WorldWideScience

Sample records for delayed detonation models

  1. A detonation model of high/low velocity detonation

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Shaoming; Li, Chenfang; Ma, Yunhua; Cui, Junmin [Xian Modern Chemistry Research Institute, Xian, 710065 (China)

    2007-02-15

    A new detonation model that can simulate both high and low velocity detonations is established using the least action principle. The least action principle is valid for mechanics and thermodynamics associated with a detonation process. Therefore, the least action principle is valid in detonation science. In this model, thermodynamic equilibrium state is taken as the known final point of the detonation process. Thermodynamic potentials are analogous to mechanical ones, and the Lagrangian function in the detonation process is L=T-V. Under certain assumptions, the variation calculus of the Lagrangian function gives two solutions: the first one is a constant temperature solution, and the second one is the solution of an ordinary differential equation. A special solution of the ordinary differential equation is given. (Abstract Copyright [2007], Wiley Periodicals, Inc.)

  2. PULSATING REVERSE DETONATION MODELS OF TYPE Ia SUPERNOVAE. II. EXPLOSION

    International Nuclear Information System (INIS)

    Bravo, Eduardo; Garcia-Senz, Domingo; Cabezon, Ruben M.; DomInguez, Inmaculada

    2009-01-01

    Observational evidences point to a common explosion mechanism of Type Ia supernovae based on a delayed detonation of a white dwarf (WD). However, all attempts to find a convincing ignition mechanism based on a delayed detonation in a destabilized, expanding, white dwarf have been elusive so far. One of the possibilities that has been invoked is that an inefficient deflagration leads to pulsation of a Chandrasekhar-mass WD, followed by formation of an accretion shock that confines a carbon-oxygen rich core, while transforming the kinetic energy of the collapsing halo into thermal energy of the core, until an inward moving detonation is formed. This chain of events has been termed Pulsating Reverse Detonation (PRD). In this work, we present three-dimensional numerical simulations of PRD models from the time of detonation initiation up to homologous expansion. Different models characterized by the amount of mass burned during the deflagration phase, M defl , give explosions spanning a range of kinetic energies, K ∼ (1.0-1.2) x 10 51 erg, and 56 Ni masses, M( 56 Ni) ∼ 0.6-0.8 M sun , which are compatible with what is expected for typical Type Ia supernovae. Spectra and light curves of angle-averaged spherically symmetric versions of the PRD models are discussed. Type Ia supernova spectra pose the most stringent requirements on PRD models.

  3. Recent advances in numerical modeling of detonations

    Energy Technology Data Exchange (ETDEWEB)

    Mader, C.L.

    1986-12-01

    Three lectures were presented on recent advances in numerical modeling detonations entitled (1) Jet Initiation and Penetration of Explosives; (2) Explosive Desensitization by Preshocking; (3) Inert Metal-Loaded Explosives.

  4. Modeling Hemispheric Detonation Experiments in 2-Dimensions

    Energy Technology Data Exchange (ETDEWEB)

    Howard, W M; Fried, L E; Vitello, P A; Druce, R L; Phillips, D; Lee, R; Mudge, S; Roeske, F

    2006-06-22

    Experiments have been performed with LX-17 (92.5% TATB and 7.5% Kel-F 800 binder) to study scaling of detonation waves using a dimensional scaling in a hemispherical divergent geometry. We model these experiments using an arbitrary Lagrange-Eulerian (ALE3D) hydrodynamics code, with reactive flow models based on the thermo-chemical code, Cheetah. The thermo-chemical code Cheetah provides a pressure-dependent kinetic rate law, along with an equation of state based on exponential-6 fluid potentials for individual detonation product species, calibrated to high pressures ({approx} few Mbars) and high temperatures (20000K). The parameters for these potentials are fit to a wide variety of experimental data, including shock, compression and sound speed data. For the un-reacted high explosive equation of state we use a modified Murnaghan form. We model the detonator (including the flyer plate) and initiation system in detail. The detonator is composed of LX-16, for which we use a program burn model. Steinberg-Guinan models5 are used for the metal components of the detonator. The booster and high explosive are LX-10 and LX-17, respectively. For both the LX-10 and LX-17, we use a pressure dependent rate law, coupled with a chemical equilibrium equation of state based on Cheetah. For LX-17, the kinetic model includes carbon clustering on the nanometer size scale.

  5. A transient model to the thermal detonation

    International Nuclear Information System (INIS)

    Karachalios, K.

    1987-04-01

    The model calculates the escalation dynamics and the long time behavior of thermal detonation waves depending on the initial and boundary conditions (data of the premixture, ignition at a solid wall or at an open end, etc.). Especially, for a given mixture and a certain fragmentation behavior more than one stable steady-state cases resulted, depending on the applied ignition energy. Investigations showed a very good consistency between the transient model and a steady-state model which is based on the same physical description and includes an additional stability criterion. Also the influence of effects such as e.g. non-homogeneous coolant heating, spherical instead of plane wave propagation and inhomogeneities of the premixture on the development of the wave were investigated. Comparison calculations with large scale experiments showed that they can be well explained by means of the thermal detonation theory, especially considering the transient phase of the wave development. (orig./HP) [de

  6. Double-detonation model of type Ia supernovae with a variable helium layer ignition mass

    International Nuclear Information System (INIS)

    Zhou Wei-Hong; Zhao Gang; Wang Bo

    2014-01-01

    Although Type Ia supernovae (SNe Ia) play an important role in the study of cosmology, their progenitors are still poorly understood. Thermonuclear explosions from the helium double-detonation sub-Chandrasekhar mass model have been considered as an alternative method for producing SNe Ia. By adopting the assumption that a double detonation occurs when a He layer with a critical ignition mass accumulates on the surface of a carbon—oxygen white dwarf (CO WD), we perform detailed binary evolution calculations for the He double-detonation model, in which a He layer from a He star accumulates on a CO WD. According to these calculations, we obtain the initial parameter spaces for SNe Ia in the orbital period and secondary mass plane for various initial WD masses. We implement these results into a detailed binary population synthesis approach to calculate SN Ia birthrates and delay times. From this model, the SN Ia birthrate in our Galaxy is ∼0.4 − 1.6 × 10 −3 yr −1 . This indicates that the double-detonation model only produces part of the SNe Ia. The delay times from this model are ∼ 70 – 710 Myr, which contribute to the young population of SNe Ia in the observations. We found that the CO WD + sdB star system CD–30 11223 could produce an SN Ia via the double-detonation model in its future evolution. (research papers)

  7. THE DETONATION MECHANISM OF THE PULSATIONALLY ASSISTED GRAVITATIONALLY CONFINED DETONATION MODEL OF Type Ia SUPERNOVAE

    Energy Technology Data Exchange (ETDEWEB)

    Jordan, G. C. IV; Graziani, C.; Weide, K.; Norris, J.; Hudson, R.; Lamb, D. Q. [Flash Center for Computational Science, University of Chicago, Chicago, IL 60637 (United States); Fisher, R. T. [Department of Physics, University of Massachusetts Dartmouth, 285 Old Westport Road, North Dartmouth, MA 02740 (United States); Townsley, D. M. [Department of Physics and Astronomy, University of Alabama, Tuscaloosa, AL 35487 (United States); Meakin, C. [Steward Observatory, University of Arizona, Tucson, AZ 85721 (United States); Reid, L. B. [NTEC Environmental Technology, Subiaco WA 6008 (Australia)

    2012-11-01

    We describe the detonation mechanism composing the 'pulsationally assisted' gravitationally confined detonation (GCD) model of Type Ia supernovae. This model is analogous to the previous GCD model reported in Jordan et al.; however, the chosen initial conditions produce a substantively different detonation mechanism, resulting from a larger energy release during the deflagration phase. The resulting final kinetic energy and {sup 56}Ni yields conform better to observational values than is the case for the 'classical' GCD models. In the present class of models, the ignition of a deflagration phase leads to a rising, burning plume of ash. The ash breaks out of the surface of the white dwarf, flows laterally around the star, and converges on the collision region at the antipodal point from where it broke out. The amount of energy released during the deflagration phase is enough to cause the star to rapidly expand, so that when the ash reaches the antipodal point, the surface density is too low to initiate a detonation. Instead, as the ash flows into the collision region (while mixing with surface fuel), the star reaches its maximally expanded state and then contracts. The stellar contraction acts to increase the density of the star, including the density in the collision region. This both raises the temperature and density of the fuel-ash mixture in the collision region and ultimately leads to thermodynamic conditions that are necessary for the Zel'dovich gradient mechanism to produce a detonation. We demonstrate feasibility of this scenario with three three-dimensional (3D), full star simulations of this model using the FLASH code. We characterized the simulations by the energy released during the deflagration phase, which ranged from 38% to 78% of the white dwarf's binding energy. We show that the necessary conditions for detonation are achieved in all three of the models.

  8. STUDY OF THE DETONATION PHASE IN THE GRAVITATIONALLY CONFINED DETONATION MODEL OF TYPE Ia SUPERNOVAE

    International Nuclear Information System (INIS)

    Meakin, Casey A.; Townsley, Dean; Jordan, George C.; Truran, James; Lamb, Don; Seitenzahl, Ivo

    2009-01-01

    We study the gravitationally confined detonation (GCD) model of Type Ia supernovae (SNe Ia) through the detonation phase and into homologous expansion. In the GCD model, a detonation is triggered by the surface flow due to single-point, off-center flame ignition in carbon-oxygen white dwarfs (WDs). The simulations are unique in terms of the degree to which nonidealized physics is used to treat the reactive flow, including weak reaction rates and a time-dependent treatment of material in nuclear statistical equilibrium (NSE). Careful attention is paid to accurately calculating the final composition of material which is burned to NSE and frozen out in the rapid expansion following the passage of a detonation wave over the high-density core of the WD; and an efficient method for nucleosynthesis postprocessing is developed which obviates the need for costly network calculations along tracer particle thermodynamic trajectories. Observational diagnostics are presented for the explosion models, including abundance stratifications and integrated yields. We find that for all of the ignition conditions studied here a self-regulating process comprised of neutronization and stellar expansion results in final 56 Ni masses of ∼1.1 M sun . But, more energetic models result in larger total NSE and stable Fe-peak yields. The total yield of intermediate mass elements is ∼0.1 M sun and the explosion energies are all around 1.5 x 10 51 erg. The explosion models are briefly compared to the inferred properties of recent SN Ia observations. The potential for surface detonation models to produce lower-luminosity (lower 56 Ni mass) SNe is discussed.

  9. Nucleosynthesis as a result of multiple delayed detonations in type Ia supernovae

    International Nuclear Information System (INIS)

    Garcia-Senz, Domingo; Bravo, Eduardo

    2003-01-01

    The explosion of a white dwarf of mass 1.36 M [odot] has been simulated in three dimensions with the aid of a SPH code. The explosion follows the delayed detonation paradigm. In this case the deflagration-detonation transition is induced by the large corrugation of the flame front resulting from Rayleigh-Taylor instability and turbulence. The nucleosynthetic yields have been calculated, showing that some neutronized isotopes such as 54 Fe or 58 Ni are not overproduced with respect to the solar system ratios. The distribution of intermediate-mass elements is also compatible with the spectra of normal SNIa. The exception is, however, the abundance of carbon and oxygen, which are overproduced

  10. Qualitative modeling of the dynamics of detonations with losses

    KAUST Repository

    Faria, Luiz; Kasimov, Aslan R.

    2015-01-01

    We consider a simplified model for the dynamics of one-dimensional detonations with generic losses. It consists of a single partial differential equation that reproduces, at a qualitative level, the essential properties of unsteady detonation waves, including pulsating and chaotic solutions. In particular, we investigate the effects of shock curvature and friction losses on detonation dynamics. To calculate steady-state solutions, a novel approach to solving the detonation eigenvalue problem is introduced that avoids the well-known numerical difficulties associated with the presence of a sonic point. By using unsteady numerical simulations of the simplified model, we also explore the nonlinear stability of steady-state or quasi-steady solutions. © 2014 The Combustion Institute.

  11. Numerical modeling of the deflagration-to-detonation transition

    International Nuclear Information System (INIS)

    Forest, C.A.

    1978-01-01

    The effect of a confined porous bed of burning explosive in contact with a solid explosive is studied by computer simulation. The burning is modeled using a bulk burn model that is a function of the surface area and the pressure. Once pressure excursions occur from the confined burning the transition to detonation is modeled using a pressure-dependent heterogeneous explosive shock decomposition model called Forest Fire. The occurrence of detonation in the solid explosive is shown to be dependent upon the surface-to-volume ratio, the confinement of the porous bed, and the geometry of the system

  12. Simulating sympathetic detonation using the hydrodynamic models and constitutive equations

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Bo Hoon; Kim, Min Sung; Yoh, Jack J. [Dept. of Mechanical and Aerospace Engineering, Seoul National University, Seoul (Korea, Republic of); Sun, Tae Boo [Hanwha Corporation Defense Rand D Center, Daejeon (Korea, Republic of)

    2016-12-15

    A Sympathetic detonation (SD) is a detonation of an explosive charge by a nearby explosion. Most of times it is unintended while the impact of blast fragments or strong shock waves from the initiating donor explosive is the cause of SD. We investigate the SD of a cylindrical explosive charge (64 % RDX, 20 % Al, 16 % HTPB) contained in a steel casing. The constitutive relations for high explosive are obtained from a thermo-chemical code that provides the size effect data without the rate stick data typically used for building the rate law and equation of state. A full size SD test of eight pallet-packaged artillery shells is performed that provides the pressure data while the hydrodynamic model with proper constitutive relations for reactive materials and the fragmentation model for steel casing is conducted to replicate the experimental findings. The work presents a novel effort to accurately model and reproduce the sympathetic detonation event with a reduced experimental effort.

  13. Study of a Model Equation in Detonation Theory

    KAUST Repository

    Faria, Luiz; Kasimov, Aslan R.; Rosales, Rodolfo R.

    2014-01-01

    Here we analyze properties of an equation that we previously proposed to model the dynamics of unstable detonation waves [A. R. Kasimov, L. M. Faria, and R. R. Rosales, Model for shock wave chaos, Phys. Rev. Lett., 110 (2013), 104104]. The equation

  14. HERMES: A Model to Describe Deformation, Burning, Explosion, and Detonation

    Energy Technology Data Exchange (ETDEWEB)

    Reaugh, J E

    2011-11-22

    HERMES (High Explosive Response to MEchanical Stimulus) was developed to fill the need for a model to describe an explosive response of the type described as BVR (Burn to Violent Response) or HEVR (High Explosive Violent Response). Characteristically this response leaves a substantial amount of explosive unconsumed, the time to reaction is long, and the peak pressure developed is low. In contrast, detonations characteristically consume all explosive present, the time to reaction is short, and peak pressures are high. However, most of the previous models to describe explosive response were models for detonation. The earliest models to describe the response of explosives to mechanical stimulus in computer simulations were applied to intentional detonation (performance) of nearly ideal explosives. In this case, an ideal explosive is one with a vanishingly small reaction zone. A detonation is supersonic with respect to the undetonated explosive (reactant). The reactant cannot respond to the pressure of the detonation before the detonation front arrives, so the precise compressibility of the reactant does not matter. Further, the mesh sizes that were practical for the computer resources then available were large with respect to the reaction zone. As a result, methods then used to model detonations, known as {beta}-burn or program burn, were not intended to resolve the structure of the reaction zone. Instead, these methods spread the detonation front over a few finite-difference zones, in the same spirit that artificial viscosity is used to spread the shock front in inert materials over a few finite-difference zones. These methods are still widely used when the structure of the reaction zone and the build-up to detonation are unimportant. Later detonation models resolved the reaction zone. These models were applied both to performance, particularly as it is affected by the size of the charge, and to situations in which the stimulus was less than that needed for reliable

  15. Polar Coordinate Lattice Boltzmann Kinetic Modeling of Detonation Phenomena

    International Nuclear Information System (INIS)

    Lin Chuan-Dong; Li Ying-Jun; Xu Ai-Guo; Zhang Guang-Cai

    2014-01-01

    A novel polar coordinate lattice Boltzmann kinetic model for detonation phenomena is presented and applied to investigate typical implosion and explosion processes. In this model, the change of discrete distribution function due to local chemical reaction is dynamically coupled into the modified lattice Boltzmann equation which could recover the Navier—Stokes equations, including contribution of chemical reaction, via the Chapman—Enskog expansion. For the numerical investigations, the main focuses are the nonequilibrium behaviors in these processes. The system at the disc center is always in its thermodynamic equilibrium in the highly symmetric case. The internal kinetic energies in different degrees of freedom around the detonation front do not coincide. The dependence of the reaction rate on the pressure, influences of the shock strength and reaction rate on the departure amplitude of the system from its local thermodynamic equilibrium are probed. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  16. Study of a Model Equation in Detonation Theory

    KAUST Repository

    Faria, Luiz

    2014-04-24

    Here we analyze properties of an equation that we previously proposed to model the dynamics of unstable detonation waves [A. R. Kasimov, L. M. Faria, and R. R. Rosales, Model for shock wave chaos, Phys. Rev. Lett., 110 (2013), 104104]. The equation is ut+ 1/2 (u2-uu (0-, t))x=f (x, u (0-, t)), x > 0, t < 0. It describes a detonation shock at x = 0 with the reaction zone in x > 0. We investigate the nature of the steady-state solutions of this nonlocal hyperbolic balance law, the linear stability of these solutions, and the nonlinear dynamics. We establish the existence of instability followed by a cascade of period-doubling bifurcations leading to chaos. © 2014 Society for Industrial and Applied Mathematics.

  17. Detonation and fragmentation modeling for the description of large scale vapor explosions

    International Nuclear Information System (INIS)

    Buerger, M.; Carachalios, C.; Unger, H.

    1985-01-01

    The thermal detonation modeling of large-scale vapor explosions is shown to be indispensable for realistic safety evaluations. A steady-state as well as transient detonation model have been developed including detailed descriptions of the dynamics as well as the fragmentation processes inside a detonation wave. Strong restrictions for large-scale vapor explosions are obtained from this modeling and they indicate that the reactor pressure vessel would even withstand explosions with unrealistically high masses of corium involved. The modeling is supported by comparisons with a detonation experiment and - concerning its key part - hydronamic fragmentation experiments. (orig.) [de

  18. An Equilibrium-Based Model of Gas Reaction and Detonation

    International Nuclear Information System (INIS)

    Trowbridge, L.D.

    2000-01-01

    During gaseous diffusion plant operations, conditions leading to the formation of flammable gas mixtures may occasionally arise. Currently, these could consist of the evaporative coolant CFC-114 and fluorinating agents such as F2 and ClF3. Replacement of CFC-114 with a non-ozone-depleting substitute is planned. Consequently, in the future, the substitute coolant must also be considered as a potential fuel in flammable gas mixtures. Two questions of practical interest arise: (1) can a particular mixture sustain and propagate a flame if ignited, and (2) what is the maximum pressure that can be generated by the burning (and possibly exploding) gas mixture, should it ignite? Experimental data on these systems, particularly for the newer coolant candidates, are limited. To assist in answering these questions, a mathematical model was developed to serve as a tool for predicting the potential detonation pressures and for estimating the composition limits of flammability for these systems based on empirical correlations between gas mixture thermodynamics and flammability for known systems. The present model uses the thermodynamic equilibrium to determine the reaction endpoint of a reactive gas mixture and uses detonation theory to estimate an upper bound to the pressure that could be generated upon ignition. The model described and documented in this report is an extended version of related models developed in 1992 and 1999

  19. Modelling delays in pharmacokinetics

    International Nuclear Information System (INIS)

    Farooqi, Z.H.; Lambrecht, R.M.

    1990-01-01

    Linear system analysis has come to form the backbone of pharmacokinetics. Natural systems usually involve time delays, thus models incorporating them would be an order closer approximation to the real world compared to those that do not. Delays may be modelled in several ways. The approach considered in this study is to have a discrete-time delay dependent rate with the delay respresenting the duration between the entry of a drug into a compartment and its release in some form (may be as a metabolite) from the compartment. Such a delay may be because of one or more of several physiological reasons, like, formation of a reservoir, slow metabolism, or receptor binding. The mathematical structure this gives rise to is a system of delay-differential equations. Examples are given of simple one and two compartment systems with drugs like bumetanide, carbamazepine, and quinolone-caffeine interaction. In these examples generally a good fit is obtained and the suggested models form a good approximation. 21 refs., 6 figs

  20. Axisymmetric Numerical Modeling of Pulse Detonation Rocket Engines

    Science.gov (United States)

    Morris, Christopher I.

    2005-01-01

    Pulse detonation rocket engines (PDREs) have generated research interest in recent years as a chemical propulsion system potentially offering improved performance and reduced complexity compared to conventional rocket engines. The detonative mode of combustion employed by these devices offers a thermodynamic advantage over the constant-pressure deflagrative combustion mode used in conventional rocket engines and gas turbines. However, while this theoretical advantage has spurred considerable interest in building PDRE devices, the unsteady blowdown process intrinsic to the PDRE has made realistic estimates of the actual propulsive performance problematic. The recent review article by Kailasanath highlights some of the progress that has been made in comparing the available experimental measurements with analytical and numerical models. In recent work by the author, a quasi-one-dimensional, finite rate chemistry CFD model was utilized to study the gasdynamics and performance characteristics of PDREs over a range of blowdown pressure ratios from 1-1000. Models of this type are computationally inexpensive, and enable first-order parametric studies of the effect of several nozzle and extension geometries on PDRE performance over a wide range of conditions. However, the quasi-one-dimensional approach is limited in that it cannot properly capture the multidimensional blast wave and flow expansion downstream of the PDRE, nor can it resolve nozzle flow separation if present. Moreover, the previous work was limited to single-pulse calculations. In this paper, an axisymmetric finite rate chemistry model is described and utilized to study these issues in greater detail. Example Mach number contour plots showing the multidimensional blast wave and nozzle exhaust plume are shown. The performance results are compared with the quasi-one-dimensional results from the previous paper. Both Euler and Navier-Stokes solutions are calculated in order to determine the effect of viscous

  1. An integral model of plume rise from high explosive detonations

    International Nuclear Information System (INIS)

    Boughton, B.A.; De Laurentis, J.M.

    1987-01-01

    A numerical model has been developed which provides a complete description of the time evolution of both the physical and thermodynamic properties of the cloud formed when a high explosive is detonated. This simulation employs the integral technique. The model equations are derived by integrating the three-dimensional conservation equations of mass, momentum and energy over the plume cross section. Assumptions are made regarding (a) plume symmetry; (b) the shape of profiles of velocity, temperature, etc. across the plume; and (c) the methodology for simulating entrainment and the effects of the crossflow induced pressure drag force on the plume. With these assumptions, the integral equations can be reduced to a set of ordinary differential equations on the plume centerline variables. Only the macroscopic plume characteristics, e.g., plume radius, centerline height, temperature and density, are predicted; details of the plume intrastructure are ignored. The model explicitly takes into account existing meteorology and has been expanded to consider the alterations in plume behavior which occur when aqueous foam is used as a dispersal mitigating material. The simulation was tested by comparison with field measurements of cloud top height and diameter. Predictions were within 25% of field observations over a wide range of explosive yield and atmospheric stability

  2. Shock-to-detonation transition of RDX and NTO based composite high explosives: experiments and modeling

    Science.gov (United States)

    Baudin, Gerard; Roudot, Marie; Genetier, Marc

    2013-06-01

    Composite HMX and NTO based high explosives (HE) are widely used in ammunitions. Designing modern warheads needs robust and reliable models to compute shock ignition and detonation propagation inside HE. Comparing to a pressed HE, a composite HE is not porous and the hot-spots are mainly located at the grain - binder interface leading to a different behavior during shock-to-detonation transition. An investigation of how shock-to-detonation transition occurs inside composite HE containing RDX and NTO is proposed in this lecture. Two composite HE have been studied. The first one is HMX - HTPB 82:18. The second one is HMX - NTO - HTPB 12:72:16. These HE have been submitted to plane sustained shock waves at different pressure levels using a laboratory powder gun. Pressure signals are measured using manganin gauges inserted at several distances inside HE. The corresponding run-distances to detonation are determined using wedge test experiments where the plate impact is performed using a powder gun. Both HE exhibit a single detonation buildup curve in the distance - time diagram of shock-to-detonation transition. This feature seems a common shock-to-detonation behavior for composite HE without porosity. This behavior is also confirmed for a RDX - HTPB 85:15 based composite HE. Such a behavior is exploited to determine the heterogeneous reaction rate versus the shock pressure using a method based on the Cauchy-Riemann problem inversion. The reaction rate laws obtained allow to compute both run-distance to detonation and pressure signals.

  3. Initiation of Gaseous Detonation by Conical Projectiles

    Science.gov (United States)

    Verreault, Jimmy

    Initiation and stabilization of detonation by hypersonic conical projectiles launched into combustible gas mixtures is investigated. This phenomenon must be understood for the design and optimization of specific hypersonic propulsion devices, such as the oblique detonation wave engine and the ram accelerator. The criteria for detonation initiation by a projectile is also related to fundamental aspects of detonation research, such as the requirement for direct initiation of a detonation by a blast wave. Experimental results of this problem also offer useful references for validation of numerical and theoretical modeling. Projectiles with cone half angles varying from 15° to 60° were launched into stoichiometric mixtures of hydrogen/oxygen with 70% argon dilution at initial pressures between 10 and 200 kPa. The projectiles were launched from a combustion-driven gas gun at velocities up to 2.2 km/s (corresponding to 133% of the Chapman Jouguet velocity). Pictures of the flowfields generated by the projectiles were taken via Schlieren photography. Five combustion regimes were observed about the projectile ranging from prompt and delayed oblique detonation wave formation, combustion instabilities, a wave splitting, and an inert shock wave. Two types of transition from the prompt oblique detonation wave regime to the inert shock regime were observed. The first (the delayed oblique detonation wave regime) showed an inert shock attached to the tip of the projectile followed by a sharp kink at the onset of an oblique detonation wave; this regime occurred by decreasing the cone angle at high mixture pressures. The second (the combustion instabilities regime) exhibited large density gradients due to combustion ignition and quenching phenomena; this regime occurred by decreasing the mixture pressure at large cone angles. A number of theoretical models were considered to predict critical conditions for the initiation of oblique detonations. The Lee-Vasiljev model agreed

  4. Far Field Modeling Methods For Characterizing Surface Detonations

    Energy Technology Data Exchange (ETDEWEB)

    Garrett, A. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-10-08

    Savannah River National Laboratory (SRNL) analyzed particle samples collected during experiments that were designed to replicate tests of nuclear weapons components that involve detonation of high explosives (HE). SRNL collected the particle samples in the HE debris cloud using innovative rocket propelled samplers. SRNL used scanning electronic microscopy to determine the elemental constituents of the particles and their size distributions. Depleted uranium composed about 7% of the particle contents. SRNL used the particle size distributions and elemental composition to perform transport calculations that indicate in many terrains and atmospheric conditions the uranium bearing particles will be transported long distances downwind. This research established that HE tests specific to nuclear proliferation should be detectable at long downwind distances by sampling airborne particles created by the test detonations.

  5. Critique of the Board-Hall model for thermal detonations in UO2--Na systems

    International Nuclear Information System (INIS)

    Williams, D.C.

    1976-01-01

    The Board--Hall model for detonating thermal explosions is reviewed and some criticisms are offered in terms of its application to UO 2 -Na systems. The basic concept of a detonation-like thermal explosion is probably valid provided certain fundamental conditions can be met; however, Board and Hall's arguments as to just how these conditions can be met in UO 2 -Na mixtures appear to contain serious flaws. Even as given, the model itself predicts that a very large triggering event is needed to initiate the process. More importantly, the model for shock-induced fragmentation greatly overestimates the tendency for such fragmentation to occur. The shock-dispersive effects of mixtures are ignored. Altogether, the model's deficiencies imply that, as given, it is not applicable to LMFBR accident analysis; nonetheless, one cannot completely rule out the possibility of meeting the fundamental conditions for detonation by other mechanisms

  6. Deflagration to Detonation Transition (DDT) Simulations of HMX Powder Using the HERMES Model

    Science.gov (United States)

    White, Bradley; Reaugh, John; Tringe, Joseph

    2017-06-01

    We performed computer simulations of DDT experiments with Class I HMX powder using the HERMES model (High Explosive Response to MEchanical Stimulus) in ALE3D. Parameters for the model were fitted to the limited available mechanical property data of the low-density powder, and to the Shock to Detonation Transition (SDT) test results. The DDT tests were carried out in steel-capped polycarbonate tubes. This arrangement permits direct observation of the event using both flash X-ray radiography and high speed camera imaging, and provides a stringent test of the model. We found the calculated detonation transition to be qualitatively similar to experiment. Through simulation we also explored the effects of confinement strength, the HMX particle size distribution and porosity on the computed detonation transition location. This work was performed under the auspices of the US DOE by LLNL under Contract DE-AC52-07NA27344.

  7. Detonability of turbulent white dwarf plasma: Hydrodynamical models at low densities

    Science.gov (United States)

    Fenn, Daniel

    The origins of Type Ia supernovae (SNe Ia) remain an unsolved problem of contemporary astrophysics. Decades of research indicate that these supernovae arise from thermonuclear runaway in the degenerate material of white dwarf stars; however, the mechanism of these explosions is unknown. Also, it is unclear what are the progenitors of these objects. These missing elements are vital components of the initial conditions of supernova explosions, and are essential to understanding these events. A requirement of any successful SN Ia model is that a sufficient portion of the white dwarf plasma must be brought under conditions conducive to explosive burning. Our aim is to identify the conditions required to trigger detonations in turbulent, carbon-rich degenerate plasma at low densities. We study this problem by modeling the hydrodynamic evolution of a turbulent region filled with a carbon/oxygen mixture at a density, temperature, and Mach number characteristic of conditions found in the 0.8+1.2 solar mass (CO0812) model discussed by Fenn et al. (2016). We probe the ignition conditions for different degrees of compressibility in turbulent driving. We assess the probability of successful detonations based on characteristics of the identified ignition kernels, using Eulerian and Lagrangian statistics of turbulent flow. We found that material with very short ignition times is abundant in the case that turbulence is driven compressively. This material forms contiguous structures that persist over many ignition time scales, and that we identify as prospective detonation kernels. Detailed analysis of the kernels revealed that their central regions are densely filled with material characterized by short ignition times and contain the minimum mass required for self-sustained detonations to form. It is conceivable that ignition kernels will be formed for lower compressibility in the turbulent driving. However, we found no detonation kernels in models driven 87.5 percent

  8. Modeling reaction histories to study chemical pathways in condensed phase detonation

    International Nuclear Information System (INIS)

    Scott Stewart, D.; Hernández, Alberto; Lee, Kibaek

    2016-01-01

    The estimation of pressure and temperature histories, which are required to understand chemical pathways in condensed phase explosives during detonation, is discussed. We argue that estimates made from continuum models, calibrated by macroscopic experiments, are essential to inform modern, atomistic-based reactive chemistry simulations at detonation pressures and temperatures. We present easy to implement methods for general equation of state and arbitrarily complex chemical reaction schemes that can be used to compute reactive flow histories for the constant volume, the energy process, and the expansion process on the Rayleigh line of a steady Chapman-Jouguet detonation. A brief review of state-of-the-art of two-component reactive flow models is given that highlights the Ignition and Growth model of Lee and Tarver [Phys. Fluids 23, 2362 (1980)] and the Wide-Ranging Equation of State model of Wescott, Stewart, and Davis [J. Appl. Phys. 98, 053514 (2005)]. We discuss evidence from experiments and reactive molecular dynamic simulations that motivate models that have several components, instead of the two that have traditionally been used to describe the results of macroscopic detonation experiments. We present simplified examples of a formulation for a hypothetical explosive that uses simple (ideal) equation of state forms and detailed comparisons. Then, we estimate pathways computed from two-component models of real explosive materials that have been calibrated with macroscopic experiments.

  9. Electrical modeling of semiconductor bridge (SCB) BNCP detonators with electrochemical capacitor firing sets

    Energy Technology Data Exchange (ETDEWEB)

    Marx, K.D. [Sandia National Labs., Livermore, CA (United States); Ingersoll, D.; Bickes, R.W. Jr. [Sandia National Labs., Albuquerque, NM (United States)

    1998-11-01

    In this paper the authors describe computer models that simulate the electrical characteristics and hence, the firing characteristics and performance of a semiconductor bridge (SCB) detonator for the initiation of BNCP [tetraammine-cis-bis (5-nitro-2H-tetrazolato-N{sup 2}) cobalt(III) perchlorate]. The electrical data and resultant models provide new insights into the fundamental behavior of SCB detonators, particularly with respect to the initiation mechanism and the interaction of the explosive powder with the SCB. One model developed, the Thermal Feedback Model, considers the total energy budget for the system, including the time evolution of the energy delivered to the powder by the electrical circuit, as well as that released by the ignition and subsequent chemical reaction of the powder. The authors also present data obtained using a new low-voltage firing set which employed an advanced electrochemical capacitor having a nominal capacitance of 350,000 {micro}F at 9 V, the maximum voltage rating for this particular device. A model for this firing set and detonator was developed by making measurements of the intrinsic capacitance and equivalent series resistance (ESR < 10 m{Omega}) of a single device. This model was then used to predict the behavior of BNCP SCB detonators fired alone, as well as in a multishot, parallel-string configuration using a firing set composed of either a single 9 V electrochemical capacitor or two of the capacitors wired in series and charged to 18 V.

  10. Antitumor Properties of Modified Detonation Nanodiamonds and Sorbed Doxorubicin on the Model of Ehrlich Ascites Carcinoma.

    Science.gov (United States)

    Medvedeva, N N; Zhukov, E L; Inzhevatkin, E V; Bezzabotnov, V E

    2016-01-01

    We studied antitumor properties of modified detonation nanodiamonds loaded with doxorubicin on in vivo model of Ehrlich ascites carcinoma. The type of tumor development and morphological characteristics of the liver, kidneys, and spleen were evaluated in experimental animals. Modified nanodiamonds injected intraperitoneally produced no antitumor effect on Ehrlich carcinoma. However, doxorubicin did not lose antitumor activity after sorption on modified nanodiamonds.

  11. Development and application of theoretical models for Rotating Detonation Engine flowfields

    Science.gov (United States)

    Fievisohn, Robert

    As turbine and rocket engine technology matures, performance increases between successive generations of engine development are becoming smaller. One means of accomplishing significant gains in thermodynamic performance and power density is to use detonation-based heat release instead of deflagration. This work is focused on developing and applying theoretical models to aid in the design and understanding of Rotating Detonation Engines (RDEs). In an RDE, a detonation wave travels circumferentially along the bottom of an annular chamber where continuous injection of fresh reactants sustains the detonation wave. RDEs are currently being designed, tested, and studied as a viable option for developing a new generation of turbine and rocket engines that make use of detonation heat release. One of the main challenges in the development of RDEs is to understand the complex flowfield inside the annular chamber. While simplified models are desirable for obtaining timely performance estimates for design analysis, one-dimensional models may not be adequate as they do not provide flow structure information. In this work, a two-dimensional physics-based model is developed, which is capable of modeling the curved oblique shock wave, exit swirl, counter-flow, detonation inclination, and varying pressure along the inflow boundary. This is accomplished by using a combination of shock-expansion theory, Chapman-Jouguet detonation theory, the Method of Characteristics (MOC), and other compressible flow equations to create a shock-fitted numerical algorithm and generate an RDE flowfield. This novel approach provides a numerically efficient model that can provide performance estimates as well as details of the large-scale flow structures in seconds on a personal computer. Results from this model are validated against high-fidelity numerical simulations that may require a high-performance computing framework to provide similar performance estimates. This work provides a designer a new

  12. Turbulent flame acceleration and detonation quenching and reinitiation - modelling and validation

    International Nuclear Information System (INIS)

    Fischer, M.; Kratzel, T.; Pantow, E.

    1997-01-01

    For both, the reactor safety in an accidental release of hydrogen into containment compartments and also for the industrial safety of the production, storage and transport of combustibles like hydrogen, propane, methane and others in the Petroleum, Petrochemical and Pharmaceutical Industries, it is of great interest to know how the pressure forces of fast hydrogen combustion processes can be reduced. The numerical study of highly turbulent or detonation driven flame propagation processes is relatively recent because it depends on the availability of high performance computers and specialized numerical algorithms to solve the governing equations of reactive fluid dynamic processes. Numerical simulation can be used at a number of levels to study turbulent combustion and detonations. What is needed is both, to use modelling and numerical simulation to investigate fundamental interactions, and using modelling and numerical simulation as a tool to predict turbulent flame accelerating processes and decoupling or re-initiation of detonation waves in complex geometries of technical applications. Today, modelling and simulation show good agreement with a variety of fast combustion phenomena observed in experiments. Results of reactive computational fluid dynamics codes deliver inputs to reduce experimental parameters and provide the basis for an innovative design of arresters for deflagration and detonation processes. (author)

  13. Computer Modeling of a Rotating Detonation Engine in a Rocket Configuration

    Science.gov (United States)

    2015-03-01

    detonation engine ( RDE ) has one or more shock waves rotating around an annulus. The RDE can theoretically be 20% more thermally efficient than a traditional...deflagration- based cycle. An RDE was modeled in Numerical Propulsion System Simulation (NPSS) based on a model developed in Microsoft Excel. The...thermodynamic analysis of the RDE in these models is broken into four streams. Empirical models were used to find the per- centage of the total flow in each

  14. Shock-to-detonation transition of RDX, HMX and NTO based composite high explosives: experiments and modelling

    International Nuclear Information System (INIS)

    Baudin, G; Roudot, M; Genetier, M; Mateille, P; Lefrançois, A

    2014-01-01

    HMX, RDX and NTO based cast-cured plastic bounded explosive (PBX) are widely used in insensitive ammunitions. Designing modern warheads needs robust and reliable models to compute shock ignition and detonation propagation inside PBX. Comparing to a pressed PBX, a cast-cured PBX is not porous and the hot-spots are mainly located at the grain-binder interface leading to a different burning behavior during shock-to-detonation transition. Here, we review the shock-to-detonation transition (SDT) and its modeling for cast-cured PBX containing HMX, RDX and NTO. Future direction is given in conclusion.

  15. Shock-to-detonation transition of RDX, HMX and NTO based composite high explosives: experiments and modelling

    Science.gov (United States)

    Baudin, G.; Roudot, M.; Genetier, M.; Mateille, P.; Lefrançois, A.

    2014-05-01

    HMX, RDX and NTO based cast-cured plastic bounded explosive (PBX) are widely used in insensitive ammunitions. Designing modern warheads needs robust and reliable models to compute shock ignition and detonation propagation inside PBX. Comparing to a pressed PBX, a cast-cured PBX is not porous and the hot-spots are mainly located at the grain-binder interface leading to a different burning behavior during shock-to-detonation transition. Here, we review the shock-to-detonation transition (SDT) and its modeling for cast-cured PBX containing HMX, RDX and NTO. Future direction is given in conclusion.

  16. Modeling and analysis of hydrogen detonation events in the advanced neutron source reactor containment

    International Nuclear Information System (INIS)

    Taleyarkhan, R.P.; Georgevich, V.; Kim, S.H.; Valenti, S.; Simpson, D.B.; Sawruk, W.

    1994-01-01

    This paper describes salient aspects of the modeling, analyses, and evaluations for hydrogen detonation in selected regions of the Advanced Neutron Source (ANS) containment during hypothetical severe accident conditions. Shock wave generation and transport modeling and analyses were conducted for two stratified configurations in the dome region of the high bay. Principal tools utilized for these purposes were the CTH and CET89 computer codes. Dynamic pressure loading functions were generated for key locations and used for evaluating structural response behavior for which a finite-element model was developed using the ANSYS code. For the range of conditions analyzed in the two critical dome regions, it was revealed that the ANS containment would be able to withstand detonation loads without failure. (author)

  17. Modeling and analysis of hydrogen detonation events in the Advanced Neutron Source reactor containment

    International Nuclear Information System (INIS)

    Taleyarkhan, R.P.; Georgevich, V.; Kim, S.H.; Valenti, S.N.; Simpson, D.B.; Sawruk, W.

    1994-07-01

    This paper describes salient aspects of the modeling, analyses, and evaluations for hydrogen detonation in selected regions of the Advanced Neutron Source (ANS) containment during hypothetical severe accident conditions. Shock wave generation and transport modeling and analyses were conducted for two stratified configurations in the dome region of the high bay. Principal tools utilized for these purposes were the CTH and CET89 computer codes. Dynamic pressure loading functions were generated for key locations and used for evaluating structural response behavior for which a finite-element model was developed using the ANSYS code. For the range of conditions analyzed in the two critical dome regions, it was revealed that the ANS containment would be able to withstand detonation loads without failure

  18. Ignition-and-Growth Modeling of NASA Standard Detonator and a Linear Shaped Charge

    Science.gov (United States)

    Oguz, Sirri

    2010-01-01

    The main objective of this study is to quantitatively investigate the ignition and shock sensitivity of NASA Standard Detonator (NSD) and the shock wave propagation of a linear shaped charge (LSC) after being shocked by NSD flyer plate. This combined explosive train was modeled as a coupled Arbitrary Lagrangian-Eulerian (ALE) model with LS-DYNA hydro code. An ignition-and-growth (I&G) reactive model based on unreacted and reacted Jones-Wilkins-Lee (JWL) equations of state was used to simulate the shock initiation. Various NSD-to-LSC stand-off distances were analyzed to calculate the shock initiation (or failure to initiate) and detonation wave propagation along the shaped charge. Simulation results were verified by experimental data which included VISAR tests for NSD flyer plate velocity measurement and an aluminum target severance test for LSC performance verification. Parameters used for the analysis were obtained from various published data or by using CHEETAH thermo-chemical code.

  19. Reactive flow modeling of initial density effect on divergence JB-9014 detonation driving

    Science.gov (United States)

    Yu, Xin; Huang, Kuibang; Zheng, Miao

    2016-06-01

    A serious of experiments were designed and the results were represented in this paper, in which 2mm thickness cooper shells were impacted by explosives named JB-9014 with different densities, and the surface velocities of the OFHC shells were measured. The comparison of experimental data shows the free surface velocity of the OFHC shell increase with the IHE density. Numerical modeling, which occupied phenomenological reactive flow rate model using the two-dimensional Lagrange hydrodynamic code, were carried out to simulate the above experiments, and empirical adjustments on detonation velocity and pressure and Pier Tang's adjustments on EOS of detonation products were both introduced in our numerical simulation work. The computational results agree well with that of experiments, and the numerical results with original parameters of products and the adjusted ones of JB-9014 could describe the density effect distinctly.

  20. Thermonuclear detonation

    International Nuclear Information System (INIS)

    Feoktistov, L.P.

    1998-01-01

    The characteristics of, and energy transfer mechanisms involved in, thermonuclear detonation are discussed. What makes the fundamental difference between thermonuclear and chemical detonation is that the former has a high specific energy release and can therefore be employed for preliminary compressing the thermonuclear mixture ahead of the burning wave. Consequently, with moderate (mega joule) initiation energies, a steady-state detonation laboratory experiment with unlimited energy multiplication becomes a possibility

  1. Thermonuclear detonation

    International Nuclear Information System (INIS)

    Feoktistov, L P

    1998-01-01

    The characteristics of, and energy transfer mechanisms involved in, thermonuclear detonation are discussed. What makes the fundamental difference between thermonuclear and chemical detonation is that the former has a high specific energy release and can therefore be employed for preliminarily compressing the thermonuclear mixture ahead of the burning wave. Consequently, with moderate (megajoule) initiation energies, a steady-state detonation laboratory experiment with unlimited energy multiplication becomes a possibility. (from the history of physics)

  2. Standing detonation wave engine

    KAUST Repository

    Kasimov, Aslan

    2015-01-01

    A detonation engine can detonate a mixture of fuel and oxidizer within a cylindrical detonation region to produce work. The detonation engine can have a first and a second inlet having ends fluidly connected from tanks to the detonation engine

  3. Reactive flow modeling of small scale detonation failure experiments for a baseline non-ideal explosive

    Energy Technology Data Exchange (ETDEWEB)

    Kittell, David E.; Cummock, Nick R.; Son, Steven F. [School of Mechanical Engineering, Purdue University, West Lafayette, Indiana 47907 (United States)

    2016-08-14

    Small scale characterization experiments using only 1–5 g of a baseline ammonium nitrate plus fuel oil (ANFO) explosive are discussed and simulated using an ignition and growth reactive flow model. There exists a strong need for the small scale characterization of non-ideal explosives in order to adequately survey the wide parameter space in sample composition, density, and microstructure of these materials. However, it is largely unknown in the scientific community whether any useful or meaningful result may be obtained from detonation failure, and whether a minimum sample size or level of confinement exists for the experiments. In this work, it is shown that the parameters of an ignition and growth rate law may be calibrated using the small scale data, which is obtained from a 35 GHz microwave interferometer. Calibration is feasible when the samples are heavily confined and overdriven; this conclusion is supported with detailed simulation output, including pressure and reaction contours inside the ANFO samples. The resulting shock wave velocity is most likely a combined chemical-mechanical response, and simulations of these experiments require an accurate unreacted equation of state (EOS) in addition to the calibrated reaction rate. Other experiments are proposed to gain further insight into the detonation failure data, as well as to help discriminate between the role of the EOS and reaction rate in predicting the measured outcome.

  4. Phenomenological Model for Infrared Emissions from High-Explosive Detonation Fireballs

    Science.gov (United States)

    2007-09-01

    meterological data collected near the time of this detonation event. . . . . . . . . . . . . . . . . . . . . . . . . 26 6 Brilliant Flash II test geometry...from meterological data collected near the time of this detonation event. Most of the absorption features are due to water vapor; a few regions are noted...profile computed from meterological data collected near the time of this detonation event. of the instrument. Examination of the imaginary component does

  5. Description and validation of ERAD: An atmospheric dispersion model for high explosive detonations

    Energy Technology Data Exchange (ETDEWEB)

    Boughton, B.A.; DeLaurentis, J.M.

    1992-10-01

    The Explosive Release Atmospheric Dispersion (ERAD) model is a three-dimensional numerical simulation of turbulent atmospheric transport and diffusion. An integral plume rise technique is used to provide a description of the physical and thermodynamic properties of the cloud of warm gases formed when the explosive detonates. Particle dispersion is treated as a stochastic process which is simulated using a discrete time Lagrangian Monte Carlo method. The stochastic process approach permits a more fundamental treatment of buoyancy effects, calm winds and spatial variations in meteorological conditions. Computational requirements of the three-dimensional simulation are substantially reduced by using a conceptualization in which each Monte Carlo particle represents a small puff that spreads according to a Gaussian law in the horizontal directions. ERAD was evaluated against dosage and deposition measurements obtained during Operation Roller Coaster. The predicted contour areas average within about 50% of the observations. The validation results confirm the model`s representation of the physical processes.

  6. Delay Variation Model with Two Service Queues

    Directory of Open Access Journals (Sweden)

    Filip Rezac

    2010-01-01

    Full Text Available Delay in VoIP technology is very unpleasant issue and therefore a voice packets prioritization must be ensured. To maintain the high call quality a maximum information delivery time from the sender to the recipient is set to 150 ms. This paper focuses on the design of a mathematical model of end-to-end delay of a VoIP connection, in particular on a delay variation. It describes all partial delay components and mechanisms, their generation, facilities and mathematical formulations. A new approach to the delay variation model is presented and its validation has been done by experimention.

  7. Modeling delay in genetic networks: from delay birth-death processes to delay stochastic differential equations.

    Science.gov (United States)

    Gupta, Chinmaya; López, José Manuel; Azencott, Robert; Bennett, Matthew R; Josić, Krešimir; Ott, William

    2014-05-28

    Delay is an important and ubiquitous aspect of many biochemical processes. For example, delay plays a central role in the dynamics of genetic regulatory networks as it stems from the sequential assembly of first mRNA and then protein. Genetic regulatory networks are therefore frequently modeled as stochastic birth-death processes with delay. Here, we examine the relationship between delay birth-death processes and their appropriate approximating delay chemical Langevin equations. We prove a quantitative bound on the error between the pathwise realizations of these two processes. Our results hold for both fixed delay and distributed delay. Simulations demonstrate that the delay chemical Langevin approximation is accurate even at moderate system sizes. It captures dynamical features such as the oscillatory behavior in negative feedback circuits, cross-correlations between nodes in a network, and spatial and temporal information in two commonly studied motifs of metastability in biochemical systems. Overall, these results provide a foundation for using delay stochastic differential equations to approximate the dynamics of birth-death processes with delay.

  8. Modeling delay in genetic networks: From delay birth-death processes to delay stochastic differential equations

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, Chinmaya; López, José Manuel; Azencott, Robert; Ott, William [Department of Mathematics, University of Houston, Houston, Texas 77004 (United States); Bennett, Matthew R. [Department of Biochemistry and Cell Biology, Rice University, Houston, Texas 77204, USA and Institute of Biosciences and Bioengineering, Rice University, Houston, Texas 77005 (United States); Josić, Krešimir [Department of Mathematics, University of Houston, Houston, Texas 77004 (United States); Department of Biology and Biochemistry, University of Houston, Houston, Texas 77204 (United States)

    2014-05-28

    Delay is an important and ubiquitous aspect of many biochemical processes. For example, delay plays a central role in the dynamics of genetic regulatory networks as it stems from the sequential assembly of first mRNA and then protein. Genetic regulatory networks are therefore frequently modeled as stochastic birth-death processes with delay. Here, we examine the relationship between delay birth-death processes and their appropriate approximating delay chemical Langevin equations. We prove a quantitative bound on the error between the pathwise realizations of these two processes. Our results hold for both fixed delay and distributed delay. Simulations demonstrate that the delay chemical Langevin approximation is accurate even at moderate system sizes. It captures dynamical features such as the oscillatory behavior in negative feedback circuits, cross-correlations between nodes in a network, and spatial and temporal information in two commonly studied motifs of metastability in biochemical systems. Overall, these results provide a foundation for using delay stochastic differential equations to approximate the dynamics of birth-death processes with delay.

  9. Modeling delay in genetic networks: From delay birth-death processes to delay stochastic differential equations

    International Nuclear Information System (INIS)

    Gupta, Chinmaya; López, José Manuel; Azencott, Robert; Ott, William; Bennett, Matthew R.; Josić, Krešimir

    2014-01-01

    Delay is an important and ubiquitous aspect of many biochemical processes. For example, delay plays a central role in the dynamics of genetic regulatory networks as it stems from the sequential assembly of first mRNA and then protein. Genetic regulatory networks are therefore frequently modeled as stochastic birth-death processes with delay. Here, we examine the relationship between delay birth-death processes and their appropriate approximating delay chemical Langevin equations. We prove a quantitative bound on the error between the pathwise realizations of these two processes. Our results hold for both fixed delay and distributed delay. Simulations demonstrate that the delay chemical Langevin approximation is accurate even at moderate system sizes. It captures dynamical features such as the oscillatory behavior in negative feedback circuits, cross-correlations between nodes in a network, and spatial and temporal information in two commonly studied motifs of metastability in biochemical systems. Overall, these results provide a foundation for using delay stochastic differential equations to approximate the dynamics of birth-death processes with delay

  10. Calculational model for condensation of water vapor during an underground nuclear detonation

    International Nuclear Information System (INIS)

    Knox, R.J.

    1975-01-01

    An empirally derived mathematical model was developed to calculate the pressure and temperature history during condensation of water vapor in an underground-nuclear-explosion cavity. The condensation process is non-isothermal. Use has been made of the Clapeyron-Clausius equation as a basis for development of the model. Analytic fits to the vapor pressure and the latent heat of vaporization for saturated-water vapor, together with an estimated value for the heat-transfer coefficient, have been used to describe the phenomena. The calculated pressure-history during condensation has been determined to be exponential, with a time constant somewhat less than that observed during the cooling of the superheated steam from the explosion. The behavior of the calculated condensation-pressure compares well with the observed-pressure record (until just prior to cavity collapse) for a particular nuclear-detonation event for which data is available

  11. Reduced chemical kinetic model of detonation combustion of one- and multi-fuel gaseous mixtures with air

    Science.gov (United States)

    Fomin, P. A.

    2018-03-01

    Two-step approximate models of chemical kinetics of detonation combustion of (i) one hydrocarbon fuel CnHm (for example, methane, propane, cyclohexane etc.) and (ii) multi-fuel gaseous mixtures (∑aiCniHmi) (for example, mixture of methane and propane, synthesis gas, benzene and kerosene) are presented for the first time. The models can be used for any stoichiometry, including fuel/fuels-rich mixtures, when reaction products contain molecules of carbon. Owing to the simplicity and high accuracy, the models can be used in multi-dimensional numerical calculations of detonation waves in corresponding gaseous mixtures. The models are in consistent with the second law of thermodynamics and Le Chatelier's principle. Constants of the models have a clear physical meaning. The models can be used for calculation thermodynamic parameters of the mixture in a state of chemical equilibrium.

  12. Comparison of electric dipole and magnetic dipole models for electromagnetic pulse generated by nuclear detonation in space

    International Nuclear Information System (INIS)

    Zhu Meng; Zhou Hui; Cheng Yinhui; Li Baozhong; Wu Wei; Li Jinxi; Ma Liang; Zhao Mo

    2013-01-01

    Electromagnetic pulse can be generated by the nuclear detonation in space via two radiation mechanisms. The electric dipole and magnetic dipole models were analyzed. The electric radiation in the far field generated by two models was calculated as well. Investigations show that in the case of one hundred TNT yield detonations, when electrons are emitted according to the Gaussian shape, two radiation models can give rise to the electric field in great distances with amplitudes of kV/m and tens of V/m, independently. Because the geomagnetic field in space is not strong and the electrons' angular motion is much weaker than the motion in the original direction, radiations from the magnetic dipole model are much weaker than those from the electric dipole model. (authors)

  13. Detonation in TATB Hemispheres

    Energy Technology Data Exchange (ETDEWEB)

    Druce, B; Souers, P C; Chow, C; Roeske, F; Vitello, P; Hrousis, C

    2004-03-17

    Streak camera breakout and Fabry-Perot interferometer data have been taken on the outer surface of 1.80 g/cm{sup 3} TATB hemispherical boosters initiated by slapper detonators at three temperatures. The slapper causes breakout to occur at 54{sup o} at ambient temperatures and 42{sup o} at -54 C, where the axis of rotation is 0{sup o}. The Fabry velocities may be associated with pressures, and these decrease for large timing delays in breakout seen at the colder temperatures. At room temperature, the Fabry pressures appear constant at all angles. Both fresh and decade-old explosive are tested and no difference is seen. The problem has been modeled with reactive flow. Adjustment of the JWL for temperature makes little difference, but cooling to -54 C decreases the rate constant by 1/6th. The problem was run both at constant density and with density differences using two different codes. The ambient code results show that a density difference is probably there but it cannot be quantified.

  14. Detonation in TATB hemispheres

    Energy Technology Data Exchange (ETDEWEB)

    Druce, Robert L.; Souers, P. Clark; Chow, Charles; Roeske, Franklin; Vitello, Peter; Hrousis, Constantine [Lawrence Livermore National Laboratory, Livermore, CA, 94550 (United States)

    2005-04-01

    Streak camera breakout and Fabry-Perot interferometer data have been taken on the outer surface of 1.80 g/cm{sup 3} TATB (triamino-trinitrobenzene) hemispherical boosters initiated by slapper detonators at three temperatures. The slapper causes breakout to occur at 54 at ambient temperatures and 42 at -54 C, where the axis of rotation is 0 . The Fabry velocities may be associated with pressures, and these decrease for large timing delays in breakout seen at the colder temperatures. At room temperature, the Fabry pressures appear constant at all angles. Both fresh and decade-old explosive are tested and no difference is seen. The problem has been modeled with reactive flow. Adjustment of the JWL for temperature makes little difference, but cooling to -54 C decreases the rate constant by 1/6th. The problem was run both at constant density and with density differences using two different codes. The ambient code results show that a density difference is probably present, but it cannot be quantified. (Abstract Copyright [2005], Wiley Periodicals, Inc.)

  15. Shock Wave Dynamics of Novel Aluminized Detonations and Empirical Model for Temperature Evolution from Post-Detonation Combustion Fireballs

    Science.gov (United States)

    2011-03-01

    initially spherical shape into a mushroom shaped cloud. During his model development, Kansa also expresses the vertical speed of the top boundary of the...Vita Lieutenant Colonel Joe Motos Gordon was born in Manila, Philippines and grew up in the rice farming town of Minalabac in the Camarines Sur

  16. A physical model for laser metal vapour interactions and laser supported detonation waves

    International Nuclear Information System (INIS)

    Liu Chenghai; Pei Wenbing; Yan Jun; Fan Furu

    1990-05-01

    A physical model for laser metal-vapour interactions has been developed in this paper. The model developed by authors has been used to study numerically the Laser Supported Detonation Waves (LSDWs) in vapour in front of metal targets, and some good results about LSDWs, such as ignition mechanism, threshold, propagation law and so on, have been obtained numerically with the model. In the model developed, a assumption for non-equilibrium between electrons and ions has been taken, and the target vapour has been discribed with two-temperature hydrodynamic equations of electrons and ions in the Euler space. The ionization-equilibrium assumption has been taken, and the Saha equations have been solved. The laser energy is absorbed due to inverse bremsstrahlung. Energy exchange between electrons and ions is by Coulomb scattering, and energy exchange between electrons and neutral particles is by way of electron-neutral elastic scattering. Electron and ion (including neutral particle) thermal conductions are taken respectively. The LSDWs threshold obtained is in agreement with experement reasonably, and a power law between LSDWs threshold and laser pulse duration, I th ∞τ p -1/2 , has been obtained. Some useful results about the LSDWs shield effects have also been obtained. In the developping phase of LSDWs, the optical thickness of front of LSDWs may reach 5 ∼ 10 in order of magnitude. It is shown that the LSDWs are able to play a very strong shield role

  17. Rich dynamics of discrete delay ecological models

    International Nuclear Information System (INIS)

    Peng Mingshu

    2005-01-01

    We study multiple bifurcations and chaotic behavior of a discrete delay ecological model. New form of chaos for the 2-D map is observed: the combination of potential period doubling and reverse period-doubling leads to cascading bubbles

  18. Four-channel delay generator model 5740

    International Nuclear Information System (INIS)

    Baumatz, D.; Milner, M.

    1978-01-01

    The 4-channel delay generator model 5740 generates 4-pulse groups in independent channels. The device offers the possibility of controlling both the time intervals between the pulses of a group and the rate of generation of groups

  19. Ignition and Growth Modeling of Detonating LX-04 (85% HMX / 15% VITON) Using New and Previously Obtained Experimental Data

    Science.gov (United States)

    Tarver, Craig

    2017-06-01

    An Ignition and Growth reactive flow model for detonating LX-04 (85% HMX / 15% Viton) was developed using new and previously obtained experimental data on: cylinder test expansion; wave curvature; failure diameter; and laser interferometric copper and tantalum foil free surface velocities and LiF interface particle velocity histories. A reaction product JWL EOS generated by the CHEETAH code compared favorably with the existing, well normalized LX-04 product JWL when both were used with the Ignition and Growth model. Good agreement with all existing experimental data was obtained. Keywords: LX-04, HMX, detonation, Ignition and Growth PACS:82.33.Vx, 82.40.Fp This work was performed under the auspices of the U. S. Department of Energy by the Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344.

  20. Fuzzy delay model based fault simulator for crosstalk delay fault test ...

    Indian Academy of Sciences (India)

    In this paper, a fuzzy delay model based crosstalk delay fault simulator is proposed. As design trends move towards nanometer technologies, more number of new parameters affects the delay of the component. Fuzzy delay models are ideal for modelling the uncertainty found in the design and manufacturing steps.

  1. Molecular Theory of Detonation Initiation: Insight from First Principles Modeling of the Decomposition Mechanisms of Organic Nitro Energetic Materials.

