fuzzy control design, an observer-based adaptive fuzzy output-feedback control approach is developed. It is proved that the proposed control approach can guarantee that all the signals in the closed-loop system are semiglobally uniformly ultimately bounded (SGUUB, and the control strategy is effective to decrease the roll motion. Simulation results are included to illustrate the effectiveness of the proposed approach.