    Science.gov (United States)

    Tsyshevsky, Roman V; Sharia, Onise; Kuklja, Maija M

    2016-02-19

    This review presents a concept, which assumes that thermal decomposition processes play a major role in defining the sensitivity of organic energetic materials to detonation initiation. As a science and engineering community we are still far away from having a comprehensive molecular detonation initiation theory in a widely agreed upon form. However, recent advances in experimental and theoretical methods allow for a constructive and rigorous approach to design and test the theory or at least some of its fundamental building blocks. In this review, we analyzed a set of select experimental and theoretical articles, which were augmented by our own first principles modeling and simulations, to reveal new trends in energetic materials and to refine known existing correlations between their structures, properties, and functions. Our consideration is intentionally limited to the processes of thermally stimulated chemical reactions at the earliest stage of decomposition of molecules and materials containing defects.

  2. Molecular Theory of Detonation Initiation: Insight from First Principles Modeling of the Decomposition Mechanisms of Organic Nitro Energetic Materials

    Directory of Open Access Journals (Sweden)

    Roman V. Tsyshevsky

    2016-02-01

    Full Text Available This review presents a concept, which assumes that thermal decomposition processes play a major role in defining the sensitivity of organic energetic materials to detonation initiation. As a science and engineering community we are still far away from having a comprehensive molecular detonation initiation theory in a widely agreed upon form. However, recent advances in experimental and theoretical methods allow for a constructive and rigorous approach to design and test the theory or at least some of its fundamental building blocks. In this review, we analyzed a set of select experimental and theoretical articles, which were augmented by our own first principles modeling and simulations, to reveal new trends in energetic materials and to refine known existing correlations between their structures, properties, and functions. Our consideration is intentionally limited to the processes of thermally stimulated chemical reactions at the earliest stage of decomposition of molecules and materials containing defects.

  3. Numerical modelling of continuous spin detonation in rich methane-oxygen mixture

    International Nuclear Information System (INIS)

    Trotsyuk, A V

    2016-01-01

    A numerical simulation of a two-dimensional structure of the detonation wave (DW) in a rich (equivalence ratio φ=1.5) methane-air mixture at normal initial condition has been conducted. The computations have been performed in a wide range of channel heights. From the analysis of the flow structure and the number of primary transverse waves in the channel, the dominant size of the detonation cell for studied mixture has been determined to be 45÷50 cm. Based on the fundamental studies of multi-front (cellular) structure of the classical propagating DW in methane mixtures, numerical simulation of continuous spin detonation (CSD) of rich (φ=1.2) methane-oxygen mixture has been carried out in the cylindrical detonation chamber (DC) of the rocket-type engine. We studied the global flow structure in DC, and the detailed structure of the front of the rotating DW. Integral characteristics of the detonation process - the distribution of average values of static and total pressure along the length of the DC, and the value of specific impulse have been obtained. The geometric limit of stable existence of CSD has been determined. (paper)

  4. Radio controlled detonators and sequential real time blast applications

    Energy Technology Data Exchange (ETDEWEB)

    Bernard, T.; Laboz, J.M. [Delta Caps International, Nice (France)

    1995-12-31

    Among the numerous technical evolutions in the blasting environment the authors are going to describe below the concept of electronic detonator sequenced by radio waves, and also its numerous applications. Three major technologies are used in the initiation environment: fused-initiated detonators; electric detonators; and non-electric detonators. The last two technologies were made available under multiple variants. Two major innovations are going to substantially change the way traditional detonators operate: pyrotechnic delays are replaced by electronic delays (greater accuracy); and triggering orders, passing through a cable, is now replaced by radio-waves transmission (possibility to do real time delay pattern). Such a new product provided all the features offered by current detonators, but also allows mastering specific cases that were difficult to control with the current technology, such as: vibration control; underground blast; and building demolition.

  5. Standing detonation wave engine

    KAUST Repository

    Kasimov, Aslan

    2015-10-08

    A detonation engine can detonate a mixture of fuel and oxidizer within a cylindrical detonation region to produce work. The detonation engine can have a first and a second inlet having ends fluidly connected from tanks to the detonation engine. The first and second inlets can be aligned along a common axis. The inlets can be connected to nozzles and a separator can be positioned between the nozzles and along the common axis.

  6. Deflagration to detonation transition in thermonuclear supernovae

    International Nuclear Information System (INIS)

    Charignon, Camille

    2013-01-01

    Type Ia supernovae are an important tool to determine the expansion history of our Universe. Thus, considerable attention has been given to both observations and models of these events. The most popular explosion model is the central ignition of a deflagration in the dense C+O interior of a Chandrasekhar mass white dwarf, followed by a transition to a detonation (TDD). We study in this thesis a new mechanism for this transition. The most robust and studied progenitor model and the postulated mechanism for the TDD, the so called 'Zel'dovich gradient mechanism', are presented. State of the art 3D simulations of such a delayed detonation, at the price of some adjustments, can indeed reproduce observables. But due to largely unresolved physical scales, such simulations cannot explain the TDD by themselves, and especially, the physical mechanism which triggers this transition - which is not yet understood, even on Earth, for unconfined media. It is then discussed why the current Zel'dovich mechanism might be too constraining for a SN Ia model, pointing to a new approach, which is the core result of this thesis.In the final part, our alternative model for DDT in supernovae, the acoustic heating of the pre-supernova envelope, is presented. A planar model first proves that small amplitude acoustic perturbations (generated by a turbulent flame) are actually amplified in a steep density gradient, up to a point where they turn into shocks able to trigger a detonation. Then, this mechanism is applied to more realistic models, taking into account, in spherical geometry, the expanding envelope. A parametric study demonstrates the validity of the model for a reasonable range of acoustic wave amplitudes and frequencies.To conclude, some exploratory 2D and 3D MHD simulations, seeking for realistic acoustic source compatible with our mechanism, are presented. (author) [fr

  7. Terrestrial Sagnac delay constraining modified gravity models

    Science.gov (United States)

    Karimov, R. Kh.; Izmailov, R. N.; Potapov, A. A.; Nandi, K. K.

    2018-04-01

    Modified gravity theories include f(R)-gravity models that are usually constrained by the cosmological evolutionary scenario. However, it has been recently shown that they can also be constrained by the signatures of accretion disk around constant Ricci curvature Kerr-f(R0) stellar sized black holes. Our aim here is to use another experimental fact, viz., the terrestrial Sagnac delay to constrain the parameters of specific f(R)-gravity prescriptions. We shall assume that a Kerr-f(R0) solution asymptotically describes Earth's weak gravity near its surface. In this spacetime, we shall study oppositely directed light beams from source/observer moving on non-geodesic and geodesic circular trajectories and calculate the time gap, when the beams re-unite. We obtain the exact time gap called Sagnac delay in both cases and expand it to show how the flat space value is corrected by the Ricci curvature, the mass and the spin of the gravitating source. Under the assumption that the magnitude of corrections are of the order of residual uncertainties in the delay measurement, we derive the allowed intervals for Ricci curvature. We conclude that the terrestrial Sagnac delay can be used to constrain the parameters of specific f(R) prescriptions. Despite using the weak field gravity near Earth's surface, it turns out that the model parameter ranges still remain the same as those obtained from the strong field accretion disk phenomenon.

  8. Impulse generation by detonation tubes

    Science.gov (United States)

    Cooper, Marcia Ann

    Impulse generation with gaseous detonation requires conversion of chemical energy into mechanical energy. This conversion process is well understood in rocket engines where the high pressure combustion products expand through a nozzle generating high velocity exhaust gases. The propulsion community is now focusing on advanced concepts that utilize non-traditional forms of combustion like detonation. Such a device is called a pulse detonation engine in which laboratory tests have proven that thrust can be achieved through continuous cyclic operation. Because of poor performance of straight detonation tubes compared to conventional propulsion systems and the success of using nozzles on rocket engines, the effect of nozzles on detonation tubes is being investigated. Although previous studies of detonation tube nozzles have suggested substantial benefits, up to now there has been no systematic investigations over a range of operating conditions and nozzle configurations. As a result, no models predicting the impulse when nozzles are used exist. This lack of data has severely limited the development and evaluation of models and simulations of nozzles on pulse detonation engines. The first experimental investigation measuring impulse by gaseous detonation in plain tubes and tubes with nozzles operating in varying environment pressures is presented. Converging, diverging, and converging-diverging nozzles were tested to determine the effect of divergence angle, nozzle length, and volumetric fill fraction on impulse. The largest increases in specific impulse, 72% at an environment pressure of 100 kPa and 43% at an environment pressure of 1.4 kPa, were measured with the largest diverging nozzle tested that had a 12° half angle and was 0.6 m long. Two regimes of nozzle operation that depend on the environment pressure are responsible for these increases and were first observed from these data. To augment this experimental investigation, all data in the literature regarding

  9. Climate models with delay differential equations

    Science.gov (United States)

    Keane, Andrew; Krauskopf, Bernd; Postlethwaite, Claire M.

    2017-11-01

    A fundamental challenge in mathematical modelling is to find a model that embodies the essential underlying physics of a system, while at the same time being simple enough to allow for mathematical analysis. Delay differential equations (DDEs) can often assist in this goal because, in some cases, only the delayed effects of complex processes need to be described and not the processes themselves. This is true for some climate systems, whose dynamics are driven in part by delayed feedback loops associated with transport times of mass or energy from one location of the globe to another. The infinite-dimensional nature of DDEs allows them to be sufficiently complex to reproduce realistic dynamics accurately with a small number of variables and parameters. In this paper, we review how DDEs have been used to model climate systems at a conceptual level. Most studies of DDE climate models have focused on gaining insights into either the global energy balance or the fundamental workings of the El Niño Southern Oscillation (ENSO) system. For example, studies of DDEs have led to proposed mechanisms for the interannual oscillations in sea-surface temperature that is characteristic of ENSO, the irregular behaviour that makes ENSO difficult to forecast and the tendency of El Niño events to occur near Christmas. We also discuss the tools used to analyse such DDE models. In particular, the recent development of continuation software for DDEs makes it possible to explore large regions of parameter space in an efficient manner in order to provide a "global picture" of the possible dynamics. We also point out some directions for future research, including the incorporation of non-constant delays, which we believe could improve the descriptive power of DDE climate models.

  10. Climate models with delay differential equations.

    Science.gov (United States)

    Keane, Andrew; Krauskopf, Bernd; Postlethwaite, Claire M

    2017-11-01

    A fundamental challenge in mathematical modelling is to find a model that embodies the essential underlying physics of a system, while at the same time being simple enough to allow for mathematical analysis. Delay differential equations (DDEs) can often assist in this goal because, in some cases, only the delayed effects of complex processes need to be described and not the processes themselves. This is true for some climate systems, whose dynamics are driven in part by delayed feedback loops associated with transport times of mass or energy from one location of the globe to another. The infinite-dimensional nature of DDEs allows them to be sufficiently complex to reproduce realistic dynamics accurately with a small number of variables and parameters. In this paper, we review how DDEs have been used to model climate systems at a conceptual level. Most studies of DDE climate models have focused on gaining insights into either the global energy balance or the fundamental workings of the El Niño Southern Oscillation (ENSO) system. For example, studies of DDEs have led to proposed mechanisms for the interannual oscillations in sea-surface temperature that is characteristic of ENSO, the irregular behaviour that makes ENSO difficult to forecast and the tendency of El Niño events to occur near Christmas. We also discuss the tools used to analyse such DDE models. In particular, the recent development of continuation software for DDEs makes it possible to explore large regions of parameter space in an efficient manner in order to provide a "global picture" of the possible dynamics. We also point out some directions for future research, including the incorporation of non-constant delays, which we believe could improve the descriptive power of DDE climate models.

  11. Two-phase modeling of deflagration-to-detonation transition in granular materials: A critical examination of modeling issues

    International Nuclear Information System (INIS)

    Bdzil, J.B.; Menikoff, R.; Son, S.F.; Kapila, A.K.; Stewart, D.S.

    1999-01-01

    The two-phase mixture model developed by Baer and Nunziato (BN) to study the deflagration-to-detonation transition (DDT) in granular explosives is critically reviewed. The continuum-mixture theory foundation of the model is examined, with particular attention paid to the manner in which its constitutive functions are formulated. Connections between the mechanical and energetic phenomena occurring at the scales of the grains, and their manifestations on the continuum averaged scale, are explored. The nature and extent of approximations inherent in formulating the constitutive terms, and their domain of applicability, are clarified. Deficiencies and inconsistencies in the derivation are cited, and improvements suggested. It is emphasized that the entropy inequality constrains but does not uniquely determine the phase interaction terms. The resulting flexibility is exploited to suggest improved forms for the phase interactions. These improved forms better treat the energy associated with the dynamic compaction of the bed and the single-phase limits of the model. Companion papers of this study [Kapila et al., Phys. Fluids 9, 3885 (1997); Kapila et al., in preparation; Son et al., in preparation] examine simpler, reduced models, in which the fine scales of velocity and pressure disequilibrium between the phases allow the corresponding relaxation zones to be treated as discontinuities that need not be resolved in a numerical computation. copyright 1999 American Institute of Physics

  12. A comparison of multiple behavior models in a simulation of the aftermath of an improvised nuclear detonation.

    Science.gov (United States)

    Parikh, Nidhi; Hayatnagarkar, Harshal G; Beckman, Richard J; Marathe, Madhav V; Swarup, Samarth

    2016-11-01

    We describe a large-scale simulation of the aftermath of a hypothetical 10kT improvised nuclear detonation at ground level, near the White House in Washington DC. We take a synthetic information approach, where multiple data sets are combined to construct a synthesized representation of the population of the region with accurate demographics, as well as four infrastructures: transportation, healthcare, communication, and power. In this article, we focus on the model of agents and their behavior, which is represented using the options framework. Six different behavioral options are modeled: household reconstitution, evacuation, healthcare-seeking, worry, shelter-seeking, and aiding & assisting others. Agent decision-making takes into account their health status, information about family members, information about the event, and their local environment. We combine these behavioral options into five different behavior models of increasing complexity and do a number of simulations to compare the models.

  13. Fuzzy delay model based fault simulator for crosstalk delay fault test ...

    Indian Academy of Sciences (India)

    In this paper, a fuzzy delay model based crosstalk delay fault simulator is proposed. As design .... To find the quality of non-robust tests, a fuzzy delay ..... Dubois D and Prade H 1989 Processing Fuzzy temporal knowledge. IEEE Transactions ...

  14. Pulse Detonation Assessment for Alternative Fuels

    Directory of Open Access Journals (Sweden)

    Muhammad Hanafi Azami

    2017-03-01

    Full Text Available The higher thermodynamic efficiency inherent in a detonation combustion based engine has already led to considerable interest in the development of wave rotor, pulse detonation, and rotating detonation engine configurations as alternative technologies offering improved performance for the next generation of aerospace propulsion systems, but it is now important to consider their emissions also. To assess both performance and emissions, this paper focuses on the feasibility of using alternative fuels in detonation combustion. Thus, the standard aviation fuels Jet-A, Acetylene, Jatropha Bio-synthetic Paraffinic Kerosene, Camelina Bio-synthetic Paraffinic Kerosene, Algal Biofuel, and Microalgae Biofuel are all asessed under detonation combustion conditions. An analytical model accounting for the Rankine-Hugoniot Equation, Rayleigh Line Equation, and Zel’dovich–von Neumann–Doering model, and taking into account single step chemistry and thermophysical properties for a stoichiometric mixture, is applied to a simple detonation tube test case configuration. The computed pressure rise and detonation velocity are shown to be in good agreement with published literature. Additional computations examine the effects of initial pressure, temperature, and mass flux on the physical properties of the flow. The results indicate that alternative fuels require higher initial mass flux and temperature to detonate. The benefits of alternative fuels appear significant.

  15. Survey of time preference, delay discounting models

    Directory of Open Access Journals (Sweden)

    John R. Doyle

    2013-03-01

    Full Text Available The paper surveys over twenty models of delay discounting (also known as temporal discounting, time preference, time discounting, that psychologists and economists have put forward to explain the way people actually trade off time and money. Using little more than the basic algebra of powers and logarithms, I show how the models are derived, what assumptions they are based upon, and how different models relate to each other. Rather than concentrate only on discount functions themselves, I show how discount functions may be manipulated to isolate rate parameters for each model. This approach, consistently applied, helps focus attention on the three main components in any discounting model: subjectively perceived money; subjectively perceived time; and how these elements are combined. We group models by the number of parameters that have to be estimated, which means our exposition follows a trajectory of increasing complexity to the models. However, as the story unfolds it becomes clear that most models fall into a smaller number of families. We also show how new models may be constructed by combining elements of different models. The surveyed models are: Exponential; Hyperbolic; Arithmetic; Hyperboloid (Green and Myerson, Rachlin; Loewenstein and Prelec Generalized Hyperboloid; quasi-Hyperbolic (also known as beta-delta discounting; Benhabib et al's fixed cost; Benhabib et al's Exponential / Hyperbolic / quasi-Hyperbolic; Read's discounting fractions; Roelofsma's exponential time; Scholten and Read's discounting-by-intervals (DBI; Ebert and Prelec's constant sensitivity (CS; Bleichrodt et al.'s constant absolute decreasing impatience (CADI; Bleichrodt et al.'s constant relative decreasing impatience (CRDI; Green, Myerson, and Macaux's hyperboloid over intervals models; Killeen's additive utility; size-sensitive additive utility; Yi, Landes, and Bickel's memory trace models; McClure et al.'s two exponentials; and Scholten and Read's trade

  16. Detonation Wave Profile

    Energy Technology Data Exchange (ETDEWEB)

    Menikoff, Ralph [Los Alamos National Laboratory

    2015-12-14

    The Zel’dovich-von Neumann-Doering (ZND) profile of a detonation wave is derived. Two basic assumptions are required: i. An equation of state (EOS) for a partly burned explosive; P(V, e, λ). ii. A burn rate for the reaction progress variable; d/dt λ = R(V, e, λ). For a steady planar detonation wave the reactive flow PDEs can be reduced to ODEs. The detonation wave profile can be determined from an ODE plus algebraic equations for points on the partly burned detonation loci with a specified wave speed. Furthermore, for the CJ detonation speed the end of the reaction zone is sonic. A solution to the reactive flow equations can be constructed with a rarefaction wave following the detonation wave profile. This corresponds to an underdriven detonation wave, and the rarefaction is know as a Taylor wave.

  17. Dynamical Models For Prices With Distributed Delays

    Directory of Open Access Journals (Sweden)

    Mircea Gabriela

    2015-06-01

    Full Text Available In the present paper we study some models for the price dynamics of a single commodity market. The quantities of supplied and demanded are regarded as a function of time. Nonlinearities in both supply and demand functions are considered. The inventory and the level of inventory are taken into consideration. Due to the fact that the consumer behavior affects commodity demand, and the behavior is influenced not only by the instantaneous price, but also by the weighted past prices, the distributed time delay is introduced. The following kernels are taken into consideration: demand price weak kernel and demand price Dirac kernel. Only one positive equilibrium point is found and its stability analysis is presented. When the demand price kernel is weak, under some conditions of the parameters, the equilibrium point is locally asymptotically stable. When the demand price kernel is Dirac, the existence of the local oscillations is investigated. A change in local stability of the equilibrium point, from stable to unstable, implies a Hopf bifurcation. A family of periodic orbits bifurcates from the positive equilibrium point when the time delay passes through a critical value. The last part contains some numerical simulations to illustrate the effectiveness of our results and conclusions.

  18. A TRACER METHOD FOR COMPUTING TYPE IA SUPERNOVA YIELDS: BURNING MODEL CALIBRATION, RECONSTRUCTION OF THICKENED FLAMES, AND VERIFICATION FOR PLANAR DETONATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Townsley, Dean M.; Miles, Broxton J. [Department of Physics and Astronomy, University of Alabama, Tuscaloosa, AL (United States); Timmes, F. X. [School of Earth and Space Exploration, Arizona State University, Tempe, AZ (United States); Calder, Alan C. [Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY (United States); Brown, Edward F., E-mail: Dean.M.Townsley@ua.edu [The Joint Institute for Nuclear Astrophysics, Michigan State University, East Lansing, MI (United States)

    2016-07-01

    We refine our previously introduced parameterized model for explosive carbon–oxygen fusion during thermonuclear Type Ia supernovae (SNe Ia) by adding corrections to post-processing of recorded Lagrangian fluid-element histories to obtain more accurate isotopic yields. Deflagration and detonation products are verified for propagation in a medium of uniform density. A new method is introduced for reconstructing the temperature–density history within the artificially thick model deflagration front. We obtain better than 5% consistency between the electron capture computed by the burning model and yields from post-processing. For detonations, we compare to a benchmark calculation of the structure of driven steady-state planar detonations performed with a large nuclear reaction network and error-controlled integration. We verify that, for steady-state planar detonations down to a density of 5 × 10{sup 6} g cm{sup −3}, our post-processing matches the major abundances in the benchmark solution typically to better than 10% for times greater than 0.01 s after the passage of the shock front. As a test case to demonstrate the method, presented here with post-processing for the first time, we perform a two-dimensional simulation of a SN Ia in the scenario of a Chandrasekhar-mass deflagration–detonation transition (DDT). We find that reconstruction of deflagration tracks leads to slightly more complete silicon burning than without reconstruction. The resulting abundance structure of the ejecta is consistent with inferences from spectroscopic studies of observed SNe Ia. We confirm the absence of a central region of stable Fe-group material for the multi-dimensional DDT scenario. Detailed isotopic yields are tabulated and change only modestly when using deflagration reconstruction.

  19. Numerical Computation of Detonation Stability

    KAUST Repository

    Kabanov, Dmitry

    2018-01-01

    Then we investigate the Fickett’s detonation analogue coupled with a particular reaction-rate expression. In addition to the linear stability analysis of this model, we demonstrate that it exhibits rich nonlinear dynamics with multiple bifurcations and chaotic behavior.

  20. Modeling of delays in PKPD: classical approaches and a tutorial for delay differential equations.

    Science.gov (United States)

    Koch, Gilbert; Krzyzanski, Wojciech; Pérez-Ruixo, Juan Jose; Schropp, Johannes

    2014-08-01

    In pharmacokinetics/pharmacodynamics (PKPD) the measured response is often delayed relative to drug administration, individuals in a population have a certain lifespan until they maturate or the change of biomarkers does not immediately affects the primary endpoint. The classical approach in PKPD is to apply transit compartment models (TCM) based on ordinary differential equations to handle such delays. However, an alternative approach to deal with delays are delay differential equations (DDE). DDEs feature additional flexibility and properties, realize more complex dynamics and can complementary be used together with TCMs. We introduce several delay based PKPD models and investigate mathematical properties of general DDE based models, which serve as subunits in order to build larger PKPD models. Finally, we review current PKPD software with respect to the implementation of DDEs for PKPD analysis.

  1. A distributed delay approach for modeling delayed outcomes in pharmacokinetics and pharmacodynamics studies.

    Science.gov (United States)

    Hu, Shuhua; Dunlavey, Michael; Guzy, Serge; Teuscher, Nathan

    2018-04-01

    A distributed delay approach was proposed in this paper to model delayed outcomes in pharmacokinetics and pharmacodynamics studies. This approach was shown to be general enough to incorporate a wide array of pharmacokinetic and pharmacodynamic models as special cases including transit compartment models, effect compartment models, typical absorption models (either zero-order or first-order absorption), and a number of atypical (or irregular) absorption models (e.g., parallel first-order, mixed first-order and zero-order, inverse Gaussian, and Weibull absorption models). Real-life examples were given to demonstrate how to implement distributed delays in Phoenix ® NLME™ 8.0, and to numerically show the advantages of the distributed delay approach over the traditional methods.

  2. Delay and Disruption Tolerant Networking MACHETE Model

    Science.gov (United States)

    Segui, John S.; Jennings, Esther H.; Gao, Jay L.

    2011-01-01

    To verify satisfaction of communication requirements imposed by unique missions, as early as 2000, the Communications Networking Group at the Jet Propulsion Laboratory (JPL) saw the need for an environment to support interplanetary communication protocol design, validation, and characterization. JPL's Multi-mission Advanced Communications Hybrid Environment for Test and Evaluation (MACHETE), described in Simulator of Space Communication Networks (NPO-41373) NASA Tech Briefs, Vol. 29, No. 8 (August 2005), p. 44, combines various commercial, non-commercial, and in-house custom tools for simulation and performance analysis of space networks. The MACHETE environment supports orbital analysis, link budget analysis, communications network simulations, and hardware-in-the-loop testing. As NASA is expanding its Space Communications and Navigation (SCaN) capabilities to support planned and future missions, building infrastructure to maintain services and developing enabling technologies, an important and broader role is seen for MACHETE in design-phase evaluation of future SCaN architectures. To support evaluation of the developing Delay Tolerant Networking (DTN) field and its applicability for space networks, JPL developed MACHETE models for DTN Bundle Protocol (BP) and Licklider/Long-haul Transmission Protocol (LTP). DTN is an Internet Research Task Force (IRTF) architecture providing communication in and/or through highly stressed networking environments such as space exploration and battlefield networks. Stressed networking environments include those with intermittent (predictable and unknown) connectivity, large and/or variable delays, and high bit error rates. To provide its services over existing domain specific protocols, the DTN protocols reside at the application layer of the TCP/IP stack, forming a store-and-forward overlay network. The key capabilities of the Bundle Protocol include custody-based reliability, the ability to cope with intermittent connectivity

  3. Modeling Turbulent Mixing/Combustion of Bio-Agents Behind Detonations: Effect of Instabilities, Dense Clustering, and Trace Survivability

    Science.gov (United States)

    2017-06-01

    Detonations: Effect of Instabilities, Dense Clustering , and Trace Survivability Distribution Statement A. Approved for public release...number of particles handled is severely restricted based on the memory limitations of a given processor cluster . Although, this limitation can be...S. 2010c. Clustering and combustion of dilute alumi- num particle clouds in a post-detonation flow field. Proc. Combust. Inst., 33, 2255. Boiko, V.M

  4. Reinforced concrete wall under hydrogen detonation

    International Nuclear Information System (INIS)

    Saarenheimo, A.

    2000-11-01

    The structural integrity of a reinforced concrete wall in the BWR reactor building under hydrogen detonation conditions has been analysed. Of particular interest is whether the containment integrity can be jeopardised by an external hydrogen detonation. The load carrying capacity of a reinforced concrete wall was studied. The detonation pressure loads were estimated with computerised hand calculations assuming a direct initiation of detonation and applying the strong explosion theory. The results can be considered as rough and conservative estimates for the first shock pressure impact induced by a reflecting detonation wave. Structural integrity may be endangered due to slow pressurisation or dynamic impulse loads associated with local detonations. The static pressure following the passage of a shock front may be relatively high, thus this static or slowly decreasing pressure after a detonation may damage the structure severely. The mitigating effects of the opening of a door on pressure history and structural response were also studied. The non-linear behaviour of the wall was studied under detonations corresponding a detonable hydrogen mass of 0.5 kg and 1.428 kg. Non-linear finite element analyses of the reinforced concrete structure were carried out by the ABAQUS/Explicit program. The reinforcement and its non-linear material behaviour and the tensile cracking of concrete were modelled. Reinforcement was defined as layers of uniformly spaced reinforcing bars in shell elements. In these studies the surrounding structures of the non-linearly modelled reinforced concrete wall were modelled using idealised boundary conditions. Especially concrete cracking and yielding of the reinforcement was monitored during the numerical simulation. (au)

  5. Calculation of laser induced impulse based on the laser supported detonation wave model with dissociation, ionization and radiation

    International Nuclear Information System (INIS)

    Gan, Li; Mousen, Cheng; Xiaokang, Li

    2014-01-01

    In the laser intensity range that the laser supported detonation (LSD) wave can be maintained, dissociation, ionization and radiation take a substantial part of the incidence laser energy. There is little treatment on the phenomenon in the existing models, which brings obvious discrepancies between their predictions and the experiment results. Taking into account the impact of dissociation, ionization and radiation in the conservations of mass, momentum and energy, a modified LSD wave model is developed which fits the experimental data more effectively rather than the existing models. Taking into consideration the pressure decay of the normal and the radial rarefaction, the laser induced impulse that is delivered to the target surface is calculated in the air; and the dependencies of impulse performance on laser intensity, pulse width, ambient pressure and spot size are indicated. The results confirm that the dissociation is the pivotal factor of the appearance of the momentum coupling coefficient extremum. This study focuses on a more thorough understanding of LSD and the interaction between laser and matter

  6. Calculation of laser induced impulse based on the laser supported detonation wave model with dissociation, ionization and radiation

    Energy Technology Data Exchange (ETDEWEB)

    Gan, Li, E-mail: ligan0001@gmail.com; Mousen, Cheng; Xiaokang, Li [College of Aerospace Science and Engineering, National University of Defense Technology, Changsha (China)

    2014-03-15

    In the laser intensity range that the laser supported detonation (LSD) wave can be maintained, dissociation, ionization and radiation take a substantial part of the incidence laser energy. There is little treatment on the phenomenon in the existing models, which brings obvious discrepancies between their predictions and the experiment results. Taking into account the impact of dissociation, ionization and radiation in the conservations of mass, momentum and energy, a modified LSD wave model is developed which fits the experimental data more effectively rather than the existing models. Taking into consideration the pressure decay of the normal and the radial rarefaction, the laser induced impulse that is delivered to the target surface is calculated in the air; and the dependencies of impulse performance on laser intensity, pulse width, ambient pressure and spot size are indicated. The results confirm that the dissociation is the pivotal factor of the appearance of the momentum coupling coefficient extremum. This study focuses on a more thorough understanding of LSD and the interaction between laser and matter.

  7. Stochastic two-delay differential model of delayed visual feedback effects on postural dynamics.

    Science.gov (United States)

    Boulet, Jason; Balasubramaniam, Ramesh; Daffertshofer, Andreas; Longtin, André

    2010-01-28

    We report on experiments and modelling involving the 'visuo-postural control loop' in the upright stance. We experimentally manipulated an artificial delay to the visual feedback during standing, presented at delays ranging from 0 to 1 s in increments of 250 ms. Using stochastic delay differential equations, we explicitly modelled the centre-of-pressure (COP) and centre-of-mass (COM) dynamics with two independent delay terms for vision and proprioception. A novel 'drifting fixed point' hypothesis was used to describe the fluctuations of the COM with the COP being modelled as a faster, corrective process of the COM. The model was in good agreement with the data in terms of probability density functions, power spectral densities, short- and long-term correlations (Hurst exponents) as well the critical time between the two ranges. This journal is © 2010 The Royal Society

  8. Goodwin accelerator model revisited with fixed time delays

    Science.gov (United States)

    Matsumoto, Akio; Merlone, Ugo; Szidarovszky, Ferenc

    2018-05-01

    Dynamics of Goodwin's accelerator business cycle model is reconsidered. The model is characterized by a nonlinear accelerator and an investment time delay. The role of the nonlinearity for the birth of persistent oscillations is fully discussed in the existing literature. On the other hand, not much of the role of the delay has yet been revealed. The purpose of this paper is to show that the delay really matters. In the original framework of Goodwin [6], it is first demonstrated that there is a threshold value of the delay: limit cycles arise for smaller values than the threshold and so do sawtooth oscillations for larger values. In the extended framework in which a consumption or saving delay, in addition to the investment delay, is introduced, three main results are demonstrated under assumption of the identical length of investment and consumption delays. The dynamics with consumption delay is basically the same as that of the single delay model. Second, in the case of saving delay, the steady state can coexist with the stable and unstable limit cycles in the stable case. Third, in the unstable case, there is an interval of delay in which the limit cycle or the sawtooth oscillation emerges depending on the choice of the constant initial function.

  9. A new car-following model with two delays

    International Nuclear Information System (INIS)

    Yu, Lei; Shi, Zhong-ke; Li, Tong

    2014-01-01

    A new car-following model is proposed by taking into account two different time delays in sensing headway and velocity. The effect of time delays on the stability analysis is studied. The theoretical and numerical results show that traffic jams are suppressed efficiently when the difference between two time delays decreases and those can be described by the solution of the modified Korteweg–de Vries (mKdV) equation. Traffic flow is more stable with two delays in headway and velocity than in the case with only one delay in headway. The impact of local small disturbance to the system is also studied.

  10. The Aviation System Analysis Capability Airport Capacity and Delay Models

    Science.gov (United States)

    Lee, David A.; Nelson, Caroline; Shapiro, Gerald

    1998-01-01

    The ASAC Airport Capacity Model and the ASAC Airport Delay Model support analyses of technologies addressing airport capacity. NASA's Aviation System Analysis Capability (ASAC) Airport Capacity Model estimates the capacity of an airport as a function of weather, Federal Aviation Administration (FAA) procedures, traffic characteristics, and the level of technology available. Airport capacity is presented as a Pareto frontier of arrivals per hour versus departures per hour. The ASAC Airport Delay Model allows the user to estimate the minutes of arrival delay for an airport, given its (weather dependent) capacity. Historical weather observations and demand patterns are provided by ASAC as inputs to the delay model. The ASAC economic models can translate a reduction in delay minutes into benefit dollars.

  11. Multistage reaction pathways in detonating high explosives

    International Nuclear Information System (INIS)

    Li, Ying; Kalia, Rajiv K.; Nakano, Aiichiro; Nomura, Ken-ichi; Vashishta, Priya

    2014-01-01

    Atomistic mechanisms underlying the reaction time and intermediate reaction products of detonating high explosives far from equilibrium have been elusive. This is because detonation is one of the hardest multiscale physics problems, in which diverse length and time scales play important roles. Here, large spatiotemporal-scale reactive molecular dynamics simulations validated by quantum molecular dynamics simulations reveal a two-stage reaction mechanism during the detonation of cyclotrimethylenetrinitramine crystal. Rapid production of N 2 and H 2 O within ∼10 ps is followed by delayed production of CO molecules beyond ns. We found that further decomposition towards the final products is inhibited by the formation of large metastable carbon- and oxygen-rich clusters with fractal geometry. In addition, we found distinct unimolecular and intermolecular reaction pathways, respectively, for the rapid N 2 and H 2 O productions

  12. Multistage reaction pathways in detonating high explosives

    Energy Technology Data Exchange (ETDEWEB)

    Li, Ying [Collaboratory for Advanced Computing and Simulations, Department of Physics and Astronomy, Department of Computer Science, and Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, California 90089-0242 (United States); Argonne Leadership Computing Facility, Argonne National Laboratory, Argonne, Illinois 60439 (United States); Kalia, Rajiv K.; Nakano, Aiichiro; Nomura, Ken-ichi; Vashishta, Priya [Collaboratory for Advanced Computing and Simulations, Department of Physics and Astronomy, Department of Computer Science, and Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, California 90089-0242 (United States)

    2014-11-17

    Atomistic mechanisms underlying the reaction time and intermediate reaction products of detonating high explosives far from equilibrium have been elusive. This is because detonation is one of the hardest multiscale physics problems, in which diverse length and time scales play important roles. Here, large spatiotemporal-scale reactive molecular dynamics simulations validated by quantum molecular dynamics simulations reveal a two-stage reaction mechanism during the detonation of cyclotrimethylenetrinitramine crystal. Rapid production of N{sub 2} and H{sub 2}O within ∼10 ps is followed by delayed production of CO molecules beyond ns. We found that further decomposition towards the final products is inhibited by the formation of large metastable carbon- and oxygen-rich clusters with fractal geometry. In addition, we found distinct unimolecular and intermolecular reaction pathways, respectively, for the rapid N{sub 2} and H{sub 2}O productions.

  13. Numerical Computation of Detonation Stability

    KAUST Repository

    Kabanov, Dmitry

    2018-06-03

    Detonation is a supersonic mode of combustion that is modeled by a system of conservation laws of compressible fluid mechanics coupled with the equations describing thermodynamic and chemical properties of the fluid. Mathematically, these governing equations admit steady-state travelling-wave solutions consisting of a leading shock wave followed by a reaction zone. However, such solutions are often unstable to perturbations and rarely observed in laboratory experiments. The goal of this work is to study the stability of travelling-wave solutions of detonation models by the following novel approach. We linearize the governing equations about a base travelling-wave solution and solve the resultant linearized problem using high-order numerical methods. The results of these computations are postprocessed using dynamic mode decomposition to extract growth rates and frequencies of the perturbations and predict stability of travelling-wave solutions to infinitesimal perturbations. We apply this approach to two models based on the reactive Euler equations for perfect gases. For the first model with a one-step reaction mechanism, we find agreement of our results with the results of normal-mode analysis. For the second model with a two-step mechanism, we find that both types of admissible travelling-wave solutions exhibit the same stability spectra. Then we investigate the Fickett’s detonation analogue coupled with a particular reaction-rate expression. In addition to the linear stability analysis of this model, we demonstrate that it exhibits rich nonlinear dynamics with multiple bifurcations and chaotic behavior.

  14. Delay-Dependent Asymptotic Stability of Cohen-Grossberg Models with Multiple Time-Varying Delays

    Directory of Open Access Journals (Sweden)

    Xiaofeng Liao

    2007-01-01

    Full Text Available Dynamical behavior of a class of Cohen-Grossberg models with multiple time-varying delays is studied in detail. Sufficient delay-dependent criteria to ensure local and global asymptotic stabilities of the equilibrium of this network are derived by constructing suitable Lyapunov functionals. The obtained conditions are shown to be less conservative and restrictive than those reported in the known literature. Some numerical examples are included to demonstrate our results.

  15. A Delay Discounting Model of Psychotherapy Termination

    Science.gov (United States)

    Swift, Joshua K.; Callahan, Jennifer L.

    2009-01-01

    Delay discounting (DD) procedures are emerging as an important new method for psychotherapy researchers. In this paper a framework for conceptualizing existing, seemingly discrepant, research findings on termination is introduced and new directions for research are described. To illustrate the value of a DD framework, the common psychotherapy…

  16. Qualitative and Asymptotic Theory of Detonations

    KAUST Repository

    Faria, Luiz

    2014-11-09

    Shock waves in reactive media possess very rich dynamics: from formation of cells in multiple dimensions to oscillating shock fronts in one-dimension. Because of the extreme complexity of the equations of combustion theory, most of the current understanding of unstable detonation waves relies on extensive numerical simulations of the reactive compressible Euler/Navier-Stokes equations. Attempts at a simplified theory have been made in the past, most of which are very successful in describing steady detonation waves. In this work we focus on obtaining simplified theories capable of capturing not only the steady, but also the unsteady behavior of detonation waves. The first part of this thesis is focused on qualitative theories of detonation, where ad hoc models are proposed and analyzed. We show that equations as simple as a forced Burgers equation can capture most of the complex phenomena observed in detonations. In the second part of this thesis we focus on rational theories, and derive a weakly nonlinear model of multi-dimensional detonations. We also show, by analysis and numerical simulations, that the asymptotic equations provide good quantitative predictions.

  17. Blasting detonators incorporating semiconductor bridge technology

    Energy Technology Data Exchange (ETDEWEB)

    Bickes, R.W. Jr.

    1994-05-01

    The enormity of the coal mine and extraction industries in Russia and the obvious need in both Russia and the US for cost savings and enhanced safety in those industries suggests that joint studies and research would be of mutual benefit. The author suggests that mine sites and well platforms in Russia offer an excellent opportunity for the testing of Sandia`s precise time-delay semiconductor bridge detonators, with the potential for commercialization of the detonators for Russian and other world markets by both US and Russian companies. Sandia`s semiconductor bridge is generating interest among the blasting, mining and perforation industries. The semiconductor bridge is approximately 100 microns long, 380 microns wide and 2 microns thick. The input energy required for semiconductor bridge ignition is one-tenth the energy required for conventional bridgewire devices. Because semiconductor bridge processing is compatible with other microcircuit processing, timing and logic circuits can be incorporated onto the chip with the bridge. These circuits can provide for the precise timing demanded for cast effecting blasting. Indeed tests by Martin Marietta and computer studies by Sandia have shown that such precise timing provides for more uniform rock fragmentation, less fly rock, reduce4d ground shock, fewer ground contaminants and less dust. Cost studies have revealed that the use of precisely timed semiconductor bridges can provide a savings of $200,000 per site per year. In addition to Russia`s vast mineral resources, the Russian Mining Institute outside Moscow has had significant programs in rock fragmentation for many years. He anticipated that collaborative studies by the Institute and Sandia`s modellers would be a valuable resource for field studies.

  18. Combining Advanced Turbulent Mixing and Combustion Models with Advanced Multi-Phase CFD Code to Simulate Detonation and Post-Detonation Bio-Agent Mixing and Destruction

    Science.gov (United States)

    2017-10-01

    Prepared by: School of Aerospace Engineering, Georgia Institute of Technology 270 Ferst Dr Atlanta, GA 30332...METHOD- OLOGY 7 4.1 Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 4.1.1 Eulerian Gas Phase...from [3] and our simu- lation : our work is able to capture a non linear behaviour . . . . . . . . . . 59 5.44 Pressure profile from the blast wave

  19. Confined Detonations and Pulse Detonation Engines

    Science.gov (United States)

    2003-01-01

    detonation. Actes du Colloque International Berthelot-Vieille- Mallard- Le Chatelier Proceedings. Bordeaux, France 2:437-42. 13. Edwards, D., G. Hooper, and R...A.A. Vasil’ev 1 Introduction ... ... .... ... .... . .. .. .. .. 41 2 Principles of DDT Acceleration ............... 42 3 Construction of DDT...Universit6 de Poitiers 1, Avenue Clement Ader E. DANIAU BP 40109, 86961 Futuroscope Cedex, France MBDA-F 8, rue Le Brix, BP 35 S.M. FROLOV 18020

  20. Open Burn/Open Detonation Dispersion Model (OBODM) User's Guide. Volume I. User's Instructions

    National Research Council Canada - National Science Library

    Bjorklund, Jay

    1998-01-01

    ...) of obsolete munitions and solid propellants. OBODM uses loud/plume rise, dispersion, and deposition algorithms taken from existing models for instantaneous and quasi-continuous sources to predict the downwind transport and dispersion...

  1. Multiple bifurcations and periodic 'bubbling' in a delay population model

    International Nuclear Information System (INIS)

    Peng Mingshu

    2005-01-01

    In this paper, the flip bifurcation and periodic doubling bifurcations of a discrete population model without delay influence is firstly studied and the phenomenon of Feigenbaum's cascade of periodic doublings is also observed. Secondly, we explored the Neimark-Sacker bifurcation in the delay population model (two-dimension discrete dynamical systems) and the unique stable closed invariant curve which bifurcates from the nontrivial fixed point. Finally, a computer-assisted study for the delay population model is also delved into. Our computer simulation shows that the introduction of delay effect in a nonlinear difference equation derived from the logistic map leads to much richer dynamic behavior, such as stable node → stable focus → an lower-dimensional closed invariant curve (quasi-periodic solution, limit cycle) or/and stable periodic solutions → chaotic attractor by cascading bubbles (the combination of potential period doubling and reverse period-doubling) and the sudden change between two different attractors, etc

  2. Bifurcation analysis of a delayed mathematical model for tumor growth

    International Nuclear Information System (INIS)

    Khajanchi, Subhas

    2015-01-01

    In this study, we present a modified mathematical model of tumor growth by introducing discrete time delay in interaction terms. The model describes the interaction between tumor cells, healthy tissue cells (host cells) and immune effector cells. The goal of this study is to obtain a better compatibility with reality for which we introduced the discrete time delay in the interaction between tumor cells and host cells. We investigate the local stability of the non-negative equilibria and the existence of Hopf-bifurcation by considering the discrete time delay as a bifurcation parameter. We estimate the length of delay to preserve the stability of bifurcating periodic solutions, which gives an idea about the mode of action for controlling oscillations in the tumor growth. Numerical simulations of the model confirm the analytical findings

  3. Dynamics of a delayed intraguild predation model with harvesting

    Science.gov (United States)

    Collera, Juancho A.; Balilo, Aldrin T.

    2018-03-01

    In [1], a delayed three-species intraguild predation (IGP) model was considered. This particular tri-trophic community module includes a predator and its prey which share a common basal resource for their sustenance [3]. Here, it is assumed that in the absence of predation, the growth of the basal resource follows the delayed logistic equation. Without delay time, the IGP model in [1] reduces to the system considered in [7] where it was shown that IGP may induce chaos even if the functional responses are linear. Meanwhile, in [2] the delayed IGP model in [1] was generalized to include harvesting. Under the assumption that the basal resource has some economic value, a constant harvesting term on the basal resource was incorporated. However, both models in [1] and [2] use the delay time as the main parameter. In this research, we studied the delayed IGP model in [1] with the addition of linear harvesting term on each of the three species. The dynamical behavior of this system is examined using the harvesting rates as main parameter. In particular, we give conditions on the existence, stability, and bifurcations of equilibrium solutions of this system. This allows us to better understand the effects of harvesting in terms of the survival or extinction of one or more species in our system. Numerical simulations are carried out to illustrate our results. In fact, we show that the chaotic behavior in [7] unfolds when the harvesting rate parameter is varied.

  4. Gompertzian stochastic model with delay effect to cervical cancer growth

    International Nuclear Information System (INIS)

    Mazlan, Mazma Syahidatul Ayuni binti; Rosli, Norhayati binti; Bahar, Arifah

    2015-01-01

    In this paper, a Gompertzian stochastic model with time delay is introduced to describe the cervical cancer growth. The parameters values of the mathematical model are estimated via Levenberg-Marquardt optimization method of non-linear least squares. We apply Milstein scheme for solving the stochastic model numerically. The efficiency of mathematical model is measured by comparing the simulated result and the clinical data of cervical cancer growth. Low values of Mean-Square Error (MSE) of Gompertzian stochastic model with delay effect indicate good fits

  5. Gompertzian stochastic model with delay effect to cervical cancer growth

    Energy Technology Data Exchange (ETDEWEB)

    Mazlan, Mazma Syahidatul Ayuni binti; Rosli, Norhayati binti [Faculty of Industrial Sciences and Technology, Universiti Malaysia Pahang, Lebuhraya Tun Razak, 26300 Gambang, Pahang (Malaysia); Bahar, Arifah [Department of Mathematical Sciences, Faculty of Science, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor and UTM Centre for Industrial and Applied Mathematics (UTM-CIAM), Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor (Malaysia)

    2015-02-03

    In this paper, a Gompertzian stochastic model with time delay is introduced to describe the cervical cancer growth. The parameters values of the mathematical model are estimated via Levenberg-Marquardt optimization method of non-linear least squares. We apply Milstein scheme for solving the stochastic model numerically. The efficiency of mathematical model is measured by comparing the simulated result and the clinical data of cervical cancer growth. Low values of Mean-Square Error (MSE) of Gompertzian stochastic model with delay effect indicate good fits.

  6. Measurement and reactive burn modeling of the shock to detonation transition for the HMX based explosive LX-14

    Science.gov (United States)

    Jones, J. D.; Ma, Xia; Clements, B. E.; Gibson, L. L.; Gustavsen, R. L.

    2017-06-01

    Gas-gun driven plate-impact techniques were used to study the shock to detonation transition in LX-14 (95.5 weight % HMX, 4.5 weight % estane binder). The transition was recorded using embedded electromagnetic particle velocity gauges. Initial shock pressures, P, ranged from 2.5 to 8 GPa and the resulting distances to detonation, xD, were in the range 1.9 to 14 mm. Numerical simulations using the SURF reactive burn scheme coupled with a linear US -up / Mie-Grueneisen equation of state for the reactant and a JWL equation of state for the products, match the experimental data well. Comparison of simulation with experiment as well as the ``best fit'' parameter set for the simulations is presented.

  7. New high (> or =6M/sub sun/) upper mass limit for planetary nebula formation, and a new high lower mass bound for carbon detonation supernova models

    International Nuclear Information System (INIS)

    Tuchman, Y.; Sack, N.; Barkat, Z.

    1978-01-01

    Envelope ejection leading to a planetary nebula has been recently shown to occur as the terminal point of the Mira stage. The ejection is due to a diverging pulsational instability, not to a dynamical one. It is found that in this case (and for Population I, mixing length=1 pressure scale height) the upper mass limit for formation of planetary nebulae is at least 6 M/sub sun/. It thus follows that the lower mass limit for realization of carbon detonation model configurations is also at last 6 M/sub sun/

  8. Transmission Delay Modeling of Packet Communication over Digital Subscriber Line

    Directory of Open Access Journals (Sweden)

    Jiri Vodrazka

    2013-01-01

    Full Text Available Certain multimedia and voice services, such as VoIP, IPTV, etc., are significantly delay sensitive and their performance is influenced by the overall transmission delay and its variance. One of the most common solutions used in access networks are xDSL lines, especially ADSL2+ or VDSL2. Although these subscriber lines also use packet communication, there are several differences and mechanisms, which influence their resulting delay. Their delay characteristics are also dependent on the individual settings of each xDSL provider, therefore we decided to investigate this area for typical commercially available lines in Czech Republic. Based on the measured values and experiments with real ADSL2+ lines we also developed a potential modeling method, which is presented in this article as well. The parameters for packet jitter based on the generalized Pareto distribution were modeled.

  9. Carbon deflagration supernova, an alternative to carbon detonation

    Energy Technology Data Exchange (ETDEWEB)

    Nomoto, K; Sugimoto, D [Tokyo Univ. (Japan). Coll. of General Education; Neo, S [Kyoto Univ. (Japan). Dept. of Physics

    1976-02-01

    As an alternative to the carbon detonation, a carbon deflagration supernova model is presented by a full hydrodynamic computation. A deflagration wave, which propagates through the core due to convective heat transport, does not grow into detonation. Though it results in a complete disruption of the star, the difficulty of overproduction of iron peak elements can be avoided if the deflagration is relatively slow.

  10. Detonation engine fed by acetylene-oxygen mixture

    Science.gov (United States)

    Smirnov, N. N.; Betelin, V. B.; Nikitin, V. F.; Phylippov, Yu. G.; Koo, Jaye

    2014-11-01

    The advantages of a constant volume combustion cycle as compared to constant pressure combustion in terms of thermodynamic efficiency has focused the search for advanced propulsion on detonation engines. Detonation of acetylene mixed with oxygen in various proportions is studied using mathematical modeling. Simplified kinetics of acetylene burning includes 11 reactions with 9 components. Deflagration to detonation transition (DDT) is obtained in a cylindrical tube with a section of obstacles modeling a Shchelkin spiral; the DDT takes place in this section for a wide range of initial mixture compositions. A modified ka-omega turbulence model is used to simulate flame acceleration in the Shchelkin spiral section of the system. The results of numerical simulations were compared with experiments, which had been performed in the same size detonation chamber and turbulent spiral ring section, and with theoretical data on the Chapman-Jouguet detonation parameters.

  11. A Cucker--Smale Model with Noise and Delay

    KAUST Repository

    Erban, Radek

    2016-08-09

    A generalization of the Cucker-Smale model for collective animal behavior is investigated. The model is formulated as a system of delayed stochastic differential equations. It incorporates two additional processes which are present in animal decision making, but are often neglected in modeling: (i) stochasticity (imperfections) of individual behavior and (ii) delayed responses of individuals to signals in their environment. Sufficient conditions for flocking for the generalized Cucker-Smale model are derived by using a suitable Lyapunov functional. As a by-product, a new result regarding the asymptotic behavior of delayed geometric Brownian motion is obtained. In the second part of the paper, results of systematic numerical simulations are presented. They not only illustrate the analytical results, but hint at a somehow surprising behavior

  12. A Cucker--Smale Model with Noise and Delay

    KAUST Repository

    Erban, Radek; Haskovec, Jan; Sun, Yongzheng

    2016-01-01

    A generalization of the Cucker-Smale model for collective animal behavior is investigated. The model is formulated as a system of delayed stochastic differential equations. It incorporates two additional processes which are present in animal decision making, but are often neglected in modeling: (i) stochasticity (imperfections) of individual behavior and (ii) delayed responses of individuals to signals in their environment. Sufficient conditions for flocking for the generalized Cucker-Smale model are derived by using a suitable Lyapunov functional. As a by-product, a new result regarding the asymptotic behavior of delayed geometric Brownian motion is obtained. In the second part of the paper, results of systematic numerical simulations are presented. They not only illustrate the analytical results, but hint at a somehow surprising behavior

  13. Models and criteria for prediction of Deflagration-to-Detonation Transition (DDT) in hydrogen-air-steam systems under severe accident conditions. Final report

    International Nuclear Information System (INIS)

    Klein, R.; Rehm, W.

    1999-01-01

    The European Commission in Brussels supported a joint project on Deflagration-to-Detonation Transition (DDT) studies for hydrogen safety within the framework programme on nuclear fission safety. The project was initiated by the Forschungszentrum Juelich based on the results of a pilot project. The following main project was coordinated by the Freie Universitaet Berlin involving seven european partners. The partners came from universities, research centers and industry, as follows: FU-Berlin, RWTH-Aachen, CNRS-Marseille, IPSN-Saclay, FZ-Juelich, FZ-Karlsruhe, and NNC-Knutsford, which worked closely together. The working period was two years (1997-1998). The aim of the project was to develop models and criteria for prediction of deflagration-to-detonation transition (DDT) in hydrogen-air-steam systems under severe accident conditions. The results obtained are documented in this final report, which was finished in 1999. The report consists of seven chapters, concerning: - Introduction - Experimental Investigations - Modelling and Numerics - Validation - Mitigation - Further Deliverables - Summary and Conclusion. The final report presents special experimental, theoretical, and computational aspects of the complex DDT phenomena for hydrogen safety studies, and it should be a solid basis for end user applications and further developments. (orig.)

  14. Observations of Tin/Water Thermal Explosions in a Long-Tube Geometry. Their Interpretation and Consequences for the Detonation Model

    International Nuclear Information System (INIS)

    Hall, R.W.; Board, S.J.; Baines, M.

    1979-01-01

    This paper presents details of experiments designed to test the detonation model of thermal explosions (Board et al, 1975); on this theory large-scale explosions should propagate steadily at supersonic velocities through a fuel coolant mixture, giving a yield which has been shown to depend on details of the fragmentation and heat transfer behind the shock front. Observations of propagating explosions have been reported previously. In the present work, a long-tube geometry is used since in 1D, propagation measurements are particularly easy to interpret. Also, in 2D and 3D geometries radial flow can tend to extinguish shock waves and if a single-phase region of coolant is present, pressure pulses can propagate ahead of the two-phase shock in the intermixed region. This paper describes the six experiments that all use molten tin and water mixtures. In the first four, detailed pressure measurement was the main objective; the last two are attempts at flow visualization to aid the interpretation of these. The results obtained and the implications for the detonation model are discussed. A detailed interpretation in terms of fragmentation and heat transfer processes behind the shock is attempted. The implications of the work for reactor materials are then briefly outlined

  15. Exergetic efficiency analysis of hydrogen–air detonation in pulse detonation combustor using computational fluid dynamics

    Directory of Open Access Journals (Sweden)

    Pinku Debnath

    2017-03-01

    Full Text Available Exergy losses during the combustion process, heat transfer, and fuel utilization play a vital role in the analysis of the exergetic efficiency of combustion process. Detonation is thermodynamically more efficient than deflagration mode of combustion. Detonation combustion technology inside the pulse detonation engine using hydrogen as a fuel is energetic propulsion system for next generation. In this study, the main objective of this work is to quantify the exergetic efficiency of hydrogen–air combustion for deflagration and detonation combustion process. Further detonation parameters are calculated using 0.25, 0.35, and 0.55 of H2 mass concentrations in the combustion process. The simulations have been performed for converging the solution using commercial computational fluid dynamics package Ansys Fluent solver. The details of combustion physics in chemical reacting flows of hydrogen–air mixture in two control volumes were simulated using species transport model with eddy dissipation turbulence chemistry interaction. From these simulations it was observed that exergy loss in the deflagration combustion process is higher in comparison to the detonation combustion process. The major observation was that pilot fuel economy for the two combustion processes and augmentation of exergetic efficiencies are better in the detonation combustion process. The maximum exergetic efficiency of 55.12%, 53.19%, and 23.43% from deflagration combustion process and from detonation combustion process, 67.55%, 57.49%, and 24.89%, are obtained from aforesaid H2 mass fraction. It was also found that for lesser fuel mass fraction higher exergetic efficiency was observed.

  16. A Discrete Model for HIV Infection with Distributed Delay

    Directory of Open Access Journals (Sweden)

    Brahim EL Boukari

    2014-01-01

    Full Text Available We give a consistent discretization of a continuous model of HIV infection, with distributed time delays to express the lag between the times when the virus enters a cell and when the cell becomes infected. The global stability of the steady states of the model is determined and numerical simulations are presented to illustrate our theoretical results.

  17. Proposition of delay model for signalized intersections with queueing theory analytical models usage

    Directory of Open Access Journals (Sweden)

    Grzegorz SIERPIŃSKI

    2007-01-01

    Full Text Available Time delay on intersections is a very important transport problem. Thearticle includes a proposition of time delay model. Variance of service times is considered by used average waiting time in queue for queuing system with compressed queuing processes usage as a part of proposed time delays model.

  18. The structure and evolution of galacto-detonation waves - Some analytic results in sequential star formation models of spiral galaxies

    Science.gov (United States)

    Cowie, L. L.; Rybicki, G. B.

    1982-01-01

    Waves of star formation in a uniform, differentially rotating disk galaxy are treated analytically as a propagating detonation wave front. It is shown, that if single solitary waves could be excited, they would evolve asymptotically to one of two stable spiral forms, each of which rotates with a fixed pattern speed. Simple numerical solutions confirm these results. However, the pattern of waves that develop naturally from an initially localized disturbance is more complex and dies out within a few rotation periods. These results suggest a conclusive observational test for deciding whether sequential star formation is an important determinant of spiral structure in some class of galaxies.

  19. Delay model and performance testing for FPGA carry chain TDC

    International Nuclear Information System (INIS)

    Kang Xiaowen; Liu Yaqiang; Cui Junjian Yang Zhangcan; Jin Yongjie

    2011-01-01

    Time-of-flight (TOF) information would improve the performance of PET (position emission tomography). TDC design is a key technique. It proposed Carry Chain TDC Delay model. Through changing the significant delay parameter of model, paper compared the difference of TDC performance, and finally realized Time-to-Digital Convertor (TDC) based on Carry Chain Method using FPGA EP2C20Q240C8N with 69 ps LSB, max error below 2 LSB. Such result could meet the TOF demand. It also proposed a Coaxial Cable Measuring method for TDC testing, without High-precision test equipment. (authors)

  20. Delayed feedback on the dynamical model of a financial system

    International Nuclear Information System (INIS)

    Son, Woo-Sik; Park, Young-Jai

    2011-01-01

    Research highlights: → Effect of delayed feedbacks on the financial model. → Proof on the occurrence of Hopf bifurcation by local stability analysis. → Numerical bifurcation analysis on delay differential equations. → Observation of supercritical and subcritical Hopf, fold limit cycle, Neimark-Sacker, double Hopf and generalized Hopf bifurcations. - Abstract: We investigate the effect of delayed feedbacks on the financial model, which describes the time variation of the interest rate, the investment demand, and the price index, for establishing the fiscal policy. By local stability analysis, we theoretically prove the occurrences of Hopf bifurcation. Through numerical bifurcation analysis, we obtain the supercritical and subcritical Hopf bifurcation curves which support the theoretical predictions. Moreover, the fold limit cycle and Neimark-Sacker bifurcation curves are detected. We also confirm that the double Hopf and generalized Hopf codimension-2 bifurcation points exist.

  1. Reduced detonation kinetics and detonation structure in one- and multi-fuel gaseous mixtures

    Science.gov (United States)

    Fomin, P. A.; Trotsyuk, A. V.; Vasil'ev, A. A.

    2017-10-01

    Two-step approximate models of chemical kinetics of detonation combustion of (i) one-fuel (CH4/air) and (ii) multi-fuel gaseous mixtures (CH4/H2/air and CH4/CO/air) are developed for the first time. The models for multi-fuel mixtures are proposed for the first time. Owing to the simplicity and high accuracy, the models can be used in multi-dimensional numerical calculations of detonation waves in corresponding gaseous mixtures. The models are in consistent with the second law of thermodynamics and Le Chatelier’s principle. Constants of the models have a clear physical meaning. Advantages of the kinetic model for detonation combustion of methane has been demonstrated via numerical calculations of a two-dimensional structure of the detonation wave in a stoichiometric and fuel-rich methane-air mixtures and stoichiometric methane-oxygen mixture. The dominant size of the detonation cell, determines in calculations, is in good agreement with all known experimental data.

  2. Source Characterization Model (SCM): A Predictive Capability for the Source Terms of Residual Energetic Materials from Burning and/or Detonation Activities

    National Research Council Canada - National Science Library

    Brown, Robert C; Kolb, Charles E; Conant, John A; Zhang, John; Dussault, David M; Rush, Tamera L; Conway, Brooke E; Morris, James W; Touma, Joe

    2004-01-01

    .... Detonation of energetic materials produces a wide range of air and surface pollutants, including carbon monoxide, nitrogen oxides, volatile organic compounds, acid gases, and particulate matter...

  3. Numerical Study on Critical Wedge Angle of Cellular Detonation Reflections

    International Nuclear Information System (INIS)

    Gang, Wang; Kai-Xin, Liu; De-Liang, Zhang

    2010-01-01

    The critical wedge angle (CWA) for the transition from regular reflection (RR) to Mach reflection (MR) of a cellular detonation wave is studied numerically by an improved space-time conservation element and solution element method together with a two-step chemical reaction model. The accuracy of that numerical way is verified by simulating cellular detonation reflections at a 19.3° wedge. The planar and cellular detonation reflections over 45°–55° wedges are also simulated. When the cellular detonation wave is over a 50° wedge, numerical results show a new phenomenon that RR and MR occur alternately. The transition process between RR and MR is investigated with the local pressure contours. Numerical analysis shows that the cellular structure is the essential reason for the new phenomenon and the CWA of detonation reflection is not a certain angle but an angle range. (fundamental areas of phenomenology(including applications))

  4. Oscillation and stability of delay models in biology

    CERN Document Server

    Agarwal, Ravi P; Saker, Samir H

    2014-01-01

    Environmental variation plays an important role in many biological and ecological dynamical systems. This monograph focuses on the study of oscillation and the stability of delay models occurring in biology. The book presents recent research results on the qualitative behavior of mathematical models under different physical and environmental conditions, covering dynamics including the distribution and consumption of food. Researchers in the fields of mathematical modeling, mathematical biology, and population dynamics will be particularly interested in this material.

  5. Dynamic Delayed Duplicate Detection for External Memory Model Checking

    DEFF Research Database (Denmark)

    Evangelista, Sami

    2008-01-01

    Duplicate detection is an expensive operation of disk-based model checkers. It consists of comparing some potentially new states, the candidate states, to previous visited states. We propose a new approach to this technique called dynamic delayed duplicate detection. This one exploits some typical...

  6. Dynamic Delayed Duplicate Detection for External Memory Model Checking

    DEFF Research Database (Denmark)

    Evangelista, Sami

    2008-01-01

    Duplicate detection is an expensive operation of disk-based model checkers. It consists of comparing some potentially new states, the candidate states, to previous visited states. We propose a new approach to this technique called dynamic delayed duplicate detection. This one exploits some typica...... significantly better than some previously published algorithms....

  7. Diffusion model of delayed hydride cracking in zirconium alloys

    NARCIS (Netherlands)

    Shmakov, AA; Kalin, BA; Matvienko, YG; Singh, RN; De, PK

    2004-01-01

    We develop a method for the evaluation of the rate of delayed hydride cracking in zirconium alloys. The model is based on the stationary solution of the phenomenological diffusion equation and the detailed analysis of the distribution of hydrostatic stresses in the plane of a sharp tensile crack.

  8. Dynamical Analysis of SIR Epidemic Models with Distributed Delay

    Directory of Open Access Journals (Sweden)

    Wencai Zhao

    2013-01-01

    Full Text Available SIR epidemic models with distributed delay are proposed. Firstly, the dynamical behaviors of the model without vaccination are studied. Using the Jacobian matrix, the stability of the equilibrium points of the system without vaccination is analyzed. The basic reproduction number R is got. In order to study the important role of vaccination to prevent diseases, the model with distributed delay under impulsive vaccination is formulated. And the sufficient conditions of globally asymptotic stability of “infection-free” periodic solution and the permanence of the model are obtained by using Floquet’s theorem, small-amplitude perturbation skills, and comparison theorem. Lastly, numerical simulation is presented to illustrate our main conclusions that vaccination has significant effects on the dynamical behaviors of the model. The results can provide effective tactic basis for the practical infectious disease prevention.

  9. Alternans promotion in cardiac electrophysiology models by delay differential equations.

    Science.gov (United States)

    Gomes, Johnny M; Dos Santos, Rodrigo Weber; Cherry, Elizabeth M

    2017-09-01

    Cardiac electrical alternans is a state of alternation between long and short action potentials and is frequently associated with harmful cardiac conditions. Different dynamic mechanisms can give rise to alternans; however, many cardiac models based on ordinary differential equations are not able to reproduce this phenomenon. A previous study showed that alternans can be induced by the introduction of delay differential equations (DDEs) in the formulations of the ion channel gating variables of a canine myocyte model. The present work demonstrates that this technique is not model-specific by successfully promoting alternans using DDEs for five cardiac electrophysiology models that describe different types of myocytes, with varying degrees of complexity. By analyzing results across the different models, we observe two potential requirements for alternans promotion via DDEs for ionic gates: (i) the gate must have a significant influence on the action potential duration and (ii) a delay must significantly impair the gate's recovery between consecutive action potentials.

  10. Alternans promotion in cardiac electrophysiology models by delay differential equations

    Science.gov (United States)

    Gomes, Johnny M.; dos Santos, Rodrigo Weber; Cherry, Elizabeth M.

    2017-09-01

    Cardiac electrical alternans is a state of alternation between long and short action potentials and is frequently associated with harmful cardiac conditions. Different dynamic mechanisms can give rise to alternans; however, many cardiac models based on ordinary differential equations are not able to reproduce this phenomenon. A previous study showed that alternans can be induced by the introduction of delay differential equations (DDEs) in the formulations of the ion channel gating variables of a canine myocyte model. The present work demonstrates that this technique is not model-specific by successfully promoting alternans using DDEs for five cardiac electrophysiology models that describe different types of myocytes, with varying degrees of complexity. By analyzing results across the different models, we observe two potential requirements for alternans promotion via DDEs for ionic gates: (i) the gate must have a significant influence on the action potential duration and (ii) a delay must significantly impair the gate's recovery between consecutive action potentials.

  11. Detonation Jet Engine. Part 2--Construction Features

    Science.gov (United States)

    Bulat, Pavel V.; Volkov, Konstantin N.

    2016-01-01

    We present the most relevant works on jet engine design that utilize thermodynamic cycle of detonative combustion. Detonation engines of various concepts, pulse detonation, rotational and engine with stationary detonation wave, are reviewed. Main trends in detonation engine development are discussed. The most important works that carried out…

  12. Flow Visualization of a Rotating Detonation Engine

    Science.gov (United States)

    2016-10-05

    SUPPLEMENTARY NOTES 14. ABSTRACT The rotating detonation engine ( RDE ) is a propulsion system that obtains thrust using continuously existing...2014 – 12/4/2015 Summary: The rotating detonation engine ( RDE ) is a propulsion system that obtains thrust using continuously existing detonation...structure. Studies have been conducted on rotating detonation engines ( RDE ) that obtain thrust from the continuously propagating detonation waves in the

  13. Two-actor conflict with time delay: A dynamical model

    Science.gov (United States)

    Qubbaj, Murad R.; Muneepeerakul, Rachata

    2012-11-01

    Recent mathematical dynamical models of the conflict between two different actors, be they nations, groups, or individuals, have been developed that are capable of predicting various outcomes depending on the chosen feedback strategies, initial conditions, and the previous states of the actors. In addition to these factors, this paper examines the effect of time delayed feedback on the conflict dynamics. Our analysis shows that under certain initial and feedback conditions, a stable neutral equilibrium of conflict may destabilize for some critical values of time delay, and the two actors may evolve to new emotional states. We investigate the results by constructing critical delay surfaces for different sets of parameters and analyzing results from numerical simulations. These results provide new insights regarding conflict and conflict resolution and may help planners in adjusting and assessing their strategic decisions.

  14. A comparison of cosmological models using time delay lenses

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Jun-Jie; Wu, Xue-Feng; Melia, Fulvio, E-mail: jjwei@pmo.ac.cn, E-mail: xfwu@pmo.ac.cn, E-mail: fmelia@email.arizona.edu [Purple Mountain Observatory, Chinese Academy of Sciences, Nanjing 210008 (China)

    2014-06-20

    The use of time-delay gravitational lenses to examine the cosmological expansion introduces a new standard ruler with which to test theoretical models. The sample suitable for this kind of work now includes 12 lens systems, which have thus far been used solely for optimizing the parameters of ΛCDM. In this paper, we broaden the base of support for this new, important cosmic probe by using these observations to carry out a one-on-one comparison between competing models. The currently available sample indicates a likelihood of ∼70%-80% that the R {sub h} = ct universe is the correct cosmology versus ∼20%-30% for the standard model. This possibly interesting result reinforces the need to greatly expand the sample of time-delay lenses, e.g., with the successful implementation of the Dark Energy Survey, the VST ATLAS survey, and the Large Synoptic Survey Telescope. In anticipation of a greatly expanded catalog of time-delay lenses identified with these surveys, we have produced synthetic samples to estimate how large they would have to be in order to rule out either model at a ∼99.7% confidence level. We find that if the real cosmology is ΛCDM, a sample of ∼150 time-delay lenses would be sufficient to rule out R {sub h} = ct at this level of accuracy, while ∼1000 time-delay lenses would be required to rule out ΛCDM if the real universe is instead R {sub h} = ct. This difference in required sample size reflects the greater number of free parameters available to fit the data with ΛCDM.

  15. A comparison of cosmological models using time delay lenses

    International Nuclear Information System (INIS)

    Wei, Jun-Jie; Wu, Xue-Feng; Melia, Fulvio

    2014-01-01

    The use of time-delay gravitational lenses to examine the cosmological expansion introduces a new standard ruler with which to test theoretical models. The sample suitable for this kind of work now includes 12 lens systems, which have thus far been used solely for optimizing the parameters of ΛCDM. In this paper, we broaden the base of support for this new, important cosmic probe by using these observations to carry out a one-on-one comparison between competing models. The currently available sample indicates a likelihood of ∼70%-80% that the R h = ct universe is the correct cosmology versus ∼20%-30% for the standard model. This possibly interesting result reinforces the need to greatly expand the sample of time-delay lenses, e.g., with the successful implementation of the Dark Energy Survey, the VST ATLAS survey, and the Large Synoptic Survey Telescope. In anticipation of a greatly expanded catalog of time-delay lenses identified with these surveys, we have produced synthetic samples to estimate how large they would have to be in order to rule out either model at a ∼99.7% confidence level. We find that if the real cosmology is ΛCDM, a sample of ∼150 time-delay lenses would be sufficient to rule out R h = ct at this level of accuracy, while ∼1000 time-delay lenses would be required to rule out ΛCDM if the real universe is instead R h = ct. This difference in required sample size reflects the greater number of free parameters available to fit the data with ΛCDM.

  16. A simple delay model for two-phase flow dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Clausse, A.; Delmastro, D.F.; Juanico`, L.E. [Centro Atomico Bariloche (Argentina)

    1995-09-01

    A model based in delay equations for density-wave oscillations is presented. High Froude numbers and moderate ones were considered. The equations were numerically analyzed and compared with more sophisticated models. The influence of the gravity term was studied. Different kinds of behavior were found, particularly sub-critical and super-critical Hopf bifurcations. Moreover the present approach can be used to better understand the complicated dynamics of boiling flows systems.

  17. Detonability of containment building atmospheres during core-meltdown accidents

    International Nuclear Information System (INIS)

    Jaung, R.; Berlad, L.; Pratt, W.

    1983-01-01

    During Core-Meltdown Accidents in Light Water Reactors, significant quantities of combustible gases could be released to the containment building. The highest possible peak pressure fields that may occur through combustion processes are associated with detonation phenomena. Accordingly, it is necessary to understand and identify the possible ways in which detonations may or may not occur. Although no comprehensive theory of detonation is currently available, there are useful guidelines, which can be derived from current theoretical concepts and the body of experimental data. This paper examines these guidelines and indicates how they may be used to evaluate the possible occurrence of detonation-related combustion processes. In particular, this study identifies three features that an initiation source must achieve if it is to ultimately result in a stable detonation. One of these features requires post-shock initial conditions that lead to very short ignition delays. This concept is used to examine the possibility of achieving quasi-steady detonation phenomena in nuclear reactor containment buildings during postulated core-melt accidents

  18. Detonation Processes USSR

    Science.gov (United States)

    1960-06-06

    second and quite definite for a given combustible mixture -- was an important. cientific re- sult of these researches discovered in 18881 by four...Consequently, the pulsating structure of the front of the "rnorr.ia]" detonation should be quite comrmon. (1) See K. i. Shchelkin, " Journal of...A1 "-൚ " 4 FOR REASONS OF SPEED AND ECONOMY THIS REPORT HAS BEEN REPRODUCED ELECTRONICALLY DIPWCTLY PROM OUR CONTRACTOR’S TYPESCRIPT THIS PUBLICATION

  19. The hydrodynamic theory of detonation

    Science.gov (United States)

    Langweiler, Heinz

    1939-01-01

    This report derives equations containing only directly measurable constants for the quantities involved in the hydrodynamic theory of detonation. The stable detonation speed, D, is revealed as having the lowest possible value in the case of positive material velocity, by finding the minimum of the Du curve (u denotes the speed of the gases of combustion). A study of the conditions of energy and impulse in freely suspended detonating systems leads to the disclosure of a rarefaction front traveling at a lower speed behind the detonation front; its velocity is computed. The latent energy of the explosive passes into the steadily growing detonation zone - the region between the detonation front and the rarefaction front. The conclusions lead to a new definition of the concept of shattering power. The calculations are based on the behavior of trinitrotoluene.

  20. Performance analysis of NOAA tropospheric signal delay model

    International Nuclear Information System (INIS)

    Ibrahim, Hassan E; El-Rabbany, Ahmed

    2011-01-01

    Tropospheric delay is one of the dominant global positioning system (GPS) errors, which degrades the positioning accuracy. Recent development in tropospheric modeling relies on implementation of more accurate numerical weather prediction (NWP) models. In North America one of the NWP-based tropospheric correction models is the NOAA Tropospheric Signal Delay Model (NOAATrop), which was developed by the US National Oceanic and Atmospheric Administration (NOAA). Because of its potential to improve the GPS positioning accuracy, the NOAATrop model became the focus of many researchers. In this paper, we analyzed the performance of the NOAATrop model and examined its effect on ionosphere-free-based precise point positioning (PPP) solution. We generated 3 year long tropospheric zenith total delay (ZTD) data series for the NOAATrop model, Hopfield model, and the International GNSS Services (IGS) final tropospheric correction product, respectively. These data sets were generated at ten IGS reference stations spanning Canada and the United States. We analyzed the NOAATrop ZTD data series and compared them with those of the Hopfield model. The IGS final tropospheric product was used as a reference. The analysis shows that the performance of the NOAATrop model is a function of both season (time of the year) and geographical location. However, its performance was superior to the Hopfield model in all cases. We further investigated the effect of implementing the NOAATrop model on the ionosphere-free-based PPP solution convergence and accuracy. It is shown that the use of the NOAATrop model improved the PPP solution convergence by 1%, 10% and 15% for the latitude, longitude and height components, respectively

  1. Analysis of deterministic cyclic gene regulatory network models with delays

    CERN Document Server

    Ahsen, Mehmet Eren; Niculescu, Silviu-Iulian

    2015-01-01

    This brief examines a deterministic, ODE-based model for gene regulatory networks (GRN) that incorporates nonlinearities and time-delayed feedback. An introductory chapter provides some insights into molecular biology and GRNs. The mathematical tools necessary for studying the GRN model are then reviewed, in particular Hill functions and Schwarzian derivatives. One chapter is devoted to the analysis of GRNs under negative feedback with time delays and a special case of a homogenous GRN is considered. Asymptotic stability analysis of GRNs under positive feedback is then considered in a separate chapter, in which conditions leading to bi-stability are derived. Graduate and advanced undergraduate students and researchers in control engineering, applied mathematics, systems biology and synthetic biology will find this brief to be a clear and concise introduction to the modeling and analysis of GRNs.

  2. Controlled Nonlinear Stochastic Delay Equations: Part I: Modeling and Approximations

    International Nuclear Information System (INIS)

    Kushner, Harold J.

    2012-01-01

    This two-part paper deals with “foundational” issues that have not been previously considered in the modeling and numerical optimization of nonlinear stochastic delay systems. There are new classes of models, such as those with nonlinear functions of several controls (such as products), each with is own delay, controlled random Poisson measure driving terms, admissions control with delayed retrials, and others. There are two basic and interconnected themes for these models. The first, dealt with in this part, concerns the definition of admissible control. The classical definition of an admissible control as a nonanticipative relaxed control is inadequate for these models and needs to be extended. This is needed for the convergence proofs of numerical approximations for optimal controls as well as to have a well-defined model. It is shown that the new classes of admissible controls do not enlarge the range of the value functions, is closed (together with the associated paths) under weak convergence, and is approximatable by ordinary controls. The second theme, dealt with in Part II, concerns transportation equation representations, and their role in the development of numerical algorithms with much reduced memory and computational requirements.

  3. 29 CFR 1926.908 - Use of detonating cord.

    Science.gov (United States)

    2010-07-01

    ... connectors or short-interval-delay electric blasting caps are used with detonating cord, the practice shall conform strictly to the manufacturer's recommendations. (i) When connecting a blasting cap or an electric... (CONTINUED) SAFETY AND HEALTH REGULATIONS FOR CONSTRUCTION Blasting and the Use of Explosives § 1926.908 Use...

  4. Microscopic Control Delay Modeling at Signalized Arterials Using Bluetooth Technology

    OpenAIRE

    Rajasekhar, Lakshmi

    2011-01-01

    Real-time control delay estimation is an important performance measure for any intersection to improve the signal timing plans dynamically in real-time and hence improve the overall system performance. Control delay estimates helps to determine the level-of-service (LOS) characteristics of various approaches at an intersection and takes into account deceleration delay, stopped delay and acceleration delay. All kinds of traffic delay calculation especially control delay calculation has always ...

  5. Models of the delayed nonlinear Raman response in diatomic gases

    International Nuclear Information System (INIS)

    Palastro, J. P.; Antonsen, T. M. Jr.; Pearson, A.

    2011-01-01

    We examine the delayed response of a diatomic gas to a polarizing laser field with the goal of obtaining computationally efficient methods for use with laser pulse propagation simulations. We demonstrate that for broadband pulses, heavy molecules such as O 2 and N 2 , and typical atmospheric temperatures, the initial delayed response requires only classical physics. The linear kinetic Green's function is derived from the Boltzmann equation and shown to be in excellent agreement with full density-matrix calculations. A straightforward perturbation approach for the fully nonlinear, kinetic impulse response is also presented. With the kinetic theory a reduced fluid model of the diatomic gas' orientation is derived. Transport coefficients are introduced to model the kinetic phase mixing of the delayed response. In addition to computational rapidity, the fluid model provides intuition through the use of familiar macroscopic quantities. Both the kinetic and the fluid descriptions predict a nonlinear steady-state alignment after passage of the laser pulse, which in the fluid model is interpreted as an anisotropic temperature of the diatomic fluid with respect to motion about the polarization axis.

  6. Acceleration (Deceleration Model Supporting Time Delays to Refresh Data

    Directory of Open Access Journals (Sweden)

    José Gerardo Carrillo González

    2018-04-01

    Full Text Available This paper proposes a mathematical model to regulate the acceleration (deceleration applied by self-driving vehicles in car-following situations. A virtual environment is designed to test the model in different circumstances: (1 the followers decelerate in time if the leader decelerates, considering a time delay of up to 5 s to refresh data (vehicles position coordinates required by the model, (2 with the intention of optimizing space, the vehicles are grouped in platoons, where 3 s of time delay (to update data is supported if the vehicles have a centre-to-centre spacing of 20 m and a time delay of 1 s is supported at a spacing of 6 m (considering a maximum speed of 20 m/s in both cases, and (3 an algorithm is presented to manage the vehicles’ priority at a traffic intersection, where the model regulates the vehicles’ acceleration (deceleration and a balance in the number of vehicles passing from each side is achieved.

  7. Delay Variation Model with RTP Flows Behavior in Accordance with M/D/1 Kendall's Notation

    Directory of Open Access Journals (Sweden)

    Miroslav Voznak

    2010-01-01

    Full Text Available This paper focuses on the design of a mathematical model of end-to-end delay of a VoIP connection, in particular on a delay variation. It describes all partial delay components and mechanisms, its generation, facilities and its mathematical formulations. A new approach to the delay variation model is presented; its validation has been done by an experiment.

  8. Maximal monotone model with delay term of convolution

    Directory of Open Access Journals (Sweden)

    Claude-Henri Lamarque

    2005-01-01

    Full Text Available Mechanical models are governed either by partial differential equations with boundary conditions and initial conditions (e.g., in the frame of continuum mechanics or by ordinary differential equations (e.g., after discretization via Galerkin procedure or directly from the model description with the initial conditions. In order to study dynamical behavior of mechanical systems with a finite number of degrees of freedom including nonsmooth terms (e.g., friction, we consider here problems governed by differential inclusions. To describe effects of particular constitutive laws, we add a delay term. In contrast to previous papers, we introduce delay via a Volterra kernel. We provide existence and uniqueness results by using an Euler implicit numerical scheme; then convergence with its order is established. A few numerical examples are given.

  9. Rapid detonation initiation by sparks in a short duct: a numerical study

    Science.gov (United States)

    Hu, Z. M.; Dou, H. S.; Khoo, B. C.

    2010-06-01

    Rapid onset of detonation can efficiently increase the working frequency of a pulse detonation engine (PDE). In the present study, computations of detonation initiation in a duct are conducted to investigate the mechanisms of detonation initiation. The governing equations are the Euler equations and the chemical kinetic model consists of 19 elementary reactions and nine species. Different techniques of initiation have been studied for the purpose of accelerating detonation onset with a relatively weak ignition energy. It is found that detonation ignition induced by means of multiple sparks is applicable to auto-ignition for a PDE. The interaction among shock waves, flame fronts and the strip of pre-compressed fresh (unburned) mixture plays an important role in rapid onset of detonation.

  10. Theory of weakly nonlinear self-sustained detonations

    KAUST Repository

    Faria, Luiz; Kasimov, Aslan R.; Rosales, Rodolfo R.

    2015-01-01

    We propose a theory of weakly nonlinear multidimensional self-sustained detonations based on asymptotic analysis of the reactive compressible Navier-Stokes equations. We show that these equations can be reduced to a model consisting of a forced

  11. Stability and bifurcation analysis in a delayed SIR model

    International Nuclear Information System (INIS)

    Jiang Zhichao; Wei Junjie

    2008-01-01

    In this paper, a time-delayed SIR model with a nonlinear incidence rate is considered. The existence of Hopf bifurcations at the endemic equilibrium is established by analyzing the distribution of the characteristic values. A explicit algorithm for determining the direction of the Hopf bifurcation and the stability of the bifurcating periodic solutions are derived by using the normal form and the center manifold theory. Numerical simulations to support the analytical conclusions are carried out

  12. Dynamic analysis of a stochastic delayed rumor propagation model

    Science.gov (United States)

    Jia, Fangju; Lv, Guangying; Wang, Shuangfeng; Zou, Guang-an

    2018-02-01

    The rapid development of the Internet, especially the emergence of the social networks, has led rumor propagation into a new media era. In this paper, we are concerned with a stochastic delayed rumor propagation model. Firstly, we obtain the existence of the global solution. Secondly, sufficient conditions for extinction of the rumor are established. Lastly, the boundedness of solution is proved and some simulations are given to verify our results.

  13. A ternary logic model for recurrent neuromime networks with delay.

    Science.gov (United States)

    Hangartner, R D; Cull, P

    1995-07-01

    In contrast to popular recurrent artificial neural network (RANN) models, biological neural networks have unsymmetric structures and incorporate significant delays as a result of axonal propagation. Consequently, biologically inspired neural network models are more accurately described by nonlinear differential-delay equations rather than nonlinear ordinary differential equations (ODEs), and the standard techniques for studying the dynamics of RANNs are wholly inadequate for these models. This paper develops a ternary-logic based method for analyzing these networks. Key to the technique is the realization that a nonzero delay produces a bounded stability region. This result significantly simplifies the construction of sufficient conditions for characterizing the network equilibria. If the network gain is large enough, each equilibrium can be classified as either asymptotically stable or unstable. To illustrate the analysis technique, the swim central pattern generator (CPG) of the sea slug Tritonia diomedea is examined. For wide range of reasonable parameter values, the ternary analysis shows that none of the network equilibria are stable, and thus the network must oscillate. The results show that complex synaptic dynamics are not necessary for pattern generation.

  14. Theory of weakly nonlinear self-sustained detonations

    KAUST Repository

    Faria, Luiz

    2015-11-03

    We propose a theory of weakly nonlinear multidimensional self-sustained detonations based on asymptotic analysis of the reactive compressible Navier-Stokes equations. We show that these equations can be reduced to a model consisting of a forced unsteady small-disturbance transonic equation and a rate equation for the heat release. In one spatial dimension, the model simplifies to a forced Burgers equation. Through analysis, numerical calculations and comparison with the reactive Euler equations, the model is demonstrated to capture such essential dynamical characteristics of detonations as the steady-state structure, the linear stability spectrum, the period-doubling sequence of bifurcations and chaos in one-dimensional detonations and cellular structures in multidimensional detonations.

  15. Harvesting in delayed food web model with omnivory

    Science.gov (United States)

    Collera, Juancho A.

    2016-02-01

    We consider a tri-trophic community module called intraguild predation (IGP) that includes a prey and its predator which share a common basal resource for their sustenance. The growth of the basal resource in the absence of predation follows the Hutchinson's equation where the delay parameter arises, while functional responses in our model are of Lotka-Volterra type. Moreover, the basal resource is harvested for its economic value with a constant harvesting rate. This work generalizes the previous works on the same model with no harvesting and no time delay. We show that the harvesting rate has to be small enough in order for the equilibria to exist. Moreover, we show that by increasing the delay parameter the stability of the equilibrium solutions may change, and periodic solutions may emerge through Hopf bifurcations. In the case of the positive equilibrium solution, multiple stability switches are obtained, and numerical continuation shows that a stable branch of periodic solutions emerges once the positive equilibrium loses its stability at the first Hopf bifurcation point. This result is important because it gives an alternative for the coexistence of all three species, avoiding extinction of one or more species when the positive equilibrium becomes unstable.

  16. Understanding Housing Delays and Relocations Within the Housing First Model.

    Science.gov (United States)

    Zerger, Suzanne; Pridham, Katherine Francombe; Jeyaratnam, Jeyagobi; Hwang, Stephen W; O'Campo, Patricia; Kohli, Jaipreet; Stergiopoulos, Vicky

    2016-01-01

    This study explores factors contributing to delays and relocations during the implementation of the Housing First model in Toronto, Ontario. While interruptions in housing tenure are expected en route to recovery and housing stability, consumer and service provider views on finding and keeping housing remain largely unknown. In-person interviews and focus groups were conducted with 48 study participants, including 23 case managers or housing workers and 25 consumers. The following three factors contributed to housing delays and transfers: (1) the effectiveness of communication and collaboration among consumers and service providers, (2) consumer-driven preferences and ambivalence, and (3) provider prioritization of consumer choice over immediate housing access. Two strategies--targeted communications and consumer engagement in housing searches--supported the housing process. Several factors affect the timing and stability of housing. Communication between and among providers and consumers, and a shared understanding of consumer choice, can further support choice and recovery.

  17. Hopf Bifurcation in a Cobweb Model with Discrete Time Delays

    Directory of Open Access Journals (Sweden)

    Luca Gori

    2014-01-01

    Full Text Available We develop a cobweb model with discrete time delays that characterise the length of production cycle. We assume a market comprised of homogeneous producers that operate as adapters by taking the (expected profit-maximising quantity as a target to adjust production and consumers with a marginal willingness to pay captured by an isoelastic demand. The dynamics of the economy is characterised by a one-dimensional delay differential equation. In this context, we show that (1 if the elasticity of market demand is sufficiently high, the steady-state equilibrium is locally asymptotically stable and (2 if the elasticity of market demand is sufficiently low, quasiperiodic oscillations emerge when the time lag (that represents the length of production cycle is high enough.

  18. Airport Flight Departure Delay Model on Improved BN Structure Learning

    Science.gov (United States)

    Cao, Weidong; Fang, Xiangnong

    An high score prior genetic simulated annealing Bayesian network structure learning algorithm (HSPGSA) by combining genetic algorithm(GA) with simulated annealing algorithm(SAA) is developed. The new algorithm provides not only with strong global search capability of GA, but also with strong local hill climb search capability of SAA. The structure with the highest score is prior selected. In the mean time, structures with lower score are also could be choice. It can avoid efficiently prematurity problem by higher score individual wrong direct growing population. Algorithm is applied to flight departure delays analysis in a large hub airport. Based on the flight data a BN model is created. Experiments show that parameters learning can reflect departure delay.

  19. Hopf bifurcation of a free boundary problem modeling tumor growth with two time delays

    International Nuclear Information System (INIS)

    Xu Shihe

    2009-01-01

    In this paper, a free boundary problem modeling tumor growth with two discrete delays is studied. The delays respectively represents the time taken for cells to undergo mitosis and the time taken for the cell to modify the rate of cell loss due to apoptosis. We show the influence of time delays on the Hopf bifurcation when one of delays as a bifurcation parameter.

  20. Assessment of tropospheric delay mapping function models in Egypt: Using PTD database model

    Science.gov (United States)

    Abdelfatah, M. A.; Mousa, Ashraf E.; El-Fiky, Gamal S.

    2018-06-01

    For space geodetic measurements, estimates of tropospheric delays are highly correlated with site coordinates and receiver clock biases. Thus, it is important to use the most accurate models for the tropospheric delay to reduce errors in the estimates of the other parameters. Both the zenith delay value and mapping function should be assigned correctly to reduce such errors. Several mapping function models can treat the troposphere slant delay. The recent models were not evaluated for the Egyptian local climate conditions. An assessment of these models is needed to choose the most suitable one. The goal of this paper is to test the quality of global mapping function which provides high consistency with precise troposphere delay (PTD) mapping functions. The PTD model is derived from radiosonde data using ray tracing, which consider in this paper as true value. The PTD mapping functions were compared, with three recent total mapping functions model and another three separate dry and wet mapping function model. The results of the research indicate that models are very close up to zenith angle 80°. Saastamoinen and 1/cos z model are behind accuracy. Niell model is better than VMF model. The model of Black and Eisner is a good model. The results also indicate that the geometric range error has insignificant effect on slant delay and the fluctuation of azimuth anti-symmetric is about 1%.

  1. Computing the stresses and deformations of the human eye components due to a high explosive detonation using fluid-structure interaction model.

    Science.gov (United States)

    Karimi, Alireza; Razaghi, Reza; Navidbakhsh, Mahdi; Sera, Toshihiro; Kudo, Susumu

    2016-05-01

    In spite the fact that a very small human body surface area is comprised by the eye, its wounds due to detonation have recently been dramatically amplified. Although many efforts have been devoted to measure injury of the globe, there is still a lack of knowledge on the injury mechanism due to Primary Blast Wave (PBW). The goal of this study was to determine the stresses and deformations of the human eye components, including the cornea, aqueous, iris, ciliary body, lens, vitreous, retina, sclera, optic nerve, and muscles, attributed to PBW induced by trinitrotoluene (TNT) explosion via a Lagrangian-Eulerian computational coupling model. Magnetic Resonance Imaging (MRI) was employed to establish a Finite Element (FE) model of the human eye according to a normal human eye. The solid components of the eye were modelled as Lagrangian mesh, while an explosive TNT, air domain, and aqueous were modelled using Arbitrary Lagrangian-Eulerian (ALE) mesh. Nonlinear dynamic FE simulations were accomplished using the explicit FE code, namely LS-DYNA. In order to simulate the blast wave generation, propagation, and interaction with the eye, the ALE formulation with Jones-Wilkins-Lee (JWL) equation defining the explosive material were employed. The results revealed a peak stress of 135.70kPa brought about by detonation upsurge on the cornea at the distance of 25cm. The highest von Mises stresses were observed on the sclera (267.3kPa), whereas the lowest one was seen on the vitreous body (0.002kPa). The results also showed a relatively high resultant displacement for the macula as well as a high variation for the radius of curvature for the cornea and lens, which can result in both macular holes, optic nerve damage and, consequently, vision loss. These results may have implications not only for understanding the value of stresses and strains in the human eye components but also giving an outlook about the process of PBW triggers damage to the eye. Copyright © 2016 Elsevier Ltd

  2. Modelling biochemical networks with intrinsic time delays: a hybrid semi-parametric approach

    Directory of Open Access Journals (Sweden)

    Oliveira Rui

    2010-09-01

    Full Text Available Abstract Background This paper presents a method for modelling dynamical biochemical networks with intrinsic time delays. Since the fundamental mechanisms leading to such delays are many times unknown, non conventional modelling approaches become necessary. Herein, a hybrid semi-parametric identification methodology is proposed in which discrete time series are incorporated into fundamental material balance models. This integration results in hybrid delay differential equations which can be applied to identify unknown cellular dynamics. Results The proposed hybrid modelling methodology was evaluated using two case studies. The first of these deals with dynamic modelling of transcriptional factor A in mammalian cells. The protein transport from the cytosol to the nucleus introduced a delay that was accounted for by discrete time series formulation. The second case study focused on a simple network with distributed time delays that demonstrated that the discrete time delay formalism has broad applicability to both discrete and distributed delay problems. Conclusions Significantly better prediction qualities of the novel hybrid model were obtained when compared to dynamical structures without time delays, being the more distinctive the more significant the underlying system delay is. The identification of the system delays by studies of different discrete modelling delays was enabled by the proposed structure. Further, it was shown that the hybrid discrete delay methodology is not limited to discrete delay systems. The proposed method is a powerful tool to identify time delays in ill-defined biochemical networks.

  3. Measuring and Modelling Delays in Robot Manipulators for Temporally Precise Control using Machine Learning

    DEFF Research Database (Denmark)

    Andersen, Thomas Timm; Amor, Heni Ben; Andersen, Nils Axel

    2015-01-01

    and separate. In this paper, we present a data-driven methodology for separating and modelling inherent delays during robot control. We show how both actuation and response delays can be modelled using modern machine learning methods. The resulting models can be used to predict the delays as well...

  4. Detonation in supersonic radial outflow

    KAUST Repository

    Kasimov, Aslan R.

    2014-11-07

    We report on the structure and dynamics of gaseous detonation stabilized in a supersonic flow emanating radially from a central source. The steady-state solutions are computed and their range of existence is investigated. Two-dimensional simulations are carried out in order to explore the stability of the steady-state solutions. It is found that both collapsing and expanding two-dimensional cellular detonations exist. The latter can be stabilized by putting several rigid obstacles in the flow downstream of the steady-state sonic locus. The problem of initiation of standing detonation stabilized in the radial flow is also investigated numerically. © 2014 Cambridge University Press.

  5. Relaxation Cycles in a Generalized Neuron Model with Two Delays

    Directory of Open Access Journals (Sweden)

    S. D. Glyzin

    2013-01-01

    Full Text Available A method of modeling the phenomenon of bursting behavior in neural systems based on delay equations is proposed. A singularly perturbed scalar nonlinear differentialdifference equation of Volterra type is a mathematical model of a neuron and a separate pulse containing one function without delay and two functions with different lags. It is established that this equation, for a suitable choice of parameters, has a stable periodic motion with any preassigned number of bursts in the time interval of the period length. To prove this assertion we first go to a relay-type equation and then determine the asymptotic solutions of a singularly perturbed equation. On the basis of this asymptotics the Poincare operator is constructed. The resulting operator carries a closed bounded convex set of initial conditions into itself, which suggests that it has at least one fixed point. The Frechet derivative evaluation of the succession operator, made in the paper, allows us to prove the uniqueness and stability of the resulting relax of the periodic solution.

  6. Mathematical model of tuberculosis epidemic with recovery time delay

    Science.gov (United States)

    Iskandar, Taufiq; Chaniago, Natasya Ayuningtia; Munzir, Said; Halfiani, Vera; Ramli, Marwan

    2017-12-01

    Tuberculosis (TB) is a contagious disease which can cause death. The disease is caused by Mycobacterium Tuberculosis which generally affects lungs and other organs such as lymph gland, intestine, kidneys, uterus, bone, and brain. The spread of TB occurs through the bacteria-contaminated air which is inhaled into the lungs. The symptoms of the TB patients are cough, chest pain, shortness of breath, appetite lose, weight lose, fever, cold, and fatigue. World Health Organization (WHO) reported that Indonesia placed the second in term of the most TB cases after India which has 23 % cases while China is reported to have 10 % cases in global. TB has become one of the greatest death threats in global. One way to countermeasure TB disease is by administering vaccination. However, a medication is needed when one has already infected. The medication can generally take 6 months of time which consists of two phases, inpatient and outpatient. Mathematical models to analyze the spread of TB have been widely developed. One of them is the SEIR type model. In this model the population is divided into four groups, which are suspectible (S), exposed (S), infected (I), recovered (R). In fact, a TB patient needs to undergo medication with a period of time in order to recover. This article discusses a model of TB spread with considering the term of recovery (time delay). The model is developed in SIR type where the population is divided into three groups, suspectible (S), infected (I), and recovered (R). Here, the vaccine is given to the susceptible group and the time delay is considered in the group undergoing the medication.

  7. Effects of injection nozzle exit width on rotating detonation engine

    Science.gov (United States)

    Sun, Jian; Zhou, Jin; Liu, Shijie; Lin, Zhiyong; Cai, Jianhua

    2017-11-01

    A series of numerical simulations of RDE modeling real injection nozzles with different exit widths are performed in this paper. The effects of nozzle exit width on chamber inlet state, plenum flowfield and detonation propagation are analyzed. The results are compared with that using an ideal injection model. Although the ideal injection model is a good approximation method to model RDE inlet, the two-dimensional effects of real nozzles are ignored in the ideal injection model so that some complicated phenomena such as the reflected waves caused by the nozzle walls and the reversed flow into the nozzles can not be modeled accurately. Additionally, the ideal injection model overpredicts the block ratio. In all the cases that stabilize at one-wave mode, the block ratio increases as the nozzle exit width gets smaller. The dual-wave mode case also has a relatively high block ratio. A pressure oscillation in the plenum with the same main frequency with the rotating detonation wave is observed. A parameter σ is applied to describe the non-uniformity in the plenum. σ increases as the nozzle exit width gets larger. Under some condition, the heat release on the interface of fresh premixed gas layer and detonation products can be strong enough to induce a new detonation wave. A spontaneous mode-transition process is observed for the smallest exit width case. Due to the detonation products existing in the premixed gas layer before the detonation wave, the detonation wave will propagate through reactants and products alternately, and therefore its strength will vary with time, especially near the chamber inlet. This tendency gets weaker as the injection nozzle exit width increases.

  8. A dynamic P53-MDM2 model with time delay

    Energy Technology Data Exchange (ETDEWEB)

    Mihalas, Gh.I. [Department of Biophysics and Medical Informatics, University of Medicine and Pharmacy, Piata Eftimie Murgu, nr. 3, 300041 Timisoara (Romania)]. E-mail: mihalas@medinfo.umft.ro; Neamtu, M. [Department of Forecasting, Economic Analysis, Mathematics and Statistics, West University of Timisoara, Str. Pestalozzi, nr. 14A, 300115 Timisoara (Romania)]. E-mail: mihaela.neamtu@fse.uvt.ro; Opris, D. [Department of Applied Mathematics, West University of Timisoara, Bd. V. Parvan, nr. 4, 300223 Timisoara (Romania)]. E-mail: opris@math.uvt.ro; Horhat, R.F. [Department of Biophysics and Medical Informatics, University of Medicine and Pharmacy, Piata Eftimie Murgu, nr. 3, 300041 Timisoara (Romania)]. E-mail: rhorhat@yahoo.com

    2006-11-15

    Specific activator and repressor transcription factors which bind to specific regulator DNA sequences, play an important role in gene activity control. Interactions between genes coding such transcription factors should explain the different stable or sometimes oscillatory gene activities characteristic for different tissues. Starting with the model P53-MDM2 described into [Mihalas GI, Simon Z, Balea G, Popa E. Possible oscillatory behaviour in P53-MDM2 interaction computer simulation. J Biol Syst 2000;8(1):21-9] and the process described into [Kohn KW, Pommier Y. Molecular interaction map of P53 and MDM2 logic elements, which control the off-on switch of P53 in response to DNA damage. Biochem Biophys Res Commun 2005;331:816-27] we enveloped a new model of this interaction. Choosing the delay as a bifurcation parameter we study the direction and stability of the bifurcating periodic solutions. Some numerical examples are finally given for justifying the theoretical results.

  9. Delayed hydride cracking: theoretical model testing to predict cracking velocity

    International Nuclear Information System (INIS)

    Mieza, Juan I.; Vigna, Gustavo L.; Domizzi, Gladys

    2009-01-01

    Pressure tubes from Candu nuclear reactors as any other component manufactured with Zr alloys are prone to delayed hydride cracking. That is why it is important to be able to predict the cracking velocity during the component lifetime from parameters easy to be measured, such as: hydrogen concentration, mechanical and microstructural properties. Two of the theoretical models reported in literature to calculate the DHC velocity were chosen and combined, and using the appropriate variables allowed a comparison with experimental results of samples from Zr-2.5 Nb tubes with different mechanical and structural properties. In addition, velocities measured by other authors in irradiated materials could be reproduced using the model described above. (author)

  10. A dynamic P53-MDM2 model with time delay

    International Nuclear Information System (INIS)

    Mihalas, Gh.I.; Neamtu, M.; Opris, D.; Horhat, R.F.

    2006-01-01

    Specific activator and repressor transcription factors which bind to specific regulator DNA sequences, play an important role in gene activity control. Interactions between genes coding such transcription factors should explain the different stable or sometimes oscillatory gene activities characteristic for different tissues. Starting with the model P53-MDM2 described into [Mihalas GI, Simon Z, Balea G, Popa E. Possible oscillatory behaviour in P53-MDM2 interaction computer simulation. J Biol Syst 2000;8(1):21-9] and the process described into [Kohn KW, Pommier Y. Molecular interaction map of P53 and MDM2 logic elements, which control the off-on switch of P53 in response to DNA damage. Biochem Biophys Res Commun 2005;331:816-27] we enveloped a new model of this interaction. Choosing the delay as a bifurcation parameter we study the direction and stability of the bifurcating periodic solutions. Some numerical examples are finally given for justifying the theoretical results

  11. On avian influenza epidemic models with time delay.

    Science.gov (United States)

    Liu, Sanhong; Ruan, Shigui; Zhang, Xinan

    2015-12-01

    After the outbreak of the first avian influenza A virus (H5N1) in Hong Kong in 1997, another avian influenza A virus (H7N9) crossed the species barrier in mainland China in 2013 and 2014 and caused more than 400 human cases with a death rate of nearly 40%. In this paper, we take account of the incubation periods of avian influenza A virus and construct a bird-to-human transmission model with different time delays in the avian and human populations combining the survival probability of the infective avian and human populations at the latent time. By analyzing the dynamical behavior of the model, we obtain a threshold value for the prevalence of avian influenza and investigate local and global asymptotical stability of equilibria of the system.

  12. Study on the detonation properties of explosives in bore hole and precise controlled blasting; Happa konai no bakuyaku no bakugosei to seimitsu seigyo happa ni kansuru kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-10-08

    In order to perform efficient and safe controlled blasting, attaining sufficient detonation from explosive is important. Therefore, a mechanism of detonation in a bore hole was studied. Two detonation phenomenon measuring methods were established: one is a continuous detonation speed measuring method by using a resistance wire probe, and another is a detonation mark observing and evaluating method using aluminum and metallic lead plates. Assuming delay blastings in multiple bore holes used practically, discussions were given on detonation phenomena of explosives under pressurized condition. Under dynamic pressure condition, size of the pressurization and delay time of the detonations affected largely the detonation. Discussions were given on blasting effect and safety according to difference in forward initiation and reverse initiation. The reverse initiation method was verified to have excellent blasting effect, maintain good face conditions, and assure safety against inflammable gases. A precision initiation method was developed, which can control the initiation time of a detonator more precisely. The initiation accuracy is more than 1000 times greater than the ordinary instantaneously detonating electric detonator. The precision control of the initiation time proved to develop greater crack propagation. Vibration and stone scattering were also controlled. This paper also describes application of the method to a rock elastic wave exploration technique. 136 refs., 99 figs., 13 tabs.

  13. Detonation in supersonic radial outflow

    KAUST Repository

    Kasimov, Aslan R.; Korneev, Svyatoslav

    2014-01-01

    We report on the structure and dynamics of gaseous detonation stabilized in a supersonic flow emanating radially from a central source. The steady-state solutions are computed and their range of existence is investigated. Two-dimensional simulations

  14. Fundamental Structure of High-Speed Reacting Flows: Supersonic Combustion and Detonation

    Science.gov (United States)

    2016-04-30

    interim, memorandum, master’s thesis , progress, quarterly, research, special, group study, etc. 3. DATES COVERED. Indicate the time during which the...liquid rocket engines, studied the concept of rotating detonation rocket engine in both gaseous and two-phase propellants . Recently, there have been...detonation waves. 4.2 Experimental Setup The linear model detonation engine (LDME) serves as an “unwrapped” RDE test bed, shown in Fig. 4.1. Design

  15. Escalation and propagation of thermal detonation in the corium-water systems

    International Nuclear Information System (INIS)

    Melikhov, O.I.; Melikhov, V.I.; Sokolin, A.V.

    2001-01-01

    The thermal detonation taking into account micro-interaction processes model has been applied to study thermal detonation wave escalation and propagation in the corium-water mixture. Transient escalation stage and subsequent steady-state propagation stage of the thermal detonation have been calculated. The essential decrease of the escalation length in comparison with the previous results calculated without micro-interaction concept has been obtained. (authors)

  16. A dynamic IS-LM model with delayed taxation revenues

    International Nuclear Information System (INIS)

    De Cesare, Luigi; Sportelli, Mario

    2005-01-01

    Some recent contributions to Economic Dynamics have shown a new interest for delay differential equations. In line with these approaches, we re-proposed the problem of the existence of a finite lag between the accrual and the payment of taxes in a framework where never this type of lag has been considered: the well known IS-LM model. The qualitative study of the system of functional (delay) differential equations shows that the finite lag may give rise to a wide variety of dynamic behaviours. Specifically, varying the length of the lag and applying the 'stability switch criteria', we prove that the equilibrium point may lose or gain its local stability, so that a sequence of alternated stability/instability regions can be observed if some conditions hold. An important scenario arising from the analysis is the existence of limit cycles generated by sub-critical and supercritical Hopf bifurcations. As numerical simulations confirm, if multiple cycles exist, the so called 'crater bifurcation' can also be detected. Economic considerations about a stylized policy analysis stand by qualitative and numerical results in the paper

  17. Modeling Directional Selectivity Using Self-Organizing Delay-Aadaptation Maps

    OpenAIRE

    Tversky, Mr. Tal; Miikkulainen, Dr. Risto

    2002-01-01

    Using a delay adaptation learning rule, we model the activity-dependent development of directionally selective cells in the primary visual cortex. Based on input stimuli, a learning rule shifts delays to create synchronous arrival of spikes at cortical cells. As a result, delays become tuned creating a smooth cortical map of direction selectivity. This result demonstrates how delay adaption can serve as a powerful abstraction for modeling temporal learning in the brain.

  18. Novel uses of detonator diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Gibson, John R. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Wilde, Zakary Robert [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Tasker, Douglas George [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Francois, Elizabeth Green [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Nakamoto, Teagan Kanakanui Junichi [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Smith, Dalton Kay [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Trujillo, Christopher J. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-09-15

    A novel combination of diagnostics is being used to research the physics of detonator initiation. The explosive PETN (Pentaerythritol tetranitrate) commonly used in detonators, is also a piezo-electric material that, when sufficiently shocked, emits an electromagnetic field in the radio frequency (RF) range, along crystal fracture planes. In an effort to capture this RF signal, a new diagnostic was created. A copper foil, used as an RF antenna, was wrapped around a foam fixture encompassing a PETN pellet. Rogowski coils were used to obtain the change in current with respect to time (di/dt) the detonator circuit, in and polyvinylidene difluoride (PVDF) stress sensors were used to capture shockwave arrival time. The goal of these experiments is to use these diagnostics to study the reaction response of a PETN pellet of known particle size to shock loading with various diagnostics including an antenna to capture RF emissions. Our hypothesis is that RF feedback may signify the rate of deflagration to detonation transition (DDT) or lack thereof. The new diagnostics and methods will be used to determine the timing of start of current, bridge burst, detonator breakout timing and RF generated from detonation. These data will be compared to those of currently used diagnostics in order to validate the accuracy of these new methods. Future experiments will incorporate other methods of validation including dynamic radiography, optical initiation and use of magnetic field sensors.

  19. Light-initiated detonation systems

    Science.gov (United States)

    Cooper, Stafford S.; Malone, Philip G.; Bartholomew, Stephen W.; Necker, William J.

    1986-09-01

    Numerous light sources could be employed in detonation systems, but lasers have the most efficient coupling to optical fibers and can generate energetic light pulses required for detonation. Flash lamp-pumped, solid state lasers are presently the most useful light source for explosive initiation. Laser diodes in current production cannot generate enough energy for practical applications. The most useful optical fiber for blast line application is a step index fiber with a large core-to-cladding ratio. The large core minimizes energy losses due to misalignment core of fibers in connectors. Couplers that involve mechanically crimped connectors and cleaved fibers, rather than the epoxy-cemented connectors with polished fibers, provide superior energy transmission due to the reduced carbonization at the fiber end. Detonators for optical initiation systems are similar in basic construction to those employed in electrical initiation systems. Explosive and pyrotechnic charges can also be similar. Either primary or secondary explosives can be initiated in present laser-based systems. Two laser detonation systems are presently accessible; a multiple-shot laser with a single-shot, single fiber system designed for use with detonators containing primary explosives. Additional research related to development of low-energy, photoreactive detonators, continuity checking techniques and improved connectors and fibers can produce significant improvements in presently fielded systems.

  20. The role of multidimensional instabilities in direct initiation of gaseous detonations in free space

    KAUST Repository

    Shen, Hua

    2017-01-20

    We numerically investigate the direct initiation of detonations driven by the propagation of a blast wave into a unconfined gaseous combustible mixture to study the role played by multidimensional instabilities in direct initiation of stable and unstable detonations. To this end, we first model the dynamics of unsteady propagation of detonation using the one-dimensional compressible Euler equations with a one-step chemical reaction model and cylindrical geometrical source terms. Subsequently, we use two-dimensional compressible Euler equations with just the chemical reaction source term to directly model cylindrical detonations. The one-dimensional results suggest that there are three regimes in the direct initiation for stable detonations, that the critical energy for mildly unstable detonations is not unique, and that highly unstable detonations are not self-sustainable. These phenomena agree well with one-dimensional theories and computations available in the literature. However, our two-dimensional results indicate that one-dimensional approaches are valid only for stable detonations. In mildly and highly unstable detonations, one-dimensional approaches break down because they cannot take the effects and interactions of multidimensional instabilities into account. In fact, instabilities generated in multidimensional settings yield the formation of strong transverse waves that, on one hand, increase the risk of failure of the detonation and, on the other hand, lead to the initiation of local over-driven detonations that enhance the overall self-sustainability of the global process. The competition between these two possible outcomes plays an important role in the direct initiation of detonations.

  1. On the deflagration-to-detonation transition (DDT) process with added energetic solid particles for pulse detonation engines (PDE)

    Science.gov (United States)

    Nguyen, V. B.; Li, J.; Chang, P.-H.; Phan, Q. T.; Teo, C. J.; Khoo, B. C.

    2018-01-01

    In this paper, numerical simulations are performed to study the dynamics of the deflagration-to-detonation transition (DDT) in pulse detonation engines (PDE) using energetic aluminum particles. The DDT process and detonation wave propagation toward the unburnt hydrogen/air mixture containing solid aluminum particles is numerically studied using the Eulerian-Lagrangian approach. A hybrid numerical methodology combined with appropriate sub-models is used to capture the gas dynamic characteristics, particle behavior, combustion characteristics, and two-way solid-particle-gas flow interactions. In our approach, the gas mixture is expressed in the Eulerian frame of reference, while the solid aluminum particles are tracked in the Lagrangian frame of reference. The implemented computer code is validated using published benchmark problems. The obtained results show that the aluminum particles not only shorten the DDT length but also reduce the DDT time. The improvement of DDT is primarily attributed to the heat released from surface chemical reactions on the aluminum particles. The temperatures associated with the DDT process are greater than the case of non-reacting particles added, with an accompanying rise in the pressure. For an appropriate range of particle volume fraction, particularly in this study, the higher volume fraction of the micro-aluminum particles added in the detonation chamber can lead to more heat energy released and more local instabilities in the combustion process (caused by the local high temperature), thereby resulting in a faster DDT process. In essence, the aluminum particles contribute to the DDT process of successfully transitioning to detonation waves for (failure) cases in which the fuel gas mixture can be either too lean or too rich. With a better understanding of the influence of added aluminum particles on the dynamics of the DDT and detonation process, we can apply it to modify the geometry of the detonation chamber (e.g., the length of

  2. A delay differential equation model of follicle waves in women.

    Science.gov (United States)

    Panza, Nicole M; Wright, Andrew A; Selgrade, James F

    2016-01-01

    This article presents a mathematical model for hormonal regulation of the menstrual cycle which predicts the occurrence of follicle waves in normally cycling women. Several follicles of ovulatory size that develop sequentially during one menstrual cycle are referred to as follicle waves. The model consists of 13 nonlinear, delay differential equations with 51 parameters. Model simulations exhibit a unique stable periodic cycle and this menstrual cycle accurately approximates blood levels of ovarian and pituitary hormones found in the biological literature. Numerical experiments illustrate that the number of follicle waves corresponds to the number of rises in pituitary follicle stimulating hormone. Modifications of the model equations result in simulations which predict the possibility of two ovulations at different times during the same menstrual cycle and, hence, the occurrence of dizygotic twins via a phenomenon referred to as superfecundation. Sensitive parameters are identified and bifurcations in model behaviour with respect to parameter changes are discussed. Studying follicle waves may be helpful for improving female fertility and for understanding some aspects of female reproductive ageing.

  3. The development and testing of pulsed detonation engine ground demonstrators

    Science.gov (United States)

    Panicker, Philip Koshy

    2008-10-01

    on a 25 mm i.d. PDE. The dual-stage PDE was run at both 1 Hz and 10 Hz using solenoid valves. The two types of valves have their drawbacks and advantages which are discussed, along with ways to enhance their functionality. Rotary valves with stepper motor drives are recommended to be used for air flow control, while an array of solenoid injectors may be used for liquid or gaseous fuel injection. Various DDT enhancing devices were tested, including Shchelkin spirals (with varying thicknesses, lengths and pitches), grooved sleeves and converging-diverging nozzles. The Shchelkin spirals are found to be the most effective of all, at blockage ratios in the region of 50 to 55%. To improve the durability of Shchelkin spirals, it is recommended that they be grooved into the inside of tubes or inserted as replaceable sleeves. Orifice plates with high blockage ratios, in the region of 50 to 80%, are also recommended due to their simple and rugged design. All these devices along with the PDE combustor will require a strong cooling system to prevent damage from the extreme detonation temperatures. High energy (HE) and low energy (LE) ignition systems were tested and compared along with various designs of igniters and automotive spark plugs. It is concluded that while HE ignition may help unsensitized fuel-air mixtures to achieve detonations faster than LE systems, the former have severe drawbacks. The HE igniters get damaged quickly, and require large and heavy power supplies. While the HE ignition is able to reduce ignition delay in a propane-oxygen pre-detonator, it did not show a significant improvement in bringing about DDT in the main combustor using propane-air mixtures. The compact pre-detonator design with a gradual area change transitioning to a larger combustor is found to be effective for detonation initiation, but the pre-detonator concept is recommended for high-speed applications only, since higher speeds requires more sensitive, easily detonable fuels that have

  4. An approach to normal forms of Kuramoto model with distributed delays and the effect of minimal delay

    Energy Technology Data Exchange (ETDEWEB)

    Niu, Ben, E-mail: niubenhit@163.com [Department of Mathematics, Harbin Institute of Technology, Weihai 264209 (China); Guo, Yuxiao [Department of Mathematics, Harbin Institute of Technology, Weihai 264209 (China); Jiang, Weihua [Department of Mathematics, Harbin Institute of Technology, Harbin 150001 (China)

    2015-09-25

    Heterogeneous delays with positive lower bound (gap) are taken into consideration in Kuramoto model. On the Ott–Antonsen's manifold, the dynamical transitional behavior from incoherence to coherence is mediated by Hopf bifurcation. We establish a perturbation technique on complex domain, by which universal normal forms, stability and criticality of the Hopf bifurcation are obtained. Theoretically, a hysteresis loop is found near the subcritically bifurcated coherent state. With respect to Gamma distributed delay with fixed mean and variance, we find that the large gap decreases Hopf bifurcation value, induces supercritical bifurcations, avoids the hysteresis loop and significantly increases in the number of coexisting coherent states. The effect of gap is finally interpreted from the viewpoint of excess kurtosis of Gamma distribution. - Highlights: • Heterogeneously delay-coupled Kuramoto model with minimal delay is considered. • Perturbation technique on complex domain is established for bifurcation analysis. • Hysteresis phenomenon is investigated in a theoretical way. • The effect of excess kurtosis of distributed delays is discussed.

  5. Probabilistic delay differential equation modeling of event-related potentials.

    Science.gov (United States)

    Ostwald, Dirk; Starke, Ludger

    2016-08-01

    "Dynamic causal models" (DCMs) are a promising approach in the analysis of functional neuroimaging data due to their biophysical interpretability and their consolidation of functional-segregative and functional-integrative propositions. In this theoretical note we are concerned with the DCM framework for electroencephalographically recorded event-related potentials (ERP-DCM). Intuitively, ERP-DCM combines deterministic dynamical neural mass models with dipole-based EEG forward models to describe the event-related scalp potential time-series over the entire electrode space. Since its inception, ERP-DCM has been successfully employed to capture the neural underpinnings of a wide range of neurocognitive phenomena. However, in spite of its empirical popularity, the technical literature on ERP-DCM remains somewhat patchy. A number of previous communications have detailed certain aspects of the approach, but no unified and coherent documentation exists. With this technical note, we aim to close this gap and to increase the technical accessibility of ERP-DCM. Specifically, this note makes the following novel contributions: firstly, we provide a unified and coherent review of the mathematical machinery of the latent and forward models constituting ERP-DCM by formulating the approach as a probabilistic latent delay differential equation model. Secondly, we emphasize the probabilistic nature of the model and its variational Bayesian inversion scheme by explicitly deriving the variational free energy function in terms of both the likelihood expectation and variance parameters. Thirdly, we detail and validate the estimation of the model with a special focus on the explicit form of the variational free energy function and introduce a conventional nonlinear optimization scheme for its maximization. Finally, we identify and discuss a number of computational issues which may be addressed in the future development of the approach. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Analysis of a delayed epidemic model with pulse vaccination

    International Nuclear Information System (INIS)

    Samanta, G.P.

    2014-01-01

    In this paper, we have considered a dynamical model of infectious disease that spread by asymptomatic carriers and symptomatically infectious individuals with varying total population size, saturation incidence rate and discrete time delay to become infectious. It is assumed that there is a time lag (τ) to account for the fact that an individual infected with bacteria or virus is not infectious until after some time after exposure. The probability that an individual remains in the latency period (exposed class) at least t time units before becoming infectious is given by a step function with value 1 for 0⩽t⩽τ and value zero for t>τ. The probability that an individual in the latency period has survived is given by e -μτ , where μ denotes the natural mortality rate in all epidemiological classes. Pulse vaccination is an effective and important strategy for the elimination of infectious diseases and so we have analyzed this model with pulse vaccination. We have defined two positive numbers R 1 and R 2 . It is proved that there exists an infection-free periodic solution which is globally attractive if R 1 <1 and the disease is permanent if R 2 >1. The important mathematical findings for the dynamical behaviour of the infectious disease model are also numerically verified using MATLAB. Finally epidemiological implications of our analytical findings are addressed critically

  7. Integrodifferential equations and delay models in population dynamics

    CERN Document Server

    Cushing, Jim M

    1977-01-01

    These notes are, for the most part, the result of a course I taught at the University of Arizona during the Spring of 1977. Their main purpose is to inves­ tigate the effect that delays (of Volterra integral type) have when placed in the differential models of mathematical ecology, as far as stability of equilibria and the nature of oscillations of species densities are concerned. A secondary pur­ pose of the course out of which they evolved was to give students an (at least elementary) introduction to some mathematical modeling in ecology as well as to some purely mathematical subjects, such as stability theory for integrodifferentia1 systems, bifurcation theory, and some simple topics in perturbation theory. The choice of topics of course reflects my personal interests; and while these notes were not meant to exhaust the topics covered, I think they and the list of refer­ ences come close to covering the literature to date, as far as integrodifferentia1 models in ecology are concerned. I would like to th...

  8. Bifurcation and stability of an improved time-delayed fluid flow model in internet congestion control

    International Nuclear Information System (INIS)

    Yu-Liang, Liu; Jie, Zhu; Xiao-Shu, Luo

    2009-01-01

    Based on the fluid flow time-delayed model proposed by Misra et al in internet congestion control, one modified time-delayed model is presented, where the influence of the communication delay on the router queue length is investigated in detail. The main advantage of the new model is that its stability domain is larger even without an extra controller. By linear stability analysis and numerical simulation, the effectiveness and feasibility of the novel model in internet congestion control are verified

  9. Bifurcation and stability of an improved time-delayed fluid flow model in internet congestion control

    Science.gov (United States)

    Liu, Yu-Liang; Zhu, Jie; Luo, Xiao-Shu

    2009-09-01

    Based on the fluid flow time-delayed model proposed by Misra et al in internet congestion control, one modified time-delayed model is presented, where the influence of the communication delay on the router queue length is investigated in detail. The main advantage of the new model is that its stability domain is larger even without an extra controller. By linear stability analysis and numerical simulation, the effectiveness and feasibility of the novel model in internet congestion control are verified.

  10. User Delay Cost Model and Facilities Maintenance Cost Model for a Terminal Control Area : Volume 1. Model Formulation and Demonstration

    Science.gov (United States)

    1978-05-01

    The User Delay Cost Model (UDCM) is a Monte Carlo computer simulation of essential aspects of Terminal Control Area (TCA) air traffic movements that would be affected by facility outages. The model can also evaluate delay effects due to other factors...

  11. Modelling the Probability Density Function of IPTV Traffic Packet Delay Variation

    Directory of Open Access Journals (Sweden)

    Michal Halas

    2012-01-01

    Full Text Available This article deals with modelling the Probability density function of IPTV traffic packet delay variation. The use of this modelling is in an efficient de-jitter buffer estimation. When an IP packet travels across a network, it experiences delay and its variation. This variation is caused by routing, queueing systems and other influences like the processing delay of the network nodes. When we try to separate these at least three types of delay variation, we need a way to measure these types separately. This work is aimed to the delay variation caused by queueing systems which has the main implications to the form of the Probability density function.

  12. Stability of cosmological detonation fronts

    Science.gov (United States)

    Mégevand, Ariel; Membiela, Federico Agustín

    2014-05-01

    The steady-state propagation of a phase-transition front is classified, according to hydrodynamics, as a deflagration or a detonation, depending on its velocity with respect to the fluid. These propagation modes are further divided into three types, namely, weak, Jouguet, and strong solutions, according to their disturbance of the fluid. However, some of these hydrodynamic modes will not be realized in a phase transition. One particular cause is the presence of instabilities. In this work we study the linear stability of weak detonations, which are generally believed to be stable. After discussing in detail the weak detonation solution, we consider small perturbations of the interface and the fluid configuration. When the balance between the driving and friction forces is taken into account, it turns out that there are actually two different kinds of weak detonations, which behave very differently as functions of the parameters. We show that the branch of stronger weak detonations are unstable, except very close to the Jouguet point, where our approach breaks down.

  13. Synthetic LISA: Simulating time delay interferometry in a model LISA

    International Nuclear Information System (INIS)

    Vallisneri, Michele

    2005-01-01

    We report on three numerical experiments on the implementation of Time-Delay Interferometry (TDI) for LISA, performed with Synthetic LISA, a C++/Python package that we developed to simulate the LISA science process at the level of scientific and technical requirements. Specifically, we study the laser-noise residuals left by first-generation TDI when the LISA armlengths have a realistic time dependence; we characterize the armlength-measurement accuracies that are needed to have effective laser-noise cancellation in both first- and second-generation TDI; and we estimate the quantization and telemetry bitdepth needed for the phase measurements. Synthetic LISA generates synthetic time series of the LISA fundamental noises, as filtered through all the TDI observables; it also provides a streamlined module to compute the TDI responses to gravitational waves according to a full model of TDI, including the motion of the LISA array and the temporal and directional dependence of the armlengths. We discuss the theoretical model that underlies the simulation, its implementation, and its use in future investigations on system-characterization and data-analysis prototyping for LISA

  14. Investigations on detonation shock dynamics and related topics. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Stewart, D.S. [Univ. of Illinois, Urbana, IL (United States). Dept. of Theoretical and Applied Mechanics

    1993-11-01

    This document is a final report that summarizes the research findings and research activities supported by the subcontract DOE-LANL-9-XG8-3931P-1 between the University of Illinois (D. S. Stewart Principal Investigator) and the University of California (Los Alamos National Laboratory, M-Division). The main focus of the work has been on investigations of Detonation Shock Dynamics. A second emphasis has been on modeling compaction of energetic materials and deflagration to detonation in those materials. The work has led to a number of extensions of the theory of Detonation Shock Dynamics (DSD) and its application as an engineering design method for high explosive systems. The work also enhanced the hydrocode capabilities of researchers in M-Division by modifications to CAVEAT, an existing Los Alamos hydrocode. Linear stability studies of detonation flows were carried out for the purpose of code verification. This work also broadened the existing theory for detonation. The work in this contract has led to the development of one-phase models for dynamic compaction of porous energetic materials and laid the groundwork for subsequent studies. Some work that modeled the discrete heterogeneous behavior of propellant beds was also performed. The contract supported the efforts of D. S. Stewart and a Postdoctoral student H. I. Lee at the University of Illinois.

  15. Pulse Detonation Physiochemical and Exhaust Relaxation Processes

    Science.gov (United States)

    2006-05-01

    based on total time to detonation and detonation percentage. Nomenclature A = Arrehenius Constant Ea = Activation Energy Ecrit = Critical...the precision uncertainties vary for each data point. Therefore, the total experimental uncertainty will vary by data point. A comprehensive bias

  16. An electronic implementation for Liao's chaotic delayed neuron model with non-monotonous activation function

    International Nuclear Information System (INIS)

    Duan Shukai; Liao Xiaofeng

    2007-01-01

    A new chaotic delayed neuron model with non-monotonously increasing transfer function, called as chaotic Liao's delayed neuron model, was recently reported and analyzed. An electronic implementation of this model is described in detail. At the same time, some methods in circuit design, especially for circuit with time delayed unit and non-monotonously increasing activation unit, are also considered carefully. We find that the dynamical behaviors of the designed circuits are closely similar to the results predicted by numerical experiments

  17. Delay induced stability switch, multitype bistability and chaos in an intraguild predation model.

    Science.gov (United States)

    Shu, Hongying; Hu, Xi; Wang, Lin; Watmough, James

    2015-12-01

    In many predator-prey models, delay has a destabilizing effect and induces oscillations; while in many competition models, delay does not induce oscillations. By analyzing a rather simple delayed intraguild predation model, which combines both the predator-prey relation and competition, we show that delay in intraguild predation models promotes very complex dynamics. The delay can induce stability switches exhibiting a destabilizing role as well as a stabilizing role. It is shown that three types of bistability are possible: one stable equilibrium coexists with another stable equilibrium (node-node bistability); one stable equilibrium coexists with a stable periodic solution (node-cycle bistability); one stable periodic solution coexists with another stable periodic solution (cycle-cycle bistability). Numerical simulations suggest that delay can also induce chaos in intraguild predation models.

  18. Modeling delayed neutron monitoring systems for fast breeder reactors

    International Nuclear Information System (INIS)

    Bunch, W.L.; Tang, E.L.

    1983-10-01

    The purpose of the present work was to develop a general expression relating the count rate of a delayed neutron monitoring system to the introduction rate of fission fragments into the sodium coolant of a fast breeder reactor. Most fast breeder reactors include a system for detecting the presence of breached fuel that permits contact between the sodium coolant and the mixed oxide fuel. These systems monitor for the presence of fission fragments in the sodium that emit delayed neutrons. For operational reasons, the goal is to relate the count rate of the delayed neutron monitor to the condition of the breach in order that appropriate action might be taken

  19. Detonation Jet Engine. Part 1--Thermodynamic Cycle

    Science.gov (United States)

    Bulat, Pavel V.; Volkov, Konstantin N.

    2016-01-01

    We present the most relevant works on jet engine design that utilize thermodynamic cycle of detonative combustion. The efficiency advantages of thermodynamic detonative combustion cycle over Humphrey combustion cycle at constant volume and Brayton combustion cycle at constant pressure were demonstrated. An ideal Ficket-Jacobs detonation cycle, and…

  20. Local Stability of AIDS Epidemic Model Through Treatment and Vertical Transmission with Time Delay

    Science.gov (United States)

    Novi W, Cascarilla; Lestari, Dwi

    2016-02-01

    This study aims to explain stability of the spread of AIDS through treatment and vertical transmission model. Human with HIV need a time to positively suffer AIDS. The existence of a time, human with HIV until positively suffer AIDS can be delayed for a time so that the model acquired is the model with time delay. The model form is a nonlinear differential equation with time delay, SIPTA (susceptible-infected-pre AIDS-treatment-AIDS). Based on SIPTA model analysis results the disease free equilibrium point and the endemic equilibrium point. The disease free equilibrium point with and without time delay are local asymptotically stable if the basic reproduction number is less than one. The endemic equilibrium point will be local asymptotically stable if the time delay is less than the critical value of delay, unstable if the time delay is more than the critical value of delay, and bifurcation occurs if the time delay is equal to the critical value of delay.

  1. User Delay Cost Model and Facilities Maintenance Cost Model for a Terminal Control Area : Volume 2. User's Manual and Program Documentation for the User Delay Cost Model

    Science.gov (United States)

    1978-05-01

    The User Delay Cost Model (UDCM) is a Monte Carlo simulation of certain classes of movement of air traffic in the Boston Terminal Control Area (TCA). It incorporates a weather module, an aircraft generation module, a facilities module, and an air con...

  2. ORIGINAL ARTICLE Stability Analysis of Delayed Cournot Model in ...

    African Journals Online (AJOL)

    HP

    and Lyapunov method of nonlinear stability analysis are employed. It is ascertained ... and the rival player makes decision without delay, it leads to instability of the dynamic system at ... phenomena such as economic growth, prediction and ...

  3. Hopf Bifurcation and Delay-Induced Turing Instability in a Diffusive lac Operon Model

    Science.gov (United States)

    Cao, Xin; Song, Yongli; Zhang, Tonghua

    In this paper, we investigate the dynamics of a lac operon model with delayed feedback and diffusion effect. If the system is without delay or the delay is small, the positive equilibrium is stable so that there are no spatial patterns formed; while the time delay is large enough the equilibrium becomes unstable so that rich spatiotemporal dynamics may occur. We have found that time delay can not only incur temporal oscillations but also induce imbalance in space. With different initial values, the system may have different spatial patterns, for instance, spirals with one head, four heads, nine heads, and even microspirals.

  4. Rotary wave-ejector enhanced pulse detonation engine

    Science.gov (United States)

    Nalim, M. R.; Izzy, Z. A.; Akbari, P.

    2012-01-01

    The use of a non-steady ejector based on wave rotor technology is modeled for pulse detonation engine performance improvement and for compatibility with turbomachinery components in hybrid propulsion systems. The rotary wave ejector device integrates a pulse detonation process with an efficient momentum transfer process in specially shaped channels of a single wave-rotor component. In this paper, a quasi-one-dimensional numerical model is developed to help design the basic geometry and operating parameters of the device. The unsteady combustion and flow processes are simulated and compared with a baseline PDE without ejector enhancement. A preliminary performance assessment is presented for the wave ejector configuration, considering the effect of key geometric parameters, which are selected for high specific impulse. It is shown that the rotary wave ejector concept has significant potential for thrust augmentation relative to a basic pulse detonation engine.

  5. Pattern Formation in Predator-Prey Model with Delay and Cross Diffusion

    Directory of Open Access Journals (Sweden)

    Xinze Lian

    2013-01-01

    Full Text Available We consider the effect of time delay and cross diffusion on the dynamics of a modified Leslie-Gower predator-prey model incorporating a prey refuge. Based on the stability analysis, we demonstrate that delayed feedback may generate Hopf and Turing instability under some conditions, resulting in spatial patterns. One of the most interesting findings is that the model exhibits complex pattern replication: the model dynamics exhibits a delay and diffusion controlled formation growth not only to spots, stripes, and holes, but also to spiral pattern self-replication. The results indicate that time delay and cross diffusion play important roles in pattern formation.

  6. Toward a microscopic theory of detonations in energetic crystals

    International Nuclear Information System (INIS)

    Peyrard, M.; Odiot, S.

    1991-01-01

    Investigations of microscopic structure of detonation waves are useful for extending our basic understanding of the solid state. In a detonation wave, a crystal cell can be compressed to one-half of its equilibrium size. As a result, detonations probe regions of the atom-atom interaction potential curves that can hardly be investigated by any other means. In this paper the authors describe the first investigations of energetic materials after discussing briefly the molecular dynamics techniques themselves and presenting their application to shock waves in solids. We then focus on two particular topics in which molecular dynamics has brought new insights to the propagation of a detonation wave in a crystal, the role of the crystal structure, and the effects of the different steps in the chemistry. Section V presents a new approach that combines a model for the chemistry with standard molecular dynamics techniques, an approach that extends the domain of investigation of the numerical simulations and provides a step toward a microscopic theory of the propagation of a detonation wave. Section VI discusses the results and the future of these approaches

  7. Detonation of hydrogen-air mixtures

    International Nuclear Information System (INIS)

    Lee, J.H.S.; Knystautas, R.; Benedick, W.B.

    1983-01-01

    The detonation of a hydrogen-air cloud subsequent to an accidental release of hydrogen into ambient surroundings cannot be totally ruled out in view of the relative sensitivity of the hydrogen-air system. The present paper investigates the key parameters involved in hydrogen-air detonations and attempts to establish quantitative correlations between those that have important practical implications. Thus, for example, the characteristic length scale lambda describing the cellular structure of a detonation front is measured for a broad range of hydrogen-air mixtures and is quantitatively correlated with the key dynamic detonation properties such as detonability, transmission and initiation

  8. Reflection Patterns Generated by Condensed-Phase Oblique Detonation Interaction with a Rigid Wall

    Science.gov (United States)

    Short, Mark; Chiquete, Carlos; Bdzil, John; Meyer, Chad

    2017-11-01

    We examine numerically the wave reflection patterns generated by a detonation in a condensed phase explosive inclined obliquely but traveling parallel to a rigid wall as a function of incident angle. The problem is motivated by the characterization of detonation-material confiner interactions. We compare the reflection patterns for two detonation models, one where the reaction zone is spatially distributed, and the other where the reaction is instantaneous (a Chapman-Jouguet detonation). For the Chapman-Jouguet model, we compare the results of the computations with an asymptotic study recently conducted by Bdzil and Short for small detonation incident angles. We show that the ability of a spatially distributed reaction energy release to turn flow streamlines has a significant impact on the nature of the observed reflection patterns. The computational approach uses a shock-fit methodology.

  9. Environmentally Benign Stab Detonators

    Energy Technology Data Exchange (ETDEWEB)

    Gash, A E

    2006-07-07

    The coupling of energetic metallic multilayers (a.k.a. flash metal) with energetic sol-gel synthesis and processing is an entirely new approach to forming energetic devices for several DoD and DOE needs. They are also practical and commercially viable manufacturing techniques. Improved occupational safety and health, performance, reliability, reproducibility, and environmentally acceptable processing can be achieved using these methodologies and materials. The development and fielding of this technology will enhance mission readiness and reduce the costs, environmental risks and the necessity of resolving environmental concerns related to maintaining military readiness while simultaneously enhancing safety and health. Without sacrificing current performance, we will formulate new impact initiated device (IID) compositions to replace materials from the current composition that pose significant environmental, health, and safety problems associated with functions such as synthesis, material receipt, storage, handling, processing into the composition, reaction products from testing, and safe disposal. To do this, we will advance the use of nanocomposite preparation via the use of multilayer flash metal and sol-gel technologies and apply it to new small IIDs. This work will also serve to demonstrate that these technologies and resultant materials are relevant and practical to a variety of energetic needs of DoD and DOE. The goal will be to produce an IID whose composition is acceptable by OSHA, EPA, the Clean Air Act, Clean Water Act, Resource Recovery Act, etc. standards, without sacrificing current performance. The development of environmentally benign stab detonators and igniters will result in the removal of hazardous and toxic components associated with their manufacturing, handling, and use. This will lead to improved worker safety during manufacturing as well as reduced exposure of Service personnel during their storage and or use in operations. The

  10. Mechanisms of detonation formation due to a temperature gradient

    Science.gov (United States)

    Kapila, A. K.; Schwendeman, D. W.; Quirk, J. J.; Hawa, T.

    2002-12-01

    Emergence of a detonation in a homogeneous, exothermically reacting medium can be deemed to occur in two phases. The first phase processes the medium so as to create conditions ripe for the onset of detonation. The actual events leading up to preconditioning may vary from one experiment to the next, but typically, at the end of this stage the medium is hot and in a state of nonuniformity. The second phase consists of the actual formation of the detonation wave via chemico-gasdynamic interactions. This paper considers an idealized medium with simple, rate-sensitive kinetics for which the preconditioned state is modelled as one with an initially prescribed linear gradient of temperature. Accurate and well-resolved numerical computations are carrried out to determine the mode of detonation formation as a function of the size of the initial gradient. For shallow gradients, the result is a decelerating supersonic reaction wave, a weak detonation, whose trajectory is dictated by the initial temperature profile, with only weak intervention from hydrodynamics. If the domain is long enough, or the gradient less shallow, the wave slows down to the Chapman-Jouguet speed and undergoes a swift transition to the ZND structure. For sharp gradients, gasdynamic nonlinearity plays a much stronger role. Now the path to detonation is through an accelerating pulse that runs ahead of the reaction wave and rearranges the induction-time distribution there to one that bears little resemblance to that corresponding to the initial temperature gradient. The pulse amplifies and steepens, transforming itself into a complex consisting of a lead shock, an induction zone, and a following fast deflagration. As the pulse advances, its three constituent entities attain progressively higher levels of mutual coherence, to emerge as a ZND detonation. For initial gradients that are intermediate in size, aspects of both the extreme scenarios appear in the path to detonation. The novel aspect of this study

  11. A Data-Driven Air Transportation Delay Propagation Model Using Epidemic Process Models

    Directory of Open Access Journals (Sweden)

    B. Baspinar

    2016-01-01

    Full Text Available In air transport network management, in addition to defining the performance behavior of the system’s components, identification of their interaction dynamics is a delicate issue in both strategic and tactical decision-making process so as to decide which elements of the system are “controlled” and how. This paper introduces a novel delay propagation model utilizing epidemic spreading process, which enables the definition of novel performance indicators and interaction rates of the elements of the air transportation network. In order to understand the behavior of the delay propagation over the network at different levels, we have constructed two different data-driven epidemic models approximating the dynamics of the system: (a flight-based epidemic model and (b airport-based epidemic model. The flight-based epidemic model utilizing SIS epidemic model focuses on the individual flights where each flight can be in susceptible or infected states. The airport-centric epidemic model, in addition to the flight-to-flight interactions, allows us to define the collective behavior of the airports, which are modeled as metapopulations. In network model construction, we have utilized historical flight-track data of Europe and performed analysis for certain days involving certain disturbances. Through this effort, we have validated the proposed delay propagation models under disruptive events.

  12. Turbulent deflagrations, autoignitions, and detonations

    KAUST Repository

    Bradley, Derek

    2012-09-01

    Measurements of turbulent burning velocities in fan-stirred explosion bombs show an initial linear increase with the fan speed and RMS turbulent velocity. The line then bends over to form a plateau of high values around the maximum attainable burning velocity. A further increase in fan speed leads to the eventual complete quenching of the flame due to increasing localised extinctions because of the flame stretch rate. The greater the Markstein number, the more readily does flame quenching occur. Flame propagation along a duct closed at one end, with and without baffles to increase the turbulence, is subjected to a one-dimensional analysis. The flame, initiated at the closed end of the long duct, accelerates by the turbulent feedback mechanism, creating a shock wave ahead of it, until the maximum turbulent burning velocity for the mixture is attained. With the confining walls, the mixture is compressed between the flame and the shock plane up to the point where it might autoignite. This can be followed by a deflagration to detonation transition. The maximum shock intensity occurs with the maximum attainable turbulent burning velocity, and this defines the limit for autoignition of the mixture. For more reactive mixtures, autoignition can occur at turbulent burning velocities that are less than the maximum attainable one. Autoignition can be followed by quasi-detonation or fully developed detonation. The stability of ensuing detonations is discussed, along with the conditions that may lead to their extinction. © 2012 by Pleiades Publishing, Ltd.

  13. Airbreathing Pulse Detonation Engine Performance

    Science.gov (United States)

    Povinelli, Louis A.; Yungster, Shaye

    2002-01-01

    This paper presents performance results for pulse detonation engines (PDE) taking into account the effects of dissociation and recombination. The amount of sensible heat recovered through recombination in the PDE chamber and exhaust process was found to be significant. These results have an impact on the specific thrust, impulse and fuel consumption of the PDE.

  14. A cash flow oriented EOQ model under permissible delay in payments

    African Journals Online (AJOL)

    A cash flow oriented EOQ model under permissible delay in payments. RP Tripathi, SS Misra, HS Shukla. Abstract. This study presents an inventory model to determine an optimal ordering policy for non-deteriorating items and timedependent demand rate with delay in payments permitted by the supplier under inflation and ...

  15. Model-predictive control based on Takagi-Sugeno fuzzy model for electrical vehicles delayed model

    DEFF Research Database (Denmark)

    Khooban, Mohammad-Hassan; Vafamand, Navid; Niknam, Taher

    2017-01-01

    Electric vehicles (EVs) play a significant role in different applications, such as commuter vehicles and short distance transport applications. This study presents a new structure of model-predictive control based on the Takagi-Sugeno fuzzy model, linear matrix inequalities, and a non......-quadratic Lyapunov function for the speed control of EVs including time-delay states and parameter uncertainty. Experimental data, using the Federal Test Procedure (FTP-75), is applied to test the performance and robustness of the suggested controller in the presence of time-varying parameters. Besides, a comparison...... is made between the results of the suggested robust strategy and those obtained from some of the most recent studies on the same topic, to assess the efficiency of the suggested controller. Finally, the experimental results based on a TMS320F28335 DSP are performed on a direct current motor. Simulation...

  16. Extracting the relevant delays in time series modelling

    DEFF Research Database (Denmark)

    Goutte, Cyril

    1997-01-01

    selection, and more precisely stepwise forward selection. The method is compared to other forward selection schemes, as well as to a nonparametric tests aimed at estimating the embedding dimension of time series. The final application extends these results to the efficient estimation of FIR filters on some......In this contribution, we suggest a convenient way to use generalisation error to extract the relevant delays from a time-varying process, i.e. the delays that lead to the best prediction performance. We design a generalisation-based algorithm that takes its inspiration from traditional variable...

  17. Mixed Modeling of a SAW Delay Line Using VHDL-AMS

    Science.gov (United States)

    Wilson, William C.; Atkinson, Gary M.

    2006-01-01

    To aid in the development of SAW sensors for aerospace applications we have created a model of a SAW Delay line using VHDL. The model implements the Impulse Response method to calculate the frequency response, impedance, and insertion loss. The model includes optimization for the number of finger pairs in the IDTs and for the aperture height. This paper presents the model and the results from the model for a SAW delay line design.

  18. Study on the Calculation Models of Bus Delay at Bays Using Queueing Theory and Markov Chain

    Directory of Open Access Journals (Sweden)

    Feng Sun

    2015-01-01

    Full Text Available Traffic congestion at bus bays has decreased the service efficiency of public transit seriously in China, so it is crucial to systematically study its theory and methods. However, the existing studies lack theoretical model on computing efficiency. Therefore, the calculation models of bus delay at bays are studied. Firstly, the process that buses are delayed at bays is analyzed, and it was found that the delay can be divided into entering delay and exiting delay. Secondly, the queueing models of bus bays are formed, and the equilibrium distribution functions are proposed by applying the embedded Markov chain to the traditional model of queuing theory in the steady state; then the calculation models of entering delay are derived at bays. Thirdly, the exiting delay is studied by using the queueing theory and the gap acceptance theory. Finally, the proposed models are validated using field-measured data, and then the influencing factors are discussed. With these models the delay is easily assessed knowing the characteristics of the dwell time distribution and traffic volume at the curb lane in different locations and different periods. It can provide basis for the efficiency evaluation of bus bays.

  19. Oscillatory dynamics of an intravenous glucose tolerance test model with delay interval

    Science.gov (United States)

    Shi, Xiangyun; Kuang, Yang; Makroglou, Athena; Mokshagundam, Sriprakash; Li, Jiaxu

    2017-11-01

    Type 2 diabetes mellitus (T2DM) has become prevalent pandemic disease in view of the modern life style. Both diabetic population and health expenses grow rapidly according to American Diabetes Association. Detecting the potential onset of T2DM is an essential focal point in the research of diabetes mellitus. The intravenous glucose tolerance test (IVGTT) is an effective protocol to determine the insulin sensitivity, glucose effectiveness, and pancreatic β-cell functionality, through the analysis and parameter estimation of a proper differential equation model. Delay differential equations have been used to study the complex physiological phenomena including the glucose and insulin regulations. In this paper, we propose a novel approach to model the time delay in IVGTT modeling. This novel approach uses two parameters to simulate not only both discrete time delay and distributed time delay in the past interval, but also the time delay distributed in a past sub-interval. Normally, larger time delay, either a discrete or a distributed delay, will destabilize the system. However, we find that time delay over a sub-interval might not. We present analytically some basic model properties, which are desirable biologically and mathematically. We show that this relatively simple model provides good fit to fluctuating patient data sets and reveals some intriguing dynamics. Moreover, our numerical simulation results indicate that our model may remove the defect in well known Minimal Model, which often overestimates the glucose effectiveness index.

  20. Periodic and chaotic oscillations in a tumor and immune system interaction model with three delays

    International Nuclear Information System (INIS)

    Bi, Ping; Ruan, Shigui; Zhang, Xinan

    2014-01-01

    In this paper, a tumor and immune system interaction model consisted of two differential equations with three time delays is considered in which the delays describe the proliferation of tumor cells, the process of effector cells growth stimulated by tumor cells, and the differentiation of immune effector cells, respectively. Conditions for the asymptotic stability of equilibria and existence of Hopf bifurcations are obtained by analyzing the roots of a second degree exponential polynomial characteristic equation with delay dependent coefficients. It is shown that the positive equilibrium is asymptotically stable if all three delays are less than their corresponding critical values and Hopf bifurcations occur if any one of these delays passes through its critical value. Numerical simulations are carried out to illustrate the rich dynamical behavior of the model with different delay values including the existence of regular and irregular long periodic oscillations

  1. Knock Prediction Using a Simple Model for Ignition Delay

    KAUST Repository

    Kalghatgi, Gautam; Morganti, Kai; Algunaibet, Ibrahim; Sarathy, Mani; Dibble, Robert W.

    2016-01-01

    An earlier paper has shown the ability to predict the phasing of knock onset in a gasoline PFI engine using a simple ignition delay equation for an appropriate surrogate fuel made up of toluene and PRF (TPRF). The applicability of this approach

  2. Stability and Hopf bifurcation in a delayed competitive web sites model

    International Nuclear Information System (INIS)

    Xiao Min; Cao Jinde

    2006-01-01

    The delayed differential equations modeling competitive web sites, based on the Lotka-Volterra competition equations, are considered. Firstly, the linear stability is investigated. It is found that there is a stability switch for time delay, and Hopf bifurcation occurs when time delay crosses through a critical value. Then the direction and stability of the bifurcated periodic solutions are determined, using the normal form theory and the center manifold reduction. Finally, some numerical simulations are carried out to illustrate the results found

  3. Neuronal model with distributed delay: analysis and simulation study for gamma distribution memory kernel.

    Science.gov (United States)

    Karmeshu; Gupta, Varun; Kadambari, K V

    2011-06-01

    A single neuronal model incorporating distributed delay (memory)is proposed. The stochastic model has been formulated as a Stochastic Integro-Differential Equation (SIDE) which results in the underlying process being non-Markovian. A detailed analysis of the model when the distributed delay kernel has exponential form (weak delay) has been carried out. The selection of exponential kernel has enabled the transformation of the non-Markovian model to a Markovian model in an extended state space. For the study of First Passage Time (FPT) with exponential delay kernel, the model has been transformed to a system of coupled Stochastic Differential Equations (SDEs) in two-dimensional state space. Simulation studies of the SDEs provide insight into the effect of weak delay kernel on the Inter-Spike Interval(ISI) distribution. A measure based on Jensen-Shannon divergence is proposed which can be used to make a choice between two competing models viz. distributed delay model vis-á-vis LIF model. An interesting feature of the model is that the behavior of (CV(t))((ISI)) (Coefficient of Variation) of the ISI distribution with respect to memory kernel time constant parameter η reveals that neuron can switch from a bursting state to non-bursting state as the noise intensity parameter changes. The membrane potential exhibits decaying auto-correlation structure with or without damped oscillatory behavior depending on the choice of parameters. This behavior is in agreement with empirically observed pattern of spike count in a fixed time window. The power spectral density derived from the auto-correlation function is found to exhibit single and double peaks. The model is also examined for the case of strong delay with memory kernel having the form of Gamma distribution. In contrast to fast decay of damped oscillations of the ISI distribution for the model with weak delay kernel, the decay of damped oscillations is found to be slower for the model with strong delay kernel.

  4. Influence of delayed neutron parameter calculation accuracy on results of modeled WWER scram experiments

    International Nuclear Information System (INIS)

    Artemov, V.G.; Gusev, V.I.; Zinatullin, R.E.; Karpov, A.S.

    2007-01-01

    Using modeled WWER cram rod drop experiments, performed at the Rostov NPP, as an example, the influence of delayed neutron parameters on the modeling results was investigated. The delayed neutron parameter values were taken from both domestic and foreign nuclear databases. Numerical modeling was carried out on the basis of SAPFIR 9 5andWWERrogram package. Parameters of delayed neutrons were acquired from ENDF/B-VI and BNAB-78 validated data files. It was demonstrated that using delay fraction data from different databases in reactivity meters led to significantly different reactivity results. Based on the results of numerically modeled experiments, delayed neutron parameters providing the best agreement between calculated and measured data were selected and recommended for use in reactor calculations (Authors)

  5. Phase models and clustering in networks of oscillators with delayed coupling

    Science.gov (United States)

    Campbell, Sue Ann; Wang, Zhen

    2018-01-01

    We consider a general model for a network of oscillators with time delayed coupling where the coupling matrix is circulant. We use the theory of weakly coupled oscillators to reduce the system of delay differential equations to a phase model where the time delay enters as a phase shift. We use the phase model to determine model independent existence and stability results for symmetric cluster solutions. Our results extend previous work to systems with time delay and a more general coupling matrix. We show that the presence of the time delay can lead to the coexistence of multiple stable clustering solutions. We apply our analytical results to a network of Morris Lecar neurons and compare these results with numerical continuation and simulation studies.

  6. Exhaust Gas Emissions from a Rotating Detonation-wave Engine

    Science.gov (United States)

    Kailasanath, Kazhikathra; Schwer, Douglas

    2015-11-01

    Rotating detonation-wave engines (RDE) are a form of continuous detonation-wave engines. They potentially provide further gains in performance than an intermittent or pulsed detonation-wave engine (PDE). The overall flow field in an idealized RDE, primarily consisting of two concentric cylinders, has been discussed in previous meetings. Because of the high pressures involved and the lack of adequate reaction mechanisms for this regime, previous simulations have typically used simplified chemistry models. However, understanding the exhaust species concentrations in propulsion devices is important for both performance considerations as well as estimating pollutant emissions. Progress towards addressing this need will be discussed in this talk. In this approach, an induction parameter model is used for simulating the detonation but a more detailed finite-chemistry model including NOx chemistry is used in the expansion flow region, where the pressures are lower and the uncertainties in the chemistry model are greatly reduced. Results show that overall radical concentrations in the exhaust flow are substantially lower than from earlier predictions with simplified models. The performance of a baseline hydrogen/air RDE increased from 4940 s to 5000 s with the expansion flow chemistry, due to recombination of radicals and more production of H2O, resulting in additional heat release. Work sponsored by the Office of Naval Research.

  7. Assessment of Blasting Performance Using Electronic Vis-à-Vis Shock Tube Detonators in Strong Garnet Biotite Sillimanite Gneiss Formations

    Science.gov (United States)

    Sharma, Suresh Kumar; Rai, Piyush

    2016-04-01

    This paper presents a comparative investigation of the shock tube and electronic detonating systems practised in bench blasting. The blast trials were conducted on overburden rocks of Garnet Biotite Sillimanite Gneiss formations in one of the largest metalliferous mine of India. The study revealed that the choice of detonating system was crucial in deciding the fragment size and its distribution within the blasted muck-piles. The fragment size and its distribution affected the digging rate of excavators. Also, the shape of the blasted muck-pile was found to be related to the degree of fragmentation. From the present work, it may be inferred that in electronic detonation system, timely release of explosive energy resulted in better overall blasting performance. Hence, the precision in delay time must be considered in designing blast rounds in such overburden rock formations. State-of-art image analysis, GPS based muck-pile profile plotting techniques were rigorously used in the investigation. The study revealed that a mean fragment size (K50) value for shock tube detonated blasts (0.55-0.59 m) was higher than that of electronically detonated blasts (0.43-0.45 m). The digging rate of designated shovels (34 m3) with electronically detonated blasts was consistently more than 5000 t/h, which was almost 13 % higher in comparison to shock tube detonated blasts. Furthermore, favourable muck-pile shapes were witnessed in electronically detonated blasts from the observations made on the dozer performance.

  8. New Results on Robust Model Predictive Control for Time-Delay Systems with Input Constraints

    Directory of Open Access Journals (Sweden)

    Qing Lu

    2014-01-01

    Full Text Available This paper investigates the problem of model predictive control for a class of nonlinear systems subject to state delays and input constraints. The time-varying delay is considered with both upper and lower bounds. A new model is proposed to approximate the delay. And the uncertainty is polytopic type. For the state-feedback MPC design objective, we formulate an optimization problem. Under model transformation, a new model predictive controller is designed such that the robust asymptotical stability of the closed-loop system can be guaranteed. Finally, the applicability of the presented results are demonstrated by a practical example.

  9. Numerical bifurcation analysis of delay differential equations arising from physiological modeling.

    Science.gov (United States)

    Engelborghs, K; Lemaire, V; Bélair, J; Roose, D

    2001-04-01

    This paper has a dual purpose. First, we describe numerical methods for continuation and bifurcation analysis of steady state solutions and periodic solutions of systems of delay differential equations with an arbitrary number of fixed, discrete delays. Second, we demonstrate how these methods can be used to obtain insight into complex biological regulatory systems in which interactions occur with time delays: for this, we consider a system of two equations for the plasma glucose and insulin concentrations in a diabetic patient subject to a system of external assistance. The model has two delays: the technological delay of the external system, and the physiological delay of the patient's liver. We compute stability of the steady state solution as a function of two parameters, compare with analytical results and compute several branches of periodic solutions and their stability. These numerical results allow to infer two categories of diabetic patients for which the external system has different efficiency.

  10. Electrical Activity in a Time-Delay Four-Variable Neuron Model under Electromagnetic Induction

    Directory of Open Access Journals (Sweden)

    Keming Tang

    2017-11-01

    Full Text Available To investigate the effect of electromagnetic induction on the electrical activity of neuron, the variable for magnetic flow is used to improve Hindmarsh–Rose neuron model. Simultaneously, due to the existence of time-delay when signals are propagated between neurons or even in one neuron, it is important to study the role of time-delay in regulating the electrical activity of the neuron. For this end, a four-variable neuron model is proposed to investigate the effects of electromagnetic induction and time-delay. Simulation results suggest that the proposed neuron model can show multiple modes of electrical activity, which is dependent on the time-delay and external forcing current. It means that suitable discharge mode can be obtained by selecting the time-delay or external forcing current, which could be helpful for further investigation of electromagnetic radiation on biological neuronal system.

  11. Modelling the Costs and Benefits of Delayed Product Differentiation

    OpenAIRE

    Hau L. Lee; Christopher S. Tang

    1997-01-01

    Expanding product variety and high customer service provision are both major challenges for manufacturers to compete in the global market. In addition to many ongoing programs, such as lead-time reduction, redesigning products and processes so as to delay the point of product differentiation is becoming an emerging means to address these challenges. Such a strategy calls for redesigning products and processes so that the stages of the production process in which a common process is used are p...

  12. Disequilibrium dynamics in a Keynesian model with time delays

    Science.gov (United States)

    Gori, Luca; Guerrini, Luca; Sodini, Mauro

    2018-05-01

    The aim of this research is to analyse a Keynesian goods market closed economy by considering a continuous-time setup with fixed delays. The work compares dynamic results based on linear and nonlinear adjustment mechanisms through which the aggregate supply (production) reacts to a disequilibrium in the goods market and consumption depends on income at a preceding date. Both analytical and geometrical (stability switching curves) techniques are used to characterise the stability properties of the stationary equilibrium.

  13. Incorporating time-delays in S-System model for reverse engineering genetic networks.

    Science.gov (United States)

    Chowdhury, Ahsan Raja; Chetty, Madhu; Vinh, Nguyen Xuan

    2013-06-18

    In any gene regulatory network (GRN), the complex interactions occurring amongst transcription factors and target genes can be either instantaneous or time-delayed. However, many existing modeling approaches currently applied for inferring GRNs are unable to represent both these interactions simultaneously. As a result, all these approaches cannot detect important interactions of the other type. S-System model, a differential equation based approach which has been increasingly applied for modeling GRNs, also suffers from this limitation. In fact, all S-System based existing modeling approaches have been designed to capture only instantaneous interactions, and are unable to infer time-delayed interactions. In this paper, we propose a novel Time-Delayed S-System (TDSS) model which uses a set of delay differential equations to represent the system dynamics. The ability to incorporate time-delay parameters in the proposed S-System model enables simultaneous modeling of both instantaneous and time-delayed interactions. Furthermore, the delay parameters are not limited to just positive integer values (corresponding to time stamps in the data), but can also take fractional values. Moreover, we also propose a new criterion for model evaluation exploiting the sparse and scale-free nature of GRNs to effectively narrow down the search space, which not only reduces the computation time significantly but also improves model accuracy. The evaluation criterion systematically adapts the max-min in-degrees and also systematically balances the effect of network accuracy and complexity during optimization. The four well-known performance measures applied to the experimental studies on synthetic networks with various time-delayed regulations clearly demonstrate that the proposed method can capture both instantaneous and delayed interactions correctly with high precision. The experiments carried out on two well-known real-life networks, namely IRMA and SOS DNA repair network in

  14. A dynamic IS-LM business cycle model with two time delays in capital accumulation equation

    Science.gov (United States)

    Zhou, Lujun; Li, Yaqiong

    2009-06-01

    In this paper, we analyze a augmented IS-LM business cycle model with the capital accumulation equation that two time delays are considered in investment processes according to Kalecki's idea. Applying stability switch criteria and Hopf bifurcation theory, we prove that time delays cause the equilibrium to lose or gain stability and Hopf bifurcation occurs.

  15. Periodic solutions of delayed predator-prey model with the Beddington-DeAngelis functional response

    Energy Technology Data Exchange (ETDEWEB)

    Huo Haifeng [Institute of Applied Mathematics, Lanzhou University of Technology, Lanzhou, Gansu 730050 (China)]. E-mail: hfhuo@lut.cn; Li Wantong [Department of Mathematics, Lanzhou University Lanzhou, Gansu 730000 (China)]. E-mail: wtli@lzu.edu.cn; Nieto, Juan J. [Departamento de Analisis Matematico, Facultad de Matematicas, Universidad de Santiago de Compostela 15782 (Spain)]. E-mail: amnieto@usc.es

    2007-07-15

    By using the continuation theorem based on Gaines and Mawhin's coincidence degree, sufficient and realistic conditions are obtained for the global existence of positive periodic solutions for a delayed predator-prey model with the Beddington-DeAngelis functional response. Our results are applicable to state dependent and distributed delays.

  16. An overview of the recent advances in delay-time-based maintenance modelling

    International Nuclear Information System (INIS)

    Wang, Wenbin

    2012-01-01

    Industrial plant maintenance is an area which has enormous potential to be improved. It is also an area attracted significant attention from mathematical modellers because of the random phenomenon of plant failures. This paper reviews the recent advances in delay-time-based maintenance modelling, which is one of the mathematical techniques for optimising inspection planning and related problems. The delay-time is a concept that divides a plant failure process into two stages: from new until the point of an identifiable defect, and then from this point to failure. The first stage is called the normal working stage and the second stage is called the failure delay-time stage. If the distributions of the two stages can be quantified, the relationship between the number of failures and the inspection interval can be readily established. This can then be used for optimizing the inspection interval and other related decision variables. In this review, we pay particular attention to new methodological developments and industrial applications of the delay-time-based models over the last few decades. The use of the delay-time concept and modeling techniques in other areas rather than in maintenance is also reviewed. Future research directions are also highlighted. - Highlights: ► Reviewed the recent advances in delay-time-based maintenance models and applications. ► Compared the delay-time-based models with other models. ► Focused on methodologies and applications. ► Pointed out future research directions.

  17. Deflagration-to-detonation transition in gases in tubes with cavities

    Science.gov (United States)

    Smirnov, N. N.; Nikitin, V. F.; Phylippov, Yu. G.

    2010-12-01

    DDT control in gaseous fuel-air mixtures became very acute. This paper contains results of theoretical and experimental investigations of DDT processes in combustible gaseous mixtures. In particular, the paper investigates the effect of cavities incorporated in detonation tubes at the onset of detonation in gases. Extensive numerical modeling and simulations allowed studying the features of deflagration-to-detonation transition in gases in tubes incorporating cavities of a wider cross section. The presence of cavities substantially affects the combustion modes being established in the device and their dependence on the governing parameters of the problem. The influence of geometrical characteristics of the confinement and flow turbulization on the onset of detonation and the influence of temperature and fuel concentration in the unburned mixture are discussed. It was demonstrated both experimentally and theoretically that the presence of cavities of wider cross section in the ignition part of the tube promotes DDT and shortens the predetonation length. At the same time, cavities incorporated along the whole length or in the far-end section inhibit detonation and bring about the onset of low-velocity galloping detonation or galloping combustion modes. The presence of cavities in the ignition section turns an increase in the initial mixture temperature into a DDT-promoting factor instead of a DDT-inhibiting factor.

  18. Distance Dependent Model for the Delay Power Spectrum of In-room Radio Channels

    DEFF Research Database (Denmark)

    Steinböck, Gerhard; Pedersen, Troels; Fleury, Bernard Henri

    2013-01-01

    A model based on experimental observations of the delay power spectrum in closed rooms is proposed. The model includes the distance between the transmitter and the receiver as a parameter which makes it suitable for range based radio localization. The experimental observations motivate the proposed...... model of the delay power spectrum with a primary (early) component and a reverberant component (tail). The primary component is modeled as a Dirac delta function weighted according to an inverse distance power law (d-n). The reverberant component is an exponentially decaying function with onset equal...... to the propagation time between transmitter and receiver. Its power decays exponentially with distance. The proposed model allows for the prediction of e.g. the path loss, mean delay, root mean squared (rms) delay spread, and kurtosis versus the distance. The model predictions are validated by measurements...

  19. A random utility model of delay discounting and its application to people with externalizing psychopathology.

    Science.gov (United States)

    Dai, Junyi; Gunn, Rachel L; Gerst, Kyle R; Busemeyer, Jerome R; Finn, Peter R

    2016-10-01

    Previous studies have demonstrated that working memory capacity plays a central role in delay discounting in people with externalizing psychopathology. These studies used a hyperbolic discounting model, and its single parameter-a measure of delay discounting-was estimated using the standard method of searching for indifference points between intertemporal options. However, there are several problems with this approach. First, the deterministic perspective on delay discounting underlying the indifference point method might be inappropriate. Second, the estimation procedure using the R2 measure often leads to poor model fit. Third, when parameters are estimated using indifference points only, much of the information collected in a delay discounting decision task is wasted. To overcome these problems, this article proposes a random utility model of delay discounting. The proposed model has 2 parameters, 1 for delay discounting and 1 for choice variability. It was fit to choice data obtained from a recently published data set using both maximum-likelihood and Bayesian parameter estimation. As in previous studies, the delay discounting parameter was significantly associated with both externalizing problems and working memory capacity. Furthermore, choice variability was also found to be significantly associated with both variables. This finding suggests that randomness in decisions may be a mechanism by which externalizing problems and low working memory capacity are associated with poor decision making. The random utility model thus has the advantage of disclosing the role of choice variability, which had been masked by the traditional deterministic model. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  20. Noise-and delay-induced phase transitions of the dimer–monomer surface reaction model

    International Nuclear Information System (INIS)

    Zeng Chunhua; Wang Hua

    2012-01-01

    Highlights: ► We study the dimer–monomer surface reaction model. ► We show that noise induces first-order irreversible phase transition (IPT). ► Combination of noise and time-delayed feedback induce first- and second-order IPT. ► First- and second-order IPT is viewed as noise-and delay-induced phase transitions. - Abstract: The effects of noise and time-delayed feedback in the dimer–monomer (DM) surface reaction model are investigated. Applying small delay approximation, we construct a stochastic delayed differential equation and its Fokker–Planck equation to describe the state evolution of the DM reaction model. We show that the noise can only induce first-order irreversible phase transition (IPT) characteristic of the DM model, however the combination of the noise and time-delayed feedback can simultaneously induce first- and second-order IPT characteristics of the DM model. Therefore, it is shown that the well-known first- and second-order IPT characteristics of the DM model may be viewed as noise-and delay-induced phase transitions.

  1. Detonation velocity in poorly mixed gas mixtures

    Science.gov (United States)

    Prokhorov, E. S.

    2017-10-01

    The technique for computation of the average velocity of plane detonation wave front in poorly mixed mixture of gaseous hydrocarbon fuel and oxygen is proposed. Here it is assumed that along the direction of detonation propagation the chemical composition of the mixture has periodic fluctuations caused, for example, by layered stratification of gas charge. The technique is based on the analysis of functional dependence of ideal (Chapman-Jouget) detonation velocity on mole fraction (with respect to molar concentration) of the fuel. It is shown that the average velocity of detonation can be significantly (by more than 10%) less than the velocity of ideal detonation. The dependence that permits to estimate the degree of mixing of gas mixture basing on the measurements of average detonation velocity is established.

  2. Framework for determining airport daily departure and arrival delay thresholds: statistical modelling approach.

    Science.gov (United States)

    Wesonga, Ronald; Nabugoomu, Fabian

    2016-01-01

    The study derives a framework for assessing airport efficiency through evaluating optimal arrival and departure delay thresholds. Assumptions of airport efficiency measurements, though based upon minimum numeric values such as 15 min of turnaround time, cannot be extrapolated to determine proportions of delay-days of an airport. This study explored the concept of delay threshold to determine the proportion of delay-days as an expansion of the theory of delay and our previous work. Data-driven approach using statistical modelling was employed to a limited set of determinants of daily delay at an airport. For the purpose of testing the efficacy of the threshold levels, operational data for Entebbe International Airport were used as a case study. Findings show differences in the proportions of delay at departure (μ = 0.499; 95 % CI = 0.023) and arrival (μ = 0.363; 95 % CI = 0.022). Multivariate logistic model confirmed an optimal daily departure and arrival delay threshold of 60 % for the airport given the four probable thresholds {50, 60, 70, 80}. The decision for the threshold value was based on the number of significant determinants, the goodness of fit statistics based on the Wald test and the area under the receiver operating curves. These findings propose a modelling framework to generate relevant information for the Air Traffic Management relevant in planning and measurement of airport operational efficiency.

  3. Stability switches, Hopf bifurcation and chaos of a neuron model with delay-dependent parameters

    International Nuclear Information System (INIS)

    Xu, X.; Hu, H.Y.; Wang, H.L.

    2006-01-01

    It is very common that neural network systems usually involve time delays since the transmission of information between neurons is not instantaneous. Because memory intensity of the biological neuron usually depends on time history, some of the parameters may be delay dependent. Yet, little attention has been paid to the dynamics of such systems. In this Letter, a detailed analysis on the stability switches, Hopf bifurcation and chaos of a neuron model with delay-dependent parameters is given. Moreover, the direction and the stability of the bifurcating periodic solutions are obtained by the normal form theory and the center manifold theorem. It shows that the dynamics of the neuron model with delay-dependent parameters is quite different from that of systems with delay-independent parameters only

  4. Stability analysis for a delay differential equations model of a hydraulic turbine speed governor

    Science.gov (United States)

    Halanay, Andrei; Safta, Carmen A.; Dragoi, Constantin; Piraianu, Vlad F.

    2017-01-01

    The paper aims to study the dynamic behavior of a speed governor for a hydraulic turbine using a mathematical model. The nonlinear mathematical model proposed consists in a system of delay differential equations (DDE) to be compared with already established mathematical models of ordinary differential equations (ODE). A new kind of nonlinearity is introduced as a time delay. The delays can characterize different running conditions of the speed governor. For example, it is considered that spool displacement of hydraulic amplifier might be blocked due to oil impurities in the oil supply system and so the hydraulic amplifier has a time delay in comparison to the time control. Numerical simulations are presented in a comparative manner. A stability analysis of the hydraulic control system is performed, too. Conclusions of the dynamic behavior using the DDE model of a hydraulic turbine speed governor are useful in modeling and controlling hydropower plants.

  5. A stochastic delay model for pricing debt and equity: Numerical techniques and applications

    Science.gov (United States)

    Tambue, Antoine; Kemajou Brown, Elisabeth; Mohammed, Salah

    2015-01-01

    Delayed nonlinear models for pricing corporate liabilities and European options were recently developed. Using self-financed strategy and duplication we were able to derive a Random Partial Differential Equation (RPDE) whose solutions describe the evolution of debt and equity values of a corporate in the last delay period interval in the accompanied paper (Kemajou et al., 2012) [14]. In this paper, we provide robust numerical techniques to solve the delayed nonlinear model for the corporate value, along with the corresponding RPDEs modeling the debt and equity values of the corporate. Using financial data from some firms, we forecast and compare numerical solutions from both the nonlinear delayed model and classical Merton model with the real corporate data. From this comparison, it comes up that in corporate finance the past dependence of the firm value process may be an important feature and therefore should not be ignored.

  6. A summary of hydrogen-air detonation experiments

    International Nuclear Information System (INIS)

    Guirao, C.M.; Knystautas, R.; Lee, J.H.

    1989-05-01

    Dynamic detonation parameters are reviewed for hydrogen-air-diluent detonations and deflagration-to-detonation transitions (DDT). These parameters include the characteristic chemical length scale, such as the detonation cell width, associated with the three-dimensional cellular structure of detonation waves, critical transmission conditions of confined detonations into unconfined environments, critical initiation energy for unconfined detonations, detonability limits, and critical conditions for DDT. The detonation cell width, which depends on hydrogen and diluent concentrations, pressure, and temperature, is an important parameter in the prediction of critical geometry-dependent conditions for the transmission of confined detonations into unconfined environments and the critical energies for the direct initiation of unconfined detonations. Detonability limits depend on both initial and boundary conditions and the limit has been defined as the onset of single head spin. Four flame propagation regimes have been identified and the criterion for DDT in a smooth tube is discussed. 108 refs., 28 figs., 5 tabs

  7. Gaseous detonation initiation via wave implosion

    Science.gov (United States)

    Jackson, Scott Irving

    Efficient detonation initiation is a topic of intense interest to designers of pulse detonation engines. This experimental work is the first to detonate propane-air mixtures with an imploding detonation wave and to detonate a gas mixture with a non-reflected, imploding shock. In order to do this, a unique device has been developed that is capable of generating an imploding toroidal detonation wave inside of a tube from a single ignition point without any obstruction to the tube flow path. As part of this study, an initiator that creates a large-aspect-ratio planar detonation wave in gas-phase explosive from a single ignition point has also been developed. The effectiveness of our initiation devices has been evaluated. The minimum energy required by the imploding shock for initiation was determined to scale linearly with the induction zone length, indicating the presence of a planar initiation mode. The imploding toroidal detonation initiator was found to be more effective at detonation initiation than the imploding shock initiator, using a comparable energy input to that of current initiator tubes.

  8. Two profitless delays for an SEIRS epidemic disease model with vertical transmission and pulse vaccination

    International Nuclear Information System (INIS)

    Meng Xinzhu; Jiao Jianjun; Chen Lansun

    2009-01-01

    Since the investigation of impulsive delay differential equations is beginning, the literature on delay epidemic models with pulse vaccination is not extensive. In this paper, we propose a new SEIRS epidemic disease model with two profitless delays and vertical transmission, and analyze the dynamics behaviors of the model under pulse vaccination. Using the discrete dynamical system determined by the stroboscopic map, we obtain a 'infection-free' periodic solution, further, show that the 'infection-free' periodic solution is globally attractive when some parameters of the model are under appropriate conditions. Using a new modeling method, we obtain sufficient condition for the permanence of the epidemic model with pulse vaccination. We show that time delays, pulse vaccination and vertical transmission can bring different effects on the dynamics behaviors of the model by numerical analysis. Our results also show the delays are 'profitless'. In this paper, the main feature is to introduce two discrete time delays, vertical transmission and impulse into SEIRS epidemic model and to give pulse vaccination strategies.

  9. LX-17 and ufTATB Data for Corner-Turning, Failure and Detonation

    Energy Technology Data Exchange (ETDEWEB)

    Souers, P C; Lauderbach, L; Garza, R; Vitello, P; Hare, D E

    2010-02-03

    Data is presented for the size (diameter) effect for ambient and cold confined LX-17, unconfined ambient LX-17, and confined ambient ultrafine TATB. Ambient, cold and hot double cylinder corner-turning data for LX-17, PBX 9502 and ufTATB is presented. Transverse air gap crossing in ambient LX-17 is studied with time delays given for detonations that cross.

  10. Knock Prediction Using a Simple Model for Ignition Delay

    KAUST Repository

    Kalghatgi, Gautam

    2016-04-05

    An earlier paper has shown the ability to predict the phasing of knock onset in a gasoline PFI engine using a simple ignition delay equation for an appropriate surrogate fuel made up of toluene and PRF (TPRF). The applicability of this approach is confirmed in this paper in a different engine using five different fuels of differing RON, sensitivity, and composition - including ethanol blends. An Arrhenius type equation with a pressure correction for ignition delay can be found from interpolation of previously published data for any gasoline if its RON and sensitivity are known. Then, if the pressure and temperature in the unburned gas can be estimated or measured, the Livengood-Wu integral can be estimated as a function of crank angle to predict the occurrence of knock. Experiments in a single cylinder DISI engine over a wide operating range confirm that this simple approach can predict knock very accurately. The data presented should enable engineers to study knock or other auto-ignition phenomena e.g. in premixed compression ignition (PCI) engines without explicit chemical kinetic calculations. © Copyright 2016 SAE International.

  11. Numerical simulations of cellular detonation diffraction in a stable gaseous mixture

    Directory of Open Access Journals (Sweden)

    Jian Li

    2016-09-01

    Full Text Available In this paper, the diffraction phenomenon of gaseous cellular detonations emerging from a confined tube into a sudden open space is simulated using the reactive Euler equations with a two-step Arrhenius chemistry model. Both two-dimensional and axisymmetric configurations are used for modeling cylindrical and spherical expansions, respectively. The chemical parameters are chosen for a stable gaseous explosive mixture in which the cellular detonation structure is highly regular. Adaptive mesh refinement (AMR is used to resolve the detonation wave structure and its evolution during the transmission. The numerical results show that the critical channel width and critical diameter over the detonation cell size are about 13±1 and 25±1, respectively. These numerical findings are comparable with the experimental observation and confirm again that the critical channel width and critical diameter differ essentially by a factor close to 2, equal to the geometrical scaling based on front curvature theory. Unlike unstable mixtures where instabilities manifested in the detonation front structure play a significant role during the transmission, the present numerical results and the observed geometrical scaling provide again evidence that the failure of detonation diffraction in stable mixtures with a regular detonation cellular pattern is dominantly caused by the global curvature due to the wave divergence resulting in the global decoupling of the reaction zone with the expanding shock front.

  12. Gas-evolution oscillators. 10. A model based on a delay equation

    Energy Technology Data Exchange (ETDEWEB)

    Bar-Eli, K.; Noyes, R.M. [Univ. of Oregon, Eugene, OR (United States)

    1992-09-17

    This paper develops a simplified method to model the behavior of a gas-evolution oscillator with two differential delay equations in two unknowns consisting of the population of dissolved molecules in solution and the pressure of the gas.

  13. Positive Almost Periodic Solutions for a Time-Varying Fishing Model with Delay

    Directory of Open Access Journals (Sweden)

    Xia Li

    2011-01-01

    Full Text Available This paper is concerned with a time-varying fishing model with delay. By means of the continuation theorem of coincidence degree theory, we prove that it has at least one positive almost periodic solution.

  14. Gas-evolution oscillators. 10. A model based on a delay equation

    International Nuclear Information System (INIS)

    Bar-Eli, K.; Noyes, R.M.

    1992-01-01

    This paper develops a simplified method to model the behavior of a gas-evolution oscillator with two differential delay equations in two unknowns consisting of the population of dissolved molecules in solution and the pressure of the gas

  15. Dynamics of a delay differential equation model of hepatitis B virus infection.

    Science.gov (United States)

    Gourley, Stephen A; Kuang, Yang; Nagy, John D

    2008-04-01

    We formulate and systematically study the global dynamics of a simple model of hepatitis B virus in terms of delay differential equations. This model has two important and novel features compared to the well-known basic virus model in the literature. Specifically, it makes use of the more realistic standard incidence function and explicitly incorporates a time delay in virus production. As a result, the infection reproduction number is no longer dependent on the patient liver size (number of initial healthy liver cells). For this model, the existence and the component values of the endemic steady state are explicitly dependent on the time delay. In certain biologically interesting limiting scenarios, a globally attractive endemic equilibrium can exist regardless of the time delay length.

  16. Stability and Hopf Bifurcation for a Delayed SLBRS Computer Virus Model

    Directory of Open Access Journals (Sweden)

    Zizhen Zhang

    2014-01-01

    Full Text Available By incorporating the time delay due to the period that computers use antivirus software to clean the virus into the SLBRS model a delayed SLBRS computer virus model is proposed in this paper. The dynamical behaviors which include local stability and Hopf bifurcation are investigated by regarding the delay as bifurcating parameter. Specially, direction and stability of the Hopf bifurcation are derived by applying the normal form method and center manifold theory. Finally, an illustrative example is also presented to testify our analytical results.

  17. Stability and Hopf bifurcation for a delayed SLBRS computer virus model.

    Science.gov (United States)

    Zhang, Zizhen; Yang, Huizhong

    2014-01-01

    By incorporating the time delay due to the period that computers use antivirus software to clean the virus into the SLBRS model a delayed SLBRS computer virus model is proposed in this paper. The dynamical behaviors which include local stability and Hopf bifurcation are investigated by regarding the delay as bifurcating parameter. Specially, direction and stability of the Hopf bifurcation are derived by applying the normal form method and center manifold theory. Finally, an illustrative example is also presented to testify our analytical results.

  18. A new model for deteriorating items with inflation under permissible delay in payments

    Directory of Open Access Journals (Sweden)

    R.P. Tripathi

    2014-05-01

    Full Text Available Inflation is an important factor influencing traditional economic order quality models. Marketing strategy depends on inflation due to public demand and availability of the materials. This paper presents an optimal inventory policy for deteriorating items using exponential demand rate under permissible delay in payments. Mathematical model has been derived under two cases: case I: cycle time is greater than or equal to permissible delay period, case II: cycle time is less than permissible delay period by considering holding cost as a function of time. Numerical examples and sensitivity analysis are given to reflect the numerical results. Mathematica software is used for finding optimal solutions.

  19. Hopf bifurcation in love dynamical models with nonlinear couples and time delays

    International Nuclear Information System (INIS)

    Liao Xiaofeng; Ran Jiouhong

    2007-01-01

    A love dynamical models with nonlinear couples and two delays is considered. Local stability of this model is studied by analyzing the associated characteristic transcendental equation. We find that the Hopf bifurcation occurs when the sum of the two delays varies and passes a sequence of critical values. The stability and direction of the Hopf bifurcation are determined by applying the normal form theory and the center manifold theorem. Numerical example is given to illustrate our results

  20. The Long Time Behavior of a Stochastic Logistic Model with Infinite Delay and Impulsive Perturbation

    OpenAIRE

    Lu, Chun; Wu, Kaining

    2016-01-01

    This paper considers a stochastic logistic model with infinite delay and impulsive perturbation. Firstly, with the space $C_{g}$ as phase space, the definition of solution to a stochastic functional differential equation with infinite delay and impulsive perturbation is established. According to this definition, we show that our model has an unique global positive solution. Then we establish the sufficient and necessary conditions for extinction and stochastic permanence of the...

  1. A Heterogeneous Agent Model of Asspet Price with Three Time Delays

    Directory of Open Access Journals (Sweden)

    Akio Matsumoto

    2016-09-01

    Full Text Available This paper considers a continuous-time heterogeneous agent model ofa ...nancial market with one risky asset, two types of agents (i.e., thefundamentalists and the chartists, and three time delays. The chartistdemand is determined through a nonlinear function of the di¤erence be-tween the current price and a weighted moving average of the delayedprices whereas the fundamentalist demand is governed by the di¤erencebetween the current price and the fundamental value. The asset price dy-namics is described by a nonlinear delay di¤erential equation. Two mainresults are analytically and numerically shown:(i the delay destabilizes the market price and generates cyclic oscillationsaround the equilibrium;(ii under multiple delays, stability loss and gain repeatedly occurs as alength of the delay increases.

  2. Evaluation of Straight and Swept Ramp Obstacles on Enhancing Deflagration-to-Detonation Transition in Pulse Detonation Engines

    Science.gov (United States)

    2006-12-01

    This led to the work of H. Le Chatelier and E. Mallard, who in 1883 conducted experiments to examine the detonation process more closely. Their work...describes the history of research into detonation and the principles that govern detonation theory. A. DETONATION HISTORY 1. Early Research in...these favorable properties and for a propulsion system and is a principle means of detonation initiation in pulse detonation engines. DDT refers to a

  3. Linear stability analysis of detonations via numerical computation and dynamic mode decomposition

    KAUST Repository

    Kabanov, Dmitry; Kasimov, Aslan R.

    2018-01-01

    We introduce a new method to investigate linear stability of gaseous detonations that is based on an accurate shock-fitting numerical integration of the linearized reactive Euler equations with a subsequent analysis of the computed solution via the dynamic mode decomposition. The method is applied to the detonation models based on both the standard one-step Arrhenius kinetics and two-step exothermic-endothermic reaction kinetics. Stability spectra for all cases are computed and analyzed. The new approach is shown to be a viable alternative to the traditional normal-mode analysis used in detonation theory.

  4. Preliminary investigation for the development of surrogate debris from nuclear detonations in marine-urban environments

    International Nuclear Information System (INIS)

    Seybert, A.G.; Auxier II, J.D.; University of Tennessee, Knoxville, TN; Hall, H.L.; University of Tennessee, Knoxville, TN; University of Tennessee, Knoxville, TN

    2017-01-01

    Since no nuclear weapon surface detonations have occurred in urban harbor environments, the nuclear forensic community has no actual debris from which to develop and validate analytical methods for radiochemistry analysis, making the development of surrogate debris representative of this a marine-urban detonation a vital undertaking. This work seeks to build a robust model that accounts for natural and manmade environmental variations in harbor environments and vessel compositions to statistically define the elemental composition of vaporized debris from a marine-urban nuclear detonation. This initial work is necessary for follow-on neutron-activation and debris formation analysis. (author)

  5. Linear stability analysis of detonations via numerical computation and dynamic mode decomposition

    KAUST Repository

    Kabanov, Dmitry I.

    2017-12-08

    We introduce a new method to investigate linear stability of gaseous detonations that is based on an accurate shock-fitting numerical integration of the linearized reactive Euler equations with a subsequent analysis of the computed solution via the dynamic mode decomposition. The method is applied to the detonation models based on both the standard one-step Arrhenius kinetics and two-step exothermic-endothermic reaction kinetics. Stability spectra for all cases are computed and analyzed. The new approach is shown to be a viable alternative to the traditional normal-mode analysis used in detonation theory.

  6. Linear stability analysis of detonations via numerical computation and dynamic mode decomposition

    KAUST Repository

    Kabanov, Dmitry

    2018-03-20

    We introduce a new method to investigate linear stability of gaseous detonations that is based on an accurate shock-fitting numerical integration of the linearized reactive Euler equations with a subsequent analysis of the computed solution via the dynamic mode decomposition. The method is applied to the detonation models based on both the standard one-step Arrhenius kinetics and two-step exothermic-endothermic reaction kinetics. Stability spectra for all cases are computed and analyzed. The new approach is shown to be a viable alternative to the traditional normal-mode analysis used in detonation theory.

  7. SSS: A code for computing one dimensional shock and detonation wave propagation

    International Nuclear Information System (INIS)

    Sun Chengwei

    1986-01-01

    The one-dimensional hydrodynamic code SSS for shock and detonation wave propagation in inert and reactive media is described. The elastic-plastic-hydrodynamic model and four burn techniques (the Arrhenius law, C-J volume, sharp shock and Forest Fire) are used. There are HOM and JWL options for the state equation of detonation products. Comparing with the SIN code published by LANL, the SSS code has several new options: laser effects, blast waves, diverging and instantaneous detonation waves with arbitrary initiation positions. Two examples are given to compare the SSS and SIN calculations with the experimental data

  8. A simple model of carcinogenic mutations with time delay and diffusion.

    Science.gov (United States)

    Piotrowska, Monika Joanna; Foryś, Urszula; Bodnar, Marek; Poleszczuk, Jan

    2013-06-01

    In the paper we consider a system of delay differential equations (DDEs) of Lotka-Volterra type with diffusion reflecting mutations from normal to malignant cells. The model essentially follows the idea of Ahangar and Lin (2003) where mutations in three different environmental conditions, namely favorable, competitive and unfavorable, were considered. We focus on the unfavorable conditions that can result from a given treatment, e.g. chemotherapy. Included delay stands for the interactions between benign and other cells. We compare the dynamics of ODEs system, the system with delay and the system with delay and diffusion. We mainly focus on the dynamics when a positive steady state exists. The system which is globally stable in the case without the delay and diffusion is destabilized by increasing delay, and therefore the underlying kinetic dynamics becomes oscillatory due to a Hopf bifurcation for appropriate values of the delay. This suggests the occurrence of spatially non-homogeneous periodic solutions for the system with the delay and diffusion.

  9. STATISTIC MODEL OF DYNAMIC DELAY AND DROPOUT ON CELLULAR DATA NETWORKED CONTROL SYSTEM

    Directory of Open Access Journals (Sweden)

    MUHAMMAD A. MURTI

    2017-07-01

    Full Text Available Delay and dropout are important parameters influence overall control performance in Networked Control System (NCS. The goal of this research is to find a model of delay and dropout of data communication link in the NCS. Experiments have been done in this research to a water level control of boiler tank as part of the NCS based on internet communication network using High Speed Packet Access (HSPA cellular technology. By this experiments have been obtained closed-loop system response as well as data delay and dropout of data packets. This research contributes on modeling of the NCS which is combination of controlled plant and data communication link. Another contribution is statistical model of delay and dropout on the NCS.

  10. Evaluation of performance of distributed delay model for chemotherapy-induced myelosuppression.

    Science.gov (United States)

    Krzyzanski, Wojciech; Hu, Shuhua; Dunlavey, Michael

    2018-04-01

    The distributed delay model has been introduced that replaces the transit compartments in the classic model of chemotherapy-induced myelosuppression with a convolution integral. The maturation of granulocyte precursors in the bone marrow is described by the gamma probability density function with the shape parameter (ν). If ν is a positive integer, the distributed delay model coincides with the classic model with ν transit compartments. The purpose of this work was to evaluate performance of the distributed delay model with particular focus on model deterministic identifiability in the presence of the shape parameter. The classic model served as a reference for comparison. Previously published white blood cell (WBC) count data in rats receiving bolus doses of 5-fluorouracil were fitted by both models. The negative two log-likelihood objective function (-2LL) and running times were used as major markers of performance. Local sensitivity analysis was done to evaluate the impact of ν on the pharmacodynamics response WBC. The ν estimate was 1.46 with 16.1% CV% compared to ν = 3 for the classic model. The difference of 6.78 in - 2LL between classic model and the distributed delay model implied that the latter performed significantly better than former according to the log-likelihood ratio test (P = 0.009), although the overall performance was modestly better. The running times were 1 s and 66.2 min, respectively. The long running time of the distributed delay model was attributed to computationally intensive evaluation of the convolution integral. The sensitivity analysis revealed that ν strongly influences the WBC response by controlling cell proliferation and elimination of WBCs from the circulation. In conclusion, the distributed delay model was deterministically identifiable from typical cytotoxic data. Its performance was modestly better than the classic model with significantly longer running time.

  11. 14 CFR 33.47 - Detonation test.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Detonation test. 33.47 Section 33.47 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: AIRCRAFT ENGINES Block Tests; Reciprocating Aircraft Engines § 33.47 Detonation test. Each engine...

  12. Tritium labeling of detonation nanodiamonds.

    Science.gov (United States)

    Girard, Hugues A; El-Kharbachi, Abdelouahab; Garcia-Argote, Sébastien; Petit, Tristan; Bergonzo, Philippe; Rousseau, Bernard; Arnault, Jean-Charles

    2014-03-18

    For the first time, the radioactive labeling of detonation nanodiamonds was efficiently achieved using a tritium microwave plasma. According to our measurements, the total radioactivity reaches 9120 ± 120 μCi mg(-1), with 93% of (3)H atoms tightly bonded to the surface and up to 7% embedded into the diamond core. Such (3)H doping will ensure highly stable radiolabeled nanodiamonds, on which surface functionalization is still allowed. This breakthrough opens the way to biodistribution and pharmacokinetics studies of nanodiamonds, while this approach can be scalable to easily treat bulk quantities of nanodiamonds at low cost.

  13. Delayed repair of the peripheral nerve: a novel model in the rat sciatic nerve.

    Science.gov (United States)

    Wu, Peng; Spinner, Robert J; Gu, Yudong; Yaszemski, Michael J; Windebank, Anthony J; Wang, Huan

    2013-03-30

    Peripheral nerve reconstruction is seldom done in the acute phase of nerve injury due to concomitant injuries and the uncertainty of the extent of nerve damage. A proper model that mimics true clinical scenarios is critical but lacking. The aim of this study is to develop a standardized, delayed sciatic nerve repair model in rats and validate the feasibility of direct secondary neurrorraphy after various delay intervals. Immediately or 1, 4, 6, 8 and 12 weeks after sciatic nerve transection, nerve repair was carried out. A successful tension-free direct neurorraphy (TFDN) was defined when the gap was shorter than 4.0 mm and the stumps could be reapproximated with 10-0 stitches without detachment. Compound muscle action potential (CMAP) was recorded postoperatively. Gaps between the two nerve stumps ranged from 0 to 9 mm, the average being 1.36, 2.85, 3.43, 3.83 and 6.4 mm in rats with 1, 4, 6, 8 and 12 week delay, respectively. The rate of successful TFDN was 78% overall. CMAP values of 1 and 4 week delay groups were not different from the immediate repair group, whereas CMAP amplitudes of 6, 8 and 12 week delay groups were significantly lower. A novel, standardized delayed nerve repair model is established. For this model to be sensitive, the interval between nerve injury and secondary repair should be at least over 4 weeks. Thereafter the longer the delay, the more challenging the model is for nerve regeneration. The choice of delay intervals can be tailored to meet specific requirements in future studies. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. Impact of delay on disease outbreak in a spatial epidemic model

    Science.gov (United States)

    Zhao, Xia-Xia; Wang, Jian-Zhong

    2015-04-01

    One of the central issues in studying epidemic spreading is the mechanism on disease outbreak. In this paper, we investigate the effects of time delay on disease outbreak in spatial epidemics based on a reaction-diffusion model. By mathematical analysis and numerical simulations, we show that when time delay is more than a critical value, the disease outbreaks. The obtained results show that the time delay is an important factor in the spread of the disease, which may provide new insights on disease control.

  15. Estimation of Atmospheric Path Delays in TerraSAR-X Data using Models vs. Measurements

    Directory of Open Access Journals (Sweden)

    Donat Perler

    2008-12-01

    Full Text Available Spaceborne synthetic aperture radar (SAR measurements of the Earth’s surface depend on electromagnetic waves that are subject to atmospheric path delays, in turn affecting geolocation accuracy. The atmosphere influences radar signal propagation by modifying its velocity and direction, effects which can be modeled. We use TerraSAR-X (TSX data to investigate improvements in the knowledge of the scene geometry. To precisely estimate atmospheric path delays, we analyse the signal return of four corner reflectors with accurately surveyed positions (based on differential GPS, placed at different altitudes yet with nearly identical slant ranges to the sensor. The comparison of multiple measurements with path delay models under these geometric conditions also makes it possible to evaluate the corrections for the atmospheric path delay made by the TerraSAR processor and to propose possible improvements.

  16. Hopf bifurcation in a environmental defensive expenditures model with time delay

    International Nuclear Information System (INIS)

    Russu, Paolo

    2009-01-01

    In this paper a three-dimensional environmental defensive expenditures model with delay is considered. The model is based on the interactions among visitors V, quality of ecosystem goods E, and capital K, intended as accommodation and entertainment facilities, in Protected Areas (PAs). The tourism user fees (TUFs) are used partly as a defensive expenditure and partly to increase the capital stock. The stability and existence of Hopf bifurcation are investigated. It is that stability switches and Hopf bifurcation occurs when the delay t passes through a sequence of critical values, τ 0 . It has been that the introduction of a delay is a destabilizing process, in the sense that increasing the delay could cause the bio-economics to fluctuate. Formulas about the stability of bifurcating periodic solution and the direction of Hopf bifurcation are exhibited by applying the normal form theory and the center manifold theorem. Numerical simulations are given to illustrate the results.

  17. Multiple-parameter bifurcation analysis in a Kuramoto model with time delay and distributed shear

    Science.gov (United States)

    Niu, Ben; Zhang, Jiaming; Wei, Junjie

    2018-05-01

    In this paper, time delay effect and distributed shear are considered in the Kuramoto model. On the Ott-Antonsen's manifold, through analyzing the associated characteristic equation of the reduced functional differential equation, the stability boundary of the incoherent state is derived in multiple-parameter space. Moreover, very rich dynamical behavior such as stability switches inducing synchronization switches can occur in this equation. With the loss of stability, Hopf bifurcating coherent states arise, and the criticality of Hopf bifurcations is determined by applying the normal form theory and the center manifold theorem. On one hand, theoretical analysis indicates that the width of shear distribution and time delay can both eliminate the synchronization then lead the Kuramoto model to incoherence. On the other, time delay can induce several coexisting coherent states. Finally, some numerical simulations are given to support the obtained results where several bifurcation diagrams are drawn, and the effect of time delay and shear is discussed.

  18. The influences of delay time on the stability of a market model with stochastic volatility

    Science.gov (United States)

    Li, Jiang-Cheng; Mei, Dong-Cheng

    2013-02-01

    The effects of the delay time on the stability of a market model are investigated, by using a modified Heston model with a cubic nonlinearity and cross-correlated noise sources. These results indicate that: (i) There is an optimal delay time τo which maximally enhances the stability of the stock price under strong demand elasticity of stock price, and maximally reduces the stability of the stock price under weak demand elasticity of stock price; (ii) The cross correlation coefficient of noises and the delay time play an opposite role on the stability for the case of the delay time τo. Moreover, the probability density function of the escape time of stock price returns, the probability density function of the returns and the correlation function of the returns are compared with other literatures.

  19. Mechanical effects of gaseous detonations on a flexible confinement

    International Nuclear Information System (INIS)

    Brossard, J.; Renard, J.

    1981-01-01

    A mathematical model was developed for evaluating the effect of a detonating gaseous mixture on its elastic circular confinement. The data provided by the model were compared with experimental results. The confinement materials investigated include polyvinylchloride and stainless steel. Measurements of transverse and longitudinal deformations of the confinement material at several detonation velocities and for different material properties made it possible to determine the deformation characteristics, taking into account the precursor effect, the oscillations and their frequencies, the deformation ratio, and the dynamic amplifying factors. A certain lack of agreement between the theoretical data obtained with the aid of the model and the experimental results is probably related to simplified assumptions made in the model regarding the pressure distributions and a failure to take into account viscosity effects

  20. Diagnostic techniques in deflagration and detonation studies.

    Science.gov (United States)

    Proud, William G; Williamson, David M; Field, John E; Walley, Stephen M

    2015-12-01

    Advances in experimental, high-speed techniques can be used to explore the processes occurring within energetic materials. This review describes techniques used to study a wide range of processes: hot-spot formation, ignition thresholds, deflagration, sensitivity and finally the detonation process. As this is a wide field the focus will be on small-scale experiments and quantitative studies. It is important that such studies are linked to predictive models, which inform the experimental design process. The stimuli range includes, thermal ignition, drop-weight, Hopkinson Bar and Plate Impact studies. Studies made with inert simulants are also included as these are important in differentiating between reactive response and purely mechanical behaviour.

  1. Tissue kerma vs distance relationships for initial nuclear radiation from the atomic devices detonated over Hiroshima and Nagasaki

    International Nuclear Information System (INIS)

    Kerr, G.D.; Pace, J.V. III; Scott, W.H. Jr.

    1983-06-01

    Initial nuclear radiation is comprised of prompt neutrons and prompt primary gammas from an exploding nuclear device, prompt secondary gammas produced by neutron interactions in the environment, and delayed neutrons and delayed fission-product gammas from the fireball formed after the nuclear device explodes. These various components must all be considered in establishing tissue kerma vs distance relationships which describe the decrease of initial nuclear radiation with distance in Hiroshima and in Nagasaki. The tissue kerma at ground evel from delayed fission-product gammas and delayed neutrons was investigated using the NUIDEA code developed by Science Applications, Inc. This code incorporates very detailed models which can take into account such features as the rise of the fireball, the rapid radioactive decay of fission products in it, and the perturbation of the atmosphere by the explosion. Tissue kerma vs distance relationships obtained by summing results of these current state-of-the-art calculations will be discussed. Our results clearly show that the prompt secondary gammas and delayed fission-product gammas are the dominant components of total tissue kerma from initial nuclear radiation in the cases of the atomic (or pure-fission) devices detonated over Hiroshima and Nagasaki

  2. Projects Delay Factors of Saudi Arabia Construction Industry Using PLS-SEM Path Modelling Approach

    Directory of Open Access Journals (Sweden)

    Abdul Rahman Ismail

    2016-01-01

    Full Text Available This paper presents the development of PLS-SEM Path Model of delay factors of Saudi Arabia construction industry focussing on Mecca City. The model was developed and assessed using SmartPLS v3.0 software and it consists of 37 factors/manifests in 7 groups/independent variables and one dependent variable which is delay of the construction projects. The model was rigorously assessed at measurement and structural components and the outcomes found that the model has achieved the required threshold values. At structural level of the model, among the seven groups, the client and consultant group has the highest impact on construction delay with path coefficient β-value of 0.452 and the project management and contract administration group is having the least impact to the construction delay with β-value of 0.016. The overall model has moderate explaining power ability with R2 value of 0.197 for Saudi Arabia construction industry representation. This model will able to assist practitioners in Mecca city to pay more attention in risk analysis for potential construction delay.

  3. Development of a subway operation incident delay model using accelerated failure time approaches.

    Science.gov (United States)

    Weng, Jinxian; Zheng, Yang; Yan, Xuedong; Meng, Qiang

    2014-12-01

    This study aims to develop a subway operational incident delay model using the parametric accelerated time failure (AFT) approach. Six parametric AFT models including the log-logistic, lognormal and Weibull models, with fixed and random parameters are built based on the Hong Kong subway operation incident data from 2005 to 2012, respectively. In addition, the Weibull model with gamma heterogeneity is also considered to compare the model performance. The goodness-of-fit test results show that the log-logistic AFT model with random parameters is most suitable for estimating the subway incident delay. First, the results show that a longer subway operation incident delay is highly correlated with the following factors: power cable failure, signal cable failure, turnout communication disruption and crashes involving a casualty. Vehicle failure makes the least impact on the increment of subway operation incident delay. According to these results, several possible measures, such as the use of short-distance and wireless communication technology (e.g., Wifi and Zigbee) are suggested to shorten the delay caused by subway operation incidents. Finally, the temporal transferability test results show that the developed log-logistic AFT model with random parameters is stable over time. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Permanence for a Delayed Nonautonomous SIR Epidemic Model with Density-Dependent Birth Rate

    Directory of Open Access Journals (Sweden)

    Li Yingke

    2011-01-01

    Full Text Available Based on some well-known SIR models, a revised nonautonomous SIR epidemic model with distributed delay and density-dependent birth rate was considered. Applying some classical analysis techniques for ordinary differential equations and the method proposed by Wang (2002, the threshold value for the permanence and extinction of the model was obtained.

  5. Modelling maintenance practice of production plant using the delay-time concept

    NARCIS (Netherlands)

    Christer, A.H.; Wang, Wenbin; Baker, R.D.; Sharp, J.

    1995-01-01

    In this paper we present a study carried out for a copper products manufacturing company, developing and applying the delay-time modelling technique to model and thus optimize preventive maintenance (PM) of the plant. A key machine in the plant is used to illustrate the modelling process and

  6. Effect of the oxygen balance on ignition and detonation properties of liquid explosive mixtures

    International Nuclear Information System (INIS)

    Genetier, M; Osmont, A; Baudin, G

    2014-01-01

    The objective is to compare the ignition and detonation properties of various liquid high explosives having negative up to positive oxygen balance (OB): nitromethane (OB < 0), saccharose and hydrogen peroxide based mixture (quasi nil OB), hydrogen peroxide with more than 90% purity (OB > 0). The decomposition kinetic rates and the equations of state (EOS) for the liquid mixtures and detonation products (DP) are the input data for a detonation model. EOS are theoretically determined using the Woolfolk et al. universal liquid polar shock law and thermochemical computations for DP. The decomposition kinetic rate laws are determined to reproduce the shock to detonation transition for the mixtures submitted to planar plate impacts. Such a model is not sufficient to compute open field explosions. The aerial overpressure is well reproduced in the first few microseconds, however, after it becomes worse at large expansion of the fireball and the impulse is underestimated. The problem of the DP EOS alone is that it takes only the detonation into account, the secondary combustion DP – air is not considered. To solve this problem a secondary combustion model has been developed to take the OB effect into account. The detonation model has been validated on planar plate impact experiments. The secondary combustion parameters were deduced from thermochemical computations. The whole model has been used to predict the effects of the oxygen balance on open air blast effects of spherical charges.

  7. Persistence and extinction for a stochastic logistic model with infinite delay

    OpenAIRE

    Chun Lu; Xiaohua Ding

    2013-01-01

    This article, studies a stochastic logistic model with infinite delay. Using a phase space, we establish sufficient conditions for the extinction, nonpersistence in the mean, weak persistence, and stochastic permanence. A threshold between weak persistence and extinction is obtained. Our results state that different types of environmental noises have different effects on the persistence and extinction, and that the delay has no impact on the persistence and ext...

  8. Traveling waves in a delayed SIR model with nonlocal dispersal and nonlinear incidence

    Science.gov (United States)

    Zhang, Shou-Peng; Yang, Yun-Rui; Zhou, Yong-Hui

    2018-01-01

    This paper is concerned with traveling waves of a delayed SIR model with nonlocal dispersal and a general nonlinear incidence. The existence and nonexistence of traveling waves of the system are established respectively by Schauder's fixed point theorem and two-sided Laplace transform. It is also shown that the spread speed c is influenced by the dispersal rate of the infected individuals and the delay τ.

  9. Stability and bifurcation of a discrete BAM neural network model with delays

    International Nuclear Information System (INIS)

    Zheng Baodong; Zhang Yang; Zhang Chunrui

    2008-01-01

    A map modelling a discrete bidirectional associative memory neural network with delays is investigated. Its dynamics is studied in terms of local analysis and Hopf bifurcation analysis. By analyzing the associated characteristic equation, its linear stability is investigated and Hopf bifurcations are demonstrated. It is found that there exist Hopf bifurcations when the delay passes a sequence of critical values. Numerical simulation is performed to verify the analytical results

  10. Hopf bifurcation in a delayed reaction-diffusion-advection population model

    Science.gov (United States)

    Chen, Shanshan; Lou, Yuan; Wei, Junjie

    2018-04-01

    In this paper, we investigate a reaction-diffusion-advection model with time delay effect. The stability/instability of the spatially nonhomogeneous positive steady state and the associated Hopf bifurcation are investigated when the given parameter of the model is near the principle eigenvalue of an elliptic operator. Our results imply that time delay can make the spatially nonhomogeneous positive steady state unstable for a reaction-diffusion-advection model, and the model can exhibit oscillatory pattern through Hopf bifurcation. The effect of advection on Hopf bifurcation values is also considered, and our results suggest that Hopf bifurcation is more likely to occur when the advection rate increases.

  11. The Dynamical Behaviors for a Class of Immunogenic Tumor Model with Delay

    Directory of Open Access Journals (Sweden)

    Ping Bi

    2017-01-01

    Full Text Available This paper aims at studying the model proposed by Kuznetsov and Taylor in 1994. Inspired by Mayer et al., time delay is introduced in the general model. The dynamic behaviors of this model are studied, which include the existence and stability of the equilibria and Hopf bifurcation of the model with discrete delays. The properties of the bifurcated periodic solutions are studied by using the normal form on the center manifold. Numerical examples and simulations are given to illustrate the bifurcation analysis and the obtained results.

  12. OGLE-2013-SN-079: A LONELY SUPERNOVA CONSISTENT WITH A HELIUM SHELL DETONATION

    International Nuclear Information System (INIS)

    Inserra, C.; Sim, S. A.; Smartt, S. J.; Nicholl, M.; Jerkstrand, A.; Chen, T.-W.; Wyrzykowski, L.; Fraser, M.; Blagorodnova, N.; Campbell, H.; Shen, K. J.; Gal-Yam, A.; Howell, D. A.; Valenti, S.; Maguire, K.; Mazzali, P.; Bersier, D.; Taubenberger, S.; Benitez-Herrera, S.; Elias-Rosa, N.

    2015-01-01

    We present observational data for a peculiar supernova discovered by the OGLE-IV survey and followed by the Public ESO Spectroscopic Survey for Transient Objects. The inferred redshift of z = 0.07 implies an absolute magnitude in the rest-frame I-band of M I ∼ –17.6 mag. This places it in the luminosity range between normal Type Ia SNe and novae. Optical and near infrared spectroscopy reveal mostly Ti and Ca lines, and an unusually red color arising from strong depression of flux at rest wavelengths <5000 Å. To date, this is the only reported SN showing Ti-dominated spectra. The data are broadly consistent with existing models for the pure detonation of a helium shell around a low-mass CO white dwarf and ''double-detonation'' models that include a secondary detonation of a CO core following a primary detonation in an overlying helium shell

  13. OGLE-2013-SN-079: A LONELY SUPERNOVA CONSISTENT WITH A HELIUM SHELL DETONATION

    Energy Technology Data Exchange (ETDEWEB)

    Inserra, C.; Sim, S. A.; Smartt, S. J.; Nicholl, M.; Jerkstrand, A.; Chen, T.-W. [Astrophysics Research Centre, School of Mathematics and Physics, Queens University Belfast, Belfast BT7 1NN (United Kingdom); Wyrzykowski, L. [University of Warsaw, Astronomical Observatory, Al. Ujazdowskie 400-478 Warszawa (Poland); Fraser, M.; Blagorodnova, N.; Campbell, H. [Institute of Astronomy, University of Cambridge, Madingley Road, CB3 0HA Cambridge (United Kingdom); Shen, K. J. [Department of Astronomy and Theoretical Astrophysics Center, University of California, Berkeley, CA 94720 (United States); Gal-Yam, A. [Benoziyo Center for Astrophysics, Weizmann Institute of Science, 76100 Rehovot (Israel); Howell, D. A.; Valenti, S. [Las Cumbres Observatory Global Telescope Network, 6740 Cortona Drive, Suite 102 Goleta, CA 93117 (United States); Maguire, K. [European Southern Observatory for Astronomical Research in the Southern Hemisphere (ESO), Karl-Schwarzschild-Str. 2, 85748 Garching b. Munchen (Germany); Mazzali, P.; Bersier, D. [Astrophysics Research Institute, Liverpool John Moores University, Liverpool (United Kingdom); Taubenberger, S.; Benitez-Herrera, S. [Max-Planck-Institut für Astrophysik, Karl-Schwarzschild-Str. 1, 85741 Garching (Germany); Elias-Rosa, N., E-mail: c.inserra@qub.ac.uk [INAF - Osservatorio Astronomico di Padova, Vicolo dell' Osservatorio 5, I-35122 Padova (Italy); and others

    2015-01-20

    We present observational data for a peculiar supernova discovered by the OGLE-IV survey and followed by the Public ESO Spectroscopic Survey for Transient Objects. The inferred redshift of z = 0.07 implies an absolute magnitude in the rest-frame I-band of M{sub I} ∼ –17.6 mag. This places it in the luminosity range between normal Type Ia SNe and novae. Optical and near infrared spectroscopy reveal mostly Ti and Ca lines, and an unusually red color arising from strong depression of flux at rest wavelengths <5000 Å. To date, this is the only reported SN showing Ti-dominated spectra. The data are broadly consistent with existing models for the pure detonation of a helium shell around a low-mass CO white dwarf and ''double-detonation'' models that include a secondary detonation of a CO core following a primary detonation in an overlying helium shell.

  14. Modelling, simulation and dynamic analysis of the time delay model of the recuperative heat exchanger

    Directory of Open Access Journals (Sweden)

    Debeljković Dragutin Lj.

    2016-01-01

    Full Text Available The heat exchangers are frequently used as constructive elements in various plants and their dynamics is very important. Their operation is usually controlled by manipulating inlet fluid temperatures or mass flow rates. On the basis of the accepted and critically clarified assumptions, a linearized mathematical model of the cross-flow heat exchanger has been derived, taking into account the wall dynamics. The model is based on the fundamental law of energy conservation, covers all heat accumulation storages in the process, and leads to the set of partial differential equations (PDE, which solution is not possible in closed form. In order to overcome this problem the approach based on physical discretization was applied with associated time delay on the positions where it was necessary and unavoidable. This is quite new approach, which represent the further extension of previous results which did not include significant time delay existing in the working media. Simulation results, were derived, showing progress in building such a model suitable for further treatment from the position of analysis as well as the needs for control synthesis problem.

  15. Modelling and tuning for a time-delayed vibration absorber with friction

    Science.gov (United States)

    Zhang, Xiaoxu; Xu, Jian; Ji, Jinchen

    2018-06-01

    This paper presents an integrated analytical and experimental study to the modelling and tuning of a time-delayed vibration absorber (TDVA) with friction. In system modelling, this paper firstly applies the method of averaging to obtain the frequency response function (FRF), and then uses the derived FRF to evaluate the fitness of different friction models. After the determination of the system model, this paper employs the obtained FRF to evaluate the vibration absorption performance with respect to tunable parameters. A significant feature of the TDVA with friction is that its stability is dependent on the excitation parameters. To ensure the stability of the time-delayed control, this paper defines a sufficient condition for stability estimation. Experimental measurements show that the dynamic response of the TDVA with friction can be accurately predicted and the time-delayed control can be precisely achieved by using the modelling and tuning technique provided in this paper.

  16. A Study of Detonation Propagation and Diffraction with Compliant Confinement

    Energy Technology Data Exchange (ETDEWEB)

    Banks, J; Schwendeman, D; Kapila, A; Henshaw, W

    2007-08-13

    A previous computational study of diffracting detonations with the ignition-and-growth model demonstrated that contrary to experimental observations, the computed solution did not exhibit dead zones. For a rigidly confined explosive it was found that while diffraction past a sharp corner did lead to a temporary separation of the lead shock from the reaction zone, the detonation re-established itself in due course and no pockets of unreacted material were left behind. The present investigation continues to focus on the potential for detonation failure within the ignition-and-growth (IG) model, but now for a compliant confinement of the explosive. The aim of the present paper is two fold. First, in order to compute solutions of the governing equations for multi-material reactive flow, a numerical method of solution is developed and discussed. The method is a Godunov-type, fractional-step scheme which incorporates an energy correction to suppress numerical oscillations that would occur near the material interface separating the reactive material and the inert confiner for standard conservative schemes. The numerical method uses adaptive mesh refinement (AMR) on overlapping grids, and the accuracy of solutions is well tested using a two-dimensional rate-stick problem for both strong and weak inert confinements. The second aim of the paper is to extend the previous computational study of the IG model by considering two related problems. In the first problem, the corner-turning configuration is re-examined, and it is shown that in the matter of detonation failure, the absence of rigid confinement does not affect the outcome in a material way; sustained dead zones continue to elude the model. In the second problem, detonations propagating down a compliantly confined pencil-shaped configuration are computed for a variety of cone angles of the tapered section. It is found, in accord with experimental observation, that if the cone angle is small enough, the detonation fails

  17. Local models violating Bell's inequality by time delays

    International Nuclear Information System (INIS)

    Scalera, G.C.

    1984-01-01

    The performance of ensemble averages is neither a sufficient nor a necessary condition to avoid Bell's inequality violations characteristic of nonergodic systems. Slight modifications of a local nonergodic logical model violating Bell's inequality produce a stochastic model exactly fitting the quantum-mechanical correlation function. From these considerations is appears evident that the last experiments on the existence of local hidden variables are not conclusive

  18. Bifurcation and Stability in a Delayed Predator-Prey Model with Mixed Functional Responses

    Science.gov (United States)

    Yafia, R.; Aziz-Alaoui, M. A.; Merdan, H.; Tewa, J. J.

    2015-06-01

    The model analyzed in this paper is based on the model set forth by Aziz Alaoui et al. [Aziz Alaoui & Daher Okiye, 2003; Nindjin et al., 2006] with time delay, which describes the competition between the predator and prey. This model incorporates a modified version of the Leslie-Gower functional response as well as that of Beddington-DeAngelis. In this paper, we consider the model with one delay consisting of a unique nontrivial equilibrium E* and three others which are trivial. Their dynamics are studied in terms of local and global stabilities and of the description of Hopf bifurcation at E*. At the third trivial equilibrium, the existence of the Hopf bifurcation is proven as the delay (taken as a parameter of bifurcation) that crosses some critical values.

  19. Travelling wave and convergence in stage-structured reaction-diffusion competitive models with nonlocal delays

    International Nuclear Information System (INIS)

    Xu Rui; Chaplain, M.A.J.; Davidson, F.A.

    2006-01-01

    In this paper, we first investigate a stage-structured competitive model with time delays, harvesting, and nonlocal spatial effect. By using an iterative technique recently developed by Wu and Zou (Wu J, Zou X. Travelling wave fronts of reaction-diffusion systems with delay. J Dynam Differen Equat 2001;13:651-87), sufficient conditions are established for the existence of travelling front solution connecting the two boundary equilibria in the case when there is no positive equilibrium. The travelling wave front corresponds to an invasion by a stronger species which drives the weaker species to extinction. Secondly, we consider a stage-structured competitive model with time delays and nonlocal spatial effect when the domain is finite. We prove the global stability of each of the nonnegative equilibria and demonstrate that the more complex model studied here admits three possible long term behaviors: coexistence, bistability and dominance as is the case for the standard Lotka-Voltera competitive model

  20. Effects of stochastic time-delayed feedback on a dynamical system modeling a chemical oscillator

    Science.gov (United States)

    González Ochoa, Héctor O.; Perales, Gualberto Solís; Epstein, Irving R.; Femat, Ricardo

    2018-05-01

    We examine how stochastic time-delayed negative feedback affects the dynamical behavior of a model oscillatory reaction. We apply constant and stochastic time-delayed negative feedbacks to a point Field-Körös-Noyes photosensitive oscillator and compare their effects. Negative feedback is applied in the form of simulated inhibitory electromagnetic radiation with an intensity proportional to the concentration of oxidized light-sensitive catalyst in the oscillator. We first characterize the system under nondelayed inhibitory feedback; then we explore and compare the effects of constant (deterministic) versus stochastic time-delayed feedback. We find that the oscillatory amplitude, frequency, and waveform are essentially preserved when low-dispersion stochastic delayed feedback is used, whereas small but measurable changes appear when a large dispersion is applied.

  1. Effect of delayed response in growth on the dynamics of a chemostat model with impulsive input

    International Nuclear Information System (INIS)

    Jiao Jianjun; Yang Xiaosong; Chen Lansun; Cai Shaohong

    2009-01-01

    In this paper, a chemostat model with delayed response in growth and impulsive perturbations on the substrate is considered. Using the discrete dynamical system determined by the stroboscopic map, we obtain a microorganism-extinction periodic solution, further, the globally attractive condition of the microorganism-extinction periodic solution is obtained. By the use of the theory on delay functional and impulsive differential equation, we also obtain the permanent condition of the investigated system. Our results indicate that the discrete time delay has influence to the dynamics behaviors of the investigated system, and provide tactical basis for the experimenters to control the outcome of the chemostat. Furthermore, numerical analysis is inserted to illuminate the dynamics of the system affected by the discrete time delay.

  2. Delayed signatures of underground nuclear explosions

    Science.gov (United States)

    Carrigan, Charles R.; Sun, Yunwei; Hunter, Steven L.; Ruddle, David G.; Wagoner, Jeffrey L.; Myers, Katherine B. L.; Emer, Dudley F.; Drellack, Sigmund L.; Chipman, Veraun D.

    2016-03-01

    Radionuclide signals from underground nuclear explosions (UNEs) are strongly influenced by the surrounding hydrogeologic regime. One effect of containment is delay of detonation-produced radioxenon reaching the surface as well as lengthening of its period of detectability compared to uncontained explosions. Using a field-scale tracer experiment, we evaluate important transport properties of a former UNE site. We observe the character of signals at the surface due to the migration of gases from the post-detonation chimney under realistic transport conditions. Background radon signals are found to be highly responsive to cavity pressurization suggesting that large local radon anomalies may be an indicator of a clandestine UNE. Computer simulations, using transport properties obtained from the experiment, track radioxenon isotopes in the chimney and their migration to the surface. They show that the chimney surrounded by a fractured containment regime behaves as a leaky chemical reactor regarding its effect on isotopic evolution introducing a dependence on nuclear yield not previously considered. This evolutionary model for radioxenon isotopes is validated by atmospheric observations of radioxenon from a 2013 UNE in the Democratic People’s Republic of Korea (DPRK). Our model produces results similar to isotopic observations with nuclear yields being comparable to seismic estimates.

  3. The Application of Time-Delay Dependent H∞ Control Model in Manufacturing Decision Optimization

    Directory of Open Access Journals (Sweden)

    Haifeng Guo

    2015-01-01

    Full Text Available This paper uses a time-delay dependent H∞ control model to analyze the effect of manufacturing decisions on the process of transmission from resources to capability. We establish a theoretical framework of manufacturing management process based on three terms: resource, manufacturing decision, and capability. Then we build a time-delay H∞ robust control model to analyze the robustness of manufacturing management. With the state feedback controller between manufacturing resources and decision, we find that there is an optimal decision to adjust the process of transmission from resources to capability under uncertain environment. Finally, we provide an example to prove the robustness of this model.

  4. A Time-Delayed Mathematical Model for Tumor Growth with the Effect of a Periodic Therapy.

    Science.gov (United States)

    Xu, Shihe; Wei, Xiangqing; Zhang, Fangwei

    2016-01-01

    A time-delayed mathematical model for tumor growth with the effect of periodic therapy is studied. The establishment of the model is based on the reaction-diffusion dynamics and mass conservation law and is considered with a time delay in cell proliferation process. Sufficient conditions for the global stability of tumor free equilibrium are given. We also prove that if external concentration of nutrients is large the tumor will not disappear and the conditions under which there exist periodic solutions to the model are also determined. Results are illustrated by computer simulations.

  5. A Time-Delayed Mathematical Model for Tumor Growth with the Effect of a Periodic Therapy

    Directory of Open Access Journals (Sweden)

    Shihe Xu

    2016-01-01

    Full Text Available A time-delayed mathematical model for tumor growth with the effect of periodic therapy is studied. The establishment of the model is based on the reaction-diffusion dynamics and mass conservation law and is considered with a time delay in cell proliferation process. Sufficient conditions for the global stability of tumor free equilibrium are given. We also prove that if external concentration of nutrients is large the tumor will not disappear and the conditions under which there exist periodic solutions to the model are also determined. Results are illustrated by computer simulations.

  6. Global stability, periodic solutions, and optimal control in a nonlinear differential delay model

    Directory of Open Access Journals (Sweden)

    Anatoli F. Ivanov

    2010-09-01

    Full Text Available A nonlinear differential equation with delay serving as a mathematical model of several applied problems is considered. Sufficient conditions for the global asymptotic stability and for the existence of periodic solutions are given. Two particular applications are treated in detail. The first one is a blood cell production model by Mackey, for which new periodicity criteria are derived. The second application is a modified economic model with delay due to Ramsey. An optimization problem for a maximal consumption is stated and solved for the latter.

  7. Global Stability of an Eco-Epidemiological Model with Time Delay and Saturation Incidence

    Directory of Open Access Journals (Sweden)

    Shuxue Mao

    2011-01-01

    Full Text Available We investigate a delayed eco-epidemiological model with disease in predator and saturation incidence. First, by comparison arguments, the permanence of the model is discussed. Then, we study the local stability of each equilibrium of the model by analyzing the corresponding characteristic equations and find that Hopf bifurcation occurs when the delay τ passes through a sequence of critical values. Next, by means of an iteration technique, sufficient conditions are derived for the global stability of the disease-free planar equilibrium and the positive equilibrium. Numerical examples are carried out to illustrate the analytical results.

  8. SPONTANEOUS INITIATION OF DETONATIONS IN WHITE DWARF ENVIRONMENTS: DETERMINATION OF CRITICAL SIZES

    International Nuclear Information System (INIS)

    Seitenzahl, Ivo R.; Meakin, Casey A.; Townsley, Dean M.; Truran, James W.; Lamb, Don Q.

    2009-01-01

    Some explosion models for Type Ia supernovae (SNe Ia), such as the gravitationally confined detonation (GCD) or the double detonation sub-Chandrasekhar (DDSC) models, rely on the spontaneous initiation of a detonation in the degenerate 12 C/ 16 O material of a white dwarf (WD). The length scales pertinent to the initiation of the detonation are notoriously unresolved in multidimensional stellar simulations, prompting the use of results of one-dimensional simulations at higher resolution, such as those performed for this work, as guidelines for deciding whether or not conditions reached in the higher dimensional full star simulations successfully would lead to the onset of a detonation. Spontaneous initiation relies on the existence of a suitable gradient in self-ignition (induction) times of the fuel, which we set up with a spatially localized nonuniformity of temperature-a hot spot. We determine the critical (smallest) sizes of such hot spots that still marginally result in a detonation in WD matter by integrating the reactive Euler equations with the hydrodynamics code FLASH. We quantify the dependences of the critical sizes of such hot spots on composition, background temperature, peak temperature, geometry, and functional form of the temperature disturbance, many of which were hitherto largely unexplored in the literature. We discuss the implications of our results in the context of modeling of SNe Ia.

  9. Research on laser detonation pulse circuit with low-power based on super capacitor

    Science.gov (United States)

    Wang, Hao-yu; Hong, Jin; He, Aifeng; Jing, Bo; Cao, Chun-qiang; Ma, Yue; Chu, En-yi; Hu, Ya-dong

    2018-03-01

    According to the demand of laser initiating device miniaturization and low power consumption of weapon system, research on the low power pulse laser detonation circuit with super capacitor. Established a dynamic model of laser output based on super capacitance storage capacity, discharge voltage and programmable output pulse width. The output performance of the super capacitor under different energy storage capacity and discharge voltage is obtained by simulation. The experimental test system was set up, and the laser diode of low power pulsed laser detonation circuit was tested and the laser output waveform of laser diode in different energy storage capacity and discharge voltage was collected. Experiments show that low power pulse laser detonation based on super capacitor energy storage circuit discharge with high efficiency, good transient performance, for a low power consumption requirement, for laser detonation system and low power consumption and provide reference light miniaturization of engineering practice.

  10. Predictive Models of Duration of Ground Delay Programs in New York Area Airports

    Science.gov (United States)

    Kulkarni, Deepak

    2011-01-01

    Initially planned GDP duration often turns out to be an underestimate or an overestimate of the actual GDP duration. This, in turn, results in avoidable airborne or ground delays in the system. Therefore, better models of actual duration have the potential of reducing delays in the system. The overall objective of this study is to develop such models based on logs of GDPs. In a previous report, we described descriptive models of Ground Delay Programs. These models were defined in terms of initial planned duration and in terms of categorical variables. These descriptive models are good at characterizing the historical errors in planned GDP durations. This paper focuses on developing predictive models of GDP duration. Traffic Management Initiatives (TMI) are logged by Air Traffic Control facilities with The National Traffic Management Log (NTML) which is a single system for automated recoding, coordination, and distribution of relevant information about TMIs throughout the National Airspace System. (Brickman, 2004 Yuditsky, 2007) We use 2008-2009 GDP data from the NTML database for the study reported in this paper. NTML information about a GDP includes the initial specification, possibly one or more revisions, and the cancellation. In the next section, we describe general characteristics of Ground Delay Programs. In the third section, we develop models of actual duration. In the fourth section, we compare predictive performance of these models. The final section is a conclusion.

  11. An integrated model of statistical process control and maintenance based on the delayed monitoring

    International Nuclear Information System (INIS)

    Yin, Hui; Zhang, Guojun; Zhu, Haiping; Deng, Yuhao; He, Fei

    2015-01-01

    This paper develops an integrated model of statistical process control and maintenance decision. The proposal of delayed monitoring policy postpones the sampling process till a scheduled time and contributes to ten-scenarios of the production process, where equipment failure may occur besides quality shift. The equipment failure and the control chart alert trigger the corrective maintenance and the predictive maintenance, respectively. The occurrence probability, the cycle time and the cycle cost of each scenario are obtained by integral calculation; therefore, a mathematical model is established to minimize the expected cost by using the genetic algorithm. A Monte Carlo simulation experiment is conducted and compared with the integral calculation in order to ensure the analysis of the ten-scenario model. Another ordinary integrated model without delayed monitoring is also established as comparison. The results of a numerical example indicate satisfactory economic performance of the proposed model. Finally, a sensitivity analysis is performed to investigate the effect of model parameters. - Highlights: • We develop an integrated model of statistical process control and maintenance. • We propose delayed monitoring policy and derive an economic model with 10 scenarios. • We consider two deterioration mechanisms, quality shift and equipment failure. • The delayed monitoring policy will help reduce the expected cost

  12. Influence on rewetting temperature and wetting delay during rewetting rod bundle by various radial jet models

    Energy Technology Data Exchange (ETDEWEB)

    Debbarma, Ajoy; Pandey, Krishna Murari [National Institute of Technology, Assam (India). Dept. of Mechanical Engineering

    2016-03-15

    Numerical investigation of the rewetting of single sector fuel assembly of Advanced Heavy Water Reactor (AHWR) has been carried out to exhibit the effect of coolant jet diameters (2, 3 and 4 mm) and jet directions (Model: M, X and X2). The rewetting phenomena with various jet models are compared on the basis of rewetting temperature and wetting delay. Temperature-time curve have been evaluated from rods surfaces at different circumference, radial and axial locations of rod bundle. The cooling curve indicated the presence of vapor in respected location, where it prevents the contact between the firm and fluid phases. The peak wall temperature represents as rewetting temperature. The time period observed between initial to rewetting temperature point is wetting delay. It was noted that as improved in various jet models, rewetting temperature and wetting delay reduced, which referred the coolant stipulation in the rod bundle dominant vapor formation.

  13. Influence on rewetting temperature and wetting delay during rewetting rod bundle by various radial jet models

    International Nuclear Information System (INIS)

    Debbarma, Ajoy; Pandey, Krishna Murari

    2016-01-01

    Numerical investigation of the rewetting of single sector fuel assembly of Advanced Heavy Water Reactor (AHWR) has been carried out to exhibit the effect of coolant jet diameters (2, 3 and 4 mm) and jet directions (Model: M, X and X2). The rewetting phenomena with various jet models are compared on the basis of rewetting temperature and wetting delay. Temperature-time curve have been evaluated from rods surfaces at different circumference, radial and axial locations of rod bundle. The cooling curve indicated the presence of vapor in respected location, where it prevents the contact between the firm and fluid phases. The peak wall temperature represents as rewetting temperature. The time period observed between initial to rewetting temperature point is wetting delay. It was noted that as improved in various jet models, rewetting temperature and wetting delay reduced, which referred the coolant stipulation in the rod bundle dominant vapor formation.

  14. Shock wave interactions with detonable clouds

    International Nuclear Information System (INIS)

    Ripley, R.C.; Josey, T.; Donahue, L.; Whitehouse, D.R.

    2004-01-01

    This paper presents results from the numerical simulation of compressible multi-species gases in an unstructured mesh CFD code called Chinook. Multiple species gases are significant to a wide range of CFD applications that involve chemical reactions, in particular detonation. The purpose of this paper is to investigate the interaction of shock waves with localized regions of reactive and non-reactive gas species. Test cases are chosen to highlight shock reflection and acceleration through combustion products resulting from the detonation of an explosive charge, and detonation wave propagation through a fuel-air cloud. Computations are performed in a 2D axi-symmetric framework. (author)

  15. Qualitative and quantitative analysis of detonation products

    International Nuclear Information System (INIS)

    Xie Yun

    2005-01-01

    Different sampling and different injection method were used during analyzing unknown detonation products in a obturator. The sample analyzed by gas chromatography and gas chromatography/mass spectrum. Qualitative analysis was used with CO, NO, C 2 H 2 , C 6 H 6 and so on, qualitative analysis was used with C 3 H 5 N, C 10 H 10 , C 8 H 8 N 2 and so on. The method used in the article is feasible. The results show that the component of detonation in the study is negative oxygen balance, there were many pollutants in the detonation products. (authors)

  16. Methodology for Analysis, Modeling and Simulation of Airport Gate-waiting Delays

    Science.gov (United States)

    Wang, Jianfeng

    availability. Analysis of the worst days at six major airports in the summer of 2007 indicates that major gate-waiting delays are primarily due to operational disruptions---specifically, extended gate occupancy time, reduced gate availability and higher-than-scheduled arrival rate (usually due to arrival delay). Major gate-waiting delays are not a result of over-scheduling. The second part of this dissertation presents a simulation model to evaluate the impact of gate operational disruptions and gate-waiting-delay mitigation strategies, including building new gates, implementing common gates, using overnight off-gate parking and adopting self-docking gates. Simulation results show the following effects of disruptions: (i) The impact of arrival delay in a time window (e.g. 7 pm to 9 pm) on gate-waiting delay is bounded. (ii) The impact of longer-than-scheduled gate-occupancy times in a time window on gate-waiting delay can be unbounded and gate-waiting delay can increase linearly as the disruption level increases. (iii) Small reductions in gate availability have a small impact on gate-waiting delay due to slack gate capacity, while larger reductions have a non-linear impact as slack gate capacity is used up. Simulation results show the following effects of mitigation strategies: (i) Implementing common gates is an effective mitigation strategy, especially for airports with a flight schedule not dominated by one carrier, such as LGA. (ii) The overnight off-gate rule is effective in mitigating gate-waiting delay for flights stranded overnight following departure cancellations. This is especially true at airports where the gate utilization is at maximum overnight, such as LGA and DFW. The overnight off-gate rule can also be very effective to mitigate gate-waiting delay due to operational disruptions in evenings. (iii) Self-docking gates are effective in mitigating gate-waiting delay due to reduced gate availability.

  17. Coupling Detonation Shock Dynamics in a Consistent Manner to Equations of State

    Science.gov (United States)

    Belfield, William

    2017-06-01

    In hydrocode simulations, detonating high explosives (HE) are often modelled using programmed burn. Each HE cell is assigned a ``burn time'' at which it should begin to behave as HE products in the subsequent simulation. Traditionally, these burn times were calculated using a Huygens construction to propagate the detonation wave at a constant speed corresponding to the planar Chapman-Jouguet (CJ) velocity. The Detonation Shock Dynamics (DSD) model improves upon this approach by treating the local detonation velocity as a function of wave curvature, reflecting that the detonation speed is not constant in reality. However, without alterations being made, this variable detonation velocity is inconsistent with the CJ velocity associated with the HE products equation of state (EOS). Previous work has shown that the inconsistency can be resolved by modifying the HE product EOS, but this treatment is empirical in nature and has only been applied to the JWL EOS. This work investigates different methods to resolve the inconsistency that are applicable both to JWL and to tabular HE product EOS, and their impact on hydrocode simulations.

  18. Real-time traffic signal optimization model based on average delay time per person

    Directory of Open Access Journals (Sweden)

    Pengpeng Jiao

    2015-10-01

    Full Text Available Real-time traffic signal control is very important for relieving urban traffic congestion. Many existing traffic control models were formulated using optimization approach, with the objective functions of minimizing vehicle delay time. To improve people’s trip efficiency, this article aims to minimize delay time per person. Based on the time-varying traffic flow data at intersections, the article first fits curves of accumulative arrival and departure vehicles, as well as the corresponding functions. Moreover, this article transfers vehicle delay time to personal delay time using average passenger load of cars and buses, employs such time as the objective function, and proposes a signal timing optimization model for intersections to achieve real-time signal parameters, including cycle length and green time. This research further implements a case study based on practical data collected at an intersection in Beijing, China. The average delay time per person and queue length are employed as evaluation indices to show the performances of the model. The results show that the proposed methodology is capable of improving traffic efficiency and is very effective for real-world applications.

  19. The threshold of a stochastic delayed SIR epidemic model with vaccination

    Science.gov (United States)

    Liu, Qun; Jiang, Daqing

    2016-11-01

    In this paper, we study the threshold dynamics of a stochastic delayed SIR epidemic model with vaccination. We obtain sufficient conditions for extinction and persistence in the mean of the epidemic. The threshold between persistence in the mean and extinction of the stochastic system is also obtained. Compared with the corresponding deterministic model, the threshold affected by the white noise is smaller than the basic reproduction number Rbar0 of the deterministic system. Results show that time delay has important effects on the persistence and extinction of the epidemic.

  20. Persistence and extinction for a stochastic logistic model with infinite delay

    Directory of Open Access Journals (Sweden)

    Chun Lu

    2013-11-01

    Full Text Available This article, studies a stochastic logistic model with infinite delay. Using a phase space, we establish sufficient conditions for the extinction, nonpersistence in the mean, weak persistence, and stochastic permanence. A threshold between weak persistence and extinction is obtained. Our results state that different types of environmental noises have different effects on the persistence and extinction, and that the delay has no impact on the persistence and extinction for the stochastic model in the autonomous case. Numerical simulations illustrate the theoretical results.

  1. Stability and Bifurcation of a Computer Virus Propagation Model with Delay and Incomplete Antivirus Ability

    Directory of Open Access Journals (Sweden)

    Jianguo Ren

    2014-01-01

    Full Text Available A new computer virus propagation model with delay and incomplete antivirus ability is formulated and its global dynamics is analyzed. The existence and stability of the equilibria are investigated by resorting to the threshold value R0. By analysis, it is found that the model may undergo a Hopf bifurcation induced by the delay. Correspondingly, the critical value of the Hopf bifurcation is obtained. Using Lyapunov functional approach, it is proved that, under suitable conditions, the unique virus-free equilibrium is globally asymptotically stable if R01. Numerical examples are presented to illustrate possible behavioral scenarios of the mode.

  2. Dynamics of an HBV/HCV infection model with intracellular delay and cell proliferation

    Science.gov (United States)

    Zhang, Fengqin; Li, Jianquan; Zheng, Chongwu; Wang, Lin

    2017-01-01

    A new mathematical model of hepatitis B/C virus (HBV/HCV) infection which incorporates the proliferation of healthy hepatocyte cells and the latent period of infected hepatocyte cells is proposed and studied. The dynamics is analyzed via Pontryagin's method and a newly proposed alternative geometric stability switch criterion. Sharp conditions ensuring stability of the infection persistent equilibrium are derived by applying Pontryagin's method. Using the intracellular delay as the bifurcation parameter and applying an alternative geometric stability switch criterion, we show that the HBV/HCV infection model undergoes stability switches. Furthermore, numerical simulations illustrate that the intracellular delay can induce complex dynamics such as persistence bubbles and chaos.

  3. Complex oscillatory behaviour in a delayed protein cross talk model with periodic forcing

    International Nuclear Information System (INIS)

    Nikolov, Svetoslav

    2009-01-01

    The purpose of this paper is to examine the effects of periodic forcing on the time delay protein cross talk model behaviour. We assume periodic variation for the plasma membrane permeability. The dynamic behaviour of the system is simulated and bifurcation diagrams are obtained for different parameters. The results show that periodic forcing can very easily give rise to complex dynamics, including a period-doubling cascade, chaos, quasi-periodic oscillating, and periodic windows. Finally, we calculate the maximal Lyapunov exponent in the regions of the parameter space where chaotic motion of delayed protein cross talk model with periodic forcing exists.

  4. A feedback control model for network flow with multiple pure time delays

    Science.gov (United States)

    Press, J.

    1972-01-01

    A control model describing a network flow hindered by multiple pure time (or transport) delays is formulated. Feedbacks connect each desired output with a single control sector situated at the origin. The dynamic formulation invokes the use of differential difference equations. This causes the characteristic equation of the model to consist of transcendental functions instead of a common algebraic polynomial. A general graphical criterion is developed to evaluate the stability of such a problem. A digital computer simulation confirms the validity of such criterion. An optimal decision making process with multiple delays is presented.

  5. Stability and bifurcation analysis in a kind of business cycle model with delay

    International Nuclear Information System (INIS)

    Zhang Chunrui; Wei Junjie

    2004-01-01

    A kind of business cycle model with delay is considered. Firstly, the linear stability of the model is studied and bifurcation set is drawn in the appropriate parameter plane. It is found that there exist Hopf bifurcations when the delay passes a sequence of critical values. Then the explicit algorithm for determining the direction of the Hopf bifurcations and the stability of the bifurcating periodic solutions are derived, using the normal form method and center manifold theorem. Finally, a group conditions to guarantee the global existence of periodic solutions is given, and numerical simulations are performed to illustrate the analytical results found

  6. Hydrodynamic Cucker-Smale model with normalized communication weights and time delay

    KAUST Repository

    Choi, Young-Pil

    2017-07-17

    We study a hydrodynamic Cucker-Smale-type model with time delay in communication and information processing, in which agents interact with each other through normalized communication weights. The model consists of a pressureless Euler system with time delayed non-local alignment forces. We resort to its Lagrangian formulation and prove the existence of its global in time classical solutions. Moreover, we derive a sufficient condition for the asymptotic flocking behavior of the solutions. Finally, we show the presence of a critical phenomenon for the Eulerian system posed in the spatially one-dimensional setting.

  7. End-to-End Delay Model for Train Messaging over Public Land Mobile Networks

    Directory of Open Access Journals (Sweden)

    Franco Mazzenga

    2017-11-01

    Full Text Available Modern train control systems rely on a dedicated radio network for train to ground communications. A number of possible alternatives have been analysed to adopt the European Rail Traffic Management System/European Train Control System (ERTMS/ETCS control system on local/regional lines to improve transport capacity. Among them, a communication system based on public networks (cellular&satellite provides an interesting, effective and alternative solution to proprietary and expensive radio networks. To analyse performance of this solution, it is necessary to model the end-to-end delay and message loss to fully characterize the message transfer process from train to ground and vice versa. Starting from the results of a railway test campaign over a 300 km railway line for a cumulative 12,000 traveled km in 21 days, in this paper, we derive a statistical model for the end-to-end delay required for delivering messages. In particular, we propose a two states model allowing for reproducing the main behavioral characteristics of the end-to-end delay as observed experimentally. Model formulation has been derived after deep analysis of the recorded experimental data. When it is applied to model a realistic scenario, it allows for explicitly accounting for radio coverage characteristics, the received power level, the handover points along the line and for the serving radio technology. As an example, the proposed model is used to generate the end-to-end delay profile in a realistic scenario.

  8. Influence of ignition energy, ignition location, and stoichiometry on the deflagration-to-detonation distance in a Pulse Detonation Engine

    OpenAIRE

    Robinson, John P.

    2000-01-01

    The feasibility of utilizing detonations for air-breathing propulsion is the subject of a significant research effort headed by the Office of Naval Research. Pulse Detonation Engines (PDE) have a theoretically greater efficiency than current combustion cycles. However, pulse detonation technology must mature beginning with research in the fundamental process of developing a detonation wave. This thesis explores various ignition conditions which minimize the deflagration-to- detonation transit...

  9. Two time-delay dynamic model on the transmission of malicious signals in wireless sensor network

    International Nuclear Information System (INIS)

    Keshri, Neha; Mishra, Bimal Kumar

    2014-01-01

    Highlights: • Role of time delay to reduce the adversary effect in WSN is explored. • Model with two time delays is proposed to analyse spread of malicious signal in WSN. • Dynamical behaviour of worm-free equilibrium and endemic equilibrium is shown. • Threshold condition for switch of stability are obtained analytically. • Relation between stability and the two time delays is also explored. - Abstract: Deployed in a hostile environment, motes of a Wireless sensor network (WSN) could be easily compromised by the attackers because of several constraints such as limited processing capabilities, memory space, and limited battery life time etc. While transmitting the data to their neighbour motes within the network, motes are easily compromised due to resource constraints. Here time delay can play an efficient role to reduce the adversary effect on motes. In this paper, we propose an epidemic model SEIR (Susceptible–Exposed–Infectious–Recovered) with two time delays to describe the transmission dynamics of malicious signals in wireless sensor network. The first delay accounts for an exposed (latent) period while the second delay is for the temporary immunity period due to multiple worm outbreaks. The dynamical behaviour of worm-free equilibrium and endemic equilibrium is shown from the point of stability which switches under some threshold condition specified by the basic reproduction number. Our results show that the global properties of equilibria also depends on the threshold condition and that latent and temporary immunity period in a mote does not affect the stability, but they play a positive role to control malicious attack. Moreover, numerical simulations are given to support the theoretical analysis

  10. Asymptotic Behaviour and Extinction of Delay Lotka-Volterra Model with Jump-Diffusion

    Directory of Open Access Journals (Sweden)

    Dan Li

    2014-01-01

    Full Text Available This paper studies the effect of jump-diffusion random environmental perturbations on the asymptotic behaviour and extinction of Lotka-Volterra population dynamics with delays. The contributions of this paper lie in the following: (a to consider delay stochastic differential equation with jumps, we introduce a proper initial data space, in which the initial data may be discontinuous function with downward jumps; (b we show that the delay stochastic differential equation with jumps associated with our model has a unique global positive solution and give sufficient conditions that ensure stochastically ultimate boundedness, moment average boundedness in time, and asymptotic polynomial growth of our model; (c the sufficient conditions for the extinction of the system are obtained, which generalized the former results and showed that the sufficiently large random jump magnitudes and intensity (average rate of jump events arrival may lead to extinction of the population.

  11. Shock-to-detonation transition in solid heterogeneous explosives; La transition choc-detonation dans les explosifs solides heterogenes

    Energy Technology Data Exchange (ETDEWEB)

    Belmas, R.

    2003-07-01

    This paper is an overview of the studies performed during the last decades on the shock-to-detonation transition process in heterogeneous explosives. We present the experimental and theoretical approaches mentioned in the literature and/or developed at CEA/DAM. The aim is to identify which main mechanisms govern this transition process and to evaluate the relevance of the available modeling tools. (author)

  12. Confined detonations with cylindrical and spherical symmetry

    International Nuclear Information System (INIS)

    Linan, A.; Lecuona, A.

    1979-01-01

    An imploding spherical or cylindrical detonation, starting in the interface of the detonantion with an external inert media, used as a reflector, creates on it a strong shock wave moving outward from the interface. An initially weak shock wave appears in the detonated media that travels toward the center, and it could reach the detonation wave, enforcing it in its process of implosion. To describe the fluid field, the Euler s equations are solved by means of expansions valid for the early stages of the process. Isentropic of the type P/pγ-K for the detonated and compressed inert media are used. For liquid or solid reflectors a more appropriate equation is used. (Author) 8 refs

  13. Aerospike Nozzle for Rotating Detonation Engine Application

    Data.gov (United States)

    National Aeronautics and Space Administration — This proposal presents a graduate MS research thesis on improving the efficiency of rotating detonation engines by using aerospike nozzle technologies. A rotating...

  14. Composite transcriptome assembly of RNA-seq data in a sheep model for delayed bone healing.

    Science.gov (United States)

    Jäger, Marten; Ott, Claus-Eric; Grünhagen, Johannes; Hecht, Jochen; Schell, Hanna; Mundlos, Stefan; Duda, Georg N; Robinson, Peter N; Lienau, Jasmin

    2011-03-24

    The sheep is an important model organism for many types of medically relevant research, but molecular genetic experiments in the sheep have been limited by the lack of knowledge about ovine gene sequences. Prior to our study, mRNA sequences for only 1,556 partial or complete ovine genes were publicly available. Therefore, we developed a composite de novo transcriptome assembly method for next-generation sequence data to combine known ovine mRNA and EST sequences, mRNA sequences from mouse and cow, and sequences assembled de novo from short read RNA-Seq data into a composite reference transcriptome, and identified transcripts from over 12 thousand previously undescribed ovine genes. Gene expression analysis based on these data revealed substantially different expression profiles in standard versus delayed bone healing in an ovine tibial osteotomy model. Hundreds of transcripts were differentially expressed between standard and delayed healing and between the time points of the standard and delayed healing groups. We used the sheep sequences to design quantitative RT-PCR assays with which we validated the differential expression of 26 genes that had been identified by RNA-seq analysis. A number of clusters of characteristic expression profiles could be identified, some of which showed striking differences between the standard and delayed healing groups. Gene Ontology (GO) analysis showed that the differentially expressed genes were enriched in terms including extracellular matrix, cartilage development, contractile fiber, and chemokine activity. Our results provide a first atlas of gene expression profiles and differentially expressed genes in standard and delayed bone healing in a large-animal model and provide a number of clues as to the shifts in gene expression that underlie delayed bone healing. In the course of our study, we identified transcripts of 13,987 ovine genes, including 12,431 genes for which no sequence information was previously available. This

  15. A Fault Prognosis Strategy Based on Time-Delayed Digraph Model and Principal Component Analysis

    Directory of Open Access Journals (Sweden)

    Ningyun Lu

    2012-01-01

    Full Text Available Because of the interlinking of process equipments in process industry, event information may propagate through the plant and affect a lot of downstream process variables. Specifying the causality and estimating the time delays among process variables are critically important for data-driven fault prognosis. They are not only helpful to find the root cause when a plant-wide disturbance occurs, but to reveal the evolution of an abnormal event propagating through the plant. This paper concerns with the information flow directionality and time-delay estimation problems in process industry and presents an information synchronization technique to assist fault prognosis. Time-delayed mutual information (TDMI is used for both causality analysis and time-delay estimation. To represent causality structure of high-dimensional process variables, a time-delayed signed digraph (TD-SDG model is developed. Then, a general fault prognosis strategy is developed based on the TD-SDG model and principle component analysis (PCA. The proposed method is applied to an air separation unit and has achieved satisfying results in predicting the frequently occurred “nitrogen-block” fault.

  16. Propagation of Axially Symmetric Detonation Waves

    Energy Technology Data Exchange (ETDEWEB)

    Druce, R L; Roeske, F; Souers, P C; Tarver, C M; Chow, C T S; Lee, R S; McGuire, E M; Overturf, G E; Vitello, P A

    2002-06-26

    We have studied the non-ideal propagation of detonation waves in LX-10 and in the insensitive explosive TATB. Explosively-driven, 5.8-mm-diameter, 0.125-mm-thick aluminum flyer plates were used to initiate 38-mm-diameter, hemispherical samples of LX-10 pressed to a density of 1.86 g/cm{sup 3} and of TATB at a density of 1.80 g/cm{sup 3}. The TATB powder was a grade called ultrafine (UFTATB), having an arithmetic mean particle diameter of about 8-10 {micro}m and a specific surface area of about 4.5 m{sup 2}/g. Using PMMA as a transducer, output pressure was measured at 5 discrete points on the booster using a Fabry-Perot velocimeter. Breakout time was measured on a line across the booster with a streak camera. Each of the experimental geometries was calculated using the Ignition and Growth Reactive Flow Model, the JWL++ Model and the Programmed Burn Model. Boosters at both ambient and cold (-20 C and -54 C) temperatures have been experimentally and computationally studied. A comparison of experimental and modeling results is presented.

  17. A Robust Longitudinal Control Strategy of Platoons under Model Uncertainties and Time Delays

    NARCIS (Netherlands)

    Chen, N.; Wang, M.; Alkim, Tom; van Arem, B.

    2018-01-01

    Automated vehicles are designed to free drivers from driving tasks and are expected to improve traffic safety and efficiency when connected via vehicle-to-vehicle communication, that is, connected automated vehicles (CAVs). The time delays and model uncertainties in vehicle control systems pose

  18. Neimark-Sacker bifurcation for the discrete-delay Kaldor model

    International Nuclear Information System (INIS)

    Dobrescu, Loretti I.; Opris, Dumitru

    2009-01-01

    We consider a discrete-delay time, Kaldor nonlinear business cycle model in income and capital. Given an investment function, resembling the one discussed by Rodano, we use the linear approximation analysis to state the local stability property and local bifurcations, in the parameter space. Finally, we will give some numerical examples to justify the theoretical results.

  19. Bifurcation and chaotic behavior in the Euler method for a Kaplan-Yorke prototype delay model

    International Nuclear Information System (INIS)

    Peng Mingshu

    2004-01-01

    A discrete model with a simple cubic nonlinearity term is treated in the study the rich dynamics of a prototype delayed dynamical system under Euler discretization. The effect of breaking the symmetry of the system is to create a wide complex operating conditions which would not otherwise be seen. These include multiple steady states, complex periodic oscillations, chaos by period doubling bifurcations

  20. A mathematical model of a crocodilian population using delay-differential equations.

    Science.gov (United States)

    Gallegos, Angela; Plummer, Tenecia; Uminsky, David; Vega, Cinthia; Wickman, Clare; Zawoiski, Michael

    2008-11-01

    The crocodilia have multiple interesting characteristics that affect their population dynamics. They are among several reptile species which exhibit temperature-dependent sex determination (TSD) in which the temperature of egg incubation determines the sex of the hatchlings. Their life parameters, specifically birth and death rates, exhibit strong age-dependence. We develop delay-differential equation (DDE) models describing the evolution of a crocodilian population. In using the delay formulation, we are able to account for both the TSD and the age-dependence of the life parameters while maintaining some analytical tractability. In our single-delay model we also find an equilibrium point and prove its local asymptotic stability. We numerically solve the different models and investigate the effects of multiple delays on the age structure of the population as well as the sex ratio of the population. For all models we obtain very strong agreement with the age structure of crocodilian population data as reported in Smith and Webb (Aust. Wild. Res. 12, 541-554, 1985). We also obtain reasonable values for the sex ratio of the simulated population.

  1. Stability of a general delayed virus dynamics model with humoral immunity and cellular infection

    Science.gov (United States)

    Elaiw, A. M.; Raezah, A. A.; Alofi, A. S.

    2017-06-01

    In this paper, we investigate the dynamical behavior of a general nonlinear model for virus dynamics with virus-target and infected-target incidences. The model incorporates humoral immune response and distributed time delays. The model is a four dimensional system of delay differential equations where the production and removal rates of the virus and cells are given by general nonlinear functions. We derive the basic reproduction parameter R˜0 G and the humoral immune response activation number R˜1 G and establish a set of conditions on the general functions which are sufficient to determine the global dynamics of the models. We use suitable Lyapunov functionals and apply LaSalle's invariance principle to prove the global asymptotic stability of the all equilibria of the model. We confirm the theoretical results by numerical simulations.

  2. Path Tracking Control of Automatic Parking Cloud Model considering the Influence of Time Delay

    Directory of Open Access Journals (Sweden)

    Yiding Hua

    2017-01-01

    Full Text Available This paper establishes the kinematic model of the automatic parking system and analyzes the kinematic constraints of the vehicle. Furthermore, it solves the problem where the traditional automatic parking system model fails to take into account the time delay. Firstly, based on simulating calculation, the influence of time delay on the dynamic trajectory of a vehicle in the automatic parking system is analyzed under the transverse distance Dlateral between different target spaces. Secondly, on the basis of cloud model, this paper utilizes the tracking control of an intelligent path closer to human intelligent behavior to further study the Cloud Generator-based parking path tracking control method and construct a vehicle path tracking control model. Moreover, tracking and steering control effects of the model are verified through simulation analysis. Finally, the effectiveness and timeliness of automatic parking controller in the aspect of path tracking are tested through a real vehicle experiment.

  3. Analysis of stability and Hopf bifurcation for a viral infectious model with delay

    International Nuclear Information System (INIS)

    Sun Chengjun; Cao Zhijie; Lin Yiping

    2007-01-01

    In this paper, a four-dimensional viral infectious model with delay is considered. The stability of the two equilibria and the existence of Hopf bifurcation are investigated. It is found that there are stability switches and Hopf bifurcations occur when the delay τ passes through a sequence of critical values. Using the normal form theory and center manifold argument [Hassard B, Kazarino D, Wan Y. Theory and applications of Hopf bifurcation. Cambridge: Cambridge University Press; 1981], the explicit formulaes which determine the stability, the direction and the period of bifurcating periodic solutions are derived. Numerical simulations are carried out to illustrate the validity of the main results

  4. Global existence of periodic solutions on a simplified BAM neural network model with delays

    International Nuclear Information System (INIS)

    Zheng Baodong; Zhang Yazhuo; Zhang Chunrui

    2008-01-01

    A simplified n-dimensional BAM neural network model with delays is considered. Some results of Hopf bifurcations occurring at the zero equilibrium as the delay increases are exhibited. Global existence of periodic solutions are established using a global Hopf bifurcation result of Wu [Wu J. Symmetric functional-differential equations and neural networks with memory. Trans Am Math Soc 1998;350:4799-838], and a Bendixson criterion for higher dimensional ordinary differential equations due to Li and Muldowney [Li MY, Muldowney J. On Bendixson's criterion. J Differ Equations 1994;106:27-39]. Finally, computer simulations are performed to illustrate the analytical results found

  5. Dynamics of a viral infection model with delayed CTL response and immune circadian rhythm

    International Nuclear Information System (INIS)

    Bai Zhenguo; Zhou Yicang

    2012-01-01

    This paper studies the global dynamics of a viral infection model that takes into account circadian rhythm and time delay in the CTL response. It is shown that the basic reproduction numbers, R 0 and R 1 , determine the outcome of viral infection. Numerical simulations demonstrate that the changes in the amplitude of lytic component can generate a variety of dynamical patterns, ranging from simple daily oscillation to multi-day dynamics and eventually chaos, whereas time delay can alter the period of oscillation for the larger level of periodic forcing. These results can help to explain the viral oscillation behaviors, which were observed in chronic HBV and HCV infection patients.

  6. Dynamics of a Computer Virus Propagation Model with Delays and Graded Infection Rate

    Directory of Open Access Journals (Sweden)

    Zizhen Zhang

    2017-01-01

    Full Text Available A four-compartment computer virus propagation model with two delays and graded infection rate is investigated in this paper. The critical values where a Hopf bifurcation occurs are obtained by analyzing the distribution of eigenvalues of the corresponding characteristic equation. In succession, direction and stability of the Hopf bifurcation when the two delays are not equal are determined by using normal form theory and center manifold theorem. Finally, some numerical simulations are also carried out to justify the obtained theoretical results.

  7. Modeling community integration in workers with delayed recovery from mild traumatic brain injury

    DEFF Research Database (Denmark)

    Mollayeva, T.; Shapiro, C. M.; Mollayeva, S.

    2015-01-01

    Background: Delayed recovery in persons after mild traumatic brain injury (mTBI) is poorly understood. Community integration (CI) is endorsed by persons with neurological disorders as an important outcome. We aimed to describe CI and its associated factors in insured Ontario workers with delayed...... assessments, and insurers' referral files. Community Integration Questionnaire (CIQ) scores were compared using analysis of variance or Spearman's correlation tests. Stepwise multivariable linear regression models were used to evaluate the associations with CI. Results: Ninety-four workers with mTBI (45...

  8. A model for Huanglongbing spread between citrus plants including delay times and human intervention

    Science.gov (United States)

    Vilamiu, Raphael G. d'A.; Ternes, Sonia; Braga, Guilherme A.; Laranjeira, Francisco F.

    2012-09-01

    The objective of this work was to present a compartmental deterministic mathematical model for representing the dynamics of HLB disease in a citrus orchard, including delay in the disease's incubation phase in the plants, and a delay period on the nymphal stage of Diaphorina citri, the most important HLB insect vector in Brazil. Numerical simulations were performed to assess the possible impacts of human detection efficiency of symptomatic plants, as well as the influence of a long incubation period of HLB in the plant.

  9. Delay Induced Hopf Bifurcation of an Epidemic Model with Graded Infection Rates for Internet Worms

    Directory of Open Access Journals (Sweden)

    Tao Zhao

    2017-01-01

    Full Text Available A delayed SEIQRS worm propagation model with different infection rates for the exposed computers and the infectious computers is investigated in this paper. The results are given in terms of the local stability and Hopf bifurcation. Sufficient conditions for the local stability and the existence of Hopf bifurcation are obtained by using eigenvalue method and choosing the delay as the bifurcation parameter. In particular, the direction and the stability of the Hopf bifurcation are investigated by means of the normal form theory and center manifold theorem. Finally, a numerical example is also presented to support the obtained theoretical results.

  10. A lossy graph model for delay reduction in generalized instantly decodable network coding

    KAUST Repository

    Douik, Ahmed S.

    2014-06-01

    The problem of minimizing the decoding delay in Generalized instantly decodable network coding (G-IDNC) for both perfect and lossy feedback scenarios is formulated as a maximum weight clique problem over the G-IDNC graph in. In this letter, we introduce a new lossy G-IDNC graph (LG-IDNC) model to further minimize the decoding delay in lossy feedback scenarios. Whereas the G-IDNC graph represents only doubtless combinable packets, the LG-IDNC graph represents also uncertain packet combinations, arising from lossy feedback events, when the expected decoding delay of XORing them among themselves or with other certain packets is lower than that expected when sending these packets separately. We compare the decoding delay performance of LG-IDNC and G-IDNC graphs through extensive simulations. Numerical results show that our new LG-IDNC graph formulation outperforms the G-IDNC graph formulation in all lossy feedback situations and achieves significant improvement in the decoding delay especially when the feedback erasure probability is higher than the packet erasure probability. © 2012 IEEE.

  11. An Epidemic Model of Computer Worms with Time Delay and Variable Infection Rate

    Directory of Open Access Journals (Sweden)

    Yu Yao

    2018-01-01

    Full Text Available With rapid development of Internet, network security issues become increasingly serious. Temporary patches have been put on the infectious hosts, which may lose efficacy on occasions. This leads to a time delay when vaccinated hosts change to susceptible hosts. On the other hand, the worm infection is usually a nonlinear process. Considering the actual situation, a variable infection rate is introduced to describe the spread process of worms. According to above aspects, we propose a time-delayed worm propagation model with variable infection rate. Then the existence condition and the stability of the positive equilibrium are derived. Due to the existence of time delay, the worm propagation system may be unstable and out of control. Moreover, the threshold τ0 of Hopf bifurcation is obtained. The worm propagation system is stable if time delay is less than τ0. When time delay is over τ0, the system will be unstable. In addition, numerical experiments have been performed, which can match the conclusions we deduce. The numerical experiments also show that there exists a threshold in the parameter a, which implies that we should choose appropriate infection rate β(t to constrain worm prevalence. Finally, simulation experiments are carried out to prove the validity of our conclusions.

  12. H∞ Control for a Networked Control Model of Systems with Two Additive Time-Varying Delays

    Directory of Open Access Journals (Sweden)

    Hanyong Shao

    2014-01-01

    Full Text Available This paper is concerned with H∞ control for a networked control model of systems with two additive time-varying delays. A new Lyapunov functional is constructed to make full use of the information of the delays, and for the derivative of the Lyapunov functional a novel technique is employed to compute a tighter upper bound, which is dependent on the two time-varying delays instead of the upper bounds of them. Then the convex polyhedron method is proposed to check the upper bound of the derivative of the Lyapunov functional. The resulting stability criteria have fewer matrix variables but less conservatism than some existing ones. The stability criteria are applied to designing a state feedback controller, which guarantees that the closed-loop system is asymptotically stable with a prescribed H∞ disturbance attenuation level. Finally examples are given to show the advantages of the stability criteria and the effectiveness of the proposed control method.

  13. Dynamics of the congestion control model in underwater wireless sensor networks with time delay

    International Nuclear Information System (INIS)

    Dong, Tao; Hu, Wenjie; Liao, Xiaofeng

    2016-01-01

    In this paper, a congestion control model in underwater wireless sensor network with time delay is considered. First, the boundedness of the positive equilibrium, where the samples density is positive for each node and the different event flows coexist, is investigated, which implies that the samples density of sensor node cannot exceed the Environmental carrying capacity. Then, by considering the time delay can be regarded as a bifurcating parameter, the dynamical behaviors, which include local stability and Hopf bifurcation, are investigated. It is found that when the communication time delay passes a critical value, the system loses its stability and a Hopf bifurcation occurs, which means the underwater wireless sensor network will be congested, even collapsed. Furthermore, the direction and stability of the bifurcating periodic solutions are derived by applying the normal form theory and the center manifold theorem. Finally, some numerical examples are finally performed to verify the theoretical results.

  14. Efficacy of biodegradable curcumin nanoparticles in delaying cataract in diabetic rat model.

    Science.gov (United States)

    Grama, Charitra N; Suryanarayana, Palla; Patil, Madhoosudan A; Raghu, Ganugula; Balakrishna, Nagalla; Kumar, M N V Ravi; Reddy, Geereddy Bhanuprakash

    2013-01-01

    Curcumin, the active principle present in the yellow spice turmeric, has been shown to exhibit various pharmacological actions such as antioxidant, anti-inflammatory, antimicrobial, and anti-carcinogenic activities. Previously we have reported that dietary curcumin delays diabetes-induced cataract in rats. However, low peroral bioavailability is a major limiting factor for the success of clinical utilization of curcumin. In this study, we have administered curcumin encapsulated nanoparticles in streptozotocin (STZ) induced diabetic cataract model. Oral administration of 2 mg/day nanocurcumin was significantly more effective than curcumin in delaying diabetic cataracts in rats. The significant delay in progression of diabetic cataract by nanocurcumin is attributed to its ability to intervene the biochemical pathways of disease progression such as protein insolubilization, polyol pathway, protein glycation, crystallin distribution and oxidative stress. The enhanced performance of nanocurcumin can be attributed probably to its improved oral bioavailability. Together, the results of the present study demonstrate the potential of nanocurcumin in managing diabetic cataract.

  15. Stability and Hopf bifurcation for a business cycle model with expectation and delay

    Science.gov (United States)

    Liu, Xiangdong; Cai, Wenli; Lu, Jiajun; Wang, Yangyang

    2015-08-01

    According to rational expectation hypothesis, the government will take into account the future capital stock in the process of investment decision. By introducing anticipated capital stock into an economic model with investment delay, we construct a mixed functional differential system including delay and advanced variables. The system is converted to the one containing only delay by variable substitution. The equilibrium point of the system is obtained and its dynamical characteristics such as stability, Hopf bifurcation and its stability and direction are investigated by using the related theories of nonlinear dynamics. We carry out some numerical simulations to confirm these theoretical conclusions. The results indicate that both capital stock's anticipation and investment lag are the certain factors leading to the occurrence of cyclical fluctuations in the macroeconomic system. Moreover, the level of economic fluctuation can be dampened to some extent if investment decisions are made by the reasonable short-term forecast on capital stock.

  16. Study of beta-delayed neutron with proton-neutron QRPA plus statistical model

    International Nuclear Information System (INIS)

    Minato, Futoshi; Iwamoto, Osamu

    2015-01-01

    β-delayed neutron is known to be important for safety operation of nuclear reactor and prediction of elemental abundance after freeze-out of r-process. A lot of researches on it have been performed. However, the experimental data are far from complete since the lifetime of most of the relevant nuclei is so short that one cannot measure in a high efficiency. In order to estimate half-lives and delayed neutron emission probabilities of unexplored nuclei, we developed a new theoretical method which combines a proton-neutron quasi-particle random-phase-approximation and the Hauser-Feshbach statistical model. The present method reproduces experimentally known β-decay half-lives within a factor of 10 and about 40% of within a factor of 2. However it fails to reproduce delayed neutron emission probabilities. We discuss the problems and remedy for them to be made in future. (author)

  17. Nonfragile Robust Model Predictive Control for Uncertain Constrained Systems with Time-Delay Compensation

    Directory of Open Access Journals (Sweden)

    Wei Jiang

    2016-01-01

    Full Text Available This study investigates the problem of asymptotic stabilization for a class of discrete-time linear uncertain time-delayed systems with input constraints. Parametric uncertainty is assumed to be structured, and delay is assumed to be known. In Lyapunov stability theory framework, two synthesis schemes of designing nonfragile robust model predictive control (RMPC with time-delay compensation are put forward, where the additive and the multiplicative gain perturbations are, respectively, considered. First, by designing appropriate Lyapunov-Krasovskii (L-K functions, the robust performance index is defined as optimization problems that minimize upper bounds of infinite horizon cost function. Then, to guarantee closed-loop stability, the sufficient conditions for the existence of desired nonfragile RMPC are obtained in terms of linear matrix inequalities (LMIs. Finally, two numerical examples are provided to illustrate the effectiveness of the proposed approaches.

  18. Stability and Hopf bifurcation in a delayed model for HIV infection of CD4{sup +}T cells

    Energy Technology Data Exchange (ETDEWEB)

    Cai Liming [Department of Mathematics, Xinyang Normal University, Xinyang, 464000 Henan (China); Beijing Institute of Information Control, Beijing 100037 (China)], E-mail: lmcai06@yahoo.com.cn; Li Xuezhi [Department of Mathematics, Xinyang Normal University, Xinyang, 464000 Henan (China)

    2009-10-15

    In this paper, we consider a delayed mathematical model for the interactions of HIV infection and CD4{sup +}T cells. We first investigate the existence and stability of the Equilibria. We then study the effect of the time delay on the stability of the infected equilibrium. Criteria are given to ensure that the infected equilibrium is asymptotically stable for all delay. Moreover, by applying Nyquist criterion, the length of delay is estimated for which stability continues to hold. Finally by using a delay {tau} as a bifurcation parameter, the existence of Hopf bifurcation is also investigated. Numerical simulations are presented to illustrate the analytical results.

  19. Comparison of detailed and reduced kinetics mechanisms of silane oxidation in the basis of detonation wave structure problem

    Science.gov (United States)

    Fedorov, A. V.; Tropin, D. A.; Fomin, P. A.

    2018-03-01

    The paper deals with the problem of the structure of detonation waves in the silane-air mixture within the framework of mathematical model of a nonequilibrium gas dynamics. Detailed kinetic scheme of silane oxidation as well as the newly developed reduced kinetic model of detonation combustion of silane are used. On its basis the detonation wave (DW) structure in stoichiometric silane - air mixture and dependences of Chapman-Jouguet parameters of mixture on stoichiometric ratio between the fuel (silane) and an oxidizer (air) were obtained.

  20. Why trace and delay conditioning are sometimes (but not always) hippocampal dependent: A computational model

    Science.gov (United States)

    Moustafa, Ahmed A.; Wufong, Ella; Servatius, Richard J.; Pang, Kevin C. H.; Gluck, Mark A.; Myers, Catherine E.

    2013-01-01

    A recurrent-network model provides a unified account of the hippocampal region in mediating the representation of temporal information in classical eyeblink conditioning. Much empirical research is consistent with a general conclusion that delay conditioning (in which the conditioned stimulus CS and unconditioned stimulus US overlap and co-terminate) is independent of the hippocampal system, while trace conditioning (in which the CS terminates before US onset) depends on the hippocampus. However, recent studies show that, under some circumstances, delay conditioning can be hippocampal-dependent and trace conditioning can be spared following hippocampal lesion. Here, we present an extension of our prior trial-level models of hippocampal function and stimulus representation that can explain these findings within a unified framework. Specifically, the current model includes adaptive recurrent collateral connections that aid in the representation of intra-trial temporal information. With this model, as in our prior models, we argue that the hippocampus is not specialized for conditioned response timing, but rather is a general-purpose system that learns to predict the next state of all stimuli given the current state of variables encoded by activity in recurrent collaterals. As such, the model correctly predicts that hippocampal involvement in classical conditioning should be critical not only when there is an intervening trace interval, but also when there is a long delay between CS onset and US onset. Our model simulates empirical data from many variants of classical conditioning, including delay and trace paradigms in which the length of the CS, the inter-stimulus interval, or the trace interval is varied. Finally, we discuss model limitations, future directions, and several novel empirical predictions of this temporal processing model of hippocampal function and learning. PMID:23178699

  1. Stability Analysis of Nonlinear Time–Delayed Systems with Application to Biological Models

    Directory of Open Access Journals (Sweden)

    Kruthika H.A.

    2017-03-01

    Full Text Available In this paper, we analyse the local stability of a gene-regulatory network and immunotherapy for cancer modelled as nonlinear time-delay systems. A numerically generated kernel, using the sum-of-squares decomposition of multivariate polynomials, is used in the construction of an appropriate Lyapunov–Krasovskii functional for stability analysis of the networks around an equilibrium point. This analysis translates to verifying equivalent LMI conditions. A delay-independent asymptotic stability of a second-order model of a gene regulatory network, taking into consideration multiple commensurate delays, is established. In the case of cancer immunotherapy, a predator–prey type model is adopted to describe the dynamics with cancer cells and immune cells contributing to the predator–prey population, respectively. A delay-dependent asymptotic stability of the cancer-free equilibrium point is proved. Apart from the system and control point of view, in the case of gene-regulatory networks such stability analysis of dynamics aids mimicking gene networks synthetically using integrated circuits like neurochips learnt from biological neural networks, and in the case of cancer immunotherapy it helps determine the long-term outcome of therapy and thus aids oncologists in deciding upon the right approach.

  2. Extracorporeal shockwave enhanced regeneration of fibrocartilage in a delayed tendon-bone insertion repair model.

    Science.gov (United States)

    Chow, Dick Ho Kiu; Suen, Pui Kit; Huang, Le; Cheung, Wing-Hoi; Leung, Kwok-Sui; Ng, Chun; Shi, San Qiang; Wong, Margaret Wan Nar; Qin, Ling

    2014-04-01

    Fibrous tissue is often formed in delayed healing of tendon bone insertion (TBI) instead of fibrocartilage. Extracorporeal shockwave (ESW) provides mechanical cues and upregulates expression of fibrocartilage-related makers and cytokines. We hypothesized that ESW would accelerate fibrocartilage regeneration at the healing interface in a delayed TBI healing model. Partial patellectomy with shielding at the TBI interface was performed on 32 female New Zealand White Rabbits for establishing this delayed TBI healing model. The rabbits were separated into the control and ESW group for evaluations at postoperative week 8 and 12. Shielding was removed at week 4 and a single ESW treatment was applied at week 6. Fibrocartilage regeneration was evaluated histomorphologically and immunohistochemically. Vickers hardness of the TBI matrix was measured by micro-indentation. ESW group showed higher fibrocartilage area, thickness, and proteoglycan deposition than the control in week 8 and 12. ESW increased expression of SOX9 and collagen II significantly in week 8 and 12, respectively. ESW group showed a gradual transition of hardness from bone to fibrocartilage to tendon, and had a higher Vickers hardness than the control group at week 12. In conclusion, ESW enhanced fibrocartilage regeneration at the healing interface in a delayed TBI healing model. © 2013 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  3. The interaction evolution model of mass incidents with delay in a social network

    Science.gov (United States)

    Huo, Liang'an; Ma, Chenyang

    2017-10-01

    Recent years have witnessed rapid development of information technology. Today, modern media is widely used for the purpose of spreading information rapidly and widely. In particular, through micro-blog promotions, individuals tend to express their viewpoints and spread information on the internet, which could easily lead to public opinions. Moreover, government authorities also disseminate official information to guide public opinion and eliminate any incorrect conjecture. In this paper, a dynamical model with two delays is investigated to exhibit the interaction evolution between the public and official opinion fields in network mass incidents. Based on the theory of differential equations, the interaction mechanism between two public opinion fields in a micro-blog environment is analyzed. Two delays are proposed in the model to depict the response delays of public and official opinion fields. Some stable conditions are obtained, which shows that Hopf bifurcation can occur as delays cross critical values. Further, some numerical simulations are carried out to verify theoretical results. Our model indicates that there exists a golden time for government intervention, which should be emphasized given the impact of modern media and inaccurate rumors. If the government releases official information during the golden time, mass incidents on the internet can be controlled effectively.

  4. Equations of state of detonation products: ammonia and methane

    Science.gov (United States)

    Lang, John; Dattelbaum, Dana; Goodwin, Peter; Garcia, Daniel; Coe, Joshua; Leiding, Jeffery; Gibson, Lloyd; Bartram, Brian

    2015-06-01

    Ammonia (NH3) and methane (CH4) are two principal product gases resulting from explosives detonation, and the decomposition of other organic materials under shockwave loading (such as foams). Accurate thermodynamic descriptions of these gases are important for understanding the detonation performance of high explosives. However, shock compression data often do not exist for molecular species in the dense gas phase, and are limited in the fluid phase. Here, we present equation of state measurements of elevated initial density ammonia and methane gases dynamically compressed in gas-gun driven plate impact experiments. Pressure and density of the shocked gases on the principal Hugoniot were determined from direct particle velocity and shock wave velocity measurements recorded using optical velocimetry (Photonic Doppler velocimetry (PDV) and VISAR (velocity interferometer system for any reflector)). Streak spectroscopy and 5-color pyrometry were further used to measure the emission from the shocked gases, from which the temperatures of the shocked gases were estimated. Up to 0.07 GPa, ammonia was not observed to ionize, with temperature remaining below 7000 K. These results provide quantitative measurements of the Hugoniot locus for improving equations of state models of detonation products.

  5. Detonability of H2-air-diluent mixtures

    International Nuclear Information System (INIS)

    Tieszen, S.R.; Sherman, M.P.; Benedick, W.B.; Berman, M.

    1987-06-01

    This report describes the Heated Detonation Tube (HDT). Detonation cell width and velocity results are presented for H 2 -air mixtures, undiluted and diluted with CO 2 and H 2 O for a range of H 2 concentration, initial temperature and pressure. The results show that the addition of either CO 2 or H 2 O significantly increases the detonation cell width and hence reduces the detonability of the mixture. The results also show that the detonation cell width is reduced (detonability is increased) for increased initial temperature and/or pressure

  6. Lens Model and Time Delay Predictions for the Sextuply Lensed Quasar SDSS J2222+2745*

    Science.gov (United States)

    Sharon, Keren; Bayliss, Matthew B.; Dahle, Hakon; Florian, Michael K.; Gladders, Michael D.; Johnson, Traci L.; Paterno-Mahler, Rachel; Rigby, Jane R.; Whitaker, Katherine E.; Wuyts, Eva

    2017-01-01

    SDSS J2222+2745 is a galaxy cluster at z = 0.49, strongly lensing a quasar at z = 2.805 into six widely separated images. In recent Hubble Space Telescope imaging of the field, we identify additional multiply lensed galaxies and confirm the sixth quasar image that was identified by Dahle et al. We used the Gemini-North telescope to measure a spectroscopic redshift of z = 4.56 of one of the lensed galaxies. These data are used to refine the lens model of SDSS J2222+2745, compute the time delay and magnifications of the lensed quasar images, and reconstruct the source image of the quasar host and a lensed galaxy at z = 2.3. This galaxy also appears in absorption in our Gemini spectra of the lensed quasar, at a projected distance of 34 kpc. Our model is in agreement with the recent time delay measurements of Dahle et al., who found T(sub AB) = 47.7 +/- 6.0 days and T(sub AC) = 722 +/- 24 days. We use the observed time delays to further constrain the model, and find that the model-predicted time delays of the three faint images of the quasar are T(sub AD) = 502+/- 68 days, T( sub AE) = 611 +/- 75 days, and T(sub AF) = 415 +/- 72 days. We have initiated a follow-up campaign to measure these time delays with Gemini North. Finally, we present initial results from an X-ray monitoring program with Swift, indicating the presence of hard X-ray emission from the lensed quasar, as well as extended X-ray emission from the cluster itself, which is consistent with the lensing mass measurement and the cluster velocity dispersion.

  7. LENS MODEL AND TIME DELAY PREDICTIONS FOR THE SEXTUPLY LENSED QUASAR SDSS J2222+2745

    Energy Technology Data Exchange (ETDEWEB)

    Sharon, Keren; Johnson, Traci L.; Paterno-Mahler, Rachel [Department of Astronomy, University of Michigan, 1085 S. University Avenue, Ann Arbor, MI 48109 (United States); Bayliss, Matthew B. [Colby College, 5800 Mayflower Hill, Waterville, 04901, Maine (United States); Dahle, Håkon [Institute of Theoretical Astrophysics, University of Oslo, P.O. Box 1029, Blindern, NO-0315 Oslo (Norway); Florian, Michael K.; Gladders, Michael D. [Department of Astronomy and Astrophysics, University of Chicago, 5640 South Ellis Avenue, Chicago, IL 60637 (United States); Rigby, Jane R. [Astrophysics Science Division, Goddard Space Flight Center, 8800 Greenbelt Road, Greenbelt, MD 20771 (United States); Whitaker, Katherine E. [Department of Astronomy, University of Massachusetts-Amherst, Amherst, MA 01003 (United States); Wuyts, Eva, E-mail: kerens@umich.edu [Max-Planck-Institut für extraterrestrische Physik, Giessenbachstr. 1, D-85741 Garching (Germany)

    2017-01-20

    SDSS J2222+2745 is a galaxy cluster at z = 0.49, strongly lensing a quasar at z = 2.805 into six widely separated images. In recent Hubble Space Telescope imaging of the field, we identify additional multiply lensed galaxies and confirm the sixth quasar image that was identified by Dahle et al. We used the Gemini-North telescope to measure a spectroscopic redshift of z = 4.56 of one of the lensed galaxies. These data are used to refine the lens model of SDSS J2222+2745, compute the time delay and magnifications of the lensed quasar images, and reconstruct the source image of the quasar host and a lensed galaxy at z = 2.3. This galaxy also appears in absorption in our Gemini spectra of the lensed quasar, at a projected distance of 34 kpc. Our model is in agreement with the recent time delay measurements of Dahle et al., who found τ {sub AB} = 47.7 ± 6.0 days and τ {sub AC} = −722 ± 24 days. We use the observed time delays to further constrain the model, and find that the model-predicted time delays of the three faint images of the quasar are τ {sub AD} = 502 ± 68 days, τ {sub AE} = 611 ± 75 days, and τ {sub AF} = 415 ± 72 days. We have initiated a follow-up campaign to measure these time delays with Gemini North. Finally, we present initial results from an X-ray monitoring program with Swift , indicating the presence of hard X-ray emission from the lensed quasar, as well as extended X-ray emission from the cluster itself, which is consistent with the lensing mass measurement and the cluster velocity dispersion.

  8. The threshold of a stochastic delayed SIR epidemic model with temporary immunity

    Science.gov (United States)

    Liu, Qun; Chen, Qingmei; Jiang, Daqing

    2016-05-01

    This paper is concerned with the asymptotic properties of a stochastic delayed SIR epidemic model with temporary immunity. Sufficient conditions for extinction and persistence in the mean of the epidemic are established. The threshold between persistence in the mean and extinction of the epidemic is obtained. Compared with the corresponding deterministic model, the threshold affected by the white noise is smaller than the basic reproduction number R0 of the deterministic system.

  9. A model of a fishery with fish stock involving delay equations.

    Science.gov (United States)

    Auger, P; Ducrot, Arnaud

    2009-12-13

    The aim of this paper is to provide a new mathematical model for a fishery by including a stock variable for the resource. This model takes the form of an infinite delay differential equation. It is mathematically studied and a bifurcation analysis of the steady states is fulfilled. Depending on the different parameters of the problem, we show that Hopf bifurcation may occur leading to oscillating behaviours of the system. The mathematical results are finally discussed.

  10. Stability and Sensitive Analysis of a Model with Delay Quorum Sensing

    Directory of Open Access Journals (Sweden)

    Zhonghua Zhang

    2015-01-01

    Full Text Available This paper formulates a delay model characterizing the competition between bacteria and immune system. The center manifold reduction method and the normal form theory due to Faria and Magalhaes are used to compute the normal form of the model, and the stability of two nonhyperbolic equilibria is discussed. Sensitivity analysis suggests that the growth rate of bacteria is the most sensitive parameter of the threshold parameter R0 and should be targeted in the controlling strategies.

  11. Bifurcation analysis on a delayed SIS epidemic model with stage structure

    Directory of Open Access Journals (Sweden)

    Kejun Zhuang

    2007-05-01

    Full Text Available In this paper, a delayed SIS (Susceptible Infectious Susceptible model with stage structure is investigated. We study the Hopf bifurcations and stability of the model. Applying the normal form theory and the center manifold argument, we derive the explicit formulas determining the properties of the bifurcating periodic solutions. The conditions to guarantee the global existence of periodic solutions are established. Also some numerical simulations for supporting the theoretical are given.

  12. Asymptotic solution for the El Niño time delay sea—air oscillator model

    International Nuclear Information System (INIS)

    Mo Jia-Qi; Lin Wan-Tao; Lin Yi-Hua

    2011-01-01

    A sea—air oscillator model is studied using the time delay theory. The aim is to find an asymptotic solving method for the El Niño-southern oscillation (ENSO) model. Employing the perturbed method, an asymptotic solution of the corresponding problem is obtained. Thus we can obtain the prognoses of the sea surface temperature (SST) anomaly and the related physical quantities. (general)

  13. Detonation nanodiamonds for doping Kevlar.

    Science.gov (United States)

    Comet, Marc; Pichot, Vincent; Siegert, Benny; Britz, Fabienne; Spitzer, Denis

    2010-07-01

    This paper reports on the first attempt to enclose diamond nanoparticles--produced by detonation--into a Kevlar matrix. A nanocomposite material (40 wt% diamond) was prepared by precipitation from an acidic solution of Kevlar containing dispersed nanodiamonds. In this material, the diamond nanoparticles (Ø = 4 nm) are entirely wrapped in a Kevlar layer about 1 nm thick. In order to understand the interactions between the nanodiamond surface and the polymer, the oxygenated surface functional groups of nanodiamond were identified and titrated by Boehm's method which revealed the exclusive presence of carboxyl groups (0.85 sites per nm2). The hydrogen interactions between these groups and the amide groups of Kevlar destroy the "rod-like" structure and the classical three-dimensional organization of this polymer. The distortion of Kevlar macromolecules allows the wrapping of nanodiamonds and leads to submicrometric assemblies, giving a cauliflower structure reminding a fractal object. Due to this structure, the macroscopic hardness of Kevlar doped by nanodiamonds (1.03 GPa) is smaller than the one of pure Kevlar (2.31 GPa). To our knowledge, this result is the first illustration of the change of the mechanical properties induced by doping the Kevlar with nanoparticles.

  14. Dynamics of a delayed business cycle model with general investment function

    International Nuclear Information System (INIS)

    Riad, Driss; Hattaf, Khalid; Yousfi, Noura

    2016-01-01

    Highlights: • A delayed business cycle model is formulated and rigorously analyzed. • Well-posedness of the model and local stability of the economic equilibrium are determined. • Direction and stability of the Hopf bifurcation are investigated. • Global existence of bifurcating periodic solutions is established. • Numerical simulations are presented to illustrate our theoretical results. - Abstract: The aim of this paper is to study the dynamics of a delayed business cycle model with general investment function. The model describes the interaction of the gross product and capital stock. Furthermore, the delay represents the time between the decision of investment and implementation. Firstly, we show that the model is well posed by proving the global existence and boundedness of solutions. Secondly, we determine the economic equilibrium of the model. By analyzing the characteristic equation, we investigate the stability of the economic equilibrium and the local existence of Hopf bifurcation. Also, the direction of the Hopf bifurcation and the stability of the bifurcating periodic solutions are derived by applying the normal form method and center manifold theory. Moreover, the global existence of bifurcating periodic solutions is established by using the global Hopf bifurcation theory. Finally, our theoretical results are illustrated with some numerical simulations.

  15. Global stability for infectious disease models that include immigration of infected individuals and delay in the incidence

    Directory of Open Access Journals (Sweden)

    Chelsea Uggenti

    2018-03-01

    Full Text Available We begin with a detailed study of a delayed SI model of disease transmission with immigration into both classes. The incidence function allows for a nonlinear dependence on the infected population, including mass action and saturating incidence as special cases. Due to the immigration of infectives, there is no disease-free equilibrium and hence no basic reproduction number. We show there is a unique endemic equilibrium and that this equilibrium is globally asymptotically stable for all parameter values. The results include vector-style delay and latency-style delay. Next, we show that previous global stability results for an SEI model and an SVI model that include immigration of infectives and non-linear incidence but not delay can be extended to systems with vector-style delay and latency-style delay.

  16. The WS transform for the Kuramoto model with distributed amplitudes, phase lag and time delay

    Science.gov (United States)

    Lohe, M. A.

    2017-12-01

    We apply the Watanabe-Strogatz (WS) transform to a generalized Kuramoto model with distributed parameters describing the amplitude of oscillation, phase lag, and time delay at each node of the system. The model has global coupling and identical frequencies, but allows for repulsive interactions at arbitrary nodes leading to conformist-contrarian phenomena together with variable amplitude and time-delay effects. We show how to determine the initial values of the WS system for any initial conditions for the Kuramoto system, and investigate the asymptotic behaviour of the WS variables. For the case of zero time delay the possible asymptotic configurations are determined by the sign of a single parameter μ which measures whether or not the attractive nodes dominate the repulsive nodes. If μ>0 the system completely synchronizes from general initial conditions, whereas if μ<0 one of two types of phase-locked synchronization occurs, depending on the initial values, while for μ=0 periodic solutions can occur. For the case of arbitrary non-uniform time delays we derive a stability condition for completely synchronized solutions.

  17. Hopf bifurcation of an (n + 1) -neuron bidirectional associative memory neural network model with delays.

    Science.gov (United States)

    Xiao, Min; Zheng, Wei Xing; Cao, Jinde

    2013-01-01

    Recent studies on Hopf bifurcations of neural networks with delays are confined to simplified neural network models consisting of only two, three, four, five, or six neurons. It is well known that neural networks are complex and large-scale nonlinear dynamical systems, so the dynamics of the delayed neural networks are very rich and complicated. Although discussing the dynamics of networks with a few neurons may help us to understand large-scale networks, there are inevitably some complicated problems that may be overlooked if simplified networks are carried over to large-scale networks. In this paper, a general delayed bidirectional associative memory neural network model with n + 1 neurons is considered. By analyzing the associated characteristic equation, the local stability of the trivial steady state is examined, and then the existence of the Hopf bifurcation at the trivial steady state is established. By applying the normal form theory and the center manifold reduction, explicit formulae are derived to determine the direction and stability of the bifurcating periodic solution. Furthermore, the paper highlights situations where the Hopf bifurcations are particularly critical, in the sense that the amplitude and the period of oscillations are very sensitive to errors due to tolerances in the implementation of neuron interconnections. It is shown that the sensitivity is crucially dependent on the delay and also significantly influenced by the feature of the number of neurons. Numerical simulations are carried out to illustrate the main results.

  18. Piecing together the maternal death puzzle through narratives: the three delays model revisited.

    Directory of Open Access Journals (Sweden)

    Viva Combs Thorsen

    Full Text Available BACKGROUND: In Malawi maternal mortality continues to be a major public health challenge. Going beyond the numbers to form a more complete view of why women die is critical to improving access to and quality of emergency obstetric care. The objective of the current study was to identify the socio-cultural and facility-based factors that contributed to maternal deaths in the district of Lilongwe, Malawi. METHODS: Retrospectively, 32 maternal death cases that occurred between January 1, 2011 and June 30, 2011 were reviewed independently by two gynecologists/obstetricians. Interviews were conducted with healthcare staff, family members, neighbors, and traditional birth attendants. Guided by the grounded theory approach, interview transcripts were analyzed manually and continuously. Emerging, recurring themes were identified and excerpts from the transcripts were categorized according to the Three Delays Model (3Ds. RESULTS: Sixteen deaths were due to direct obstetric complications, sepsis and hemorrhage being most common. Sixteen deaths were due to indirect causes with the main cause being anemia, followed by HIV and heart disease. Lack of recognizing signs, symptoms, and severity of the situation; using traditional Birth Attendant services; low female literacy level; delayed access to transport; hardship of long distance and physical terrain; delayed prompt quality emergency obstetric care; and delayed care while at the hospital due to patient refusal or concealment were observed. According to the 3Ds, the most common delay observed was in receiving treatment upon reaching the facility due to referral delays, missed diagnoses, lack of blood, lack of drugs, or inadequate care, and severe mismanagement.

  19. High-explosive-driven delay line pulse generator

    International Nuclear Information System (INIS)

    Shearer, J.W.

    1982-01-01

    The inclusion of a delay line circuit into the design of a high-explosive-driven generator shortens the time constant of the output pulse. After a brief review of generator concepts and previously described pulse-shortening methods, a geometry is presented which incorporates delay line circuit techcniques into a coil generator. The circuit constants are adjusted to match the velocity of the generated electromagnetic wave to the detonation velocity of the high explosive. The proposed generator can be modeled by adding a variable inductance term to the telegrapher's equation. A particular solution of this equation is useful for exploring the operational parameters of the generator. The duration of the electromagnetic pulse equals the radial expansion time of the high-explosive-driven armature until it strikes the coil. Because the impedance of the generator is a constant, the current multiplication factor is limited only by nonlinear effects such as voltage breakdown, diffusion, and compression at high energies

  20. Inventory Model with Partial Backordering When Backordered Customers Delay Purchase after Stockout-Restoration

    Directory of Open Access Journals (Sweden)

    Ren-Qian Zhang

    2016-01-01

    Full Text Available Many inventory models with partial backordering assume that the backordered demand must be filled instantly after stockout restoration. In practice, however, the backordered customers may successively revisit the store because of the purchase delay behavior, producing a limited backorder demand rate and resulting in an extra inventory holding cost. Hence, in this paper we formulate the inventory model with partial backordering considering the purchase delay of the backordered customers and assuming that the backorder demand rate is proportional to the remaining backordered demand. Particularly, we model the problem by introducing a new inventory cost component of holding the backordered items, which has not been considered in the existing models. We propose an algorithm with a two-layer structure based on Lipschitz Optimization (LO to minimize the total inventory cost. Numerical experiments show that the proposed algorithm outperforms two benchmarks in both optimality and efficiency. We also observe that the earlier the backordered customer revisits the store, the smaller the inventory cost and the fill rate are, but the longer the order cycle is. In addition, if the backordered customers revisit the store without too much delay, the basic EOQ with partial backordering approximates our model very well.

  1. Dynamical Behaviors in Complex-Valued Love Model With or Without Time Delays

    Science.gov (United States)

    Deng, Wei; Liao, Xiaofeng; Dong, Tao

    2017-12-01

    In this paper, a novel version of nonlinear model, i.e. a complex-valued love model with two time delays between two individuals in a love affair, has been proposed. A notable feature in this model is that we separate the emotion of one individual into real and imaginary parts to represent the variation and complexity of psychophysiological emotion in romantic relationship instead of just real domain, and make our model much closer to reality. This is because love is a complicated cognitive and social phenomenon, full of complexity, diversity and unpredictability, which refers to the coexistence of different aspects of feelings, states and attitudes ranging from joy and trust to sadness and disgust. By analyzing associated characteristic equation of linearized equations for our model, it is found that the Hopf bifurcation occurs when the sum of time delays passes through a sequence of critical value. Stability of bifurcating cyclic love dynamics is also derived by applying the normal form theory and the center manifold theorem. In addition, it is also shown that, for some appropriate chosen parameters, chaotic behaviors can appear even without time delay.

  2. A generalized business cycle model with delays in gross product and capital stock

    International Nuclear Information System (INIS)

    Hattaf, Khalid; Riad, Driss; Yousfi, Noura

    2017-01-01

    Highlights: • A generalized business cycle model is proposed and rigorously analyzed. • Well-posedness of the model and local stability of the economic equilibrium are investigated. • Direction of the Hopf bifurcation and stability of the bifurcating periodic solutions are determined. • A special case and some numerical simulations are presented. - Abstract: In this work, we propose a delayed business cycle model with general investment function. The time delays are introduced into gross product and capital stock, respectively. We first prove that the model is mathematically and economically well posed. In addition, the stability of the economic equilibrium and the existence of Hopf bifurcation are investigated. Our main results show that both time delays can cause the macro-economic system to fluctuate and the economic equilibrium to lose or gain its stability. Moreover, the direction of the Hopf bifurcation and the stability of the bifurcating periodic solutions are determined by means of the normal form method and center manifold theory. Furthermore, the models and results presented in many previous studies are improved and generalized.

  3. Global Exponential Stability of Positive Almost Periodic Solutions for a Fishing Model with a Time-Varying Delay

    Directory of Open Access Journals (Sweden)

    Hong Zhang

    2014-01-01

    Full Text Available This paper is concerned with a nonautonomous fishing model with a time-varying delay. Under proper conditions, we employ a novel argument to establish a criterion on the global exponential stability of positive almost periodic solutions of the model with almost periodic coefficients and delays. Moreover, an example and its numerical simulation are given to illustrate the main results.

  4. Numerical Study of Detonation Wave Propagation in the Variable Cross-Section Channel Using Unstructured Computational Grids

    Directory of Open Access Journals (Sweden)

    Alexander Lopato

    2018-01-01

    Full Text Available The work is dedicated to the numerical study of detonation wave initiation and propagation in the variable cross-section axisymmetric channel filled with the model hydrogen-air mixture. The channel models the large-scale device for the utilization of worn-out tires. Mathematical model is based on two-dimensional axisymmetric Euler equations supplemented by global chemical kinetics model. The finite volume computational algorithm of the second approximation order for the calculation of two-dimensional flows with detonation waves on fully unstructured grids with triangular cells is developed. Three geometrical configurations of the channel are investigated, each with its own degree of the divergence of the conical part of the channel from the point of view of the pressure from the detonation wave on the end wall of the channel. The problem in consideration relates to the problem of waste recycling in the devices based on the detonation combustion of the fuel.

  5. New Approaches For Asteroid Spin State and Shape Modeling From Delay-Doppler Radar Images

    Science.gov (United States)

    Raissi, Chedy; Lamee, Mehdi; Mosiane, Olorato; Vassallo, Corinne; Busch, Michael W.; Greenberg, Adam; Benner, Lance A. M.; Naidu, Shantanu P.; Duong, Nicholas

    2016-10-01

    Delay-Doppler radar imaging is a powerful technique to characterize the trajectories, shapes, and spin states of near-Earth asteroids; and has yielded detailed models of dozens of objects. Reconstructing objects' shapes and spins from delay-Doppler data is a computationally intensive inversion problem. Since the 1990s, delay-Doppler data has been analyzed using the SHAPE software. SHAPE performs sequential single-parameter fitting, and requires considerable computer runtime and human intervention (Hudson 1993, Magri et al. 2007). Recently, multiple-parameter fitting algorithms have been shown to more efficiently invert delay-Doppler datasets (Greenberg & Margot 2015) - decreasing runtime while improving accuracy. However, extensive human oversight of the shape modeling process is still required. We have explored two new techniques to better automate delay-Doppler shape modeling: Bayesian optimization and a machine-learning neural network.One of the most time-intensive steps of the shape modeling process is to perform a grid search to constrain the target's spin state. We have implemented a Bayesian optimization routine that uses SHAPE to autonomously search the space of spin-state parameters. To test the efficacy of this technique, we compared it to results with human-guided SHAPE for asteroids 1992 UY4, 2000 RS11, and 2008 EV5. Bayesian optimization yielded similar spin state constraints within a factor of 3 less computer runtime.The shape modeling process could be further accelerated using a deep neural network to replace iterative fitting. We have implemented a neural network with a variational autoencoder (VAE), using a subset of known asteroid shapes and a large set of synthetic radar images as inputs to train the network. Conditioning the VAE in this manner allows the user to give the network a set of radar images and get a 3D shape model as an output. Additional development will be required to train a network to reliably render shapes from delay

  6. Understanding the shock and detonation response of high explosives at the continuum and meso scales

    Science.gov (United States)

    Handley, C. A.; Lambourn, B. D.; Whitworth, N. J.; James, H. R.; Belfield, W. J.

    2018-03-01

    The shock and detonation response of high explosives has been an active research topic for more than a century. In recent years, high quality data from experiments using embedded gauges and other diagnostic techniques have inspired the development of a range of new high-fidelity computer models for explosives. The experiments and models have led to new insights, both at the continuum scale applicable to most shock and detonation experiments, and at the mesoscale relevant to hotspots and burning within explosive microstructures. This article reviews the continuum and mesoscale models, and their application to explosive phenomena, gaining insights to aid future model development and improved understanding of the physics of shock initiation and detonation propagation. In particular, it is argued that "desensitization" and the effect of porosity on high explosives can both be explained by the combined effect of thermodynamics and hydrodynamics, rather than the traditional hotspot-based explanations linked to pressure-dependent reaction rates.

  7. Detonation measurements on damaged LX-04

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, Peter; Souers, P.C.; Chidester, Steve; Alvarez, John; De Haven, Martin; Garza, Raul; Harwood, Pat; Maienschein, Jon [Lawrence Livermore National Laboratory, Livermore, CA 94551 (United States)

    2007-12-15

    We have applied thermal insults on LX-04 at 185 C and found that the material expanded significantly, resulting in a bulk density reduction of 12%. Subsequent detonation experiments (three cylinder tests) were conducted on the thermally damaged LX-04 samples and pristine low-density LX-04 samples and the results showed that the fractions reacted were close to 1.0. The thermally damaged LX-04 and pristine low-density LX-04 showed detonation velocities of 7.7-7.8 mm {mu}s{sup -1}, significantly lower than that (8.5 mm {mu}s{sup -1}) of pristine high-density LX-04. Detonation energy densities for the damaged LX-04, low-density pristine LX-04, and hot cylinder shot of LX-04 were 6.48, 6.62, and 6.58 kJ cm{sup -3}, respectively, lower than the detonation energy density of 8.11 kJ cm{sup -3} for the high density pristine LX-04. The break-out curves for the detonation fronts showed that the damaged LX-04 had longer edge lags than the high density pristine LX-04, indicating that the damaged explosive is less ideal. (Abstract Copyright [2007], Wiley Periodicals, Inc.)

  8. Deflagration to detonation experiments in granular HMX

    Energy Technology Data Exchange (ETDEWEB)

    Burnside, N.J.; Son, S.F.; Asay, B.W.; Dickson, P.M.

    1998-03-01

    In this paper the authors report on continuing work involving a series of deflagration-to-detonation transition (DDT) experiments in which they study the piston-initiated DDT of heavily confined granular cyclotetramethylenetetranitramine (HMX). These experiments were designed to he useful in model development and evaluation. A main focus of these experiments is the effect of density on the DDT event. Particle size distribution and morphology are carefully characterized. In this paper they present recent surface area analysis. Earlier studies demonstrated extensive fracturing and agglomeration in samples at densities as low as 75% TMD as evidenced by dramatic decreases in particle size distribution due to mild stimulus. This is qualitatively confirmed with SEM images and quantitatively studied with gas absorption surface area analysis. Also, in this paper they present initial results using a microwave interferometer technique. Dynamic calibration of the technique was performed, a 35 GHz signal is used to increase resolution, and the system has been designed to be inexpensive for repeated experiments. The distance to where deformation of the inner wall begins for various densities is reported. This result is compared with the microwave interferometer measurements.

  9. A Potential Animal Model of Maladaptive Palatable Food Consumption Followed by Delayed Discomfort

    Directory of Open Access Journals (Sweden)

    Lital Moshe

    2017-07-01

    Full Text Available Introduction: Binging is the consumption of larger amounts of food in a briefer period of time than would normally be consumed under similar circumstances. Binging requires palatable food (PF to trigger abnormal eating, probably reflecting gene × environment interactions. In this study we examined the impact of trait binge eating (BE and its compulsive nature on the conflict between hedonic eating of PF and anticipation of a delayed aversive effect. We used female rats as an animal model similar to other models of BE. A novel aspect of this model in this paper is the use of a delayed internal aversive effect produced by lactose ingestion. Establishing this model will allow us to better understand the nature of the conflict between immediate reward and its delayed aversive implications. We hypothesized that BE prone (BEP rats will demonstrate maladaptive decision making, presenting higher motivation toward PF even when this is associated with delayed discomfort.Method: (Phase 1 52 female adult Wistar rats were divided to two eating profiles: resistant and prone binge eaters (BER/BEP based on intake of liquid PF (Ensure. Next, all subjects underwent a Lactose Conditioning Protocol (LCP that included 4 h tests, one baseline and 3 conditioning days (Phase 2, in which solid PF (Oreo cookies was paired with glucose (control-no internal aversive effect or lactose, dissolved in liquid PF. Index for PF motivation was PF consumption during the 4 h LCP. To test for memory of lactose conditioning, we performed another LCP with glucose only (anticipation, but no actual lactose-induced discomfort, a week after the last conditioning session.Results: Lactose conditioned BEP showed higher motivation toward PF compared to lactose conditioned BER faced with delayed aversive effects. Only lactose conditioned BER rats devaluated the PF over LCP days, indicating an association between PF and abdominal discomfort. In addition, only lactose conditioned BER presented

  10. Global model of zenith tropospheric delay proposed based on EOF analysis

    Science.gov (United States)

    Sun, Langlang; Chen, Peng; Wei, Erhu; Li, Qinzheng

    2017-07-01

    Tropospheric delay is one of the main error budgets in Global Navigation Satellite System (GNSS) measurements. Many empirical correction models have been developed to compensate this delay, and models which do not require meteorological parameters have received the most attention. This study established a global troposphere zenith total delay (ZTD) model, called Global Empirical Orthogonal Function Troposphere (GEOFT), based on the empirical orthogonal function (EOF, also known as geographically weighted PCAs) analysis method and the Global Geodetic Observing System (GGOS) Atmosphere data from 2012 to 2015. The results showed that ZTD variation could be well represented by the characteristics of the EOF base function Ek and associated coefficients Pk. Here, E1 mainly signifies the equatorial anomaly; E2 represents north-south asymmetry, and E3 and E4 reflects regional variation. Moreover, P1 mainly reflects annual and semiannual variation components; P2 and P3 mainly contains annual variation components, and P4 displays semiannual variation components. We validated the proposed GEOFT model using tropospheric delay data of GGOS ZTD grid data and the tropospheric product of the International GNSS Service (IGS) over the year 2016. The results showed that GEOFT model has high accuracy with bias and RMS of -0.3 and 3.9 cm, respectively, with respect to the GGOS ZTD data, and of -0.8 and 4.1 cm, respectively, with respect to the global IGS tropospheric product. The accuracy of GEOFT demonstrating that the use of the EOF analysis method to characterize ZTD variation is reasonable.

  11. Influence of distributed delays on the dynamics of a generalized immune system cancerous cells interactions model

    Science.gov (United States)

    Piotrowska, M. J.; Bodnar, M.

    2018-01-01

    We present a generalisation of the mathematical models describing the interactions between the immune system and tumour cells which takes into account distributed time delays. For the analytical study we do not assume any particular form of the stimulus function describing the immune system reaction to presence of tumour cells but we only postulate its general properties. We analyse basic mathematical properties of the considered model such as existence and uniqueness of the solutions. Next, we discuss the existence of the stationary solutions and analytically investigate their stability depending on the forms of considered probability densities that is: Erlang, triangular and uniform probability densities separated or not from zero. Particular instability results are obtained for a general type of probability densities. Our results are compared with those for the model with discrete delays know from the literature. In addition, for each considered type of probability density, the model is fitted to the experimental data for the mice B-cell lymphoma showing mean square errors at the same comparable level. For estimated sets of parameters we discuss possibility of stabilisation of the tumour dormant steady state. Instability of this steady state results in uncontrolled tumour growth. In order to perform numerical simulation, following the idea of linear chain trick, we derive numerical procedures that allow us to solve systems with considered probability densities using standard algorithm for ordinary differential equations or differential equations with discrete delays.

  12. Detonation-synthesis nanodiamonds: synthesis, structure, properties and applications

    Energy Technology Data Exchange (ETDEWEB)

    Dolmatov, Valerii Yu [Federal State Unitary Enterprise Special Design-Technology Bureau (FSUE SDTB) ' ' Tekhnolog' ' at the St Petersburg State Institute of Technology (Technical University) (Russian Federation)

    2007-04-30

    The review outlines the theoretical foundations and industrial implementations of modern detonation synthesis of nanodiamonds and chemical purification of the nanodiamonds thus obtained. The structure, key properties and promising fields of application of detonation-synthesis nanodiamonds are considered.

  13. Detonation-synthesis nanodiamonds: synthesis, structure, properties and applications

    International Nuclear Information System (INIS)

    Dolmatov, Valerii Yu

    2007-01-01

    The review outlines the theoretical foundations and industrial implementations of modern detonation synthesis of nanodiamonds and chemical purification of the nanodiamonds thus obtained. The structure, key properties and promising fields of application of detonation-synthesis nanodiamonds are considered.

  14. Delay Mitigation in the Malaysian Housing Industry: A Structural Equation Modelling Approach

    Directory of Open Access Journals (Sweden)

    Chang Saar Chai

    2015-01-01

    Full Text Available The housing industry is one of the major contributors to the economy in Malaysia due to the constantly high housing demand. The housing demand has increased due to the rapid growth in population and urbanisation in the country. One of the major challenges in the housing industry is the late delivery of housing supply, which in some instances leads to sick and abandoned housing projects. Despite being extensively investigated, th in a negative impact, there is a strong need to review the housing delay mitigation measures practised in Malaysia. This paper aims to evaluate the current delay mitigation measures and its main objective is to explore the relationship between the mitigation measures and delay in housing via a Structural Equation Modelling (SEM approach. A questionnaire survey through an online survey tool was conducted across 13 states and three Federal Territories in Malaysia. The target respondents are the local authorities, developers, consultants (principal submitting persons and contractors. The findings show that 17 predictive, preventive, organisational or corrective. This paper demonstrates that preventive measures are the most influential mitigation measures for housing delivery delay.

  15. Bifurcation and synchronization of synaptically coupled FHN models with time delay

    International Nuclear Information System (INIS)

    Wang Qingyun; Lu Qishao; Chen Guanrong; Feng Zhaosheng; Duan Lixia

    2009-01-01

    This paper presents an investigation of dynamics of the coupled nonidentical FHN models with synaptic connection, which can exhibit rich bifurcation behavior with variation of the coupling strength. With the time delay being introduced, the coupled neurons may display a transition from the original chaotic motions to periodic ones, which is accompanied by complex bifurcation scenario. At the same time, synchronization of the coupled neurons is studied in terms of their mean frequencies. We also find that the small time delay can induce new period windows with the coupling strength increasing. Moreover, it is found that synchronization of the coupled neurons can be achieved in some parameter ranges and related to their bifurcation transition. Bifurcation diagrams are obtained numerically or analytically from the mathematical model and the parameter regions of different behavior are clarified.

  16. On the impact of information delay on location-based relaying: a markov modeling approach

    DEFF Research Database (Denmark)

    Nielsen, Jimmy Jessen; Olsen, Rasmus Løvenstein; Madsen, Tatiana Kozlova

    2012-01-01

    For centralized selection of communication relays, the necessary decision information needs to be collected from the mobile nodes by the access point (centralized decision point). In mobile scenarios, the required information collection and forwarding delays will affect the reliability of the col......For centralized selection of communication relays, the necessary decision information needs to be collected from the mobile nodes by the access point (centralized decision point). In mobile scenarios, the required information collection and forwarding delays will affect the reliability...... of the collected information and hence will influence the performance of the relay selection method. This paper analyzes this influence in the decision process for the example of a mobile location-based relay selection approach using a continuous time Markov chain model. The model is used to obtain optimal relay...

  17. A Dynamic Analysis of the Business Cycle Model with a Fixed-time Delay

    Directory of Open Access Journals (Sweden)

    Yuhang Zheng

    2017-07-01

    Full Text Available In business activities, there is a certain time lag effect in investment and capital stock, which would affect the dynamic behavior of the business cycle model and then complicate the economic stability adjustment made through investment policies. Considering the influence on investment activities caused by the expectation time about capital stock, this paper, employing the Hopf bifurcation theory, with the delay in investment as the bifurcation parameter, not only studies the equilibrium stability of the business cycle model with a fixed-time delay, but also discusses the formation conditions of the business cycle. The research discovers that the investment lag during the investing process and the expectation time about the capital stock are two crucial incentives of the business cycle; meanwhile, the expecting equilibrium target can be met through the adjustment of the government investment policies. These findings may serve as guidelines in stabilizing the business cycle and making relative economic policies. The conclusion is verified through numerical simulation.

  18. Characterizing the energy output generated by a standard electric detonator using shadowgraph imaging

    Science.gov (United States)

    Petr, V.; Lozano, E.

    2017-09-01

    This paper overviews a complete method for the characterization of the explosive energy output from a standard detonator. Measurements of the output of explosives are commonly based upon the detonation parameters of the chemical energy content of the explosive. These quantities provide a correct understanding of the energy stored in an explosive, but they do not provide a direct measure of the different modes in which the energy is released. This optically based technique combines high-speed and ultra-high-speed imaging to characterize the casing fragmentation and the detonator-driven shock load. The procedure presented here could be used as an alternative to current indirect methods—such as the Trauzl lead block test—because of its simplicity, high data accuracy, and minimum demand for test repetition. This technique was applied to experimentally measure air shock expansion versus time and calculating the blast wave energy from the detonation of the high explosive charge inside the detonator. Direct measurements of the shock front geometry provide insight into the physics of the initiation buildup. Because of their geometry, standard detonators show an initial ellipsoidal shock expansion that degenerates into a final spherical wave. This non-uniform shape creates variable blast parameters along the primary blast wave. Additionally, optical measurements are validated using piezoelectric pressure transducers. The energy fraction spent in the acceleration of the metal shell is experimentally measured and correlated with the Gurney model, as well as to several empirical formulations for blasts from fragmenting munitions. The fragment area distribution is also studied using digital particle imaging analysis and correlated with the Mott distribution. Understanding the fragmentation distribution plays a critical role when performing hazard evaluation from these types of devices. In general, this technique allows for characterization of the detonator within 6-8% error

  19. Using delay differential equations to induce alternans in a model of cardiac electrophysiology.

    Science.gov (United States)

    Eastman, Justin; Sass, Julian; Gomes, Johnny M; Dos Santos, Rodrigo Weber; Cherry, Elizabeth M

    2016-09-07

    Cardiac electrical alternans is a period-2 dynamical behavior with alternating long and short action potential durations (APD) that often precedes dangerous arrhythmias associated with cardiac arrest. Despite the importance of alternans, many current ordinary differential equations models of cardiac electrophysiology do not produce alternans, thereby limiting the use of these models for studying the mechanisms that underlie this condition. Because delay differential equations (DDEs) commonly induce complex dynamics in other biological systems, we investigate whether incorporating DDEs can lead to alternans development in cardiac models by studying the Fox et al. canine ventricular action potential model. After suppressing the alternans in the original model, we show that alternans can be obtained by introducing DDEs in the model gating variables, and we quantitatively compare the DDE-induced alternans with the alternans present in the original model. We analyze the behavior of the voltage, currents, and gating variables of the model to study the effects of the delays and to determine how alternans develops in that setting, and we discuss the mathematical and physiological implications of our findings. In future work, we aim to apply our approach to induce alternans in models that do not naturally exhibit such dynamics. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Investigations on deflagration to detonation transition in porous energetic materials. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Stewart, D.S. [Univ. of Illinois, Urbana, IL (United States)

    1999-07-01

    The research carried out by this contract was part of a larger effort funded by LANL in the areas of deflagration to detonation in porous energetic materials (DDT) and detonation shock dynamics in high explosives (DSD). In the first three years of the contract the major focus was on DDT. However, some researchers were carried out on DSD theory and numerical implementation. In the last two years the principal focus of the contract was on DSD theory and numerical implementation. However, during the second period some work was also carried out on DDT. The paper discusses DDT modeling and DSD modeling. Abstracts are included on the following topics: modeling deflagration to detonation; DSD theory; DSD wave front tracking; and DSD program burn implementation.

  1. Precise troposphere delay model for Egypt, as derived from radiosonde data

    Directory of Open Access Journals (Sweden)

    M.A. Abdelfatah

    2015-06-01

    Real GPS data of six stations in 8-day period were used for the assessment of zenith part of PTD model against the available international models. These international models include Saastamoinen, Hopfield, and the local Egyptian dry model proposed by Mousa & El-Fiky. The data were processed using Bernese software version 5.0. The closure error results indicate that the PTD model is the best model in all session, but when the available radiosonde stations are less, the accuracy of PTD model is near to classic models. As radiosonde data for all ten stations are not available every session, it is recommended to use one of the regularization techniques for database to overcome missing data and derive consistent tropospheric delay information.

  2. Dynamics in a Delayed Neural Network Model of Two Neurons with Inertial Coupling

    Directory of Open Access Journals (Sweden)

    Changjin Xu

    2012-01-01

    Full Text Available A delayed neural network model of two neurons with inertial coupling is dealt with in this paper. The stability is investigated and Hopf bifurcation is demonstrated. Applying the normal form theory and the center manifold argument, we derive the explicit formulas for determining the properties of the bifurcating periodic solutions. An illustrative example is given to demonstrate the effectiveness of the obtained results.

  3. A model of economic growth with physical and human capital: The role of time delays.

    Science.gov (United States)

    Gori, Luca; Guerrini, Luca; Sodini, Mauro

    2016-09-01

    This article aims at analysing a two-sector economic growth model with discrete delays. The focus is on the dynamic properties of the emerging system. In particular, this study concentrates on the stability properties of the stationary solution, characterised by analytical results and geometrical techniques (stability crossing curves), and the conditions under which oscillatory dynamics emerge (through Hopf bifurcations). In addition, this article proposes some numerical simulations to illustrate the behaviour of the system when the stationary equilibrium is unstable.

  4. Neimark-Sacker bifurcation for the discrete-delay Kaldor-Kalecki model

    International Nuclear Information System (INIS)

    Dobrescu, Loretti I.; Opris, Dumitru

    2009-01-01

    The present work will focus on a Kaldor-Kalecki nonlinear business cycle model in income and capital, with discrete time and delay argument characteristics. What it will state, considering an investment function similar to the one proposed by Rodano and using the linear approximation analysis, are the local stability property and local bifurcations conditions, given the parameter space. Numerical examples will be given in the end, to support the theoretical results obtained.

  5. Stability and Hopf Bifurcation in a Delayed SEIRS Worm Model in Computer Network

    Directory of Open Access Journals (Sweden)

    Zizhen Zhang

    2013-01-01

    Full Text Available A delayed SEIRS epidemic model with vertical transmission in computer network is considered. Sufficient conditions for local stability of the positive equilibrium and existence of local Hopf bifurcation are obtained by analyzing distribution of the roots of the associated characteristic equation. Furthermore, the direction of the local Hopf bifurcation and the stability of the bifurcating periodic solutions are determined by using the normal form theory and center manifold theorem. Finally, a numerical example is presented to verify the theoretical analysis.

  6. Two warehouse inventory model for deteriorating item with exponential demand rate and permissible delay in payment

    Directory of Open Access Journals (Sweden)

    Kaliraman Naresh Kumar

    2017-01-01

    Full Text Available A two warehouse inventory model for deteriorating items is considered with exponential demand rate and permissible delay in payment. Shortage is not allowed and deterioration rate is constant. In the model, one warehouse is rented and the other is owned. The rented warehouse is provided with better facility for the stock than the owned warehouse, but is charged more. The objective of this model is to find the best replenishment policies for minimizing the total appropriate inventory cost. A numerical illustration and sensitivity analysis is provided.

  7. A lattice hydrodynamic model based on delayed feedback control considering the effect of flow rate difference

    Science.gov (United States)

    Wang, Yunong; Cheng, Rongjun; Ge, Hongxia

    2017-08-01

    In this paper, a lattice hydrodynamic model is derived considering not only the effect of flow rate difference but also the delayed feedback control signal which including more comprehensive information. The control method is used to analyze the stability of the model. Furthermore, the critical condition for the linear steady traffic flow is deduced and the numerical simulation is carried out to investigate the advantage of the proposed model with and without the effect of flow rate difference and the control signal. The results are consistent with the theoretical analysis correspondingly.

  8. Parameter estimation and sensitivity analysis for a mathematical model with time delays of leukemia

    Science.gov (United States)

    Cândea, Doina; Halanay, Andrei; Rǎdulescu, Rodica; Tǎlmaci, Rodica

    2017-01-01

    We consider a system of nonlinear delay differential equations that describes the interaction between three competing cell populations: healthy, leukemic and anti-leukemia T cells involved in Chronic Myeloid Leukemia (CML) under treatment with Imatinib. The aim of this work is to establish which model parameters are the most important in the success or failure of leukemia remission under treatment using a sensitivity analysis of the model parameters. For the most significant parameters of the model which affect the evolution of CML disease during Imatinib treatment we try to estimate the realistic values using some experimental data. For these parameters, steady states are calculated and their stability is analyzed and biologically interpreted.

  9. Modeling On-Body DTN Packet Routing Delay in the Presence of Postural Disconnections

    Directory of Open Access Journals (Sweden)

    Taghizadeh Mahmoud

    2011-01-01

    Full Text Available This paper presents a stochastic modeling framework for store-and-forward packet routing in Wireless Body Area Networks (WBAN with postural partitioning. A prototype WBANs has been constructed for experimentally characterizing and capturing on-body topology disconnections in the presence of ultrashort range radio links, unpredictable RF attenuation, and human postural mobility. Delay modeling techniques for evaluating single-copy on-body DTN routing protocols are then developed. End-to-end routing delay for a series of protocols including opportunistic, randomized, and two other mechanisms that capture multiscale topological localities in human postural movements have been evaluated. Performance of the analyzed protocols are then evaluated experimentally and via simulation to compare with the results obtained from the developed model. Finally, a mechanism for evaluating the topological importance of individual on-body sensor nodes is developed. It is shown that such information can be used for selectively reducing the on-body sensor-count without substantially sacrificing the packet delivery delay.

  10. Modeling On-Body DTN Packet Routing Delay in the Presence of Postural Disconnections.

    Science.gov (United States)

    Quwaider, Muhannad; Taghizadeh, Mahmoud; Biswas, Subir

    2011-01-01

    This paper presents a stochastic modeling framework for store-and-forward packet routing in Wireless Body Area Networks ( WBAN ) with postural partitioning. A prototype WBANs has been constructed for experimentally characterizing and capturing on-body topology disconnections in the presence of ultrashort range radio links, unpredictable RF attenuation, and human postural mobility. Delay modeling techniques for evaluating single-copy on-body DTN routing protocols are then developed. End-to-end routing delay for a series of protocols including opportunistic, randomized, and two other mechanisms that capture multiscale topological localities in human postural movements have been evaluated. Performance of the analyzed protocols are then evaluated experimentally and via simulation to compare with the results obtained from the developed model. Finally, a mechanism for evaluating the topological importance of individual on-body sensor nodes is developed. It is shown that such information can be used for selectively reducing the on-body sensor-count without substantially sacrificing the packet delivery delay.

  11. Improvement of Klobuchar model for GNSS single-frequency ionospheric delay corrections

    Science.gov (United States)

    Wang, Ningbo; Yuan, Yunbin; Li, Zishen; Huo, Xingliang

    2016-04-01

    Broadcast ionospheric model is currently an effective approach to mitigate the ionospheric time delay for real-time Global Navigation Satellite System (GNSS) single-frequency users. Klobuchar coefficients transmitted in Global Positioning System (GPS) navigation message have been widely used in various GNSS positioning and navigation applications; however, this model can only reduce the ionospheric error by approximately 50% in mid-latitudes. With the emerging BeiDou and Galileo, as well as the modernization of GPS and GLONASS, more precise ionospheric correction models or algorithms are required by GNSS single-frequency users. Numerical analysis of the initial phase and nighttime term in Klobuchar algorithm demonstrates that more parameters should be introduced to better describe the variation of nighttime ionospheric total electron content (TEC). In view of this, several schemes are proposed for the improvement of Klobuchar algorithm. Performance of these improved Klobuchar-like models are validated over the continental and oceanic regions during high (2002) and low (2006) levels of solar activities, respectively. Over the continental region, GPS TEC generated from 35 International GNSS Service (IGS) and the Crust Movement Observation Network of China (CMONOC) stations are used as references. Over the oceanic region, TEC data from TOPEX/Poseidon and JASON-1 altimeters are used for comparison. A ten-parameter Klobuchar-like model, which describes the nighttime term as a linear function of geomagnetic latitude, is finally proposed for GNSS single-frequency ionospheric corrections. Compared to GPS TEC, while GPS broadcast model can correct for 55.0% and 49.5% of the ionospheric delay for the year 2002 and 2006, respectively, the proposed ten-parameter Klobuchar-like model can reduce the ionospheric error by 68.4% and 64.7% for the same period. Compared to TOPEX/Poseidon and JASON-1 TEC, the improved ten-parameter Klobuchar-like model can mitigate the ionospheric

  12. 30 CFR 75.1311 - Transporting explosives and detonators.

    Science.gov (United States)

    2010-07-01

    ... noncombustible materials. (c) When explosives and detonators are transported on conveyor belts— (1) Containers of... explosives or detonators, a person shall be at each transfer point between belts and at the unloading location; and (4) Conveyor belts shall be stopped before explosives or detonators are loaded or unloaded...

  13. 30 CFR 56.6402 - Deenergized circuits near detonators.

    Science.gov (United States)

    2010-07-01

    ... Electric Blasting § 56.6402 Deenergized circuits near detonators. Electrical distribution circuits within 50 feet of electric detonators at the blast site shall be deenergized. Such circuits need not be deenergized between 25 to 50 feet of the electric detonators if stray current tests, conducted as frequently...

  14. 30 CFR 57.6402 - Deenergized circuits near detonators.

    Science.gov (United States)

    2010-07-01

    ... Electric Blasting-Surface and Underground § 57.6402 Deenergized circuits near detonators. Electrical distribution circuits within 50 feet of electric detonators at the blast site shall be deenergized. Such circuits need not be deenergized between 25 to 50 feet of the electric detonators if stray current tests...

  15. 30 CFR 57.6400 - Compatibility of electric detonators.

    Science.gov (United States)

    2010-07-01

    ... Electric Blasting-Surface and Underground § 57.6400 Compatibility of electric detonators. All electric detonators to be fired in a round shall be from the same manufacturer and shall have similar electrical... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Compatibility of electric detonators. 57.6400...

  16. 30 CFR 56.6400 - Compatibility of electric detonators.

    Science.gov (United States)

    2010-07-01

    ... Electric Blasting § 56.6400 Compatibility of electric detonators. All electric detonators to be fired in a round shall be from the same manufacturer and shall have similar electrical firing characteristics. ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Compatibility of electric detonators. 56.6400...

  17. Investigation of hydrogen-deflagration/-detonation

    International Nuclear Information System (INIS)

    Breitung, W.; Redlinger, R.; Werle, H.; Moeschke, M.

    1992-01-01

    The static and dynamic loads of a PWR-containment from hydrogen combustion are investigated theoretically and experimentally. The primary goal is the determination of realistic, not too conservative, upper bounds. The load data are needed to define design requirements for a core-melt resistant containment structure. The following work was performed in 1991: balloon tests; design of a medium scale detonation tube; development of a 1D detonation code; analytical study with SNL/Albuquerque, USA and documentation and presentation of results. (orig./DG)

  18. Modeling screening, prevention, and delaying of Alzheimer's disease: an early-stage decision analytic model

    Directory of Open Access Journals (Sweden)

    Siemers Eric R

    2010-04-01

    Full Text Available Abstract Background Alzheimer's Disease (AD affects a growing proportion of the population each year. Novel therapies on the horizon may slow the progress of AD symptoms and avoid cases altogether. Initiating treatment for the underlying pathology of AD would ideally be based on biomarker screening tools identifying pre-symptomatic individuals. Early-stage modeling provides estimates of potential outcomes and informs policy development. Methods A time-to-event (TTE simulation provided estimates of screening asymptomatic patients in the general population age ≥55 and treatment impact on the number of patients reaching AD. Patients were followed from AD screen until all-cause death. Baseline sensitivity and specificity were 0.87 and 0.78, with treatment on positive screen. Treatment slowed progression by 50%. Events were scheduled using literature-based age-dependent incidences of AD and death. Results The base case results indicated increased AD free years (AD-FYs through delays in onset and a reduction of 20 AD cases per 1000 screened individuals. Patients completely avoiding AD accounted for 61% of the incremental AD-FYs gained. Total years of treatment per 1000 screened patients was 2,611. The number-needed-to-screen was 51 and the number-needed-to-treat was 12 to avoid one case of AD. One-way sensitivity analysis indicated that duration of screening sensitivity and rescreen interval impact AD-FYs the most. A two-way sensitivity analysis found that for a test with an extended duration of sensitivity (15 years the number of AD cases avoided was 6,000-7,000 cases for a test with higher sensitivity and specificity (0.90,0.90. Conclusions This study yielded valuable parameter range estimates at an early stage in the study of screening for AD. Analysis identified duration of screening sensitivity as a key variable that may be unavailable from clinical trials.

  19. Modeling screening, prevention, and delaying of Alzheimer's disease: an early-stage decision analytic model.

    Science.gov (United States)

    Furiak, Nicolas M; Klein, Robert W; Kahle-Wrobleski, Kristin; Siemers, Eric R; Sarpong, Eric; Klein, Timothy M

    2010-04-30

    Alzheimer's Disease (AD) affects a growing proportion of the population each year. Novel therapies on the horizon may slow the progress of AD symptoms and avoid cases altogether. Initiating treatment for the underlying pathology of AD would ideally be based on biomarker screening tools identifying pre-symptomatic individuals. Early-stage modeling provides estimates of potential outcomes and informs policy development. A time-to-event (TTE) simulation provided estimates of screening asymptomatic patients in the general population age > or =55 and treatment impact on the number of patients reaching AD. Patients were followed from AD screen until all-cause death. Baseline sensitivity and specificity were 0.87 and 0.78, with treatment on positive screen. Treatment slowed progression by 50%. Events were scheduled using literature-based age-dependent incidences of AD and death. The base case results indicated increased AD free years (AD-FYs) through delays in onset and a reduction of 20 AD cases per 1000 screened individuals. Patients completely avoiding AD accounted for 61% of the incremental AD-FYs gained. Total years of treatment per 1000 screened patients was 2,611. The number-needed-to-screen was 51 and the number-needed-to-treat was 12 to avoid one case of AD. One-way sensitivity analysis indicated that duration of screening sensitivity and rescreen interval impact AD-FYs the most. A two-way sensitivity analysis found that for a test with an extended duration of sensitivity (15 years) the number of AD cases avoided was 6,000-7,000 cases for a test with higher sensitivity and specificity (0.90,0.90). This study yielded valuable parameter range estimates at an early stage in the study of screening for AD. Analysis identified duration of screening sensitivity as a key variable that may be unavailable from clinical trials.

  20. Hopf bifurcation in a reaction-diffusive two-species model with nonlocal delay effect and general functional response

    International Nuclear Information System (INIS)

    Han, Renji; Dai, Binxiang

    2017-01-01

    Highlights: • We model general two-dimensional reaction-diffusion with nonlocal delay. • The existence of unique positive steady state is studied. • The bilinear form for the proposed system is given. • The existence, direction of Hopf bifurcation are given by symmetry method. - Abstract: A nonlocal delayed reaction-diffusive two-species model with Dirichlet boundary condition and general functional response is investigated in this paper. Based on the Lyapunov–Schmidt reduction, the existence, bifurcation direction and stability of Hopf bifurcating periodic orbits near the positive spatially nonhomogeneous steady-state solution are obtained, where the time delay is taken as the bifurcation parameter. Moreover, the general results are applied to a diffusive Lotka–Volterra type food-limited population model with nonlocal delay effect, and it is found that diffusion and nonlocal delay can also affect the other dynamic behavior of the system by numerical experiments.

  1. Time delay and profit accumulation effect on a mine-based uranium market clearing model

    International Nuclear Information System (INIS)

    Auzans, Aris; Teder, Allan; Tkaczyk, Alan H.

    2016-01-01

    Highlights: • Improved version of a mine-based uranium market clearing model for the front-end uranium market and enrichment industries is proposed. • A profit accumulation algorithm and time delay function provides more realistic uranium mine decision making process. • Operational decision delay increased uranium market price volatility. - Abstract: The mining industry faces a number of challenges such as market volatility, investment safety, issues surrounding employment and productivity. Therefore, computer simulations are highly relevant in order to reduce financial risks associated with these challenges. In the mining industry, each firm must compete with other mines and the basic target is profit maximization. The aim of this paper is to evaluate the world uranium (U) supply by simulating financial management challenges faced by an individual U mine that are caused by a variety of regulation issues. In this paper front-end nuclear fuel cycle tool is used to simulate market conditions and the effects they have on the stability of U supply. An individual U mine’s exit or entry in the market might cause changes in the U supply side which can increase or decrease the market price. In this paper we offer a more advanced version of a mine-based U market clearing model. The existing U market model incorporates the market of primary U from uranium mines with secondary uranium (depleted uranium DU), enriched uranium (HEU) and enrichment services. In the model each uranium mine acts as an independent agent that is able to make operational decisions based on the market price. This paper introduces a more realistic decision making algorithm of individual U mine that adds constraints to production decisions. The authors added an accumulated profit model, which allows for the profits accumulated to cover any possible future economic losses and the time-delay algorithm to simulate delayed process of reopening a U mine. The U market simulation covers time period 2010

  2. Time delay and profit accumulation effect on a mine-based uranium market clearing model

    Energy Technology Data Exchange (ETDEWEB)

    Auzans, Aris [Institute of Physics, University of Tartu, Ostwaldi 1, EE-50411 Tartu (Estonia); Teder, Allan [School of Economics and Business Administration, University of Tartu, Narva mnt 4, EE-51009 Tartu (Estonia); Tkaczyk, Alan H., E-mail: alan@ut.ee [Institute of Physics, University of Tartu, Ostwaldi 1, EE-50411 Tartu (Estonia)

    2016-12-15

    Highlights: • Improved version of a mine-based uranium market clearing model for the front-end uranium market and enrichment industries is proposed. • A profit accumulation algorithm and time delay function provides more realistic uranium mine decision making process. • Operational decision delay increased uranium market price volatility. - Abstract: The mining industry faces a number of challenges such as market volatility, investment safety, issues surrounding employment and productivity. Therefore, computer simulations are highly relevant in order to reduce financial risks associated with these challenges. In the mining industry, each firm must compete with other mines and the basic target is profit maximization. The aim of this paper is to evaluate the world uranium (U) supply by simulating financial management challenges faced by an individual U mine that are caused by a variety of regulation issues. In this paper front-end nuclear fuel cycle tool is used to simulate market conditions and the effects they have on the stability of U supply. An individual U mine’s exit or entry in the market might cause changes in the U supply side which can increase or decrease the market price. In this paper we offer a more advanced version of a mine-based U market clearing model. The existing U market model incorporates the market of primary U from uranium mines with secondary uranium (depleted uranium DU), enriched uranium (HEU) and enrichment services. In the model each uranium mine acts as an independent agent that is able to make operational decisions based on the market price. This paper introduces a more realistic decision making algorithm of individual U mine that adds constraints to production decisions. The authors added an accumulated profit model, which allows for the profits accumulated to cover any possible future economic losses and the time-delay algorithm to simulate delayed process of reopening a U mine. The U market simulation covers time period 2010

  3. Rumor Spreading Model with Immunization Strategy and Delay Time on Homogeneous Networks

    Science.gov (United States)

    Wang, Jing; Wang, Ya-Qi; Li, Ming

    2017-12-01

    In order to prevent and control the spread of rumors, the implementation of immunization strategies for ignorant individuals is very necessary, where the immunization usually means letting them learn the truth of rumors. Considering the facts that there is always a delay time between rumor spreading and implementing immunization, and that the truth of rumors can also be spread out, this paper constructs a novel susceptible-infected-removed (SIR) model. The propagation dynamical behaviors of the SIR model on homogeneous networks are investigated by using the mean-field theory and the Monte Carlo method. Research shows that the greater the delay time, the worse the immune effect of the immunization strategy. It is also found that the spread of the truth can inhibit to some extent the propagation of rumors, and the trend will become more obvious with the increase of reliability of the truth. Moreover, under the influence of delay time, the existence of nodes’ identification force still slightly reduces the propagation degree of rumors. Supported by the National Natural Science Foundation of China under Grant No. 61402531, the Natural Science Basic Research Plan in Shaanxi Province of China under Grant Nos. 2014JQ8358, 2015JQ6231, and 2014JQ8307, the China Postdoctoral Science Foundation under Grant No. 2015M582910, and the Basic Research Foundation of Engineering University of the Chinese People’s Armed Police Force under Grant Nos. WJY201419, WJY201605 and JLX201686

  4. Conduction Delay Learning Model for Unsupervised and Supervised Classification of Spatio-Temporal Spike Patterns.

    Science.gov (United States)

    Matsubara, Takashi

    2017-01-01

    Precise spike timing is considered to play a fundamental role in communications and signal processing in biological neural networks. Understanding the mechanism of spike timing adjustment would deepen our understanding of biological systems and enable advanced engineering applications such as efficient computational architectures. However, the biological mechanisms that adjust and maintain spike timing remain unclear. Existing algorithms adopt a supervised approach, which adjusts the axonal conduction delay and synaptic efficacy until the spike timings approximate the desired timings. This study proposes a spike timing-dependent learning model that adjusts the axonal conduction delay and synaptic efficacy in both unsupervised and supervised manners. The proposed learning algorithm approximates the Expectation-Maximization algorithm, and classifies the input data encoded into spatio-temporal spike patterns. Even in the supervised classification, the algorithm requires no external spikes indicating the desired spike timings unlike existing algorithms. Furthermore, because the algorithm is consistent with biological models and hypotheses found in existing biological studies, it could capture the mechanism underlying biological delay learning.

  5. The delay function in finite difference models for nuclear channels thermo-hydraulic transients

    International Nuclear Information System (INIS)

    Agazzi, A.

    1977-01-01

    The study of the thermo-hydraulic transients in a nuclear reactor core often requires a bi- or tri-dimensional mathematical simulation of a reactor channel. The equations involved are generally solved by means of finite-difference methods. The determination of the spatial mesh-width and the time interval is strongly conditioned by the necessity of a good accuracy in the description of the delay function which defines the transfer of thermal perturbations along the cooling channel. In this paper the effects of both space and time discretization on the delay function are considered and for the classical cases of inlet temperature step and ramp universal functions and diagrams are given in order to make possible the determination of optimal spatial mesh-width and time interval, once the requested accuracy of the model is fixed in advance

  6. Multifractal chaotic attractors in a system of delay-differential equations modeling road traffic.

    Science.gov (United States)

    Safonov, Leonid A.; Tomer, Elad; Strygin, Vadim V.; Ashkenazy, Yosef; Havlin, Shlomo

    2002-12-01

    We study a system of delay-differential equations modeling single-lane road traffic. The cars move in a closed circuit and the system's variables are each car's velocity and the distance to the car ahead. For low and high values of traffic density the system has a stable equilibrium solution, corresponding to the uniform flow. Gradually decreasing the density from high to intermediate values we observe a sequence of supercritical Hopf bifurcations forming multistable limit cycles, corresponding to flow regimes with periodically moving traffic jams. Using an asymptotic technique we find approximately small limit cycles born at Hopf bifurcations and numerically preform their global continuations with decreasing density. For sufficiently large delay the system passes to chaos following the Ruelle-Takens-Newhouse scenario (limit cycles-two-tori-three-tori-chaotic attractors). We find that chaotic and nonchaotic attractors coexist for the same parameter values and that chaotic attractors have a broad multifractal spectrum. (c) 2002 American Institute of Physics.

  7. Statistical and non statistical models for delayed neutron emission: applications to nuclei near A = 90

    International Nuclear Information System (INIS)

    De Oliveira, Z.M.

    1980-01-01

    A detailed analysis of the simple statistical model description for delayed neutron emission of 87 Br, 137 I, 85 As and 135 Sb has been performed. In agreement with experimental findings, structure in the #betta#-strength function is required to reproduce the envelope of the neutron spectrum from 87 Br. For 85 As and 135 Sb the model is found incapable of simultaneously reproducing envelopes of delayed neutron spectra and neutron branching ratios to excited states in the final nuclei for any choice of #betta#-strength function. The results indicate that partial widths for neutron emission are not compatible with optical-model transmission coefficients. The simple shell model with pairing is shown to qualitatively describe the main features of the #betta#-strength functions for decay of 87 Br and 91 93 95 97 Rb. It is found that the location of apparent resonances in the experimental data are in rough agreement with the location of centroids of strength calculated with this model. An extension of the shell model picture which includes the Gamow-Teller residual interaction is used to investigate decay properties of 84 86 As, 86 92 Br and 88 102 Rb. For a realistic choice of interaction strength, the half lives of these isotopes are fairly well reproduced and semiquantitative agreement with experimental #betta#-strength functions is found. Delayed neutron emission probabilities are reproduced for precursors nearer stability with systematic deviations being observed for the heavier nuclei. Contrary to the assumption of a structureless Gamow-Teller giant resonance as embodied gross theory of #betta#-decay, we find that structures in the tail of the Gamow-Teller giant resonances are expected which strongly influence the decay properties of nuclides in this region

  8. Predicting Freeway Work Zone Delays and Costs with a Hybrid Machine-Learning Model

    Directory of Open Access Journals (Sweden)

    Bo Du

    2017-01-01

    Full Text Available A hybrid machine-learning model, integrating an artificial neural network (ANN and a support vector machine (SVM model, is developed to predict spatiotemporal delays, subject to road geometry, number of lane closures, and work zone duration in different periods of a day and in the days of a week. The model is very user friendly, allowing the least inputs from the users. With that the delays caused by a work zone on any location of a New Jersey freeway can be predicted. To this end, tremendous amounts of data from different sources were collected to establish the relationship between the model inputs and outputs. A comparative analysis was conducted, and results indicate that the proposed model outperforms others in terms of the least root mean square error (RMSE. The proposed hybrid model can be used to calculate contractor penalty in terms of cost overruns as well as incentive reward schedule in case of early work competition. Additionally, it can assist work zone planners in determining the best start and end times of a work zone for developing and evaluating traffic mitigation and management plans.

  9. Dynamics of a model of two delay-coupled relaxation oscillators

    Science.gov (United States)

    Ruelas, R. E.; Rand, R. H.

    2010-08-01

    This paper investigates the dynamics of a new model of two coupled relaxation oscillators. The model replaces the usual DDE (differential-delay equation) formulation with a discrete-time approach with jumps. Existence, bifurcation and stability of in-phase periodic motions is studied. Simple periodic motions, which involve exactly two jumps per period, are found to have large plateaus in parameter space. These plateaus are separated by regions of complicated dynamics, reminiscent of the Devil's Staircase. Stability of motions in the in-phase manifold are contrasted with stability of motions in the full phase space.

  10. Fuzzy model-based adaptive synchronization of time-delayed chaotic systems

    International Nuclear Information System (INIS)

    Vasegh, Nastaran; Majd, Vahid Johari

    2009-01-01

    In this paper, fuzzy model-based synchronization of a class of first order chaotic systems described by delayed-differential equations is addressed. To design the fuzzy controller, the chaotic system is modeled by Takagi-Sugeno fuzzy system considering the properties of the nonlinear part of the system. Assuming that the parameters of the chaotic system are unknown, an adaptive law is derived to estimate these unknown parameters, and the stability of error dynamics is guaranteed by Lyapunov theory. Numerical examples are given to demonstrate the validity of the proposed adaptive synchronization approach.

  11. Hopf Bifurcation of a Delayed Epidemic Model with Information Variable and Limited Medical Resources

    Directory of Open Access Journals (Sweden)

    Caijuan Yan

    2014-01-01

    Full Text Available We consider SIR epidemic model in which population growth is subject to logistic growth in absence of disease. We get the condition for Hopf bifurcation of a delayed epidemic model with information variable and limited medical resources. By analyzing the corresponding characteristic equations, the local stability of an endemic equilibrium and a disease-free equilibrium is discussed. If the basic reproduction ratio ℛ01, we obtain sufficient conditions under which the endemic equilibrium E* of system is locally asymptotically stable. And we also have discussed the stability and direction of Hopf bifurcations. Numerical simulations are carried out to explain the mathematical conclusions.

  12. A Robust Longitudinal Control Strategy of Platoons under Model Uncertainties and Time Delays

    Directory of Open Access Journals (Sweden)

    Na Chen

    2018-01-01

    Full Text Available Automated vehicles are designed to free drivers from driving tasks and are expected to improve traffic safety and efficiency when connected via vehicle-to-vehicle communication, that is, connected automated vehicles (CAVs. The time delays and model uncertainties in vehicle control systems pose challenges for automated driving in real world. Ignoring them may render the performance of cooperative driving systems unsatisfactory or even unstable. This paper aims to design a robust and flexible platooning control strategy for CAVs. A centralized control method is presented, where the leader of a CAV platoon collects information from followers, computes the desired accelerations of all controlled vehicles, and broadcasts the desired accelerations to followers. The robust platooning is formulated as a Min-Max Model Predictive Control (MM-MPC problem, where optimal accelerations are generated to minimize the cost function under the worst case, where the worst case is taken over the possible models. The proposed method is flexible in such a way that it can be applied to both homogeneous platoon and heterogeneous platoon with mixed human-driven and automated controlled vehicles. A third-order linear vehicle model with fixed feedback delay and stochastic actuator lag is used to predict the platoon behavior. Actuator lag is assumed to vary randomly with unknown distributions but a known upper bound. The controller regulates platoon accelerations over a time horizon to minimize a cost function representing driving safety, efficiency, and ride comfort, subject to speed limits, plausible acceleration range, and minimal net spacing. The designed strategy is tested by simulating homogeneous and heterogeneous platoons in a number of typical and extreme scenarios to assess the system stability and performance. The test results demonstrate that the designed control strategy for CAV can ensure the robustness of stability and performance against model uncertainties

  13. An electronic implementation for Liao's chaotic delayed neuron model with non-monotonous activation function

    Energy Technology Data Exchange (ETDEWEB)

    Duan Shukai [Department of Computer Science and Engineering, Chongqing University, Chongqing 400044 (China); School of Electronic and Information Engineering, Southwest University, Chongqing 400715 (China)], E-mail: duansk@swu.edu.cn; Liao Xiaofeng [Department of Computer Science and Engineering, Chongqing University, Chongqing 400044 (China)], E-mail: xfliao@cqu.edu.cn

    2007-09-10

    A new chaotic delayed neuron model with non-monotonously increasing transfer function, called as chaotic Liao's delayed neuron model, was recently reported and analyzed. An electronic implementation of this model is described in detail. At the same time, some methods in circuit design, especially for circuit with time delayed unit and non-monotonously increasing activation unit, are also considered carefully. We find that the dynamical behaviors of the designed circuits are closely similar to the results predicted by numerical experiments.

  14. Development of a Forward Model for the Assimilation of Delay-Doppler Maps (DDMs)

    Science.gov (United States)

    Garrison, J. L.; Huang, F.; Leidner, M.; Annane, B.; Hoffman, R.

    2017-12-01

    Ocean wind measurements from CYGNSS have the potential to improve the observation and analysis of tropical cyclones globally. The standard Level-2 wind product, however, is defined by the 25-km spatial resolution requirement using only 15 out of a total of 187 delay-Doppler bins. The full forward model relating a surface wind field to the delay-Doppler map (DDM) involves a surface integral over the glistening zone (which can be expressed in a variety of more numerically efficient convolutional forms) and incorporates variation of the receiver antenna pattern over the surface. Combined with the well-known ambiguity in the mapping between surface coordinates and delay-Doppler space, this model cannot be inverted to provide wind speed estimates away from the specular point. Two approaches are being studied to improve wind retrievals through use of the full DDM. The first uses sequential DDM measurements which cover a large common area on the sea surface, but provide some variation in geometry due to satellite motion. An Extended Kalman filter (EKF) is used to integrate these sequential observations. Numerical simulations have been performed to show the sensitivity of the filter stability to the initial covariance matrix. Although it was found that the EKF wind field still retains artifacts of the delay-Doppler ambiguity, the wind speed at the specular point can be estimated with lower error than that of the baseline Level 2 products. Another approach is to assimilate DDMs directly into a 2-dimensional, Variational vector wind Analysis Method (VAM). Sample results from this forward model will be generated from idealized and real wind fields, and compared to results from the CYGNSS Science Team End-to-End simulator (E2ES). In both of these approaches, an accurate forward model for the calibrated level 1a DDM data is required. This presentation will emphasize the development of this model and the results of testing the forward model through comparison with early CYGNSS

  15. EOQ Model for Delayed Deteriorating Items with Shortages and Trade Credit Policy

    Directory of Open Access Journals (Sweden)

    R Sundararajan

    2015-08-01

    Full Text Available This paper deals with a deterministic inventory model for deteriorating items under the condition of permissible delay in payments with constant demand rate is a function of time which differs from before and after deterioration for a single item. Shortages are allowed and completely backlogged which is a function of time. Under these assumptions, this paper develops a retailer's model for obtaining an optimal cycle length and ordering quantity in deteriorating items of an inventory model. Thus, our objective is retailer's cost minimization problem to nd an optimal replenishment policy under various parameters. The convexity of the objective function is derived and the numerical examples are provided to support the proposed model. Sensitivity analysis of the optimal solution with respect to major parameters of the model is included and the implications are discussed.

  16. Initiation of detonation by impact on granular explosives; Contribution a l'etude de la generation de la detonation provoquee par impact sur un explosif

    Energy Technology Data Exchange (ETDEWEB)

    Bernier, H [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1964-05-15

    A good number of experiments have shown up the particular behaviour of granular explosives when they are detonated by barrier transmitted shocks. Similar results can be obtained when the shock is induced by impact. In this case the pressure signal shape applied at the explosive is better known and both its intensity and duration can be varied. By using a mathematical model in which the law of chemical kinetics is a linear function of pressure, and different temperatures are used for solids and gases, it is possible to describe most of the behaviour of detonation initiation in solid granular explosives. (author) [French] De nombreuses etudes experimentales ont montre le comportement particulier des explosifs granulaires lors de la detonation provoquee par choc transmis a travers une barriere. Les memes resultats peuvent etre obtenus lorsque la detonation est engendree par impact. Dans ce cas, la forme du signal de pression induit dans l'explosif est mieux connue, et il est possible d'en faire varier l'intensite et la duree d'application. Un modele mathematique utilisant une loi de cinetique chimique fonction lineaire de la pression et ou les temperatures des etats solide et gazeux pendant la reaction sont differenciees, permet de retrouver la plupart des caracteres specifiques de la generation dans un explosif solide granulaire. (auteur)

  17. Detonation characteristics of ammonium nitrate products

    NARCIS (Netherlands)

    Kersten, R.J.A.; Hengel, E.I.V. van den; Steen, A.C. van der

    2006-01-01

    The detonation properties of ammonium nitrate (AN) products depend on many factors and are therefore, despite the large amount of information on this topic, difficult to assess. In order to further improve the understanding of the safety properties of AN, the European Fertilizer Manufacturers

  18. Hydrogen detonation and detonation transition data from the High-Temperature Combustion Facility

    International Nuclear Information System (INIS)

    Ciccarelli, G.; Boccio, J.L.; Ginsberg, T.; Finfrock, C.; Gerlach, L.; Malliakos, A.

    1995-01-01

    The BNL High-Temperature Combustion Facility (HTCF) is an experimental research tool capable of investigating the effects of initial thermodynamic state on the high-speed combustion characteristic of reactive gas mixtures. The overall experimental program has been designed to provide data to help characterize the influence of elevated gas-mixture temperature (and pressure) on the inherent sensitivity of hydrogen-air-steam mixtures to undergo detonation, on the potential for flames accelerating in these mixtures to transition into detonations, on the effects of gas venting on the flame-accelerating process, on the phenomena of initiation of detonations in these mixtures by jets of hot reactant product,s and on the capability of detonations within a confined space to transmit into another, larger confined space. This paper presents results obtained from the completion of two of the overall test series that was designed to characterize high-speed combustion phenomena in initially high-temperature gas mixtures. These two test series are the intrinsic detonability test series and the deflagration-to-detonation (DDT) test series. A brief description of the facility is provided below

  19. Hydrogen detonation and detonation transition data from the High-Temperature Combustion Facility

    International Nuclear Information System (INIS)

    Ciccarelli, G.; Boccio, J.L.; Ginsberg, T.; Finfrock, C.

    1996-01-01

    The BNL High-Temperature Combustion Facility (HTCF) is an experimental research tool capable of investigating the effects of initial thermodynamic state on the high-speed combustion characteristic of reactive gas mixtures. The overall experimental program has been designed to provide data to help characterize the influence of elevated gas-mixture temperature (and pressure) on the inherent sensitivity of hydrogen-air-steam mixtures to undergo detonation, on the potential for flames accelerating in these mixtures to transition into detonations, on the effects of gas venting on the flame-accelerating process, on the phenomena of initiation of detonations in these mixtures by jets of hot reactant products, and on the capability of detonations within a confined space to transmit into another, larger confined space. This paper presents results obtained from the completion of two of the overall test series that was designed to characterize high-speed combustion phenomena in initially high-temperature gas mixtures. These two test series are the intrinsic detonability test series and the deflagration-to-detonation (DDT) test series. A brief description of the facility is provided below

  20. Structural integrity of a reinforced concrete structure and a pipe outlet under hydrogen detonation conditions

    International Nuclear Information System (INIS)

    Saarenheimo, A.; Silde, A.; Calonius, K.

    2002-05-01

    Structural integrity of a reinforced concrete wall and a pipe penetration under detonation conditions in a selected reactor building room of Olkiluoto BWR were studied. Hydrogen leakage from the pressurised containment to the sur rounding reactor building is possible during a severe accident. Leaked hydrogen tends to accumulate in the reactor building rooms where the leak is located leading to a stable stratification and locally very high hydrogen concentration. If ignited, a possibility to flame acceleration and detonation cannot be ruled out. The structure may survive the peak detonation transient because the eigenperiod of the structure is considerably longer than the duration of the peak detonation. However, the relatively slowly decreasing static type pressure after a peak detonation damages the wall more severely. Elastic deformations in reinforcement are recoverable and cracks in these areas will close after the pressure decrease. But there will be remarkable compression crushing and the static type slowly decreasing over pressure clearly exceeds the loading capacity of the wall. Structural integrity of a pipe outlet was considered also under detonation conditions. The effect of drag forces was taken into account. Damping and strain rate dependence of yield strength were not taken into consideration. The boundary condition at the end of the pipe line model was varied in order to find out the effect of the stiffness of the pipeline outside the calculation model. The calculation model where the lower pipe end is free to move axially, is conservative from the pipe penetration integrity point of view. Even in this conservative study, the highest peak value for the maximum plastic deformation is 3.5%. This is well below the success criteria found in literature. (au)

  1. [Medical audit of neonatal deaths with the "three delay" model in a pediatric hospital in Ouagadougou].

    Science.gov (United States)

    Kouéta, Fla; Ouédraogo Yugbaré, Solange Odile; Dao, Lassina; Dao, Fousséni; Yé, Diarra; Kam, Kobena Ludovic

    2011-01-01

    To determine the causes of neonatal deaths and their contributing factors. We used the "three-delay model" to conduct an audit of the neonatal deaths that occurred between January 2006 and December 2010 at the Charles de Gaulle University Pediatric Hospital, in Ouagadougou. The neonatal mortality rate was 12.3%. The main direct causes were infections (70%), cerebral distress (10%), respiratory distress (7%), congenital malformations (5.5%), prematurity (4.5%) and hemorrhagic syndromes (3%). All three delays were found: in decision making in 64.4% of cases, in access to health services in 77%, and in receiving appropriate care in 66.9%; they multiplied the risk of death by a factor of 4, 3 and 5, respectively. To reduce deaths of newborn babies, it is necessary to overcome the three delays that contribute to it, pending the improvement of socioeconomic conditions of populations. This combat requires optimizing the implementation of the subsidies for obstetric and neonatal emergency care and strengthening the involvement of all stakeholders, specifically, policy makers, the community and health professionals.

  2. Efficacy of biodegradable curcumin nanoparticles in delaying cataract in diabetic rat model.

    Directory of Open Access Journals (Sweden)

    Charitra N Grama

    Full Text Available Curcumin, the active principle present in the yellow spice turmeric, has been shown to exhibit various pharmacological actions such as antioxidant, anti-inflammatory, antimicrobial, and anti-carcinogenic activities. Previously we have reported that dietary curcumin delays diabetes-induced cataract in rats. However, low peroral bioavailability is a major limiting factor for the success of clinical utilization of curcumin. In this study, we have administered curcumin encapsulated nanoparticles in streptozotocin (STZ induced diabetic cataract model. Oral administration of 2 mg/day nanocurcumin was significantly more effective than curcumin in delaying diabetic cataracts in rats. The significant delay in progression of diabetic cataract by nanocurcumin is attributed to its ability to intervene the biochemical pathways of disease progression such as protein insolubilization, polyol pathway, protein glycation, crystallin distribution and oxidative stress. The enhanced performance of nanocurcumin can be attributed probably to its improved oral bioavailability. Together, the results of the present study demonstrate the potential of nanocurcumin in managing diabetic cataract.

  3. Research on verification and validation strategy of detonation fluid dynamics code of LAD2D

    Science.gov (United States)

    Wang, R. L.; Liang, X.; Liu, X. Z.

    2017-07-01

    The verification and validation (V&V) is an important approach in the software quality assurance of code in complex engineering application. Reasonable and efficient V&V strategy can achieve twice the result with half the effort. This article introduces the software-Lagrangian adaptive hydrodynamics code in 2D space (LAD2D), which is self-developed software in detonation CFD with plastic-elastic structure. The V&V strategy of this detonation CFD code is presented based on the foundation of V&V methodology for scientific software. The basic framework of the module verification and the function validation is proposed, composing the detonation fluid dynamics model V&V strategy of LAD2D.

  4. Parameter Estimation of a Delay Time Model of Wearing Parts Based on Objective Data

    Directory of Open Access Journals (Sweden)

    Y. Tang

    2015-01-01

    Full Text Available The wearing parts of a system have a very high failure frequency, making it necessary to carry out continual functional inspections and maintenance to protect the system from unscheduled downtime. This allows for the collection of a large amount of maintenance data. Taking the unique characteristics of the wearing parts into consideration, we establish their respective delay time models in ideal inspection cases and nonideal inspection cases. The model parameters are estimated entirely using the collected maintenance data. Then, a likelihood function of all renewal events is derived based on their occurring probability functions, and the model parameters are calculated with the maximum likelihood function method, which is solved by the CRM. Finally, using two wearing parts from the oil and gas drilling industry as examples—the filter element and the blowout preventer rubber core—the parameters of the distribution function of the initial failure time and the delay time for each example are estimated, and their distribution functions are obtained. Such parameter estimation based on objective data will contribute to the optimization of the reasonable function inspection interval and will also provide some theoretical models to support the integrity management of equipment or systems.

  5. Stochastic Wilson–Cowan models of neuronal network dynamics with memory and delay

    International Nuclear Information System (INIS)

    Goychuk, Igor; Goychuk, Andriy

    2015-01-01

    We consider a simple Markovian class of the stochastic Wilson–Cowan type models of neuronal network dynamics, which incorporates stochastic delay caused by the existence of a refractory period of neurons. From the point of view of the dynamics of the individual elements, we are dealing with a network of non-Markovian stochastic two-state oscillators with memory, which are coupled globally in a mean-field fashion. This interrelation of a higher-dimensional Markovian and lower-dimensional non-Markovian dynamics is discussed in its relevance to the general problem of the network dynamics of complex elements possessing memory. The simplest model of this class is provided by a three-state Markovian neuron with one refractory state, which causes firing delay with an exponentially decaying memory within the two-state reduced model. This basic model is used to study critical avalanche dynamics (the noise sustained criticality) in a balanced feedforward network consisting of the excitatory and inhibitory neurons. Such avalanches emerge due to the network size dependent noise (mesoscopic noise). Numerical simulations reveal an intermediate power law in the distribution of avalanche sizes with the critical exponent around −1.16. We show that this power law is robust upon a variation of the refractory time over several orders of magnitude. However, the avalanche time distribution is biexponential. It does not reflect any genuine power law dependence. (paper)

  6. An approach to incorporate the detonation shock dynamics into the calculation of explosive acceleration of metals

    International Nuclear Information System (INIS)

    Li Qingzhong; Sun Chengwei; Zhao Feng; Gao Wen; Wen Shanggang; Liu Wenhan

    1999-11-01

    The generalized geometrical optics model for the detonation shock dynamics (DSD) has been incorporated into the two dimensional hydro-code WSU to form a combination code ADW for numerical simulation of explosive acceleration of metals. An analytical treatment of the coupling conditions at the nodes just behind the detonation front is proposed. The experiments on two kinds of explosive-flyer assemblies with different length/diameter ratio were carried out to verify the ADW calculations, where the tested explosive was HMX or TATB based. It is found that the combination of DSD and hydro-code can improve the calculation precision, and has advantages in larger meshes and less CPU time

  7. Finite element analysis of Polymer reinforced CRC columns under close-in detonation

    DEFF Research Database (Denmark)

    Riisgaard, Benjamin

    2007-01-01

    Polymer reinforced Compact Reinforced Composite, PCRC, is a Fiber reinforced Densified Small Particle system, FDSP, combined with a high strength longitudinal flexural rebar arrangement laced together with polymer lacing to avoid shock initiated disintegration of the structural element under blast...... load. Experimental and numerical results of two PCRC columns subjected to close-in detonation are presented in this paper. Additionally, a LS-DYNA material model suitable for predicting the response of Polymer reinforced Compact Reinforced Concrete improved for close-in detonation and a description...

  8. Small-angle neutron scattering study of high-pressure sintered detonation nanodiamonds

    Energy Technology Data Exchange (ETDEWEB)

    Kidalov, S. V.; Shakhov, F. M., E-mail: fedor.shakhov@mail.ioffe.ru [Ioffe Physical-Technical Institute of the Russian Academy of Sciences (Russian Federation); Lebedev, V. T.; Orlova, D. N.; Grushko, Yu. S. [Russian Academy of Sciences, Konstantinov St. Petersburg Nuclear Physics Institute (Russian Federation)

    2011-12-15

    The structure of detonation diamonds sintered at a high pressure (7 GPa) and temperatures of 1200-1700 Degree-Sign C has been investigated by small-angle neutron scattering. It is shown that sintering leads to an increase in the particle size from 6 to 30 nm and established that this increase is due to the chainlike oriented attachment of particles. This study supplements the oriented-attachment model, which was suggested based on the X-ray diffraction spectra of detonation nanodiamonds (DNDs) sintered under the same conditions.

  9. Delay equations modeling the effects of phase-specific drugs and immunotherapy on proliferating tumor cells.

    Science.gov (United States)

    Barbarossa, Maria Vittoria; Kuttler, Christina; Zinsl, Jonathan

    2012-04-01

    In this work we present a mathematical model for tumor growth based on the biology of the cell cycle. For an appropriate description of the effects of phase-specific drugs, it is necessary to look at the cell cycle and its phases. Our model reproduces the dynamics of three different tumor cell populations: quiescent cells, cells during the interphase and mitotic cells. Starting from a partial differential equations (PDEs) setting, a delay differential equations (DDE) model is derived for an easier and more realistic approach. Our equations also include interactions of tumor cells with immune system effectors. We investigate the model both from the analytical and the numerical point of view, give conditions for positivity of solutions and focus on the stability of the cancer-free equilibrium. Different immunotherapeutic strategies and their effects on the tumor growth are considered, as well.

  10. Influence of time delay on fractional-order PI-controlled system for a second-order oscillatory plant model with time delay

    Directory of Open Access Journals (Sweden)

    Sadalla Talar

    2017-12-01

    Full Text Available The paper aims at presenting the influence of an open-loop time delay on the stability and tracking performance of a second-order open-loop system and continuoustime fractional-order PI controller. The tuning method of this controller is based on Hermite- Biehler and Pontryagin theorems, and the tracking performance is evaluated on the basis of two integral performance indices, namely IAE and ISE. The paper extends the results and methodology presented in previous work of the authors to analysis of the influence of time delay on the closed-loop system taking its destabilizing properties into account, as well as concerning possible application of the presented results and used models.

  11. Bifurcation analysis of a delay differential equation model associated with the induction of long-term memory

    International Nuclear Information System (INIS)

    Hao, Lijie; Yang, Zhuoqin; Lei, Jinzhi

    2015-01-01

    Highlights: • A delay differentiation equation model for CREB regulation is developed. • Increasing the time delay can generate various bifurcations. • Increasing the time delay can induce chaos by two routes. - Abstract: The ability to form long-term memories is an important function for the nervous system, and the formation process is dynamically regulated through various transcription factors, including CREB proteins. In this paper, we investigate the dynamics of a delay differential equation model for CREB protein activities, which involves two positive and two negative feedbacks in the regulatory network. We discuss the dynamical mechanisms underlying the induction of long-term memory, in which bistability is essential for the formation of long-term memory, while long time delay can destabilize the high level steady state to inhibit the long-term memory formation. The model displays rich dynamical response to stimuli, including monostability, bistability, and oscillations, and can transit between different states by varying the negative feedback strength. Introduction of a time delay to the model can generate various bifurcations such as Hopf bifurcation, fold limit cycle bifurcation, Neimark–Sacker bifurcation of cycles, and period-doubling bifurcation, etc. Increasing the time delay can induce chaos by two routes: quasi-periodic route and period-doubling cascade.

  12. Mixed butanols addition to gasoline surrogates: Shock tube ignition delay time measurements and chemical kinetic modeling

    KAUST Repository

    AlRamadan, Abdullah S.

    2015-10-01

    The demand for fuels with high anti-knock quality has historically been rising, and will continue to increase with the development of downsized and turbocharged spark-ignition engines. Butanol isomers, such as 2-butanol and tert-butanol, have high octane ratings (RON of 105 and 107, respectively), and thus mixed butanols (68.8% by volume of 2-butanol and 31.2% by volume of tert-butanol) can be added to the conventional petroleum-derived gasoline fuels to improve octane performance. In the present work, the effect of mixed butanols addition to gasoline surrogates has been investigated in a high-pressure shock tube facility. The ignition delay times of mixed butanols stoichiometric mixtures were measured at 20 and 40bar over a temperature range of 800-1200K. Next, 10vol% and 20vol% of mixed butanols (MB) were blended with two different toluene/n-heptane/iso-octane (TPRF) fuel blends having octane ratings of RON 90/MON 81.7 and RON 84.6/MON 79.3. These MB/TPRF mixtures were investigated in the shock tube conditions similar to those mentioned above. A chemical kinetic model was developed to simulate the low- and high-temperature oxidation of mixed butanols and MB/TPRF blends. The proposed model is in good agreement with the experimental data with some deviations at low temperatures. The effect of mixed butanols addition to TPRFs is marginal when examining the ignition delay times at high temperatures. However, when extended to lower temperatures (T < 850K), the model shows that the mixed butanols addition to TPRFs causes the ignition delay times to increase and hence behaves like an octane booster at engine-like conditions. © 2015 The Combustion Institute.

  13. A model for integrating elementary neural functions into delayed-response behavior.

    Directory of Open Access Journals (Sweden)

    Thomas Gisiger

    2006-04-01

    Full Text Available It is well established that various cortical regions can implement a wide array of neural processes, yet the mechanisms which integrate these processes into behavior-producing, brain-scale activity remain elusive. We propose that an important role in this respect might be played by executive structures controlling the traffic of information between the cortical regions involved. To illustrate this hypothesis, we present a neural network model comprising a set of interconnected structures harboring stimulus-related activity (visual representation, working memory, and planning, and a group of executive units with task-related activity patterns that manage the information flowing between them. The resulting dynamics allows the network to perform the dual task of either retaining an image during a delay (delayed-matching to sample task, or recalling from this image another one that has been associated with it during training (delayed-pair association task. The model reproduces behavioral and electrophysiological data gathered on the inferior temporal and prefrontal cortices of primates performing these same tasks. It also makes predictions on how neural activity coding for the recall of the image associated with the sample emerges and becomes prospective during the training phase. The network dynamics proves to be very stable against perturbations, and it exhibits signs of scale-invariant organization and cooperativity. The present network represents a possible neural implementation for active, top-down, prospective memory retrieval in primates. The model suggests that brain activity leading to performance of cognitive tasks might be organized in modular fashion, simple neural functions becoming integrated into more complex behavior by executive structures harbored in prefrontal cortex and/or basal ganglia.

  14. A model for integrating elementary neural functions into delayed-response behavior.

    Science.gov (United States)

    Gisiger, Thomas; Kerszberg, Michel

    2006-04-01

    It is well established that various cortical regions can implement a wide array of neural processes, yet the mechanisms which integrate these processes into behavior-producing, brain-scale activity remain elusive. We propose that an important role in this respect might be played by executive structures controlling the traffic of information between the cortical regions involved. To illustrate this hypothesis, we present a neural network model comprising a set of interconnected structures harboring stimulus-related activity (visual representation, working memory, and planning), and a group of executive units with task-related activity patterns that manage the information flowing between them. The resulting dynamics allows the network to perform the dual task of either retaining an image during a delay (delayed-matching to sample task), or recalling from this image another one that has been associated with it during training (delayed-pair association task). The model reproduces behavioral and electrophysiological data gathered on the inferior temporal and prefrontal cortices of primates performing these same tasks. It also makes predictions on how neural activity coding for the recall of the image associated with the sample emerges and becomes prospective during the training phase. The network dynamics proves to be very stable against perturbations, and it exhibits signs of scale-invariant organization and cooperativity. The present network represents a possible neural implementation for active, top-down, prospective memory retrieval in primates. The model suggests that brain activity leading to performance of cognitive tasks might be organized in modular fashion, simple neural functions becoming integrated into more complex behavior by executive structures harbored in prefrontal cortex and/or basal ganglia.

  15. Impulsive control for a Takagi–Sugeno fuzzy model with time-delay and its application to chaotic systems

    International Nuclear Information System (INIS)

    Shi-Guo, Peng; Si-Min, Yu

    2009-01-01

    A control approach where the fuzzy logic methodology is combined with impulsive control is developed for controlling some time-delay chaotic systems in this paper. We first introduce impulses into each subsystem with delay of the Takagi–Sugeno (TS) fuzzy IF–THEN rules and then present a unified TS impulsive fuzzy model with delay for chaos control. Based on the new model, a simple and unified set of conditions for controlling chaotic systems is derived by the Lyapunov–Razumikhin method, and a design procedure for estimating bounds on control matrices is also given. Several numerical examples are presented to illustrate the effectiveness of this method

  16. Imperfect Reworking Process Consideration in Integrated Inventory Model under Permissible Delay in Payments

    Directory of Open Access Journals (Sweden)

    Ming-Cheng Lo

    2008-01-01

    Full Text Available This study develops an improved inventory model to help the enterprises to advance their profit increasing and cost reduction in a single vendor single-buyer environment with general demand curve, adjustable production rate, and imperfect reworking process under permissible delay in payments. For advancing practical use in a real world, we are concerned with the following strategy determining, which includes the buyer's optimal selling price, order quantity, and the number of shipments per production run from the vendor to the buyer. An algorithm and numerical analysis are used to illustrate the solution procedure.

  17. Accuracy of depolarization and delay spread predictions using advanced ray-based modeling in indoor scenarios

    Directory of Open Access Journals (Sweden)

    Mani Francesco

    2011-01-01

    Full Text Available Abstract This article investigates the prediction accuracy of an advanced deterministic propagation model in terms of channel depolarization and frequency selectivity for indoor wireless propagation. In addition to specular reflection and diffraction, the developed ray tracing tool considers penetration through dielectric blocks and/or diffuse scattering mechanisms. The sensitivity and prediction accuracy analysis is based on two measurement campaigns carried out in a warehouse and an office building. It is shown that the implementation of diffuse scattering into RT significantly increases the accuracy of the cross-polar discrimination prediction, whereas the delay-spread prediction is only marginally improved.

  18. Robust master-slave synchronization for general uncertain delayed dynamical model based on adaptive control scheme.

    Science.gov (United States)

    Wang, Tianbo; Zhou, Wuneng; Zhao, Shouwei; Yu, Weiqin

    2014-03-01

    In this paper, the robust exponential synchronization problem for a class of uncertain delayed master-slave dynamical system is investigated by using the adaptive control method. Different from some existing master-slave models, the considered master-slave system includes bounded unmodeled dynamics. In order to compensate the effect of unmodeled dynamics and effectively achieve synchronization, a novel adaptive controller with simple updated laws is proposed. Moreover, the results are given in terms of LMIs, which can be easily solved by LMI Toolbox in Matlab. A numerical example is given to illustrate the effectiveness of the method. Copyright © 2013 ISA. Published by Elsevier Ltd. All rights reserved.

  19. Stability and bifurcation analysis for a discrete-time bidirectional ring neural network model with delay

    Directory of Open Access Journals (Sweden)

    Yan-Ke Du

    2013-09-01

    Full Text Available We study a class of discrete-time bidirectional ring neural network model with delay. We discuss the asymptotic stability of the origin and the existence of Neimark-Sacker bifurcations, by analyzing the corresponding characteristic equation. Employing M-matrix theory and the Lyapunov functional method, global asymptotic stability of the origin is derived. Applying the normal form theory and the center manifold theorem, the direction of the Neimark-Sacker bifurcation and the stability of bifurcating periodic solutions are obtained. Numerical simulations are given to illustrate the main results.

  20. Stability of a viral infection model with state-dependent delay, CTL and antibody immune responses

    Czech Academy of Sciences Publication Activity Database

    Rezunenko, Oleksandr

    2017-01-01

    Roč. 22, č. 4 (2017), s. 1547-1563 ISSN 1531-3492 R&D Projects: GA ČR(CZ) GA16-06678S Institutional support: RVO:67985556 Keywords : Evolution equations * Lyapunov stability * state-dependent delay * virus infection model Subject RIV: BC - Control Systems Theory OBOR OECD: Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8) Impact factor: 0.994, year: 2016 http://library.utia.cas.cz/separaty/2017/AS/rezunenko-0476128.pdf

  1. Detonation Propagation in Slabs and Axisymmetric Rate Sticks

    Science.gov (United States)

    Romick, Christopher; Aslam, Tariq

    Insensitive high explosives (IHE) have many benefits; however, these IHEs exhibit longer reaction zones than more conventional high explosives (HE). This makes IHEs less ideal explosives and more susceptible to edge effects as well as other performance degradation issues. Thus, there is a resulting reduction in the detonation speed within the explosive. Many HE computational models, e. g. WSD, SURF, CREST, have shock-dependent reaction rates. This dependency places a high value on having an accurate shock speed. In the common practice of shock-capturing, there is ambiguity in the shock-state due to smoothing of the shock-front. Moreover, obtaining an accurate shock speed with shock-capturing becomes prohibitively computationally expensive in multiple dimensions. The use of shock-fitting removes the ambiguity of the shock-state as it is one of the boundaries. As such, the required resolution for a given error in the detonation speed is less than with shock-capturing. This allows for further insight into performance degradation. A two-dimensional shock-fitting scheme has been developed for unconfined slabs and rate sticks of HE. The HE modeling is accomplished by Euler equations utilizing several models with single-step irreversible kinetics in slab and rate stick geometries. Department of Energy - LANL.

  2. A joint spare part and maintenance inspection optimisation model using the Delay-Time concept

    International Nuclear Information System (INIS)

    Wang Wenbin

    2011-01-01

    Spare parts and maintenance are closely related logistics activities where maintenance generates the need for spare parts. When preventive maintenance is present, it may need more spare parts at one time because of the planned preventive maintenance activities. This paper considers the joint optimisation of three decision variables, e.g., the ordering quantity, ordering interval and inspection interval. The model is constructed using the well-known Delay-Time concept where the failure process is divided into a two-stage process. The objective function is the long run expected cost per unit time in terms of the three decision variables to be optimised. Here we use a block-based inspection policy where all components are inspected at the same time regardless of the ages of the components. This creates a situation that the time to failure since the immediate previous inspection is random and has to be modelled by a distribution. This time is called the forward time and a limiting but closed form of such distribution is obtained. We develop an algorithm for the optimal solution of the decision process using a combination of analytical and enumeration approaches. The model is demonstrated by a numerical example. - Highlights: → Joint optimisation of maintenance and spare part inventory. → The use of the Delay-Time concept. → Block-based inspection. → Fixed order interval but variable order quantity.

  3. A discrete event simulation model for evaluating time delays in a pipeline network

    Energy Technology Data Exchange (ETDEWEB)

    Spricigo, Deisi; Muggiati, Filipe V.; Lueders, Ricardo; Neves Junior, Flavio [Federal University of Technology of Parana (UTFPR), Curitiba, PR (Brazil)

    2009-07-01

    Currently in the oil industry the logistic chain stands out as a strong candidate to obtain highest profit, since recent studies have pointed out to a cost reduction by adoption of better policies for distribution of oil derivatives, particularly those where pipelines are used to transport products. Although there are models to represent transfers of oil derivatives in pipelines, they are quite complex and computationally burden. In this paper, we are interested on models that are less detailed in terms of fluid dynamics but provide more information about operational decisions in a pipeline network. We propose a discrete event simulation model in ARENA that allows simulating a pipeline network based on average historical data. Time delays for transferring different products can be evaluated through different routes. It is considered that transport operations follow a historical behavior and average time delays can thus be estimated within certain bounds. Due to its stochastic nature, time quantities are characterized by average and dispersion measures. This allows comparing different operational scenarios for product transportation. Simulation results are compared to data obtained from a real world pipeline network and different scenarios of production and demand are analyzed. (author)

  4. Parents' and speech and language therapists' explanatory models of language development, language delay and intervention.

    Science.gov (United States)

    Marshall, Julie; Goldbart, Juliet; Phillips, Julie

    2007-01-01

    Parental and speech and language therapist (SLT) explanatory models may affect engagement with speech and language therapy, but there has been dearth of research in this area. This study investigated parents' and SLTs' views about language development, delay and intervention in pre-school children with language delay. The aims were to describe, explore and explain the thoughts, understandings, perceptions, beliefs, knowledge and feelings held by: a group of parents from East Manchester, UK, whose pre-school children had been referred with suspected language delay; and SLTs working in the same area, in relation to language development, language delay and language intervention. A total of 24 unstructured interviews were carried out: 15 with parents whose children had been referred for speech and language therapy and nine with SLTs who worked with pre-school children. The interviews were transcribed verbatim and coded using Atlas/ti. The data were analysed, subjected to respondent validation, and grounded theories and principled descriptions developed to explain and describe parents' and SLTs' beliefs and views. Parent and SLT data are presented separately. There are commonalities and differences between the parents and the SLTs. Both groups believe that language development and delay are influenced by both external and internal factors. Parents give more weight to the role of gender, imitation and personality and value television and videos, whereas the SLTs value the 'right environment' and listening skills and consider that health/disability and socio-economic factors are important. Parents see themselves as experts on their child and have varied ideas about the role of SLTs, which do not always accord with SLTs' views. The parents and SLTs differ in their views of the roles of imitation and play in intervention. Parents typically try strategies before seeing an SLT. These data suggest that parents' ideas vary and that, although parents and SLTs may share some

  5. Hopf bifurcations of a ratio-dependent predator–prey model involving two discrete maturation time delays

    International Nuclear Information System (INIS)

    Karaoglu, Esra; Merdan, Huseyin

    2014-01-01

    Highlights: • A ratio-dependent predator–prey system involving two discrete maturation time delays is studied. • Hopf bifurcations are analyzed by choosing delay parameters as bifurcation parameters. • When a delay parameter passes through a critical value, Hopf bifurcations occur. • The direction of bifurcation, the period and the stability of periodic solution are also obtained. - Abstract: In this paper we give a detailed Hopf bifurcation analysis of a ratio-dependent predator–prey system involving two different discrete delays. By analyzing the characteristic equation associated with the model, its linear stability is investigated. Choosing delay terms as bifurcation parameters the existence of Hopf bifurcations is demonstrated. Stability of the bifurcating periodic solutions is determined by using the center manifold theorem and the normal form theory introduced by Hassard et al. Furthermore, some of the bifurcation properties including direction, stability and period are given. Finally, theoretical results are supported by some numerical simulations

  6. Chemical Kinetics in the expansion flow field of a rotating detonation-wave engine

    Science.gov (United States)

    Kailasanath, Kazhikathra; Schwer, Douglas

    2014-11-01

    Rotating detonation-wave engines (RDE) are a form of continuous detonation-wave engines. They potentially provide further gains in performance than an intermittent or pulsed detonation-wave engine (PDE). The overall flow field in an idealized RDE, primarily consisting of two concentric cylinders, has been discussed in previous meetings. Because of the high pressures involved and the lack of adequate reaction mechanisms for this regime, previous simulations have typically used simplified chemistry models. However, understanding the exhaust species concentrations in propulsion devices is important for both performance considerations as well as estimating pollutant emissions. A key step towards addressing this need will be discussed in this talk. In this approach, an induction parameter model is used for simulating the detonation but a more detailed finite-chemistry model is used in the expansion flow region, where the pressures are lower and the uncertainties in the chemistry model are greatly reduced. Results show that overall radical concentrations in the exhaust flow are substantially lower than from earlier predictions with simplified models. The performance of a baseline hydrogen/air RDE increased from 4940 s to 5000 s with the expansion flow chemistry, due to recombination of radicals and more production of H2O, resulting in additional heat release.

  7. A delay time model with imperfect and failure-inducing inspections

    International Nuclear Information System (INIS)

    Flage, Roger

    2014-01-01

    This paper presents an inspection-based maintenance optimisation model where the inspections are imperfect and potentially failure-inducing. The model is based on the basic delay-time model in which a system has three states: perfectly functioning, defective and failed. The system is deteriorating through these states and to reveal defective systems, inspections are performed periodically using a procedure by which the system fails with a fixed state-dependent probability; otherwise, an inspection identifies a functioning system as defective (false positive) with a fixed probability and a defective system as functioning (false negative) with a fixed probability. The system is correctively replaced upon failure or preventively replaced either at the N'th inspection time or when an inspection reveals the system as defective, whichever occurs first. Replacement durations are assumed to be negligible and costs are associated with inspections, replacements and failures. The problem is to determine the optimal inspection interval T and preventive age replacement limit N that jointly minimise the long run expected cost per unit of time. The system may also be thought of as a passive two-state system subject to random demands; the three states of the model are then functioning, undetected failed and detected failed; and to ensure the renewal property of replacement cycles the demand process generating the ‘delay time’ is then restricted to the Poisson process. The inspiration for the presented model has been passive safety critical valves as used in (offshore) oil and gas production and transportation systems. In light of this the passive system interpretation is highlighted, as well as the possibility that inspection-induced failures are associated with accidents. Two numerical examples are included, and some potential extensions of the model are indicated

  8. Detonation cell size measurements and predictions in hydrogen-air-steam mixtures at elevated temperatures

    International Nuclear Information System (INIS)

    Ciccarelli, G.; Ginsberg, T.; Boccio, J.; Economos, C.

    1994-01-01

    The present research reports on the effect of initial mixture temperature on the experimentally measured detonation cell size for hydrogen-air-steam mixtures. Experimental and theoretical research related to combustion phenomena in hydrogen-air-steam mixtures has been ongoing for many years. However, detonation cell size data currently exists or hydrogen-air-steam mixtures up to a temperature of only 400K. Sever accident scenarios have been identified for light water reactors (LWRs) where hydrogen-air mixture temperatures in excess of 400K could be generated within containment. The experiments in this report focus on extending the cell size data base for initial mixture temperatures in excess of 400K. The experiments were carried out in a 10-cm inner-diameter, 6.1-m long heated detonation tube with a maximum operating temperature of 700K and spatial temperature uniformity of ±14K. Detonation cell size measurements provide clear evidence that the effect of hydrogen-air initial gas mixture temperature, in the range 300K--650K, is to decrease cell size and, hence, to increase the sensitivity of the mixture to undergo detonations. The effect of steam content, at any given temperature, is to increase the cell size and, thereby, to decrease the sensitivity of stoichiometric hydrogen-air mixtures. The hydrogen-air detonability limits for the 10-cm inside-diameter test vessel, based upon the onset of single-head spin, decreased from 15 percent by hydrogen at 300K down to about 9 percent hydrogen at 650K. The one-dimensional ZND model does a very good job at predicting the overall trends in the cell size data over the range of hydrogen-air-steam mixture compositions and temperature studied in the experiments

  9. Integration of measurements with atmospheric dispersion models: Source term estimation for dispersal of (239)Pu due to non-nuclear detonation of high explosive

    Science.gov (United States)

    Edwards, L. L.; Harvey, T. F.; Freis, R. P.; Pitovranov, S. E.; Chernokozhin, E. V.

    1992-10-01

    The accuracy associated with assessing the environmental consequences of an accidental release of radioactivity is highly dependent on our knowledge of the source term characteristics and, in the case when the radioactivity is condensed on particles, the particle size distribution, all of which are generally poorly known. This paper reports on the development of a numerical technique that integrates the radiological measurements with atmospheric dispersion modeling. This results in a more accurate particle-size distribution and particle injection height estimation when compared with measurements of high explosive dispersal of (239)Pu. The estimation model is based on a non-linear least squares regression scheme coupled with the ARAC three-dimensional atmospheric dispersion models. The viability of the approach is evaluated by estimation of ADPIC model input parameters such as the ADPIC particle size mean aerodynamic diameter, the geometric standard deviation, and largest size. Additionally we estimate an optimal 'coupling coefficient' between the particles and an explosive cloud rise model. The experimental data are taken from the Clean Slate 1 field experiment conducted during 1963 at the Tonopah Test Range in Nevada. The regression technique optimizes the agreement between the measured and model predicted concentrations of (239)Pu by varying the model input parameters within their respective ranges of uncertainties. The technique generally estimated the measured concentrations within a factor of 1.5, with the worst estimate being within a factor of 5, very good in view of the complexity of the concentration measurements, the uncertainties associated with the meteorological data, and the limitations of the models. The best fit also suggest a smaller mean diameter and a smaller geometric standard deviation on the particle size as well as a slightly weaker particle to cloud coupling than previously reported.

  10. Integration of measurements with atmospheric dispersion models: Source term estimation for dispersal of 239Pu due to non- nuclear detonation of high explosive

    International Nuclear Information System (INIS)

    Edwards, L.L.; Harvey, T.F.; Freis, R.P.; Pitovranov, S.E.; Chernokozhin, E.V.

    1992-10-01

    The accuracy associated with assessing the environmental consequences of an accidental release of radioactivity is highly dependent on our knowledge of the source term characteristics and, in the case when the radioactivity is condensed on particles, the particle size distribution, all of which are generally poorly known. This paper reports on the development of a numerical technique that integrates the radiological measurements with atmospheric dispersion modeling. This results in a more accurate particle-size distribution and particle injection height estimation when compared with measurements of high explosive dispersal of 239 Pu. The estimation model is based on a non-linear least squares regression scheme coupled with the ARAC three-dimensional atmospheric dispersion models. The viability of the approach is evaluated by estimation of ADPIC model input parameters such as the ADPIC particle size mean aerodynamic diameter, the geometric standard deviation, and largest size. Additionally we estimate an optimal ''coupling coefficient'' between the particles and an explosive cloud rise model. The experimental data are taken from the Clean Slate 1 field experiment conducted during 1963 at the Tonopah Test Range in Nevada. The regression technique optimizes the agreement between the measured and model predicted concentrations of 239 Pu by varying the model input parameters within their respective ranges of uncertainties. The technique generally estimated the measured concentrations within a factor of 1.5, with the worst estimate being within a factor of 5, very good in view of the complexity of the concentration measurements, the uncertainties associated with the meteorological data, and the limitations of the models. The best fit also suggest a smaller mean diameter and a smaller geometric standard deviation on the particle size as well as a slightly weaker particle to cloud coupling than previously reported

  11. Treatment-time-dependence models of early and delayed radiation injury in rat small intestine

    International Nuclear Information System (INIS)

    Denham, James W.; Hauer-Jensen, Martin; Kron, Tomas; Langberg, Carl W.

    2000-01-01

    Background: The present study modeled data from a large series of experiments originally designed to investigate the influence of time, dose, and fractionation on early and late pathologic endpoints in rat small intestine after localized irradiation. The objective was to obtain satisfactory descriptions of the regenerative response to injury together with the possible relationships between early and late endpoints. Methods: Two- and 26-week pathologic radiation injury data in groups of Sprague-Dawley rats irradiated with 27 different fractionation schedules were modeled using the incomplete repair (IR) version of the linear-quadratic model with or without various time correction models. The following time correction models were tested: (1) No time correction; (2) A simple exponential (SE) regenerative response beginning at an arbitrary time after starting treatment; and (3) A bi-exponential response with its commencement linked to accumulated cellular depletion and fraction size (the 'intelligent response model' [INTR]). Goodness of fit of the various models was assessed by correlating the predicted biological effective dose for each dose group with the observed radiation injury score. Results: (1) The incomplete repair model without time correction did not provide a satisfactory description of either the 2- or 26-week data. (2) The models using SE time correction performed better, providing modest descriptions of the data. (3) The INTR model provided reasonable descriptions of both the 2- and 26-week data, confirming a treatment time dependence of both early and late pathological endpoints. (4) The most satisfactory descriptions of the data by the INTR model were obtained when the regenerative response was assumed to cease 2 weeks after irradiation rather than at the end of irradiation. A fraction-size-dependent delay of the regenerative response was also suggested in the best fitting models. (5) Late endpoints were associated with low-fractionation sensitivity

  12. Bifurcation analysis of a delay reaction-diffusion malware propagation model with feedback control

    Science.gov (United States)

    Zhu, Linhe; Zhao, Hongyong; Wang, Xiaoming

    2015-05-01

    With the rapid development of network information technology, information networks security has become a very critical issue in our work and daily life. This paper attempts to develop a delay reaction-diffusion model with a state feedback controller to describe the process of malware propagation in mobile wireless sensor networks (MWSNs). By analyzing the stability and Hopf bifurcation, we show that the state feedback method can successfully be used to control unstable steady states or periodic oscillations. Moreover, formulas for determining the properties of the bifurcating periodic oscillations are derived by applying the normal form method and center manifold theorem. Finally, we conduct extensive simulations on large-scale MWSNs to evaluate the proposed model. Numerical evidences show that the linear term of the controller is enough to delay the onset of the Hopf bifurcation and the properties of the bifurcation can be regulated to achieve some desirable behaviors by choosing the appropriate higher terms of the controller. Furthermore, we obtain that the spatial-temporal dynamic characteristics of malware propagation are closely related to the rate constant for nodes leaving the infective class for recovered class and the mobile behavior of nodes.

  13. Nonresonant Double Hopf Bifurcation in Toxic Phytoplankton-Zooplankton Model with Delay

    Science.gov (United States)

    Yuan, Rui; Jiang, Weihua; Wang, Yong

    This paper investigates a toxic phytoplankton-zooplankton model with Michaelis-Menten type phytoplankton harvesting. The model has rich dynamical behaviors. It undergoes transcritical, saddle-node, fold, Hopf, fold-Hopf and double Hopf bifurcation, when the parameters change and go through some of the critical values, the dynamical properties of the system will change also, such as the stability, equilibrium points and the periodic orbit. We first study the stability of the equilibria, and analyze the critical conditions for the above bifurcations at each equilibrium. In addition, the stability and direction of local Hopf bifurcations, and the completion bifurcation set by calculating the universal unfoldings near the double Hopf bifurcation point are given by the normal form theory and center manifold theorem. We obtained that the stable coexistent equilibrium point and stable periodic orbit alternate regularly when the digestion time delay is within some finite value. That is, we derived the pattern for the occurrence, and disappearance of a stable periodic orbit. Furthermore, we calculated the approximation expression of the critical bifurcation curve using the digestion time delay and the harvesting rate as parameters, and determined a large range in terms of the harvesting rate for the phytoplankton and zooplankton to coexist in a long term.

  14. On the lubrication mechanism of detonation-synthesis nanodiamond additives in lubricant composites

    Science.gov (United States)

    Shepelevskii, A. A.; Esina, A. V.; Voznyakovskii, A. P.; Fadin, Yu. A.

    2017-09-01

    The lubrication of detonation-synthesis diamond additives in lubricant composites has been discussed. The mechanism of interaction between nanodiamonds and friction surface has been shown to depend on the applied load. Two models of the lubrication of nanodiamonds and the conditions for their validity have also been proposed.

  15. Performance evaluation of ionospheric time delay forecasting models using GPS observations at a low-latitude station

    Science.gov (United States)

    Sivavaraprasad, G.; Venkata Ratnam, D.

    2017-07-01

    Ionospheric delay is one of the major atmospheric effects on the performance of satellite-based radio navigation systems. It limits the accuracy and availability of Global Positioning System (GPS) measurements, related to critical societal and safety applications. The temporal and spatial gradients of ionospheric total electron content (TEC) are driven by several unknown priori geophysical conditions and solar-terrestrial phenomena. Thereby, the prediction of ionospheric delay is challenging especially over Indian sub-continent. Therefore, an appropriate short/long-term ionospheric delay forecasting model is necessary. Hence, the intent of this paper is to forecast ionospheric delays by considering day to day, monthly and seasonal ionospheric TEC variations. GPS-TEC data (January 2013-December 2013) is extracted from a multi frequency GPS receiver established at K L University, Vaddeswaram, Guntur station (geographic: 16.37°N, 80.37°E; geomagnetic: 7.44°N, 153.75°E), India. An evaluation, in terms of forecasting capabilities, of three ionospheric time delay models - an Auto Regressive Moving Average (ARMA) model, Auto Regressive Integrated Moving Average (ARIMA) model, and a Holt-Winter's model is presented. The performances of these models are evaluated through error measurement analysis during both geomagnetic quiet and disturbed days. It is found that, ARMA model is effectively forecasting the ionospheric delay with an accuracy of 82-94%, which is 10% more superior to ARIMA and Holt-Winter's models. Moreover, the modeled VTEC derived from International Reference Ionosphere, IRI (IRI-2012) model and new global TEC model, Neustrelitz TEC Model (NTCM-GL) have compared with forecasted VTEC values of ARMA, ARIMA and Holt-Winter's models during geomagnetic quiet days. The forecast results are indicating that ARMA model would be useful to set up an early warning system for ionospheric disturbances at low latitude regions.

  16. GPS, BDS and Galileo ionospheric correction models: An evaluation in range delay and position domain

    Science.gov (United States)

    Wang, Ningbo; Li, Zishen; Li, Min; Yuan, Yunbin; Huo, Xingliang

    2018-05-01

    The performance of GPS Klobuchar (GPSKlob), BDS Klobuchar (BDSKlob) and NeQuick Galileo (NeQuickG) ionospheric correction models are evaluated in the range delay and position domains over China. The post-processed Klobuchar-style (CODKlob) coefficients provided by the Center for Orbit Determination in Europe (CODE) and our own fitted NeQuick coefficients (NeQuickC) are also included for comparison. In the range delay domain, BDS total electrons contents (TEC) derived from 20 international GNSS Monitoring and Assessment System (iGMAS) stations and GPS TEC obtained from 35 Crust Movement Observation Network of China (CMONC) stations are used as references. Compared to BDS TEC during the short period (doy 010-020, 2015), GPSKlob, BDSKlob and NeQuickG can correct 58.4, 66.7 and 54.7% of the ionospheric delay. Compared to GPS TEC for the long period (doy 001-180, 2015), the three ionospheric models can mitigate the ionospheric delay by 64.8, 65.4 and 68.1%, respectively. For the two comparison cases, CODKlob shows the worst performance, which only reduces 57.9% of the ionospheric range errors. NeQuickC exhibits the best performance, which outperforms GPSKlob, BDSKlob and NeQuickG by 6.7, 2.1 and 6.9%, respectively. In the position domain, single-frequency stand point positioning (SPP) was conducted at the selected 35 CMONC sites using GPS C/A pseudorange with and without ionospheric corrections. The vertical position error of the uncorrected case drops significantly from 10.3 m to 4.8, 4.6, 4.4 and 4.2 m for GPSKlob, CODKlob, BDSKlob and NeQuickG, however, the horizontal position error (3.2) merely decreases to 3.1, 2.7, 2.4 and 2.3 m, respectively. NeQuickG outperforms GPSKlob and BDSKlob by 5.8 and 1.9% in vertical component, and by 25.0 and 3.2% in horizontal component.

  17. Inferring Fitness Effects from Time-Resolved Sequence Data with a Delay-Deterministic Model.

    Science.gov (United States)

    Nené, Nuno R; Dunham, Alistair S; Illingworth, Christopher J R

    2018-05-01

    A common challenge arising from the observation of an evolutionary system over time is to infer the magnitude of selection acting upon a specific genetic variant, or variants, within the population. The inference of selection may be confounded by the effects of genetic drift in a system, leading to the development of inference procedures to account for these effects. However, recent work has suggested that deterministic models of evolution may be effective in capturing the effects of selection even under complex models of demography, suggesting the more general application of deterministic approaches to inference. Responding to this literature, we here note a case in which a deterministic model of evolution may give highly misleading inferences, resulting from the nondeterministic properties of mutation in a finite population. We propose an alternative approach that acts to correct for this error, and which we denote the delay-deterministic model. Applying our model to a simple evolutionary system, we demonstrate its performance in quantifying the extent of selection acting within that system. We further consider the application of our model to sequence data from an evolutionary experiment. We outline scenarios in which our model may produce improved results for the inference of selection, noting that such situations can be easily identified via the use of a regular deterministic model. Copyright © 2018 Nené et al.

  18. Delayed behaviour of concrete in nuclear power plant containment: analysis and modelling

    International Nuclear Information System (INIS)

    Granger, L.

    1995-02-01

    The containment of French nuclear power plant of the 1300 and 1400 MWe PWR type are made of prestressed concrete and their delayed behaviour is systematically monitored by a very complete instrumentation. In an accidental phase, the tightness of the 1.2 m thick structure, dimensioned to withstand an internal absolute pressure of 0.5 MPa depends mainly on the residual prestress of concrete. But surveillance devices reveal substantial differences from one site to another, from which the regulation calculation models cannot make satisfactory allowance. For the purpose of improving the management of the population of power stations, EDF in 1992 initiated a large study aimed at predicting the true creep behaviour of the containments already built. This study, more material oriented, includes numerous shrinkage and creep tests on reconstructed concrete in laboratory as well as on cement paste and aggregate. The main results are presented in part one. In the second part, we consider the different delayed strains of concrete one by one. A precise analysis of the physico-chemical phenomena at the origin of the delayed behaviours, leads us to propose a practical modelling of concrete in an overall equivalent continuous material approach. Secondly, the few parameters of the model are determined on the experimental results. In order to do so, two particular finite element programs in CESAR-LCPC have been developed. The first one permits to take into account the non linear diffusion of humidity in concrete as a function of temperature. The diffusion coefficient D(C) (C = water content) is fitted on the loss of weight tests as a function of time. The second step is a creep calculation; first, the program reads back the temperature and humidity results of the previous computations and then calculates the different delayed strains in time. For basic creep, we have chosen a viscoelastic model function of temperature and humidity. The numerical scheme uses the principle of

  19. Nerve Cross-Bridging to Enhance Nerve Regeneration in a Rat Model of Delayed Nerve Repair

    Science.gov (United States)

    2015-01-01

    There are currently no available options to promote nerve regeneration through chronically denervated distal nerve stumps. Here we used a rat model of delayed nerve repair asking of prior insertion of side-to-side cross-bridges between a donor tibial (TIB) nerve and a recipient denervated common peroneal (CP) nerve stump ameliorates poor nerve regeneration. First, numbers of retrogradely-labelled TIB neurons that grew axons into the nerve stump within three months, increased with the size of the perineurial windows opened in the TIB and CP nerves. Equal numbers of donor TIB axons regenerated into CP stumps either side of the cross-bridges, not being affected by target neurotrophic effects, or by removing the perineurium to insert 5-9 cross-bridges. Second, CP nerve stumps were coapted three months after inserting 0-9 cross-bridges and the number of 1) CP neurons that regenerated their axons within three months or 2) CP motor nerves that reinnervated the extensor digitorum longus (EDL) muscle within five months was determined by counting and motor unit number estimation (MUNE), respectively. We found that three but not more cross-bridges promoted the regeneration of axons and reinnervation of EDL muscle by all the CP motoneurons as compared to only 33% regenerating their axons when no cross-bridges were inserted. The same 3-fold increase in sensory nerve regeneration was found. In conclusion, side-to-side cross-bridges ameliorate poor regeneration after delayed nerve repair possibly by sustaining the growth-permissive state of denervated nerve stumps. Such autografts may be used in human repair surgery to improve outcomes after unavoidable delays. PMID:26016986

  20. Bifurcation Analysis for an SEIRS-V Model with Delays on the Transmission of Worms in a Wireless Sensor Network

    Directory of Open Access Journals (Sweden)

    Zizhen Zhang

    2017-01-01

    Full Text Available Hopf bifurcation for an SEIRS-V model with delays on the transmission of worms in a wireless sensor network is investigated. We focus on existence of the Hopf bifurcation by regarding the diverse delay as a bifurcation parameter. The results show that propagation of worms in the wireless sensor network can be controlled when the delay is suitably small under some certain conditions. Then, we study properties of the Hopf bifurcation by using the normal form theory and center manifold theorem. Finally, we give a numerical example to support the theoretical results.

  1. FREQUENCY CATASTROPHE AND CO-EXISTING ATTRACTORS IN A CELL Ca2+ NONLINEAR OSCILLATION MODEL WITH TIME DELAY*

    Institute of Scientific and Technical Information of China (English)

    应阳君; 黄祖洽

    2001-01-01

    Frequency catastrophe is found in a cell Ca2+ nonlinear oscillation model with time delay. The relation of the frequency transition to the time delay is studied by numerical simulations and theoretical analysis. There is a range of parameters in which two kinds of attractors with great frequency differences co-exist in the system. Along with parameter changes, a critical phenomenon occurs and the oscillation frequency changes greatly. This mechanism helps us to deepen the understanding of the complex dynamics of delay systems, and might be of some meaning in cell signalling.

  2. Stability and Hopf Bifurcation of Fractional-Order Complex-Valued Single Neuron Model with Time Delay

    Science.gov (United States)

    Wang, Zhen; Wang, Xiaohong; Li, Yuxia; Huang, Xia

    2017-12-01

    In this paper, the problems of stability and Hopf bifurcation in a class of fractional-order complex-valued single neuron model with time delay are addressed. With the help of the stability theory of fractional-order differential equations and Laplace transforms, several new sufficient conditions, which ensure the stability of the system are derived. Taking the time delay as the bifurcation parameter, Hopf bifurcation is investigated and the critical value of the time delay for the occurrence of Hopf bifurcation is determined. Finally, two representative numerical examples are given to show the effectiveness of the theoretical results.

  3. On detonation dynamics in hydrogen-air-steam mixtures: Theory and application to Olkiluoto reactor building

    International Nuclear Information System (INIS)

    Silde, A.; Lindholm, I.

    2000-02-01

    This report consists of the literature study of detonation dynamics in hydrogen-air-steam mixtures, and the assessment of shock pressure loads in Olkiluoto 1 and 2 reactor building under detonation conditions using the computer program DETO developed during this work at VTT. The program uses a simple 1-D approach based on the strong explosion theory, and accounts for the effects of both the primary or incident shock and the first (oblique or normal) reflected shock from a wall structure. The code results are also assessed against a Balloon experiment performed at Germany, and the classical Chapman-Jouguet detonation theory. The whole work was carried out as a part of Nordic SOS-2.3 project, dealing with severe accident analysis. The initial conditions and gas distribution of the detonation calculations are based on previous severe accident analyses by MELCOR and FLUENT codes. According to DETO calculations, the maximum peak pressure in a structure of Olkiluoto reactor building room B60-80 after normal shock reflection was about 38.7 MPa if a total of 3.15 kg hydrogen was assumed to burned in a distance of 2.0 m from the wall structure. The corresponding pressure impulse was about 9.4 kPa-s. The results were sensitive to the distance used. Comparison of the results to classical C-J theory and the Balloon experiments suggested that DETO code represented a conservative estimation for the first pressure spike under the shock reflection from a wall in Olkiluoto reactor building. Complicated 3-D phenomena of shock wave reflections and focusing, nor the propagation of combustion front behind the shock wave under detonation conditions are not modeled in the DETO code. More detailed 3-D analyses with a specific detonation code are, therefore, recommended. In spite of the code simplifications, DETO was found to be a beneficial tool for simple first-order assessments of the structure pressure loads under the first reflection of detonation shock waves. The work on assessment

  4. Stability Analysis and H∞ Model Reduction for Switched Discrete-Time Time-Delay Systems

    Directory of Open Access Journals (Sweden)

    Zheng-Fan Liu

    2014-01-01

    Full Text Available This paper is concerned with the problem of exponential stability and H∞ model reduction of a class of switched discrete-time systems with state time-varying delay. Some subsystems can be unstable. Based on the average dwell time technique and Lyapunov-Krasovskii functional (LKF approach, sufficient conditions for exponential stability with H∞ performance of such systems are derived in terms of linear matrix inequalities (LMIs. For the high-order systems, sufficient conditions for the existence of reduced-order model are derived in terms of LMIs. Moreover, the error system is guaranteed to be exponentially stable and an H∞ error performance is guaranteed. Numerical examples are also given to demonstrate the effectiveness and reduced conservatism of the obtained results.

  5. Hepatobiliary system functional analysis by blood flow and clearance delay model

    International Nuclear Information System (INIS)

    Aboltins, A.; Reinholds, E.

    2002-01-01

    A mathematical model for describing liver uptake-excretion is developed and approved. Model is based on different timing delays in hepatobiliary and blood flow system elements. Series of scintigraphic images with 99m Tc-mebrofenins or 99m Tc-HIDA taken with standard nuclear medicine gamma camera are used as the real data for calculations. The time-activity curves are obtained from many regions of human body - heart, liver, gallbladder, spleen, aorta, vein, etc. Both first pass and dynamic acquisition data are used. Results are calculated using real system parameters and compared to real scintigraphy data. Mathematical simulations are made to show difference of hepatobiliary system function at three main points: normal function, good blood flow with bad hepatic function and bad blood flow with good hepatic function. (authors)

  6. CALCULUS FROM THE PAST: MULTIPLE DELAY SYSTEMS ARISING IN CANCER CELL MODELLING

    KAUST Repository

    WAKE, G. C.; BYRNE, H. M.

    2013-01-01

    Nonlocal calculus is often overlooked in the mathematics curriculum. In this paper we present an interesting new class of nonlocal problems that arise from modelling the growth and division of cells, especially cancer cells, as they progress through the cell cycle. The cellular biomass is assumed to be unstructured in size or position, and its evolution governed by a time-dependent system of ordinary differential equations with multiple time delays. The system is linear and taken to be autonomous. As a result, it is possible to reduce its solution to that of a nonlinear matrix eigenvalue problem. This method is illustrated by considering case studies, including a model of the cell cycle developed recently by Simms, Bean and Koeber. The paper concludes by explaining how asymptotic expressions for the distribution of cells across the compartments can be determined and used to assess the impact of different chemotherapeutic agents. Copyright © 2013 Australian Mathematical Society.

  7. Time Delayed Stage-Structured Predator-Prey Model with Birth Pulse and Pest Control Tactics

    Directory of Open Access Journals (Sweden)

    Mei Yan

    2014-01-01

    Full Text Available Normally, chemical pesticides kill not only pests but also their natural enemies. In order to better control the pests, two-time delayed stage-structured predator-prey models with birth pulse and pest control tactics are proposed and analyzed by using impulsive differential equations in present work. The stability threshold conditions for the mature prey-eradication periodic solutions of two models are derived, respectively. The effects of key parameters including killing efficiency rate, pulse period, the maximum birth effort per unit of time of natural enemy, and maturation time of prey on the threshold values are discussed in more detail. By comparing the two threshold values of mature prey-extinction, we provide the fact that the second control tactic is more effective than the first control method.

  8. Chemical kinetics modeling of the influence of molecular structure on shock tube ignition delay

    International Nuclear Information System (INIS)

    Westbrook, C.K.; Pitz, W.J.

    1985-07-01

    The current capabilities of kinetic modeling of hydrocarbon oxidation in shock waves are discussed. The influence of molecular size and structure on ignition delay times are stressed. The n-paraffin fuels from CH 4 to n-C 5 H 12 are examined under shock tube conditions, as well as the branched chain fuel isobutane, and the computed results are compared with available experimental data. The modeling results show that it is important in the reaction mechanism to distinguish between abstraction of primary, secondary and tertiary H atom sites from the fuel molecule. This is due to the fact that both the rates and the product distributions of the subsequent alkyl radical decomposition reactions depend on which H atoms were abstracted. Applications of the reaction mechanisms to shock tube problems and to other practical problems such as engine knock are discussed

  9. Precursors in detonations in porous explosives

    International Nuclear Information System (INIS)

    Spaulding, R.L. Jr.

    1981-01-01

    Photographs of detonation waves in low-density HMX and PETN, made with an image-intensifier camera, show a brilliant band of light in front of the pressure jump. The radiation temperature is estimated to be 12,000 to 14,000 0 K. The spectrum of this light is continuous. A quartz gauge shows a gradual buildup of pressure from the material producing the light. The material has little effect on the propagation of detonation. Further observations, using pellets of plastic-bonded HMX and single crystals of PETN, show that the material thrown off the free surface is transparent, with a leading edge moving at approximately 20 mm/μs. Collision of this material with polymethyl methacrylate (PMMA) produces a brilliant light with a spectrum that is initially a narrow H/sub α/ line. Quartz gauges measure the rate of pessure buildup of this material

  10. Modeling endocrine regulation of the menstrual cycle using delay differential equations.

    Science.gov (United States)

    Harris, Leona A; Selgrade, James F

    2014-11-01

    This article reviews an effective mathematical procedure for modeling hormonal regulation of the menstrual cycle of adult women. The procedure captures the effects of hormones secreted by several glands over multiple time scales. The specific model described here consists of 13 nonlinear, delay, differential equations with 44 parameters and correctly predicts blood levels of ovarian and pituitary hormones found in the biological literature for normally cycling women. In addition to this normal cycle, the model exhibits another stable cycle which may describe a biologically feasible "abnormal" condition such as polycystic ovarian syndrome. Model simulations illustrate how one cycle can be perturbed to the other cycle. Perturbations due to the exogenous administration of each ovarian hormone are examined. This model may be used to test the effects of hormone therapies on abnormally cycling women as well as the effects of exogenous compounds on normally cycling women. Sensitive parameters are identified and bifurcations in model behavior with respect to parameter changes are discussed. Modeling various aspects of menstrual cycle regulation should be helpful in predicting successful hormone therapies, in studying the phenomenon of cycle synchronization and in understanding many factors affecting the aging of the female reproductive endocrine system. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Hopf bifurcation in a dynamic IS-LM model with time delay

    International Nuclear Information System (INIS)

    Neamtu, Mihaela; Opris, Dumitru; Chilarescu, Constantin

    2007-01-01

    The paper investigates the impact of delayed tax revenues on the fiscal policy out-comes. Choosing the delay as a bifurcation parameter we study the direction and the stability of the bifurcating periodic solutions. We show when the system is stable with respect to the delay. Some numerical examples are given to confirm the theoretical results

  12. Delay-induced Turing-like waves for one-species reaction-diffusion model on a network

    Science.gov (United States)

    Petit, Julien; Carletti, Timoteo; Asllani, Malbor; Fanelli, Duccio

    2015-09-01

    A one-species time-delay reaction-diffusion system defined on a complex network is studied. Traveling waves are predicted to occur following a symmetry-breaking instability of a homogeneous stationary stable solution, subject to an external nonhomogeneous perturbation. These are generalized Turing-like waves that materialize in a single-species populations dynamics model, as the unexpected byproduct of the imposed delay in the diffusion part. Sufficient conditions for the onset of the instability are mathematically provided by performing a linear stability analysis adapted to time-delayed differential equations. The method here developed exploits the properties of the Lambert W-function. The prediction of the theory are confirmed by direct numerical simulation carried out for a modified version of the classical Fisher model, defined on a Watts-Strogatz network and with the inclusion of the delay.

  13. Steady states and outbreaks of two-phase nonlinear age-structured model of population dynamics with discrete time delay.

    Science.gov (United States)

    Akimenko, Vitalii; Anguelov, Roumen

    2017-12-01

    In this paper we study the nonlinear age-structured model of a polycyclic two-phase population dynamics including delayed effect of population density growth on the mortality. Both phases are modelled as a system of initial boundary values problem for semi-linear transport equation with delay and initial problem for nonlinear delay ODE. The obtained system is studied both theoretically and numerically. Three different regimes of population dynamics for asymptotically stable states of autonomous systems are obtained in numerical experiments for the different initial values of population density. The quasi-periodical travelling wave solutions are studied numerically for the autonomous system with the different values of time delays and for the system with oscillating death rate and birth modulus. In both cases it is observed three types of travelling wave solutions: harmonic oscillations, pulse sequence and single pulse.

  14. The application of convolution-based statistical model on the electrical breakdown time delay distributions in neon

    International Nuclear Information System (INIS)

    Maluckov, Cedomir A.; Karamarkovic, Jugoslav P.; Radovic, Miodrag K.; Pejovic, Momcilo M.

    2004-01-01

    The convolution-based model of the electrical breakdown time delay distribution is applied for statistical analysis of experimental results obtained in neon-filled diode tube at 6.5 mbar. At first, the numerical breakdown time delay density distributions are obtained by stochastic modeling as the sum of two independent random variables, the electrical breakdown statistical time delay with exponential, and discharge formative time with Gaussian distribution. Then, the single characteristic breakdown time delay distribution is obtained as the convolution of these two random variables with previously determined parameters. These distributions show good correspondence with the experimental distributions, obtained on the basis of 1000 successive and independent measurements. The shape of distributions is investigated, and corresponding skewness and kurtosis are plotted, in order to follow the transition from Gaussian to exponential distribution

  15. Simple Models for Airport Delays During Transition to a Trajectory-Based Air Traffic System

    Science.gov (United States)

    Brooker, Peter

    It is now widely recognised that a paradigm shift in air traffic control concepts is needed. This requires state-of-the-art innovative technologies, making much better use of the information in the air traffic management (ATM) system. These paradigm shifts go under the names of NextGen in the USA and SESAR in Europe, which inter alia will make dramatic changes to the nature of airport operations. A vital part of moving from an existing system to a new paradigm is the operational implications of the transition process. There would be business incentives for early aircraft fitment, it is generally safer to introduce new technologies gradually, and researchers are already proposing potential transition steps to the new system. Simple queuing theory models are used to establish rough quantitative estimates of the impact of the transition to a more efficient time-based navigational and ATM system. Such models are approximate, but they do offer insight into the broad implications of system change and its significant features. 4D-equipped aircraft in essence have a contract with the airport runway and, in return, they would get priority over any other aircraft waiting for use of the runway. The main operational feature examined here is the queuing delays affecting non-4D-equipped arrivals. These get a reasonable service if the proportion of 4D-equipped aircraft is low, but this can deteriorate markedly for high proportions, and be economically unviable. Preventative measures would be to limit the additional growth of 4D-equipped flights and/or to modify their contracts to provide sufficient space for the non-4D-equipped flights to operate without excessive delays. There is a potential for non-Poisson models, for which there is little in the literature, and for more complex models, e.g. grouping a succession of 4D-equipped aircraft as a batch.

  16. Numerical investigation of unsteady detonation waves in combustion chamber using Shchelkin spirals

    Directory of Open Access Journals (Sweden)

    Repaka Ramesh

    2016-09-01

    Full Text Available : Pulse Detonation Engine (PDE is considered to be a propulsive system of future air vehicles. The main objective is to minimizing the Deflagration to Detonation transition run-up distance and time by placing Shchelkin spiral with varying pitch length. Here we have considered blockage-area ratio is 0.5 as optimal value from review of previous studies. In the present study the detonation initiation and propagation is modeled numerically using commercial CFD codes GAMBIT and FLUENT. The unsteady and two-dimensional compressible Reynolds Averaged Navier-Stokes equation is used to simulate the model. Fuel-air mixture of Hydrogen-air is used for better efficiency of PDE. It is very simple straight tube with Shchelkin spirals, one of the methods which is used to initiate detonation is creation of high pressure and temperature chamber region with 0.5cm from closed end of tube where shock will generate and transition into low pressure and temperature region propagates towards end of the tube. Two different zones namely high and low pressure zones are used as interface in modeling and patching has been used to fill the zones with hydrogen and oxygen with different pressure and temperatures hence shock leads to propagate inside the combustion chamber.

  17. Effects of Injection Scheme on Rotating Detonation Engine Operation

    Science.gov (United States)

    Chacon, Fabian; Duvall, James; Gamba, Mirko

    2017-11-01

    In this work, we experimentally investigate the operation and performance characteristics of a rotating detonation engine (RDE) operated with different fuel injection schemes and operating conditions. In particular, we investigate the detonation and operation characteristics produced with an axial flow injector configuration and semi-impinging injector configurations. These are compared to the characteristics produced with a canonical radial injection system (AFRL injector). Each type produces a different flowfield and mixture distribution, leading to a different detonation initiation, injector dynamic response, and combustor pressure rise. By using a combination of diagnostics, we quantify the pressure loses and gains in the system, the ability to maintain detonation over a range of operating points, and the coupling between the detonation and the air/fuel feed lines. We particularly focus on how this coupling affects both the stability and the performance of the detonation wave. This work is supported by the DOE/UTSR program under project DE-FE0025315.

  18. Insensitive detonator apparatus for initiating large failure diameter explosives

    Science.gov (United States)

    Perry, III, William Leroy

    2015-07-28

    A munition according to a preferred embodiment can include a detonator system having a detonator that is selectively coupled to a microwave source that functions to selectively prime, activate, initiate, and/or sensitize an insensitive explosive material for detonation. The preferred detonator can include an explosive cavity having a barrier within which an insensitive explosive material is disposed and a waveguide coupled to the explosive cavity. The preferred system can further include a microwave source coupled to the waveguide such that microwaves enter the explosive cavity and impinge on the insensitive explosive material to sensitize the explosive material for detonation. In use the preferred embodiments permit the deployment and use of munitions that are maintained in an insensitive state until the actual time of use, thereby substantially preventing unauthorized or unintended detonation thereof.

  19. Detonation of Meta-stable Clusters

    Energy Technology Data Exchange (ETDEWEB)

    Kuhl, Allen; Kuhl, Allen L.; Fried, Laurence E.; Howard, W. Michael; Seizew, Michael R.; Bell, John B.; Beckner, Vincent; Grcar, Joseph F.

    2008-05-31

    We consider the energy accumulation in meta-stable clusters. This energy can be much larger than the typical chemical bond energy (~;;1 ev/atom). For example, polymeric nitrogen can accumulate 4 ev/atom in the N8 (fcc) structure, while helium can accumulate 9 ev/atom in the excited triplet state He2* . They release their energy by cluster fission: N8 -> 4N2 and He2* -> 2He. We study the locus of states in thermodynamic state space for the detonation of such meta-stable clusters. In particular, the equilibrium isentrope, starting at the Chapman-Jouguet state, and expanding down to 1 atmosphere was calculated with the Cheetah code. Large detonation pressures (3 and 16 Mbar), temperatures (12 and 34 kilo-K) and velocities (20 and 43 km/s) are a consequence of the large heats of detonation (6.6 and 50 kilo-cal/g) for nitrogen and helium clusters respectively. If such meta-stable clusters could be synthesized, they offer the potential for large increases in the energy density of materials.

  20. A new lattice hydrodynamic model based on control method considering the flux change rate and delay feedback signal

    Science.gov (United States)

    Qin, Shunda; Ge, Hongxia; Cheng, Rongjun

    2018-02-01

    In this paper, a new lattice hydrodynamic model is proposed by taking delay feedback and flux change rate effect into account in a single lane. The linear stability condition of the new model is derived by control theory. By using the nonlinear analysis method, the mKDV equation near the critical point is deduced to describe the traffic congestion. Numerical simulations are carried out to demonstrate the advantage of the new model in suppressing traffic jam with the consideration of flux change rate effect in delay feedback model.